1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 for(i=0; i<pToplevel->nTableLock; i++){ 63 p = &pToplevel->aTableLock[i]; 64 if( p->iDb==iDb && p->iTab==iTab ){ 65 p->isWriteLock = (p->isWriteLock || isWriteLock); 66 return; 67 } 68 } 69 70 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 71 pToplevel->aTableLock = 72 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 73 if( pToplevel->aTableLock ){ 74 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 75 p->iDb = iDb; 76 p->iTab = iTab; 77 p->isWriteLock = isWriteLock; 78 p->zName = zName; 79 }else{ 80 pToplevel->nTableLock = 0; 81 sqlite3OomFault(pToplevel->db); 82 } 83 } 84 85 /* 86 ** Code an OP_TableLock instruction for each table locked by the 87 ** statement (configured by calls to sqlite3TableLock()). 88 */ 89 static void codeTableLocks(Parse *pParse){ 90 int i; 91 Vdbe *pVdbe; 92 93 pVdbe = sqlite3GetVdbe(pParse); 94 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 95 96 for(i=0; i<pParse->nTableLock; i++){ 97 TableLock *p = &pParse->aTableLock[i]; 98 int p1 = p->iDb; 99 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 100 p->zName, P4_STATIC); 101 } 102 } 103 #else 104 #define codeTableLocks(x) 105 #endif 106 107 /* 108 ** Return TRUE if the given yDbMask object is empty - if it contains no 109 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 110 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 111 */ 112 #if SQLITE_MAX_ATTACHED>30 113 int sqlite3DbMaskAllZero(yDbMask m){ 114 int i; 115 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 116 return 1; 117 } 118 #endif 119 120 /* 121 ** This routine is called after a single SQL statement has been 122 ** parsed and a VDBE program to execute that statement has been 123 ** prepared. This routine puts the finishing touches on the 124 ** VDBE program and resets the pParse structure for the next 125 ** parse. 126 ** 127 ** Note that if an error occurred, it might be the case that 128 ** no VDBE code was generated. 129 */ 130 void sqlite3FinishCoding(Parse *pParse){ 131 sqlite3 *db; 132 Vdbe *v; 133 134 assert( pParse->pToplevel==0 ); 135 db = pParse->db; 136 if( pParse->nested ) return; 137 if( db->mallocFailed || pParse->nErr ){ 138 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 139 return; 140 } 141 142 /* Begin by generating some termination code at the end of the 143 ** vdbe program 144 */ 145 v = sqlite3GetVdbe(pParse); 146 assert( !pParse->isMultiWrite 147 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 148 if( v ){ 149 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 150 sqlite3VdbeAddOp0(v, OP_Halt); 151 152 #if SQLITE_USER_AUTHENTICATION 153 if( pParse->nTableLock>0 && db->init.busy==0 ){ 154 sqlite3UserAuthInit(db); 155 if( db->auth.authLevel<UAUTH_User ){ 156 pParse->rc = SQLITE_AUTH_USER; 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 return; 159 } 160 } 161 #endif 162 163 /* The cookie mask contains one bit for each database file open. 164 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 165 ** set for each database that is used. Generate code to start a 166 ** transaction on each used database and to verify the schema cookie 167 ** on each used database. 168 */ 169 if( db->mallocFailed==0 170 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 171 ){ 172 int iDb, i; 173 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 174 sqlite3VdbeJumpHere(v, 0); 175 for(iDb=0; iDb<db->nDb; iDb++){ 176 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 177 sqlite3VdbeUsesBtree(v, iDb); 178 sqlite3VdbeAddOp4Int(v, 179 OP_Transaction, /* Opcode */ 180 iDb, /* P1 */ 181 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 182 pParse->cookieValue[iDb], /* P3 */ 183 db->aDb[iDb].pSchema->iGeneration /* P4 */ 184 ); 185 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 186 VdbeComment((v, 187 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 188 } 189 #ifndef SQLITE_OMIT_VIRTUALTABLE 190 for(i=0; i<pParse->nVtabLock; i++){ 191 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 192 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 193 } 194 pParse->nVtabLock = 0; 195 #endif 196 197 /* Once all the cookies have been verified and transactions opened, 198 ** obtain the required table-locks. This is a no-op unless the 199 ** shared-cache feature is enabled. 200 */ 201 codeTableLocks(pParse); 202 203 /* Initialize any AUTOINCREMENT data structures required. 204 */ 205 sqlite3AutoincrementBegin(pParse); 206 207 /* Code constant expressions that where factored out of inner loops */ 208 if( pParse->pConstExpr ){ 209 ExprList *pEL = pParse->pConstExpr; 210 pParse->okConstFactor = 0; 211 for(i=0; i<pEL->nExpr; i++){ 212 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 213 } 214 } 215 216 /* Finally, jump back to the beginning of the executable code. */ 217 sqlite3VdbeGoto(v, 1); 218 } 219 } 220 221 222 /* Get the VDBE program ready for execution 223 */ 224 if( v && pParse->nErr==0 && !db->mallocFailed ){ 225 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 226 /* A minimum of one cursor is required if autoincrement is used 227 * See ticket [a696379c1f08866] */ 228 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 229 sqlite3VdbeMakeReady(v, pParse); 230 pParse->rc = SQLITE_DONE; 231 }else{ 232 pParse->rc = SQLITE_ERROR; 233 } 234 235 /* We are done with this Parse object. There is no need to de-initialize it */ 236 #if 0 237 pParse->colNamesSet = 0; 238 pParse->nTab = 0; 239 pParse->nMem = 0; 240 pParse->nSet = 0; 241 pParse->nVar = 0; 242 DbMaskZero(pParse->cookieMask); 243 #endif 244 } 245 246 /* 247 ** Run the parser and code generator recursively in order to generate 248 ** code for the SQL statement given onto the end of the pParse context 249 ** currently under construction. When the parser is run recursively 250 ** this way, the final OP_Halt is not appended and other initialization 251 ** and finalization steps are omitted because those are handling by the 252 ** outermost parser. 253 ** 254 ** Not everything is nestable. This facility is designed to permit 255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 256 ** care if you decide to try to use this routine for some other purposes. 257 */ 258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 259 va_list ap; 260 char *zSql; 261 char *zErrMsg = 0; 262 sqlite3 *db = pParse->db; 263 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 264 char saveBuf[SAVE_SZ]; 265 266 if( pParse->nErr ) return; 267 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 268 va_start(ap, zFormat); 269 zSql = sqlite3VMPrintf(db, zFormat, ap); 270 va_end(ap); 271 if( zSql==0 ){ 272 return; /* A malloc must have failed */ 273 } 274 pParse->nested++; 275 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 276 memset(&pParse->nVar, 0, SAVE_SZ); 277 sqlite3RunParser(pParse, zSql, &zErrMsg); 278 sqlite3DbFree(db, zErrMsg); 279 sqlite3DbFree(db, zSql); 280 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 281 pParse->nested--; 282 } 283 284 #if SQLITE_USER_AUTHENTICATION 285 /* 286 ** Return TRUE if zTable is the name of the system table that stores the 287 ** list of users and their access credentials. 288 */ 289 int sqlite3UserAuthTable(const char *zTable){ 290 return sqlite3_stricmp(zTable, "sqlite_user")==0; 291 } 292 #endif 293 294 /* 295 ** Locate the in-memory structure that describes a particular database 296 ** table given the name of that table and (optionally) the name of the 297 ** database containing the table. Return NULL if not found. 298 ** 299 ** If zDatabase is 0, all databases are searched for the table and the 300 ** first matching table is returned. (No checking for duplicate table 301 ** names is done.) The search order is TEMP first, then MAIN, then any 302 ** auxiliary databases added using the ATTACH command. 303 ** 304 ** See also sqlite3LocateTable(). 305 */ 306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 307 Table *p = 0; 308 int i; 309 310 /* All mutexes are required for schema access. Make sure we hold them. */ 311 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 312 #if SQLITE_USER_AUTHENTICATION 313 /* Only the admin user is allowed to know that the sqlite_user table 314 ** exists */ 315 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 316 return 0; 317 } 318 #endif 319 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 320 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 321 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 322 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 323 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 324 if( p ) break; 325 } 326 return p; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 363 return pMod->pEpoTab; 364 } 365 } 366 #endif 367 if( (flags & LOCATE_NOERR)==0 ){ 368 if( zDbase ){ 369 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 370 }else{ 371 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 372 } 373 pParse->checkSchema = 1; 374 } 375 } 376 377 return p; 378 } 379 380 /* 381 ** Locate the table identified by *p. 382 ** 383 ** This is a wrapper around sqlite3LocateTable(). The difference between 384 ** sqlite3LocateTable() and this function is that this function restricts 385 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 386 ** non-NULL if it is part of a view or trigger program definition. See 387 ** sqlite3FixSrcList() for details. 388 */ 389 Table *sqlite3LocateTableItem( 390 Parse *pParse, 391 u32 flags, 392 struct SrcList_item *p 393 ){ 394 const char *zDb; 395 assert( p->pSchema==0 || p->zDatabase==0 ); 396 if( p->pSchema ){ 397 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 398 zDb = pParse->db->aDb[iDb].zName; 399 }else{ 400 zDb = p->zDatabase; 401 } 402 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 403 } 404 405 /* 406 ** Locate the in-memory structure that describes 407 ** a particular index given the name of that index 408 ** and the name of the database that contains the index. 409 ** Return NULL if not found. 410 ** 411 ** If zDatabase is 0, all databases are searched for the 412 ** table and the first matching index is returned. (No checking 413 ** for duplicate index names is done.) The search order is 414 ** TEMP first, then MAIN, then any auxiliary databases added 415 ** using the ATTACH command. 416 */ 417 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 418 Index *p = 0; 419 int i; 420 /* All mutexes are required for schema access. Make sure we hold them. */ 421 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 422 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 423 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 424 Schema *pSchema = db->aDb[j].pSchema; 425 assert( pSchema ); 426 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 427 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 428 p = sqlite3HashFind(&pSchema->idxHash, zName); 429 if( p ) break; 430 } 431 return p; 432 } 433 434 /* 435 ** Reclaim the memory used by an index 436 */ 437 static void freeIndex(sqlite3 *db, Index *p){ 438 #ifndef SQLITE_OMIT_ANALYZE 439 sqlite3DeleteIndexSamples(db, p); 440 #endif 441 sqlite3ExprDelete(db, p->pPartIdxWhere); 442 sqlite3ExprListDelete(db, p->aColExpr); 443 sqlite3DbFree(db, p->zColAff); 444 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 445 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 446 sqlite3_free(p->aiRowEst); 447 #endif 448 sqlite3DbFree(db, p); 449 } 450 451 /* 452 ** For the index called zIdxName which is found in the database iDb, 453 ** unlike that index from its Table then remove the index from 454 ** the index hash table and free all memory structures associated 455 ** with the index. 456 */ 457 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 458 Index *pIndex; 459 Hash *pHash; 460 461 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 462 pHash = &db->aDb[iDb].pSchema->idxHash; 463 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 464 if( ALWAYS(pIndex) ){ 465 if( pIndex->pTable->pIndex==pIndex ){ 466 pIndex->pTable->pIndex = pIndex->pNext; 467 }else{ 468 Index *p; 469 /* Justification of ALWAYS(); The index must be on the list of 470 ** indices. */ 471 p = pIndex->pTable->pIndex; 472 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 473 if( ALWAYS(p && p->pNext==pIndex) ){ 474 p->pNext = pIndex->pNext; 475 } 476 } 477 freeIndex(db, pIndex); 478 } 479 db->flags |= SQLITE_InternChanges; 480 } 481 482 /* 483 ** Look through the list of open database files in db->aDb[] and if 484 ** any have been closed, remove them from the list. Reallocate the 485 ** db->aDb[] structure to a smaller size, if possible. 486 ** 487 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 488 ** are never candidates for being collapsed. 489 */ 490 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 491 int i, j; 492 for(i=j=2; i<db->nDb; i++){ 493 struct Db *pDb = &db->aDb[i]; 494 if( pDb->pBt==0 ){ 495 sqlite3DbFree(db, pDb->zName); 496 pDb->zName = 0; 497 continue; 498 } 499 if( j<i ){ 500 db->aDb[j] = db->aDb[i]; 501 } 502 j++; 503 } 504 db->nDb = j; 505 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 506 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 507 sqlite3DbFree(db, db->aDb); 508 db->aDb = db->aDbStatic; 509 } 510 } 511 512 /* 513 ** Reset the schema for the database at index iDb. Also reset the 514 ** TEMP schema. 515 */ 516 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 517 Db *pDb; 518 assert( iDb<db->nDb ); 519 520 /* Case 1: Reset the single schema identified by iDb */ 521 pDb = &db->aDb[iDb]; 522 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 523 assert( pDb->pSchema!=0 ); 524 sqlite3SchemaClear(pDb->pSchema); 525 526 /* If any database other than TEMP is reset, then also reset TEMP 527 ** since TEMP might be holding triggers that reference tables in the 528 ** other database. 529 */ 530 if( iDb!=1 ){ 531 pDb = &db->aDb[1]; 532 assert( pDb->pSchema!=0 ); 533 sqlite3SchemaClear(pDb->pSchema); 534 } 535 return; 536 } 537 538 /* 539 ** Erase all schema information from all attached databases (including 540 ** "main" and "temp") for a single database connection. 541 */ 542 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 543 int i; 544 sqlite3BtreeEnterAll(db); 545 for(i=0; i<db->nDb; i++){ 546 Db *pDb = &db->aDb[i]; 547 if( pDb->pSchema ){ 548 sqlite3SchemaClear(pDb->pSchema); 549 } 550 } 551 db->flags &= ~SQLITE_InternChanges; 552 sqlite3VtabUnlockList(db); 553 sqlite3BtreeLeaveAll(db); 554 sqlite3CollapseDatabaseArray(db); 555 } 556 557 /* 558 ** This routine is called when a commit occurs. 559 */ 560 void sqlite3CommitInternalChanges(sqlite3 *db){ 561 db->flags &= ~SQLITE_InternChanges; 562 } 563 564 /* 565 ** Delete memory allocated for the column names of a table or view (the 566 ** Table.aCol[] array). 567 */ 568 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 569 int i; 570 Column *pCol; 571 assert( pTable!=0 ); 572 if( (pCol = pTable->aCol)!=0 ){ 573 for(i=0; i<pTable->nCol; i++, pCol++){ 574 sqlite3DbFree(db, pCol->zName); 575 sqlite3ExprDelete(db, pCol->pDflt); 576 sqlite3DbFree(db, pCol->zColl); 577 } 578 sqlite3DbFree(db, pTable->aCol); 579 } 580 } 581 582 /* 583 ** Remove the memory data structures associated with the given 584 ** Table. No changes are made to disk by this routine. 585 ** 586 ** This routine just deletes the data structure. It does not unlink 587 ** the table data structure from the hash table. But it does destroy 588 ** memory structures of the indices and foreign keys associated with 589 ** the table. 590 ** 591 ** The db parameter is optional. It is needed if the Table object 592 ** contains lookaside memory. (Table objects in the schema do not use 593 ** lookaside memory, but some ephemeral Table objects do.) Or the 594 ** db parameter can be used with db->pnBytesFreed to measure the memory 595 ** used by the Table object. 596 */ 597 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 598 Index *pIndex, *pNext; 599 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 600 601 /* Record the number of outstanding lookaside allocations in schema Tables 602 ** prior to doing any free() operations. Since schema Tables do not use 603 ** lookaside, this number should not change. */ 604 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 605 db->lookaside.nOut : 0 ); 606 607 /* Delete all indices associated with this table. */ 608 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 609 pNext = pIndex->pNext; 610 assert( pIndex->pSchema==pTable->pSchema 611 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 612 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 613 char *zName = pIndex->zName; 614 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 615 &pIndex->pSchema->idxHash, zName, 0 616 ); 617 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 618 assert( pOld==pIndex || pOld==0 ); 619 } 620 freeIndex(db, pIndex); 621 } 622 623 /* Delete any foreign keys attached to this table. */ 624 sqlite3FkDelete(db, pTable); 625 626 /* Delete the Table structure itself. 627 */ 628 sqlite3DeleteColumnNames(db, pTable); 629 sqlite3DbFree(db, pTable->zName); 630 sqlite3DbFree(db, pTable->zColAff); 631 sqlite3SelectDelete(db, pTable->pSelect); 632 sqlite3ExprListDelete(db, pTable->pCheck); 633 #ifndef SQLITE_OMIT_VIRTUALTABLE 634 sqlite3VtabClear(db, pTable); 635 #endif 636 sqlite3DbFree(db, pTable); 637 638 /* Verify that no lookaside memory was used by schema tables */ 639 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 640 } 641 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 642 /* Do not delete the table until the reference count reaches zero. */ 643 if( !pTable ) return; 644 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 645 deleteTable(db, pTable); 646 } 647 648 649 /* 650 ** Unlink the given table from the hash tables and the delete the 651 ** table structure with all its indices and foreign keys. 652 */ 653 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 654 Table *p; 655 Db *pDb; 656 657 assert( db!=0 ); 658 assert( iDb>=0 && iDb<db->nDb ); 659 assert( zTabName ); 660 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 661 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 662 pDb = &db->aDb[iDb]; 663 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 664 sqlite3DeleteTable(db, p); 665 db->flags |= SQLITE_InternChanges; 666 } 667 668 /* 669 ** Given a token, return a string that consists of the text of that 670 ** token. Space to hold the returned string 671 ** is obtained from sqliteMalloc() and must be freed by the calling 672 ** function. 