1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 /* A minimum of one cursor is required if autoincrement is used 229 * See ticket [a696379c1f08866] */ 230 assert( pParse->pAinc==0 || pParse->nTab>0 ); 231 sqlite3VdbeMakeReady(v, pParse); 232 pParse->rc = SQLITE_DONE; 233 }else{ 234 pParse->rc = SQLITE_ERROR; 235 } 236 } 237 238 /* 239 ** Run the parser and code generator recursively in order to generate 240 ** code for the SQL statement given onto the end of the pParse context 241 ** currently under construction. When the parser is run recursively 242 ** this way, the final OP_Halt is not appended and other initialization 243 ** and finalization steps are omitted because those are handling by the 244 ** outermost parser. 245 ** 246 ** Not everything is nestable. This facility is designed to permit 247 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 248 ** care if you decide to try to use this routine for some other purposes. 249 */ 250 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 251 va_list ap; 252 char *zSql; 253 char *zErrMsg = 0; 254 sqlite3 *db = pParse->db; 255 char saveBuf[PARSE_TAIL_SZ]; 256 257 if( pParse->nErr ) return; 258 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 259 va_start(ap, zFormat); 260 zSql = sqlite3VMPrintf(db, zFormat, ap); 261 va_end(ap); 262 if( zSql==0 ){ 263 /* This can result either from an OOM or because the formatted string 264 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 265 ** an error */ 266 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 267 pParse->nErr++; 268 return; 269 } 270 pParse->nested++; 271 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 272 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 273 sqlite3RunParser(pParse, zSql, &zErrMsg); 274 sqlite3DbFree(db, zErrMsg); 275 sqlite3DbFree(db, zSql); 276 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 277 pParse->nested--; 278 } 279 280 #if SQLITE_USER_AUTHENTICATION 281 /* 282 ** Return TRUE if zTable is the name of the system table that stores the 283 ** list of users and their access credentials. 284 */ 285 int sqlite3UserAuthTable(const char *zTable){ 286 return sqlite3_stricmp(zTable, "sqlite_user")==0; 287 } 288 #endif 289 290 /* 291 ** Locate the in-memory structure that describes a particular database 292 ** table given the name of that table and (optionally) the name of the 293 ** database containing the table. Return NULL if not found. 294 ** 295 ** If zDatabase is 0, all databases are searched for the table and the 296 ** first matching table is returned. (No checking for duplicate table 297 ** names is done.) The search order is TEMP first, then MAIN, then any 298 ** auxiliary databases added using the ATTACH command. 299 ** 300 ** See also sqlite3LocateTable(). 301 */ 302 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 303 Table *p = 0; 304 int i; 305 306 /* All mutexes are required for schema access. Make sure we hold them. */ 307 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 308 #if SQLITE_USER_AUTHENTICATION 309 /* Only the admin user is allowed to know that the sqlite_user table 310 ** exists */ 311 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 312 return 0; 313 } 314 #endif 315 while(1){ 316 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 317 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 318 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 319 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 320 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 321 if( p ) return p; 322 } 323 } 324 /* Not found. If the name we were looking for was temp.sqlite_master 325 ** then change the name to sqlite_temp_master and try again. */ 326 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 327 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 328 zName = TEMP_MASTER_NAME; 329 } 330 return 0; 331 } 332 333 /* 334 ** Locate the in-memory structure that describes a particular database 335 ** table given the name of that table and (optionally) the name of the 336 ** database containing the table. Return NULL if not found. Also leave an 337 ** error message in pParse->zErrMsg. 338 ** 339 ** The difference between this routine and sqlite3FindTable() is that this 340 ** routine leaves an error message in pParse->zErrMsg where 341 ** sqlite3FindTable() does not. 342 */ 343 Table *sqlite3LocateTable( 344 Parse *pParse, /* context in which to report errors */ 345 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 346 const char *zName, /* Name of the table we are looking for */ 347 const char *zDbase /* Name of the database. Might be NULL */ 348 ){ 349 Table *p; 350 sqlite3 *db = pParse->db; 351 352 /* Read the database schema. If an error occurs, leave an error message 353 ** and code in pParse and return NULL. */ 354 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 355 && SQLITE_OK!=sqlite3ReadSchema(pParse) 356 ){ 357 return 0; 358 } 359 360 p = sqlite3FindTable(db, zName, zDbase); 361 if( p==0 ){ 362 #ifndef SQLITE_OMIT_VIRTUALTABLE 363 /* If zName is the not the name of a table in the schema created using 364 ** CREATE, then check to see if it is the name of an virtual table that 365 ** can be an eponymous virtual table. */ 366 if( pParse->disableVtab==0 ){ 367 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 368 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 369 pMod = sqlite3PragmaVtabRegister(db, zName); 370 } 371 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 372 return pMod->pEpoTab; 373 } 374 } 375 #endif 376 if( flags & LOCATE_NOERR ) return 0; 377 pParse->checkSchema = 1; 378 }else if( IsVirtual(p) && pParse->disableVtab ){ 379 p = 0; 380 } 381 382 if( p==0 ){ 383 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 384 if( zDbase ){ 385 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 386 }else{ 387 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 388 } 389 } 390 391 return p; 392 } 393 394 /* 395 ** Locate the table identified by *p. 396 ** 397 ** This is a wrapper around sqlite3LocateTable(). The difference between 398 ** sqlite3LocateTable() and this function is that this function restricts 399 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 400 ** non-NULL if it is part of a view or trigger program definition. See 401 ** sqlite3FixSrcList() for details. 402 */ 403 Table *sqlite3LocateTableItem( 404 Parse *pParse, 405 u32 flags, 406 struct SrcList_item *p 407 ){ 408 const char *zDb; 409 assert( p->pSchema==0 || p->zDatabase==0 ); 410 if( p->pSchema ){ 411 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 412 zDb = pParse->db->aDb[iDb].zDbSName; 413 }else{ 414 zDb = p->zDatabase; 415 } 416 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 417 } 418 419 /* 420 ** Locate the in-memory structure that describes 421 ** a particular index given the name of that index 422 ** and the name of the database that contains the index. 423 ** Return NULL if not found. 424 ** 425 ** If zDatabase is 0, all databases are searched for the 426 ** table and the first matching index is returned. (No checking 427 ** for duplicate index names is done.) The search order is 428 ** TEMP first, then MAIN, then any auxiliary databases added 429 ** using the ATTACH command. 430 */ 431 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 432 Index *p = 0; 433 int i; 434 /* All mutexes are required for schema access. Make sure we hold them. */ 435 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 436 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 437 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 438 Schema *pSchema = db->aDb[j].pSchema; 439 assert( pSchema ); 440 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 441 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 442 p = sqlite3HashFind(&pSchema->idxHash, zName); 443 if( p ) break; 444 } 445 return p; 446 } 447 448 /* 449 ** Reclaim the memory used by an index 450 */ 451 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 452 #ifndef SQLITE_OMIT_ANALYZE 453 sqlite3DeleteIndexSamples(db, p); 454 #endif 455 sqlite3ExprDelete(db, p->pPartIdxWhere); 456 sqlite3ExprListDelete(db, p->aColExpr); 457 sqlite3DbFree(db, p->zColAff); 458 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 459 #ifdef SQLITE_ENABLE_STAT4 460 sqlite3_free(p->aiRowEst); 461 #endif 462 sqlite3DbFree(db, p); 463 } 464 465 /* 466 ** For the index called zIdxName which is found in the database iDb, 467 ** unlike that index from its Table then remove the index from 468 ** the index hash table and free all memory structures associated 469 ** with the index. 470 */ 471 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 472 Index *pIndex; 473 Hash *pHash; 474 475 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 476 pHash = &db->aDb[iDb].pSchema->idxHash; 477 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 478 if( ALWAYS(pIndex) ){ 479 if( pIndex->pTable->pIndex==pIndex ){ 480 pIndex->pTable->pIndex = pIndex->pNext; 481 }else{ 482 Index *p; 483 /* Justification of ALWAYS(); The index must be on the list of 484 ** indices. */ 485 p = pIndex->pTable->pIndex; 486 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 487 if( ALWAYS(p && p->pNext==pIndex) ){ 488 p->pNext = pIndex->pNext; 489 } 490 } 491 sqlite3FreeIndex(db, pIndex); 492 } 493 db->mDbFlags |= DBFLAG_SchemaChange; 494 } 495 496 /* 497 ** Look through the list of open database files in db->aDb[] and if 498 ** any have been closed, remove them from the list. Reallocate the 499 ** db->aDb[] structure to a smaller size, if possible. 500 ** 501 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 502 ** are never candidates for being collapsed. 503 */ 504 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 505 int i, j; 506 for(i=j=2; i<db->nDb; i++){ 507 struct Db *pDb = &db->aDb[i]; 508 if( pDb->pBt==0 ){ 509 sqlite3DbFree(db, pDb->zDbSName); 510 pDb->zDbSName = 0; 511 continue; 512 } 513 if( j<i ){ 514 db->aDb[j] = db->aDb[i]; 515 } 516 j++; 517 } 518 db->nDb = j; 519 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 520 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 521 sqlite3DbFree(db, db->aDb); 522 db->aDb = db->aDbStatic; 523 } 524 } 525 526 /* 527 ** Reset the schema for the database at index iDb. Also reset the 528 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 529 ** Deferred resets may be run by calling with iDb<0. 530 */ 531 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 532 int i; 533 assert( iDb<db->nDb ); 534 535 if( iDb>=0 ){ 536 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 537 DbSetProperty(db, iDb, DB_ResetWanted); 538 DbSetProperty(db, 1, DB_ResetWanted); 539 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 540 } 541 542 if( db->nSchemaLock==0 ){ 543 for(i=0; i<db->nDb; i++){ 544 if( DbHasProperty(db, i, DB_ResetWanted) ){ 545 sqlite3SchemaClear(db->aDb[i].pSchema); 546 } 547 } 548 } 549 } 550 551 /* 552 ** Erase all schema information from all attached databases (including 553 ** "main" and "temp") for a single database connection. 554 */ 555 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 556 int i; 557 sqlite3BtreeEnterAll(db); 558 for(i=0; i<db->nDb; i++){ 559 Db *pDb = &db->aDb[i]; 560 if( pDb->pSchema ){ 561 if( db->nSchemaLock==0 ){ 562 sqlite3SchemaClear(pDb->pSchema); 563 }else{ 564 DbSetProperty(db, i, DB_ResetWanted); 565 } 566 } 567 } 568 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 569 sqlite3VtabUnlockList(db); 570 sqlite3BtreeLeaveAll(db); 571 if( db->nSchemaLock==0 ){ 572 sqlite3CollapseDatabaseArray(db); 573 } 574 } 575 576 /* 577 ** This routine is called when a commit occurs. 578 */ 579 void sqlite3CommitInternalChanges(sqlite3 *db){ 580 db->mDbFlags &= ~DBFLAG_SchemaChange; 581 } 582 583 /* 584 ** Delete memory allocated for the column names of a table or view (the 585 ** Table.aCol[] array). 586 */ 587 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 588 int i; 589 Column *pCol; 590 assert( pTable!=0 ); 591 if( (pCol = pTable->aCol)!=0 ){ 592 for(i=0; i<pTable->nCol; i++, pCol++){ 593 sqlite3DbFree(db, pCol->zName); 594 sqlite3ExprDelete(db, pCol->pDflt); 595 sqlite3DbFree(db, pCol->zColl); 596 } 597 sqlite3DbFree(db, pTable->aCol); 598 } 599 } 600 601 /* 602 ** Remove the memory data structures associated with the given 603 ** Table. No changes are made to disk by this routine. 604 ** 605 ** This routine just deletes the data structure. It does not unlink 606 ** the table data structure from the hash table. But it does destroy 607 ** memory structures of the indices and foreign keys associated with 608 ** the table. 609 ** 610 ** The db parameter is optional. It is needed if the Table object 611 ** contains lookaside memory. (Table objects in the schema do not use 612 ** lookaside memory, but some ephemeral Table objects do.) Or the 613 ** db parameter can be used with db->pnBytesFreed to measure the memory 614 ** used by the Table object. 615 */ 616 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 617 Index *pIndex, *pNext; 618 619 #ifdef SQLITE_DEBUG 620 /* Record the number of outstanding lookaside allocations in schema Tables 621 ** prior to doing any free() operations. Since schema Tables do not use 622 ** lookaside, this number should not change. 623 ** 624 ** If malloc has already failed, it may be that it failed while allocating 625 ** a Table object that was going to be marked ephemeral. So do not check 626 ** that no lookaside memory is used in this case either. */ 627 int nLookaside = 0; 628 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 629 nLookaside = sqlite3LookasideUsed(db, 0); 630 } 631 #endif 632 633 /* Delete all indices associated with this table. */ 634 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 635 pNext = pIndex->pNext; 636 assert( pIndex->pSchema==pTable->pSchema 637 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 638 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 639 char *zName = pIndex->zName; 640 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 641 &pIndex->pSchema->idxHash, zName, 0 642 ); 643 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 644 assert( pOld==pIndex || pOld==0 ); 645 } 646 sqlite3FreeIndex(db, pIndex); 647 } 648 649 /* Delete any foreign keys attached to this table. */ 650 sqlite3FkDelete(db, pTable); 651 652 /* Delete the Table structure itself. 653 */ 654 sqlite3DeleteColumnNames(db, pTable); 655 sqlite3DbFree(db, pTable->zName); 656 sqlite3DbFree(db, pTable->zColAff); 657 sqlite3SelectDelete(db, pTable->pSelect); 658 sqlite3ExprListDelete(db, pTable->pCheck); 659 #ifndef SQLITE_OMIT_VIRTUALTABLE 660 sqlite3VtabClear(db, pTable); 661 #endif 662 sqlite3DbFree(db, pTable); 663 664 /* Verify that no lookaside memory was used by schema tables */ 665 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 666 } 667 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 668 /* Do not delete the table until the reference count reaches zero. */ 669 if( !pTable ) return; 670 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 671 deleteTable(db, pTable); 672 } 673 674 675 /* 676 ** Unlink the given table from the hash tables and the delete the 677 ** table structure with all its indices and foreign keys. 678 */ 679 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 680 Table *p; 681 Db *pDb; 682 683 assert( db!=0 ); 684 assert( iDb>=0 && iDb<db->nDb ); 685 assert( zTabName ); 686 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 687 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 688 pDb = &db->aDb[iDb]; 689 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 690 sqlite3DeleteTable(db, p); 691 db->mDbFlags |= DBFLAG_SchemaChange; 692 } 693 694 /* 695 ** Given a token, return a string that consists of the text of that 696 ** token. Space to hold the returned string 697 ** is obtained from sqliteMalloc() and must be freed by the calling 698 ** function. 699 ** 700 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 701 ** surround the body of the token are removed. 702 ** 703 ** Tokens are often just pointers into the original SQL text and so 704 ** are not \000 terminated and are not persistent. The returned string 705 ** is \000 terminated and is persistent. 706 */ 707 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 708 char *zName; 709 if( pName ){ 710 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 711 sqlite3Dequote(zName); 712 }else{ 713 zName = 0; 714 } 715 return zName; 716 } 717 718 /* 719 ** Open the sqlite_master table stored in database number iDb for 720 ** writing. The table is opened using cursor 0. 721 */ 722 void sqlite3OpenMasterTable(Parse *p, int iDb){ 723 Vdbe *v = sqlite3GetVdbe(p); 724 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 725 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 726 if( p->nTab==0 ){ 727 p->nTab = 1; 728 } 729 } 730 731 /* 732 ** Parameter zName points to a nul-terminated buffer containing the name 733 ** of a database ("main", "temp" or the name of an attached db). This 734 ** function returns the index of the named database in db->aDb[], or 735 ** -1 if the named db cannot be found. 736 */ 737 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 738 int i = -1; /* Database number */ 739 if( zName ){ 740 Db *pDb; 741 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 742 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 743 /* "main" is always an acceptable alias for the primary database 744 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 745 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 746 } 747 } 748 return i; 749 } 750 751 /* 752 ** The token *pName contains the name of a database (either "main" or 753 ** "temp" or the name of an attached db). This routine returns the 754 ** index of the named database in db->aDb[], or -1 if the named db 755 ** does not exist. 756 */ 757 int sqlite3FindDb(sqlite3 *db, Token *pName){ 758 int i; /* Database number */ 759 char *zName; /* Name we are searching for */ 760 zName = sqlite3NameFromToken(db, pName); 761 i = sqlite3FindDbName(db, zName); 762 sqlite3DbFree(db, zName); 763 return i; 764 } 765 766 /* The table or view or trigger name is passed to this routine via tokens 767 ** pName1 and pName2. If the table name was fully qualified, for example: 768 ** 769 ** CREATE TABLE xxx.yyy (...); 770 ** 771 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 772 ** the table name is not fully qualified, i.e.: 773 ** 774 ** CREATE TABLE yyy(...); 775 ** 776 ** Then pName1 is set to "yyy" and pName2 is "". 777 ** 778 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 779 ** pName2) that stores the unqualified table name. The index of the 780 ** database "xxx" is returned. 781 */ 782 int sqlite3TwoPartName( 783 Parse *pParse, /* Parsing and code generating context */ 784 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 785 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 786 Token **pUnqual /* Write the unqualified object name here */ 787 ){ 788 int iDb; /* Database holding the object */ 789 sqlite3 *db = pParse->db; 790 791 assert( pName2!