xref: /sqlite-3.40.0/src/build.c (revision 697c50b9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   Pgno iTab;             /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 static SQLITE_NOINLINE void lockTable(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   Pgno iTab,         /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel;
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   pToplevel = sqlite3ParseToplevel(pParse);
63   for(i=0; i<pToplevel->nTableLock; i++){
64     p = &pToplevel->aTableLock[i];
65     if( p->iDb==iDb && p->iTab==iTab ){
66       p->isWriteLock = (p->isWriteLock || isWriteLock);
67       return;
68     }
69   }
70 
71   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
72   pToplevel->aTableLock =
73       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
74   if( pToplevel->aTableLock ){
75     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
76     p->iDb = iDb;
77     p->iTab = iTab;
78     p->isWriteLock = isWriteLock;
79     p->zLockName = zName;
80   }else{
81     pToplevel->nTableLock = 0;
82     sqlite3OomFault(pToplevel->db);
83   }
84 }
85 void sqlite3TableLock(
86   Parse *pParse,     /* Parsing context */
87   int iDb,           /* Index of the database containing the table to lock */
88   Pgno iTab,         /* Root page number of the table to be locked */
89   u8 isWriteLock,    /* True for a write lock */
90   const char *zName  /* Name of the table to be locked */
91 ){
92   if( iDb==1 ) return;
93   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
94   lockTable(pParse, iDb, iTab, isWriteLock, zName);
95 }
96 
97 /*
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
100 */
101 static void codeTableLocks(Parse *pParse){
102   int i;
103   Vdbe *pVdbe = pParse->pVdbe;
104   assert( pVdbe!=0 );
105 
106   for(i=0; i<pParse->nTableLock; i++){
107     TableLock *p = &pParse->aTableLock[i];
108     int p1 = p->iDb;
109     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
110                       p->zLockName, P4_STATIC);
111   }
112 }
113 #else
114   #define codeTableLocks(x)
115 #endif
116 
117 /*
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
121 */
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m){
124   int i;
125   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
126   return 1;
127 }
128 #endif
129 
130 /*
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared.  This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
135 ** parse.
136 **
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
139 */
140 void sqlite3FinishCoding(Parse *pParse){
141   sqlite3 *db;
142   Vdbe *v;
143 
144   assert( pParse->pToplevel==0 );
145   db = pParse->db;
146   assert( db->pParse==pParse );
147   if( pParse->nested ) return;
148   if( pParse->nErr ){
149     if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM;
150     return;
151   }
152   assert( db->mallocFailed==0 );
153 
154   /* Begin by generating some termination code at the end of the
155   ** vdbe program
156   */
157   v = pParse->pVdbe;
158   if( v==0 ){
159     if( db->init.busy ){
160       pParse->rc = SQLITE_DONE;
161       return;
162     }
163     v = sqlite3GetVdbe(pParse);
164     if( v==0 ) pParse->rc = SQLITE_ERROR;
165   }
166   assert( !pParse->isMultiWrite
167        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
168   if( v ){
169     if( pParse->bReturning ){
170       Returning *pReturning = pParse->u1.pReturning;
171       int addrRewind;
172       int i;
173       int reg;
174 
175       if( NEVER(pReturning->nRetCol==0) ){
176         assert( CORRUPT_DB );
177       }else{
178         sqlite3VdbeAddOp0(v, OP_FkCheck);
179         addrRewind =
180            sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
181         VdbeCoverage(v);
182         reg = pReturning->iRetReg;
183         for(i=0; i<pReturning->nRetCol; i++){
184           sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
185         }
186         sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
187         sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
188         VdbeCoverage(v);
189         sqlite3VdbeJumpHere(v, addrRewind);
190       }
191     }
192     sqlite3VdbeAddOp0(v, OP_Halt);
193 
194 #if SQLITE_USER_AUTHENTICATION
195     if( pParse->nTableLock>0 && db->init.busy==0 ){
196       sqlite3UserAuthInit(db);
197       if( db->auth.authLevel<UAUTH_User ){
198         sqlite3ErrorMsg(pParse, "user not authenticated");
199         pParse->rc = SQLITE_AUTH_USER;
200         return;
201       }
202     }
203 #endif
204 
205     /* The cookie mask contains one bit for each database file open.
206     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
207     ** set for each database that is used.  Generate code to start a
208     ** transaction on each used database and to verify the schema cookie
209     ** on each used database.
210     */
211     if( db->mallocFailed==0
212      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
213     ){
214       int iDb, i;
215       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
216       sqlite3VdbeJumpHere(v, 0);
217       for(iDb=0; iDb<db->nDb; iDb++){
218         Schema *pSchema;
219         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
220         sqlite3VdbeUsesBtree(v, iDb);
221         pSchema = db->aDb[iDb].pSchema;
222         sqlite3VdbeAddOp4Int(v,
223           OP_Transaction,                    /* Opcode */
224           iDb,                               /* P1 */
225           DbMaskTest(pParse->writeMask,iDb), /* P2 */
226           pSchema->schema_cookie,            /* P3 */
227           pSchema->iGeneration               /* P4 */
228         );
229         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
230         VdbeComment((v,
231               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
232       }
233 #ifndef SQLITE_OMIT_VIRTUALTABLE
234       for(i=0; i<pParse->nVtabLock; i++){
235         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
236         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
237       }
238       pParse->nVtabLock = 0;
239 #endif
240 
241       /* Once all the cookies have been verified and transactions opened,
242       ** obtain the required table-locks. This is a no-op unless the
243       ** shared-cache feature is enabled.
244       */
245       codeTableLocks(pParse);
246 
247       /* Initialize any AUTOINCREMENT data structures required.
248       */
249       sqlite3AutoincrementBegin(pParse);
250 
251       /* Code constant expressions that where factored out of inner loops.
252       **
253       ** The pConstExpr list might also contain expressions that we simply
254       ** want to keep around until the Parse object is deleted.  Such
255       ** expressions have iConstExprReg==0.  Do not generate code for
256       ** those expressions, of course.
257       */
258       if( pParse->pConstExpr ){
259         ExprList *pEL = pParse->pConstExpr;
260         pParse->okConstFactor = 0;
261         for(i=0; i<pEL->nExpr; i++){
262           int iReg = pEL->a[i].u.iConstExprReg;
263           if( iReg>0 ){
264             sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
265           }
266         }
267       }
268 
269       if( pParse->bReturning ){
270         Returning *pRet = pParse->u1.pReturning;
271         if( NEVER(pRet->nRetCol==0) ){
272           assert( CORRUPT_DB );
273         }else{
274           sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
275         }
276       }
277 
278       /* Finally, jump back to the beginning of the executable code. */
279       sqlite3VdbeGoto(v, 1);
280     }
281   }
282 
283   /* Get the VDBE program ready for execution
284   */
285   assert( v!=0 || pParse->nErr );
286   assert( db->mallocFailed==0 || pParse->nErr );
287   if( pParse->nErr==0 ){
288     /* A minimum of one cursor is required if autoincrement is used
289     *  See ticket [a696379c1f08866] */
290     assert( pParse->pAinc==0 || pParse->nTab>0 );
291     sqlite3VdbeMakeReady(v, pParse);
292     pParse->rc = SQLITE_DONE;
293   }else{
294     pParse->rc = SQLITE_ERROR;
295   }
296 }
297 
298 /*
299 ** Run the parser and code generator recursively in order to generate
300 ** code for the SQL statement given onto the end of the pParse context
301 ** currently under construction.  Notes:
302 **
303 **   *  The final OP_Halt is not appended and other initialization
304 **      and finalization steps are omitted because those are handling by the
305 **      outermost parser.
306 **
307 **   *  Built-in SQL functions always take precedence over application-defined
308 **      SQL functions.  In other words, it is not possible to override a
309 **      built-in function.
310 */
311 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
312   va_list ap;
313   char *zSql;
314   sqlite3 *db = pParse->db;
315   u32 savedDbFlags = db->mDbFlags;
316   char saveBuf[PARSE_TAIL_SZ];
317 
318   if( pParse->nErr ) return;
319   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
320   va_start(ap, zFormat);
321   zSql = sqlite3VMPrintf(db, zFormat, ap);
322   va_end(ap);
323   if( zSql==0 ){
324     /* This can result either from an OOM or because the formatted string
325     ** exceeds SQLITE_LIMIT_LENGTH.  In the latter case, we need to set
326     ** an error */
327     if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
328     pParse->nErr++;
329     return;
330   }
331   pParse->nested++;
332   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
333   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
334   db->mDbFlags |= DBFLAG_PreferBuiltin;
335   sqlite3RunParser(pParse, zSql);
336   db->mDbFlags = savedDbFlags;
337   sqlite3DbFree(db, zSql);
338   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
339   pParse->nested--;
340 }
341 
342 #if SQLITE_USER_AUTHENTICATION
343 /*
344 ** Return TRUE if zTable is the name of the system table that stores the
345 ** list of users and their access credentials.
346 */
347 int sqlite3UserAuthTable(const char *zTable){
348   return sqlite3_stricmp(zTable, "sqlite_user")==0;
349 }
350 #endif
351 
352 /*
353 ** Locate the in-memory structure that describes a particular database
354 ** table given the name of that table and (optionally) the name of the
355 ** database containing the table.  Return NULL if not found.
356 **
357 ** If zDatabase is 0, all databases are searched for the table and the
358 ** first matching table is returned.  (No checking for duplicate table
359 ** names is done.)  The search order is TEMP first, then MAIN, then any
360 ** auxiliary databases added using the ATTACH command.
361 **
362 ** See also sqlite3LocateTable().
363 */
364 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
365   Table *p = 0;
366   int i;
367 
368   /* All mutexes are required for schema access.  Make sure we hold them. */
369   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
370 #if SQLITE_USER_AUTHENTICATION
371   /* Only the admin user is allowed to know that the sqlite_user table
372   ** exists */
373   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
374     return 0;
375   }
376 #endif
377   if( zDatabase ){
378     for(i=0; i<db->nDb; i++){
379       if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
380     }
381     if( i>=db->nDb ){
382       /* No match against the official names.  But always match "main"
383       ** to schema 0 as a legacy fallback. */
384       if( sqlite3StrICmp(zDatabase,"main")==0 ){
385         i = 0;
386       }else{
387         return 0;
388       }
389     }
390     p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
391     if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
392       if( i==1 ){
393         if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
394          || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
395          || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
396         ){
397           p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
398                               LEGACY_TEMP_SCHEMA_TABLE);
399         }
400       }else{
401         if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
402           p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
403                               LEGACY_SCHEMA_TABLE);
404         }
405       }
406     }
407   }else{
408     /* Match against TEMP first */
409     p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
410     if( p ) return p;
411     /* The main database is second */
412     p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
413     if( p ) return p;
414     /* Attached databases are in order of attachment */
415     for(i=2; i<db->nDb; i++){
416       assert( sqlite3SchemaMutexHeld(db, i, 0) );
417       p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
418       if( p ) break;
419     }
420     if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
421       if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
422         p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
423       }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
424         p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
425                             LEGACY_TEMP_SCHEMA_TABLE);
426       }
427     }
428   }
429   return p;
430 }
431 
432 /*
433 ** Locate the in-memory structure that describes a particular database
434 ** table given the name of that table and (optionally) the name of the
435 ** database containing the table.  Return NULL if not found.  Also leave an
436 ** error message in pParse->zErrMsg.
437 **
438 ** The difference between this routine and sqlite3FindTable() is that this
439 ** routine leaves an error message in pParse->zErrMsg where
440 ** sqlite3FindTable() does not.
441 */
442 Table *sqlite3LocateTable(
443   Parse *pParse,         /* context in which to report errors */
444   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
445   const char *zName,     /* Name of the table we are looking for */
446   const char *zDbase     /* Name of the database.  Might be NULL */
447 ){
448   Table *p;
449   sqlite3 *db = pParse->db;
450 
451   /* Read the database schema. If an error occurs, leave an error message
452   ** and code in pParse and return NULL. */
453   if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
454    && SQLITE_OK!=sqlite3ReadSchema(pParse)
455   ){
456     return 0;
457   }
458 
459   p = sqlite3FindTable(db, zName, zDbase);
460   if( p==0 ){
461 #ifndef SQLITE_OMIT_VIRTUALTABLE
462     /* If zName is the not the name of a table in the schema created using
463     ** CREATE, then check to see if it is the name of an virtual table that
464     ** can be an eponymous virtual table. */
465     if( pParse->disableVtab==0 && db->init.busy==0 ){
466       Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
467       if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
468         pMod = sqlite3PragmaVtabRegister(db, zName);
469       }
470       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
471         testcase( pMod->pEpoTab==0 );
472         return pMod->pEpoTab;
473       }
474     }
475 #endif
476     if( flags & LOCATE_NOERR ) return 0;
477     pParse->checkSchema = 1;
478   }else if( IsVirtual(p) && pParse->disableVtab ){
479     p = 0;
480   }
481 
482   if( p==0 ){
483     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
484     if( zDbase ){
485       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
486     }else{
487       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
488     }
489   }else{
490     assert( HasRowid(p) || p->iPKey<0 );
491   }
492 
493   return p;
494 }
495 
496 /*
497 ** Locate the table identified by *p.
498 **
499 ** This is a wrapper around sqlite3LocateTable(). The difference between
500 ** sqlite3LocateTable() and this function is that this function restricts
501 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
502 ** non-NULL if it is part of a view or trigger program definition. See
503 ** sqlite3FixSrcList() for details.
504 */
505 Table *sqlite3LocateTableItem(
506   Parse *pParse,
507   u32 flags,
508   SrcItem *p
509 ){
510   const char *zDb;
511   assert( p->pSchema==0 || p->zDatabase==0 );
512   if( p->pSchema ){
513     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
514     zDb = pParse->db->aDb[iDb].zDbSName;
515   }else{
516     zDb = p->zDatabase;
517   }
518   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
519 }
520 
521 /*
522 ** Return the preferred table name for system tables.  Translate legacy
523 ** names into the new preferred names, as appropriate.
524 */
525 const char *sqlite3PreferredTableName(const char *zName){
526   if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
527     if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
528       return PREFERRED_SCHEMA_TABLE;
529     }
530     if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
531       return PREFERRED_TEMP_SCHEMA_TABLE;
532     }
533   }
534   return zName;
535 }
536 
537 /*
538 ** Locate the in-memory structure that describes
539 ** a particular index given the name of that index
540 ** and the name of the database that contains the index.
541 ** Return NULL if not found.
542 **
543 ** If zDatabase is 0, all databases are searched for the
544 ** table and the first matching index is returned.  (No checking
545 ** for duplicate index names is done.)  The search order is
546 ** TEMP first, then MAIN, then any auxiliary databases added
547 ** using the ATTACH command.
548 */
549 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
550   Index *p = 0;
551   int i;
552   /* All mutexes are required for schema access.  Make sure we hold them. */
553   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
554   for(i=OMIT_TEMPDB; i<db->nDb; i++){
555     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
556     Schema *pSchema = db->aDb[j].pSchema;
557     assert( pSchema );
558     if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
559     assert( sqlite3SchemaMutexHeld(db, j, 0) );
560     p = sqlite3HashFind(&pSchema->idxHash, zName);
561     if( p ) break;
562   }
563   return p;
564 }
565 
566 /*
567 ** Reclaim the memory used by an index
568 */
569 void sqlite3FreeIndex(sqlite3 *db, Index *p){
570 #ifndef SQLITE_OMIT_ANALYZE
571   sqlite3DeleteIndexSamples(db, p);
572 #endif
573   sqlite3ExprDelete(db, p->pPartIdxWhere);
574   sqlite3ExprListDelete(db, p->aColExpr);
575   sqlite3DbFree(db, p->zColAff);
576   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
577 #ifdef SQLITE_ENABLE_STAT4
578   sqlite3_free(p->aiRowEst);
579 #endif
580   sqlite3DbFree(db, p);
581 }
582 
583 /*
584 ** For the index called zIdxName which is found in the database iDb,
585 ** unlike that index from its Table then remove the index from
586 ** the index hash table and free all memory structures associated
587 ** with the index.
588 */
589 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
590   Index *pIndex;
591   Hash *pHash;
592 
593   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
594   pHash = &db->aDb[iDb].pSchema->idxHash;
595   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
596   if( ALWAYS(pIndex) ){
597     if( pIndex->pTable->pIndex==pIndex ){
598       pIndex->pTable->pIndex = pIndex->pNext;
599     }else{
600       Index *p;
601       /* Justification of ALWAYS();  The index must be on the list of
602       ** indices. */
603       p = pIndex->pTable->pIndex;
604       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
605       if( ALWAYS(p && p->pNext==pIndex) ){
606         p->pNext = pIndex->pNext;
607       }
608     }
609     sqlite3FreeIndex(db, pIndex);
610   }
611   db->mDbFlags |= DBFLAG_SchemaChange;
612 }
613 
614 /*
615 ** Look through the list of open database files in db->aDb[] and if
616 ** any have been closed, remove them from the list.  Reallocate the
617 ** db->aDb[] structure to a smaller size, if possible.
618 **
619 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
620 ** are never candidates for being collapsed.
621 */
622 void sqlite3CollapseDatabaseArray(sqlite3 *db){
623   int i, j;
624   for(i=j=2; i<db->nDb; i++){
625     struct Db *pDb = &db->aDb[i];
626     if( pDb->pBt==0 ){
627       sqlite3DbFree(db, pDb->zDbSName);
628       pDb->zDbSName = 0;
629       continue;
630     }
631     if( j<i ){
632       db->aDb[j] = db->aDb[i];
633     }
634     j++;
635   }
636   db->nDb = j;
637   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
638     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
639     sqlite3DbFree(db, db->aDb);
640     db->aDb = db->aDbStatic;
641   }
642 }
643 
644 /*
645 ** Reset the schema for the database at index iDb.  Also reset the
646 ** TEMP schema.  The reset is deferred if db->nSchemaLock is not zero.
647 ** Deferred resets may be run by calling with iDb<0.
648 */
649 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
650   int i;
651   assert( iDb<db->nDb );
652 
653   if( iDb>=0 ){
654     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
655     DbSetProperty(db, iDb, DB_ResetWanted);
656     DbSetProperty(db, 1, DB_ResetWanted);
657     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
658   }
659 
660   if( db->nSchemaLock==0 ){
661     for(i=0; i<db->nDb; i++){
662       if( DbHasProperty(db, i, DB_ResetWanted) ){
663         sqlite3SchemaClear(db->aDb[i].pSchema);
664       }
665     }
666   }
667 }
668 
669 /*
670 ** Erase all schema information from all attached databases (including
671 ** "main" and "temp") for a single database connection.
672 */
673 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
674   int i;
675   sqlite3BtreeEnterAll(db);
676   for(i=0; i<db->nDb; i++){
677     Db *pDb = &db->aDb[i];
678     if( pDb->pSchema ){
679       if( db->nSchemaLock==0 ){
680         sqlite3SchemaClear(pDb->pSchema);
681       }else{
682         DbSetProperty(db, i, DB_ResetWanted);
683       }
684     }
685   }
686   db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
687   sqlite3VtabUnlockList(db);
688   sqlite3BtreeLeaveAll(db);
689   if( db->nSchemaLock==0 ){
690     sqlite3CollapseDatabaseArray(db);
691   }
692 }
693 
694 /*
695 ** This routine is called when a commit occurs.
696 */
697 void sqlite3CommitInternalChanges(sqlite3 *db){
698   db->mDbFlags &= ~DBFLAG_SchemaChange;
699 }
700 
701 /*
702 ** Set the expression associated with a column.  This is usually
703 ** the DEFAULT value, but might also be the expression that computes
704 ** the value for a generated column.
705 */
706 void sqlite3ColumnSetExpr(
707   Parse *pParse,    /* Parsing context */
708   Table *pTab,      /* The table containing the column */
709   Column *pCol,     /* The column to receive the new DEFAULT expression */
710   Expr *pExpr       /* The new default expression */
711 ){
712   ExprList *pList;
713   assert( IsOrdinaryTable(pTab) );
714   pList = pTab->u.tab.pDfltList;
715   if( pCol->iDflt==0
716    || NEVER(pList==0)
717    || NEVER(pList->nExpr<pCol->iDflt)
718   ){
719     pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
720     pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
721   }else{
722     sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
723     pList->a[pCol->iDflt-1].pExpr = pExpr;
724   }
725 }
726 
727 /*
728 ** Return the expression associated with a column.  The expression might be
729 ** the DEFAULT clause or the AS clause of a generated column.
730 ** Return NULL if the column has no associated expression.
731 */
732 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
733   if( pCol->iDflt==0 ) return 0;
734   if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
735   if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
736   if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
737   return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
738 }
739 
740 /*
741 ** Set the collating sequence name for a column.
742 */
743 void sqlite3ColumnSetColl(
744   sqlite3 *db,
745   Column *pCol,
746   const char *zColl
747 ){
748   i64 nColl;
749   i64 n;
750   char *zNew;
751   assert( zColl!=0 );
752   n = sqlite3Strlen30(pCol->zCnName) + 1;
753   if( pCol->colFlags & COLFLAG_HASTYPE ){
754     n += sqlite3Strlen30(pCol->zCnName+n) + 1;
755   }
756   nColl = sqlite3Strlen30(zColl) + 1;
757   zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
758   if( zNew ){
759     pCol->zCnName = zNew;
760     memcpy(pCol->zCnName + n, zColl, nColl);
761     pCol->colFlags |= COLFLAG_HASCOLL;
762   }
763 }
764 
765 /*
766 ** Return the collating squence name for a column
767 */
768 const char *sqlite3ColumnColl(Column *pCol){
769   const char *z;
770   if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
771   z = pCol->zCnName;
772   while( *z ){ z++; }
773   if( pCol->colFlags & COLFLAG_HASTYPE ){
774     do{ z++; }while( *z );
775   }
776   return z+1;
777 }
778 
779 /*
780 ** Delete memory allocated for the column names of a table or view (the
781 ** Table.aCol[] array).
782 */
783 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
784   int i;
785   Column *pCol;
786   assert( pTable!=0 );
787   if( (pCol = pTable->aCol)!=0 ){
788     for(i=0; i<pTable->nCol; i++, pCol++){
789       assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
790       sqlite3DbFree(db, pCol->zCnName);
791     }
792     sqlite3DbFree(db, pTable->aCol);
793     if( IsOrdinaryTable(pTable) ){
794       sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
795     }
796     if( db==0 || db->pnBytesFreed==0 ){
797       pTable->aCol = 0;
798       pTable->nCol = 0;
799       if( IsOrdinaryTable(pTable) ){
800         pTable->u.tab.pDfltList = 0;
801       }
802     }
803   }
804 }
805 
806 /*
807 ** Remove the memory data structures associated with the given
808 ** Table.  No changes are made to disk by this routine.
809 **
810 ** This routine just deletes the data structure.  It does not unlink
811 ** the table data structure from the hash table.  But it does destroy
812 ** memory structures of the indices and foreign keys associated with
813 ** the table.
814 **
815 ** The db parameter is optional.  It is needed if the Table object
816 ** contains lookaside memory.  (Table objects in the schema do not use
817 ** lookaside memory, but some ephemeral Table objects do.)  Or the
818 ** db parameter can be used with db->pnBytesFreed to measure the memory
819 ** used by the Table object.
820 */
821 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
822   Index *pIndex, *pNext;
823 
824 #ifdef SQLITE_DEBUG
825   /* Record the number of outstanding lookaside allocations in schema Tables
826   ** prior to doing any free() operations. Since schema Tables do not use
827   ** lookaside, this number should not change.