673 ** 674 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 675 ** surround the body of the token are removed. 676 ** 677 ** Tokens are often just pointers into the original SQL text and so 678 ** are not \000 terminated and are not persistent. The returned string 679 ** is \000 terminated and is persistent. 680 */ 681 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 682 char *zName; 683 if( pName ){ 684 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 685 sqlite3Dequote(zName); 686 }else{ 687 zName = 0; 688 } 689 return zName; 690 } 691 692 /* 693 ** Open the sqlite_master table stored in database number iDb for 694 ** writing. The table is opened using cursor 0. 695 */ 696 void sqlite3OpenMasterTable(Parse *p, int iDb){ 697 Vdbe *v = sqlite3GetVdbe(p); 698 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 699 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 700 if( p->nTab==0 ){ 701 p->nTab = 1; 702 } 703 } 704 705 /* 706 ** Parameter zName points to a nul-terminated buffer containing the name 707 ** of a database ("main", "temp" or the name of an attached db). This 708 ** function returns the index of the named database in db->aDb[], or 709 ** -1 if the named db cannot be found. 710 */ 711 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 712 int i = -1; /* Database number */ 713 if( zName ){ 714 Db *pDb; 715 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 716 if( 0==sqlite3StrICmp(pDb->zName, zName) ) break; 717 } 718 } 719 return i; 720 } 721 722 /* 723 ** The token *pName contains the name of a database (either "main" or 724 ** "temp" or the name of an attached db). This routine returns the 725 ** index of the named database in db->aDb[], or -1 if the named db 726 ** does not exist. 727 */ 728 int sqlite3FindDb(sqlite3 *db, Token *pName){ 729 int i; /* Database number */ 730 char *zName; /* Name we are searching for */ 731 zName = sqlite3NameFromToken(db, pName); 732 i = sqlite3FindDbName(db, zName); 733 sqlite3DbFree(db, zName); 734 return i; 735 } 736 737 /* The table or view or trigger name is passed to this routine via tokens 738 ** pName1 and pName2. If the table name was fully qualified, for example: 739 ** 740 ** CREATE TABLE xxx.yyy (...); 741 ** 742 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 743 ** the table name is not fully qualified, i.e.: 744 ** 745 ** CREATE TABLE yyy(...); 746 ** 747 ** Then pName1 is set to "yyy" and pName2 is "". 748 ** 749 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 750 ** pName2) that stores the unqualified table name. The index of the 751 ** database "xxx" is returned. 752 */ 753 int sqlite3TwoPartName( 754 Parse *pParse, /* Parsing and code generating context */ 755 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 756 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 757 Token **pUnqual /* Write the unqualified object name here */ 758 ){ 759 int iDb; /* Database holding the object */ 760 sqlite3 *db = pParse->db; 761 762 assert( pName2!=0 ); 763 if( pName2->n>0 ){ 764 if( db->init.busy ) { 765 sqlite3ErrorMsg(pParse, "corrupt database"); 766 return -1; 767 } 768 *pUnqual = pName2; 769 iDb = sqlite3FindDb(db, pName1); 770 if( iDb<0 ){ 771 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 772 return -1; 773 } 774 }else{ 775 assert( db->init.iDb==0 || db->init.busy ); 776 iDb = db->init.iDb; 777 *pUnqual = pName1; 778 } 779 return iDb; 780 } 781 782 /* 783 ** This routine is used to check if the UTF-8 string zName is a legal 784 ** unqualified name for a new schema object (table, index, view or 785 ** trigger). All names are legal except those that begin with the string 786 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 787 ** is reserved for internal use. 788 */ 789 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 790 if( !pParse->db->init.busy && pParse->nested==0 791 && (pParse->db->flags & SQLITE_WriteSchema)==0 792 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 793 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 794 return SQLITE_ERROR; 795 } 796 return SQLITE_OK; 797 } 798 799 /* 800 ** Return the PRIMARY KEY index of a table 801 */ 802 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 803 Index *p; 804 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 805 return p; 806 } 807 808 /* 809 ** Return the column of index pIdx that corresponds to table 810 ** column iCol. Return -1 if not found. 811 */ 812 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 813 int i; 814 for(i=0; i<pIdx->nColumn; i++){ 815 if( iCol==pIdx->aiColumn[i] ) return i; 816 } 817 return -1; 818 } 819 820 /* 821 ** Begin constructing a new table representation in memory. This is 822 ** the first of several action routines that get called in response 823 ** to a CREATE TABLE statement. In particular, this routine is called 824 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 825 ** flag is true if the table should be stored in the auxiliary database 826 ** file instead of in the main database file. This is normally the case 827 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 828 ** CREATE and TABLE. 829 ** 830 ** The new table record is initialized and put in pParse->pNewTable. 831 ** As more of the CREATE TABLE statement is parsed, additional action 832 ** routines will be called to add more information to this record. 833 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 834 ** is called to complete the construction of the new table record. 835 */ 836 void sqlite3StartTable( 837 Parse *pParse, /* Parser context */ 838 Token *pName1, /* First part of the name of the table or view */ 839 Token *pName2, /* Second part of the name of the table or view */ 840 int isTemp, /* True if this is a TEMP table */ 841 int isView, /* True if this is a VIEW */ 842 int isVirtual, /* True if this is a VIRTUAL table */ 843 int noErr /* Do nothing if table already exists */ 844 ){ 845 Table *pTable; 846 char *zName = 0; /* The name of the new table */ 847 sqlite3 *db = pParse->db; 848 Vdbe *v; 849 int iDb; /* Database number to create the table in */ 850 Token *pName; /* Unqualified name of the table to create */ 851 852 if( db->init.busy && db->init.newTnum==1 ){ 853 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 854 iDb = db->init.iDb; 855 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 856 pName = pName1; 857 }else{ 858 /* The common case */ 859 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 860 if( iDb<0 ) return; 861 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 862 /* If creating a temp table, the name may not be qualified. Unless 863 ** the database name is "temp" anyway. */ 864 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 865 return; 866 } 867 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 868 zName = sqlite3NameFromToken(db, pName); 869 } 870 pParse->sNameToken = *pName; 871 if( zName==0 ) return; 872 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 873 goto begin_table_error; 874 } 875 if( db->init.iDb==1 ) isTemp = 1; 876 #ifndef SQLITE_OMIT_AUTHORIZATION 877 assert( isTemp==0 || isTemp==1 ); 878 assert( isView==0 || isView==1 ); 879 { 880 static const u8 aCode[] = { 881 SQLITE_CREATE_TABLE, 882 SQLITE_CREATE_TEMP_TABLE, 883 SQLITE_CREATE_VIEW, 884 SQLITE_CREATE_TEMP_VIEW 885 }; 886 char *zDb = db->aDb[iDb].zName; 887 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 888 goto begin_table_error; 889 } 890 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 891 zName, 0, zDb) ){ 892 goto begin_table_error; 893 } 894 } 895 #endif 896 897 /* Make sure the new table name does not collide with an existing 898 ** index or table name in the same database. Issue an error message if 899 ** it does. The exception is if the statement being parsed was passed 900 ** to an sqlite3_declare_vtab() call. In that case only the column names 901 ** and types will be used, so there is no need to test for namespace 902 ** collisions. 903 */ 904 if( !IN_DECLARE_VTAB ){ 905 char *zDb = db->aDb[iDb].zName; 906 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 907 goto begin_table_error; 908 } 909 pTable = sqlite3FindTable(db, zName, zDb); 910 if( pTable ){ 911 if( !noErr ){ 912 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 913 }else{ 914 assert( !db->init.busy || CORRUPT_DB ); 915 sqlite3CodeVerifySchema(pParse, iDb); 916 } 917 goto begin_table_error; 918 } 919 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 920 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 921 goto begin_table_error; 922 } 923 } 924 925 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 926 if( pTable==0 ){ 927 assert( db->mallocFailed ); 928 pParse->rc = SQLITE_NOMEM_BKPT; 929 pParse->nErr++; 930 goto begin_table_error; 931 } 932 pTable->zName = zName; 933 pTable->iPKey = -1; 934 pTable->pSchema = db->aDb[iDb].pSchema; 935 pTable->nRef = 1; 936 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 937 assert( pParse->pNewTable==0 ); 938 pParse->pNewTable = pTable; 939 940 /* If this is the magic sqlite_sequence table used by autoincrement, 941 ** then record a pointer to this table in the main database structure 942 ** so that INSERT can find the table easily. 943 */ 944 #ifndef SQLITE_OMIT_AUTOINCREMENT 945 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 946 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 947 pTable->pSchema->pSeqTab = pTable; 948 } 949 #endif 950 951 /* Begin generating the code that will insert the table record into 952 ** the SQLITE_MASTER table. Note in particular that we must go ahead 953 ** and allocate the record number for the table entry now. Before any 954 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 955 ** indices to be created and the table record must come before the 956 ** indices. Hence, the record number for the table must be allocated 957 ** now. 958 */ 959 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 960 int addr1; 961 int fileFormat; 962 int reg1, reg2, reg3; 963 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 964 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 965 sqlite3BeginWriteOperation(pParse, 1, iDb); 966 967 #ifndef SQLITE_OMIT_VIRTUALTABLE 968 if( isVirtual ){ 969 sqlite3VdbeAddOp0(v, OP_VBegin); 970 } 971 #endif 972 973 /* If the file format and encoding in the database have not been set, 974 ** set them now. 975 */ 976 reg1 = pParse->regRowid = ++pParse->nMem; 977 reg2 = pParse->regRoot = ++pParse->nMem; 978 reg3 = ++pParse->nMem; 979 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 980 sqlite3VdbeUsesBtree(v, iDb); 981 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 982 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 983 1 : SQLITE_MAX_FILE_FORMAT; 984 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 985 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 986 sqlite3VdbeJumpHere(v, addr1); 987 988 /* This just creates a place-holder record in the sqlite_master table. 989 ** The record created does not contain anything yet. It will be replaced 990 ** by the real entry in code generated at sqlite3EndTable(). 991 ** 992 ** The rowid for the new entry is left in register pParse->regRowid. 993 ** The root page number of the new table is left in reg pParse->regRoot. 994 ** The rowid and root page number values are needed by the code that 995 ** sqlite3EndTable will generate. 996 */ 997 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 998 if( isView || isVirtual ){ 999 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1000 }else 1001 #endif 1002 { 1003 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1004 } 1005 sqlite3OpenMasterTable(pParse, iDb); 1006 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1007 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1008 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1009 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1010 sqlite3VdbeAddOp0(v, OP_Close); 1011 } 1012 1013 /* Normal (non-error) return. */ 1014 return; 1015 1016 /* If an error occurs, we jump here */ 1017 begin_table_error: 1018 sqlite3DbFree(db, zName); 1019 return; 1020 } 1021 1022 /* Set properties of a table column based on the (magical) 1023 ** name of the column. 1024 */ 1025 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1026 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1027 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1028 pCol->colFlags |= COLFLAG_HIDDEN; 1029 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1030 pTab->tabFlags |= TF_OOOHidden; 1031 } 1032 } 1033 #endif 1034 1035 1036 /* 1037 ** Add a new column to the table currently being constructed. 1038 ** 1039 ** The parser calls this routine once for each column declaration 1040 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1041 ** first to get things going. Then this routine is called for each 1042 ** column. 1043 */ 1044 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1045 Table *p; 1046 int i; 1047 char *z; 1048 char *zType; 1049 Column *pCol; 1050 sqlite3 *db = pParse->db; 1051 if( (p = pParse->pNewTable)==0 ) return; 1052 #if SQLITE_MAX_COLUMN 1053 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1054 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1055 return; 1056 } 1057 #endif 1058 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1059 if( z==0 ) return; 1060 memcpy(z, pName->z, pName->n); 1061 z[pName->n] = 0; 1062 sqlite3Dequote(z); 1063 for(i=0; i<p->nCol; i++){ 1064 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1065 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1066 sqlite3DbFree(db, z); 1067 return; 1068 } 1069 } 1070 if( (p->nCol & 0x7)==0 ){ 1071 Column *aNew; 1072 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1073 if( aNew==0 ){ 1074 sqlite3DbFree(db, z); 1075 return; 1076 } 1077 p->aCol = aNew; 1078 } 1079 pCol = &p->aCol[p->nCol]; 1080 memset(pCol, 0, sizeof(p->aCol[0])); 1081 pCol->zName = z; 1082 sqlite3ColumnPropertiesFromName(p, pCol); 1083 1084 if( pType->n==0 ){ 1085 /* If there is no type specified, columns have the default affinity 1086 ** 'BLOB'. */ 1087 pCol->affinity = SQLITE_AFF_BLOB; 1088 pCol->szEst = 1; 1089 }else{ 1090 zType = z + sqlite3Strlen30(z) + 1; 1091 memcpy(zType, pType->z, pType->n); 1092 zType[pType->n] = 0; 1093 sqlite3Dequote(zType); 1094 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst); 1095 pCol->colFlags |= COLFLAG_HASTYPE; 1096 } 1097 p->nCol++; 1098 pParse->constraintName.n = 0; 1099 } 1100 1101 /* 1102 ** This routine is called by the parser while in the middle of 1103 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1104 ** been seen on a column. This routine sets the notNull flag on 1105 ** the column currently under construction. 1106 */ 1107 void sqlite3AddNotNull(Parse *pParse, int onError){ 1108 Table *p; 1109 p = pParse->pNewTable; 1110 if( p==0 || NEVER(p->nCol<1) ) return; 1111 p->aCol[p->nCol-1].notNull = (u8)onError; 1112 } 1113 1114 /* 1115 ** Scan the column type name zType (length nType) and return the 1116 ** associated affinity type. 1117 ** 1118 ** This routine does a case-independent search of zType for the 1119 ** substrings in the following table. If one of the substrings is 1120 ** found, the corresponding affinity is returned. If zType contains 1121 ** more than one of the substrings, entries toward the top of 1122 ** the table take priority. For example, if zType is 'BLOBINT', 1123 ** SQLITE_AFF_INTEGER is returned. 1124 ** 1125 ** Substring | Affinity 1126 ** -------------------------------- 1127 ** 'INT' | SQLITE_AFF_INTEGER 1128 ** 'CHAR' | SQLITE_AFF_TEXT 1129 ** 'CLOB' | SQLITE_AFF_TEXT 1130 ** 'TEXT' | SQLITE_AFF_TEXT 1131 ** 'BLOB' | SQLITE_AFF_BLOB 1132 ** 'REAL' | SQLITE_AFF_REAL 1133 ** 'FLOA' | SQLITE_AFF_REAL 1134 ** 'DOUB' | SQLITE_AFF_REAL 1135 ** 1136 ** If none of the substrings in the above table are found, 1137 ** SQLITE_AFF_NUMERIC is returned. 1138 */ 1139 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1140 u32 h = 0; 1141 char aff = SQLITE_AFF_NUMERIC; 1142 const char *zChar = 0; 1143 1144 assert( zIn!=0 ); 1145 while( zIn[0] ){ 1146 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1147 zIn++; 1148 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1149 aff = SQLITE_AFF_TEXT; 1150 zChar = zIn; 1151 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1152 aff = SQLITE_AFF_TEXT; 1153 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1154 aff = SQLITE_AFF_TEXT; 1155 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1156 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1157 aff = SQLITE_AFF_BLOB; 1158 if( zIn[0]=='(' ) zChar = zIn; 1159 #ifndef SQLITE_OMIT_FLOATING_POINT 1160 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1161 && aff==SQLITE_AFF_NUMERIC ){ 1162 aff = SQLITE_AFF_REAL; 1163 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1164 && aff==SQLITE_AFF_NUMERIC ){ 1165 aff = SQLITE_AFF_REAL; 1166 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1167 && aff==SQLITE_AFF_NUMERIC ){ 1168 aff = SQLITE_AFF_REAL; 1169 #endif 1170 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1171 aff = SQLITE_AFF_INTEGER; 1172 break; 1173 } 1174 } 1175 1176 /* If pszEst is not NULL, store an estimate of the field size. The 1177 ** estimate is scaled so that the size of an integer is 1. */ 1178 if( pszEst ){ 1179 *pszEst = 1; /* default size is approx 4 bytes */ 1180 if( aff<SQLITE_AFF_NUMERIC ){ 1181 if( zChar ){ 1182 while( zChar[0] ){ 1183 if( sqlite3Isdigit(zChar[0]) ){ 1184 int v = 0; 1185 sqlite3GetInt32(zChar, &v); 1186 v = v/4 + 1; 1187 if( v>255 ) v = 255; 1188 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1189 break; 1190 } 1191 zChar++; 1192 } 1193 }else{ 1194 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1195 } 1196 } 1197 } 1198 return aff; 1199 } 1200 1201 /* 1202 ** The expression is the default value for the most recently added column 1203 ** of the table currently under construction. 1204 ** 1205 ** Default value expressions must be constant. Raise an exception if this 1206 ** is not the case. 1207 ** 1208 ** This routine is called by the parser while in the middle of 1209 ** parsing a CREATE TABLE statement. 1210 */ 1211 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1212 Table *p; 1213 Column *pCol; 1214 sqlite3 *db = pParse->db; 1215 p = pParse->pNewTable; 1216 if( p!