=0 ); 792 if( pName2->n>0 ){ 793 if( db->init.busy ) { 794 sqlite3ErrorMsg(pParse, "corrupt database"); 795 return -1; 796 } 797 *pUnqual = pName2; 798 iDb = sqlite3FindDb(db, pName1); 799 if( iDb<0 ){ 800 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 801 return -1; 802 } 803 }else{ 804 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 805 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 806 iDb = db->init.iDb; 807 *pUnqual = pName1; 808 } 809 return iDb; 810 } 811 812 /* 813 ** True if PRAGMA writable_schema is ON 814 */ 815 int sqlite3WritableSchema(sqlite3 *db){ 816 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 817 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 818 SQLITE_WriteSchema ); 819 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 820 SQLITE_Defensive ); 821 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 822 (SQLITE_WriteSchema|SQLITE_Defensive) ); 823 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 824 } 825 826 /* 827 ** This routine is used to check if the UTF-8 string zName is a legal 828 ** unqualified name for a new schema object (table, index, view or 829 ** trigger). All names are legal except those that begin with the string 830 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 831 ** is reserved for internal use. 832 ** 833 ** When parsing the sqlite_master table, this routine also checks to 834 ** make sure the "type", "name", and "tbl_name" columns are consistent 835 ** with the SQL. 836 */ 837 int sqlite3CheckObjectName( 838 Parse *pParse, /* Parsing context */ 839 const char *zName, /* Name of the object to check */ 840 const char *zType, /* Type of this object */ 841 const char *zTblName /* Parent table name for triggers and indexes */ 842 ){ 843 sqlite3 *db = pParse->db; 844 if( sqlite3WritableSchema(db) || db->init.imposterTable ){ 845 /* Skip these error checks for writable_schema=ON */ 846 return SQLITE_OK; 847 } 848 if( db->init.busy ){ 849 if( sqlite3_stricmp(zType, db->init.azInit[0]) 850 || sqlite3_stricmp(zName, db->init.azInit[1]) 851 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 852 ){ 853 if( sqlite3Config.bExtraSchemaChecks ){ 854 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 855 return SQLITE_ERROR; 856 } 857 } 858 }else{ 859 if( pParse->nested==0 860 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) 861 ){ 862 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 863 zName); 864 return SQLITE_ERROR; 865 } 866 } 867 return SQLITE_OK; 868 } 869 870 /* 871 ** Return the PRIMARY KEY index of a table 872 */ 873 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 874 Index *p; 875 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 876 return p; 877 } 878 879 /* 880 ** Return the column of index pIdx that corresponds to table 881 ** column iCol. Return -1 if not found. 882 */ 883 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 884 int i; 885 for(i=0; i<pIdx->nColumn; i++){ 886 if( iCol==pIdx->aiColumn[i] ) return i; 887 } 888 return -1; 889 } 890 891 /* 892 ** Begin constructing a new table representation in memory. This is 893 ** the first of several action routines that get called in response 894 ** to a CREATE TABLE statement. In particular, this routine is called 895 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 896 ** flag is true if the table should be stored in the auxiliary database 897 ** file instead of in the main database file. This is normally the case 898 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 899 ** CREATE and TABLE. 900 ** 901 ** The new table record is initialized and put in pParse->pNewTable. 902 ** As more of the CREATE TABLE statement is parsed, additional action 903 ** routines will be called to add more information to this record. 904 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 905 ** is called to complete the construction of the new table record. 906 */ 907 void sqlite3StartTable( 908 Parse *pParse, /* Parser context */ 909 Token *pName1, /* First part of the name of the table or view */ 910 Token *pName2, /* Second part of the name of the table or view */ 911 int isTemp, /* True if this is a TEMP table */ 912 int isView, /* True if this is a VIEW */ 913 int isVirtual, /* True if this is a VIRTUAL table */ 914 int noErr /* Do nothing if table already exists */ 915 ){ 916 Table *pTable; 917 char *zName = 0; /* The name of the new table */ 918 sqlite3 *db = pParse->db; 919 Vdbe *v; 920 int iDb; /* Database number to create the table in */ 921 Token *pName; /* Unqualified name of the table to create */ 922 923 if( db->init.busy && db->init.newTnum==1 ){ 924 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 925 iDb = db->init.iDb; 926 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 927 pName = pName1; 928 }else{ 929 /* The common case */ 930 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 931 if( iDb<0 ) return; 932 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 933 /* If creating a temp table, the name may not be qualified. Unless 934 ** the database name is "temp" anyway. */ 935 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 936 return; 937 } 938 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 939 zName = sqlite3NameFromToken(db, pName); 940 if( IN_RENAME_OBJECT ){ 941 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 942 } 943 } 944 pParse->sNameToken = *pName; 945 if( zName==0 ) return; 946 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 947 goto begin_table_error; 948 } 949 if( db->init.iDb==1 ) isTemp = 1; 950 #ifndef SQLITE_OMIT_AUTHORIZATION 951 assert( isTemp==0 || isTemp==1 ); 952 assert( isView==0 || isView==1 ); 953 { 954 static const u8 aCode[] = { 955 SQLITE_CREATE_TABLE, 956 SQLITE_CREATE_TEMP_TABLE, 957 SQLITE_CREATE_VIEW, 958 SQLITE_CREATE_TEMP_VIEW 959 }; 960 char *zDb = db->aDb[iDb].zDbSName; 961 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 962 goto begin_table_error; 963 } 964 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 965 zName, 0, zDb) ){ 966 goto begin_table_error; 967 } 968 } 969 #endif 970 971 /* Make sure the new table name does not collide with an existing 972 ** index or table name in the same database. Issue an error message if 973 ** it does. The exception is if the statement being parsed was passed 974 ** to an sqlite3_declare_vtab() call. In that case only the column names 975 ** and types will be used, so there is no need to test for namespace 976 ** collisions. 977 */ 978 if( !IN_SPECIAL_PARSE ){ 979 char *zDb = db->aDb[iDb].zDbSName; 980 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 981 goto begin_table_error; 982 } 983 pTable = sqlite3FindTable(db, zName, zDb); 984 if( pTable ){ 985 if( !noErr ){ 986 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 987 }else{ 988 assert( !db->init.busy || CORRUPT_DB ); 989 sqlite3CodeVerifySchema(pParse, iDb); 990 } 991 goto begin_table_error; 992 } 993 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 994 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 995 goto begin_table_error; 996 } 997 } 998 999 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1000 if( pTable==0 ){ 1001 assert( db->mallocFailed ); 1002 pParse->rc = SQLITE_NOMEM_BKPT; 1003 pParse->nErr++; 1004 goto begin_table_error; 1005 } 1006 pTable->zName = zName; 1007 pTable->iPKey = -1; 1008 pTable->pSchema = db->aDb[iDb].pSchema; 1009 pTable->nTabRef = 1; 1010 #ifdef SQLITE_DEFAULT_ROWEST 1011 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1012 #else 1013 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1014 #endif 1015 assert( pParse->pNewTable==0 ); 1016 pParse->pNewTable = pTable; 1017 1018 /* If this is the magic sqlite_sequence table used by autoincrement, 1019 ** then record a pointer to this table in the main database structure 1020 ** so that INSERT can find the table easily. 1021 */ 1022 #ifndef SQLITE_OMIT_AUTOINCREMENT 1023 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 1024 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1025 pTable->pSchema->pSeqTab = pTable; 1026 } 1027 #endif 1028 1029 /* Begin generating the code that will insert the table record into 1030 ** the SQLITE_MASTER table. Note in particular that we must go ahead 1031 ** and allocate the record number for the table entry now. Before any 1032 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1033 ** indices to be created and the table record must come before the 1034 ** indices. Hence, the record number for the table must be allocated 1035 ** now. 1036 */ 1037 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1038 int addr1; 1039 int fileFormat; 1040 int reg1, reg2, reg3; 1041 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1042 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1043 sqlite3BeginWriteOperation(pParse, 1, iDb); 1044 1045 #ifndef SQLITE_OMIT_VIRTUALTABLE 1046 if( isVirtual ){ 1047 sqlite3VdbeAddOp0(v, OP_VBegin); 1048 } 1049 #endif 1050 1051 /* If the file format and encoding in the database have not been set, 1052 ** set them now. 1053 */ 1054 reg1 = pParse->regRowid = ++pParse->nMem; 1055 reg2 = pParse->regRoot = ++pParse->nMem; 1056 reg3 = ++pParse->nMem; 1057 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1058 sqlite3VdbeUsesBtree(v, iDb); 1059 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1060 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1061 1 : SQLITE_MAX_FILE_FORMAT; 1062 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1063 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1064 sqlite3VdbeJumpHere(v, addr1); 1065 1066 /* This just creates a place-holder record in the sqlite_master table. 1067 ** The record created does not contain anything yet. It will be replaced 1068 ** by the real entry in code generated at sqlite3EndTable(). 1069 ** 1070 ** The rowid for the new entry is left in register pParse->regRowid. 1071 ** The root page number of the new table is left in reg pParse->regRoot. 1072 ** The rowid and root page number values are needed by the code that 1073 ** sqlite3EndTable will generate. 1074 */ 1075 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1076 if( isView || isVirtual ){ 1077 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1078 }else 1079 #endif 1080 { 1081 pParse->addrCrTab = 1082 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1083 } 1084 sqlite3OpenMasterTable(pParse, iDb); 1085 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1086 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1087 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1088 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1089 sqlite3VdbeAddOp0(v, OP_Close); 1090 } 1091 1092 /* Normal (non-error) return. */ 1093 return; 1094 1095 /* If an error occurs, we jump here */ 1096 begin_table_error: 1097 sqlite3DbFree(db, zName); 1098 return; 1099 } 1100 1101 /* Set properties of a table column based on the (magical) 1102 ** name of the column. 1103 */ 1104 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1105 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1106 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1107 pCol->colFlags |= COLFLAG_HIDDEN; 1108 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1109 pTab->tabFlags |= TF_OOOHidden; 1110 } 1111 } 1112 #endif 1113 1114 1115 /* 1116 ** Add a new column to the table currently being constructed. 1117 ** 1118 ** The parser calls this routine once for each column declaration 1119 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1120 ** first to get things going. Then this routine is called for each 1121 ** column. 1122 */ 1123 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1124 Table *p; 1125 int i; 1126 char *z; 1127 char *zType; 1128 Column *pCol; 1129 sqlite3 *db = pParse->db; 1130 if( (p = pParse->pNewTable)==0 ) return; 1131 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1132 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1133 return; 1134 } 1135 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1136 if( z==0 ) return; 1137 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1138 memcpy(z, pName->z, pName->n); 1139 z[pName->n] = 0; 1140 sqlite3Dequote(z); 1141 for(i=0; i<p->nCol; i++){ 1142 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1143 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1144 sqlite3DbFree(db, z); 1145 return; 1146 } 1147 } 1148 if( (p->nCol & 0x7)==0 ){ 1149 Column *aNew; 1150 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1151 if( aNew==0 ){ 1152 sqlite3DbFree(db, z); 1153 return; 1154 } 1155 p->aCol = aNew; 1156 } 1157 pCol = &p->aCol[p->nCol]; 1158 memset(pCol, 0, sizeof(p->aCol[0])); 1159 pCol->zName = z; 1160 sqlite3ColumnPropertiesFromName(p, pCol); 1161 1162 if( pType->n==0 ){ 1163 /* If there is no type specified, columns have the default affinity 1164 ** 'BLOB' with a default size of 4 bytes. */ 1165 pCol->affinity = SQLITE_AFF_BLOB; 1166 pCol->szEst = 1; 1167 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1168 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1169 pCol->colFlags |= COLFLAG_SORTERREF; 1170 } 1171 #endif 1172 }else{ 1173 zType = z + sqlite3Strlen30(z) + 1; 1174 memcpy(zType, pType->z, pType->n); 1175 zType[pType->n] = 0; 1176 sqlite3Dequote(zType); 1177 pCol->affinity = sqlite3AffinityType(zType, pCol); 1178 pCol->colFlags |= COLFLAG_HASTYPE; 1179 } 1180 p->nCol++; 1181 pParse->constraintName.n = 0; 1182 } 1183 1184 /* 1185 ** This routine is called by the parser while in the middle of 1186 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1187 ** been seen on a column. This routine sets the notNull flag on 1188 ** the column currently under construction. 1189 */ 1190 void sqlite3AddNotNull(Parse *pParse, int onError){ 1191 Table *p; 1192 Column *pCol; 1193 p = pParse->pNewTable; 1194 if( p==0 || NEVER(p->nCol<1) ) return; 1195 pCol = &p->aCol[p->nCol-1]; 1196 pCol->notNull = (u8)onError; 1197 p->tabFlags |= TF_HasNotNull; 1198 1199 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1200 ** on this column. */ 1201 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1202 Index *pIdx; 1203 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1204 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1205 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1206 pIdx->uniqNotNull = 1; 1207 } 1208 } 1209 } 1210 } 1211 1212 /* 1213 ** Scan the column type name zType (length nType) and return the 1214 ** associated affinity type. 1215 ** 1216 ** This routine does a case-independent search of zType for the 1217 ** substrings in the following table. If one of the substrings is 1218 ** found, the corresponding affinity is returned. If zType contains 1219 ** more than one of the substrings, entries toward the top of 1220 ** the table take priority. For example, if zType is 'BLOBINT', 1221 ** SQLITE_AFF_INTEGER is returned. 1222 ** 1223 ** Substring | Affinity 1224 ** -------------------------------- 1225 ** 'INT' | SQLITE_AFF_INTEGER 1226 ** 'CHAR' | SQLITE_AFF_TEXT 1227 ** 'CLOB' | SQLITE_AFF_TEXT 1228 ** 'TEXT' | SQLITE_AFF_TEXT 1229 ** 'BLOB' | SQLITE_AFF_BLOB 1230 ** 'REAL' | SQLITE_AFF_REAL 1231 ** 'FLOA' | SQLITE_AFF_REAL 1232 ** 'DOUB' | SQLITE_AFF_REAL 1233 ** 1234 ** If none of the substrings in the above table are found, 1235 ** SQLITE_AFF_NUMERIC is returned. 1236 */ 1237 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1238 u32 h = 0; 1239 char aff = SQLITE_AFF_NUMERIC; 1240 const char *zChar = 0; 1241 1242 assert( zIn!=0 ); 1243 while( zIn[0] ){ 1244 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1245 zIn++; 1246 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1247 aff = SQLITE_AFF_TEXT; 1248 zChar = zIn; 1249 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1250 aff = SQLITE_AFF_TEXT; 1251 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1252 aff = SQLITE_AFF_TEXT; 1253 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1254 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1255 aff = SQLITE_AFF_BLOB; 1256 if( zIn[0]=='(' ) zChar = zIn; 1257 #ifndef SQLITE_OMIT_FLOATING_POINT 1258 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1259 && aff==SQLITE_AFF_NUMERIC ){ 1260 aff = SQLITE_AFF_REAL; 1261 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1262 && aff==SQLITE_AFF_NUMERIC ){ 1263 aff = SQLITE_AFF_REAL; 1264 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1265 && aff==SQLITE_AFF_NUMERIC ){ 1266 aff = SQLITE_AFF_REAL; 1267 #endif 1268 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1269 aff = SQLITE_AFF_INTEGER; 1270 break; 1271 } 1272 } 1273 1274 /* If pCol is not NULL, store an estimate of the field size. The 1275 ** estimate is scaled so that the size of an integer is 1. */ 1276 if( pCol ){ 1277 int v = 0; /* default size is approx 4 bytes */ 1278 if( aff<SQLITE_AFF_NUMERIC ){ 1279 if( zChar ){ 1280 while( zChar[0] ){ 1281 if( sqlite3Isdigit(zChar[0]) ){ 1282 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1283 sqlite3GetInt32(zChar, &v); 1284 break; 1285 } 1286 zChar++; 1287 } 1288 }else{ 1289 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1290 } 1291 } 1292 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1293 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1294 pCol->colFlags |= COLFLAG_SORTERREF; 1295 } 1296 #endif 1297 v = v/4 + 1; 1298 if( v>255 ) v = 255; 1299 pCol->szEst = v; 1300 } 1301 return aff; 1302 } 1303 1304 /* 1305 ** The expression is the default value for the most recently added column 1306 ** of the table currently under construction. 1307 ** 1308 ** Default value expressions must be constant. Raise an exception if this 1309 ** is not the case. 1310 ** 1311 ** This routine is called by the parser while in the middle of 1312 ** parsing a CREATE TABLE statement. 1313 */ 1314 void sqlite3AddDefaultValue( 1315 Parse *pParse, /* Parsing context */ 1316 Expr *pExpr, /* The parsed expression of the default value */ 1317 const char *zStart, /* Start of the default value text */ 1318 const char *zEnd /* First character past end of defaut value text */ 1319 ){ 1320 Table *p; 1321 Column *pCol; 1322 sqlite3 *db = pParse->db; 1323 p = pParse->pNewTable; 1324 if( p!=0 ){ 1325 pCol = &(p->aCol[p->nCol-1]); 1326 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){ 1327 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1328 pCol->zName); 1329 }else{ 1330 /* A copy of pExpr is used instead of the original, as pExpr contains 1331 ** tokens that point to volatile memory. 1332 */ 1333 Expr x; 1334 sqlite3ExprDelete(db, pCol->pDflt); 1335 memset(&x, 0, sizeof(x)); 1336 x.op = TK_SPAN; 1337 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1338 x.pLeft = pExpr; 1339 x.flags = EP_Skip; 1340 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1341 sqlite3DbFree(db, x.u.zToken); 1342 } 1343 } 1344 if( IN_RENAME_OBJECT ){ 1345 sqlite3RenameExprUnmap(pParse, pExpr); 1346 } 1347 sqlite3ExprDelete(db, pExpr); 1348 } 1349 1350 /* 1351 ** Backwards Compatibility Hack: 1352 ** 1353 ** Historical versions of SQLite accepted strings as column names in 1354 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1355 ** 1356 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1357 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1358 ** 1359 ** This is goofy. But to preserve backwards compatibility we continue to 1360 ** accept it. This routine does the necessary conversion. It converts 1361 ** the expression given in its argument from a TK_STRING into a TK_ID 1362 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1363 ** If the expression is anything other than TK_STRING, the expression is 1364 ** unchanged. 1365 */ 1366 static void sqlite3StringToId(Expr *p){ 1367 if( p->op==TK_STRING ){ 1368 p->op = TK_ID; 1369 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1370 p->pLeft->op = TK_ID; 1371 } 1372 } 1373 1374 /* 1375 ** Designate the PRIMARY KEY for the table. pList is a list of names 1376 ** of columns that form the primary key. If pList is NULL, then the 1377 ** most recently added column of the table is the primary key. 1378 ** 1379 ** A table can have at most one primary key. If the table already has 1380 ** a primary key (and this is the second primary key) then create an 1381 ** error. 