1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 ** 25 ** $Id: build.c,v 1.531 2009/04/24 18:06:09 danielk1977 Exp $ 26 */ 27 #include "sqliteInt.h" 28 29 /* 30 ** This routine is called when a new SQL statement is beginning to 31 ** be parsed. Initialize the pParse structure as needed. 32 */ 33 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 34 pParse->explain = (u8)explainFlag; 35 pParse->nVar = 0; 36 } 37 38 #ifndef SQLITE_OMIT_SHARED_CACHE 39 /* 40 ** The TableLock structure is only used by the sqlite3TableLock() and 41 ** codeTableLocks() functions. 42 */ 43 struct TableLock { 44 int iDb; /* The database containing the table to be locked */ 45 int iTab; /* The root page of the table to be locked */ 46 u8 isWriteLock; /* True for write lock. False for a read lock */ 47 const char *zName; /* Name of the table */ 48 }; 49 50 /* 51 ** Record the fact that we want to lock a table at run-time. 52 ** 53 ** The table to be locked has root page iTab and is found in database iDb. 54 ** A read or a write lock can be taken depending on isWritelock. 55 ** 56 ** This routine just records the fact that the lock is desired. The 57 ** code to make the lock occur is generated by a later call to 58 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 59 */ 60 void sqlite3TableLock( 61 Parse *pParse, /* Parsing context */ 62 int iDb, /* Index of the database containing the table to lock */ 63 int iTab, /* Root page number of the table to be locked */ 64 u8 isWriteLock, /* True for a write lock */ 65 const char *zName /* Name of the table to be locked */ 66 ){ 67 int i; 68 int nBytes; 69 TableLock *p; 70 71 if( iDb<0 ){ 72 return; 73 } 74 75 for(i=0; i<pParse->nTableLock; i++){ 76 p = &pParse->aTableLock[i]; 77 if( p->iDb==iDb && p->iTab==iTab ){ 78 p->isWriteLock = (p->isWriteLock || isWriteLock); 79 return; 80 } 81 } 82 83 nBytes = sizeof(TableLock) * (pParse->nTableLock+1); 84 pParse->aTableLock = 85 sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes); 86 if( pParse->aTableLock ){ 87 p = &pParse->aTableLock[pParse->nTableLock++]; 88 p->iDb = iDb; 89 p->iTab = iTab; 90 p->isWriteLock = isWriteLock; 91 p->zName = zName; 92 }else{ 93 pParse->nTableLock = 0; 94 pParse->db->mallocFailed = 1; 95 } 96 } 97 98 /* 99 ** Code an OP_TableLock instruction for each table locked by the 100 ** statement (configured by calls to sqlite3TableLock()). 101 */ 102 static void codeTableLocks(Parse *pParse){ 103 int i; 104 Vdbe *pVdbe; 105 106 if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ 107 return; 108 } 109 110 for(i=0; i<pParse->nTableLock; i++){ 111 TableLock *p = &pParse->aTableLock[i]; 112 int p1 = p->iDb; 113 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 114 p->zName, P4_STATIC); 115 } 116 } 117 #else 118 #define codeTableLocks(x) 119 #endif 120 121 /* 122 ** This routine is called after a single SQL statement has been 123 ** parsed and a VDBE program to execute that statement has been 124 ** prepared. This routine puts the finishing touches on the 125 ** VDBE program and resets the pParse structure for the next 126 ** parse. 127 ** 128 ** Note that if an error occurred, it might be the case that 129 ** no VDBE code was generated. 130 */ 131 void sqlite3FinishCoding(Parse *pParse){ 132 sqlite3 *db; 133 Vdbe *v; 134 135 db = pParse->db; 136 if( db->mallocFailed ) return; 137 if( pParse->nested ) return; 138 if( pParse->nErr ) return; 139 140 /* Begin by generating some termination code at the end of the 141 ** vdbe program 142 */ 143 v = sqlite3GetVdbe(pParse); 144 if( v ){ 145 sqlite3VdbeAddOp0(v, OP_Halt); 146 147 /* The cookie mask contains one bit for each database file open. 148 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 149 ** set for each database that is used. Generate code to start a 150 ** transaction on each used database and to verify the schema cookie 151 ** on each used database. 152 */ 153 if( pParse->cookieGoto>0 ){ 154 u32 mask; 155 int iDb; 156 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 157 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 158 if( (mask & pParse->cookieMask)==0 ) continue; 159 sqlite3VdbeUsesBtree(v, iDb); 160 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 161 if( db->init.busy==0 ){ 162 sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); 163 } 164 } 165 #ifndef SQLITE_OMIT_VIRTUALTABLE 166 { 167 int i; 168 for(i=0; i<pParse->nVtabLock; i++){ 169 char *vtab = (char *)pParse->apVtabLock[i]->pVtab; 170 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 171 } 172 pParse->nVtabLock = 0; 173 } 174 #endif 175 176 /* Once all the cookies have been verified and transactions opened, 177 ** obtain the required table-locks. This is a no-op unless the 178 ** shared-cache feature is enabled. 179 */ 180 codeTableLocks(pParse); 181 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); 182 } 183 } 184 185 186 /* Get the VDBE program ready for execution 187 */ 188 if( v && pParse->nErr==0 && !db->mallocFailed ){ 189 #ifdef SQLITE_DEBUG 190 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 191 sqlite3VdbeTrace(v, trace); 192 #endif 193 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 194 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem, 195 pParse->nTab, pParse->explain); 196 pParse->rc = SQLITE_DONE; 197 pParse->colNamesSet = 0; 198 }else if( pParse->rc==SQLITE_OK ){ 199 pParse->rc = SQLITE_ERROR; 200 } 201 pParse->nTab = 0; 202 pParse->nMem = 0; 203 pParse->nSet = 0; 204 pParse->nVar = 0; 205 pParse->cookieMask = 0; 206 pParse->cookieGoto = 0; 207 } 208 209 /* 210 ** Run the parser and code generator recursively in order to generate 211 ** code for the SQL statement given onto the end of the pParse context 212 ** currently under construction. When the parser is run recursively 213 ** this way, the final OP_Halt is not appended and other initialization 214 ** and finalization steps are omitted because those are handling by the 215 ** outermost parser. 216 ** 217 ** Not everything is nestable. This facility is designed to permit 218 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 219 ** care if you decide to try to use this routine for some other purposes. 220 */ 221 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 222 va_list ap; 223 char *zSql; 224 char *zErrMsg = 0; 225 sqlite3 *db = pParse->db; 226 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 227 char saveBuf[SAVE_SZ]; 228 229 if( pParse->nErr ) return; 230 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 231 va_start(ap, zFormat); 232 zSql = sqlite3VMPrintf(db, zFormat, ap); 233 va_end(ap); 234 if( zSql==0 ){ 235 return; /* A malloc must have failed */ 236 } 237 pParse->nested++; 238 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 239 memset(&pParse->nVar, 0, SAVE_SZ); 240 sqlite3RunParser(pParse, zSql, &zErrMsg); 241 sqlite3DbFree(db, zErrMsg); 242 sqlite3DbFree(db, zSql); 243 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 244 pParse->nested--; 245 } 246 247 /* 248 ** Locate the in-memory structure that describes a particular database 249 ** table given the name of that table and (optionally) the name of the 250 ** database containing the table. Return NULL if not found. 251 ** 252 ** If zDatabase is 0, all databases are searched for the table and the 253 ** first matching table is returned. (No checking for duplicate table 254 ** names is done.) The search order is TEMP first, then MAIN, then any 255 ** auxiliary databases added using the ATTACH command. 256 ** 257 ** See also sqlite3LocateTable(). 258 */ 259 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 260 Table *p = 0; 261 int i; 262 int nName; 263 assert( zName!=0 ); 264 nName = sqlite3Strlen(db, zName) + 1; 265 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 266 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 267 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 268 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 269 if( p ) break; 270 } 271 return p; 272 } 273 274 /* 275 ** Locate the in-memory structure that describes a particular database 276 ** table given the name of that table and (optionally) the name of the 277 ** database containing the table. Return NULL if not found. Also leave an 278 ** error message in pParse->zErrMsg. 279 ** 280 ** The difference between this routine and sqlite3FindTable() is that this 281 ** routine leaves an error message in pParse->zErrMsg where 282 ** sqlite3FindTable() does not. 283 */ 284 Table *sqlite3LocateTable( 285 Parse *pParse, /* context in which to report errors */ 286 int isView, /* True if looking for a VIEW rather than a TABLE */ 287 const char *zName, /* Name of the table we are looking for */ 288 const char *zDbase /* Name of the database. Might be NULL */ 289 ){ 290 Table *p; 291 292 /* Read the database schema. If an error occurs, leave an error message 293 ** and code in pParse and return NULL. */ 294 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 295 return 0; 296 } 297 298 p = sqlite3FindTable(pParse->db, zName, zDbase); 299 if( p==0 ){ 300 const char *zMsg = isView ? "no such view" : "no such table"; 301 if( zDbase ){ 302 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 303 }else{ 304 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 305 } 306 pParse->checkSchema = 1; 307 } 308 return p; 309 } 310 311 /* 312 ** Locate the in-memory structure that describes 313 ** a particular index given the name of that index 314 ** and the name of the database that contains the index. 315 ** Return NULL if not found. 316 ** 317 ** If zDatabase is 0, all databases are searched for the 318 ** table and the first matching index is returned. (No checking 319 ** for duplicate index names is done.) The search order is 320 ** TEMP first, then MAIN, then any auxiliary databases added 321 ** using the ATTACH command. 322 */ 323 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 324 Index *p = 0; 325 int i; 326 int nName = sqlite3Strlen(db, zName)+1; 327 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 328 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 329 Schema *pSchema = db->aDb[j].pSchema; 330 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 331 assert( pSchema || (j==1 && !db->aDb[1].pBt) ); 332 if( pSchema ){ 333 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 334 } 335 if( p ) break; 336 } 337 return p; 338 } 339 340 /* 341 ** Reclaim the memory used by an index 342 */ 343 static void freeIndex(Index *p){ 344 sqlite3 *db = p->pTable->dbMem; 345 sqlite3DbFree(db, p->zColAff); 346 sqlite3DbFree(db, p); 347 } 348 349 /* 350 ** Remove the given index from the index hash table, and free 351 ** its memory structures. 352 ** 353 ** The index is removed from the database hash tables but 354 ** it is not unlinked from the Table that it indexes. 355 ** Unlinking from the Table must be done by the calling function. 356 */ 357 static void sqlite3DeleteIndex(Index *p){ 358 Index *pOld; 359 const char *zName = p->zName; 360 361 pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, 362 sqlite3Strlen30(zName)+1, 0); 363 assert( pOld==0 || pOld==p ); 364 freeIndex(p); 365 } 366 367 /* 368 ** For the index called zIdxName which is found in the database iDb, 369 ** unlike that index from its Table then remove the index from 370 ** the index hash table and free all memory structures associated 371 ** with the index. 372 */ 373 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 374 Index *pIndex; 375 int len; 376 Hash *pHash = &db->aDb[iDb].pSchema->idxHash; 377 378 len = sqlite3Strlen(db, zIdxName); 379 pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); 380 if( pIndex ){ 381 if( pIndex->pTable->pIndex==pIndex ){ 382 pIndex->pTable->pIndex = pIndex->pNext; 383 }else{ 384 Index *p; 385 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} 386 if( p && p->pNext==pIndex ){ 387 p->pNext = pIndex->pNext; 388 } 389 } 390 freeIndex(pIndex); 391 } 392 db->flags |= SQLITE_InternChanges; 393 } 394 395 /* 396 ** Erase all schema information from the in-memory hash tables of 397 ** a single database. This routine is called to reclaim memory 398 ** before the database closes. It is also called during a rollback 399 ** if there were schema changes during the transaction or if a 400 ** schema-cookie mismatch occurs. 401 ** 402 ** If iDb==0 then reset the internal schema tables for all database 403 ** files. If iDb>=1 then reset the internal schema for only the 404 ** single file indicated. 405 */ 406 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 407 int i, j; 408 assert( iDb>=0 && iDb<db->nDb ); 409 410 if( iDb==0 ){ 411 sqlite3BtreeEnterAll(db); 412 } 413 for(i=iDb; i<db->nDb; i++){ 414 Db *pDb = &db->aDb[i]; 415 if( pDb->pSchema ){ 416 assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt))); 417 sqlite3SchemaFree(pDb->pSchema); 418 } 419 if( iDb>0 ) return; 420 } 421 assert( iDb==0 ); 422 db->flags &= ~SQLITE_InternChanges; 423 sqlite3BtreeLeaveAll(db); 424 425 /* If one or more of the auxiliary database files has been closed, 426 ** then remove them from the auxiliary database list. We take the 427 ** opportunity to do this here since we have just deleted all of the 428 ** schema hash tables and therefore do not have to make any changes 429 ** to any of those tables. 430 */ 431 for(i=0; i<db->nDb; i++){ 432 struct Db *pDb = &db->aDb[i]; 433 if( pDb->pBt==0 ){ 434 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); 435 pDb->pAux = 0; 436 } 437 } 438 for(i=j=2; i<db->nDb; i++){ 439 struct Db *pDb = &db->aDb[i]; 440 if( pDb->pBt==0 ){ 441 sqlite3DbFree(db, pDb->zName); 442 pDb->zName = 0; 443 continue; 444 } 445 if( j<i ){ 446 db->aDb[j] = db->aDb[i]; 447 } 448 j++; 449 } 450 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 451 db->nDb = j; 452 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 453 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 454 sqlite3DbFree(db, db->aDb); 455 db->aDb = db->aDbStatic; 456 } 457 } 458 459 /* 460 ** This routine is called when a commit occurs. 461 */ 462 void sqlite3CommitInternalChanges(sqlite3 *db){ 463 db->flags &= ~SQLITE_InternChanges; 464 } 465 466 /* 467 ** Clear the column names from a table or view. 468 */ 469 static void sqliteResetColumnNames(Table *pTable){ 470 int i; 471 Column *pCol; 472 sqlite3 *db = pTable->dbMem; 473 assert( pTable!=0 ); 474 if( (pCol = pTable->aCol)!=0 ){ 475 for(i=0; i<pTable->nCol; i++, pCol++){ 476 sqlite3DbFree(db, pCol->zName); 477 sqlite3ExprDelete(db, pCol->pDflt); 478 sqlite3DbFree(db, pCol->zType); 479 sqlite3DbFree(db, pCol->zColl); 480 } 481 sqlite3DbFree(db, pTable->aCol); 482 } 483 pTable->aCol = 0; 484 pTable->nCol = 0; 485 } 486 487 /* 488 ** Remove the memory data structures associated with the given 489 ** Table. No changes are made to disk by this routine. 490 ** 491 ** This routine just deletes the data structure. It does not unlink 492 ** the table data structure from the hash table. Nor does it remove 493 ** foreign keys from the sqlite.aFKey hash table. But it does destroy 494 ** memory structures of the indices and foreign keys associated with 495 ** the table. 