=0 ){ 1217 pCol = &(p->aCol[p->nCol-1]); 1218 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1219 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1220 pCol->zName); 1221 }else{ 1222 /* A copy of pExpr is used instead of the original, as pExpr contains 1223 ** tokens that point to volatile memory. The 'span' of the expression 1224 ** is required by pragma table_info. 1225 */ 1226 Expr x; 1227 sqlite3ExprDelete(db, pCol->pDflt); 1228 memset(&x, 0, sizeof(x)); 1229 x.op = TK_SPAN; 1230 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1231 (int)(pSpan->zEnd - pSpan->zStart)); 1232 x.pLeft = pSpan->pExpr; 1233 x.flags = EP_Skip; 1234 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1235 sqlite3DbFree(db, x.u.zToken); 1236 } 1237 } 1238 sqlite3ExprDelete(db, pSpan->pExpr); 1239 } 1240 1241 /* 1242 ** Backwards Compatibility Hack: 1243 ** 1244 ** Historical versions of SQLite accepted strings as column names in 1245 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1246 ** 1247 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1248 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1249 ** 1250 ** This is goofy. But to preserve backwards compatibility we continue to 1251 ** accept it. This routine does the necessary conversion. It converts 1252 ** the expression given in its argument from a TK_STRING into a TK_ID 1253 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1254 ** If the epxression is anything other than TK_STRING, the expression is 1255 ** unchanged. 1256 */ 1257 static void sqlite3StringToId(Expr *p){ 1258 if( p->op==TK_STRING ){ 1259 p->op = TK_ID; 1260 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1261 p->pLeft->op = TK_ID; 1262 } 1263 } 1264 1265 /* 1266 ** Designate the PRIMARY KEY for the table. pList is a list of names 1267 ** of columns that form the primary key. If pList is NULL, then the 1268 ** most recently added column of the table is the primary key. 1269 ** 1270 ** A table can have at most one primary key. If the table already has 1271 ** a primary key (and this is the second primary key) then create an 1272 ** error. 1273 ** 1274 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1275 ** then we will try to use that column as the rowid. Set the Table.iPKey 1276 ** field of the table under construction to be the index of the 1277 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1278 ** no INTEGER PRIMARY KEY. 1279 ** 1280 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1281 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1282 */ 1283 void sqlite3AddPrimaryKey( 1284 Parse *pParse, /* Parsing context */ 1285 ExprList *pList, /* List of field names to be indexed */ 1286 int onError, /* What to do with a uniqueness conflict */ 1287 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1288 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1289 ){ 1290 Table *pTab = pParse->pNewTable; 1291 Column *pCol = 0; 1292 int iCol = -1, i; 1293 int nTerm; 1294 if( pTab==0 ) goto primary_key_exit; 1295 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1296 sqlite3ErrorMsg(pParse, 1297 "table \"%s\" has more than one primary key", pTab->zName); 1298 goto primary_key_exit; 1299 } 1300 pTab->tabFlags |= TF_HasPrimaryKey; 1301 if( pList==0 ){ 1302 iCol = pTab->nCol - 1; 1303 pCol = &pTab->aCol[iCol]; 1304 pCol->colFlags |= COLFLAG_PRIMKEY; 1305 nTerm = 1; 1306 }else{ 1307 nTerm = pList->nExpr; 1308 for(i=0; i<nTerm; i++){ 1309 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1310 assert( pCExpr!=0 ); 1311 sqlite3StringToId(pCExpr); 1312 if( pCExpr->op==TK_ID ){ 1313 const char *zCName = pCExpr->u.zToken; 1314 for(iCol=0; iCol<pTab->nCol; iCol++){ 1315 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1316 pCol = &pTab->aCol[iCol]; 1317 pCol->colFlags |= COLFLAG_PRIMKEY; 1318 break; 1319 } 1320 } 1321 } 1322 } 1323 } 1324 if( nTerm==1 1325 && pCol 1326 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1327 && sortOrder!=SQLITE_SO_DESC 1328 ){ 1329 pTab->iPKey = iCol; 1330 pTab->keyConf = (u8)onError; 1331 assert( autoInc==0 || autoInc==1 ); 1332 pTab->tabFlags |= autoInc*TF_Autoincrement; 1333 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1334 }else if( autoInc ){ 1335 #ifndef SQLITE_OMIT_AUTOINCREMENT 1336 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1337 "INTEGER PRIMARY KEY"); 1338 #endif 1339 }else{ 1340 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1341 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1342 pList = 0; 1343 } 1344 1345 primary_key_exit: 1346 sqlite3ExprListDelete(pParse->db, pList); 1347 return; 1348 } 1349 1350 /* 1351 ** Add a new CHECK constraint to the table currently under construction. 1352 */ 1353 void sqlite3AddCheckConstraint( 1354 Parse *pParse, /* Parsing context */ 1355 Expr *pCheckExpr /* The check expression */ 1356 ){ 1357 #ifndef SQLITE_OMIT_CHECK 1358 Table *pTab = pParse->pNewTable; 1359 sqlite3 *db = pParse->db; 1360 if( pTab && !IN_DECLARE_VTAB 1361 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1362 ){ 1363 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1364 if( pParse->constraintName.n ){ 1365 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1366 } 1367 }else 1368 #endif 1369 { 1370 sqlite3ExprDelete(pParse->db, pCheckExpr); 1371 } 1372 } 1373 1374 /* 1375 ** Set the collation function of the most recently parsed table column 1376 ** to the CollSeq given. 1377 */ 1378 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1379 Table *p; 1380 int i; 1381 char *zColl; /* Dequoted name of collation sequence */ 1382 sqlite3 *db; 1383 1384 if( (p = pParse->pNewTable)==0 ) return; 1385 i = p->nCol-1; 1386 db = pParse->db; 1387 zColl = sqlite3NameFromToken(db, pToken); 1388 if( !zColl ) return; 1389 1390 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1391 Index *pIdx; 1392 sqlite3DbFree(db, p->aCol[i].zColl); 1393 p->aCol[i].zColl = zColl; 1394 1395 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1396 ** then an index may have been created on this column before the 1397 ** collation type was added. Correct this if it is the case. 1398 */ 1399 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1400 assert( pIdx->nKeyCol==1 ); 1401 if( pIdx->aiColumn[0]==i ){ 1402 pIdx->azColl[0] = p->aCol[i].zColl; 1403 } 1404 } 1405 }else{ 1406 sqlite3DbFree(db, zColl); 1407 } 1408 } 1409 1410 /* 1411 ** This function returns the collation sequence for database native text 1412 ** encoding identified by the string zName, length nName. 1413 ** 1414 ** If the requested collation sequence is not available, or not available 1415 ** in the database native encoding, the collation factory is invoked to 1416 ** request it. If the collation factory does not supply such a sequence, 1417 ** and the sequence is available in another text encoding, then that is 1418 ** returned instead. 1419 ** 1420 ** If no versions of the requested collations sequence are available, or 1421 ** another error occurs, NULL is returned and an error message written into 1422 ** pParse. 1423 ** 1424 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1425 ** invokes the collation factory if the named collation cannot be found 1426 ** and generates an error message. 1427 ** 1428 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1429 */ 1430 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1431 sqlite3 *db = pParse->db; 1432 u8 enc = ENC(db); 1433 u8 initbusy = db->init.busy; 1434 CollSeq *pColl; 1435 1436 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1437 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1438 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1439 } 1440 1441 return pColl; 1442 } 1443 1444 1445 /* 1446 ** Generate code that will increment the schema cookie. 1447 ** 1448 ** The schema cookie is used to determine when the schema for the 1449 ** database changes. After each schema change, the cookie value 1450 ** changes. When a process first reads the schema it records the 1451 ** cookie. Thereafter, whenever it goes to access the database, 1452 ** it checks the cookie to make sure the schema has not changed 1453 ** since it was last read. 1454 ** 1455 ** This plan is not completely bullet-proof. It is possible for 1456 ** the schema to change multiple times and for the cookie to be 1457 ** set back to prior value. But schema changes are infrequent 1458 ** and the probability of hitting the same cookie value is only 1459 ** 1 chance in 2^32. So we're safe enough. 1460 */ 1461 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1462 sqlite3 *db = pParse->db; 1463 Vdbe *v = pParse->pVdbe; 1464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1465 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1466 db->aDb[iDb].pSchema->schema_cookie+1); 1467 } 1468 1469 /* 1470 ** Measure the number of characters needed to output the given 1471 ** identifier. The number returned includes any quotes used 1472 ** but does not include the null terminator. 1473 ** 1474 ** The estimate is conservative. It might be larger that what is 1475 ** really needed. 1476 */ 1477 static int identLength(const char *z){ 1478 int n; 1479 for(n=0; *z; n++, z++){ 1480 if( *z=='"' ){ n++; } 1481 } 1482 return n + 2; 1483 } 1484 1485 /* 1486 ** The first parameter is a pointer to an output buffer. The second 1487 ** parameter is a pointer to an integer that contains the offset at 1488 ** which to write into the output buffer. This function copies the 1489 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1490 ** to the specified offset in the buffer and updates *pIdx to refer 1491 ** to the first byte after the last byte written before returning. 1492 ** 1493 ** If the string zSignedIdent consists entirely of alpha-numeric 1494 ** characters, does not begin with a digit and is not an SQL keyword, 1495 ** then it is copied to the output buffer exactly as it is. Otherwise, 1496 ** it is quoted using double-quotes. 1497 */ 1498 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1499 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1500 int i, j, needQuote; 1501 i = *pIdx; 1502 1503 for(j=0; zIdent[j]; j++){ 1504 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1505 } 1506 needQuote = sqlite3Isdigit(zIdent[0]) 1507 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1508 || zIdent[j]!=0 1509 || j==0; 1510 1511 if( needQuote ) z[i++] = '"'; 1512 for(j=0; zIdent[j]; j++){ 1513 z[i++] = zIdent[j]; 1514 if( zIdent[j]=='"' ) z[i++] = '"'; 1515 } 1516 if( needQuote ) z[i++] = '"'; 1517 z[i] = 0; 1518 *pIdx = i; 1519 } 1520 1521 /* 1522 ** Generate a CREATE TABLE statement appropriate for the given 1523 ** table. Memory to hold the text of the statement is obtained 1524 ** from sqliteMalloc() and must be freed by the calling function. 1525 */ 1526 static char *createTableStmt(sqlite3 *db, Table *p){ 1527 int i, k, n; 1528 char *zStmt; 1529 char *zSep, *zSep2, *zEnd; 1530 Column *pCol; 1531 n = 0; 1532 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1533 n += identLength(pCol->zName) + 5; 1534 } 1535 n += identLength(p->zName); 1536 if( n<50 ){ 1537 zSep = ""; 1538 zSep2 = ","; 1539 zEnd = ")"; 1540 }else{ 1541 zSep = "\n "; 1542 zSep2 = ",\n "; 1543 zEnd = "\n)"; 1544 } 1545 n += 35 + 6*p->nCol; 1546 zStmt = sqlite3DbMallocRaw(0, n); 1547 if( zStmt==0 ){ 1548 sqlite3OomFault(db); 1549 return 0; 1550 } 1551 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1552 k = sqlite3Strlen30(zStmt); 1553 identPut(zStmt, &k, p->zName); 1554 zStmt[k++] = '('; 1555 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1556 static const char * const azType[] = { 1557 /* SQLITE_AFF_BLOB */ "", 1558 /* SQLITE_AFF_TEXT */ " TEXT", 1559 /* SQLITE_AFF_NUMERIC */ " NUM", 1560 /* SQLITE_AFF_INTEGER */ " INT", 1561 /* SQLITE_AFF_REAL */ " REAL" 1562 }; 1563 int len; 1564 const char *zType; 1565 1566 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1567 k += sqlite3Strlen30(&zStmt[k]); 1568 zSep = zSep2; 1569 identPut(zStmt, &k, pCol->zName); 1570 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1571 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1572 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1573 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1574 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1575 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1576 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1577 1578 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1579 len = sqlite3Strlen30(zType); 1580 assert( pCol->affinity==SQLITE_AFF_BLOB 1581 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1582 memcpy(&zStmt[k], zType, len); 1583 k += len; 1584 assert( k<=n ); 1585 } 1586 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1587 return zStmt; 1588 } 1589 1590 /* 1591 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1592 ** on success and SQLITE_NOMEM on an OOM error. 1593 */ 1594 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1595 char *zExtra; 1596 int nByte; 1597 if( pIdx->nColumn>=N ) return SQLITE_OK; 1598 assert( pIdx->isResized==0 ); 1599 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1600 zExtra = sqlite3DbMallocZero(db, nByte); 1601 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1602 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1603 pIdx->azColl = (const char**)zExtra; 1604 zExtra += sizeof(char*)*N; 1605 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1606 pIdx->aiColumn = (i16*)zExtra; 1607 zExtra += sizeof(i16)*N; 1608 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1609 pIdx->aSortOrder = (u8*)zExtra; 1610 pIdx->nColumn = N; 1611 pIdx->isResized = 1; 1612 return SQLITE_OK; 1613 } 1614 1615 /* 1616 ** Estimate the total row width for a table. 1617 */ 1618 static void estimateTableWidth(Table *pTab){ 1619 unsigned wTable = 0; 1620 const Column *pTabCol; 1621 int i; 1622 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1623 wTable += pTabCol->szEst; 1624 } 1625 if( pTab->iPKey<0 ) wTable++; 1626 pTab->szTabRow = sqlite3LogEst(wTable*4); 1627 } 1628 1629 /* 1630 ** Estimate the average size of a row for an index. 1631 */ 1632 static void estimateIndexWidth(Index *pIdx){ 1633 unsigned wIndex = 0; 1634 int i; 1635 const Column *aCol = pIdx->pTable->aCol; 1636 for(i=0; i<pIdx->nColumn; i++){ 1637 i16 x = pIdx->aiColumn[i]; 1638 assert( x<pIdx->pTable->nCol ); 1639 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1640 } 1641 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1642 } 1643 1644 /* Return true if value x is found any of the first nCol entries of aiCol[] 1645 */ 1646 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1647 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1648 return 0; 1649 } 1650 1651 /* 1652 ** This routine runs at the end of parsing a CREATE TABLE statement that 1653 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1654 ** internal schema data structures and the generated VDBE code so that they 1655 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1656 ** Changes include: 1657 ** 1658 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1659 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is 1660 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1661 ** data storage is a covering index btree. 1662 ** (3) Bypass the creation of the sqlite_master table entry 1663 ** for the PRIMARY KEY as the primary key index is now 1664 ** identified by the sqlite_master table entry of the table itself. 1665 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1666 ** schema to the rootpage from the main table. 1667 ** (5) Add all table columns to the PRIMARY KEY Index object 1668 ** so that the PRIMARY KEY is a covering index. The surplus 1669 ** columns are part of KeyInfo.nXField and are not used for 1670 ** sorting or lookup or uniqueness checks. 1671 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1672 ** indices with the PRIMARY KEY columns. 1673 ** 1674 ** For virtual tables, only (1) is performed. 1675 */ 1676 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1677 Index *pIdx; 1678 Index *pPk; 1679 int nPk; 1680 int i, j; 1681 sqlite3 *db = pParse->db; 1682 Vdbe *v = pParse->pVdbe; 1683 1684 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1685 */ 1686 if( !db->init.imposterTable ){ 1687 for(i=0; i<pTab->nCol; i++){ 1688 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1689 pTab->aCol[i].notNull = OE_Abort; 1690 } 1691 } 1692 } 1693 1694 /* The remaining transformations only apply to b-tree tables, not to 1695 ** virtual tables */ 1696 if( IN_DECLARE_VTAB ) return; 1697 1698 /* Convert the OP_CreateTable opcode that would normally create the 1699 ** root-page for the table into an OP_CreateIndex opcode. The index 1700 ** created will become the PRIMARY KEY index. 1701 */ 1702 if( pParse->addrCrTab ){ 1703 assert( v ); 1704 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1705 } 1706 1707 /* Locate the PRIMARY KEY index. Or, if this table was originally 1708 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1709 */ 1710 if( pTab->iPKey>=0 ){ 1711 ExprList *pList; 1712 Token ipkToken; 1713 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1714 pList = sqlite3ExprListAppend(pParse, 0, 1715 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1716 if( pList==0 ) return; 1717 pList->a[0].sortOrder = pParse->iPkSortOrder; 1718 assert( pParse->pNewTable==pTab ); 1719 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1720 SQLITE_IDXTYPE_PRIMARYKEY); 1721 if( db->mallocFailed ) return; 1722 pPk = sqlite3PrimaryKeyIndex(pTab); 1723 pTab->iPKey = -1; 1724 }else{ 1725 pPk = sqlite3PrimaryKeyIndex(pTab); 1726 1727 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1728 ** table entry. This is only required if currently generating VDBE 1729 ** code for a CREATE TABLE (not when parsing one as part of reading 1730 ** a database schema). */ 1731 if( v ){ 1732 assert( db->init.busy==0 ); 1733 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1734 } 1735 1736 /* 1737 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1738 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1739 ** code assumes the PRIMARY KEY contains no repeated columns. 1740 */ 1741 for(i=j=1; i<pPk->nKeyCol; i++){ 1742 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1743 pPk->nColumn--; 1744 }else{ 1745 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1746 } 1747 } 1748 pPk->nKeyCol = j; 1749 } 1750 assert( pPk!