xref: /sqlite-3.40.0/src/build.c (revision 5368f29a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 **
25 ** $Id: build.c,v 1.556 2009/07/01 16:12:08 danielk1977 Exp $
26 */
27 #include "sqliteInt.h"
28 
29 /*
30 ** This routine is called when a new SQL statement is beginning to
31 ** be parsed.  Initialize the pParse structure as needed.
32 */
33 void sqlite3BeginParse(Parse *pParse, int explainFlag){
34   pParse->explain = (u8)explainFlag;
35   pParse->nVar = 0;
36 }
37 
38 #ifndef SQLITE_OMIT_SHARED_CACHE
39 /*
40 ** The TableLock structure is only used by the sqlite3TableLock() and
41 ** codeTableLocks() functions.
42 */
43 struct TableLock {
44   int iDb;             /* The database containing the table to be locked */
45   int iTab;            /* The root page of the table to be locked */
46   u8 isWriteLock;      /* True for write lock.  False for a read lock */
47   const char *zName;   /* Name of the table */
48 };
49 
50 /*
51 ** Record the fact that we want to lock a table at run-time.
52 **
53 ** The table to be locked has root page iTab and is found in database iDb.
54 ** A read or a write lock can be taken depending on isWritelock.
55 **
56 ** This routine just records the fact that the lock is desired.  The
57 ** code to make the lock occur is generated by a later call to
58 ** codeTableLocks() which occurs during sqlite3FinishCoding().
59 */
60 void sqlite3TableLock(
61   Parse *pParse,     /* Parsing context */
62   int iDb,           /* Index of the database containing the table to lock */
63   int iTab,          /* Root page number of the table to be locked */
64   u8 isWriteLock,    /* True for a write lock */
65   const char *zName  /* Name of the table to be locked */
66 ){
67   int i;
68   int nBytes;
69   TableLock *p;
70 
71   assert( iDb>=0 );
72   for(i=0; i<pParse->nTableLock; i++){
73     p = &pParse->aTableLock[i];
74     if( p->iDb==iDb && p->iTab==iTab ){
75       p->isWriteLock = (p->isWriteLock || isWriteLock);
76       return;
77     }
78   }
79 
80   nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
81   pParse->aTableLock =
82       sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
83   if( pParse->aTableLock ){
84     p = &pParse->aTableLock[pParse->nTableLock++];
85     p->iDb = iDb;
86     p->iTab = iTab;
87     p->isWriteLock = isWriteLock;
88     p->zName = zName;
89   }else{
90     pParse->nTableLock = 0;
91     pParse->db->mallocFailed = 1;
92   }
93 }
94 
95 /*
96 ** Code an OP_TableLock instruction for each table locked by the
97 ** statement (configured by calls to sqlite3TableLock()).
98 */
99 static void codeTableLocks(Parse *pParse){
100   int i;
101   Vdbe *pVdbe;
102 
103   pVdbe = sqlite3GetVdbe(pParse);
104   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
105 
106   for(i=0; i<pParse->nTableLock; i++){
107     TableLock *p = &pParse->aTableLock[i];
108     int p1 = p->iDb;
109     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
110                       p->zName, P4_STATIC);
111   }
112 }
113 #else
114   #define codeTableLocks(x)
115 #endif
116 
117 /*
118 ** This routine is called after a single SQL statement has been
119 ** parsed and a VDBE program to execute that statement has been
120 ** prepared.  This routine puts the finishing touches on the
121 ** VDBE program and resets the pParse structure for the next
122 ** parse.
123 **
124 ** Note that if an error occurred, it might be the case that
125 ** no VDBE code was generated.
126 */
127 void sqlite3FinishCoding(Parse *pParse){
128   sqlite3 *db;
129   Vdbe *v;
130 
131   db = pParse->db;
132   if( db->mallocFailed ) return;
133   if( pParse->nested ) return;
134   if( pParse->nErr ) return;
135 
136   /* Begin by generating some termination code at the end of the
137   ** vdbe program
138   */
139   v = sqlite3GetVdbe(pParse);
140   if( v ){
141     sqlite3VdbeAddOp0(v, OP_Halt);
142 
143     /* The cookie mask contains one bit for each database file open.
144     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
145     ** set for each database that is used.  Generate code to start a
146     ** transaction on each used database and to verify the schema cookie
147     ** on each used database.
148     */
149     if( pParse->cookieGoto>0 ){
150       u32 mask;
151       int iDb;
152       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
153       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
154         if( (mask & pParse->cookieMask)==0 ) continue;
155         sqlite3VdbeUsesBtree(v, iDb);
156         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
157         if( db->init.busy==0 ){
158           sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
159         }
160       }
161 #ifndef SQLITE_OMIT_VIRTUALTABLE
162       {
163         int i;
164         for(i=0; i<pParse->nVtabLock; i++){
165           char *vtab = (char *)pParse->apVtabLock[i]->pVtab;
166           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
167         }
168         pParse->nVtabLock = 0;
169       }
170 #endif
171 
172       /* Once all the cookies have been verified and transactions opened,
173       ** obtain the required table-locks. This is a no-op unless the
174       ** shared-cache feature is enabled.
175       */
176       codeTableLocks(pParse);
177 
178       /* Initialize any AUTOINCREMENT data structures required.
179       */
180       sqlite3AutoincrementBegin(pParse);
181 
182       /* Finally, jump back to the beginning of the executable code. */
183       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
184     }
185   }
186 
187 
188   /* Get the VDBE program ready for execution
189   */
190   if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
191 #ifdef SQLITE_DEBUG
192     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
193     sqlite3VdbeTrace(v, trace);
194 #endif
195     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
196     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
197                          pParse->nTab, pParse->explain);
198     pParse->rc = SQLITE_DONE;
199     pParse->colNamesSet = 0;
200   }else if( pParse->rc==SQLITE_OK ){
201     pParse->rc = SQLITE_ERROR;
202   }
203   pParse->nTab = 0;
204   pParse->nMem = 0;
205   pParse->nSet = 0;
206   pParse->nVar = 0;
207   pParse->cookieMask = 0;
208   pParse->cookieGoto = 0;
209 }
210 
211 /*
212 ** Run the parser and code generator recursively in order to generate
213 ** code for the SQL statement given onto the end of the pParse context
214 ** currently under construction.  When the parser is run recursively
215 ** this way, the final OP_Halt is not appended and other initialization
216 ** and finalization steps are omitted because those are handling by the
217 ** outermost parser.
218 **
219 ** Not everything is nestable.  This facility is designed to permit
220 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
221 ** care if you decide to try to use this routine for some other purposes.
222 */
223 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
224   va_list ap;
225   char *zSql;
226   char *zErrMsg = 0;
227   sqlite3 *db = pParse->db;
228 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
229   char saveBuf[SAVE_SZ];
230 
231   if( pParse->nErr ) return;
232   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
233   va_start(ap, zFormat);
234   zSql = sqlite3VMPrintf(db, zFormat, ap);
235   va_end(ap);
236   if( zSql==0 ){
237     return;   /* A malloc must have failed */
238   }
239   pParse->nested++;
240   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
241   memset(&pParse->nVar, 0, SAVE_SZ);
242   sqlite3RunParser(pParse, zSql, &zErrMsg);
243   sqlite3DbFree(db, zErrMsg);
244   sqlite3DbFree(db, zSql);
245   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
246   pParse->nested--;
247 }
248 
249 /*
250 ** Locate the in-memory structure that describes a particular database
251 ** table given the name of that table and (optionally) the name of the
252 ** database containing the table.  Return NULL if not found.
253 **
254 ** If zDatabase is 0, all databases are searched for the table and the
255 ** first matching table is returned.  (No checking for duplicate table
256 ** names is done.)  The search order is TEMP first, then MAIN, then any
257 ** auxiliary databases added using the ATTACH command.
258 **
259 ** See also sqlite3LocateTable().
260 */
261 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
262   Table *p = 0;
263   int i;
264   int nName;
265   assert( zName!=0 );
266   nName = sqlite3Strlen30(zName);
267   for(i=OMIT_TEMPDB; i<db->nDb; i++){
268     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
269     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
270     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
271     if( p ) break;
272   }
273   return p;
274 }
275 
276 /*
277 ** Locate the in-memory structure that describes a particular database
278 ** table given the name of that table and (optionally) the name of the
279 ** database containing the table.  Return NULL if not found.  Also leave an
280 ** error message in pParse->zErrMsg.
281 **
282 ** The difference between this routine and sqlite3FindTable() is that this
283 ** routine leaves an error message in pParse->zErrMsg where
284 ** sqlite3FindTable() does not.
285 */
286 Table *sqlite3LocateTable(
287   Parse *pParse,         /* context in which to report errors */
288   int isView,            /* True if looking for a VIEW rather than a TABLE */
289   const char *zName,     /* Name of the table we are looking for */
290   const char *zDbase     /* Name of the database.  Might be NULL */
291 ){
292   Table *p;
293 
294   /* Read the database schema. If an error occurs, leave an error message
295   ** and code in pParse and return NULL. */
296   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
297     return 0;
298   }
299 
300   p = sqlite3FindTable(pParse->db, zName, zDbase);
301   if( p==0 ){
302     const char *zMsg = isView ? "no such view" : "no such table";
303     if( zDbase ){
304       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
305     }else{
306       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
307     }
308     pParse->checkSchema = 1;
309   }
310   return p;
311 }
312 
313 /*
314 ** Locate the in-memory structure that describes
315 ** a particular index given the name of that index
316 ** and the name of the database that contains the index.
317 ** Return NULL if not found.
318 **
319 ** If zDatabase is 0, all databases are searched for the
320 ** table and the first matching index is returned.  (No checking
321 ** for duplicate index names is done.)  The search order is
322 ** TEMP first, then MAIN, then any auxiliary databases added
323 ** using the ATTACH command.
324 */
325 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
326   Index *p = 0;
327   int i;
328   int nName = sqlite3Strlen30(zName);
329   for(i=OMIT_TEMPDB; i<db->nDb; i++){
330     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
331     Schema *pSchema = db->aDb[j].pSchema;
332     assert( pSchema );
333     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
334     p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
335     if( p ) break;
336   }
337   return p;
338 }
339 
340 /*
341 ** Reclaim the memory used by an index
342 */
343 static void freeIndex(Index *p){
344   sqlite3 *db = p->pTable->dbMem;
345   /* testcase( db==0 ); */
346   sqlite3DbFree(db, p->zColAff);
347   sqlite3DbFree(db, p);
348 }
349 
350 /*
351 ** Remove the given index from the index hash table, and free
352 ** its memory structures.
353 **
354 ** The index is removed from the database hash tables but
355 ** it is not unlinked from the Table that it indexes.
356 ** Unlinking from the Table must be done by the calling function.
357 */
358 static void sqlite3DeleteIndex(Index *p){
359   Index *pOld;
360   const char *zName = p->zName;
361 
362   pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName,
363                            sqlite3Strlen30(zName), 0);
364   assert( pOld==0 || pOld==p );
365   freeIndex(p);
366 }
367 
368 /*
369 ** For the index called zIdxName which is found in the database iDb,
370 ** unlike that index from its Table then remove the index from
371 ** the index hash table and free all memory structures associated
372 ** with the index.
373 */
374 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
375   Index *pIndex;
376   int len;
377   Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
378 
379   len = sqlite3Strlen30(zIdxName);
380   pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
381   if( pIndex ){
382     if( pIndex->pTable->pIndex==pIndex ){
383       pIndex->pTable->pIndex = pIndex->pNext;
384     }else{
385       Index *p;
386       /* Justification of ALWAYS();  The index must be on the list of
387       ** indices. */
388       p = pIndex->pTable->pIndex;
389       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
390       if( ALWAYS(p && p->pNext==pIndex) ){
391         p->pNext = pIndex->pNext;
392       }
393     }
394     freeIndex(pIndex);
395   }
396   db->flags |= SQLITE_InternChanges;
397 }
398 
399 /*
400 ** Erase all schema information from the in-memory hash tables of
401 ** a single database.  This routine is called to reclaim memory
402 ** before the database closes.  It is also called during a rollback
403 ** if there were schema changes during the transaction or if a
404 ** schema-cookie mismatch occurs.
405 **
406 ** If iDb==0 then reset the internal schema tables for all database
407 ** files.  If iDb>=1 then reset the internal schema for only the
408 ** single file indicated.
409 */
410 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
411   int i, j;
412   assert( iDb>=0 && iDb<db->nDb );
413 
414   if( iDb==0 ){
415     sqlite3BtreeEnterAll(db);
416   }
417   for(i=iDb; i<db->nDb; i++){
418     Db *pDb = &db->aDb[i];
419     if( pDb->pSchema ){
420       assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
421       sqlite3SchemaFree(pDb->pSchema);
422     }
423     if( iDb>0 ) return;
424   }
425   assert( iDb==0 );
426   db->flags &= ~SQLITE_InternChanges;
427   sqlite3BtreeLeaveAll(db);
428 
429   /* If one or more of the auxiliary database files has been closed,
430   ** then remove them from the auxiliary database list.  We take the
431   ** opportunity to do this here since we have just deleted all of the
432   ** schema hash tables and therefore do not have to make any changes
433   ** to any of those tables.
434   */
435   for(i=j=2; i<db->nDb; i++){
436     struct Db *pDb = &db->aDb[i];
437     if( pDb->pBt==0 ){
438       sqlite3DbFree(db, pDb->zName);
439       pDb->zName = 0;
440       continue;
441     }
442     if( j<i ){
443       db->aDb[j] = db->aDb[i];
444     }
445     j++;
446   }
447   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
448   db->nDb = j;
449   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
450     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
451     sqlite3DbFree(db, db->aDb);
452     db->aDb = db->aDbStatic;
453   }
454 }
455 
456 /*
457 ** This routine is called when a commit occurs.
458 */
459 void sqlite3CommitInternalChanges(sqlite3 *db){
460   db->flags &= ~SQLITE_InternChanges;
461 }
462 
463 /*
464 ** Clear the column names from a table or view.
465 */
466 static void sqliteResetColumnNames(Table *pTable){
467   int i;
468   Column *pCol;
469   sqlite3 *db = pTable->dbMem;
470   testcase( db==0 );
471   assert( pTable!=0 );
472   if( (pCol = pTable->aCol)!=0 ){
473     for(i=0; i<pTable->nCol; i++, pCol++){
474       sqlite3DbFree(db, pCol->zName);
475       sqlite3ExprDelete(db, pCol->pDflt);
476       sqlite3DbFree(db, pCol->zDflt);
477       sqlite3DbFree(db, pCol->zType);
478       sqlite3DbFree(db, pCol->zColl);
479     }
480     sqlite3DbFree(db, pTable->aCol);
481   }
482   pTable->aCol = 0;
483   pTable->nCol = 0;
484 }
485 
486 /*
487 ** Remove the memory data structures associated with the given
488 ** Table.  No changes are made to disk by this routine.
489 **
490 ** This routine just deletes the data structure.  It does not unlink
491 ** the table data structure from the hash table.  But it does destroy
492 ** memory structures of the indices and foreign keys associated with
493 ** the table.
