1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** Return TRUE if the given yDbMask object is empty - if it contains no 118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 120 */ 121 #if SQLITE_MAX_ATTACHED>30 122 int sqlite3DbMaskAllZero(yDbMask m){ 123 int i; 124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 125 return 1; 126 } 127 #endif 128 129 /* 130 ** This routine is called after a single SQL statement has been 131 ** parsed and a VDBE program to execute that statement has been 132 ** prepared. This routine puts the finishing touches on the 133 ** VDBE program and resets the pParse structure for the next 134 ** parse. 135 ** 136 ** Note that if an error occurred, it might be the case that 137 ** no VDBE code was generated. 138 */ 139 void sqlite3FinishCoding(Parse *pParse){ 140 sqlite3 *db; 141 Vdbe *v; 142 143 assert( pParse->pToplevel==0 ); 144 db = pParse->db; 145 if( db->mallocFailed ) return; 146 if( pParse->nested ) return; 147 if( pParse->nErr ) return; 148 149 /* Begin by generating some termination code at the end of the 150 ** vdbe program 151 */ 152 v = sqlite3GetVdbe(pParse); 153 assert( !pParse->isMultiWrite 154 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 155 if( v ){ 156 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 157 sqlite3VdbeAddOp0(v, OP_Halt); 158 159 #if SQLITE_USER_AUTHENTICATION 160 if( pParse->nTableLock>0 && db->init.busy==0 ){ 161 sqlite3UserAuthInit(db); 162 if( db->auth.authLevel<UAUTH_User ){ 163 pParse->rc = SQLITE_AUTH_USER; 164 sqlite3ErrorMsg(pParse, "user not authenticated"); 165 return; 166 } 167 } 168 #endif 169 170 /* The cookie mask contains one bit for each database file open. 171 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 172 ** set for each database that is used. Generate code to start a 173 ** transaction on each used database and to verify the schema cookie 174 ** on each used database. 175 */ 176 if( db->mallocFailed==0 177 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 178 ){ 179 int iDb, i; 180 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 181 sqlite3VdbeJumpHere(v, 0); 182 for(iDb=0; iDb<db->nDb; iDb++){ 183 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 184 sqlite3VdbeUsesBtree(v, iDb); 185 sqlite3VdbeAddOp4Int(v, 186 OP_Transaction, /* Opcode */ 187 iDb, /* P1 */ 188 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 189 pParse->cookieValue[iDb], /* P3 */ 190 db->aDb[iDb].pSchema->iGeneration /* P4 */ 191 ); 192 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 193 } 194 #ifndef SQLITE_OMIT_VIRTUALTABLE 195 for(i=0; i<pParse->nVtabLock; i++){ 196 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 197 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 198 } 199 pParse->nVtabLock = 0; 200 #endif 201 202 /* Once all the cookies have been verified and transactions opened, 203 ** obtain the required table-locks. This is a no-op unless the 204 ** shared-cache feature is enabled. 205 */ 206 codeTableLocks(pParse); 207 208 /* Initialize any AUTOINCREMENT data structures required. 209 */ 210 sqlite3AutoincrementBegin(pParse); 211 212 /* Code constant expressions that where factored out of inner loops */ 213 if( pParse->pConstExpr ){ 214 ExprList *pEL = pParse->pConstExpr; 215 pParse->okConstFactor = 0; 216 for(i=0; i<pEL->nExpr; i++){ 217 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 218 } 219 } 220 221 /* Finally, jump back to the beginning of the executable code. */ 222 sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); 223 } 224 } 225 226 227 /* Get the VDBE program ready for execution 228 */ 229 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 230 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 231 /* A minimum of one cursor is required if autoincrement is used 232 * See ticket [a696379c1f08866] */ 233 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 234 sqlite3VdbeMakeReady(v, pParse); 235 pParse->rc = SQLITE_DONE; 236 pParse->colNamesSet = 0; 237 }else{ 238 pParse->rc = SQLITE_ERROR; 239 } 240 pParse->nTab = 0; 241 pParse->nMem = 0; 242 pParse->nSet = 0; 243 pParse->nVar = 0; 244 DbMaskZero(pParse->cookieMask); 245 } 246 247 /* 248 ** Run the parser and code generator recursively in order to generate 249 ** code for the SQL statement given onto the end of the pParse context 250 ** currently under construction. When the parser is run recursively 251 ** this way, the final OP_Halt is not appended and other initialization 252 ** and finalization steps are omitted because those are handling by the 253 ** outermost parser. 254 ** 255 ** Not everything is nestable. This facility is designed to permit 256 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 257 ** care if you decide to try to use this routine for some other purposes. 258 */ 259 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 260 va_list ap; 261 char *zSql; 262 char *zErrMsg = 0; 263 sqlite3 *db = pParse->db; 264 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 265 char saveBuf[SAVE_SZ]; 266 267 if( pParse->nErr ) return; 268 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 269 va_start(ap, zFormat); 270 zSql = sqlite3VMPrintf(db, zFormat, ap); 271 va_end(ap); 272 if( zSql==0 ){ 273 return; /* A malloc must have failed */ 274 } 275 pParse->nested++; 276 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 277 memset(&pParse->nVar, 0, SAVE_SZ); 278 sqlite3RunParser(pParse, zSql, &zErrMsg); 279 sqlite3DbFree(db, zErrMsg); 280 sqlite3DbFree(db, zSql); 281 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 282 pParse->nested--; 283 } 284 285 #if SQLITE_USER_AUTHENTICATION 286 /* 287 ** Return TRUE if zTable is the name of the system table that stores the 288 ** list of users and their access credentials. 289 */ 290 int sqlite3UserAuthTable(const char *zTable){ 291 return sqlite3_stricmp(zTable, "sqlite_user")==0; 292 } 293 #endif 294 295 /* 296 ** Locate the in-memory structure that describes a particular database 297 ** table given the name of that table and (optionally) the name of the 298 ** database containing the table. Return NULL if not found. 299 ** 300 ** If zDatabase is 0, all databases are searched for the table and the 301 ** first matching table is returned. (No checking for duplicate table 302 ** names is done.) The search order is TEMP first, then MAIN, then any 303 ** auxiliary databases added using the ATTACH command. 304 ** 305 ** See also sqlite3LocateTable(). 306 */ 307 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 308 Table *p = 0; 309 int i; 310 311 #ifdef SQLITE_ENABLE_API_ARMOR 312 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return 0; 313 #endif 314 315 /* All mutexes are required for schema access. Make sure we hold them. */ 316 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 317 #if SQLITE_USER_AUTHENTICATION 318 /* Only the admin user is allowed to know that the sqlite_user table 319 ** exists */ 320 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 321 return 0; 322 } 323 #endif 324 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 325 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 326 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 327 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 328 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 329 if( p ) break; 330 } 331 return p; 332 } 333 334 /* 335 ** Locate the in-memory structure that describes a particular database 336 ** table given the name of that table and (optionally) the name of the 337 ** database containing the table. Return NULL if not found. Also leave an 338 ** error message in pParse->zErrMsg. 339 ** 340 ** The difference between this routine and sqlite3FindTable() is that this 341 ** routine leaves an error message in pParse->zErrMsg where 342 ** sqlite3FindTable() does not. 343 */ 344 Table *sqlite3LocateTable( 345 Parse *pParse, /* context in which to report errors */ 346 int isView, /* True if looking for a VIEW rather than a TABLE */ 347 const char *zName, /* Name of the table we are looking for */ 348 const char *zDbase /* Name of the database. Might be NULL */ 349 ){ 350 Table *p; 351 352 /* Read the database schema. If an error occurs, leave an error message 353 ** and code in pParse and return NULL. */ 354 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 355 return 0; 356 } 357 358 p = sqlite3FindTable(pParse->db, zName, zDbase); 359 if( p==0 ){ 360 const char *zMsg = isView ? "no such view" : "no such table"; 361 if( zDbase ){ 362 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 363 }else{ 364 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 365 } 366 pParse->checkSchema = 1; 367 } 368 #if SQLITE_USER_AUTHENICATION 369 else if( pParse->db->auth.authLevel<UAUTH_User ){ 370 sqlite3ErrorMsg(pParse, "user not authenticated"); 371 p = 0; 372 } 373 #endif 374 return p; 375 } 376 377 /* 378 ** Locate the table identified by *p. 379 ** 380 ** This is a wrapper around sqlite3LocateTable(). The difference between 381 ** sqlite3LocateTable() and this function is that this function restricts 382 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 383 ** non-NULL if it is part of a view or trigger program definition. See 384 ** sqlite3FixSrcList() for details. 385 */ 386 Table *sqlite3LocateTableItem( 387 Parse *pParse, 388 int isView, 389 struct SrcList_item *p 390 ){ 391 const char *zDb; 392 assert( p->pSchema==0 || p->zDatabase==0 ); 393 if( p->pSchema ){ 394 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 395 zDb = pParse->db->aDb[iDb].zName; 396 }else{ 397 zDb = p->zDatabase; 398 } 399 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 400 } 401 402 /* 403 ** Locate the in-memory structure that describes 404 ** a particular index given the name of that index 405 ** and the name of the database that contains the index. 406 ** Return NULL if not found. 407 ** 408 ** If zDatabase is 0, all databases are searched for the 409 ** table and the first matching index is returned. (No checking 410 ** for duplicate index names is done.) The search order is 411 ** TEMP first, then MAIN, then any auxiliary databases added 412 ** using the ATTACH command. 413 */ 414 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 415 Index *p = 0; 416 int i; 417 /* All mutexes are required for schema access. Make sure we hold them. */ 418 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 419 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 420 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 421 Schema *pSchema = db->aDb[j].pSchema; 422 assert( pSchema ); 423 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 424 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 425 p = sqlite3HashFind(&pSchema->idxHash, zName); 426 if( p ) break; 427 } 428 return p; 429 } 430 431 /* 432 ** Reclaim the memory used by an index 433 */ 434 static void freeIndex(sqlite3 *db, Index *p){ 435 #ifndef SQLITE_OMIT_ANALYZE 436 sqlite3DeleteIndexSamples(db, p); 437 #endif 438 sqlite3ExprDelete(db, p->pPartIdxWhere); 439 sqlite3DbFree(db, p->zColAff); 440 if( p->isResized ) sqlite3DbFree(db, p->azColl); 441 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 442 sqlite3_free(p->aiRowEst); 443 #endif 444 sqlite3DbFree(db, p); 445 } 446 447 /* 448 ** For the index called zIdxName which is found in the database iDb, 449 ** unlike that index from its Table then remove the index from 450 ** the index hash table and free all memory structures associated 451 ** with the index. 452 */ 453 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 454 Index *pIndex; 455 Hash *pHash; 456 457 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 458 pHash = &db->aDb[iDb].pSchema->idxHash; 459 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 460 if( ALWAYS(pIndex) ){ 461 if( pIndex->pTable->pIndex==pIndex ){ 462 pIndex->pTable->pIndex = pIndex->pNext; 463 }else{ 464 Index *p; 465 /* Justification of ALWAYS(); The index must be on the list of 466 ** indices. */ 467 p = pIndex->pTable->pIndex; 468 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 469 if( ALWAYS(p && p->pNext==pIndex) ){ 470 p->pNext = pIndex->pNext; 471 } 472 } 473 freeIndex(db, pIndex); 474 } 475 db->flags |= SQLITE_InternChanges; 476 } 477 478 /* 479 ** Look through the list of open database files in db->aDb[] and if 480 ** any have been closed, remove them from the list. Reallocate the 481 ** db->aDb[] structure to a smaller size, if possible. 482 ** 483 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 484 ** are never candidates for being collapsed. 485 */ 486 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 487 int i, j; 488 for(i=j=2; i<db->nDb; i++){ 489 struct Db *pDb = &db->aDb[i]; 490 if( pDb->pBt==0 ){ 491 sqlite3DbFree(db, pDb->zName); 492 pDb->zName = 0; 493 continue; 494 } 495 if( j<i ){ 496 db->aDb[j] = db->aDb[i]; 497 } 498 j++; 499 } 500 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 501 db->nDb = j; 502 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 503 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 504 sqlite3DbFree(db, db->aDb); 505 db->aDb = db->aDbStatic; 506 } 507 } 508 509 /* 510 ** Reset the schema for the database at index iDb. Also reset the 511 ** TEMP schema. 512 */ 513 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 514 Db *pDb; 515 assert( iDb<db->nDb ); 516 517 /* Case 1: Reset the single schema identified by iDb */ 518 pDb = &db->aDb[iDb]; 519 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 520 assert( pDb->pSchema!=0 ); 521 sqlite3SchemaClear(pDb->pSchema); 522 523 /* If any database other than TEMP is reset, then also reset TEMP 524 ** since TEMP might be holding triggers that reference tables in the 525 ** other database. 526 */ 527 if( iDb!=1 ){ 528 pDb = &db->aDb[1]; 529 assert( pDb->pSchema!=0 ); 530 sqlite3SchemaClear(pDb->pSchema); 531 } 532 return; 533 } 534 535 /* 536 ** Erase all schema information from all attached databases (including 537 ** "main" and "temp") for a single database connection. 538 */ 539 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 540 int i; 541 sqlite3BtreeEnterAll(db); 542 for(i=0; i<db->nDb; i++){ 543 Db *pDb = &db->aDb[i]; 544 if( pDb->pSchema ){ 545 sqlite3SchemaClear(pDb->pSchema); 546 } 547 } 548 db->flags &= ~SQLITE_InternChanges; 549 sqlite3VtabUnlockList(db); 550 sqlite3BtreeLeaveAll(db); 551 sqlite3CollapseDatabaseArray(db); 552 } 553 554 /* 555 ** This routine is called when a commit occurs. 556 */ 557 void sqlite3CommitInternalChanges(sqlite3 *db){ 558 db->flags &= ~SQLITE_InternChanges; 559 } 560 561 /* 562 ** Delete memory allocated for the column names of a table or view (the 563 ** Table.aCol[] array). 564 */ 565 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 566 int i; 567 Column *pCol; 568 assert( pTable!=0 ); 569 if( (pCol = pTable->aCol)!=0 ){ 570 for(i=0; i<pTable->nCol; i++, pCol++){ 571 sqlite3DbFree(db, pCol->zName); 572 sqlite3ExprDelete(db, pCol->pDflt); 573 sqlite3DbFree(db, pCol->zDflt); 574 sqlite3DbFree(db, pCol->zType); 575 sqlite3DbFree(db, pCol->zColl); 576 } 577 sqlite3DbFree(db, pTable->aCol); 578 } 579 } 580 581 /* 582 ** Remove the memory data structures associated with the given 583 ** Table. No changes are made to disk by this routine. 584 ** 585 ** This routine just deletes the data structure. It does not unlink 586 ** the table data structure from the hash table. But it does destroy 587 ** memory structures of the indices and foreign keys associated with 588 ** the table. 589 ** 590 ** The db parameter is optional. It is needed if the Table object 591 ** contains lookaside memory. (Table objects in the schema do not use 592 ** lookaside memory, but some ephemeral Table objects do.) Or the 593 ** db parameter can be used with db->pnBytesFreed to measure the memory 594 ** used by the Table object. 595 */ 596 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 597 Index *pIndex, *pNext; 598 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 599 600 assert( !pTable || pTable->nRef>0 ); 601 602 /* Do not delete the table until the reference count reaches zero. */ 603 if( !pTable ) return; 604 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 605 606 /* Record the number of outstanding lookaside allocations in schema Tables 607 ** prior to doing any free() operations. Since schema Tables do not use 608 ** lookaside, this number should not change. */ 609 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 610 db->lookaside.nOut : 0 ); 611 612 /* Delete all indices associated with this table. */ 613 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 614 pNext = pIndex->pNext; 615 assert( pIndex->pSchema==pTable->pSchema ); 616 if( !db || db->pnBytesFreed==0 ){ 617 char *zName = pIndex->zName; 618 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 619 &pIndex->pSchema->idxHash, zName, 0 620 ); 621 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 622 assert( pOld==pIndex || pOld==0 ); 623 } 624 freeIndex(db, pIndex); 625 } 626 627 /* Delete any foreign keys attached to this table. */ 628 sqlite3FkDelete(db, pTable); 629 630 /* Delete the Table structure itself. 631 */ 632 sqliteDeleteColumnNames(db, pTable); 633 sqlite3DbFree(db, pTable->zName); 634 sqlite3DbFree(db, pTable->zColAff); 635 sqlite3SelectDelete(db, pTable->pSelect); 636 #ifndef SQLITE_OMIT_CHECK 637 sqlite3ExprListDelete(db, pTable->pCheck); 638 #endif 639 #ifndef SQLITE_OMIT_VIRTUALTABLE 640 sqlite3VtabClear(db, pTable); 641 #endif 642 sqlite3DbFree(db, pTable); 643 644 /* Verify that no lookaside memory was used by schema tables */ 645 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 646 } 647 648 /* 649 ** Unlink the given table from the hash tables and the delete the 650 ** table structure with all its indices and foreign keys. 651 */ 652 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 653 Table *p; 654 Db *pDb; 655 656 assert( db!