xref: /sqlite-3.40.0/src/build.c (revision 6695f47e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed.  Initialize the pParse structure as needed.
30 */
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32   pParse->explain = (u8)explainFlag;
33   pParse->nVar = 0;
34 }
35 
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42   int iDb;             /* The database containing the table to be locked */
43   int iTab;            /* The root page of the table to be locked */
44   u8 isWriteLock;      /* True for write lock.  False for a read lock */
45   const char *zName;   /* Name of the table */
46 };
47 
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired.  The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
58 void sqlite3TableLock(
59   Parse *pParse,     /* Parsing context */
60   int iDb,           /* Index of the database containing the table to lock */
61   int iTab,          /* Root page number of the table to be locked */
62   u8 isWriteLock,    /* True for a write lock */
63   const char *zName  /* Name of the table to be locked */
64 ){
65   Parse *pToplevel = sqlite3ParseToplevel(pParse);
66   int i;
67   int nBytes;
68   TableLock *p;
69   assert( iDb>=0 );
70 
71   for(i=0; i<pToplevel->nTableLock; i++){
72     p = &pToplevel->aTableLock[i];
73     if( p->iDb==iDb && p->iTab==iTab ){
74       p->isWriteLock = (p->isWriteLock || isWriteLock);
75       return;
76     }
77   }
78 
79   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80   pToplevel->aTableLock =
81       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82   if( pToplevel->aTableLock ){
83     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84     p->iDb = iDb;
85     p->iTab = iTab;
86     p->isWriteLock = isWriteLock;
87     p->zName = zName;
88   }else{
89     pToplevel->nTableLock = 0;
90     pToplevel->db->mallocFailed = 1;
91   }
92 }
93 
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
98 static void codeTableLocks(Parse *pParse){
99   int i;
100   Vdbe *pVdbe;
101 
102   pVdbe = sqlite3GetVdbe(pParse);
103   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104 
105   for(i=0; i<pParse->nTableLock; i++){
106     TableLock *p = &pParse->aTableLock[i];
107     int p1 = p->iDb;
108     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109                       p->zName, P4_STATIC);
110   }
111 }
112 #else
113   #define codeTableLocks(x)
114 #endif
115 
116 /*
117 ** This routine is called after a single SQL statement has been
118 ** parsed and a VDBE program to execute that statement has been
119 ** prepared.  This routine puts the finishing touches on the
120 ** VDBE program and resets the pParse structure for the next
121 ** parse.
122 **
123 ** Note that if an error occurred, it might be the case that
124 ** no VDBE code was generated.
125 */
126 void sqlite3FinishCoding(Parse *pParse){
127   sqlite3 *db;
128   Vdbe *v;
129 
130   db = pParse->db;
131   if( db->mallocFailed ) return;
132   if( pParse->nested ) return;
133   if( pParse->nErr ) return;
134 
135   /* Begin by generating some termination code at the end of the
136   ** vdbe program
137   */
138   v = sqlite3GetVdbe(pParse);
139   assert( !pParse->isMultiWrite
140        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
141   if( v ){
142     sqlite3VdbeAddOp0(v, OP_Halt);
143 
144     /* The cookie mask contains one bit for each database file open.
145     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
146     ** set for each database that is used.  Generate code to start a
147     ** transaction on each used database and to verify the schema cookie
148     ** on each used database.
149     */
150     if( pParse->cookieGoto>0 ){
151       u32 mask;
152       int iDb;
153       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
154       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
155         if( (mask & pParse->cookieMask)==0 ) continue;
156         sqlite3VdbeUsesBtree(v, iDb);
157         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
158         if( db->init.busy==0 ){
159           sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
160         }
161       }
162 #ifndef SQLITE_OMIT_VIRTUALTABLE
163       {
164         int i;
165         for(i=0; i<pParse->nVtabLock; i++){
166           char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
167           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
168         }
169         pParse->nVtabLock = 0;
170       }
171 #endif
172 
173       /* Once all the cookies have been verified and transactions opened,
174       ** obtain the required table-locks. This is a no-op unless the
175       ** shared-cache feature is enabled.
176       */
177       codeTableLocks(pParse);
178 
179       /* Initialize any AUTOINCREMENT data structures required.
180       */
181       sqlite3AutoincrementBegin(pParse);
182 
183       /* Finally, jump back to the beginning of the executable code. */
184       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
185     }
186   }
187 
188 
189   /* Get the VDBE program ready for execution
190   */
191   if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
192 #ifdef SQLITE_DEBUG
193     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
194     sqlite3VdbeTrace(v, trace);
195 #endif
196     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
197     /* A minimum of one cursor is required if autoincrement is used
198     *  See ticket [a696379c1f08866] */
199     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
200     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
201                          pParse->nTab, pParse->nMaxArg, pParse->explain,
202                          pParse->isMultiWrite && pParse->mayAbort);
203     pParse->rc = SQLITE_DONE;
204     pParse->colNamesSet = 0;
205   }else if( pParse->rc==SQLITE_OK ){
206     pParse->rc = SQLITE_ERROR;
207   }
208   pParse->nTab = 0;
209   pParse->nMem = 0;
210   pParse->nSet = 0;
211   pParse->nVar = 0;
212   pParse->cookieMask = 0;
213   pParse->cookieGoto = 0;
214 }
215 
216 /*
217 ** Run the parser and code generator recursively in order to generate
218 ** code for the SQL statement given onto the end of the pParse context
219 ** currently under construction.  When the parser is run recursively
220 ** this way, the final OP_Halt is not appended and other initialization
221 ** and finalization steps are omitted because those are handling by the
222 ** outermost parser.
223 **
224 ** Not everything is nestable.  This facility is designed to permit
225 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
226 ** care if you decide to try to use this routine for some other purposes.
227 */
228 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
229   va_list ap;
230   char *zSql;
231   char *zErrMsg = 0;
232   sqlite3 *db = pParse->db;
233 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
234   char saveBuf[SAVE_SZ];
235 
236   if( pParse->nErr ) return;
237   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
238   va_start(ap, zFormat);
239   zSql = sqlite3VMPrintf(db, zFormat, ap);
240   va_end(ap);
241   if( zSql==0 ){
242     return;   /* A malloc must have failed */
243   }
244   pParse->nested++;
245   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
246   memset(&pParse->nVar, 0, SAVE_SZ);
247   sqlite3RunParser(pParse, zSql, &zErrMsg);
248   sqlite3DbFree(db, zErrMsg);
249   sqlite3DbFree(db, zSql);
250   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
251   pParse->nested--;
252 }
253 
254 /*
255 ** Locate the in-memory structure that describes a particular database
256 ** table given the name of that table and (optionally) the name of the
257 ** database containing the table.  Return NULL if not found.
258 **
259 ** If zDatabase is 0, all databases are searched for the table and the
260 ** first matching table is returned.  (No checking for duplicate table
261 ** names is done.)  The search order is TEMP first, then MAIN, then any
262 ** auxiliary databases added using the ATTACH command.
263 **
264 ** See also sqlite3LocateTable().
265 */
266 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
267   Table *p = 0;
268   int i;
269   int nName;
270   assert( zName!=0 );
271   nName = sqlite3Strlen30(zName);
272   for(i=OMIT_TEMPDB; i<db->nDb; i++){
273     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
274     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
275     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
276     if( p ) break;
277   }
278   return p;
279 }
280 
281 /*
282 ** Locate the in-memory structure that describes a particular database
283 ** table given the name of that table and (optionally) the name of the
284 ** database containing the table.  Return NULL if not found.  Also leave an
285 ** error message in pParse->zErrMsg.
286 **
287 ** The difference between this routine and sqlite3FindTable() is that this
288 ** routine leaves an error message in pParse->zErrMsg where
289 ** sqlite3FindTable() does not.
290 */
291 Table *sqlite3LocateTable(
292   Parse *pParse,         /* context in which to report errors */
293   int isView,            /* True if looking for a VIEW rather than a TABLE */
294   const char *zName,     /* Name of the table we are looking for */
295   const char *zDbase     /* Name of the database.  Might be NULL */
296 ){
297   Table *p;
298 
299   /* Read the database schema. If an error occurs, leave an error message
300   ** and code in pParse and return NULL. */
301   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
302     return 0;
303   }
304 
305   p = sqlite3FindTable(pParse->db, zName, zDbase);
306   if( p==0 ){
307     const char *zMsg = isView ? "no such view" : "no such table";
308     if( zDbase ){
309       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
310     }else{
311       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
312     }
313     pParse->checkSchema = 1;
314   }
315   return p;
316 }
317 
318 /*
319 ** Locate the in-memory structure that describes
320 ** a particular index given the name of that index
321 ** and the name of the database that contains the index.
322 ** Return NULL if not found.
323 **
324 ** If zDatabase is 0, all databases are searched for the
325 ** table and the first matching index is returned.  (No checking
326 ** for duplicate index names is done.)  The search order is
327 ** TEMP first, then MAIN, then any auxiliary databases added
328 ** using the ATTACH command.
329 */
330 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
331   Index *p = 0;
332   int i;
333   int nName = sqlite3Strlen30(zName);
334   for(i=OMIT_TEMPDB; i<db->nDb; i++){
335     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
336     Schema *pSchema = db->aDb[j].pSchema;
337     assert( pSchema );
338     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
339     p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
340     if( p ) break;
341   }
342   return p;
343 }
344 
345 /*
346 ** Reclaim the memory used by an index
347 */
348 static void freeIndex(Index *p){
349   sqlite3 *db = p->pTable->dbMem;
350 #ifndef SQLITE_OMIT_ANALYZE
351   sqlite3DeleteIndexSamples(p);
352 #endif
353   sqlite3DbFree(db, p->zColAff);
354   sqlite3DbFree(db, p);
355 }
356 
357 /*
358 ** Remove the given index from the index hash table, and free
359 ** its memory structures.
360 **
361 ** The index is removed from the database hash tables but
362 ** it is not unlinked from the Table that it indexes.
363 ** Unlinking from the Table must be done by the calling function.
364 */
365 static void sqlite3DeleteIndex(Index *p){
366   Index *pOld;
367   const char *zName = p->zName;
368 
369   pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName,
370                            sqlite3Strlen30(zName), 0);
371   assert( pOld==0 || pOld==p );
372   freeIndex(p);
373 }
374 
375 /*
376 ** For the index called zIdxName which is found in the database iDb,
377 ** unlike that index from its Table then remove the index from
378 ** the index hash table and free all memory structures associated
379 ** with the index.
380 */
381 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
382   Index *pIndex;
383   int len;
384   Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
385 
386   len = sqlite3Strlen30(zIdxName);
387   pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
388   if( pIndex ){
389     if( pIndex->pTable->pIndex==pIndex ){
390       pIndex->pTable->pIndex = pIndex->pNext;
391     }else{
392       Index *p;
393       /* Justification of ALWAYS();  The index must be on the list of
394       ** indices. */
395       p = pIndex->pTable->pIndex;
396       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
397       if( ALWAYS(p && p->pNext==pIndex) ){
398         p->pNext = pIndex->pNext;
399       }
400     }
401     freeIndex(pIndex);
402   }
403   db->flags |= SQLITE_InternChanges;
404 }
405 
406 /*
407 ** Erase all schema information from the in-memory hash tables of
408 ** a single database.  This routine is called to reclaim memory
409 ** before the database closes.  It is also called during a rollback
410 ** if there were schema changes during the transaction or if a
411 ** schema-cookie mismatch occurs.
412 **
413 ** If iDb==0 then reset the internal schema tables for all database
414 ** files.  If iDb>=1 then reset the internal schema for only the
415 ** single file indicated.
416 */
417 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
418   int i, j;
419   assert( iDb>=0 && iDb<db->nDb );
420 
421   if( iDb==0 ){
422     sqlite3BtreeEnterAll(db);
423   }
424   for(i=iDb; i<db->nDb; i++){
425     Db *pDb = &db->aDb[i];
426     if( pDb->pSchema ){
427       assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
428       sqlite3SchemaFree(pDb->pSchema);
429     }
430     if( iDb>0 ) return;
431   }
432   assert( iDb==0 );
433   db->flags &= ~SQLITE_InternChanges;
434   sqlite3VtabUnlockList(db);
435   sqlite3BtreeLeaveAll(db);
436 
437   /* If one or more of the auxiliary database files has been closed,
438   ** then remove them from the auxiliary database list.  We take the
439   ** opportunity to do this here since we have just deleted all of the
440   ** schema hash tables and therefore do not have to make any changes
441   ** to any of those tables.
442   */
443   for(i=j=2; i<db->nDb; i++){
444     struct Db *pDb = &db->aDb[i];
445     if( pDb->pBt==0 ){
446       sqlite3DbFree(db, pDb->zName);
447       pDb->zName = 0;
448       continue;
449     }
450     if( j<i ){
451       db->aDb[j] = db->aDb[i];
452     }
453     j++;
454   }
455   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
456   db->nDb = j;
457   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
458     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
459     sqlite3DbFree(db, db->aDb);
460     db->aDb = db->aDbStatic;
461   }
462 }
463 
464 /*
465 ** This routine is called when a commit occurs.
466 */
467 void sqlite3CommitInternalChanges(sqlite3 *db){
468   db->flags &= ~SQLITE_InternChanges;
469 }
470 
471 /*
472 ** Clear the column names from a table or view.
473 */
474 static void sqliteResetColumnNames(Table *pTable){
475   int i;
476   Column *pCol;
477   sqlite3 *db = pTable->dbMem;
478   testcase( db==0 );
479   assert( pTable!=0 );
480   if( (pCol = pTable->aCol)!=0 ){
481     for(i=0; i<pTable->nCol; i++, pCol++){
482       sqlite3DbFree(db, pCol->zName);
483       sqlite3ExprDelete(db, pCol->pDflt);
484       sqlite3DbFree(db, pCol->zDflt);
485       sqlite3DbFree(db, pCol->zType);
486       sqlite3DbFree(db, pCol->zColl);
487     }
488     sqlite3DbFree(db, pTable->aCol);
489   }
490   pTable->aCol = 0;
491   pTable->nCol = 0;
492 }
493 
494 /*
495 ** Remove the memory data structures associated with the given
496 ** Table.  No changes are made to disk by this routine.
497 **
498 ** This routine just deletes the data structure.  It does not unlink
499 ** the table data structure from the hash table.  But it does destroy
500 ** memory structures of the indices and foreign keys associated with
501 ** the table.
502 */
503 void sqlite3DeleteTable(Table *pTable){
504   Index *pIndex, *pNext;
505   sqlite3 *db;
506 
507   if( pTable==0 ) return;
508   db = pTable->dbMem;
509   testcase( db==0 );
510 
511   /* Do not delete the table until the reference count reaches zero. */
512   pTable->nRef--;
513   if( pTable->nRef>0 ){
514     return;
515   }
516   assert( pTable->nRef==0 );
517 
518   /* Delete all indices associated with this table
519   */
520   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
521     pNext = pIndex->pNext;
522     assert( pIndex->pSchema==pTable->pSchema );
523     sqlite3DeleteIndex(pIndex);
524   }
525 
526   /* Delete any foreign keys attached to this table. */
527   sqlite3FkDelete(pTable);
528 
529   /* Delete the Table structure itself.