494 */
495 void sqlite3DeleteTable(Table *pTable){
496   Index *pIndex, *pNext;
497   FKey *pFKey, *pNextFKey;
498   sqlite3 *db;
499 
500   if( pTable==0 ) return;
501   db = pTable->dbMem;
502   testcase( db==0 );
503 
504   /* Do not delete the table until the reference count reaches zero. */
505   pTable->nRef--;
506   if( pTable->nRef>0 ){
507     return;
508   }
509   assert( pTable->nRef==0 );
510 
511   /* Delete all indices associated with this table
512   */
513   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
514     pNext = pIndex->pNext;
515     assert( pIndex->pSchema==pTable->pSchema );
516     sqlite3DeleteIndex(pIndex);
517   }
518 
519 #ifndef SQLITE_OMIT_FOREIGN_KEY
520   /* Delete all foreign keys associated with this table. */
521   for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
522     pNextFKey = pFKey->pNextFrom;
523     sqlite3DbFree(db, pFKey);
524   }
525 #endif
526 
527   /* Delete the Table structure itself.
528   */
529   sqliteResetColumnNames(pTable);
530   sqlite3DbFree(db, pTable->zName);
531   sqlite3DbFree(db, pTable->zColAff);
532   sqlite3SelectDelete(db, pTable->pSelect);
533 #ifndef SQLITE_OMIT_CHECK
534   sqlite3ExprDelete(db, pTable->pCheck);
535 #endif
536   sqlite3VtabClear(pTable);
537   sqlite3DbFree(db, pTable);
538 }
539 
540 /*
541 ** Unlink the given table from the hash tables and the delete the
542 ** table structure with all its indices and foreign keys.
543 */
544 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
545   Table *p;
546   Db *pDb;
547 
548   assert( db!=0 );
549   assert( iDb>=0 && iDb<db->nDb );
550   assert( zTabName && zTabName[0] );
551   pDb = &db->aDb[iDb];
552   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
553                         sqlite3Strlen30(zTabName),0);
554   sqlite3DeleteTable(p);
555   db->flags |= SQLITE_InternChanges;
556 }
557 
558 /*
559 ** Given a token, return a string that consists of the text of that
560 ** token.  Space to hold the returned string
561 ** is obtained from sqliteMalloc() and must be freed by the calling
562 ** function.
563 **
564 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
565 ** surround the body of the token are removed.
566 **
567 ** Tokens are often just pointers into the original SQL text and so
568 ** are not \000 terminated and are not persistent.  The returned string
569 ** is \000 terminated and is persistent.
570 */
571 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
572   char *zName;
573   if( pName ){
574     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
575     sqlite3Dequote(zName);
576   }else{
577     zName = 0;
578   }
579   return zName;
580 }
581 
582 /*
583 ** Open the sqlite_master table stored in database number iDb for
584 ** writing. The table is opened using cursor 0.
585 */
586 void sqlite3OpenMasterTable(Parse *p, int iDb){
587   Vdbe *v = sqlite3GetVdbe(p);
588   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
589   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
590   sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32);  /* 5 column table */
591   if( p->nTab==0 ){
592     p->nTab = 1;
593   }
594 }
595 
596 /*
597 ** Parameter zName points to a nul-terminated buffer containing the name
598 ** of a database ("main", "temp" or the name of an attached db). This
599 ** function returns the index of the named database in db->aDb[], or
600 ** -1 if the named db cannot be found.
601 */
602 int sqlite3FindDbName(sqlite3 *db, const char *zName){
603   int i = -1;         /* Database number */
604   if( zName ){
605     Db *pDb;
606     int n = sqlite3Strlen30(zName);
607     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
608       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
609           0==sqlite3StrICmp(pDb->zName, zName) ){
610         break;
611       }
612     }
613   }
614   return i;
615 }
616 
617 /*
618 ** The token *pName contains the name of a database (either "main" or
619 ** "temp" or the name of an attached db). This routine returns the
620 ** index of the named database in db->aDb[], or -1 if the named db
621 ** does not exist.
622 */
623 int sqlite3FindDb(sqlite3 *db, Token *pName){
624   int i;                               /* Database number */
625   char *zName;                         /* Name we are searching for */
626   zName = sqlite3NameFromToken(db, pName);
627   i = sqlite3FindDbName(db, zName);
628   sqlite3DbFree(db, zName);
629   return i;
630 }
631 
632 /* The table or view or trigger name is passed to this routine via tokens
633 ** pName1 and pName2. If the table name was fully qualified, for example:
634 **
635 ** CREATE TABLE xxx.yyy (...);
636 **
637 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
638 ** the table name is not fully qualified, i.e.:
639 **
640 ** CREATE TABLE yyy(...);
641 **
642 ** Then pName1 is set to "yyy" and pName2 is "".
643 **
644 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
645 ** pName2) that stores the unqualified table name.  The index of the
646 ** database "xxx" is returned.
647 */
648 int sqlite3TwoPartName(
649   Parse *pParse,      /* Parsing and code generating context */
650   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
651   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
652   Token **pUnqual     /* Write the unqualified object name here */
653 ){
654   int iDb;                    /* Database holding the object */
655   sqlite3 *db = pParse->db;
656 
657   if( ALWAYS(pName2!=0) && pName2->n>0 ){
658     if( db->init.busy ) {
659       sqlite3ErrorMsg(pParse, "corrupt database");
660       pParse->nErr++;
661       return -1;
662     }
663     *pUnqual = pName2;
664     iDb = sqlite3FindDb(db, pName1);
665     if( iDb<0 ){
666       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
667       pParse->nErr++;
668       return -1;
669     }
670   }else{
671     assert( db->init.iDb==0 || db->init.busy );
672     iDb = db->init.iDb;
673     *pUnqual = pName1;
674   }
675   return iDb;
676 }
677 
678 /*
679 ** This routine is used to check if the UTF-8 string zName is a legal
680 ** unqualified name for a new schema object (table, index, view or
681 ** trigger). All names are legal except those that begin with the string
682 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
683 ** is reserved for internal use.
684 */
685 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
686   if( !pParse->db->init.busy && pParse->nested==0
687           && (pParse->db->flags & SQLITE_WriteSchema)==0
688           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
689     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
690     return SQLITE_ERROR;
691   }
692   return SQLITE_OK;
693 }
694 
695 /*
696 ** Begin constructing a new table representation in memory.  This is
697 ** the first of several action routines that get called in response
698 ** to a CREATE TABLE statement.  In particular, this routine is called
699 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
700 ** flag is true if the table should be stored in the auxiliary database
701 ** file instead of in the main database file.  This is normally the case
702 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
703 ** CREATE and TABLE.
704 **
705 ** The new table record is initialized and put in pParse->pNewTable.
706 ** As more of the CREATE TABLE statement is parsed, additional action
707 ** routines will be called to add more information to this record.
708 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
709 ** is called to complete the construction of the new table record.
710 */
711 void sqlite3StartTable(
712   Parse *pParse,   /* Parser context */
713   Token *pName1,   /* First part of the name of the table or view */
714   Token *pName2,   /* Second part of the name of the table or view */
715   int isTemp,      /* True if this is a TEMP table */
716   int isView,      /* True if this is a VIEW */
717   int isVirtual,   /* True if this is a VIRTUAL table */
718   int noErr        /* Do nothing if table already exists */
719 ){
720   Table *pTable;
721   char *zName = 0; /* The name of the new table */
722   sqlite3 *db = pParse->db;
723   Vdbe *v;
724   int iDb;         /* Database number to create the table in */
725   Token *pName;    /* Unqualified name of the table to create */
726 
727   /* The table or view name to create is passed to this routine via tokens
728   ** pName1 and pName2. If the table name was fully qualified, for example:
729   **
730   ** CREATE TABLE xxx.yyy (...);
731   **
732   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
733   ** the table name is not fully qualified, i.e.:
734   **
735   ** CREATE TABLE yyy(...);
736   **
737   ** Then pName1 is set to "yyy" and pName2 is "".
738   **
739   ** The call below sets the pName pointer to point at the token (pName1 or
740   ** pName2) that stores the unqualified table name. The variable iDb is
741   ** set to the index of the database that the table or view is to be
742   ** created in.
743   */
744   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
745   if( iDb<0 ) return;
746   if( !OMIT_TEMPDB && isTemp && iDb>1 ){
747     /* If creating a temp table, the name may not be qualified */
748     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
749     return;
750   }
751   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
752 
753   pParse->sNameToken = *pName;
754   zName = sqlite3NameFromToken(db, pName);
755   if( zName==0 ) return;
756   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
757     goto begin_table_error;
758   }
759   if( db->init.iDb==1 ) isTemp = 1;
760 #ifndef SQLITE_OMIT_AUTHORIZATION
761   assert( (isTemp & 1)==isTemp );
762   {
763     int code;
764     char *zDb = db->aDb[iDb].zName;
765     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
766       goto begin_table_error;
767     }
768     if( isView ){
769       if( !OMIT_TEMPDB && isTemp ){
770         code = SQLITE_CREATE_TEMP_VIEW;
771       }else{
772         code = SQLITE_CREATE_VIEW;
773       }
774     }else{
775       if( !OMIT_TEMPDB && isTemp ){
776         code = SQLITE_CREATE_TEMP_TABLE;
777       }else{
778         code = SQLITE_CREATE_TABLE;
779       }
780     }
781     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
782       goto begin_table_error;
783     }
784   }
785 #endif
786 
787   /* Make sure the new table name does not collide with an existing
788   ** index or table name in the same database.  Issue an error message if
789   ** it does. The exception is if the statement being parsed was passed
790   ** to an sqlite3_declare_vtab() call. In that case only the column names
791   ** and types will be used, so there is no need to test for namespace
792   ** collisions.
793   */
794   if( !IN_DECLARE_VTAB ){
795     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
796       goto begin_table_error;
797     }
798     pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
799     if( pTable ){
800       if( !noErr ){
801         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
802       }
803       goto begin_table_error;
804     }
805     if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
806       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
807       goto begin_table_error;
808     }
809   }
810 
811   pTable = sqlite3DbMallocZero(db, sizeof(Table));
812   if( pTable==0 ){
813     db->mallocFailed = 1;
814     pParse->rc = SQLITE_NOMEM;
815     pParse->nErr++;
816     goto begin_table_error;
817   }
818   pTable->zName = zName;
819   pTable->iPKey = -1;
820   pTable->pSchema = db->aDb[iDb].pSchema;
821   pTable->nRef = 1;
822   pTable->dbMem = 0;
823   assert( pParse->pNewTable==0 );
824   pParse->pNewTable = pTable;
825 
826   /* If this is the magic sqlite_sequence table used by autoincrement,
827   ** then record a pointer to this table in the main database structure
828   ** so that INSERT can find the table easily.
829   */
830 #ifndef SQLITE_OMIT_AUTOINCREMENT
831   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
832     pTable->pSchema->pSeqTab = pTable;
833   }
834 #endif
835 
836   /* Begin generating the code that will insert the table record into
837   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
838   ** and allocate the record number for the table entry now.  Before any
839   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
840   ** indices to be created and the table record must come before the
841   ** indices.  Hence, the record number for the table must be allocated
842   ** now.
843   */
844   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
845     int j1;
846     int fileFormat;
847     int reg1, reg2, reg3;
848     sqlite3BeginWriteOperation(pParse, 0, iDb);
849 
850 #ifndef SQLITE_OMIT_VIRTUALTABLE
851     if( isVirtual ){
852       sqlite3VdbeAddOp0(v, OP_VBegin);
853     }
854 #endif
855 
856     /* If the file format and encoding in the database have not been set,
857     ** set them now.
858     */
859     reg1 = pParse->regRowid = ++pParse->nMem;
860     reg2 = pParse->regRoot = ++pParse->nMem;
861     reg3 = ++pParse->nMem;
862     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
863     sqlite3VdbeUsesBtree(v, iDb);
864     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
865     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
866                   1 : SQLITE_MAX_FILE_FORMAT;
867     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
868     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
869     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
870     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
871     sqlite3VdbeJumpHere(v, j1);
872 
873     /* This just creates a place-holder record in the sqlite_master table.
874     ** The record created does not contain anything yet.  It will be replaced
875     ** by the real entry in code generated at sqlite3EndTable().
876     **
877     ** The rowid for the new entry is left in register pParse->regRowid.
878     ** The root page number of the new table is left in reg pParse->regRoot.
879     ** The rowid and root page number values are needed by the code that
880     ** sqlite3EndTable will generate.
881     */
882 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
883     if( isView || isVirtual ){
884       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
885     }else
886 #endif
887     {
888       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
889     }
890     sqlite3OpenMasterTable(pParse, iDb);
891     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
892     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
893     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
894     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
895     sqlite3VdbeAddOp0(v, OP_Close);
896   }
897 
898   /* Normal (non-error) return. */
899   return;
900 
901   /* If an error occurs, we jump here */
902 begin_table_error:
903   sqlite3DbFree(db, zName);
904   return;
905 }
906 
907 /*
908 ** This macro is used to compare two strings in a case-insensitive manner.
909 ** It is slightly faster than calling sqlite3StrICmp() directly, but
910 ** produces larger code.
911 **
912 ** WARNING: This macro is not compatible with the strcmp() family. It
913 ** returns true if the two strings are equal, otherwise false.
914 */
915 #define STRICMP(x, y) (\
916 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
917 sqlite3UpperToLower[*(unsigned char *)(y)]     \
918 && sqlite3StrICmp((x)+1,(y)+1)==0 )
919 
920 /*
921 ** Add a new column to the table currently being constructed.
922 **
923 ** The parser calls this routine once for each column declaration
924 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
925 ** first to get things going.  Then this routine is called for each
926 ** column.
927 */
928 void sqlite3AddColumn(Parse *pParse, Token *pName){
929   Table *p;
930   int i;
931   char *z;
932   Column *pCol;
933   sqlite3 *db = pParse->db;
934   if( (p = pParse->pNewTable)==0 ) return;
935 #if SQLITE_MAX_COLUMN
936   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
937     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
938     return;
939   }
940 #endif
941   z = sqlite3NameFromToken(db, pName);
942   if( z==0 ) return;
943   for(i=0; i<p->nCol; i++){
944     if( STRICMP(z, p->aCol[i].zName) ){
945       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
946       sqlite3DbFree(db, z);
947       return;
948     }
949   }
950   if( (p->nCol & 0x7)==0 ){
951     Column *aNew;
952     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
953     if( aNew==0 ){
954       sqlite3DbFree(db, z);
955       return;
956     }
957     p->aCol = aNew;
958   }
959   pCol = &p->aCol[p->nCol];
960   memset(pCol, 0, sizeof(p->aCol[0]));
961   pCol->zName = z;
962 
963   /* If there is no type specified, columns have the default affinity
964   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
965   ** be called next to set pCol->affinity correctly.
966   */
967   pCol->affinity = SQLITE_AFF_NONE;
968   p->nCol++;
969 }
970 
971 /*
972 ** This routine is called by the parser while in the middle of
973 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
974 ** been seen on a column.  This routine sets the notNull flag on
975 ** the column currently under construction.