1382 ** 1383 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1384 ** then we will try to use that column as the rowid. Set the Table.iPKey 1385 ** field of the table under construction to be the index of the 1386 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1387 ** no INTEGER PRIMARY KEY. 1388 ** 1389 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1390 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1391 */ 1392 void sqlite3AddPrimaryKey( 1393 Parse *pParse, /* Parsing context */ 1394 ExprList *pList, /* List of field names to be indexed */ 1395 int onError, /* What to do with a uniqueness conflict */ 1396 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1397 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1398 ){ 1399 Table *pTab = pParse->pNewTable; 1400 Column *pCol = 0; 1401 int iCol = -1, i; 1402 int nTerm; 1403 if( pTab==0 ) goto primary_key_exit; 1404 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1405 sqlite3ErrorMsg(pParse, 1406 "table \"%s\" has more than one primary key", pTab->zName); 1407 goto primary_key_exit; 1408 } 1409 pTab->tabFlags |= TF_HasPrimaryKey; 1410 if( pList==0 ){ 1411 iCol = pTab->nCol - 1; 1412 pCol = &pTab->aCol[iCol]; 1413 pCol->colFlags |= COLFLAG_PRIMKEY; 1414 nTerm = 1; 1415 }else{ 1416 nTerm = pList->nExpr; 1417 for(i=0; i<nTerm; i++){ 1418 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1419 assert( pCExpr!=0 ); 1420 sqlite3StringToId(pCExpr); 1421 if( pCExpr->op==TK_ID ){ 1422 const char *zCName = pCExpr->u.zToken; 1423 for(iCol=0; iCol<pTab->nCol; iCol++){ 1424 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1425 pCol = &pTab->aCol[iCol]; 1426 pCol->colFlags |= COLFLAG_PRIMKEY; 1427 break; 1428 } 1429 } 1430 } 1431 } 1432 } 1433 if( nTerm==1 1434 && pCol 1435 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1436 && sortOrder!=SQLITE_SO_DESC 1437 ){ 1438 if( IN_RENAME_OBJECT && pList ){ 1439 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1440 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1441 } 1442 pTab->iPKey = iCol; 1443 pTab->keyConf = (u8)onError; 1444 assert( autoInc==0 || autoInc==1 ); 1445 pTab->tabFlags |= autoInc*TF_Autoincrement; 1446 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1447 }else if( autoInc ){ 1448 #ifndef SQLITE_OMIT_AUTOINCREMENT 1449 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1450 "INTEGER PRIMARY KEY"); 1451 #endif 1452 }else{ 1453 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1454 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1455 pList = 0; 1456 } 1457 1458 primary_key_exit: 1459 sqlite3ExprListDelete(pParse->db, pList); 1460 return; 1461 } 1462 1463 /* 1464 ** Add a new CHECK constraint to the table currently under construction. 1465 */ 1466 void sqlite3AddCheckConstraint( 1467 Parse *pParse, /* Parsing context */ 1468 Expr *pCheckExpr /* The check expression */ 1469 ){ 1470 #ifndef SQLITE_OMIT_CHECK 1471 Table *pTab = pParse->pNewTable; 1472 sqlite3 *db = pParse->db; 1473 if( pTab && !IN_DECLARE_VTAB 1474 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1475 ){ 1476 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1477 if( pParse->constraintName.n ){ 1478 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1479 } 1480 }else 1481 #endif 1482 { 1483 sqlite3ExprDelete(pParse->db, pCheckExpr); 1484 } 1485 } 1486 1487 /* 1488 ** Set the collation function of the most recently parsed table column 1489 ** to the CollSeq given. 1490 */ 1491 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1492 Table *p; 1493 int i; 1494 char *zColl; /* Dequoted name of collation sequence */ 1495 sqlite3 *db; 1496 1497 if( (p = pParse->pNewTable)==0 ) return; 1498 i = p->nCol-1; 1499 db = pParse->db; 1500 zColl = sqlite3NameFromToken(db, pToken); 1501 if( !zColl ) return; 1502 1503 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1504 Index *pIdx; 1505 sqlite3DbFree(db, p->aCol[i].zColl); 1506 p->aCol[i].zColl = zColl; 1507 1508 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1509 ** then an index may have been created on this column before the 1510 ** collation type was added. Correct this if it is the case. 1511 */ 1512 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1513 assert( pIdx->nKeyCol==1 ); 1514 if( pIdx->aiColumn[0]==i ){ 1515 pIdx->azColl[0] = p->aCol[i].zColl; 1516 } 1517 } 1518 }else{ 1519 sqlite3DbFree(db, zColl); 1520 } 1521 } 1522 1523 /* 1524 ** This function returns the collation sequence for database native text 1525 ** encoding identified by the string zName, length nName. 1526 ** 1527 ** If the requested collation sequence is not available, or not available 1528 ** in the database native encoding, the collation factory is invoked to 1529 ** request it. If the collation factory does not supply such a sequence, 1530 ** and the sequence is available in another text encoding, then that is 1531 ** returned instead. 1532 ** 1533 ** If no versions of the requested collations sequence are available, or 1534 ** another error occurs, NULL is returned and an error message written into 1535 ** pParse. 1536 ** 1537 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1538 ** invokes the collation factory if the named collation cannot be found 1539 ** and generates an error message. 1540 ** 1541 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1542 */ 1543 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1544 sqlite3 *db = pParse->db; 1545 u8 enc = ENC(db); 1546 u8 initbusy = db->init.busy; 1547 CollSeq *pColl; 1548 1549 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1550 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1551 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1552 } 1553 1554 return pColl; 1555 } 1556 1557 1558 /* 1559 ** Generate code that will increment the schema cookie. 1560 ** 1561 ** The schema cookie is used to determine when the schema for the 1562 ** database changes. After each schema change, the cookie value 1563 ** changes. When a process first reads the schema it records the 1564 ** cookie. Thereafter, whenever it goes to access the database, 1565 ** it checks the cookie to make sure the schema has not changed 1566 ** since it was last read. 1567 ** 1568 ** This plan is not completely bullet-proof. It is possible for 1569 ** the schema to change multiple times and for the cookie to be 1570 ** set back to prior value. But schema changes are infrequent 1571 ** and the probability of hitting the same cookie value is only 1572 ** 1 chance in 2^32. So we're safe enough. 1573 ** 1574 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1575 ** the schema-version whenever the schema changes. 1576 */ 1577 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1578 sqlite3 *db = pParse->db; 1579 Vdbe *v = pParse->pVdbe; 1580 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1581 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1582 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1583 } 1584 1585 /* 1586 ** Measure the number of characters needed to output the given 1587 ** identifier. The number returned includes any quotes used 1588 ** but does not include the null terminator. 1589 ** 1590 ** The estimate is conservative. It might be larger that what is 1591 ** really needed. 1592 */ 1593 static int identLength(const char *z){ 1594 int n; 1595 for(n=0; *z; n++, z++){ 1596 if( *z=='"' ){ n++; } 1597 } 1598 return n + 2; 1599 } 1600 1601 /* 1602 ** The first parameter is a pointer to an output buffer. The second 1603 ** parameter is a pointer to an integer that contains the offset at 1604 ** which to write into the output buffer. This function copies the 1605 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1606 ** to the specified offset in the buffer and updates *pIdx to refer 1607 ** to the first byte after the last byte written before returning. 1608 ** 1609 ** If the string zSignedIdent consists entirely of alpha-numeric 1610 ** characters, does not begin with a digit and is not an SQL keyword, 1611 ** then it is copied to the output buffer exactly as it is. Otherwise, 1612 ** it is quoted using double-quotes. 1613 */ 1614 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1615 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1616 int i, j, needQuote; 1617 i = *pIdx; 1618 1619 for(j=0; zIdent[j]; j++){ 1620 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1621 } 1622 needQuote = sqlite3Isdigit(zIdent[0]) 1623 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1624 || zIdent[j]!=0 1625 || j==0; 1626 1627 if( needQuote ) z[i++] = '"'; 1628 for(j=0; zIdent[j]; j++){ 1629 z[i++] = zIdent[j]; 1630 if( zIdent[j]=='"' ) z[i++] = '"'; 1631 } 1632 if( needQuote ) z[i++] = '"'; 1633 z[i] = 0; 1634 *pIdx = i; 1635 } 1636 1637 /* 1638 ** Generate a CREATE TABLE statement appropriate for the given 1639 ** table. Memory to hold the text of the statement is obtained 1640 ** from sqliteMalloc() and must be freed by the calling function. 1641 */ 1642 static char *createTableStmt(sqlite3 *db, Table *p){ 1643 int i, k, n; 1644 char *zStmt; 1645 char *zSep, *zSep2, *zEnd; 1646 Column *pCol; 1647 n = 0; 1648 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1649 n += identLength(pCol->zName) + 5; 1650 } 1651 n += identLength(p->zName); 1652 if( n<50 ){ 1653 zSep = ""; 1654 zSep2 = ","; 1655 zEnd = ")"; 1656 }else{ 1657 zSep = "\n "; 1658 zSep2 = ",\n "; 1659 zEnd = "\n)"; 1660 } 1661 n += 35 + 6*p->nCol; 1662 zStmt = sqlite3DbMallocRaw(0, n); 1663 if( zStmt==0 ){ 1664 sqlite3OomFault(db); 1665 return 0; 1666 } 1667 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1668 k = sqlite3Strlen30(zStmt); 1669 identPut(zStmt, &k, p->zName); 1670 zStmt[k++] = '('; 1671 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1672 static const char * const azType[] = { 1673 /* SQLITE_AFF_BLOB */ "", 1674 /* SQLITE_AFF_TEXT */ " TEXT", 1675 /* SQLITE_AFF_NUMERIC */ " NUM", 1676 /* SQLITE_AFF_INTEGER */ " INT", 1677 /* SQLITE_AFF_REAL */ " REAL" 1678 }; 1679 int len; 1680 const char *zType; 1681 1682 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1683 k += sqlite3Strlen30(&zStmt[k]); 1684 zSep = zSep2; 1685 identPut(zStmt, &k, pCol->zName); 1686 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1687 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1688 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1689 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1690 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1691 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1692 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1693 1694 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1695 len = sqlite3Strlen30(zType); 1696 assert( pCol->affinity==SQLITE_AFF_BLOB 1697 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1698 memcpy(&zStmt[k], zType, len); 1699 k += len; 1700 assert( k<=n ); 1701 } 1702 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1703 return zStmt; 1704 } 1705 1706 /* 1707 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1708 ** on success and SQLITE_NOMEM on an OOM error. 1709 */ 1710 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1711 char *zExtra; 1712 int nByte; 1713 if( pIdx->nColumn>=N ) return SQLITE_OK; 1714 assert( pIdx->isResized==0 ); 1715 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1716 zExtra = sqlite3DbMallocZero(db, nByte); 1717 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1718 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1719 pIdx->azColl = (const char**)zExtra; 1720 zExtra += sizeof(char*)*N; 1721 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1722 pIdx->aiColumn = (i16*)zExtra; 1723 zExtra += sizeof(i16)*N; 1724 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1725 pIdx->aSortOrder = (u8*)zExtra; 1726 pIdx->nColumn = N; 1727 pIdx->isResized = 1; 1728 return SQLITE_OK; 1729 } 1730 1731 /* 1732 ** Estimate the total row width for a table. 1733 */ 1734 static void estimateTableWidth(Table *pTab){ 1735 unsigned wTable = 0; 1736 const Column *pTabCol; 1737 int i; 1738 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1739 wTable += pTabCol->szEst; 1740 } 1741 if( pTab->iPKey<0 ) wTable++; 1742 pTab->szTabRow = sqlite3LogEst(wTable*4); 1743 } 1744 1745 /* 1746 ** Estimate the average size of a row for an index. 1747 */ 1748 static void estimateIndexWidth(Index *pIdx){ 1749 unsigned wIndex = 0; 1750 int i; 1751 const Column *aCol = pIdx->pTable->aCol; 1752 for(i=0; i<pIdx->nColumn; i++){ 1753 i16 x = pIdx->aiColumn[i]; 1754 assert( x<pIdx->pTable->nCol ); 1755 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1756 } 1757 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1758 } 1759 1760 /* Return true if column number x is any of the first nCol entries of aiCol[]. 1761 ** This is used to determine if the column number x appears in any of the 1762 ** first nCol entries of an index. 1763 */ 1764 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1765 while( nCol-- > 0 ){ 1766 assert( aiCol[0]>=0 ); 1767 if( x==*(aiCol++) ){ 1768 return 1; 1769 } 1770 } 1771 return 0; 1772 } 1773 1774 /* 1775 ** Return true if any of the first nKey entries of index pIdx exactly 1776 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 1777 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 1778 ** or may not be the same index as pPk. 1779 ** 1780 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 1781 ** not a rowid or expression. 1782 ** 1783 ** This routine differs from hasColumn() in that both the column and the 1784 ** collating sequence must match for this routine, but for hasColumn() only 1785 ** the column name must match. 1786 */ 1787 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 1788 int i, j; 1789 assert( nKey<=pIdx->nColumn ); 1790 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 1791 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 1792 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 1793 assert( pPk->pTable==pIdx->pTable ); 1794 testcase( pPk==pIdx ); 1795 j = pPk->aiColumn[iCol]; 1796 assert( j!=XN_ROWID && j!=XN_EXPR ); 1797 for(i=0; i<nKey; i++){ 1798 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 1799 if( pIdx->aiColumn[i]==j 1800 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 1801 ){ 1802 return 1; 1803 } 1804 } 1805 return 0; 1806 } 1807 1808 /* Recompute the colNotIdxed field of the Index. 1809 ** 1810 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 1811 ** columns that are within the first 63 columns of the table. The 1812 ** high-order bit of colNotIdxed is always 1. All unindexed columns 1813 ** of the table have a 1. 1814 ** 1815 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 1816 ** to determine if the index is covering index. 1817 */ 1818 static void recomputeColumnsNotIndexed(Index *pIdx){ 1819 Bitmask m = 0; 1820 int j; 1821 for(j=pIdx->nColumn-1; j>=0; j--){ 1822 int x = pIdx->aiColumn[j]; 1823 if( x>=0 ){ 1824 testcase( x==BMS-1 ); 1825 testcase( x==BMS-2 ); 1826 if( x<BMS-1 ) m |= MASKBIT(x); 1827 } 1828 } 1829 pIdx->colNotIdxed = ~m; 1830 assert( (pIdx->colNotIdxed>>63)==1 ); 1831 } 1832 1833 /* 1834 ** This routine runs at the end of parsing a CREATE TABLE statement that 1835 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1836 ** internal schema data structures and the generated VDBE code so that they 1837 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1838 ** Changes include: 1839 ** 1840 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1841 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 1842 ** into BTREE_BLOBKEY. 1843 ** (3) Bypass the creation of the sqlite_master table entry 1844 ** for the PRIMARY KEY as the primary key index is now 1845 ** identified by the sqlite_master table entry of the table itself. 1846 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1847 ** schema to the rootpage from the main table. 1848 ** (5) Add all table columns to the PRIMARY KEY Index object 1849 ** so that the PRIMARY KEY is a covering index. The surplus 1850 ** columns are part of KeyInfo.nAllField and are not used for 1851 ** sorting or lookup or uniqueness checks. 1852 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1853 ** indices with the PRIMARY KEY columns. 1854 ** 1855 ** For virtual tables, only (1) is performed. 1856 */ 1857 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1858 Index *pIdx; 1859 Index *pPk; 1860 int nPk; 1861 int nExtra; 1862 int i, j; 1863 sqlite3 *db = pParse->db; 1864 Vdbe *v = pParse->pVdbe; 1865 1866 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1867 */ 1868 if( !db->init.imposterTable ){ 1869 for(i=0; i<pTab->nCol; i++){ 1870 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1871 pTab->aCol[i].notNull = OE_Abort; 1872 } 1873 } 1874 } 1875 1876 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 1877 ** into BTREE_BLOBKEY. 1878 */ 1879 if( pParse->addrCrTab ){ 1880 assert( v ); 1881 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 1882 } 1883 1884 /* Locate the PRIMARY KEY index. Or, if this table was originally 1885 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1886 */ 1887 if( pTab->iPKey>=0 ){ 1888 ExprList *pList; 1889 Token ipkToken; 1890 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1891 pList = sqlite3ExprListAppend(pParse, 0, 1892 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1893 if( pList==0 ) return; 1894 if( IN_RENAME_OBJECT ){ 1895 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 1896 } 1897 pList->a[0].sortOrder = pParse->iPkSortOrder; 1898 assert( pParse->pNewTable==pTab ); 1899 pTab->iPKey = -1; 1900 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1901 SQLITE_IDXTYPE_PRIMARYKEY); 1902 if( db->mallocFailed || pParse->nErr ) return; 1903 pPk = sqlite3PrimaryKeyIndex(pTab); 1904 assert( pPk->nKeyCol==1 ); 1905 }else{ 1906 pPk = sqlite3PrimaryKeyIndex(pTab); 1907 assert( pPk!=0 ); 1908 1909 /* 1910 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1911 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1912 ** code assumes the PRIMARY KEY contains no repeated columns. 1913 */ 1914 for(i=j=1; i<pPk->nKeyCol; i++){ 1915 if( isDupColumn(pPk, j, pPk, i) ){ 1916 pPk->nColumn--; 1917 }else{ 1918 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 1919 pPk->azColl[j] = pPk->azColl[i]; 1920 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 1921 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1922 } 1923 } 1924 pPk->nKeyCol = j; 1925 } 1926 assert( pPk!=0 ); 1927 pPk->isCovering = 1; 1928 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1929 nPk = pPk->nColumn = pPk->nKeyCol; 1930 1931 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1932 ** table entry. This is only required if currently generating VDBE 1933 ** code for a CREATE TABLE (not when parsing one as part of reading 1934 ** a database schema). */ 1935 if( v && pPk->tnum>0 ){ 1936 assert( db->init.busy==0 ); 1937 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1938 } 1939 1940 /* The root page of the PRIMARY KEY is the table root page */ 1941 pPk->tnum = pTab->tnum; 1942 1943 /* Update the in-memory representation of all UNIQUE indices by converting 1944 ** the final rowid column into one or more columns of the PRIMARY KEY. 1945 */ 1946 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1947 int n; 1948 if( IsPrimaryKeyIndex(pIdx) ) continue; 1949 for(i=n=0; i<nPk; i++){ 1950 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 1951 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 1952 n++; 1953 } 1954 } 1955 if( n==0 ){ 1956 /* This index is a superset of the primary key */ 1957 pIdx->nColumn = pIdx->nKeyCol; 1958 continue; 1959 } 1960 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1961 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1962 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 1963 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 1964 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1965 pIdx->azColl[j] = pPk->azColl[i]; 1966 if( pPk->aSortOrder[i] ){ 1967 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 1968 pIdx->bAscKeyBug = 1; 1969 } 1970 j++; 1971 } 1972 } 1973 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1974 assert( pIdx->nColumn>=j ); 1975 } 1976 1977 /* Add all table columns to the PRIMARY KEY index 1978 */ 1979 nExtra = 0; 1980 for(i=0; i<pTab->nCol; i++){ 1981 if( !hasColumn(pPk->aiColumn, nPk, i) ) nExtra++; 1982 } 1983 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 1984 for(i=0, j=nPk; i<pTab->nCol; i++){ 1985 if( !hasColumn(pPk->aiColumn, j, i) ){ 1986 assert( j<pPk->nColumn ); 1987 pPk->aiColumn[j] = i; 1988 pPk->azColl[j] = sqlite3StrBINARY; 1989 j++; 1990 } 1991 } 1992 assert( pPk->nColumn==j ); 1993 assert( pTab->nCol<=j ); 1994 recomputeColumnsNotIndexed(pPk); 1995 } 1996 1997 #ifndef SQLITE_OMIT_VIRTUALTABLE 1998 /* 1999 ** Return true if zName is a shadow table name in the current database 2000 ** connection. 