496 */ 497 void sqlite3DeleteTable(Table *pTable){ 498 Index *pIndex, *pNext; 499 FKey *pFKey, *pNextFKey; 500 sqlite3 *db; 501 502 if( pTable==0 ) return; 503 db = pTable->dbMem; 504 505 /* Do not delete the table until the reference count reaches zero. */ 506 pTable->nRef--; 507 if( pTable->nRef>0 ){ 508 return; 509 } 510 assert( pTable->nRef==0 ); 511 512 /* Delete all indices associated with this table 513 */ 514 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 515 pNext = pIndex->pNext; 516 assert( pIndex->pSchema==pTable->pSchema ); 517 sqlite3DeleteIndex(pIndex); 518 } 519 520 #ifndef SQLITE_OMIT_FOREIGN_KEY 521 /* Delete all foreign keys associated with this table. The keys 522 ** should have already been unlinked from the pSchema->aFKey hash table 523 */ 524 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ 525 pNextFKey = pFKey->pNextFrom; 526 assert( sqlite3HashFind(&pTable->pSchema->aFKey, 527 pFKey->zTo, sqlite3Strlen30(pFKey->zTo)+1)!=pFKey ); 528 sqlite3DbFree(db, pFKey); 529 } 530 #endif 531 532 /* Delete the Table structure itself. 533 */ 534 sqliteResetColumnNames(pTable); 535 sqlite3DbFree(db, pTable->zName); 536 sqlite3DbFree(db, pTable->zColAff); 537 sqlite3SelectDelete(db, pTable->pSelect); 538 #ifndef SQLITE_OMIT_CHECK 539 sqlite3ExprDelete(db, pTable->pCheck); 540 #endif 541 sqlite3VtabClear(pTable); 542 sqlite3DbFree(db, pTable); 543 } 544 545 /* 546 ** Unlink the given table from the hash tables and the delete the 547 ** table structure with all its indices and foreign keys. 548 */ 549 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 550 Table *p; 551 FKey *pF1, *pF2; 552 Db *pDb; 553 554 assert( db!=0 ); 555 assert( iDb>=0 && iDb<db->nDb ); 556 assert( zTabName && zTabName[0] ); 557 pDb = &db->aDb[iDb]; 558 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 559 sqlite3Strlen30(zTabName)+1,0); 560 if( p ){ 561 #ifndef SQLITE_OMIT_FOREIGN_KEY 562 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ 563 int nTo = sqlite3Strlen30(pF1->zTo) + 1; 564 pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); 565 if( pF2==pF1 ){ 566 sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); 567 }else{ 568 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } 569 if( pF2 ){ 570 pF2->pNextTo = pF1->pNextTo; 571 } 572 } 573 } 574 #endif 575 sqlite3DeleteTable(p); 576 } 577 db->flags |= SQLITE_InternChanges; 578 } 579 580 /* 581 ** Given a token, return a string that consists of the text of that 582 ** token with any quotations removed. Space to hold the returned string 583 ** is obtained from sqliteMalloc() and must be freed by the calling 584 ** function. 585 ** 586 ** Tokens are often just pointers into the original SQL text and so 587 ** are not \000 terminated and are not persistent. The returned string 588 ** is \000 terminated and is persistent. 589 */ 590 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 591 char *zName; 592 if( pName ){ 593 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 594 sqlite3Dequote(zName); 595 }else{ 596 zName = 0; 597 } 598 return zName; 599 } 600 601 /* 602 ** Open the sqlite_master table stored in database number iDb for 603 ** writing. The table is opened using cursor 0. 604 */ 605 void sqlite3OpenMasterTable(Parse *p, int iDb){ 606 Vdbe *v = sqlite3GetVdbe(p); 607 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 608 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); 609 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ 610 if( p->nTab==0 ){ 611 p->nTab = 1; 612 } 613 } 614 615 /* 616 ** Parameter zName points to a nul-terminated buffer containing the name 617 ** of a database ("main", "temp" or the name of an attached db). This 618 ** function returns the index of the named database in db->aDb[], or 619 ** -1 if the named db cannot be found. 620 */ 621 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 622 int i = -1; /* Database number */ 623 if( zName ){ 624 Db *pDb; 625 int n = sqlite3Strlen30(zName); 626 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 627 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 628 0==sqlite3StrICmp(pDb->zName, zName) ){ 629 break; 630 } 631 } 632 } 633 return i; 634 } 635 636 /* 637 ** The token *pName contains the name of a database (either "main" or 638 ** "temp" or the name of an attached db). This routine returns the 639 ** index of the named database in db->aDb[], or -1 if the named db 640 ** does not exist. 641 */ 642 int sqlite3FindDb(sqlite3 *db, Token *pName){ 643 int i; /* Database number */ 644 char *zName; /* Name we are searching for */ 645 zName = sqlite3NameFromToken(db, pName); 646 i = sqlite3FindDbName(db, zName); 647 sqlite3DbFree(db, zName); 648 return i; 649 } 650 651 /* The table or view or trigger name is passed to this routine via tokens 652 ** pName1 and pName2. If the table name was fully qualified, for example: 653 ** 654 ** CREATE TABLE xxx.yyy (...); 655 ** 656 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 657 ** the table name is not fully qualified, i.e.: 658 ** 659 ** CREATE TABLE yyy(...); 660 ** 661 ** Then pName1 is set to "yyy" and pName2 is "". 662 ** 663 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 664 ** pName2) that stores the unqualified table name. The index of the 665 ** database "xxx" is returned. 666 */ 667 int sqlite3TwoPartName( 668 Parse *pParse, /* Parsing and code generating context */ 669 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 670 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 671 Token **pUnqual /* Write the unqualified object name here */ 672 ){ 673 int iDb; /* Database holding the object */ 674 sqlite3 *db = pParse->db; 675 676 if( pName2 && pName2->n>0 ){ 677 if( db->init.busy ) { 678 sqlite3ErrorMsg(pParse, "corrupt database"); 679 pParse->nErr++; 680 return -1; 681 } 682 *pUnqual = pName2; 683 iDb = sqlite3FindDb(db, pName1); 684 if( iDb<0 ){ 685 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 686 pParse->nErr++; 687 return -1; 688 } 689 }else{ 690 assert( db->init.iDb==0 || db->init.busy ); 691 iDb = db->init.iDb; 692 *pUnqual = pName1; 693 } 694 return iDb; 695 } 696 697 /* 698 ** This routine is used to check if the UTF-8 string zName is a legal 699 ** unqualified name for a new schema object (table, index, view or 700 ** trigger). All names are legal except those that begin with the string 701 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 702 ** is reserved for internal use. 703 */ 704 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 705 if( !pParse->db->init.busy && pParse->nested==0 706 && (pParse->db->flags & SQLITE_WriteSchema)==0 707 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 708 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 709 return SQLITE_ERROR; 710 } 711 return SQLITE_OK; 712 } 713 714 /* 715 ** Begin constructing a new table representation in memory. This is 716 ** the first of several action routines that get called in response 717 ** to a CREATE TABLE statement. In particular, this routine is called 718 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 719 ** flag is true if the table should be stored in the auxiliary database 720 ** file instead of in the main database file. This is normally the case 721 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 722 ** CREATE and TABLE. 723 ** 724 ** The new table record is initialized and put in pParse->pNewTable. 725 ** As more of the CREATE TABLE statement is parsed, additional action 726 ** routines will be called to add more information to this record. 727 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 728 ** is called to complete the construction of the new table record. 729 */ 730 void sqlite3StartTable( 731 Parse *pParse, /* Parser context */ 732 Token *pName1, /* First part of the name of the table or view */ 733 Token *pName2, /* Second part of the name of the table or view */ 734 int isTemp, /* True if this is a TEMP table */ 735 int isView, /* True if this is a VIEW */ 736 int isVirtual, /* True if this is a VIRTUAL table */ 737 int noErr /* Do nothing if table already exists */ 738 ){ 739 Table *pTable; 740 char *zName = 0; /* The name of the new table */ 741 sqlite3 *db = pParse->db; 742 Vdbe *v; 743 int iDb; /* Database number to create the table in */ 744 Token *pName; /* Unqualified name of the table to create */ 745 746 /* The table or view name to create is passed to this routine via tokens 747 ** pName1 and pName2. If the table name was fully qualified, for example: 748 ** 749 ** CREATE TABLE xxx.yyy (...); 750 ** 751 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 752 ** the table name is not fully qualified, i.e.: 753 ** 754 ** CREATE TABLE yyy(...); 755 ** 756 ** Then pName1 is set to "yyy" and pName2 is "". 757 ** 758 ** The call below sets the pName pointer to point at the token (pName1 or 759 ** pName2) that stores the unqualified table name. The variable iDb is 760 ** set to the index of the database that the table or view is to be 761 ** created in. 762 */ 763 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 764 if( iDb<0 ) return; 765 if( !OMIT_TEMPDB && isTemp && iDb>1 ){ 766 /* If creating a temp table, the name may not be qualified */ 767 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 768 return; 769 } 770 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 771 772 pParse->sNameToken = *pName; 773 zName = sqlite3NameFromToken(db, pName); 774 if( zName==0 ) return; 775 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 776 goto begin_table_error; 777 } 778 if( db->init.iDb==1 ) isTemp = 1; 779 #ifndef SQLITE_OMIT_AUTHORIZATION 780 assert( (isTemp & 1)==isTemp ); 781 { 782 int code; 783 char *zDb = db->aDb[iDb].zName; 784 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 785 goto begin_table_error; 786 } 787 if( isView ){ 788 if( !OMIT_TEMPDB && isTemp ){ 789 code = SQLITE_CREATE_TEMP_VIEW; 790 }else{ 791 code = SQLITE_CREATE_VIEW; 792 } 793 }else{ 794 if( !OMIT_TEMPDB && isTemp ){ 795 code = SQLITE_CREATE_TEMP_TABLE; 796 }else{ 797 code = SQLITE_CREATE_TABLE; 798 } 799 } 800 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 801 goto begin_table_error; 802 } 803 } 804 #endif 805 806 /* Make sure the new table name does not collide with an existing 807 ** index or table name in the same database. Issue an error message if 808 ** it does. The exception is if the statement being parsed was passed 809 ** to an sqlite3_declare_vtab() call. In that case only the column names 810 ** and types will be used, so there is no need to test for namespace 811 ** collisions. 812 */ 813 if( !IN_DECLARE_VTAB ){ 814 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 815 goto begin_table_error; 816 } 817 pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); 818 if( pTable ){ 819 if( !noErr ){ 820 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 821 } 822 goto begin_table_error; 823 } 824 if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ 825 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 826 goto begin_table_error; 827 } 828 } 829 830 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 831 if( pTable==0 ){ 832 db->mallocFailed = 1; 833 pParse->rc = SQLITE_NOMEM; 834 pParse->nErr++; 835 goto begin_table_error; 836 } 837 pTable->zName = zName; 838 pTable->iPKey = -1; 839 pTable->pSchema = db->aDb[iDb].pSchema; 840 pTable->nRef = 1; 841 pTable->dbMem = db->lookaside.bEnabled ? db : 0; 842 if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable); 843 pParse->pNewTable = pTable; 844 845 /* If this is the magic sqlite_sequence table used by autoincrement, 846 ** then record a pointer to this table in the main database structure 847 ** so that INSERT can find the table easily. 848 */ 849 #ifndef SQLITE_OMIT_AUTOINCREMENT 850 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 851 pTable->pSchema->pSeqTab = pTable; 852 } 853 #endif 854 855 /* Begin generating the code that will insert the table record into 856 ** the SQLITE_MASTER table. Note in particular that we must go ahead 857 ** and allocate the record number for the table entry now. Before any 858 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 859 ** indices to be created and the table record must come before the 860 ** indices. Hence, the record number for the table must be allocated 861 ** now. 862 */ 863 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 864 int j1; 865 int fileFormat; 866 int reg1, reg2, reg3; 867 sqlite3BeginWriteOperation(pParse, 0, iDb); 868 869 #ifndef SQLITE_OMIT_VIRTUALTABLE 870 if( isVirtual ){ 871 sqlite3VdbeAddOp0(v, OP_VBegin); 872 } 873 #endif 874 875 /* If the file format and encoding in the database have not been set, 876 ** set them now. 877 */ 878 reg1 = pParse->regRowid = ++pParse->nMem; 879 reg2 = pParse->regRoot = ++pParse->nMem; 880 reg3 = ++pParse->nMem; 881 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */ 882 sqlite3VdbeUsesBtree(v, iDb); 883 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); 884 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 885 1 : SQLITE_MAX_FILE_FORMAT; 886 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 887 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3); 888 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 889 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3); 890 sqlite3VdbeJumpHere(v, j1); 891 892 /* This just creates a place-holder record in the sqlite_master table. 893 ** The record created does not contain anything yet. It will be replaced 894 ** by the real entry in code generated at sqlite3EndTable(). 895 ** 896 ** The rowid for the new entry is left in register pParse->regRowid. 897 ** The root page number of the new table is left in reg pParse->regRoot. 898 ** The rowid and root page number values are needed by the code that 899 ** sqlite3EndTable will generate. 900 */ 901 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 902 if( isView || isVirtual ){ 903 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 904 }else 905 #endif 906 { 907 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 908 } 909 sqlite3OpenMasterTable(pParse, iDb); 910 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 911 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 912 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 913 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 914 sqlite3VdbeAddOp0(v, OP_Close); 915 } 916 917 /* Normal (non-error) return. */ 918 return; 919 920 /* If an error occurs, we jump here */ 921 begin_table_error: 922 sqlite3DbFree(db, zName); 923 return; 924 } 925 926 /* 927 ** This macro is used to compare two strings in a case-insensitive manner. 928 ** It is slightly faster than calling sqlite3StrICmp() directly, but 929 ** produces larger code. 930 ** 931 ** WARNING: This macro is not compatible with the strcmp() family. It 932 ** returns true if the two strings are equal, otherwise false. 933 */ 934 #define STRICMP(x, y) (\ 935 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 936 sqlite3UpperToLower[*(unsigned char *)(y)] \ 937 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 938 939 /* 940 ** Add a new column to the table currently being constructed. 941 ** 942 ** The parser calls this routine once for each column declaration 943 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 944 ** first to get things going. Then this routine is called for each 945 ** column. 