530   */
531   sqliteResetColumnNames(pTable);
532   sqlite3DbFree(db, pTable->zName);
533   sqlite3DbFree(db, pTable->zColAff);
534   sqlite3SelectDelete(db, pTable->pSelect);
535 #ifndef SQLITE_OMIT_CHECK
536   sqlite3ExprDelete(db, pTable->pCheck);
537 #endif
538   sqlite3VtabClear(pTable);
539   sqlite3DbFree(db, pTable);
540 }
541 
542 /*
543 ** Unlink the given table from the hash tables and the delete the
544 ** table structure with all its indices and foreign keys.
545 */
546 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
547   Table *p;
548   Db *pDb;
549 
550   assert( db!=0 );
551   assert( iDb>=0 && iDb<db->nDb );
552   assert( zTabName );
553   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
554   pDb = &db->aDb[iDb];
555   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
556                         sqlite3Strlen30(zTabName),0);
557   sqlite3DeleteTable(p);
558   db->flags |= SQLITE_InternChanges;
559 }
560 
561 /*
562 ** Given a token, return a string that consists of the text of that
563 ** token.  Space to hold the returned string
564 ** is obtained from sqliteMalloc() and must be freed by the calling
565 ** function.
566 **
567 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
568 ** surround the body of the token are removed.
569 **
570 ** Tokens are often just pointers into the original SQL text and so
571 ** are not \000 terminated and are not persistent.  The returned string
572 ** is \000 terminated and is persistent.
573 */
574 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
575   char *zName;
576   if( pName ){
577     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
578     sqlite3Dequote(zName);
579   }else{
580     zName = 0;
581   }
582   return zName;
583 }
584 
585 /*
586 ** Open the sqlite_master table stored in database number iDb for
587 ** writing. The table is opened using cursor 0.
588 */
589 void sqlite3OpenMasterTable(Parse *p, int iDb){
590   Vdbe *v = sqlite3GetVdbe(p);
591   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
592   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
593   sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32);  /* 5 column table */
594   if( p->nTab==0 ){
595     p->nTab = 1;
596   }
597 }
598 
599 /*
600 ** Parameter zName points to a nul-terminated buffer containing the name
601 ** of a database ("main", "temp" or the name of an attached db). This
602 ** function returns the index of the named database in db->aDb[], or
603 ** -1 if the named db cannot be found.
604 */
605 int sqlite3FindDbName(sqlite3 *db, const char *zName){
606   int i = -1;         /* Database number */
607   if( zName ){
608     Db *pDb;
609     int n = sqlite3Strlen30(zName);
610     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
611       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
612           0==sqlite3StrICmp(pDb->zName, zName) ){
613         break;
614       }
615     }
616   }
617   return i;
618 }
619 
620 /*
621 ** The token *pName contains the name of a database (either "main" or
622 ** "temp" or the name of an attached db). This routine returns the
623 ** index of the named database in db->aDb[], or -1 if the named db
624 ** does not exist.
625 */
626 int sqlite3FindDb(sqlite3 *db, Token *pName){
627   int i;                               /* Database number */
628   char *zName;                         /* Name we are searching for */
629   zName = sqlite3NameFromToken(db, pName);
630   i = sqlite3FindDbName(db, zName);
631   sqlite3DbFree(db, zName);
632   return i;
633 }
634 
635 /* The table or view or trigger name is passed to this routine via tokens
636 ** pName1 and pName2. If the table name was fully qualified, for example:
637 **
638 ** CREATE TABLE xxx.yyy (...);
639 **
640 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
641 ** the table name is not fully qualified, i.e.:
642 **
643 ** CREATE TABLE yyy(...);
644 **
645 ** Then pName1 is set to "yyy" and pName2 is "".
646 **
647 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
648 ** pName2) that stores the unqualified table name.  The index of the
649 ** database "xxx" is returned.
650 */
651 int sqlite3TwoPartName(
652   Parse *pParse,      /* Parsing and code generating context */
653   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
654   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
655   Token **pUnqual     /* Write the unqualified object name here */
656 ){
657   int iDb;                    /* Database holding the object */
658   sqlite3 *db = pParse->db;
659 
660   if( ALWAYS(pName2!=0) && pName2->n>0 ){
661     if( db->init.busy ) {
662       sqlite3ErrorMsg(pParse, "corrupt database");
663       pParse->nErr++;
664       return -1;
665     }
666     *pUnqual = pName2;
667     iDb = sqlite3FindDb(db, pName1);
668     if( iDb<0 ){
669       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
670       pParse->nErr++;
671       return -1;
672     }
673   }else{
674     assert( db->init.iDb==0 || db->init.busy );
675     iDb = db->init.iDb;
676     *pUnqual = pName1;
677   }
678   return iDb;
679 }
680 
681 /*
682 ** This routine is used to check if the UTF-8 string zName is a legal
683 ** unqualified name for a new schema object (table, index, view or
684 ** trigger). All names are legal except those that begin with the string
685 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
686 ** is reserved for internal use.
687 */
688 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
689   if( !pParse->db->init.busy && pParse->nested==0
690           && (pParse->db->flags & SQLITE_WriteSchema)==0
691           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
692     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
693     return SQLITE_ERROR;
694   }
695   return SQLITE_OK;
696 }
697 
698 /*
699 ** Begin constructing a new table representation in memory.  This is
700 ** the first of several action routines that get called in response
701 ** to a CREATE TABLE statement.  In particular, this routine is called
702 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
703 ** flag is true if the table should be stored in the auxiliary database
704 ** file instead of in the main database file.  This is normally the case
705 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
706 ** CREATE and TABLE.
707 **
708 ** The new table record is initialized and put in pParse->pNewTable.
709 ** As more of the CREATE TABLE statement is parsed, additional action
710 ** routines will be called to add more information to this record.
711 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
712 ** is called to complete the construction of the new table record.
713 */
714 void sqlite3StartTable(
715   Parse *pParse,   /* Parser context */
716   Token *pName1,   /* First part of the name of the table or view */
717   Token *pName2,   /* Second part of the name of the table or view */
718   int isTemp,      /* True if this is a TEMP table */
719   int isView,      /* True if this is a VIEW */
720   int isVirtual,   /* True if this is a VIRTUAL table */
721   int noErr        /* Do nothing if table already exists */
722 ){
723   Table *pTable;
724   char *zName = 0; /* The name of the new table */
725   sqlite3 *db = pParse->db;
726   Vdbe *v;
727   int iDb;         /* Database number to create the table in */
728   Token *pName;    /* Unqualified name of the table to create */
729 
730   /* The table or view name to create is passed to this routine via tokens
731   ** pName1 and pName2. If the table name was fully qualified, for example:
732   **
733   ** CREATE TABLE xxx.yyy (...);
734   **
735   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
736   ** the table name is not fully qualified, i.e.:
737   **
738   ** CREATE TABLE yyy(...);
739   **
740   ** Then pName1 is set to "yyy" and pName2 is "".
741   **
742   ** The call below sets the pName pointer to point at the token (pName1 or
743   ** pName2) that stores the unqualified table name. The variable iDb is
744   ** set to the index of the database that the table or view is to be
745   ** created in.
746   */
747   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
748   if( iDb<0 ) return;
749   if( !OMIT_TEMPDB && isTemp && iDb>1 ){
750     /* If creating a temp table, the name may not be qualified */
751     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
752     return;
753   }
754   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
755 
756   pParse->sNameToken = *pName;
757   zName = sqlite3NameFromToken(db, pName);
758   if( zName==0 ) return;
759   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
760     goto begin_table_error;
761   }
762   if( db->init.iDb==1 ) isTemp = 1;
763 #ifndef SQLITE_OMIT_AUTHORIZATION
764   assert( (isTemp & 1)==isTemp );
765   {
766     int code;
767     char *zDb = db->aDb[iDb].zName;
768     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
769       goto begin_table_error;
770     }
771     if( isView ){
772       if( !OMIT_TEMPDB && isTemp ){
773         code = SQLITE_CREATE_TEMP_VIEW;
774       }else{
775         code = SQLITE_CREATE_VIEW;
776       }
777     }else{
778       if( !OMIT_TEMPDB && isTemp ){
779         code = SQLITE_CREATE_TEMP_TABLE;
780       }else{
781         code = SQLITE_CREATE_TABLE;
782       }
783     }
784     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
785       goto begin_table_error;
786     }
787   }
788 #endif
789 
790   /* Make sure the new table name does not collide with an existing
791   ** index or table name in the same database.  Issue an error message if
792   ** it does. The exception is if the statement being parsed was passed
793   ** to an sqlite3_declare_vtab() call. In that case only the column names
794   ** and types will be used, so there is no need to test for namespace
795   ** collisions.
796   */
797   if( !IN_DECLARE_VTAB ){
798     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
799       goto begin_table_error;
800     }
801     pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
802     if( pTable ){
803       if( !noErr ){
804         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
805       }
806       goto begin_table_error;
807     }
808     if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
809       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
810       goto begin_table_error;
811     }
812   }
813 
814   pTable = sqlite3DbMallocZero(db, sizeof(Table));
815   if( pTable==0 ){
816     db->mallocFailed = 1;
817     pParse->rc = SQLITE_NOMEM;
818     pParse->nErr++;
819     goto begin_table_error;
820   }
821   pTable->zName = zName;
822   pTable->iPKey = -1;
823   pTable->pSchema = db->aDb[iDb].pSchema;
824   pTable->nRef = 1;
825   pTable->dbMem = 0;
826   assert( pParse->pNewTable==0 );
827   pParse->pNewTable = pTable;
828 
829   /* If this is the magic sqlite_sequence table used by autoincrement,
830   ** then record a pointer to this table in the main database structure
831   ** so that INSERT can find the table easily.
832   */
833 #ifndef SQLITE_OMIT_AUTOINCREMENT
834   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
835     pTable->pSchema->pSeqTab = pTable;
836   }
837 #endif
838 
839   /* Begin generating the code that will insert the table record into
840   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
841   ** and allocate the record number for the table entry now.  Before any
842   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
843   ** indices to be created and the table record must come before the
844   ** indices.  Hence, the record number for the table must be allocated
845   ** now.
846   */
847   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
848     int j1;
849     int fileFormat;
850     int reg1, reg2, reg3;
851     sqlite3BeginWriteOperation(pParse, 0, iDb);
852 
853 #ifndef SQLITE_OMIT_VIRTUALTABLE
854     if( isVirtual ){
855       sqlite3VdbeAddOp0(v, OP_VBegin);
856     }
857 #endif
858 
859     /* If the file format and encoding in the database have not been set,
860     ** set them now.
861     */
862     reg1 = pParse->regRowid = ++pParse->nMem;
863     reg2 = pParse->regRoot = ++pParse->nMem;
864     reg3 = ++pParse->nMem;
865     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
866     sqlite3VdbeUsesBtree(v, iDb);
867     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
868     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
869                   1 : SQLITE_MAX_FILE_FORMAT;
870     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
871     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
872     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
873     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
874     sqlite3VdbeJumpHere(v, j1);
875 
876     /* This just creates a place-holder record in the sqlite_master table.
877     ** The record created does not contain anything yet.  It will be replaced
878     ** by the real entry in code generated at sqlite3EndTable().
879     **
880     ** The rowid for the new entry is left in register pParse->regRowid.
881     ** The root page number of the new table is left in reg pParse->regRoot.
882     ** The rowid and root page number values are needed by the code that
883     ** sqlite3EndTable will generate.
884     */
885 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
886     if( isView || isVirtual ){
887       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
888     }else
889 #endif
890     {
891       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
892     }
893     sqlite3OpenMasterTable(pParse, iDb);
894     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
895     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
896     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
897     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
898     sqlite3VdbeAddOp0(v, OP_Close);
899   }
900 
901   /* Normal (non-error) return. */
902   return;
903 
904   /* If an error occurs, we jump here */
905 begin_table_error:
906   sqlite3DbFree(db, zName);
907   return;
908 }
909 
910 /*
911 ** This macro is used to compare two strings in a case-insensitive manner.
912 ** It is slightly faster than calling sqlite3StrICmp() directly, but
913 ** produces larger code.
914 **
915 ** WARNING: This macro is not compatible with the strcmp() family. It
916 ** returns true if the two strings are equal, otherwise false.
917 */
918 #define STRICMP(x, y) (\
919 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
920 sqlite3UpperToLower[*(unsigned char *)(y)]     \
921 && sqlite3StrICmp((x)+1,(y)+1)==0 )
922 
923 /*
924 ** Add a new column to the table currently being constructed.
925 **
926 ** The parser calls this routine once for each column declaration
927 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
928 ** first to get things going.  Then this routine is called for each
929 ** column.
930 */
931 void sqlite3AddColumn(Parse *pParse, Token *pName){
932   Table *p;
933   int i;
934   char *z;
935   Column *pCol;
936   sqlite3 *db = pParse->db;
937   if( (p = pParse->pNewTable)==0 ) return;
938 #if SQLITE_MAX_COLUMN
939   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
940     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
941     return;
942   }
943 #endif
944   z = sqlite3NameFromToken(db, pName);
945   if( z==0 ) return;
946   for(i=0; i<p->nCol; i++){
947     if( STRICMP(z, p->aCol[i].zName) ){
948       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
949       sqlite3DbFree(db, z);
950       return;
951     }
952   }
953   if( (p->nCol & 0x7)==0 ){
954     Column *aNew;
955     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
956     if( aNew==0 ){
957       sqlite3DbFree(db, z);
958       return;
959     }
960     p->aCol = aNew;
961   }
962   pCol = &p->aCol[p->nCol];
963   memset(pCol, 0, sizeof(p->aCol[0]));
964   pCol->zName = z;
965 
966   /* If there is no type specified, columns have the default affinity
967   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
968   ** be called next to set pCol->affinity correctly.
969   */
970   pCol->affinity = SQLITE_AFF_NONE;
971   p->nCol++;
972 }
973 
974 /*
975 ** This routine is called by the parser while in the middle of
976 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
977 ** been seen on a column.  This routine sets the notNull flag on
978 ** the column currently under construction.
979 */
980 void sqlite3AddNotNull(Parse *pParse, int onError){
981   Table *p;
982   p = pParse->pNewTable;
983   if( p==0 || NEVER(p->nCol<1) ) return;
984   p->aCol[p->nCol-1].notNull = (u8)onError;
985 }
986 
987 /*
988 ** Scan the column type name zType (length nType) and return the
989 ** associated affinity type.
990 **
991 ** This routine does a case-independent search of zType for the
992 ** substrings in the following table. If one of the substrings is
993 ** found, the corresponding affinity is returned. If zType contains
994 ** more than one of the substrings, entries toward the top of
995 ** the table take priority. For example, if zType is 'BLOBINT',
996 ** SQLITE_AFF_INTEGER is returned.
997 **
998 ** Substring     | Affinity
999 ** --------------------------------
1000 ** 'INT'         | SQLITE_AFF_INTEGER
1001 ** 'CHAR'        | SQLITE_AFF_TEXT
1002 ** 'CLOB'        | SQLITE_AFF_TEXT
1003 ** 'TEXT'        | SQLITE_AFF_TEXT
1004 ** 'BLOB'        | SQLITE_AFF_NONE
1005 ** 'REAL'        | SQLITE_AFF_REAL
1006 ** 'FLOA'        | SQLITE_AFF_REAL
1007 ** 'DOUB'        | SQLITE_AFF_REAL
1008 **
1009 ** If none of the substrings in the above table are found,
1010 ** SQLITE_AFF_NUMERIC is returned.
