xref: /sqlite-3.40.0/src/build.c (revision 50f79f56)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed.  Initialize the pParse structure as needed.
30 */
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32   pParse->explain = (u8)explainFlag;
33   pParse->nVar = 0;
34 }
35 
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42   int iDb;             /* The database containing the table to be locked */
43   int iTab;            /* The root page of the table to be locked */
44   u8 isWriteLock;      /* True for write lock.  False for a read lock */
45   const char *zName;   /* Name of the table */
46 };
47 
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired.  The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
58 void sqlite3TableLock(
59   Parse *pParse,     /* Parsing context */
60   int iDb,           /* Index of the database containing the table to lock */
61   int iTab,          /* Root page number of the table to be locked */
62   u8 isWriteLock,    /* True for a write lock */
63   const char *zName  /* Name of the table to be locked */
64 ){
65   Parse *pToplevel = sqlite3ParseToplevel(pParse);
66   int i;
67   int nBytes;
68   TableLock *p;
69   assert( iDb>=0 );
70 
71   for(i=0; i<pToplevel->nTableLock; i++){
72     p = &pToplevel->aTableLock[i];
73     if( p->iDb==iDb && p->iTab==iTab ){
74       p->isWriteLock = (p->isWriteLock || isWriteLock);
75       return;
76     }
77   }
78 
79   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80   pToplevel->aTableLock =
81       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82   if( pToplevel->aTableLock ){
83     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84     p->iDb = iDb;
85     p->iTab = iTab;
86     p->isWriteLock = isWriteLock;
87     p->zName = zName;
88   }else{
89     pToplevel->nTableLock = 0;
90     pToplevel->db->mallocFailed = 1;
91   }
92 }
93 
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
98 static void codeTableLocks(Parse *pParse){
99   int i;
100   Vdbe *pVdbe;
101 
102   pVdbe = sqlite3GetVdbe(pParse);
103   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104 
105   for(i=0; i<pParse->nTableLock; i++){
106     TableLock *p = &pParse->aTableLock[i];
107     int p1 = p->iDb;
108     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109                       p->zName, P4_STATIC);
110   }
111 }
112 #else
113   #define codeTableLocks(x)
114 #endif
115 
116 /*
117 ** This routine is called after a single SQL statement has been
118 ** parsed and a VDBE program to execute that statement has been
119 ** prepared.  This routine puts the finishing touches on the
120 ** VDBE program and resets the pParse structure for the next
121 ** parse.
122 **
123 ** Note that if an error occurred, it might be the case that
124 ** no VDBE code was generated.
125 */
126 void sqlite3FinishCoding(Parse *pParse){
127   sqlite3 *db;
128   Vdbe *v;
129 
130   db = pParse->db;
131   if( db->mallocFailed ) return;
132   if( pParse->nested ) return;
133   if( pParse->nErr ) return;
134 
135   /* Begin by generating some termination code at the end of the
136   ** vdbe program
137   */
138   v = sqlite3GetVdbe(pParse);
139   assert( !pParse->isMultiWrite
140        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
141   if( v ){
142     sqlite3VdbeAddOp0(v, OP_Halt);
143 
144     /* The cookie mask contains one bit for each database file open.
145     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
146     ** set for each database that is used.  Generate code to start a
147     ** transaction on each used database and to verify the schema cookie
148     ** on each used database.
149     */
150     if( pParse->cookieGoto>0 ){
151       yDbMask mask;
152       int iDb;
153       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
154       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
155         if( (mask & pParse->cookieMask)==0 ) continue;
156         sqlite3VdbeUsesBtree(v, iDb);
157         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
158         if( db->init.busy==0 ){
159           assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
160           sqlite3VdbeAddOp3(v, OP_VerifyCookie,
161                             iDb, pParse->cookieValue[iDb],
162                             db->aDb[iDb].pSchema->iGeneration);
163         }
164       }
165 #ifndef SQLITE_OMIT_VIRTUALTABLE
166       {
167         int i;
168         for(i=0; i<pParse->nVtabLock; i++){
169           char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
170           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
171         }
172         pParse->nVtabLock = 0;
173       }
174 #endif
175 
176       /* Once all the cookies have been verified and transactions opened,
177       ** obtain the required table-locks. This is a no-op unless the
178       ** shared-cache feature is enabled.
179       */
180       codeTableLocks(pParse);
181 
182       /* Initialize any AUTOINCREMENT data structures required.
183       */
184       sqlite3AutoincrementBegin(pParse);
185 
186       /* Finally, jump back to the beginning of the executable code. */
187       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
188     }
189   }
190 
191 
192   /* Get the VDBE program ready for execution
193   */
194   if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
195 #ifdef SQLITE_DEBUG
196     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
197     sqlite3VdbeTrace(v, trace);
198 #endif
199     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
200     /* A minimum of one cursor is required if autoincrement is used
201     *  See ticket [a696379c1f08866] */
202     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
203     sqlite3VdbeMakeReady(v, pParse);
204     pParse->rc = SQLITE_DONE;
205     pParse->colNamesSet = 0;
206   }else{
207     pParse->rc = SQLITE_ERROR;
208   }
209   pParse->nTab = 0;
210   pParse->nMem = 0;
211   pParse->nSet = 0;
212   pParse->nVar = 0;
213   pParse->cookieMask = 0;
214   pParse->cookieGoto = 0;
215 }
216 
217 /*
218 ** Run the parser and code generator recursively in order to generate
219 ** code for the SQL statement given onto the end of the pParse context
220 ** currently under construction.  When the parser is run recursively
221 ** this way, the final OP_Halt is not appended and other initialization
222 ** and finalization steps are omitted because those are handling by the
223 ** outermost parser.
224 **
225 ** Not everything is nestable.  This facility is designed to permit
226 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
227 ** care if you decide to try to use this routine for some other purposes.
228 */
229 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
230   va_list ap;
231   char *zSql;
232   char *zErrMsg = 0;
233   sqlite3 *db = pParse->db;
234 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
235   char saveBuf[SAVE_SZ];
236 
237   if( pParse->nErr ) return;
238   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
239   va_start(ap, zFormat);
240   zSql = sqlite3VMPrintf(db, zFormat, ap);
241   va_end(ap);
242   if( zSql==0 ){
243     return;   /* A malloc must have failed */
244   }
245   pParse->nested++;
246   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
247   memset(&pParse->nVar, 0, SAVE_SZ);
248   sqlite3RunParser(pParse, zSql, &zErrMsg);
249   sqlite3DbFree(db, zErrMsg);
250   sqlite3DbFree(db, zSql);
251   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
252   pParse->nested--;
253 }
254 
255 /*
256 ** Locate the in-memory structure that describes a particular database
257 ** table given the name of that table and (optionally) the name of the
258 ** database containing the table.  Return NULL if not found.
259 **
260 ** If zDatabase is 0, all databases are searched for the table and the
261 ** first matching table is returned.  (No checking for duplicate table
262 ** names is done.)  The search order is TEMP first, then MAIN, then any
263 ** auxiliary databases added using the ATTACH command.
264 **
265 ** See also sqlite3LocateTable().
266 */
267 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
268   Table *p = 0;
269   int i;
270   int nName;
271   assert( zName!=0 );
272   nName = sqlite3Strlen30(zName);
273   /* All mutexes are required for schema access.  Make sure we hold them. */
274   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
275   for(i=OMIT_TEMPDB; i<db->nDb; i++){
276     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
277     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
278     assert( sqlite3SchemaMutexHeld(db, j, 0) );
279     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
280     if( p ) break;
281   }
282   return p;
283 }
284 
285 /*
286 ** Locate the in-memory structure that describes a particular database
287 ** table given the name of that table and (optionally) the name of the
288 ** database containing the table.  Return NULL if not found.  Also leave an
289 ** error message in pParse->zErrMsg.
290 **
291 ** The difference between this routine and sqlite3FindTable() is that this
292 ** routine leaves an error message in pParse->zErrMsg where
293 ** sqlite3FindTable() does not.
294 */
295 Table *sqlite3LocateTable(
296   Parse *pParse,         /* context in which to report errors */
297   int isView,            /* True if looking for a VIEW rather than a TABLE */
298   const char *zName,     /* Name of the table we are looking for */
299   const char *zDbase     /* Name of the database.  Might be NULL */
300 ){
301   Table *p;
302 
303   /* Read the database schema. If an error occurs, leave an error message
304   ** and code in pParse and return NULL. */
305   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
306     return 0;
307   }
308 
309   p = sqlite3FindTable(pParse->db, zName, zDbase);
310   if( p==0 ){
311     const char *zMsg = isView ? "no such view" : "no such table";
312     if( zDbase ){
313       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
314     }else{
315       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
316     }
317     pParse->checkSchema = 1;
318   }
319   return p;
320 }
321 
322 /*
323 ** Locate the in-memory structure that describes
324 ** a particular index given the name of that index
325 ** and the name of the database that contains the index.
326 ** Return NULL if not found.
327 **
328 ** If zDatabase is 0, all databases are searched for the
329 ** table and the first matching index is returned.  (No checking
330 ** for duplicate index names is done.)  The search order is
331 ** TEMP first, then MAIN, then any auxiliary databases added
332 ** using the ATTACH command.
333 */
334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
335   Index *p = 0;
336   int i;
337   int nName = sqlite3Strlen30(zName);
338   /* All mutexes are required for schema access.  Make sure we hold them. */
339   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
340   for(i=OMIT_TEMPDB; i<db->nDb; i++){
341     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
342     Schema *pSchema = db->aDb[j].pSchema;
343     assert( pSchema );
344     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
345     assert( sqlite3SchemaMutexHeld(db, j, 0) );
346     p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
347     if( p ) break;
348   }
349   return p;
350 }
351 
352 /*
353 ** Reclaim the memory used by an index
354 */
355 static void freeIndex(sqlite3 *db, Index *p){
356 #ifndef SQLITE_OMIT_ANALYZE
357   sqlite3DeleteIndexSamples(db, p);
358 #endif
359   sqlite3DbFree(db, p->zColAff);
360   sqlite3DbFree(db, p);
361 }
362 
363 /*
364 ** For the index called zIdxName which is found in the database iDb,
365 ** unlike that index from its Table then remove the index from
366 ** the index hash table and free all memory structures associated
367 ** with the index.