946 */ 947 void sqlite3AddColumn(Parse *pParse, Token *pName){ 948 Table *p; 949 int i; 950 char *z; 951 Column *pCol; 952 sqlite3 *db = pParse->db; 953 if( (p = pParse->pNewTable)==0 ) return; 954 #if SQLITE_MAX_COLUMN 955 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 956 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 957 return; 958 } 959 #endif 960 z = sqlite3NameFromToken(db, pName); 961 if( z==0 ) return; 962 for(i=0; i<p->nCol; i++){ 963 if( STRICMP(z, p->aCol[i].zName) ){ 964 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 965 sqlite3DbFree(db, z); 966 return; 967 } 968 } 969 if( (p->nCol & 0x7)==0 ){ 970 Column *aNew; 971 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 972 if( aNew==0 ){ 973 sqlite3DbFree(db, z); 974 return; 975 } 976 p->aCol = aNew; 977 } 978 pCol = &p->aCol[p->nCol]; 979 memset(pCol, 0, sizeof(p->aCol[0])); 980 pCol->zName = z; 981 982 /* If there is no type specified, columns have the default affinity 983 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 984 ** be called next to set pCol->affinity correctly. 985 */ 986 pCol->affinity = SQLITE_AFF_NONE; 987 p->nCol++; 988 } 989 990 /* 991 ** This routine is called by the parser while in the middle of 992 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 993 ** been seen on a column. This routine sets the notNull flag on 994 ** the column currently under construction. 995 */ 996 void sqlite3AddNotNull(Parse *pParse, int onError){ 997 Table *p; 998 int i; 999 if( (p = pParse->pNewTable)==0 ) return; 1000 i = p->nCol-1; 1001 if( i>=0 ) p->aCol[i].notNull = (u8)onError; 1002 } 1003 1004 /* 1005 ** Scan the column type name zType (length nType) and return the 1006 ** associated affinity type. 1007 ** 1008 ** This routine does a case-independent search of zType for the 1009 ** substrings in the following table. If one of the substrings is 1010 ** found, the corresponding affinity is returned. If zType contains 1011 ** more than one of the substrings, entries toward the top of 1012 ** the table take priority. For example, if zType is 'BLOBINT', 1013 ** SQLITE_AFF_INTEGER is returned. 1014 ** 1015 ** Substring | Affinity 1016 ** -------------------------------- 1017 ** 'INT' | SQLITE_AFF_INTEGER 1018 ** 'CHAR' | SQLITE_AFF_TEXT 1019 ** 'CLOB' | SQLITE_AFF_TEXT 1020 ** 'TEXT' | SQLITE_AFF_TEXT 1021 ** 'BLOB' | SQLITE_AFF_NONE 1022 ** 'REAL' | SQLITE_AFF_REAL 1023 ** 'FLOA' | SQLITE_AFF_REAL 1024 ** 'DOUB' | SQLITE_AFF_REAL 1025 ** 1026 ** If none of the substrings in the above table are found, 1027 ** SQLITE_AFF_NUMERIC is returned. 1028 */ 1029 char sqlite3AffinityType(const Token *pType){ 1030 u32 h = 0; 1031 char aff = SQLITE_AFF_NUMERIC; 1032 const unsigned char *zIn = pType->z; 1033 const unsigned char *zEnd = &pType->z[pType->n]; 1034 1035 while( zIn!=zEnd ){ 1036 h = (h<<8) + sqlite3UpperToLower[*zIn]; 1037 zIn++; 1038 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1039 aff = SQLITE_AFF_TEXT; 1040 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1041 aff = SQLITE_AFF_TEXT; 1042 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1043 aff = SQLITE_AFF_TEXT; 1044 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1045 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1046 aff = SQLITE_AFF_NONE; 1047 #ifndef SQLITE_OMIT_FLOATING_POINT 1048 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1049 && aff==SQLITE_AFF_NUMERIC ){ 1050 aff = SQLITE_AFF_REAL; 1051 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1052 && aff==SQLITE_AFF_NUMERIC ){ 1053 aff = SQLITE_AFF_REAL; 1054 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1055 && aff==SQLITE_AFF_NUMERIC ){ 1056 aff = SQLITE_AFF_REAL; 1057 #endif 1058 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1059 aff = SQLITE_AFF_INTEGER; 1060 break; 1061 } 1062 } 1063 1064 return aff; 1065 } 1066 1067 /* 1068 ** This routine is called by the parser while in the middle of 1069 ** parsing a CREATE TABLE statement. The pFirst token is the first 1070 ** token in the sequence of tokens that describe the type of the 1071 ** column currently under construction. pLast is the last token 1072 ** in the sequence. Use this information to construct a string 1073 ** that contains the typename of the column and store that string 1074 ** in zType. 1075 */ 1076 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1077 Table *p; 1078 int i; 1079 Column *pCol; 1080 sqlite3 *db; 1081 1082 if( (p = pParse->pNewTable)==0 ) return; 1083 i = p->nCol-1; 1084 if( i<0 ) return; 1085 pCol = &p->aCol[i]; 1086 db = pParse->db; 1087 sqlite3DbFree(db, pCol->zType); 1088 pCol->zType = sqlite3NameFromToken(db, pType); 1089 pCol->affinity = sqlite3AffinityType(pType); 1090 } 1091 1092 /* 1093 ** The expression is the default value for the most recently added column 1094 ** of the table currently under construction. 1095 ** 1096 ** Default value expressions must be constant. Raise an exception if this 1097 ** is not the case. 1098 ** 1099 ** This routine is called by the parser while in the middle of 1100 ** parsing a CREATE TABLE statement. 1101 */ 1102 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ 1103 Table *p; 1104 Column *pCol; 1105 sqlite3 *db = pParse->db; 1106 if( (p = pParse->pNewTable)!=0 ){ 1107 pCol = &(p->aCol[p->nCol-1]); 1108 if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ 1109 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1110 pCol->zName); 1111 }else{ 1112 /* A copy of pExpr is used instead of the original, as pExpr contains 1113 ** tokens that point to volatile memory. The 'span' of the expression 1114 ** is required by pragma table_info. 1115 */ 1116 sqlite3ExprDelete(db, pCol->pDflt); 1117 pCol->pDflt = sqlite3ExprDup(db, pExpr, EXPRDUP_REDUCE|EXPRDUP_SPAN); 1118 } 1119 } 1120 sqlite3ExprDelete(db, pExpr); 1121 } 1122 1123 /* 1124 ** Designate the PRIMARY KEY for the table. pList is a list of names 1125 ** of columns that form the primary key. If pList is NULL, then the 1126 ** most recently added column of the table is the primary key. 1127 ** 1128 ** A table can have at most one primary key. If the table already has 1129 ** a primary key (and this is the second primary key) then create an 1130 ** error. 1131 ** 1132 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1133 ** then we will try to use that column as the rowid. Set the Table.iPKey 1134 ** field of the table under construction to be the index of the 1135 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1136 ** no INTEGER PRIMARY KEY. 1137 ** 1138 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1139 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1140 */ 1141 void sqlite3AddPrimaryKey( 1142 Parse *pParse, /* Parsing context */ 1143 ExprList *pList, /* List of field names to be indexed */ 1144 int onError, /* What to do with a uniqueness conflict */ 1145 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1146 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1147 ){ 1148 Table *pTab = pParse->pNewTable; 1149 char *zType = 0; 1150 int iCol = -1, i; 1151 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1152 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1153 sqlite3ErrorMsg(pParse, 1154 "table \"%s\" has more than one primary key", pTab->zName); 1155 goto primary_key_exit; 1156 } 1157 pTab->tabFlags |= TF_HasPrimaryKey; 1158 if( pList==0 ){ 1159 iCol = pTab->nCol - 1; 1160 pTab->aCol[iCol].isPrimKey = 1; 1161 }else{ 1162 for(i=0; i<pList->nExpr; i++){ 1163 for(iCol=0; iCol<pTab->nCol; iCol++){ 1164 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1165 break; 1166 } 1167 } 1168 if( iCol<pTab->nCol ){ 1169 pTab->aCol[iCol].isPrimKey = 1; 1170 } 1171 } 1172 if( pList->nExpr>1 ) iCol = -1; 1173 } 1174 if( iCol>=0 && iCol<pTab->nCol ){ 1175 zType = pTab->aCol[iCol].zType; 1176 } 1177 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1178 && sortOrder==SQLITE_SO_ASC ){ 1179 pTab->iPKey = iCol; 1180 pTab->keyConf = (u8)onError; 1181 assert( autoInc==0 || autoInc==1 ); 1182 pTab->tabFlags |= autoInc*TF_Autoincrement; 1183 }else if( autoInc ){ 1184 #ifndef SQLITE_OMIT_AUTOINCREMENT 1185 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1186 "INTEGER PRIMARY KEY"); 1187 #endif 1188 }else{ 1189 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1190 pList = 0; 1191 } 1192 1193 primary_key_exit: 1194 sqlite3ExprListDelete(pParse->db, pList); 1195 return; 1196 } 1197 1198 /* 1199 ** Add a new CHECK constraint to the table currently under construction. 1200 */ 1201 void sqlite3AddCheckConstraint( 1202 Parse *pParse, /* Parsing context */ 1203 Expr *pCheckExpr /* The check expression */ 1204 ){ 1205 sqlite3 *db = pParse->db; 1206 #ifndef SQLITE_OMIT_CHECK 1207 Table *pTab = pParse->pNewTable; 1208 if( pTab && !IN_DECLARE_VTAB ){ 1209 /* The CHECK expression must be duplicated so that tokens refer 1210 ** to malloced space and not the (ephemeral) text of the CREATE TABLE 1211 ** statement */ 1212 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, 1213 sqlite3ExprDup(db, pCheckExpr, 0)); 1214 } 1215 #endif 1216 sqlite3ExprDelete(db, pCheckExpr); 1217 } 1218 1219 /* 1220 ** Set the collation function of the most recently parsed table column 1221 ** to the CollSeq given. 1222 */ 1223 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1224 Table *p; 1225 int i; 1226 char *zColl; /* Dequoted name of collation sequence */ 1227 sqlite3 *db; 1228 1229 if( (p = pParse->pNewTable)==0 ) return; 1230 i = p->nCol-1; 1231 db = pParse->db; 1232 zColl = sqlite3NameFromToken(db, pToken); 1233 if( !zColl ) return; 1234 1235 if( sqlite3LocateCollSeq(pParse, zColl, -1) ){ 1236 Index *pIdx; 1237 p->aCol[i].zColl = zColl; 1238 1239 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1240 ** then an index may have been created on this column before the 1241 ** collation type was added. Correct this if it is the case. 1242 */ 1243 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1244 assert( pIdx->nColumn==1 ); 1245 if( pIdx->aiColumn[0]==i ){ 1246 pIdx->azColl[0] = p->aCol[i].zColl; 1247 } 1248 } 1249 }else{ 1250 sqlite3DbFree(db, zColl); 1251 } 1252 } 1253 1254 /* 1255 ** This function returns the collation sequence for database native text 1256 ** encoding identified by the string zName, length nName. 1257 ** 1258 ** If the requested collation sequence is not available, or not available 1259 ** in the database native encoding, the collation factory is invoked to 1260 ** request it. If the collation factory does not supply such a sequence, 1261 ** and the sequence is available in another text encoding, then that is 1262 ** returned instead. 1263 ** 1264 ** If no versions of the requested collations sequence are available, or 1265 ** another error occurs, NULL is returned and an error message written into 1266 ** pParse. 1267 ** 1268 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1269 ** invokes the collation factory if the named collation cannot be found 1270 ** and generates an error message. 1271 */ 1272 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ 1273 sqlite3 *db = pParse->db; 1274 u8 enc = ENC(db); 1275 u8 initbusy = db->init.busy; 1276 CollSeq *pColl; 1277 1278 pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); 1279 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1280 pColl = sqlite3GetCollSeq(db, pColl, zName, nName); 1281 if( !pColl ){ 1282 if( nName<0 ){ 1283 nName = sqlite3Strlen(db, zName); 1284 } 1285 sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); 1286 pColl = 0; 1287 } 1288 } 1289 1290 return pColl; 1291 } 1292 1293 1294 /* 1295 ** Generate code that will increment the schema cookie. 1296 ** 1297 ** The schema cookie is used to determine when the schema for the 1298 ** database changes. After each schema change, the cookie value 1299 ** changes. When a process first reads the schema it records the 1300 ** cookie. Thereafter, whenever it goes to access the database, 1301 ** it checks the cookie to make sure the schema has not changed 1302 ** since it was last read. 1303 ** 1304 ** This plan is not completely bullet-proof. It is possible for 1305 ** the schema to change multiple times and for the cookie to be 1306 ** set back to prior value. But schema changes are infrequent 1307 ** and the probability of hitting the same cookie value is only 1308 ** 1 chance in 2^32. So we're safe enough. 1309 */ 1310 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1311 int r1 = sqlite3GetTempReg(pParse); 1312 sqlite3 *db = pParse->db; 1313 Vdbe *v = pParse->pVdbe; 1314 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1315 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1); 1316 sqlite3ReleaseTempReg(pParse, r1); 1317 } 1318 1319 /* 1320 ** Measure the number of characters needed to output the given 1321 ** identifier. The number returned includes any quotes used 1322 ** but does not include the null terminator. 1323 ** 1324 ** The estimate is conservative. It might be larger that what is 1325 ** really needed. 1326 */ 1327 static int identLength(const char *z){ 1328 int n; 1329 for(n=0; *z; n++, z++){ 1330 if( *z=='"' ){ n++; } 1331 } 1332 return n + 2; 1333 } 1334 1335 /* 1336 ** This function is a wrapper around sqlite3GetToken() used by 1337 ** isValidDimension(). This function differs from sqlite3GetToken() in 1338 ** that: 1339 ** 1340 ** * Whitespace is ignored, and 1341 ** * The output variable *peToken is set to 0 if the end of the 1342 ** nul-terminated input string is reached. 1343 */ 1344 static int getTokenNoSpace(unsigned char *z, int *peToken){ 1345 int n = 0; 1346 while( sqlite3Isspace(z[n]) ) n++; 1347 if( !z[n] ){ 1348 *peToken = 0; 1349 return 0; 1350 } 1351 return n + sqlite3GetToken(&z[n], peToken); 1352 } 1353 1354 /* 1355 ** Parameter z points to a nul-terminated string. Return true if, when 1356 ** whitespace is ignored, the contents of this string matches one of 1357 ** the following patterns: 1358 ** 1359 ** "" 1360 ** "(number)" 1361 ** "(number,number)" 1362 */ 1363 static int isValidDimension(unsigned char *z){ 1364 int eToken; 1365 int n = 0; 1366 n += getTokenNoSpace(&z[n], &eToken); 1367 if( eToken ){ 1368 if( eToken!=TK_LP ) return 0; 1369 n += getTokenNoSpace(&z[n], &eToken); 1370 if( eToken==TK_PLUS || eToken==TK_MINUS ){ 1371 n += getTokenNoSpace(&z[n], &eToken); 1372 } 1373 if( eToken!=TK_INTEGER && eToken!=TK_FLOAT ) return 0; 1374 n += getTokenNoSpace(&z[n], &eToken); 1375 if( eToken==TK_COMMA ){ 1376 n += getTokenNoSpace(&z[n], &eToken); 1377 if( eToken==TK_PLUS || eToken==TK_MINUS ){ 1378 n += getTokenNoSpace(&z[n], &eToken); 1379 } 1380 if( eToken!=TK_INTEGER && eToken!=TK_FLOAT ) return 0; 1381 n += getTokenNoSpace(&z[n], &eToken); 1382 } 1383 if( eToken!=TK_RP ) return 0; 1384 getTokenNoSpace(&z[n], &eToken); 1385 } 1386 if( eToken ) return 0; 1387 return 1; 1388 } 1389 1390 /* 1391 ** The first parameter is a pointer to an output buffer. The second 1392 ** parameter is a pointer to an integer that contains the offset at 1393 ** which to write into the output buffer. This function copies the 1394 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1395 ** to the specified offset in the buffer and updates *pIdx to refer 1396 ** to the first byte after the last byte written before returning. 1397 ** 1398 ** If the string zSignedIdent consists entirely of alpha-numeric 1399 ** characters, does not begin with a digit and is not an SQL keyword, 1400 ** then it is copied to the output buffer exactly as it is. Otherwise, 1401 ** it is quoted using double-quotes. 