1011 */
1012 char sqlite3AffinityType(const char *zIn){
1013   u32 h = 0;
1014   char aff = SQLITE_AFF_NUMERIC;
1015 
1016   if( zIn ) while( zIn[0] ){
1017     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1018     zIn++;
1019     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1020       aff = SQLITE_AFF_TEXT;
1021     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1022       aff = SQLITE_AFF_TEXT;
1023     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1024       aff = SQLITE_AFF_TEXT;
1025     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1026         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1027       aff = SQLITE_AFF_NONE;
1028 #ifndef SQLITE_OMIT_FLOATING_POINT
1029     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1030         && aff==SQLITE_AFF_NUMERIC ){
1031       aff = SQLITE_AFF_REAL;
1032     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1033         && aff==SQLITE_AFF_NUMERIC ){
1034       aff = SQLITE_AFF_REAL;
1035     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1036         && aff==SQLITE_AFF_NUMERIC ){
1037       aff = SQLITE_AFF_REAL;
1038 #endif
1039     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1040       aff = SQLITE_AFF_INTEGER;
1041       break;
1042     }
1043   }
1044 
1045   return aff;
1046 }
1047 
1048 /*
1049 ** This routine is called by the parser while in the middle of
1050 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1051 ** token in the sequence of tokens that describe the type of the
1052 ** column currently under construction.   pLast is the last token
1053 ** in the sequence.  Use this information to construct a string
1054 ** that contains the typename of the column and store that string
1055 ** in zType.
1056 */
1057 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1058   Table *p;
1059   Column *pCol;
1060 
1061   p = pParse->pNewTable;
1062   if( p==0 || NEVER(p->nCol<1) ) return;
1063   pCol = &p->aCol[p->nCol-1];
1064   assert( pCol->zType==0 );
1065   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1066   pCol->affinity = sqlite3AffinityType(pCol->zType);
1067 }
1068 
1069 /*
1070 ** The expression is the default value for the most recently added column
1071 ** of the table currently under construction.
1072 **
1073 ** Default value expressions must be constant.  Raise an exception if this
1074 ** is not the case.
1075 **
1076 ** This routine is called by the parser while in the middle of
1077 ** parsing a CREATE TABLE statement.
1078 */
1079 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1080   Table *p;
1081   Column *pCol;
1082   sqlite3 *db = pParse->db;
1083   p = pParse->pNewTable;
1084   if( p!=0 ){
1085     pCol = &(p->aCol[p->nCol-1]);
1086     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
1087       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1088           pCol->zName);
1089     }else{
1090       /* A copy of pExpr is used instead of the original, as pExpr contains
1091       ** tokens that point to volatile memory. The 'span' of the expression
1092       ** is required by pragma table_info.
1093       */
1094       sqlite3ExprDelete(db, pCol->pDflt);
1095       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1096       sqlite3DbFree(db, pCol->zDflt);
1097       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1098                                      (int)(pSpan->zEnd - pSpan->zStart));
1099     }
1100   }
1101   sqlite3ExprDelete(db, pSpan->pExpr);
1102 }
1103 
1104 /*
1105 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1106 ** of columns that form the primary key.  If pList is NULL, then the
1107 ** most recently added column of the table is the primary key.
1108 **
1109 ** A table can have at most one primary key.  If the table already has
1110 ** a primary key (and this is the second primary key) then create an
1111 ** error.
1112 **
1113 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1114 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1115 ** field of the table under construction to be the index of the
1116 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1117 ** no INTEGER PRIMARY KEY.
1118 **
1119 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1120 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1121 */
1122 void sqlite3AddPrimaryKey(
1123   Parse *pParse,    /* Parsing context */
1124   ExprList *pList,  /* List of field names to be indexed */
1125   int onError,      /* What to do with a uniqueness conflict */
1126   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1127   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1128 ){
1129   Table *pTab = pParse->pNewTable;
1130   char *zType = 0;
1131   int iCol = -1, i;
1132   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1133   if( pTab->tabFlags & TF_HasPrimaryKey ){
1134     sqlite3ErrorMsg(pParse,
1135       "table \"%s\" has more than one primary key", pTab->zName);
1136     goto primary_key_exit;
1137   }
1138   pTab->tabFlags |= TF_HasPrimaryKey;
1139   if( pList==0 ){
1140     iCol = pTab->nCol - 1;
1141     pTab->aCol[iCol].isPrimKey = 1;
1142   }else{
1143     for(i=0; i<pList->nExpr; i++){
1144       for(iCol=0; iCol<pTab->nCol; iCol++){
1145         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1146           break;
1147         }
1148       }
1149       if( iCol<pTab->nCol ){
1150         pTab->aCol[iCol].isPrimKey = 1;
1151       }
1152     }
1153     if( pList->nExpr>1 ) iCol = -1;
1154   }
1155   if( iCol>=0 && iCol<pTab->nCol ){
1156     zType = pTab->aCol[iCol].zType;
1157   }
1158   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1159         && sortOrder==SQLITE_SO_ASC ){
1160     pTab->iPKey = iCol;
1161     pTab->keyConf = (u8)onError;
1162     assert( autoInc==0 || autoInc==1 );
1163     pTab->tabFlags |= autoInc*TF_Autoincrement;
1164   }else if( autoInc ){
1165 #ifndef SQLITE_OMIT_AUTOINCREMENT
1166     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1167        "INTEGER PRIMARY KEY");
1168 #endif
1169   }else{
1170     Index *p;
1171     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1172     if( p ){
1173       p->autoIndex = 2;
1174     }
1175     pList = 0;
1176   }
1177 
1178 primary_key_exit:
1179   sqlite3ExprListDelete(pParse->db, pList);
1180   return;
1181 }
1182 
1183 /*
1184 ** Add a new CHECK constraint to the table currently under construction.
1185 */
1186 void sqlite3AddCheckConstraint(
1187   Parse *pParse,    /* Parsing context */
1188   Expr *pCheckExpr  /* The check expression */
1189 ){
1190   sqlite3 *db = pParse->db;
1191 #ifndef SQLITE_OMIT_CHECK
1192   Table *pTab = pParse->pNewTable;
1193   if( pTab && !IN_DECLARE_VTAB ){
1194     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
1195   }else
1196 #endif
1197   {
1198     sqlite3ExprDelete(db, pCheckExpr);
1199   }
1200 }
1201 
1202 /*
1203 ** Set the collation function of the most recently parsed table column
1204 ** to the CollSeq given.
1205 */
1206 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1207   Table *p;
1208   int i;
1209   char *zColl;              /* Dequoted name of collation sequence */
1210   sqlite3 *db;
1211 
1212   if( (p = pParse->pNewTable)==0 ) return;
1213   i = p->nCol-1;
1214   db = pParse->db;
1215   zColl = sqlite3NameFromToken(db, pToken);
1216   if( !zColl ) return;
1217 
1218   if( sqlite3LocateCollSeq(pParse, zColl) ){
1219     Index *pIdx;
1220     p->aCol[i].zColl = zColl;
1221 
1222     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1223     ** then an index may have been created on this column before the
1224     ** collation type was added. Correct this if it is the case.
1225     */
1226     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1227       assert( pIdx->nColumn==1 );
1228       if( pIdx->aiColumn[0]==i ){
1229         pIdx->azColl[0] = p->aCol[i].zColl;
1230       }
1231     }
1232   }else{
1233     sqlite3DbFree(db, zColl);
1234   }
1235 }
1236 
1237 /*
1238 ** This function returns the collation sequence for database native text
1239 ** encoding identified by the string zName, length nName.
1240 **
1241 ** If the requested collation sequence is not available, or not available
1242 ** in the database native encoding, the collation factory is invoked to
1243 ** request it. If the collation factory does not supply such a sequence,
1244 ** and the sequence is available in another text encoding, then that is
1245 ** returned instead.
1246 **
1247 ** If no versions of the requested collations sequence are available, or
1248 ** another error occurs, NULL is returned and an error message written into
1249 ** pParse.
1250 **
1251 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1252 ** invokes the collation factory if the named collation cannot be found
1253 ** and generates an error message.
1254 **
1255 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1256 */
1257 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1258   sqlite3 *db = pParse->db;
1259   u8 enc = ENC(db);
1260   u8 initbusy = db->init.busy;
1261   CollSeq *pColl;
1262 
1263   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1264   if( !initbusy && (!pColl || !pColl->xCmp) ){
1265     pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
1266     if( !pColl ){
1267       sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
1268     }
1269   }
1270 
1271   return pColl;
1272 }
1273 
1274 
1275 /*
1276 ** Generate code that will increment the schema cookie.
1277 **
1278 ** The schema cookie is used to determine when the schema for the
1279 ** database changes.  After each schema change, the cookie value
1280 ** changes.  When a process first reads the schema it records the
1281 ** cookie.  Thereafter, whenever it goes to access the database,
1282 ** it checks the cookie to make sure the schema has not changed
1283 ** since it was last read.
1284 **
1285 ** This plan is not completely bullet-proof.  It is possible for
1286 ** the schema to change multiple times and for the cookie to be
1287 ** set back to prior value.  But schema changes are infrequent
1288 ** and the probability of hitting the same cookie value is only
1289 ** 1 chance in 2^32.  So we're safe enough.
1290 */
1291 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1292   int r1 = sqlite3GetTempReg(pParse);
1293   sqlite3 *db = pParse->db;
1294   Vdbe *v = pParse->pVdbe;
1295   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1296   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1297   sqlite3ReleaseTempReg(pParse, r1);
1298 }
1299 
1300 /*
1301 ** Measure the number of characters needed to output the given
1302 ** identifier.  The number returned includes any quotes used
1303 ** but does not include the null terminator.
1304 **
1305 ** The estimate is conservative.  It might be larger that what is
1306 ** really needed.
1307 */
1308 static int identLength(const char *z){
1309   int n;
1310   for(n=0; *z; n++, z++){
1311     if( *z=='"' ){ n++; }
1312   }
1313   return n + 2;
1314 }
1315 
1316 /*
1317 ** The first parameter is a pointer to an output buffer. The second
1318 ** parameter is a pointer to an integer that contains the offset at
1319 ** which to write into the output buffer. This function copies the
1320 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1321 ** to the specified offset in the buffer and updates *pIdx to refer
1322 ** to the first byte after the last byte written before returning.
1323 **
1324 ** If the string zSignedIdent consists entirely of alpha-numeric
1325 ** characters, does not begin with a digit and is not an SQL keyword,
1326 ** then it is copied to the output buffer exactly as it is. Otherwise,
1327 ** it is quoted using double-quotes.
1328 */
1329 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1330   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1331   int i, j, needQuote;
1332   i = *pIdx;
1333 
1334   for(j=0; zIdent[j]; j++){
1335     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1336   }
1337   needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1338   if( !needQuote ){
1339     needQuote = zIdent[j];
1340   }
1341 
1342   if( needQuote ) z[i++] = '"';
1343   for(j=0; zIdent[j]; j++){
1344     z[i++] = zIdent[j];
1345     if( zIdent[j]=='"' ) z[i++] = '"';
1346   }
1347   if( needQuote ) z[i++] = '"';
1348   z[i] = 0;
1349   *pIdx = i;
1350 }
1351 
1352 /*
1353 ** Generate a CREATE TABLE statement appropriate for the given
1354 ** table.  Memory to hold the text of the statement is obtained
1355 ** from sqliteMalloc() and must be freed by the calling function.
1356 */
1357 static char *createTableStmt(sqlite3 *db, Table *p){
1358   int i, k, n;
1359   char *zStmt;
1360   char *zSep, *zSep2, *zEnd;
1361   Column *pCol;
1362   n = 0;
1363   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1364     n += identLength(pCol->zName) + 5;
1365   }
1366   n += identLength(p->zName);
1367   if( n<50 ){
1368     zSep = "";
1369     zSep2 = ",";
1370     zEnd = ")";
1371   }else{
1372     zSep = "\n  ";
1373     zSep2 = ",\n  ";
1374     zEnd = "\n)";
1375   }
1376   n += 35 + 6*p->nCol;
1377   zStmt = sqlite3Malloc( n );
1378   if( zStmt==0 ){
1379     db->mallocFailed = 1;
1380     return 0;
1381   }
1382   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1383   k = sqlite3Strlen30(zStmt);
1384   identPut(zStmt, &k, p->zName);
1385   zStmt[k++] = '(';
1386   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1387     static const char * const azType[] = {
1388         /* SQLITE_AFF_TEXT    */ " TEXT",
1389         /* SQLITE_AFF_NONE    */ "",
1390         /* SQLITE_AFF_NUMERIC */ " NUM",
1391         /* SQLITE_AFF_INTEGER */ " INT",
1392         /* SQLITE_AFF_REAL    */ " REAL"
1393     };
1394     int len;
1395     const char *zType;
1396 
1397     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1398     k += sqlite3Strlen30(&zStmt[k]);
1399     zSep = zSep2;
1400     identPut(zStmt, &k, pCol->zName);
1401     assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
1402     assert( pCol->affinity-SQLITE_AFF_TEXT < sizeof(azType)/sizeof(azType[0]) );
1403     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1404     testcase( pCol->affinity==SQLITE_AFF_NONE );
1405     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1406     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1407     testcase( pCol->affinity==SQLITE_AFF_REAL );
1408 
1409     zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
1410     len = sqlite3Strlen30(zType);
1411     assert( pCol->affinity==SQLITE_AFF_NONE
1412             || pCol->affinity==sqlite3AffinityType(zType) );
1413     memcpy(&zStmt[k], zType, len);
1414     k += len;
1415     assert( k<=n );
1416   }
1417   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1418   return zStmt;
1419 }
1420 
1421 /*
1422 ** This routine is called to report the final ")" that terminates
1423 ** a CREATE TABLE statement.
1424 **
1425 ** The table structure that other action routines have been building
1426 ** is added to the internal hash tables, assuming no errors have
1427 ** occurred.
1428 **
1429 ** An entry for the table is made in the master table on disk, unless
1430 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1431 ** it means we are reading the sqlite_master table because we just
1432 ** connected to the database or because the sqlite_master table has
1433 ** recently changed, so the entry for this table already exists in
1434 ** the sqlite_master table.  We do not want to create it again.
1435 **
1436 ** If the pSelect argument is not NULL, it means that this routine
1437 ** was called to create a table generated from a
1438 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1439 ** the new table will match the result set of the SELECT.
1440 */
1441 void sqlite3EndTable(
1442   Parse *pParse,          /* Parse context */
1443   Token *pCons,           /* The ',' token after the last column defn. */
1444   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
1445   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1446 ){
1447   Table *p;
1448   sqlite3 *db = pParse->db;
1449   int iDb;
1450 
1451   if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
1452     return;
1453   }
1454   p = pParse->pNewTable;
1455   if( p==0 ) return;
1456 
1457   assert( !db->init.busy || !pSelect );
1458 
1459   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1460 
1461 #ifndef SQLITE_OMIT_CHECK
1462   /* Resolve names in all CHECK constraint expressions.