976 */
977 void sqlite3AddNotNull(Parse *pParse, int onError){
978   Table *p;
979   p = pParse->pNewTable;
980   if( p==0 || NEVER(p->nCol<1) ) return;
981   p->aCol[p->nCol-1].notNull = (u8)onError;
982 }
983 
984 /*
985 ** Scan the column type name zType (length nType) and return the
986 ** associated affinity type.
987 **
988 ** This routine does a case-independent search of zType for the
989 ** substrings in the following table. If one of the substrings is
990 ** found, the corresponding affinity is returned. If zType contains
991 ** more than one of the substrings, entries toward the top of
992 ** the table take priority. For example, if zType is 'BLOBINT',
993 ** SQLITE_AFF_INTEGER is returned.
994 **
995 ** Substring     | Affinity
996 ** --------------------------------
997 ** 'INT'         | SQLITE_AFF_INTEGER
998 ** 'CHAR'        | SQLITE_AFF_TEXT
999 ** 'CLOB'        | SQLITE_AFF_TEXT
1000 ** 'TEXT'        | SQLITE_AFF_TEXT
1001 ** 'BLOB'        | SQLITE_AFF_NONE
1002 ** 'REAL'        | SQLITE_AFF_REAL
1003 ** 'FLOA'        | SQLITE_AFF_REAL
1004 ** 'DOUB'        | SQLITE_AFF_REAL
1005 **
1006 ** If none of the substrings in the above table are found,
1007 ** SQLITE_AFF_NUMERIC is returned.
1008 */
1009 char sqlite3AffinityType(const char *zIn){
1010   u32 h = 0;
1011   char aff = SQLITE_AFF_NUMERIC;
1012 
1013   if( zIn ) while( zIn[0] ){
1014     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1015     zIn++;
1016     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1017       aff = SQLITE_AFF_TEXT;
1018     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1019       aff = SQLITE_AFF_TEXT;
1020     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1021       aff = SQLITE_AFF_TEXT;
1022     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1023         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1024       aff = SQLITE_AFF_NONE;
1025 #ifndef SQLITE_OMIT_FLOATING_POINT
1026     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1027         && aff==SQLITE_AFF_NUMERIC ){
1028       aff = SQLITE_AFF_REAL;
1029     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1030         && aff==SQLITE_AFF_NUMERIC ){
1031       aff = SQLITE_AFF_REAL;
1032     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1033         && aff==SQLITE_AFF_NUMERIC ){
1034       aff = SQLITE_AFF_REAL;
1035 #endif
1036     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1037       aff = SQLITE_AFF_INTEGER;
1038       break;
1039     }
1040   }
1041 
1042   return aff;
1043 }
1044 
1045 /*
1046 ** This routine is called by the parser while in the middle of
1047 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1048 ** token in the sequence of tokens that describe the type of the
1049 ** column currently under construction.   pLast is the last token
1050 ** in the sequence.  Use this information to construct a string
1051 ** that contains the typename of the column and store that string
1052 ** in zType.
1053 */
1054 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1055   Table *p;
1056   Column *pCol;
1057 
1058   p = pParse->pNewTable;
1059   if( p==0 || NEVER(p->nCol<1) ) return;
1060   pCol = &p->aCol[p->nCol-1];
1061   assert( pCol->zType==0 );
1062   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1063   pCol->affinity = sqlite3AffinityType(pCol->zType);
1064 }
1065 
1066 /*
1067 ** The expression is the default value for the most recently added column
1068 ** of the table currently under construction.
1069 **
1070 ** Default value expressions must be constant.  Raise an exception if this
1071 ** is not the case.
1072 **
1073 ** This routine is called by the parser while in the middle of
1074 ** parsing a CREATE TABLE statement.
1075 */
1076 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1077   Table *p;
1078   Column *pCol;
1079   sqlite3 *db = pParse->db;
1080   p = pParse->pNewTable;
1081   if( p!=0 ){
1082     pCol = &(p->aCol[p->nCol-1]);
1083     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
1084       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1085           pCol->zName);
1086     }else{
1087       /* A copy of pExpr is used instead of the original, as pExpr contains
1088       ** tokens that point to volatile memory. The 'span' of the expression
1089       ** is required by pragma table_info.
1090       */
1091       sqlite3ExprDelete(db, pCol->pDflt);
1092       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1093       sqlite3DbFree(db, pCol->zDflt);
1094       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1095                                      (int)(pSpan->zEnd - pSpan->zStart));
1096     }
1097   }
1098   sqlite3ExprDelete(db, pSpan->pExpr);
1099 }
1100 
1101 /*
1102 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1103 ** of columns that form the primary key.  If pList is NULL, then the
1104 ** most recently added column of the table is the primary key.
1105 **
1106 ** A table can have at most one primary key.  If the table already has
1107 ** a primary key (and this is the second primary key) then create an
1108 ** error.
1109 **
1110 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1111 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1112 ** field of the table under construction to be the index of the
1113 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1114 ** no INTEGER PRIMARY KEY.
1115 **
1116 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1117 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1118 */
1119 void sqlite3AddPrimaryKey(
1120   Parse *pParse,    /* Parsing context */
1121   ExprList *pList,  /* List of field names to be indexed */
1122   int onError,      /* What to do with a uniqueness conflict */
1123   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1124   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1125 ){
1126   Table *pTab = pParse->pNewTable;
1127   char *zType = 0;
1128   int iCol = -1, i;
1129   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1130   if( pTab->tabFlags & TF_HasPrimaryKey ){
1131     sqlite3ErrorMsg(pParse,
1132       "table \"%s\" has more than one primary key", pTab->zName);
1133     goto primary_key_exit;
1134   }
1135   pTab->tabFlags |= TF_HasPrimaryKey;
1136   if( pList==0 ){
1137     iCol = pTab->nCol - 1;
1138     pTab->aCol[iCol].isPrimKey = 1;
1139   }else{
1140     for(i=0; i<pList->nExpr; i++){
1141       for(iCol=0; iCol<pTab->nCol; iCol++){
1142         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1143           break;
1144         }
1145       }
1146       if( iCol<pTab->nCol ){
1147         pTab->aCol[iCol].isPrimKey = 1;
1148       }
1149     }
1150     if( pList->nExpr>1 ) iCol = -1;
1151   }
1152   if( iCol>=0 && iCol<pTab->nCol ){
1153     zType = pTab->aCol[iCol].zType;
1154   }
1155   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1156         && sortOrder==SQLITE_SO_ASC ){
1157     pTab->iPKey = iCol;
1158     pTab->keyConf = (u8)onError;
1159     assert( autoInc==0 || autoInc==1 );
1160     pTab->tabFlags |= autoInc*TF_Autoincrement;
1161   }else if( autoInc ){
1162 #ifndef SQLITE_OMIT_AUTOINCREMENT
1163     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1164        "INTEGER PRIMARY KEY");
1165 #endif
1166   }else{
1167     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1168     pList = 0;
1169   }
1170 
1171 primary_key_exit:
1172   sqlite3ExprListDelete(pParse->db, pList);
1173   return;
1174 }
1175 
1176 /*
1177 ** Add a new CHECK constraint to the table currently under construction.
1178 */
1179 void sqlite3AddCheckConstraint(
1180   Parse *pParse,    /* Parsing context */
1181   Expr *pCheckExpr  /* The check expression */
1182 ){
1183   sqlite3 *db = pParse->db;
1184 #ifndef SQLITE_OMIT_CHECK
1185   Table *pTab = pParse->pNewTable;
1186   if( pTab && !IN_DECLARE_VTAB ){
1187     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
1188   }else
1189 #endif
1190   {
1191     sqlite3ExprDelete(db, pCheckExpr);
1192   }
1193 }
1194 
1195 /*
1196 ** Set the collation function of the most recently parsed table column
1197 ** to the CollSeq given.
1198 */
1199 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1200   Table *p;
1201   int i;
1202   char *zColl;              /* Dequoted name of collation sequence */
1203   sqlite3 *db;
1204 
1205   if( (p = pParse->pNewTable)==0 ) return;
1206   i = p->nCol-1;
1207   db = pParse->db;
1208   zColl = sqlite3NameFromToken(db, pToken);
1209   if( !zColl ) return;
1210 
1211   if( sqlite3LocateCollSeq(pParse, zColl) ){
1212     Index *pIdx;
1213     p->aCol[i].zColl = zColl;
1214 
1215     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1216     ** then an index may have been created on this column before the
1217     ** collation type was added. Correct this if it is the case.
1218     */
1219     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1220       assert( pIdx->nColumn==1 );
1221       if( pIdx->aiColumn[0]==i ){
1222         pIdx->azColl[0] = p->aCol[i].zColl;
1223       }
1224     }
1225   }else{
1226     sqlite3DbFree(db, zColl);
1227   }
1228 }
1229 
1230 /*
1231 ** This function returns the collation sequence for database native text
1232 ** encoding identified by the string zName, length nName.
1233 **
1234 ** If the requested collation sequence is not available, or not available
1235 ** in the database native encoding, the collation factory is invoked to
1236 ** request it. If the collation factory does not supply such a sequence,
1237 ** and the sequence is available in another text encoding, then that is
1238 ** returned instead.
1239 **
1240 ** If no versions of the requested collations sequence are available, or
1241 ** another error occurs, NULL is returned and an error message written into
1242 ** pParse.
1243 **
1244 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1245 ** invokes the collation factory if the named collation cannot be found
1246 ** and generates an error message.
1247 **
1248 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1249 */
1250 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1251   sqlite3 *db = pParse->db;
1252   u8 enc = ENC(db);
1253   u8 initbusy = db->init.busy;
1254   CollSeq *pColl;
1255 
1256   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1257   if( !initbusy && (!pColl || !pColl->xCmp) ){
1258     pColl = sqlite3GetCollSeq(db, pColl, zName);
1259     if( !pColl ){
1260       sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
1261     }
1262   }
1263 
1264   return pColl;
1265 }
1266 
1267 
1268 /*
1269 ** Generate code that will increment the schema cookie.
1270 **
1271 ** The schema cookie is used to determine when the schema for the
1272 ** database changes.  After each schema change, the cookie value
1273 ** changes.  When a process first reads the schema it records the
1274 ** cookie.  Thereafter, whenever it goes to access the database,
1275 ** it checks the cookie to make sure the schema has not changed
1276 ** since it was last read.
1277 **
1278 ** This plan is not completely bullet-proof.  It is possible for
1279 ** the schema to change multiple times and for the cookie to be
1280 ** set back to prior value.  But schema changes are infrequent
1281 ** and the probability of hitting the same cookie value is only
1282 ** 1 chance in 2^32.  So we're safe enough.
1283 */
1284 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1285   int r1 = sqlite3GetTempReg(pParse);
1286   sqlite3 *db = pParse->db;
1287   Vdbe *v = pParse->pVdbe;
1288   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1289   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1290   sqlite3ReleaseTempReg(pParse, r1);
1291 }
1292 
1293 /*
1294 ** Measure the number of characters needed to output the given
1295 ** identifier.  The number returned includes any quotes used
1296 ** but does not include the null terminator.
1297 **
1298 ** The estimate is conservative.  It might be larger that what is
1299 ** really needed.
1300 */
1301 static int identLength(const char *z){
1302   int n;
1303   for(n=0; *z; n++, z++){
1304     if( *z=='"' ){ n++; }
1305   }
1306   return n + 2;
1307 }
1308 
1309 /*
1310 ** The first parameter is a pointer to an output buffer. The second
1311 ** parameter is a pointer to an integer that contains the offset at
1312 ** which to write into the output buffer. This function copies the
1313 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1314 ** to the specified offset in the buffer and updates *pIdx to refer
1315 ** to the first byte after the last byte written before returning.
1316 **
1317 ** If the string zSignedIdent consists entirely of alpha-numeric
1318 ** characters, does not begin with a digit and is not an SQL keyword,
1319 ** then it is copied to the output buffer exactly as it is. Otherwise,
1320 ** it is quoted using double-quotes.
1321 */
1322 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1323   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1324   int i, j, needQuote;
1325   i = *pIdx;
1326 
1327   for(j=0; zIdent[j]; j++){
1328     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1329   }
1330   needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1331   if( !needQuote ){
1332     needQuote = zIdent[j];
1333   }
1334 
1335   if( needQuote ) z[i++] = '"';
1336   for(j=0; zIdent[j]; j++){
1337     z[i++] = zIdent[j];
1338     if( zIdent[j]=='"' ) z[i++] = '"';
1339   }
1340   if( needQuote ) z[i++] = '"';
1341   z[i] = 0;
1342   *pIdx = i;
1343 }
1344 
1345 /*
1346 ** Generate a CREATE TABLE statement appropriate for the given
1347 ** table.  Memory to hold the text of the statement is obtained
1348 ** from sqliteMalloc() and must be freed by the calling function.
1349 */
1350 static char *createTableStmt(sqlite3 *db, Table *p){
1351   int i, k, n;
1352   char *zStmt;
1353   char *zSep, *zSep2, *zEnd;
1354   Column *pCol;
1355   n = 0;
1356   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1357     n += identLength(pCol->zName) + 5;
1358   }
1359   n += identLength(p->zName);
1360   if( n<50 ){
1361     zSep = "";
1362     zSep2 = ",";
1363     zEnd = ")";
1364   }else{
1365     zSep = "\n  ";
1366     zSep2 = ",\n  ";
1367     zEnd = "\n)";
1368   }
1369   n += 35 + 6*p->nCol;
1370   zStmt = sqlite3Malloc( n );
1371   if( zStmt==0 ){
1372     db->mallocFailed = 1;
1373     return 0;
1374   }
1375   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1376   k = sqlite3Strlen30(zStmt);
1377   identPut(zStmt, &k, p->zName);
1378   zStmt[k++] = '(';
1379   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1380     static const char * const azType[] = {
1381         /* SQLITE_AFF_TEXT    */ " TEXT",
1382         /* SQLITE_AFF_NONE    */ "",
1383         /* SQLITE_AFF_NUMERIC */ " NUM",
1384         /* SQLITE_AFF_INTEGER */ " INT",
1385         /* SQLITE_AFF_REAL    */ " REAL"
1386     };
1387     int len;
1388     const char *zType;
1389 
1390     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1391     k += sqlite3Strlen30(&zStmt[k]);
1392     zSep = zSep2;
1393     identPut(zStmt, &k, pCol->zName);
1394     assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
1395     assert( pCol->affinity-SQLITE_AFF_TEXT < sizeof(azType)/sizeof(azType[0]) );
1396     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1397     testcase( pCol->affinity==SQLITE_AFF_NONE );
1398     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1399     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1400     testcase( pCol->affinity==SQLITE_AFF_REAL );
1401 
1402     zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
1403     len = sqlite3Strlen30(zType);
1404     assert( pCol->affinity==SQLITE_AFF_NONE
1405             || pCol->affinity==sqlite3AffinityType(zType) );
1406     memcpy(&zStmt[k], zType, len);
1407     k += len;
1408     assert( k<=n );
1409   }
1410   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1411   return zStmt;
1412 }
1413 
1414 /*
1415 ** This routine is called to report the final ")" that terminates
1416 ** a CREATE TABLE statement.