=0 ); 657 assert( iDb>=0 && iDb<db->nDb ); 658 assert( zTabName ); 659 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 660 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 661 pDb = &db->aDb[iDb]; 662 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 663 sqlite3DeleteTable(db, p); 664 db->flags |= SQLITE_InternChanges; 665 } 666 667 /* 668 ** Given a token, return a string that consists of the text of that 669 ** token. Space to hold the returned string 670 ** is obtained from sqliteMalloc() and must be freed by the calling 671 ** function. 672 ** 673 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 674 ** surround the body of the token are removed. 675 ** 676 ** Tokens are often just pointers into the original SQL text and so 677 ** are not \000 terminated and are not persistent. The returned string 678 ** is \000 terminated and is persistent. 679 */ 680 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 681 char *zName; 682 if( pName ){ 683 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 684 sqlite3Dequote(zName); 685 }else{ 686 zName = 0; 687 } 688 return zName; 689 } 690 691 /* 692 ** Open the sqlite_master table stored in database number iDb for 693 ** writing. The table is opened using cursor 0. 694 */ 695 void sqlite3OpenMasterTable(Parse *p, int iDb){ 696 Vdbe *v = sqlite3GetVdbe(p); 697 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 698 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 699 if( p->nTab==0 ){ 700 p->nTab = 1; 701 } 702 } 703 704 /* 705 ** Parameter zName points to a nul-terminated buffer containing the name 706 ** of a database ("main", "temp" or the name of an attached db). This 707 ** function returns the index of the named database in db->aDb[], or 708 ** -1 if the named db cannot be found. 709 */ 710 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 711 int i = -1; /* Database number */ 712 if( zName ){ 713 Db *pDb; 714 int n = sqlite3Strlen30(zName); 715 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 716 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 717 0==sqlite3StrICmp(pDb->zName, zName) ){ 718 break; 719 } 720 } 721 } 722 return i; 723 } 724 725 /* 726 ** The token *pName contains the name of a database (either "main" or 727 ** "temp" or the name of an attached db). This routine returns the 728 ** index of the named database in db->aDb[], or -1 if the named db 729 ** does not exist. 730 */ 731 int sqlite3FindDb(sqlite3 *db, Token *pName){ 732 int i; /* Database number */ 733 char *zName; /* Name we are searching for */ 734 zName = sqlite3NameFromToken(db, pName); 735 i = sqlite3FindDbName(db, zName); 736 sqlite3DbFree(db, zName); 737 return i; 738 } 739 740 /* The table or view or trigger name is passed to this routine via tokens 741 ** pName1 and pName2. If the table name was fully qualified, for example: 742 ** 743 ** CREATE TABLE xxx.yyy (...); 744 ** 745 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 746 ** the table name is not fully qualified, i.e.: 747 ** 748 ** CREATE TABLE yyy(...); 749 ** 750 ** Then pName1 is set to "yyy" and pName2 is "". 751 ** 752 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 753 ** pName2) that stores the unqualified table name. The index of the 754 ** database "xxx" is returned. 755 */ 756 int sqlite3TwoPartName( 757 Parse *pParse, /* Parsing and code generating context */ 758 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 759 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 760 Token **pUnqual /* Write the unqualified object name here */ 761 ){ 762 int iDb; /* Database holding the object */ 763 sqlite3 *db = pParse->db; 764 765 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 766 if( db->init.busy ) { 767 sqlite3ErrorMsg(pParse, "corrupt database"); 768 pParse->nErr++; 769 return -1; 770 } 771 *pUnqual = pName2; 772 iDb = sqlite3FindDb(db, pName1); 773 if( iDb<0 ){ 774 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 775 pParse->nErr++; 776 return -1; 777 } 778 }else{ 779 assert( db->init.iDb==0 || db->init.busy ); 780 iDb = db->init.iDb; 781 *pUnqual = pName1; 782 } 783 return iDb; 784 } 785 786 /* 787 ** This routine is used to check if the UTF-8 string zName is a legal 788 ** unqualified name for a new schema object (table, index, view or 789 ** trigger). All names are legal except those that begin with the string 790 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 791 ** is reserved for internal use. 792 */ 793 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 794 if( !pParse->db->init.busy && pParse->nested==0 795 && (pParse->db->flags & SQLITE_WriteSchema)==0 796 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 797 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 798 return SQLITE_ERROR; 799 } 800 return SQLITE_OK; 801 } 802 803 /* 804 ** Return the PRIMARY KEY index of a table 805 */ 806 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 807 Index *p; 808 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 809 return p; 810 } 811 812 /* 813 ** Return the column of index pIdx that corresponds to table 814 ** column iCol. Return -1 if not found. 815 */ 816 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 817 int i; 818 for(i=0; i<pIdx->nColumn; i++){ 819 if( iCol==pIdx->aiColumn[i] ) return i; 820 } 821 return -1; 822 } 823 824 /* 825 ** Begin constructing a new table representation in memory. This is 826 ** the first of several action routines that get called in response 827 ** to a CREATE TABLE statement. In particular, this routine is called 828 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 829 ** flag is true if the table should be stored in the auxiliary database 830 ** file instead of in the main database file. This is normally the case 831 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 832 ** CREATE and TABLE. 833 ** 834 ** The new table record is initialized and put in pParse->pNewTable. 835 ** As more of the CREATE TABLE statement is parsed, additional action 836 ** routines will be called to add more information to this record. 837 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 838 ** is called to complete the construction of the new table record. 839 */ 840 void sqlite3StartTable( 841 Parse *pParse, /* Parser context */ 842 Token *pName1, /* First part of the name of the table or view */ 843 Token *pName2, /* Second part of the name of the table or view */ 844 int isTemp, /* True if this is a TEMP table */ 845 int isView, /* True if this is a VIEW */ 846 int isVirtual, /* True if this is a VIRTUAL table */ 847 int noErr /* Do nothing if table already exists */ 848 ){ 849 Table *pTable; 850 char *zName = 0; /* The name of the new table */ 851 sqlite3 *db = pParse->db; 852 Vdbe *v; 853 int iDb; /* Database number to create the table in */ 854 Token *pName; /* Unqualified name of the table to create */ 855 856 /* The table or view name to create is passed to this routine via tokens 857 ** pName1 and pName2. If the table name was fully qualified, for example: 858 ** 859 ** CREATE TABLE xxx.yyy (...); 860 ** 861 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 862 ** the table name is not fully qualified, i.e.: 863 ** 864 ** CREATE TABLE yyy(...); 865 ** 866 ** Then pName1 is set to "yyy" and pName2 is "". 867 ** 868 ** The call below sets the pName pointer to point at the token (pName1 or 869 ** pName2) that stores the unqualified table name. The variable iDb is 870 ** set to the index of the database that the table or view is to be 871 ** created in. 872 */ 873 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 874 if( iDb<0 ) return; 875 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 876 /* If creating a temp table, the name may not be qualified. Unless 877 ** the database name is "temp" anyway. */ 878 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 879 return; 880 } 881 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 882 883 pParse->sNameToken = *pName; 884 zName = sqlite3NameFromToken(db, pName); 885 if( zName==0 ) return; 886 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 887 goto begin_table_error; 888 } 889 if( db->init.iDb==1 ) isTemp = 1; 890 #ifndef SQLITE_OMIT_AUTHORIZATION 891 assert( (isTemp & 1)==isTemp ); 892 { 893 int code; 894 char *zDb = db->aDb[iDb].zName; 895 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 896 goto begin_table_error; 897 } 898 if( isView ){ 899 if( !OMIT_TEMPDB && isTemp ){ 900 code = SQLITE_CREATE_TEMP_VIEW; 901 }else{ 902 code = SQLITE_CREATE_VIEW; 903 } 904 }else{ 905 if( !OMIT_TEMPDB && isTemp ){ 906 code = SQLITE_CREATE_TEMP_TABLE; 907 }else{ 908 code = SQLITE_CREATE_TABLE; 909 } 910 } 911 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 912 goto begin_table_error; 913 } 914 } 915 #endif 916 917 /* Make sure the new table name does not collide with an existing 918 ** index or table name in the same database. Issue an error message if 919 ** it does. The exception is if the statement being parsed was passed 920 ** to an sqlite3_declare_vtab() call. In that case only the column names 921 ** and types will be used, so there is no need to test for namespace 922 ** collisions. 923 */ 924 if( !IN_DECLARE_VTAB ){ 925 char *zDb = db->aDb[iDb].zName; 926 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 927 goto begin_table_error; 928 } 929 pTable = sqlite3FindTable(db, zName, zDb); 930 if( pTable ){ 931 if( !noErr ){ 932 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 933 }else{ 934 assert( !db->init.busy ); 935 sqlite3CodeVerifySchema(pParse, iDb); 936 } 937 goto begin_table_error; 938 } 939 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 940 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 941 goto begin_table_error; 942 } 943 } 944 945 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 946 if( pTable==0 ){ 947 db->mallocFailed = 1; 948 pParse->rc = SQLITE_NOMEM; 949 pParse->nErr++; 950 goto begin_table_error; 951 } 952 pTable->zName = zName; 953 pTable->iPKey = -1; 954 pTable->pSchema = db->aDb[iDb].pSchema; 955 pTable->nRef = 1; 956 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 957 assert( pParse->pNewTable==0 ); 958 pParse->pNewTable = pTable; 959 960 /* If this is the magic sqlite_sequence table used by autoincrement, 961 ** then record a pointer to this table in the main database structure 962 ** so that INSERT can find the table easily. 963 */ 964 #ifndef SQLITE_OMIT_AUTOINCREMENT 965 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 966 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 967 pTable->pSchema->pSeqTab = pTable; 968 } 969 #endif 970 971 /* Begin generating the code that will insert the table record into 972 ** the SQLITE_MASTER table. Note in particular that we must go ahead 973 ** and allocate the record number for the table entry now. Before any 974 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 975 ** indices to be created and the table record must come before the 976 ** indices. Hence, the record number for the table must be allocated 977 ** now. 978 */ 979 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 980 int j1; 981 int fileFormat; 982 int reg1, reg2, reg3; 983 sqlite3BeginWriteOperation(pParse, 0, iDb); 984 985 #ifndef SQLITE_OMIT_VIRTUALTABLE 986 if( isVirtual ){ 987 sqlite3VdbeAddOp0(v, OP_VBegin); 988 } 989 #endif 990 991 /* If the file format and encoding in the database have not been set, 992 ** set them now. 993 */ 994 reg1 = pParse->regRowid = ++pParse->nMem; 995 reg2 = pParse->regRoot = ++pParse->nMem; 996 reg3 = ++pParse->nMem; 997 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 998 sqlite3VdbeUsesBtree(v, iDb); 999 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1000 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1001 1 : SQLITE_MAX_FILE_FORMAT; 1002 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 1003 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 1004 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 1005 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 1006 sqlite3VdbeJumpHere(v, j1); 1007 1008 /* This just creates a place-holder record in the sqlite_master table. 1009 ** The record created does not contain anything yet. It will be replaced 1010 ** by the real entry in code generated at sqlite3EndTable(). 1011 ** 1012 ** The rowid for the new entry is left in register pParse->regRowid. 1013 ** The root page number of the new table is left in reg pParse->regRoot. 1014 ** The rowid and root page number values are needed by the code that 1015 ** sqlite3EndTable will generate. 1016 */ 1017 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1018 if( isView || isVirtual ){ 1019 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1020 }else 1021 #endif 1022 { 1023 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1024 } 1025 sqlite3OpenMasterTable(pParse, iDb); 1026 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1027 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 1028 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1029 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1030 sqlite3VdbeAddOp0(v, OP_Close); 1031 } 1032 1033 /* Normal (non-error) return. */ 1034 return; 1035 1036 /* If an error occurs, we jump here */ 1037 begin_table_error: 1038 sqlite3DbFree(db, zName); 1039 return; 1040 } 1041 1042 /* 1043 ** This macro is used to compare two strings in a case-insensitive manner. 1044 ** It is slightly faster than calling sqlite3StrICmp() directly, but 1045 ** produces larger code. 1046 ** 1047 ** WARNING: This macro is not compatible with the strcmp() family. It 1048 ** returns true if the two strings are equal, otherwise false. 1049 */ 1050 #define STRICMP(x, y) (\ 1051 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 1052 sqlite3UpperToLower[*(unsigned char *)(y)] \ 1053 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 1054 1055 /* 1056 ** Add a new column to the table currently being constructed. 1057 ** 1058 ** The parser calls this routine once for each column declaration 1059 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1060 ** first to get things going. Then this routine is called for each 1061 ** column. 1062 */ 1063 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1064 Table *p; 1065 int i; 1066 char *z; 1067 Column *pCol; 1068 sqlite3 *db = pParse->db; 1069 if( (p = pParse->pNewTable)==0 ) return; 1070 #if SQLITE_MAX_COLUMN 1071 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1072 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1073 return; 1074 } 1075 #endif 1076 z = sqlite3NameFromToken(db, pName); 1077 if( z==0 ) return; 1078 for(i=0; i<p->nCol; i++){ 1079 if( STRICMP(z, p->aCol[i].zName) ){ 1080 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1081 sqlite3DbFree(db, z); 1082 return; 1083 } 1084 } 1085 if( (p->nCol & 0x7)==0 ){ 1086 Column *aNew; 1087 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1088 if( aNew==0 ){ 1089 sqlite3DbFree(db, z); 1090 return; 1091 } 1092 p->aCol = aNew; 1093 } 1094 pCol = &p->aCol[p->nCol]; 1095 memset(pCol, 0, sizeof(p->aCol[0])); 1096 pCol->zName = z; 1097 1098 /* If there is no type specified, columns have the default affinity 1099 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 1100 ** be called next to set pCol->affinity correctly. 1101 */ 1102 pCol->affinity = SQLITE_AFF_NONE; 1103 pCol->szEst = 1; 1104 p->nCol++; 1105 } 1106 1107 /* 1108 ** This routine is called by the parser while in the middle of 1109 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1110 ** been seen on a column. This routine sets the notNull flag on 1111 ** the column currently under construction. 1112 */ 1113 void sqlite3AddNotNull(Parse *pParse, int onError){ 1114 Table *p; 1115 p = pParse->pNewTable; 1116 if( p==0 || NEVER(p->nCol<1) ) return; 1117 p->aCol[p->nCol-1].notNull = (u8)onError; 1118 } 1119 1120 /* 1121 ** Scan the column type name zType (length nType) and return the 1122 ** associated affinity type. 1123 ** 1124 ** This routine does a case-independent search of zType for the 1125 ** substrings in the following table. If one of the substrings is 1126 ** found, the corresponding affinity is returned. If zType contains 1127 ** more than one of the substrings, entries toward the top of 1128 ** the table take priority. For example, if zType is 'BLOBINT', 1129 ** SQLITE_AFF_INTEGER is returned. 1130 ** 1131 ** Substring | Affinity 1132 ** -------------------------------- 1133 ** 'INT' | SQLITE_AFF_INTEGER 1134 ** 'CHAR' | SQLITE_AFF_TEXT 1135 ** 'CLOB' | SQLITE_AFF_TEXT 1136 ** 'TEXT' | SQLITE_AFF_TEXT 1137 ** 'BLOB' | SQLITE_AFF_NONE 1138 ** 'REAL' | SQLITE_AFF_REAL 1139 ** 'FLOA' | SQLITE_AFF_REAL 1140 ** 'DOUB' | SQLITE_AFF_REAL 1141 ** 1142 ** If none of the substrings in the above table are found, 1143 ** SQLITE_AFF_NUMERIC is returned. 