828   **
829   ** If malloc has already failed, it may be that it failed while allocating
830   ** a Table object that was going to be marked ephemeral. So do not check
831   ** that no lookaside memory is used in this case either. */
832   int nLookaside = 0;
833   if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
834     nLookaside = sqlite3LookasideUsed(db, 0);
835   }
836 #endif
837 
838   /* Delete all indices associated with this table. */
839   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
840     pNext = pIndex->pNext;
841     assert( pIndex->pSchema==pTable->pSchema
842          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
843     if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
844       char *zName = pIndex->zName;
845       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
846          &pIndex->pSchema->idxHash, zName, 0
847       );
848       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
849       assert( pOld==pIndex || pOld==0 );
850     }
851     sqlite3FreeIndex(db, pIndex);
852   }
853 
854   if( IsOrdinaryTable(pTable) ){
855     sqlite3FkDelete(db, pTable);
856   }
857 #ifndef SQLITE_OMIT_VIRTUAL_TABLE
858   else if( IsVirtual(pTable) ){
859     sqlite3VtabClear(db, pTable);
860   }
861 #endif
862   else{
863     assert( IsView(pTable) );
864     sqlite3SelectDelete(db, pTable->u.view.pSelect);
865   }
866 
867   /* Delete the Table structure itself.
868   */
869   sqlite3DeleteColumnNames(db, pTable);
870   sqlite3DbFree(db, pTable->zName);
871   sqlite3DbFree(db, pTable->zColAff);
872   sqlite3ExprListDelete(db, pTable->pCheck);
873   sqlite3DbFree(db, pTable);
874 
875   /* Verify that no lookaside memory was used by schema tables */
876   assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
877 }
878 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
879   /* Do not delete the table until the reference count reaches zero. */
880   if( !pTable ) return;
881   if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
882   deleteTable(db, pTable);
883 }
884 
885 
886 /*
887 ** Unlink the given table from the hash tables and the delete the
888 ** table structure with all its indices and foreign keys.
889 */
890 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
891   Table *p;
892   Db *pDb;
893 
894   assert( db!=0 );
895   assert( iDb>=0 && iDb<db->nDb );
896   assert( zTabName );
897   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
898   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
899   pDb = &db->aDb[iDb];
900   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
901   sqlite3DeleteTable(db, p);
902   db->mDbFlags |= DBFLAG_SchemaChange;
903 }
904 
905 /*
906 ** Given a token, return a string that consists of the text of that
907 ** token.  Space to hold the returned string
908 ** is obtained from sqliteMalloc() and must be freed by the calling
909 ** function.
910 **
911 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
912 ** surround the body of the token are removed.
913 **
914 ** Tokens are often just pointers into the original SQL text and so
915 ** are not \000 terminated and are not persistent.  The returned string
916 ** is \000 terminated and is persistent.
917 */
918 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
919   char *zName;
920   if( pName ){
921     zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
922     sqlite3Dequote(zName);
923   }else{
924     zName = 0;
925   }
926   return zName;
927 }
928 
929 /*
930 ** Open the sqlite_schema table stored in database number iDb for
931 ** writing. The table is opened using cursor 0.
932 */
933 void sqlite3OpenSchemaTable(Parse *p, int iDb){
934   Vdbe *v = sqlite3GetVdbe(p);
935   sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
936   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
937   if( p->nTab==0 ){
938     p->nTab = 1;
939   }
940 }
941 
942 /*
943 ** Parameter zName points to a nul-terminated buffer containing the name
944 ** of a database ("main", "temp" or the name of an attached db). This
945 ** function returns the index of the named database in db->aDb[], or
946 ** -1 if the named db cannot be found.
947 */
948 int sqlite3FindDbName(sqlite3 *db, const char *zName){
949   int i = -1;         /* Database number */
950   if( zName ){
951     Db *pDb;
952     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
953       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
954       /* "main" is always an acceptable alias for the primary database
955       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
956       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
957     }
958   }
959   return i;
960 }
961 
962 /*
963 ** The token *pName contains the name of a database (either "main" or
964 ** "temp" or the name of an attached db). This routine returns the
965 ** index of the named database in db->aDb[], or -1 if the named db
966 ** does not exist.
967 */
968 int sqlite3FindDb(sqlite3 *db, Token *pName){
969   int i;                               /* Database number */
970   char *zName;                         /* Name we are searching for */
971   zName = sqlite3NameFromToken(db, pName);
972   i = sqlite3FindDbName(db, zName);
973   sqlite3DbFree(db, zName);
974   return i;
975 }
976 
977 /* The table or view or trigger name is passed to this routine via tokens
978 ** pName1 and pName2. If the table name was fully qualified, for example:
979 **
980 ** CREATE TABLE xxx.yyy (...);
981 **
982 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
983 ** the table name is not fully qualified, i.e.:
984 **
985 ** CREATE TABLE yyy(...);
986 **
987 ** Then pName1 is set to "yyy" and pName2 is "".
988 **
989 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
990 ** pName2) that stores the unqualified table name.  The index of the
991 ** database "xxx" is returned.
992 */
993 int sqlite3TwoPartName(
994   Parse *pParse,      /* Parsing and code generating context */
995   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
996   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
997   Token **pUnqual     /* Write the unqualified object name here */
998 ){
999   int iDb;                    /* Database holding the object */
1000   sqlite3 *db = pParse->db;
1001 
1002   assert( pName2!=0 );
1003   if( pName2->n>0 ){
1004     if( db->init.busy ) {
1005       sqlite3ErrorMsg(pParse, "corrupt database");
1006       return -1;
1007     }
1008     *pUnqual = pName2;
1009     iDb = sqlite3FindDb(db, pName1);
1010     if( iDb<0 ){
1011       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
1012       return -1;
1013     }
1014   }else{
1015     assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
1016              || (db->mDbFlags & DBFLAG_Vacuum)!=0);
1017     iDb = db->init.iDb;
1018     *pUnqual = pName1;
1019   }
1020   return iDb;
1021 }
1022 
1023 /*
1024 ** True if PRAGMA writable_schema is ON
1025 */
1026 int sqlite3WritableSchema(sqlite3 *db){
1027   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
1028   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1029                SQLITE_WriteSchema );
1030   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1031                SQLITE_Defensive );
1032   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1033                (SQLITE_WriteSchema|SQLITE_Defensive) );
1034   return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
1035 }
1036 
1037 /*
1038 ** This routine is used to check if the UTF-8 string zName is a legal
1039 ** unqualified name for a new schema object (table, index, view or
1040 ** trigger). All names are legal except those that begin with the string
1041 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1042 ** is reserved for internal use.
1043 **
1044 ** When parsing the sqlite_schema table, this routine also checks to
1045 ** make sure the "type", "name", and "tbl_name" columns are consistent
1046 ** with the SQL.
1047 */
1048 int sqlite3CheckObjectName(
1049   Parse *pParse,            /* Parsing context */
1050   const char *zName,        /* Name of the object to check */
1051   const char *zType,        /* Type of this object */
1052   const char *zTblName      /* Parent table name for triggers and indexes */
1053 ){
1054   sqlite3 *db = pParse->db;
1055   if( sqlite3WritableSchema(db)
1056    || db->init.imposterTable
1057    || !sqlite3Config.bExtraSchemaChecks
1058   ){
1059     /* Skip these error checks for writable_schema=ON */
1060     return SQLITE_OK;
1061   }
1062   if( db->init.busy ){
1063     if( sqlite3_stricmp(zType, db->init.azInit[0])
1064      || sqlite3_stricmp(zName, db->init.azInit[1])
1065      || sqlite3_stricmp(zTblName, db->init.azInit[2])
1066     ){
1067       sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
1068       return SQLITE_ERROR;
1069     }
1070   }else{
1071     if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
1072      || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
1073     ){
1074       sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
1075                       zName);
1076       return SQLITE_ERROR;
1077     }
1078 
1079   }
1080   return SQLITE_OK;
1081 }
1082 
1083 /*
1084 ** Return the PRIMARY KEY index of a table
1085 */
1086 Index *sqlite3PrimaryKeyIndex(Table *pTab){
1087   Index *p;
1088   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
1089   return p;
1090 }
1091 
1092 /*
1093 ** Convert an table column number into a index column number.  That is,
1094 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1095 ** find the (first) offset of that column in index pIdx.  Or return -1
1096 ** if column iCol is not used in index pIdx.
1097 */
1098 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
1099   int i;
1100   for(i=0; i<pIdx->nColumn; i++){
1101     if( iCol==pIdx->aiColumn[i] ) return i;
1102   }
1103   return -1;
1104 }
1105 
1106 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1107 /* Convert a storage column number into a table column number.
1108 **
1109 ** The storage column number (0,1,2,....) is the index of the value
1110 ** as it appears in the record on disk.  The true column number
1111 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1112 **
1113 ** The storage column number is less than the table column number if
1114 ** and only there are VIRTUAL columns to the left.
1115 **
1116 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1117 */
1118 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
1119   if( pTab->tabFlags & TF_HasVirtual ){
1120     int i;
1121     for(i=0; i<=iCol; i++){
1122       if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
1123     }
1124   }
1125   return iCol;
1126 }
1127 #endif
1128 
1129 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1130 /* Convert a table column number into a storage column number.
1131 **
1132 ** The storage column number (0,1,2,....) is the index of the value
1133 ** as it appears in the record on disk.  Or, if the input column is
1134 ** the N-th virtual column (zero-based) then the storage number is
1135 ** the number of non-virtual columns in the table plus N.
1136 **
1137 ** The true column number is the index (0,1,2,...) of the column in
1138 ** the CREATE TABLE statement.
1139 **
1140 ** If the input column is a VIRTUAL column, then it should not appear
1141 ** in storage.  But the value sometimes is cached in registers that
1142 ** follow the range of registers used to construct storage.  This
1143 ** avoids computing the same VIRTUAL column multiple times, and provides
1144 ** values for use by OP_Param opcodes in triggers.  Hence, if the
1145 ** input column is a VIRTUAL table, put it after all the other columns.
1146 **
1147 ** In the following, N means "normal column", S means STORED, and
1148 ** V means VIRTUAL.  Suppose the CREATE TABLE has columns like this:
1149 **
1150 **        CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1151 **                     -- 0 1 2 3 4 5 6 7 8
1152 **
1153 ** Then the mapping from this function is as follows:
1154 **
1155 **    INPUTS:     0 1 2 3 4 5 6 7 8
1156 **    OUTPUTS:    0 1 6 2 3 7 4 5 8
1157 **
1158 ** So, in other words, this routine shifts all the virtual columns to
1159 ** the end.
1160 **
1161 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1162 ** this routine is a no-op macro.  If the pTab does not have any virtual
1163 ** columns, then this routine is no-op that always return iCol.  If iCol
1164 ** is negative (indicating the ROWID column) then this routine return iCol.
1165 */
1166 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
1167   int i;
1168   i16 n;
1169   assert( iCol<pTab->nCol );
1170   if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
1171   for(i=0, n=0; i<iCol; i++){
1172     if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
1173   }
1174   if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
1175     /* iCol is a virtual column itself */
1176     return pTab->nNVCol + i - n;
1177   }else{
1178     /* iCol is a normal or stored column */
1179     return n;
1180   }
1181 }
1182 #endif
1183 
1184 /*
1185 ** Insert a single OP_JournalMode query opcode in order to force the
1186 ** prepared statement to return false for sqlite3_stmt_readonly().  This
1187 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1188 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1189 ** will return false for sqlite3_stmt_readonly() even if that statement
1190 ** is a read-only no-op.
1191 */
1192 static void sqlite3ForceNotReadOnly(Parse *pParse){
1193   int iReg = ++pParse->nMem;
1194   Vdbe *v = sqlite3GetVdbe(pParse);
1195   if( v ){
1196     sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
1197     sqlite3VdbeUsesBtree(v, 0);
1198   }
1199 }
1200 
1201 /*
1202 ** Begin constructing a new table representation in memory.  This is
1203 ** the first of several action routines that get called in response
1204 ** to a CREATE TABLE statement.  In particular, this routine is called
1205 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1206 ** flag is true if the table should be stored in the auxiliary database
1207 ** file instead of in the main database file.  This is normally the case
1208 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1209 ** CREATE and TABLE.
1210 **
1211 ** The new table record is initialized and put in pParse->pNewTable.
1212 ** As more of the CREATE TABLE statement is parsed, additional action
1213 ** routines will be called to add more information to this record.
1214 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1215 ** is called to complete the construction of the new table record.
1216 */
1217 void sqlite3StartTable(
1218   Parse *pParse,   /* Parser context */
1219   Token *pName1,   /* First part of the name of the table or view */
1220   Token *pName2,   /* Second part of the name of the table or view */
1221   int isTemp,      /* True if this is a TEMP table */
1222   int isView,      /* True if this is a VIEW */
1223   int isVirtual,   /* True if this is a VIRTUAL table */
1224   int noErr        /* Do nothing if table already exists */
1225 ){
1226   Table *pTable;
1227   char *zName = 0; /* The name of the new table */
1228   sqlite3 *db = pParse->db;
1229   Vdbe *v;
1230   int iDb;         /* Database number to create the table in */
1231   Token *pName;    /* Unqualified name of the table to create */
1232 
1233   if( db->init.busy && db->init.newTnum==1 ){
1234     /* Special case:  Parsing the sqlite_schema or sqlite_temp_schema schema */
1235     iDb = db->init.iDb;
1236     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
1237     pName = pName1;
1238   }else{
1239     /* The common case */
1240     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1241     if( iDb<0 ) return;
1242     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
1243       /* If creating a temp table, the name may not be qualified. Unless
1244       ** the database name is "temp" anyway.  */
1245       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
1246       return;
1247     }
1248     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
1249     zName = sqlite3NameFromToken(db, pName);
1250     if( IN_RENAME_OBJECT ){
1251       sqlite3RenameTokenMap(pParse, (void*)zName, pName);
1252     }
1253   }
1254   pParse->sNameToken = *pName;
1255   if( zName==0 ) return;
1256   if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
1257     goto begin_table_error;
1258   }
1259   if( db->init.iDb==1 ) isTemp = 1;
1260 #ifndef SQLITE_OMIT_AUTHORIZATION
1261   assert( isTemp==0 || isTemp==1 );
1262   assert( isView==0 || isView==1 );
1263   {
1264     static const u8 aCode[] = {
1265        SQLITE_CREATE_TABLE,
1266        SQLITE_CREATE_TEMP_TABLE,
1267        SQLITE_CREATE_VIEW,
1268        SQLITE_CREATE_TEMP_VIEW
1269     };
1270     char *zDb = db->aDb[iDb].zDbSName;
1271     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1272       goto begin_table_error;
1273     }
1274     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
1275                                        zName, 0, zDb) ){
1276       goto begin_table_error;
1277     }
1278   }
1279 #endif
1280 
1281   /* Make sure the new table name does not collide with an existing
1282   ** index or table name in the same database.  Issue an error message if
1283   ** it does. The exception is if the statement being parsed was passed
1284   ** to an sqlite3_declare_vtab() call. In that case only the column names
1285   ** and types will be used, so there is no need to test for namespace
1286   ** collisions.
1287   */
1288   if( !IN_SPECIAL_PARSE ){
1289     char *zDb = db->aDb[iDb].zDbSName;
1290     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1291       goto begin_table_error;
1292     }
1293     pTable = sqlite3FindTable(db, zName, zDb);
1294     if( pTable ){
1295       if( !noErr ){
1296         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
1297       }else{
1298         assert( !db->init.busy || CORRUPT_DB );
1299         sqlite3CodeVerifySchema(pParse, iDb);
1300         sqlite3ForceNotReadOnly(pParse);
1301       }
1302       goto begin_table_error;
1303     }
1304     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
1305       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
1306       goto begin_table_error;
1307     }
1308   }
1309 
1310   pTable = sqlite3DbMallocZero(db, sizeof(Table));
1311   if( pTable==0 ){
1312     assert( db->mallocFailed );
1313     pParse->rc = SQLITE_NOMEM_BKPT;
1314     pParse->nErr++;
1315     goto begin_table_error;
1316   }
1317   pTable->zName = zName;
1318   pTable->iPKey = -1;
1319   pTable->pSchema = db->aDb[iDb].pSchema;
1320   pTable->nTabRef = 1;
1321 #ifdef SQLITE_DEFAULT_ROWEST
1322   pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
1323 #else
1324   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1325 #endif
1326   assert( pParse->pNewTable==0 );
1327   pParse->pNewTable = pTable;
1328 
1329   /* Begin generating the code that will insert the table record into
1330   ** the schema table.  Note in particular that we must go ahead
1331   ** and allocate the record number for the table entry now.  Before any
1332   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
1333   ** indices to be created and the table record must come before the
1334   ** indices.  Hence, the record number for the table must be allocated
1335   ** now.
1336   */
1337   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1338     int addr1;
1339     int fileFormat;
1340     int reg1, reg2, reg3;
1341     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1342     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1343     sqlite3BeginWriteOperation(pParse, 1, iDb);
1344 
1345 #ifndef SQLITE_OMIT_VIRTUALTABLE
1346     if( isVirtual ){
1347       sqlite3VdbeAddOp0(v, OP_VBegin);
1348     }
1349 #endif
1350 
1351     /* If the file format and encoding in the database have not been set,
1352     ** set them now.
1353     */
1354     reg1 = pParse->regRowid = ++pParse->nMem;
1355     reg2 = pParse->regRoot = ++pParse->nMem;
1356     reg3 = ++pParse->nMem;
1357     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1358     sqlite3VdbeUsesBtree(v, iDb);
1359     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1360     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1361                   1 : SQLITE_MAX_FILE_FORMAT;
1362     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1363     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1364     sqlite3VdbeJumpHere(v, addr1);
1365 
1366     /* This just creates a place-holder record in the sqlite_schema table.
1367     ** The record created does not contain anything yet.  It will be replaced
1368     ** by the real entry in code generated at sqlite3EndTable().
1369     **
1370     ** The rowid for the new entry is left in register pParse->regRowid.
1371     ** The root page number of the new table is left in reg pParse->regRoot.
1372     ** The rowid and root page number values are needed by the code that
1373     ** sqlite3EndTable will generate.
1374     */
1375 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1376     if( isView || isVirtual ){
1377       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1378     }else
1379 #endif
1380     {
1381       assert( !pParse->bReturning );
1382       pParse->u1.addrCrTab =
1383          sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1384     }
1385     sqlite3OpenSchemaTable(pParse, iDb);
1386     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1387     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1388     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1389     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1390     sqlite3VdbeAddOp0(v, OP_Close);
1391   }
1392 
1393   /* Normal (non-error) return. */
1394   return;
1395 
1396   /* If an error occurs, we jump here */
1397 begin_table_error:
1398   pParse->checkSchema = 1;
1399   sqlite3DbFree(db, zName);
1400   return;
1401 }
1402 
1403 /* Set properties of a table column based on the (magical)
1404 ** name of the column.
1405 */
1406 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1407 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1408   if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
1409     pCol->colFlags |= COLFLAG_HIDDEN;
1410     if( pTab ) pTab->tabFlags |= TF_HasHidden;
1411   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1412     pTab->tabFlags |= TF_OOOHidden;
1413   }
1414 }
1415 #endif
1416 
1417 /*
1418 ** Name of the special TEMP trigger used to implement RETURNING.  The
1419 ** name begins with "sqlite_" so that it is guaranteed not to collide
1420 ** with any application-generated triggers.
1421 */
1422 #define RETURNING_TRIGGER_NAME  "sqlite_returning"
1423 
1424 /*
1425 ** Clean up the data structures associated with the RETURNING clause.
1426 */
1427 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
1428   Hash *pHash;
1429   pHash = &(db->aDb[1].pSchema->trigHash);
1430   sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
1431   sqlite3ExprListDelete(db, pRet->pReturnEL);
1432   sqlite3DbFree(db, pRet);
1433 }
1434 
1435 /*
1436 ** Add the RETURNING clause to the parse currently underway.
1437 **
1438 ** This routine creates a special TEMP trigger that will fire for each row
1439 ** of the DML statement.  That TEMP trigger contains a single SELECT
1440 ** statement with a result set that is the argument of the RETURNING clause.
1441 ** The trigger has the Trigger.bReturning flag and an opcode of
1442 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1443 ** knows to handle it specially.  The TEMP trigger is automatically
1444 ** removed at the end of the parse.
1445 **
1446 ** When this routine is called, we do not yet know if the RETURNING clause
1447 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1448 ** RETURNING trigger instead.  It will then be converted into the appropriate
1449 ** type on the first call to sqlite3TriggersExist().
1450 */
1451 void sqlite3AddReturning(Parse *pParse, ExprList *pList){
1452   Returning *pRet;
1453   Hash *pHash;
1454   sqlite3 *db = pParse->db;
1455   if( pParse->pNewTrigger ){
1456     sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
1457   }else{
1458     assert( pParse->bReturning==0 );
1459   }
1460   pParse->bReturning = 1;
1461   pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
1462   if( pRet==0 ){
1463     sqlite3ExprListDelete(db, pList);
1464     return;
1465   }
1466   pParse->u1.pReturning = pRet;
1467   pRet->pParse = pParse;
1468   pRet->pReturnEL = pList;
1469   sqlite3ParserAddCleanup(pParse,
1470      (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
1471   testcase( pParse->earlyCleanup );
1472   if( db->mallocFailed ) return;
1473   pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
1474   pRet->retTrig.op = TK_RETURNING;
1475   pRet->retTrig.tr_tm = TRIGGER_AFTER;
1476   pRet->retTrig.bReturning = 1;
1477   pRet->retTrig.pSchema = db->aDb[1].pSchema;
1478   pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
1479   pRet->retTrig.step_list = &pRet->retTStep;
1480   pRet->retTStep.op = TK_RETURNING;
1481   pRet->retTStep.pTrig = &pRet->retTrig;
1482   pRet->retTStep.pExprList = pList;
1483   pHash = &(db->aDb[1].pSchema->trigHash);
1484   assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
1485   if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
1486           ==&pRet->retTrig ){
1487     sqlite3OomFault(db);
1488   }
1489 }
1490 
1491 /*
1492 ** Add a new column to the table currently being constructed.
1493 **
1494 ** The parser calls this routine once for each column declaration
1495 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1496 ** first to get things going.  Then this routine is called for each
1497 ** column.