=0 ); 1751 pPk->isCovering = 1; 1752 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1753 nPk = pPk->nKeyCol; 1754 1755 /* The root page of the PRIMARY KEY is the table root page */ 1756 pPk->tnum = pTab->tnum; 1757 1758 /* Update the in-memory representation of all UNIQUE indices by converting 1759 ** the final rowid column into one or more columns of the PRIMARY KEY. 1760 */ 1761 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1762 int n; 1763 if( IsPrimaryKeyIndex(pIdx) ) continue; 1764 for(i=n=0; i<nPk; i++){ 1765 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1766 } 1767 if( n==0 ){ 1768 /* This index is a superset of the primary key */ 1769 pIdx->nColumn = pIdx->nKeyCol; 1770 continue; 1771 } 1772 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1773 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1774 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1775 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1776 pIdx->azColl[j] = pPk->azColl[i]; 1777 j++; 1778 } 1779 } 1780 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1781 assert( pIdx->nColumn>=j ); 1782 } 1783 1784 /* Add all table columns to the PRIMARY KEY index 1785 */ 1786 if( nPk<pTab->nCol ){ 1787 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1788 for(i=0, j=nPk; i<pTab->nCol; i++){ 1789 if( !hasColumn(pPk->aiColumn, j, i) ){ 1790 assert( j<pPk->nColumn ); 1791 pPk->aiColumn[j] = i; 1792 pPk->azColl[j] = sqlite3StrBINARY; 1793 j++; 1794 } 1795 } 1796 assert( pPk->nColumn==j ); 1797 assert( pTab->nCol==j ); 1798 }else{ 1799 pPk->nColumn = pTab->nCol; 1800 } 1801 } 1802 1803 /* 1804 ** This routine is called to report the final ")" that terminates 1805 ** a CREATE TABLE statement. 1806 ** 1807 ** The table structure that other action routines have been building 1808 ** is added to the internal hash tables, assuming no errors have 1809 ** occurred. 1810 ** 1811 ** An entry for the table is made in the master table on disk, unless 1812 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1813 ** it means we are reading the sqlite_master table because we just 1814 ** connected to the database or because the sqlite_master table has 1815 ** recently changed, so the entry for this table already exists in 1816 ** the sqlite_master table. We do not want to create it again. 1817 ** 1818 ** If the pSelect argument is not NULL, it means that this routine 1819 ** was called to create a table generated from a 1820 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1821 ** the new table will match the result set of the SELECT. 1822 */ 1823 void sqlite3EndTable( 1824 Parse *pParse, /* Parse context */ 1825 Token *pCons, /* The ',' token after the last column defn. */ 1826 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1827 u8 tabOpts, /* Extra table options. Usually 0. */ 1828 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1829 ){ 1830 Table *p; /* The new table */ 1831 sqlite3 *db = pParse->db; /* The database connection */ 1832 int iDb; /* Database in which the table lives */ 1833 Index *pIdx; /* An implied index of the table */ 1834 1835 if( pEnd==0 && pSelect==0 ){ 1836 return; 1837 } 1838 assert( !db->mallocFailed ); 1839 p = pParse->pNewTable; 1840 if( p==0 ) return; 1841 1842 assert( !db->init.busy || !pSelect ); 1843 1844 /* If the db->init.busy is 1 it means we are reading the SQL off the 1845 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1846 ** So do not write to the disk again. Extract the root page number 1847 ** for the table from the db->init.newTnum field. (The page number 1848 ** should have been put there by the sqliteOpenCb routine.) 1849 ** 1850 ** If the root page number is 1, that means this is the sqlite_master 1851 ** table itself. So mark it read-only. 1852 */ 1853 if( db->init.busy ){ 1854 p->tnum = db->init.newTnum; 1855 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1856 } 1857 1858 /* Special processing for WITHOUT ROWID Tables */ 1859 if( tabOpts & TF_WithoutRowid ){ 1860 if( (p->tabFlags & TF_Autoincrement) ){ 1861 sqlite3ErrorMsg(pParse, 1862 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1863 return; 1864 } 1865 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1866 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1867 }else{ 1868 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1869 convertToWithoutRowidTable(pParse, p); 1870 } 1871 } 1872 1873 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1874 1875 #ifndef SQLITE_OMIT_CHECK 1876 /* Resolve names in all CHECK constraint expressions. 1877 */ 1878 if( p->pCheck ){ 1879 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1880 } 1881 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1882 1883 /* Estimate the average row size for the table and for all implied indices */ 1884 estimateTableWidth(p); 1885 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1886 estimateIndexWidth(pIdx); 1887 } 1888 1889 /* If not initializing, then create a record for the new table 1890 ** in the SQLITE_MASTER table of the database. 1891 ** 1892 ** If this is a TEMPORARY table, write the entry into the auxiliary 1893 ** file instead of into the main database file. 1894 */ 1895 if( !db->init.busy ){ 1896 int n; 1897 Vdbe *v; 1898 char *zType; /* "view" or "table" */ 1899 char *zType2; /* "VIEW" or "TABLE" */ 1900 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1901 1902 v = sqlite3GetVdbe(pParse); 1903 if( NEVER(v==0) ) return; 1904 1905 sqlite3VdbeAddOp1(v, OP_Close, 0); 1906 1907 /* 1908 ** Initialize zType for the new view or table. 1909 */ 1910 if( p->pSelect==0 ){ 1911 /* A regular table */ 1912 zType = "table"; 1913 zType2 = "TABLE"; 1914 #ifndef SQLITE_OMIT_VIEW 1915 }else{ 1916 /* A view */ 1917 zType = "view"; 1918 zType2 = "VIEW"; 1919 #endif 1920 } 1921 1922 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1923 ** statement to populate the new table. The root-page number for the 1924 ** new table is in register pParse->regRoot. 1925 ** 1926 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1927 ** suitable state to query for the column names and types to be used 1928 ** by the new table. 1929 ** 1930 ** A shared-cache write-lock is not required to write to the new table, 1931 ** as a schema-lock must have already been obtained to create it. Since 1932 ** a schema-lock excludes all other database users, the write-lock would 1933 ** be redundant. 1934 */ 1935 if( pSelect ){ 1936 SelectDest dest; /* Where the SELECT should store results */ 1937 int regYield; /* Register holding co-routine entry-point */ 1938 int addrTop; /* Top of the co-routine */ 1939 int regRec; /* A record to be insert into the new table */ 1940 int regRowid; /* Rowid of the next row to insert */ 1941 int addrInsLoop; /* Top of the loop for inserting rows */ 1942 Table *pSelTab; /* A table that describes the SELECT results */ 1943 1944 regYield = ++pParse->nMem; 1945 regRec = ++pParse->nMem; 1946 regRowid = ++pParse->nMem; 1947 assert(pParse->nTab==1); 1948 sqlite3MayAbort(pParse); 1949 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1950 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1951 pParse->nTab = 2; 1952 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1953 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1954 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1955 sqlite3Select(pParse, pSelect, &dest); 1956 sqlite3VdbeEndCoroutine(v, regYield); 1957 sqlite3VdbeJumpHere(v, addrTop - 1); 1958 if( pParse->nErr ) return; 1959 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1960 if( pSelTab==0 ) return; 1961 assert( p->aCol==0 ); 1962 p->nCol = pSelTab->nCol; 1963 p->aCol = pSelTab->aCol; 1964 pSelTab->nCol = 0; 1965 pSelTab->aCol = 0; 1966 sqlite3DeleteTable(db, pSelTab); 1967 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1968 VdbeCoverage(v); 1969 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1970 sqlite3TableAffinity(v, p, 0); 1971 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1972 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1973 sqlite3VdbeGoto(v, addrInsLoop); 1974 sqlite3VdbeJumpHere(v, addrInsLoop); 1975 sqlite3VdbeAddOp1(v, OP_Close, 1); 1976 } 1977 1978 /* Compute the complete text of the CREATE statement */ 1979 if( pSelect ){ 1980 zStmt = createTableStmt(db, p); 1981 }else{ 1982 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1983 n = (int)(pEnd2->z - pParse->sNameToken.z); 1984 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1985 zStmt = sqlite3MPrintf(db, 1986 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1987 ); 1988 } 1989 1990 /* A slot for the record has already been allocated in the 1991 ** SQLITE_MASTER table. We just need to update that slot with all 1992 ** the information we've collected. 1993 */ 1994 sqlite3NestedParse(pParse, 1995 "UPDATE %Q.%s " 1996 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1997 "WHERE rowid=#%d", 1998 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1999 zType, 2000 p->zName, 2001 p->zName, 2002 pParse->regRoot, 2003 zStmt, 2004 pParse->regRowid 2005 ); 2006 sqlite3DbFree(db, zStmt); 2007 sqlite3ChangeCookie(pParse, iDb); 2008 2009 #ifndef SQLITE_OMIT_AUTOINCREMENT 2010 /* Check to see if we need to create an sqlite_sequence table for 2011 ** keeping track of autoincrement keys. 2012 */ 2013 if( p->tabFlags & TF_Autoincrement ){ 2014 Db *pDb = &db->aDb[iDb]; 2015 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2016 if( pDb->pSchema->pSeqTab==0 ){ 2017 sqlite3NestedParse(pParse, 2018 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2019 pDb->zName 2020 ); 2021 } 2022 } 2023 #endif 2024 2025 /* Reparse everything to update our internal data structures */ 2026 sqlite3VdbeAddParseSchemaOp(v, iDb, 2027 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2028 } 2029 2030 2031 /* Add the table to the in-memory representation of the database. 2032 */ 2033 if( db->init.busy ){ 2034 Table *pOld; 2035 Schema *pSchema = p->pSchema; 2036 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2037 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2038 if( pOld ){ 2039 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2040 sqlite3OomFault(db); 2041 return; 2042 } 2043 pParse->pNewTable = 0; 2044 db->flags |= SQLITE_InternChanges; 2045 2046 #ifndef SQLITE_OMIT_ALTERTABLE 2047 if( !p->pSelect ){ 2048 const char *zName = (const char *)pParse->sNameToken.z; 2049 int nName; 2050 assert( !pSelect && pCons && pEnd ); 2051 if( pCons->z==0 ){ 2052 pCons = pEnd; 2053 } 2054 nName = (int)((const char *)pCons->z - zName); 2055 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2056 } 2057 #endif 2058 } 2059 } 2060 2061 #ifndef SQLITE_OMIT_VIEW 2062 /* 2063 ** The parser calls this routine in order to create a new VIEW 2064 */ 2065 void sqlite3CreateView( 2066 Parse *pParse, /* The parsing context */ 2067 Token *pBegin, /* The CREATE token that begins the statement */ 2068 Token *pName1, /* The token that holds the name of the view */ 2069 Token *pName2, /* The token that holds the name of the view */ 2070 ExprList *pCNames, /* Optional list of view column names */ 2071 Select *pSelect, /* A SELECT statement that will become the new view */ 2072 int isTemp, /* TRUE for a TEMPORARY view */ 2073 int noErr /* Suppress error messages if VIEW already exists */ 2074 ){ 2075 Table *p; 2076 int n; 2077 const char *z; 2078 Token sEnd; 2079 DbFixer sFix; 2080 Token *pName = 0; 2081 int iDb; 2082 sqlite3 *db = pParse->db; 2083 2084 if( pParse->nVar>0 ){ 2085 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2086 goto create_view_fail; 2087 } 2088 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2089 p = pParse->pNewTable; 2090 if( p==0 || pParse->nErr ) goto create_view_fail; 2091 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2092 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2093 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2094 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2095 2096 /* Make a copy of the entire SELECT statement that defines the view. 2097 ** This will force all the Expr.token.z values to be dynamically 2098 ** allocated rather than point to the input string - which means that 2099 ** they will persist after the current sqlite3_exec() call returns. 2100 */ 2101 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2102 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2103 if( db->mallocFailed ) goto create_view_fail; 2104 2105 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2106 ** the end. 2107 */ 2108 sEnd = pParse->sLastToken; 2109 assert( sEnd.z[0]!=0 ); 2110 if( sEnd.z[0]!=';' ){ 2111 sEnd.z += sEnd.n; 2112 } 2113 sEnd.n = 0; 2114 n = (int)(sEnd.z - pBegin->z); 2115 assert( n>0 ); 2116 z = pBegin->z; 2117 while( sqlite3Isspace(z[n-1]) ){ n--; } 2118 sEnd.z = &z[n-1]; 2119 sEnd.n = 1; 2120 2121 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2122 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2123 2124 create_view_fail: 2125 sqlite3SelectDelete(db, pSelect); 2126 sqlite3ExprListDelete(db, pCNames); 2127 return; 2128 } 2129 #endif /* SQLITE_OMIT_VIEW */ 2130 2131 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2132 /* 2133 ** The Table structure pTable is really a VIEW. Fill in the names of 2134 ** the columns of the view in the pTable structure. Return the number 2135 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2136 */ 2137 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2138 Table *pSelTab; /* A fake table from which we get the result set */ 2139 Select *pSel; /* Copy of the SELECT that implements the view */ 2140 int nErr = 0; /* Number of errors encountered */ 2141 int n; /* Temporarily holds the number of cursors assigned */ 2142 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2143 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2144 2145 assert( pTable ); 2146 2147 #ifndef SQLITE_OMIT_VIRTUALTABLE 2148 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2149 return SQLITE_ERROR; 2150 } 2151 if( IsVirtual(pTable) ) return 0; 2152 #endif 2153 2154 #ifndef SQLITE_OMIT_VIEW 2155 /* A positive nCol means the columns names for this view are 2156 ** already known. 2157 */ 2158 if( pTable->nCol>0 ) return 0; 2159 2160 /* A negative nCol is a special marker meaning that we are currently 2161 ** trying to compute the column names. If we enter this routine with 2162 ** a negative nCol, it means two or more views form a loop, like this: 2163 ** 2164 ** CREATE VIEW one AS SELECT * FROM two; 2165 ** CREATE VIEW two AS SELECT * FROM one; 2166 ** 2167 ** Actually, the error above is now caught prior to reaching this point. 2168 ** But the following test is still important as it does come up 2169 ** in the following: 2170 ** 2171 ** CREATE TABLE main.ex1(a); 2172 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2173 ** SELECT * FROM temp.ex1; 2174 */ 2175 if( pTable->nCol<0 ){ 2176 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2177 return 1; 2178 } 2179 assert( pTable->nCol>=0 ); 2180 2181 /* If we get this far, it means we need to compute the table names. 2182 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2183 ** "*" elements in the results set of the view and will assign cursors 2184 ** to the elements of the FROM clause. But we do not want these changes 2185 ** to be permanent. So the computation is done on a copy of the SELECT 2186 ** statement that defines the view. 2187 */ 2188 assert( pTable->pSelect ); 2189 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2190 if( pSel ){ 2191 n = pParse->nTab; 2192 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2193 pTable->nCol = -1; 2194 db->lookaside.bDisable++; 2195 #ifndef SQLITE_OMIT_AUTHORIZATION 2196 xAuth = db->xAuth; 2197 db->xAuth = 0; 2198 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2199 db->xAuth = xAuth; 2200 #else 2201 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2202 #endif 2203 pParse->nTab = n; 2204 if( pTable->pCheck ){ 2205 /* CREATE VIEW name(arglist) AS ... 2206 ** The names of the columns in the table are taken from 2207 ** arglist which is stored in pTable->pCheck. The pCheck field 2208 ** normally holds CHECK constraints on an ordinary table, but for 2209 ** a VIEW it holds the list of column names. 2210 */ 2211 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2212 &pTable->nCol, &pTable->aCol); 2213 if( db->mallocFailed==0 2214 && pParse->nErr==0 2215 && pTable->nCol==pSel->pEList->nExpr 2216 ){ 2217 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2218 } 2219 }else if( pSelTab ){ 2220 /* CREATE VIEW name AS... without an argument list. Construct 2221 ** the column names from the SELECT statement that defines the view. 2222 */ 2223 assert( pTable->aCol==0 ); 2224 pTable->nCol = pSelTab->nCol; 2225 pTable->aCol = pSelTab->aCol; 2226 pSelTab->nCol = 0; 2227 pSelTab->aCol = 0; 2228 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2229 }else{ 2230 pTable->nCol = 0; 2231 nErr++; 2232 } 2233 sqlite3DeleteTable(db, pSelTab); 2234 sqlite3SelectDelete(db, pSel); 2235 db->lookaside.bDisable--; 2236 } else { 2237 nErr++; 2238 } 2239 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2240 #endif /* SQLITE_OMIT_VIEW */ 2241 return nErr; 2242 } 2243 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2244 2245 #ifndef SQLITE_OMIT_VIEW 2246 /* 2247 ** Clear the column names from every VIEW in database idx. 2248 */ 2249 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2250 HashElem *i; 2251 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2252 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2253 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2254 Table *pTab = sqliteHashData(i); 2255 if( pTab->pSelect ){ 2256 sqlite3DeleteColumnNames(db, pTab); 2257 pTab->aCol = 0; 2258 pTab->nCol = 0; 2259 } 2260 } 2261 DbClearProperty(db, idx, DB_UnresetViews); 2262 } 2263 #else 2264 # define sqliteViewResetAll(A,B) 2265 #endif /* SQLITE_OMIT_VIEW */ 2266 2267 /* 2268 ** This function is called by the VDBE to adjust the internal schema 2269 ** used by SQLite when the btree layer moves a table root page. The 2270 ** root-page of a table or index in database iDb has changed from iFrom 2271 ** to iTo. 2272 ** 2273 ** Ticket #1728: The symbol table might still contain information 2274 ** on tables and/or indices that are the process of being deleted. 