1144 */ 1145 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1146 u32 h = 0; 1147 char aff = SQLITE_AFF_NUMERIC; 1148 const char *zChar = 0; 1149 1150 if( zIn==0 ) return aff; 1151 while( zIn[0] ){ 1152 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1153 zIn++; 1154 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1155 aff = SQLITE_AFF_TEXT; 1156 zChar = zIn; 1157 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1158 aff = SQLITE_AFF_TEXT; 1159 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1160 aff = SQLITE_AFF_TEXT; 1161 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1162 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1163 aff = SQLITE_AFF_NONE; 1164 if( zIn[0]=='(' ) zChar = zIn; 1165 #ifndef SQLITE_OMIT_FLOATING_POINT 1166 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1167 && aff==SQLITE_AFF_NUMERIC ){ 1168 aff = SQLITE_AFF_REAL; 1169 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1170 && aff==SQLITE_AFF_NUMERIC ){ 1171 aff = SQLITE_AFF_REAL; 1172 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1173 && aff==SQLITE_AFF_NUMERIC ){ 1174 aff = SQLITE_AFF_REAL; 1175 #endif 1176 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1177 aff = SQLITE_AFF_INTEGER; 1178 break; 1179 } 1180 } 1181 1182 /* If pszEst is not NULL, store an estimate of the field size. The 1183 ** estimate is scaled so that the size of an integer is 1. */ 1184 if( pszEst ){ 1185 *pszEst = 1; /* default size is approx 4 bytes */ 1186 if( aff<SQLITE_AFF_NUMERIC ){ 1187 if( zChar ){ 1188 while( zChar[0] ){ 1189 if( sqlite3Isdigit(zChar[0]) ){ 1190 int v = 0; 1191 sqlite3GetInt32(zChar, &v); 1192 v = v/4 + 1; 1193 if( v>255 ) v = 255; 1194 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1195 break; 1196 } 1197 zChar++; 1198 } 1199 }else{ 1200 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1201 } 1202 } 1203 } 1204 return aff; 1205 } 1206 1207 /* 1208 ** This routine is called by the parser while in the middle of 1209 ** parsing a CREATE TABLE statement. The pFirst token is the first 1210 ** token in the sequence of tokens that describe the type of the 1211 ** column currently under construction. pLast is the last token 1212 ** in the sequence. Use this information to construct a string 1213 ** that contains the typename of the column and store that string 1214 ** in zType. 1215 */ 1216 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1217 Table *p; 1218 Column *pCol; 1219 1220 p = pParse->pNewTable; 1221 if( p==0 || NEVER(p->nCol<1) ) return; 1222 pCol = &p->aCol[p->nCol-1]; 1223 assert( pCol->zType==0 ); 1224 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1225 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1226 } 1227 1228 /* 1229 ** The expression is the default value for the most recently added column 1230 ** of the table currently under construction. 1231 ** 1232 ** Default value expressions must be constant. Raise an exception if this 1233 ** is not the case. 1234 ** 1235 ** This routine is called by the parser while in the middle of 1236 ** parsing a CREATE TABLE statement. 1237 */ 1238 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1239 Table *p; 1240 Column *pCol; 1241 sqlite3 *db = pParse->db; 1242 p = pParse->pNewTable; 1243 if( p!=0 ){ 1244 pCol = &(p->aCol[p->nCol-1]); 1245 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1246 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1247 pCol->zName); 1248 }else{ 1249 /* A copy of pExpr is used instead of the original, as pExpr contains 1250 ** tokens that point to volatile memory. The 'span' of the expression 1251 ** is required by pragma table_info. 1252 */ 1253 sqlite3ExprDelete(db, pCol->pDflt); 1254 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1255 sqlite3DbFree(db, pCol->zDflt); 1256 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1257 (int)(pSpan->zEnd - pSpan->zStart)); 1258 } 1259 } 1260 sqlite3ExprDelete(db, pSpan->pExpr); 1261 } 1262 1263 /* 1264 ** Designate the PRIMARY KEY for the table. pList is a list of names 1265 ** of columns that form the primary key. If pList is NULL, then the 1266 ** most recently added column of the table is the primary key. 1267 ** 1268 ** A table can have at most one primary key. If the table already has 1269 ** a primary key (and this is the second primary key) then create an 1270 ** error. 1271 ** 1272 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1273 ** then we will try to use that column as the rowid. Set the Table.iPKey 1274 ** field of the table under construction to be the index of the 1275 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1276 ** no INTEGER PRIMARY KEY. 1277 ** 1278 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1279 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1280 */ 1281 void sqlite3AddPrimaryKey( 1282 Parse *pParse, /* Parsing context */ 1283 ExprList *pList, /* List of field names to be indexed */ 1284 int onError, /* What to do with a uniqueness conflict */ 1285 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1286 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1287 ){ 1288 Table *pTab = pParse->pNewTable; 1289 char *zType = 0; 1290 int iCol = -1, i; 1291 int nTerm; 1292 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1293 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1294 sqlite3ErrorMsg(pParse, 1295 "table \"%s\" has more than one primary key", pTab->zName); 1296 goto primary_key_exit; 1297 } 1298 pTab->tabFlags |= TF_HasPrimaryKey; 1299 if( pList==0 ){ 1300 iCol = pTab->nCol - 1; 1301 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1302 zType = pTab->aCol[iCol].zType; 1303 nTerm = 1; 1304 }else{ 1305 nTerm = pList->nExpr; 1306 for(i=0; i<nTerm; i++){ 1307 for(iCol=0; iCol<pTab->nCol; iCol++){ 1308 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1309 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1310 zType = pTab->aCol[iCol].zType; 1311 break; 1312 } 1313 } 1314 } 1315 } 1316 if( nTerm==1 1317 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1318 && sortOrder==SQLITE_SO_ASC 1319 ){ 1320 pTab->iPKey = iCol; 1321 pTab->keyConf = (u8)onError; 1322 assert( autoInc==0 || autoInc==1 ); 1323 pTab->tabFlags |= autoInc*TF_Autoincrement; 1324 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1325 }else if( autoInc ){ 1326 #ifndef SQLITE_OMIT_AUTOINCREMENT 1327 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1328 "INTEGER PRIMARY KEY"); 1329 #endif 1330 }else{ 1331 Vdbe *v = pParse->pVdbe; 1332 Index *p; 1333 if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop); 1334 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1335 0, sortOrder, 0); 1336 if( p ){ 1337 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1338 if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK); 1339 } 1340 pList = 0; 1341 } 1342 1343 primary_key_exit: 1344 sqlite3ExprListDelete(pParse->db, pList); 1345 return; 1346 } 1347 1348 /* 1349 ** Add a new CHECK constraint to the table currently under construction. 1350 */ 1351 void sqlite3AddCheckConstraint( 1352 Parse *pParse, /* Parsing context */ 1353 Expr *pCheckExpr /* The check expression */ 1354 ){ 1355 #ifndef SQLITE_OMIT_CHECK 1356 Table *pTab = pParse->pNewTable; 1357 sqlite3 *db = pParse->db; 1358 if( pTab && !IN_DECLARE_VTAB 1359 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1360 ){ 1361 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1362 if( pParse->constraintName.n ){ 1363 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1364 } 1365 }else 1366 #endif 1367 { 1368 sqlite3ExprDelete(pParse->db, pCheckExpr); 1369 } 1370 } 1371 1372 /* 1373 ** Set the collation function of the most recently parsed table column 1374 ** to the CollSeq given. 1375 */ 1376 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1377 Table *p; 1378 int i; 1379 char *zColl; /* Dequoted name of collation sequence */ 1380 sqlite3 *db; 1381 1382 if( (p = pParse->pNewTable)==0 ) return; 1383 i = p->nCol-1; 1384 db = pParse->db; 1385 zColl = sqlite3NameFromToken(db, pToken); 1386 if( !zColl ) return; 1387 1388 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1389 Index *pIdx; 1390 sqlite3DbFree(db, p->aCol[i].zColl); 1391 p->aCol[i].zColl = zColl; 1392 1393 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1394 ** then an index may have been created on this column before the 1395 ** collation type was added. Correct this if it is the case. 1396 */ 1397 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1398 assert( pIdx->nKeyCol==1 ); 1399 if( pIdx->aiColumn[0]==i ){ 1400 pIdx->azColl[0] = p->aCol[i].zColl; 1401 } 1402 } 1403 }else{ 1404 sqlite3DbFree(db, zColl); 1405 } 1406 } 1407 1408 /* 1409 ** This function returns the collation sequence for database native text 1410 ** encoding identified by the string zName, length nName. 1411 ** 1412 ** If the requested collation sequence is not available, or not available 1413 ** in the database native encoding, the collation factory is invoked to 1414 ** request it. If the collation factory does not supply such a sequence, 1415 ** and the sequence is available in another text encoding, then that is 1416 ** returned instead. 1417 ** 1418 ** If no versions of the requested collations sequence are available, or 1419 ** another error occurs, NULL is returned and an error message written into 1420 ** pParse. 1421 ** 1422 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1423 ** invokes the collation factory if the named collation cannot be found 1424 ** and generates an error message. 1425 ** 1426 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1427 */ 1428 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1429 sqlite3 *db = pParse->db; 1430 u8 enc = ENC(db); 1431 u8 initbusy = db->init.busy; 1432 CollSeq *pColl; 1433 1434 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1435 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1436 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1437 } 1438 1439 return pColl; 1440 } 1441 1442 1443 /* 1444 ** Generate code that will increment the schema cookie. 1445 ** 1446 ** The schema cookie is used to determine when the schema for the 1447 ** database changes. After each schema change, the cookie value 1448 ** changes. When a process first reads the schema it records the 1449 ** cookie. Thereafter, whenever it goes to access the database, 1450 ** it checks the cookie to make sure the schema has not changed 1451 ** since it was last read. 1452 ** 1453 ** This plan is not completely bullet-proof. It is possible for 1454 ** the schema to change multiple times and for the cookie to be 1455 ** set back to prior value. But schema changes are infrequent 1456 ** and the probability of hitting the same cookie value is only 1457 ** 1 chance in 2^32. So we're safe enough. 1458 */ 1459 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1460 int r1 = sqlite3GetTempReg(pParse); 1461 sqlite3 *db = pParse->db; 1462 Vdbe *v = pParse->pVdbe; 1463 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1464 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1465 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1466 sqlite3ReleaseTempReg(pParse, r1); 1467 } 1468 1469 /* 1470 ** Measure the number of characters needed to output the given 1471 ** identifier. The number returned includes any quotes used 1472 ** but does not include the null terminator. 1473 ** 1474 ** The estimate is conservative. It might be larger that what is 1475 ** really needed. 1476 */ 1477 static int identLength(const char *z){ 1478 int n; 1479 for(n=0; *z; n++, z++){ 1480 if( *z=='"' ){ n++; } 1481 } 1482 return n + 2; 1483 } 1484 1485 /* 1486 ** The first parameter is a pointer to an output buffer. The second 1487 ** parameter is a pointer to an integer that contains the offset at 1488 ** which to write into the output buffer. This function copies the 1489 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1490 ** to the specified offset in the buffer and updates *pIdx to refer 1491 ** to the first byte after the last byte written before returning. 1492 ** 1493 ** If the string zSignedIdent consists entirely of alpha-numeric 1494 ** characters, does not begin with a digit and is not an SQL keyword, 1495 ** then it is copied to the output buffer exactly as it is. Otherwise, 1496 ** it is quoted using double-quotes. 1497 */ 1498 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1499 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1500 int i, j, needQuote; 1501 i = *pIdx; 1502 1503 for(j=0; zIdent[j]; j++){ 1504 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1505 } 1506 needQuote = sqlite3Isdigit(zIdent[0]) 1507 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1508 || zIdent[j]!=0 1509 || j==0; 1510 1511 if( needQuote ) z[i++] = '"'; 1512 for(j=0; zIdent[j]; j++){ 1513 z[i++] = zIdent[j]; 1514 if( zIdent[j]=='"' ) z[i++] = '"'; 1515 } 1516 if( needQuote ) z[i++] = '"'; 1517 z[i] = 0; 1518 *pIdx = i; 1519 } 1520 1521 /* 1522 ** Generate a CREATE TABLE statement appropriate for the given 1523 ** table. Memory to hold the text of the statement is obtained 1524 ** from sqliteMalloc() and must be freed by the calling function. 1525 */ 1526 static char *createTableStmt(sqlite3 *db, Table *p){ 1527 int i, k, n; 1528 char *zStmt; 1529 char *zSep, *zSep2, *zEnd; 1530 Column *pCol; 1531 n = 0; 1532 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1533 n += identLength(pCol->zName) + 5; 1534 } 1535 n += identLength(p->zName); 1536 if( n<50 ){ 1537 zSep = ""; 1538 zSep2 = ","; 1539 zEnd = ")"; 1540 }else{ 1541 zSep = "\n "; 1542 zSep2 = ",\n "; 1543 zEnd = "\n)"; 1544 } 1545 n += 35 + 6*p->nCol; 1546 zStmt = sqlite3DbMallocRaw(0, n); 1547 if( zStmt==0 ){ 1548 db->mallocFailed = 1; 1549 return 0; 1550 } 1551 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1552 k = sqlite3Strlen30(zStmt); 1553 identPut(zStmt, &k, p->zName); 1554 zStmt[k++] = '('; 1555 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1556 static const char * const azType[] = { 1557 /* SQLITE_AFF_NONE */ "", 1558 /* SQLITE_AFF_TEXT */ " TEXT", 1559 /* SQLITE_AFF_NUMERIC */ " NUM", 1560 /* SQLITE_AFF_INTEGER */ " INT", 1561 /* SQLITE_AFF_REAL */ " REAL" 1562 }; 1563 int len; 1564 const char *zType; 1565 1566 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1567 k += sqlite3Strlen30(&zStmt[k]); 1568 zSep = zSep2; 1569 identPut(zStmt, &k, pCol->zName); 1570 assert( pCol->affinity-SQLITE_AFF_NONE >= 0 ); 1571 assert( pCol->affinity-SQLITE_AFF_NONE < ArraySize(azType) ); 1572 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1573 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1574 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1575 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1576 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1577 1578 zType = azType[pCol->affinity - SQLITE_AFF_NONE]; 1579 len = sqlite3Strlen30(zType); 1580 assert( pCol->affinity==SQLITE_AFF_NONE 1581 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1582 memcpy(&zStmt[k], zType, len); 1583 k += len; 1584 assert( k<=n ); 1585 } 1586 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1587 return zStmt; 1588 } 1589 1590 /* 1591 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1592 ** on success and SQLITE_NOMEM on an OOM error. 1593 */ 1594 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1595 char *zExtra; 1596 int nByte; 1597 if( pIdx->nColumn>=N ) return SQLITE_OK; 1598 assert( pIdx->isResized==0 ); 1599 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1600 zExtra = sqlite3DbMallocZero(db, nByte); 1601 if( zExtra==0 ) return SQLITE_NOMEM; 1602 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1603 pIdx->azColl = (char**)zExtra; 1604 zExtra += sizeof(char*)*N; 1605 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1606 pIdx->aiColumn = (i16*)zExtra; 1607 zExtra += sizeof(i16)*N; 1608 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1609 pIdx->aSortOrder = (u8*)zExtra; 1610 pIdx->nColumn = N; 1611 pIdx->isResized = 1; 1612 return SQLITE_OK; 1613 } 1614 1615 /* 1616 ** Estimate the total row width for a table. 1617 */ 1618 static void estimateTableWidth(Table *pTab){ 1619 unsigned wTable = 0; 1620 const Column *pTabCol; 1621 int i; 1622 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1623 wTable += pTabCol->szEst; 1624 } 1625 if( pTab->iPKey<0 ) wTable++; 1626 pTab->szTabRow = sqlite3LogEst(wTable*4); 1627 } 1628 1629 /* 1630 ** Estimate the average size of a row for an index. 1631 */ 1632 static void estimateIndexWidth(Index *pIdx){ 1633 unsigned wIndex = 0; 1634 int i; 1635 const Column *aCol = pIdx->pTable->aCol; 1636 for(i=0; i<pIdx->nColumn; i++){ 1637 i16 x = pIdx->aiColumn[i]; 1638 assert( x<pIdx->pTable->nCol ); 1639 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1640 } 1641 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1642 } 1643 1644 /* Return true if value x is found any of the first nCol entries of aiCol[] 1645 */ 1646 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1647 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1648 return 0; 1649 } 1650 1651 /* 1652 ** This routine runs at the end of parsing a CREATE TABLE statement that 1653 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1654 ** internal schema data structures and the generated VDBE code so that they 1655 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1656 ** Changes include: 1657 ** 1658 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1659 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1660 ** data storage is a covering index btree. 1661 ** (2) Bypass the creation of the sqlite_master table entry 1662 ** for the PRIMARY KEY as the primary key index is now 1663 ** identified by the sqlite_master table entry of the table itself. 1664 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1665 ** schema to the rootpage from the main table. 1666 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1667 ** (5) Add all table columns to the PRIMARY KEY Index object 1668 ** so that the PRIMARY KEY is a covering index. The surplus 1669 ** columns are part of KeyInfo.nXField and are not used for 1670 ** sorting or lookup or uniqueness checks. 1671 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1672 ** indices with the PRIMARY KEY columns. 1673 */ 1674 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1675 Index *pIdx; 1676 Index *pPk; 1677 int nPk; 1678 int i, j; 1679 sqlite3 *db = pParse->db; 1680 Vdbe *v = pParse->pVdbe; 1681 1682 /* Convert the OP_CreateTable opcode that would normally create the 1683 ** root-page for the table into an OP_CreateIndex opcode. The index 1684 ** created will become the PRIMARY KEY index. 1685 */ 1686 if( pParse->addrCrTab ){ 1687 assert( v ); 1688 sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; 1689 } 1690 1691 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1692 ** table entry. 