2001 ** 2002 ** zName is temporarily modified while this routine is running, but is 2003 ** restored to its original value prior to this routine returning. 2004 */ 2005 static int isShadowTableName(sqlite3 *db, char *zName){ 2006 char *zTail; /* Pointer to the last "_" in zName */ 2007 Table *pTab; /* Table that zName is a shadow of */ 2008 Module *pMod; /* Module for the virtual table */ 2009 2010 zTail = strrchr(zName, '_'); 2011 if( zTail==0 ) return 0; 2012 *zTail = 0; 2013 pTab = sqlite3FindTable(db, zName, 0); 2014 *zTail = '_'; 2015 if( pTab==0 ) return 0; 2016 if( !IsVirtual(pTab) ) return 0; 2017 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2018 if( pMod==0 ) return 0; 2019 if( pMod->pModule->iVersion<3 ) return 0; 2020 if( pMod->pModule->xShadowName==0 ) return 0; 2021 return pMod->pModule->xShadowName(zTail+1); 2022 } 2023 #else 2024 # define isShadowTableName(x,y) 0 2025 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2026 2027 /* 2028 ** This routine is called to report the final ")" that terminates 2029 ** a CREATE TABLE statement. 2030 ** 2031 ** The table structure that other action routines have been building 2032 ** is added to the internal hash tables, assuming no errors have 2033 ** occurred. 2034 ** 2035 ** An entry for the table is made in the master table on disk, unless 2036 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2037 ** it means we are reading the sqlite_master table because we just 2038 ** connected to the database or because the sqlite_master table has 2039 ** recently changed, so the entry for this table already exists in 2040 ** the sqlite_master table. We do not want to create it again. 2041 ** 2042 ** If the pSelect argument is not NULL, it means that this routine 2043 ** was called to create a table generated from a 2044 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2045 ** the new table will match the result set of the SELECT. 2046 */ 2047 void sqlite3EndTable( 2048 Parse *pParse, /* Parse context */ 2049 Token *pCons, /* The ',' token after the last column defn. */ 2050 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2051 u8 tabOpts, /* Extra table options. Usually 0. */ 2052 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2053 ){ 2054 Table *p; /* The new table */ 2055 sqlite3 *db = pParse->db; /* The database connection */ 2056 int iDb; /* Database in which the table lives */ 2057 Index *pIdx; /* An implied index of the table */ 2058 2059 if( pEnd==0 && pSelect==0 ){ 2060 return; 2061 } 2062 assert( !db->mallocFailed ); 2063 p = pParse->pNewTable; 2064 if( p==0 ) return; 2065 2066 if( pSelect==0 && isShadowTableName(db, p->zName) ){ 2067 p->tabFlags |= TF_Shadow; 2068 } 2069 2070 /* If the db->init.busy is 1 it means we are reading the SQL off the 2071 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 2072 ** So do not write to the disk again. Extract the root page number 2073 ** for the table from the db->init.newTnum field. (The page number 2074 ** should have been put there by the sqliteOpenCb routine.) 2075 ** 2076 ** If the root page number is 1, that means this is the sqlite_master 2077 ** table itself. So mark it read-only. 2078 */ 2079 if( db->init.busy ){ 2080 if( pSelect ){ 2081 sqlite3ErrorMsg(pParse, ""); 2082 return; 2083 } 2084 p->tnum = db->init.newTnum; 2085 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2086 } 2087 2088 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2089 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2090 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2091 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2092 2093 /* Special processing for WITHOUT ROWID Tables */ 2094 if( tabOpts & TF_WithoutRowid ){ 2095 if( (p->tabFlags & TF_Autoincrement) ){ 2096 sqlite3ErrorMsg(pParse, 2097 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2098 return; 2099 } 2100 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2101 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2102 }else{ 2103 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2104 convertToWithoutRowidTable(pParse, p); 2105 } 2106 } 2107 2108 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2109 2110 #ifndef SQLITE_OMIT_CHECK 2111 /* Resolve names in all CHECK constraint expressions. 2112 */ 2113 if( p->pCheck ){ 2114 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2115 } 2116 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2117 2118 /* Estimate the average row size for the table and for all implied indices */ 2119 estimateTableWidth(p); 2120 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2121 estimateIndexWidth(pIdx); 2122 } 2123 2124 /* If not initializing, then create a record for the new table 2125 ** in the SQLITE_MASTER table of the database. 2126 ** 2127 ** If this is a TEMPORARY table, write the entry into the auxiliary 2128 ** file instead of into the main database file. 2129 */ 2130 if( !db->init.busy ){ 2131 int n; 2132 Vdbe *v; 2133 char *zType; /* "view" or "table" */ 2134 char *zType2; /* "VIEW" or "TABLE" */ 2135 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2136 2137 v = sqlite3GetVdbe(pParse); 2138 if( NEVER(v==0) ) return; 2139 2140 sqlite3VdbeAddOp1(v, OP_Close, 0); 2141 2142 /* 2143 ** Initialize zType for the new view or table. 2144 */ 2145 if( p->pSelect==0 ){ 2146 /* A regular table */ 2147 zType = "table"; 2148 zType2 = "TABLE"; 2149 #ifndef SQLITE_OMIT_VIEW 2150 }else{ 2151 /* A view */ 2152 zType = "view"; 2153 zType2 = "VIEW"; 2154 #endif 2155 } 2156 2157 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2158 ** statement to populate the new table. The root-page number for the 2159 ** new table is in register pParse->regRoot. 2160 ** 2161 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2162 ** suitable state to query for the column names and types to be used 2163 ** by the new table. 2164 ** 2165 ** A shared-cache write-lock is not required to write to the new table, 2166 ** as a schema-lock must have already been obtained to create it. Since 2167 ** a schema-lock excludes all other database users, the write-lock would 2168 ** be redundant. 2169 */ 2170 if( pSelect ){ 2171 SelectDest dest; /* Where the SELECT should store results */ 2172 int regYield; /* Register holding co-routine entry-point */ 2173 int addrTop; /* Top of the co-routine */ 2174 int regRec; /* A record to be insert into the new table */ 2175 int regRowid; /* Rowid of the next row to insert */ 2176 int addrInsLoop; /* Top of the loop for inserting rows */ 2177 Table *pSelTab; /* A table that describes the SELECT results */ 2178 2179 regYield = ++pParse->nMem; 2180 regRec = ++pParse->nMem; 2181 regRowid = ++pParse->nMem; 2182 assert(pParse->nTab==1); 2183 sqlite3MayAbort(pParse); 2184 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2185 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2186 pParse->nTab = 2; 2187 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2188 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2189 if( pParse->nErr ) return; 2190 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2191 if( pSelTab==0 ) return; 2192 assert( p->aCol==0 ); 2193 p->nCol = pSelTab->nCol; 2194 p->aCol = pSelTab->aCol; 2195 pSelTab->nCol = 0; 2196 pSelTab->aCol = 0; 2197 sqlite3DeleteTable(db, pSelTab); 2198 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2199 sqlite3Select(pParse, pSelect, &dest); 2200 if( pParse->nErr ) return; 2201 sqlite3VdbeEndCoroutine(v, regYield); 2202 sqlite3VdbeJumpHere(v, addrTop - 1); 2203 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2204 VdbeCoverage(v); 2205 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2206 sqlite3TableAffinity(v, p, 0); 2207 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2208 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2209 sqlite3VdbeGoto(v, addrInsLoop); 2210 sqlite3VdbeJumpHere(v, addrInsLoop); 2211 sqlite3VdbeAddOp1(v, OP_Close, 1); 2212 } 2213 2214 /* Compute the complete text of the CREATE statement */ 2215 if( pSelect ){ 2216 zStmt = createTableStmt(db, p); 2217 }else{ 2218 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2219 n = (int)(pEnd2->z - pParse->sNameToken.z); 2220 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2221 zStmt = sqlite3MPrintf(db, 2222 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2223 ); 2224 } 2225 2226 /* A slot for the record has already been allocated in the 2227 ** SQLITE_MASTER table. We just need to update that slot with all 2228 ** the information we've collected. 2229 */ 2230 sqlite3NestedParse(pParse, 2231 "UPDATE %Q.%s " 2232 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2233 "WHERE rowid=#%d", 2234 db->aDb[iDb].zDbSName, MASTER_NAME, 2235 zType, 2236 p->zName, 2237 p->zName, 2238 pParse->regRoot, 2239 zStmt, 2240 pParse->regRowid 2241 ); 2242 sqlite3DbFree(db, zStmt); 2243 sqlite3ChangeCookie(pParse, iDb); 2244 2245 #ifndef SQLITE_OMIT_AUTOINCREMENT 2246 /* Check to see if we need to create an sqlite_sequence table for 2247 ** keeping track of autoincrement keys. 2248 */ 2249 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2250 Db *pDb = &db->aDb[iDb]; 2251 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2252 if( pDb->pSchema->pSeqTab==0 ){ 2253 sqlite3NestedParse(pParse, 2254 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2255 pDb->zDbSName 2256 ); 2257 } 2258 } 2259 #endif 2260 2261 /* Reparse everything to update our internal data structures */ 2262 sqlite3VdbeAddParseSchemaOp(v, iDb, 2263 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2264 } 2265 2266 2267 /* Add the table to the in-memory representation of the database. 2268 */ 2269 if( db->init.busy ){ 2270 Table *pOld; 2271 Schema *pSchema = p->pSchema; 2272 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2273 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2274 if( pOld ){ 2275 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2276 sqlite3OomFault(db); 2277 return; 2278 } 2279 pParse->pNewTable = 0; 2280 db->mDbFlags |= DBFLAG_SchemaChange; 2281 2282 #ifndef SQLITE_OMIT_ALTERTABLE 2283 if( !p->pSelect ){ 2284 const char *zName = (const char *)pParse->sNameToken.z; 2285 int nName; 2286 assert( !pSelect && pCons && pEnd ); 2287 if( pCons->z==0 ){ 2288 pCons = pEnd; 2289 } 2290 nName = (int)((const char *)pCons->z - zName); 2291 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2292 } 2293 #endif 2294 } 2295 } 2296 2297 #ifndef SQLITE_OMIT_VIEW 2298 /* 2299 ** The parser calls this routine in order to create a new VIEW 2300 */ 2301 void sqlite3CreateView( 2302 Parse *pParse, /* The parsing context */ 2303 Token *pBegin, /* The CREATE token that begins the statement */ 2304 Token *pName1, /* The token that holds the name of the view */ 2305 Token *pName2, /* The token that holds the name of the view */ 2306 ExprList *pCNames, /* Optional list of view column names */ 2307 Select *pSelect, /* A SELECT statement that will become the new view */ 2308 int isTemp, /* TRUE for a TEMPORARY view */ 2309 int noErr /* Suppress error messages if VIEW already exists */ 2310 ){ 2311 Table *p; 2312 int n; 2313 const char *z; 2314 Token sEnd; 2315 DbFixer sFix; 2316 Token *pName = 0; 2317 int iDb; 2318 sqlite3 *db = pParse->db; 2319 2320 if( pParse->nVar>0 ){ 2321 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2322 goto create_view_fail; 2323 } 2324 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2325 p = pParse->pNewTable; 2326 if( p==0 || pParse->nErr ) goto create_view_fail; 2327 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2328 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2329 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2330 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2331 2332 /* Make a copy of the entire SELECT statement that defines the view. 2333 ** This will force all the Expr.token.z values to be dynamically 2334 ** allocated rather than point to the input string - which means that 2335 ** they will persist after the current sqlite3_exec() call returns. 2336 */ 2337 if( IN_RENAME_OBJECT ){ 2338 p->pSelect = pSelect; 2339 pSelect = 0; 2340 }else{ 2341 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2342 } 2343 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2344 if( db->mallocFailed ) goto create_view_fail; 2345 2346 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2347 ** the end. 2348 */ 2349 sEnd = pParse->sLastToken; 2350 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2351 if( sEnd.z[0]!=';' ){ 2352 sEnd.z += sEnd.n; 2353 } 2354 sEnd.n = 0; 2355 n = (int)(sEnd.z - pBegin->z); 2356 assert( n>0 ); 2357 z = pBegin->z; 2358 while( sqlite3Isspace(z[n-1]) ){ n--; } 2359 sEnd.z = &z[n-1]; 2360 sEnd.n = 1; 2361 2362 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2363 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2364 2365 create_view_fail: 2366 sqlite3SelectDelete(db, pSelect); 2367 if( IN_RENAME_OBJECT ){ 2368 sqlite3RenameExprlistUnmap(pParse, pCNames); 2369 } 2370 sqlite3ExprListDelete(db, pCNames); 2371 return; 2372 } 2373 #endif /* SQLITE_OMIT_VIEW */ 2374 2375 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2376 /* 2377 ** The Table structure pTable is really a VIEW. Fill in the names of 2378 ** the columns of the view in the pTable structure. Return the number 2379 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2380 */ 2381 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2382 Table *pSelTab; /* A fake table from which we get the result set */ 2383 Select *pSel; /* Copy of the SELECT that implements the view */ 2384 int nErr = 0; /* Number of errors encountered */ 2385 int n; /* Temporarily holds the number of cursors assigned */ 2386 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2387 #ifndef SQLITE_OMIT_VIRTUALTABLE 2388 int rc; 2389 #endif 2390 #ifndef SQLITE_OMIT_AUTHORIZATION 2391 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2392 #endif 2393 2394 assert( pTable ); 2395 2396 #ifndef SQLITE_OMIT_VIRTUALTABLE 2397 db->nSchemaLock++; 2398 rc = sqlite3VtabCallConnect(pParse, pTable); 2399 db->nSchemaLock--; 2400 if( rc ){ 2401 return 1; 2402 } 2403 if( IsVirtual(pTable) ) return 0; 2404 #endif 2405 2406 #ifndef SQLITE_OMIT_VIEW 2407 /* A positive nCol means the columns names for this view are 2408 ** already known. 2409 */ 2410 if( pTable->nCol>0 ) return 0; 2411 2412 /* A negative nCol is a special marker meaning that we are currently 2413 ** trying to compute the column names. If we enter this routine with 2414 ** a negative nCol, it means two or more views form a loop, like this: 2415 ** 2416 ** CREATE VIEW one AS SELECT * FROM two; 2417 ** CREATE VIEW two AS SELECT * FROM one; 2418 ** 2419 ** Actually, the error above is now caught prior to reaching this point. 2420 ** But the following test is still important as it does come up 2421 ** in the following: 2422 ** 2423 ** CREATE TABLE main.ex1(a); 2424 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2425 ** SELECT * FROM temp.ex1; 2426 */ 2427 if( pTable->nCol<0 ){ 2428 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2429 return 1; 2430 } 2431 assert( pTable->nCol>=0 ); 2432 2433 /* If we get this far, it means we need to compute the table names. 2434 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2435 ** "*" elements in the results set of the view and will assign cursors 2436 ** to the elements of the FROM clause. But we do not want these changes 2437 ** to be permanent. So the computation is done on a copy of the SELECT 2438 ** statement that defines the view. 2439 */ 2440 assert( pTable->pSelect ); 2441 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2442 if( pSel ){ 2443 #ifndef SQLITE_OMIT_ALTERTABLE 2444 u8 eParseMode = pParse->eParseMode; 2445 pParse->eParseMode = PARSE_MODE_NORMAL; 2446 #endif 2447 n = pParse->nTab; 2448 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2449 pTable->nCol = -1; 2450 db->lookaside.bDisable++; 2451 #ifndef SQLITE_OMIT_AUTHORIZATION 2452 xAuth = db->xAuth; 2453 db->xAuth = 0; 2454 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2455 db->xAuth = xAuth; 2456 #else 2457 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2458 #endif 2459 pParse->nTab = n; 2460 if( pTable->pCheck ){ 2461 /* CREATE VIEW name(arglist) AS ... 2462 ** The names of the columns in the table are taken from 2463 ** arglist which is stored in pTable->pCheck. The pCheck field 2464 ** normally holds CHECK constraints on an ordinary table, but for 2465 ** a VIEW it holds the list of column names. 2466 */ 2467 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2468 &pTable->nCol, &pTable->aCol); 2469 if( db->mallocFailed==0 2470 && pParse->nErr==0 2471 && pTable->nCol==pSel->pEList->nExpr 2472 ){ 2473 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2474 SQLITE_AFF_NONE); 2475 } 2476 }else if( pSelTab ){ 2477 /* CREATE VIEW name AS... without an argument list. Construct 2478 ** the column names from the SELECT statement that defines the view. 2479 */ 2480 assert( pTable->aCol==0 ); 2481 pTable->nCol = pSelTab->nCol; 2482 pTable->aCol = pSelTab->aCol; 2483 pSelTab->nCol = 0; 2484 pSelTab->aCol = 0; 2485 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2486 }else{ 2487 pTable->nCol = 0; 2488 nErr++; 2489 } 2490 sqlite3DeleteTable(db, pSelTab); 2491 sqlite3SelectDelete(db, pSel); 2492 db->lookaside.bDisable--; 2493 #ifndef SQLITE_OMIT_ALTERTABLE 2494 pParse->eParseMode = eParseMode; 2495 #endif 2496 } else { 2497 nErr++; 2498 } 2499 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2500 if( db->mallocFailed ){ 2501 sqlite3DeleteColumnNames(db, pTable); 2502 pTable->aCol = 0; 2503 pTable->nCol = 0; 2504 } 2505 #endif /* SQLITE_OMIT_VIEW */ 2506 return nErr; 2507 } 2508 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2509 2510 #ifndef SQLITE_OMIT_VIEW 2511 /* 2512 ** Clear the column names from every VIEW in database idx. 2513 */ 2514 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2515 HashElem *i; 2516 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2517 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2518 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2519 Table *pTab = sqliteHashData(i); 2520 if( pTab->pSelect ){ 2521 sqlite3DeleteColumnNames(db, pTab); 2522 pTab->aCol = 0; 2523 pTab->nCol = 0; 2524 } 2525 } 2526 DbClearProperty(db, idx, DB_UnresetViews); 2527 } 2528 #else 2529 # define sqliteViewResetAll(A,B) 2530 #endif /* SQLITE_OMIT_VIEW */ 2531 2532 /* 2533 ** This function is called by the VDBE to adjust the internal schema 2534 ** used by SQLite when the btree layer moves a table root page. The 2535 ** root-page of a table or index in database iDb has changed from iFrom 2536 ** to iTo. 2537 ** 2538 ** Ticket #1728: The symbol table might still contain information 2539 ** on tables and/or indices that are the process of being deleted. 