2275 ** If you are unlucky, one of those deleted indices or tables might 2276 ** have the same rootpage number as the real table or index that is 2277 ** being moved. So we cannot stop searching after the first match 2278 ** because the first match might be for one of the deleted indices 2279 ** or tables and not the table/index that is actually being moved. 2280 ** We must continue looping until all tables and indices with 2281 ** rootpage==iFrom have been converted to have a rootpage of iTo 2282 ** in order to be certain that we got the right one. 2283 */ 2284 #ifndef SQLITE_OMIT_AUTOVACUUM 2285 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2286 HashElem *pElem; 2287 Hash *pHash; 2288 Db *pDb; 2289 2290 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2291 pDb = &db->aDb[iDb]; 2292 pHash = &pDb->pSchema->tblHash; 2293 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2294 Table *pTab = sqliteHashData(pElem); 2295 if( pTab->tnum==iFrom ){ 2296 pTab->tnum = iTo; 2297 } 2298 } 2299 pHash = &pDb->pSchema->idxHash; 2300 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2301 Index *pIdx = sqliteHashData(pElem); 2302 if( pIdx->tnum==iFrom ){ 2303 pIdx->tnum = iTo; 2304 } 2305 } 2306 } 2307 #endif 2308 2309 /* 2310 ** Write code to erase the table with root-page iTable from database iDb. 2311 ** Also write code to modify the sqlite_master table and internal schema 2312 ** if a root-page of another table is moved by the btree-layer whilst 2313 ** erasing iTable (this can happen with an auto-vacuum database). 2314 */ 2315 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2316 Vdbe *v = sqlite3GetVdbe(pParse); 2317 int r1 = sqlite3GetTempReg(pParse); 2318 assert( iTable>1 ); 2319 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2320 sqlite3MayAbort(pParse); 2321 #ifndef SQLITE_OMIT_AUTOVACUUM 2322 /* OP_Destroy stores an in integer r1. If this integer 2323 ** is non-zero, then it is the root page number of a table moved to 2324 ** location iTable. The following code modifies the sqlite_master table to 2325 ** reflect this. 2326 ** 2327 ** The "#NNN" in the SQL is a special constant that means whatever value 2328 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2329 ** token for additional information. 2330 */ 2331 sqlite3NestedParse(pParse, 2332 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2333 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2334 #endif 2335 sqlite3ReleaseTempReg(pParse, r1); 2336 } 2337 2338 /* 2339 ** Write VDBE code to erase table pTab and all associated indices on disk. 2340 ** Code to update the sqlite_master tables and internal schema definitions 2341 ** in case a root-page belonging to another table is moved by the btree layer 2342 ** is also added (this can happen with an auto-vacuum database). 2343 */ 2344 static void destroyTable(Parse *pParse, Table *pTab){ 2345 #ifdef SQLITE_OMIT_AUTOVACUUM 2346 Index *pIdx; 2347 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2348 destroyRootPage(pParse, pTab->tnum, iDb); 2349 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2350 destroyRootPage(pParse, pIdx->tnum, iDb); 2351 } 2352 #else 2353 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2354 ** is not defined), then it is important to call OP_Destroy on the 2355 ** table and index root-pages in order, starting with the numerically 2356 ** largest root-page number. This guarantees that none of the root-pages 2357 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2358 ** following were coded: 2359 ** 2360 ** OP_Destroy 4 0 2361 ** ... 2362 ** OP_Destroy 5 0 2363 ** 2364 ** and root page 5 happened to be the largest root-page number in the 2365 ** database, then root page 5 would be moved to page 4 by the 2366 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2367 ** a free-list page. 2368 */ 2369 int iTab = pTab->tnum; 2370 int iDestroyed = 0; 2371 2372 while( 1 ){ 2373 Index *pIdx; 2374 int iLargest = 0; 2375 2376 if( iDestroyed==0 || iTab<iDestroyed ){ 2377 iLargest = iTab; 2378 } 2379 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2380 int iIdx = pIdx->tnum; 2381 assert( pIdx->pSchema==pTab->pSchema ); 2382 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2383 iLargest = iIdx; 2384 } 2385 } 2386 if( iLargest==0 ){ 2387 return; 2388 }else{ 2389 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2390 assert( iDb>=0 && iDb<pParse->db->nDb ); 2391 destroyRootPage(pParse, iLargest, iDb); 2392 iDestroyed = iLargest; 2393 } 2394 } 2395 #endif 2396 } 2397 2398 /* 2399 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2400 ** after a DROP INDEX or DROP TABLE command. 2401 */ 2402 static void sqlite3ClearStatTables( 2403 Parse *pParse, /* The parsing context */ 2404 int iDb, /* The database number */ 2405 const char *zType, /* "idx" or "tbl" */ 2406 const char *zName /* Name of index or table */ 2407 ){ 2408 int i; 2409 const char *zDbName = pParse->db->aDb[iDb].zName; 2410 for(i=1; i<=4; i++){ 2411 char zTab[24]; 2412 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2413 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2414 sqlite3NestedParse(pParse, 2415 "DELETE FROM %Q.%s WHERE %s=%Q", 2416 zDbName, zTab, zType, zName 2417 ); 2418 } 2419 } 2420 } 2421 2422 /* 2423 ** Generate code to drop a table. 2424 */ 2425 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2426 Vdbe *v; 2427 sqlite3 *db = pParse->db; 2428 Trigger *pTrigger; 2429 Db *pDb = &db->aDb[iDb]; 2430 2431 v = sqlite3GetVdbe(pParse); 2432 assert( v!=0 ); 2433 sqlite3BeginWriteOperation(pParse, 1, iDb); 2434 2435 #ifndef SQLITE_OMIT_VIRTUALTABLE 2436 if( IsVirtual(pTab) ){ 2437 sqlite3VdbeAddOp0(v, OP_VBegin); 2438 } 2439 #endif 2440 2441 /* Drop all triggers associated with the table being dropped. Code 2442 ** is generated to remove entries from sqlite_master and/or 2443 ** sqlite_temp_master if required. 2444 */ 2445 pTrigger = sqlite3TriggerList(pParse, pTab); 2446 while( pTrigger ){ 2447 assert( pTrigger->pSchema==pTab->pSchema || 2448 pTrigger->pSchema==db->aDb[1].pSchema ); 2449 sqlite3DropTriggerPtr(pParse, pTrigger); 2450 pTrigger = pTrigger->pNext; 2451 } 2452 2453 #ifndef SQLITE_OMIT_AUTOINCREMENT 2454 /* Remove any entries of the sqlite_sequence table associated with 2455 ** the table being dropped. This is done before the table is dropped 2456 ** at the btree level, in case the sqlite_sequence table needs to 2457 ** move as a result of the drop (can happen in auto-vacuum mode). 2458 */ 2459 if( pTab->tabFlags & TF_Autoincrement ){ 2460 sqlite3NestedParse(pParse, 2461 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2462 pDb->zName, pTab->zName 2463 ); 2464 } 2465 #endif 2466 2467 /* Drop all SQLITE_MASTER table and index entries that refer to the 2468 ** table. The program name loops through the master table and deletes 2469 ** every row that refers to a table of the same name as the one being 2470 ** dropped. Triggers are handled separately because a trigger can be 2471 ** created in the temp database that refers to a table in another 2472 ** database. 2473 */ 2474 sqlite3NestedParse(pParse, 2475 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2476 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2477 if( !isView && !IsVirtual(pTab) ){ 2478 destroyTable(pParse, pTab); 2479 } 2480 2481 /* Remove the table entry from SQLite's internal schema and modify 2482 ** the schema cookie. 2483 */ 2484 if( IsVirtual(pTab) ){ 2485 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2486 } 2487 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2488 sqlite3ChangeCookie(pParse, iDb); 2489 sqliteViewResetAll(db, iDb); 2490 } 2491 2492 /* 2493 ** This routine is called to do the work of a DROP TABLE statement. 2494 ** pName is the name of the table to be dropped. 2495 */ 2496 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2497 Table *pTab; 2498 Vdbe *v; 2499 sqlite3 *db = pParse->db; 2500 int iDb; 2501 2502 if( db->mallocFailed ){ 2503 goto exit_drop_table; 2504 } 2505 assert( pParse->nErr==0 ); 2506 assert( pName->nSrc==1 ); 2507 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2508 if( noErr ) db->suppressErr++; 2509 assert( isView==0 || isView==LOCATE_VIEW ); 2510 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2511 if( noErr ) db->suppressErr--; 2512 2513 if( pTab==0 ){ 2514 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2515 goto exit_drop_table; 2516 } 2517 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2518 assert( iDb>=0 && iDb<db->nDb ); 2519 2520 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2521 ** it is initialized. 2522 */ 2523 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2524 goto exit_drop_table; 2525 } 2526 #ifndef SQLITE_OMIT_AUTHORIZATION 2527 { 2528 int code; 2529 const char *zTab = SCHEMA_TABLE(iDb); 2530 const char *zDb = db->aDb[iDb].zName; 2531 const char *zArg2 = 0; 2532 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2533 goto exit_drop_table; 2534 } 2535 if( isView ){ 2536 if( !OMIT_TEMPDB && iDb==1 ){ 2537 code = SQLITE_DROP_TEMP_VIEW; 2538 }else{ 2539 code = SQLITE_DROP_VIEW; 2540 } 2541 #ifndef SQLITE_OMIT_VIRTUALTABLE 2542 }else if( IsVirtual(pTab) ){ 2543 code = SQLITE_DROP_VTABLE; 2544 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2545 #endif 2546 }else{ 2547 if( !OMIT_TEMPDB && iDb==1 ){ 2548 code = SQLITE_DROP_TEMP_TABLE; 2549 }else{ 2550 code = SQLITE_DROP_TABLE; 2551 } 2552 } 2553 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2554 goto exit_drop_table; 2555 } 2556 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2557 goto exit_drop_table; 2558 } 2559 } 2560 #endif 2561 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2562 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2563 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2564 goto exit_drop_table; 2565 } 2566 2567 #ifndef SQLITE_OMIT_VIEW 2568 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2569 ** on a table. 2570 */ 2571 if( isView && pTab->pSelect==0 ){ 2572 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2573 goto exit_drop_table; 2574 } 2575 if( !isView && pTab->pSelect ){ 2576 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2577 goto exit_drop_table; 2578 } 2579 #endif 2580 2581 /* Generate code to remove the table from the master table 2582 ** on disk. 2583 */ 2584 v = sqlite3GetVdbe(pParse); 2585 if( v ){ 2586 sqlite3BeginWriteOperation(pParse, 1, iDb); 2587 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2588 sqlite3FkDropTable(pParse, pName, pTab); 2589 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2590 } 2591 2592 exit_drop_table: 2593 sqlite3SrcListDelete(db, pName); 2594 } 2595 2596 /* 2597 ** This routine is called to create a new foreign key on the table 2598 ** currently under construction. pFromCol determines which columns 2599 ** in the current table point to the foreign key. If pFromCol==0 then 2600 ** connect the key to the last column inserted. pTo is the name of 2601 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2602 ** of tables in the parent pTo table. flags contains all 2603 ** information about the conflict resolution algorithms specified 2604 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2605 ** 2606 ** An FKey structure is created and added to the table currently 2607 ** under construction in the pParse->pNewTable field. 2608 ** 2609 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2610 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2611 */ 2612 void sqlite3CreateForeignKey( 2613 Parse *pParse, /* Parsing context */ 2614 ExprList *pFromCol, /* Columns in this table that point to other table */ 2615 Token *pTo, /* Name of the other table */ 2616 ExprList *pToCol, /* Columns in the other table */ 2617 int flags /* Conflict resolution algorithms. */ 2618 ){ 2619 sqlite3 *db = pParse->db; 2620 #ifndef SQLITE_OMIT_FOREIGN_KEY 2621 FKey *pFKey = 0; 2622 FKey *pNextTo; 2623 Table *p = pParse->pNewTable; 2624 int nByte; 2625 int i; 2626 int nCol; 2627 char *z; 2628 2629 assert( pTo!=0 ); 2630 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2631 if( pFromCol==0 ){ 2632 int iCol = p->nCol-1; 2633 if( NEVER(iCol<0) ) goto fk_end; 2634 if( pToCol && pToCol->nExpr!=1 ){ 2635 sqlite3ErrorMsg(pParse, "foreign key on %s" 2636 " should reference only one column of table %T", 2637 p->aCol[iCol].zName, pTo); 2638 goto fk_end; 2639 } 2640 nCol = 1; 2641 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2642 sqlite3ErrorMsg(pParse, 2643 "number of columns in foreign key does not match the number of " 2644 "columns in the referenced table"); 2645 goto fk_end; 2646 }else{ 2647 nCol = pFromCol->nExpr; 2648 } 2649 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2650 if( pToCol ){ 2651 for(i=0; i<pToCol->nExpr; i++){ 2652 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2653 } 2654 } 2655 pFKey = sqlite3DbMallocZero(db, nByte ); 2656 if( pFKey==0 ){ 2657 goto fk_end; 2658 } 2659 pFKey->pFrom = p; 2660 pFKey->pNextFrom = p->pFKey; 2661 z = (char*)&pFKey->aCol[nCol]; 2662 pFKey->zTo = z; 2663 memcpy(z, pTo->z, pTo->n); 2664 z[pTo->n] = 0; 2665 sqlite3Dequote(z); 2666 z += pTo->n+1; 2667 pFKey->nCol = nCol; 2668 if( pFromCol==0 ){ 2669 pFKey->aCol[0].iFrom = p->nCol-1; 2670 }else{ 2671 for(i=0; i<nCol; i++){ 2672 int j; 2673 for(j=0; j<p->nCol; j++){ 2674 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2675 pFKey->aCol[i].iFrom = j; 2676 break; 2677 } 2678 } 2679 if( j>=p->nCol ){ 2680 sqlite3ErrorMsg(pParse, 2681 "unknown column \"%s\" in foreign key definition", 2682 pFromCol->a[i].zName); 2683 goto fk_end; 2684 } 2685 } 2686 } 2687 if( pToCol ){ 2688 for(i=0; i<nCol; i++){ 2689 int n = sqlite3Strlen30(pToCol->a[i].zName); 2690 pFKey->aCol[i].zCol = z; 2691 memcpy(z, pToCol->a[i].zName, n); 2692 z[n] = 0; 2693 z += n+1; 2694 } 2695 } 2696 pFKey->isDeferred = 0; 2697 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2698 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2699 2700 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2701 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2702 pFKey->zTo, (void *)pFKey 2703 ); 2704 if( pNextTo==pFKey ){ 2705 sqlite3OomFault(db); 2706 goto fk_end; 2707 } 2708 if( pNextTo ){ 2709 assert( pNextTo->pPrevTo==0 ); 2710 pFKey->pNextTo = pNextTo; 2711 pNextTo->pPrevTo = pFKey; 2712 } 2713 2714 /* Link the foreign key to the table as the last step. 2715 */ 2716 p->pFKey = pFKey; 2717 pFKey = 0; 2718 2719 fk_end: 2720 sqlite3DbFree(db, pFKey); 2721 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2722 sqlite3ExprListDelete(db, pFromCol); 2723 sqlite3ExprListDelete(db, pToCol); 2724 } 2725 2726 /* 2727 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2728 ** clause is seen as part of a foreign key definition. The isDeferred 2729 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2730 ** The behavior of the most recently created foreign key is adjusted 2731 ** accordingly. 2732 */ 2733 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2734 #ifndef SQLITE_OMIT_FOREIGN_KEY 2735 Table *pTab; 2736 FKey *pFKey; 2737 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2738 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2739 pFKey->isDeferred = (u8)isDeferred; 2740 #endif 2741 } 2742 2743 /* 2744 ** Generate code that will erase and refill index *pIdx. This is 2745 ** used to initialize a newly created index or to recompute the 2746 ** content of an index in response to a REINDEX command. 2747 ** 2748 ** if memRootPage is not negative, it means that the index is newly 2749 ** created. The register specified by memRootPage contains the 2750 ** root page number of the index. If memRootPage is negative, then 2751 ** the index already exists and must be cleared before being refilled and 2752 ** the root page number of the index is taken from pIndex->tnum. 2753 */ 2754 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2755 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2756 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2757 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2758 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2759 int addr1; /* Address of top of loop */ 2760 int addr2; /* Address to jump to for next iteration */ 2761 int tnum; /* Root page of index */ 2762 int iPartIdxLabel; /* Jump to this label to skip a row */ 2763 Vdbe *v; /* Generate code into this virtual machine */ 2764 KeyInfo *pKey; /* KeyInfo for index */ 2765 int regRecord; /* Register holding assembled index record */ 2766 sqlite3 *db = pParse->db; /* The database connection */ 2767 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2768 2769 #ifndef SQLITE_OMIT_AUTHORIZATION 2770 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2771 db->aDb[iDb].zName ) ){ 2772 return; 2773 } 2774 #endif 2775 2776 /* Require a write-lock on the table to perform this operation */ 2777 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2778 2779 v = sqlite3GetVdbe(pParse); 2780 if( v==0 ) return; 2781 if( memRootPage>=0 ){ 2782 tnum = memRootPage; 2783 }else{ 2784 tnum = pIndex->tnum; 2785 } 2786 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2787 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2788 2789 /* Open the sorter cursor if we are to use one. */ 2790 iSorter = pParse->nTab++; 2791 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2792 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2793 2794 /* Open the table. Loop through all rows of the table, inserting index 2795 ** records into the sorter. */ 2796 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2797 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2798 regRecord = sqlite3GetTempReg(pParse); 2799 2800 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2801 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2802 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2803 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2804 sqlite3VdbeJumpHere(v, addr1); 2805 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2806 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2807 (char *)pKey, P4_KEYINFO); 2808 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2809 2810 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2811 if( IsUniqueIndex(pIndex) ){ 2812 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2813 sqlite3VdbeGoto(v, j2); 2814 addr2 = sqlite3VdbeCurrentAddr(v); 2815 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2816 pIndex->nKeyCol); VdbeCoverage(v); 2817 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2818 }else{ 2819 addr2 = sqlite3VdbeCurrentAddr(v); 2820 } 2821 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2822 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2823 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2824 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2825 sqlite3ReleaseTempReg(pParse, regRecord); 2826 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2827 sqlite3VdbeJumpHere(v, addr1); 2828 2829 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2830 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2831 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2832 } 2833 2834 /* 2835 ** Allocate heap space to hold an Index object with nCol columns. 