1402 */ 1403 static void identPut(char *z, int *pIdx, char *zSignedIdent, int isTypename){ 1404 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1405 int i, j, needQuote; 1406 i = *pIdx; 1407 1408 for(j=0; zIdent[j]; j++){ 1409 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1410 } 1411 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1412 if( !needQuote ){ 1413 if( isTypename ){ 1414 /* If this is a type-name, allow a little more flexibility. In SQLite, 1415 ** a type-name is specified as: 1416 ** 1417 ** ids [ids] [(number [, number])] 1418 ** 1419 ** where "ids" is either a quoted string or a simple identifier (in the 1420 ** above notation, [] means optional). It is a bit tricky to check 1421 ** for all cases, but it is good to avoid unnecessarily quoting common 1422 ** typenames like VARCHAR(10). 1423 */ 1424 needQuote = !isValidDimension(&zIdent[j]); 1425 }else{ 1426 needQuote = zIdent[j]; 1427 } 1428 } 1429 1430 if( needQuote ) z[i++] = '"'; 1431 for(j=0; zIdent[j]; j++){ 1432 z[i++] = zIdent[j]; 1433 if( zIdent[j]=='"' ) z[i++] = '"'; 1434 } 1435 if( needQuote ) z[i++] = '"'; 1436 z[i] = 0; 1437 *pIdx = i; 1438 } 1439 1440 /* 1441 ** Generate a CREATE TABLE statement appropriate for the given 1442 ** table. Memory to hold the text of the statement is obtained 1443 ** from sqliteMalloc() and must be freed by the calling function. 1444 */ 1445 static char *createTableStmt(sqlite3 *db, Table *p){ 1446 int i, k, n; 1447 char *zStmt; 1448 char *zSep, *zSep2, *zEnd, *z; 1449 Column *pCol; 1450 n = 0; 1451 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1452 n += identLength(pCol->zName); 1453 z = pCol->zType; 1454 if( z ){ 1455 n += identLength(z); 1456 } 1457 } 1458 n += identLength(p->zName); 1459 if( n<50 ){ 1460 zSep = ""; 1461 zSep2 = ","; 1462 zEnd = ")"; 1463 }else{ 1464 zSep = "\n "; 1465 zSep2 = ",\n "; 1466 zEnd = "\n)"; 1467 } 1468 n += 35 + 6*p->nCol; 1469 zStmt = sqlite3Malloc( n ); 1470 if( zStmt==0 ){ 1471 db->mallocFailed = 1; 1472 return 0; 1473 } 1474 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1475 k = sqlite3Strlen30(zStmt); 1476 identPut(zStmt, &k, p->zName, 0); 1477 zStmt[k++] = '('; 1478 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1479 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1480 k += sqlite3Strlen30(&zStmt[k]); 1481 zSep = zSep2; 1482 identPut(zStmt, &k, pCol->zName, 0); 1483 if( (z = pCol->zType)!=0 ){ 1484 zStmt[k++] = ' '; 1485 assert( (int)(sqlite3Strlen30(z)+k+1)<=n ); 1486 identPut(zStmt, &k, z, 1); 1487 } 1488 } 1489 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1490 return zStmt; 1491 } 1492 1493 /* 1494 ** This routine is called to report the final ")" that terminates 1495 ** a CREATE TABLE statement. 1496 ** 1497 ** The table structure that other action routines have been building 1498 ** is added to the internal hash tables, assuming no errors have 1499 ** occurred. 1500 ** 1501 ** An entry for the table is made in the master table on disk, unless 1502 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1503 ** it means we are reading the sqlite_master table because we just 1504 ** connected to the database or because the sqlite_master table has 1505 ** recently changed, so the entry for this table already exists in 1506 ** the sqlite_master table. We do not want to create it again. 1507 ** 1508 ** If the pSelect argument is not NULL, it means that this routine 1509 ** was called to create a table generated from a 1510 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1511 ** the new table will match the result set of the SELECT. 1512 */ 1513 void sqlite3EndTable( 1514 Parse *pParse, /* Parse context */ 1515 Token *pCons, /* The ',' token after the last column defn. */ 1516 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1517 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1518 ){ 1519 Table *p; 1520 sqlite3 *db = pParse->db; 1521 int iDb; 1522 1523 if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) { 1524 return; 1525 } 1526 p = pParse->pNewTable; 1527 if( p==0 ) return; 1528 1529 assert( !db->init.busy || !pSelect ); 1530 1531 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1532 1533 #ifndef SQLITE_OMIT_CHECK 1534 /* Resolve names in all CHECK constraint expressions. 1535 */ 1536 if( p->pCheck ){ 1537 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1538 NameContext sNC; /* Name context for pParse->pNewTable */ 1539 1540 memset(&sNC, 0, sizeof(sNC)); 1541 memset(&sSrc, 0, sizeof(sSrc)); 1542 sSrc.nSrc = 1; 1543 sSrc.a[0].zName = p->zName; 1544 sSrc.a[0].pTab = p; 1545 sSrc.a[0].iCursor = -1; 1546 sNC.pParse = pParse; 1547 sNC.pSrcList = &sSrc; 1548 sNC.isCheck = 1; 1549 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){ 1550 return; 1551 } 1552 } 1553 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1554 1555 /* If the db->init.busy is 1 it means we are reading the SQL off the 1556 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1557 ** So do not write to the disk again. Extract the root page number 1558 ** for the table from the db->init.newTnum field. (The page number 1559 ** should have been put there by the sqliteOpenCb routine.) 1560 */ 1561 if( db->init.busy ){ 1562 p->tnum = db->init.newTnum; 1563 } 1564 1565 /* If not initializing, then create a record for the new table 1566 ** in the SQLITE_MASTER table of the database. 1567 ** 1568 ** If this is a TEMPORARY table, write the entry into the auxiliary 1569 ** file instead of into the main database file. 1570 */ 1571 if( !db->init.busy ){ 1572 int n; 1573 Vdbe *v; 1574 char *zType; /* "view" or "table" */ 1575 char *zType2; /* "VIEW" or "TABLE" */ 1576 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1577 1578 v = sqlite3GetVdbe(pParse); 1579 if( v==0 ) return; 1580 1581 sqlite3VdbeAddOp1(v, OP_Close, 0); 1582 1583 /* 1584 ** Initialize zType for the new view or table. 1585 */ 1586 if( p->pSelect==0 ){ 1587 /* A regular table */ 1588 zType = "table"; 1589 zType2 = "TABLE"; 1590 #ifndef SQLITE_OMIT_VIEW 1591 }else{ 1592 /* A view */ 1593 zType = "view"; 1594 zType2 = "VIEW"; 1595 #endif 1596 } 1597 1598 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1599 ** statement to populate the new table. The root-page number for the 1600 ** new table is in register pParse->regRoot. 1601 ** 1602 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1603 ** suitable state to query for the column names and types to be used 1604 ** by the new table. 1605 ** 1606 ** A shared-cache write-lock is not required to write to the new table, 1607 ** as a schema-lock must have already been obtained to create it. Since 1608 ** a schema-lock excludes all other database users, the write-lock would 1609 ** be redundant. 1610 */ 1611 if( pSelect ){ 1612 SelectDest dest; 1613 Table *pSelTab; 1614 1615 assert(pParse->nTab==1); 1616 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1617 sqlite3VdbeChangeP5(v, 1); 1618 pParse->nTab = 2; 1619 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1620 sqlite3Select(pParse, pSelect, &dest); 1621 sqlite3VdbeAddOp1(v, OP_Close, 1); 1622 if( pParse->nErr==0 ){ 1623 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1624 if( pSelTab==0 ) return; 1625 assert( p->aCol==0 ); 1626 p->nCol = pSelTab->nCol; 1627 p->aCol = pSelTab->aCol; 1628 pSelTab->nCol = 0; 1629 pSelTab->aCol = 0; 1630 sqlite3DeleteTable(pSelTab); 1631 } 1632 } 1633 1634 /* Compute the complete text of the CREATE statement */ 1635 if( pSelect ){ 1636 zStmt = createTableStmt(db, p); 1637 }else{ 1638 n = (int)(pEnd->z - pParse->sNameToken.z) + 1; 1639 zStmt = sqlite3MPrintf(db, 1640 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1641 ); 1642 } 1643 1644 /* A slot for the record has already been allocated in the 1645 ** SQLITE_MASTER table. We just need to update that slot with all 1646 ** the information we've collected. 1647 */ 1648 sqlite3NestedParse(pParse, 1649 "UPDATE %Q.%s " 1650 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1651 "WHERE rowid=#%d", 1652 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1653 zType, 1654 p->zName, 1655 p->zName, 1656 pParse->regRoot, 1657 zStmt, 1658 pParse->regRowid 1659 ); 1660 sqlite3DbFree(db, zStmt); 1661 sqlite3ChangeCookie(pParse, iDb); 1662 1663 #ifndef SQLITE_OMIT_AUTOINCREMENT 1664 /* Check to see if we need to create an sqlite_sequence table for 1665 ** keeping track of autoincrement keys. 1666 */ 1667 if( p->tabFlags & TF_Autoincrement ){ 1668 Db *pDb = &db->aDb[iDb]; 1669 if( pDb->pSchema->pSeqTab==0 ){ 1670 sqlite3NestedParse(pParse, 1671 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1672 pDb->zName 1673 ); 1674 } 1675 } 1676 #endif 1677 1678 /* Reparse everything to update our internal data structures */ 1679 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 1680 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); 1681 } 1682 1683 1684 /* Add the table to the in-memory representation of the database. 1685 */ 1686 if( db->init.busy && pParse->nErr==0 ){ 1687 Table *pOld; 1688 FKey *pFKey; 1689 Schema *pSchema = p->pSchema; 1690 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1691 sqlite3Strlen30(p->zName)+1,p); 1692 if( pOld ){ 1693 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1694 db->mallocFailed = 1; 1695 return; 1696 } 1697 #ifndef SQLITE_OMIT_FOREIGN_KEY 1698 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 1699 void *data; 1700 int nTo = sqlite3Strlen30(pFKey->zTo) + 1; 1701 pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); 1702 data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); 1703 if( data==(void *)pFKey ){ 1704 db->mallocFailed = 1; 1705 } 1706 } 1707 #endif 1708 pParse->pNewTable = 0; 1709 db->nTable++; 1710 db->flags |= SQLITE_InternChanges; 1711 1712 #ifndef SQLITE_OMIT_ALTERTABLE 1713 if( !p->pSelect ){ 1714 const char *zName = (const char *)pParse->sNameToken.z; 1715 int nName; 1716 assert( !pSelect && pCons && pEnd ); 1717 if( pCons->z==0 ){ 1718 pCons = pEnd; 1719 } 1720 nName = (int)((const char *)pCons->z - zName); 1721 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1722 } 1723 #endif 1724 } 1725 } 1726 1727 #ifndef SQLITE_OMIT_VIEW 1728 /* 1729 ** The parser calls this routine in order to create a new VIEW 1730 */ 1731 void sqlite3CreateView( 1732 Parse *pParse, /* The parsing context */ 1733 Token *pBegin, /* The CREATE token that begins the statement */ 1734 Token *pName1, /* The token that holds the name of the view */ 1735 Token *pName2, /* The token that holds the name of the view */ 1736 Select *pSelect, /* A SELECT statement that will become the new view */ 1737 int isTemp, /* TRUE for a TEMPORARY view */ 1738 int noErr /* Suppress error messages if VIEW already exists */ 1739 ){ 1740 Table *p; 1741 int n; 1742 const unsigned char *z; 1743 Token sEnd; 1744 DbFixer sFix; 1745 Token *pName; 1746 int iDb; 1747 sqlite3 *db = pParse->db; 1748 1749 if( pParse->nVar>0 ){ 1750 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1751 sqlite3SelectDelete(db, pSelect); 1752 return; 1753 } 1754 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1755 p = pParse->pNewTable; 1756 if( p==0 || pParse->nErr ){ 1757 sqlite3SelectDelete(db, pSelect); 1758 return; 1759 } 1760 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1761 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1762 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1763 && sqlite3FixSelect(&sFix, pSelect) 1764 ){ 1765 sqlite3SelectDelete(db, pSelect); 1766 return; 1767 } 1768 1769 /* Make a copy of the entire SELECT statement that defines the view. 1770 ** This will force all the Expr.token.z values to be dynamically 1771 ** allocated rather than point to the input string - which means that 1772 ** they will persist after the current sqlite3_exec() call returns. 1773 */ 1774 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1775 sqlite3SelectDelete(db, pSelect); 1776 if( db->mallocFailed ){ 1777 return; 1778 } 1779 if( !db->init.busy ){ 1780 sqlite3ViewGetColumnNames(pParse, p); 1781 } 1782 1783 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1784 ** the end. 1785 */ 1786 sEnd = pParse->sLastToken; 1787 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ 1788 sEnd.z += sEnd.n; 1789 } 1790 sEnd.n = 0; 1791 n = (int)(sEnd.z - pBegin->z); 1792 z = (const unsigned char*)pBegin->z; 1793 while( n>0 && (z[n-1]==';' || sqlite3Isspace(z[n-1])) ){ n--; } 1794 sEnd.z = &z[n-1]; 1795 sEnd.n = 1; 1796 1797 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1798 sqlite3EndTable(pParse, 0, &sEnd, 0); 1799 return; 1800 } 1801 #endif /* SQLITE_OMIT_VIEW */ 1802 1803 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1804 /* 1805 ** The Table structure pTable is really a VIEW. Fill in the names of 1806 ** the columns of the view in the pTable structure. Return the number 1807 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1808 */ 1809 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1810 Table *pSelTab; /* A fake table from which we get the result set */ 1811 Select *pSel; /* Copy of the SELECT that implements the view */ 1812 int nErr = 0; /* Number of errors encountered */ 1813 int n; /* Temporarily holds the number of cursors assigned */ 1814 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 1815 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1816 1817 assert( pTable ); 1818 1819 #ifndef SQLITE_OMIT_VIRTUALTABLE 1820 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1821 return SQLITE_ERROR; 1822 } 1823 if( IsVirtual(pTable) ) return 0; 1824 #endif 1825 1826 #ifndef SQLITE_OMIT_VIEW 1827 /* A positive nCol means the columns names for this view are 1828 ** already known. 1829 */ 1830 if( pTable->nCol>0 ) return 0; 1831 1832 /* A negative nCol is a special marker meaning that we are currently 1833 ** trying to compute the column names. If we enter this routine with 1834 ** a negative nCol, it means two or more views form a loop, like this: 1835 ** 1836 ** CREATE VIEW one AS SELECT * FROM two; 1837 ** CREATE VIEW two AS SELECT * FROM one; 1838 ** 1839 ** Actually, this error is caught previously and so the following test 1840 ** should always fail. But we will leave it in place just to be safe. 1841 */ 1842 if( pTable->nCol<0 ){ 1843 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1844 return 1; 1845 } 1846 assert( pTable->nCol>=0 ); 1847 1848 /* If we get this far, it means we need to compute the table names. 1849 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1850 ** "*" elements in the results set of the view and will assign cursors 1851 ** to the elements of the FROM clause. But we do not want these changes 1852 ** to be permanent. So the computation is done on a copy of the SELECT 1853 ** statement that defines the view. 1854 */ 1855 assert( pTable->pSelect ); 1856 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 1857 if( pSel ){ 1858 u8 enableLookaside = db->lookaside.bEnabled; 1859 n = pParse->nTab; 1860 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1861 pTable->nCol = -1; 1862 db->lookaside.bEnabled = 0; 1863 #ifndef SQLITE_OMIT_AUTHORIZATION 1864 xAuth = db->xAuth; 1865 db->xAuth = 0; 1866 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1867 db->xAuth = xAuth; 1868 #else 1869 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1870 #endif 1871 db->lookaside.bEnabled = enableLookaside; 1872 pParse->nTab = n; 1873 if( pSelTab ){ 1874 assert( pTable->aCol==0 ); 1875 pTable->nCol = pSelTab->nCol; 1876 pTable->aCol = pSelTab->aCol; 1877 pSelTab->nCol = 0; 1878 pSelTab->aCol = 0; 1879 sqlite3DeleteTable(pSelTab); 1880 pTable->pSchema->flags |= DB_UnresetViews; 1881 }else{ 1882 pTable->nCol = 0; 1883 nErr++; 1884 } 1885 sqlite3SelectDelete(db, pSel); 1886 } else { 1887 nErr++; 1888 } 1889 #endif /* SQLITE_OMIT_VIEW */ 1890 return nErr; 1891 } 1892 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1893 1894 #ifndef SQLITE_OMIT_VIEW 1895 /* 1896 ** Clear the column names from every VIEW in database idx. 1897 */ 1898 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1899 HashElem *i; 1900 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1901 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1902 Table *pTab = sqliteHashData(i); 1903 if( pTab->pSelect ){ 1904 sqliteResetColumnNames(pTab); 1905 } 1906 } 1907 DbClearProperty(db, idx, DB_UnresetViews); 1908 } 1909 #else 1910 # define sqliteViewResetAll(A,B) 1911 #endif /* SQLITE_OMIT_VIEW */ 1912 1913 /* 1914 ** This function is called by the VDBE to adjust the internal schema 1915 ** used by SQLite when the btree layer moves a table root page. The 1916 ** root-page of a table or index in database iDb has changed from iFrom 1917 ** to iTo. 1918 ** 1919 ** Ticket #1728: The symbol table might still contain information 1920 ** on tables and/or indices that are the process of being deleted. 