368 */
369 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
370   Index *pIndex;
371   int len;
372   Hash *pHash;
373 
374   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
375   pHash = &db->aDb[iDb].pSchema->idxHash;
376   len = sqlite3Strlen30(zIdxName);
377   pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
378   if( ALWAYS(pIndex) ){
379     if( pIndex->pTable->pIndex==pIndex ){
380       pIndex->pTable->pIndex = pIndex->pNext;
381     }else{
382       Index *p;
383       /* Justification of ALWAYS();  The index must be on the list of
384       ** indices. */
385       p = pIndex->pTable->pIndex;
386       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
387       if( ALWAYS(p && p->pNext==pIndex) ){
388         p->pNext = pIndex->pNext;
389       }
390     }
391     freeIndex(db, pIndex);
392   }
393   db->flags |= SQLITE_InternChanges;
394 }
395 
396 /*
397 ** Erase all schema information from the in-memory hash tables of
398 ** a single database.  This routine is called to reclaim memory
399 ** before the database closes.  It is also called during a rollback
400 ** if there were schema changes during the transaction or if a
401 ** schema-cookie mismatch occurs.
402 **
403 ** If iDb<0 then reset the internal schema tables for all database
404 ** files.  If iDb>=0 then reset the internal schema for only the
405 ** single file indicated.
406 */
407 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
408   int i, j;
409   assert( iDb<db->nDb );
410 
411   if( iDb>=0 ){
412     /* Case 1:  Reset the single schema identified by iDb */
413     Db *pDb = &db->aDb[iDb];
414     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
415     assert( pDb->pSchema!=0 );
416     sqlite3SchemaClear(pDb->pSchema);
417 
418     /* If any database other than TEMP is reset, then also reset TEMP
419     ** since TEMP might be holding triggers that reference tables in the
420     ** other database.
421     */
422     if( iDb!=1 ){
423       pDb = &db->aDb[1];
424       assert( pDb->pSchema!=0 );
425       sqlite3SchemaClear(pDb->pSchema);
426     }
427     return;
428   }
429   /* Case 2 (from here to the end): Reset all schemas for all attached
430   ** databases. */
431   assert( iDb<0 );
432   sqlite3BtreeEnterAll(db);
433   for(i=0; i<db->nDb; i++){
434     Db *pDb = &db->aDb[i];
435     if( pDb->pSchema ){
436       sqlite3SchemaClear(pDb->pSchema);
437     }
438   }
439   db->flags &= ~SQLITE_InternChanges;
440   sqlite3VtabUnlockList(db);
441   sqlite3BtreeLeaveAll(db);
442 
443   /* If one or more of the auxiliary database files has been closed,
444   ** then remove them from the auxiliary database list.  We take the
445   ** opportunity to do this here since we have just deleted all of the
446   ** schema hash tables and therefore do not have to make any changes
447   ** to any of those tables.
448   */
449   for(i=j=2; i<db->nDb; i++){
450     struct Db *pDb = &db->aDb[i];
451     if( pDb->pBt==0 ){
452       sqlite3DbFree(db, pDb->zName);
453       pDb->zName = 0;
454       continue;
455     }
456     if( j<i ){
457       db->aDb[j] = db->aDb[i];
458     }
459     j++;
460   }
461   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
462   db->nDb = j;
463   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
464     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
465     sqlite3DbFree(db, db->aDb);
466     db->aDb = db->aDbStatic;
467   }
468 }
469 
470 /*
471 ** This routine is called when a commit occurs.
472 */
473 void sqlite3CommitInternalChanges(sqlite3 *db){
474   db->flags &= ~SQLITE_InternChanges;
475 }
476 
477 /*
478 ** Delete memory allocated for the column names of a table or view (the
479 ** Table.aCol[] array).
480 */
481 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
482   int i;
483   Column *pCol;
484   assert( pTable!=0 );
485   if( (pCol = pTable->aCol)!=0 ){
486     for(i=0; i<pTable->nCol; i++, pCol++){
487       sqlite3DbFree(db, pCol->zName);
488       sqlite3ExprDelete(db, pCol->pDflt);
489       sqlite3DbFree(db, pCol->zDflt);
490       sqlite3DbFree(db, pCol->zType);
491       sqlite3DbFree(db, pCol->zColl);
492     }
493     sqlite3DbFree(db, pTable->aCol);
494   }
495 }
496 
497 /*
498 ** Remove the memory data structures associated with the given
499 ** Table.  No changes are made to disk by this routine.
500 **
501 ** This routine just deletes the data structure.  It does not unlink
502 ** the table data structure from the hash table.  But it does destroy
503 ** memory structures of the indices and foreign keys associated with
504 ** the table.
505 */
506 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
507   Index *pIndex, *pNext;
508 
509   assert( !pTable || pTable->nRef>0 );
510 
511   /* Do not delete the table until the reference count reaches zero. */
512   if( !pTable ) return;
513   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
514 
515   /* Delete all indices associated with this table. */
516   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
517     pNext = pIndex->pNext;
518     assert( pIndex->pSchema==pTable->pSchema );
519     if( !db || db->pnBytesFreed==0 ){
520       char *zName = pIndex->zName;
521       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
522 	  &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
523       );
524       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
525       assert( pOld==pIndex || pOld==0 );
526     }
527     freeIndex(db, pIndex);
528   }
529 
530   /* Delete any foreign keys attached to this table. */
531   sqlite3FkDelete(db, pTable);
532 
533   /* Delete the Table structure itself.
534   */
535   sqliteDeleteColumnNames(db, pTable);
536   sqlite3DbFree(db, pTable->zName);
537   sqlite3DbFree(db, pTable->zColAff);
538   sqlite3SelectDelete(db, pTable->pSelect);
539 #ifndef SQLITE_OMIT_CHECK
540   sqlite3ExprListDelete(db, pTable->pCheck);
541 #endif
542 #ifndef SQLITE_OMIT_VIRTUALTABLE
543   sqlite3VtabClear(db, pTable);
544 #endif
545   sqlite3DbFree(db, pTable);
546 }
547 
548 /*
549 ** Unlink the given table from the hash tables and the delete the
550 ** table structure with all its indices and foreign keys.
551 */
552 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
553   Table *p;
554   Db *pDb;
555 
556   assert( db!=0 );
557   assert( iDb>=0 && iDb<db->nDb );
558   assert( zTabName );
559   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
560   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
561   pDb = &db->aDb[iDb];
562   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
563                         sqlite3Strlen30(zTabName),0);
564   sqlite3DeleteTable(db, p);
565   db->flags |= SQLITE_InternChanges;
566 }
567 
568 /*
569 ** Given a token, return a string that consists of the text of that
570 ** token.  Space to hold the returned string
571 ** is obtained from sqliteMalloc() and must be freed by the calling
572 ** function.
573 **
574 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
575 ** surround the body of the token are removed.
576 **
577 ** Tokens are often just pointers into the original SQL text and so
578 ** are not \000 terminated and are not persistent.  The returned string
579 ** is \000 terminated and is persistent.
580 */
581 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
582   char *zName;
583   if( pName ){
584     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
585     sqlite3Dequote(zName);
586   }else{
587     zName = 0;
588   }
589   return zName;
590 }
591 
592 /*
593 ** Open the sqlite_master table stored in database number iDb for
594 ** writing. The table is opened using cursor 0.
595 */
596 void sqlite3OpenMasterTable(Parse *p, int iDb){
597   Vdbe *v = sqlite3GetVdbe(p);
598   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
599   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
600   sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32);  /* 5 column table */
601   if( p->nTab==0 ){
602     p->nTab = 1;
603   }
604 }
605 
606 /*
607 ** Parameter zName points to a nul-terminated buffer containing the name
608 ** of a database ("main", "temp" or the name of an attached db). This
609 ** function returns the index of the named database in db->aDb[], or
610 ** -1 if the named db cannot be found.
611 */
612 int sqlite3FindDbName(sqlite3 *db, const char *zName){
613   int i = -1;         /* Database number */
614   if( zName ){
615     Db *pDb;
616     int n = sqlite3Strlen30(zName);
617     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
618       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
619           0==sqlite3StrICmp(pDb->zName, zName) ){
620         break;
621       }
622     }
623   }
624   return i;
625 }
626 
627 /*
628 ** The token *pName contains the name of a database (either "main" or
629 ** "temp" or the name of an attached db). This routine returns the
630 ** index of the named database in db->aDb[], or -1 if the named db
631 ** does not exist.
632 */
633 int sqlite3FindDb(sqlite3 *db, Token *pName){
634   int i;                               /* Database number */
635   char *zName;                         /* Name we are searching for */
636   zName = sqlite3NameFromToken(db, pName);
637   i = sqlite3FindDbName(db, zName);
638   sqlite3DbFree(db, zName);
639   return i;
640 }
641 
642 /* The table or view or trigger name is passed to this routine via tokens
643 ** pName1 and pName2. If the table name was fully qualified, for example:
644 **
645 ** CREATE TABLE xxx.yyy (...);
646 **
647 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
648 ** the table name is not fully qualified, i.e.:
649 **
650 ** CREATE TABLE yyy(...);
651 **
652 ** Then pName1 is set to "yyy" and pName2 is "".
653 **
654 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
655 ** pName2) that stores the unqualified table name.  The index of the
656 ** database "xxx" is returned.
657 */
658 int sqlite3TwoPartName(
659   Parse *pParse,      /* Parsing and code generating context */
660   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
661   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
662   Token **pUnqual     /* Write the unqualified object name here */
663 ){
664   int iDb;                    /* Database holding the object */
665   sqlite3 *db = pParse->db;
666 
667   if( ALWAYS(pName2!=0) && pName2->n>0 ){
668     if( db->init.busy ) {
669       sqlite3ErrorMsg(pParse, "corrupt database");
670       pParse->nErr++;
671       return -1;
672     }
673     *pUnqual = pName2;
674     iDb = sqlite3FindDb(db, pName1);
675     if( iDb<0 ){
676       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
677       pParse->nErr++;
678       return -1;
679     }
680   }else{
681     assert( db->init.iDb==0 || db->init.busy );
682     iDb = db->init.iDb;
683     *pUnqual = pName1;
684   }
685   return iDb;
686 }
687 
688 /*
689 ** This routine is used to check if the UTF-8 string zName is a legal
690 ** unqualified name for a new schema object (table, index, view or
691 ** trigger). All names are legal except those that begin with the string
692 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
693 ** is reserved for internal use.