1693 */ 1694 if( pParse->addrSkipPK ){ 1695 assert( v ); 1696 sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto; 1697 } 1698 1699 /* Locate the PRIMARY KEY index. Or, if this table was originally 1700 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1701 */ 1702 if( pTab->iPKey>=0 ){ 1703 ExprList *pList; 1704 pList = sqlite3ExprListAppend(pParse, 0, 0); 1705 if( pList==0 ) return; 1706 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 1707 pTab->aCol[pTab->iPKey].zName); 1708 pList->a[0].sortOrder = pParse->iPkSortOrder; 1709 assert( pParse->pNewTable==pTab ); 1710 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1711 if( pPk==0 ) return; 1712 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1713 pTab->iPKey = -1; 1714 }else{ 1715 pPk = sqlite3PrimaryKeyIndex(pTab); 1716 /* 1717 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1718 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1719 ** code assumes the PRIMARY KEY contains no repeated columns. 1720 */ 1721 for(i=j=1; i<pPk->nKeyCol; i++){ 1722 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1723 pPk->nColumn--; 1724 }else{ 1725 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1726 } 1727 } 1728 pPk->nKeyCol = j; 1729 } 1730 pPk->isCovering = 1; 1731 assert( pPk!=0 ); 1732 nPk = pPk->nKeyCol; 1733 1734 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except, 1735 ** do not enforce this for imposter tables.) */ 1736 if( !db->init.imposterTable ){ 1737 for(i=0; i<nPk; i++){ 1738 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1739 } 1740 pPk->uniqNotNull = 1; 1741 } 1742 1743 /* The root page of the PRIMARY KEY is the table root page */ 1744 pPk->tnum = pTab->tnum; 1745 1746 /* Update the in-memory representation of all UNIQUE indices by converting 1747 ** the final rowid column into one or more columns of the PRIMARY KEY. 1748 */ 1749 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1750 int n; 1751 if( IsPrimaryKeyIndex(pIdx) ) continue; 1752 for(i=n=0; i<nPk; i++){ 1753 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1754 } 1755 if( n==0 ){ 1756 /* This index is a superset of the primary key */ 1757 pIdx->nColumn = pIdx->nKeyCol; 1758 continue; 1759 } 1760 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1761 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1762 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1763 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1764 pIdx->azColl[j] = pPk->azColl[i]; 1765 j++; 1766 } 1767 } 1768 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1769 assert( pIdx->nColumn>=j ); 1770 } 1771 1772 /* Add all table columns to the PRIMARY KEY index 1773 */ 1774 if( nPk<pTab->nCol ){ 1775 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1776 for(i=0, j=nPk; i<pTab->nCol; i++){ 1777 if( !hasColumn(pPk->aiColumn, j, i) ){ 1778 assert( j<pPk->nColumn ); 1779 pPk->aiColumn[j] = i; 1780 pPk->azColl[j] = "BINARY"; 1781 j++; 1782 } 1783 } 1784 assert( pPk->nColumn==j ); 1785 assert( pTab->nCol==j ); 1786 }else{ 1787 pPk->nColumn = pTab->nCol; 1788 } 1789 } 1790 1791 /* 1792 ** This routine is called to report the final ")" that terminates 1793 ** a CREATE TABLE statement. 1794 ** 1795 ** The table structure that other action routines have been building 1796 ** is added to the internal hash tables, assuming no errors have 1797 ** occurred. 1798 ** 1799 ** An entry for the table is made in the master table on disk, unless 1800 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1801 ** it means we are reading the sqlite_master table because we just 1802 ** connected to the database or because the sqlite_master table has 1803 ** recently changed, so the entry for this table already exists in 1804 ** the sqlite_master table. We do not want to create it again. 1805 ** 1806 ** If the pSelect argument is not NULL, it means that this routine 1807 ** was called to create a table generated from a 1808 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1809 ** the new table will match the result set of the SELECT. 1810 */ 1811 void sqlite3EndTable( 1812 Parse *pParse, /* Parse context */ 1813 Token *pCons, /* The ',' token after the last column defn. */ 1814 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1815 u8 tabOpts, /* Extra table options. Usually 0. */ 1816 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1817 ){ 1818 Table *p; /* The new table */ 1819 sqlite3 *db = pParse->db; /* The database connection */ 1820 int iDb; /* Database in which the table lives */ 1821 Index *pIdx; /* An implied index of the table */ 1822 1823 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1824 return; 1825 } 1826 p = pParse->pNewTable; 1827 if( p==0 ) return; 1828 1829 assert( !db->init.busy || !pSelect ); 1830 1831 /* If the db->init.busy is 1 it means we are reading the SQL off the 1832 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1833 ** So do not write to the disk again. Extract the root page number 1834 ** for the table from the db->init.newTnum field. (The page number 1835 ** should have been put there by the sqliteOpenCb routine.) 1836 */ 1837 if( db->init.busy ){ 1838 p->tnum = db->init.newTnum; 1839 } 1840 1841 /* Special processing for WITHOUT ROWID Tables */ 1842 if( tabOpts & TF_WithoutRowid ){ 1843 if( (p->tabFlags & TF_Autoincrement) ){ 1844 sqlite3ErrorMsg(pParse, 1845 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1846 return; 1847 } 1848 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1849 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1850 }else{ 1851 p->tabFlags |= TF_WithoutRowid; 1852 convertToWithoutRowidTable(pParse, p); 1853 } 1854 } 1855 1856 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1857 1858 #ifndef SQLITE_OMIT_CHECK 1859 /* Resolve names in all CHECK constraint expressions. 1860 */ 1861 if( p->pCheck ){ 1862 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1863 } 1864 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1865 1866 /* Estimate the average row size for the table and for all implied indices */ 1867 estimateTableWidth(p); 1868 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1869 estimateIndexWidth(pIdx); 1870 } 1871 1872 /* If not initializing, then create a record for the new table 1873 ** in the SQLITE_MASTER table of the database. 1874 ** 1875 ** If this is a TEMPORARY table, write the entry into the auxiliary 1876 ** file instead of into the main database file. 1877 */ 1878 if( !db->init.busy ){ 1879 int n; 1880 Vdbe *v; 1881 char *zType; /* "view" or "table" */ 1882 char *zType2; /* "VIEW" or "TABLE" */ 1883 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1884 1885 v = sqlite3GetVdbe(pParse); 1886 if( NEVER(v==0) ) return; 1887 1888 sqlite3VdbeAddOp1(v, OP_Close, 0); 1889 1890 /* 1891 ** Initialize zType for the new view or table. 1892 */ 1893 if( p->pSelect==0 ){ 1894 /* A regular table */ 1895 zType = "table"; 1896 zType2 = "TABLE"; 1897 #ifndef SQLITE_OMIT_VIEW 1898 }else{ 1899 /* A view */ 1900 zType = "view"; 1901 zType2 = "VIEW"; 1902 #endif 1903 } 1904 1905 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1906 ** statement to populate the new table. The root-page number for the 1907 ** new table is in register pParse->regRoot. 1908 ** 1909 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1910 ** suitable state to query for the column names and types to be used 1911 ** by the new table. 1912 ** 1913 ** A shared-cache write-lock is not required to write to the new table, 1914 ** as a schema-lock must have already been obtained to create it. Since 1915 ** a schema-lock excludes all other database users, the write-lock would 1916 ** be redundant. 1917 */ 1918 if( pSelect ){ 1919 SelectDest dest; 1920 Table *pSelTab; 1921 1922 assert(pParse->nTab==1); 1923 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1924 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1925 pParse->nTab = 2; 1926 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1927 sqlite3Select(pParse, pSelect, &dest); 1928 sqlite3VdbeAddOp1(v, OP_Close, 1); 1929 if( pParse->nErr==0 ){ 1930 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1931 if( pSelTab==0 ) return; 1932 assert( p->aCol==0 ); 1933 p->nCol = pSelTab->nCol; 1934 p->aCol = pSelTab->aCol; 1935 pSelTab->nCol = 0; 1936 pSelTab->aCol = 0; 1937 sqlite3DeleteTable(db, pSelTab); 1938 } 1939 } 1940 1941 /* Compute the complete text of the CREATE statement */ 1942 if( pSelect ){ 1943 zStmt = createTableStmt(db, p); 1944 }else{ 1945 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1946 n = (int)(pEnd2->z - pParse->sNameToken.z); 1947 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1948 zStmt = sqlite3MPrintf(db, 1949 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1950 ); 1951 } 1952 1953 /* A slot for the record has already been allocated in the 1954 ** SQLITE_MASTER table. We just need to update that slot with all 1955 ** the information we've collected. 1956 */ 1957 sqlite3NestedParse(pParse, 1958 "UPDATE %Q.%s " 1959 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1960 "WHERE rowid=#%d", 1961 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1962 zType, 1963 p->zName, 1964 p->zName, 1965 pParse->regRoot, 1966 zStmt, 1967 pParse->regRowid 1968 ); 1969 sqlite3DbFree(db, zStmt); 1970 sqlite3ChangeCookie(pParse, iDb); 1971 1972 #ifndef SQLITE_OMIT_AUTOINCREMENT 1973 /* Check to see if we need to create an sqlite_sequence table for 1974 ** keeping track of autoincrement keys. 1975 */ 1976 if( p->tabFlags & TF_Autoincrement ){ 1977 Db *pDb = &db->aDb[iDb]; 1978 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1979 if( pDb->pSchema->pSeqTab==0 ){ 1980 sqlite3NestedParse(pParse, 1981 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1982 pDb->zName 1983 ); 1984 } 1985 } 1986 #endif 1987 1988 /* Reparse everything to update our internal data structures */ 1989 sqlite3VdbeAddParseSchemaOp(v, iDb, 1990 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 1991 } 1992 1993 1994 /* Add the table to the in-memory representation of the database. 1995 */ 1996 if( db->init.busy ){ 1997 Table *pOld; 1998 Schema *pSchema = p->pSchema; 1999 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2000 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2001 if( pOld ){ 2002 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2003 db->mallocFailed = 1; 2004 return; 2005 } 2006 pParse->pNewTable = 0; 2007 db->flags |= SQLITE_InternChanges; 2008 2009 #ifndef SQLITE_OMIT_ALTERTABLE 2010 if( !p->pSelect ){ 2011 const char *zName = (const char *)pParse->sNameToken.z; 2012 int nName; 2013 assert( !pSelect && pCons && pEnd ); 2014 if( pCons->z==0 ){ 2015 pCons = pEnd; 2016 } 2017 nName = (int)((const char *)pCons->z - zName); 2018 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2019 } 2020 #endif 2021 } 2022 } 2023 2024 #ifndef SQLITE_OMIT_VIEW 2025 /* 2026 ** The parser calls this routine in order to create a new VIEW 2027 */ 2028 void sqlite3CreateView( 2029 Parse *pParse, /* The parsing context */ 2030 Token *pBegin, /* The CREATE token that begins the statement */ 2031 Token *pName1, /* The token that holds the name of the view */ 2032 Token *pName2, /* The token that holds the name of the view */ 2033 Select *pSelect, /* A SELECT statement that will become the new view */ 2034 int isTemp, /* TRUE for a TEMPORARY view */ 2035 int noErr /* Suppress error messages if VIEW already exists */ 2036 ){ 2037 Table *p; 2038 int n; 2039 const char *z; 2040 Token sEnd; 2041 DbFixer sFix; 2042 Token *pName = 0; 2043 int iDb; 2044 sqlite3 *db = pParse->db; 2045 2046 if( pParse->nVar>0 ){ 2047 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2048 sqlite3SelectDelete(db, pSelect); 2049 return; 2050 } 2051 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2052 p = pParse->pNewTable; 2053 if( p==0 || pParse->nErr ){ 2054 sqlite3SelectDelete(db, pSelect); 2055 return; 2056 } 2057 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2058 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2059 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2060 if( sqlite3FixSelect(&sFix, pSelect) ){ 2061 sqlite3SelectDelete(db, pSelect); 2062 return; 2063 } 2064 2065 /* Make a copy of the entire SELECT statement that defines the view. 2066 ** This will force all the Expr.token.z values to be dynamically 2067 ** allocated rather than point to the input string - which means that 2068 ** they will persist after the current sqlite3_exec() call returns. 2069 */ 2070 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2071 sqlite3SelectDelete(db, pSelect); 2072 if( db->mallocFailed ){ 2073 return; 2074 } 2075 if( !db->init.busy ){ 2076 sqlite3ViewGetColumnNames(pParse, p); 2077 } 2078 2079 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2080 ** the end. 2081 */ 2082 sEnd = pParse->sLastToken; 2083 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 2084 sEnd.z += sEnd.n; 2085 } 2086 sEnd.n = 0; 2087 n = (int)(sEnd.z - pBegin->z); 2088 z = pBegin->z; 2089 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 2090 sEnd.z = &z[n-1]; 2091 sEnd.n = 1; 2092 2093 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2094 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2095 return; 2096 } 2097 #endif /* SQLITE_OMIT_VIEW */ 2098 2099 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2100 /* 2101 ** The Table structure pTable is really a VIEW. Fill in the names of 2102 ** the columns of the view in the pTable structure. Return the number 2103 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2104 */ 2105 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2106 Table *pSelTab; /* A fake table from which we get the result set */ 2107 Select *pSel; /* Copy of the SELECT that implements the view */ 2108 int nErr = 0; /* Number of errors encountered */ 2109 int n; /* Temporarily holds the number of cursors assigned */ 2110 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2111 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2112 2113 assert( pTable ); 2114 2115 #ifndef SQLITE_OMIT_VIRTUALTABLE 2116 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2117 return SQLITE_ERROR; 2118 } 2119 if( IsVirtual(pTable) ) return 0; 2120 #endif 2121 2122 #ifndef SQLITE_OMIT_VIEW 2123 /* A positive nCol means the columns names for this view are 2124 ** already known. 2125 */ 2126 if( pTable->nCol>0 ) return 0; 2127 2128 /* A negative nCol is a special marker meaning that we are currently 2129 ** trying to compute the column names. If we enter this routine with 2130 ** a negative nCol, it means two or more views form a loop, like this: 2131 ** 2132 ** CREATE VIEW one AS SELECT * FROM two; 2133 ** CREATE VIEW two AS SELECT * FROM one; 2134 ** 2135 ** Actually, the error above is now caught prior to reaching this point. 2136 ** But the following test is still important as it does come up 2137 ** in the following: 2138 ** 2139 ** CREATE TABLE main.ex1(a); 2140 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2141 ** SELECT * FROM temp.ex1; 2142 */ 2143 if( pTable->nCol<0 ){ 2144 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2145 return 1; 2146 } 2147 assert( pTable->nCol>=0 ); 2148 2149 /* If we get this far, it means we need to compute the table names. 2150 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2151 ** "*" elements in the results set of the view and will assign cursors 2152 ** to the elements of the FROM clause. But we do not want these changes 2153 ** to be permanent. So the computation is done on a copy of the SELECT 2154 ** statement that defines the view. 2155 */ 2156 assert( pTable->pSelect ); 2157 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2158 if( pSel ){ 2159 u8 enableLookaside = db->lookaside.bEnabled; 2160 n = pParse->nTab; 2161 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2162 pTable->nCol = -1; 2163 db->lookaside.bEnabled = 0; 2164 #ifndef SQLITE_OMIT_AUTHORIZATION 2165 xAuth = db->xAuth; 2166 db->xAuth = 0; 2167 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2168 db->xAuth = xAuth; 2169 #else 2170 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2171 #endif 2172 db->lookaside.bEnabled = enableLookaside; 2173 pParse->nTab = n; 2174 if( pSelTab ){ 2175 assert( pTable->aCol==0 ); 2176 pTable->nCol = pSelTab->nCol; 2177 pTable->aCol = pSelTab->aCol; 2178 pSelTab->nCol = 0; 2179 pSelTab->aCol = 0; 2180 sqlite3DeleteTable(db, pSelTab); 2181 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2182 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2183 }else{ 2184 pTable->nCol = 0; 2185 nErr++; 2186 } 2187 sqlite3SelectDelete(db, pSel); 2188 } else { 2189 nErr++; 2190 } 2191 #endif /* SQLITE_OMIT_VIEW */ 2192 return nErr; 2193 } 2194 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2195 2196 #ifndef SQLITE_OMIT_VIEW 2197 /* 2198 ** Clear the column names from every VIEW in database idx. 2199 */ 2200 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2201 HashElem *i; 2202 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2203 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2204 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2205 Table *pTab = sqliteHashData(i); 2206 if( pTab->pSelect ){ 2207 sqliteDeleteColumnNames(db, pTab); 2208 pTab->aCol = 0; 2209 pTab->nCol = 0; 2210 } 2211 } 2212 DbClearProperty(db, idx, DB_UnresetViews); 2213 } 2214 #else 2215 # define sqliteViewResetAll(A,B) 2216 #endif /* SQLITE_OMIT_VIEW */ 2217 2218 /* 2219 ** This function is called by the VDBE to adjust the internal schema 2220 ** used by SQLite when the btree layer moves a table root page. The 2221 ** root-page of a table or index in database iDb has changed from iFrom 2222 ** to iTo. 2223 ** 2224 ** Ticket #1728: The symbol table might still contain information 2225 ** on tables and/or indices that are the process of being deleted. 