2540 ** If you are unlucky, one of those deleted indices or tables might 2541 ** have the same rootpage number as the real table or index that is 2542 ** being moved. So we cannot stop searching after the first match 2543 ** because the first match might be for one of the deleted indices 2544 ** or tables and not the table/index that is actually being moved. 2545 ** We must continue looping until all tables and indices with 2546 ** rootpage==iFrom have been converted to have a rootpage of iTo 2547 ** in order to be certain that we got the right one. 2548 */ 2549 #ifndef SQLITE_OMIT_AUTOVACUUM 2550 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2551 HashElem *pElem; 2552 Hash *pHash; 2553 Db *pDb; 2554 2555 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2556 pDb = &db->aDb[iDb]; 2557 pHash = &pDb->pSchema->tblHash; 2558 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2559 Table *pTab = sqliteHashData(pElem); 2560 if( pTab->tnum==iFrom ){ 2561 pTab->tnum = iTo; 2562 } 2563 } 2564 pHash = &pDb->pSchema->idxHash; 2565 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2566 Index *pIdx = sqliteHashData(pElem); 2567 if( pIdx->tnum==iFrom ){ 2568 pIdx->tnum = iTo; 2569 } 2570 } 2571 } 2572 #endif 2573 2574 /* 2575 ** Write code to erase the table with root-page iTable from database iDb. 2576 ** Also write code to modify the sqlite_master table and internal schema 2577 ** if a root-page of another table is moved by the btree-layer whilst 2578 ** erasing iTable (this can happen with an auto-vacuum database). 2579 */ 2580 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2581 Vdbe *v = sqlite3GetVdbe(pParse); 2582 int r1 = sqlite3GetTempReg(pParse); 2583 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2584 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2585 sqlite3MayAbort(pParse); 2586 #ifndef SQLITE_OMIT_AUTOVACUUM 2587 /* OP_Destroy stores an in integer r1. If this integer 2588 ** is non-zero, then it is the root page number of a table moved to 2589 ** location iTable. The following code modifies the sqlite_master table to 2590 ** reflect this. 2591 ** 2592 ** The "#NNN" in the SQL is a special constant that means whatever value 2593 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2594 ** token for additional information. 2595 */ 2596 sqlite3NestedParse(pParse, 2597 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2598 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2599 #endif 2600 sqlite3ReleaseTempReg(pParse, r1); 2601 } 2602 2603 /* 2604 ** Write VDBE code to erase table pTab and all associated indices on disk. 2605 ** Code to update the sqlite_master tables and internal schema definitions 2606 ** in case a root-page belonging to another table is moved by the btree layer 2607 ** is also added (this can happen with an auto-vacuum database). 2608 */ 2609 static void destroyTable(Parse *pParse, Table *pTab){ 2610 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2611 ** is not defined), then it is important to call OP_Destroy on the 2612 ** table and index root-pages in order, starting with the numerically 2613 ** largest root-page number. This guarantees that none of the root-pages 2614 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2615 ** following were coded: 2616 ** 2617 ** OP_Destroy 4 0 2618 ** ... 2619 ** OP_Destroy 5 0 2620 ** 2621 ** and root page 5 happened to be the largest root-page number in the 2622 ** database, then root page 5 would be moved to page 4 by the 2623 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2624 ** a free-list page. 2625 */ 2626 int iTab = pTab->tnum; 2627 int iDestroyed = 0; 2628 2629 while( 1 ){ 2630 Index *pIdx; 2631 int iLargest = 0; 2632 2633 if( iDestroyed==0 || iTab<iDestroyed ){ 2634 iLargest = iTab; 2635 } 2636 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2637 int iIdx = pIdx->tnum; 2638 assert( pIdx->pSchema==pTab->pSchema ); 2639 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2640 iLargest = iIdx; 2641 } 2642 } 2643 if( iLargest==0 ){ 2644 return; 2645 }else{ 2646 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2647 assert( iDb>=0 && iDb<pParse->db->nDb ); 2648 destroyRootPage(pParse, iLargest, iDb); 2649 iDestroyed = iLargest; 2650 } 2651 } 2652 } 2653 2654 /* 2655 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2656 ** after a DROP INDEX or DROP TABLE command. 2657 */ 2658 static void sqlite3ClearStatTables( 2659 Parse *pParse, /* The parsing context */ 2660 int iDb, /* The database number */ 2661 const char *zType, /* "idx" or "tbl" */ 2662 const char *zName /* Name of index or table */ 2663 ){ 2664 int i; 2665 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2666 for(i=1; i<=4; i++){ 2667 char zTab[24]; 2668 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2669 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2670 sqlite3NestedParse(pParse, 2671 "DELETE FROM %Q.%s WHERE %s=%Q", 2672 zDbName, zTab, zType, zName 2673 ); 2674 } 2675 } 2676 } 2677 2678 /* 2679 ** Generate code to drop a table. 2680 */ 2681 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2682 Vdbe *v; 2683 sqlite3 *db = pParse->db; 2684 Trigger *pTrigger; 2685 Db *pDb = &db->aDb[iDb]; 2686 2687 v = sqlite3GetVdbe(pParse); 2688 assert( v!=0 ); 2689 sqlite3BeginWriteOperation(pParse, 1, iDb); 2690 2691 #ifndef SQLITE_OMIT_VIRTUALTABLE 2692 if( IsVirtual(pTab) ){ 2693 sqlite3VdbeAddOp0(v, OP_VBegin); 2694 } 2695 #endif 2696 2697 /* Drop all triggers associated with the table being dropped. Code 2698 ** is generated to remove entries from sqlite_master and/or 2699 ** sqlite_temp_master if required. 2700 */ 2701 pTrigger = sqlite3TriggerList(pParse, pTab); 2702 while( pTrigger ){ 2703 assert( pTrigger->pSchema==pTab->pSchema || 2704 pTrigger->pSchema==db->aDb[1].pSchema ); 2705 sqlite3DropTriggerPtr(pParse, pTrigger); 2706 pTrigger = pTrigger->pNext; 2707 } 2708 2709 #ifndef SQLITE_OMIT_AUTOINCREMENT 2710 /* Remove any entries of the sqlite_sequence table associated with 2711 ** the table being dropped. This is done before the table is dropped 2712 ** at the btree level, in case the sqlite_sequence table needs to 2713 ** move as a result of the drop (can happen in auto-vacuum mode). 2714 */ 2715 if( pTab->tabFlags & TF_Autoincrement ){ 2716 sqlite3NestedParse(pParse, 2717 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2718 pDb->zDbSName, pTab->zName 2719 ); 2720 } 2721 #endif 2722 2723 /* Drop all SQLITE_MASTER table and index entries that refer to the 2724 ** table. The program name loops through the master table and deletes 2725 ** every row that refers to a table of the same name as the one being 2726 ** dropped. Triggers are handled separately because a trigger can be 2727 ** created in the temp database that refers to a table in another 2728 ** database. 2729 */ 2730 sqlite3NestedParse(pParse, 2731 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2732 pDb->zDbSName, MASTER_NAME, pTab->zName); 2733 if( !isView && !IsVirtual(pTab) ){ 2734 destroyTable(pParse, pTab); 2735 } 2736 2737 /* Remove the table entry from SQLite's internal schema and modify 2738 ** the schema cookie. 2739 */ 2740 if( IsVirtual(pTab) ){ 2741 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2742 sqlite3MayAbort(pParse); 2743 } 2744 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2745 sqlite3ChangeCookie(pParse, iDb); 2746 sqliteViewResetAll(db, iDb); 2747 } 2748 2749 /* 2750 ** This routine is called to do the work of a DROP TABLE statement. 2751 ** pName is the name of the table to be dropped. 2752 */ 2753 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2754 Table *pTab; 2755 Vdbe *v; 2756 sqlite3 *db = pParse->db; 2757 int iDb; 2758 2759 if( db->mallocFailed ){ 2760 goto exit_drop_table; 2761 } 2762 assert( pParse->nErr==0 ); 2763 assert( pName->nSrc==1 ); 2764 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2765 if( noErr ) db->suppressErr++; 2766 assert( isView==0 || isView==LOCATE_VIEW ); 2767 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2768 if( noErr ) db->suppressErr--; 2769 2770 if( pTab==0 ){ 2771 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2772 goto exit_drop_table; 2773 } 2774 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2775 assert( iDb>=0 && iDb<db->nDb ); 2776 2777 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2778 ** it is initialized. 2779 */ 2780 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2781 goto exit_drop_table; 2782 } 2783 #ifndef SQLITE_OMIT_AUTHORIZATION 2784 { 2785 int code; 2786 const char *zTab = SCHEMA_TABLE(iDb); 2787 const char *zDb = db->aDb[iDb].zDbSName; 2788 const char *zArg2 = 0; 2789 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2790 goto exit_drop_table; 2791 } 2792 if( isView ){ 2793 if( !OMIT_TEMPDB && iDb==1 ){ 2794 code = SQLITE_DROP_TEMP_VIEW; 2795 }else{ 2796 code = SQLITE_DROP_VIEW; 2797 } 2798 #ifndef SQLITE_OMIT_VIRTUALTABLE 2799 }else if( IsVirtual(pTab) ){ 2800 code = SQLITE_DROP_VTABLE; 2801 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2802 #endif 2803 }else{ 2804 if( !OMIT_TEMPDB && iDb==1 ){ 2805 code = SQLITE_DROP_TEMP_TABLE; 2806 }else{ 2807 code = SQLITE_DROP_TABLE; 2808 } 2809 } 2810 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2811 goto exit_drop_table; 2812 } 2813 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2814 goto exit_drop_table; 2815 } 2816 } 2817 #endif 2818 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2819 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2820 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2821 goto exit_drop_table; 2822 } 2823 2824 #ifndef SQLITE_OMIT_VIEW 2825 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2826 ** on a table. 2827 */ 2828 if( isView && pTab->pSelect==0 ){ 2829 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2830 goto exit_drop_table; 2831 } 2832 if( !isView && pTab->pSelect ){ 2833 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2834 goto exit_drop_table; 2835 } 2836 #endif 2837 2838 /* Generate code to remove the table from the master table 2839 ** on disk. 2840 */ 2841 v = sqlite3GetVdbe(pParse); 2842 if( v ){ 2843 sqlite3BeginWriteOperation(pParse, 1, iDb); 2844 if( !isView ){ 2845 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2846 sqlite3FkDropTable(pParse, pName, pTab); 2847 } 2848 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2849 } 2850 2851 exit_drop_table: 2852 sqlite3SrcListDelete(db, pName); 2853 } 2854 2855 /* 2856 ** This routine is called to create a new foreign key on the table 2857 ** currently under construction. pFromCol determines which columns 2858 ** in the current table point to the foreign key. If pFromCol==0 then 2859 ** connect the key to the last column inserted. pTo is the name of 2860 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2861 ** of tables in the parent pTo table. flags contains all 2862 ** information about the conflict resolution algorithms specified 2863 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2864 ** 2865 ** An FKey structure is created and added to the table currently 2866 ** under construction in the pParse->pNewTable field. 2867 ** 2868 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2869 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2870 */ 2871 void sqlite3CreateForeignKey( 2872 Parse *pParse, /* Parsing context */ 2873 ExprList *pFromCol, /* Columns in this table that point to other table */ 2874 Token *pTo, /* Name of the other table */ 2875 ExprList *pToCol, /* Columns in the other table */ 2876 int flags /* Conflict resolution algorithms. */ 2877 ){ 2878 sqlite3 *db = pParse->db; 2879 #ifndef SQLITE_OMIT_FOREIGN_KEY 2880 FKey *pFKey = 0; 2881 FKey *pNextTo; 2882 Table *p = pParse->pNewTable; 2883 int nByte; 2884 int i; 2885 int nCol; 2886 char *z; 2887 2888 assert( pTo!=0 ); 2889 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2890 if( pFromCol==0 ){ 2891 int iCol = p->nCol-1; 2892 if( NEVER(iCol<0) ) goto fk_end; 2893 if( pToCol && pToCol->nExpr!=1 ){ 2894 sqlite3ErrorMsg(pParse, "foreign key on %s" 2895 " should reference only one column of table %T", 2896 p->aCol[iCol].zName, pTo); 2897 goto fk_end; 2898 } 2899 nCol = 1; 2900 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2901 sqlite3ErrorMsg(pParse, 2902 "number of columns in foreign key does not match the number of " 2903 "columns in the referenced table"); 2904 goto fk_end; 2905 }else{ 2906 nCol = pFromCol->nExpr; 2907 } 2908 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2909 if( pToCol ){ 2910 for(i=0; i<pToCol->nExpr; i++){ 2911 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2912 } 2913 } 2914 pFKey = sqlite3DbMallocZero(db, nByte ); 2915 if( pFKey==0 ){ 2916 goto fk_end; 2917 } 2918 pFKey->pFrom = p; 2919 pFKey->pNextFrom = p->pFKey; 2920 z = (char*)&pFKey->aCol[nCol]; 2921 pFKey->zTo = z; 2922 if( IN_RENAME_OBJECT ){ 2923 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 2924 } 2925 memcpy(z, pTo->z, pTo->n); 2926 z[pTo->n] = 0; 2927 sqlite3Dequote(z); 2928 z += pTo->n+1; 2929 pFKey->nCol = nCol; 2930 if( pFromCol==0 ){ 2931 pFKey->aCol[0].iFrom = p->nCol-1; 2932 }else{ 2933 for(i=0; i<nCol; i++){ 2934 int j; 2935 for(j=0; j<p->nCol; j++){ 2936 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2937 pFKey->aCol[i].iFrom = j; 2938 break; 2939 } 2940 } 2941 if( j>=p->nCol ){ 2942 sqlite3ErrorMsg(pParse, 2943 "unknown column \"%s\" in foreign key definition", 2944 pFromCol->a[i].zName); 2945 goto fk_end; 2946 } 2947 if( IN_RENAME_OBJECT ){ 2948 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zName); 2949 } 2950 } 2951 } 2952 if( pToCol ){ 2953 for(i=0; i<nCol; i++){ 2954 int n = sqlite3Strlen30(pToCol->a[i].zName); 2955 pFKey->aCol[i].zCol = z; 2956 if( IN_RENAME_OBJECT ){ 2957 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zName); 2958 } 2959 memcpy(z, pToCol->a[i].zName, n); 2960 z[n] = 0; 2961 z += n+1; 2962 } 2963 } 2964 pFKey->isDeferred = 0; 2965 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2966 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2967 2968 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2969 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2970 pFKey->zTo, (void *)pFKey 2971 ); 2972 if( pNextTo==pFKey ){ 2973 sqlite3OomFault(db); 2974 goto fk_end; 2975 } 2976 if( pNextTo ){ 2977 assert( pNextTo->pPrevTo==0 ); 2978 pFKey->pNextTo = pNextTo; 2979 pNextTo->pPrevTo = pFKey; 2980 } 2981 2982 /* Link the foreign key to the table as the last step. 2983 */ 2984 p->pFKey = pFKey; 2985 pFKey = 0; 2986 2987 fk_end: 2988 sqlite3DbFree(db, pFKey); 2989 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2990 sqlite3ExprListDelete(db, pFromCol); 2991 sqlite3ExprListDelete(db, pToCol); 2992 } 2993 2994 /* 2995 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2996 ** clause is seen as part of a foreign key definition. The isDeferred 2997 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2998 ** The behavior of the most recently created foreign key is adjusted 2999 ** accordingly. 3000 */ 3001 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3002 #ifndef SQLITE_OMIT_FOREIGN_KEY 3003 Table *pTab; 3004 FKey *pFKey; 3005 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3006 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3007 pFKey->isDeferred = (u8)isDeferred; 3008 #endif 3009 } 3010 3011 /* 3012 ** Generate code that will erase and refill index *pIdx. This is 3013 ** used to initialize a newly created index or to recompute the 3014 ** content of an index in response to a REINDEX command. 3015 ** 3016 ** if memRootPage is not negative, it means that the index is newly 3017 ** created. The register specified by memRootPage contains the 3018 ** root page number of the index. If memRootPage is negative, then 3019 ** the index already exists and must be cleared before being refilled and 3020 ** the root page number of the index is taken from pIndex->tnum. 3021 */ 3022 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3023 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3024 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3025 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3026 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3027 int addr1; /* Address of top of loop */ 3028 int addr2; /* Address to jump to for next iteration */ 3029 int tnum; /* Root page of index */ 3030 int iPartIdxLabel; /* Jump to this label to skip a row */ 3031 Vdbe *v; /* Generate code into this virtual machine */ 3032 KeyInfo *pKey; /* KeyInfo for index */ 3033 int regRecord; /* Register holding assembled index record */ 3034 sqlite3 *db = pParse->db; /* The database connection */ 3035 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3036 3037 #ifndef SQLITE_OMIT_AUTHORIZATION 3038 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3039 db->aDb[iDb].zDbSName ) ){ 3040 return; 3041 } 3042 #endif 3043 3044 /* Require a write-lock on the table to perform this operation */ 3045 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3046 3047 v = sqlite3GetVdbe(pParse); 3048 if( v==0 ) return; 3049 if( memRootPage>=0 ){ 3050 tnum = memRootPage; 3051 }else{ 3052 tnum = pIndex->tnum; 3053 } 3054 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3055 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3056 3057 /* Open the sorter cursor if we are to use one. */ 3058 iSorter = pParse->nTab++; 3059 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3060 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3061 3062 /* Open the table. Loop through all rows of the table, inserting index 3063 ** records into the sorter. */ 3064 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3065 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3066 regRecord = sqlite3GetTempReg(pParse); 3067 sqlite3MultiWrite(pParse); 3068 3069 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3070 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3071 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3072 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3073 sqlite3VdbeJumpHere(v, addr1); 3074 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3075 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 3076 (char *)pKey, P4_KEYINFO); 3077 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3078 3079 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3080 if( IsUniqueIndex(pIndex) ){ 3081 int j2 = sqlite3VdbeGoto(v, 1); 3082 addr2 = sqlite3VdbeCurrentAddr(v); 3083 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3084 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3085 pIndex->nKeyCol); VdbeCoverage(v); 3086 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3087 sqlite3VdbeJumpHere(v, j2); 3088 }else{ 3089 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3090 ** abort. The exception is if one of the indexed expressions contains a 3091 ** user function that throws an exception when it is evaluated. But the 3092 ** overhead of adding a statement journal to a CREATE INDEX statement is 3093 ** very small (since most of the pages written do not contain content that 3094 ** needs to be restored if the statement aborts), so we call 3095 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3096 sqlite3MayAbort(pParse); 3097 addr2 = sqlite3VdbeCurrentAddr(v); 3098 } 3099 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3100 if( !pIndex->bAscKeyBug ){ 3101 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3102 ** faster by avoiding unnecessary seeks. But the optimization does 3103 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3104 ** with DESC primary keys, since those indexes have there keys in 3105 ** a different order from the main table. 