1417 **
1418 ** The table structure that other action routines have been building
1419 ** is added to the internal hash tables, assuming no errors have
1420 ** occurred.
1421 **
1422 ** An entry for the table is made in the master table on disk, unless
1423 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1424 ** it means we are reading the sqlite_master table because we just
1425 ** connected to the database or because the sqlite_master table has
1426 ** recently changed, so the entry for this table already exists in
1427 ** the sqlite_master table.  We do not want to create it again.
1428 **
1429 ** If the pSelect argument is not NULL, it means that this routine
1430 ** was called to create a table generated from a
1431 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1432 ** the new table will match the result set of the SELECT.
1433 */
1434 void sqlite3EndTable(
1435   Parse *pParse,          /* Parse context */
1436   Token *pCons,           /* The ',' token after the last column defn. */
1437   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
1438   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1439 ){
1440   Table *p;
1441   sqlite3 *db = pParse->db;
1442   int iDb;
1443 
1444   if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
1445     return;
1446   }
1447   p = pParse->pNewTable;
1448   if( p==0 ) return;
1449 
1450   assert( !db->init.busy || !pSelect );
1451 
1452   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1453 
1454 #ifndef SQLITE_OMIT_CHECK
1455   /* Resolve names in all CHECK constraint expressions.
1456   */
1457   if( p->pCheck ){
1458     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
1459     NameContext sNC;                /* Name context for pParse->pNewTable */
1460 
1461     memset(&sNC, 0, sizeof(sNC));
1462     memset(&sSrc, 0, sizeof(sSrc));
1463     sSrc.nSrc = 1;
1464     sSrc.a[0].zName = p->zName;
1465     sSrc.a[0].pTab = p;
1466     sSrc.a[0].iCursor = -1;
1467     sNC.pParse = pParse;
1468     sNC.pSrcList = &sSrc;
1469     sNC.isCheck = 1;
1470     if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
1471       return;
1472     }
1473   }
1474 #endif /* !defined(SQLITE_OMIT_CHECK) */
1475 
1476   /* If the db->init.busy is 1 it means we are reading the SQL off the
1477   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1478   ** So do not write to the disk again.  Extract the root page number
1479   ** for the table from the db->init.newTnum field.  (The page number
1480   ** should have been put there by the sqliteOpenCb routine.)
1481   */
1482   if( db->init.busy ){
1483     p->tnum = db->init.newTnum;
1484   }
1485 
1486   /* If not initializing, then create a record for the new table
1487   ** in the SQLITE_MASTER table of the database.
1488   **
1489   ** If this is a TEMPORARY table, write the entry into the auxiliary
1490   ** file instead of into the main database file.
1491   */
1492   if( !db->init.busy ){
1493     int n;
1494     Vdbe *v;
1495     char *zType;    /* "view" or "table" */
1496     char *zType2;   /* "VIEW" or "TABLE" */
1497     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1498 
1499     v = sqlite3GetVdbe(pParse);
1500     if( NEVER(v==0) ) return;
1501 
1502     sqlite3VdbeAddOp1(v, OP_Close, 0);
1503 
1504     /*
1505     ** Initialize zType for the new view or table.
1506     */
1507     if( p->pSelect==0 ){
1508       /* A regular table */
1509       zType = "table";
1510       zType2 = "TABLE";
1511 #ifndef SQLITE_OMIT_VIEW
1512     }else{
1513       /* A view */
1514       zType = "view";
1515       zType2 = "VIEW";
1516 #endif
1517     }
1518 
1519     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1520     ** statement to populate the new table. The root-page number for the
1521     ** new table is in register pParse->regRoot.
1522     **
1523     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1524     ** suitable state to query for the column names and types to be used
1525     ** by the new table.
1526     **
1527     ** A shared-cache write-lock is not required to write to the new table,
1528     ** as a schema-lock must have already been obtained to create it. Since
1529     ** a schema-lock excludes all other database users, the write-lock would
1530     ** be redundant.
1531     */
1532     if( pSelect ){
1533       SelectDest dest;
1534       Table *pSelTab;
1535 
1536       assert(pParse->nTab==1);
1537       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1538       sqlite3VdbeChangeP5(v, 1);
1539       pParse->nTab = 2;
1540       sqlite3SelectDestInit(&dest, SRT_Table, 1);
1541       sqlite3Select(pParse, pSelect, &dest);
1542       sqlite3VdbeAddOp1(v, OP_Close, 1);
1543       if( pParse->nErr==0 ){
1544         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1545         if( pSelTab==0 ) return;
1546         assert( p->aCol==0 );
1547         p->nCol = pSelTab->nCol;
1548         p->aCol = pSelTab->aCol;
1549         pSelTab->nCol = 0;
1550         pSelTab->aCol = 0;
1551         sqlite3DeleteTable(pSelTab);
1552       }
1553     }
1554 
1555     /* Compute the complete text of the CREATE statement */
1556     if( pSelect ){
1557       zStmt = createTableStmt(db, p);
1558     }else{
1559       n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
1560       zStmt = sqlite3MPrintf(db,
1561           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1562       );
1563     }
1564 
1565     /* A slot for the record has already been allocated in the
1566     ** SQLITE_MASTER table.  We just need to update that slot with all
1567     ** the information we've collected.
1568     */
1569     sqlite3NestedParse(pParse,
1570       "UPDATE %Q.%s "
1571          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1572        "WHERE rowid=#%d",
1573       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1574       zType,
1575       p->zName,
1576       p->zName,
1577       pParse->regRoot,
1578       zStmt,
1579       pParse->regRowid
1580     );
1581     sqlite3DbFree(db, zStmt);
1582     sqlite3ChangeCookie(pParse, iDb);
1583 
1584 #ifndef SQLITE_OMIT_AUTOINCREMENT
1585     /* Check to see if we need to create an sqlite_sequence table for
1586     ** keeping track of autoincrement keys.
1587     */
1588     if( p->tabFlags & TF_Autoincrement ){
1589       Db *pDb = &db->aDb[iDb];
1590       if( pDb->pSchema->pSeqTab==0 ){
1591         sqlite3NestedParse(pParse,
1592           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1593           pDb->zName
1594         );
1595       }
1596     }
1597 #endif
1598 
1599     /* Reparse everything to update our internal data structures */
1600     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
1601         sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
1602   }
1603 
1604 
1605   /* Add the table to the in-memory representation of the database.
1606   */
1607   if( db->init.busy ){
1608     Table *pOld;
1609     Schema *pSchema = p->pSchema;
1610     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
1611                              sqlite3Strlen30(p->zName),p);
1612     if( pOld ){
1613       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
1614       db->mallocFailed = 1;
1615       return;
1616     }
1617     pParse->pNewTable = 0;
1618     db->nTable++;
1619     db->flags |= SQLITE_InternChanges;
1620 
1621 #ifndef SQLITE_OMIT_ALTERTABLE
1622     if( !p->pSelect ){
1623       const char *zName = (const char *)pParse->sNameToken.z;
1624       int nName;
1625       assert( !pSelect && pCons && pEnd );
1626       if( pCons->z==0 ){
1627         pCons = pEnd;
1628       }
1629       nName = (int)((const char *)pCons->z - zName);
1630       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1631     }
1632 #endif
1633   }
1634 }
1635 
1636 #ifndef SQLITE_OMIT_VIEW
1637 /*
1638 ** The parser calls this routine in order to create a new VIEW
1639 */
1640 void sqlite3CreateView(
1641   Parse *pParse,     /* The parsing context */
1642   Token *pBegin,     /* The CREATE token that begins the statement */
1643   Token *pName1,     /* The token that holds the name of the view */
1644   Token *pName2,     /* The token that holds the name of the view */
1645   Select *pSelect,   /* A SELECT statement that will become the new view */
1646   int isTemp,        /* TRUE for a TEMPORARY view */
1647   int noErr          /* Suppress error messages if VIEW already exists */
1648 ){
1649   Table *p;
1650   int n;
1651   const char *z;
1652   Token sEnd;
1653   DbFixer sFix;
1654   Token *pName;
1655   int iDb;
1656   sqlite3 *db = pParse->db;
1657 
1658   if( pParse->nVar>0 ){
1659     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1660     sqlite3SelectDelete(db, pSelect);
1661     return;
1662   }
1663   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1664   p = pParse->pNewTable;
1665   if( p==0 ){
1666     sqlite3SelectDelete(db, pSelect);
1667     return;
1668   }
1669   assert( pParse->nErr==0 ); /* If sqlite3StartTable return non-NULL then
1670                              ** there could not have been an error */
1671   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1672   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1673   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1674     && sqlite3FixSelect(&sFix, pSelect)
1675   ){
1676     sqlite3SelectDelete(db, pSelect);
1677     return;
1678   }
1679 
1680   /* Make a copy of the entire SELECT statement that defines the view.
1681   ** This will force all the Expr.token.z values to be dynamically
1682   ** allocated rather than point to the input string - which means that
1683   ** they will persist after the current sqlite3_exec() call returns.
1684   */
1685   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1686   sqlite3SelectDelete(db, pSelect);
1687   if( db->mallocFailed ){
1688     return;
1689   }
1690   if( !db->init.busy ){
1691     sqlite3ViewGetColumnNames(pParse, p);
1692   }
1693 
1694   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
1695   ** the end.
1696   */
1697   sEnd = pParse->sLastToken;
1698   if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
1699     sEnd.z += sEnd.n;
1700   }
1701   sEnd.n = 0;
1702   n = (int)(sEnd.z - pBegin->z);
1703   z = pBegin->z;
1704   while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
1705   sEnd.z = &z[n-1];
1706   sEnd.n = 1;
1707 
1708   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1709   sqlite3EndTable(pParse, 0, &sEnd, 0);
1710   return;
1711 }
1712 #endif /* SQLITE_OMIT_VIEW */
1713 
1714 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1715 /*
1716 ** The Table structure pTable is really a VIEW.  Fill in the names of
1717 ** the columns of the view in the pTable structure.  Return the number
1718 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
1719 */
1720 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1721   Table *pSelTab;   /* A fake table from which we get the result set */
1722   Select *pSel;     /* Copy of the SELECT that implements the view */
1723   int nErr = 0;     /* Number of errors encountered */
1724   int n;            /* Temporarily holds the number of cursors assigned */
1725   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
1726   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1727 
1728   assert( pTable );
1729 
1730 #ifndef SQLITE_OMIT_VIRTUALTABLE
1731   if( sqlite3VtabCallConnect(pParse, pTable) ){
1732     return SQLITE_ERROR;
1733   }
1734   if( IsVirtual(pTable) ) return 0;
1735 #endif
1736 
1737 #ifndef SQLITE_OMIT_VIEW
1738   /* A positive nCol means the columns names for this view are
1739   ** already known.
1740   */
1741   if( pTable->nCol>0 ) return 0;
1742 
1743   /* A negative nCol is a special marker meaning that we are currently
1744   ** trying to compute the column names.  If we enter this routine with
1745   ** a negative nCol, it means two or more views form a loop, like this:
1746   **
1747   **     CREATE VIEW one AS SELECT * FROM two;
1748   **     CREATE VIEW two AS SELECT * FROM one;
1749   **
1750   ** Actually, the error above is now caught prior to reaching this point.
1751   ** But the following test is still important as it does come up
1752   ** in the following:
1753   **
1754   **     CREATE TABLE main.ex1(a);
1755   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
1756   **     SELECT * FROM temp.ex1;
1757   */
1758   if( pTable->nCol<0 ){
1759     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1760     return 1;
1761   }
1762   assert( pTable->nCol>=0 );
1763 
1764   /* If we get this far, it means we need to compute the table names.
1765   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1766   ** "*" elements in the results set of the view and will assign cursors
1767   ** to the elements of the FROM clause.  But we do not want these changes
1768   ** to be permanent.  So the computation is done on a copy of the SELECT
1769   ** statement that defines the view.
1770   */
1771   assert( pTable->pSelect );
1772   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
1773   if( pSel ){
1774     u8 enableLookaside = db->lookaside.bEnabled;
1775     n = pParse->nTab;
1776     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1777     pTable->nCol = -1;
1778     db->lookaside.bEnabled = 0;
1779 #ifndef SQLITE_OMIT_AUTHORIZATION
1780     xAuth = db->xAuth;
1781     db->xAuth = 0;
1782     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1783     db->xAuth = xAuth;
1784 #else
1785     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1786 #endif
1787     db->lookaside.bEnabled = enableLookaside;
1788     pParse->nTab = n;
1789     if( pSelTab ){
1790       assert( pTable->aCol==0 );
1791       pTable->nCol = pSelTab->nCol;
1792       pTable->aCol = pSelTab->aCol;
1793       pSelTab->nCol = 0;
1794       pSelTab->aCol = 0;
1795       sqlite3DeleteTable(pSelTab);
1796       pTable->pSchema->flags |= DB_UnresetViews;
1797     }else{
1798       pTable->nCol = 0;
1799       nErr++;
1800     }
1801     sqlite3SelectDelete(db, pSel);
1802   } else {
1803     nErr++;
1804   }
1805 #endif /* SQLITE_OMIT_VIEW */
1806   return nErr;
1807 }
1808 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1809 
1810 #ifndef SQLITE_OMIT_VIEW
1811 /*
1812 ** Clear the column names from every VIEW in database idx.
1813 */
1814 static void sqliteViewResetAll(sqlite3 *db, int idx){
1815   HashElem *i;
1816   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1817   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1818     Table *pTab = sqliteHashData(i);
1819     if( pTab->pSelect ){
1820       sqliteResetColumnNames(pTab);
1821     }
1822   }
1823   DbClearProperty(db, idx, DB_UnresetViews);
1824 }
1825 #else
1826 # define sqliteViewResetAll(A,B)
1827 #endif /* SQLITE_OMIT_VIEW */
1828 
1829 /*
1830 ** This function is called by the VDBE to adjust the internal schema
1831 ** used by SQLite when the btree layer moves a table root page. The
1832 ** root-page of a table or index in database iDb has changed from iFrom
1833 ** to iTo.
1834 **
1835 ** Ticket #1728:  The symbol table might still contain information
1836 ** on tables and/or indices that are the process of being deleted.
1837 ** If you are unlucky, one of those deleted indices or tables might
1838 ** have the same rootpage number as the real table or index that is
1839 ** being moved.  So we cannot stop searching after the first match
1840 ** because the first match might be for one of the deleted indices
1841 ** or tables and not the table/index that is actually being moved.
1842 ** We must continue looping until all tables and indices with
1843 ** rootpage==iFrom have been converted to have a rootpage of iTo
1844 ** in order to be certain that we got the right one.
1845 */
1846 #ifndef SQLITE_OMIT_AUTOVACUUM
1847 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
1848   HashElem *pElem;
1849   Hash *pHash;
1850 
1851   pHash = &pDb->pSchema->tblHash;
1852   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1853     Table *pTab = sqliteHashData(pElem);
1854     if( pTab->tnum==iFrom ){
1855       pTab->tnum = iTo;
1856     }
1857   }
1858   pHash = &pDb->pSchema->idxHash;
1859   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1860     Index *pIdx = sqliteHashData(pElem);
1861     if( pIdx->tnum==iFrom ){
1862       pIdx->tnum = iTo;
1863     }
1864   }
1865 }
1866 #endif
1867 
1868 /*
1869 ** Write code to erase the table with root-page iTable from database iDb.