2226 ** If you are unlucky, one of those deleted indices or tables might 2227 ** have the same rootpage number as the real table or index that is 2228 ** being moved. So we cannot stop searching after the first match 2229 ** because the first match might be for one of the deleted indices 2230 ** or tables and not the table/index that is actually being moved. 2231 ** We must continue looping until all tables and indices with 2232 ** rootpage==iFrom have been converted to have a rootpage of iTo 2233 ** in order to be certain that we got the right one. 2234 */ 2235 #ifndef SQLITE_OMIT_AUTOVACUUM 2236 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2237 HashElem *pElem; 2238 Hash *pHash; 2239 Db *pDb; 2240 2241 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2242 pDb = &db->aDb[iDb]; 2243 pHash = &pDb->pSchema->tblHash; 2244 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2245 Table *pTab = sqliteHashData(pElem); 2246 if( pTab->tnum==iFrom ){ 2247 pTab->tnum = iTo; 2248 } 2249 } 2250 pHash = &pDb->pSchema->idxHash; 2251 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2252 Index *pIdx = sqliteHashData(pElem); 2253 if( pIdx->tnum==iFrom ){ 2254 pIdx->tnum = iTo; 2255 } 2256 } 2257 } 2258 #endif 2259 2260 /* 2261 ** Write code to erase the table with root-page iTable from database iDb. 2262 ** Also write code to modify the sqlite_master table and internal schema 2263 ** if a root-page of another table is moved by the btree-layer whilst 2264 ** erasing iTable (this can happen with an auto-vacuum database). 2265 */ 2266 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2267 Vdbe *v = sqlite3GetVdbe(pParse); 2268 int r1 = sqlite3GetTempReg(pParse); 2269 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2270 sqlite3MayAbort(pParse); 2271 #ifndef SQLITE_OMIT_AUTOVACUUM 2272 /* OP_Destroy stores an in integer r1. If this integer 2273 ** is non-zero, then it is the root page number of a table moved to 2274 ** location iTable. The following code modifies the sqlite_master table to 2275 ** reflect this. 2276 ** 2277 ** The "#NNN" in the SQL is a special constant that means whatever value 2278 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2279 ** token for additional information. 2280 */ 2281 sqlite3NestedParse(pParse, 2282 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2283 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2284 #endif 2285 sqlite3ReleaseTempReg(pParse, r1); 2286 } 2287 2288 /* 2289 ** Write VDBE code to erase table pTab and all associated indices on disk. 2290 ** Code to update the sqlite_master tables and internal schema definitions 2291 ** in case a root-page belonging to another table is moved by the btree layer 2292 ** is also added (this can happen with an auto-vacuum database). 2293 */ 2294 static void destroyTable(Parse *pParse, Table *pTab){ 2295 #ifdef SQLITE_OMIT_AUTOVACUUM 2296 Index *pIdx; 2297 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2298 destroyRootPage(pParse, pTab->tnum, iDb); 2299 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2300 destroyRootPage(pParse, pIdx->tnum, iDb); 2301 } 2302 #else 2303 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2304 ** is not defined), then it is important to call OP_Destroy on the 2305 ** table and index root-pages in order, starting with the numerically 2306 ** largest root-page number. This guarantees that none of the root-pages 2307 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2308 ** following were coded: 2309 ** 2310 ** OP_Destroy 4 0 2311 ** ... 2312 ** OP_Destroy 5 0 2313 ** 2314 ** and root page 5 happened to be the largest root-page number in the 2315 ** database, then root page 5 would be moved to page 4 by the 2316 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2317 ** a free-list page. 2318 */ 2319 int iTab = pTab->tnum; 2320 int iDestroyed = 0; 2321 2322 while( 1 ){ 2323 Index *pIdx; 2324 int iLargest = 0; 2325 2326 if( iDestroyed==0 || iTab<iDestroyed ){ 2327 iLargest = iTab; 2328 } 2329 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2330 int iIdx = pIdx->tnum; 2331 assert( pIdx->pSchema==pTab->pSchema ); 2332 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2333 iLargest = iIdx; 2334 } 2335 } 2336 if( iLargest==0 ){ 2337 return; 2338 }else{ 2339 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2340 assert( iDb>=0 && iDb<pParse->db->nDb ); 2341 destroyRootPage(pParse, iLargest, iDb); 2342 iDestroyed = iLargest; 2343 } 2344 } 2345 #endif 2346 } 2347 2348 /* 2349 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2350 ** after a DROP INDEX or DROP TABLE command. 2351 */ 2352 static void sqlite3ClearStatTables( 2353 Parse *pParse, /* The parsing context */ 2354 int iDb, /* The database number */ 2355 const char *zType, /* "idx" or "tbl" */ 2356 const char *zName /* Name of index or table */ 2357 ){ 2358 int i; 2359 const char *zDbName = pParse->db->aDb[iDb].zName; 2360 for(i=1; i<=4; i++){ 2361 char zTab[24]; 2362 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2363 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2364 sqlite3NestedParse(pParse, 2365 "DELETE FROM %Q.%s WHERE %s=%Q", 2366 zDbName, zTab, zType, zName 2367 ); 2368 } 2369 } 2370 } 2371 2372 /* 2373 ** Generate code to drop a table. 2374 */ 2375 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2376 Vdbe *v; 2377 sqlite3 *db = pParse->db; 2378 Trigger *pTrigger; 2379 Db *pDb = &db->aDb[iDb]; 2380 2381 v = sqlite3GetVdbe(pParse); 2382 assert( v!=0 ); 2383 sqlite3BeginWriteOperation(pParse, 1, iDb); 2384 2385 #ifndef SQLITE_OMIT_VIRTUALTABLE 2386 if( IsVirtual(pTab) ){ 2387 sqlite3VdbeAddOp0(v, OP_VBegin); 2388 } 2389 #endif 2390 2391 /* Drop all triggers associated with the table being dropped. Code 2392 ** is generated to remove entries from sqlite_master and/or 2393 ** sqlite_temp_master if required. 2394 */ 2395 pTrigger = sqlite3TriggerList(pParse, pTab); 2396 while( pTrigger ){ 2397 assert( pTrigger->pSchema==pTab->pSchema || 2398 pTrigger->pSchema==db->aDb[1].pSchema ); 2399 sqlite3DropTriggerPtr(pParse, pTrigger); 2400 pTrigger = pTrigger->pNext; 2401 } 2402 2403 #ifndef SQLITE_OMIT_AUTOINCREMENT 2404 /* Remove any entries of the sqlite_sequence table associated with 2405 ** the table being dropped. This is done before the table is dropped 2406 ** at the btree level, in case the sqlite_sequence table needs to 2407 ** move as a result of the drop (can happen in auto-vacuum mode). 2408 */ 2409 if( pTab->tabFlags & TF_Autoincrement ){ 2410 sqlite3NestedParse(pParse, 2411 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2412 pDb->zName, pTab->zName 2413 ); 2414 } 2415 #endif 2416 2417 /* Drop all SQLITE_MASTER table and index entries that refer to the 2418 ** table. The program name loops through the master table and deletes 2419 ** every row that refers to a table of the same name as the one being 2420 ** dropped. Triggers are handled separately because a trigger can be 2421 ** created in the temp database that refers to a table in another 2422 ** database. 2423 */ 2424 sqlite3NestedParse(pParse, 2425 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2426 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2427 if( !isView && !IsVirtual(pTab) ){ 2428 destroyTable(pParse, pTab); 2429 } 2430 2431 /* Remove the table entry from SQLite's internal schema and modify 2432 ** the schema cookie. 2433 */ 2434 if( IsVirtual(pTab) ){ 2435 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2436 } 2437 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2438 sqlite3ChangeCookie(pParse, iDb); 2439 sqliteViewResetAll(db, iDb); 2440 } 2441 2442 /* 2443 ** This routine is called to do the work of a DROP TABLE statement. 2444 ** pName is the name of the table to be dropped. 2445 */ 2446 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2447 Table *pTab; 2448 Vdbe *v; 2449 sqlite3 *db = pParse->db; 2450 int iDb; 2451 2452 if( db->mallocFailed ){ 2453 goto exit_drop_table; 2454 } 2455 assert( pParse->nErr==0 ); 2456 assert( pName->nSrc==1 ); 2457 if( noErr ) db->suppressErr++; 2458 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2459 if( noErr ) db->suppressErr--; 2460 2461 if( pTab==0 ){ 2462 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2463 goto exit_drop_table; 2464 } 2465 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2466 assert( iDb>=0 && iDb<db->nDb ); 2467 2468 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2469 ** it is initialized. 2470 */ 2471 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2472 goto exit_drop_table; 2473 } 2474 #ifndef SQLITE_OMIT_AUTHORIZATION 2475 { 2476 int code; 2477 const char *zTab = SCHEMA_TABLE(iDb); 2478 const char *zDb = db->aDb[iDb].zName; 2479 const char *zArg2 = 0; 2480 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2481 goto exit_drop_table; 2482 } 2483 if( isView ){ 2484 if( !OMIT_TEMPDB && iDb==1 ){ 2485 code = SQLITE_DROP_TEMP_VIEW; 2486 }else{ 2487 code = SQLITE_DROP_VIEW; 2488 } 2489 #ifndef SQLITE_OMIT_VIRTUALTABLE 2490 }else if( IsVirtual(pTab) ){ 2491 code = SQLITE_DROP_VTABLE; 2492 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2493 #endif 2494 }else{ 2495 if( !OMIT_TEMPDB && iDb==1 ){ 2496 code = SQLITE_DROP_TEMP_TABLE; 2497 }else{ 2498 code = SQLITE_DROP_TABLE; 2499 } 2500 } 2501 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2502 goto exit_drop_table; 2503 } 2504 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2505 goto exit_drop_table; 2506 } 2507 } 2508 #endif 2509 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2510 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2511 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2512 goto exit_drop_table; 2513 } 2514 2515 #ifndef SQLITE_OMIT_VIEW 2516 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2517 ** on a table. 2518 */ 2519 if( isView && pTab->pSelect==0 ){ 2520 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2521 goto exit_drop_table; 2522 } 2523 if( !isView && pTab->pSelect ){ 2524 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2525 goto exit_drop_table; 2526 } 2527 #endif 2528 2529 /* Generate code to remove the table from the master table 2530 ** on disk. 2531 */ 2532 v = sqlite3GetVdbe(pParse); 2533 if( v ){ 2534 sqlite3BeginWriteOperation(pParse, 1, iDb); 2535 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2536 sqlite3FkDropTable(pParse, pName, pTab); 2537 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2538 } 2539 2540 exit_drop_table: 2541 sqlite3SrcListDelete(db, pName); 2542 } 2543 2544 /* 2545 ** This routine is called to create a new foreign key on the table 2546 ** currently under construction. pFromCol determines which columns 2547 ** in the current table point to the foreign key. If pFromCol==0 then 2548 ** connect the key to the last column inserted. pTo is the name of 2549 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2550 ** of tables in the parent pTo table. flags contains all 2551 ** information about the conflict resolution algorithms specified 2552 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2553 ** 2554 ** An FKey structure is created and added to the table currently 2555 ** under construction in the pParse->pNewTable field. 2556 ** 2557 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2558 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2559 */ 2560 void sqlite3CreateForeignKey( 2561 Parse *pParse, /* Parsing context */ 2562 ExprList *pFromCol, /* Columns in this table that point to other table */ 2563 Token *pTo, /* Name of the other table */ 2564 ExprList *pToCol, /* Columns in the other table */ 2565 int flags /* Conflict resolution algorithms. */ 2566 ){ 2567 sqlite3 *db = pParse->db; 2568 #ifndef SQLITE_OMIT_FOREIGN_KEY 2569 FKey *pFKey = 0; 2570 FKey *pNextTo; 2571 Table *p = pParse->pNewTable; 2572 int nByte; 2573 int i; 2574 int nCol; 2575 char *z; 2576 2577 assert( pTo!=0 ); 2578 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2579 if( pFromCol==0 ){ 2580 int iCol = p->nCol-1; 2581 if( NEVER(iCol<0) ) goto fk_end; 2582 if( pToCol && pToCol->nExpr!=1 ){ 2583 sqlite3ErrorMsg(pParse, "foreign key on %s" 2584 " should reference only one column of table %T", 2585 p->aCol[iCol].zName, pTo); 2586 goto fk_end; 2587 } 2588 nCol = 1; 2589 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2590 sqlite3ErrorMsg(pParse, 2591 "number of columns in foreign key does not match the number of " 2592 "columns in the referenced table"); 2593 goto fk_end; 2594 }else{ 2595 nCol = pFromCol->nExpr; 2596 } 2597 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2598 if( pToCol ){ 2599 for(i=0; i<pToCol->nExpr; i++){ 2600 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2601 } 2602 } 2603 pFKey = sqlite3DbMallocZero(db, nByte ); 2604 if( pFKey==0 ){ 2605 goto fk_end; 2606 } 2607 pFKey->pFrom = p; 2608 pFKey->pNextFrom = p->pFKey; 2609 z = (char*)&pFKey->aCol[nCol]; 2610 pFKey->zTo = z; 2611 memcpy(z, pTo->z, pTo->n); 2612 z[pTo->n] = 0; 2613 sqlite3Dequote(z); 2614 z += pTo->n+1; 2615 pFKey->nCol = nCol; 2616 if( pFromCol==0 ){ 2617 pFKey->aCol[0].iFrom = p->nCol-1; 2618 }else{ 2619 for(i=0; i<nCol; i++){ 2620 int j; 2621 for(j=0; j<p->nCol; j++){ 2622 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2623 pFKey->aCol[i].iFrom = j; 2624 break; 2625 } 2626 } 2627 if( j>=p->nCol ){ 2628 sqlite3ErrorMsg(pParse, 2629 "unknown column \"%s\" in foreign key definition", 2630 pFromCol->a[i].zName); 2631 goto fk_end; 2632 } 2633 } 2634 } 2635 if( pToCol ){ 2636 for(i=0; i<nCol; i++){ 2637 int n = sqlite3Strlen30(pToCol->a[i].zName); 2638 pFKey->aCol[i].zCol = z; 2639 memcpy(z, pToCol->a[i].zName, n); 2640 z[n] = 0; 2641 z += n+1; 2642 } 2643 } 2644 pFKey->isDeferred = 0; 2645 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2646 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2647 2648 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2649 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2650 pFKey->zTo, (void *)pFKey 2651 ); 2652 if( pNextTo==pFKey ){ 2653 db->mallocFailed = 1; 2654 goto fk_end; 2655 } 2656 if( pNextTo ){ 2657 assert( pNextTo->pPrevTo==0 ); 2658 pFKey->pNextTo = pNextTo; 2659 pNextTo->pPrevTo = pFKey; 2660 } 2661 2662 /* Link the foreign key to the table as the last step. 2663 */ 2664 p->pFKey = pFKey; 2665 pFKey = 0; 2666 2667 fk_end: 2668 sqlite3DbFree(db, pFKey); 2669 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2670 sqlite3ExprListDelete(db, pFromCol); 2671 sqlite3ExprListDelete(db, pToCol); 2672 } 2673 2674 /* 2675 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2676 ** clause is seen as part of a foreign key definition. The isDeferred 2677 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2678 ** The behavior of the most recently created foreign key is adjusted 2679 ** accordingly. 2680 */ 2681 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2682 #ifndef SQLITE_OMIT_FOREIGN_KEY 2683 Table *pTab; 2684 FKey *pFKey; 2685 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2686 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2687 pFKey->isDeferred = (u8)isDeferred; 2688 #endif 2689 } 2690 2691 /* 2692 ** Generate code that will erase and refill index *pIdx. This is 2693 ** used to initialize a newly created index or to recompute the 2694 ** content of an index in response to a REINDEX command. 2695 ** 2696 ** if memRootPage is not negative, it means that the index is newly 2697 ** created. The register specified by memRootPage contains the 2698 ** root page number of the index. If memRootPage is negative, then 2699 ** the index already exists and must be cleared before being refilled and 2700 ** the root page number of the index is taken from pIndex->tnum. 2701 */ 2702 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2703 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2704 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2705 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2706 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2707 int addr1; /* Address of top of loop */ 2708 int addr2; /* Address to jump to for next iteration */ 2709 int tnum; /* Root page of index */ 2710 int iPartIdxLabel; /* Jump to this label to skip a row */ 2711 Vdbe *v; /* Generate code into this virtual machine */ 2712 KeyInfo *pKey; /* KeyInfo for index */ 2713 int regRecord; /* Register holding assembled index record */ 2714 sqlite3 *db = pParse->db; /* The database connection */ 2715 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2716 2717 #ifndef SQLITE_OMIT_AUTHORIZATION 2718 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2719 db->aDb[iDb].zName ) ){ 2720 return; 2721 } 2722 #endif 2723 2724 /* Require a write-lock on the table to perform this operation */ 2725 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2726 2727 v = sqlite3GetVdbe(pParse); 2728 if( v==0 ) return; 2729 if( memRootPage>=0 ){ 2730 tnum = memRootPage; 2731 }else{ 2732 tnum = pIndex->tnum; 2733 } 2734 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2735 2736 /* Open the sorter cursor if we are to use one. */ 2737 iSorter = pParse->nTab++; 2738 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2739 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2740 2741 /* Open the table. Loop through all rows of the table, inserting index 2742 ** records into the sorter. */ 2743 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2744 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2745 regRecord = sqlite3GetTempReg(pParse); 2746 2747 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2748 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2749 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2750 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2751 sqlite3VdbeJumpHere(v, addr1); 2752 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2753 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2754 (char *)pKey, P4_KEYINFO); 2755 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2756 2757 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2758 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2759 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2760 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2761 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); 2762 addr2 = sqlite3VdbeCurrentAddr(v); 2763 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2764 pIndex->nKeyCol); VdbeCoverage(v); 2765 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2766 }else{ 2767 addr2 = sqlite3VdbeCurrentAddr(v); 2768 } 2769 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2770 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); 2771 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2772 sqlite3ReleaseTempReg(pParse, regRecord); 2773 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2774 sqlite3VdbeJumpHere(v, addr1); 2775 2776 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2777 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2778 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2779 } 2780 2781 /* 2782 ** Allocate heap space to hold an Index object with nCol columns. 