3106 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3107 */ 3108 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3109 } 3110 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3111 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3112 sqlite3ReleaseTempReg(pParse, regRecord); 3113 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3114 sqlite3VdbeJumpHere(v, addr1); 3115 3116 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3117 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3118 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3119 } 3120 3121 /* 3122 ** Allocate heap space to hold an Index object with nCol columns. 3123 ** 3124 ** Increase the allocation size to provide an extra nExtra bytes 3125 ** of 8-byte aligned space after the Index object and return a 3126 ** pointer to this extra space in *ppExtra. 3127 */ 3128 Index *sqlite3AllocateIndexObject( 3129 sqlite3 *db, /* Database connection */ 3130 i16 nCol, /* Total number of columns in the index */ 3131 int nExtra, /* Number of bytes of extra space to alloc */ 3132 char **ppExtra /* Pointer to the "extra" space */ 3133 ){ 3134 Index *p; /* Allocated index object */ 3135 int nByte; /* Bytes of space for Index object + arrays */ 3136 3137 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3138 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3139 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3140 sizeof(i16)*nCol + /* Index.aiColumn */ 3141 sizeof(u8)*nCol); /* Index.aSortOrder */ 3142 p = sqlite3DbMallocZero(db, nByte + nExtra); 3143 if( p ){ 3144 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3145 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3146 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3147 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3148 p->aSortOrder = (u8*)pExtra; 3149 p->nColumn = nCol; 3150 p->nKeyCol = nCol - 1; 3151 *ppExtra = ((char*)p) + nByte; 3152 } 3153 return p; 3154 } 3155 3156 /* 3157 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3158 ** and pTblList is the name of the table that is to be indexed. Both will 3159 ** be NULL for a primary key or an index that is created to satisfy a 3160 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3161 ** as the table to be indexed. pParse->pNewTable is a table that is 3162 ** currently being constructed by a CREATE TABLE statement. 3163 ** 3164 ** pList is a list of columns to be indexed. pList will be NULL if this 3165 ** is a primary key or unique-constraint on the most recent column added 3166 ** to the table currently under construction. 3167 */ 3168 void sqlite3CreateIndex( 3169 Parse *pParse, /* All information about this parse */ 3170 Token *pName1, /* First part of index name. May be NULL */ 3171 Token *pName2, /* Second part of index name. May be NULL */ 3172 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3173 ExprList *pList, /* A list of columns to be indexed */ 3174 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3175 Token *pStart, /* The CREATE token that begins this statement */ 3176 Expr *pPIWhere, /* WHERE clause for partial indices */ 3177 int sortOrder, /* Sort order of primary key when pList==NULL */ 3178 int ifNotExist, /* Omit error if index already exists */ 3179 u8 idxType /* The index type */ 3180 ){ 3181 Table *pTab = 0; /* Table to be indexed */ 3182 Index *pIndex = 0; /* The index to be created */ 3183 char *zName = 0; /* Name of the index */ 3184 int nName; /* Number of characters in zName */ 3185 int i, j; 3186 DbFixer sFix; /* For assigning database names to pTable */ 3187 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3188 sqlite3 *db = pParse->db; 3189 Db *pDb; /* The specific table containing the indexed database */ 3190 int iDb; /* Index of the database that is being written */ 3191 Token *pName = 0; /* Unqualified name of the index to create */ 3192 struct ExprList_item *pListItem; /* For looping over pList */ 3193 int nExtra = 0; /* Space allocated for zExtra[] */ 3194 int nExtraCol; /* Number of extra columns needed */ 3195 char *zExtra = 0; /* Extra space after the Index object */ 3196 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3197 3198 if( db->mallocFailed || pParse->nErr>0 ){ 3199 goto exit_create_index; 3200 } 3201 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3202 goto exit_create_index; 3203 } 3204 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3205 goto exit_create_index; 3206 } 3207 3208 /* 3209 ** Find the table that is to be indexed. Return early if not found. 3210 */ 3211 if( pTblName!=0 ){ 3212 3213 /* Use the two-part index name to determine the database 3214 ** to search for the table. 'Fix' the table name to this db 3215 ** before looking up the table. 3216 */ 3217 assert( pName1 && pName2 ); 3218 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3219 if( iDb<0 ) goto exit_create_index; 3220 assert( pName && pName->z ); 3221 3222 #ifndef SQLITE_OMIT_TEMPDB 3223 /* If the index name was unqualified, check if the table 3224 ** is a temp table. If so, set the database to 1. Do not do this 3225 ** if initialising a database schema. 3226 */ 3227 if( !db->init.busy ){ 3228 pTab = sqlite3SrcListLookup(pParse, pTblName); 3229 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3230 iDb = 1; 3231 } 3232 } 3233 #endif 3234 3235 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3236 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3237 /* Because the parser constructs pTblName from a single identifier, 3238 ** sqlite3FixSrcList can never fail. */ 3239 assert(0); 3240 } 3241 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3242 assert( db->mallocFailed==0 || pTab==0 ); 3243 if( pTab==0 ) goto exit_create_index; 3244 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3245 sqlite3ErrorMsg(pParse, 3246 "cannot create a TEMP index on non-TEMP table \"%s\"", 3247 pTab->zName); 3248 goto exit_create_index; 3249 } 3250 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3251 }else{ 3252 assert( pName==0 ); 3253 assert( pStart==0 ); 3254 pTab = pParse->pNewTable; 3255 if( !pTab ) goto exit_create_index; 3256 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3257 } 3258 pDb = &db->aDb[iDb]; 3259 3260 assert( pTab!=0 ); 3261 assert( pParse->nErr==0 ); 3262 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3263 && db->init.busy==0 3264 && pTblName!=0 3265 #if SQLITE_USER_AUTHENTICATION 3266 && sqlite3UserAuthTable(pTab->zName)==0 3267 #endif 3268 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX 3269 && sqlite3StrICmp(&pTab->zName[7],"master")!=0 3270 #endif 3271 ){ 3272 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3273 goto exit_create_index; 3274 } 3275 #ifndef SQLITE_OMIT_VIEW 3276 if( pTab->pSelect ){ 3277 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3278 goto exit_create_index; 3279 } 3280 #endif 3281 #ifndef SQLITE_OMIT_VIRTUALTABLE 3282 if( IsVirtual(pTab) ){ 3283 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3284 goto exit_create_index; 3285 } 3286 #endif 3287 3288 /* 3289 ** Find the name of the index. Make sure there is not already another 3290 ** index or table with the same name. 3291 ** 3292 ** Exception: If we are reading the names of permanent indices from the 3293 ** sqlite_master table (because some other process changed the schema) and 3294 ** one of the index names collides with the name of a temporary table or 3295 ** index, then we will continue to process this index. 3296 ** 3297 ** If pName==0 it means that we are 3298 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3299 ** own name. 3300 */ 3301 if( pName ){ 3302 zName = sqlite3NameFromToken(db, pName); 3303 if( zName==0 ) goto exit_create_index; 3304 assert( pName->z!=0 ); 3305 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3306 goto exit_create_index; 3307 } 3308 if( !IN_RENAME_OBJECT ){ 3309 if( !db->init.busy ){ 3310 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3311 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3312 goto exit_create_index; 3313 } 3314 } 3315 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3316 if( !ifNotExist ){ 3317 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3318 }else{ 3319 assert( !db->init.busy ); 3320 sqlite3CodeVerifySchema(pParse, iDb); 3321 } 3322 goto exit_create_index; 3323 } 3324 } 3325 }else{ 3326 int n; 3327 Index *pLoop; 3328 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3329 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3330 if( zName==0 ){ 3331 goto exit_create_index; 3332 } 3333 3334 /* Automatic index names generated from within sqlite3_declare_vtab() 3335 ** must have names that are distinct from normal automatic index names. 3336 ** The following statement converts "sqlite3_autoindex..." into 3337 ** "sqlite3_butoindex..." in order to make the names distinct. 3338 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3339 if( IN_SPECIAL_PARSE ) zName[7]++; 3340 } 3341 3342 /* Check for authorization to create an index. 3343 */ 3344 #ifndef SQLITE_OMIT_AUTHORIZATION 3345 if( !IN_RENAME_OBJECT ){ 3346 const char *zDb = pDb->zDbSName; 3347 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3348 goto exit_create_index; 3349 } 3350 i = SQLITE_CREATE_INDEX; 3351 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3352 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3353 goto exit_create_index; 3354 } 3355 } 3356 #endif 3357 3358 /* If pList==0, it means this routine was called to make a primary 3359 ** key out of the last column added to the table under construction. 3360 ** So create a fake list to simulate this. 3361 */ 3362 if( pList==0 ){ 3363 Token prevCol; 3364 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3365 pCol->colFlags |= COLFLAG_UNIQUE; 3366 sqlite3TokenInit(&prevCol, pCol->zName); 3367 pList = sqlite3ExprListAppend(pParse, 0, 3368 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3369 if( pList==0 ) goto exit_create_index; 3370 assert( pList->nExpr==1 ); 3371 sqlite3ExprListSetSortOrder(pList, sortOrder); 3372 }else{ 3373 sqlite3ExprListCheckLength(pParse, pList, "index"); 3374 if( pParse->nErr ) goto exit_create_index; 3375 } 3376 3377 /* Figure out how many bytes of space are required to store explicitly 3378 ** specified collation sequence names. 3379 */ 3380 for(i=0; i<pList->nExpr; i++){ 3381 Expr *pExpr = pList->a[i].pExpr; 3382 assert( pExpr!=0 ); 3383 if( pExpr->op==TK_COLLATE ){ 3384 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3385 } 3386 } 3387 3388 /* 3389 ** Allocate the index structure. 3390 */ 3391 nName = sqlite3Strlen30(zName); 3392 nExtraCol = pPk ? pPk->nKeyCol : 1; 3393 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3394 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3395 nName + nExtra + 1, &zExtra); 3396 if( db->mallocFailed ){ 3397 goto exit_create_index; 3398 } 3399 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3400 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3401 pIndex->zName = zExtra; 3402 zExtra += nName + 1; 3403 memcpy(pIndex->zName, zName, nName+1); 3404 pIndex->pTable = pTab; 3405 pIndex->onError = (u8)onError; 3406 pIndex->uniqNotNull = onError!=OE_None; 3407 pIndex->idxType = idxType; 3408 pIndex->pSchema = db->aDb[iDb].pSchema; 3409 pIndex->nKeyCol = pList->nExpr; 3410 if( pPIWhere ){ 3411 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3412 pIndex->pPartIdxWhere = pPIWhere; 3413 pPIWhere = 0; 3414 } 3415 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3416 3417 /* Check to see if we should honor DESC requests on index columns 3418 */ 3419 if( pDb->pSchema->file_format>=4 ){ 3420 sortOrderMask = -1; /* Honor DESC */ 3421 }else{ 3422 sortOrderMask = 0; /* Ignore DESC */ 3423 } 3424 3425 /* Analyze the list of expressions that form the terms of the index and 3426 ** report any errors. In the common case where the expression is exactly 3427 ** a table column, store that column in aiColumn[]. For general expressions, 3428 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3429 ** 3430 ** TODO: Issue a warning if two or more columns of the index are identical. 3431 ** TODO: Issue a warning if the table primary key is used as part of the 3432 ** index key. 3433 */ 3434 pListItem = pList->a; 3435 if( IN_RENAME_OBJECT ){ 3436 pIndex->aColExpr = pList; 3437 pList = 0; 3438 } 3439 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3440 Expr *pCExpr; /* The i-th index expression */ 3441 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3442 const char *zColl; /* Collation sequence name */ 3443 3444 sqlite3StringToId(pListItem->pExpr); 3445 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3446 if( pParse->nErr ) goto exit_create_index; 3447 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3448 if( pCExpr->op!=TK_COLUMN ){ 3449 if( pTab==pParse->pNewTable ){ 3450 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3451 "UNIQUE constraints"); 3452 goto exit_create_index; 3453 } 3454 if( pIndex->aColExpr==0 ){ 3455 pIndex->aColExpr = pList; 3456 pList = 0; 3457 } 3458 j = XN_EXPR; 3459 pIndex->aiColumn[i] = XN_EXPR; 3460 pIndex->uniqNotNull = 0; 3461 }else{ 3462 j = pCExpr->iColumn; 3463 assert( j<=0x7fff ); 3464 if( j<0 ){ 3465 j = pTab->iPKey; 3466 }else if( pTab->aCol[j].notNull==0 ){ 3467 pIndex->uniqNotNull = 0; 3468 } 3469 pIndex->aiColumn[i] = (i16)j; 3470 } 3471 zColl = 0; 3472 if( pListItem->pExpr->op==TK_COLLATE ){ 3473 int nColl; 3474 zColl = pListItem->pExpr->u.zToken; 3475 nColl = sqlite3Strlen30(zColl) + 1; 3476 assert( nExtra>=nColl ); 3477 memcpy(zExtra, zColl, nColl); 3478 zColl = zExtra; 3479 zExtra += nColl; 3480 nExtra -= nColl; 3481 }else if( j>=0 ){ 3482 zColl = pTab->aCol[j].zColl; 3483 } 3484 if( !zColl ) zColl = sqlite3StrBINARY; 3485 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3486 goto exit_create_index; 3487 } 3488 pIndex->azColl[i] = zColl; 3489 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3490 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3491 } 3492 3493 /* Append the table key to the end of the index. For WITHOUT ROWID 3494 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3495 ** normal tables (when pPk==0) this will be the rowid. 3496 */ 3497 if( pPk ){ 3498 for(j=0; j<pPk->nKeyCol; j++){ 3499 int x = pPk->aiColumn[j]; 3500 assert( x>=0 ); 3501 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3502 pIndex->nColumn--; 3503 }else{ 3504 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3505 pIndex->aiColumn[i] = x; 3506 pIndex->azColl[i] = pPk->azColl[j]; 3507 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3508 i++; 3509 } 3510 } 3511 assert( i==pIndex->nColumn ); 3512 }else{ 3513 pIndex->aiColumn[i] = XN_ROWID; 3514 pIndex->azColl[i] = sqlite3StrBINARY; 3515 } 3516 sqlite3DefaultRowEst(pIndex); 3517 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3518 3519 /* If this index contains every column of its table, then mark 3520 ** it as a covering index */ 3521 assert( HasRowid(pTab) 3522 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3523 recomputeColumnsNotIndexed(pIndex); 3524 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3525 pIndex->isCovering = 1; 3526 for(j=0; j<pTab->nCol; j++){ 3527 if( j==pTab->iPKey ) continue; 3528 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3529 pIndex->isCovering = 0; 3530 break; 3531 } 3532 } 3533 3534 if( pTab==pParse->pNewTable ){ 3535 /* This routine has been called to create an automatic index as a 3536 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3537 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3538 ** i.e. one of: 3539 ** 3540 ** CREATE TABLE t(x PRIMARY KEY, y); 3541 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3542 ** 3543 ** Either way, check to see if the table already has such an index. If 3544 ** so, don't bother creating this one. This only applies to 3545 ** automatically created indices. Users can do as they wish with 3546 ** explicit indices. 3547 ** 3548 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3549 ** (and thus suppressing the second one) even if they have different 3550 ** sort orders. 3551 ** 3552 ** If there are different collating sequences or if the columns of 3553 ** the constraint occur in different orders, then the constraints are 3554 ** considered distinct and both result in separate indices. 3555 */ 3556 Index *pIdx; 3557 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3558 int k; 3559 assert( IsUniqueIndex(pIdx) ); 3560 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3561 assert( IsUniqueIndex(pIndex) ); 3562 3563 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3564 for(k=0; k<pIdx->nKeyCol; k++){ 3565 const char *z1; 3566 const char *z2; 3567 assert( pIdx->aiColumn[k]>=0 ); 3568 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3569 z1 = pIdx->azColl[k]; 3570 z2 = pIndex->azColl[k]; 3571 if( sqlite3StrICmp(z1, z2) ) break; 3572 } 3573 if( k==pIdx->nKeyCol ){ 3574 if( pIdx->onError!=pIndex->onError ){ 3575 /* This constraint creates the same index as a previous 3576 ** constraint specified somewhere in the CREATE TABLE statement. 3577 ** However the ON CONFLICT clauses are different. If both this 3578 ** constraint and the previous equivalent constraint have explicit 3579 ** ON CONFLICT clauses this is an error. Otherwise, use the 3580 ** explicitly specified behavior for the index. 3581 */ 3582 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3583 sqlite3ErrorMsg(pParse, 3584 "conflicting ON CONFLICT clauses specified", 0); 3585 } 3586 if( pIdx->onError==OE_Default ){ 3587 pIdx->onError = pIndex->onError; 3588 } 3589 } 3590 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3591 if( IN_RENAME_OBJECT ){ 3592 pIndex->pNext = pParse->pNewIndex; 3593 pParse->pNewIndex = pIndex; 3594 pIndex = 0; 3595 } 3596 goto exit_create_index; 3597 } 3598 } 3599 } 3600 3601 if( !IN_RENAME_OBJECT ){ 3602 3603 /* Link the new Index structure to its table and to the other 3604 ** in-memory database structures. 3605 */ 3606 assert( pParse->nErr==0 ); 3607 if( db->init.busy ){ 3608 Index *p; 3609 assert( !IN_SPECIAL_PARSE ); 3610 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3611 if( pTblName!=0 ){ 3612 pIndex->tnum = db->init.newTnum; 3613 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 3614 sqlite3ErrorMsg(pParse, "invalid rootpage"); 3615 pParse->rc = SQLITE_CORRUPT_BKPT; 3616 goto exit_create_index; 3617 } 3618 } 3619 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3620 pIndex->zName, pIndex); 3621 if( p ){ 3622 assert( p==pIndex ); /* Malloc must have failed */ 3623 sqlite3OomFault(db); 3624 goto exit_create_index; 3625 } 3626 db->mDbFlags |= DBFLAG_SchemaChange; 3627 } 3628 3629 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3630 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3631 ** emit code to allocate the index rootpage on disk and make an entry for 3632 ** the index in the sqlite_master table and populate the index with 3633 ** content. But, do not do this if we are simply reading the sqlite_master 3634 ** table to parse the schema, or if this index is the PRIMARY KEY index 3635 ** of a WITHOUT ROWID table. 3636 ** 3637 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3638 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3639 ** has just been created, it contains no data and the index initialization 3640 ** step can be skipped. 3641 */ 3642 else if( HasRowid(pTab) || pTblName!