1921 ** If you are unlucky, one of those deleted indices or tables might 1922 ** have the same rootpage number as the real table or index that is 1923 ** being moved. So we cannot stop searching after the first match 1924 ** because the first match might be for one of the deleted indices 1925 ** or tables and not the table/index that is actually being moved. 1926 ** We must continue looping until all tables and indices with 1927 ** rootpage==iFrom have been converted to have a rootpage of iTo 1928 ** in order to be certain that we got the right one. 1929 */ 1930 #ifndef SQLITE_OMIT_AUTOVACUUM 1931 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ 1932 HashElem *pElem; 1933 Hash *pHash; 1934 1935 pHash = &pDb->pSchema->tblHash; 1936 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1937 Table *pTab = sqliteHashData(pElem); 1938 if( pTab->tnum==iFrom ){ 1939 pTab->tnum = iTo; 1940 } 1941 } 1942 pHash = &pDb->pSchema->idxHash; 1943 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1944 Index *pIdx = sqliteHashData(pElem); 1945 if( pIdx->tnum==iFrom ){ 1946 pIdx->tnum = iTo; 1947 } 1948 } 1949 } 1950 #endif 1951 1952 /* 1953 ** Write code to erase the table with root-page iTable from database iDb. 1954 ** Also write code to modify the sqlite_master table and internal schema 1955 ** if a root-page of another table is moved by the btree-layer whilst 1956 ** erasing iTable (this can happen with an auto-vacuum database). 1957 */ 1958 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1959 Vdbe *v = sqlite3GetVdbe(pParse); 1960 int r1 = sqlite3GetTempReg(pParse); 1961 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 1962 #ifndef SQLITE_OMIT_AUTOVACUUM 1963 /* OP_Destroy stores an in integer r1. If this integer 1964 ** is non-zero, then it is the root page number of a table moved to 1965 ** location iTable. The following code modifies the sqlite_master table to 1966 ** reflect this. 1967 ** 1968 ** The "#NNN" in the SQL is a special constant that means whatever value 1969 ** is in register NNN. See sqlite3RegisterExpr(). 1970 */ 1971 sqlite3NestedParse(pParse, 1972 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 1973 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 1974 #endif 1975 sqlite3ReleaseTempReg(pParse, r1); 1976 } 1977 1978 /* 1979 ** Write VDBE code to erase table pTab and all associated indices on disk. 1980 ** Code to update the sqlite_master tables and internal schema definitions 1981 ** in case a root-page belonging to another table is moved by the btree layer 1982 ** is also added (this can happen with an auto-vacuum database). 1983 */ 1984 static void destroyTable(Parse *pParse, Table *pTab){ 1985 #ifdef SQLITE_OMIT_AUTOVACUUM 1986 Index *pIdx; 1987 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1988 destroyRootPage(pParse, pTab->tnum, iDb); 1989 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1990 destroyRootPage(pParse, pIdx->tnum, iDb); 1991 } 1992 #else 1993 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1994 ** is not defined), then it is important to call OP_Destroy on the 1995 ** table and index root-pages in order, starting with the numerically 1996 ** largest root-page number. This guarantees that none of the root-pages 1997 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1998 ** following were coded: 1999 ** 2000 ** OP_Destroy 4 0 2001 ** ... 2002 ** OP_Destroy 5 0 2003 ** 2004 ** and root page 5 happened to be the largest root-page number in the 2005 ** database, then root page 5 would be moved to page 4 by the 2006 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2007 ** a free-list page. 2008 */ 2009 int iTab = pTab->tnum; 2010 int iDestroyed = 0; 2011 2012 while( 1 ){ 2013 Index *pIdx; 2014 int iLargest = 0; 2015 2016 if( iDestroyed==0 || iTab<iDestroyed ){ 2017 iLargest = iTab; 2018 } 2019 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2020 int iIdx = pIdx->tnum; 2021 assert( pIdx->pSchema==pTab->pSchema ); 2022 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2023 iLargest = iIdx; 2024 } 2025 } 2026 if( iLargest==0 ){ 2027 return; 2028 }else{ 2029 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2030 destroyRootPage(pParse, iLargest, iDb); 2031 iDestroyed = iLargest; 2032 } 2033 } 2034 #endif 2035 } 2036 2037 /* 2038 ** This routine is called to do the work of a DROP TABLE statement. 2039 ** pName is the name of the table to be dropped. 2040 */ 2041 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2042 Table *pTab; 2043 Vdbe *v; 2044 sqlite3 *db = pParse->db; 2045 int iDb; 2046 2047 if( pParse->nErr || db->mallocFailed ){ 2048 goto exit_drop_table; 2049 } 2050 assert( pName->nSrc==1 ); 2051 pTab = sqlite3LocateTable(pParse, isView, 2052 pName->a[0].zName, pName->a[0].zDatabase); 2053 2054 if( pTab==0 ){ 2055 if( noErr ){ 2056 sqlite3ErrorClear(pParse); 2057 } 2058 goto exit_drop_table; 2059 } 2060 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2061 assert( iDb>=0 && iDb<db->nDb ); 2062 2063 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2064 ** it is initialized. 2065 */ 2066 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2067 goto exit_drop_table; 2068 } 2069 #ifndef SQLITE_OMIT_AUTHORIZATION 2070 { 2071 int code; 2072 const char *zTab = SCHEMA_TABLE(iDb); 2073 const char *zDb = db->aDb[iDb].zName; 2074 const char *zArg2 = 0; 2075 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2076 goto exit_drop_table; 2077 } 2078 if( isView ){ 2079 if( !OMIT_TEMPDB && iDb==1 ){ 2080 code = SQLITE_DROP_TEMP_VIEW; 2081 }else{ 2082 code = SQLITE_DROP_VIEW; 2083 } 2084 #ifndef SQLITE_OMIT_VIRTUALTABLE 2085 }else if( IsVirtual(pTab) ){ 2086 code = SQLITE_DROP_VTABLE; 2087 zArg2 = pTab->pMod->zName; 2088 #endif 2089 }else{ 2090 if( !OMIT_TEMPDB && iDb==1 ){ 2091 code = SQLITE_DROP_TEMP_TABLE; 2092 }else{ 2093 code = SQLITE_DROP_TABLE; 2094 } 2095 } 2096 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2097 goto exit_drop_table; 2098 } 2099 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2100 goto exit_drop_table; 2101 } 2102 } 2103 #endif 2104 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 2105 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2106 goto exit_drop_table; 2107 } 2108 2109 #ifndef SQLITE_OMIT_VIEW 2110 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2111 ** on a table. 2112 */ 2113 if( isView && pTab->pSelect==0 ){ 2114 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2115 goto exit_drop_table; 2116 } 2117 if( !isView && pTab->pSelect ){ 2118 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2119 goto exit_drop_table; 2120 } 2121 #endif 2122 2123 /* Generate code to remove the table from the master table 2124 ** on disk. 2125 */ 2126 v = sqlite3GetVdbe(pParse); 2127 if( v ){ 2128 Trigger *pTrigger; 2129 Db *pDb = &db->aDb[iDb]; 2130 sqlite3BeginWriteOperation(pParse, 1, iDb); 2131 2132 #ifndef SQLITE_OMIT_VIRTUALTABLE 2133 if( IsVirtual(pTab) ){ 2134 if( v ){ 2135 sqlite3VdbeAddOp0(v, OP_VBegin); 2136 } 2137 } 2138 #endif 2139 2140 /* Drop all triggers associated with the table being dropped. Code 2141 ** is generated to remove entries from sqlite_master and/or 2142 ** sqlite_temp_master if required. 2143 */ 2144 pTrigger = sqlite3TriggerList(pParse, pTab); 2145 while( pTrigger ){ 2146 assert( pTrigger->pSchema==pTab->pSchema || 2147 pTrigger->pSchema==db->aDb[1].pSchema ); 2148 sqlite3DropTriggerPtr(pParse, pTrigger); 2149 pTrigger = pTrigger->pNext; 2150 } 2151 2152 #ifndef SQLITE_OMIT_AUTOINCREMENT 2153 /* Remove any entries of the sqlite_sequence table associated with 2154 ** the table being dropped. This is done before the table is dropped 2155 ** at the btree level, in case the sqlite_sequence table needs to 2156 ** move as a result of the drop (can happen in auto-vacuum mode). 2157 */ 2158 if( pTab->tabFlags & TF_Autoincrement ){ 2159 sqlite3NestedParse(pParse, 2160 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", 2161 pDb->zName, pTab->zName 2162 ); 2163 } 2164 #endif 2165 2166 /* Drop all SQLITE_MASTER table and index entries that refer to the 2167 ** table. The program name loops through the master table and deletes 2168 ** every row that refers to a table of the same name as the one being 2169 ** dropped. Triggers are handled seperately because a trigger can be 2170 ** created in the temp database that refers to a table in another 2171 ** database. 2172 */ 2173 sqlite3NestedParse(pParse, 2174 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2175 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2176 2177 /* Drop any statistics from the sqlite_stat1 table, if it exists */ 2178 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2179 sqlite3NestedParse(pParse, 2180 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName 2181 ); 2182 } 2183 2184 if( !isView && !IsVirtual(pTab) ){ 2185 destroyTable(pParse, pTab); 2186 } 2187 2188 /* Remove the table entry from SQLite's internal schema and modify 2189 ** the schema cookie. 2190 */ 2191 if( IsVirtual(pTab) ){ 2192 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2193 } 2194 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2195 sqlite3ChangeCookie(pParse, iDb); 2196 } 2197 sqliteViewResetAll(db, iDb); 2198 2199 exit_drop_table: 2200 sqlite3SrcListDelete(db, pName); 2201 } 2202 2203 /* 2204 ** This routine is called to create a new foreign key on the table 2205 ** currently under construction. pFromCol determines which columns 2206 ** in the current table point to the foreign key. If pFromCol==0 then 2207 ** connect the key to the last column inserted. pTo is the name of 2208 ** the table referred to. pToCol is a list of tables in the other 2209 ** pTo table that the foreign key points to. flags contains all 2210 ** information about the conflict resolution algorithms specified 2211 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2212 ** 2213 ** An FKey structure is created and added to the table currently 2214 ** under construction in the pParse->pNewTable field. The new FKey 2215 ** is not linked into db->aFKey at this point - that does not happen 2216 ** until sqlite3EndTable(). 2217 ** 2218 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2219 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2220 */ 2221 void sqlite3CreateForeignKey( 2222 Parse *pParse, /* Parsing context */ 2223 ExprList *pFromCol, /* Columns in this table that point to other table */ 2224 Token *pTo, /* Name of the other table */ 2225 ExprList *pToCol, /* Columns in the other table */ 2226 int flags /* Conflict resolution algorithms. */ 2227 ){ 2228 sqlite3 *db = pParse->db; 2229 #ifndef SQLITE_OMIT_FOREIGN_KEY 2230 FKey *pFKey = 0; 2231 Table *p = pParse->pNewTable; 2232 int nByte; 2233 int i; 2234 int nCol; 2235 char *z; 2236 2237 assert( pTo!=0 ); 2238 if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end; 2239 if( pFromCol==0 ){ 2240 int iCol = p->nCol-1; 2241 if( iCol<0 ) goto fk_end; 2242 if( pToCol && pToCol->nExpr!=1 ){ 2243 sqlite3ErrorMsg(pParse, "foreign key on %s" 2244 " should reference only one column of table %T", 2245 p->aCol[iCol].zName, pTo); 2246 goto fk_end; 2247 } 2248 nCol = 1; 2249 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2250 sqlite3ErrorMsg(pParse, 2251 "number of columns in foreign key does not match the number of " 2252 "columns in the referenced table"); 2253 goto fk_end; 2254 }else{ 2255 nCol = pFromCol->nExpr; 2256 } 2257 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2258 if( pToCol ){ 2259 for(i=0; i<pToCol->nExpr; i++){ 2260 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2261 } 2262 } 2263 pFKey = sqlite3DbMallocZero(db, nByte ); 2264 if( pFKey==0 ){ 2265 goto fk_end; 2266 } 2267 pFKey->pFrom = p; 2268 pFKey->pNextFrom = p->pFKey; 2269 z = (char*)&pFKey[1]; 2270 pFKey->aCol = (struct sColMap*)z; 2271 z += sizeof(struct sColMap)*nCol; 2272 pFKey->zTo = z; 2273 memcpy(z, pTo->z, pTo->n); 2274 z[pTo->n] = 0; 2275 sqlite3Dequote(z); 2276 z += pTo->n+1; 2277 pFKey->pNextTo = 0; 2278 pFKey->nCol = nCol; 2279 if( pFromCol==0 ){ 2280 pFKey->aCol[0].iFrom = p->nCol-1; 2281 }else{ 2282 for(i=0; i<nCol; i++){ 2283 int j; 2284 for(j=0; j<p->nCol; j++){ 2285 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2286 pFKey->aCol[i].iFrom = j; 2287 break; 2288 } 2289 } 2290 if( j>=p->nCol ){ 2291 sqlite3ErrorMsg(pParse, 2292 "unknown column \"%s\" in foreign key definition", 2293 pFromCol->a[i].zName); 2294 goto fk_end; 2295 } 2296 } 2297 } 2298 if( pToCol ){ 2299 for(i=0; i<nCol; i++){ 2300 int n = sqlite3Strlen30(pToCol->a[i].zName); 2301 pFKey->aCol[i].zCol = z; 2302 memcpy(z, pToCol->a[i].zName, n); 2303 z[n] = 0; 2304 z += n+1; 2305 } 2306 } 2307 pFKey->isDeferred = 0; 2308 pFKey->deleteConf = (u8)(flags & 0xff); 2309 pFKey->updateConf = (u8)((flags >> 8 ) & 0xff); 2310 pFKey->insertConf = (u8)((flags >> 16 ) & 0xff); 2311 2312 /* Link the foreign key to the table as the last step. 2313 */ 2314 p->pFKey = pFKey; 2315 pFKey = 0; 2316 2317 fk_end: 2318 sqlite3DbFree(db, pFKey); 2319 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2320 sqlite3ExprListDelete(db, pFromCol); 2321 sqlite3ExprListDelete(db, pToCol); 2322 } 2323 2324 /* 2325 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2326 ** clause is seen as part of a foreign key definition. The isDeferred 2327 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2328 ** The behavior of the most recently created foreign key is adjusted 2329 ** accordingly. 2330 */ 2331 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2332 #ifndef SQLITE_OMIT_FOREIGN_KEY 2333 Table *pTab; 2334 FKey *pFKey; 2335 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2336 assert( isDeferred==0 || isDeferred==1 ); 2337 pFKey->isDeferred = (u8)isDeferred; 2338 #endif 2339 } 2340 2341 /* 2342 ** Generate code that will erase and refill index *pIdx. This is 2343 ** used to initialize a newly created index or to recompute the 2344 ** content of an index in response to a REINDEX command. 