1870 ** Also write code to modify the sqlite_master table and internal schema
1871 ** if a root-page of another table is moved by the btree-layer whilst
1872 ** erasing iTable (this can happen with an auto-vacuum database).
1873 */
1874 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1875   Vdbe *v = sqlite3GetVdbe(pParse);
1876   int r1 = sqlite3GetTempReg(pParse);
1877   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1878 #ifndef SQLITE_OMIT_AUTOVACUUM
1879   /* OP_Destroy stores an in integer r1. If this integer
1880   ** is non-zero, then it is the root page number of a table moved to
1881   ** location iTable. The following code modifies the sqlite_master table to
1882   ** reflect this.
1883   **
1884   ** The "#NNN" in the SQL is a special constant that means whatever value
1885   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
1886   ** token for additional information.
1887   */
1888   sqlite3NestedParse(pParse,
1889      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1890      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1891 #endif
1892   sqlite3ReleaseTempReg(pParse, r1);
1893 }
1894 
1895 /*
1896 ** Write VDBE code to erase table pTab and all associated indices on disk.
1897 ** Code to update the sqlite_master tables and internal schema definitions
1898 ** in case a root-page belonging to another table is moved by the btree layer
1899 ** is also added (this can happen with an auto-vacuum database).
1900 */
1901 static void destroyTable(Parse *pParse, Table *pTab){
1902 #ifdef SQLITE_OMIT_AUTOVACUUM
1903   Index *pIdx;
1904   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1905   destroyRootPage(pParse, pTab->tnum, iDb);
1906   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1907     destroyRootPage(pParse, pIdx->tnum, iDb);
1908   }
1909 #else
1910   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1911   ** is not defined), then it is important to call OP_Destroy on the
1912   ** table and index root-pages in order, starting with the numerically
1913   ** largest root-page number. This guarantees that none of the root-pages
1914   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1915   ** following were coded:
1916   **
1917   ** OP_Destroy 4 0
1918   ** ...
1919   ** OP_Destroy 5 0
1920   **
1921   ** and root page 5 happened to be the largest root-page number in the
1922   ** database, then root page 5 would be moved to page 4 by the
1923   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1924   ** a free-list page.
1925   */
1926   int iTab = pTab->tnum;
1927   int iDestroyed = 0;
1928 
1929   while( 1 ){
1930     Index *pIdx;
1931     int iLargest = 0;
1932 
1933     if( iDestroyed==0 || iTab<iDestroyed ){
1934       iLargest = iTab;
1935     }
1936     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1937       int iIdx = pIdx->tnum;
1938       assert( pIdx->pSchema==pTab->pSchema );
1939       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1940         iLargest = iIdx;
1941       }
1942     }
1943     if( iLargest==0 ){
1944       return;
1945     }else{
1946       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1947       destroyRootPage(pParse, iLargest, iDb);
1948       iDestroyed = iLargest;
1949     }
1950   }
1951 #endif
1952 }
1953 
1954 /*
1955 ** This routine is called to do the work of a DROP TABLE statement.
1956 ** pName is the name of the table to be dropped.
1957 */
1958 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
1959   Table *pTab;
1960   Vdbe *v;
1961   sqlite3 *db = pParse->db;
1962   int iDb;
1963 
1964   if( db->mallocFailed ){
1965     goto exit_drop_table;
1966   }
1967   assert( pParse->nErr==0 );
1968   assert( pName->nSrc==1 );
1969   pTab = sqlite3LocateTable(pParse, isView,
1970                             pName->a[0].zName, pName->a[0].zDatabase);
1971 
1972   if( pTab==0 ){
1973     if( noErr ){
1974       sqlite3ErrorClear(pParse);
1975     }
1976     goto exit_drop_table;
1977   }
1978   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1979   assert( iDb>=0 && iDb<db->nDb );
1980 
1981   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
1982   ** it is initialized.
1983   */
1984   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
1985     goto exit_drop_table;
1986   }
1987 #ifndef SQLITE_OMIT_AUTHORIZATION
1988   {
1989     int code;
1990     const char *zTab = SCHEMA_TABLE(iDb);
1991     const char *zDb = db->aDb[iDb].zName;
1992     const char *zArg2 = 0;
1993     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
1994       goto exit_drop_table;
1995     }
1996     if( isView ){
1997       if( !OMIT_TEMPDB && iDb==1 ){
1998         code = SQLITE_DROP_TEMP_VIEW;
1999       }else{
2000         code = SQLITE_DROP_VIEW;
2001       }
2002 #ifndef SQLITE_OMIT_VIRTUALTABLE
2003     }else if( IsVirtual(pTab) ){
2004       code = SQLITE_DROP_VTABLE;
2005       zArg2 = pTab->pMod->zName;
2006 #endif
2007     }else{
2008       if( !OMIT_TEMPDB && iDb==1 ){
2009         code = SQLITE_DROP_TEMP_TABLE;
2010       }else{
2011         code = SQLITE_DROP_TABLE;
2012       }
2013     }
2014     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2015       goto exit_drop_table;
2016     }
2017     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2018       goto exit_drop_table;
2019     }
2020   }
2021 #endif
2022   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
2023     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2024     goto exit_drop_table;
2025   }
2026 
2027 #ifndef SQLITE_OMIT_VIEW
2028   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2029   ** on a table.
2030   */
2031   if( isView && pTab->pSelect==0 ){
2032     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2033     goto exit_drop_table;
2034   }
2035   if( !isView && pTab->pSelect ){
2036     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2037     goto exit_drop_table;
2038   }
2039 #endif
2040 
2041   /* Generate code to remove the table from the master table
2042   ** on disk.
2043   */
2044   v = sqlite3GetVdbe(pParse);
2045   if( v ){
2046     Trigger *pTrigger;
2047     Db *pDb = &db->aDb[iDb];
2048     sqlite3BeginWriteOperation(pParse, 1, iDb);
2049 
2050 #ifndef SQLITE_OMIT_VIRTUALTABLE
2051     if( IsVirtual(pTab) ){
2052       sqlite3VdbeAddOp0(v, OP_VBegin);
2053     }
2054 #endif
2055 
2056     /* Drop all triggers associated with the table being dropped. Code
2057     ** is generated to remove entries from sqlite_master and/or
2058     ** sqlite_temp_master if required.
2059     */
2060     pTrigger = sqlite3TriggerList(pParse, pTab);
2061     while( pTrigger ){
2062       assert( pTrigger->pSchema==pTab->pSchema ||
2063           pTrigger->pSchema==db->aDb[1].pSchema );
2064       sqlite3DropTriggerPtr(pParse, pTrigger);
2065       pTrigger = pTrigger->pNext;
2066     }
2067 
2068 #ifndef SQLITE_OMIT_AUTOINCREMENT
2069     /* Remove any entries of the sqlite_sequence table associated with
2070     ** the table being dropped. This is done before the table is dropped
2071     ** at the btree level, in case the sqlite_sequence table needs to
2072     ** move as a result of the drop (can happen in auto-vacuum mode).
2073     */
2074     if( pTab->tabFlags & TF_Autoincrement ){
2075       sqlite3NestedParse(pParse,
2076         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
2077         pDb->zName, pTab->zName
2078       );
2079     }
2080 #endif
2081 
2082     /* Drop all SQLITE_MASTER table and index entries that refer to the
2083     ** table. The program name loops through the master table and deletes
2084     ** every row that refers to a table of the same name as the one being
2085     ** dropped. Triggers are handled seperately because a trigger can be
2086     ** created in the temp database that refers to a table in another
2087     ** database.
2088     */
2089     sqlite3NestedParse(pParse,
2090         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2091         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2092 
2093     /* Drop any statistics from the sqlite_stat1 table, if it exists */
2094     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2095       sqlite3NestedParse(pParse,
2096         "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
2097       );
2098     }
2099 
2100     if( !isView && !IsVirtual(pTab) ){
2101       destroyTable(pParse, pTab);
2102     }
2103 
2104     /* Remove the table entry from SQLite's internal schema and modify
2105     ** the schema cookie.
2106     */
2107     if( IsVirtual(pTab) ){
2108       sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2109     }
2110     sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2111     sqlite3ChangeCookie(pParse, iDb);
2112   }
2113   sqliteViewResetAll(db, iDb);
2114 
2115 exit_drop_table:
2116   sqlite3SrcListDelete(db, pName);
2117 }
2118 
2119 /*
2120 ** This routine is called to create a new foreign key on the table
2121 ** currently under construction.  pFromCol determines which columns
2122 ** in the current table point to the foreign key.  If pFromCol==0 then
2123 ** connect the key to the last column inserted.  pTo is the name of
2124 ** the table referred to.  pToCol is a list of tables in the other
2125 ** pTo table that the foreign key points to.  flags contains all
2126 ** information about the conflict resolution algorithms specified
2127 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2128 **
2129 ** An FKey structure is created and added to the table currently
2130 ** under construction in the pParse->pNewTable field.
2131 **
2132 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2133 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2134 */
2135 void sqlite3CreateForeignKey(
2136   Parse *pParse,       /* Parsing context */
2137   ExprList *pFromCol,  /* Columns in this table that point to other table */
2138   Token *pTo,          /* Name of the other table */
2139   ExprList *pToCol,    /* Columns in the other table */
2140   int flags            /* Conflict resolution algorithms. */
2141 ){
2142   sqlite3 *db = pParse->db;
2143 #ifndef SQLITE_OMIT_FOREIGN_KEY
2144   FKey *pFKey = 0;
2145   Table *p = pParse->pNewTable;
2146   int nByte;
2147   int i;
2148   int nCol;
2149   char *z;
2150 
2151   assert( pTo!=0 );
2152   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2153   if( pFromCol==0 ){
2154     int iCol = p->nCol-1;
2155     if( NEVER(iCol<0) ) goto fk_end;
2156     if( pToCol && pToCol->nExpr!=1 ){
2157       sqlite3ErrorMsg(pParse, "foreign key on %s"
2158          " should reference only one column of table %T",
2159          p->aCol[iCol].zName, pTo);
2160       goto fk_end;
2161     }
2162     nCol = 1;
2163   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2164     sqlite3ErrorMsg(pParse,
2165         "number of columns in foreign key does not match the number of "
2166         "columns in the referenced table");
2167     goto fk_end;
2168   }else{
2169     nCol = pFromCol->nExpr;
2170   }
2171   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2172   if( pToCol ){
2173     for(i=0; i<pToCol->nExpr; i++){
2174       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2175     }
2176   }
2177   pFKey = sqlite3DbMallocZero(db, nByte );
2178   if( pFKey==0 ){
2179     goto fk_end;
2180   }
2181   pFKey->pFrom = p;
2182   pFKey->pNextFrom = p->pFKey;
2183   z = (char*)&pFKey->aCol[nCol];
2184   pFKey->zTo = z;
2185   memcpy(z, pTo->z, pTo->n);
2186   z[pTo->n] = 0;
2187   sqlite3Dequote(z);
2188   z += pTo->n+1;
2189   pFKey->nCol = nCol;
2190   if( pFromCol==0 ){
2191     pFKey->aCol[0].iFrom = p->nCol-1;
2192   }else{
2193     for(i=0; i<nCol; i++){
2194       int j;
2195       for(j=0; j<p->nCol; j++){
2196         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2197           pFKey->aCol[i].iFrom = j;
2198           break;
2199         }
2200       }
2201       if( j>=p->nCol ){
2202         sqlite3ErrorMsg(pParse,
2203           "unknown column \"%s\" in foreign key definition",
2204           pFromCol->a[i].zName);
2205         goto fk_end;
2206       }
2207     }
2208   }
2209   if( pToCol ){
2210     for(i=0; i<nCol; i++){
2211       int n = sqlite3Strlen30(pToCol->a[i].zName);
2212       pFKey->aCol[i].zCol = z;
2213       memcpy(z, pToCol->a[i].zName, n);
2214       z[n] = 0;
2215       z += n+1;
2216     }
2217   }
2218   pFKey->isDeferred = 0;
2219   pFKey->deleteConf = (u8)(flags & 0xff);
2220   pFKey->updateConf = (u8)((flags >> 8 ) & 0xff);
2221   pFKey->insertConf = (u8)((flags >> 16 ) & 0xff);
2222 
2223   /* Link the foreign key to the table as the last step.
2224   */
2225   p->pFKey = pFKey;
2226   pFKey = 0;
2227 
2228 fk_end:
2229   sqlite3DbFree(db, pFKey);
2230 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2231   sqlite3ExprListDelete(db, pFromCol);
2232   sqlite3ExprListDelete(db, pToCol);
2233 }
2234 
2235 /*
2236 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2237 ** clause is seen as part of a foreign key definition.  The isDeferred
2238 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2239 ** The behavior of the most recently created foreign key is adjusted
2240 ** accordingly.
2241 */
2242 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2243 #ifndef SQLITE_OMIT_FOREIGN_KEY
2244   Table *pTab;
2245   FKey *pFKey;
2246   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2247   assert( isDeferred==0 || isDeferred==1 );
2248   pFKey->isDeferred = (u8)isDeferred;
2249 #endif
2250 }
2251 
2252 /*
2253 ** Generate code that will erase and refill index *pIdx.  This is
2254 ** used to initialize a newly created index or to recompute the
2255 ** content of an index in response to a REINDEX command.
2256 **
2257 ** if memRootPage is not negative, it means that the index is newly
2258 ** created.  The register specified by memRootPage contains the
2259 ** root page number of the index.  If memRootPage is negative, then
2260 ** the index already exists and must be cleared before being refilled and
2261 ** the root page number of the index is taken from pIndex->tnum.
2262 */
2263 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2264   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2265   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2266   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2267   int addr1;                     /* Address of top of loop */
2268   int tnum;                      /* Root page of index */
2269   Vdbe *v;                       /* Generate code into this virtual machine */
2270   KeyInfo *pKey;                 /* KeyInfo for index */
2271   int regIdxKey;                 /* Registers containing the index key */
2272   int regRecord;                 /* Register holding assemblied index record */
2273   sqlite3 *db = pParse->db;      /* The database connection */
2274   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2275 
2276 #ifndef SQLITE_OMIT_AUTHORIZATION
2277   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2278       db->aDb[iDb].zName ) ){
2279     return;
2280   }
2281 #endif
2282 
2283   /* Require a write-lock on the table to perform this operation */
2284   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2285 
2286   v = sqlite3GetVdbe(pParse);
2287   if( v==0 ) return;
2288   if( memRootPage>=0 ){
2289     tnum = memRootPage;
2290   }else{
2291     tnum = pIndex->tnum;
2292     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2293   }
2294   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2295   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2296                     (char *)pKey, P4_KEYINFO_HANDOFF);
2297   if( memRootPage>=0 ){
2298     sqlite3VdbeChangeP5(v, 1);
2299   }
2300   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2301   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2302   regRecord = sqlite3GetTempReg(pParse);
2303   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2304   if( pIndex->onError!=OE_None ){
2305     const int regRowid = regIdxKey + pIndex->nColumn;
2306     const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
2307     void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
2308 
2309     /* The registers accessed by the OP_IsUnique opcode were allocated
2310     ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
2311     ** call above. Just before that function was freed they were released
2312     ** (made available to the compiler for reuse) using
2313     ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
2314     ** opcode use the values stored within seems dangerous. However, since
2315     ** we can be sure that no other temp registers have been allocated
2316     ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
2317     */
2318     sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
2319     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
2320                     "indexed columns are not unique", P4_STATIC);
2321   }
2322   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2323   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2324   sqlite3ReleaseTempReg(pParse, regRecord);
2325   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2326   sqlite3VdbeJumpHere(v, addr1);
2327   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2328   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2329 }
2330 
2331 /*
2332 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2333 ** and pTblList is the name of the table that is to be indexed.  Both will
2334 ** be NULL for a primary key or an index that is created to satisfy a
2335 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2336 ** as the table to be indexed.  pParse->pNewTable is a table that is
2337 ** currently being constructed by a CREATE TABLE statement.