1463   */
1464   if( p->pCheck ){
1465     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
1466     NameContext sNC;                /* Name context for pParse->pNewTable */
1467 
1468     memset(&sNC, 0, sizeof(sNC));
1469     memset(&sSrc, 0, sizeof(sSrc));
1470     sSrc.nSrc = 1;
1471     sSrc.a[0].zName = p->zName;
1472     sSrc.a[0].pTab = p;
1473     sSrc.a[0].iCursor = -1;
1474     sNC.pParse = pParse;
1475     sNC.pSrcList = &sSrc;
1476     sNC.isCheck = 1;
1477     if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
1478       return;
1479     }
1480   }
1481 #endif /* !defined(SQLITE_OMIT_CHECK) */
1482 
1483   /* If the db->init.busy is 1 it means we are reading the SQL off the
1484   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1485   ** So do not write to the disk again.  Extract the root page number
1486   ** for the table from the db->init.newTnum field.  (The page number
1487   ** should have been put there by the sqliteOpenCb routine.)
1488   */
1489   if( db->init.busy ){
1490     p->tnum = db->init.newTnum;
1491   }
1492 
1493   /* If not initializing, then create a record for the new table
1494   ** in the SQLITE_MASTER table of the database.
1495   **
1496   ** If this is a TEMPORARY table, write the entry into the auxiliary
1497   ** file instead of into the main database file.
1498   */
1499   if( !db->init.busy ){
1500     int n;
1501     Vdbe *v;
1502     char *zType;    /* "view" or "table" */
1503     char *zType2;   /* "VIEW" or "TABLE" */
1504     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1505 
1506     v = sqlite3GetVdbe(pParse);
1507     if( NEVER(v==0) ) return;
1508 
1509     sqlite3VdbeAddOp1(v, OP_Close, 0);
1510 
1511     /*
1512     ** Initialize zType for the new view or table.
1513     */
1514     if( p->pSelect==0 ){
1515       /* A regular table */
1516       zType = "table";
1517       zType2 = "TABLE";
1518 #ifndef SQLITE_OMIT_VIEW
1519     }else{
1520       /* A view */
1521       zType = "view";
1522       zType2 = "VIEW";
1523 #endif
1524     }
1525 
1526     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1527     ** statement to populate the new table. The root-page number for the
1528     ** new table is in register pParse->regRoot.
1529     **
1530     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1531     ** suitable state to query for the column names and types to be used
1532     ** by the new table.
1533     **
1534     ** A shared-cache write-lock is not required to write to the new table,
1535     ** as a schema-lock must have already been obtained to create it. Since
1536     ** a schema-lock excludes all other database users, the write-lock would
1537     ** be redundant.
1538     */
1539     if( pSelect ){
1540       SelectDest dest;
1541       Table *pSelTab;
1542 
1543       assert(pParse->nTab==1);
1544       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1545       sqlite3VdbeChangeP5(v, 1);
1546       pParse->nTab = 2;
1547       sqlite3SelectDestInit(&dest, SRT_Table, 1);
1548       sqlite3Select(pParse, pSelect, &dest);
1549       sqlite3VdbeAddOp1(v, OP_Close, 1);
1550       if( pParse->nErr==0 ){
1551         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1552         if( pSelTab==0 ) return;
1553         assert( p->aCol==0 );
1554         p->nCol = pSelTab->nCol;
1555         p->aCol = pSelTab->aCol;
1556         pSelTab->nCol = 0;
1557         pSelTab->aCol = 0;
1558         sqlite3DeleteTable(pSelTab);
1559       }
1560     }
1561 
1562     /* Compute the complete text of the CREATE statement */
1563     if( pSelect ){
1564       zStmt = createTableStmt(db, p);
1565     }else{
1566       n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
1567       zStmt = sqlite3MPrintf(db,
1568           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1569       );
1570     }
1571 
1572     /* A slot for the record has already been allocated in the
1573     ** SQLITE_MASTER table.  We just need to update that slot with all
1574     ** the information we've collected.
1575     */
1576     sqlite3NestedParse(pParse,
1577       "UPDATE %Q.%s "
1578          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1579        "WHERE rowid=#%d",
1580       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1581       zType,
1582       p->zName,
1583       p->zName,
1584       pParse->regRoot,
1585       zStmt,
1586       pParse->regRowid
1587     );
1588     sqlite3DbFree(db, zStmt);
1589     sqlite3ChangeCookie(pParse, iDb);
1590 
1591 #ifndef SQLITE_OMIT_AUTOINCREMENT
1592     /* Check to see if we need to create an sqlite_sequence table for
1593     ** keeping track of autoincrement keys.
1594     */
1595     if( p->tabFlags & TF_Autoincrement ){
1596       Db *pDb = &db->aDb[iDb];
1597       if( pDb->pSchema->pSeqTab==0 ){
1598         sqlite3NestedParse(pParse,
1599           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1600           pDb->zName
1601         );
1602       }
1603     }
1604 #endif
1605 
1606     /* Reparse everything to update our internal data structures */
1607     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
1608         sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
1609   }
1610 
1611 
1612   /* Add the table to the in-memory representation of the database.
1613   */
1614   if( db->init.busy ){
1615     Table *pOld;
1616     Schema *pSchema = p->pSchema;
1617     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
1618                              sqlite3Strlen30(p->zName),p);
1619     if( pOld ){
1620       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
1621       db->mallocFailed = 1;
1622       return;
1623     }
1624     pParse->pNewTable = 0;
1625     db->nTable++;
1626     db->flags |= SQLITE_InternChanges;
1627 
1628 #ifndef SQLITE_OMIT_ALTERTABLE
1629     if( !p->pSelect ){
1630       const char *zName = (const char *)pParse->sNameToken.z;
1631       int nName;
1632       assert( !pSelect && pCons && pEnd );
1633       if( pCons->z==0 ){
1634         pCons = pEnd;
1635       }
1636       nName = (int)((const char *)pCons->z - zName);
1637       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1638     }
1639 #endif
1640   }
1641 }
1642 
1643 #ifndef SQLITE_OMIT_VIEW
1644 /*
1645 ** The parser calls this routine in order to create a new VIEW
1646 */
1647 void sqlite3CreateView(
1648   Parse *pParse,     /* The parsing context */
1649   Token *pBegin,     /* The CREATE token that begins the statement */
1650   Token *pName1,     /* The token that holds the name of the view */
1651   Token *pName2,     /* The token that holds the name of the view */
1652   Select *pSelect,   /* A SELECT statement that will become the new view */
1653   int isTemp,        /* TRUE for a TEMPORARY view */
1654   int noErr          /* Suppress error messages if VIEW already exists */
1655 ){
1656   Table *p;
1657   int n;
1658   const char *z;
1659   Token sEnd;
1660   DbFixer sFix;
1661   Token *pName;
1662   int iDb;
1663   sqlite3 *db = pParse->db;
1664 
1665   if( pParse->nVar>0 ){
1666     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1667     sqlite3SelectDelete(db, pSelect);
1668     return;
1669   }
1670   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1671   p = pParse->pNewTable;
1672   if( p==0 ){
1673     sqlite3SelectDelete(db, pSelect);
1674     return;
1675   }
1676   assert( pParse->nErr==0 ); /* If sqlite3StartTable return non-NULL then
1677                              ** there could not have been an error */
1678   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1679   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1680   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1681     && sqlite3FixSelect(&sFix, pSelect)
1682   ){
1683     sqlite3SelectDelete(db, pSelect);
1684     return;
1685   }
1686 
1687   /* Make a copy of the entire SELECT statement that defines the view.
1688   ** This will force all the Expr.token.z values to be dynamically
1689   ** allocated rather than point to the input string - which means that
1690   ** they will persist after the current sqlite3_exec() call returns.
1691   */
1692   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1693   sqlite3SelectDelete(db, pSelect);
1694   if( db->mallocFailed ){
1695     return;
1696   }
1697   if( !db->init.busy ){
1698     sqlite3ViewGetColumnNames(pParse, p);
1699   }
1700 
1701   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
1702   ** the end.
1703   */
1704   sEnd = pParse->sLastToken;
1705   if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
1706     sEnd.z += sEnd.n;
1707   }
1708   sEnd.n = 0;
1709   n = (int)(sEnd.z - pBegin->z);
1710   z = pBegin->z;
1711   while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
1712   sEnd.z = &z[n-1];
1713   sEnd.n = 1;
1714 
1715   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1716   sqlite3EndTable(pParse, 0, &sEnd, 0);
1717   return;
1718 }
1719 #endif /* SQLITE_OMIT_VIEW */
1720 
1721 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1722 /*
1723 ** The Table structure pTable is really a VIEW.  Fill in the names of
1724 ** the columns of the view in the pTable structure.  Return the number
1725 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
1726 */
1727 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1728   Table *pSelTab;   /* A fake table from which we get the result set */
1729   Select *pSel;     /* Copy of the SELECT that implements the view */
1730   int nErr = 0;     /* Number of errors encountered */
1731   int n;            /* Temporarily holds the number of cursors assigned */
1732   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
1733   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1734 
1735   assert( pTable );
1736 
1737 #ifndef SQLITE_OMIT_VIRTUALTABLE
1738   if( sqlite3VtabCallConnect(pParse, pTable) ){
1739     return SQLITE_ERROR;
1740   }
1741   if( IsVirtual(pTable) ) return 0;
1742 #endif
1743 
1744 #ifndef SQLITE_OMIT_VIEW
1745   /* A positive nCol means the columns names for this view are
1746   ** already known.
1747   */
1748   if( pTable->nCol>0 ) return 0;
1749 
1750   /* A negative nCol is a special marker meaning that we are currently
1751   ** trying to compute the column names.  If we enter this routine with
1752   ** a negative nCol, it means two or more views form a loop, like this:
1753   **
1754   **     CREATE VIEW one AS SELECT * FROM two;
1755   **     CREATE VIEW two AS SELECT * FROM one;
1756   **
1757   ** Actually, the error above is now caught prior to reaching this point.
1758   ** But the following test is still important as it does come up
1759   ** in the following:
1760   **
1761   **     CREATE TABLE main.ex1(a);
1762   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
1763   **     SELECT * FROM temp.ex1;
1764   */
1765   if( pTable->nCol<0 ){
1766     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1767     return 1;
1768   }
1769   assert( pTable->nCol>=0 );
1770 
1771   /* If we get this far, it means we need to compute the table names.
1772   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1773   ** "*" elements in the results set of the view and will assign cursors
1774   ** to the elements of the FROM clause.  But we do not want these changes
1775   ** to be permanent.  So the computation is done on a copy of the SELECT
1776   ** statement that defines the view.
1777   */
1778   assert( pTable->pSelect );
1779   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
1780   if( pSel ){
1781     u8 enableLookaside = db->lookaside.bEnabled;
1782     n = pParse->nTab;
1783     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1784     pTable->nCol = -1;
1785     db->lookaside.bEnabled = 0;
1786 #ifndef SQLITE_OMIT_AUTHORIZATION
1787     xAuth = db->xAuth;
1788     db->xAuth = 0;
1789     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1790     db->xAuth = xAuth;
1791 #else
1792     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1793 #endif
1794     db->lookaside.bEnabled = enableLookaside;
1795     pParse->nTab = n;
1796     if( pSelTab ){
1797       assert( pTable->aCol==0 );
1798       pTable->nCol = pSelTab->nCol;
1799       pTable->aCol = pSelTab->aCol;
1800       pSelTab->nCol = 0;
1801       pSelTab->aCol = 0;
1802       sqlite3DeleteTable(pSelTab);
1803       pTable->pSchema->flags |= DB_UnresetViews;
1804     }else{
1805       pTable->nCol = 0;
1806       nErr++;
1807     }
1808     sqlite3SelectDelete(db, pSel);
1809   } else {
1810     nErr++;
1811   }
1812 #endif /* SQLITE_OMIT_VIEW */
1813   return nErr;
1814 }
1815 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1816 
1817 #ifndef SQLITE_OMIT_VIEW
1818 /*
1819 ** Clear the column names from every VIEW in database idx.
1820 */
1821 static void sqliteViewResetAll(sqlite3 *db, int idx){
1822   HashElem *i;
1823   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1824   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1825     Table *pTab = sqliteHashData(i);
1826     if( pTab->pSelect ){
1827       sqliteResetColumnNames(pTab);
1828     }
1829   }
1830   DbClearProperty(db, idx, DB_UnresetViews);
1831 }
1832 #else
1833 # define sqliteViewResetAll(A,B)
1834 #endif /* SQLITE_OMIT_VIEW */
1835 
1836 /*
1837 ** This function is called by the VDBE to adjust the internal schema
1838 ** used by SQLite when the btree layer moves a table root page. The
1839 ** root-page of a table or index in database iDb has changed from iFrom
1840 ** to iTo.
1841 **
1842 ** Ticket #1728:  The symbol table might still contain information
1843 ** on tables and/or indices that are the process of being deleted.
1844 ** If you are unlucky, one of those deleted indices or tables might
1845 ** have the same rootpage number as the real table or index that is
1846 ** being moved.  So we cannot stop searching after the first match
1847 ** because the first match might be for one of the deleted indices
1848 ** or tables and not the table/index that is actually being moved.
1849 ** We must continue looping until all tables and indices with
1850 ** rootpage==iFrom have been converted to have a rootpage of iTo
1851 ** in order to be certain that we got the right one.
1852 */
1853 #ifndef SQLITE_OMIT_AUTOVACUUM
1854 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
1855   HashElem *pElem;
1856   Hash *pHash;
1857 
1858   pHash = &pDb->pSchema->tblHash;
1859   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1860     Table *pTab = sqliteHashData(pElem);
1861     if( pTab->tnum==iFrom ){
1862       pTab->tnum = iTo;
1863     }
1864   }
1865   pHash = &pDb->pSchema->idxHash;
1866   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1867     Index *pIdx = sqliteHashData(pElem);
1868     if( pIdx->tnum==iFrom ){
1869       pIdx->tnum = iTo;
1870     }
1871   }
1872 }
1873 #endif
1874 
1875 /*
1876 ** Write code to erase the table with root-page iTable from database iDb.
1877 ** Also write code to modify the sqlite_master table and internal schema
1878 ** if a root-page of another table is moved by the btree-layer whilst
1879 ** erasing iTable (this can happen with an auto-vacuum database).
1880 */
1881 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1882   Vdbe *v = sqlite3GetVdbe(pParse);
1883   int r1 = sqlite3GetTempReg(pParse);
1884   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1885   sqlite3MayAbort(pParse);
1886 #ifndef SQLITE_OMIT_AUTOVACUUM
1887   /* OP_Destroy stores an in integer r1. If this integer
1888   ** is non-zero, then it is the root page number of a table moved to
1889   ** location iTable. The following code modifies the sqlite_master table to
1890   ** reflect this.
1891   **
1892   ** The "#NNN" in the SQL is a special constant that means whatever value
1893   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
1894   ** token for additional information.
1895   */
1896   sqlite3NestedParse(pParse,
1897      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1898      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1899 #endif
1900   sqlite3ReleaseTempReg(pParse, r1);
1901 }
1902 
1903 /*
1904 ** Write VDBE code to erase table pTab and all associated indices on disk.
1905 ** Code to update the sqlite_master tables and internal schema definitions
1906 ** in case a root-page belonging to another table is moved by the btree layer
1907 ** is also added (this can happen with an auto-vacuum database).