=0 ){ 3643 Vdbe *v; 3644 char *zStmt; 3645 int iMem = ++pParse->nMem; 3646 3647 v = sqlite3GetVdbe(pParse); 3648 if( v==0 ) goto exit_create_index; 3649 3650 sqlite3BeginWriteOperation(pParse, 1, iDb); 3651 3652 /* Create the rootpage for the index using CreateIndex. But before 3653 ** doing so, code a Noop instruction and store its address in 3654 ** Index.tnum. This is required in case this index is actually a 3655 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3656 ** that case the convertToWithoutRowidTable() routine will replace 3657 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3658 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3659 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3660 3661 /* Gather the complete text of the CREATE INDEX statement into 3662 ** the zStmt variable 3663 */ 3664 assert( pName!=0 || pStart==0 ); 3665 if( pStart ){ 3666 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3667 if( pName->z[n-1]==';' ) n--; 3668 /* A named index with an explicit CREATE INDEX statement */ 3669 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3670 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3671 }else{ 3672 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3673 /* zStmt = sqlite3MPrintf(""); */ 3674 zStmt = 0; 3675 } 3676 3677 /* Add an entry in sqlite_master for this index 3678 */ 3679 sqlite3NestedParse(pParse, 3680 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3681 db->aDb[iDb].zDbSName, MASTER_NAME, 3682 pIndex->zName, 3683 pTab->zName, 3684 iMem, 3685 zStmt 3686 ); 3687 sqlite3DbFree(db, zStmt); 3688 3689 /* Fill the index with data and reparse the schema. Code an OP_Expire 3690 ** to invalidate all pre-compiled statements. 3691 */ 3692 if( pTblName ){ 3693 sqlite3RefillIndex(pParse, pIndex, iMem); 3694 sqlite3ChangeCookie(pParse, iDb); 3695 sqlite3VdbeAddParseSchemaOp(v, iDb, 3696 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3697 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 3698 } 3699 3700 sqlite3VdbeJumpHere(v, pIndex->tnum); 3701 } 3702 } 3703 3704 /* When adding an index to the list of indices for a table, make 3705 ** sure all indices labeled OE_Replace come after all those labeled 3706 ** OE_Ignore. This is necessary for the correct constraint check 3707 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3708 ** UPDATE and INSERT statements. 3709 */ 3710 if( db->init.busy || pTblName==0 ){ 3711 if( onError!=OE_Replace || pTab->pIndex==0 3712 || pTab->pIndex->onError==OE_Replace){ 3713 pIndex->pNext = pTab->pIndex; 3714 pTab->pIndex = pIndex; 3715 }else{ 3716 Index *pOther = pTab->pIndex; 3717 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3718 pOther = pOther->pNext; 3719 } 3720 pIndex->pNext = pOther->pNext; 3721 pOther->pNext = pIndex; 3722 } 3723 pIndex = 0; 3724 } 3725 else if( IN_RENAME_OBJECT ){ 3726 assert( pParse->pNewIndex==0 ); 3727 pParse->pNewIndex = pIndex; 3728 pIndex = 0; 3729 } 3730 3731 /* Clean up before exiting */ 3732 exit_create_index: 3733 if( pIndex ) sqlite3FreeIndex(db, pIndex); 3734 sqlite3ExprDelete(db, pPIWhere); 3735 sqlite3ExprListDelete(db, pList); 3736 sqlite3SrcListDelete(db, pTblName); 3737 sqlite3DbFree(db, zName); 3738 } 3739 3740 /* 3741 ** Fill the Index.aiRowEst[] array with default information - information 3742 ** to be used when we have not run the ANALYZE command. 3743 ** 3744 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3745 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3746 ** number of rows in the table that match any particular value of the 3747 ** first column of the index. aiRowEst[2] is an estimate of the number 3748 ** of rows that match any particular combination of the first 2 columns 3749 ** of the index. And so forth. It must always be the case that 3750 * 3751 ** aiRowEst[N]<=aiRowEst[N-1] 3752 ** aiRowEst[N]>=1 3753 ** 3754 ** Apart from that, we have little to go on besides intuition as to 3755 ** how aiRowEst[] should be initialized. The numbers generated here 3756 ** are based on typical values found in actual indices. 3757 */ 3758 void sqlite3DefaultRowEst(Index *pIdx){ 3759 /* 10, 9, 8, 7, 6 */ 3760 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3761 LogEst *a = pIdx->aiRowLogEst; 3762 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3763 int i; 3764 3765 /* Indexes with default row estimates should not have stat1 data */ 3766 assert( !pIdx->hasStat1 ); 3767 3768 /* Set the first entry (number of rows in the index) to the estimated 3769 ** number of rows in the table, or half the number of rows in the table 3770 ** for a partial index. But do not let the estimate drop below 10. */ 3771 a[0] = pIdx->pTable->nRowLogEst; 3772 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3773 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3774 3775 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3776 ** 6 and each subsequent value (if any) is 5. */ 3777 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3778 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3779 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3780 } 3781 3782 assert( 0==sqlite3LogEst(1) ); 3783 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3784 } 3785 3786 /* 3787 ** This routine will drop an existing named index. This routine 3788 ** implements the DROP INDEX statement. 3789 */ 3790 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3791 Index *pIndex; 3792 Vdbe *v; 3793 sqlite3 *db = pParse->db; 3794 int iDb; 3795 3796 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3797 if( db->mallocFailed ){ 3798 goto exit_drop_index; 3799 } 3800 assert( pName->nSrc==1 ); 3801 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3802 goto exit_drop_index; 3803 } 3804 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3805 if( pIndex==0 ){ 3806 if( !ifExists ){ 3807 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3808 }else{ 3809 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3810 } 3811 pParse->checkSchema = 1; 3812 goto exit_drop_index; 3813 } 3814 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3815 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3816 "or PRIMARY KEY constraint cannot be dropped", 0); 3817 goto exit_drop_index; 3818 } 3819 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3820 #ifndef SQLITE_OMIT_AUTHORIZATION 3821 { 3822 int code = SQLITE_DROP_INDEX; 3823 Table *pTab = pIndex->pTable; 3824 const char *zDb = db->aDb[iDb].zDbSName; 3825 const char *zTab = SCHEMA_TABLE(iDb); 3826 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3827 goto exit_drop_index; 3828 } 3829 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3830 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3831 goto exit_drop_index; 3832 } 3833 } 3834 #endif 3835 3836 /* Generate code to remove the index and from the master table */ 3837 v = sqlite3GetVdbe(pParse); 3838 if( v ){ 3839 sqlite3BeginWriteOperation(pParse, 1, iDb); 3840 sqlite3NestedParse(pParse, 3841 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3842 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 3843 ); 3844 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3845 sqlite3ChangeCookie(pParse, iDb); 3846 destroyRootPage(pParse, pIndex->tnum, iDb); 3847 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3848 } 3849 3850 exit_drop_index: 3851 sqlite3SrcListDelete(db, pName); 3852 } 3853 3854 /* 3855 ** pArray is a pointer to an array of objects. Each object in the 3856 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3857 ** to extend the array so that there is space for a new object at the end. 3858 ** 3859 ** When this function is called, *pnEntry contains the current size of 3860 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3861 ** in total). 3862 ** 3863 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3864 ** space allocated for the new object is zeroed, *pnEntry updated to 3865 ** reflect the new size of the array and a pointer to the new allocation 3866 ** returned. *pIdx is set to the index of the new array entry in this case. 3867 ** 3868 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3869 ** unchanged and a copy of pArray returned. 3870 */ 3871 void *sqlite3ArrayAllocate( 3872 sqlite3 *db, /* Connection to notify of malloc failures */ 3873 void *pArray, /* Array of objects. Might be reallocated */ 3874 int szEntry, /* Size of each object in the array */ 3875 int *pnEntry, /* Number of objects currently in use */ 3876 int *pIdx /* Write the index of a new slot here */ 3877 ){ 3878 char *z; 3879 sqlite3_int64 n = *pIdx = *pnEntry; 3880 if( (n & (n-1))==0 ){ 3881 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 3882 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3883 if( pNew==0 ){ 3884 *pIdx = -1; 3885 return pArray; 3886 } 3887 pArray = pNew; 3888 } 3889 z = (char*)pArray; 3890 memset(&z[n * szEntry], 0, szEntry); 3891 ++*pnEntry; 3892 return pArray; 3893 } 3894 3895 /* 3896 ** Append a new element to the given IdList. Create a new IdList if 3897 ** need be. 3898 ** 3899 ** A new IdList is returned, or NULL if malloc() fails. 3900 */ 3901 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 3902 sqlite3 *db = pParse->db; 3903 int i; 3904 if( pList==0 ){ 3905 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3906 if( pList==0 ) return 0; 3907 } 3908 pList->a = sqlite3ArrayAllocate( 3909 db, 3910 pList->a, 3911 sizeof(pList->a[0]), 3912 &pList->nId, 3913 &i 3914 ); 3915 if( i<0 ){ 3916 sqlite3IdListDelete(db, pList); 3917 return 0; 3918 } 3919 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3920 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 3921 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 3922 } 3923 return pList; 3924 } 3925 3926 /* 3927 ** Delete an IdList. 3928 */ 3929 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3930 int i; 3931 if( pList==0 ) return; 3932 for(i=0; i<pList->nId; i++){ 3933 sqlite3DbFree(db, pList->a[i].zName); 3934 } 3935 sqlite3DbFree(db, pList->a); 3936 sqlite3DbFreeNN(db, pList); 3937 } 3938 3939 /* 3940 ** Return the index in pList of the identifier named zId. Return -1 3941 ** if not found. 3942 */ 3943 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3944 int i; 3945 if( pList==0 ) return -1; 3946 for(i=0; i<pList->nId; i++){ 3947 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3948 } 3949 return -1; 3950 } 3951 3952 /* 3953 ** Maximum size of a SrcList object. 3954 ** The SrcList object is used to represent the FROM clause of a 3955 ** SELECT statement, and the query planner cannot deal with more 3956 ** than 64 tables in a join. So any value larger than 64 here 3957 ** is sufficient for most uses. Smaller values, like say 10, are 3958 ** appropriate for small and memory-limited applications. 3959 */ 3960 #ifndef SQLITE_MAX_SRCLIST 3961 # define SQLITE_MAX_SRCLIST 200 3962 #endif 3963 3964 /* 3965 ** Expand the space allocated for the given SrcList object by 3966 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3967 ** New slots are zeroed. 3968 ** 3969 ** For example, suppose a SrcList initially contains two entries: A,B. 3970 ** To append 3 new entries onto the end, do this: 3971 ** 3972 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3973 ** 3974 ** After the call above it would contain: A, B, nil, nil, nil. 3975 ** If the iStart argument had been 1 instead of 2, then the result 3976 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3977 ** the iStart value would be 0. The result then would 3978 ** be: nil, nil, nil, A, B. 3979 ** 3980 ** If a memory allocation fails or the SrcList becomes too large, leave 3981 ** the original SrcList unchanged, return NULL, and leave an error message 3982 ** in pParse. 3983 */ 3984 SrcList *sqlite3SrcListEnlarge( 3985 Parse *pParse, /* Parsing context into which errors are reported */ 3986 SrcList *pSrc, /* The SrcList to be enlarged */ 3987 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3988 int iStart /* Index in pSrc->a[] of first new slot */ 3989 ){ 3990 int i; 3991 3992 /* Sanity checking on calling parameters */ 3993 assert( iStart>=0 ); 3994 assert( nExtra>=1 ); 3995 assert( pSrc!=0 ); 3996 assert( iStart<=pSrc->nSrc ); 3997 3998 /* Allocate additional space if needed */ 3999 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4000 SrcList *pNew; 4001 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4002 sqlite3 *db = pParse->db; 4003 4004 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4005 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4006 SQLITE_MAX_SRCLIST); 4007 return 0; 4008 } 4009 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4010 pNew = sqlite3DbRealloc(db, pSrc, 4011 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4012 if( pNew==0 ){ 4013 assert( db->mallocFailed ); 4014 return 0; 4015 } 4016 pSrc = pNew; 4017 pSrc->nAlloc = nAlloc; 4018 } 4019 4020 /* Move existing slots that come after the newly inserted slots 4021 ** out of the way */ 4022 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4023 pSrc->a[i+nExtra] = pSrc->a[i]; 4024 } 4025 pSrc->nSrc += nExtra; 4026 4027 /* Zero the newly allocated slots */ 4028 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4029 for(i=iStart; i<iStart+nExtra; i++){ 4030 pSrc->a[i].iCursor = -1; 4031 } 4032 4033 /* Return a pointer to the enlarged SrcList */ 4034 return pSrc; 4035 } 4036 4037 4038 /* 4039 ** Append a new table name to the given SrcList. Create a new SrcList if 4040 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4041 ** 4042 ** A SrcList is returned, or NULL if there is an OOM error or if the 4043 ** SrcList grows to large. The returned 4044 ** SrcList might be the same as the SrcList that was input or it might be 4045 ** a new one. If an OOM error does occurs, then the prior value of pList 4046 ** that is input to this routine is automatically freed. 4047 ** 4048 ** If pDatabase is not null, it means that the table has an optional 4049 ** database name prefix. Like this: "database.table". The pDatabase 4050 ** points to the table name and the pTable points to the database name. 4051 ** The SrcList.a[].zName field is filled with the table name which might 4052 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4053 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4054 ** or with NULL if no database is specified. 4055 ** 4056 ** In other words, if call like this: 4057 ** 4058 ** sqlite3SrcListAppend(D,A,B,0); 4059 ** 4060 ** Then B is a table name and the database name is unspecified. If called 4061 ** like this: 4062 ** 4063 ** sqlite3SrcListAppend(D,A,B,C); 4064 ** 4065 ** Then C is the table name and B is the database name. If C is defined 4066 ** then so is B. In other words, we never have a case where: 4067 ** 4068 ** sqlite3SrcListAppend(D,A,0,C); 4069 ** 4070 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4071 ** before being added to the SrcList. 4072 */ 4073 SrcList *sqlite3SrcListAppend( 4074 Parse *pParse, /* Parsing context, in which errors are reported */ 4075 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4076 Token *pTable, /* Table to append */ 4077 Token *pDatabase /* Database of the table */ 4078 ){ 4079 struct SrcList_item *pItem; 4080 sqlite3 *db; 4081 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4082 assert( pParse!=0 ); 4083 assert( pParse->db!=0 ); 4084 db = pParse->db; 4085 if( pList==0 ){ 4086 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4087 if( pList==0 ) return 0; 4088 pList->nAlloc = 1; 4089 pList->nSrc = 1; 4090 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4091 pList->a[0].iCursor = -1; 4092 }else{ 4093 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4094 if( pNew==0 ){ 4095 sqlite3SrcListDelete(db, pList); 4096 return 0; 4097 }else{ 4098 pList = pNew; 4099 } 4100 } 4101 pItem = &pList->a[pList->nSrc-1]; 4102 if( pDatabase && pDatabase->z==0 ){ 4103 pDatabase = 0; 4104 } 4105 if( pDatabase ){ 4106 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4107 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4108 }else{ 4109 pItem->zName = sqlite3NameFromToken(db, pTable); 4110 pItem->zDatabase = 0; 4111 } 4112 return pList; 4113 } 4114 4115 /* 4116 ** Assign VdbeCursor index numbers to all tables in a SrcList 4117 */ 4118 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4119 int i; 4120 struct SrcList_item *pItem; 4121 assert(pList || pParse->db->mallocFailed ); 4122 if( pList ){ 4123 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4124 if( pItem->iCursor>=0 ) break; 4125 pItem->iCursor = pParse->nTab++; 4126 if( pItem->pSelect ){ 4127 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4128 } 4129 } 4130 } 4131 } 4132 4133 /* 4134 ** Delete an entire SrcList including all its substructure. 4135 */ 4136 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4137 int i; 4138 struct SrcList_item *pItem; 4139 if( pList==0 ) return; 4140 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4141 sqlite3DbFree(db, pItem->zDatabase); 4142 sqlite3DbFree(db, pItem->zName); 4143 sqlite3DbFree(db, pItem->zAlias); 4144 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4145 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4146 sqlite3DeleteTable(db, pItem->pTab); 4147 sqlite3SelectDelete(db, pItem->pSelect); 4148 sqlite3ExprDelete(db, pItem->pOn); 4149 sqlite3IdListDelete(db, pItem->pUsing); 4150 } 4151 sqlite3DbFreeNN(db, pList); 4152 } 4153 4154 /* 4155 ** This routine is called by the parser to add a new term to the 4156 ** end of a growing FROM clause. The "p" parameter is the part of 4157 ** the FROM clause that has already been constructed. "p" is NULL 4158 ** if this is the first term of the FROM clause. pTable and pDatabase 4159 ** are the name of the table and database named in the FROM clause term. 4160 ** pDatabase is NULL if the database name qualifier is missing - the 4161 ** usual case. If the term has an alias, then pAlias points to the 4162 ** alias token. If the term is a subquery, then pSubquery is the 4163 ** SELECT statement that the subquery encodes. The pTable and 4164 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4165 ** parameters are the content of the ON and USING clauses. 4166 ** 4167 ** Return a new SrcList which encodes is the FROM with the new 4168 ** term added. 4169 */ 4170 SrcList *sqlite3SrcListAppendFromTerm( 4171 Parse *pParse, /* Parsing context */ 4172 SrcList *p, /* The left part of the FROM clause already seen */ 4173 Token *pTable, /* Name of the table to add to the FROM clause */ 4174 Token *pDatabase, /* Name of the database containing pTable */ 4175 Token *pAlias, /* The right-hand side of the AS subexpression */ 4176 Select *pSubquery, /* A subquery used in place of a table name */ 4177 Expr *pOn, /* The ON clause of a join */ 4178 IdList *pUsing /* The USING clause of a join */ 4179 ){ 4180 struct SrcList_item *pItem; 4181 sqlite3 *db = pParse->db; 4182 if( !p && (pOn || pUsing) ){ 4183 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4184 (pOn ? "ON" : "USING") 4185 ); 4186 goto append_from_error; 4187 } 4188 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4189 if( p==0 ){ 4190 goto append_from_error; 4191 } 4192 assert( p->nSrc>0 ); 4193 pItem = &p->a[p->nSrc-1]; 4194 assert( (pTable==0)==(pDatabase==0) ); 4195 assert( pItem->zName==0 || pDatabase!=0 ); 4196 if( IN_RENAME_OBJECT && pItem->zName ){ 4197 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4198 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4199 } 4200 assert( pAlias!