2338 **
2339 ** pList is a list of columns to be indexed.  pList will be NULL if this
2340 ** is a primary key or unique-constraint on the most recent column added
2341 ** to the table currently under construction.
2342 */
2343 void sqlite3CreateIndex(
2344   Parse *pParse,     /* All information about this parse */
2345   Token *pName1,     /* First part of index name. May be NULL */
2346   Token *pName2,     /* Second part of index name. May be NULL */
2347   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2348   ExprList *pList,   /* A list of columns to be indexed */
2349   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2350   Token *pStart,     /* The CREATE token that begins this statement */
2351   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
2352   int sortOrder,     /* Sort order of primary key when pList==NULL */
2353   int ifNotExist     /* Omit error if index already exists */
2354 ){
2355   Table *pTab = 0;     /* Table to be indexed */
2356   Index *pIndex = 0;   /* The index to be created */
2357   char *zName = 0;     /* Name of the index */
2358   int nName;           /* Number of characters in zName */
2359   int i, j;
2360   Token nullId;        /* Fake token for an empty ID list */
2361   DbFixer sFix;        /* For assigning database names to pTable */
2362   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2363   sqlite3 *db = pParse->db;
2364   Db *pDb;             /* The specific table containing the indexed database */
2365   int iDb;             /* Index of the database that is being written */
2366   Token *pName = 0;    /* Unqualified name of the index to create */
2367   struct ExprList_item *pListItem; /* For looping over pList */
2368   int nCol;
2369   int nExtra = 0;
2370   char *zExtra;
2371 
2372   assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
2373   assert( pParse->nErr==0 );      /* Never called with prior errors */
2374   if( db->mallocFailed || IN_DECLARE_VTAB ){
2375     goto exit_create_index;
2376   }
2377   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2378     goto exit_create_index;
2379   }
2380 
2381   /*
2382   ** Find the table that is to be indexed.  Return early if not found.
2383   */
2384   if( pTblName!=0 ){
2385 
2386     /* Use the two-part index name to determine the database
2387     ** to search for the table. 'Fix' the table name to this db
2388     ** before looking up the table.
2389     */
2390     assert( pName1 && pName2 );
2391     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2392     if( iDb<0 ) goto exit_create_index;
2393 
2394 #ifndef SQLITE_OMIT_TEMPDB
2395     /* If the index name was unqualified, check if the the table
2396     ** is a temp table. If so, set the database to 1. Do not do this
2397     ** if initialising a database schema.
2398     */
2399     if( !db->init.busy ){
2400       pTab = sqlite3SrcListLookup(pParse, pTblName);
2401       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2402         iDb = 1;
2403       }
2404     }
2405 #endif
2406 
2407     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2408         sqlite3FixSrcList(&sFix, pTblName)
2409     ){
2410       /* Because the parser constructs pTblName from a single identifier,
2411       ** sqlite3FixSrcList can never fail. */
2412       assert(0);
2413     }
2414     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2415         pTblName->a[0].zDatabase);
2416     if( !pTab || db->mallocFailed ) goto exit_create_index;
2417     assert( db->aDb[iDb].pSchema==pTab->pSchema );
2418   }else{
2419     assert( pName==0 );
2420     pTab = pParse->pNewTable;
2421     if( !pTab ) goto exit_create_index;
2422     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2423   }
2424   pDb = &db->aDb[iDb];
2425 
2426   assert( pTab!=0 );
2427   assert( pParse->nErr==0 );
2428   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2429        && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){
2430     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2431     goto exit_create_index;
2432   }
2433 #ifndef SQLITE_OMIT_VIEW
2434   if( pTab->pSelect ){
2435     sqlite3ErrorMsg(pParse, "views may not be indexed");
2436     goto exit_create_index;
2437   }
2438 #endif
2439 #ifndef SQLITE_OMIT_VIRTUALTABLE
2440   if( IsVirtual(pTab) ){
2441     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2442     goto exit_create_index;
2443   }
2444 #endif
2445 
2446   /*
2447   ** Find the name of the index.  Make sure there is not already another
2448   ** index or table with the same name.
2449   **
2450   ** Exception:  If we are reading the names of permanent indices from the
2451   ** sqlite_master table (because some other process changed the schema) and
2452   ** one of the index names collides with the name of a temporary table or
2453   ** index, then we will continue to process this index.
2454   **
2455   ** If pName==0 it means that we are
2456   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2457   ** own name.
2458   */
2459   if( pName ){
2460     zName = sqlite3NameFromToken(db, pName);
2461     if( zName==0 ) goto exit_create_index;
2462     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2463       goto exit_create_index;
2464     }
2465     if( !db->init.busy ){
2466       if( sqlite3FindTable(db, zName, 0)!=0 ){
2467         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2468         goto exit_create_index;
2469       }
2470     }
2471     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2472       if( !ifNotExist ){
2473         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2474       }
2475       goto exit_create_index;
2476     }
2477   }else{
2478     int n;
2479     Index *pLoop;
2480     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2481     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2482     if( zName==0 ){
2483       goto exit_create_index;
2484     }
2485   }
2486 
2487   /* Check for authorization to create an index.
2488   */
2489 #ifndef SQLITE_OMIT_AUTHORIZATION
2490   {
2491     const char *zDb = pDb->zName;
2492     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2493       goto exit_create_index;
2494     }
2495     i = SQLITE_CREATE_INDEX;
2496     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2497     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2498       goto exit_create_index;
2499     }
2500   }
2501 #endif
2502 
2503   /* If pList==0, it means this routine was called to make a primary
2504   ** key out of the last column added to the table under construction.
2505   ** So create a fake list to simulate this.
2506   */
2507   if( pList==0 ){
2508     nullId.z = pTab->aCol[pTab->nCol-1].zName;
2509     nullId.n = sqlite3Strlen30((char*)nullId.z);
2510     pList = sqlite3ExprListAppend(pParse, 0, 0);
2511     if( pList==0 ) goto exit_create_index;
2512     sqlite3ExprListSetName(pParse, pList, &nullId, 0);
2513     pList->a[0].sortOrder = (u8)sortOrder;
2514   }
2515 
2516   /* Figure out how many bytes of space are required to store explicitly
2517   ** specified collation sequence names.
2518   */
2519   for(i=0; i<pList->nExpr; i++){
2520     Expr *pExpr = pList->a[i].pExpr;
2521     if( pExpr ){
2522       CollSeq *pColl = pExpr->pColl;
2523       /* Either pColl!=0 or there was an OOM failure.  But if an OOM
2524       ** failure we have quit before reaching this point. */
2525       if( ALWAYS(pColl) ){
2526         nExtra += (1 + sqlite3Strlen30(pColl->zName));
2527       }
2528     }
2529   }
2530 
2531   /*
2532   ** Allocate the index structure.
2533   */
2534   nName = sqlite3Strlen30(zName);
2535   nCol = pList->nExpr;
2536   pIndex = sqlite3DbMallocZero(db,
2537       sizeof(Index) +              /* Index structure  */
2538       sizeof(int)*nCol +           /* Index.aiColumn   */
2539       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
2540       sizeof(char *)*nCol +        /* Index.azColl     */
2541       sizeof(u8)*nCol +            /* Index.aSortOrder */
2542       nName + 1 +                  /* Index.zName      */
2543       nExtra                       /* Collation sequence names */
2544   );
2545   if( db->mallocFailed ){
2546     goto exit_create_index;
2547   }
2548   pIndex->azColl = (char**)(&pIndex[1]);
2549   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2550   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
2551   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
2552   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2553   zExtra = (char *)(&pIndex->zName[nName+1]);
2554   memcpy(pIndex->zName, zName, nName+1);
2555   pIndex->pTable = pTab;
2556   pIndex->nColumn = pList->nExpr;
2557   pIndex->onError = (u8)onError;
2558   pIndex->autoIndex = (u8)(pName==0);
2559   pIndex->pSchema = db->aDb[iDb].pSchema;
2560 
2561   /* Check to see if we should honor DESC requests on index columns
2562   */
2563   if( pDb->pSchema->file_format>=4 ){
2564     sortOrderMask = -1;   /* Honor DESC */
2565   }else{
2566     sortOrderMask = 0;    /* Ignore DESC */
2567   }
2568 
2569   /* Scan the names of the columns of the table to be indexed and
2570   ** load the column indices into the Index structure.  Report an error
2571   ** if any column is not found.
2572   **
2573   ** TODO:  Add a test to make sure that the same column is not named
2574   ** more than once within the same index.  Only the first instance of
2575   ** the column will ever be used by the optimizer.  Note that using the
2576   ** same column more than once cannot be an error because that would
2577   ** break backwards compatibility - it needs to be a warning.
2578   */
2579   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2580     const char *zColName = pListItem->zName;
2581     Column *pTabCol;
2582     int requestedSortOrder;
2583     char *zColl;                   /* Collation sequence name */
2584 
2585     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2586       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2587     }
2588     if( j>=pTab->nCol ){
2589       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2590         pTab->zName, zColName);
2591       goto exit_create_index;
2592     }
2593     pIndex->aiColumn[i] = j;
2594     /* Justification of the ALWAYS(pListItem->pExpr->pColl):  Because of
2595     ** the way the "idxlist" non-terminal is constructed by the parser,
2596     ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
2597     ** must exist or else there must have been an OOM error.  But if there
2598     ** was an OOM error, we would never reach this point. */
2599     if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
2600       int nColl;
2601       zColl = pListItem->pExpr->pColl->zName;
2602       nColl = sqlite3Strlen30(zColl) + 1;
2603       assert( nExtra>=nColl );
2604       memcpy(zExtra, zColl, nColl);
2605       zColl = zExtra;
2606       zExtra += nColl;
2607       nExtra -= nColl;
2608     }else{
2609       zColl = pTab->aCol[j].zColl;
2610       if( !zColl ){
2611         zColl = db->pDfltColl->zName;
2612       }
2613     }
2614     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
2615       goto exit_create_index;
2616     }
2617     pIndex->azColl[i] = zColl;
2618     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2619     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
2620   }
2621   sqlite3DefaultRowEst(pIndex);
2622 
2623   if( pTab==pParse->pNewTable ){
2624     /* This routine has been called to create an automatic index as a
2625     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2626     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2627     ** i.e. one of:
2628     **
2629     ** CREATE TABLE t(x PRIMARY KEY, y);
2630     ** CREATE TABLE t(x, y, UNIQUE(x, y));
2631     **
2632     ** Either way, check to see if the table already has such an index. If
2633     ** so, don't bother creating this one. This only applies to
2634     ** automatically created indices. Users can do as they wish with
2635     ** explicit indices.
2636     **
2637     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
2638     ** (and thus suppressing the second one) even if they have different
2639     ** sort orders.
2640     **
2641     ** If there are different collating sequences or if the columns of
2642     ** the constraint occur in different orders, then the constraints are
2643     ** considered distinct and both result in separate indices.
2644     */
2645     Index *pIdx;
2646     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2647       int k;
2648       assert( pIdx->onError!=OE_None );
2649       assert( pIdx->autoIndex );
2650       assert( pIndex->onError!=OE_None );
2651 
2652       if( pIdx->nColumn!=pIndex->nColumn ) continue;
2653       for(k=0; k<pIdx->nColumn; k++){
2654         const char *z1;
2655         const char *z2;
2656         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2657         z1 = pIdx->azColl[k];
2658         z2 = pIndex->azColl[k];
2659         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2660       }
2661       if( k==pIdx->nColumn ){
2662         if( pIdx->onError!=pIndex->onError ){
2663           /* This constraint creates the same index as a previous
2664           ** constraint specified somewhere in the CREATE TABLE statement.
2665           ** However the ON CONFLICT clauses are different. If both this
2666           ** constraint and the previous equivalent constraint have explicit
2667           ** ON CONFLICT clauses this is an error. Otherwise, use the
2668           ** explicitly specified behaviour for the index.
2669           */
2670           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2671             sqlite3ErrorMsg(pParse,
2672                 "conflicting ON CONFLICT clauses specified", 0);
2673           }
2674           if( pIdx->onError==OE_Default ){
2675             pIdx->onError = pIndex->onError;
2676           }
2677         }
2678         goto exit_create_index;
2679       }
2680     }
2681   }
2682 
2683   /* Link the new Index structure to its table and to the other
2684   ** in-memory database structures.
2685   */
2686   if( db->init.busy ){
2687     Index *p;
2688     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2689                           pIndex->zName, sqlite3Strlen30(pIndex->zName),
2690                           pIndex);
2691     if( p ){
2692       assert( p==pIndex );  /* Malloc must have failed */
2693       db->mallocFailed = 1;
2694       goto exit_create_index;
2695     }
2696     db->flags |= SQLITE_InternChanges;
2697     if( pTblName!=0 ){
2698       pIndex->tnum = db->init.newTnum;
2699     }
2700   }
2701 
2702   /* If the db->init.busy is 0 then create the index on disk.  This
2703   ** involves writing the index into the master table and filling in the
2704   ** index with the current table contents.
2705   **
2706   ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2707   ** command.  db->init.busy is 1 when a database is opened and
2708   ** CREATE INDEX statements are read out of the master table.  In
2709   ** the latter case the index already exists on disk, which is why
2710   ** we don't want to recreate it.
2711   **
2712   ** If pTblName==0 it means this index is generated as a primary key
2713   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
2714   ** has just been created, it contains no data and the index initialization
2715   ** step can be skipped.
2716   */
2717   else{ /* if( db->init.busy==0 ) */
2718     Vdbe *v;
2719     char *zStmt;
2720     int iMem = ++pParse->nMem;
2721 
2722     v = sqlite3GetVdbe(pParse);
2723     if( v==0 ) goto exit_create_index;
2724 
2725 
2726     /* Create the rootpage for the index
2727     */
2728     sqlite3BeginWriteOperation(pParse, 1, iDb);
2729     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2730 
2731     /* Gather the complete text of the CREATE INDEX statement into
2732     ** the zStmt variable
2733     */
2734     if( pStart ){
2735       assert( pEnd!=0 );
2736       /* A named index with an explicit CREATE INDEX statement */
2737       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2738         onError==OE_None ? "" : " UNIQUE",
2739         pEnd->z - pName->z + 1,
2740         pName->z);
2741     }else{
2742       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2743       /* zStmt = sqlite3MPrintf(""); */
2744       zStmt = 0;
2745     }
2746 
2747     /* Add an entry in sqlite_master for this index
2748     */
2749     sqlite3NestedParse(pParse,
2750         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2751         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2752         pIndex->zName,
2753         pTab->zName,
2754         iMem,
2755         zStmt
2756     );
2757     sqlite3DbFree(db, zStmt);
2758 
2759     /* Fill the index with data and reparse the schema. Code an OP_Expire
2760     ** to invalidate all pre-compiled statements.