694 */
695 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
696   if( !pParse->db->init.busy && pParse->nested==0
697           && (pParse->db->flags & SQLITE_WriteSchema)==0
698           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
699     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
700     return SQLITE_ERROR;
701   }
702   return SQLITE_OK;
703 }
704 
705 /*
706 ** Begin constructing a new table representation in memory.  This is
707 ** the first of several action routines that get called in response
708 ** to a CREATE TABLE statement.  In particular, this routine is called
709 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
710 ** flag is true if the table should be stored in the auxiliary database
711 ** file instead of in the main database file.  This is normally the case
712 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
713 ** CREATE and TABLE.
714 **
715 ** The new table record is initialized and put in pParse->pNewTable.
716 ** As more of the CREATE TABLE statement is parsed, additional action
717 ** routines will be called to add more information to this record.
718 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
719 ** is called to complete the construction of the new table record.
720 */
721 void sqlite3StartTable(
722   Parse *pParse,   /* Parser context */
723   Token *pName1,   /* First part of the name of the table or view */
724   Token *pName2,   /* Second part of the name of the table or view */
725   int isTemp,      /* True if this is a TEMP table */
726   int isView,      /* True if this is a VIEW */
727   int isVirtual,   /* True if this is a VIRTUAL table */
728   int noErr        /* Do nothing if table already exists */
729 ){
730   Table *pTable;
731   char *zName = 0; /* The name of the new table */
732   sqlite3 *db = pParse->db;
733   Vdbe *v;
734   int iDb;         /* Database number to create the table in */
735   Token *pName;    /* Unqualified name of the table to create */
736 
737   /* The table or view name to create is passed to this routine via tokens
738   ** pName1 and pName2. If the table name was fully qualified, for example:
739   **
740   ** CREATE TABLE xxx.yyy (...);
741   **
742   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
743   ** the table name is not fully qualified, i.e.:
744   **
745   ** CREATE TABLE yyy(...);
746   **
747   ** Then pName1 is set to "yyy" and pName2 is "".
748   **
749   ** The call below sets the pName pointer to point at the token (pName1 or
750   ** pName2) that stores the unqualified table name. The variable iDb is
751   ** set to the index of the database that the table or view is to be
752   ** created in.
753   */
754   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
755   if( iDb<0 ) return;
756   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
757     /* If creating a temp table, the name may not be qualified. Unless
758     ** the database name is "temp" anyway.  */
759     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
760     return;
761   }
762   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
763 
764   pParse->sNameToken = *pName;
765   zName = sqlite3NameFromToken(db, pName);
766   if( zName==0 ) return;
767   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
768     goto begin_table_error;
769   }
770   if( db->init.iDb==1 ) isTemp = 1;
771 #ifndef SQLITE_OMIT_AUTHORIZATION
772   assert( (isTemp & 1)==isTemp );
773   {
774     int code;
775     char *zDb = db->aDb[iDb].zName;
776     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
777       goto begin_table_error;
778     }
779     if( isView ){
780       if( !OMIT_TEMPDB && isTemp ){
781         code = SQLITE_CREATE_TEMP_VIEW;
782       }else{
783         code = SQLITE_CREATE_VIEW;
784       }
785     }else{
786       if( !OMIT_TEMPDB && isTemp ){
787         code = SQLITE_CREATE_TEMP_TABLE;
788       }else{
789         code = SQLITE_CREATE_TABLE;
790       }
791     }
792     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
793       goto begin_table_error;
794     }
795   }
796 #endif
797 
798   /* Make sure the new table name does not collide with an existing
799   ** index or table name in the same database.  Issue an error message if
800   ** it does. The exception is if the statement being parsed was passed
801   ** to an sqlite3_declare_vtab() call. In that case only the column names
802   ** and types will be used, so there is no need to test for namespace
803   ** collisions.
804   */
805   if( !IN_DECLARE_VTAB ){
806     char *zDb = db->aDb[iDb].zName;
807     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
808       goto begin_table_error;
809     }
810     pTable = sqlite3FindTable(db, zName, zDb);
811     if( pTable ){
812       if( !noErr ){
813         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
814       }else{
815         assert( !db->init.busy );
816         sqlite3CodeVerifySchema(pParse, iDb);
817       }
818       goto begin_table_error;
819     }
820     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
821       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
822       goto begin_table_error;
823     }
824   }
825 
826   pTable = sqlite3DbMallocZero(db, sizeof(Table));
827   if( pTable==0 ){
828     db->mallocFailed = 1;
829     pParse->rc = SQLITE_NOMEM;
830     pParse->nErr++;
831     goto begin_table_error;
832   }
833   pTable->zName = zName;
834   pTable->iPKey = -1;
835   pTable->pSchema = db->aDb[iDb].pSchema;
836   pTable->nRef = 1;
837   pTable->nRowEst = 1000000;
838   assert( pParse->pNewTable==0 );
839   pParse->pNewTable = pTable;
840 
841   /* If this is the magic sqlite_sequence table used by autoincrement,
842   ** then record a pointer to this table in the main database structure
843   ** so that INSERT can find the table easily.
844   */
845 #ifndef SQLITE_OMIT_AUTOINCREMENT
846   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
847     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
848     pTable->pSchema->pSeqTab = pTable;
849   }
850 #endif
851 
852   /* Begin generating the code that will insert the table record into
853   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
854   ** and allocate the record number for the table entry now.  Before any
855   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
856   ** indices to be created and the table record must come before the
857   ** indices.  Hence, the record number for the table must be allocated
858   ** now.
859   */
860   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
861     int j1;
862     int fileFormat;
863     int reg1, reg2, reg3;
864     sqlite3BeginWriteOperation(pParse, 0, iDb);
865 
866 #ifndef SQLITE_OMIT_VIRTUALTABLE
867     if( isVirtual ){
868       sqlite3VdbeAddOp0(v, OP_VBegin);
869     }
870 #endif
871 
872     /* If the file format and encoding in the database have not been set,
873     ** set them now.
874     */
875     reg1 = pParse->regRowid = ++pParse->nMem;
876     reg2 = pParse->regRoot = ++pParse->nMem;
877     reg3 = ++pParse->nMem;
878     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
879     sqlite3VdbeUsesBtree(v, iDb);
880     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
881     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
882                   1 : SQLITE_MAX_FILE_FORMAT;
883     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
884     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
885     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
886     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
887     sqlite3VdbeJumpHere(v, j1);
888 
889     /* This just creates a place-holder record in the sqlite_master table.
890     ** The record created does not contain anything yet.  It will be replaced
891     ** by the real entry in code generated at sqlite3EndTable().
892     **
893     ** The rowid for the new entry is left in register pParse->regRowid.
894     ** The root page number of the new table is left in reg pParse->regRoot.
895     ** The rowid and root page number values are needed by the code that
896     ** sqlite3EndTable will generate.
897     */
898 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
899     if( isView || isVirtual ){
900       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
901     }else
902 #endif
903     {
904       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
905     }
906     sqlite3OpenMasterTable(pParse, iDb);
907     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
908     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
909     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
910     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
911     sqlite3VdbeAddOp0(v, OP_Close);
912   }
913 
914   /* Normal (non-error) return. */
915   return;
916 
917   /* If an error occurs, we jump here */
918 begin_table_error:
919   sqlite3DbFree(db, zName);
920   return;
921 }
922 
923 /*
924 ** This macro is used to compare two strings in a case-insensitive manner.
925 ** It is slightly faster than calling sqlite3StrICmp() directly, but
926 ** produces larger code.
927 **
928 ** WARNING: This macro is not compatible with the strcmp() family. It
929 ** returns true if the two strings are equal, otherwise false.
930 */
931 #define STRICMP(x, y) (\
932 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
933 sqlite3UpperToLower[*(unsigned char *)(y)]     \
934 && sqlite3StrICmp((x)+1,(y)+1)==0 )
935 
936 /*
937 ** Add a new column to the table currently being constructed.
938 **
939 ** The parser calls this routine once for each column declaration
940 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
941 ** first to get things going.  Then this routine is called for each
942 ** column.
943 */
944 void sqlite3AddColumn(Parse *pParse, Token *pName){
945   Table *p;
946   int i;
947   char *z;
948   Column *pCol;
949   sqlite3 *db = pParse->db;
950   if( (p = pParse->pNewTable)==0 ) return;
951 #if SQLITE_MAX_COLUMN
952   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
953     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
954     return;
955   }
956 #endif
957   z = sqlite3NameFromToken(db, pName);
958   if( z==0 ) return;
959   for(i=0; i<p->nCol; i++){
960     if( STRICMP(z, p->aCol[i].zName) ){
961       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
962       sqlite3DbFree(db, z);
963       return;
964     }
965   }
966   if( (p->nCol & 0x7)==0 ){
967     Column *aNew;
968     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
969     if( aNew==0 ){
970       sqlite3DbFree(db, z);
971       return;
972     }
973     p->aCol = aNew;
974   }
975   pCol = &p->aCol[p->nCol];
976   memset(pCol, 0, sizeof(p->aCol[0]));
977   pCol->zName = z;
978 
979   /* If there is no type specified, columns have the default affinity
980   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
981   ** be called next to set pCol->affinity correctly.
982   */
983   pCol->affinity = SQLITE_AFF_NONE;
984   p->nCol++;
985 }
986 
987 /*
988 ** This routine is called by the parser while in the middle of
989 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
990 ** been seen on a column.  This routine sets the notNull flag on
991 ** the column currently under construction.
992 */
993 void sqlite3AddNotNull(Parse *pParse, int onError){
994   Table *p;
995   p = pParse->pNewTable;
996   if( p==0 || NEVER(p->nCol<1) ) return;
997   p->aCol[p->nCol-1].notNull = (u8)onError;
998 }
999 
1000 /*
1001 ** Scan the column type name zType (length nType) and return the
1002 ** associated affinity type.
1003 **
1004 ** This routine does a case-independent search of zType for the
1005 ** substrings in the following table. If one of the substrings is
1006 ** found, the corresponding affinity is returned. If zType contains
1007 ** more than one of the substrings, entries toward the top of
1008 ** the table take priority. For example, if zType is 'BLOBINT',
1009 ** SQLITE_AFF_INTEGER is returned.