1498 */
1499 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
1500   Table *p;
1501   int i;
1502   char *z;
1503   char *zType;
1504   Column *pCol;
1505   sqlite3 *db = pParse->db;
1506   u8 hName;
1507   Column *aNew;
1508   u8 eType = COLTYPE_CUSTOM;
1509   u8 szEst = 1;
1510   char affinity = SQLITE_AFF_BLOB;
1511 
1512   if( (p = pParse->pNewTable)==0 ) return;
1513   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1514     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1515     return;
1516   }
1517   if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
1518 
1519   /* Because keywords GENERATE ALWAYS can be converted into indentifiers
1520   ** by the parser, we can sometimes end up with a typename that ends
1521   ** with "generated always".  Check for this case and omit the surplus
1522   ** text. */
1523   if( sType.n>=16
1524    && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
1525   ){
1526     sType.n -= 6;
1527     while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1528     if( sType.n>=9
1529      && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
1530     ){
1531       sType.n -= 9;
1532       while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1533     }
1534   }
1535 
1536   /* Check for standard typenames.  For standard typenames we will
1537   ** set the Column.eType field rather than storing the typename after
1538   ** the column name, in order to save space. */
1539   if( sType.n>=3 ){
1540     sqlite3DequoteToken(&sType);
1541     for(i=0; i<SQLITE_N_STDTYPE; i++){
1542        if( sType.n==sqlite3StdTypeLen[i]
1543         && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
1544        ){
1545          sType.n = 0;
1546          eType = i+1;
1547          affinity = sqlite3StdTypeAffinity[i];
1548          if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
1549          break;
1550        }
1551     }
1552   }
1553 
1554   z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
1555   if( z==0 ) return;
1556   if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
1557   memcpy(z, sName.z, sName.n);
1558   z[sName.n] = 0;
1559   sqlite3Dequote(z);
1560   hName = sqlite3StrIHash(z);
1561   for(i=0; i<p->nCol; i++){
1562     if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
1563       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1564       sqlite3DbFree(db, z);
1565       return;
1566     }
1567   }
1568   aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
1569   if( aNew==0 ){
1570     sqlite3DbFree(db, z);
1571     return;
1572   }
1573   p->aCol = aNew;
1574   pCol = &p->aCol[p->nCol];
1575   memset(pCol, 0, sizeof(p->aCol[0]));
1576   pCol->zCnName = z;
1577   pCol->hName = hName;
1578   sqlite3ColumnPropertiesFromName(p, pCol);
1579 
1580   if( sType.n==0 ){
1581     /* If there is no type specified, columns have the default affinity
1582     ** 'BLOB' with a default size of 4 bytes. */
1583     pCol->affinity = affinity;
1584     pCol->eCType = eType;
1585     pCol->szEst = szEst;
1586 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1587     if( affinity==SQLITE_AFF_BLOB ){
1588       if( 4>=sqlite3GlobalConfig.szSorterRef ){
1589         pCol->colFlags |= COLFLAG_SORTERREF;
1590       }
1591     }
1592 #endif
1593   }else{
1594     zType = z + sqlite3Strlen30(z) + 1;
1595     memcpy(zType, sType.z, sType.n);
1596     zType[sType.n] = 0;
1597     sqlite3Dequote(zType);
1598     pCol->affinity = sqlite3AffinityType(zType, pCol);
1599     pCol->colFlags |= COLFLAG_HASTYPE;
1600   }
1601   p->nCol++;
1602   p->nNVCol++;
1603   pParse->constraintName.n = 0;
1604 }
1605 
1606 /*
1607 ** This routine is called by the parser while in the middle of
1608 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1609 ** been seen on a column.  This routine sets the notNull flag on
1610 ** the column currently under construction.
1611 */
1612 void sqlite3AddNotNull(Parse *pParse, int onError){
1613   Table *p;
1614   Column *pCol;
1615   p = pParse->pNewTable;
1616   if( p==0 || NEVER(p->nCol<1) ) return;
1617   pCol = &p->aCol[p->nCol-1];
1618   pCol->notNull = (u8)onError;
1619   p->tabFlags |= TF_HasNotNull;
1620 
1621   /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1622   ** on this column.  */
1623   if( pCol->colFlags & COLFLAG_UNIQUE ){
1624     Index *pIdx;
1625     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1626       assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1627       if( pIdx->aiColumn[0]==p->nCol-1 ){
1628         pIdx->uniqNotNull = 1;
1629       }
1630     }
1631   }
1632 }
1633 
1634 /*
1635 ** Scan the column type name zType (length nType) and return the
1636 ** associated affinity type.
1637 **
1638 ** This routine does a case-independent search of zType for the
1639 ** substrings in the following table. If one of the substrings is
1640 ** found, the corresponding affinity is returned. If zType contains
1641 ** more than one of the substrings, entries toward the top of
1642 ** the table take priority. For example, if zType is 'BLOBINT',
1643 ** SQLITE_AFF_INTEGER is returned.
1644 **
1645 ** Substring     | Affinity
1646 ** --------------------------------
1647 ** 'INT'         | SQLITE_AFF_INTEGER
1648 ** 'CHAR'        | SQLITE_AFF_TEXT
1649 ** 'CLOB'        | SQLITE_AFF_TEXT
1650 ** 'TEXT'        | SQLITE_AFF_TEXT
1651 ** 'BLOB'        | SQLITE_AFF_BLOB
1652 ** 'REAL'        | SQLITE_AFF_REAL
1653 ** 'FLOA'        | SQLITE_AFF_REAL
1654 ** 'DOUB'        | SQLITE_AFF_REAL
1655 **
1656 ** If none of the substrings in the above table are found,
1657 ** SQLITE_AFF_NUMERIC is returned.
1658 */
1659 char sqlite3AffinityType(const char *zIn, Column *pCol){
1660   u32 h = 0;
1661   char aff = SQLITE_AFF_NUMERIC;
1662   const char *zChar = 0;
1663 
1664   assert( zIn!=0 );
1665   while( zIn[0] ){
1666     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1667     zIn++;
1668     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1669       aff = SQLITE_AFF_TEXT;
1670       zChar = zIn;
1671     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1672       aff = SQLITE_AFF_TEXT;
1673     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1674       aff = SQLITE_AFF_TEXT;
1675     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1676         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1677       aff = SQLITE_AFF_BLOB;
1678       if( zIn[0]=='(' ) zChar = zIn;
1679 #ifndef SQLITE_OMIT_FLOATING_POINT
1680     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1681         && aff==SQLITE_AFF_NUMERIC ){
1682       aff = SQLITE_AFF_REAL;
1683     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1684         && aff==SQLITE_AFF_NUMERIC ){
1685       aff = SQLITE_AFF_REAL;
1686     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1687         && aff==SQLITE_AFF_NUMERIC ){
1688       aff = SQLITE_AFF_REAL;
1689 #endif
1690     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1691       aff = SQLITE_AFF_INTEGER;
1692       break;
1693     }
1694   }
1695 
1696   /* If pCol is not NULL, store an estimate of the field size.  The
1697   ** estimate is scaled so that the size of an integer is 1.  */
1698   if( pCol ){
1699     int v = 0;   /* default size is approx 4 bytes */
1700     if( aff<SQLITE_AFF_NUMERIC ){
1701       if( zChar ){
1702         while( zChar[0] ){
1703           if( sqlite3Isdigit(zChar[0]) ){
1704             /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1705             sqlite3GetInt32(zChar, &v);
1706             break;
1707           }
1708           zChar++;
1709         }
1710       }else{
1711         v = 16;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1712       }
1713     }
1714 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1715     if( v>=sqlite3GlobalConfig.szSorterRef ){
1716       pCol->colFlags |= COLFLAG_SORTERREF;
1717     }
1718 #endif
1719     v = v/4 + 1;
1720     if( v>255 ) v = 255;
1721     pCol->szEst = v;
1722   }
1723   return aff;
1724 }
1725 
1726 /*
1727 ** The expression is the default value for the most recently added column
1728 ** of the table currently under construction.
1729 **
1730 ** Default value expressions must be constant.  Raise an exception if this
1731 ** is not the case.
1732 **
1733 ** This routine is called by the parser while in the middle of
1734 ** parsing a CREATE TABLE statement.
1735 */
1736 void sqlite3AddDefaultValue(
1737   Parse *pParse,           /* Parsing context */
1738   Expr *pExpr,             /* The parsed expression of the default value */
1739   const char *zStart,      /* Start of the default value text */
1740   const char *zEnd         /* First character past end of defaut value text */
1741 ){
1742   Table *p;
1743   Column *pCol;
1744   sqlite3 *db = pParse->db;
1745   p = pParse->pNewTable;
1746   if( p!=0 ){
1747     int isInit = db->init.busy && db->init.iDb!=1;
1748     pCol = &(p->aCol[p->nCol-1]);
1749     if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
1750       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1751           pCol->zCnName);
1752 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1753     }else if( pCol->colFlags & COLFLAG_GENERATED ){
1754       testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1755       testcase( pCol->colFlags & COLFLAG_STORED );
1756       sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
1757 #endif
1758     }else{
1759       /* A copy of pExpr is used instead of the original, as pExpr contains
1760       ** tokens that point to volatile memory.
1761       */
1762       Expr x, *pDfltExpr;
1763       memset(&x, 0, sizeof(x));
1764       x.op = TK_SPAN;
1765       x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1766       x.pLeft = pExpr;
1767       x.flags = EP_Skip;
1768       pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1769       sqlite3DbFree(db, x.u.zToken);
1770       sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
1771     }
1772   }
1773   if( IN_RENAME_OBJECT ){
1774     sqlite3RenameExprUnmap(pParse, pExpr);
1775   }
1776   sqlite3ExprDelete(db, pExpr);
1777 }
1778 
1779 /*
1780 ** Backwards Compatibility Hack:
1781 **
1782 ** Historical versions of SQLite accepted strings as column names in
1783 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1784 **
1785 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1786 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1787 **
1788 ** This is goofy.  But to preserve backwards compatibility we continue to
1789 ** accept it.  This routine does the necessary conversion.  It converts
1790 ** the expression given in its argument from a TK_STRING into a TK_ID
1791 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1792 ** If the expression is anything other than TK_STRING, the expression is
1793 ** unchanged.
1794 */
1795 static void sqlite3StringToId(Expr *p){
1796   if( p->op==TK_STRING ){
1797     p->op = TK_ID;
1798   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1799     p->pLeft->op = TK_ID;
1800   }
1801 }
1802 
1803 /*
1804 ** Tag the given column as being part of the PRIMARY KEY
1805 */
1806 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
1807   pCol->colFlags |= COLFLAG_PRIMKEY;
1808 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1809   if( pCol->colFlags & COLFLAG_GENERATED ){
1810     testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1811     testcase( pCol->colFlags & COLFLAG_STORED );
1812     sqlite3ErrorMsg(pParse,
1813       "generated columns cannot be part of the PRIMARY KEY");
1814   }
1815 #endif
1816 }
1817 
1818 /*
1819 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1820 ** of columns that form the primary key.  If pList is NULL, then the
1821 ** most recently added column of the table is the primary key.
1822 **
1823 ** A table can have at most one primary key.  If the table already has
1824 ** a primary key (and this is the second primary key) then create an
1825 ** error.
1826 **
1827 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1828 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1829 ** field of the table under construction to be the index of the
1830 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1831 ** no INTEGER PRIMARY KEY.
1832 **
1833 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1834 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1835 */
1836 void sqlite3AddPrimaryKey(
1837   Parse *pParse,    /* Parsing context */
1838   ExprList *pList,  /* List of field names to be indexed */
1839   int onError,      /* What to do with a uniqueness conflict */
1840   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1841   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1842 ){
1843   Table *pTab = pParse->pNewTable;
1844   Column *pCol = 0;
1845   int iCol = -1, i;
1846   int nTerm;
1847   if( pTab==0 ) goto primary_key_exit;
1848   if( pTab->tabFlags & TF_HasPrimaryKey ){
1849     sqlite3ErrorMsg(pParse,
1850       "table \"%s\" has more than one primary key", pTab->zName);
1851     goto primary_key_exit;
1852   }
1853   pTab->tabFlags |= TF_HasPrimaryKey;
1854   if( pList==0 ){
1855     iCol = pTab->nCol - 1;
1856     pCol = &pTab->aCol[iCol];
1857     makeColumnPartOfPrimaryKey(pParse, pCol);
1858     nTerm = 1;
1859   }else{
1860     nTerm = pList->nExpr;
1861     for(i=0; i<nTerm; i++){
1862       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1863       assert( pCExpr!=0 );
1864       sqlite3StringToId(pCExpr);
1865       if( pCExpr->op==TK_ID ){
1866         const char *zCName;
1867         assert( !ExprHasProperty(pCExpr, EP_IntValue) );
1868         zCName = pCExpr->u.zToken;
1869         for(iCol=0; iCol<pTab->nCol; iCol++){
1870           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
1871             pCol = &pTab->aCol[iCol];
1872             makeColumnPartOfPrimaryKey(pParse, pCol);
1873             break;
1874           }
1875         }
1876       }
1877     }
1878   }
1879   if( nTerm==1
1880    && pCol
1881    && pCol->eCType==COLTYPE_INTEGER
1882    && sortOrder!=SQLITE_SO_DESC
1883   ){
1884     if( IN_RENAME_OBJECT && pList ){
1885       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
1886       sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
1887     }
1888     pTab->iPKey = iCol;
1889     pTab->keyConf = (u8)onError;
1890     assert( autoInc==0 || autoInc==1 );
1891     pTab->tabFlags |= autoInc*TF_Autoincrement;
1892     if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags;
1893     (void)sqlite3HasExplicitNulls(pParse, pList);
1894   }else if( autoInc ){
1895 #ifndef SQLITE_OMIT_AUTOINCREMENT
1896     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1897        "INTEGER PRIMARY KEY");
1898 #endif
1899   }else{
1900     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1901                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1902     pList = 0;
1903   }
1904 
1905 primary_key_exit:
1906   sqlite3ExprListDelete(pParse->db, pList);
1907   return;
1908 }
1909 
1910 /*
1911 ** Add a new CHECK constraint to the table currently under construction.
1912 */
1913 void sqlite3AddCheckConstraint(
1914   Parse *pParse,      /* Parsing context */
1915   Expr *pCheckExpr,   /* The check expression */
1916   const char *zStart, /* Opening "(" */
1917   const char *zEnd    /* Closing ")" */
1918 ){
1919 #ifndef SQLITE_OMIT_CHECK
1920   Table *pTab = pParse->pNewTable;
1921   sqlite3 *db = pParse->db;
1922   if( pTab && !IN_DECLARE_VTAB
1923    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1924   ){
1925     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1926     if( pParse->constraintName.n ){
1927       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1928     }else{
1929       Token t;
1930       for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
1931       while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
1932       t.z = zStart;
1933       t.n = (int)(zEnd - t.z);
1934       sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
1935     }
1936   }else
1937 #endif
1938   {
1939     sqlite3ExprDelete(pParse->db, pCheckExpr);
1940   }
1941 }
1942 
1943 /*
1944 ** Set the collation function of the most recently parsed table column
1945 ** to the CollSeq given.
1946 */
1947 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1948   Table *p;
1949   int i;
1950   char *zColl;              /* Dequoted name of collation sequence */
1951   sqlite3 *db;
1952 
1953   if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
1954   i = p->nCol-1;
1955   db = pParse->db;
1956   zColl = sqlite3NameFromToken(db, pToken);
1957   if( !zColl ) return;
1958 
1959   if( sqlite3LocateCollSeq(pParse, zColl) ){
1960     Index *pIdx;
1961     sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
1962 
1963     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1964     ** then an index may have been created on this column before the
1965     ** collation type was added. Correct this if it is the case.
1966     */
1967     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1968       assert( pIdx->nKeyCol==1 );
1969       if( pIdx->aiColumn[0]==i ){
1970         pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
1971       }
1972     }
1973   }
1974   sqlite3DbFree(db, zColl);
1975 }
1976 
1977 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1978 ** column.
1979 */
1980 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
1981 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1982   u8 eType = COLFLAG_VIRTUAL;
1983   Table *pTab = pParse->pNewTable;
1984   Column *pCol;
1985   if( pTab==0 ){
1986     /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1987     goto generated_done;
1988   }
1989   pCol = &(pTab->aCol[pTab->nCol-1]);
1990   if( IN_DECLARE_VTAB ){
1991     sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
1992     goto generated_done;
1993   }
1994   if( pCol->iDflt>0 ) goto generated_error;
1995   if( pType ){
1996     if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
1997       /* no-op */
1998     }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
1999       eType = COLFLAG_STORED;
2000     }else{
2001       goto generated_error;
2002     }
2003   }
2004   if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
2005   pCol->colFlags |= eType;
2006   assert( TF_HasVirtual==COLFLAG_VIRTUAL );
2007   assert( TF_HasStored==COLFLAG_STORED );
2008   pTab->tabFlags |= eType;
2009   if( pCol->colFlags & COLFLAG_PRIMKEY ){
2010     makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
2011   }
2012   sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
2013   pExpr = 0;
2014   goto generated_done;
2015 
2016 generated_error:
2017   sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
2018                   pCol->zCnName);
2019 generated_done:
2020   sqlite3ExprDelete(pParse->db, pExpr);
2021 #else
2022   /* Throw and error for the GENERATED ALWAYS AS clause if the
2023   ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2024   sqlite3ErrorMsg(pParse, "generated columns not supported");
2025   sqlite3ExprDelete(pParse->db, pExpr);
2026 #endif
2027 }
2028 
2029 /*
2030 ** Generate code that will increment the schema cookie.
2031 **
2032 ** The schema cookie is used to determine when the schema for the
2033 ** database changes.  After each schema change, the cookie value
2034 ** changes.  When a process first reads the schema it records the
2035 ** cookie.  Thereafter, whenever it goes to access the database,
2036 ** it checks the cookie to make sure the schema has not changed
2037 ** since it was last read.
2038 **
2039 ** This plan is not completely bullet-proof.  It is possible for
2040 ** the schema to change multiple times and for the cookie to be
2041 ** set back to prior value.  But schema changes are infrequent
2042 ** and the probability of hitting the same cookie value is only
2043 ** 1 chance in 2^32.  So we're safe enough.
2044 **
2045 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2046 ** the schema-version whenever the schema changes.
2047 */
2048 void sqlite3ChangeCookie(Parse *pParse, int iDb){
2049   sqlite3 *db = pParse->db;
2050   Vdbe *v = pParse->pVdbe;
2051   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2052   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
2053                    (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
2054 }
2055 
2056 /*
2057 ** Measure the number of characters needed to output the given
2058 ** identifier.  The number returned includes any quotes used
2059 ** but does not include the null terminator.
2060 **
2061 ** The estimate is conservative.  It might be larger that what is
2062 ** really needed.
2063 */
2064 static int identLength(const char *z){
2065   int n;
2066   for(n=0; *z; n++, z++){
2067     if( *z=='"' ){ n++; }
2068   }
2069   return n + 2;
2070 }
2071 
2072 /*
2073 ** The first parameter is a pointer to an output buffer. The second
2074 ** parameter is a pointer to an integer that contains the offset at
2075 ** which to write into the output buffer. This function copies the
2076 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2077 ** to the specified offset in the buffer and updates *pIdx to refer
2078 ** to the first byte after the last byte written before returning.
2079 **
2080 ** If the string zSignedIdent consists entirely of alpha-numeric
2081 ** characters, does not begin with a digit and is not an SQL keyword,
2082 ** then it is copied to the output buffer exactly as it is. Otherwise,
2083 ** it is quoted using double-quotes.
2084 */
2085 static void identPut(char *z, int *pIdx, char *zSignedIdent){
2086   unsigned char *zIdent = (unsigned char*)zSignedIdent;
2087   int i, j, needQuote;
2088   i = *pIdx;
2089 
2090   for(j=0; zIdent[j]; j++){
2091     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
2092   }
2093   needQuote = sqlite3Isdigit(zIdent[0])
2094             || sqlite3KeywordCode(zIdent, j)!=TK_ID
2095             || zIdent[j]!=0
2096             || j==0;
2097 
2098   if( needQuote ) z[i++] = '"';
2099   for(j=0; zIdent[j]; j++){
2100     z[i++] = zIdent[j];
2101     if( zIdent[j]=='"' ) z[i++] = '"';
2102   }
2103   if( needQuote ) z[i++] = '"';
2104   z[i] = 0;
2105   *pIdx = i;
2106 }
2107 
2108 /*
2109 ** Generate a CREATE TABLE statement appropriate for the given
2110 ** table.  Memory to hold the text of the statement is obtained
2111 ** from sqliteMalloc() and must be freed by the calling function.
2112 */
2113 static char *createTableStmt(sqlite3 *db, Table *p){
2114   int i, k, n;
2115   char *zStmt;
2116   char *zSep, *zSep2, *zEnd;
2117   Column *pCol;
2118   n = 0;
2119   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
2120     n += identLength(pCol->zCnName) + 5;
2121   }
2122   n += identLength(p->zName);
2123   if( n<50 ){
2124     zSep = "";
2125     zSep2 = ",";
2126     zEnd = ")";
2127   }else{
2128     zSep = "\n  ";
2129     zSep2 = ",\n  ";
2130     zEnd = "\n)";
2131   }
2132   n += 35 + 6*p->nCol;
2133   zStmt = sqlite3DbMallocRaw(0, n);
2134   if( zStmt==0 ){
2135     sqlite3OomFault(db);
2136     return 0;
2137   }
2138   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
2139   k = sqlite3Strlen30(zStmt);
2140   identPut(zStmt, &k, p->zName);
2141   zStmt[k++] = '(';
2142   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
2143     static const char * const azType[] = {
2144         /* SQLITE_AFF_BLOB    */ "",
2145         /* SQLITE_AFF_TEXT    */ " TEXT",
2146         /* SQLITE_AFF_NUMERIC */ " NUM",
2147         /* SQLITE_AFF_INTEGER */ " INT",
2148         /* SQLITE_AFF_REAL    */ " REAL"
2149     };
2150     int len;
2151     const char *zType;
2152 
2153     sqlite3_snprintf(n-k, &zStmt[k], zSep);
2154     k += sqlite3Strlen30(&zStmt[k]);
2155     zSep = zSep2;
2156     identPut(zStmt, &k, pCol->zCnName);
2157     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
2158     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
2159     testcase( pCol->affinity==SQLITE_AFF_BLOB );
2160     testcase( pCol->affinity==SQLITE_AFF_TEXT );
2161     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
2162     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
2163     testcase( pCol->affinity==SQLITE_AFF_REAL );
2164 
2165     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
2166     len = sqlite3Strlen30(zType);
2167     assert( pCol->affinity==SQLITE_AFF_BLOB
2168             || pCol->affinity==sqlite3AffinityType(zType, 0) );
2169     memcpy(&zStmt[k], zType, len);
2170     k += len;
2171     assert( k<=n );
2172   }
2173   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
2174   return zStmt;
2175 }
2176 
2177 /*
2178 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
2179 ** on success and SQLITE_NOMEM on an OOM error.
2180 */
2181 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
2182   char *zExtra;
2183   int nByte;
2184   if( pIdx->nColumn>=N ) return SQLITE_OK;
2185   assert( pIdx->isResized==0 );
2186   nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
2187   zExtra = sqlite3DbMallocZero(db, nByte);
2188   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
2189   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
2190   pIdx->azColl = (const char**)zExtra;
2191   zExtra += sizeof(char*)*N;
2192   memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
2193   pIdx->aiRowLogEst = (LogEst*)zExtra;
2194   zExtra += sizeof(LogEst)*N;
2195   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
2196   pIdx->aiColumn = (i16*)zExtra;
2197   zExtra += sizeof(i16)*N;
2198   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
2199   pIdx->aSortOrder = (u8*)zExtra;
2200   pIdx->nColumn = N;
2201   pIdx->isResized = 1;
2202   return SQLITE_OK;
2203 }
2204 
2205 /*
2206 ** Estimate the total row width for a table.
2207 */
2208 static void estimateTableWidth(Table *pTab){
2209   unsigned wTable = 0;
2210   const Column *pTabCol;
2211   int i;
2212   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
2213     wTable += pTabCol->szEst;
2214   }
2215   if( pTab->iPKey<0 ) wTable++;
2216   pTab->szTabRow = sqlite3LogEst(wTable*4);
2217 }
2218 
2219 /*
2220 ** Estimate the average size of a row for an index.