2783 ** 2784 ** Increase the allocation size to provide an extra nExtra bytes 2785 ** of 8-byte aligned space after the Index object and return a 2786 ** pointer to this extra space in *ppExtra. 2787 */ 2788 Index *sqlite3AllocateIndexObject( 2789 sqlite3 *db, /* Database connection */ 2790 i16 nCol, /* Total number of columns in the index */ 2791 int nExtra, /* Number of bytes of extra space to alloc */ 2792 char **ppExtra /* Pointer to the "extra" space */ 2793 ){ 2794 Index *p; /* Allocated index object */ 2795 int nByte; /* Bytes of space for Index object + arrays */ 2796 2797 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2798 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2799 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2800 sizeof(i16)*nCol + /* Index.aiColumn */ 2801 sizeof(u8)*nCol); /* Index.aSortOrder */ 2802 p = sqlite3DbMallocZero(db, nByte + nExtra); 2803 if( p ){ 2804 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2805 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2806 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2807 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2808 p->aSortOrder = (u8*)pExtra; 2809 p->nColumn = nCol; 2810 p->nKeyCol = nCol - 1; 2811 *ppExtra = ((char*)p) + nByte; 2812 } 2813 return p; 2814 } 2815 2816 /* 2817 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2818 ** and pTblList is the name of the table that is to be indexed. Both will 2819 ** be NULL for a primary key or an index that is created to satisfy a 2820 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2821 ** as the table to be indexed. pParse->pNewTable is a table that is 2822 ** currently being constructed by a CREATE TABLE statement. 2823 ** 2824 ** pList is a list of columns to be indexed. pList will be NULL if this 2825 ** is a primary key or unique-constraint on the most recent column added 2826 ** to the table currently under construction. 2827 ** 2828 ** If the index is created successfully, return a pointer to the new Index 2829 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2830 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2831 */ 2832 Index *sqlite3CreateIndex( 2833 Parse *pParse, /* All information about this parse */ 2834 Token *pName1, /* First part of index name. May be NULL */ 2835 Token *pName2, /* Second part of index name. May be NULL */ 2836 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2837 ExprList *pList, /* A list of columns to be indexed */ 2838 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2839 Token *pStart, /* The CREATE token that begins this statement */ 2840 Expr *pPIWhere, /* WHERE clause for partial indices */ 2841 int sortOrder, /* Sort order of primary key when pList==NULL */ 2842 int ifNotExist /* Omit error if index already exists */ 2843 ){ 2844 Index *pRet = 0; /* Pointer to return */ 2845 Table *pTab = 0; /* Table to be indexed */ 2846 Index *pIndex = 0; /* The index to be created */ 2847 char *zName = 0; /* Name of the index */ 2848 int nName; /* Number of characters in zName */ 2849 int i, j; 2850 DbFixer sFix; /* For assigning database names to pTable */ 2851 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2852 sqlite3 *db = pParse->db; 2853 Db *pDb; /* The specific table containing the indexed database */ 2854 int iDb; /* Index of the database that is being written */ 2855 Token *pName = 0; /* Unqualified name of the index to create */ 2856 struct ExprList_item *pListItem; /* For looping over pList */ 2857 const Column *pTabCol; /* A column in the table */ 2858 int nExtra = 0; /* Space allocated for zExtra[] */ 2859 int nExtraCol; /* Number of extra columns needed */ 2860 char *zExtra = 0; /* Extra space after the Index object */ 2861 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2862 2863 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2864 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2865 goto exit_create_index; 2866 } 2867 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2868 goto exit_create_index; 2869 } 2870 2871 /* 2872 ** Find the table that is to be indexed. Return early if not found. 2873 */ 2874 if( pTblName!=0 ){ 2875 2876 /* Use the two-part index name to determine the database 2877 ** to search for the table. 'Fix' the table name to this db 2878 ** before looking up the table. 2879 */ 2880 assert( pName1 && pName2 ); 2881 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2882 if( iDb<0 ) goto exit_create_index; 2883 assert( pName && pName->z ); 2884 2885 #ifndef SQLITE_OMIT_TEMPDB 2886 /* If the index name was unqualified, check if the table 2887 ** is a temp table. If so, set the database to 1. Do not do this 2888 ** if initialising a database schema. 2889 */ 2890 if( !db->init.busy ){ 2891 pTab = sqlite3SrcListLookup(pParse, pTblName); 2892 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2893 iDb = 1; 2894 } 2895 } 2896 #endif 2897 2898 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2899 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2900 /* Because the parser constructs pTblName from a single identifier, 2901 ** sqlite3FixSrcList can never fail. */ 2902 assert(0); 2903 } 2904 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2905 assert( db->mallocFailed==0 || pTab==0 ); 2906 if( pTab==0 ) goto exit_create_index; 2907 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2908 sqlite3ErrorMsg(pParse, 2909 "cannot create a TEMP index on non-TEMP table \"%s\"", 2910 pTab->zName); 2911 goto exit_create_index; 2912 } 2913 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2914 }else{ 2915 assert( pName==0 ); 2916 assert( pStart==0 ); 2917 pTab = pParse->pNewTable; 2918 if( !pTab ) goto exit_create_index; 2919 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2920 } 2921 pDb = &db->aDb[iDb]; 2922 2923 assert( pTab!=0 ); 2924 assert( pParse->nErr==0 ); 2925 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2926 && db->init.busy==0 2927 #if SQLITE_USER_AUTHENTICATION 2928 && sqlite3UserAuthTable(pTab->zName)==0 2929 #endif 2930 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2931 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2932 goto exit_create_index; 2933 } 2934 #ifndef SQLITE_OMIT_VIEW 2935 if( pTab->pSelect ){ 2936 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2937 goto exit_create_index; 2938 } 2939 #endif 2940 #ifndef SQLITE_OMIT_VIRTUALTABLE 2941 if( IsVirtual(pTab) ){ 2942 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2943 goto exit_create_index; 2944 } 2945 #endif 2946 2947 /* 2948 ** Find the name of the index. Make sure there is not already another 2949 ** index or table with the same name. 2950 ** 2951 ** Exception: If we are reading the names of permanent indices from the 2952 ** sqlite_master table (because some other process changed the schema) and 2953 ** one of the index names collides with the name of a temporary table or 2954 ** index, then we will continue to process this index. 2955 ** 2956 ** If pName==0 it means that we are 2957 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2958 ** own name. 2959 */ 2960 if( pName ){ 2961 zName = sqlite3NameFromToken(db, pName); 2962 if( zName==0 ) goto exit_create_index; 2963 assert( pName->z!=0 ); 2964 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2965 goto exit_create_index; 2966 } 2967 if( !db->init.busy ){ 2968 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2969 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2970 goto exit_create_index; 2971 } 2972 } 2973 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2974 if( !ifNotExist ){ 2975 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2976 }else{ 2977 assert( !db->init.busy ); 2978 sqlite3CodeVerifySchema(pParse, iDb); 2979 } 2980 goto exit_create_index; 2981 } 2982 }else{ 2983 int n; 2984 Index *pLoop; 2985 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2986 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2987 if( zName==0 ){ 2988 goto exit_create_index; 2989 } 2990 } 2991 2992 /* Check for authorization to create an index. 2993 */ 2994 #ifndef SQLITE_OMIT_AUTHORIZATION 2995 { 2996 const char *zDb = pDb->zName; 2997 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2998 goto exit_create_index; 2999 } 3000 i = SQLITE_CREATE_INDEX; 3001 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3002 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3003 goto exit_create_index; 3004 } 3005 } 3006 #endif 3007 3008 /* If pList==0, it means this routine was called to make a primary 3009 ** key out of the last column added to the table under construction. 3010 ** So create a fake list to simulate this. 3011 */ 3012 if( pList==0 ){ 3013 pList = sqlite3ExprListAppend(pParse, 0, 0); 3014 if( pList==0 ) goto exit_create_index; 3015 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 3016 pTab->aCol[pTab->nCol-1].zName); 3017 pList->a[0].sortOrder = (u8)sortOrder; 3018 } 3019 3020 /* Figure out how many bytes of space are required to store explicitly 3021 ** specified collation sequence names. 3022 */ 3023 for(i=0; i<pList->nExpr; i++){ 3024 Expr *pExpr = pList->a[i].pExpr; 3025 if( pExpr ){ 3026 assert( pExpr->op==TK_COLLATE ); 3027 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3028 } 3029 } 3030 3031 /* 3032 ** Allocate the index structure. 3033 */ 3034 nName = sqlite3Strlen30(zName); 3035 nExtraCol = pPk ? pPk->nKeyCol : 1; 3036 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3037 nName + nExtra + 1, &zExtra); 3038 if( db->mallocFailed ){ 3039 goto exit_create_index; 3040 } 3041 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3042 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3043 pIndex->zName = zExtra; 3044 zExtra += nName + 1; 3045 memcpy(pIndex->zName, zName, nName+1); 3046 pIndex->pTable = pTab; 3047 pIndex->onError = (u8)onError; 3048 pIndex->uniqNotNull = onError!=OE_None; 3049 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3050 pIndex->pSchema = db->aDb[iDb].pSchema; 3051 pIndex->nKeyCol = pList->nExpr; 3052 if( pPIWhere ){ 3053 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3054 pIndex->pPartIdxWhere = pPIWhere; 3055 pPIWhere = 0; 3056 } 3057 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3058 3059 /* Check to see if we should honor DESC requests on index columns 3060 */ 3061 if( pDb->pSchema->file_format>=4 ){ 3062 sortOrderMask = -1; /* Honor DESC */ 3063 }else{ 3064 sortOrderMask = 0; /* Ignore DESC */ 3065 } 3066 3067 /* Scan the names of the columns of the table to be indexed and 3068 ** load the column indices into the Index structure. Report an error 3069 ** if any column is not found. 3070 ** 3071 ** TODO: Add a test to make sure that the same column is not named 3072 ** more than once within the same index. Only the first instance of 3073 ** the column will ever be used by the optimizer. Note that using the 3074 ** same column more than once cannot be an error because that would 3075 ** break backwards compatibility - it needs to be a warning. 3076 */ 3077 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3078 const char *zColName = pListItem->zName; 3079 int requestedSortOrder; 3080 char *zColl; /* Collation sequence name */ 3081 3082 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 3083 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 3084 } 3085 if( j>=pTab->nCol ){ 3086 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 3087 pTab->zName, zColName); 3088 pParse->checkSchema = 1; 3089 goto exit_create_index; 3090 } 3091 assert( j<=0x7fff ); 3092 pIndex->aiColumn[i] = (i16)j; 3093 if( pListItem->pExpr ){ 3094 int nColl; 3095 assert( pListItem->pExpr->op==TK_COLLATE ); 3096 zColl = pListItem->pExpr->u.zToken; 3097 nColl = sqlite3Strlen30(zColl) + 1; 3098 assert( nExtra>=nColl ); 3099 memcpy(zExtra, zColl, nColl); 3100 zColl = zExtra; 3101 zExtra += nColl; 3102 nExtra -= nColl; 3103 }else{ 3104 zColl = pTab->aCol[j].zColl; 3105 if( !zColl ) zColl = "BINARY"; 3106 } 3107 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3108 goto exit_create_index; 3109 } 3110 pIndex->azColl[i] = zColl; 3111 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3112 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3113 if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; 3114 } 3115 if( pPk ){ 3116 for(j=0; j<pPk->nKeyCol; j++){ 3117 int x = pPk->aiColumn[j]; 3118 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3119 pIndex->nColumn--; 3120 }else{ 3121 pIndex->aiColumn[i] = x; 3122 pIndex->azColl[i] = pPk->azColl[j]; 3123 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3124 i++; 3125 } 3126 } 3127 assert( i==pIndex->nColumn ); 3128 }else{ 3129 pIndex->aiColumn[i] = -1; 3130 pIndex->azColl[i] = "BINARY"; 3131 } 3132 sqlite3DefaultRowEst(pIndex); 3133 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3134 3135 if( pTab==pParse->pNewTable ){ 3136 /* This routine has been called to create an automatic index as a 3137 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3138 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3139 ** i.e. one of: 3140 ** 3141 ** CREATE TABLE t(x PRIMARY KEY, y); 3142 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3143 ** 3144 ** Either way, check to see if the table already has such an index. If 3145 ** so, don't bother creating this one. This only applies to 3146 ** automatically created indices. Users can do as they wish with 3147 ** explicit indices. 3148 ** 3149 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3150 ** (and thus suppressing the second one) even if they have different 3151 ** sort orders. 3152 ** 3153 ** If there are different collating sequences or if the columns of 3154 ** the constraint occur in different orders, then the constraints are 3155 ** considered distinct and both result in separate indices. 3156 */ 3157 Index *pIdx; 3158 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3159 int k; 3160 assert( IsUniqueIndex(pIdx) ); 3161 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3162 assert( IsUniqueIndex(pIndex) ); 3163 3164 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3165 for(k=0; k<pIdx->nKeyCol; k++){ 3166 const char *z1; 3167 const char *z2; 3168 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3169 z1 = pIdx->azColl[k]; 3170 z2 = pIndex->azColl[k]; 3171 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3172 } 3173 if( k==pIdx->nKeyCol ){ 3174 if( pIdx->onError!=pIndex->onError ){ 3175 /* This constraint creates the same index as a previous 3176 ** constraint specified somewhere in the CREATE TABLE statement. 3177 ** However the ON CONFLICT clauses are different. If both this 3178 ** constraint and the previous equivalent constraint have explicit 3179 ** ON CONFLICT clauses this is an error. Otherwise, use the 3180 ** explicitly specified behavior for the index. 3181 */ 3182 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3183 sqlite3ErrorMsg(pParse, 3184 "conflicting ON CONFLICT clauses specified", 0); 3185 } 3186 if( pIdx->onError==OE_Default ){ 3187 pIdx->onError = pIndex->onError; 3188 } 3189 } 3190 goto exit_create_index; 3191 } 3192 } 3193 } 3194 3195 /* Link the new Index structure to its table and to the other 3196 ** in-memory database structures. 3197 */ 3198 if( db->init.busy ){ 3199 Index *p; 3200 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3201 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3202 pIndex->zName, pIndex); 3203 if( p ){ 3204 assert( p==pIndex ); /* Malloc must have failed */ 3205 db->mallocFailed = 1; 3206 goto exit_create_index; 3207 } 3208 db->flags |= SQLITE_InternChanges; 3209 if( pTblName!=0 ){ 3210 pIndex->tnum = db->init.newTnum; 3211 } 3212 } 3213 3214 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3215 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3216 ** emit code to allocate the index rootpage on disk and make an entry for 3217 ** the index in the sqlite_master table and populate the index with 3218 ** content. But, do not do this if we are simply reading the sqlite_master 3219 ** table to parse the schema, or if this index is the PRIMARY KEY index 3220 ** of a WITHOUT ROWID table. 3221 ** 3222 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3223 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3224 ** has just been created, it contains no data and the index initialization 3225 ** step can be skipped. 