1908 */
1909 static void destroyTable(Parse *pParse, Table *pTab){
1910 #ifdef SQLITE_OMIT_AUTOVACUUM
1911   Index *pIdx;
1912   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1913   destroyRootPage(pParse, pTab->tnum, iDb);
1914   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1915     destroyRootPage(pParse, pIdx->tnum, iDb);
1916   }
1917 #else
1918   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1919   ** is not defined), then it is important to call OP_Destroy on the
1920   ** table and index root-pages in order, starting with the numerically
1921   ** largest root-page number. This guarantees that none of the root-pages
1922   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1923   ** following were coded:
1924   **
1925   ** OP_Destroy 4 0
1926   ** ...
1927   ** OP_Destroy 5 0
1928   **
1929   ** and root page 5 happened to be the largest root-page number in the
1930   ** database, then root page 5 would be moved to page 4 by the
1931   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1932   ** a free-list page.
1933   */
1934   int iTab = pTab->tnum;
1935   int iDestroyed = 0;
1936 
1937   while( 1 ){
1938     Index *pIdx;
1939     int iLargest = 0;
1940 
1941     if( iDestroyed==0 || iTab<iDestroyed ){
1942       iLargest = iTab;
1943     }
1944     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1945       int iIdx = pIdx->tnum;
1946       assert( pIdx->pSchema==pTab->pSchema );
1947       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1948         iLargest = iIdx;
1949       }
1950     }
1951     if( iLargest==0 ){
1952       return;
1953     }else{
1954       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1955       destroyRootPage(pParse, iLargest, iDb);
1956       iDestroyed = iLargest;
1957     }
1958   }
1959 #endif
1960 }
1961 
1962 /*
1963 ** This routine is called to do the work of a DROP TABLE statement.
1964 ** pName is the name of the table to be dropped.
1965 */
1966 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
1967   Table *pTab;
1968   Vdbe *v;
1969   sqlite3 *db = pParse->db;
1970   int iDb;
1971 
1972   if( db->mallocFailed ){
1973     goto exit_drop_table;
1974   }
1975   assert( pParse->nErr==0 );
1976   assert( pName->nSrc==1 );
1977   pTab = sqlite3LocateTable(pParse, isView,
1978                             pName->a[0].zName, pName->a[0].zDatabase);
1979 
1980   if( pTab==0 ){
1981     if( noErr ){
1982       sqlite3ErrorClear(pParse);
1983     }
1984     goto exit_drop_table;
1985   }
1986   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1987   assert( iDb>=0 && iDb<db->nDb );
1988 
1989   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
1990   ** it is initialized.
1991   */
1992   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
1993     goto exit_drop_table;
1994   }
1995 #ifndef SQLITE_OMIT_AUTHORIZATION
1996   {
1997     int code;
1998     const char *zTab = SCHEMA_TABLE(iDb);
1999     const char *zDb = db->aDb[iDb].zName;
2000     const char *zArg2 = 0;
2001     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2002       goto exit_drop_table;
2003     }
2004     if( isView ){
2005       if( !OMIT_TEMPDB && iDb==1 ){
2006         code = SQLITE_DROP_TEMP_VIEW;
2007       }else{
2008         code = SQLITE_DROP_VIEW;
2009       }
2010 #ifndef SQLITE_OMIT_VIRTUALTABLE
2011     }else if( IsVirtual(pTab) ){
2012       code = SQLITE_DROP_VTABLE;
2013       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2014 #endif
2015     }else{
2016       if( !OMIT_TEMPDB && iDb==1 ){
2017         code = SQLITE_DROP_TEMP_TABLE;
2018       }else{
2019         code = SQLITE_DROP_TABLE;
2020       }
2021     }
2022     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2023       goto exit_drop_table;
2024     }
2025     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2026       goto exit_drop_table;
2027     }
2028   }
2029 #endif
2030   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
2031     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2032     goto exit_drop_table;
2033   }
2034 
2035 #ifndef SQLITE_OMIT_VIEW
2036   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2037   ** on a table.
2038   */
2039   if( isView && pTab->pSelect==0 ){
2040     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2041     goto exit_drop_table;
2042   }
2043   if( !isView && pTab->pSelect ){
2044     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2045     goto exit_drop_table;
2046   }
2047 #endif
2048 
2049   /* Generate code to remove the table from the master table
2050   ** on disk.
2051   */
2052   v = sqlite3GetVdbe(pParse);
2053   if( v ){
2054     Trigger *pTrigger;
2055     Db *pDb = &db->aDb[iDb];
2056     sqlite3BeginWriteOperation(pParse, 1, iDb);
2057 
2058 #ifndef SQLITE_OMIT_VIRTUALTABLE
2059     if( IsVirtual(pTab) ){
2060       sqlite3VdbeAddOp0(v, OP_VBegin);
2061     }
2062 #endif
2063     sqlite3FkDropTable(pParse, pName, pTab);
2064 
2065     /* Drop all triggers associated with the table being dropped. Code
2066     ** is generated to remove entries from sqlite_master and/or
2067     ** sqlite_temp_master if required.
2068     */
2069     pTrigger = sqlite3TriggerList(pParse, pTab);
2070     while( pTrigger ){
2071       assert( pTrigger->pSchema==pTab->pSchema ||
2072           pTrigger->pSchema==db->aDb[1].pSchema );
2073       sqlite3DropTriggerPtr(pParse, pTrigger);
2074       pTrigger = pTrigger->pNext;
2075     }
2076 
2077 #ifndef SQLITE_OMIT_AUTOINCREMENT
2078     /* Remove any entries of the sqlite_sequence table associated with
2079     ** the table being dropped. This is done before the table is dropped
2080     ** at the btree level, in case the sqlite_sequence table needs to
2081     ** move as a result of the drop (can happen in auto-vacuum mode).
2082     */
2083     if( pTab->tabFlags & TF_Autoincrement ){
2084       sqlite3NestedParse(pParse,
2085         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
2086         pDb->zName, pTab->zName
2087       );
2088     }
2089 #endif
2090 
2091     /* Drop all SQLITE_MASTER table and index entries that refer to the
2092     ** table. The program name loops through the master table and deletes
2093     ** every row that refers to a table of the same name as the one being
2094     ** dropped. Triggers are handled seperately because a trigger can be
2095     ** created in the temp database that refers to a table in another
2096     ** database.
2097     */
2098     sqlite3NestedParse(pParse,
2099         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2100         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2101 
2102     /* Drop any statistics from the sqlite_stat1 table, if it exists */
2103     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2104       sqlite3NestedParse(pParse,
2105         "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
2106       );
2107     }
2108 
2109     if( !isView && !IsVirtual(pTab) ){
2110       destroyTable(pParse, pTab);
2111     }
2112 
2113     /* Remove the table entry from SQLite's internal schema and modify
2114     ** the schema cookie.
2115     */
2116     if( IsVirtual(pTab) ){
2117       sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2118     }
2119     sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2120     sqlite3ChangeCookie(pParse, iDb);
2121   }
2122   sqliteViewResetAll(db, iDb);
2123 
2124 exit_drop_table:
2125   sqlite3SrcListDelete(db, pName);
2126 }
2127 
2128 /*
2129 ** This routine is called to create a new foreign key on the table
2130 ** currently under construction.  pFromCol determines which columns
2131 ** in the current table point to the foreign key.  If pFromCol==0 then
2132 ** connect the key to the last column inserted.  pTo is the name of
2133 ** the table referred to.  pToCol is a list of tables in the other
2134 ** pTo table that the foreign key points to.  flags contains all
2135 ** information about the conflict resolution algorithms specified
2136 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2137 **
2138 ** An FKey structure is created and added to the table currently
2139 ** under construction in the pParse->pNewTable field.
2140 **
2141 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2142 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2143 */
2144 void sqlite3CreateForeignKey(
2145   Parse *pParse,       /* Parsing context */
2146   ExprList *pFromCol,  /* Columns in this table that point to other table */
2147   Token *pTo,          /* Name of the other table */
2148   ExprList *pToCol,    /* Columns in the other table */
2149   int flags            /* Conflict resolution algorithms. */
2150 ){
2151   sqlite3 *db = pParse->db;
2152 #ifndef SQLITE_OMIT_FOREIGN_KEY
2153   FKey *pFKey = 0;
2154   FKey *pNextTo;
2155   Table *p = pParse->pNewTable;
2156   int nByte;
2157   int i;
2158   int nCol;
2159   char *z;
2160 
2161   assert( pTo!=0 );
2162   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2163   if( pFromCol==0 ){
2164     int iCol = p->nCol-1;
2165     if( NEVER(iCol<0) ) goto fk_end;
2166     if( pToCol && pToCol->nExpr!=1 ){
2167       sqlite3ErrorMsg(pParse, "foreign key on %s"
2168          " should reference only one column of table %T",
2169          p->aCol[iCol].zName, pTo);
2170       goto fk_end;
2171     }
2172     nCol = 1;
2173   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2174     sqlite3ErrorMsg(pParse,
2175         "number of columns in foreign key does not match the number of "
2176         "columns in the referenced table");
2177     goto fk_end;
2178   }else{
2179     nCol = pFromCol->nExpr;
2180   }
2181   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2182   if( pToCol ){
2183     for(i=0; i<pToCol->nExpr; i++){
2184       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2185     }
2186   }
2187   pFKey = sqlite3DbMallocZero(db, nByte );
2188   if( pFKey==0 ){
2189     goto fk_end;
2190   }
2191   pFKey->pFrom = p;
2192   pFKey->pNextFrom = p->pFKey;
2193   z = (char*)&pFKey->aCol[nCol];
2194   pFKey->zTo = z;
2195   memcpy(z, pTo->z, pTo->n);
2196   z[pTo->n] = 0;
2197   sqlite3Dequote(z);
2198   z += pTo->n+1;
2199   pFKey->nCol = nCol;
2200   if( pFromCol==0 ){
2201     pFKey->aCol[0].iFrom = p->nCol-1;
2202   }else{
2203     for(i=0; i<nCol; i++){
2204       int j;
2205       for(j=0; j<p->nCol; j++){
2206         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2207           pFKey->aCol[i].iFrom = j;
2208           break;
2209         }
2210       }
2211       if( j>=p->nCol ){
2212         sqlite3ErrorMsg(pParse,
2213           "unknown column \"%s\" in foreign key definition",
2214           pFromCol->a[i].zName);
2215         goto fk_end;
2216       }
2217     }
2218   }
2219   if( pToCol ){
2220     for(i=0; i<nCol; i++){
2221       int n = sqlite3Strlen30(pToCol->a[i].zName);
2222       pFKey->aCol[i].zCol = z;
2223       memcpy(z, pToCol->a[i].zName, n);
2224       z[n] = 0;
2225       z += n+1;
2226     }
2227   }
2228   pFKey->isDeferred = 0;
2229   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2230   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2231 
2232   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2233       pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
2234   );
2235   if( pNextTo==pFKey ){
2236     db->mallocFailed = 1;
2237     goto fk_end;
2238   }
2239   if( pNextTo ){
2240     assert( pNextTo->pPrevTo==0 );
2241     pFKey->pNextTo = pNextTo;
2242     pNextTo->pPrevTo = pFKey;
2243   }
2244 
2245   /* Link the foreign key to the table as the last step.
2246   */
2247   p->pFKey = pFKey;
2248   pFKey = 0;
2249 
2250 fk_end:
2251   sqlite3DbFree(db, pFKey);
2252 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2253   sqlite3ExprListDelete(db, pFromCol);
2254   sqlite3ExprListDelete(db, pToCol);
2255 }
2256 
2257 /*
2258 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2259 ** clause is seen as part of a foreign key definition.  The isDeferred
2260 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2261 ** The behavior of the most recently created foreign key is adjusted
2262 ** accordingly.
2263 */
2264 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2265 #ifndef SQLITE_OMIT_FOREIGN_KEY
2266   Table *pTab;
2267   FKey *pFKey;
2268   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2269   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2270   pFKey->isDeferred = (u8)isDeferred;
2271 #endif
2272 }
2273 
2274 /*
2275 ** Generate code that will erase and refill index *pIdx.  This is
2276 ** used to initialize a newly created index or to recompute the
2277 ** content of an index in response to a REINDEX command.
2278 **
2279 ** if memRootPage is not negative, it means that the index is newly
2280 ** created.  The register specified by memRootPage contains the
2281 ** root page number of the index.  If memRootPage is negative, then
2282 ** the index already exists and must be cleared before being refilled and
2283 ** the root page number of the index is taken from pIndex->tnum.
2284 */
2285 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2286   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2287   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2288   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2289   int addr1;                     /* Address of top of loop */
2290   int tnum;                      /* Root page of index */
2291   Vdbe *v;                       /* Generate code into this virtual machine */
2292   KeyInfo *pKey;                 /* KeyInfo for index */
2293   int regIdxKey;                 /* Registers containing the index key */
2294   int regRecord;                 /* Register holding assemblied index record */
2295   sqlite3 *db = pParse->db;      /* The database connection */
2296   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2297 
2298 #ifndef SQLITE_OMIT_AUTHORIZATION
2299   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2300       db->aDb[iDb].zName ) ){
2301     return;
2302   }
2303 #endif
2304 
2305   /* Require a write-lock on the table to perform this operation */
2306   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2307 
2308   v = sqlite3GetVdbe(pParse);
2309   if( v==0 ) return;
2310   if( memRootPage>=0 ){
2311     tnum = memRootPage;
2312   }else{
2313     tnum = pIndex->tnum;
2314     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2315   }
2316   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2317   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2318                     (char *)pKey, P4_KEYINFO_HANDOFF);
2319   if( memRootPage>=0 ){
2320     sqlite3VdbeChangeP5(v, 1);
2321   }
2322   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2323   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2324   regRecord = sqlite3GetTempReg(pParse);
2325   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2326   if( pIndex->onError!=OE_None ){
2327     const int regRowid = regIdxKey + pIndex->nColumn;
2328     const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
2329     void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
2330 
2331     /* The registers accessed by the OP_IsUnique opcode were allocated
2332     ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
2333     ** call above. Just before that function was freed they were released
2334     ** (made available to the compiler for reuse) using
2335     ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
2336     ** opcode use the values stored within seems dangerous. However, since
2337     ** we can be sure that no other temp registers have been allocated
2338     ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
2339     */
2340     sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
2341     sqlite3HaltConstraint(
2342         pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
2343   }
2344   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2345   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2346   sqlite3ReleaseTempReg(pParse, regRecord);
2347   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2348   sqlite3VdbeJumpHere(v, addr1);
2349   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2350   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2351 }
2352 
2353 /*
2354 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2355 ** and pTblList is the name of the table that is to be indexed.  Both will
2356 ** be NULL for a primary key or an index that is created to satisfy a
2357 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2358 ** as the table to be indexed.  pParse->pNewTable is a table that is
2359 ** currently being constructed by a CREATE TABLE statement.
2360 **
2361 ** pList is a list of columns to be indexed.  pList will be NULL if this
2362 ** is a primary key or unique-constraint on the most recent column added
2363 ** to the table currently under construction.
2364 **
2365 ** If the index is created successfully, return a pointer to the new Index
2366 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2367 ** as the tables primary key (Index.autoIndex==2).