2221 */
2222 static void estimateIndexWidth(Index *pIdx){
2223   unsigned wIndex = 0;
2224   int i;
2225   const Column *aCol = pIdx->pTable->aCol;
2226   for(i=0; i<pIdx->nColumn; i++){
2227     i16 x = pIdx->aiColumn[i];
2228     assert( x<pIdx->pTable->nCol );
2229     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
2230   }
2231   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
2232 }
2233 
2234 /* Return true if column number x is any of the first nCol entries of aiCol[].
2235 ** This is used to determine if the column number x appears in any of the
2236 ** first nCol entries of an index.
2237 */
2238 static int hasColumn(const i16 *aiCol, int nCol, int x){
2239   while( nCol-- > 0 ){
2240     if( x==*(aiCol++) ){
2241       return 1;
2242     }
2243   }
2244   return 0;
2245 }
2246 
2247 /*
2248 ** Return true if any of the first nKey entries of index pIdx exactly
2249 ** match the iCol-th entry of pPk.  pPk is always a WITHOUT ROWID
2250 ** PRIMARY KEY index.  pIdx is an index on the same table.  pIdx may
2251 ** or may not be the same index as pPk.
2252 **
2253 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2254 ** not a rowid or expression.
2255 **
2256 ** This routine differs from hasColumn() in that both the column and the
2257 ** collating sequence must match for this routine, but for hasColumn() only
2258 ** the column name must match.
2259 */
2260 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
2261   int i, j;
2262   assert( nKey<=pIdx->nColumn );
2263   assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
2264   assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
2265   assert( pPk->pTable->tabFlags & TF_WithoutRowid );
2266   assert( pPk->pTable==pIdx->pTable );
2267   testcase( pPk==pIdx );
2268   j = pPk->aiColumn[iCol];
2269   assert( j!=XN_ROWID && j!=XN_EXPR );
2270   for(i=0; i<nKey; i++){
2271     assert( pIdx->aiColumn[i]>=0 || j>=0 );
2272     if( pIdx->aiColumn[i]==j
2273      && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
2274     ){
2275       return 1;
2276     }
2277   }
2278   return 0;
2279 }
2280 
2281 /* Recompute the colNotIdxed field of the Index.
2282 **
2283 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2284 ** columns that are within the first 63 columns of the table.  The
2285 ** high-order bit of colNotIdxed is always 1.  All unindexed columns
2286 ** of the table have a 1.
2287 **
2288 ** 2019-10-24:  For the purpose of this computation, virtual columns are
2289 ** not considered to be covered by the index, even if they are in the
2290 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2291 ** able to find all instances of a reference to the indexed table column
2292 ** and convert them into references to the index.  Hence we always want
2293 ** the actual table at hand in order to recompute the virtual column, if
2294 ** necessary.
2295 **
2296 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2297 ** to determine if the index is covering index.
2298 */
2299 static void recomputeColumnsNotIndexed(Index *pIdx){
2300   Bitmask m = 0;
2301   int j;
2302   Table *pTab = pIdx->pTable;
2303   for(j=pIdx->nColumn-1; j>=0; j--){
2304     int x = pIdx->aiColumn[j];
2305     if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
2306       testcase( x==BMS-1 );
2307       testcase( x==BMS-2 );
2308       if( x<BMS-1 ) m |= MASKBIT(x);
2309     }
2310   }
2311   pIdx->colNotIdxed = ~m;
2312   assert( (pIdx->colNotIdxed>>63)==1 );
2313 }
2314 
2315 /*
2316 ** This routine runs at the end of parsing a CREATE TABLE statement that
2317 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
2318 ** internal schema data structures and the generated VDBE code so that they
2319 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2320 ** Changes include:
2321 **
2322 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2323 **     (2)  Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2324 **          into BTREE_BLOBKEY.
2325 **     (3)  Bypass the creation of the sqlite_schema table entry
2326 **          for the PRIMARY KEY as the primary key index is now
2327 **          identified by the sqlite_schema table entry of the table itself.
2328 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
2329 **          schema to the rootpage from the main table.
2330 **     (5)  Add all table columns to the PRIMARY KEY Index object
2331 **          so that the PRIMARY KEY is a covering index.  The surplus
2332 **          columns are part of KeyInfo.nAllField and are not used for
2333 **          sorting or lookup or uniqueness checks.
2334 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
2335 **          indices with the PRIMARY KEY columns.
2336 **
2337 ** For virtual tables, only (1) is performed.
2338 */
2339 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
2340   Index *pIdx;
2341   Index *pPk;
2342   int nPk;
2343   int nExtra;
2344   int i, j;
2345   sqlite3 *db = pParse->db;
2346   Vdbe *v = pParse->pVdbe;
2347 
2348   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2349   */
2350   if( !db->init.imposterTable ){
2351     for(i=0; i<pTab->nCol; i++){
2352       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
2353        && (pTab->aCol[i].notNull==OE_None)
2354       ){
2355         pTab->aCol[i].notNull = OE_Abort;
2356       }
2357     }
2358     pTab->tabFlags |= TF_HasNotNull;
2359   }
2360 
2361   /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2362   ** into BTREE_BLOBKEY.
2363   */
2364   assert( !pParse->bReturning );
2365   if( pParse->u1.addrCrTab ){
2366     assert( v );
2367     sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
2368   }
2369 
2370   /* Locate the PRIMARY KEY index.  Or, if this table was originally
2371   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2372   */
2373   if( pTab->iPKey>=0 ){
2374     ExprList *pList;
2375     Token ipkToken;
2376     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
2377     pList = sqlite3ExprListAppend(pParse, 0,
2378                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
2379     if( pList==0 ){
2380       pTab->tabFlags &= ~TF_WithoutRowid;
2381       return;
2382     }
2383     if( IN_RENAME_OBJECT ){
2384       sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
2385     }
2386     pList->a[0].sortFlags = pParse->iPkSortOrder;
2387     assert( pParse->pNewTable==pTab );
2388     pTab->iPKey = -1;
2389     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
2390                        SQLITE_IDXTYPE_PRIMARYKEY);
2391     if( pParse->nErr ){
2392       pTab->tabFlags &= ~TF_WithoutRowid;
2393       return;
2394     }
2395     assert( db->mallocFailed==0 );
2396     pPk = sqlite3PrimaryKeyIndex(pTab);
2397     assert( pPk->nKeyCol==1 );
2398   }else{
2399     pPk = sqlite3PrimaryKeyIndex(pTab);
2400     assert( pPk!=0 );
2401 
2402     /*
2403     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
2404     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
2405     ** code assumes the PRIMARY KEY contains no repeated columns.
2406     */
2407     for(i=j=1; i<pPk->nKeyCol; i++){
2408       if( isDupColumn(pPk, j, pPk, i) ){
2409         pPk->nColumn--;
2410       }else{
2411         testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
2412         pPk->azColl[j] = pPk->azColl[i];
2413         pPk->aSortOrder[j] = pPk->aSortOrder[i];
2414         pPk->aiColumn[j++] = pPk->aiColumn[i];
2415       }
2416     }
2417     pPk->nKeyCol = j;
2418   }
2419   assert( pPk!=0 );
2420   pPk->isCovering = 1;
2421   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
2422   nPk = pPk->nColumn = pPk->nKeyCol;
2423 
2424   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2425   ** table entry. This is only required if currently generating VDBE
2426   ** code for a CREATE TABLE (not when parsing one as part of reading
2427   ** a database schema).  */
2428   if( v && pPk->tnum>0 ){
2429     assert( db->init.busy==0 );
2430     sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
2431   }
2432 
2433   /* The root page of the PRIMARY KEY is the table root page */
2434   pPk->tnum = pTab->tnum;
2435 
2436   /* Update the in-memory representation of all UNIQUE indices by converting
2437   ** the final rowid column into one or more columns of the PRIMARY KEY.
2438   */
2439   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2440     int n;
2441     if( IsPrimaryKeyIndex(pIdx) ) continue;
2442     for(i=n=0; i<nPk; i++){
2443       if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2444         testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2445         n++;
2446       }
2447     }
2448     if( n==0 ){
2449       /* This index is a superset of the primary key */
2450       pIdx->nColumn = pIdx->nKeyCol;
2451       continue;
2452     }
2453     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
2454     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
2455       if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2456         testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2457         pIdx->aiColumn[j] = pPk->aiColumn[i];
2458         pIdx->azColl[j] = pPk->azColl[i];
2459         if( pPk->aSortOrder[i] ){
2460           /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2461           pIdx->bAscKeyBug = 1;
2462         }
2463         j++;
2464       }
2465     }
2466     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
2467     assert( pIdx->nColumn>=j );
2468   }
2469 
2470   /* Add all table columns to the PRIMARY KEY index
2471   */
2472   nExtra = 0;
2473   for(i=0; i<pTab->nCol; i++){
2474     if( !hasColumn(pPk->aiColumn, nPk, i)
2475      && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
2476   }
2477   if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
2478   for(i=0, j=nPk; i<pTab->nCol; i++){
2479     if( !hasColumn(pPk->aiColumn, j, i)
2480      && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
2481     ){
2482       assert( j<pPk->nColumn );
2483       pPk->aiColumn[j] = i;
2484       pPk->azColl[j] = sqlite3StrBINARY;
2485       j++;
2486     }
2487   }
2488   assert( pPk->nColumn==j );
2489   assert( pTab->nNVCol<=j );
2490   recomputeColumnsNotIndexed(pPk);
2491 }
2492 
2493 
2494 #ifndef SQLITE_OMIT_VIRTUALTABLE
2495 /*
2496 ** Return true if pTab is a virtual table and zName is a shadow table name
2497 ** for that virtual table.
2498 */
2499 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
2500   int nName;                    /* Length of zName */
2501   Module *pMod;                 /* Module for the virtual table */
2502 
2503   if( !IsVirtual(pTab) ) return 0;
2504   nName = sqlite3Strlen30(pTab->zName);
2505   if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
2506   if( zName[nName]!='_' ) return 0;
2507   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2508   if( pMod==0 ) return 0;
2509   if( pMod->pModule->iVersion<3 ) return 0;
2510   if( pMod->pModule->xShadowName==0 ) return 0;
2511   return pMod->pModule->xShadowName(zName+nName+1);
2512 }
2513 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2514 
2515 #ifndef SQLITE_OMIT_VIRTUALTABLE
2516 /*
2517 ** Table pTab is a virtual table.  If it the virtual table implementation
2518 ** exists and has an xShadowName method, then loop over all other ordinary
2519 ** tables within the same schema looking for shadow tables of pTab, and mark
2520 ** any shadow tables seen using the TF_Shadow flag.
2521 */
2522 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
2523   int nName;                    /* Length of pTab->zName */
2524   Module *pMod;                 /* Module for the virtual table */
2525   HashElem *k;                  /* For looping through the symbol table */
2526 
2527   assert( IsVirtual(pTab) );
2528   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2529   if( pMod==0 ) return;
2530   if( NEVER(pMod->pModule==0) ) return;
2531   if( pMod->pModule->iVersion<3 ) return;
2532   if( pMod->pModule->xShadowName==0 ) return;
2533   assert( pTab->zName!=0 );
2534   nName = sqlite3Strlen30(pTab->zName);
2535   for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
2536     Table *pOther = sqliteHashData(k);
2537     assert( pOther->zName!=0 );
2538     if( !IsOrdinaryTable(pOther) ) continue;
2539     if( pOther->tabFlags & TF_Shadow ) continue;
2540     if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
2541      && pOther->zName[nName]=='_'
2542      && pMod->pModule->xShadowName(pOther->zName+nName+1)
2543     ){
2544       pOther->tabFlags |= TF_Shadow;
2545     }
2546   }
2547 }
2548 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2549 
2550 #ifndef SQLITE_OMIT_VIRTUALTABLE
2551 /*
2552 ** Return true if zName is a shadow table name in the current database
2553 ** connection.
2554 **
2555 ** zName is temporarily modified while this routine is running, but is
2556 ** restored to its original value prior to this routine returning.
2557 */
2558 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
2559   char *zTail;                  /* Pointer to the last "_" in zName */
2560   Table *pTab;                  /* Table that zName is a shadow of */
2561   zTail = strrchr(zName, '_');
2562   if( zTail==0 ) return 0;
2563   *zTail = 0;
2564   pTab = sqlite3FindTable(db, zName, 0);
2565   *zTail = '_';
2566   if( pTab==0 ) return 0;
2567   if( !IsVirtual(pTab) ) return 0;
2568   return sqlite3IsShadowTableOf(db, pTab, zName);
2569 }
2570 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2571 
2572 
2573 #ifdef SQLITE_DEBUG
2574 /*
2575 ** Mark all nodes of an expression as EP_Immutable, indicating that
2576 ** they should not be changed.  Expressions attached to a table or
2577 ** index definition are tagged this way to help ensure that we do
2578 ** not pass them into code generator routines by mistake.
2579 */
2580 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
2581   ExprSetVVAProperty(pExpr, EP_Immutable);
2582   return WRC_Continue;
2583 }
2584 static void markExprListImmutable(ExprList *pList){
2585   if( pList ){
2586     Walker w;
2587     memset(&w, 0, sizeof(w));
2588     w.xExprCallback = markImmutableExprStep;
2589     w.xSelectCallback = sqlite3SelectWalkNoop;
2590     w.xSelectCallback2 = 0;
2591     sqlite3WalkExprList(&w, pList);
2592   }
2593 }
2594 #else
2595 #define markExprListImmutable(X)  /* no-op */
2596 #endif /* SQLITE_DEBUG */
2597 
2598 
2599 /*
2600 ** This routine is called to report the final ")" that terminates
2601 ** a CREATE TABLE statement.
2602 **
2603 ** The table structure that other action routines have been building
2604 ** is added to the internal hash tables, assuming no errors have
2605 ** occurred.
2606 **
2607 ** An entry for the table is made in the schema table on disk, unless
2608 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
2609 ** it means we are reading the sqlite_schema table because we just
2610 ** connected to the database or because the sqlite_schema table has
2611 ** recently changed, so the entry for this table already exists in
2612 ** the sqlite_schema table.  We do not want to create it again.
2613 **
2614 ** If the pSelect argument is not NULL, it means that this routine
2615 ** was called to create a table generated from a
2616 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
2617 ** the new table will match the result set of the SELECT.
2618 */
2619 void sqlite3EndTable(
2620   Parse *pParse,          /* Parse context */
2621   Token *pCons,           /* The ',' token after the last column defn. */
2622   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
2623   u32 tabOpts,            /* Extra table options. Usually 0. */
2624   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
2625 ){
2626   Table *p;                 /* The new table */
2627   sqlite3 *db = pParse->db; /* The database connection */
2628   int iDb;                  /* Database in which the table lives */
2629   Index *pIdx;              /* An implied index of the table */
2630 
2631   if( pEnd==0 && pSelect==0 ){
2632     return;
2633   }
2634   p = pParse->pNewTable;
2635   if( p==0 ) return;
2636 
2637   if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
2638     p->tabFlags |= TF_Shadow;
2639   }
2640 
2641   /* If the db->init.busy is 1 it means we are reading the SQL off the
2642   ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2643   ** So do not write to the disk again.  Extract the root page number
2644   ** for the table from the db->init.newTnum field.  (The page number
2645   ** should have been put there by the sqliteOpenCb routine.)
2646   **
2647   ** If the root page number is 1, that means this is the sqlite_schema
2648   ** table itself.  So mark it read-only.
2649   */
2650   if( db->init.busy ){
2651     if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
2652       sqlite3ErrorMsg(pParse, "");
2653       return;
2654     }
2655     p->tnum = db->init.newTnum;
2656     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
2657   }
2658 
2659   /* Special processing for tables that include the STRICT keyword:
2660   **
2661   **   *  Do not allow custom column datatypes.  Every column must have
2662   **      a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2663   **
2664   **   *  If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2665   **      then all columns of the PRIMARY KEY must have a NOT NULL
2666   **      constraint.
2667   */
2668   if( tabOpts & TF_Strict ){
2669     int ii;
2670     p->tabFlags |= TF_Strict;
2671     for(ii=0; ii<p->nCol; ii++){
2672       Column *pCol = &p->aCol[ii];
2673       if( pCol->eCType==COLTYPE_CUSTOM ){
2674         if( pCol->colFlags & COLFLAG_HASTYPE ){
2675           sqlite3ErrorMsg(pParse,
2676             "unknown datatype for %s.%s: \"%s\"",
2677             p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
2678           );
2679         }else{
2680           sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
2681                           p->zName, pCol->zCnName);
2682         }
2683         return;
2684       }else if( pCol->eCType==COLTYPE_ANY ){
2685         pCol->affinity = SQLITE_AFF_BLOB;
2686       }
2687       if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
2688        && p->iPKey!=ii
2689        && pCol->notNull == OE_None
2690       ){
2691         pCol->notNull = OE_Abort;
2692         p->tabFlags |= TF_HasNotNull;
2693       }
2694     }
2695   }
2696 
2697   assert( (p->tabFlags & TF_HasPrimaryKey)==0
2698        || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
2699   assert( (p->tabFlags & TF_HasPrimaryKey)!=0
2700        || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
2701 
2702   /* Special processing for WITHOUT ROWID Tables */
2703   if( tabOpts & TF_WithoutRowid ){
2704     if( (p->tabFlags & TF_Autoincrement) ){
2705       sqlite3ErrorMsg(pParse,
2706           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2707       return;
2708     }
2709     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2710       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2711       return;
2712     }
2713     p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2714     convertToWithoutRowidTable(pParse, p);
2715   }
2716   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2717 
2718 #ifndef SQLITE_OMIT_CHECK
2719   /* Resolve names in all CHECK constraint expressions.
2720   */
2721   if( p->pCheck ){
2722     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2723     if( pParse->nErr ){
2724       /* If errors are seen, delete the CHECK constraints now, else they might
2725       ** actually be used if PRAGMA writable_schema=ON is set. */
2726       sqlite3ExprListDelete(db, p->pCheck);
2727       p->pCheck = 0;
2728     }else{
2729       markExprListImmutable(p->pCheck);
2730     }
2731   }
2732 #endif /* !defined(SQLITE_OMIT_CHECK) */
2733 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2734   if( p->tabFlags & TF_HasGenerated ){
2735     int ii, nNG = 0;
2736     testcase( p->tabFlags & TF_HasVirtual );
2737     testcase( p->tabFlags & TF_HasStored );
2738     for(ii=0; ii<p->nCol; ii++){
2739       u32 colFlags = p->aCol[ii].colFlags;
2740       if( (colFlags & COLFLAG_GENERATED)!=0 ){
2741         Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
2742         testcase( colFlags & COLFLAG_VIRTUAL );
2743         testcase( colFlags & COLFLAG_STORED );
2744         if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
2745           /* If there are errors in resolving the expression, change the
2746           ** expression to a NULL.  This prevents code generators that operate
2747           ** on the expression from inserting extra parts into the expression
2748           ** tree that have been allocated from lookaside memory, which is
2749           ** illegal in a schema and will lead to errors or heap corruption
2750           ** when the database connection closes. */
2751           sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
2752                sqlite3ExprAlloc(db, TK_NULL, 0, 0));
2753         }
2754       }else{
2755         nNG++;
2756       }
2757     }
2758     if( nNG==0 ){
2759       sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
2760       return;
2761     }
2762   }
2763 #endif
2764 
2765   /* Estimate the average row size for the table and for all implied indices */
2766   estimateTableWidth(p);
2767   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2768     estimateIndexWidth(pIdx);
2769   }
2770 
2771   /* If not initializing, then create a record for the new table
2772   ** in the schema table of the database.
2773   **
2774   ** If this is a TEMPORARY table, write the entry into the auxiliary
2775   ** file instead of into the main database file.
2776   */
2777   if( !db->init.busy ){
2778     int n;
2779     Vdbe *v;
2780     char *zType;    /* "view" or "table" */
2781     char *zType2;   /* "VIEW" or "TABLE" */
2782     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
2783 
2784     v = sqlite3GetVdbe(pParse);
2785     if( NEVER(v==0) ) return;
2786 
2787     sqlite3VdbeAddOp1(v, OP_Close, 0);
2788 
2789     /*
2790     ** Initialize zType for the new view or table.
2791     */
2792     if( IsOrdinaryTable(p) ){
2793       /* A regular table */
2794       zType = "table";
2795       zType2 = "TABLE";
2796 #ifndef SQLITE_OMIT_VIEW
2797     }else{
2798       /* A view */
2799       zType = "view";
2800       zType2 = "VIEW";
2801 #endif
2802     }
2803 
2804     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2805     ** statement to populate the new table. The root-page number for the
2806     ** new table is in register pParse->regRoot.
2807     **
2808     ** Once the SELECT has been coded by sqlite3Select(), it is in a
2809     ** suitable state to query for the column names and types to be used
2810     ** by the new table.
2811     **
2812     ** A shared-cache write-lock is not required to write to the new table,
2813     ** as a schema-lock must have already been obtained to create it. Since
2814     ** a schema-lock excludes all other database users, the write-lock would
2815     ** be redundant.
2816     */
2817     if( pSelect ){
2818       SelectDest dest;    /* Where the SELECT should store results */
2819       int regYield;       /* Register holding co-routine entry-point */
2820       int addrTop;        /* Top of the co-routine */
2821       int regRec;         /* A record to be insert into the new table */
2822       int regRowid;       /* Rowid of the next row to insert */
2823       int addrInsLoop;    /* Top of the loop for inserting rows */
2824       Table *pSelTab;     /* A table that describes the SELECT results */
2825 
2826       regYield = ++pParse->nMem;
2827       regRec = ++pParse->nMem;
2828       regRowid = ++pParse->nMem;
2829       assert(pParse->nTab==1);
2830       sqlite3MayAbort(pParse);
2831       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2832       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2833       pParse->nTab = 2;
2834       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2835       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2836       if( pParse->nErr ) return;
2837       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
2838       if( pSelTab==0 ) return;
2839       assert( p->aCol==0 );
2840       p->nCol = p->nNVCol = pSelTab->nCol;
2841       p->aCol = pSelTab->aCol;
2842       pSelTab->nCol = 0;
2843       pSelTab->aCol = 0;
2844       sqlite3DeleteTable(db, pSelTab);
2845       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2846       sqlite3Select(pParse, pSelect, &dest);
2847       if( pParse->nErr ) return;
2848       sqlite3VdbeEndCoroutine(v, regYield);
2849       sqlite3VdbeJumpHere(v, addrTop - 1);
2850       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2851       VdbeCoverage(v);
2852       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2853       sqlite3TableAffinity(v, p, 0);
2854       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2855       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2856       sqlite3VdbeGoto(v, addrInsLoop);
2857       sqlite3VdbeJumpHere(v, addrInsLoop);
2858       sqlite3VdbeAddOp1(v, OP_Close, 1);
2859     }
2860 
2861     /* Compute the complete text of the CREATE statement */
2862     if( pSelect ){
2863       zStmt = createTableStmt(db, p);
2864     }else{
2865       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2866       n = (int)(pEnd2->z - pParse->sNameToken.z);
2867       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2868       zStmt = sqlite3MPrintf(db,
2869           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2870       );
2871     }
2872 
2873     /* A slot for the record has already been allocated in the
2874     ** schema table.  We just need to update that slot with all
2875     ** the information we've collected.
2876     */
2877     sqlite3NestedParse(pParse,
2878       "UPDATE %Q." LEGACY_SCHEMA_TABLE
2879       " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2880       " WHERE rowid=#%d",
2881       db->aDb[iDb].zDbSName,
2882       zType,
2883       p->zName,
2884       p->zName,
2885       pParse->regRoot,
2886       zStmt,
2887       pParse->regRowid
2888     );
2889     sqlite3DbFree(db, zStmt);
2890     sqlite3ChangeCookie(pParse, iDb);
2891 
2892 #ifndef SQLITE_OMIT_AUTOINCREMENT
2893     /* Check to see if we need to create an sqlite_sequence table for
2894     ** keeping track of autoincrement keys.