2345 ** 2346 ** if memRootPage is not negative, it means that the index is newly 2347 ** created. The register specified by memRootPage contains the 2348 ** root page number of the index. If memRootPage is negative, then 2349 ** the index already exists and must be cleared before being refilled and 2350 ** the root page number of the index is taken from pIndex->tnum. 2351 */ 2352 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2353 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2354 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2355 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2356 int addr1; /* Address of top of loop */ 2357 int tnum; /* Root page of index */ 2358 Vdbe *v; /* Generate code into this virtual machine */ 2359 KeyInfo *pKey; /* KeyInfo for index */ 2360 int regIdxKey; /* Registers containing the index key */ 2361 int regRecord; /* Register holding assemblied index record */ 2362 sqlite3 *db = pParse->db; /* The database connection */ 2363 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2364 2365 #ifndef SQLITE_OMIT_AUTHORIZATION 2366 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2367 db->aDb[iDb].zName ) ){ 2368 return; 2369 } 2370 #endif 2371 2372 /* Require a write-lock on the table to perform this operation */ 2373 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2374 2375 v = sqlite3GetVdbe(pParse); 2376 if( v==0 ) return; 2377 if( memRootPage>=0 ){ 2378 tnum = memRootPage; 2379 }else{ 2380 tnum = pIndex->tnum; 2381 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2382 } 2383 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2384 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2385 (char *)pKey, P4_KEYINFO_HANDOFF); 2386 if( memRootPage>=0 ){ 2387 sqlite3VdbeChangeP5(v, 1); 2388 } 2389 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2390 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2391 regRecord = sqlite3GetTempReg(pParse); 2392 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2393 if( pIndex->onError!=OE_None ){ 2394 int j1, j2; 2395 int regRowid; 2396 2397 regRowid = regIdxKey + pIndex->nColumn; 2398 j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn); 2399 j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, 2400 0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32); 2401 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0, 2402 "indexed columns are not unique", P4_STATIC); 2403 sqlite3VdbeJumpHere(v, j1); 2404 sqlite3VdbeJumpHere(v, j2); 2405 } 2406 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2407 sqlite3ReleaseTempReg(pParse, regRecord); 2408 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); 2409 sqlite3VdbeJumpHere(v, addr1); 2410 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2411 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2412 } 2413 2414 /* 2415 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2416 ** and pTblList is the name of the table that is to be indexed. Both will 2417 ** be NULL for a primary key or an index that is created to satisfy a 2418 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2419 ** as the table to be indexed. pParse->pNewTable is a table that is 2420 ** currently being constructed by a CREATE TABLE statement. 2421 ** 2422 ** pList is a list of columns to be indexed. pList will be NULL if this 2423 ** is a primary key or unique-constraint on the most recent column added 2424 ** to the table currently under construction. 2425 */ 2426 void sqlite3CreateIndex( 2427 Parse *pParse, /* All information about this parse */ 2428 Token *pName1, /* First part of index name. May be NULL */ 2429 Token *pName2, /* Second part of index name. May be NULL */ 2430 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2431 ExprList *pList, /* A list of columns to be indexed */ 2432 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2433 Token *pStart, /* The CREATE token that begins this statement */ 2434 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2435 int sortOrder, /* Sort order of primary key when pList==NULL */ 2436 int ifNotExist /* Omit error if index already exists */ 2437 ){ 2438 Table *pTab = 0; /* Table to be indexed */ 2439 Index *pIndex = 0; /* The index to be created */ 2440 char *zName = 0; /* Name of the index */ 2441 int nName; /* Number of characters in zName */ 2442 int i, j; 2443 Token nullId; /* Fake token for an empty ID list */ 2444 DbFixer sFix; /* For assigning database names to pTable */ 2445 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2446 sqlite3 *db = pParse->db; 2447 Db *pDb; /* The specific table containing the indexed database */ 2448 int iDb; /* Index of the database that is being written */ 2449 Token *pName = 0; /* Unqualified name of the index to create */ 2450 struct ExprList_item *pListItem; /* For looping over pList */ 2451 int nCol; 2452 int nExtra = 0; 2453 char *zExtra; 2454 2455 if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){ 2456 goto exit_create_index; 2457 } 2458 2459 /* 2460 ** Find the table that is to be indexed. Return early if not found. 2461 */ 2462 if( pTblName!=0 ){ 2463 2464 /* Use the two-part index name to determine the database 2465 ** to search for the table. 'Fix' the table name to this db 2466 ** before looking up the table. 2467 */ 2468 assert( pName1 && pName2 ); 2469 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2470 if( iDb<0 ) goto exit_create_index; 2471 2472 #ifndef SQLITE_OMIT_TEMPDB 2473 /* If the index name was unqualified, check if the the table 2474 ** is a temp table. If so, set the database to 1. Do not do this 2475 ** if initialising a database schema. 2476 */ 2477 if( !db->init.busy ){ 2478 pTab = sqlite3SrcListLookup(pParse, pTblName); 2479 if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2480 iDb = 1; 2481 } 2482 } 2483 #endif 2484 2485 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2486 sqlite3FixSrcList(&sFix, pTblName) 2487 ){ 2488 /* Because the parser constructs pTblName from a single identifier, 2489 ** sqlite3FixSrcList can never fail. */ 2490 assert(0); 2491 } 2492 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 2493 pTblName->a[0].zDatabase); 2494 if( !pTab || db->mallocFailed ) goto exit_create_index; 2495 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2496 }else{ 2497 assert( pName==0 ); 2498 pTab = pParse->pNewTable; 2499 if( !pTab ) goto exit_create_index; 2500 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2501 } 2502 pDb = &db->aDb[iDb]; 2503 2504 if( pTab==0 || pParse->nErr ) goto exit_create_index; 2505 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2506 && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2507 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2508 goto exit_create_index; 2509 } 2510 #ifndef SQLITE_OMIT_VIEW 2511 if( pTab->pSelect ){ 2512 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2513 goto exit_create_index; 2514 } 2515 #endif 2516 #ifndef SQLITE_OMIT_VIRTUALTABLE 2517 if( IsVirtual(pTab) ){ 2518 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2519 goto exit_create_index; 2520 } 2521 #endif 2522 2523 /* 2524 ** Find the name of the index. Make sure there is not already another 2525 ** index or table with the same name. 2526 ** 2527 ** Exception: If we are reading the names of permanent indices from the 2528 ** sqlite_master table (because some other process changed the schema) and 2529 ** one of the index names collides with the name of a temporary table or 2530 ** index, then we will continue to process this index. 2531 ** 2532 ** If pName==0 it means that we are 2533 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2534 ** own name. 2535 */ 2536 if( pName ){ 2537 zName = sqlite3NameFromToken(db, pName); 2538 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2539 if( zName==0 ) goto exit_create_index; 2540 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2541 goto exit_create_index; 2542 } 2543 if( !db->init.busy ){ 2544 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2545 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2546 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2547 goto exit_create_index; 2548 } 2549 } 2550 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2551 if( !ifNotExist ){ 2552 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2553 } 2554 goto exit_create_index; 2555 } 2556 }else{ 2557 int n; 2558 Index *pLoop; 2559 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2560 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2561 if( zName==0 ){ 2562 goto exit_create_index; 2563 } 2564 } 2565 2566 /* Check for authorization to create an index. 2567 */ 2568 #ifndef SQLITE_OMIT_AUTHORIZATION 2569 { 2570 const char *zDb = pDb->zName; 2571 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2572 goto exit_create_index; 2573 } 2574 i = SQLITE_CREATE_INDEX; 2575 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2576 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2577 goto exit_create_index; 2578 } 2579 } 2580 #endif 2581 2582 /* If pList==0, it means this routine was called to make a primary 2583 ** key out of the last column added to the table under construction. 2584 ** So create a fake list to simulate this. 2585 */ 2586 if( pList==0 ){ 2587 nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; 2588 nullId.n = sqlite3Strlen30((char*)nullId.z); 2589 pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId); 2590 if( pList==0 ) goto exit_create_index; 2591 pList->a[0].sortOrder = (u8)sortOrder; 2592 } 2593 2594 /* Figure out how many bytes of space are required to store explicitly 2595 ** specified collation sequence names. 2596 */ 2597 for(i=0; i<pList->nExpr; i++){ 2598 Expr *pExpr; 2599 CollSeq *pColl; 2600 if( (pExpr = pList->a[i].pExpr)!=0 && (pColl = pExpr->pColl)!=0 ){ 2601 nExtra += (1 + sqlite3Strlen30(pColl->zName)); 2602 } 2603 } 2604 2605 /* 2606 ** Allocate the index structure. 2607 */ 2608 nName = sqlite3Strlen30(zName); 2609 nCol = pList->nExpr; 2610 pIndex = sqlite3DbMallocZero(db, 2611 sizeof(Index) + /* Index structure */ 2612 sizeof(int)*nCol + /* Index.aiColumn */ 2613 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ 2614 sizeof(char *)*nCol + /* Index.azColl */ 2615 sizeof(u8)*nCol + /* Index.aSortOrder */ 2616 nName + 1 + /* Index.zName */ 2617 nExtra /* Collation sequence names */ 2618 ); 2619 if( db->mallocFailed ){ 2620 goto exit_create_index; 2621 } 2622 pIndex->azColl = (char**)(&pIndex[1]); 2623 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2624 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); 2625 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); 2626 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2627 zExtra = (char *)(&pIndex->zName[nName+1]); 2628 memcpy(pIndex->zName, zName, nName+1); 2629 pIndex->pTable = pTab; 2630 pIndex->nColumn = pList->nExpr; 2631 pIndex->onError = (u8)onError; 2632 pIndex->autoIndex = (u8)(pName==0); 2633 pIndex->pSchema = db->aDb[iDb].pSchema; 2634 2635 /* Check to see if we should honor DESC requests on index columns 2636 */ 2637 if( pDb->pSchema->file_format>=4 ){ 2638 sortOrderMask = -1; /* Honor DESC */ 2639 }else{ 2640 sortOrderMask = 0; /* Ignore DESC */ 2641 } 2642 2643 /* Scan the names of the columns of the table to be indexed and 2644 ** load the column indices into the Index structure. Report an error 2645 ** if any column is not found. 2646 */ 2647 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2648 const char *zColName = pListItem->zName; 2649 Column *pTabCol; 2650 int requestedSortOrder; 2651 char *zColl; /* Collation sequence name */ 2652 2653 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2654 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2655 } 2656 if( j>=pTab->nCol ){ 2657 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2658 pTab->zName, zColName); 2659 goto exit_create_index; 2660 } 2661 /* TODO: Add a test to make sure that the same column is not named 2662 ** more than once within the same index. Only the first instance of 2663 ** the column will ever be used by the optimizer. Note that using the 2664 ** same column more than once cannot be an error because that would 2665 ** break backwards compatibility - it needs to be a warning. 2666 */ 2667 pIndex->aiColumn[i] = j; 2668 if( pListItem->pExpr && pListItem->pExpr->pColl ){ 2669 assert( pListItem->pExpr->pColl ); 2670 zColl = zExtra; 2671 sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName); 2672 zExtra += (sqlite3Strlen30(zColl) + 1); 2673 }else{ 2674 zColl = pTab->aCol[j].zColl; 2675 if( !zColl ){ 2676 zColl = db->pDfltColl->zName; 2677 } 2678 } 2679 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ 2680 goto exit_create_index; 2681 } 2682 pIndex->azColl[i] = zColl; 2683 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2684 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 2685 } 2686 sqlite3DefaultRowEst(pIndex); 2687 2688 if( pTab==pParse->pNewTable ){ 2689 /* This routine has been called to create an automatic index as a 2690 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2691 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2692 ** i.e. one of: 2693 ** 2694 ** CREATE TABLE t(x PRIMARY KEY, y); 2695 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2696 ** 2697 ** Either way, check to see if the table already has such an index. If 2698 ** so, don't bother creating this one. This only applies to 2699 ** automatically created indices. Users can do as they wish with 2700 ** explicit indices. 2701 */ 2702 Index *pIdx; 2703 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2704 int k; 2705 assert( pIdx->onError!=OE_None ); 2706 assert( pIdx->autoIndex ); 2707 assert( pIndex->onError!=OE_None ); 2708 2709 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2710 for(k=0; k<pIdx->nColumn; k++){ 2711 const char *z1 = pIdx->azColl[k]; 2712 const char *z2 = pIndex->azColl[k]; 2713 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2714 if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; 2715 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2716 } 2717 if( k==pIdx->nColumn ){ 2718 if( pIdx->onError!=pIndex->onError ){ 2719 /* This constraint creates the same index as a previous 2720 ** constraint specified somewhere in the CREATE TABLE statement. 2721 ** However the ON CONFLICT clauses are different. If both this 2722 ** constraint and the previous equivalent constraint have explicit 2723 ** ON CONFLICT clauses this is an error. Otherwise, use the 2724 ** explicitly specified behaviour for the index. 2725 */ 2726 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2727 sqlite3ErrorMsg(pParse, 2728 "conflicting ON CONFLICT clauses specified", 0); 2729 } 2730 if( pIdx->onError==OE_Default ){ 2731 pIdx->onError = pIndex->onError; 2732 } 2733 } 2734 goto exit_create_index; 2735 } 2736 } 2737 } 2738 2739 /* Link the new Index structure to its table and to the other 2740 ** in-memory database structures. 2741 */ 2742 if( db->init.busy ){ 2743 Index *p; 2744 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2745 pIndex->zName, sqlite3Strlen30(pIndex->zName)+1, 2746 pIndex); 2747 if( p ){ 2748 assert( p==pIndex ); /* Malloc must have failed */ 2749 db->mallocFailed = 1; 2750 goto exit_create_index; 2751 } 2752 db->flags |= SQLITE_InternChanges; 2753 if( pTblName!=0 ){ 2754 pIndex->tnum = db->init.newTnum; 2755 } 2756 } 2757 2758 /* If the db->init.busy is 0 then create the index on disk. This 2759 ** involves writing the index into the master table and filling in the 2760 ** index with the current table contents. 