2836 ** 2837 ** Increase the allocation size to provide an extra nExtra bytes 2838 ** of 8-byte aligned space after the Index object and return a 2839 ** pointer to this extra space in *ppExtra. 2840 */ 2841 Index *sqlite3AllocateIndexObject( 2842 sqlite3 *db, /* Database connection */ 2843 i16 nCol, /* Total number of columns in the index */ 2844 int nExtra, /* Number of bytes of extra space to alloc */ 2845 char **ppExtra /* Pointer to the "extra" space */ 2846 ){ 2847 Index *p; /* Allocated index object */ 2848 int nByte; /* Bytes of space for Index object + arrays */ 2849 2850 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2851 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2852 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2853 sizeof(i16)*nCol + /* Index.aiColumn */ 2854 sizeof(u8)*nCol); /* Index.aSortOrder */ 2855 p = sqlite3DbMallocZero(db, nByte + nExtra); 2856 if( p ){ 2857 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2858 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2859 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2860 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2861 p->aSortOrder = (u8*)pExtra; 2862 p->nColumn = nCol; 2863 p->nKeyCol = nCol - 1; 2864 *ppExtra = ((char*)p) + nByte; 2865 } 2866 return p; 2867 } 2868 2869 /* 2870 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2871 ** and pTblList is the name of the table that is to be indexed. Both will 2872 ** be NULL for a primary key or an index that is created to satisfy a 2873 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2874 ** as the table to be indexed. pParse->pNewTable is a table that is 2875 ** currently being constructed by a CREATE TABLE statement. 2876 ** 2877 ** pList is a list of columns to be indexed. pList will be NULL if this 2878 ** is a primary key or unique-constraint on the most recent column added 2879 ** to the table currently under construction. 2880 */ 2881 void sqlite3CreateIndex( 2882 Parse *pParse, /* All information about this parse */ 2883 Token *pName1, /* First part of index name. May be NULL */ 2884 Token *pName2, /* Second part of index name. May be NULL */ 2885 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2886 ExprList *pList, /* A list of columns to be indexed */ 2887 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2888 Token *pStart, /* The CREATE token that begins this statement */ 2889 Expr *pPIWhere, /* WHERE clause for partial indices */ 2890 int sortOrder, /* Sort order of primary key when pList==NULL */ 2891 int ifNotExist, /* Omit error if index already exists */ 2892 u8 idxType /* The index type */ 2893 ){ 2894 Table *pTab = 0; /* Table to be indexed */ 2895 Index *pIndex = 0; /* The index to be created */ 2896 char *zName = 0; /* Name of the index */ 2897 int nName; /* Number of characters in zName */ 2898 int i, j; 2899 DbFixer sFix; /* For assigning database names to pTable */ 2900 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2901 sqlite3 *db = pParse->db; 2902 Db *pDb; /* The specific table containing the indexed database */ 2903 int iDb; /* Index of the database that is being written */ 2904 Token *pName = 0; /* Unqualified name of the index to create */ 2905 struct ExprList_item *pListItem; /* For looping over pList */ 2906 int nExtra = 0; /* Space allocated for zExtra[] */ 2907 int nExtraCol; /* Number of extra columns needed */ 2908 char *zExtra = 0; /* Extra space after the Index object */ 2909 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2910 2911 if( db->mallocFailed || pParse->nErr>0 ){ 2912 goto exit_create_index; 2913 } 2914 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 2915 goto exit_create_index; 2916 } 2917 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2918 goto exit_create_index; 2919 } 2920 2921 /* 2922 ** Find the table that is to be indexed. Return early if not found. 2923 */ 2924 if( pTblName!=0 ){ 2925 2926 /* Use the two-part index name to determine the database 2927 ** to search for the table. 'Fix' the table name to this db 2928 ** before looking up the table. 2929 */ 2930 assert( pName1 && pName2 ); 2931 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2932 if( iDb<0 ) goto exit_create_index; 2933 assert( pName && pName->z ); 2934 2935 #ifndef SQLITE_OMIT_TEMPDB 2936 /* If the index name was unqualified, check if the table 2937 ** is a temp table. If so, set the database to 1. Do not do this 2938 ** if initialising a database schema. 2939 */ 2940 if( !db->init.busy ){ 2941 pTab = sqlite3SrcListLookup(pParse, pTblName); 2942 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2943 iDb = 1; 2944 } 2945 } 2946 #endif 2947 2948 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2949 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2950 /* Because the parser constructs pTblName from a single identifier, 2951 ** sqlite3FixSrcList can never fail. */ 2952 assert(0); 2953 } 2954 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2955 assert( db->mallocFailed==0 || pTab==0 ); 2956 if( pTab==0 ) goto exit_create_index; 2957 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2958 sqlite3ErrorMsg(pParse, 2959 "cannot create a TEMP index on non-TEMP table \"%s\"", 2960 pTab->zName); 2961 goto exit_create_index; 2962 } 2963 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2964 }else{ 2965 assert( pName==0 ); 2966 assert( pStart==0 ); 2967 pTab = pParse->pNewTable; 2968 if( !pTab ) goto exit_create_index; 2969 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2970 } 2971 pDb = &db->aDb[iDb]; 2972 2973 assert( pTab!=0 ); 2974 assert( pParse->nErr==0 ); 2975 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2976 && db->init.busy==0 2977 #if SQLITE_USER_AUTHENTICATION 2978 && sqlite3UserAuthTable(pTab->zName)==0 2979 #endif 2980 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2981 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2982 goto exit_create_index; 2983 } 2984 #ifndef SQLITE_OMIT_VIEW 2985 if( pTab->pSelect ){ 2986 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2987 goto exit_create_index; 2988 } 2989 #endif 2990 #ifndef SQLITE_OMIT_VIRTUALTABLE 2991 if( IsVirtual(pTab) ){ 2992 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2993 goto exit_create_index; 2994 } 2995 #endif 2996 2997 /* 2998 ** Find the name of the index. Make sure there is not already another 2999 ** index or table with the same name. 3000 ** 3001 ** Exception: If we are reading the names of permanent indices from the 3002 ** sqlite_master table (because some other process changed the schema) and 3003 ** one of the index names collides with the name of a temporary table or 3004 ** index, then we will continue to process this index. 3005 ** 3006 ** If pName==0 it means that we are 3007 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3008 ** own name. 3009 */ 3010 if( pName ){ 3011 zName = sqlite3NameFromToken(db, pName); 3012 if( zName==0 ) goto exit_create_index; 3013 assert( pName->z!=0 ); 3014 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3015 goto exit_create_index; 3016 } 3017 if( !db->init.busy ){ 3018 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3019 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3020 goto exit_create_index; 3021 } 3022 } 3023 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 3024 if( !ifNotExist ){ 3025 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3026 }else{ 3027 assert( !db->init.busy ); 3028 sqlite3CodeVerifySchema(pParse, iDb); 3029 } 3030 goto exit_create_index; 3031 } 3032 }else{ 3033 int n; 3034 Index *pLoop; 3035 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3036 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3037 if( zName==0 ){ 3038 goto exit_create_index; 3039 } 3040 } 3041 3042 /* Check for authorization to create an index. 3043 */ 3044 #ifndef SQLITE_OMIT_AUTHORIZATION 3045 { 3046 const char *zDb = pDb->zName; 3047 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3048 goto exit_create_index; 3049 } 3050 i = SQLITE_CREATE_INDEX; 3051 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3052 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3053 goto exit_create_index; 3054 } 3055 } 3056 #endif 3057 3058 /* If pList==0, it means this routine was called to make a primary 3059 ** key out of the last column added to the table under construction. 3060 ** So create a fake list to simulate this. 3061 */ 3062 if( pList==0 ){ 3063 Token prevCol; 3064 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3065 pList = sqlite3ExprListAppend(pParse, 0, 3066 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3067 if( pList==0 ) goto exit_create_index; 3068 assert( pList->nExpr==1 ); 3069 sqlite3ExprListSetSortOrder(pList, sortOrder); 3070 }else{ 3071 sqlite3ExprListCheckLength(pParse, pList, "index"); 3072 } 3073 3074 /* Figure out how many bytes of space are required to store explicitly 3075 ** specified collation sequence names. 3076 */ 3077 for(i=0; i<pList->nExpr; i++){ 3078 Expr *pExpr = pList->a[i].pExpr; 3079 assert( pExpr!=0 ); 3080 if( pExpr->op==TK_COLLATE ){ 3081 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3082 } 3083 } 3084 3085 /* 3086 ** Allocate the index structure. 3087 */ 3088 nName = sqlite3Strlen30(zName); 3089 nExtraCol = pPk ? pPk->nKeyCol : 1; 3090 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3091 nName + nExtra + 1, &zExtra); 3092 if( db->mallocFailed ){ 3093 goto exit_create_index; 3094 } 3095 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3096 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3097 pIndex->zName = zExtra; 3098 zExtra += nName + 1; 3099 memcpy(pIndex->zName, zName, nName+1); 3100 pIndex->pTable = pTab; 3101 pIndex->onError = (u8)onError; 3102 pIndex->uniqNotNull = onError!=OE_None; 3103 pIndex->idxType = idxType; 3104 pIndex->pSchema = db->aDb[iDb].pSchema; 3105 pIndex->nKeyCol = pList->nExpr; 3106 if( pPIWhere ){ 3107 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3108 pIndex->pPartIdxWhere = pPIWhere; 3109 pPIWhere = 0; 3110 } 3111 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3112 3113 /* Check to see if we should honor DESC requests on index columns 3114 */ 3115 if( pDb->pSchema->file_format>=4 ){ 3116 sortOrderMask = -1; /* Honor DESC */ 3117 }else{ 3118 sortOrderMask = 0; /* Ignore DESC */ 3119 } 3120 3121 /* Analyze the list of expressions that form the terms of the index and 3122 ** report any errors. In the common case where the expression is exactly 3123 ** a table column, store that column in aiColumn[]. For general expressions, 3124 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3125 ** 3126 ** TODO: Issue a warning if two or more columns of the index are identical. 3127 ** TODO: Issue a warning if the table primary key is used as part of the 3128 ** index key. 3129 */ 3130 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3131 Expr *pCExpr; /* The i-th index expression */ 3132 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3133 const char *zColl; /* Collation sequence name */ 3134 3135 sqlite3StringToId(pListItem->pExpr); 3136 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3137 if( pParse->nErr ) goto exit_create_index; 3138 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3139 if( pCExpr->op!=TK_COLUMN ){ 3140 if( pTab==pParse->pNewTable ){ 3141 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3142 "UNIQUE constraints"); 3143 goto exit_create_index; 3144 } 3145 if( pIndex->aColExpr==0 ){ 3146 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3147 pIndex->aColExpr = pCopy; 3148 if( !db->mallocFailed ){ 3149 assert( pCopy!=0 ); 3150 pListItem = &pCopy->a[i]; 3151 } 3152 } 3153 j = XN_EXPR; 3154 pIndex->aiColumn[i] = XN_EXPR; 3155 pIndex->uniqNotNull = 0; 3156 }else{ 3157 j = pCExpr->iColumn; 3158 assert( j<=0x7fff ); 3159 if( j<0 ){ 3160 j = pTab->iPKey; 3161 }else if( pTab->aCol[j].notNull==0 ){ 3162 pIndex->uniqNotNull = 0; 3163 } 3164 pIndex->aiColumn[i] = (i16)j; 3165 } 3166 zColl = 0; 3167 if( pListItem->pExpr->op==TK_COLLATE ){ 3168 int nColl; 3169 zColl = pListItem->pExpr->u.zToken; 3170 nColl = sqlite3Strlen30(zColl) + 1; 3171 assert( nExtra>=nColl ); 3172 memcpy(zExtra, zColl, nColl); 3173 zColl = zExtra; 3174 zExtra += nColl; 3175 nExtra -= nColl; 3176 }else if( j>=0 ){ 3177 zColl = pTab->aCol[j].zColl; 3178 } 3179 if( !zColl ) zColl = sqlite3StrBINARY; 3180 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3181 goto exit_create_index; 3182 } 3183 pIndex->azColl[i] = zColl; 3184 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3185 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3186 } 3187 3188 /* Append the table key to the end of the index. For WITHOUT ROWID 3189 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3190 ** normal tables (when pPk==0) this will be the rowid. 3191 */ 3192 if( pPk ){ 3193 for(j=0; j<pPk->nKeyCol; j++){ 3194 int x = pPk->aiColumn[j]; 3195 assert( x>=0 ); 3196 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3197 pIndex->nColumn--; 3198 }else{ 3199 pIndex->aiColumn[i] = x; 3200 pIndex->azColl[i] = pPk->azColl[j]; 3201 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3202 i++; 3203 } 3204 } 3205 assert( i==pIndex->nColumn ); 3206 }else{ 3207 pIndex->aiColumn[i] = XN_ROWID; 3208 pIndex->azColl[i] = sqlite3StrBINARY; 3209 } 3210 sqlite3DefaultRowEst(pIndex); 3211 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3212 3213 /* If this index contains every column of its table, then mark 3214 ** it as a covering index */ 3215 assert( HasRowid(pTab) 3216 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3217 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3218 pIndex->isCovering = 1; 3219 for(j=0; j<pTab->nCol; j++){ 3220 if( j==pTab->iPKey ) continue; 3221 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3222 pIndex->isCovering = 0; 3223 break; 3224 } 3225 } 3226 3227 if( pTab==pParse->pNewTable ){ 3228 /* This routine has been called to create an automatic index as a 3229 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3230 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3231 ** i.e. one of: 3232 ** 3233 ** CREATE TABLE t(x PRIMARY KEY, y); 3234 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3235 ** 3236 ** Either way, check to see if the table already has such an index. If 3237 ** so, don't bother creating this one. This only applies to 3238 ** automatically created indices. Users can do as they wish with 3239 ** explicit indices. 3240 ** 3241 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3242 ** (and thus suppressing the second one) even if they have different 3243 ** sort orders. 3244 ** 3245 ** If there are different collating sequences or if the columns of 3246 ** the constraint occur in different orders, then the constraints are 3247 ** considered distinct and both result in separate indices. 3248 */ 3249 Index *pIdx; 3250 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3251 int k; 3252 assert( IsUniqueIndex(pIdx) ); 3253 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3254 assert( IsUniqueIndex(pIndex) ); 3255 3256 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3257 for(k=0; k<pIdx->nKeyCol; k++){ 3258 const char *z1; 3259 const char *z2; 3260 assert( pIdx->aiColumn[k]>=0 ); 3261 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3262 z1 = pIdx->azColl[k]; 3263 z2 = pIndex->azColl[k]; 3264 if( sqlite3StrICmp(z1, z2) ) break; 3265 } 3266 if( k==pIdx->nKeyCol ){ 3267 if( pIdx->onError!=pIndex->onError ){ 3268 /* This constraint creates the same index as a previous 3269 ** constraint specified somewhere in the CREATE TABLE statement. 3270 ** However the ON CONFLICT clauses are different. If both this 3271 ** constraint and the previous equivalent constraint have explicit 3272 ** ON CONFLICT clauses this is an error. Otherwise, use the 3273 ** explicitly specified behavior for the index. 3274 */ 3275 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3276 sqlite3ErrorMsg(pParse, 3277 "conflicting ON CONFLICT clauses specified", 0); 3278 } 3279 if( pIdx->onError==OE_Default ){ 3280 pIdx->onError = pIndex->onError; 3281 } 3282 } 3283 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3284 goto exit_create_index; 3285 } 3286 } 3287 } 3288 3289 /* Link the new Index structure to its table and to the other 3290 ** in-memory database structures. 3291 */ 3292 assert( pParse->nErr==0 ); 3293 if( db->init.busy ){ 3294 Index *p; 3295 assert( !IN_DECLARE_VTAB ); 3296 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3297 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3298 pIndex->zName, pIndex); 3299 if( p ){ 3300 assert( p==pIndex ); /* Malloc must have failed */ 3301 sqlite3OomFault(db); 3302 goto exit_create_index; 3303 } 3304 db->flags |= SQLITE_InternChanges; 3305 if( pTblName!=0 ){ 3306 pIndex->tnum = db->init.newTnum; 3307 } 3308 } 3309 3310 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3311 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3312 ** emit code to allocate the index rootpage on disk and make an entry for 3313 ** the index in the sqlite_master table and populate the index with 3314 ** content. But, do not do this if we are simply reading the sqlite_master 3315 ** table to parse the schema, or if this index is the PRIMARY KEY index 3316 ** of a WITHOUT ROWID table. 3317 ** 3318 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3319 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3320 ** has just been created, it contains no data and the index initialization 3321 ** step can be skipped. 3322 */ 3323 else if( HasRowid(pTab) || pTblName!