2895     */
2896     if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
2897       Db *pDb = &db->aDb[iDb];
2898       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2899       if( pDb->pSchema->pSeqTab==0 ){
2900         sqlite3NestedParse(pParse,
2901           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2902           pDb->zDbSName
2903         );
2904       }
2905     }
2906 #endif
2907 
2908     /* Reparse everything to update our internal data structures */
2909     sqlite3VdbeAddParseSchemaOp(v, iDb,
2910            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
2911   }
2912 
2913   /* Add the table to the in-memory representation of the database.
2914   */
2915   if( db->init.busy ){
2916     Table *pOld;
2917     Schema *pSchema = p->pSchema;
2918     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2919     assert( HasRowid(p) || p->iPKey<0 );
2920     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2921     if( pOld ){
2922       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2923       sqlite3OomFault(db);
2924       return;
2925     }
2926     pParse->pNewTable = 0;
2927     db->mDbFlags |= DBFLAG_SchemaChange;
2928 
2929     /* If this is the magic sqlite_sequence table used by autoincrement,
2930     ** then record a pointer to this table in the main database structure
2931     ** so that INSERT can find the table easily.  */
2932     assert( !pParse->nested );
2933 #ifndef SQLITE_OMIT_AUTOINCREMENT
2934     if( strcmp(p->zName, "sqlite_sequence")==0 ){
2935       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2936       p->pSchema->pSeqTab = p;
2937     }
2938 #endif
2939   }
2940 
2941 #ifndef SQLITE_OMIT_ALTERTABLE
2942   if( !pSelect && IsOrdinaryTable(p) ){
2943     assert( pCons && pEnd );
2944     if( pCons->z==0 ){
2945       pCons = pEnd;
2946     }
2947     p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
2948   }
2949 #endif
2950 }
2951 
2952 #ifndef SQLITE_OMIT_VIEW
2953 /*
2954 ** The parser calls this routine in order to create a new VIEW
2955 */
2956 void sqlite3CreateView(
2957   Parse *pParse,     /* The parsing context */
2958   Token *pBegin,     /* The CREATE token that begins the statement */
2959   Token *pName1,     /* The token that holds the name of the view */
2960   Token *pName2,     /* The token that holds the name of the view */
2961   ExprList *pCNames, /* Optional list of view column names */
2962   Select *pSelect,   /* A SELECT statement that will become the new view */
2963   int isTemp,        /* TRUE for a TEMPORARY view */
2964   int noErr          /* Suppress error messages if VIEW already exists */
2965 ){
2966   Table *p;
2967   int n;
2968   const char *z;
2969   Token sEnd;
2970   DbFixer sFix;
2971   Token *pName = 0;
2972   int iDb;
2973   sqlite3 *db = pParse->db;
2974 
2975   if( pParse->nVar>0 ){
2976     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2977     goto create_view_fail;
2978   }
2979   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2980   p = pParse->pNewTable;
2981   if( p==0 || pParse->nErr ) goto create_view_fail;
2982 
2983   /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2984   ** on a view, even though views do not have rowids.  The following flag
2985   ** setting fixes this problem.  But the fix can be disabled by compiling
2986   ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2987   ** depend upon the old buggy behavior. */
2988 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2989   p->tabFlags |= TF_NoVisibleRowid;
2990 #endif
2991 
2992   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2993   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2994   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2995   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2996 
2997   /* Make a copy of the entire SELECT statement that defines the view.
2998   ** This will force all the Expr.token.z values to be dynamically
2999   ** allocated rather than point to the input string - which means that
3000   ** they will persist after the current sqlite3_exec() call returns.
3001   */
3002   pSelect->selFlags |= SF_View;
3003   if( IN_RENAME_OBJECT ){
3004     p->u.view.pSelect = pSelect;
3005     pSelect = 0;
3006   }else{
3007     p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
3008   }
3009   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
3010   p->eTabType = TABTYP_VIEW;
3011   if( db->mallocFailed ) goto create_view_fail;
3012 
3013   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
3014   ** the end.
3015   */
3016   sEnd = pParse->sLastToken;
3017   assert( sEnd.z[0]!=0 || sEnd.n==0 );
3018   if( sEnd.z[0]!=';' ){
3019     sEnd.z += sEnd.n;
3020   }
3021   sEnd.n = 0;
3022   n = (int)(sEnd.z - pBegin->z);
3023   assert( n>0 );
3024   z = pBegin->z;
3025   while( sqlite3Isspace(z[n-1]) ){ n--; }
3026   sEnd.z = &z[n-1];
3027   sEnd.n = 1;
3028 
3029   /* Use sqlite3EndTable() to add the view to the schema table */
3030   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
3031 
3032 create_view_fail:
3033   sqlite3SelectDelete(db, pSelect);
3034   if( IN_RENAME_OBJECT ){
3035     sqlite3RenameExprlistUnmap(pParse, pCNames);
3036   }
3037   sqlite3ExprListDelete(db, pCNames);
3038   return;
3039 }
3040 #endif /* SQLITE_OMIT_VIEW */
3041 
3042 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3043 /*
3044 ** The Table structure pTable is really a VIEW.  Fill in the names of
3045 ** the columns of the view in the pTable structure.  Return the number
3046 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
3047 */
3048 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
3049   Table *pSelTab;   /* A fake table from which we get the result set */
3050   Select *pSel;     /* Copy of the SELECT that implements the view */
3051   int nErr = 0;     /* Number of errors encountered */
3052   int n;            /* Temporarily holds the number of cursors assigned */
3053   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
3054 #ifndef SQLITE_OMIT_VIRTUALTABLE
3055   int rc;
3056 #endif
3057 #ifndef SQLITE_OMIT_AUTHORIZATION
3058   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
3059 #endif
3060 
3061   assert( pTable );
3062 
3063 #ifndef SQLITE_OMIT_VIRTUALTABLE
3064   if( IsVirtual(pTable) ){
3065     db->nSchemaLock++;
3066     rc = sqlite3VtabCallConnect(pParse, pTable);
3067     db->nSchemaLock--;
3068     return rc;
3069   }
3070 #endif
3071 
3072 #ifndef SQLITE_OMIT_VIEW
3073   /* A positive nCol means the columns names for this view are
3074   ** already known.
3075   */
3076   if( pTable->nCol>0 ) return 0;
3077 
3078   /* A negative nCol is a special marker meaning that we are currently
3079   ** trying to compute the column names.  If we enter this routine with
3080   ** a negative nCol, it means two or more views form a loop, like this:
3081   **
3082   **     CREATE VIEW one AS SELECT * FROM two;
3083   **     CREATE VIEW two AS SELECT * FROM one;
3084   **
3085   ** Actually, the error above is now caught prior to reaching this point.
3086   ** But the following test is still important as it does come up
3087   ** in the following:
3088   **
3089   **     CREATE TABLE main.ex1(a);
3090   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3091   **     SELECT * FROM temp.ex1;
3092   */
3093   if( pTable->nCol<0 ){
3094     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
3095     return 1;
3096   }
3097   assert( pTable->nCol>=0 );
3098 
3099   /* If we get this far, it means we need to compute the table names.
3100   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3101   ** "*" elements in the results set of the view and will assign cursors
3102   ** to the elements of the FROM clause.  But we do not want these changes
3103   ** to be permanent.  So the computation is done on a copy of the SELECT
3104   ** statement that defines the view.
3105   */
3106   assert( IsView(pTable) );
3107   pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
3108   if( pSel ){
3109     u8 eParseMode = pParse->eParseMode;
3110     pParse->eParseMode = PARSE_MODE_NORMAL;
3111     n = pParse->nTab;
3112     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
3113     pTable->nCol = -1;
3114     DisableLookaside;
3115 #ifndef SQLITE_OMIT_AUTHORIZATION
3116     xAuth = db->xAuth;
3117     db->xAuth = 0;
3118     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3119     db->xAuth = xAuth;
3120 #else
3121     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3122 #endif
3123     pParse->nTab = n;
3124     if( pSelTab==0 ){
3125       pTable->nCol = 0;
3126       nErr++;
3127     }else if( pTable->pCheck ){
3128       /* CREATE VIEW name(arglist) AS ...
3129       ** The names of the columns in the table are taken from
3130       ** arglist which is stored in pTable->pCheck.  The pCheck field
3131       ** normally holds CHECK constraints on an ordinary table, but for
3132       ** a VIEW it holds the list of column names.
3133       */
3134       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
3135                                  &pTable->nCol, &pTable->aCol);
3136       if( pParse->nErr==0
3137        && pTable->nCol==pSel->pEList->nExpr
3138       ){
3139         assert( db->mallocFailed==0 );
3140         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
3141                                                SQLITE_AFF_NONE);
3142       }
3143     }else{
3144       /* CREATE VIEW name AS...  without an argument list.  Construct
3145       ** the column names from the SELECT statement that defines the view.
3146       */
3147       assert( pTable->aCol==0 );
3148       pTable->nCol = pSelTab->nCol;
3149       pTable->aCol = pSelTab->aCol;
3150       pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
3151       pSelTab->nCol = 0;
3152       pSelTab->aCol = 0;
3153       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
3154     }
3155     pTable->nNVCol = pTable->nCol;
3156     sqlite3DeleteTable(db, pSelTab);
3157     sqlite3SelectDelete(db, pSel);
3158     EnableLookaside;
3159     pParse->eParseMode = eParseMode;
3160   } else {
3161     nErr++;
3162   }
3163   pTable->pSchema->schemaFlags |= DB_UnresetViews;
3164   if( db->mallocFailed ){
3165     sqlite3DeleteColumnNames(db, pTable);
3166   }
3167 #endif /* SQLITE_OMIT_VIEW */
3168   return nErr;
3169 }
3170 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3171 
3172 #ifndef SQLITE_OMIT_VIEW
3173 /*
3174 ** Clear the column names from every VIEW in database idx.
3175 */
3176 static void sqliteViewResetAll(sqlite3 *db, int idx){
3177   HashElem *i;
3178   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
3179   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
3180   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
3181     Table *pTab = sqliteHashData(i);
3182     if( IsView(pTab) ){
3183       sqlite3DeleteColumnNames(db, pTab);
3184     }
3185   }
3186   DbClearProperty(db, idx, DB_UnresetViews);
3187 }
3188 #else
3189 # define sqliteViewResetAll(A,B)
3190 #endif /* SQLITE_OMIT_VIEW */
3191 
3192 /*
3193 ** This function is called by the VDBE to adjust the internal schema
3194 ** used by SQLite when the btree layer moves a table root page. The
3195 ** root-page of a table or index in database iDb has changed from iFrom
3196 ** to iTo.
3197 **
3198 ** Ticket #1728:  The symbol table might still contain information
3199 ** on tables and/or indices that are the process of being deleted.
3200 ** If you are unlucky, one of those deleted indices or tables might
3201 ** have the same rootpage number as the real table or index that is
3202 ** being moved.  So we cannot stop searching after the first match
3203 ** because the first match might be for one of the deleted indices
3204 ** or tables and not the table/index that is actually being moved.
3205 ** We must continue looping until all tables and indices with
3206 ** rootpage==iFrom have been converted to have a rootpage of iTo
3207 ** in order to be certain that we got the right one.
3208 */
3209 #ifndef SQLITE_OMIT_AUTOVACUUM
3210 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
3211   HashElem *pElem;
3212   Hash *pHash;
3213   Db *pDb;
3214 
3215   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3216   pDb = &db->aDb[iDb];
3217   pHash = &pDb->pSchema->tblHash;
3218   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3219     Table *pTab = sqliteHashData(pElem);
3220     if( pTab->tnum==iFrom ){
3221       pTab->tnum = iTo;
3222     }
3223   }
3224   pHash = &pDb->pSchema->idxHash;
3225   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3226     Index *pIdx = sqliteHashData(pElem);
3227     if( pIdx->tnum==iFrom ){
3228       pIdx->tnum = iTo;
3229     }
3230   }
3231 }
3232 #endif
3233 
3234 /*
3235 ** Write code to erase the table with root-page iTable from database iDb.
3236 ** Also write code to modify the sqlite_schema table and internal schema
3237 ** if a root-page of another table is moved by the btree-layer whilst
3238 ** erasing iTable (this can happen with an auto-vacuum database).
3239 */
3240 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
3241   Vdbe *v = sqlite3GetVdbe(pParse);
3242   int r1 = sqlite3GetTempReg(pParse);
3243   if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
3244   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
3245   sqlite3MayAbort(pParse);
3246 #ifndef SQLITE_OMIT_AUTOVACUUM
3247   /* OP_Destroy stores an in integer r1. If this integer
3248   ** is non-zero, then it is the root page number of a table moved to
3249   ** location iTable. The following code modifies the sqlite_schema table to
3250   ** reflect this.
3251   **
3252   ** The "#NNN" in the SQL is a special constant that means whatever value
3253   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
3254   ** token for additional information.
3255   */
3256   sqlite3NestedParse(pParse,
3257      "UPDATE %Q." LEGACY_SCHEMA_TABLE
3258      " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3259      pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
3260 #endif
3261   sqlite3ReleaseTempReg(pParse, r1);
3262 }
3263 
3264 /*
3265 ** Write VDBE code to erase table pTab and all associated indices on disk.
3266 ** Code to update the sqlite_schema tables and internal schema definitions
3267 ** in case a root-page belonging to another table is moved by the btree layer
3268 ** is also added (this can happen with an auto-vacuum database).
3269 */
3270 static void destroyTable(Parse *pParse, Table *pTab){
3271   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3272   ** is not defined), then it is important to call OP_Destroy on the
3273   ** table and index root-pages in order, starting with the numerically
3274   ** largest root-page number. This guarantees that none of the root-pages
3275   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3276   ** following were coded:
3277   **
3278   ** OP_Destroy 4 0
3279   ** ...
3280   ** OP_Destroy 5 0
3281   **
3282   ** and root page 5 happened to be the largest root-page number in the
3283   ** database, then root page 5 would be moved to page 4 by the
3284   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3285   ** a free-list page.
3286   */
3287   Pgno iTab = pTab->tnum;
3288   Pgno iDestroyed = 0;
3289 
3290   while( 1 ){
3291     Index *pIdx;
3292     Pgno iLargest = 0;
3293 
3294     if( iDestroyed==0 || iTab<iDestroyed ){
3295       iLargest = iTab;
3296     }
3297     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3298       Pgno iIdx = pIdx->tnum;
3299       assert( pIdx->pSchema==pTab->pSchema );
3300       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
3301         iLargest = iIdx;
3302       }
3303     }
3304     if( iLargest==0 ){
3305       return;
3306     }else{
3307       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3308       assert( iDb>=0 && iDb<pParse->db->nDb );
3309       destroyRootPage(pParse, iLargest, iDb);
3310       iDestroyed = iLargest;
3311     }
3312   }
3313 }
3314 
3315 /*
3316 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3317 ** after a DROP INDEX or DROP TABLE command.
3318 */
3319 static void sqlite3ClearStatTables(
3320   Parse *pParse,         /* The parsing context */
3321   int iDb,               /* The database number */
3322   const char *zType,     /* "idx" or "tbl" */
3323   const char *zName      /* Name of index or table */
3324 ){
3325   int i;
3326   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
3327   for(i=1; i<=4; i++){
3328     char zTab[24];
3329     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
3330     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
3331       sqlite3NestedParse(pParse,
3332         "DELETE FROM %Q.%s WHERE %s=%Q",
3333         zDbName, zTab, zType, zName
3334       );
3335     }
3336   }
3337 }
3338 
3339 /*
3340 ** Generate code to drop a table.
3341 */
3342 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
3343   Vdbe *v;
3344   sqlite3 *db = pParse->db;
3345   Trigger *pTrigger;
3346   Db *pDb = &db->aDb[iDb];
3347 
3348   v = sqlite3GetVdbe(pParse);
3349   assert( v!=0 );
3350   sqlite3BeginWriteOperation(pParse, 1, iDb);
3351 
3352 #ifndef SQLITE_OMIT_VIRTUALTABLE
3353   if( IsVirtual(pTab) ){
3354     sqlite3VdbeAddOp0(v, OP_VBegin);
3355   }
3356 #endif
3357 
3358   /* Drop all triggers associated with the table being dropped. Code
3359   ** is generated to remove entries from sqlite_schema and/or
3360   ** sqlite_temp_schema if required.
3361   */
3362   pTrigger = sqlite3TriggerList(pParse, pTab);
3363   while( pTrigger ){
3364     assert( pTrigger->pSchema==pTab->pSchema ||
3365         pTrigger->pSchema==db->aDb[1].pSchema );
3366     sqlite3DropTriggerPtr(pParse, pTrigger);
3367     pTrigger = pTrigger->pNext;
3368   }
3369 
3370 #ifndef SQLITE_OMIT_AUTOINCREMENT
3371   /* Remove any entries of the sqlite_sequence table associated with
3372   ** the table being dropped. This is done before the table is dropped
3373   ** at the btree level, in case the sqlite_sequence table needs to
3374   ** move as a result of the drop (can happen in auto-vacuum mode).
3375   */
3376   if( pTab->tabFlags & TF_Autoincrement ){
3377     sqlite3NestedParse(pParse,
3378       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3379       pDb->zDbSName, pTab->zName
3380     );
3381   }
3382 #endif
3383 
3384   /* Drop all entries in the schema table that refer to the
3385   ** table. The program name loops through the schema table and deletes
3386   ** every row that refers to a table of the same name as the one being
3387   ** dropped. Triggers are handled separately because a trigger can be
3388   ** created in the temp database that refers to a table in another
3389   ** database.
3390   */
3391   sqlite3NestedParse(pParse,
3392       "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3393       " WHERE tbl_name=%Q and type!='trigger'",
3394       pDb->zDbSName, pTab->zName);
3395   if( !isView && !IsVirtual(pTab) ){
3396     destroyTable(pParse, pTab);
3397   }
3398 
3399   /* Remove the table entry from SQLite's internal schema and modify
3400   ** the schema cookie.
3401   */
3402   if( IsVirtual(pTab) ){
3403     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
3404     sqlite3MayAbort(pParse);
3405   }
3406   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
3407   sqlite3ChangeCookie(pParse, iDb);
3408   sqliteViewResetAll(db, iDb);
3409 }
3410 
3411 /*
3412 ** Return TRUE if shadow tables should be read-only in the current
3413 ** context.
3414 */
3415 int sqlite3ReadOnlyShadowTables(sqlite3 *db){
3416 #ifndef SQLITE_OMIT_VIRTUALTABLE
3417   if( (db->flags & SQLITE_Defensive)!=0
3418    && db->pVtabCtx==0
3419    && db->nVdbeExec==0
3420    && !sqlite3VtabInSync(db)
3421   ){
3422     return 1;
3423   }
3424 #endif
3425   return 0;
3426 }
3427 
3428 /*
3429 ** Return true if it is not allowed to drop the given table
3430 */
3431 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
3432   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
3433     if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
3434     if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
3435     return 1;
3436   }
3437   if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
3438     return 1;
3439   }
3440   if( pTab->tabFlags & TF_Eponymous ){
3441     return 1;
3442   }
3443   return 0;
3444 }
3445 
3446 /*
3447 ** This routine is called to do the work of a DROP TABLE statement.
3448 ** pName is the name of the table to be dropped.
3449 */
3450 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
3451   Table *pTab;
3452   Vdbe *v;
3453   sqlite3 *db = pParse->db;
3454   int iDb;
3455 
3456   if( db->mallocFailed ){
3457     goto exit_drop_table;
3458   }
3459   assert( pParse->nErr==0 );
3460   assert( pName->nSrc==1 );
3461   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
3462   if( noErr ) db->suppressErr++;
3463   assert( isView==0 || isView==LOCATE_VIEW );
3464   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
3465   if( noErr ) db->suppressErr--;
3466 
3467   if( pTab==0 ){
3468     if( noErr ){
3469       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3470       sqlite3ForceNotReadOnly(pParse);
3471     }
3472     goto exit_drop_table;
3473   }
3474   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3475   assert( iDb>=0 && iDb<db->nDb );
3476 
3477   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3478   ** it is initialized.
3479   */
3480   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
3481     goto exit_drop_table;
3482   }
3483 #ifndef SQLITE_OMIT_AUTHORIZATION
3484   {
3485     int code;
3486     const char *zTab = SCHEMA_TABLE(iDb);
3487     const char *zDb = db->aDb[iDb].zDbSName;
3488     const char *zArg2 = 0;
3489     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
3490       goto exit_drop_table;
3491     }
3492     if( isView ){
3493       if( !OMIT_TEMPDB && iDb==1 ){
3494         code = SQLITE_DROP_TEMP_VIEW;
3495       }else{
3496         code = SQLITE_DROP_VIEW;
3497       }
3498 #ifndef SQLITE_OMIT_VIRTUALTABLE
3499     }else if( IsVirtual(pTab) ){
3500       code = SQLITE_DROP_VTABLE;
3501       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
3502 #endif
3503     }else{
3504       if( !OMIT_TEMPDB && iDb==1 ){
3505         code = SQLITE_DROP_TEMP_TABLE;
3506       }else{
3507         code = SQLITE_DROP_TABLE;
3508       }
3509     }
3510     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
3511       goto exit_drop_table;
3512     }
3513     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
3514       goto exit_drop_table;
3515     }
3516   }
3517 #endif
3518   if( tableMayNotBeDropped(db, pTab) ){
3519     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
3520     goto exit_drop_table;
3521   }
3522 
3523 #ifndef SQLITE_OMIT_VIEW
3524   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3525   ** on a table.
3526   */
3527   if( isView && !IsView(pTab) ){
3528     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
3529     goto exit_drop_table;
3530   }
3531   if( !isView && IsView(pTab) ){
3532     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
3533     goto exit_drop_table;
3534   }
3535 #endif
3536 
3537   /* Generate code to remove the table from the schema table
3538   ** on disk.
3539   */
3540   v = sqlite3GetVdbe(pParse);
3541   if( v ){
3542     sqlite3BeginWriteOperation(pParse, 1, iDb);
3543     if( !isView ){
3544       sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
3545       sqlite3FkDropTable(pParse, pName, pTab);
3546     }
3547     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
3548   }
3549 
3550 exit_drop_table:
3551   sqlite3SrcListDelete(db, pName);
3552 }
3553 
3554 /*
3555 ** This routine is called to create a new foreign key on the table
3556 ** currently under construction.  pFromCol determines which columns
3557 ** in the current table point to the foreign key.  If pFromCol==0 then
3558 ** connect the key to the last column inserted.  pTo is the name of
3559 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
3560 ** of tables in the parent pTo table.  flags contains all
3561 ** information about the conflict resolution algorithms specified
3562 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3563 **
3564 ** An FKey structure is created and added to the table currently
3565 ** under construction in the pParse->pNewTable field.