=0 ); 4201 if( pAlias->n ){ 4202 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4203 } 4204 pItem->pSelect = pSubquery; 4205 pItem->pOn = pOn; 4206 pItem->pUsing = pUsing; 4207 return p; 4208 4209 append_from_error: 4210 assert( p==0 ); 4211 sqlite3ExprDelete(db, pOn); 4212 sqlite3IdListDelete(db, pUsing); 4213 sqlite3SelectDelete(db, pSubquery); 4214 return 0; 4215 } 4216 4217 /* 4218 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4219 ** element of the source-list passed as the second argument. 4220 */ 4221 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4222 assert( pIndexedBy!=0 ); 4223 if( p && pIndexedBy->n>0 ){ 4224 struct SrcList_item *pItem; 4225 assert( p->nSrc>0 ); 4226 pItem = &p->a[p->nSrc-1]; 4227 assert( pItem->fg.notIndexed==0 ); 4228 assert( pItem->fg.isIndexedBy==0 ); 4229 assert( pItem->fg.isTabFunc==0 ); 4230 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4231 /* A "NOT INDEXED" clause was supplied. See parse.y 4232 ** construct "indexed_opt" for details. */ 4233 pItem->fg.notIndexed = 1; 4234 }else{ 4235 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4236 pItem->fg.isIndexedBy = 1; 4237 } 4238 } 4239 } 4240 4241 /* 4242 ** Add the list of function arguments to the SrcList entry for a 4243 ** table-valued-function. 4244 */ 4245 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4246 if( p ){ 4247 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 4248 assert( pItem->fg.notIndexed==0 ); 4249 assert( pItem->fg.isIndexedBy==0 ); 4250 assert( pItem->fg.isTabFunc==0 ); 4251 pItem->u1.pFuncArg = pList; 4252 pItem->fg.isTabFunc = 1; 4253 }else{ 4254 sqlite3ExprListDelete(pParse->db, pList); 4255 } 4256 } 4257 4258 /* 4259 ** When building up a FROM clause in the parser, the join operator 4260 ** is initially attached to the left operand. But the code generator 4261 ** expects the join operator to be on the right operand. This routine 4262 ** Shifts all join operators from left to right for an entire FROM 4263 ** clause. 4264 ** 4265 ** Example: Suppose the join is like this: 4266 ** 4267 ** A natural cross join B 4268 ** 4269 ** The operator is "natural cross join". The A and B operands are stored 4270 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4271 ** operator with A. This routine shifts that operator over to B. 4272 */ 4273 void sqlite3SrcListShiftJoinType(SrcList *p){ 4274 if( p ){ 4275 int i; 4276 for(i=p->nSrc-1; i>0; i--){ 4277 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4278 } 4279 p->a[0].fg.jointype = 0; 4280 } 4281 } 4282 4283 /* 4284 ** Generate VDBE code for a BEGIN statement. 4285 */ 4286 void sqlite3BeginTransaction(Parse *pParse, int type){ 4287 sqlite3 *db; 4288 Vdbe *v; 4289 int i; 4290 4291 assert( pParse!=0 ); 4292 db = pParse->db; 4293 assert( db!=0 ); 4294 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4295 return; 4296 } 4297 v = sqlite3GetVdbe(pParse); 4298 if( !v ) return; 4299 if( type!=TK_DEFERRED ){ 4300 for(i=0; i<db->nDb; i++){ 4301 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 4302 sqlite3VdbeUsesBtree(v, i); 4303 } 4304 } 4305 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4306 } 4307 4308 /* 4309 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4310 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4311 ** code is generated for a COMMIT. 4312 */ 4313 void sqlite3EndTransaction(Parse *pParse, int eType){ 4314 Vdbe *v; 4315 int isRollback; 4316 4317 assert( pParse!=0 ); 4318 assert( pParse->db!=0 ); 4319 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4320 isRollback = eType==TK_ROLLBACK; 4321 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4322 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4323 return; 4324 } 4325 v = sqlite3GetVdbe(pParse); 4326 if( v ){ 4327 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4328 } 4329 } 4330 4331 /* 4332 ** This function is called by the parser when it parses a command to create, 4333 ** release or rollback an SQL savepoint. 4334 */ 4335 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4336 char *zName = sqlite3NameFromToken(pParse->db, pName); 4337 if( zName ){ 4338 Vdbe *v = sqlite3GetVdbe(pParse); 4339 #ifndef SQLITE_OMIT_AUTHORIZATION 4340 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4341 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4342 #endif 4343 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4344 sqlite3DbFree(pParse->db, zName); 4345 return; 4346 } 4347 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4348 } 4349 } 4350 4351 /* 4352 ** Make sure the TEMP database is open and available for use. Return 4353 ** the number of errors. Leave any error messages in the pParse structure. 4354 */ 4355 int sqlite3OpenTempDatabase(Parse *pParse){ 4356 sqlite3 *db = pParse->db; 4357 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4358 int rc; 4359 Btree *pBt; 4360 static const int flags = 4361 SQLITE_OPEN_READWRITE | 4362 SQLITE_OPEN_CREATE | 4363 SQLITE_OPEN_EXCLUSIVE | 4364 SQLITE_OPEN_DELETEONCLOSE | 4365 SQLITE_OPEN_TEMP_DB; 4366 4367 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4368 if( rc!=SQLITE_OK ){ 4369 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4370 "file for storing temporary tables"); 4371 pParse->rc = rc; 4372 return 1; 4373 } 4374 db->aDb[1].pBt = pBt; 4375 assert( db->aDb[1].pSchema ); 4376 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4377 sqlite3OomFault(db); 4378 return 1; 4379 } 4380 } 4381 return 0; 4382 } 4383 4384 /* 4385 ** Record the fact that the schema cookie will need to be verified 4386 ** for database iDb. The code to actually verify the schema cookie 4387 ** will occur at the end of the top-level VDBE and will be generated 4388 ** later, by sqlite3FinishCoding(). 4389 */ 4390 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4391 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4392 4393 assert( iDb>=0 && iDb<pParse->db->nDb ); 4394 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4395 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4396 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4397 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4398 DbMaskSet(pToplevel->cookieMask, iDb); 4399 if( !OMIT_TEMPDB && iDb==1 ){ 4400 sqlite3OpenTempDatabase(pToplevel); 4401 } 4402 } 4403 } 4404 4405 /* 4406 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4407 ** attached database. Otherwise, invoke it for the database named zDb only. 4408 */ 4409 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4410 sqlite3 *db = pParse->db; 4411 int i; 4412 for(i=0; i<db->nDb; i++){ 4413 Db *pDb = &db->aDb[i]; 4414 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4415 sqlite3CodeVerifySchema(pParse, i); 4416 } 4417 } 4418 } 4419 4420 /* 4421 ** Generate VDBE code that prepares for doing an operation that 4422 ** might change the database. 4423 ** 4424 ** This routine starts a new transaction if we are not already within 4425 ** a transaction. If we are already within a transaction, then a checkpoint 4426 ** is set if the setStatement parameter is true. A checkpoint should 4427 ** be set for operations that might fail (due to a constraint) part of 4428 ** the way through and which will need to undo some writes without having to 4429 ** rollback the whole transaction. For operations where all constraints 4430 ** can be checked before any changes are made to the database, it is never 4431 ** necessary to undo a write and the checkpoint should not be set. 4432 */ 4433 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4434 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4435 sqlite3CodeVerifySchema(pParse, iDb); 4436 DbMaskSet(pToplevel->writeMask, iDb); 4437 pToplevel->isMultiWrite |= setStatement; 4438 } 4439 4440 /* 4441 ** Indicate that the statement currently under construction might write 4442 ** more than one entry (example: deleting one row then inserting another, 4443 ** inserting multiple rows in a table, or inserting a row and index entries.) 4444 ** If an abort occurs after some of these writes have completed, then it will 4445 ** be necessary to undo the completed writes. 4446 */ 4447 void sqlite3MultiWrite(Parse *pParse){ 4448 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4449 pToplevel->isMultiWrite = 1; 4450 } 4451 4452 /* 4453 ** The code generator calls this routine if is discovers that it is 4454 ** possible to abort a statement prior to completion. In order to 4455 ** perform this abort without corrupting the database, we need to make 4456 ** sure that the statement is protected by a statement transaction. 4457 ** 4458 ** Technically, we only need to set the mayAbort flag if the 4459 ** isMultiWrite flag was previously set. There is a time dependency 4460 ** such that the abort must occur after the multiwrite. This makes 4461 ** some statements involving the REPLACE conflict resolution algorithm 4462 ** go a little faster. But taking advantage of this time dependency 4463 ** makes it more difficult to prove that the code is correct (in 4464 ** particular, it prevents us from writing an effective 4465 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4466 ** to take the safe route and skip the optimization. 4467 */ 4468 void sqlite3MayAbort(Parse *pParse){ 4469 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4470 pToplevel->mayAbort = 1; 4471 } 4472 4473 /* 4474 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4475 ** error. The onError parameter determines which (if any) of the statement 4476 ** and/or current transaction is rolled back. 4477 */ 4478 void sqlite3HaltConstraint( 4479 Parse *pParse, /* Parsing context */ 4480 int errCode, /* extended error code */ 4481 int onError, /* Constraint type */ 4482 char *p4, /* Error message */ 4483 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4484 u8 p5Errmsg /* P5_ErrMsg type */ 4485 ){ 4486 Vdbe *v = sqlite3GetVdbe(pParse); 4487 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4488 if( onError==OE_Abort ){ 4489 sqlite3MayAbort(pParse); 4490 } 4491 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4492 sqlite3VdbeChangeP5(v, p5Errmsg); 4493 } 4494 4495 /* 4496 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4497 */ 4498 void sqlite3UniqueConstraint( 4499 Parse *pParse, /* Parsing context */ 4500 int onError, /* Constraint type */ 4501 Index *pIdx /* The index that triggers the constraint */ 4502 ){ 4503 char *zErr; 4504 int j; 4505 StrAccum errMsg; 4506 Table *pTab = pIdx->pTable; 4507 4508 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 4509 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 4510 if( pIdx->aColExpr ){ 4511 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4512 }else{ 4513 for(j=0; j<pIdx->nKeyCol; j++){ 4514 char *zCol; 4515 assert( pIdx->aiColumn[j]>=0 ); 4516 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4517 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4518 sqlite3_str_appendall(&errMsg, pTab->zName); 4519 sqlite3_str_append(&errMsg, ".", 1); 4520 sqlite3_str_appendall(&errMsg, zCol); 4521 } 4522 } 4523 zErr = sqlite3StrAccumFinish(&errMsg); 4524 sqlite3HaltConstraint(pParse, 4525 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4526 : SQLITE_CONSTRAINT_UNIQUE, 4527 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4528 } 4529 4530 4531 /* 4532 ** Code an OP_Halt due to non-unique rowid. 4533 */ 4534 void sqlite3RowidConstraint( 4535 Parse *pParse, /* Parsing context */ 4536 int onError, /* Conflict resolution algorithm */ 4537 Table *pTab /* The table with the non-unique rowid */ 4538 ){ 4539 char *zMsg; 4540 int rc; 4541 if( pTab->iPKey>=0 ){ 4542 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4543 pTab->aCol[pTab->iPKey].zName); 4544 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4545 }else{ 4546 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4547 rc = SQLITE_CONSTRAINT_ROWID; 4548 } 4549 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4550 P5_ConstraintUnique); 4551 } 4552 4553 /* 4554 ** Check to see if pIndex uses the collating sequence pColl. Return 4555 ** true if it does and false if it does not. 4556 */ 4557 #ifndef SQLITE_OMIT_REINDEX 4558 static int collationMatch(const char *zColl, Index *pIndex){ 4559 int i; 4560 assert( zColl!=0 ); 4561 for(i=0; i<pIndex->nColumn; i++){ 4562 const char *z = pIndex->azColl[i]; 4563 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4564 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4565 return 1; 4566 } 4567 } 4568 return 0; 4569 } 4570 #endif 4571 4572 /* 4573 ** Recompute all indices of pTab that use the collating sequence pColl. 4574 ** If pColl==0 then recompute all indices of pTab. 4575 */ 4576 #ifndef SQLITE_OMIT_REINDEX 4577 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4578 if( !IsVirtual(pTab) ){ 4579 Index *pIndex; /* An index associated with pTab */ 4580 4581 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4582 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4583 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4584 sqlite3BeginWriteOperation(pParse, 0, iDb); 4585 sqlite3RefillIndex(pParse, pIndex, -1); 4586 } 4587 } 4588 } 4589 } 4590 #endif 4591 4592 /* 4593 ** Recompute all indices of all tables in all databases where the 4594 ** indices use the collating sequence pColl. If pColl==0 then recompute 4595 ** all indices everywhere. 4596 */ 4597 #ifndef SQLITE_OMIT_REINDEX 4598 static void reindexDatabases(Parse *pParse, char const *zColl){ 4599 Db *pDb; /* A single database */ 4600 int iDb; /* The database index number */ 4601 sqlite3 *db = pParse->db; /* The database connection */ 4602 HashElem *k; /* For looping over tables in pDb */ 4603 Table *pTab; /* A table in the database */ 4604 4605 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4606 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4607 assert( pDb!=0 ); 4608 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4609 pTab = (Table*)sqliteHashData(k); 4610 reindexTable(pParse, pTab, zColl); 4611 } 4612 } 4613 } 4614 #endif 4615 4616 /* 4617 ** Generate code for the REINDEX command. 4618 ** 4619 ** REINDEX -- 1 4620 ** REINDEX <collation> -- 2 4621 ** REINDEX ?<database>.?<tablename> -- 3 4622 ** REINDEX ?<database>.?<indexname> -- 4 4623 ** 4624 ** Form 1 causes all indices in all attached databases to be rebuilt. 4625 ** Form 2 rebuilds all indices in all databases that use the named 4626 ** collating function. Forms 3 and 4 rebuild the named index or all 4627 ** indices associated with the named table. 4628 */ 4629 #ifndef SQLITE_OMIT_REINDEX 4630 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4631 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4632 char *z; /* Name of a table or index */ 4633 const char *zDb; /* Name of the database */ 4634 Table *pTab; /* A table in the database */ 4635 Index *pIndex; /* An index associated with pTab */ 4636 int iDb; /* The database index number */ 4637 sqlite3 *db = pParse->db; /* The database connection */ 4638 Token *pObjName; /* Name of the table or index to be reindexed */ 4639 4640 /* Read the database schema. If an error occurs, leave an error message 4641 ** and code in pParse and return NULL. */ 4642 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4643 return; 4644 } 4645 4646 if( pName1==0 ){ 4647 reindexDatabases(pParse, 0); 4648 return; 4649 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4650 char *zColl; 4651 assert( pName1->z ); 4652 zColl = sqlite3NameFromToken(pParse->db, pName1); 4653 if( !zColl ) return; 4654 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4655 if( pColl ){ 4656 reindexDatabases(pParse, zColl); 4657 sqlite3DbFree(db, zColl); 4658 return; 4659 } 4660 sqlite3DbFree(db, zColl); 4661 } 4662 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4663 if( iDb<0 ) return; 4664 z = sqlite3NameFromToken(db, pObjName); 4665 if( z==0 ) return; 4666 zDb = db->aDb[iDb].zDbSName; 4667 pTab = sqlite3FindTable(db, z, zDb); 4668 if( pTab ){ 4669 reindexTable(pParse, pTab, 0); 4670 sqlite3DbFree(db, z); 4671 return; 4672 } 4673 pIndex = sqlite3FindIndex(db, z, zDb); 4674 sqlite3DbFree(db, z); 4675 if( pIndex ){ 4676 sqlite3BeginWriteOperation(pParse, 0, iDb); 4677 sqlite3RefillIndex(pParse, pIndex, -1); 4678 return; 4679 } 4680 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4681 } 4682 #endif 4683 4684 /* 4685 ** Return a KeyInfo structure that is appropriate for the given Index. 4686 ** 4687 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4688 ** when it has finished using it. 4689 */ 4690 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4691 int i; 4692 int nCol = pIdx->nColumn; 4693 int nKey = pIdx->nKeyCol; 4694 KeyInfo *pKey; 4695 if( pParse->nErr ) return 0; 4696 if( pIdx->uniqNotNull ){ 4697 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4698 }else{ 4699 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4700 } 4701 if( pKey ){ 4702 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4703 for(i=0; i<nCol; i++){ 4704 const char *zColl = pIdx->azColl[i]; 4705 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4706 sqlite3LocateCollSeq(pParse, zColl); 4707 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4708 } 4709 if( pParse->nErr ){ 4710 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 4711 if( pIdx->bNoQuery==0 ){ 4712 /* Deactivate the index because it contains an unknown collating 4713 ** sequence. The only way to reactive the index is to reload the 4714 ** schema. Adding the missing collating sequence later does not 4715 ** reactive the index. The application had the chance to register 4716 ** the missing index using the collation-needed callback. For 4717 ** simplicity, SQLite will not give the application a second chance. 4718 */ 4719 pIdx->bNoQuery = 1; 4720 pParse->rc = SQLITE_ERROR_RETRY; 4721 } 4722 sqlite3KeyInfoUnref(pKey); 4723 pKey = 0; 4724 } 4725 } 4726 return pKey; 4727 } 4728 4729 #ifndef SQLITE_OMIT_CTE 4730 /* 4731 ** This routine is invoked once per CTE by the parser while parsing a 4732 ** WITH clause. 4733 */ 4734 With *sqlite3WithAdd( 4735 Parse *pParse, /* Parsing context */ 4736 With *pWith, /* Existing WITH clause, or NULL */ 4737 Token *pName, /* Name of the common-table */ 4738 ExprList *pArglist, /* Optional column name list for the table */ 4739 Select *pQuery /* Query used to initialize the table */ 4740 ){ 4741 sqlite3 *db = pParse->db; 4742 With *pNew; 4743 char *zName; 4744 4745 /* Check that the CTE name is unique within this WITH clause. If 4746 ** not, store an error in the Parse structure. */ 4747 zName = sqlite3NameFromToken(pParse->db, pName); 4748 if( zName && pWith ){ 4749 int i; 4750 for(i=0; i<pWith->nCte; i++){ 4751 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4752 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4753 } 4754 } 4755 } 4756 4757 if( pWith ){ 4758 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4759 pNew = sqlite3DbRealloc(db, pWith, nByte); 4760 }else{ 4761 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4762 } 4763 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4764 4765 if( db->mallocFailed ){ 4766 sqlite3ExprListDelete(db, pArglist); 4767 sqlite3SelectDelete(db, pQuery); 4768 sqlite3DbFree(db, zName); 4769 pNew = pWith; 4770 }else{ 4771 pNew->a[pNew->nCte].pSelect = pQuery; 4772 pNew->a[pNew->nCte].pCols = pArglist; 4773 pNew->a[pNew->nCte].zName = zName; 4774 pNew->a[pNew->nCte].zCteErr = 0; 4775 pNew->nCte++; 4776 } 4777 4778 return pNew; 4779 } 4780 4781 /* 4782 ** Free the contents of the With object passed as the second argument. 4783 */ 4784 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4785 if( pWith ){ 4786 int i; 4787 for(i=0; i<pWith->nCte; i++){ 4788 struct Cte *pCte = &pWith->a[i]; 4789 sqlite3ExprListDelete(db, pCte->pCols); 4790 sqlite3SelectDelete(db, pCte->pSelect); 4791 sqlite3DbFree(db, pCte->zName); 4792 } 4793 sqlite3DbFree(db, pWith); 4794 } 4795 } 4796 #endif /* !defined(SQLITE_OMIT_CTE) */ 4797