2761 ** 2762 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2763 ** command. db->init.busy is 1 when a database is opened and 2764 ** CREATE INDEX statements are read out of the master table. In 2765 ** the latter case the index already exists on disk, which is why 2766 ** we don't want to recreate it. 2767 ** 2768 ** If pTblName==0 it means this index is generated as a primary key 2769 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2770 ** has just been created, it contains no data and the index initialization 2771 ** step can be skipped. 2772 */ 2773 else if( db->init.busy==0 ){ 2774 Vdbe *v; 2775 char *zStmt; 2776 int iMem = ++pParse->nMem; 2777 2778 v = sqlite3GetVdbe(pParse); 2779 if( v==0 ) goto exit_create_index; 2780 2781 2782 /* Create the rootpage for the index 2783 */ 2784 sqlite3BeginWriteOperation(pParse, 1, iDb); 2785 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 2786 2787 /* Gather the complete text of the CREATE INDEX statement into 2788 ** the zStmt variable 2789 */ 2790 if( pStart && pEnd ){ 2791 /* A named index with an explicit CREATE INDEX statement */ 2792 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 2793 onError==OE_None ? "" : " UNIQUE", 2794 pEnd->z - pName->z + 1, 2795 pName->z); 2796 }else{ 2797 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2798 /* zStmt = sqlite3MPrintf(""); */ 2799 zStmt = 0; 2800 } 2801 2802 /* Add an entry in sqlite_master for this index 2803 */ 2804 sqlite3NestedParse(pParse, 2805 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 2806 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2807 pIndex->zName, 2808 pTab->zName, 2809 iMem, 2810 zStmt 2811 ); 2812 sqlite3DbFree(db, zStmt); 2813 2814 /* Fill the index with data and reparse the schema. Code an OP_Expire 2815 ** to invalidate all pre-compiled statements. 2816 */ 2817 if( pTblName ){ 2818 sqlite3RefillIndex(pParse, pIndex, iMem); 2819 sqlite3ChangeCookie(pParse, iDb); 2820 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 2821 sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC); 2822 sqlite3VdbeAddOp1(v, OP_Expire, 0); 2823 } 2824 } 2825 2826 /* When adding an index to the list of indices for a table, make 2827 ** sure all indices labeled OE_Replace come after all those labeled 2828 ** OE_Ignore. This is necessary for the correct operation of UPDATE 2829 ** and INSERT. 2830 */ 2831 if( db->init.busy || pTblName==0 ){ 2832 if( onError!=OE_Replace || pTab->pIndex==0 2833 || pTab->pIndex->onError==OE_Replace){ 2834 pIndex->pNext = pTab->pIndex; 2835 pTab->pIndex = pIndex; 2836 }else{ 2837 Index *pOther = pTab->pIndex; 2838 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2839 pOther = pOther->pNext; 2840 } 2841 pIndex->pNext = pOther->pNext; 2842 pOther->pNext = pIndex; 2843 } 2844 pIndex = 0; 2845 } 2846 2847 /* Clean up before exiting */ 2848 exit_create_index: 2849 if( pIndex ){ 2850 sqlite3_free(pIndex->zColAff); 2851 sqlite3DbFree(db, pIndex); 2852 } 2853 sqlite3ExprListDelete(db, pList); 2854 sqlite3SrcListDelete(db, pTblName); 2855 sqlite3DbFree(db, zName); 2856 return; 2857 } 2858 2859 /* 2860 ** Generate code to make sure the file format number is at least minFormat. 2861 ** The generated code will increase the file format number if necessary. 2862 */ 2863 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ 2864 Vdbe *v; 2865 v = sqlite3GetVdbe(pParse); 2866 if( v ){ 2867 int r1 = sqlite3GetTempReg(pParse); 2868 int r2 = sqlite3GetTempReg(pParse); 2869 int j1; 2870 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1); 2871 sqlite3VdbeUsesBtree(v, iDb); 2872 sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); 2873 j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); 2874 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2); 2875 sqlite3VdbeJumpHere(v, j1); 2876 sqlite3ReleaseTempReg(pParse, r1); 2877 sqlite3ReleaseTempReg(pParse, r2); 2878 } 2879 } 2880 2881 /* 2882 ** Fill the Index.aiRowEst[] array with default information - information 2883 ** to be used when we have not run the ANALYZE command. 2884 ** 2885 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2886 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2887 ** number of rows in the table that match any particular value of the 2888 ** first column of the index. aiRowEst[2] is an estimate of the number 2889 ** of rows that match any particular combiniation of the first 2 columns 2890 ** of the index. And so forth. It must always be the case that 2891 * 2892 ** aiRowEst[N]<=aiRowEst[N-1] 2893 ** aiRowEst[N]>=1 2894 ** 2895 ** Apart from that, we have little to go on besides intuition as to 2896 ** how aiRowEst[] should be initialized. The numbers generated here 2897 ** are based on typical values found in actual indices. 2898 */ 2899 void sqlite3DefaultRowEst(Index *pIdx){ 2900 unsigned *a = pIdx->aiRowEst; 2901 int i; 2902 assert( a!=0 ); 2903 a[0] = 1000000; 2904 for(i=pIdx->nColumn; i>=5; i--){ 2905 a[i] = 5; 2906 } 2907 while( i>=1 ){ 2908 a[i] = 11 - i; 2909 i--; 2910 } 2911 if( pIdx->onError!=OE_None ){ 2912 a[pIdx->nColumn] = 1; 2913 } 2914 } 2915 2916 /* 2917 ** This routine will drop an existing named index. This routine 2918 ** implements the DROP INDEX statement. 2919 */ 2920 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2921 Index *pIndex; 2922 Vdbe *v; 2923 sqlite3 *db = pParse->db; 2924 int iDb; 2925 2926 if( pParse->nErr || db->mallocFailed ){ 2927 goto exit_drop_index; 2928 } 2929 assert( pName->nSrc==1 ); 2930 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2931 goto exit_drop_index; 2932 } 2933 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 2934 if( pIndex==0 ){ 2935 if( !ifExists ){ 2936 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 2937 } 2938 pParse->checkSchema = 1; 2939 goto exit_drop_index; 2940 } 2941 if( pIndex->autoIndex ){ 2942 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 2943 "or PRIMARY KEY constraint cannot be dropped", 0); 2944 goto exit_drop_index; 2945 } 2946 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2947 #ifndef SQLITE_OMIT_AUTHORIZATION 2948 { 2949 int code = SQLITE_DROP_INDEX; 2950 Table *pTab = pIndex->pTable; 2951 const char *zDb = db->aDb[iDb].zName; 2952 const char *zTab = SCHEMA_TABLE(iDb); 2953 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 2954 goto exit_drop_index; 2955 } 2956 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 2957 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 2958 goto exit_drop_index; 2959 } 2960 } 2961 #endif 2962 2963 /* Generate code to remove the index and from the master table */ 2964 v = sqlite3GetVdbe(pParse); 2965 if( v ){ 2966 sqlite3BeginWriteOperation(pParse, 1, iDb); 2967 sqlite3NestedParse(pParse, 2968 "DELETE FROM %Q.%s WHERE name=%Q", 2969 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2970 pIndex->zName 2971 ); 2972 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2973 sqlite3NestedParse(pParse, 2974 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", 2975 db->aDb[iDb].zName, pIndex->zName 2976 ); 2977 } 2978 sqlite3ChangeCookie(pParse, iDb); 2979 destroyRootPage(pParse, pIndex->tnum, iDb); 2980 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 2981 } 2982 2983 exit_drop_index: 2984 sqlite3SrcListDelete(db, pName); 2985 } 2986 2987 /* 2988 ** pArray is a pointer to an array of objects. Each object in the 2989 ** array is szEntry bytes in size. This routine allocates a new 2990 ** object on the end of the array. 2991 ** 2992 ** *pnEntry is the number of entries already in use. *pnAlloc is 2993 ** the previously allocated size of the array. initSize is the 2994 ** suggested initial array size allocation. 2995 ** 2996 ** The index of the new entry is returned in *pIdx. 2997 ** 2998 ** This routine returns a pointer to the array of objects. This 2999 ** might be the same as the pArray parameter or it might be a different 3000 ** pointer if the array was resized. 3001 */ 3002 void *sqlite3ArrayAllocate( 3003 sqlite3 *db, /* Connection to notify of malloc failures */ 3004 void *pArray, /* Array of objects. Might be reallocated */ 3005 int szEntry, /* Size of each object in the array */ 3006 int initSize, /* Suggested initial allocation, in elements */ 3007 int *pnEntry, /* Number of objects currently in use */ 3008 int *pnAlloc, /* Current size of the allocation, in elements */ 3009 int *pIdx /* Write the index of a new slot here */ 3010 ){ 3011 char *z; 3012 if( *pnEntry >= *pnAlloc ){ 3013 void *pNew; 3014 int newSize; 3015 newSize = (*pnAlloc)*2 + initSize; 3016 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); 3017 if( pNew==0 ){ 3018 *pIdx = -1; 3019 return pArray; 3020 } 3021 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry; 3022 pArray = pNew; 3023 } 3024 z = (char*)pArray; 3025 memset(&z[*pnEntry * szEntry], 0, szEntry); 3026 *pIdx = *pnEntry; 3027 ++*pnEntry; 3028 return pArray; 3029 } 3030 3031 /* 3032 ** Append a new element to the given IdList. Create a new IdList if 3033 ** need be. 3034 ** 3035 ** A new IdList is returned, or NULL if malloc() fails. 3036 */ 3037 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3038 int i; 3039 if( pList==0 ){ 3040 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3041 if( pList==0 ) return 0; 3042 pList->nAlloc = 0; 3043 } 3044 pList->a = sqlite3ArrayAllocate( 3045 db, 3046 pList->a, 3047 sizeof(pList->a[0]), 3048 5, 3049 &pList->nId, 3050 &pList->nAlloc, 3051 &i 3052 ); 3053 if( i<0 ){ 3054 sqlite3IdListDelete(db, pList); 3055 return 0; 3056 } 3057 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3058 return pList; 3059 } 3060 3061 /* 3062 ** Delete an IdList. 3063 */ 3064 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3065 int i; 3066 if( pList==0 ) return; 3067 for(i=0; i<pList->nId; i++){ 3068 sqlite3DbFree(db, pList->a[i].zName); 3069 } 3070 sqlite3DbFree(db, pList->a); 3071 sqlite3DbFree(db, pList); 3072 } 3073 3074 /* 3075 ** Return the index in pList of the identifier named zId. Return -1 3076 ** if not found. 3077 */ 3078 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3079 int i; 3080 if( pList==0 ) return -1; 3081 for(i=0; i<pList->nId; i++){ 3082 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3083 } 3084 return -1; 3085 } 3086 3087 /* 3088 ** Expand the space allocated for the given SrcList object by 3089 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3090 ** New slots are zeroed. 3091 ** 3092 ** For example, suppose a SrcList initially contains two entries: A,B. 3093 ** To append 3 new entries onto the end, do this: 3094 ** 3095 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3096 ** 3097 ** After the call above it would contain: A, B, nil, nil, nil. 3098 ** If the iStart argument had been 1 instead of 2, then the result 3099 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3100 ** the iStart value would be 0. The result then would 3101 ** be: nil, nil, nil, A, B. 3102 ** 3103 ** If a memory allocation fails the SrcList is unchanged. The 3104 ** db->mallocFailed flag will be set to true. 3105 */ 3106 SrcList *sqlite3SrcListEnlarge( 3107 sqlite3 *db, /* Database connection to notify of OOM errors */ 3108 SrcList *pSrc, /* The SrcList to be enlarged */ 3109 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3110 int iStart /* Index in pSrc->a[] of first new slot */ 3111 ){ 3112 int i; 3113 3114 /* Sanity checking on calling parameters */ 3115 assert( iStart>=0 ); 3116 assert( nExtra>=1 ); 3117 if( pSrc==0 || iStart>pSrc->nSrc ){ 3118 assert( db->mallocFailed ); 3119 return pSrc; 3120 } 3121 3122 /* Allocate additional space if needed */ 3123 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3124 SrcList *pNew; 3125 int nAlloc = pSrc->nSrc+nExtra; 3126 int nGot; 3127 pNew = sqlite3DbRealloc(db, pSrc, 3128 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3129 if( pNew==0 ){ 3130 assert( db->mallocFailed ); 3131 return pSrc; 3132 } 3133 pSrc = pNew; 3134 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3135 pSrc->nAlloc = (u16)nGot; 3136 } 3137 3138 /* Move existing slots that come after the newly inserted slots 3139 ** out of the way */ 3140 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3141 pSrc->a[i+nExtra] = pSrc->a[i]; 3142 } 3143 pSrc->nSrc += (i16)nExtra; 3144 3145 /* Zero the newly allocated slots */ 3146 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3147 for(i=iStart; i<iStart+nExtra; i++){ 3148 pSrc->a[i].iCursor = -1; 3149 } 3150 3151 /* Return a pointer to the enlarged SrcList */ 3152 return pSrc; 3153 } 3154 3155 3156 /* 3157 ** Append a new table name to the given SrcList. Create a new SrcList if 3158 ** need be. A new entry is created in the SrcList even if pToken is NULL. 3159 ** 3160 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3161 ** SrcList might be the same as the SrcList that was input or it might be 3162 ** a new one. If an OOM error does occurs, then the prior value of pList 3163 ** that is input to this routine is automatically freed. 3164 ** 3165 ** If pDatabase is not null, it means that the table has an optional 3166 ** database name prefix. Like this: "database.table". The pDatabase 3167 ** points to the table name and the pTable points to the database name. 3168 ** The SrcList.a[].zName field is filled with the table name which might 3169 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3170 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3171 ** or with NULL if no database is specified. 3172 ** 3173 ** In other words, if call like this: 3174 ** 3175 ** sqlite3SrcListAppend(D,A,B,0); 3176 ** 3177 ** Then B is a table name and the database name is unspecified. If called 3178 ** like this: 3179 ** 3180 ** sqlite3SrcListAppend(D,A,B,C); 3181 ** 3182 ** Then C is the table name and B is the database name. 3183 */ 3184 SrcList *sqlite3SrcListAppend( 3185 sqlite3 *db, /* Connection to notify of malloc failures */ 3186 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3187 Token *pTable, /* Table to append */ 3188 Token *pDatabase /* Database of the table */ 3189 ){ 3190 struct SrcList_item *pItem; 3191 if( pList==0 ){ 3192 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3193 if( pList==0 ) return 0; 3194 pList->nAlloc = 1; 3195 } 3196 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3197 if( db->mallocFailed ){ 3198 sqlite3SrcListDelete(db, pList); 3199 return 0; 3200 } 3201 pItem = &pList->a[pList->nSrc-1]; 3202 if( pDatabase && pDatabase->z==0 ){ 3203 pDatabase = 0; 3204 } 3205 if( pDatabase && pTable ){ 3206 Token *pTemp = pDatabase; 3207 pDatabase = pTable; 3208 pTable = pTemp; 3209 } 3210 pItem->zName = sqlite3NameFromToken(db, pTable); 3211 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3212 return pList; 3213 } 3214 3215 /* 3216 ** Assign VdbeCursor index numbers to all tables in a SrcList 3217 */ 3218 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3219 int i; 3220 struct SrcList_item *pItem; 3221 assert(pList || pParse->db->mallocFailed ); 3222 if( pList ){ 3223 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3224 if( pItem->iCursor>=0 ) break; 3225 pItem->iCursor = pParse->nTab++; 3226 if( pItem->pSelect ){ 3227 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3228 } 3229 } 3230 } 3231 } 3232 3233 /* 3234 ** Delete an entire SrcList including all its substructure. 