2368 */
2369 Index *sqlite3CreateIndex(
2370   Parse *pParse,     /* All information about this parse */
2371   Token *pName1,     /* First part of index name. May be NULL */
2372   Token *pName2,     /* Second part of index name. May be NULL */
2373   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2374   ExprList *pList,   /* A list of columns to be indexed */
2375   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2376   Token *pStart,     /* The CREATE token that begins this statement */
2377   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
2378   int sortOrder,     /* Sort order of primary key when pList==NULL */
2379   int ifNotExist     /* Omit error if index already exists */
2380 ){
2381   Index *pRet = 0;     /* Pointer to return */
2382   Table *pTab = 0;     /* Table to be indexed */
2383   Index *pIndex = 0;   /* The index to be created */
2384   char *zName = 0;     /* Name of the index */
2385   int nName;           /* Number of characters in zName */
2386   int i, j;
2387   Token nullId;        /* Fake token for an empty ID list */
2388   DbFixer sFix;        /* For assigning database names to pTable */
2389   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2390   sqlite3 *db = pParse->db;
2391   Db *pDb;             /* The specific table containing the indexed database */
2392   int iDb;             /* Index of the database that is being written */
2393   Token *pName = 0;    /* Unqualified name of the index to create */
2394   struct ExprList_item *pListItem; /* For looping over pList */
2395   int nCol;
2396   int nExtra = 0;
2397   char *zExtra;
2398 
2399   assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
2400   assert( pParse->nErr==0 );      /* Never called with prior errors */
2401   if( db->mallocFailed || IN_DECLARE_VTAB ){
2402     goto exit_create_index;
2403   }
2404   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2405     goto exit_create_index;
2406   }
2407 
2408   /*
2409   ** Find the table that is to be indexed.  Return early if not found.
2410   */
2411   if( pTblName!=0 ){
2412 
2413     /* Use the two-part index name to determine the database
2414     ** to search for the table. 'Fix' the table name to this db
2415     ** before looking up the table.
2416     */
2417     assert( pName1 && pName2 );
2418     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2419     if( iDb<0 ) goto exit_create_index;
2420 
2421 #ifndef SQLITE_OMIT_TEMPDB
2422     /* If the index name was unqualified, check if the the table
2423     ** is a temp table. If so, set the database to 1. Do not do this
2424     ** if initialising a database schema.
2425     */
2426     if( !db->init.busy ){
2427       pTab = sqlite3SrcListLookup(pParse, pTblName);
2428       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2429         iDb = 1;
2430       }
2431     }
2432 #endif
2433 
2434     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2435         sqlite3FixSrcList(&sFix, pTblName)
2436     ){
2437       /* Because the parser constructs pTblName from a single identifier,
2438       ** sqlite3FixSrcList can never fail. */
2439       assert(0);
2440     }
2441     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2442         pTblName->a[0].zDatabase);
2443     if( !pTab || db->mallocFailed ) goto exit_create_index;
2444     assert( db->aDb[iDb].pSchema==pTab->pSchema );
2445   }else{
2446     assert( pName==0 );
2447     pTab = pParse->pNewTable;
2448     if( !pTab ) goto exit_create_index;
2449     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2450   }
2451   pDb = &db->aDb[iDb];
2452 
2453   assert( pTab!=0 );
2454   assert( pParse->nErr==0 );
2455   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2456        && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){
2457     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2458     goto exit_create_index;
2459   }
2460 #ifndef SQLITE_OMIT_VIEW
2461   if( pTab->pSelect ){
2462     sqlite3ErrorMsg(pParse, "views may not be indexed");
2463     goto exit_create_index;
2464   }
2465 #endif
2466 #ifndef SQLITE_OMIT_VIRTUALTABLE
2467   if( IsVirtual(pTab) ){
2468     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2469     goto exit_create_index;
2470   }
2471 #endif
2472 
2473   /*
2474   ** Find the name of the index.  Make sure there is not already another
2475   ** index or table with the same name.
2476   **
2477   ** Exception:  If we are reading the names of permanent indices from the
2478   ** sqlite_master table (because some other process changed the schema) and
2479   ** one of the index names collides with the name of a temporary table or
2480   ** index, then we will continue to process this index.
2481   **
2482   ** If pName==0 it means that we are
2483   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2484   ** own name.
2485   */
2486   if( pName ){
2487     zName = sqlite3NameFromToken(db, pName);
2488     if( zName==0 ) goto exit_create_index;
2489     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2490       goto exit_create_index;
2491     }
2492     if( !db->init.busy ){
2493       if( sqlite3FindTable(db, zName, 0)!=0 ){
2494         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2495         goto exit_create_index;
2496       }
2497     }
2498     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2499       if( !ifNotExist ){
2500         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2501       }
2502       goto exit_create_index;
2503     }
2504   }else{
2505     int n;
2506     Index *pLoop;
2507     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2508     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2509     if( zName==0 ){
2510       goto exit_create_index;
2511     }
2512   }
2513 
2514   /* Check for authorization to create an index.
2515   */
2516 #ifndef SQLITE_OMIT_AUTHORIZATION
2517   {
2518     const char *zDb = pDb->zName;
2519     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2520       goto exit_create_index;
2521     }
2522     i = SQLITE_CREATE_INDEX;
2523     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2524     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2525       goto exit_create_index;
2526     }
2527   }
2528 #endif
2529 
2530   /* If pList==0, it means this routine was called to make a primary
2531   ** key out of the last column added to the table under construction.
2532   ** So create a fake list to simulate this.
2533   */
2534   if( pList==0 ){
2535     nullId.z = pTab->aCol[pTab->nCol-1].zName;
2536     nullId.n = sqlite3Strlen30((char*)nullId.z);
2537     pList = sqlite3ExprListAppend(pParse, 0, 0);
2538     if( pList==0 ) goto exit_create_index;
2539     sqlite3ExprListSetName(pParse, pList, &nullId, 0);
2540     pList->a[0].sortOrder = (u8)sortOrder;
2541   }
2542 
2543   /* Figure out how many bytes of space are required to store explicitly
2544   ** specified collation sequence names.
2545   */
2546   for(i=0; i<pList->nExpr; i++){
2547     Expr *pExpr = pList->a[i].pExpr;
2548     if( pExpr ){
2549       CollSeq *pColl = pExpr->pColl;
2550       /* Either pColl!=0 or there was an OOM failure.  But if an OOM
2551       ** failure we have quit before reaching this point. */
2552       if( ALWAYS(pColl) ){
2553         nExtra += (1 + sqlite3Strlen30(pColl->zName));
2554       }
2555     }
2556   }
2557 
2558   /*
2559   ** Allocate the index structure.
2560   */
2561   nName = sqlite3Strlen30(zName);
2562   nCol = pList->nExpr;
2563   pIndex = sqlite3DbMallocZero(db,
2564       sizeof(Index) +              /* Index structure  */
2565       sizeof(int)*nCol +           /* Index.aiColumn   */
2566       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
2567       sizeof(char *)*nCol +        /* Index.azColl     */
2568       sizeof(u8)*nCol +            /* Index.aSortOrder */
2569       nName + 1 +                  /* Index.zName      */
2570       nExtra                       /* Collation sequence names */
2571   );
2572   if( db->mallocFailed ){
2573     goto exit_create_index;
2574   }
2575   pIndex->azColl = (char**)(&pIndex[1]);
2576   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2577   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
2578   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
2579   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2580   zExtra = (char *)(&pIndex->zName[nName+1]);
2581   memcpy(pIndex->zName, zName, nName+1);
2582   pIndex->pTable = pTab;
2583   pIndex->nColumn = pList->nExpr;
2584   pIndex->onError = (u8)onError;
2585   pIndex->autoIndex = (u8)(pName==0);
2586   pIndex->pSchema = db->aDb[iDb].pSchema;
2587 
2588   /* Check to see if we should honor DESC requests on index columns
2589   */
2590   if( pDb->pSchema->file_format>=4 ){
2591     sortOrderMask = -1;   /* Honor DESC */
2592   }else{
2593     sortOrderMask = 0;    /* Ignore DESC */
2594   }
2595 
2596   /* Scan the names of the columns of the table to be indexed and
2597   ** load the column indices into the Index structure.  Report an error
2598   ** if any column is not found.
2599   **
2600   ** TODO:  Add a test to make sure that the same column is not named
2601   ** more than once within the same index.  Only the first instance of
2602   ** the column will ever be used by the optimizer.  Note that using the
2603   ** same column more than once cannot be an error because that would
2604   ** break backwards compatibility - it needs to be a warning.
2605   */
2606   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2607     const char *zColName = pListItem->zName;
2608     Column *pTabCol;
2609     int requestedSortOrder;
2610     char *zColl;                   /* Collation sequence name */
2611 
2612     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2613       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2614     }
2615     if( j>=pTab->nCol ){
2616       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2617         pTab->zName, zColName);
2618       goto exit_create_index;
2619     }
2620     pIndex->aiColumn[i] = j;
2621     /* Justification of the ALWAYS(pListItem->pExpr->pColl):  Because of
2622     ** the way the "idxlist" non-terminal is constructed by the parser,
2623     ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
2624     ** must exist or else there must have been an OOM error.  But if there
2625     ** was an OOM error, we would never reach this point. */
2626     if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
2627       int nColl;
2628       zColl = pListItem->pExpr->pColl->zName;
2629       nColl = sqlite3Strlen30(zColl) + 1;
2630       assert( nExtra>=nColl );
2631       memcpy(zExtra, zColl, nColl);
2632       zColl = zExtra;
2633       zExtra += nColl;
2634       nExtra -= nColl;
2635     }else{
2636       zColl = pTab->aCol[j].zColl;
2637       if( !zColl ){
2638         zColl = db->pDfltColl->zName;
2639       }
2640     }
2641     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
2642       goto exit_create_index;
2643     }
2644     pIndex->azColl[i] = zColl;
2645     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2646     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
2647   }
2648   sqlite3DefaultRowEst(pIndex);
2649 
2650   if( pTab==pParse->pNewTable ){
2651     /* This routine has been called to create an automatic index as a
2652     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2653     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2654     ** i.e. one of:
2655     **
2656     ** CREATE TABLE t(x PRIMARY KEY, y);
2657     ** CREATE TABLE t(x, y, UNIQUE(x, y));
2658     **
2659     ** Either way, check to see if the table already has such an index. If
2660     ** so, don't bother creating this one. This only applies to
2661     ** automatically created indices. Users can do as they wish with
2662     ** explicit indices.
2663     **
2664     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
2665     ** (and thus suppressing the second one) even if they have different
2666     ** sort orders.
2667     **
2668     ** If there are different collating sequences or if the columns of
2669     ** the constraint occur in different orders, then the constraints are
2670     ** considered distinct and both result in separate indices.
2671     */
2672     Index *pIdx;
2673     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2674       int k;
2675       assert( pIdx->onError!=OE_None );
2676       assert( pIdx->autoIndex );
2677       assert( pIndex->onError!=OE_None );
2678 
2679       if( pIdx->nColumn!=pIndex->nColumn ) continue;
2680       for(k=0; k<pIdx->nColumn; k++){
2681         const char *z1;
2682         const char *z2;
2683         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2684         z1 = pIdx->azColl[k];
2685         z2 = pIndex->azColl[k];
2686         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2687       }
2688       if( k==pIdx->nColumn ){
2689         if( pIdx->onError!=pIndex->onError ){
2690           /* This constraint creates the same index as a previous
2691           ** constraint specified somewhere in the CREATE TABLE statement.
2692           ** However the ON CONFLICT clauses are different. If both this
2693           ** constraint and the previous equivalent constraint have explicit
2694           ** ON CONFLICT clauses this is an error. Otherwise, use the
2695           ** explicitly specified behaviour for the index.
2696           */
2697           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2698             sqlite3ErrorMsg(pParse,
2699                 "conflicting ON CONFLICT clauses specified", 0);
2700           }
2701           if( pIdx->onError==OE_Default ){
2702             pIdx->onError = pIndex->onError;
2703           }
2704         }
2705         goto exit_create_index;
2706       }
2707     }
2708   }
2709 
2710   /* Link the new Index structure to its table and to the other
2711   ** in-memory database structures.
2712   */
2713   if( db->init.busy ){
2714     Index *p;
2715     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2716                           pIndex->zName, sqlite3Strlen30(pIndex->zName),
2717                           pIndex);
2718     if( p ){
2719       assert( p==pIndex );  /* Malloc must have failed */
2720       db->mallocFailed = 1;
2721       goto exit_create_index;
2722     }
2723     db->flags |= SQLITE_InternChanges;
2724     if( pTblName!=0 ){
2725       pIndex->tnum = db->init.newTnum;
2726     }
2727   }
2728 
2729   /* If the db->init.busy is 0 then create the index on disk.  This
2730   ** involves writing the index into the master table and filling in the
2731   ** index with the current table contents.
2732   **
2733   ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2734   ** command.  db->init.busy is 1 when a database is opened and
2735   ** CREATE INDEX statements are read out of the master table.  In
2736   ** the latter case the index already exists on disk, which is why
2737   ** we don't want to recreate it.
2738   **
2739   ** If pTblName==0 it means this index is generated as a primary key
2740   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
2741   ** has just been created, it contains no data and the index initialization
2742   ** step can be skipped.
2743   */
2744   else{ /* if( db->init.busy==0 ) */
2745     Vdbe *v;
2746     char *zStmt;
2747     int iMem = ++pParse->nMem;
2748 
2749     v = sqlite3GetVdbe(pParse);
2750     if( v==0 ) goto exit_create_index;
2751 
2752 
2753     /* Create the rootpage for the index
2754     */
2755     sqlite3BeginWriteOperation(pParse, 1, iDb);
2756     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2757 
2758     /* Gather the complete text of the CREATE INDEX statement into
2759     ** the zStmt variable
2760     */
2761     if( pStart ){
2762       assert( pEnd!=0 );
2763       /* A named index with an explicit CREATE INDEX statement */
2764       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2765         onError==OE_None ? "" : " UNIQUE",
2766         pEnd->z - pName->z + 1,
2767         pName->z);
2768     }else{
2769       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2770       /* zStmt = sqlite3MPrintf(""); */
2771       zStmt = 0;
2772     }
2773 
2774     /* Add an entry in sqlite_master for this index
2775     */
2776     sqlite3NestedParse(pParse,
2777         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2778         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2779         pIndex->zName,
2780         pTab->zName,
2781         iMem,
2782         zStmt
2783     );
2784     sqlite3DbFree(db, zStmt);
2785 
2786     /* Fill the index with data and reparse the schema. Code an OP_Expire
2787     ** to invalidate all pre-compiled statements.
2788     */
2789     if( pTblName ){
2790       sqlite3RefillIndex(pParse, pIndex, iMem);
2791       sqlite3ChangeCookie(pParse, iDb);
2792       sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
2793          sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
2794       sqlite3VdbeAddOp1(v, OP_Expire, 0);
2795     }
2796   }
2797 
2798   /* When adding an index to the list of indices for a table, make
2799   ** sure all indices labeled OE_Replace come after all those labeled
2800   ** OE_Ignore.  This is necessary for the correct constraint check
2801   ** processing (in sqlite3GenerateConstraintChecks()) as part of
2802   ** UPDATE and INSERT statements.