3566 **
3567 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
3568 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3569 */
3570 void sqlite3CreateForeignKey(
3571   Parse *pParse,       /* Parsing context */
3572   ExprList *pFromCol,  /* Columns in this table that point to other table */
3573   Token *pTo,          /* Name of the other table */
3574   ExprList *pToCol,    /* Columns in the other table */
3575   int flags            /* Conflict resolution algorithms. */
3576 ){
3577   sqlite3 *db = pParse->db;
3578 #ifndef SQLITE_OMIT_FOREIGN_KEY
3579   FKey *pFKey = 0;
3580   FKey *pNextTo;
3581   Table *p = pParse->pNewTable;
3582   i64 nByte;
3583   int i;
3584   int nCol;
3585   char *z;
3586 
3587   assert( pTo!=0 );
3588   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
3589   if( pFromCol==0 ){
3590     int iCol = p->nCol-1;
3591     if( NEVER(iCol<0) ) goto fk_end;
3592     if( pToCol && pToCol->nExpr!=1 ){
3593       sqlite3ErrorMsg(pParse, "foreign key on %s"
3594          " should reference only one column of table %T",
3595          p->aCol[iCol].zCnName, pTo);
3596       goto fk_end;
3597     }
3598     nCol = 1;
3599   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
3600     sqlite3ErrorMsg(pParse,
3601         "number of columns in foreign key does not match the number of "
3602         "columns in the referenced table");
3603     goto fk_end;
3604   }else{
3605     nCol = pFromCol->nExpr;
3606   }
3607   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
3608   if( pToCol ){
3609     for(i=0; i<pToCol->nExpr; i++){
3610       nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
3611     }
3612   }
3613   pFKey = sqlite3DbMallocZero(db, nByte );
3614   if( pFKey==0 ){
3615     goto fk_end;
3616   }
3617   pFKey->pFrom = p;
3618   assert( IsOrdinaryTable(p) );
3619   pFKey->pNextFrom = p->u.tab.pFKey;
3620   z = (char*)&pFKey->aCol[nCol];
3621   pFKey->zTo = z;
3622   if( IN_RENAME_OBJECT ){
3623     sqlite3RenameTokenMap(pParse, (void*)z, pTo);
3624   }
3625   memcpy(z, pTo->z, pTo->n);
3626   z[pTo->n] = 0;
3627   sqlite3Dequote(z);
3628   z += pTo->n+1;
3629   pFKey->nCol = nCol;
3630   if( pFromCol==0 ){
3631     pFKey->aCol[0].iFrom = p->nCol-1;
3632   }else{
3633     for(i=0; i<nCol; i++){
3634       int j;
3635       for(j=0; j<p->nCol; j++){
3636         if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
3637           pFKey->aCol[i].iFrom = j;
3638           break;
3639         }
3640       }
3641       if( j>=p->nCol ){
3642         sqlite3ErrorMsg(pParse,
3643           "unknown column \"%s\" in foreign key definition",
3644           pFromCol->a[i].zEName);
3645         goto fk_end;
3646       }
3647       if( IN_RENAME_OBJECT ){
3648         sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
3649       }
3650     }
3651   }
3652   if( pToCol ){
3653     for(i=0; i<nCol; i++){
3654       int n = sqlite3Strlen30(pToCol->a[i].zEName);
3655       pFKey->aCol[i].zCol = z;
3656       if( IN_RENAME_OBJECT ){
3657         sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
3658       }
3659       memcpy(z, pToCol->a[i].zEName, n);
3660       z[n] = 0;
3661       z += n+1;
3662     }
3663   }
3664   pFKey->isDeferred = 0;
3665   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
3666   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
3667 
3668   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
3669   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
3670       pFKey->zTo, (void *)pFKey
3671   );
3672   if( pNextTo==pFKey ){
3673     sqlite3OomFault(db);
3674     goto fk_end;
3675   }
3676   if( pNextTo ){
3677     assert( pNextTo->pPrevTo==0 );
3678     pFKey->pNextTo = pNextTo;
3679     pNextTo->pPrevTo = pFKey;
3680   }
3681 
3682   /* Link the foreign key to the table as the last step.
3683   */
3684   assert( IsOrdinaryTable(p) );
3685   p->u.tab.pFKey = pFKey;
3686   pFKey = 0;
3687 
3688 fk_end:
3689   sqlite3DbFree(db, pFKey);
3690 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3691   sqlite3ExprListDelete(db, pFromCol);
3692   sqlite3ExprListDelete(db, pToCol);
3693 }
3694 
3695 /*
3696 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3697 ** clause is seen as part of a foreign key definition.  The isDeferred
3698 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3699 ** The behavior of the most recently created foreign key is adjusted
3700 ** accordingly.
3701 */
3702 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
3703 #ifndef SQLITE_OMIT_FOREIGN_KEY
3704   Table *pTab;
3705   FKey *pFKey;
3706   if( (pTab = pParse->pNewTable)==0 ) return;
3707   if( NEVER(!IsOrdinaryTable(pTab)) ) return;
3708   if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
3709   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
3710   pFKey->isDeferred = (u8)isDeferred;
3711 #endif
3712 }
3713 
3714 /*
3715 ** Generate code that will erase and refill index *pIdx.  This is
3716 ** used to initialize a newly created index or to recompute the
3717 ** content of an index in response to a REINDEX command.
3718 **
3719 ** if memRootPage is not negative, it means that the index is newly
3720 ** created.  The register specified by memRootPage contains the
3721 ** root page number of the index.  If memRootPage is negative, then
3722 ** the index already exists and must be cleared before being refilled and
3723 ** the root page number of the index is taken from pIndex->tnum.
3724 */
3725 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
3726   Table *pTab = pIndex->pTable;  /* The table that is indexed */
3727   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
3728   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
3729   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
3730   int addr1;                     /* Address of top of loop */
3731   int addr2;                     /* Address to jump to for next iteration */
3732   Pgno tnum;                     /* Root page of index */
3733   int iPartIdxLabel;             /* Jump to this label to skip a row */
3734   Vdbe *v;                       /* Generate code into this virtual machine */
3735   KeyInfo *pKey;                 /* KeyInfo for index */
3736   int regRecord;                 /* Register holding assembled index record */
3737   sqlite3 *db = pParse->db;      /* The database connection */
3738   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3739 
3740 #ifndef SQLITE_OMIT_AUTHORIZATION
3741   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
3742       db->aDb[iDb].zDbSName ) ){
3743     return;
3744   }
3745 #endif
3746 
3747   /* Require a write-lock on the table to perform this operation */
3748   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
3749 
3750   v = sqlite3GetVdbe(pParse);
3751   if( v==0 ) return;
3752   if( memRootPage>=0 ){
3753     tnum = (Pgno)memRootPage;
3754   }else{
3755     tnum = pIndex->tnum;
3756   }
3757   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
3758   assert( pKey!=0 || pParse->nErr );
3759 
3760   /* Open the sorter cursor if we are to use one. */
3761   iSorter = pParse->nTab++;
3762   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
3763                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
3764 
3765   /* Open the table. Loop through all rows of the table, inserting index
3766   ** records into the sorter. */
3767   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3768   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
3769   regRecord = sqlite3GetTempReg(pParse);
3770   sqlite3MultiWrite(pParse);
3771 
3772   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
3773   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
3774   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
3775   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
3776   sqlite3VdbeJumpHere(v, addr1);
3777   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
3778   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
3779                     (char *)pKey, P4_KEYINFO);
3780   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
3781 
3782   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
3783   if( IsUniqueIndex(pIndex) ){
3784     int j2 = sqlite3VdbeGoto(v, 1);
3785     addr2 = sqlite3VdbeCurrentAddr(v);
3786     sqlite3VdbeVerifyAbortable(v, OE_Abort);
3787     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
3788                          pIndex->nKeyCol); VdbeCoverage(v);
3789     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
3790     sqlite3VdbeJumpHere(v, j2);
3791   }else{
3792     /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3793     ** abort. The exception is if one of the indexed expressions contains a
3794     ** user function that throws an exception when it is evaluated. But the
3795     ** overhead of adding a statement journal to a CREATE INDEX statement is
3796     ** very small (since most of the pages written do not contain content that
3797     ** needs to be restored if the statement aborts), so we call
3798     ** sqlite3MayAbort() for all CREATE INDEX statements.  */
3799     sqlite3MayAbort(pParse);
3800     addr2 = sqlite3VdbeCurrentAddr(v);
3801   }
3802   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
3803   if( !pIndex->bAscKeyBug ){
3804     /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3805     ** faster by avoiding unnecessary seeks.  But the optimization does
3806     ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3807     ** with DESC primary keys, since those indexes have there keys in
3808     ** a different order from the main table.
3809     ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3810     */
3811     sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
3812   }
3813   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
3814   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3815   sqlite3ReleaseTempReg(pParse, regRecord);
3816   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
3817   sqlite3VdbeJumpHere(v, addr1);
3818 
3819   sqlite3VdbeAddOp1(v, OP_Close, iTab);
3820   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3821   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3822 }
3823 
3824 /*
3825 ** Allocate heap space to hold an Index object with nCol columns.
3826 **
3827 ** Increase the allocation size to provide an extra nExtra bytes
3828 ** of 8-byte aligned space after the Index object and return a
3829 ** pointer to this extra space in *ppExtra.
3830 */
3831 Index *sqlite3AllocateIndexObject(
3832   sqlite3 *db,         /* Database connection */
3833   i16 nCol,            /* Total number of columns in the index */
3834   int nExtra,          /* Number of bytes of extra space to alloc */
3835   char **ppExtra       /* Pointer to the "extra" space */
3836 ){
3837   Index *p;            /* Allocated index object */
3838   int nByte;           /* Bytes of space for Index object + arrays */
3839 
3840   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
3841           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
3842           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
3843                  sizeof(i16)*nCol +            /* Index.aiColumn   */
3844                  sizeof(u8)*nCol);             /* Index.aSortOrder */
3845   p = sqlite3DbMallocZero(db, nByte + nExtra);
3846   if( p ){
3847     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3848     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3849     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3850     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
3851     p->aSortOrder = (u8*)pExtra;
3852     p->nColumn = nCol;
3853     p->nKeyCol = nCol - 1;
3854     *ppExtra = ((char*)p) + nByte;
3855   }
3856   return p;
3857 }
3858 
3859 /*
3860 ** If expression list pList contains an expression that was parsed with
3861 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3862 ** pParse and return non-zero. Otherwise, return zero.
3863 */
3864 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
3865   if( pList ){
3866     int i;
3867     for(i=0; i<pList->nExpr; i++){
3868       if( pList->a[i].bNulls ){
3869         u8 sf = pList->a[i].sortFlags;
3870         sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
3871             (sf==0 || sf==3) ? "FIRST" : "LAST"
3872         );
3873         return 1;
3874       }
3875     }
3876   }
3877   return 0;
3878 }
3879 
3880 /*
3881 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
3882 ** and pTblList is the name of the table that is to be indexed.  Both will
3883 ** be NULL for a primary key or an index that is created to satisfy a
3884 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
3885 ** as the table to be indexed.  pParse->pNewTable is a table that is
3886 ** currently being constructed by a CREATE TABLE statement.
3887 **
3888 ** pList is a list of columns to be indexed.  pList will be NULL if this
3889 ** is a primary key or unique-constraint on the most recent column added
3890 ** to the table currently under construction.
3891 */
3892 void sqlite3CreateIndex(
3893   Parse *pParse,     /* All information about this parse */
3894   Token *pName1,     /* First part of index name. May be NULL */
3895   Token *pName2,     /* Second part of index name. May be NULL */
3896   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3897   ExprList *pList,   /* A list of columns to be indexed */
3898   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3899   Token *pStart,     /* The CREATE token that begins this statement */
3900   Expr *pPIWhere,    /* WHERE clause for partial indices */
3901   int sortOrder,     /* Sort order of primary key when pList==NULL */
3902   int ifNotExist,    /* Omit error if index already exists */
3903   u8 idxType         /* The index type */
3904 ){
3905   Table *pTab = 0;     /* Table to be indexed */
3906   Index *pIndex = 0;   /* The index to be created */
3907   char *zName = 0;     /* Name of the index */
3908   int nName;           /* Number of characters in zName */
3909   int i, j;
3910   DbFixer sFix;        /* For assigning database names to pTable */
3911   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
3912   sqlite3 *db = pParse->db;
3913   Db *pDb;             /* The specific table containing the indexed database */
3914   int iDb;             /* Index of the database that is being written */
3915   Token *pName = 0;    /* Unqualified name of the index to create */
3916   struct ExprList_item *pListItem; /* For looping over pList */
3917   int nExtra = 0;                  /* Space allocated for zExtra[] */
3918   int nExtraCol;                   /* Number of extra columns needed */
3919   char *zExtra = 0;                /* Extra space after the Index object */
3920   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
3921 
3922   assert( db->pParse==pParse );
3923   if( pParse->nErr ){
3924     goto exit_create_index;
3925   }
3926   assert( db->mallocFailed==0 );
3927   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3928     goto exit_create_index;
3929   }
3930   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3931     goto exit_create_index;
3932   }
3933   if( sqlite3HasExplicitNulls(pParse, pList) ){
3934     goto exit_create_index;
3935   }
3936 
3937   /*
3938   ** Find the table that is to be indexed.  Return early if not found.
3939   */
3940   if( pTblName!=0 ){
3941 
3942     /* Use the two-part index name to determine the database
3943     ** to search for the table. 'Fix' the table name to this db
3944     ** before looking up the table.
3945     */
3946     assert( pName1 && pName2 );
3947     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3948     if( iDb<0 ) goto exit_create_index;
3949     assert( pName && pName->z );
3950 
3951 #ifndef SQLITE_OMIT_TEMPDB
3952     /* If the index name was unqualified, check if the table
3953     ** is a temp table. If so, set the database to 1. Do not do this
3954     ** if initialising a database schema.
3955     */
3956     if( !db->init.busy ){
3957       pTab = sqlite3SrcListLookup(pParse, pTblName);
3958       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3959         iDb = 1;
3960       }
3961     }
3962 #endif
3963 
3964     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3965     if( sqlite3FixSrcList(&sFix, pTblName) ){
3966       /* Because the parser constructs pTblName from a single identifier,
3967       ** sqlite3FixSrcList can never fail. */
3968       assert(0);
3969     }
3970     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3971     assert( db->mallocFailed==0 || pTab==0 );
3972     if( pTab==0 ) goto exit_create_index;
3973     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3974       sqlite3ErrorMsg(pParse,
3975            "cannot create a TEMP index on non-TEMP table \"%s\"",
3976            pTab->zName);
3977       goto exit_create_index;
3978     }
3979     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3980   }else{
3981     assert( pName==0 );
3982     assert( pStart==0 );
3983     pTab = pParse->pNewTable;
3984     if( !pTab ) goto exit_create_index;
3985     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3986   }
3987   pDb = &db->aDb[iDb];
3988 
3989   assert( pTab!=0 );
3990   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3991        && db->init.busy==0
3992        && pTblName!=0
3993 #if SQLITE_USER_AUTHENTICATION
3994        && sqlite3UserAuthTable(pTab->zName)==0
3995 #endif
3996   ){
3997     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3998     goto exit_create_index;
3999   }
4000 #ifndef SQLITE_OMIT_VIEW
4001   if( IsView(pTab) ){
4002     sqlite3ErrorMsg(pParse, "views may not be indexed");
4003     goto exit_create_index;
4004   }
4005 #endif
4006 #ifndef SQLITE_OMIT_VIRTUALTABLE
4007   if( IsVirtual(pTab) ){
4008     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
4009     goto exit_create_index;
4010   }
4011 #endif
4012 
4013   /*
4014   ** Find the name of the index.  Make sure there is not already another
4015   ** index or table with the same name.
4016   **
4017   ** Exception:  If we are reading the names of permanent indices from the
4018   ** sqlite_schema table (because some other process changed the schema) and
4019   ** one of the index names collides with the name of a temporary table or
4020   ** index, then we will continue to process this index.
4021   **
4022   ** If pName==0 it means that we are
4023   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
4024   ** own name.
4025   */
4026   if( pName ){
4027     zName = sqlite3NameFromToken(db, pName);
4028     if( zName==0 ) goto exit_create_index;
4029     assert( pName->z!=0 );
4030     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
4031       goto exit_create_index;
4032     }
4033     if( !IN_RENAME_OBJECT ){
4034       if( !db->init.busy ){
4035         if( sqlite3FindTable(db, zName, 0)!=0 ){
4036           sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
4037           goto exit_create_index;
4038         }
4039       }
4040       if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
4041         if( !ifNotExist ){
4042           sqlite3ErrorMsg(pParse, "index %s already exists", zName);
4043         }else{
4044           assert( !db->init.busy );
4045           sqlite3CodeVerifySchema(pParse, iDb);
4046           sqlite3ForceNotReadOnly(pParse);
4047         }
4048         goto exit_create_index;
4049       }
4050     }
4051   }else{
4052     int n;
4053     Index *pLoop;
4054     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
4055     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
4056     if( zName==0 ){
4057       goto exit_create_index;
4058     }
4059 
4060     /* Automatic index names generated from within sqlite3_declare_vtab()
4061     ** must have names that are distinct from normal automatic index names.
4062     ** The following statement converts "sqlite3_autoindex..." into
4063     ** "sqlite3_butoindex..." in order to make the names distinct.
4064     ** The "vtab_err.test" test demonstrates the need of this statement. */
4065     if( IN_SPECIAL_PARSE ) zName[7]++;
4066   }
4067 
4068   /* Check for authorization to create an index.
4069   */
4070 #ifndef SQLITE_OMIT_AUTHORIZATION
4071   if( !IN_RENAME_OBJECT ){
4072     const char *zDb = pDb->zDbSName;
4073     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
4074       goto exit_create_index;
4075     }
4076     i = SQLITE_CREATE_INDEX;
4077     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
4078     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
4079       goto exit_create_index;
4080     }
4081   }
4082 #endif
4083 
4084   /* If pList==0, it means this routine was called to make a primary
4085   ** key out of the last column added to the table under construction.
4086   ** So create a fake list to simulate this.
4087   */
4088   if( pList==0 ){
4089     Token prevCol;
4090     Column *pCol = &pTab->aCol[pTab->nCol-1];
4091     pCol->colFlags |= COLFLAG_UNIQUE;
4092     sqlite3TokenInit(&prevCol, pCol->zCnName);
4093     pList = sqlite3ExprListAppend(pParse, 0,
4094               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
4095     if( pList==0 ) goto exit_create_index;
4096     assert( pList->nExpr==1 );
4097     sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
4098   }else{
4099     sqlite3ExprListCheckLength(pParse, pList, "index");
4100     if( pParse->nErr ) goto exit_create_index;
4101   }
4102 
4103   /* Figure out how many bytes of space are required to store explicitly
4104   ** specified collation sequence names.
4105   */
4106   for(i=0; i<pList->nExpr; i++){
4107     Expr *pExpr = pList->a[i].pExpr;
4108     assert( pExpr!=0 );
4109     if( pExpr->op==TK_COLLATE ){
4110       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4111       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
4112     }
4113   }
4114 
4115   /*
4116   ** Allocate the index structure.
4117   */
4118   nName = sqlite3Strlen30(zName);
4119   nExtraCol = pPk ? pPk->nKeyCol : 1;
4120   assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
4121   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
4122                                       nName + nExtra + 1, &zExtra);
4123   if( db->mallocFailed ){
4124     goto exit_create_index;
4125   }
4126   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
4127   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
4128   pIndex->zName = zExtra;
4129   zExtra += nName + 1;
4130   memcpy(pIndex->zName, zName, nName+1);
4131   pIndex->pTable = pTab;
4132   pIndex->onError = (u8)onError;
4133   pIndex->uniqNotNull = onError!=OE_None;
4134   pIndex->idxType = idxType;
4135   pIndex->pSchema = db->aDb[iDb].pSchema;
4136   pIndex->nKeyCol = pList->nExpr;
4137   if( pPIWhere ){
4138     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
4139     pIndex->pPartIdxWhere = pPIWhere;
4140     pPIWhere = 0;
4141   }
4142   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4143 
4144   /* Check to see if we should honor DESC requests on index columns
4145   */
4146   if( pDb->pSchema->file_format>=4 ){
4147     sortOrderMask = -1;   /* Honor DESC */
4148   }else{
4149     sortOrderMask = 0;    /* Ignore DESC */
4150   }
4151 
4152   /* Analyze the list of expressions that form the terms of the index and
4153   ** report any errors.  In the common case where the expression is exactly
4154   ** a table column, store that column in aiColumn[].  For general expressions,
4155   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4156   **
4157   ** TODO: Issue a warning if two or more columns of the index are identical.
4158   ** TODO: Issue a warning if the table primary key is used as part of the
4159   ** index key.
4160   */
4161   pListItem = pList->a;
4162   if( IN_RENAME_OBJECT ){
4163     pIndex->aColExpr = pList;
4164     pList = 0;
4165   }
4166   for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
4167     Expr *pCExpr;                  /* The i-th index expression */
4168     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
4169     const char *zColl;             /* Collation sequence name */
4170 
4171     sqlite3StringToId(pListItem->pExpr);
4172     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
4173     if( pParse->nErr ) goto exit_create_index;
4174     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
4175     if( pCExpr->op!=TK_COLUMN ){
4176       if( pTab==pParse->pNewTable ){
4177         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
4178                                 "UNIQUE constraints");
4179         goto exit_create_index;
4180       }
4181       if( pIndex->aColExpr==0 ){
4182         pIndex->aColExpr = pList;
4183         pList = 0;
4184       }
4185       j = XN_EXPR;
4186       pIndex->aiColumn[i] = XN_EXPR;
4187       pIndex->uniqNotNull = 0;
4188     }else{
4189       j = pCExpr->iColumn;
4190       assert( j<=0x7fff );
4191       if( j<0 ){
4192         j = pTab->iPKey;
4193       }else{
4194         if( pTab->aCol[j].notNull==0 ){
4195           pIndex->uniqNotNull = 0;
4196         }
4197         if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
4198           pIndex->bHasVCol = 1;
4199         }
4200       }
4201       pIndex->aiColumn[i] = (i16)j;
4202     }
4203     zColl = 0;
4204     if( pListItem->pExpr->op==TK_COLLATE ){
4205       int nColl;
4206       assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
4207       zColl = pListItem->pExpr->u.zToken;
4208       nColl = sqlite3Strlen30(zColl) + 1;
4209       assert( nExtra>=nColl );
4210       memcpy(zExtra, zColl, nColl);
4211       zColl = zExtra;
4212       zExtra += nColl;
4213       nExtra -= nColl;
4214     }else if( j>=0 ){
4215       zColl = sqlite3ColumnColl(&pTab->aCol[j]);
4216     }
4217     if( !zColl ) zColl = sqlite3StrBINARY;
4218     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
4219       goto exit_create_index;
4220     }
4221     pIndex->azColl[i] = zColl;
4222     requestedSortOrder = pListItem->sortFlags & sortOrderMask;
4223     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
4224   }
4225 
4226   /* Append the table key to the end of the index.  For WITHOUT ROWID
4227   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
4228   ** normal tables (when pPk==0) this will be the rowid.
4229   */
4230   if( pPk ){
4231     for(j=0; j<pPk->nKeyCol; j++){
4232       int x = pPk->aiColumn[j];
4233       assert( x>=0 );
4234       if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
4235         pIndex->nColumn--;
4236       }else{
4237         testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
4238         pIndex->aiColumn[i] = x;
4239         pIndex->azColl[i] = pPk->azColl[j];
4240         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
4241         i++;
4242       }
4243     }
4244     assert( i==pIndex->nColumn );
4245   }else{
4246     pIndex->aiColumn[i] = XN_ROWID;
4247     pIndex->azColl[i] = sqlite3StrBINARY;
4248   }
4249   sqlite3DefaultRowEst(pIndex);
4250   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
4251 
4252   /* If this index contains every column of its table, then mark
4253   ** it as a covering index */
4254   assert( HasRowid(pTab)
4255       || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
4256   recomputeColumnsNotIndexed(pIndex);
4257   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
4258     pIndex->isCovering = 1;
4259     for(j=0; j<pTab->nCol; j++){
4260       if( j==pTab->iPKey ) continue;
4261       if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
4262       pIndex->isCovering = 0;
4263       break;
4264     }
4265   }
4266 
4267   if( pTab==pParse->pNewTable ){
4268     /* This routine has been called to create an automatic index as a
4269     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4270     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4271     ** i.e. one of:
4272     **
4273     ** CREATE TABLE t(x PRIMARY KEY, y);
4274     ** CREATE TABLE t(x, y, UNIQUE(x, y));
4275     **
4276     ** Either way, check to see if the table already has such an index. If
4277     ** so, don't bother creating this one. This only applies to
4278     ** automatically created indices. Users can do as they wish with
4279     ** explicit indices.