1010 **
1011 ** Substring     | Affinity
1012 ** --------------------------------
1013 ** 'INT'         | SQLITE_AFF_INTEGER
1014 ** 'CHAR'        | SQLITE_AFF_TEXT
1015 ** 'CLOB'        | SQLITE_AFF_TEXT
1016 ** 'TEXT'        | SQLITE_AFF_TEXT
1017 ** 'BLOB'        | SQLITE_AFF_NONE
1018 ** 'REAL'        | SQLITE_AFF_REAL
1019 ** 'FLOA'        | SQLITE_AFF_REAL
1020 ** 'DOUB'        | SQLITE_AFF_REAL
1021 **
1022 ** If none of the substrings in the above table are found,
1023 ** SQLITE_AFF_NUMERIC is returned.
1024 */
1025 char sqlite3AffinityType(const char *zIn){
1026   u32 h = 0;
1027   char aff = SQLITE_AFF_NUMERIC;
1028 
1029   if( zIn ) while( zIn[0] ){
1030     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1031     zIn++;
1032     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1033       aff = SQLITE_AFF_TEXT;
1034     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1035       aff = SQLITE_AFF_TEXT;
1036     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1037       aff = SQLITE_AFF_TEXT;
1038     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1039         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1040       aff = SQLITE_AFF_NONE;
1041 #ifndef SQLITE_OMIT_FLOATING_POINT
1042     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1043         && aff==SQLITE_AFF_NUMERIC ){
1044       aff = SQLITE_AFF_REAL;
1045     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1046         && aff==SQLITE_AFF_NUMERIC ){
1047       aff = SQLITE_AFF_REAL;
1048     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1049         && aff==SQLITE_AFF_NUMERIC ){
1050       aff = SQLITE_AFF_REAL;
1051 #endif
1052     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1053       aff = SQLITE_AFF_INTEGER;
1054       break;
1055     }
1056   }
1057 
1058   return aff;
1059 }
1060 
1061 /*
1062 ** This routine is called by the parser while in the middle of
1063 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1064 ** token in the sequence of tokens that describe the type of the
1065 ** column currently under construction.   pLast is the last token
1066 ** in the sequence.  Use this information to construct a string
1067 ** that contains the typename of the column and store that string
1068 ** in zType.
1069 */
1070 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1071   Table *p;
1072   Column *pCol;
1073 
1074   p = pParse->pNewTable;
1075   if( p==0 || NEVER(p->nCol<1) ) return;
1076   pCol = &p->aCol[p->nCol-1];
1077   assert( pCol->zType==0 );
1078   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1079   pCol->affinity = sqlite3AffinityType(pCol->zType);
1080 }
1081 
1082 /*
1083 ** The expression is the default value for the most recently added column
1084 ** of the table currently under construction.
1085 **
1086 ** Default value expressions must be constant.  Raise an exception if this
1087 ** is not the case.
1088 **
1089 ** This routine is called by the parser while in the middle of
1090 ** parsing a CREATE TABLE statement.
1091 */
1092 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1093   Table *p;
1094   Column *pCol;
1095   sqlite3 *db = pParse->db;
1096   p = pParse->pNewTable;
1097   if( p!=0 ){
1098     pCol = &(p->aCol[p->nCol-1]);
1099     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
1100       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1101           pCol->zName);
1102     }else{
1103       /* A copy of pExpr is used instead of the original, as pExpr contains
1104       ** tokens that point to volatile memory. The 'span' of the expression
1105       ** is required by pragma table_info.
1106       */
1107       sqlite3ExprDelete(db, pCol->pDflt);
1108       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1109       sqlite3DbFree(db, pCol->zDflt);
1110       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1111                                      (int)(pSpan->zEnd - pSpan->zStart));
1112     }
1113   }
1114   sqlite3ExprDelete(db, pSpan->pExpr);
1115 }
1116 
1117 /*
1118 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1119 ** of columns that form the primary key.  If pList is NULL, then the
1120 ** most recently added column of the table is the primary key.
1121 **
1122 ** A table can have at most one primary key.  If the table already has
1123 ** a primary key (and this is the second primary key) then create an
1124 ** error.
1125 **
1126 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1127 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1128 ** field of the table under construction to be the index of the
1129 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1130 ** no INTEGER PRIMARY KEY.
1131 **
1132 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1133 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1134 */
1135 void sqlite3AddPrimaryKey(
1136   Parse *pParse,    /* Parsing context */
1137   ExprList *pList,  /* List of field names to be indexed */
1138   int onError,      /* What to do with a uniqueness conflict */
1139   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1140   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1141 ){
1142   Table *pTab = pParse->pNewTable;
1143   char *zType = 0;
1144   int iCol = -1, i;
1145   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1146   if( pTab->tabFlags & TF_HasPrimaryKey ){
1147     sqlite3ErrorMsg(pParse,
1148       "table \"%s\" has more than one primary key", pTab->zName);
1149     goto primary_key_exit;
1150   }
1151   pTab->tabFlags |= TF_HasPrimaryKey;
1152   if( pList==0 ){
1153     iCol = pTab->nCol - 1;
1154     pTab->aCol[iCol].isPrimKey = 1;
1155   }else{
1156     for(i=0; i<pList->nExpr; i++){
1157       for(iCol=0; iCol<pTab->nCol; iCol++){
1158         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1159           break;
1160         }
1161       }
1162       if( iCol<pTab->nCol ){
1163         pTab->aCol[iCol].isPrimKey = 1;
1164       }
1165     }
1166     if( pList->nExpr>1 ) iCol = -1;
1167   }
1168   if( iCol>=0 && iCol<pTab->nCol ){
1169     zType = pTab->aCol[iCol].zType;
1170   }
1171   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1172         && sortOrder==SQLITE_SO_ASC ){
1173     pTab->iPKey = iCol;
1174     pTab->keyConf = (u8)onError;
1175     assert( autoInc==0 || autoInc==1 );
1176     pTab->tabFlags |= autoInc*TF_Autoincrement;
1177   }else if( autoInc ){
1178 #ifndef SQLITE_OMIT_AUTOINCREMENT
1179     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1180        "INTEGER PRIMARY KEY");
1181 #endif
1182   }else{
1183     Index *p;
1184     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1185     if( p ){
1186       p->autoIndex = 2;
1187     }
1188     pList = 0;
1189   }
1190 
1191 primary_key_exit:
1192   sqlite3ExprListDelete(pParse->db, pList);
1193   return;
1194 }
1195 
1196 /*
1197 ** Add a new CHECK constraint to the table currently under construction.
1198 */
1199 void sqlite3AddCheckConstraint(
1200   Parse *pParse,    /* Parsing context */
1201   Expr *pCheckExpr  /* The check expression */
1202 ){
1203 #ifndef SQLITE_OMIT_CHECK
1204   Table *pTab = pParse->pNewTable;
1205   if( pTab && !IN_DECLARE_VTAB ){
1206     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1207     if( pParse->constraintName.n ){
1208       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1209     }
1210   }else
1211 #endif
1212   {
1213     sqlite3ExprDelete(pParse->db, pCheckExpr);
1214   }
1215 }
1216 
1217 /*
1218 ** Set the collation function of the most recently parsed table column
1219 ** to the CollSeq given.
1220 */
1221 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1222   Table *p;
1223   int i;
1224   char *zColl;              /* Dequoted name of collation sequence */
1225   sqlite3 *db;
1226 
1227   if( (p = pParse->pNewTable)==0 ) return;
1228   i = p->nCol-1;
1229   db = pParse->db;
1230   zColl = sqlite3NameFromToken(db, pToken);
1231   if( !zColl ) return;
1232 
1233   if( sqlite3LocateCollSeq(pParse, zColl) ){
1234     Index *pIdx;
1235     p->aCol[i].zColl = zColl;
1236 
1237     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1238     ** then an index may have been created on this column before the
1239     ** collation type was added. Correct this if it is the case.
1240     */
1241     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1242       assert( pIdx->nColumn==1 );
1243       if( pIdx->aiColumn[0]==i ){
1244         pIdx->azColl[0] = p->aCol[i].zColl;
1245       }
1246     }
1247   }else{
1248     sqlite3DbFree(db, zColl);
1249   }
1250 }
1251 
1252 /*
1253 ** This function returns the collation sequence for database native text
1254 ** encoding identified by the string zName, length nName.
1255 **
1256 ** If the requested collation sequence is not available, or not available
1257 ** in the database native encoding, the collation factory is invoked to
1258 ** request it. If the collation factory does not supply such a sequence,
1259 ** and the sequence is available in another text encoding, then that is
1260 ** returned instead.
1261 **
1262 ** If no versions of the requested collations sequence are available, or
1263 ** another error occurs, NULL is returned and an error message written into
1264 ** pParse.
1265 **
1266 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1267 ** invokes the collation factory if the named collation cannot be found
1268 ** and generates an error message.
1269 **
1270 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1271 */
1272 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1273   sqlite3 *db = pParse->db;
1274   u8 enc = ENC(db);
1275   u8 initbusy = db->init.busy;
1276   CollSeq *pColl;
1277 
1278   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1279   if( !initbusy && (!pColl || !pColl->xCmp) ){
1280     pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
1281     if( !pColl ){
1282       sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
1283     }
1284   }
1285 
1286   return pColl;
1287 }
1288 
1289 
1290 /*
1291 ** Generate code that will increment the schema cookie.
1292 **
1293 ** The schema cookie is used to determine when the schema for the
1294 ** database changes.  After each schema change, the cookie value
1295 ** changes.  When a process first reads the schema it records the
1296 ** cookie.  Thereafter, whenever it goes to access the database,
1297 ** it checks the cookie to make sure the schema has not changed
1298 ** since it was last read.
1299 **
1300 ** This plan is not completely bullet-proof.  It is possible for
1301 ** the schema to change multiple times and for the cookie to be
1302 ** set back to prior value.  But schema changes are infrequent
1303 ** and the probability of hitting the same cookie value is only
1304 ** 1 chance in 2^32.  So we're safe enough.
1305 */
1306 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1307   int r1 = sqlite3GetTempReg(pParse);
1308   sqlite3 *db = pParse->db;
1309   Vdbe *v = pParse->pVdbe;
1310   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1311   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1312   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1313   sqlite3ReleaseTempReg(pParse, r1);
1314 }
1315 
1316 /*
1317 ** Measure the number of characters needed to output the given
1318 ** identifier.  The number returned includes any quotes used
1319 ** but does not include the null terminator.