2803   */
2804   if( db->init.busy || pTblName==0 ){
2805     if( onError!=OE_Replace || pTab->pIndex==0
2806          || pTab->pIndex->onError==OE_Replace){
2807       pIndex->pNext = pTab->pIndex;
2808       pTab->pIndex = pIndex;
2809     }else{
2810       Index *pOther = pTab->pIndex;
2811       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2812         pOther = pOther->pNext;
2813       }
2814       pIndex->pNext = pOther->pNext;
2815       pOther->pNext = pIndex;
2816     }
2817     pRet = pIndex;
2818     pIndex = 0;
2819   }
2820 
2821   /* Clean up before exiting */
2822 exit_create_index:
2823   if( pIndex ){
2824     sqlite3_free(pIndex->zColAff);
2825     sqlite3DbFree(db, pIndex);
2826   }
2827   sqlite3ExprListDelete(db, pList);
2828   sqlite3SrcListDelete(db, pTblName);
2829   sqlite3DbFree(db, zName);
2830   return pRet;
2831 }
2832 
2833 /*
2834 ** Fill the Index.aiRowEst[] array with default information - information
2835 ** to be used when we have not run the ANALYZE command.
2836 **
2837 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2838 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
2839 ** number of rows in the table that match any particular value of the
2840 ** first column of the index.  aiRowEst[2] is an estimate of the number
2841 ** of rows that match any particular combiniation of the first 2 columns
2842 ** of the index.  And so forth.  It must always be the case that
2843 *
2844 **           aiRowEst[N]<=aiRowEst[N-1]
2845 **           aiRowEst[N]>=1
2846 **
2847 ** Apart from that, we have little to go on besides intuition as to
2848 ** how aiRowEst[] should be initialized.  The numbers generated here
2849 ** are based on typical values found in actual indices.
2850 */
2851 void sqlite3DefaultRowEst(Index *pIdx){
2852   unsigned *a = pIdx->aiRowEst;
2853   int i;
2854   assert( a!=0 );
2855   a[0] = 1000000;
2856   for(i=pIdx->nColumn; i>=5; i--){
2857     a[i] = 5;
2858   }
2859   while( i>=1 ){
2860     a[i] = 11 - i;
2861     i--;
2862   }
2863   if( pIdx->onError!=OE_None ){
2864     a[pIdx->nColumn] = 1;
2865   }
2866 }
2867 
2868 /*
2869 ** This routine will drop an existing named index.  This routine
2870 ** implements the DROP INDEX statement.
2871 */
2872 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
2873   Index *pIndex;
2874   Vdbe *v;
2875   sqlite3 *db = pParse->db;
2876   int iDb;
2877 
2878   assert( pParse->nErr==0 );   /* Never called with prior errors */
2879   if( db->mallocFailed ){
2880     goto exit_drop_index;
2881   }
2882   assert( pName->nSrc==1 );
2883   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2884     goto exit_drop_index;
2885   }
2886   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
2887   if( pIndex==0 ){
2888     if( !ifExists ){
2889       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
2890     }
2891     pParse->checkSchema = 1;
2892     goto exit_drop_index;
2893   }
2894   if( pIndex->autoIndex ){
2895     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
2896       "or PRIMARY KEY constraint cannot be dropped", 0);
2897     goto exit_drop_index;
2898   }
2899   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2900 #ifndef SQLITE_OMIT_AUTHORIZATION
2901   {
2902     int code = SQLITE_DROP_INDEX;
2903     Table *pTab = pIndex->pTable;
2904     const char *zDb = db->aDb[iDb].zName;
2905     const char *zTab = SCHEMA_TABLE(iDb);
2906     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
2907       goto exit_drop_index;
2908     }
2909     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
2910     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
2911       goto exit_drop_index;
2912     }
2913   }
2914 #endif
2915 
2916   /* Generate code to remove the index and from the master table */
2917   v = sqlite3GetVdbe(pParse);
2918   if( v ){
2919     sqlite3BeginWriteOperation(pParse, 1, iDb);
2920     sqlite3NestedParse(pParse,
2921        "DELETE FROM %Q.%s WHERE name=%Q",
2922        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2923        pIndex->zName
2924     );
2925     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2926       sqlite3NestedParse(pParse,
2927         "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
2928         db->aDb[iDb].zName, pIndex->zName
2929       );
2930     }
2931     sqlite3ChangeCookie(pParse, iDb);
2932     destroyRootPage(pParse, pIndex->tnum, iDb);
2933     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
2934   }
2935 
2936 exit_drop_index:
2937   sqlite3SrcListDelete(db, pName);
2938 }
2939 
2940 /*
2941 ** pArray is a pointer to an array of objects.  Each object in the
2942 ** array is szEntry bytes in size.  This routine allocates a new
2943 ** object on the end of the array.
2944 **
2945 ** *pnEntry is the number of entries already in use.  *pnAlloc is
2946 ** the previously allocated size of the array.  initSize is the
2947 ** suggested initial array size allocation.
2948 **
2949 ** The index of the new entry is returned in *pIdx.
2950 **
2951 ** This routine returns a pointer to the array of objects.  This
2952 ** might be the same as the pArray parameter or it might be a different
2953 ** pointer if the array was resized.
2954 */
2955 void *sqlite3ArrayAllocate(
2956   sqlite3 *db,      /* Connection to notify of malloc failures */
2957   void *pArray,     /* Array of objects.  Might be reallocated */
2958   int szEntry,      /* Size of each object in the array */
2959   int initSize,     /* Suggested initial allocation, in elements */
2960   int *pnEntry,     /* Number of objects currently in use */
2961   int *pnAlloc,     /* Current size of the allocation, in elements */
2962   int *pIdx         /* Write the index of a new slot here */
2963 ){
2964   char *z;
2965   if( *pnEntry >= *pnAlloc ){
2966     void *pNew;
2967     int newSize;
2968     newSize = (*pnAlloc)*2 + initSize;
2969     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
2970     if( pNew==0 ){
2971       *pIdx = -1;
2972       return pArray;
2973     }
2974     *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
2975     pArray = pNew;
2976   }
2977   z = (char*)pArray;
2978   memset(&z[*pnEntry * szEntry], 0, szEntry);
2979   *pIdx = *pnEntry;
2980   ++*pnEntry;
2981   return pArray;
2982 }
2983 
2984 /*
2985 ** Append a new element to the given IdList.  Create a new IdList if
2986 ** need be.
2987 **
2988 ** A new IdList is returned, or NULL if malloc() fails.
2989 */
2990 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
2991   int i;
2992   if( pList==0 ){
2993     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
2994     if( pList==0 ) return 0;
2995     pList->nAlloc = 0;
2996   }
2997   pList->a = sqlite3ArrayAllocate(
2998       db,
2999       pList->a,
3000       sizeof(pList->a[0]),
3001       5,
3002       &pList->nId,
3003       &pList->nAlloc,
3004       &i
3005   );
3006   if( i<0 ){
3007     sqlite3IdListDelete(db, pList);
3008     return 0;
3009   }
3010   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3011   return pList;
3012 }
3013 
3014 /*
3015 ** Delete an IdList.
3016 */
3017 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3018   int i;
3019   if( pList==0 ) return;
3020   for(i=0; i<pList->nId; i++){
3021     sqlite3DbFree(db, pList->a[i].zName);
3022   }
3023   sqlite3DbFree(db, pList->a);
3024   sqlite3DbFree(db, pList);
3025 }
3026 
3027 /*
3028 ** Return the index in pList of the identifier named zId.  Return -1
3029 ** if not found.
3030 */
3031 int sqlite3IdListIndex(IdList *pList, const char *zName){
3032   int i;
3033   if( pList==0 ) return -1;
3034   for(i=0; i<pList->nId; i++){
3035     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3036   }
3037   return -1;
3038 }
3039 
3040 /*
3041 ** Expand the space allocated for the given SrcList object by
3042 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3043 ** New slots are zeroed.
3044 **
3045 ** For example, suppose a SrcList initially contains two entries: A,B.
3046 ** To append 3 new entries onto the end, do this:
3047 **
3048 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3049 **
3050 ** After the call above it would contain:  A, B, nil, nil, nil.
3051 ** If the iStart argument had been 1 instead of 2, then the result
3052 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3053 ** the iStart value would be 0.  The result then would
3054 ** be: nil, nil, nil, A, B.
3055 **
3056 ** If a memory allocation fails the SrcList is unchanged.  The
3057 ** db->mallocFailed flag will be set to true.
3058 */
3059 SrcList *sqlite3SrcListEnlarge(
3060   sqlite3 *db,       /* Database connection to notify of OOM errors */
3061   SrcList *pSrc,     /* The SrcList to be enlarged */
3062   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3063   int iStart         /* Index in pSrc->a[] of first new slot */
3064 ){
3065   int i;
3066 
3067   /* Sanity checking on calling parameters */
3068   assert( iStart>=0 );
3069   assert( nExtra>=1 );
3070   assert( pSrc!=0 );
3071   assert( iStart<=pSrc->nSrc );
3072 
3073   /* Allocate additional space if needed */
3074   if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
3075     SrcList *pNew;
3076     int nAlloc = pSrc->nSrc+nExtra;
3077     int nGot;
3078     pNew = sqlite3DbRealloc(db, pSrc,
3079                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3080     if( pNew==0 ){
3081       assert( db->mallocFailed );
3082       return pSrc;
3083     }
3084     pSrc = pNew;
3085     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3086     pSrc->nAlloc = (u16)nGot;
3087   }
3088 
3089   /* Move existing slots that come after the newly inserted slots
3090   ** out of the way */
3091   for(i=pSrc->nSrc-1; i>=iStart; i--){
3092     pSrc->a[i+nExtra] = pSrc->a[i];
3093   }
3094   pSrc->nSrc += (i16)nExtra;
3095 
3096   /* Zero the newly allocated slots */
3097   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3098   for(i=iStart; i<iStart+nExtra; i++){
3099     pSrc->a[i].iCursor = -1;
3100   }
3101 
3102   /* Return a pointer to the enlarged SrcList */
3103   return pSrc;
3104 }
3105 
3106 
3107 /*
3108 ** Append a new table name to the given SrcList.  Create a new SrcList if
3109 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3110 **
3111 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3112 ** SrcList might be the same as the SrcList that was input or it might be
3113 ** a new one.  If an OOM error does occurs, then the prior value of pList
3114 ** that is input to this routine is automatically freed.
3115 **
3116 ** If pDatabase is not null, it means that the table has an optional
3117 ** database name prefix.  Like this:  "database.table".  The pDatabase
3118 ** points to the table name and the pTable points to the database name.
3119 ** The SrcList.a[].zName field is filled with the table name which might
3120 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3121 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3122 ** or with NULL if no database is specified.
3123 **
3124 ** In other words, if call like this:
3125 **
3126 **         sqlite3SrcListAppend(D,A,B,0);
3127 **
3128 ** Then B is a table name and the database name is unspecified.  If called
3129 ** like this:
3130 **
3131 **         sqlite3SrcListAppend(D,A,B,C);
3132 **
3133 ** Then C is the table name and B is the database name.  If C is defined
3134 ** then so is B.  In other words, we never have a case where:
3135 **
3136 **         sqlite3SrcListAppend(D,A,0,C);
3137 **
3138 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3139 ** before being added to the SrcList.
3140 */
3141 SrcList *sqlite3SrcListAppend(
3142   sqlite3 *db,        /* Connection to notify of malloc failures */
3143   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3144   Token *pTable,      /* Table to append */
3145   Token *pDatabase    /* Database of the table */
3146 ){
3147   struct SrcList_item *pItem;
3148   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3149   if( pList==0 ){
3150     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3151     if( pList==0 ) return 0;
3152     pList->nAlloc = 1;
3153   }
3154   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3155   if( db->mallocFailed ){
3156     sqlite3SrcListDelete(db, pList);
3157     return 0;
3158   }
3159   pItem = &pList->a[pList->nSrc-1];
3160   if( pDatabase && pDatabase->z==0 ){
3161     pDatabase = 0;
3162   }
3163   if( pDatabase ){
3164     Token *pTemp = pDatabase;
3165     pDatabase = pTable;
3166     pTable = pTemp;
3167   }
3168   pItem->zName = sqlite3NameFromToken(db, pTable);
3169   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3170   return pList;
3171 }
3172 
3173 /*
3174 ** Assign VdbeCursor index numbers to all tables in a SrcList
3175 */
3176 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3177   int i;
3178   struct SrcList_item *pItem;
3179   assert(pList || pParse->db->mallocFailed );
3180   if( pList ){
3181     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3182       if( pItem->iCursor>=0 ) break;
3183       pItem->iCursor = pParse->nTab++;
3184       if( pItem->pSelect ){
3185         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3186       }
3187     }
3188   }
3189 }
3190 
3191 /*
3192 ** Delete an entire SrcList including all its substructure.
3193 */
3194 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3195   int i;
3196   struct SrcList_item *pItem;
3197   if( pList==0 ) return;
3198   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3199     sqlite3DbFree(db, pItem->zDatabase);
3200     sqlite3DbFree(db, pItem->zName);
3201     sqlite3DbFree(db, pItem->zAlias);
3202     sqlite3DbFree(db, pItem->zIndex);
3203     sqlite3DeleteTable(pItem->pTab);
3204     sqlite3SelectDelete(db, pItem->pSelect);
3205     sqlite3ExprDelete(db, pItem->pOn);
3206     sqlite3IdListDelete(db, pItem->pUsing);
3207   }
3208   sqlite3DbFree(db, pList);
3209 }
3210 
3211 /*
3212 ** This routine is called by the parser to add a new term to the
3213 ** end of a growing FROM clause.  The "p" parameter is the part of
3214 ** the FROM clause that has already been constructed.  "p" is NULL
3215 ** if this is the first term of the FROM clause.  pTable and pDatabase
3216 ** are the name of the table and database named in the FROM clause term.
3217 ** pDatabase is NULL if the database name qualifier is missing - the
3218 ** usual case.  If the term has a alias, then pAlias points to the
3219 ** alias token.  If the term is a subquery, then pSubquery is the
3220 ** SELECT statement that the subquery encodes.  The pTable and
3221 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3222 ** parameters are the content of the ON and USING clauses.
3223 **
3224 ** Return a new SrcList which encodes is the FROM with the new
3225 ** term added.
3226 */
3227 SrcList *sqlite3SrcListAppendFromTerm(
3228   Parse *pParse,          /* Parsing context */
3229   SrcList *p,             /* The left part of the FROM clause already seen */
3230   Token *pTable,          /* Name of the table to add to the FROM clause */
3231   Token *pDatabase,       /* Name of the database containing pTable */
3232   Token *pAlias,          /* The right-hand side of the AS subexpression */
3233   Select *pSubquery,      /* A subquery used in place of a table name */
3234   Expr *pOn,              /* The ON clause of a join */
3235   IdList *pUsing          /* The USING clause of a join */
3236 ){
3237   struct SrcList_item *pItem;
3238   sqlite3 *db = pParse->db;
3239   if( !p && (pOn || pUsing) ){
3240     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3241       (pOn ? "ON" : "USING")
3242     );
3243     goto append_from_error;
3244   }
3245   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3246   if( p==0 || NEVER(p->nSrc==0) ){
3247     goto append_from_error;
3248   }
3249   pItem = &p->a[p->nSrc-1];
3250   assert( pAlias!=0 );
3251   if( pAlias->n ){
3252     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3253   }
3254   pItem->pSelect = pSubquery;
3255   pItem->pOn = pOn;
3256   pItem->pUsing = pUsing;
3257   return p;
3258 
3259  append_from_error:
3260   assert( p==0 );
3261   sqlite3ExprDelete(db, pOn);
3262   sqlite3IdListDelete(db, pUsing);
3263   sqlite3SelectDelete(db, pSubquery);
3264   return 0;
3265 }
3266 
3267 /*
3268 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3269 ** element of the source-list passed as the second argument.