3235 */ 3236 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3237 int i; 3238 struct SrcList_item *pItem; 3239 if( pList==0 ) return; 3240 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3241 sqlite3DbFree(db, pItem->zDatabase); 3242 sqlite3DbFree(db, pItem->zName); 3243 sqlite3DbFree(db, pItem->zAlias); 3244 sqlite3DbFree(db, pItem->zIndex); 3245 sqlite3DeleteTable(pItem->pTab); 3246 sqlite3SelectDelete(db, pItem->pSelect); 3247 sqlite3ExprDelete(db, pItem->pOn); 3248 sqlite3IdListDelete(db, pItem->pUsing); 3249 } 3250 sqlite3DbFree(db, pList); 3251 } 3252 3253 /* 3254 ** This routine is called by the parser to add a new term to the 3255 ** end of a growing FROM clause. The "p" parameter is the part of 3256 ** the FROM clause that has already been constructed. "p" is NULL 3257 ** if this is the first term of the FROM clause. pTable and pDatabase 3258 ** are the name of the table and database named in the FROM clause term. 3259 ** pDatabase is NULL if the database name qualifier is missing - the 3260 ** usual case. If the term has a alias, then pAlias points to the 3261 ** alias token. If the term is a subquery, then pSubquery is the 3262 ** SELECT statement that the subquery encodes. The pTable and 3263 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3264 ** parameters are the content of the ON and USING clauses. 3265 ** 3266 ** Return a new SrcList which encodes is the FROM with the new 3267 ** term added. 3268 */ 3269 SrcList *sqlite3SrcListAppendFromTerm( 3270 Parse *pParse, /* Parsing context */ 3271 SrcList *p, /* The left part of the FROM clause already seen */ 3272 Token *pTable, /* Name of the table to add to the FROM clause */ 3273 Token *pDatabase, /* Name of the database containing pTable */ 3274 Token *pAlias, /* The right-hand side of the AS subexpression */ 3275 Select *pSubquery, /* A subquery used in place of a table name */ 3276 Expr *pOn, /* The ON clause of a join */ 3277 IdList *pUsing /* The USING clause of a join */ 3278 ){ 3279 struct SrcList_item *pItem; 3280 sqlite3 *db = pParse->db; 3281 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3282 if( p==0 || p->nSrc==0 ){ 3283 sqlite3ExprDelete(db, pOn); 3284 sqlite3IdListDelete(db, pUsing); 3285 sqlite3SelectDelete(db, pSubquery); 3286 return p; 3287 } 3288 pItem = &p->a[p->nSrc-1]; 3289 if( pAlias && pAlias->n ){ 3290 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3291 } 3292 pItem->pSelect = pSubquery; 3293 pItem->pOn = pOn; 3294 pItem->pUsing = pUsing; 3295 return p; 3296 } 3297 3298 /* 3299 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3300 ** element of the source-list passed as the second argument. 3301 */ 3302 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3303 if( pIndexedBy && p && p->nSrc>0 ){ 3304 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3305 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3306 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3307 /* A "NOT INDEXED" clause was supplied. See parse.y 3308 ** construct "indexed_opt" for details. */ 3309 pItem->notIndexed = 1; 3310 }else{ 3311 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3312 } 3313 } 3314 } 3315 3316 /* 3317 ** When building up a FROM clause in the parser, the join operator 3318 ** is initially attached to the left operand. But the code generator 3319 ** expects the join operator to be on the right operand. This routine 3320 ** Shifts all join operators from left to right for an entire FROM 3321 ** clause. 3322 ** 3323 ** Example: Suppose the join is like this: 3324 ** 3325 ** A natural cross join B 3326 ** 3327 ** The operator is "natural cross join". The A and B operands are stored 3328 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3329 ** operator with A. This routine shifts that operator over to B. 3330 */ 3331 void sqlite3SrcListShiftJoinType(SrcList *p){ 3332 if( p && p->a ){ 3333 int i; 3334 for(i=p->nSrc-1; i>0; i--){ 3335 p->a[i].jointype = p->a[i-1].jointype; 3336 } 3337 p->a[0].jointype = 0; 3338 } 3339 } 3340 3341 /* 3342 ** Begin a transaction 3343 */ 3344 void sqlite3BeginTransaction(Parse *pParse, int type){ 3345 sqlite3 *db; 3346 Vdbe *v; 3347 int i; 3348 3349 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3350 if( pParse->nErr || db->mallocFailed ) return; 3351 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; 3352 3353 v = sqlite3GetVdbe(pParse); 3354 if( !v ) return; 3355 if( type!=TK_DEFERRED ){ 3356 for(i=0; i<db->nDb; i++){ 3357 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3358 sqlite3VdbeUsesBtree(v, i); 3359 } 3360 } 3361 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3362 } 3363 3364 /* 3365 ** Commit a transaction 3366 */ 3367 void sqlite3CommitTransaction(Parse *pParse){ 3368 sqlite3 *db; 3369 Vdbe *v; 3370 3371 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3372 if( pParse->nErr || db->mallocFailed ) return; 3373 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; 3374 3375 v = sqlite3GetVdbe(pParse); 3376 if( v ){ 3377 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3378 } 3379 } 3380 3381 /* 3382 ** Rollback a transaction 3383 */ 3384 void sqlite3RollbackTransaction(Parse *pParse){ 3385 sqlite3 *db; 3386 Vdbe *v; 3387 3388 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3389 if( pParse->nErr || db->mallocFailed ) return; 3390 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; 3391 3392 v = sqlite3GetVdbe(pParse); 3393 if( v ){ 3394 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3395 } 3396 } 3397 3398 /* 3399 ** This function is called by the parser when it parses a command to create, 3400 ** release or rollback an SQL savepoint. 3401 */ 3402 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3403 char *zName = sqlite3NameFromToken(pParse->db, pName); 3404 if( zName ){ 3405 Vdbe *v = sqlite3GetVdbe(pParse); 3406 #ifndef SQLITE_OMIT_AUTHORIZATION 3407 static const char *az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3408 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3409 #endif 3410 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3411 sqlite3DbFree(pParse->db, zName); 3412 return; 3413 } 3414 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3415 } 3416 } 3417 3418 /* 3419 ** Make sure the TEMP database is open and available for use. Return 3420 ** the number of errors. Leave any error messages in the pParse structure. 3421 */ 3422 int sqlite3OpenTempDatabase(Parse *pParse){ 3423 sqlite3 *db = pParse->db; 3424 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3425 int rc; 3426 static const int flags = 3427 SQLITE_OPEN_READWRITE | 3428 SQLITE_OPEN_CREATE | 3429 SQLITE_OPEN_EXCLUSIVE | 3430 SQLITE_OPEN_DELETEONCLOSE | 3431 SQLITE_OPEN_TEMP_DB; 3432 3433 rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags, 3434 &db->aDb[1].pBt); 3435 if( rc!=SQLITE_OK ){ 3436 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3437 "file for storing temporary tables"); 3438 pParse->rc = rc; 3439 return 1; 3440 } 3441 assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit ); 3442 assert( db->aDb[1].pSchema ); 3443 sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt), 3444 db->dfltJournalMode); 3445 } 3446 return 0; 3447 } 3448 3449 /* 3450 ** Generate VDBE code that will verify the schema cookie and start 3451 ** a read-transaction for all named database files. 3452 ** 3453 ** It is important that all schema cookies be verified and all 3454 ** read transactions be started before anything else happens in 3455 ** the VDBE program. But this routine can be called after much other 3456 ** code has been generated. So here is what we do: 3457 ** 3458 ** The first time this routine is called, we code an OP_Goto that 3459 ** will jump to a subroutine at the end of the program. Then we 3460 ** record every database that needs its schema verified in the 3461 ** pParse->cookieMask field. Later, after all other code has been 3462 ** generated, the subroutine that does the cookie verifications and 3463 ** starts the transactions will be coded and the OP_Goto P2 value 3464 ** will be made to point to that subroutine. The generation of the 3465 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3466 ** 3467 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3468 ** schema on any databases. This can be used to position the OP_Goto 3469 ** early in the code, before we know if any database tables will be used. 3470 */ 3471 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3472 sqlite3 *db; 3473 Vdbe *v; 3474 int mask; 3475 3476 v = sqlite3GetVdbe(pParse); 3477 if( v==0 ) return; /* This only happens if there was a prior error */ 3478 db = pParse->db; 3479 if( pParse->cookieGoto==0 ){ 3480 pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; 3481 } 3482 if( iDb>=0 ){ 3483 assert( iDb<db->nDb ); 3484 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3485 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3486 mask = 1<<iDb; 3487 if( (pParse->cookieMask & mask)==0 ){ 3488 pParse->cookieMask |= mask; 3489 pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3490 if( !OMIT_TEMPDB && iDb==1 ){ 3491 sqlite3OpenTempDatabase(pParse); 3492 } 3493 } 3494 } 3495 } 3496 3497 /* 3498 ** Generate VDBE code that prepares for doing an operation that 3499 ** might change the database. 3500 ** 3501 ** This routine starts a new transaction if we are not already within 3502 ** a transaction. If we are already within a transaction, then a checkpoint 3503 ** is set if the setStatement parameter is true. A checkpoint should 3504 ** be set for operations that might fail (due to a constraint) part of 3505 ** the way through and which will need to undo some writes without having to 3506 ** rollback the whole transaction. For operations where all constraints 3507 ** can be checked before any changes are made to the database, it is never 3508 ** necessary to undo a write and the checkpoint should not be set. 3509 */ 3510 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3511 Vdbe *v = sqlite3GetVdbe(pParse); 3512 if( v==0 ) return; 3513 sqlite3CodeVerifySchema(pParse, iDb); 3514 pParse->writeMask |= 1<<iDb; 3515 if( setStatement && pParse->nested==0 ){ 3516 sqlite3VdbeAddOp1(v, OP_Statement, iDb); 3517 } 3518 } 3519 3520 /* 3521 ** Check to see if pIndex uses the collating sequence pColl. Return 3522 ** true if it does and false if it does not. 3523 */ 3524 #ifndef SQLITE_OMIT_REINDEX 3525 static int collationMatch(const char *zColl, Index *pIndex){ 3526 int i; 3527 for(i=0; i<pIndex->nColumn; i++){ 3528 const char *z = pIndex->azColl[i]; 3529 if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ 3530 return 1; 3531 } 3532 } 3533 return 0; 3534 } 3535 #endif 3536 3537 /* 3538 ** Recompute all indices of pTab that use the collating sequence pColl. 3539 ** If pColl==0 then recompute all indices of pTab. 3540 */ 3541 #ifndef SQLITE_OMIT_REINDEX 3542 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3543 Index *pIndex; /* An index associated with pTab */ 3544 3545 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3546 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3547 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3548 sqlite3BeginWriteOperation(pParse, 0, iDb); 3549 sqlite3RefillIndex(pParse, pIndex, -1); 3550 } 3551 } 3552 } 3553 #endif 3554 3555 /* 3556 ** Recompute all indices of all tables in all databases where the 3557 ** indices use the collating sequence pColl. If pColl==0 then recompute 3558 ** all indices everywhere. 3559 */ 3560 #ifndef SQLITE_OMIT_REINDEX 3561 static void reindexDatabases(Parse *pParse, char const *zColl){ 3562 Db *pDb; /* A single database */ 3563 int iDb; /* The database index number */ 3564 sqlite3 *db = pParse->db; /* The database connection */ 3565 HashElem *k; /* For looping over tables in pDb */ 3566 Table *pTab; /* A table in the database */ 3567 3568 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3569 assert( pDb!=0 ); 3570 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3571 pTab = (Table*)sqliteHashData(k); 3572 reindexTable(pParse, pTab, zColl); 3573 } 3574 } 3575 } 3576 #endif 3577 3578 /* 3579 ** Generate code for the REINDEX command. 3580 ** 3581 ** REINDEX -- 1 3582 ** REINDEX <collation> -- 2 3583 ** REINDEX ?<database>.?<tablename> -- 3 3584 ** REINDEX ?<database>.?<indexname> -- 4 3585 ** 3586 ** Form 1 causes all indices in all attached databases to be rebuilt. 3587 ** Form 2 rebuilds all indices in all databases that use the named 3588 ** collating function. Forms 3 and 4 rebuild the named index or all 3589 ** indices associated with the named table. 3590 */ 3591 #ifndef SQLITE_OMIT_REINDEX 3592 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3593 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3594 char *z; /* Name of a table or index */ 3595 const char *zDb; /* Name of the database */ 3596 Table *pTab; /* A table in the database */ 3597 Index *pIndex; /* An index associated with pTab */ 3598 int iDb; /* The database index number */ 3599 sqlite3 *db = pParse->db; /* The database connection */ 3600 Token *pObjName; /* Name of the table or index to be reindexed */ 3601 3602 /* Read the database schema. If an error occurs, leave an error message 3603 ** and code in pParse and return NULL. */ 3604 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3605 return; 3606 } 3607 3608 if( pName1==0 || pName1->z==0 ){ 3609 reindexDatabases(pParse, 0); 3610 return; 3611 }else if( pName2==0 || pName2->z==0 ){ 3612 char *zColl; 3613 assert( pName1->z ); 3614 zColl = sqlite3NameFromToken(pParse->db, pName1); 3615 if( !zColl ) return; 3616 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0); 3617 if( pColl ){ 3618 if( zColl ){ 3619 reindexDatabases(pParse, zColl); 3620 sqlite3DbFree(db, zColl); 3621 } 3622 return; 3623 } 3624 sqlite3DbFree(db, zColl); 3625 } 3626 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3627 if( iDb<0 ) return; 3628 z = sqlite3NameFromToken(db, pObjName); 3629 if( z==0 ) return; 3630 zDb = db->aDb[iDb].zName; 3631 pTab = sqlite3FindTable(db, z, zDb); 3632 if( pTab ){ 3633 reindexTable(pParse, pTab, 0); 3634 sqlite3DbFree(db, z); 3635 return; 3636 } 3637 pIndex = sqlite3FindIndex(db, z, zDb); 3638 sqlite3DbFree(db, z); 3639 if( pIndex ){ 3640 sqlite3BeginWriteOperation(pParse, 0, iDb); 3641 sqlite3RefillIndex(pParse, pIndex, -1); 3642 return; 3643 } 3644 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3645 } 3646 #endif 3647 3648 /* 3649 ** Return a dynamicly allocated KeyInfo structure that can be used 3650 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3651 ** 3652 ** If successful, a pointer to the new structure is returned. In this case 3653 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 3654 ** pointer. If an error occurs (out of memory or missing collation 3655 ** sequence), NULL is returned and the state of pParse updated to reflect 3656 ** the error. 3657 */ 3658 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3659 int i; 3660 int nCol = pIdx->nColumn; 3661 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3662 sqlite3 *db = pParse->db; 3663 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); 3664 3665 if( pKey ){ 3666 pKey->db = pParse->db; 3667 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3668 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3669 for(i=0; i<nCol; i++){ 3670 char *zColl = pIdx->azColl[i]; 3671 assert( zColl ); 3672 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); 3673 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3674 } 3675 pKey->nField = (u16)nCol; 3676 } 3677 3678 if( pParse->nErr ){ 3679 sqlite3DbFree(db, pKey); 3680 pKey = 0; 3681 } 3682 return pKey; 3683 } 3684