1320 **
1321 ** The estimate is conservative.  It might be larger that what is
1322 ** really needed.
1323 */
1324 static int identLength(const char *z){
1325   int n;
1326   for(n=0; *z; n++, z++){
1327     if( *z=='"' ){ n++; }
1328   }
1329   return n + 2;
1330 }
1331 
1332 /*
1333 ** The first parameter is a pointer to an output buffer. The second
1334 ** parameter is a pointer to an integer that contains the offset at
1335 ** which to write into the output buffer. This function copies the
1336 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1337 ** to the specified offset in the buffer and updates *pIdx to refer
1338 ** to the first byte after the last byte written before returning.
1339 **
1340 ** If the string zSignedIdent consists entirely of alpha-numeric
1341 ** characters, does not begin with a digit and is not an SQL keyword,
1342 ** then it is copied to the output buffer exactly as it is. Otherwise,
1343 ** it is quoted using double-quotes.
1344 */
1345 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1346   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1347   int i, j, needQuote;
1348   i = *pIdx;
1349 
1350   for(j=0; zIdent[j]; j++){
1351     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1352   }
1353   needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1354   if( !needQuote ){
1355     needQuote = zIdent[j];
1356   }
1357 
1358   if( needQuote ) z[i++] = '"';
1359   for(j=0; zIdent[j]; j++){
1360     z[i++] = zIdent[j];
1361     if( zIdent[j]=='"' ) z[i++] = '"';
1362   }
1363   if( needQuote ) z[i++] = '"';
1364   z[i] = 0;
1365   *pIdx = i;
1366 }
1367 
1368 /*
1369 ** Generate a CREATE TABLE statement appropriate for the given
1370 ** table.  Memory to hold the text of the statement is obtained
1371 ** from sqliteMalloc() and must be freed by the calling function.
1372 */
1373 static char *createTableStmt(sqlite3 *db, Table *p){
1374   int i, k, n;
1375   char *zStmt;
1376   char *zSep, *zSep2, *zEnd;
1377   Column *pCol;
1378   n = 0;
1379   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1380     n += identLength(pCol->zName) + 5;
1381   }
1382   n += identLength(p->zName);
1383   if( n<50 ){
1384     zSep = "";
1385     zSep2 = ",";
1386     zEnd = ")";
1387   }else{
1388     zSep = "\n  ";
1389     zSep2 = ",\n  ";
1390     zEnd = "\n)";
1391   }
1392   n += 35 + 6*p->nCol;
1393   zStmt = sqlite3DbMallocRaw(0, n);
1394   if( zStmt==0 ){
1395     db->mallocFailed = 1;
1396     return 0;
1397   }
1398   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1399   k = sqlite3Strlen30(zStmt);
1400   identPut(zStmt, &k, p->zName);
1401   zStmt[k++] = '(';
1402   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1403     static const char * const azType[] = {
1404         /* SQLITE_AFF_TEXT    */ " TEXT",
1405         /* SQLITE_AFF_NONE    */ "",
1406         /* SQLITE_AFF_NUMERIC */ " NUM",
1407         /* SQLITE_AFF_INTEGER */ " INT",
1408         /* SQLITE_AFF_REAL    */ " REAL"
1409     };
1410     int len;
1411     const char *zType;
1412 
1413     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1414     k += sqlite3Strlen30(&zStmt[k]);
1415     zSep = zSep2;
1416     identPut(zStmt, &k, pCol->zName);
1417     assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
1418     assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
1419     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1420     testcase( pCol->affinity==SQLITE_AFF_NONE );
1421     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1422     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1423     testcase( pCol->affinity==SQLITE_AFF_REAL );
1424 
1425     zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
1426     len = sqlite3Strlen30(zType);
1427     assert( pCol->affinity==SQLITE_AFF_NONE
1428             || pCol->affinity==sqlite3AffinityType(zType) );
1429     memcpy(&zStmt[k], zType, len);
1430     k += len;
1431     assert( k<=n );
1432   }
1433   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1434   return zStmt;
1435 }
1436 
1437 /*
1438 ** This routine is called to report the final ")" that terminates
1439 ** a CREATE TABLE statement.
1440 **
1441 ** The table structure that other action routines have been building
1442 ** is added to the internal hash tables, assuming no errors have
1443 ** occurred.
1444 **
1445 ** An entry for the table is made in the master table on disk, unless
1446 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1447 ** it means we are reading the sqlite_master table because we just
1448 ** connected to the database or because the sqlite_master table has
1449 ** recently changed, so the entry for this table already exists in
1450 ** the sqlite_master table.  We do not want to create it again.
1451 **
1452 ** If the pSelect argument is not NULL, it means that this routine
1453 ** was called to create a table generated from a
1454 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1455 ** the new table will match the result set of the SELECT.
1456 */
1457 void sqlite3EndTable(
1458   Parse *pParse,          /* Parse context */
1459   Token *pCons,           /* The ',' token after the last column defn. */
1460   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
1461   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1462 ){
1463   Table *p;
1464   sqlite3 *db = pParse->db;
1465   int iDb;
1466 
1467   if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
1468     return;
1469   }
1470   p = pParse->pNewTable;
1471   if( p==0 ) return;
1472 
1473   assert( !db->init.busy || !pSelect );
1474 
1475   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1476 
1477 #ifndef SQLITE_OMIT_CHECK
1478   /* Resolve names in all CHECK constraint expressions.
1479   */
1480   if( p->pCheck ){
1481     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
1482     NameContext sNC;                /* Name context for pParse->pNewTable */
1483     ExprList *pList;                /* List of all CHECK constraints */
1484     int i;                          /* Loop counter */
1485 
1486     memset(&sNC, 0, sizeof(sNC));
1487     memset(&sSrc, 0, sizeof(sSrc));
1488     sSrc.nSrc = 1;
1489     sSrc.a[0].zName = p->zName;
1490     sSrc.a[0].pTab = p;
1491     sSrc.a[0].iCursor = -1;
1492     sNC.pParse = pParse;
1493     sNC.pSrcList = &sSrc;
1494     sNC.isCheck = 1;
1495     pList = p->pCheck;
1496     for(i=0; i<pList->nExpr; i++){
1497       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
1498         return;
1499       }
1500     }
1501   }
1502 #endif /* !defined(SQLITE_OMIT_CHECK) */
1503 
1504   /* If the db->init.busy is 1 it means we are reading the SQL off the
1505   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1506   ** So do not write to the disk again.  Extract the root page number
1507   ** for the table from the db->init.newTnum field.  (The page number
1508   ** should have been put there by the sqliteOpenCb routine.)
1509   */
1510   if( db->init.busy ){
1511     p->tnum = db->init.newTnum;
1512   }
1513 
1514   /* If not initializing, then create a record for the new table
1515   ** in the SQLITE_MASTER table of the database.
1516   **
1517   ** If this is a TEMPORARY table, write the entry into the auxiliary
1518   ** file instead of into the main database file.
1519   */
1520   if( !db->init.busy ){
1521     int n;
1522     Vdbe *v;
1523     char *zType;    /* "view" or "table" */
1524     char *zType2;   /* "VIEW" or "TABLE" */
1525     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1526 
1527     v = sqlite3GetVdbe(pParse);
1528     if( NEVER(v==0) ) return;
1529 
1530     sqlite3VdbeAddOp1(v, OP_Close, 0);
1531 
1532     /*
1533     ** Initialize zType for the new view or table.
1534     */
1535     if( p->pSelect==0 ){
1536       /* A regular table */
1537       zType = "table";
1538       zType2 = "TABLE";
1539 #ifndef SQLITE_OMIT_VIEW
1540     }else{
1541       /* A view */
1542       zType = "view";
1543       zType2 = "VIEW";
1544 #endif
1545     }
1546 
1547     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1548     ** statement to populate the new table. The root-page number for the
1549     ** new table is in register pParse->regRoot.
1550     **
1551     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1552     ** suitable state to query for the column names and types to be used
1553     ** by the new table.
1554     **
1555     ** A shared-cache write-lock is not required to write to the new table,
1556     ** as a schema-lock must have already been obtained to create it. Since
1557     ** a schema-lock excludes all other database users, the write-lock would
1558     ** be redundant.
1559     */
1560     if( pSelect ){
1561       SelectDest dest;
1562       Table *pSelTab;
1563 
1564       assert(pParse->nTab==1);
1565       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1566       sqlite3VdbeChangeP5(v, 1);
1567       pParse->nTab = 2;
1568       sqlite3SelectDestInit(&dest, SRT_Table, 1);
1569       sqlite3Select(pParse, pSelect, &dest);
1570       sqlite3VdbeAddOp1(v, OP_Close, 1);
1571       if( pParse->nErr==0 ){
1572         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1573         if( pSelTab==0 ) return;
1574         assert( p->aCol==0 );
1575         p->nCol = pSelTab->nCol;
1576         p->aCol = pSelTab->aCol;
1577         pSelTab->nCol = 0;
1578         pSelTab->aCol = 0;
1579         sqlite3DeleteTable(db, pSelTab);
1580       }
1581     }
1582 
1583     /* Compute the complete text of the CREATE statement */
1584     if( pSelect ){
1585       zStmt = createTableStmt(db, p);
1586     }else{
1587       n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
1588       zStmt = sqlite3MPrintf(db,
1589           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1590       );
1591     }
1592 
1593     /* A slot for the record has already been allocated in the
1594     ** SQLITE_MASTER table.  We just need to update that slot with all
1595     ** the information we've collected.
1596     */
1597     sqlite3NestedParse(pParse,
1598       "UPDATE %Q.%s "
1599          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1600        "WHERE rowid=#%d",
1601       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1602       zType,
1603       p->zName,
1604       p->zName,
1605       pParse->regRoot,
1606       zStmt,
1607       pParse->regRowid
1608     );
1609     sqlite3DbFree(db, zStmt);
1610     sqlite3ChangeCookie(pParse, iDb);
1611 
1612 #ifndef SQLITE_OMIT_AUTOINCREMENT
1613     /* Check to see if we need to create an sqlite_sequence table for
1614     ** keeping track of autoincrement keys.