3226 */ 3227 else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ 3228 Vdbe *v; 3229 char *zStmt; 3230 int iMem = ++pParse->nMem; 3231 3232 v = sqlite3GetVdbe(pParse); 3233 if( v==0 ) goto exit_create_index; 3234 3235 3236 /* Create the rootpage for the index 3237 */ 3238 sqlite3BeginWriteOperation(pParse, 1, iDb); 3239 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3240 3241 /* Gather the complete text of the CREATE INDEX statement into 3242 ** the zStmt variable 3243 */ 3244 if( pStart ){ 3245 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3246 if( pName->z[n-1]==';' ) n--; 3247 /* A named index with an explicit CREATE INDEX statement */ 3248 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3249 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3250 }else{ 3251 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3252 /* zStmt = sqlite3MPrintf(""); */ 3253 zStmt = 0; 3254 } 3255 3256 /* Add an entry in sqlite_master for this index 3257 */ 3258 sqlite3NestedParse(pParse, 3259 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3260 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3261 pIndex->zName, 3262 pTab->zName, 3263 iMem, 3264 zStmt 3265 ); 3266 sqlite3DbFree(db, zStmt); 3267 3268 /* Fill the index with data and reparse the schema. Code an OP_Expire 3269 ** to invalidate all pre-compiled statements. 3270 */ 3271 if( pTblName ){ 3272 sqlite3RefillIndex(pParse, pIndex, iMem); 3273 sqlite3ChangeCookie(pParse, iDb); 3274 sqlite3VdbeAddParseSchemaOp(v, iDb, 3275 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3276 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3277 } 3278 } 3279 3280 /* When adding an index to the list of indices for a table, make 3281 ** sure all indices labeled OE_Replace come after all those labeled 3282 ** OE_Ignore. This is necessary for the correct constraint check 3283 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3284 ** UPDATE and INSERT statements. 3285 */ 3286 if( db->init.busy || pTblName==0 ){ 3287 if( onError!=OE_Replace || pTab->pIndex==0 3288 || pTab->pIndex->onError==OE_Replace){ 3289 pIndex->pNext = pTab->pIndex; 3290 pTab->pIndex = pIndex; 3291 }else{ 3292 Index *pOther = pTab->pIndex; 3293 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3294 pOther = pOther->pNext; 3295 } 3296 pIndex->pNext = pOther->pNext; 3297 pOther->pNext = pIndex; 3298 } 3299 pRet = pIndex; 3300 pIndex = 0; 3301 } 3302 3303 /* Clean up before exiting */ 3304 exit_create_index: 3305 if( pIndex ) freeIndex(db, pIndex); 3306 sqlite3ExprDelete(db, pPIWhere); 3307 sqlite3ExprListDelete(db, pList); 3308 sqlite3SrcListDelete(db, pTblName); 3309 sqlite3DbFree(db, zName); 3310 return pRet; 3311 } 3312 3313 /* 3314 ** Fill the Index.aiRowEst[] array with default information - information 3315 ** to be used when we have not run the ANALYZE command. 3316 ** 3317 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3318 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3319 ** number of rows in the table that match any particular value of the 3320 ** first column of the index. aiRowEst[2] is an estimate of the number 3321 ** of rows that match any particular combination of the first 2 columns 3322 ** of the index. And so forth. It must always be the case that 3323 * 3324 ** aiRowEst[N]<=aiRowEst[N-1] 3325 ** aiRowEst[N]>=1 3326 ** 3327 ** Apart from that, we have little to go on besides intuition as to 3328 ** how aiRowEst[] should be initialized. The numbers generated here 3329 ** are based on typical values found in actual indices. 3330 */ 3331 void sqlite3DefaultRowEst(Index *pIdx){ 3332 /* 10, 9, 8, 7, 6 */ 3333 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3334 LogEst *a = pIdx->aiRowLogEst; 3335 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3336 int i; 3337 3338 /* Set the first entry (number of rows in the index) to the estimated 3339 ** number of rows in the table. Or 10, if the estimated number of rows 3340 ** in the table is less than that. */ 3341 a[0] = pIdx->pTable->nRowLogEst; 3342 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3343 3344 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3345 ** 6 and each subsequent value (if any) is 5. */ 3346 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3347 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3348 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3349 } 3350 3351 assert( 0==sqlite3LogEst(1) ); 3352 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3353 } 3354 3355 /* 3356 ** This routine will drop an existing named index. This routine 3357 ** implements the DROP INDEX statement. 3358 */ 3359 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3360 Index *pIndex; 3361 Vdbe *v; 3362 sqlite3 *db = pParse->db; 3363 int iDb; 3364 3365 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3366 if( db->mallocFailed ){ 3367 goto exit_drop_index; 3368 } 3369 assert( pName->nSrc==1 ); 3370 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3371 goto exit_drop_index; 3372 } 3373 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3374 if( pIndex==0 ){ 3375 if( !ifExists ){ 3376 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3377 }else{ 3378 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3379 } 3380 pParse->checkSchema = 1; 3381 goto exit_drop_index; 3382 } 3383 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3384 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3385 "or PRIMARY KEY constraint cannot be dropped", 0); 3386 goto exit_drop_index; 3387 } 3388 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3389 #ifndef SQLITE_OMIT_AUTHORIZATION 3390 { 3391 int code = SQLITE_DROP_INDEX; 3392 Table *pTab = pIndex->pTable; 3393 const char *zDb = db->aDb[iDb].zName; 3394 const char *zTab = SCHEMA_TABLE(iDb); 3395 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3396 goto exit_drop_index; 3397 } 3398 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3399 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3400 goto exit_drop_index; 3401 } 3402 } 3403 #endif 3404 3405 /* Generate code to remove the index and from the master table */ 3406 v = sqlite3GetVdbe(pParse); 3407 if( v ){ 3408 sqlite3BeginWriteOperation(pParse, 1, iDb); 3409 sqlite3NestedParse(pParse, 3410 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3411 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3412 ); 3413 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3414 sqlite3ChangeCookie(pParse, iDb); 3415 destroyRootPage(pParse, pIndex->tnum, iDb); 3416 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3417 } 3418 3419 exit_drop_index: 3420 sqlite3SrcListDelete(db, pName); 3421 } 3422 3423 /* 3424 ** pArray is a pointer to an array of objects. Each object in the 3425 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3426 ** to extend the array so that there is space for a new object at the end. 3427 ** 3428 ** When this function is called, *pnEntry contains the current size of 3429 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3430 ** in total). 3431 ** 3432 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3433 ** space allocated for the new object is zeroed, *pnEntry updated to 3434 ** reflect the new size of the array and a pointer to the new allocation 3435 ** returned. *pIdx is set to the index of the new array entry in this case. 3436 ** 3437 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3438 ** unchanged and a copy of pArray returned. 3439 */ 3440 void *sqlite3ArrayAllocate( 3441 sqlite3 *db, /* Connection to notify of malloc failures */ 3442 void *pArray, /* Array of objects. Might be reallocated */ 3443 int szEntry, /* Size of each object in the array */ 3444 int *pnEntry, /* Number of objects currently in use */ 3445 int *pIdx /* Write the index of a new slot here */ 3446 ){ 3447 char *z; 3448 int n = *pnEntry; 3449 if( (n & (n-1))==0 ){ 3450 int sz = (n==0) ? 1 : 2*n; 3451 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3452 if( pNew==0 ){ 3453 *pIdx = -1; 3454 return pArray; 3455 } 3456 pArray = pNew; 3457 } 3458 z = (char*)pArray; 3459 memset(&z[n * szEntry], 0, szEntry); 3460 *pIdx = n; 3461 ++*pnEntry; 3462 return pArray; 3463 } 3464 3465 /* 3466 ** Append a new element to the given IdList. Create a new IdList if 3467 ** need be. 3468 ** 3469 ** A new IdList is returned, or NULL if malloc() fails. 3470 */ 3471 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3472 int i; 3473 if( pList==0 ){ 3474 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3475 if( pList==0 ) return 0; 3476 } 3477 pList->a = sqlite3ArrayAllocate( 3478 db, 3479 pList->a, 3480 sizeof(pList->a[0]), 3481 &pList->nId, 3482 &i 3483 ); 3484 if( i<0 ){ 3485 sqlite3IdListDelete(db, pList); 3486 return 0; 3487 } 3488 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3489 return pList; 3490 } 3491 3492 /* 3493 ** Delete an IdList. 3494 */ 3495 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3496 int i; 3497 if( pList==0 ) return; 3498 for(i=0; i<pList->nId; i++){ 3499 sqlite3DbFree(db, pList->a[i].zName); 3500 } 3501 sqlite3DbFree(db, pList->a); 3502 sqlite3DbFree(db, pList); 3503 } 3504 3505 /* 3506 ** Return the index in pList of the identifier named zId. Return -1 3507 ** if not found. 3508 */ 3509 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3510 int i; 3511 if( pList==0 ) return -1; 3512 for(i=0; i<pList->nId; i++){ 3513 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3514 } 3515 return -1; 3516 } 3517 3518 /* 3519 ** Expand the space allocated for the given SrcList object by 3520 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3521 ** New slots are zeroed. 3522 ** 3523 ** For example, suppose a SrcList initially contains two entries: A,B. 3524 ** To append 3 new entries onto the end, do this: 3525 ** 3526 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3527 ** 3528 ** After the call above it would contain: A, B, nil, nil, nil. 3529 ** If the iStart argument had been 1 instead of 2, then the result 3530 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3531 ** the iStart value would be 0. The result then would 3532 ** be: nil, nil, nil, A, B. 3533 ** 3534 ** If a memory allocation fails the SrcList is unchanged. The 3535 ** db->mallocFailed flag will be set to true. 3536 */ 3537 SrcList *sqlite3SrcListEnlarge( 3538 sqlite3 *db, /* Database connection to notify of OOM errors */ 3539 SrcList *pSrc, /* The SrcList to be enlarged */ 3540 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3541 int iStart /* Index in pSrc->a[] of first new slot */ 3542 ){ 3543 int i; 3544 3545 /* Sanity checking on calling parameters */ 3546 assert( iStart>=0 ); 3547 assert( nExtra>=1 ); 3548 assert( pSrc!=0 ); 3549 assert( iStart<=pSrc->nSrc ); 3550 3551 /* Allocate additional space if needed */ 3552 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3553 SrcList *pNew; 3554 int nAlloc = pSrc->nSrc+nExtra; 3555 int nGot; 3556 pNew = sqlite3DbRealloc(db, pSrc, 3557 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3558 if( pNew==0 ){ 3559 assert( db->mallocFailed ); 3560 return pSrc; 3561 } 3562 pSrc = pNew; 3563 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3564 pSrc->nAlloc = nGot; 3565 } 3566 3567 /* Move existing slots that come after the newly inserted slots 3568 ** out of the way */ 3569 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3570 pSrc->a[i+nExtra] = pSrc->a[i]; 3571 } 3572 pSrc->nSrc += nExtra; 3573 3574 /* Zero the newly allocated slots */ 3575 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3576 for(i=iStart; i<iStart+nExtra; i++){ 3577 pSrc->a[i].iCursor = -1; 3578 } 3579 3580 /* Return a pointer to the enlarged SrcList */ 3581 return pSrc; 3582 } 3583 3584 3585 /* 3586 ** Append a new table name to the given SrcList. Create a new SrcList if 3587 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3588 ** 3589 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3590 ** SrcList might be the same as the SrcList that was input or it might be 3591 ** a new one. If an OOM error does occurs, then the prior value of pList 3592 ** that is input to this routine is automatically freed. 3593 ** 3594 ** If pDatabase is not null, it means that the table has an optional 3595 ** database name prefix. Like this: "database.table". The pDatabase 3596 ** points to the table name and the pTable points to the database name. 3597 ** The SrcList.a[].zName field is filled with the table name which might 3598 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3599 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3600 ** or with NULL if no database is specified. 3601 ** 3602 ** In other words, if call like this: 3603 ** 3604 ** sqlite3SrcListAppend(D,A,B,0); 3605 ** 3606 ** Then B is a table name and the database name is unspecified. If called 3607 ** like this: 3608 ** 3609 ** sqlite3SrcListAppend(D,A,B,C); 3610 ** 3611 ** Then C is the table name and B is the database name. If C is defined 3612 ** then so is B. In other words, we never have a case where: 3613 ** 3614 ** sqlite3SrcListAppend(D,A,0,C); 3615 ** 3616 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3617 ** before being added to the SrcList. 3618 */ 3619 SrcList *sqlite3SrcListAppend( 3620 sqlite3 *db, /* Connection to notify of malloc failures */ 3621 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3622 Token *pTable, /* Table to append */ 3623 Token *pDatabase /* Database of the table */ 3624 ){ 3625 struct SrcList_item *pItem; 3626 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3627 if( pList==0 ){ 3628 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3629 if( pList==0 ) return 0; 3630 pList->nAlloc = 1; 3631 } 3632 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3633 if( db->mallocFailed ){ 3634 sqlite3SrcListDelete(db, pList); 3635 return 0; 3636 } 3637 pItem = &pList->a[pList->nSrc-1]; 3638 if( pDatabase && pDatabase->z==0 ){ 3639 pDatabase = 0; 3640 } 3641 if( pDatabase ){ 3642 Token *pTemp = pDatabase; 3643 pDatabase = pTable; 3644 pTable = pTemp; 3645 } 3646 pItem->zName = sqlite3NameFromToken(db, pTable); 3647 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3648 return pList; 3649 } 3650 3651 /* 3652 ** Assign VdbeCursor index numbers to all tables in a SrcList 3653 */ 3654 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3655 int i; 3656 struct SrcList_item *pItem; 3657 assert(pList || pParse->db->mallocFailed ); 3658 if( pList ){ 3659 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3660 if( pItem->iCursor>=0 ) break; 3661 pItem->iCursor = pParse->nTab++; 3662 if( pItem->pSelect ){ 3663 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3664 } 3665 } 3666 } 3667 } 3668 3669 /* 3670 ** Delete an entire SrcList including all its substructure. 3671 */ 3672 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3673 int i; 3674 struct SrcList_item *pItem; 3675 if( pList==0 ) return; 3676 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3677 sqlite3DbFree(db, pItem->zDatabase); 3678 sqlite3DbFree(db, pItem->zName); 3679 sqlite3DbFree(db, pItem->zAlias); 3680 sqlite3DbFree(db, pItem->zIndex); 3681 sqlite3DeleteTable(db, pItem->pTab); 3682 sqlite3SelectDelete(db, pItem->pSelect); 3683 sqlite3ExprDelete(db, pItem->pOn); 3684 sqlite3IdListDelete(db, pItem->pUsing); 3685 } 3686 sqlite3DbFree(db, pList); 3687 } 3688 3689 /* 3690 ** This routine is called by the parser to add a new term to the 3691 ** end of a growing FROM clause. The "p" parameter is the part of 3692 ** the FROM clause that has already been constructed. "p" is NULL 3693 ** if this is the first term of the FROM clause. pTable and pDatabase 3694 ** are the name of the table and database named in the FROM clause term. 3695 ** pDatabase is NULL if the database name qualifier is missing - the 3696 ** usual case. If the term has an alias, then pAlias points to the 3697 ** alias token. If the term is a subquery, then pSubquery is the 3698 ** SELECT statement that the subquery encodes. The pTable and 3699 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3700 ** parameters are the content of the ON and USING clauses. 3701 ** 3702 ** Return a new SrcList which encodes is the FROM with the new 3703 ** term added. 3704 */ 3705 SrcList *sqlite3SrcListAppendFromTerm( 3706 Parse *pParse, /* Parsing context */ 3707 SrcList *p, /* The left part of the FROM clause already seen */ 3708 Token *pTable, /* Name of the table to add to the FROM clause */ 3709 Token *pDatabase, /* Name of the database containing pTable */ 3710 Token *pAlias, /* The right-hand side of the AS subexpression */ 3711 Select *pSubquery, /* A subquery used in place of a table name */ 3712 Expr *pOn, /* The ON clause of a join */ 3713 IdList *pUsing /* The USING clause of a join */ 3714 ){ 3715 struct SrcList_item *pItem; 3716 sqlite3 *db = pParse->db; 3717 if( !p && (pOn || pUsing) ){ 3718 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3719 (pOn ? "ON" : "USING") 3720 ); 3721 goto append_from_error; 3722 } 3723 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3724 if( p==0 || NEVER(p->nSrc==0) ){ 3725 goto append_from_error; 3726 } 3727 pItem = &p->a[p->nSrc-1]; 3728 assert( pAlias!=0 ); 3729 if( pAlias->n ){ 3730 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3731 } 3732 pItem->pSelect = pSubquery; 3733 pItem->pOn = pOn; 3734 pItem->pUsing = pUsing; 3735 return p; 3736 3737 append_from_error: 3738 assert( p==0 ); 3739 sqlite3ExprDelete(db, pOn); 3740 sqlite3IdListDelete(db, pUsing); 3741 sqlite3SelectDelete(db, pSubquery); 3742 return 0; 3743 } 3744 3745 /* 3746 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3747 ** element of the source-list passed as the second argument. 3748 */ 3749 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3750 assert( pIndexedBy!=0 ); 3751 if( p && ALWAYS(p->nSrc>0) ){ 3752 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3753 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3754 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3755 /* A "NOT INDEXED" clause was supplied. See parse.y 3756 ** construct "indexed_opt" for details. */ 3757 pItem->notIndexed = 1; 3758 }else{ 3759 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3760 } 3761 } 3762 } 3763 3764 /* 3765 ** When building up a FROM clause in the parser, the join operator 3766 ** is initially attached to the left operand. But the code generator 3767 ** expects the join operator to be on the right operand. This routine 3768 ** Shifts all join operators from left to right for an entire FROM 3769 ** clause. 