=0 ){ 3324 Vdbe *v; 3325 char *zStmt; 3326 int iMem = ++pParse->nMem; 3327 3328 v = sqlite3GetVdbe(pParse); 3329 if( v==0 ) goto exit_create_index; 3330 3331 sqlite3BeginWriteOperation(pParse, 1, iDb); 3332 3333 /* Create the rootpage for the index using CreateIndex. But before 3334 ** doing so, code a Noop instruction and store its address in 3335 ** Index.tnum. This is required in case this index is actually a 3336 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3337 ** that case the convertToWithoutRowidTable() routine will replace 3338 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3339 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3340 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3341 3342 /* Gather the complete text of the CREATE INDEX statement into 3343 ** the zStmt variable 3344 */ 3345 if( pStart ){ 3346 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3347 if( pName->z[n-1]==';' ) n--; 3348 /* A named index with an explicit CREATE INDEX statement */ 3349 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3350 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3351 }else{ 3352 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3353 /* zStmt = sqlite3MPrintf(""); */ 3354 zStmt = 0; 3355 } 3356 3357 /* Add an entry in sqlite_master for this index 3358 */ 3359 sqlite3NestedParse(pParse, 3360 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3361 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3362 pIndex->zName, 3363 pTab->zName, 3364 iMem, 3365 zStmt 3366 ); 3367 sqlite3DbFree(db, zStmt); 3368 3369 /* Fill the index with data and reparse the schema. Code an OP_Expire 3370 ** to invalidate all pre-compiled statements. 3371 */ 3372 if( pTblName ){ 3373 sqlite3RefillIndex(pParse, pIndex, iMem); 3374 sqlite3ChangeCookie(pParse, iDb); 3375 sqlite3VdbeAddParseSchemaOp(v, iDb, 3376 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3377 sqlite3VdbeAddOp0(v, OP_Expire); 3378 } 3379 3380 sqlite3VdbeJumpHere(v, pIndex->tnum); 3381 } 3382 3383 /* When adding an index to the list of indices for a table, make 3384 ** sure all indices labeled OE_Replace come after all those labeled 3385 ** OE_Ignore. This is necessary for the correct constraint check 3386 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3387 ** UPDATE and INSERT statements. 3388 */ 3389 if( db->init.busy || pTblName==0 ){ 3390 if( onError!=OE_Replace || pTab->pIndex==0 3391 || pTab->pIndex->onError==OE_Replace){ 3392 pIndex->pNext = pTab->pIndex; 3393 pTab->pIndex = pIndex; 3394 }else{ 3395 Index *pOther = pTab->pIndex; 3396 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3397 pOther = pOther->pNext; 3398 } 3399 pIndex->pNext = pOther->pNext; 3400 pOther->pNext = pIndex; 3401 } 3402 pIndex = 0; 3403 } 3404 3405 /* Clean up before exiting */ 3406 exit_create_index: 3407 if( pIndex ) freeIndex(db, pIndex); 3408 sqlite3ExprDelete(db, pPIWhere); 3409 sqlite3ExprListDelete(db, pList); 3410 sqlite3SrcListDelete(db, pTblName); 3411 sqlite3DbFree(db, zName); 3412 } 3413 3414 /* 3415 ** Fill the Index.aiRowEst[] array with default information - information 3416 ** to be used when we have not run the ANALYZE command. 3417 ** 3418 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3419 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3420 ** number of rows in the table that match any particular value of the 3421 ** first column of the index. aiRowEst[2] is an estimate of the number 3422 ** of rows that match any particular combination of the first 2 columns 3423 ** of the index. And so forth. It must always be the case that 3424 * 3425 ** aiRowEst[N]<=aiRowEst[N-1] 3426 ** aiRowEst[N]>=1 3427 ** 3428 ** Apart from that, we have little to go on besides intuition as to 3429 ** how aiRowEst[] should be initialized. The numbers generated here 3430 ** are based on typical values found in actual indices. 3431 */ 3432 void sqlite3DefaultRowEst(Index *pIdx){ 3433 /* 10, 9, 8, 7, 6 */ 3434 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3435 LogEst *a = pIdx->aiRowLogEst; 3436 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3437 int i; 3438 3439 /* Set the first entry (number of rows in the index) to the estimated 3440 ** number of rows in the table, or half the number of rows in the table 3441 ** for a partial index. But do not let the estimate drop below 10. */ 3442 a[0] = pIdx->pTable->nRowLogEst; 3443 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3444 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3445 3446 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3447 ** 6 and each subsequent value (if any) is 5. */ 3448 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3449 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3450 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3451 } 3452 3453 assert( 0==sqlite3LogEst(1) ); 3454 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3455 } 3456 3457 /* 3458 ** This routine will drop an existing named index. This routine 3459 ** implements the DROP INDEX statement. 3460 */ 3461 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3462 Index *pIndex; 3463 Vdbe *v; 3464 sqlite3 *db = pParse->db; 3465 int iDb; 3466 3467 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3468 if( db->mallocFailed ){ 3469 goto exit_drop_index; 3470 } 3471 assert( pName->nSrc==1 ); 3472 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3473 goto exit_drop_index; 3474 } 3475 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3476 if( pIndex==0 ){ 3477 if( !ifExists ){ 3478 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3479 }else{ 3480 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3481 } 3482 pParse->checkSchema = 1; 3483 goto exit_drop_index; 3484 } 3485 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3486 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3487 "or PRIMARY KEY constraint cannot be dropped", 0); 3488 goto exit_drop_index; 3489 } 3490 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3491 #ifndef SQLITE_OMIT_AUTHORIZATION 3492 { 3493 int code = SQLITE_DROP_INDEX; 3494 Table *pTab = pIndex->pTable; 3495 const char *zDb = db->aDb[iDb].zName; 3496 const char *zTab = SCHEMA_TABLE(iDb); 3497 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3498 goto exit_drop_index; 3499 } 3500 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3501 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3502 goto exit_drop_index; 3503 } 3504 } 3505 #endif 3506 3507 /* Generate code to remove the index and from the master table */ 3508 v = sqlite3GetVdbe(pParse); 3509 if( v ){ 3510 sqlite3BeginWriteOperation(pParse, 1, iDb); 3511 sqlite3NestedParse(pParse, 3512 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3513 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3514 ); 3515 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3516 sqlite3ChangeCookie(pParse, iDb); 3517 destroyRootPage(pParse, pIndex->tnum, iDb); 3518 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3519 } 3520 3521 exit_drop_index: 3522 sqlite3SrcListDelete(db, pName); 3523 } 3524 3525 /* 3526 ** pArray is a pointer to an array of objects. Each object in the 3527 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3528 ** to extend the array so that there is space for a new object at the end. 3529 ** 3530 ** When this function is called, *pnEntry contains the current size of 3531 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3532 ** in total). 3533 ** 3534 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3535 ** space allocated for the new object is zeroed, *pnEntry updated to 3536 ** reflect the new size of the array and a pointer to the new allocation 3537 ** returned. *pIdx is set to the index of the new array entry in this case. 3538 ** 3539 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3540 ** unchanged and a copy of pArray returned. 3541 */ 3542 void *sqlite3ArrayAllocate( 3543 sqlite3 *db, /* Connection to notify of malloc failures */ 3544 void *pArray, /* Array of objects. Might be reallocated */ 3545 int szEntry, /* Size of each object in the array */ 3546 int *pnEntry, /* Number of objects currently in use */ 3547 int *pIdx /* Write the index of a new slot here */ 3548 ){ 3549 char *z; 3550 int n = *pnEntry; 3551 if( (n & (n-1))==0 ){ 3552 int sz = (n==0) ? 1 : 2*n; 3553 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3554 if( pNew==0 ){ 3555 *pIdx = -1; 3556 return pArray; 3557 } 3558 pArray = pNew; 3559 } 3560 z = (char*)pArray; 3561 memset(&z[n * szEntry], 0, szEntry); 3562 *pIdx = n; 3563 ++*pnEntry; 3564 return pArray; 3565 } 3566 3567 /* 3568 ** Append a new element to the given IdList. Create a new IdList if 3569 ** need be. 3570 ** 3571 ** A new IdList is returned, or NULL if malloc() fails. 3572 */ 3573 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3574 int i; 3575 if( pList==0 ){ 3576 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3577 if( pList==0 ) return 0; 3578 } 3579 pList->a = sqlite3ArrayAllocate( 3580 db, 3581 pList->a, 3582 sizeof(pList->a[0]), 3583 &pList->nId, 3584 &i 3585 ); 3586 if( i<0 ){ 3587 sqlite3IdListDelete(db, pList); 3588 return 0; 3589 } 3590 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3591 return pList; 3592 } 3593 3594 /* 3595 ** Delete an IdList. 3596 */ 3597 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3598 int i; 3599 if( pList==0 ) return; 3600 for(i=0; i<pList->nId; i++){ 3601 sqlite3DbFree(db, pList->a[i].zName); 3602 } 3603 sqlite3DbFree(db, pList->a); 3604 sqlite3DbFree(db, pList); 3605 } 3606 3607 /* 3608 ** Return the index in pList of the identifier named zId. Return -1 3609 ** if not found. 3610 */ 3611 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3612 int i; 3613 if( pList==0 ) return -1; 3614 for(i=0; i<pList->nId; i++){ 3615 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3616 } 3617 return -1; 3618 } 3619 3620 /* 3621 ** Expand the space allocated for the given SrcList object by 3622 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3623 ** New slots are zeroed. 3624 ** 3625 ** For example, suppose a SrcList initially contains two entries: A,B. 3626 ** To append 3 new entries onto the end, do this: 3627 ** 3628 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3629 ** 3630 ** After the call above it would contain: A, B, nil, nil, nil. 3631 ** If the iStart argument had been 1 instead of 2, then the result 3632 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3633 ** the iStart value would be 0. The result then would 3634 ** be: nil, nil, nil, A, B. 3635 ** 3636 ** If a memory allocation fails the SrcList is unchanged. The 3637 ** db->mallocFailed flag will be set to true. 3638 */ 3639 SrcList *sqlite3SrcListEnlarge( 3640 sqlite3 *db, /* Database connection to notify of OOM errors */ 3641 SrcList *pSrc, /* The SrcList to be enlarged */ 3642 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3643 int iStart /* Index in pSrc->a[] of first new slot */ 3644 ){ 3645 int i; 3646 3647 /* Sanity checking on calling parameters */ 3648 assert( iStart>=0 ); 3649 assert( nExtra>=1 ); 3650 assert( pSrc!=0 ); 3651 assert( iStart<=pSrc->nSrc ); 3652 3653 /* Allocate additional space if needed */ 3654 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3655 SrcList *pNew; 3656 int nAlloc = pSrc->nSrc+nExtra; 3657 int nGot; 3658 pNew = sqlite3DbRealloc(db, pSrc, 3659 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3660 if( pNew==0 ){ 3661 assert( db->mallocFailed ); 3662 return pSrc; 3663 } 3664 pSrc = pNew; 3665 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3666 pSrc->nAlloc = nGot; 3667 } 3668 3669 /* Move existing slots that come after the newly inserted slots 3670 ** out of the way */ 3671 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3672 pSrc->a[i+nExtra] = pSrc->a[i]; 3673 } 3674 pSrc->nSrc += nExtra; 3675 3676 /* Zero the newly allocated slots */ 3677 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3678 for(i=iStart; i<iStart+nExtra; i++){ 3679 pSrc->a[i].iCursor = -1; 3680 } 3681 3682 /* Return a pointer to the enlarged SrcList */ 3683 return pSrc; 3684 } 3685 3686 3687 /* 3688 ** Append a new table name to the given SrcList. Create a new SrcList if 3689 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3690 ** 3691 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3692 ** SrcList might be the same as the SrcList that was input or it might be 3693 ** a new one. If an OOM error does occurs, then the prior value of pList 3694 ** that is input to this routine is automatically freed. 3695 ** 3696 ** If pDatabase is not null, it means that the table has an optional 3697 ** database name prefix. Like this: "database.table". The pDatabase 3698 ** points to the table name and the pTable points to the database name. 3699 ** The SrcList.a[].zName field is filled with the table name which might 3700 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3701 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3702 ** or with NULL if no database is specified. 3703 ** 3704 ** In other words, if call like this: 3705 ** 3706 ** sqlite3SrcListAppend(D,A,B,0); 3707 ** 3708 ** Then B is a table name and the database name is unspecified. If called 3709 ** like this: 3710 ** 3711 ** sqlite3SrcListAppend(D,A,B,C); 3712 ** 3713 ** Then C is the table name and B is the database name. If C is defined 3714 ** then so is B. In other words, we never have a case where: 3715 ** 3716 ** sqlite3SrcListAppend(D,A,0,C); 3717 ** 3718 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3719 ** before being added to the SrcList. 3720 */ 3721 SrcList *sqlite3SrcListAppend( 3722 sqlite3 *db, /* Connection to notify of malloc failures */ 3723 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3724 Token *pTable, /* Table to append */ 3725 Token *pDatabase /* Database of the table */ 3726 ){ 3727 struct SrcList_item *pItem; 3728 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3729 assert( db!=0 ); 3730 if( pList==0 ){ 3731 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3732 if( pList==0 ) return 0; 3733 pList->nAlloc = 1; 3734 pList->nSrc = 0; 3735 } 3736 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3737 if( db->mallocFailed ){ 3738 sqlite3SrcListDelete(db, pList); 3739 return 0; 3740 } 3741 pItem = &pList->a[pList->nSrc-1]; 3742 if( pDatabase && pDatabase->z==0 ){ 3743 pDatabase = 0; 3744 } 3745 if( pDatabase ){ 3746 Token *pTemp = pDatabase; 3747 pDatabase = pTable; 3748 pTable = pTemp; 3749 } 3750 pItem->zName = sqlite3NameFromToken(db, pTable); 3751 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3752 return pList; 3753 } 3754 3755 /* 3756 ** Assign VdbeCursor index numbers to all tables in a SrcList 3757 */ 3758 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3759 int i; 3760 struct SrcList_item *pItem; 3761 assert(pList || pParse->db->mallocFailed ); 3762 if( pList ){ 3763 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3764 if( pItem->iCursor>=0 ) break; 3765 pItem->iCursor = pParse->nTab++; 3766 if( pItem->pSelect ){ 3767 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3768 } 3769 } 3770 } 3771 } 3772 3773 /* 3774 ** Delete an entire SrcList including all its substructure. 3775 */ 3776 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3777 int i; 3778 struct SrcList_item *pItem; 3779 if( pList==0 ) return; 3780 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3781 sqlite3DbFree(db, pItem->zDatabase); 3782 sqlite3DbFree(db, pItem->zName); 3783 sqlite3DbFree(db, pItem->zAlias); 3784 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3785 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3786 sqlite3DeleteTable(db, pItem->pTab); 3787 sqlite3SelectDelete(db, pItem->pSelect); 3788 sqlite3ExprDelete(db, pItem->pOn); 3789 sqlite3IdListDelete(db, pItem->pUsing); 3790 } 3791 sqlite3DbFree(db, pList); 3792 } 3793 3794 /* 3795 ** This routine is called by the parser to add a new term to the 3796 ** end of a growing FROM clause. The "p" parameter is the part of 3797 ** the FROM clause that has already been constructed. "p" is NULL 3798 ** if this is the first term of the FROM clause. pTable and pDatabase 3799 ** are the name of the table and database named in the FROM clause term. 3800 ** pDatabase is NULL if the database name qualifier is missing - the 3801 ** usual case. If the term has an alias, then pAlias points to the 3802 ** alias token. If the term is a subquery, then pSubquery is the 3803 ** SELECT statement that the subquery encodes. The pTable and 3804 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3805 ** parameters are the content of the ON and USING clauses. 3806 ** 3807 ** Return a new SrcList which encodes is the FROM with the new 3808 ** term added. 3809 */ 3810 SrcList *sqlite3SrcListAppendFromTerm( 3811 Parse *pParse, /* Parsing context */ 3812 SrcList *p, /* The left part of the FROM clause already seen */ 3813 Token *pTable, /* Name of the table to add to the FROM clause */ 3814 Token *pDatabase, /* Name of the database containing pTable */ 3815 Token *pAlias, /* The right-hand side of the AS subexpression */ 3816 Select *pSubquery, /* A subquery used in place of a table name */ 3817 Expr *pOn, /* The ON clause of a join */ 3818 IdList *pUsing /* The USING clause of a join */ 3819 ){ 3820 struct SrcList_item *pItem; 3821 sqlite3 *db = pParse->db; 3822 if( !p && (pOn || pUsing) ){ 3823 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3824 (pOn ? "ON" : "USING") 3825 ); 3826 goto append_from_error; 3827 } 3828 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3829 if( p==0 || NEVER(p->nSrc==0) ){ 3830 goto append_from_error; 3831 } 3832 pItem = &p->a[p->nSrc-1]; 3833 assert( pAlias!=0 ); 3834 if( pAlias->n ){ 3835 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3836 } 3837 pItem->pSelect = pSubquery; 3838 pItem->pOn = pOn; 3839 pItem->pUsing = pUsing; 3840 return p; 3841 3842 append_from_error: 3843 assert( p==0 ); 3844 sqlite3ExprDelete(db, pOn); 3845 sqlite3IdListDelete(db, pUsing); 3846 sqlite3SelectDelete(db, pSubquery); 3847 return 0; 3848 } 3849 3850 /* 3851 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3852 ** element of the source-list passed as the second argument. 3853 */ 3854 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3855 assert( pIndexedBy!