1615     */
1616     if( p->tabFlags & TF_Autoincrement ){
1617       Db *pDb = &db->aDb[iDb];
1618       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1619       if( pDb->pSchema->pSeqTab==0 ){
1620         sqlite3NestedParse(pParse,
1621           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1622           pDb->zName
1623         );
1624       }
1625     }
1626 #endif
1627 
1628     /* Reparse everything to update our internal data structures */
1629     sqlite3VdbeAddParseSchemaOp(v, iDb,
1630                sqlite3MPrintf(db, "tbl_name='%q'", p->zName));
1631   }
1632 
1633 
1634   /* Add the table to the in-memory representation of the database.
1635   */
1636   if( db->init.busy ){
1637     Table *pOld;
1638     Schema *pSchema = p->pSchema;
1639     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1640     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
1641                              sqlite3Strlen30(p->zName),p);
1642     if( pOld ){
1643       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
1644       db->mallocFailed = 1;
1645       return;
1646     }
1647     pParse->pNewTable = 0;
1648     db->flags |= SQLITE_InternChanges;
1649 
1650 #ifndef SQLITE_OMIT_ALTERTABLE
1651     if( !p->pSelect ){
1652       const char *zName = (const char *)pParse->sNameToken.z;
1653       int nName;
1654       assert( !pSelect && pCons && pEnd );
1655       if( pCons->z==0 ){
1656         pCons = pEnd;
1657       }
1658       nName = (int)((const char *)pCons->z - zName);
1659       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1660     }
1661 #endif
1662   }
1663 }
1664 
1665 #ifndef SQLITE_OMIT_VIEW
1666 /*
1667 ** The parser calls this routine in order to create a new VIEW
1668 */
1669 void sqlite3CreateView(
1670   Parse *pParse,     /* The parsing context */
1671   Token *pBegin,     /* The CREATE token that begins the statement */
1672   Token *pName1,     /* The token that holds the name of the view */
1673   Token *pName2,     /* The token that holds the name of the view */
1674   Select *pSelect,   /* A SELECT statement that will become the new view */
1675   int isTemp,        /* TRUE for a TEMPORARY view */
1676   int noErr          /* Suppress error messages if VIEW already exists */
1677 ){
1678   Table *p;
1679   int n;
1680   const char *z;
1681   Token sEnd;
1682   DbFixer sFix;
1683   Token *pName = 0;
1684   int iDb;
1685   sqlite3 *db = pParse->db;
1686 
1687   if( pParse->nVar>0 ){
1688     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1689     sqlite3SelectDelete(db, pSelect);
1690     return;
1691   }
1692   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1693   p = pParse->pNewTable;
1694   if( p==0 || pParse->nErr ){
1695     sqlite3SelectDelete(db, pSelect);
1696     return;
1697   }
1698   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1699   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1700   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1701     && sqlite3FixSelect(&sFix, pSelect)
1702   ){
1703     sqlite3SelectDelete(db, pSelect);
1704     return;
1705   }
1706 
1707   /* Make a copy of the entire SELECT statement that defines the view.
1708   ** This will force all the Expr.token.z values to be dynamically
1709   ** allocated rather than point to the input string - which means that
1710   ** they will persist after the current sqlite3_exec() call returns.
1711   */
1712   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1713   sqlite3SelectDelete(db, pSelect);
1714   if( db->mallocFailed ){
1715     return;
1716   }
1717   if( !db->init.busy ){
1718     sqlite3ViewGetColumnNames(pParse, p);
1719   }
1720 
1721   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
1722   ** the end.
1723   */
1724   sEnd = pParse->sLastToken;
1725   if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
1726     sEnd.z += sEnd.n;
1727   }
1728   sEnd.n = 0;
1729   n = (int)(sEnd.z - pBegin->z);
1730   z = pBegin->z;
1731   while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
1732   sEnd.z = &z[n-1];
1733   sEnd.n = 1;
1734 
1735   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1736   sqlite3EndTable(pParse, 0, &sEnd, 0);
1737   return;
1738 }
1739 #endif /* SQLITE_OMIT_VIEW */
1740 
1741 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1742 /*
1743 ** The Table structure pTable is really a VIEW.  Fill in the names of
1744 ** the columns of the view in the pTable structure.  Return the number
1745 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
1746 */
1747 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1748   Table *pSelTab;   /* A fake table from which we get the result set */
1749   Select *pSel;     /* Copy of the SELECT that implements the view */
1750   int nErr = 0;     /* Number of errors encountered */
1751   int n;            /* Temporarily holds the number of cursors assigned */
1752   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
1753   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1754 
1755   assert( pTable );
1756 
1757 #ifndef SQLITE_OMIT_VIRTUALTABLE
1758   if( sqlite3VtabCallConnect(pParse, pTable) ){
1759     return SQLITE_ERROR;
1760   }
1761   if( IsVirtual(pTable) ) return 0;
1762 #endif
1763 
1764 #ifndef SQLITE_OMIT_VIEW
1765   /* A positive nCol means the columns names for this view are
1766   ** already known.
1767   */
1768   if( pTable->nCol>0 ) return 0;
1769 
1770   /* A negative nCol is a special marker meaning that we are currently
1771   ** trying to compute the column names.  If we enter this routine with
1772   ** a negative nCol, it means two or more views form a loop, like this:
1773   **
1774   **     CREATE VIEW one AS SELECT * FROM two;
1775   **     CREATE VIEW two AS SELECT * FROM one;
1776   **
1777   ** Actually, the error above is now caught prior to reaching this point.
1778   ** But the following test is still important as it does come up
1779   ** in the following:
1780   **
1781   **     CREATE TABLE main.ex1(a);
1782   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
1783   **     SELECT * FROM temp.ex1;
1784   */
1785   if( pTable->nCol<0 ){
1786     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1787     return 1;
1788   }
1789   assert( pTable->nCol>=0 );
1790 
1791   /* If we get this far, it means we need to compute the table names.
1792   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1793   ** "*" elements in the results set of the view and will assign cursors
1794   ** to the elements of the FROM clause.  But we do not want these changes
1795   ** to be permanent.  So the computation is done on a copy of the SELECT
1796   ** statement that defines the view.
1797   */
1798   assert( pTable->pSelect );
1799   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
1800   if( pSel ){
1801     u8 enableLookaside = db->lookaside.bEnabled;
1802     n = pParse->nTab;
1803     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1804     pTable->nCol = -1;
1805     db->lookaside.bEnabled = 0;
1806 #ifndef SQLITE_OMIT_AUTHORIZATION
1807     xAuth = db->xAuth;
1808     db->xAuth = 0;
1809     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1810     db->xAuth = xAuth;
1811 #else
1812     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1813 #endif
1814     db->lookaside.bEnabled = enableLookaside;
1815     pParse->nTab = n;
1816     if( pSelTab ){
1817       assert( pTable->aCol==0 );
1818       pTable->nCol = pSelTab->nCol;
1819       pTable->aCol = pSelTab->aCol;
1820       pSelTab->nCol = 0;
1821       pSelTab->aCol = 0;
1822       sqlite3DeleteTable(db, pSelTab);
1823       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
1824       pTable->pSchema->flags |= DB_UnresetViews;
1825     }else{
1826       pTable->nCol = 0;
1827       nErr++;
1828     }
1829     sqlite3SelectDelete(db, pSel);
1830   } else {
1831     nErr++;
1832   }
1833 #endif /* SQLITE_OMIT_VIEW */
1834   return nErr;
1835 }
1836 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1837 
1838 #ifndef SQLITE_OMIT_VIEW
1839 /*
1840 ** Clear the column names from every VIEW in database idx.
1841 */
1842 static void sqliteViewResetAll(sqlite3 *db, int idx){
1843   HashElem *i;
1844   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
1845   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1846   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1847     Table *pTab = sqliteHashData(i);
1848     if( pTab->pSelect ){
1849       sqliteDeleteColumnNames(db, pTab);
1850       pTab->aCol = 0;
1851       pTab->nCol = 0;
1852     }
1853   }
1854   DbClearProperty(db, idx, DB_UnresetViews);
1855 }
1856 #else
1857 # define sqliteViewResetAll(A,B)
1858 #endif /* SQLITE_OMIT_VIEW */
1859 
1860 /*
1861 ** This function is called by the VDBE to adjust the internal schema
1862 ** used by SQLite when the btree layer moves a table root page. The
1863 ** root-page of a table or index in database iDb has changed from iFrom
1864 ** to iTo.
1865 **
1866 ** Ticket #1728:  The symbol table might still contain information
1867 ** on tables and/or indices that are the process of being deleted.
1868 ** If you are unlucky, one of those deleted indices or tables might
1869 ** have the same rootpage number as the real table or index that is
1870 ** being moved.  So we cannot stop searching after the first match
1871 ** because the first match might be for one of the deleted indices
1872 ** or tables and not the table/index that is actually being moved.
1873 ** We must continue looping until all tables and indices with
1874 ** rootpage==iFrom have been converted to have a rootpage of iTo
1875 ** in order to be certain that we got the right one.
1876 */
1877 #ifndef SQLITE_OMIT_AUTOVACUUM
1878 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
1879   HashElem *pElem;
1880   Hash *pHash;
1881   Db *pDb;
1882 
1883   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1884   pDb = &db->aDb[iDb];
1885   pHash = &pDb->pSchema->tblHash;
1886   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1887     Table *pTab = sqliteHashData(pElem);
1888     if( pTab->tnum==iFrom ){
1889       pTab->tnum = iTo;
1890     }
1891   }
1892   pHash = &pDb->pSchema->idxHash;
1893   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1894     Index *pIdx = sqliteHashData(pElem);
1895     if( pIdx->tnum==iFrom ){
1896       pIdx->tnum = iTo;
1897     }
1898   }
1899 }
1900 #endif
1901 
1902 /*
1903 ** Write code to erase the table with root-page iTable from database iDb.
1904 ** Also write code to modify the sqlite_master table and internal schema
1905 ** if a root-page of another table is moved by the btree-layer whilst
1906 ** erasing iTable (this can happen with an auto-vacuum database).
1907 */
1908 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1909   Vdbe *v = sqlite3GetVdbe(pParse);
1910   int r1 = sqlite3GetTempReg(pParse);
1911   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1912   sqlite3MayAbort(pParse);
1913 #ifndef SQLITE_OMIT_AUTOVACUUM
1914   /* OP_Destroy stores an in integer r1. If this integer
1915   ** is non-zero, then it is the root page number of a table moved to
1916   ** location iTable. The following code modifies the sqlite_master table to
1917   ** reflect this.