3270 */
3271 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3272   assert( pIndexedBy!=0 );
3273   if( p && ALWAYS(p->nSrc>0) ){
3274     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3275     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3276     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3277       /* A "NOT INDEXED" clause was supplied. See parse.y
3278       ** construct "indexed_opt" for details. */
3279       pItem->notIndexed = 1;
3280     }else{
3281       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3282     }
3283   }
3284 }
3285 
3286 /*
3287 ** When building up a FROM clause in the parser, the join operator
3288 ** is initially attached to the left operand.  But the code generator
3289 ** expects the join operator to be on the right operand.  This routine
3290 ** Shifts all join operators from left to right for an entire FROM
3291 ** clause.
3292 **
3293 ** Example: Suppose the join is like this:
3294 **
3295 **           A natural cross join B
3296 **
3297 ** The operator is "natural cross join".  The A and B operands are stored
3298 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3299 ** operator with A.  This routine shifts that operator over to B.
3300 */
3301 void sqlite3SrcListShiftJoinType(SrcList *p){
3302   if( p && p->a ){
3303     int i;
3304     for(i=p->nSrc-1; i>0; i--){
3305       p->a[i].jointype = p->a[i-1].jointype;
3306     }
3307     p->a[0].jointype = 0;
3308   }
3309 }
3310 
3311 /*
3312 ** Begin a transaction
3313 */
3314 void sqlite3BeginTransaction(Parse *pParse, int type){
3315   sqlite3 *db;
3316   Vdbe *v;
3317   int i;
3318 
3319   assert( pParse!=0 );
3320   db = pParse->db;
3321   assert( db!=0 );
3322 /*  if( db->aDb[0].pBt==0 ) return; */
3323   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3324     return;
3325   }
3326   v = sqlite3GetVdbe(pParse);
3327   if( !v ) return;
3328   if( type!=TK_DEFERRED ){
3329     for(i=0; i<db->nDb; i++){
3330       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3331       sqlite3VdbeUsesBtree(v, i);
3332     }
3333   }
3334   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3335 }
3336 
3337 /*
3338 ** Commit a transaction
3339 */
3340 void sqlite3CommitTransaction(Parse *pParse){
3341   sqlite3 *db;
3342   Vdbe *v;
3343 
3344   assert( pParse!=0 );
3345   db = pParse->db;
3346   assert( db!=0 );
3347 /*  if( db->aDb[0].pBt==0 ) return; */
3348   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3349     return;
3350   }
3351   v = sqlite3GetVdbe(pParse);
3352   if( v ){
3353     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3354   }
3355 }
3356 
3357 /*
3358 ** Rollback a transaction
3359 */
3360 void sqlite3RollbackTransaction(Parse *pParse){
3361   sqlite3 *db;
3362   Vdbe *v;
3363 
3364   assert( pParse!=0 );
3365   db = pParse->db;
3366   assert( db!=0 );
3367 /*  if( db->aDb[0].pBt==0 ) return; */
3368   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3369     return;
3370   }
3371   v = sqlite3GetVdbe(pParse);
3372   if( v ){
3373     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3374   }
3375 }
3376 
3377 /*
3378 ** This function is called by the parser when it parses a command to create,
3379 ** release or rollback an SQL savepoint.
3380 */
3381 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3382   char *zName = sqlite3NameFromToken(pParse->db, pName);
3383   if( zName ){
3384     Vdbe *v = sqlite3GetVdbe(pParse);
3385 #ifndef SQLITE_OMIT_AUTHORIZATION
3386     static const char *az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3387     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3388 #endif
3389     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3390       sqlite3DbFree(pParse->db, zName);
3391       return;
3392     }
3393     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3394   }
3395 }
3396 
3397 /*
3398 ** Make sure the TEMP database is open and available for use.  Return
3399 ** the number of errors.  Leave any error messages in the pParse structure.
3400 */
3401 int sqlite3OpenTempDatabase(Parse *pParse){
3402   sqlite3 *db = pParse->db;
3403   if( db->aDb[1].pBt==0 && !pParse->explain ){
3404     int rc;
3405     static const int flags =
3406           SQLITE_OPEN_READWRITE |
3407           SQLITE_OPEN_CREATE |
3408           SQLITE_OPEN_EXCLUSIVE |
3409           SQLITE_OPEN_DELETEONCLOSE |
3410           SQLITE_OPEN_TEMP_DB;
3411 
3412     rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
3413                                  &db->aDb[1].pBt);
3414     if( rc!=SQLITE_OK ){
3415       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3416         "file for storing temporary tables");
3417       pParse->rc = rc;
3418       return 1;
3419     }
3420     assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
3421     assert( db->aDb[1].pSchema );
3422     sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
3423                             db->dfltJournalMode);
3424   }
3425   return 0;
3426 }
3427 
3428 /*
3429 ** Generate VDBE code that will verify the schema cookie and start
3430 ** a read-transaction for all named database files.
3431 **
3432 ** It is important that all schema cookies be verified and all
3433 ** read transactions be started before anything else happens in
3434 ** the VDBE program.  But this routine can be called after much other
3435 ** code has been generated.  So here is what we do:
3436 **
3437 ** The first time this routine is called, we code an OP_Goto that
3438 ** will jump to a subroutine at the end of the program.  Then we
3439 ** record every database that needs its schema verified in the
3440 ** pParse->cookieMask field.  Later, after all other code has been
3441 ** generated, the subroutine that does the cookie verifications and
3442 ** starts the transactions will be coded and the OP_Goto P2 value
3443 ** will be made to point to that subroutine.  The generation of the
3444 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3445 **
3446 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3447 ** schema on any databases.  This can be used to position the OP_Goto
3448 ** early in the code, before we know if any database tables will be used.
3449 */
3450 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3451   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3452 
3453   if( pToplevel->cookieGoto==0 ){
3454     Vdbe *v = sqlite3GetVdbe(pToplevel);
3455     if( v==0 ) return;  /* This only happens if there was a prior error */
3456     pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3457   }
3458   if( iDb>=0 ){
3459     sqlite3 *db = pToplevel->db;
3460     int mask;
3461 
3462     assert( iDb<db->nDb );
3463     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3464     assert( iDb<SQLITE_MAX_ATTACHED+2 );
3465     mask = 1<<iDb;
3466     if( (pToplevel->cookieMask & mask)==0 ){
3467       pToplevel->cookieMask |= mask;
3468       pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3469       if( !OMIT_TEMPDB && iDb==1 ){
3470         sqlite3OpenTempDatabase(pToplevel);
3471       }
3472     }
3473   }
3474 }
3475 
3476 /*
3477 ** Generate VDBE code that prepares for doing an operation that
3478 ** might change the database.
3479 **
3480 ** This routine starts a new transaction if we are not already within
3481 ** a transaction.  If we are already within a transaction, then a checkpoint
3482 ** is set if the setStatement parameter is true.  A checkpoint should
3483 ** be set for operations that might fail (due to a constraint) part of
3484 ** the way through and which will need to undo some writes without having to
3485 ** rollback the whole transaction.  For operations where all constraints
3486 ** can be checked before any changes are made to the database, it is never
3487 ** necessary to undo a write and the checkpoint should not be set.
3488 */
3489 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3490   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3491   sqlite3CodeVerifySchema(pParse, iDb);
3492   pToplevel->writeMask |= 1<<iDb;
3493   pToplevel->isMultiWrite |= setStatement;
3494 }
3495 
3496 /*
3497 ** Indicate that the statement currently under construction might write
3498 ** more than one entry (example: deleting one row then inserting another,
3499 ** inserting multiple rows in a table, or inserting a row and index entries.)
3500 ** If an abort occurs after some of these writes have completed, then it will
3501 ** be necessary to undo the completed writes.
3502 */
3503 void sqlite3MultiWrite(Parse *pParse){
3504   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3505   pToplevel->isMultiWrite = 1;
3506 }
3507 
3508 /*
3509 ** The code generator calls this routine if is discovers that it is
3510 ** possible to abort a statement prior to completion.  In order to
3511 ** perform this abort without corrupting the database, we need to make
3512 ** sure that the statement is protected by a statement transaction.
3513 **
3514 ** Technically, we only need to set the mayAbort flag if the
3515 ** isMultiWrite flag was previously set.  There is a time dependency
3516 ** such that the abort must occur after the multiwrite.  This makes
3517 ** some statements involving the REPLACE conflict resolution algorithm
3518 ** go a little faster.  But taking advantage of this time dependency
3519 ** makes it more difficult to prove that the code is correct (in
3520 ** particular, it prevents us from writing an effective
3521 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3522 ** to take the safe route and skip the optimization.
3523 */
3524 void sqlite3MayAbort(Parse *pParse){
3525   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3526   pToplevel->mayAbort = 1;
3527 }
3528 
3529 /*
3530 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3531 ** error. The onError parameter determines which (if any) of the statement
3532 ** and/or current transaction is rolled back.
3533 */
3534 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
3535   Vdbe *v = sqlite3GetVdbe(pParse);
3536   if( onError==OE_Abort ){
3537     sqlite3MayAbort(pParse);
3538   }
3539   sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
3540 }
3541 
3542 /*
3543 ** Check to see if pIndex uses the collating sequence pColl.  Return
3544 ** true if it does and false if it does not.
3545 */
3546 #ifndef SQLITE_OMIT_REINDEX
3547 static int collationMatch(const char *zColl, Index *pIndex){
3548   int i;
3549   assert( zColl!=0 );
3550   for(i=0; i<pIndex->nColumn; i++){
3551     const char *z = pIndex->azColl[i];
3552     assert( z!=0 );
3553     if( 0==sqlite3StrICmp(z, zColl) ){
3554       return 1;
3555     }
3556   }
3557   return 0;
3558 }
3559 #endif
3560 
3561 /*
3562 ** Recompute all indices of pTab that use the collating sequence pColl.
3563 ** If pColl==0 then recompute all indices of pTab.
3564 */
3565 #ifndef SQLITE_OMIT_REINDEX
3566 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3567   Index *pIndex;              /* An index associated with pTab */
3568 
3569   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3570     if( zColl==0 || collationMatch(zColl, pIndex) ){
3571       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3572       sqlite3BeginWriteOperation(pParse, 0, iDb);
3573       sqlite3RefillIndex(pParse, pIndex, -1);
3574     }
3575   }
3576 }
3577 #endif
3578 
3579 /*
3580 ** Recompute all indices of all tables in all databases where the
3581 ** indices use the collating sequence pColl.  If pColl==0 then recompute
3582 ** all indices everywhere.
3583 */
3584 #ifndef SQLITE_OMIT_REINDEX
3585 static void reindexDatabases(Parse *pParse, char const *zColl){
3586   Db *pDb;                    /* A single database */
3587   int iDb;                    /* The database index number */
3588   sqlite3 *db = pParse->db;   /* The database connection */
3589   HashElem *k;                /* For looping over tables in pDb */
3590   Table *pTab;                /* A table in the database */
3591 
3592   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3593     assert( pDb!=0 );
3594     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
3595       pTab = (Table*)sqliteHashData(k);
3596       reindexTable(pParse, pTab, zColl);
3597     }
3598   }
3599 }
3600 #endif
3601 
3602 /*
3603 ** Generate code for the REINDEX command.
3604 **
3605 **        REINDEX                            -- 1
3606 **        REINDEX  <collation>               -- 2
3607 **        REINDEX  ?<database>.?<tablename>  -- 3
3608 **        REINDEX  ?<database>.?<indexname>  -- 4
3609 **
3610 ** Form 1 causes all indices in all attached databases to be rebuilt.
3611 ** Form 2 rebuilds all indices in all databases that use the named
3612 ** collating function.  Forms 3 and 4 rebuild the named index or all
3613 ** indices associated with the named table.
3614 */
3615 #ifndef SQLITE_OMIT_REINDEX
3616 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3617   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
3618   char *z;                    /* Name of a table or index */
3619   const char *zDb;            /* Name of the database */
3620   Table *pTab;                /* A table in the database */
3621   Index *pIndex;              /* An index associated with pTab */
3622   int iDb;                    /* The database index number */
3623   sqlite3 *db = pParse->db;   /* The database connection */
3624   Token *pObjName;            /* Name of the table or index to be reindexed */
3625 
3626   /* Read the database schema. If an error occurs, leave an error message
3627   ** and code in pParse and return NULL. */
3628   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3629     return;
3630   }
3631 
3632   if( pName1==0 ){
3633     reindexDatabases(pParse, 0);
3634     return;
3635   }else if( NEVER(pName2==0) || pName2->z==0 ){
3636     char *zColl;
3637     assert( pName1->z );
3638     zColl = sqlite3NameFromToken(pParse->db, pName1);
3639     if( !zColl ) return;
3640     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
3641     if( pColl ){
3642       reindexDatabases(pParse, zColl);
3643       sqlite3DbFree(db, zColl);
3644       return;
3645     }
3646     sqlite3DbFree(db, zColl);
3647   }
3648   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3649   if( iDb<0 ) return;
3650   z = sqlite3NameFromToken(db, pObjName);
3651   if( z==0 ) return;
3652   zDb = db->aDb[iDb].zName;
3653   pTab = sqlite3FindTable(db, z, zDb);
3654   if( pTab ){
3655     reindexTable(pParse, pTab, 0);
3656     sqlite3DbFree(db, z);
3657     return;
3658   }
3659   pIndex = sqlite3FindIndex(db, z, zDb);
3660   sqlite3DbFree(db, z);
3661   if( pIndex ){
3662     sqlite3BeginWriteOperation(pParse, 0, iDb);
3663     sqlite3RefillIndex(pParse, pIndex, -1);
3664     return;
3665   }
3666   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3667 }
3668 #endif
3669 
3670 /*
3671 ** Return a dynamicly allocated KeyInfo structure that can be used
3672 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3673 **
3674 ** If successful, a pointer to the new structure is returned. In this case
3675 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3676 ** pointer. If an error occurs (out of memory or missing collation
3677 ** sequence), NULL is returned and the state of pParse updated to reflect
3678 ** the error.
3679 */
3680 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3681   int i;
3682   int nCol = pIdx->nColumn;
3683   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3684   sqlite3 *db = pParse->db;
3685   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3686 
3687   if( pKey ){
3688     pKey->db = pParse->db;
3689     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3690     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3691     for(i=0; i<nCol; i++){
3692       char *zColl = pIdx->azColl[i];
3693       assert( zColl );
3694       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
3695       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3696     }
3697     pKey->nField = (u16)nCol;
3698   }
3699 
3700   if( pParse->nErr ){
3701     sqlite3DbFree(db, pKey);
3702     pKey = 0;
3703   }
3704   return pKey;
3705 }
3706