2761     */
2762     if( pTblName ){
2763       sqlite3RefillIndex(pParse, pIndex, iMem);
2764       sqlite3ChangeCookie(pParse, iDb);
2765       sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
2766          sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
2767       sqlite3VdbeAddOp1(v, OP_Expire, 0);
2768     }
2769   }
2770 
2771   /* When adding an index to the list of indices for a table, make
2772   ** sure all indices labeled OE_Replace come after all those labeled
2773   ** OE_Ignore.  This is necessary for the correct constraint check
2774   ** processing (in sqlite3GenerateConstraintChecks()) as part of
2775   ** UPDATE and INSERT statements.
2776   */
2777   if( db->init.busy || pTblName==0 ){
2778     if( onError!=OE_Replace || pTab->pIndex==0
2779          || pTab->pIndex->onError==OE_Replace){
2780       pIndex->pNext = pTab->pIndex;
2781       pTab->pIndex = pIndex;
2782     }else{
2783       Index *pOther = pTab->pIndex;
2784       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2785         pOther = pOther->pNext;
2786       }
2787       pIndex->pNext = pOther->pNext;
2788       pOther->pNext = pIndex;
2789     }
2790     pIndex = 0;
2791   }
2792 
2793   /* Clean up before exiting */
2794 exit_create_index:
2795   if( pIndex ){
2796     sqlite3_free(pIndex->zColAff);
2797     sqlite3DbFree(db, pIndex);
2798   }
2799   sqlite3ExprListDelete(db, pList);
2800   sqlite3SrcListDelete(db, pTblName);
2801   sqlite3DbFree(db, zName);
2802   return;
2803 }
2804 
2805 /*
2806 ** Fill the Index.aiRowEst[] array with default information - information
2807 ** to be used when we have not run the ANALYZE command.
2808 **
2809 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2810 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
2811 ** number of rows in the table that match any particular value of the
2812 ** first column of the index.  aiRowEst[2] is an estimate of the number
2813 ** of rows that match any particular combiniation of the first 2 columns
2814 ** of the index.  And so forth.  It must always be the case that
2815 *
2816 **           aiRowEst[N]<=aiRowEst[N-1]
2817 **           aiRowEst[N]>=1
2818 **
2819 ** Apart from that, we have little to go on besides intuition as to
2820 ** how aiRowEst[] should be initialized.  The numbers generated here
2821 ** are based on typical values found in actual indices.
2822 */
2823 void sqlite3DefaultRowEst(Index *pIdx){
2824   unsigned *a = pIdx->aiRowEst;
2825   int i;
2826   assert( a!=0 );
2827   a[0] = 1000000;
2828   for(i=pIdx->nColumn; i>=5; i--){
2829     a[i] = 5;
2830   }
2831   while( i>=1 ){
2832     a[i] = 11 - i;
2833     i--;
2834   }
2835   if( pIdx->onError!=OE_None ){
2836     a[pIdx->nColumn] = 1;
2837   }
2838 }
2839 
2840 /*
2841 ** This routine will drop an existing named index.  This routine
2842 ** implements the DROP INDEX statement.
2843 */
2844 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
2845   Index *pIndex;
2846   Vdbe *v;
2847   sqlite3 *db = pParse->db;
2848   int iDb;
2849 
2850   assert( pParse->nErr==0 );   /* Never called with prior errors */
2851   if( db->mallocFailed ){
2852     goto exit_drop_index;
2853   }
2854   assert( pName->nSrc==1 );
2855   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2856     goto exit_drop_index;
2857   }
2858   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
2859   if( pIndex==0 ){
2860     if( !ifExists ){
2861       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
2862     }
2863     pParse->checkSchema = 1;
2864     goto exit_drop_index;
2865   }
2866   if( pIndex->autoIndex ){
2867     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
2868       "or PRIMARY KEY constraint cannot be dropped", 0);
2869     goto exit_drop_index;
2870   }
2871   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2872 #ifndef SQLITE_OMIT_AUTHORIZATION
2873   {
2874     int code = SQLITE_DROP_INDEX;
2875     Table *pTab = pIndex->pTable;
2876     const char *zDb = db->aDb[iDb].zName;
2877     const char *zTab = SCHEMA_TABLE(iDb);
2878     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
2879       goto exit_drop_index;
2880     }
2881     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
2882     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
2883       goto exit_drop_index;
2884     }
2885   }
2886 #endif
2887 
2888   /* Generate code to remove the index and from the master table */
2889   v = sqlite3GetVdbe(pParse);
2890   if( v ){
2891     sqlite3BeginWriteOperation(pParse, 1, iDb);
2892     sqlite3NestedParse(pParse,
2893        "DELETE FROM %Q.%s WHERE name=%Q",
2894        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2895        pIndex->zName
2896     );
2897     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2898       sqlite3NestedParse(pParse,
2899         "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
2900         db->aDb[iDb].zName, pIndex->zName
2901       );
2902     }
2903     sqlite3ChangeCookie(pParse, iDb);
2904     destroyRootPage(pParse, pIndex->tnum, iDb);
2905     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
2906   }
2907 
2908 exit_drop_index:
2909   sqlite3SrcListDelete(db, pName);
2910 }
2911 
2912 /*
2913 ** pArray is a pointer to an array of objects.  Each object in the
2914 ** array is szEntry bytes in size.  This routine allocates a new
2915 ** object on the end of the array.
2916 **
2917 ** *pnEntry is the number of entries already in use.  *pnAlloc is
2918 ** the previously allocated size of the array.  initSize is the
2919 ** suggested initial array size allocation.
2920 **
2921 ** The index of the new entry is returned in *pIdx.
2922 **
2923 ** This routine returns a pointer to the array of objects.  This
2924 ** might be the same as the pArray parameter or it might be a different
2925 ** pointer if the array was resized.
2926 */
2927 void *sqlite3ArrayAllocate(
2928   sqlite3 *db,      /* Connection to notify of malloc failures */
2929   void *pArray,     /* Array of objects.  Might be reallocated */
2930   int szEntry,      /* Size of each object in the array */
2931   int initSize,     /* Suggested initial allocation, in elements */
2932   int *pnEntry,     /* Number of objects currently in use */
2933   int *pnAlloc,     /* Current size of the allocation, in elements */
2934   int *pIdx         /* Write the index of a new slot here */
2935 ){
2936   char *z;
2937   if( *pnEntry >= *pnAlloc ){
2938     void *pNew;
2939     int newSize;
2940     newSize = (*pnAlloc)*2 + initSize;
2941     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
2942     if( pNew==0 ){
2943       *pIdx = -1;
2944       return pArray;
2945     }
2946     *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
2947     pArray = pNew;
2948   }
2949   z = (char*)pArray;
2950   memset(&z[*pnEntry * szEntry], 0, szEntry);
2951   *pIdx = *pnEntry;
2952   ++*pnEntry;
2953   return pArray;
2954 }
2955 
2956 /*
2957 ** Append a new element to the given IdList.  Create a new IdList if
2958 ** need be.
2959 **
2960 ** A new IdList is returned, or NULL if malloc() fails.
2961 */
2962 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
2963   int i;
2964   if( pList==0 ){
2965     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
2966     if( pList==0 ) return 0;
2967     pList->nAlloc = 0;
2968   }
2969   pList->a = sqlite3ArrayAllocate(
2970       db,
2971       pList->a,
2972       sizeof(pList->a[0]),
2973       5,
2974       &pList->nId,
2975       &pList->nAlloc,
2976       &i
2977   );
2978   if( i<0 ){
2979     sqlite3IdListDelete(db, pList);
2980     return 0;
2981   }
2982   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
2983   return pList;
2984 }
2985 
2986 /*
2987 ** Delete an IdList.
2988 */
2989 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
2990   int i;
2991   if( pList==0 ) return;
2992   for(i=0; i<pList->nId; i++){
2993     sqlite3DbFree(db, pList->a[i].zName);
2994   }
2995   sqlite3DbFree(db, pList->a);
2996   sqlite3DbFree(db, pList);
2997 }
2998 
2999 /*
3000 ** Return the index in pList of the identifier named zId.  Return -1
3001 ** if not found.
3002 */
3003 int sqlite3IdListIndex(IdList *pList, const char *zName){
3004   int i;
3005   if( pList==0 ) return -1;
3006   for(i=0; i<pList->nId; i++){
3007     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3008   }
3009   return -1;
3010 }
3011 
3012 /*
3013 ** Expand the space allocated for the given SrcList object by
3014 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3015 ** New slots are zeroed.
3016 **
3017 ** For example, suppose a SrcList initially contains two entries: A,B.
3018 ** To append 3 new entries onto the end, do this:
3019 **
3020 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3021 **
3022 ** After the call above it would contain:  A, B, nil, nil, nil.
3023 ** If the iStart argument had been 1 instead of 2, then the result
3024 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3025 ** the iStart value would be 0.  The result then would
3026 ** be: nil, nil, nil, A, B.
3027 **
3028 ** If a memory allocation fails the SrcList is unchanged.  The
3029 ** db->mallocFailed flag will be set to true.
3030 */
3031 SrcList *sqlite3SrcListEnlarge(
3032   sqlite3 *db,       /* Database connection to notify of OOM errors */
3033   SrcList *pSrc,     /* The SrcList to be enlarged */
3034   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3035   int iStart         /* Index in pSrc->a[] of first new slot */
3036 ){
3037   int i;
3038 
3039   /* Sanity checking on calling parameters */
3040   assert( iStart>=0 );
3041   assert( nExtra>=1 );
3042   assert( pSrc!=0 );
3043   assert( iStart<=pSrc->nSrc );
3044 
3045   /* Allocate additional space if needed */
3046   if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
3047     SrcList *pNew;
3048     int nAlloc = pSrc->nSrc+nExtra;
3049     int nGot;
3050     pNew = sqlite3DbRealloc(db, pSrc,
3051                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3052     if( pNew==0 ){
3053       assert( db->mallocFailed );
3054       return pSrc;
3055     }
3056     pSrc = pNew;
3057     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3058     pSrc->nAlloc = (u16)nGot;
3059   }
3060 
3061   /* Move existing slots that come after the newly inserted slots
3062   ** out of the way */
3063   for(i=pSrc->nSrc-1; i>=iStart; i--){
3064     pSrc->a[i+nExtra] = pSrc->a[i];
3065   }
3066   pSrc->nSrc += (i16)nExtra;
3067 
3068   /* Zero the newly allocated slots */
3069   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3070   for(i=iStart; i<iStart+nExtra; i++){
3071     pSrc->a[i].iCursor = -1;
3072   }
3073 
3074   /* Return a pointer to the enlarged SrcList */
3075   return pSrc;
3076 }
3077 
3078 
3079 /*
3080 ** Append a new table name to the given SrcList.  Create a new SrcList if
3081 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3082 **
3083 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3084 ** SrcList might be the same as the SrcList that was input or it might be
3085 ** a new one.  If an OOM error does occurs, then the prior value of pList
3086 ** that is input to this routine is automatically freed.
3087 **
3088 ** If pDatabase is not null, it means that the table has an optional
3089 ** database name prefix.  Like this:  "database.table".  The pDatabase
3090 ** points to the table name and the pTable points to the database name.
3091 ** The SrcList.a[].zName field is filled with the table name which might
3092 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3093 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3094 ** or with NULL if no database is specified.
3095 **
3096 ** In other words, if call like this:
3097 **
3098 **         sqlite3SrcListAppend(D,A,B,0);
3099 **
3100 ** Then B is a table name and the database name is unspecified.  If called
3101 ** like this:
3102 **
3103 **         sqlite3SrcListAppend(D,A,B,C);
3104 **
3105 ** Then C is the table name and B is the database name.  If C is defined
3106 ** then so is B.  In other words, we never have a case where:
3107 **
3108 **         sqlite3SrcListAppend(D,A,0,C);
3109 **
3110 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3111 ** before being added to the SrcList.
3112 */
3113 SrcList *sqlite3SrcListAppend(
3114   sqlite3 *db,        /* Connection to notify of malloc failures */
3115   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3116   Token *pTable,      /* Table to append */
3117   Token *pDatabase    /* Database of the table */
3118 ){
3119   struct SrcList_item *pItem;
3120   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3121   if( pList==0 ){
3122     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3123     if( pList==0 ) return 0;
3124     pList->nAlloc = 1;
3125   }
3126   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3127   if( db->mallocFailed ){
3128     sqlite3SrcListDelete(db, pList);
3129     return 0;
3130   }
3131   pItem = &pList->a[pList->nSrc-1];
3132   if( pDatabase && pDatabase->z==0 ){
3133     pDatabase = 0;
3134   }
3135   if( pDatabase ){
3136     Token *pTemp = pDatabase;
3137     pDatabase = pTable;
3138     pTable = pTemp;
3139   }
3140   pItem->zName = sqlite3NameFromToken(db, pTable);
3141   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3142   return pList;
3143 }
3144 
3145 /*
3146 ** Assign VdbeCursor index numbers to all tables in a SrcList
3147 */
3148 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3149   int i;
3150   struct SrcList_item *pItem;
3151   assert(pList || pParse->db->mallocFailed );
3152   if( pList ){
3153     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3154       if( pItem->iCursor>=0 ) break;
3155       pItem->iCursor = pParse->nTab++;
3156       if( pItem->pSelect ){
3157         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3158       }
3159     }
3160   }
3161 }
3162 
3163 /*
3164 ** Delete an entire SrcList including all its substructure.
3165 */
3166 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3167   int i;
3168   struct SrcList_item *pItem;
3169   if( pList==0 ) return;
3170   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3171     sqlite3DbFree(db, pItem->zDatabase);
3172     sqlite3DbFree(db, pItem->zName);
3173     sqlite3DbFree(db, pItem->zAlias);
3174     sqlite3DbFree(db, pItem->zIndex);
3175     sqlite3DeleteTable(pItem->pTab);
3176     sqlite3SelectDelete(db, pItem->pSelect);
3177     sqlite3ExprDelete(db, pItem->pOn);
3178     sqlite3IdListDelete(db, pItem->pUsing);
3179   }
3180   sqlite3DbFree(db, pList);
3181 }
3182 
3183 /*
3184 ** This routine is called by the parser to add a new term to the
3185 ** end of a growing FROM clause.  The "p" parameter is the part of
3186 ** the FROM clause that has already been constructed.  "p" is NULL
3187 ** if this is the first term of the FROM clause.  pTable and pDatabase
3188 ** are the name of the table and database named in the FROM clause term.