1918   **
1919   ** The "#NNN" in the SQL is a special constant that means whatever value
1920   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
1921   ** token for additional information.
1922   */
1923   sqlite3NestedParse(pParse,
1924      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1925      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1926 #endif
1927   sqlite3ReleaseTempReg(pParse, r1);
1928 }
1929 
1930 /*
1931 ** Write VDBE code to erase table pTab and all associated indices on disk.
1932 ** Code to update the sqlite_master tables and internal schema definitions
1933 ** in case a root-page belonging to another table is moved by the btree layer
1934 ** is also added (this can happen with an auto-vacuum database).
1935 */
1936 static void destroyTable(Parse *pParse, Table *pTab){
1937 #ifdef SQLITE_OMIT_AUTOVACUUM
1938   Index *pIdx;
1939   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1940   destroyRootPage(pParse, pTab->tnum, iDb);
1941   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1942     destroyRootPage(pParse, pIdx->tnum, iDb);
1943   }
1944 #else
1945   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1946   ** is not defined), then it is important to call OP_Destroy on the
1947   ** table and index root-pages in order, starting with the numerically
1948   ** largest root-page number. This guarantees that none of the root-pages
1949   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1950   ** following were coded:
1951   **
1952   ** OP_Destroy 4 0
1953   ** ...
1954   ** OP_Destroy 5 0
1955   **
1956   ** and root page 5 happened to be the largest root-page number in the
1957   ** database, then root page 5 would be moved to page 4 by the
1958   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1959   ** a free-list page.
1960   */
1961   int iTab = pTab->tnum;
1962   int iDestroyed = 0;
1963 
1964   while( 1 ){
1965     Index *pIdx;
1966     int iLargest = 0;
1967 
1968     if( iDestroyed==0 || iTab<iDestroyed ){
1969       iLargest = iTab;
1970     }
1971     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1972       int iIdx = pIdx->tnum;
1973       assert( pIdx->pSchema==pTab->pSchema );
1974       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1975         iLargest = iIdx;
1976       }
1977     }
1978     if( iLargest==0 ){
1979       return;
1980     }else{
1981       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1982       destroyRootPage(pParse, iLargest, iDb);
1983       iDestroyed = iLargest;
1984     }
1985   }
1986 #endif
1987 }
1988 
1989 /*
1990 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
1991 ** after a DROP INDEX or DROP TABLE command.
1992 */
1993 static void sqlite3ClearStatTables(
1994   Parse *pParse,         /* The parsing context */
1995   int iDb,               /* The database number */
1996   const char *zType,     /* "idx" or "tbl" */
1997   const char *zName      /* Name of index or table */
1998 ){
1999   int i;
2000   const char *zDbName = pParse->db->aDb[iDb].zName;
2001   for(i=1; i<=3; i++){
2002     char zTab[24];
2003     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2004     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2005       sqlite3NestedParse(pParse,
2006         "DELETE FROM %Q.%s WHERE %s=%Q",
2007         zDbName, zTab, zType, zName
2008       );
2009     }
2010   }
2011 }
2012 
2013 /*
2014 ** Generate code to drop a table.
2015 */
2016 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2017   Vdbe *v;
2018   sqlite3 *db = pParse->db;
2019   Trigger *pTrigger;
2020   Db *pDb = &db->aDb[iDb];
2021 
2022   v = sqlite3GetVdbe(pParse);
2023   assert( v!=0 );
2024   sqlite3BeginWriteOperation(pParse, 1, iDb);
2025 
2026 #ifndef SQLITE_OMIT_VIRTUALTABLE
2027   if( IsVirtual(pTab) ){
2028     sqlite3VdbeAddOp0(v, OP_VBegin);
2029   }
2030 #endif
2031 
2032   /* Drop all triggers associated with the table being dropped. Code
2033   ** is generated to remove entries from sqlite_master and/or
2034   ** sqlite_temp_master if required.
2035   */
2036   pTrigger = sqlite3TriggerList(pParse, pTab);
2037   while( pTrigger ){
2038     assert( pTrigger->pSchema==pTab->pSchema ||
2039         pTrigger->pSchema==db->aDb[1].pSchema );
2040     sqlite3DropTriggerPtr(pParse, pTrigger);
2041     pTrigger = pTrigger->pNext;
2042   }
2043 
2044 #ifndef SQLITE_OMIT_AUTOINCREMENT
2045   /* Remove any entries of the sqlite_sequence table associated with
2046   ** the table being dropped. This is done before the table is dropped
2047   ** at the btree level, in case the sqlite_sequence table needs to
2048   ** move as a result of the drop (can happen in auto-vacuum mode).
2049   */
2050   if( pTab->tabFlags & TF_Autoincrement ){
2051     sqlite3NestedParse(pParse,
2052       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2053       pDb->zName, pTab->zName
2054     );
2055   }
2056 #endif
2057 
2058   /* Drop all SQLITE_MASTER table and index entries that refer to the
2059   ** table. The program name loops through the master table and deletes
2060   ** every row that refers to a table of the same name as the one being
2061   ** dropped. Triggers are handled seperately because a trigger can be
2062   ** created in the temp database that refers to a table in another
2063   ** database.
2064   */
2065   sqlite3NestedParse(pParse,
2066       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2067       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2068   if( !isView && !IsVirtual(pTab) ){
2069     destroyTable(pParse, pTab);
2070   }
2071 
2072   /* Remove the table entry from SQLite's internal schema and modify
2073   ** the schema cookie.
2074   */
2075   if( IsVirtual(pTab) ){
2076     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2077   }
2078   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2079   sqlite3ChangeCookie(pParse, iDb);
2080   sqliteViewResetAll(db, iDb);
2081 }
2082 
2083 /*
2084 ** This routine is called to do the work of a DROP TABLE statement.
2085 ** pName is the name of the table to be dropped.
2086 */
2087 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2088   Table *pTab;
2089   Vdbe *v;
2090   sqlite3 *db = pParse->db;
2091   int iDb;
2092 
2093   if( db->mallocFailed ){
2094     goto exit_drop_table;
2095   }
2096   assert( pParse->nErr==0 );
2097   assert( pName->nSrc==1 );
2098   if( noErr ) db->suppressErr++;
2099   pTab = sqlite3LocateTable(pParse, isView,
2100                             pName->a[0].zName, pName->a[0].zDatabase);
2101   if( noErr ) db->suppressErr--;
2102 
2103   if( pTab==0 ){
2104     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2105     goto exit_drop_table;
2106   }
2107   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2108   assert( iDb>=0 && iDb<db->nDb );
2109 
2110   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2111   ** it is initialized.
2112   */
2113   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2114     goto exit_drop_table;
2115   }
2116 #ifndef SQLITE_OMIT_AUTHORIZATION
2117   {
2118     int code;
2119     const char *zTab = SCHEMA_TABLE(iDb);
2120     const char *zDb = db->aDb[iDb].zName;
2121     const char *zArg2 = 0;
2122     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2123       goto exit_drop_table;
2124     }
2125     if( isView ){
2126       if( !OMIT_TEMPDB && iDb==1 ){
2127         code = SQLITE_DROP_TEMP_VIEW;
2128       }else{
2129         code = SQLITE_DROP_VIEW;
2130       }
2131 #ifndef SQLITE_OMIT_VIRTUALTABLE
2132     }else if( IsVirtual(pTab) ){
2133       code = SQLITE_DROP_VTABLE;
2134       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2135 #endif
2136     }else{
2137       if( !OMIT_TEMPDB && iDb==1 ){
2138         code = SQLITE_DROP_TEMP_TABLE;
2139       }else{
2140         code = SQLITE_DROP_TABLE;
2141       }
2142     }
2143     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2144       goto exit_drop_table;
2145     }
2146     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2147       goto exit_drop_table;
2148     }
2149   }
2150 #endif
2151   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2152     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2153     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2154     goto exit_drop_table;
2155   }
2156 
2157 #ifndef SQLITE_OMIT_VIEW
2158   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2159   ** on a table.
2160   */
2161   if( isView && pTab->pSelect==0 ){
2162     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2163     goto exit_drop_table;
2164   }
2165   if( !isView && pTab->pSelect ){
2166     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2167     goto exit_drop_table;
2168   }
2169 #endif
2170 
2171   /* Generate code to remove the table from the master table
2172   ** on disk.
2173   */
2174   v = sqlite3GetVdbe(pParse);
2175   if( v ){
2176     sqlite3BeginWriteOperation(pParse, 1, iDb);
2177     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2178     sqlite3FkDropTable(pParse, pName, pTab);
2179     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2180   }
2181 
2182 exit_drop_table:
2183   sqlite3SrcListDelete(db, pName);
2184 }
2185 
2186 /*
2187 ** This routine is called to create a new foreign key on the table
2188 ** currently under construction.  pFromCol determines which columns
2189 ** in the current table point to the foreign key.  If pFromCol==0 then
2190 ** connect the key to the last column inserted.  pTo is the name of
2191 ** the table referred to.  pToCol is a list of tables in the other
2192 ** pTo table that the foreign key points to.  flags contains all
2193 ** information about the conflict resolution algorithms specified
2194 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2195 **
2196 ** An FKey structure is created and added to the table currently
2197 ** under construction in the pParse->pNewTable field.