=0 ); 3856 if( p && ALWAYS(p->nSrc>0) ){ 3857 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3858 assert( pItem->fg.notIndexed==0 ); 3859 assert( pItem->fg.isIndexedBy==0 ); 3860 assert( pItem->fg.isTabFunc==0 ); 3861 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3862 /* A "NOT INDEXED" clause was supplied. See parse.y 3863 ** construct "indexed_opt" for details. */ 3864 pItem->fg.notIndexed = 1; 3865 }else{ 3866 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3867 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3868 } 3869 } 3870 } 3871 3872 /* 3873 ** Add the list of function arguments to the SrcList entry for a 3874 ** table-valued-function. 3875 */ 3876 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3877 if( p ){ 3878 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3879 assert( pItem->fg.notIndexed==0 ); 3880 assert( pItem->fg.isIndexedBy==0 ); 3881 assert( pItem->fg.isTabFunc==0 ); 3882 pItem->u1.pFuncArg = pList; 3883 pItem->fg.isTabFunc = 1; 3884 }else{ 3885 sqlite3ExprListDelete(pParse->db, pList); 3886 } 3887 } 3888 3889 /* 3890 ** When building up a FROM clause in the parser, the join operator 3891 ** is initially attached to the left operand. But the code generator 3892 ** expects the join operator to be on the right operand. This routine 3893 ** Shifts all join operators from left to right for an entire FROM 3894 ** clause. 3895 ** 3896 ** Example: Suppose the join is like this: 3897 ** 3898 ** A natural cross join B 3899 ** 3900 ** The operator is "natural cross join". The A and B operands are stored 3901 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3902 ** operator with A. This routine shifts that operator over to B. 3903 */ 3904 void sqlite3SrcListShiftJoinType(SrcList *p){ 3905 if( p ){ 3906 int i; 3907 for(i=p->nSrc-1; i>0; i--){ 3908 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3909 } 3910 p->a[0].fg.jointype = 0; 3911 } 3912 } 3913 3914 /* 3915 ** Generate VDBE code for a BEGIN statement. 3916 */ 3917 void sqlite3BeginTransaction(Parse *pParse, int type){ 3918 sqlite3 *db; 3919 Vdbe *v; 3920 int i; 3921 3922 assert( pParse!=0 ); 3923 db = pParse->db; 3924 assert( db!=0 ); 3925 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3926 return; 3927 } 3928 v = sqlite3GetVdbe(pParse); 3929 if( !v ) return; 3930 if( type!=TK_DEFERRED ){ 3931 for(i=0; i<db->nDb; i++){ 3932 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3933 sqlite3VdbeUsesBtree(v, i); 3934 } 3935 } 3936 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3937 } 3938 3939 /* 3940 ** Generate VDBE code for a COMMIT statement. 3941 */ 3942 void sqlite3CommitTransaction(Parse *pParse){ 3943 Vdbe *v; 3944 3945 assert( pParse!=0 ); 3946 assert( pParse->db!=0 ); 3947 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3948 return; 3949 } 3950 v = sqlite3GetVdbe(pParse); 3951 if( v ){ 3952 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1); 3953 } 3954 } 3955 3956 /* 3957 ** Generate VDBE code for a ROLLBACK statement. 3958 */ 3959 void sqlite3RollbackTransaction(Parse *pParse){ 3960 Vdbe *v; 3961 3962 assert( pParse!=0 ); 3963 assert( pParse->db!=0 ); 3964 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3965 return; 3966 } 3967 v = sqlite3GetVdbe(pParse); 3968 if( v ){ 3969 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3970 } 3971 } 3972 3973 /* 3974 ** This function is called by the parser when it parses a command to create, 3975 ** release or rollback an SQL savepoint. 3976 */ 3977 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3978 char *zName = sqlite3NameFromToken(pParse->db, pName); 3979 if( zName ){ 3980 Vdbe *v = sqlite3GetVdbe(pParse); 3981 #ifndef SQLITE_OMIT_AUTHORIZATION 3982 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3983 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3984 #endif 3985 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3986 sqlite3DbFree(pParse->db, zName); 3987 return; 3988 } 3989 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3990 } 3991 } 3992 3993 /* 3994 ** Make sure the TEMP database is open and available for use. Return 3995 ** the number of errors. Leave any error messages in the pParse structure. 3996 */ 3997 int sqlite3OpenTempDatabase(Parse *pParse){ 3998 sqlite3 *db = pParse->db; 3999 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4000 int rc; 4001 Btree *pBt; 4002 static const int flags = 4003 SQLITE_OPEN_READWRITE | 4004 SQLITE_OPEN_CREATE | 4005 SQLITE_OPEN_EXCLUSIVE | 4006 SQLITE_OPEN_DELETEONCLOSE | 4007 SQLITE_OPEN_TEMP_DB; 4008 4009 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4010 if( rc!=SQLITE_OK ){ 4011 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4012 "file for storing temporary tables"); 4013 pParse->rc = rc; 4014 return 1; 4015 } 4016 db->aDb[1].pBt = pBt; 4017 assert( db->aDb[1].pSchema ); 4018 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4019 sqlite3OomFault(db); 4020 return 1; 4021 } 4022 } 4023 return 0; 4024 } 4025 4026 /* 4027 ** Record the fact that the schema cookie will need to be verified 4028 ** for database iDb. The code to actually verify the schema cookie 4029 ** will occur at the end of the top-level VDBE and will be generated 4030 ** later, by sqlite3FinishCoding(). 4031 */ 4032 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4033 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4034 sqlite3 *db = pToplevel->db; 4035 4036 assert( iDb>=0 && iDb<db->nDb ); 4037 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 4038 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4039 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4040 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4041 DbMaskSet(pToplevel->cookieMask, iDb); 4042 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 4043 if( !OMIT_TEMPDB && iDb==1 ){ 4044 sqlite3OpenTempDatabase(pToplevel); 4045 } 4046 } 4047 } 4048 4049 /* 4050 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4051 ** attached database. Otherwise, invoke it for the database named zDb only. 4052 */ 4053 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4054 sqlite3 *db = pParse->db; 4055 int i; 4056 for(i=0; i<db->nDb; i++){ 4057 Db *pDb = &db->aDb[i]; 4058 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 4059 sqlite3CodeVerifySchema(pParse, i); 4060 } 4061 } 4062 } 4063 4064 /* 4065 ** Generate VDBE code that prepares for doing an operation that 4066 ** might change the database. 4067 ** 4068 ** This routine starts a new transaction if we are not already within 4069 ** a transaction. If we are already within a transaction, then a checkpoint 4070 ** is set if the setStatement parameter is true. A checkpoint should 4071 ** be set for operations that might fail (due to a constraint) part of 4072 ** the way through and which will need to undo some writes without having to 4073 ** rollback the whole transaction. For operations where all constraints 4074 ** can be checked before any changes are made to the database, it is never 4075 ** necessary to undo a write and the checkpoint should not be set. 4076 */ 4077 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4078 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4079 sqlite3CodeVerifySchema(pParse, iDb); 4080 DbMaskSet(pToplevel->writeMask, iDb); 4081 pToplevel->isMultiWrite |= setStatement; 4082 } 4083 4084 /* 4085 ** Indicate that the statement currently under construction might write 4086 ** more than one entry (example: deleting one row then inserting another, 4087 ** inserting multiple rows in a table, or inserting a row and index entries.) 4088 ** If an abort occurs after some of these writes have completed, then it will 4089 ** be necessary to undo the completed writes. 4090 */ 4091 void sqlite3MultiWrite(Parse *pParse){ 4092 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4093 pToplevel->isMultiWrite = 1; 4094 } 4095 4096 /* 4097 ** The code generator calls this routine if is discovers that it is 4098 ** possible to abort a statement prior to completion. In order to 4099 ** perform this abort without corrupting the database, we need to make 4100 ** sure that the statement is protected by a statement transaction. 4101 ** 4102 ** Technically, we only need to set the mayAbort flag if the 4103 ** isMultiWrite flag was previously set. There is a time dependency 4104 ** such that the abort must occur after the multiwrite. This makes 4105 ** some statements involving the REPLACE conflict resolution algorithm 4106 ** go a little faster. But taking advantage of this time dependency 4107 ** makes it more difficult to prove that the code is correct (in 4108 ** particular, it prevents us from writing an effective 4109 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4110 ** to take the safe route and skip the optimization. 4111 */ 4112 void sqlite3MayAbort(Parse *pParse){ 4113 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4114 pToplevel->mayAbort = 1; 4115 } 4116 4117 /* 4118 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4119 ** error. The onError parameter determines which (if any) of the statement 4120 ** and/or current transaction is rolled back. 4121 */ 4122 void sqlite3HaltConstraint( 4123 Parse *pParse, /* Parsing context */ 4124 int errCode, /* extended error code */ 4125 int onError, /* Constraint type */ 4126 char *p4, /* Error message */ 4127 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4128 u8 p5Errmsg /* P5_ErrMsg type */ 4129 ){ 4130 Vdbe *v = sqlite3GetVdbe(pParse); 4131 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4132 if( onError==OE_Abort ){ 4133 sqlite3MayAbort(pParse); 4134 } 4135 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4136 sqlite3VdbeChangeP5(v, p5Errmsg); 4137 } 4138 4139 /* 4140 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4141 */ 4142 void sqlite3UniqueConstraint( 4143 Parse *pParse, /* Parsing context */ 4144 int onError, /* Constraint type */ 4145 Index *pIdx /* The index that triggers the constraint */ 4146 ){ 4147 char *zErr; 4148 int j; 4149 StrAccum errMsg; 4150 Table *pTab = pIdx->pTable; 4151 4152 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4153 if( pIdx->aColExpr ){ 4154 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4155 }else{ 4156 for(j=0; j<pIdx->nKeyCol; j++){ 4157 char *zCol; 4158 assert( pIdx->aiColumn[j]>=0 ); 4159 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4160 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4161 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol); 4162 } 4163 } 4164 zErr = sqlite3StrAccumFinish(&errMsg); 4165 sqlite3HaltConstraint(pParse, 4166 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4167 : SQLITE_CONSTRAINT_UNIQUE, 4168 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4169 } 4170 4171 4172 /* 4173 ** Code an OP_Halt due to non-unique rowid. 4174 */ 4175 void sqlite3RowidConstraint( 4176 Parse *pParse, /* Parsing context */ 4177 int onError, /* Conflict resolution algorithm */ 4178 Table *pTab /* The table with the non-unique rowid */ 4179 ){ 4180 char *zMsg; 4181 int rc; 4182 if( pTab->iPKey>=0 ){ 4183 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4184 pTab->aCol[pTab->iPKey].zName); 4185 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4186 }else{ 4187 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4188 rc = SQLITE_CONSTRAINT_ROWID; 4189 } 4190 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4191 P5_ConstraintUnique); 4192 } 4193 4194 /* 4195 ** Check to see if pIndex uses the collating sequence pColl. Return 4196 ** true if it does and false if it does not. 4197 */ 4198 #ifndef SQLITE_OMIT_REINDEX 4199 static int collationMatch(const char *zColl, Index *pIndex){ 4200 int i; 4201 assert( zColl!=0 ); 4202 for(i=0; i<pIndex->nColumn; i++){ 4203 const char *z = pIndex->azColl[i]; 4204 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4205 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4206 return 1; 4207 } 4208 } 4209 return 0; 4210 } 4211 #endif 4212 4213 /* 4214 ** Recompute all indices of pTab that use the collating sequence pColl. 4215 ** If pColl==0 then recompute all indices of pTab. 4216 */ 4217 #ifndef SQLITE_OMIT_REINDEX 4218 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4219 Index *pIndex; /* An index associated with pTab */ 4220 4221 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4222 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4223 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4224 sqlite3BeginWriteOperation(pParse, 0, iDb); 4225 sqlite3RefillIndex(pParse, pIndex, -1); 4226 } 4227 } 4228 } 4229 #endif 4230 4231 /* 4232 ** Recompute all indices of all tables in all databases where the 4233 ** indices use the collating sequence pColl. If pColl==0 then recompute 4234 ** all indices everywhere. 4235 */ 4236 #ifndef SQLITE_OMIT_REINDEX 4237 static void reindexDatabases(Parse *pParse, char const *zColl){ 4238 Db *pDb; /* A single database */ 4239 int iDb; /* The database index number */ 4240 sqlite3 *db = pParse->db; /* The database connection */ 4241 HashElem *k; /* For looping over tables in pDb */ 4242 Table *pTab; /* A table in the database */ 4243 4244 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4245 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4246 assert( pDb!=0 ); 4247 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4248 pTab = (Table*)sqliteHashData(k); 4249 reindexTable(pParse, pTab, zColl); 4250 } 4251 } 4252 } 4253 #endif 4254 4255 /* 4256 ** Generate code for the REINDEX command. 4257 ** 4258 ** REINDEX -- 1 4259 ** REINDEX <collation> -- 2 4260 ** REINDEX ?<database>.?<tablename> -- 3 4261 ** REINDEX ?<database>.?<indexname> -- 4 4262 ** 4263 ** Form 1 causes all indices in all attached databases to be rebuilt. 4264 ** Form 2 rebuilds all indices in all databases that use the named 4265 ** collating function. Forms 3 and 4 rebuild the named index or all 4266 ** indices associated with the named table. 4267 */ 4268 #ifndef SQLITE_OMIT_REINDEX 4269 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4270 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4271 char *z; /* Name of a table or index */ 4272 const char *zDb; /* Name of the database */ 4273 Table *pTab; /* A table in the database */ 4274 Index *pIndex; /* An index associated with pTab */ 4275 int iDb; /* The database index number */ 4276 sqlite3 *db = pParse->db; /* The database connection */ 4277 Token *pObjName; /* Name of the table or index to be reindexed */ 4278 4279 /* Read the database schema. If an error occurs, leave an error message 4280 ** and code in pParse and return NULL. */ 4281 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4282 return; 4283 } 4284 4285 if( pName1==0 ){ 4286 reindexDatabases(pParse, 0); 4287 return; 4288 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4289 char *zColl; 4290 assert( pName1->z ); 4291 zColl = sqlite3NameFromToken(pParse->db, pName1); 4292 if( !zColl ) return; 4293 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4294 if( pColl ){ 4295 reindexDatabases(pParse, zColl); 4296 sqlite3DbFree(db, zColl); 4297 return; 4298 } 4299 sqlite3DbFree(db, zColl); 4300 } 4301 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4302 if( iDb<0 ) return; 4303 z = sqlite3NameFromToken(db, pObjName); 4304 if( z==0 ) return; 4305 zDb = db->aDb[iDb].zName; 4306 pTab = sqlite3FindTable(db, z, zDb); 4307 if( pTab ){ 4308 reindexTable(pParse, pTab, 0); 4309 sqlite3DbFree(db, z); 4310 return; 4311 } 4312 pIndex = sqlite3FindIndex(db, z, zDb); 4313 sqlite3DbFree(db, z); 4314 if( pIndex ){ 4315 sqlite3BeginWriteOperation(pParse, 0, iDb); 4316 sqlite3RefillIndex(pParse, pIndex, -1); 4317 return; 4318 } 4319 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4320 } 4321 #endif 4322 4323 /* 4324 ** Return a KeyInfo structure that is appropriate for the given Index. 4325 ** 4326 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4327 ** when it has finished using it. 4328 */ 4329 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4330 int i; 4331 int nCol = pIdx->nColumn; 4332 int nKey = pIdx->nKeyCol; 4333 KeyInfo *pKey; 4334 if( pParse->nErr ) return 0; 4335 if( pIdx->uniqNotNull ){ 4336 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4337 }else{ 4338 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4339 } 4340 if( pKey ){ 4341 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4342 for(i=0; i<nCol; i++){ 4343 const char *zColl = pIdx->azColl[i]; 4344 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4345 sqlite3LocateCollSeq(pParse, zColl); 4346 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4347 } 4348 if( pParse->nErr ){ 4349 sqlite3KeyInfoUnref(pKey); 4350 pKey = 0; 4351 } 4352 } 4353 return pKey; 4354 } 4355 4356 #ifndef SQLITE_OMIT_CTE 4357 /* 4358 ** This routine is invoked once per CTE by the parser while parsing a 4359 ** WITH clause. 4360 */ 4361 With *sqlite3WithAdd( 4362 Parse *pParse, /* Parsing context */ 4363 With *pWith, /* Existing WITH clause, or NULL */ 4364 Token *pName, /* Name of the common-table */ 4365 ExprList *pArglist, /* Optional column name list for the table */ 4366 Select *pQuery /* Query used to initialize the table */ 4367 ){ 4368 sqlite3 *db = pParse->db; 4369 With *pNew; 4370 char *zName; 4371 4372 /* Check that the CTE name is unique within this WITH clause. If 4373 ** not, store an error in the Parse structure. */ 4374 zName = sqlite3NameFromToken(pParse->db, pName); 4375 if( zName && pWith ){ 4376 int i; 4377 for(i=0; i<pWith->nCte; i++){ 4378 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4379 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4380 } 4381 } 4382 } 4383 4384 if( pWith ){ 4385 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4386 pNew = sqlite3DbRealloc(db, pWith, nByte); 4387 }else{ 4388 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4389 } 4390 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4391 4392 if( db->mallocFailed ){ 4393 sqlite3ExprListDelete(db, pArglist); 4394 sqlite3SelectDelete(db, pQuery); 4395 sqlite3DbFree(db, zName); 4396 pNew = pWith; 4397 }else{ 4398 pNew->a[pNew->nCte].pSelect = pQuery; 4399 pNew->a[pNew->nCte].pCols = pArglist; 4400 pNew->a[pNew->nCte].zName = zName; 4401 pNew->a[pNew->nCte].zCteErr = 0; 4402 pNew->nCte++; 4403 } 4404 4405 return pNew; 4406 } 4407 4408 /* 4409 ** Free the contents of the With object passed as the second argument. 4410 */ 4411 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4412 if( pWith ){ 4413 int i; 4414 for(i=0; i<pWith->nCte; i++){ 4415 struct Cte *pCte = &pWith->a[i]; 4416 sqlite3ExprListDelete(db, pCte->pCols); 4417 sqlite3SelectDelete(db, pCte->pSelect); 4418 sqlite3DbFree(db, pCte->zName); 4419 } 4420 sqlite3DbFree(db, pWith); 4421 } 4422 } 4423 #endif /* !defined(SQLITE_OMIT_CTE) */ 4424