4280     **
4281     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4282     ** (and thus suppressing the second one) even if they have different
4283     ** sort orders.
4284     **
4285     ** If there are different collating sequences or if the columns of
4286     ** the constraint occur in different orders, then the constraints are
4287     ** considered distinct and both result in separate indices.
4288     */
4289     Index *pIdx;
4290     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4291       int k;
4292       assert( IsUniqueIndex(pIdx) );
4293       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
4294       assert( IsUniqueIndex(pIndex) );
4295 
4296       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
4297       for(k=0; k<pIdx->nKeyCol; k++){
4298         const char *z1;
4299         const char *z2;
4300         assert( pIdx->aiColumn[k]>=0 );
4301         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
4302         z1 = pIdx->azColl[k];
4303         z2 = pIndex->azColl[k];
4304         if( sqlite3StrICmp(z1, z2) ) break;
4305       }
4306       if( k==pIdx->nKeyCol ){
4307         if( pIdx->onError!=pIndex->onError ){
4308           /* This constraint creates the same index as a previous
4309           ** constraint specified somewhere in the CREATE TABLE statement.
4310           ** However the ON CONFLICT clauses are different. If both this
4311           ** constraint and the previous equivalent constraint have explicit
4312           ** ON CONFLICT clauses this is an error. Otherwise, use the
4313           ** explicitly specified behavior for the index.
4314           */
4315           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
4316             sqlite3ErrorMsg(pParse,
4317                 "conflicting ON CONFLICT clauses specified", 0);
4318           }
4319           if( pIdx->onError==OE_Default ){
4320             pIdx->onError = pIndex->onError;
4321           }
4322         }
4323         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
4324         if( IN_RENAME_OBJECT ){
4325           pIndex->pNext = pParse->pNewIndex;
4326           pParse->pNewIndex = pIndex;
4327           pIndex = 0;
4328         }
4329         goto exit_create_index;
4330       }
4331     }
4332   }
4333 
4334   if( !IN_RENAME_OBJECT ){
4335 
4336     /* Link the new Index structure to its table and to the other
4337     ** in-memory database structures.
4338     */
4339     assert( pParse->nErr==0 );
4340     if( db->init.busy ){
4341       Index *p;
4342       assert( !IN_SPECIAL_PARSE );
4343       assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
4344       if( pTblName!=0 ){
4345         pIndex->tnum = db->init.newTnum;
4346         if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
4347           sqlite3ErrorMsg(pParse, "invalid rootpage");
4348           pParse->rc = SQLITE_CORRUPT_BKPT;
4349           goto exit_create_index;
4350         }
4351       }
4352       p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
4353           pIndex->zName, pIndex);
4354       if( p ){
4355         assert( p==pIndex );  /* Malloc must have failed */
4356         sqlite3OomFault(db);
4357         goto exit_create_index;
4358       }
4359       db->mDbFlags |= DBFLAG_SchemaChange;
4360     }
4361 
4362     /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4363     ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4364     ** emit code to allocate the index rootpage on disk and make an entry for
4365     ** the index in the sqlite_schema table and populate the index with
4366     ** content.  But, do not do this if we are simply reading the sqlite_schema
4367     ** table to parse the schema, or if this index is the PRIMARY KEY index
4368     ** of a WITHOUT ROWID table.
4369     **
4370     ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4371     ** or UNIQUE index in a CREATE TABLE statement.  Since the table
4372     ** has just been created, it contains no data and the index initialization
4373     ** step can be skipped.
4374     */
4375     else if( HasRowid(pTab) || pTblName!=0 ){
4376       Vdbe *v;
4377       char *zStmt;
4378       int iMem = ++pParse->nMem;
4379 
4380       v = sqlite3GetVdbe(pParse);
4381       if( v==0 ) goto exit_create_index;
4382 
4383       sqlite3BeginWriteOperation(pParse, 1, iDb);
4384 
4385       /* Create the rootpage for the index using CreateIndex. But before
4386       ** doing so, code a Noop instruction and store its address in
4387       ** Index.tnum. This is required in case this index is actually a
4388       ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4389       ** that case the convertToWithoutRowidTable() routine will replace
4390       ** the Noop with a Goto to jump over the VDBE code generated below. */
4391       pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
4392       sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
4393 
4394       /* Gather the complete text of the CREATE INDEX statement into
4395       ** the zStmt variable
4396       */
4397       assert( pName!=0 || pStart==0 );
4398       if( pStart ){
4399         int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
4400         if( pName->z[n-1]==';' ) n--;
4401         /* A named index with an explicit CREATE INDEX statement */
4402         zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
4403             onError==OE_None ? "" : " UNIQUE", n, pName->z);
4404       }else{
4405         /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4406         /* zStmt = sqlite3MPrintf(""); */
4407         zStmt = 0;
4408       }
4409 
4410       /* Add an entry in sqlite_schema for this index
4411       */
4412       sqlite3NestedParse(pParse,
4413          "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
4414          db->aDb[iDb].zDbSName,
4415          pIndex->zName,
4416          pTab->zName,
4417          iMem,
4418          zStmt
4419       );
4420       sqlite3DbFree(db, zStmt);
4421 
4422       /* Fill the index with data and reparse the schema. Code an OP_Expire
4423       ** to invalidate all pre-compiled statements.
4424       */
4425       if( pTblName ){
4426         sqlite3RefillIndex(pParse, pIndex, iMem);
4427         sqlite3ChangeCookie(pParse, iDb);
4428         sqlite3VdbeAddParseSchemaOp(v, iDb,
4429             sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
4430         sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
4431       }
4432 
4433       sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
4434     }
4435   }
4436   if( db->init.busy || pTblName==0 ){
4437     pIndex->pNext = pTab->pIndex;
4438     pTab->pIndex = pIndex;
4439     pIndex = 0;
4440   }
4441   else if( IN_RENAME_OBJECT ){
4442     assert( pParse->pNewIndex==0 );
4443     pParse->pNewIndex = pIndex;
4444     pIndex = 0;
4445   }
4446 
4447   /* Clean up before exiting */
4448 exit_create_index:
4449   if( pIndex ) sqlite3FreeIndex(db, pIndex);
4450   if( pTab ){
4451     /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4452     ** The list was already ordered when this routine was entered, so at this
4453     ** point at most a single index (the newly added index) will be out of
4454     ** order.  So we have to reorder at most one index. */
4455     Index **ppFrom;
4456     Index *pThis;
4457     for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
4458       Index *pNext;
4459       if( pThis->onError!=OE_Replace ) continue;
4460       while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
4461         *ppFrom = pNext;
4462         pThis->pNext = pNext->pNext;
4463         pNext->pNext = pThis;
4464         ppFrom = &pNext->pNext;
4465       }
4466       break;
4467     }
4468 #ifdef SQLITE_DEBUG
4469     /* Verify that all REPLACE indexes really are now at the end
4470     ** of the index list.  In other words, no other index type ever
4471     ** comes after a REPLACE index on the list. */
4472     for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
4473       assert( pThis->onError!=OE_Replace
4474            || pThis->pNext==0
4475            || pThis->pNext->onError==OE_Replace );
4476     }
4477 #endif
4478   }
4479   sqlite3ExprDelete(db, pPIWhere);
4480   sqlite3ExprListDelete(db, pList);
4481   sqlite3SrcListDelete(db, pTblName);
4482   sqlite3DbFree(db, zName);
4483 }
4484 
4485 /*
4486 ** Fill the Index.aiRowEst[] array with default information - information
4487 ** to be used when we have not run the ANALYZE command.
4488 **
4489 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4490 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
4491 ** number of rows in the table that match any particular value of the
4492 ** first column of the index.  aiRowEst[2] is an estimate of the number
4493 ** of rows that match any particular combination of the first 2 columns
4494 ** of the index.  And so forth.  It must always be the case that
4495 *
4496 **           aiRowEst[N]<=aiRowEst[N-1]
4497 **           aiRowEst[N]>=1
4498 **
4499 ** Apart from that, we have little to go on besides intuition as to
4500 ** how aiRowEst[] should be initialized.  The numbers generated here
4501 ** are based on typical values found in actual indices.
4502 */
4503 void sqlite3DefaultRowEst(Index *pIdx){
4504                /*                10,  9,  8,  7,  6 */
4505   static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
4506   LogEst *a = pIdx->aiRowLogEst;
4507   LogEst x;
4508   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
4509   int i;
4510 
4511   /* Indexes with default row estimates should not have stat1 data */
4512   assert( !pIdx->hasStat1 );
4513 
4514   /* Set the first entry (number of rows in the index) to the estimated
4515   ** number of rows in the table, or half the number of rows in the table
4516   ** for a partial index.
4517   **
4518   ** 2020-05-27:  If some of the stat data is coming from the sqlite_stat1
4519   ** table but other parts we are having to guess at, then do not let the
4520   ** estimated number of rows in the table be less than 1000 (LogEst 99).
4521   ** Failure to do this can cause the indexes for which we do not have
4522   ** stat1 data to be ignored by the query planner.
4523   */
4524   x = pIdx->pTable->nRowLogEst;
4525   assert( 99==sqlite3LogEst(1000) );
4526   if( x<99 ){
4527     pIdx->pTable->nRowLogEst = x = 99;
4528   }
4529   if( pIdx->pPartIdxWhere!=0 ){ x -= 10;  assert( 10==sqlite3LogEst(2) ); }
4530   a[0] = x;
4531 
4532   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4533   ** 6 and each subsequent value (if any) is 5.  */
4534   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
4535   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
4536     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
4537   }
4538 
4539   assert( 0==sqlite3LogEst(1) );
4540   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
4541 }
4542 
4543 /*
4544 ** This routine will drop an existing named index.  This routine
4545 ** implements the DROP INDEX statement.
4546 */
4547 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
4548   Index *pIndex;
4549   Vdbe *v;
4550   sqlite3 *db = pParse->db;
4551   int iDb;
4552 
4553   if( db->mallocFailed ){
4554     goto exit_drop_index;
4555   }
4556   assert( pParse->nErr==0 );   /* Never called with prior non-OOM errors */
4557   assert( pName->nSrc==1 );
4558   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4559     goto exit_drop_index;
4560   }
4561   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
4562   if( pIndex==0 ){
4563     if( !ifExists ){
4564       sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
4565     }else{
4566       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
4567       sqlite3ForceNotReadOnly(pParse);
4568     }
4569     pParse->checkSchema = 1;
4570     goto exit_drop_index;
4571   }
4572   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
4573     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
4574       "or PRIMARY KEY constraint cannot be dropped", 0);
4575     goto exit_drop_index;
4576   }
4577   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
4578 #ifndef SQLITE_OMIT_AUTHORIZATION
4579   {
4580     int code = SQLITE_DROP_INDEX;
4581     Table *pTab = pIndex->pTable;
4582     const char *zDb = db->aDb[iDb].zDbSName;
4583     const char *zTab = SCHEMA_TABLE(iDb);
4584     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
4585       goto exit_drop_index;
4586     }
4587     if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
4588     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
4589       goto exit_drop_index;
4590     }
4591   }
4592 #endif
4593 
4594   /* Generate code to remove the index and from the schema table */
4595   v = sqlite3GetVdbe(pParse);
4596   if( v ){
4597     sqlite3BeginWriteOperation(pParse, 1, iDb);
4598     sqlite3NestedParse(pParse,
4599        "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
4600        db->aDb[iDb].zDbSName, pIndex->zName
4601     );
4602     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
4603     sqlite3ChangeCookie(pParse, iDb);
4604     destroyRootPage(pParse, pIndex->tnum, iDb);
4605     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
4606   }
4607 
4608 exit_drop_index:
4609   sqlite3SrcListDelete(db, pName);
4610 }
4611 
4612 /*
4613 ** pArray is a pointer to an array of objects. Each object in the
4614 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4615 ** to extend the array so that there is space for a new object at the end.
4616 **
4617 ** When this function is called, *pnEntry contains the current size of
4618 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4619 ** in total).
4620 **
4621 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4622 ** space allocated for the new object is zeroed, *pnEntry updated to
4623 ** reflect the new size of the array and a pointer to the new allocation
4624 ** returned. *pIdx is set to the index of the new array entry in this case.
4625 **
4626 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4627 ** unchanged and a copy of pArray returned.
4628 */
4629 void *sqlite3ArrayAllocate(
4630   sqlite3 *db,      /* Connection to notify of malloc failures */
4631   void *pArray,     /* Array of objects.  Might be reallocated */
4632   int szEntry,      /* Size of each object in the array */
4633   int *pnEntry,     /* Number of objects currently in use */
4634   int *pIdx         /* Write the index of a new slot here */
4635 ){
4636   char *z;
4637   sqlite3_int64 n = *pIdx = *pnEntry;
4638   if( (n & (n-1))==0 ){
4639     sqlite3_int64 sz = (n==0) ? 1 : 2*n;
4640     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
4641     if( pNew==0 ){
4642       *pIdx = -1;
4643       return pArray;
4644     }
4645     pArray = pNew;
4646   }
4647   z = (char*)pArray;
4648   memset(&z[n * szEntry], 0, szEntry);
4649   ++*pnEntry;
4650   return pArray;
4651 }
4652 
4653 /*
4654 ** Append a new element to the given IdList.  Create a new IdList if
4655 ** need be.
4656 **
4657 ** A new IdList is returned, or NULL if malloc() fails.
4658 */
4659 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
4660   sqlite3 *db = pParse->db;
4661   int i;
4662   if( pList==0 ){
4663     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
4664     if( pList==0 ) return 0;
4665   }
4666   pList->a = sqlite3ArrayAllocate(
4667       db,
4668       pList->a,
4669       sizeof(pList->a[0]),
4670       &pList->nId,
4671       &i
4672   );
4673   if( i<0 ){
4674     sqlite3IdListDelete(db, pList);
4675     return 0;
4676   }
4677   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
4678   if( IN_RENAME_OBJECT && pList->a[i].zName ){
4679     sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
4680   }
4681   return pList;
4682 }
4683 
4684 /*
4685 ** Delete an IdList.
4686 */
4687 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
4688   int i;
4689   if( pList==0 ) return;
4690   for(i=0; i<pList->nId; i++){
4691     sqlite3DbFree(db, pList->a[i].zName);
4692   }
4693   sqlite3DbFree(db, pList->a);
4694   sqlite3DbFreeNN(db, pList);
4695 }
4696 
4697 /*
4698 ** Return the index in pList of the identifier named zId.  Return -1
4699 ** if not found.
4700 */
4701 int sqlite3IdListIndex(IdList *pList, const char *zName){
4702   int i;
4703   if( pList==0 ) return -1;
4704   for(i=0; i<pList->nId; i++){
4705     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
4706   }
4707   return -1;
4708 }
4709 
4710 /*
4711 ** Maximum size of a SrcList object.
4712 ** The SrcList object is used to represent the FROM clause of a
4713 ** SELECT statement, and the query planner cannot deal with more
4714 ** than 64 tables in a join.  So any value larger than 64 here
4715 ** is sufficient for most uses.  Smaller values, like say 10, are
4716 ** appropriate for small and memory-limited applications.
4717 */
4718 #ifndef SQLITE_MAX_SRCLIST
4719 # define SQLITE_MAX_SRCLIST 200
4720 #endif
4721 
4722 /*
4723 ** Expand the space allocated for the given SrcList object by
4724 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
4725 ** New slots are zeroed.
4726 **
4727 ** For example, suppose a SrcList initially contains two entries: A,B.
4728 ** To append 3 new entries onto the end, do this:
4729 **
4730 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4731 **
4732 ** After the call above it would contain:  A, B, nil, nil, nil.
4733 ** If the iStart argument had been 1 instead of 2, then the result
4734 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
4735 ** the iStart value would be 0.  The result then would
4736 ** be: nil, nil, nil, A, B.
4737 **
4738 ** If a memory allocation fails or the SrcList becomes too large, leave
4739 ** the original SrcList unchanged, return NULL, and leave an error message
4740 ** in pParse.
4741 */
4742 SrcList *sqlite3SrcListEnlarge(
4743   Parse *pParse,     /* Parsing context into which errors are reported */
4744   SrcList *pSrc,     /* The SrcList to be enlarged */
4745   int nExtra,        /* Number of new slots to add to pSrc->a[] */
4746   int iStart         /* Index in pSrc->a[] of first new slot */
4747 ){
4748   int i;
4749 
4750   /* Sanity checking on calling parameters */
4751   assert( iStart>=0 );
4752   assert( nExtra>=1 );
4753   assert( pSrc!=0 );
4754   assert( iStart<=pSrc->nSrc );
4755 
4756   /* Allocate additional space if needed */
4757   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
4758     SrcList *pNew;
4759     sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
4760     sqlite3 *db = pParse->db;
4761 
4762     if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
4763       sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
4764                       SQLITE_MAX_SRCLIST);
4765       return 0;
4766     }
4767     if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
4768     pNew = sqlite3DbRealloc(db, pSrc,
4769                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
4770     if( pNew==0 ){
4771       assert( db->mallocFailed );
4772       return 0;
4773     }
4774     pSrc = pNew;
4775     pSrc->nAlloc = nAlloc;
4776   }
4777 
4778   /* Move existing slots that come after the newly inserted slots
4779   ** out of the way */
4780   for(i=pSrc->nSrc-1; i>=iStart; i--){
4781     pSrc->a[i+nExtra] = pSrc->a[i];
4782   }
4783   pSrc->nSrc += nExtra;
4784 
4785   /* Zero the newly allocated slots */
4786   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
4787   for(i=iStart; i<iStart+nExtra; i++){
4788     pSrc->a[i].iCursor = -1;
4789   }
4790 
4791   /* Return a pointer to the enlarged SrcList */
4792   return pSrc;
4793 }
4794 
4795 
4796 /*
4797 ** Append a new table name to the given SrcList.  Create a new SrcList if
4798 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
4799 **
4800 ** A SrcList is returned, or NULL if there is an OOM error or if the
4801 ** SrcList grows to large.  The returned
4802 ** SrcList might be the same as the SrcList that was input or it might be
4803 ** a new one.  If an OOM error does occurs, then the prior value of pList
4804 ** that is input to this routine is automatically freed.
4805 **
4806 ** If pDatabase is not null, it means that the table has an optional
4807 ** database name prefix.  Like this:  "database.table".  The pDatabase
4808 ** points to the table name and the pTable points to the database name.
4809 ** The SrcList.a[].zName field is filled with the table name which might
4810 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4811 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4812 ** or with NULL if no database is specified.
4813 **
4814 ** In other words, if call like this:
4815 **
4816 **         sqlite3SrcListAppend(D,A,B,0);
4817 **
4818 ** Then B is a table name and the database name is unspecified.  If called
4819 ** like this:
4820 **
4821 **         sqlite3SrcListAppend(D,A,B,C);
4822 **
4823 ** Then C is the table name and B is the database name.  If C is defined
4824 ** then so is B.  In other words, we never have a case where:
4825 **
4826 **         sqlite3SrcListAppend(D,A,0,C);
4827 **
4828 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
4829 ** before being added to the SrcList.
4830 */
4831 SrcList *sqlite3SrcListAppend(
4832   Parse *pParse,      /* Parsing context, in which errors are reported */
4833   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
4834   Token *pTable,      /* Table to append */
4835   Token *pDatabase    /* Database of the table */
4836 ){
4837   SrcItem *pItem;
4838   sqlite3 *db;
4839   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
4840   assert( pParse!=0 );
4841   assert( pParse->db!=0 );
4842   db = pParse->db;
4843   if( pList==0 ){
4844     pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
4845     if( pList==0 ) return 0;
4846     pList->nAlloc = 1;
4847     pList->nSrc = 1;
4848     memset(&pList->a[0], 0, sizeof(pList->a[0]));
4849     pList->a[0].iCursor = -1;
4850   }else{
4851     SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
4852     if( pNew==0 ){
4853       sqlite3SrcListDelete(db, pList);
4854       return 0;
4855     }else{
4856       pList = pNew;
4857     }
4858   }
4859   pItem = &pList->a[pList->nSrc-1];
4860   if( pDatabase && pDatabase->z==0 ){
4861     pDatabase = 0;
4862   }
4863   if( pDatabase ){
4864     pItem->zName = sqlite3NameFromToken(db, pDatabase);
4865     pItem->zDatabase = sqlite3NameFromToken(db, pTable);
4866   }else{
4867     pItem->zName = sqlite3NameFromToken(db, pTable);
4868     pItem->zDatabase = 0;
4869   }
4870   return pList;
4871 }
4872 
4873 /*
4874 ** Assign VdbeCursor index numbers to all tables in a SrcList
4875 */
4876 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
4877   int i;
4878   SrcItem *pItem;
4879   assert( pList || pParse->db->mallocFailed );
4880   if( ALWAYS(pList) ){
4881     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4882       if( pItem->iCursor>=0 ) continue;
4883       pItem->iCursor = pParse->nTab++;
4884       if( pItem->pSelect ){
4885         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4886       }
4887     }
4888   }
4889 }
4890 
4891 /*
4892 ** Delete an entire SrcList including all its substructure.
4893 */
4894 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4895   int i;
4896   SrcItem *pItem;
4897   if( pList==0 ) return;
4898   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4899     if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase);
4900     sqlite3DbFree(db, pItem->zName);
4901     if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias);
4902     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4903     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4904     sqlite3DeleteTable(db, pItem->pTab);
4905     if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
4906     if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn);
4907     if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing);
4908   }
4909   sqlite3DbFreeNN(db, pList);
4910 }
4911 
4912 /*
4913 ** This routine is called by the parser to add a new term to the
4914 ** end of a growing FROM clause.  The "p" parameter is the part of
4915 ** the FROM clause that has already been constructed.  "p" is NULL
4916 ** if this is the first term of the FROM clause.  pTable and pDatabase
4917 ** are the name of the table and database named in the FROM clause term.
4918 ** pDatabase is NULL if the database name qualifier is missing - the
4919 ** usual case.  If the term has an alias, then pAlias points to the
4920 ** alias token.  If the term is a subquery, then pSubquery is the
4921 ** SELECT statement that the subquery encodes.  The pTable and
4922 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
4923 ** parameters are the content of the ON and USING clauses.
4924 **
4925 ** Return a new SrcList which encodes is the FROM with the new
4926 ** term added.