3770 ** 3771 ** Example: Suppose the join is like this: 3772 ** 3773 ** A natural cross join B 3774 ** 3775 ** The operator is "natural cross join". The A and B operands are stored 3776 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3777 ** operator with A. This routine shifts that operator over to B. 3778 */ 3779 void sqlite3SrcListShiftJoinType(SrcList *p){ 3780 if( p ){ 3781 int i; 3782 assert( p->a || p->nSrc==0 ); 3783 for(i=p->nSrc-1; i>0; i--){ 3784 p->a[i].jointype = p->a[i-1].jointype; 3785 } 3786 p->a[0].jointype = 0; 3787 } 3788 } 3789 3790 /* 3791 ** Begin a transaction 3792 */ 3793 void sqlite3BeginTransaction(Parse *pParse, int type){ 3794 sqlite3 *db; 3795 Vdbe *v; 3796 int i; 3797 3798 assert( pParse!=0 ); 3799 db = pParse->db; 3800 assert( db!=0 ); 3801 /* if( db->aDb[0].pBt==0 ) return; */ 3802 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3803 return; 3804 } 3805 v = sqlite3GetVdbe(pParse); 3806 if( !v ) return; 3807 if( type!=TK_DEFERRED ){ 3808 for(i=0; i<db->nDb; i++){ 3809 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3810 sqlite3VdbeUsesBtree(v, i); 3811 } 3812 } 3813 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3814 } 3815 3816 /* 3817 ** Commit a transaction 3818 */ 3819 void sqlite3CommitTransaction(Parse *pParse){ 3820 Vdbe *v; 3821 3822 assert( pParse!=0 ); 3823 assert( pParse->db!=0 ); 3824 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3825 return; 3826 } 3827 v = sqlite3GetVdbe(pParse); 3828 if( v ){ 3829 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3830 } 3831 } 3832 3833 /* 3834 ** Rollback a transaction 3835 */ 3836 void sqlite3RollbackTransaction(Parse *pParse){ 3837 Vdbe *v; 3838 3839 assert( pParse!=0 ); 3840 assert( pParse->db!=0 ); 3841 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3842 return; 3843 } 3844 v = sqlite3GetVdbe(pParse); 3845 if( v ){ 3846 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3847 } 3848 } 3849 3850 /* 3851 ** This function is called by the parser when it parses a command to create, 3852 ** release or rollback an SQL savepoint. 3853 */ 3854 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3855 char *zName = sqlite3NameFromToken(pParse->db, pName); 3856 if( zName ){ 3857 Vdbe *v = sqlite3GetVdbe(pParse); 3858 #ifndef SQLITE_OMIT_AUTHORIZATION 3859 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3860 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3861 #endif 3862 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3863 sqlite3DbFree(pParse->db, zName); 3864 return; 3865 } 3866 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3867 } 3868 } 3869 3870 /* 3871 ** Make sure the TEMP database is open and available for use. Return 3872 ** the number of errors. Leave any error messages in the pParse structure. 3873 */ 3874 int sqlite3OpenTempDatabase(Parse *pParse){ 3875 sqlite3 *db = pParse->db; 3876 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3877 int rc; 3878 Btree *pBt; 3879 static const int flags = 3880 SQLITE_OPEN_READWRITE | 3881 SQLITE_OPEN_CREATE | 3882 SQLITE_OPEN_EXCLUSIVE | 3883 SQLITE_OPEN_DELETEONCLOSE | 3884 SQLITE_OPEN_TEMP_DB; 3885 3886 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3887 if( rc!=SQLITE_OK ){ 3888 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3889 "file for storing temporary tables"); 3890 pParse->rc = rc; 3891 return 1; 3892 } 3893 db->aDb[1].pBt = pBt; 3894 assert( db->aDb[1].pSchema ); 3895 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3896 db->mallocFailed = 1; 3897 return 1; 3898 } 3899 } 3900 return 0; 3901 } 3902 3903 /* 3904 ** Record the fact that the schema cookie will need to be verified 3905 ** for database iDb. The code to actually verify the schema cookie 3906 ** will occur at the end of the top-level VDBE and will be generated 3907 ** later, by sqlite3FinishCoding(). 3908 */ 3909 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3910 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3911 sqlite3 *db = pToplevel->db; 3912 3913 assert( iDb>=0 && iDb<db->nDb ); 3914 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3915 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3916 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3917 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 3918 DbMaskSet(pToplevel->cookieMask, iDb); 3919 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3920 if( !OMIT_TEMPDB && iDb==1 ){ 3921 sqlite3OpenTempDatabase(pToplevel); 3922 } 3923 } 3924 } 3925 3926 /* 3927 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3928 ** attached database. Otherwise, invoke it for the database named zDb only. 3929 */ 3930 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3931 sqlite3 *db = pParse->db; 3932 int i; 3933 for(i=0; i<db->nDb; i++){ 3934 Db *pDb = &db->aDb[i]; 3935 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3936 sqlite3CodeVerifySchema(pParse, i); 3937 } 3938 } 3939 } 3940 3941 /* 3942 ** Generate VDBE code that prepares for doing an operation that 3943 ** might change the database. 3944 ** 3945 ** This routine starts a new transaction if we are not already within 3946 ** a transaction. If we are already within a transaction, then a checkpoint 3947 ** is set if the setStatement parameter is true. A checkpoint should 3948 ** be set for operations that might fail (due to a constraint) part of 3949 ** the way through and which will need to undo some writes without having to 3950 ** rollback the whole transaction. For operations where all constraints 3951 ** can be checked before any changes are made to the database, it is never 3952 ** necessary to undo a write and the checkpoint should not be set. 3953 */ 3954 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3955 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3956 sqlite3CodeVerifySchema(pParse, iDb); 3957 DbMaskSet(pToplevel->writeMask, iDb); 3958 pToplevel->isMultiWrite |= setStatement; 3959 } 3960 3961 /* 3962 ** Indicate that the statement currently under construction might write 3963 ** more than one entry (example: deleting one row then inserting another, 3964 ** inserting multiple rows in a table, or inserting a row and index entries.) 3965 ** If an abort occurs after some of these writes have completed, then it will 3966 ** be necessary to undo the completed writes. 3967 */ 3968 void sqlite3MultiWrite(Parse *pParse){ 3969 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3970 pToplevel->isMultiWrite = 1; 3971 } 3972 3973 /* 3974 ** The code generator calls this routine if is discovers that it is 3975 ** possible to abort a statement prior to completion. In order to 3976 ** perform this abort without corrupting the database, we need to make 3977 ** sure that the statement is protected by a statement transaction. 3978 ** 3979 ** Technically, we only need to set the mayAbort flag if the 3980 ** isMultiWrite flag was previously set. There is a time dependency 3981 ** such that the abort must occur after the multiwrite. This makes 3982 ** some statements involving the REPLACE conflict resolution algorithm 3983 ** go a little faster. But taking advantage of this time dependency 3984 ** makes it more difficult to prove that the code is correct (in 3985 ** particular, it prevents us from writing an effective 3986 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3987 ** to take the safe route and skip the optimization. 3988 */ 3989 void sqlite3MayAbort(Parse *pParse){ 3990 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3991 pToplevel->mayAbort = 1; 3992 } 3993 3994 /* 3995 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3996 ** error. The onError parameter determines which (if any) of the statement 3997 ** and/or current transaction is rolled back. 3998 */ 3999 void sqlite3HaltConstraint( 4000 Parse *pParse, /* Parsing context */ 4001 int errCode, /* extended error code */ 4002 int onError, /* Constraint type */ 4003 char *p4, /* Error message */ 4004 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4005 u8 p5Errmsg /* P5_ErrMsg type */ 4006 ){ 4007 Vdbe *v = sqlite3GetVdbe(pParse); 4008 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4009 if( onError==OE_Abort ){ 4010 sqlite3MayAbort(pParse); 4011 } 4012 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4013 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 4014 } 4015 4016 /* 4017 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4018 */ 4019 void sqlite3UniqueConstraint( 4020 Parse *pParse, /* Parsing context */ 4021 int onError, /* Constraint type */ 4022 Index *pIdx /* The index that triggers the constraint */ 4023 ){ 4024 char *zErr; 4025 int j; 4026 StrAccum errMsg; 4027 Table *pTab = pIdx->pTable; 4028 4029 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 4030 errMsg.db = pParse->db; 4031 for(j=0; j<pIdx->nKeyCol; j++){ 4032 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4033 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4034 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 4035 sqlite3StrAccumAppend(&errMsg, ".", 1); 4036 sqlite3StrAccumAppendAll(&errMsg, zCol); 4037 } 4038 zErr = sqlite3StrAccumFinish(&errMsg); 4039 sqlite3HaltConstraint(pParse, 4040 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4041 : SQLITE_CONSTRAINT_UNIQUE, 4042 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4043 } 4044 4045 4046 /* 4047 ** Code an OP_Halt due to non-unique rowid. 4048 */ 4049 void sqlite3RowidConstraint( 4050 Parse *pParse, /* Parsing context */ 4051 int onError, /* Conflict resolution algorithm */ 4052 Table *pTab /* The table with the non-unique rowid */ 4053 ){ 4054 char *zMsg; 4055 int rc; 4056 if( pTab->iPKey>=0 ){ 4057 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4058 pTab->aCol[pTab->iPKey].zName); 4059 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4060 }else{ 4061 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4062 rc = SQLITE_CONSTRAINT_ROWID; 4063 } 4064 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4065 P5_ConstraintUnique); 4066 } 4067 4068 /* 4069 ** Check to see if pIndex uses the collating sequence pColl. Return 4070 ** true if it does and false if it does not. 4071 */ 4072 #ifndef SQLITE_OMIT_REINDEX 4073 static int collationMatch(const char *zColl, Index *pIndex){ 4074 int i; 4075 assert( zColl!=0 ); 4076 for(i=0; i<pIndex->nColumn; i++){ 4077 const char *z = pIndex->azColl[i]; 4078 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4079 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4080 return 1; 4081 } 4082 } 4083 return 0; 4084 } 4085 #endif 4086 4087 /* 4088 ** Recompute all indices of pTab that use the collating sequence pColl. 4089 ** If pColl==0 then recompute all indices of pTab. 4090 */ 4091 #ifndef SQLITE_OMIT_REINDEX 4092 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4093 Index *pIndex; /* An index associated with pTab */ 4094 4095 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4096 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4097 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4098 sqlite3BeginWriteOperation(pParse, 0, iDb); 4099 sqlite3RefillIndex(pParse, pIndex, -1); 4100 } 4101 } 4102 } 4103 #endif 4104 4105 /* 4106 ** Recompute all indices of all tables in all databases where the 4107 ** indices use the collating sequence pColl. If pColl==0 then recompute 4108 ** all indices everywhere. 4109 */ 4110 #ifndef SQLITE_OMIT_REINDEX 4111 static void reindexDatabases(Parse *pParse, char const *zColl){ 4112 Db *pDb; /* A single database */ 4113 int iDb; /* The database index number */ 4114 sqlite3 *db = pParse->db; /* The database connection */ 4115 HashElem *k; /* For looping over tables in pDb */ 4116 Table *pTab; /* A table in the database */ 4117 4118 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4119 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4120 assert( pDb!=0 ); 4121 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4122 pTab = (Table*)sqliteHashData(k); 4123 reindexTable(pParse, pTab, zColl); 4124 } 4125 } 4126 } 4127 #endif 4128 4129 /* 4130 ** Generate code for the REINDEX command. 4131 ** 4132 ** REINDEX -- 1 4133 ** REINDEX <collation> -- 2 4134 ** REINDEX ?<database>.?<tablename> -- 3 4135 ** REINDEX ?<database>.?<indexname> -- 4 4136 ** 4137 ** Form 1 causes all indices in all attached databases to be rebuilt. 4138 ** Form 2 rebuilds all indices in all databases that use the named 4139 ** collating function. Forms 3 and 4 rebuild the named index or all 4140 ** indices associated with the named table. 4141 */ 4142 #ifndef SQLITE_OMIT_REINDEX 4143 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4144 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4145 char *z; /* Name of a table or index */ 4146 const char *zDb; /* Name of the database */ 4147 Table *pTab; /* A table in the database */ 4148 Index *pIndex; /* An index associated with pTab */ 4149 int iDb; /* The database index number */ 4150 sqlite3 *db = pParse->db; /* The database connection */ 4151 Token *pObjName; /* Name of the table or index to be reindexed */ 4152 4153 /* Read the database schema. If an error occurs, leave an error message 4154 ** and code in pParse and return NULL. */ 4155 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4156 return; 4157 } 4158 4159 if( pName1==0 ){ 4160 reindexDatabases(pParse, 0); 4161 return; 4162 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4163 char *zColl; 4164 assert( pName1->z ); 4165 zColl = sqlite3NameFromToken(pParse->db, pName1); 4166 if( !zColl ) return; 4167 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4168 if( pColl ){ 4169 reindexDatabases(pParse, zColl); 4170 sqlite3DbFree(db, zColl); 4171 return; 4172 } 4173 sqlite3DbFree(db, zColl); 4174 } 4175 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4176 if( iDb<0 ) return; 4177 z = sqlite3NameFromToken(db, pObjName); 4178 if( z==0 ) return; 4179 zDb = db->aDb[iDb].zName; 4180 pTab = sqlite3FindTable(db, z, zDb); 4181 if( pTab ){ 4182 reindexTable(pParse, pTab, 0); 4183 sqlite3DbFree(db, z); 4184 return; 4185 } 4186 pIndex = sqlite3FindIndex(db, z, zDb); 4187 sqlite3DbFree(db, z); 4188 if( pIndex ){ 4189 sqlite3BeginWriteOperation(pParse, 0, iDb); 4190 sqlite3RefillIndex(pParse, pIndex, -1); 4191 return; 4192 } 4193 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4194 } 4195 #endif 4196 4197 /* 4198 ** Return a KeyInfo structure that is appropriate for the given Index. 4199 ** 4200 ** The KeyInfo structure for an index is cached in the Index object. 4201 ** So there might be multiple references to the returned pointer. The 4202 ** caller should not try to modify the KeyInfo object. 4203 ** 4204 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4205 ** when it has finished using it. 4206 */ 4207 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4208 int i; 4209 int nCol = pIdx->nColumn; 4210 int nKey = pIdx->nKeyCol; 4211 KeyInfo *pKey; 4212 if( pParse->nErr ) return 0; 4213 if( pIdx->uniqNotNull ){ 4214 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4215 }else{ 4216 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4217 } 4218 if( pKey ){ 4219 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4220 for(i=0; i<nCol; i++){ 4221 char *zColl = pIdx->azColl[i]; 4222 assert( zColl!=0 ); 4223 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4224 sqlite3LocateCollSeq(pParse, zColl); 4225 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4226 } 4227 if( pParse->nErr ){ 4228 sqlite3KeyInfoUnref(pKey); 4229 pKey = 0; 4230 } 4231 } 4232 return pKey; 4233 } 4234 4235 #ifndef SQLITE_OMIT_CTE 4236 /* 4237 ** This routine is invoked once per CTE by the parser while parsing a 4238 ** WITH clause. 4239 */ 4240 With *sqlite3WithAdd( 4241 Parse *pParse, /* Parsing context */ 4242 With *pWith, /* Existing WITH clause, or NULL */ 4243 Token *pName, /* Name of the common-table */ 4244 ExprList *pArglist, /* Optional column name list for the table */ 4245 Select *pQuery /* Query used to initialize the table */ 4246 ){ 4247 sqlite3 *db = pParse->db; 4248 With *pNew; 4249 char *zName; 4250 4251 /* Check that the CTE name is unique within this WITH clause. If 4252 ** not, store an error in the Parse structure. */ 4253 zName = sqlite3NameFromToken(pParse->db, pName); 4254 if( zName && pWith ){ 4255 int i; 4256 for(i=0; i<pWith->nCte; i++){ 4257 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4258 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4259 } 4260 } 4261 } 4262 4263 if( pWith ){ 4264 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4265 pNew = sqlite3DbRealloc(db, pWith, nByte); 4266 }else{ 4267 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4268 } 4269 assert( zName!=0 || pNew==0 ); 4270 assert( db->mallocFailed==0 || pNew==0 ); 4271 4272 if( pNew==0 ){ 4273 sqlite3ExprListDelete(db, pArglist); 4274 sqlite3SelectDelete(db, pQuery); 4275 sqlite3DbFree(db, zName); 4276 pNew = pWith; 4277 }else{ 4278 pNew->a[pNew->nCte].pSelect = pQuery; 4279 pNew->a[pNew->nCte].pCols = pArglist; 4280 pNew->a[pNew->nCte].zName = zName; 4281 pNew->a[pNew->nCte].zErr = 0; 4282 pNew->nCte++; 4283 } 4284 4285 return pNew; 4286 } 4287 4288 /* 4289 ** Free the contents of the With object passed as the second argument. 4290 */ 4291 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4292 if( pWith ){ 4293 int i; 4294 for(i=0; i<pWith->nCte; i++){ 4295 struct Cte *pCte = &pWith->a[i]; 4296 sqlite3ExprListDelete(db, pCte->pCols); 4297 sqlite3SelectDelete(db, pCte->pSelect); 4298 sqlite3DbFree(db, pCte->zName); 4299 } 4300 sqlite3DbFree(db, pWith); 4301 } 4302 } 4303 #endif /* !defined(SQLITE_OMIT_CTE) */ 4304