3189 ** pDatabase is NULL if the database name qualifier is missing - the
3190 ** usual case.  If the term has a alias, then pAlias points to the
3191 ** alias token.  If the term is a subquery, then pSubquery is the
3192 ** SELECT statement that the subquery encodes.  The pTable and
3193 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3194 ** parameters are the content of the ON and USING clauses.
3195 **
3196 ** Return a new SrcList which encodes is the FROM with the new
3197 ** term added.
3198 */
3199 SrcList *sqlite3SrcListAppendFromTerm(
3200   Parse *pParse,          /* Parsing context */
3201   SrcList *p,             /* The left part of the FROM clause already seen */
3202   Token *pTable,          /* Name of the table to add to the FROM clause */
3203   Token *pDatabase,       /* Name of the database containing pTable */
3204   Token *pAlias,          /* The right-hand side of the AS subexpression */
3205   Select *pSubquery,      /* A subquery used in place of a table name */
3206   Expr *pOn,              /* The ON clause of a join */
3207   IdList *pUsing          /* The USING clause of a join */
3208 ){
3209   struct SrcList_item *pItem;
3210   sqlite3 *db = pParse->db;
3211   if( !p && (pOn || pUsing) ){
3212     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3213       (pOn ? "ON" : "USING")
3214     );
3215     goto append_from_error;
3216   }
3217   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3218   if( p==0 || NEVER(p->nSrc==0) ){
3219     goto append_from_error;
3220   }
3221   pItem = &p->a[p->nSrc-1];
3222   assert( pAlias!=0 );
3223   if( pAlias->n ){
3224     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3225   }
3226   pItem->pSelect = pSubquery;
3227   pItem->pOn = pOn;
3228   pItem->pUsing = pUsing;
3229   return p;
3230 
3231  append_from_error:
3232   assert( p==0 );
3233   sqlite3ExprDelete(db, pOn);
3234   sqlite3IdListDelete(db, pUsing);
3235   sqlite3SelectDelete(db, pSubquery);
3236   return 0;
3237 }
3238 
3239 /*
3240 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3241 ** element of the source-list passed as the second argument.
3242 */
3243 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3244   assert( pIndexedBy!=0 );
3245   if( p && ALWAYS(p->nSrc>0) ){
3246     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3247     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3248     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3249       /* A "NOT INDEXED" clause was supplied. See parse.y
3250       ** construct "indexed_opt" for details. */
3251       pItem->notIndexed = 1;
3252     }else{
3253       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3254     }
3255   }
3256 }
3257 
3258 /*
3259 ** When building up a FROM clause in the parser, the join operator
3260 ** is initially attached to the left operand.  But the code generator
3261 ** expects the join operator to be on the right operand.  This routine
3262 ** Shifts all join operators from left to right for an entire FROM
3263 ** clause.
3264 **
3265 ** Example: Suppose the join is like this:
3266 **
3267 **           A natural cross join B
3268 **
3269 ** The operator is "natural cross join".  The A and B operands are stored
3270 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3271 ** operator with A.  This routine shifts that operator over to B.
3272 */
3273 void sqlite3SrcListShiftJoinType(SrcList *p){
3274   if( p && p->a ){
3275     int i;
3276     for(i=p->nSrc-1; i>0; i--){
3277       p->a[i].jointype = p->a[i-1].jointype;
3278     }
3279     p->a[0].jointype = 0;
3280   }
3281 }
3282 
3283 /*
3284 ** Begin a transaction
3285 */
3286 void sqlite3BeginTransaction(Parse *pParse, int type){
3287   sqlite3 *db;
3288   Vdbe *v;
3289   int i;
3290 
3291   assert( pParse!=0 );
3292   db = pParse->db;
3293   assert( db!=0 );
3294 /*  if( db->aDb[0].pBt==0 ) return; */
3295   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3296     return;
3297   }
3298   v = sqlite3GetVdbe(pParse);
3299   if( !v ) return;
3300   if( type!=TK_DEFERRED ){
3301     for(i=0; i<db->nDb; i++){
3302       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3303       sqlite3VdbeUsesBtree(v, i);
3304     }
3305   }
3306   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3307 }
3308 
3309 /*
3310 ** Commit a transaction
3311 */
3312 void sqlite3CommitTransaction(Parse *pParse){
3313   sqlite3 *db;
3314   Vdbe *v;
3315 
3316   assert( pParse!=0 );
3317   db = pParse->db;
3318   assert( db!=0 );
3319 /*  if( db->aDb[0].pBt==0 ) return; */
3320   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3321     return;
3322   }
3323   v = sqlite3GetVdbe(pParse);
3324   if( v ){
3325     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3326   }
3327 }
3328 
3329 /*
3330 ** Rollback a transaction
3331 */
3332 void sqlite3RollbackTransaction(Parse *pParse){
3333   sqlite3 *db;
3334   Vdbe *v;
3335 
3336   assert( pParse!=0 );
3337   db = pParse->db;
3338   assert( db!=0 );
3339 /*  if( db->aDb[0].pBt==0 ) return; */
3340   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3341     return;
3342   }
3343   v = sqlite3GetVdbe(pParse);
3344   if( v ){
3345     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3346   }
3347 }
3348 
3349 /*
3350 ** This function is called by the parser when it parses a command to create,
3351 ** release or rollback an SQL savepoint.
3352 */
3353 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3354   char *zName = sqlite3NameFromToken(pParse->db, pName);
3355   if( zName ){
3356     Vdbe *v = sqlite3GetVdbe(pParse);
3357 #ifndef SQLITE_OMIT_AUTHORIZATION
3358     static const char *az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3359     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3360 #endif
3361     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3362       sqlite3DbFree(pParse->db, zName);
3363       return;
3364     }
3365     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3366   }
3367 }
3368 
3369 /*
3370 ** Make sure the TEMP database is open and available for use.  Return
3371 ** the number of errors.  Leave any error messages in the pParse structure.
3372 */
3373 int sqlite3OpenTempDatabase(Parse *pParse){
3374   sqlite3 *db = pParse->db;
3375   if( db->aDb[1].pBt==0 && !pParse->explain ){
3376     int rc;
3377     static const int flags =
3378           SQLITE_OPEN_READWRITE |
3379           SQLITE_OPEN_CREATE |
3380           SQLITE_OPEN_EXCLUSIVE |
3381           SQLITE_OPEN_DELETEONCLOSE |
3382           SQLITE_OPEN_TEMP_DB;
3383 
3384     rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
3385                                  &db->aDb[1].pBt);
3386     if( rc!=SQLITE_OK ){
3387       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3388         "file for storing temporary tables");
3389       pParse->rc = rc;
3390       return 1;
3391     }
3392     assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
3393     assert( db->aDb[1].pSchema );
3394     sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
3395                             db->dfltJournalMode);
3396   }
3397   return 0;
3398 }
3399 
3400 /*
3401 ** Generate VDBE code that will verify the schema cookie and start
3402 ** a read-transaction for all named database files.
3403 **
3404 ** It is important that all schema cookies be verified and all
3405 ** read transactions be started before anything else happens in
3406 ** the VDBE program.  But this routine can be called after much other
3407 ** code has been generated.  So here is what we do:
3408 **
3409 ** The first time this routine is called, we code an OP_Goto that
3410 ** will jump to a subroutine at the end of the program.  Then we
3411 ** record every database that needs its schema verified in the
3412 ** pParse->cookieMask field.  Later, after all other code has been
3413 ** generated, the subroutine that does the cookie verifications and
3414 ** starts the transactions will be coded and the OP_Goto P2 value
3415 ** will be made to point to that subroutine.  The generation of the
3416 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3417 **
3418 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3419 ** schema on any databases.  This can be used to position the OP_Goto
3420 ** early in the code, before we know if any database tables will be used.
3421 */
3422 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3423   sqlite3 *db;
3424   Vdbe *v;
3425   int mask;
3426 
3427   v = sqlite3GetVdbe(pParse);
3428   if( v==0 ) return;  /* This only happens if there was a prior error */
3429   db = pParse->db;
3430   if( pParse->cookieGoto==0 ){
3431     pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3432   }
3433   if( iDb>=0 ){
3434     assert( iDb<db->nDb );
3435     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3436     assert( iDb<SQLITE_MAX_ATTACHED+2 );
3437     mask = 1<<iDb;
3438     if( (pParse->cookieMask & mask)==0 ){
3439       pParse->cookieMask |= mask;
3440       pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3441       if( !OMIT_TEMPDB && iDb==1 ){
3442         sqlite3OpenTempDatabase(pParse);
3443       }
3444     }
3445   }
3446 }
3447 
3448 /*
3449 ** Generate VDBE code that prepares for doing an operation that
3450 ** might change the database.
3451 **
3452 ** This routine starts a new transaction if we are not already within
3453 ** a transaction.  If we are already within a transaction, then a checkpoint
3454 ** is set if the setStatement parameter is true.  A checkpoint should
3455 ** be set for operations that might fail (due to a constraint) part of
3456 ** the way through and which will need to undo some writes without having to
3457 ** rollback the whole transaction.  For operations where all constraints
3458 ** can be checked before any changes are made to the database, it is never
3459 ** necessary to undo a write and the checkpoint should not be set.
3460 */
3461 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3462   sqlite3CodeVerifySchema(pParse, iDb);
3463   pParse->writeMask |= 1<<iDb;
3464   if( setStatement && pParse->nested==0 ){
3465     /* Every place where this routine is called with setStatement!=0 has
3466     ** already successfully created a VDBE. */
3467     assert( pParse->pVdbe );
3468     sqlite3VdbeAddOp1(pParse->pVdbe, OP_Statement, iDb);
3469   }
3470 }
3471 
3472 /*
3473 ** Check to see if pIndex uses the collating sequence pColl.  Return
3474 ** true if it does and false if it does not.
3475 */
3476 #ifndef SQLITE_OMIT_REINDEX
3477 static int collationMatch(const char *zColl, Index *pIndex){
3478   int i;
3479   assert( zColl!=0 );
3480   for(i=0; i<pIndex->nColumn; i++){
3481     const char *z = pIndex->azColl[i];
3482     assert( z!=0 );
3483     if( 0==sqlite3StrICmp(z, zColl) ){
3484       return 1;
3485     }
3486   }
3487   return 0;
3488 }
3489 #endif
3490 
3491 /*
3492 ** Recompute all indices of pTab that use the collating sequence pColl.
3493 ** If pColl==0 then recompute all indices of pTab.
3494 */
3495 #ifndef SQLITE_OMIT_REINDEX
3496 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3497   Index *pIndex;              /* An index associated with pTab */
3498 
3499   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3500     if( zColl==0 || collationMatch(zColl, pIndex) ){
3501       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3502       sqlite3BeginWriteOperation(pParse, 0, iDb);
3503       sqlite3RefillIndex(pParse, pIndex, -1);
3504     }
3505   }
3506 }
3507 #endif
3508 
3509 /*
3510 ** Recompute all indices of all tables in all databases where the
3511 ** indices use the collating sequence pColl.  If pColl==0 then recompute
3512 ** all indices everywhere.
3513 */
3514 #ifndef SQLITE_OMIT_REINDEX
3515 static void reindexDatabases(Parse *pParse, char const *zColl){
3516   Db *pDb;                    /* A single database */
3517   int iDb;                    /* The database index number */
3518   sqlite3 *db = pParse->db;   /* The database connection */
3519   HashElem *k;                /* For looping over tables in pDb */
3520   Table *pTab;                /* A table in the database */
3521 
3522   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3523     assert( pDb!=0 );
3524     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
3525       pTab = (Table*)sqliteHashData(k);
3526       reindexTable(pParse, pTab, zColl);
3527     }
3528   }
3529 }
3530 #endif
3531 
3532 /*
3533 ** Generate code for the REINDEX command.
3534 **
3535 **        REINDEX                            -- 1
3536 **        REINDEX  <collation>               -- 2
3537 **        REINDEX  ?<database>.?<tablename>  -- 3
3538 **        REINDEX  ?<database>.?<indexname>  -- 4
3539 **
3540 ** Form 1 causes all indices in all attached databases to be rebuilt.
3541 ** Form 2 rebuilds all indices in all databases that use the named
3542 ** collating function.  Forms 3 and 4 rebuild the named index or all
3543 ** indices associated with the named table.
3544 */
3545 #ifndef SQLITE_OMIT_REINDEX
3546 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3547   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
3548   char *z;                    /* Name of a table or index */
3549   const char *zDb;            /* Name of the database */
3550   Table *pTab;                /* A table in the database */
3551   Index *pIndex;              /* An index associated with pTab */
3552   int iDb;                    /* The database index number */
3553   sqlite3 *db = pParse->db;   /* The database connection */
3554   Token *pObjName;            /* Name of the table or index to be reindexed */
3555 
3556   /* Read the database schema. If an error occurs, leave an error message
3557   ** and code in pParse and return NULL. */
3558   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3559     return;
3560   }
3561 
3562   if( pName1==0 ){
3563     reindexDatabases(pParse, 0);
3564     return;
3565   }else if( NEVER(pName2==0) || pName2->z==0 ){
3566     char *zColl;
3567     assert( pName1->z );
3568     zColl = sqlite3NameFromToken(pParse->db, pName1);
3569     if( !zColl ) return;
3570     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
3571     if( pColl ){
3572       reindexDatabases(pParse, zColl);
3573       sqlite3DbFree(db, zColl);
3574       return;
3575     }
3576     sqlite3DbFree(db, zColl);
3577   }
3578   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3579   if( iDb<0 ) return;
3580   z = sqlite3NameFromToken(db, pObjName);
3581   if( z==0 ) return;
3582   zDb = db->aDb[iDb].zName;
3583   pTab = sqlite3FindTable(db, z, zDb);
3584   if( pTab ){
3585     reindexTable(pParse, pTab, 0);
3586     sqlite3DbFree(db, z);
3587     return;
3588   }
3589   pIndex = sqlite3FindIndex(db, z, zDb);
3590   sqlite3DbFree(db, z);
3591   if( pIndex ){
3592     sqlite3BeginWriteOperation(pParse, 0, iDb);
3593     sqlite3RefillIndex(pParse, pIndex, -1);
3594     return;
3595   }
3596   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3597 }
3598 #endif
3599 
3600 /*
3601 ** Return a dynamicly allocated KeyInfo structure that can be used
3602 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3603 **
3604 ** If successful, a pointer to the new structure is returned. In this case
3605 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3606 ** pointer. If an error occurs (out of memory or missing collation
3607 ** sequence), NULL is returned and the state of pParse updated to reflect
3608 ** the error.
3609 */
3610 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3611   int i;
3612   int nCol = pIdx->nColumn;
3613   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3614   sqlite3 *db = pParse->db;
3615   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3616 
3617   if( pKey ){
3618     pKey->db = pParse->db;
3619     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3620     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3621     for(i=0; i<nCol; i++){
3622       char *zColl = pIdx->azColl[i];
3623       assert( zColl );
3624       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
3625       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3626     }
3627     pKey->nField = (u16)nCol;
3628   }
3629 
3630   if( pParse->nErr ){
3631     sqlite3DbFree(db, pKey);
3632     pKey = 0;
3633   }
3634   return pKey;
3635 }
3636