4927 */
4928 SrcList *sqlite3SrcListAppendFromTerm(
4929   Parse *pParse,          /* Parsing context */
4930   SrcList *p,             /* The left part of the FROM clause already seen */
4931   Token *pTable,          /* Name of the table to add to the FROM clause */
4932   Token *pDatabase,       /* Name of the database containing pTable */
4933   Token *pAlias,          /* The right-hand side of the AS subexpression */
4934   Select *pSubquery,      /* A subquery used in place of a table name */
4935   Expr *pOn,              /* The ON clause of a join */
4936   IdList *pUsing          /* The USING clause of a join */
4937 ){
4938   SrcItem *pItem;
4939   sqlite3 *db = pParse->db;
4940   if( !p && (pOn || pUsing) ){
4941     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4942       (pOn ? "ON" : "USING")
4943     );
4944     goto append_from_error;
4945   }
4946   p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4947   if( p==0 ){
4948     goto append_from_error;
4949   }
4950   assert( p->nSrc>0 );
4951   pItem = &p->a[p->nSrc-1];
4952   assert( (pTable==0)==(pDatabase==0) );
4953   assert( pItem->zName==0 || pDatabase!=0 );
4954   if( IN_RENAME_OBJECT && pItem->zName ){
4955     Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4956     sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4957   }
4958   assert( pAlias!=0 );
4959   if( pAlias->n ){
4960     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4961   }
4962   pItem->pSelect = pSubquery;
4963   pItem->pOn = pOn;
4964   pItem->pUsing = pUsing;
4965   return p;
4966 
4967 append_from_error:
4968   assert( p==0 );
4969   sqlite3ExprDelete(db, pOn);
4970   sqlite3IdListDelete(db, pUsing);
4971   sqlite3SelectDelete(db, pSubquery);
4972   return 0;
4973 }
4974 
4975 /*
4976 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4977 ** element of the source-list passed as the second argument.
4978 */
4979 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
4980   assert( pIndexedBy!=0 );
4981   if( p && pIndexedBy->n>0 ){
4982     SrcItem *pItem;
4983     assert( p->nSrc>0 );
4984     pItem = &p->a[p->nSrc-1];
4985     assert( pItem->fg.notIndexed==0 );
4986     assert( pItem->fg.isIndexedBy==0 );
4987     assert( pItem->fg.isTabFunc==0 );
4988     if( pIndexedBy->n==1 && !pIndexedBy->z ){
4989       /* A "NOT INDEXED" clause was supplied. See parse.y
4990       ** construct "indexed_opt" for details. */
4991       pItem->fg.notIndexed = 1;
4992     }else{
4993       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
4994       pItem->fg.isIndexedBy = 1;
4995       assert( pItem->fg.isCte==0 );  /* No collision on union u2 */
4996     }
4997   }
4998 }
4999 
5000 /*
5001 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
5002 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
5003 ** are deleted by this function.
5004 */
5005 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
5006   assert( p1 && p1->nSrc==1 );
5007   if( p2 ){
5008     SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
5009     if( pNew==0 ){
5010       sqlite3SrcListDelete(pParse->db, p2);
5011     }else{
5012       p1 = pNew;
5013       memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
5014       sqlite3DbFree(pParse->db, p2);
5015     }
5016   }
5017   return p1;
5018 }
5019 
5020 /*
5021 ** Add the list of function arguments to the SrcList entry for a
5022 ** table-valued-function.
5023 */
5024 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
5025   if( p ){
5026     SrcItem *pItem = &p->a[p->nSrc-1];
5027     assert( pItem->fg.notIndexed==0 );
5028     assert( pItem->fg.isIndexedBy==0 );
5029     assert( pItem->fg.isTabFunc==0 );
5030     pItem->u1.pFuncArg = pList;
5031     pItem->fg.isTabFunc = 1;
5032   }else{
5033     sqlite3ExprListDelete(pParse->db, pList);
5034   }
5035 }
5036 
5037 /*
5038 ** When building up a FROM clause in the parser, the join operator
5039 ** is initially attached to the left operand.  But the code generator
5040 ** expects the join operator to be on the right operand.  This routine
5041 ** Shifts all join operators from left to right for an entire FROM
5042 ** clause.
5043 **
5044 ** Example: Suppose the join is like this:
5045 **
5046 **           A natural cross join B
5047 **
5048 ** The operator is "natural cross join".  The A and B operands are stored
5049 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
5050 ** operator with A.  This routine shifts that operator over to B.
5051 */
5052 void sqlite3SrcListShiftJoinType(SrcList *p){
5053   if( p ){
5054     int i;
5055     for(i=p->nSrc-1; i>0; i--){
5056       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
5057     }
5058     p->a[0].fg.jointype = 0;
5059   }
5060 }
5061 
5062 /*
5063 ** Generate VDBE code for a BEGIN statement.
5064 */
5065 void sqlite3BeginTransaction(Parse *pParse, int type){
5066   sqlite3 *db;
5067   Vdbe *v;
5068   int i;
5069 
5070   assert( pParse!=0 );
5071   db = pParse->db;
5072   assert( db!=0 );
5073   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
5074     return;
5075   }
5076   v = sqlite3GetVdbe(pParse);
5077   if( !v ) return;
5078   if( type!=TK_DEFERRED ){
5079     for(i=0; i<db->nDb; i++){
5080       int eTxnType;
5081       Btree *pBt = db->aDb[i].pBt;
5082       if( pBt && sqlite3BtreeIsReadonly(pBt) ){
5083         eTxnType = 0;  /* Read txn */
5084       }else if( type==TK_EXCLUSIVE ){
5085         eTxnType = 2;  /* Exclusive txn */
5086       }else{
5087         eTxnType = 1;  /* Write txn */
5088       }
5089       sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
5090       sqlite3VdbeUsesBtree(v, i);
5091     }
5092   }
5093   sqlite3VdbeAddOp0(v, OP_AutoCommit);
5094 }
5095 
5096 /*
5097 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5098 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
5099 ** code is generated for a COMMIT.
5100 */
5101 void sqlite3EndTransaction(Parse *pParse, int eType){
5102   Vdbe *v;
5103   int isRollback;
5104 
5105   assert( pParse!=0 );
5106   assert( pParse->db!=0 );
5107   assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
5108   isRollback = eType==TK_ROLLBACK;
5109   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
5110        isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
5111     return;
5112   }
5113   v = sqlite3GetVdbe(pParse);
5114   if( v ){
5115     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
5116   }
5117 }
5118 
5119 /*
5120 ** This function is called by the parser when it parses a command to create,
5121 ** release or rollback an SQL savepoint.
5122 */
5123 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
5124   char *zName = sqlite3NameFromToken(pParse->db, pName);
5125   if( zName ){
5126     Vdbe *v = sqlite3GetVdbe(pParse);
5127 #ifndef SQLITE_OMIT_AUTHORIZATION
5128     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5129     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
5130 #endif
5131     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
5132       sqlite3DbFree(pParse->db, zName);
5133       return;
5134     }
5135     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
5136   }
5137 }
5138 
5139 /*
5140 ** Make sure the TEMP database is open and available for use.  Return
5141 ** the number of errors.  Leave any error messages in the pParse structure.
5142 */
5143 int sqlite3OpenTempDatabase(Parse *pParse){
5144   sqlite3 *db = pParse->db;
5145   if( db->aDb[1].pBt==0 && !pParse->explain ){
5146     int rc;
5147     Btree *pBt;
5148     static const int flags =
5149           SQLITE_OPEN_READWRITE |
5150           SQLITE_OPEN_CREATE |
5151           SQLITE_OPEN_EXCLUSIVE |
5152           SQLITE_OPEN_DELETEONCLOSE |
5153           SQLITE_OPEN_TEMP_DB;
5154 
5155     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
5156     if( rc!=SQLITE_OK ){
5157       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
5158         "file for storing temporary tables");
5159       pParse->rc = rc;
5160       return 1;
5161     }
5162     db->aDb[1].pBt = pBt;
5163     assert( db->aDb[1].pSchema );
5164     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
5165       sqlite3OomFault(db);
5166       return 1;
5167     }
5168   }
5169   return 0;
5170 }
5171 
5172 /*
5173 ** Record the fact that the schema cookie will need to be verified
5174 ** for database iDb.  The code to actually verify the schema cookie
5175 ** will occur at the end of the top-level VDBE and will be generated
5176 ** later, by sqlite3FinishCoding().
5177 */
5178 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
5179   assert( iDb>=0 && iDb<pToplevel->db->nDb );
5180   assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
5181   assert( iDb<SQLITE_MAX_DB );
5182   assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
5183   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
5184     DbMaskSet(pToplevel->cookieMask, iDb);
5185     if( !OMIT_TEMPDB && iDb==1 ){
5186       sqlite3OpenTempDatabase(pToplevel);
5187     }
5188   }
5189 }
5190 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
5191   sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
5192 }
5193 
5194 
5195 /*
5196 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5197 ** attached database. Otherwise, invoke it for the database named zDb only.
5198 */
5199 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
5200   sqlite3 *db = pParse->db;
5201   int i;
5202   for(i=0; i<db->nDb; i++){
5203     Db *pDb = &db->aDb[i];
5204     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
5205       sqlite3CodeVerifySchema(pParse, i);
5206     }
5207   }
5208 }
5209 
5210 /*
5211 ** Generate VDBE code that prepares for doing an operation that
5212 ** might change the database.
5213 **
5214 ** This routine starts a new transaction if we are not already within
5215 ** a transaction.  If we are already within a transaction, then a checkpoint
5216 ** is set if the setStatement parameter is true.  A checkpoint should
5217 ** be set for operations that might fail (due to a constraint) part of
5218 ** the way through and which will need to undo some writes without having to
5219 ** rollback the whole transaction.  For operations where all constraints
5220 ** can be checked before any changes are made to the database, it is never
5221 ** necessary to undo a write and the checkpoint should not be set.
5222 */
5223 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
5224   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5225   sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
5226   DbMaskSet(pToplevel->writeMask, iDb);
5227   pToplevel->isMultiWrite |= setStatement;
5228 }
5229 
5230 /*
5231 ** Indicate that the statement currently under construction might write
5232 ** more than one entry (example: deleting one row then inserting another,
5233 ** inserting multiple rows in a table, or inserting a row and index entries.)
5234 ** If an abort occurs after some of these writes have completed, then it will
5235 ** be necessary to undo the completed writes.
5236 */
5237 void sqlite3MultiWrite(Parse *pParse){
5238   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5239   pToplevel->isMultiWrite = 1;
5240 }
5241 
5242 /*
5243 ** The code generator calls this routine if is discovers that it is
5244 ** possible to abort a statement prior to completion.  In order to
5245 ** perform this abort without corrupting the database, we need to make
5246 ** sure that the statement is protected by a statement transaction.
5247 **
5248 ** Technically, we only need to set the mayAbort flag if the
5249 ** isMultiWrite flag was previously set.  There is a time dependency
5250 ** such that the abort must occur after the multiwrite.  This makes
5251 ** some statements involving the REPLACE conflict resolution algorithm
5252 ** go a little faster.  But taking advantage of this time dependency
5253 ** makes it more difficult to prove that the code is correct (in
5254 ** particular, it prevents us from writing an effective
5255 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5256 ** to take the safe route and skip the optimization.
5257 */
5258 void sqlite3MayAbort(Parse *pParse){
5259   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5260   pToplevel->mayAbort = 1;
5261 }
5262 
5263 /*
5264 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5265 ** error. The onError parameter determines which (if any) of the statement
5266 ** and/or current transaction is rolled back.
5267 */
5268 void sqlite3HaltConstraint(
5269   Parse *pParse,    /* Parsing context */
5270   int errCode,      /* extended error code */
5271   int onError,      /* Constraint type */
5272   char *p4,         /* Error message */
5273   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
5274   u8 p5Errmsg       /* P5_ErrMsg type */
5275 ){
5276   Vdbe *v;
5277   assert( pParse->pVdbe!=0 );
5278   v = sqlite3GetVdbe(pParse);
5279   assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
5280   if( onError==OE_Abort ){
5281     sqlite3MayAbort(pParse);
5282   }
5283   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
5284   sqlite3VdbeChangeP5(v, p5Errmsg);
5285 }
5286 
5287 /*
5288 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5289 */
5290 void sqlite3UniqueConstraint(
5291   Parse *pParse,    /* Parsing context */
5292   int onError,      /* Constraint type */
5293   Index *pIdx       /* The index that triggers the constraint */
5294 ){
5295   char *zErr;
5296   int j;
5297   StrAccum errMsg;
5298   Table *pTab = pIdx->pTable;
5299 
5300   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
5301                       pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
5302   if( pIdx->aColExpr ){
5303     sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
5304   }else{
5305     for(j=0; j<pIdx->nKeyCol; j++){
5306       char *zCol;
5307       assert( pIdx->aiColumn[j]>=0 );
5308       zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
5309       if( j ) sqlite3_str_append(&errMsg, ", ", 2);
5310       sqlite3_str_appendall(&errMsg, pTab->zName);
5311       sqlite3_str_append(&errMsg, ".", 1);
5312       sqlite3_str_appendall(&errMsg, zCol);
5313     }
5314   }
5315   zErr = sqlite3StrAccumFinish(&errMsg);
5316   sqlite3HaltConstraint(pParse,
5317     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
5318                             : SQLITE_CONSTRAINT_UNIQUE,
5319     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
5320 }
5321 
5322 
5323 /*
5324 ** Code an OP_Halt due to non-unique rowid.
5325 */
5326 void sqlite3RowidConstraint(
5327   Parse *pParse,    /* Parsing context */
5328   int onError,      /* Conflict resolution algorithm */
5329   Table *pTab       /* The table with the non-unique rowid */
5330 ){
5331   char *zMsg;
5332   int rc;
5333   if( pTab->iPKey>=0 ){
5334     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
5335                           pTab->aCol[pTab->iPKey].zCnName);
5336     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
5337   }else{
5338     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
5339     rc = SQLITE_CONSTRAINT_ROWID;
5340   }
5341   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
5342                         P5_ConstraintUnique);
5343 }
5344 
5345 /*
5346 ** Check to see if pIndex uses the collating sequence pColl.  Return
5347 ** true if it does and false if it does not.
5348 */
5349 #ifndef SQLITE_OMIT_REINDEX
5350 static int collationMatch(const char *zColl, Index *pIndex){
5351   int i;
5352   assert( zColl!=0 );
5353   for(i=0; i<pIndex->nColumn; i++){
5354     const char *z = pIndex->azColl[i];
5355     assert( z!=0 || pIndex->aiColumn[i]<0 );
5356     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
5357       return 1;
5358     }
5359   }
5360   return 0;
5361 }
5362 #endif
5363 
5364 /*
5365 ** Recompute all indices of pTab that use the collating sequence pColl.
5366 ** If pColl==0 then recompute all indices of pTab.
5367 */
5368 #ifndef SQLITE_OMIT_REINDEX
5369 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
5370   if( !IsVirtual(pTab) ){
5371     Index *pIndex;              /* An index associated with pTab */
5372 
5373     for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
5374       if( zColl==0 || collationMatch(zColl, pIndex) ){
5375         int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5376         sqlite3BeginWriteOperation(pParse, 0, iDb);
5377         sqlite3RefillIndex(pParse, pIndex, -1);
5378       }
5379     }
5380   }
5381 }
5382 #endif
5383 
5384 /*
5385 ** Recompute all indices of all tables in all databases where the
5386 ** indices use the collating sequence pColl.  If pColl==0 then recompute
5387 ** all indices everywhere.
5388 */
5389 #ifndef SQLITE_OMIT_REINDEX
5390 static void reindexDatabases(Parse *pParse, char const *zColl){
5391   Db *pDb;                    /* A single database */
5392   int iDb;                    /* The database index number */
5393   sqlite3 *db = pParse->db;   /* The database connection */
5394   HashElem *k;                /* For looping over tables in pDb */
5395   Table *pTab;                /* A table in the database */
5396 
5397   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
5398   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
5399     assert( pDb!=0 );
5400     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
5401       pTab = (Table*)sqliteHashData(k);
5402       reindexTable(pParse, pTab, zColl);
5403     }
5404   }
5405 }
5406 #endif
5407 
5408 /*
5409 ** Generate code for the REINDEX command.
5410 **
5411 **        REINDEX                            -- 1
5412 **        REINDEX  <collation>               -- 2
5413 **        REINDEX  ?<database>.?<tablename>  -- 3
5414 **        REINDEX  ?<database>.?<indexname>  -- 4
5415 **
5416 ** Form 1 causes all indices in all attached databases to be rebuilt.
5417 ** Form 2 rebuilds all indices in all databases that use the named
5418 ** collating function.  Forms 3 and 4 rebuild the named index or all
5419 ** indices associated with the named table.
5420 */
5421 #ifndef SQLITE_OMIT_REINDEX
5422 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
5423   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
5424   char *z;                    /* Name of a table or index */
5425   const char *zDb;            /* Name of the database */
5426   Table *pTab;                /* A table in the database */
5427   Index *pIndex;              /* An index associated with pTab */
5428   int iDb;                    /* The database index number */
5429   sqlite3 *db = pParse->db;   /* The database connection */
5430   Token *pObjName;            /* Name of the table or index to be reindexed */
5431 
5432   /* Read the database schema. If an error occurs, leave an error message
5433   ** and code in pParse and return NULL. */
5434   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
5435     return;
5436   }
5437 
5438   if( pName1==0 ){
5439     reindexDatabases(pParse, 0);
5440     return;
5441   }else if( NEVER(pName2==0) || pName2->z==0 ){
5442     char *zColl;
5443     assert( pName1->z );
5444     zColl = sqlite3NameFromToken(pParse->db, pName1);
5445     if( !zColl ) return;
5446     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
5447     if( pColl ){
5448       reindexDatabases(pParse, zColl);
5449       sqlite3DbFree(db, zColl);
5450       return;
5451     }
5452     sqlite3DbFree(db, zColl);
5453   }
5454   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
5455   if( iDb<0 ) return;
5456   z = sqlite3NameFromToken(db, pObjName);
5457   if( z==0 ) return;
5458   zDb = db->aDb[iDb].zDbSName;
5459   pTab = sqlite3FindTable(db, z, zDb);
5460   if( pTab ){
5461     reindexTable(pParse, pTab, 0);
5462     sqlite3DbFree(db, z);
5463     return;
5464   }
5465   pIndex = sqlite3FindIndex(db, z, zDb);
5466   sqlite3DbFree(db, z);
5467   if( pIndex ){
5468     sqlite3BeginWriteOperation(pParse, 0, iDb);
5469     sqlite3RefillIndex(pParse, pIndex, -1);
5470     return;
5471   }
5472   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
5473 }
5474 #endif
5475 
5476 /*
5477 ** Return a KeyInfo structure that is appropriate for the given Index.
5478 **
5479 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5480 ** when it has finished using it.
5481 */
5482 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
5483   int i;
5484   int nCol = pIdx->nColumn;
5485   int nKey = pIdx->nKeyCol;
5486   KeyInfo *pKey;
5487   if( pParse->nErr ) return 0;
5488   if( pIdx->uniqNotNull ){
5489     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
5490   }else{
5491     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
5492   }
5493   if( pKey ){
5494     assert( sqlite3KeyInfoIsWriteable(pKey) );
5495     for(i=0; i<nCol; i++){
5496       const char *zColl = pIdx->azColl[i];
5497       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
5498                         sqlite3LocateCollSeq(pParse, zColl);
5499       pKey->aSortFlags[i] = pIdx->aSortOrder[i];
5500       assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
5501     }
5502     if( pParse->nErr ){
5503       assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
5504       if( pIdx->bNoQuery==0 ){
5505         /* Deactivate the index because it contains an unknown collating
5506         ** sequence.  The only way to reactive the index is to reload the
5507         ** schema.  Adding the missing collating sequence later does not
5508         ** reactive the index.  The application had the chance to register
5509         ** the missing index using the collation-needed callback.  For
5510         ** simplicity, SQLite will not give the application a second chance.
5511         */
5512         pIdx->bNoQuery = 1;
5513         pParse->rc = SQLITE_ERROR_RETRY;
5514       }
5515       sqlite3KeyInfoUnref(pKey);
5516       pKey = 0;
5517     }
5518   }
5519   return pKey;
5520 }
5521 
5522 #ifndef SQLITE_OMIT_CTE
5523 /*
5524 ** Create a new CTE object
5525 */
5526 Cte *sqlite3CteNew(
5527   Parse *pParse,          /* Parsing context */
5528   Token *pName,           /* Name of the common-table */
5529   ExprList *pArglist,     /* Optional column name list for the table */
5530   Select *pQuery,         /* Query used to initialize the table */
5531   u8 eM10d                /* The MATERIALIZED flag */
5532 ){
5533   Cte *pNew;
5534   sqlite3 *db = pParse->db;
5535 
5536   pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
5537   assert( pNew!=0 || db->mallocFailed );
5538 
5539   if( db->mallocFailed ){
5540     sqlite3ExprListDelete(db, pArglist);
5541     sqlite3SelectDelete(db, pQuery);
5542   }else{
5543     pNew->pSelect = pQuery;
5544     pNew->pCols = pArglist;
5545     pNew->zName = sqlite3NameFromToken(pParse->db, pName);
5546     pNew->eM10d = eM10d;
5547   }
5548   return pNew;
5549 }
5550 
5551 /*
5552 ** Clear information from a Cte object, but do not deallocate storage
5553 ** for the object itself.
5554 */
5555 static void cteClear(sqlite3 *db, Cte *pCte){
5556   assert( pCte!=0 );
5557   sqlite3ExprListDelete(db, pCte->pCols);
5558   sqlite3SelectDelete(db, pCte->pSelect);
5559   sqlite3DbFree(db, pCte->zName);
5560 }
5561 
5562 /*
5563 ** Free the contents of the CTE object passed as the second argument.
5564 */
5565 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
5566   assert( pCte!=0 );
5567   cteClear(db, pCte);
5568   sqlite3DbFree(db, pCte);
5569 }
5570 
5571 /*
5572 ** This routine is invoked once per CTE by the parser while parsing a
5573 ** WITH clause.  The CTE described by teh third argument is added to
5574 ** the WITH clause of the second argument.  If the second argument is
5575 ** NULL, then a new WITH argument is created.
5576 */
5577 With *sqlite3WithAdd(
5578   Parse *pParse,          /* Parsing context */
5579   With *pWith,            /* Existing WITH clause, or NULL */
5580   Cte *pCte               /* CTE to add to the WITH clause */
5581 ){
5582   sqlite3 *db = pParse->db;
5583   With *pNew;
5584   char *zName;
5585 
5586   if( pCte==0 ){
5587     return pWith;
5588   }
5589 
5590   /* Check that the CTE name is unique within this WITH clause. If
5591   ** not, store an error in the Parse structure. */
5592   zName = pCte->zName;
5593   if( zName && pWith ){
5594     int i;
5595     for(i=0; i<pWith->nCte; i++){
5596       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
5597         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
5598       }
5599     }
5600   }
5601 
5602   if( pWith ){
5603     sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
5604     pNew = sqlite3DbRealloc(db, pWith, nByte);
5605   }else{
5606     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
5607   }
5608   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
5609 
5610   if( db->mallocFailed ){
5611     sqlite3CteDelete(db, pCte);
5612     pNew = pWith;
5613   }else{
5614     pNew->a[pNew->nCte++] = *pCte;
5615     sqlite3DbFree(db, pCte);
5616   }
5617 
5618   return pNew;
5619 }
5620 
5621 /*
5622 ** Free the contents of the With object passed as the second argument.
5623 */
5624 void sqlite3WithDelete(sqlite3 *db, With *pWith){
5625   if( pWith ){
5626     int i;
5627     for(i=0; i<pWith->nCte; i++){
5628       cteClear(db, &pWith->a[i]);
5629     }
5630     sqlite3DbFree(db, pWith);
5631   }
5632 }
5633 #endif /* !defined(SQLITE_OMIT_CTE) */
5634