2198 **
2199 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2200 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2201 */
2202 void sqlite3CreateForeignKey(
2203   Parse *pParse,       /* Parsing context */
2204   ExprList *pFromCol,  /* Columns in this table that point to other table */
2205   Token *pTo,          /* Name of the other table */
2206   ExprList *pToCol,    /* Columns in the other table */
2207   int flags            /* Conflict resolution algorithms. */
2208 ){
2209   sqlite3 *db = pParse->db;
2210 #ifndef SQLITE_OMIT_FOREIGN_KEY
2211   FKey *pFKey = 0;
2212   FKey *pNextTo;
2213   Table *p = pParse->pNewTable;
2214   int nByte;
2215   int i;
2216   int nCol;
2217   char *z;
2218 
2219   assert( pTo!=0 );
2220   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2221   if( pFromCol==0 ){
2222     int iCol = p->nCol-1;
2223     if( NEVER(iCol<0) ) goto fk_end;
2224     if( pToCol && pToCol->nExpr!=1 ){
2225       sqlite3ErrorMsg(pParse, "foreign key on %s"
2226          " should reference only one column of table %T",
2227          p->aCol[iCol].zName, pTo);
2228       goto fk_end;
2229     }
2230     nCol = 1;
2231   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2232     sqlite3ErrorMsg(pParse,
2233         "number of columns in foreign key does not match the number of "
2234         "columns in the referenced table");
2235     goto fk_end;
2236   }else{
2237     nCol = pFromCol->nExpr;
2238   }
2239   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2240   if( pToCol ){
2241     for(i=0; i<pToCol->nExpr; i++){
2242       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2243     }
2244   }
2245   pFKey = sqlite3DbMallocZero(db, nByte );
2246   if( pFKey==0 ){
2247     goto fk_end;
2248   }
2249   pFKey->pFrom = p;
2250   pFKey->pNextFrom = p->pFKey;
2251   z = (char*)&pFKey->aCol[nCol];
2252   pFKey->zTo = z;
2253   memcpy(z, pTo->z, pTo->n);
2254   z[pTo->n] = 0;
2255   sqlite3Dequote(z);
2256   z += pTo->n+1;
2257   pFKey->nCol = nCol;
2258   if( pFromCol==0 ){
2259     pFKey->aCol[0].iFrom = p->nCol-1;
2260   }else{
2261     for(i=0; i<nCol; i++){
2262       int j;
2263       for(j=0; j<p->nCol; j++){
2264         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2265           pFKey->aCol[i].iFrom = j;
2266           break;
2267         }
2268       }
2269       if( j>=p->nCol ){
2270         sqlite3ErrorMsg(pParse,
2271           "unknown column \"%s\" in foreign key definition",
2272           pFromCol->a[i].zName);
2273         goto fk_end;
2274       }
2275     }
2276   }
2277   if( pToCol ){
2278     for(i=0; i<nCol; i++){
2279       int n = sqlite3Strlen30(pToCol->a[i].zName);
2280       pFKey->aCol[i].zCol = z;
2281       memcpy(z, pToCol->a[i].zName, n);
2282       z[n] = 0;
2283       z += n+1;
2284     }
2285   }
2286   pFKey->isDeferred = 0;
2287   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2288   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2289 
2290   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2291   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2292       pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
2293   );
2294   if( pNextTo==pFKey ){
2295     db->mallocFailed = 1;
2296     goto fk_end;
2297   }
2298   if( pNextTo ){
2299     assert( pNextTo->pPrevTo==0 );
2300     pFKey->pNextTo = pNextTo;
2301     pNextTo->pPrevTo = pFKey;
2302   }
2303 
2304   /* Link the foreign key to the table as the last step.
2305   */
2306   p->pFKey = pFKey;
2307   pFKey = 0;
2308 
2309 fk_end:
2310   sqlite3DbFree(db, pFKey);
2311 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2312   sqlite3ExprListDelete(db, pFromCol);
2313   sqlite3ExprListDelete(db, pToCol);
2314 }
2315 
2316 /*
2317 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2318 ** clause is seen as part of a foreign key definition.  The isDeferred
2319 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2320 ** The behavior of the most recently created foreign key is adjusted
2321 ** accordingly.
2322 */
2323 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2324 #ifndef SQLITE_OMIT_FOREIGN_KEY
2325   Table *pTab;
2326   FKey *pFKey;
2327   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2328   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2329   pFKey->isDeferred = (u8)isDeferred;
2330 #endif
2331 }
2332 
2333 /*
2334 ** Generate code that will erase and refill index *pIdx.  This is
2335 ** used to initialize a newly created index or to recompute the
2336 ** content of an index in response to a REINDEX command.
2337 **
2338 ** if memRootPage is not negative, it means that the index is newly
2339 ** created.  The register specified by memRootPage contains the
2340 ** root page number of the index.  If memRootPage is negative, then
2341 ** the index already exists and must be cleared before being refilled and
2342 ** the root page number of the index is taken from pIndex->tnum.
2343 */
2344 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2345   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2346   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2347   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2348   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2349   int addr1;                     /* Address of top of loop */
2350   int addr2;                     /* Address to jump to for next iteration */
2351   int tnum;                      /* Root page of index */
2352   Vdbe *v;                       /* Generate code into this virtual machine */
2353   KeyInfo *pKey;                 /* KeyInfo for index */
2354 #ifdef SQLITE_OMIT_MERGE_SORT
2355   int regIdxKey;                 /* Registers containing the index key */
2356 #endif
2357   int regRecord;                 /* Register holding assemblied index record */
2358   sqlite3 *db = pParse->db;      /* The database connection */
2359   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2360 
2361 #ifndef SQLITE_OMIT_AUTHORIZATION
2362   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2363       db->aDb[iDb].zName ) ){
2364     return;
2365   }
2366 #endif
2367 
2368   /* Require a write-lock on the table to perform this operation */
2369   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2370 
2371   v = sqlite3GetVdbe(pParse);
2372   if( v==0 ) return;
2373   if( memRootPage>=0 ){
2374     tnum = memRootPage;
2375   }else{
2376     tnum = pIndex->tnum;
2377     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2378   }
2379   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2380   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2381                     (char *)pKey, P4_KEYINFO_HANDOFF);
2382   if( memRootPage>=0 ){
2383     sqlite3VdbeChangeP5(v, 1);
2384   }
2385 
2386 #ifndef SQLITE_OMIT_MERGE_SORT
2387   /* Open the sorter cursor if we are to use one. */
2388   iSorter = pParse->nTab++;
2389   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO);
2390 #else
2391   iSorter = iTab;
2392 #endif
2393 
2394   /* Open the table. Loop through all rows of the table, inserting index
2395   ** records into the sorter. */
2396   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2397   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2398   regRecord = sqlite3GetTempReg(pParse);
2399 
2400 #ifndef SQLITE_OMIT_MERGE_SORT
2401   sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2402   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2403   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2404   sqlite3VdbeJumpHere(v, addr1);
2405   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
2406   if( pIndex->onError!=OE_None ){
2407     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2408     sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
2409     addr2 = sqlite3VdbeCurrentAddr(v);
2410     sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord);
2411     sqlite3HaltConstraint(
2412         pParse, OE_Abort, "indexed columns are not unique", P4_STATIC
2413     );
2414   }else{
2415     addr2 = sqlite3VdbeCurrentAddr(v);
2416   }
2417   sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
2418   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
2419   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2420 #else
2421   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2422   addr2 = addr1 + 1;
2423   if( pIndex->onError!=OE_None ){
2424     const int regRowid = regIdxKey + pIndex->nColumn;
2425     const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
2426     void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
2427 
2428     /* The registers accessed by the OP_IsUnique opcode were allocated
2429     ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
2430     ** call above. Just before that function was freed they were released
2431     ** (made available to the compiler for reuse) using
2432     ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
2433     ** opcode use the values stored within seems dangerous. However, since
2434     ** we can be sure that no other temp registers have been allocated
2435     ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
2436     */
2437     sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
2438     sqlite3HaltConstraint(
2439         pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
2440   }
2441   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2442   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2443 #endif
2444   sqlite3ReleaseTempReg(pParse, regRecord);
2445   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2);
2446   sqlite3VdbeJumpHere(v, addr1);
2447 
2448   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2449   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2450   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2451 }
2452 
2453 /*
2454 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2455 ** and pTblList is the name of the table that is to be indexed.  Both will
2456 ** be NULL for a primary key or an index that is created to satisfy a
2457 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2458 ** as the table to be indexed.  pParse->pNewTable is a table that is
2459 ** currently being constructed by a CREATE TABLE statement.
2460 **
2461 ** pList is a list of columns to be indexed.  pList will be NULL if this
2462 ** is a primary key or unique-constraint on the most recent column added
2463 ** to the table currently under construction.
2464 **
2465 ** If the index is created successfully, return a pointer to the new Index
2466 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2467 ** as the tables primary key (Index.autoIndex==2).
2468 */
2469 Index *sqlite3CreateIndex(
2470   Parse *pParse,     /* All information about this parse */
2471   Token *pName1,     /* First part of index name. May be NULL */
2472   Token *pName2,     /* Second part of index name. May be NULL */
2473   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2474   ExprList *pList,   /* A list of columns to be indexed */
2475   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2476   Token *pStart,     /* The CREATE token that begins this statement */
2477   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
2478   int sortOrder,     /* Sort order of primary key when pList==NULL */
2479   int ifNotExist     /* Omit error if index already exists */
2480 ){
2481   Index *pRet = 0;     /* Pointer to return */
2482   Table *pTab = 0;     /* Table to be indexed */
2483   Index *pIndex = 0;   /* The index to be created */
2484   char *zName = 0;     /* Name of the index */
2485   int nName;           /* Number of characters in zName */
2486   int i, j;
2487   Token nullId;        /* Fake token for an empty ID list */
2488   DbFixer sFix;        /* For assigning database names to pTable */
2489   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2490   sqlite3 *db = pParse->db;
2491   Db *pDb;             /* The specific table containing the indexed database */
2492   int iDb;             /* Index of the database that is being written */
2493   Token *pName = 0;    /* Unqualified name of the index to create */
2494   struct ExprList_item *pListItem; /* For looping over pList */
2495   int nCol;
2496   int nExtra = 0;
2497   char *zExtra;
2498 
2499   assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
2500   assert( pParse->nErr==0 );      /* Never called with prior errors */
2501   if( db->mallocFailed || IN_DECLARE_VTAB ){
2502     goto exit_create_index;
2503   }
2504   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2505     goto exit_create_index;
2506   }
2507 
2508   /*
2509   ** Find the table that is to be indexed.  Return early if not found.
2510   */
2511   if( pTblName!=0 ){
2512 
2513     /* Use the two-part index name to determine the database
2514     ** to search for the table. 'Fix' the table name to this db
2515     ** before looking up the table.
2516     */
2517     assert( pName1 && pName2 );
2518     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2519     if( iDb<0 ) goto exit_create_index;
2520     assert( pName && pName->z );
2521 
2522 #ifndef SQLITE_OMIT_TEMPDB
2523     /* If the index name was unqualified, check if the the table
2524     ** is a temp table. If so, set the database to 1. Do not do this
2525     ** if initialising a database schema.
2526     */
2527     if( !db->init.busy ){
2528       pTab = sqlite3SrcListLookup(pParse, pTblName);
2529       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2530         iDb = 1;
2531       }
2532     }
2533 #endif
2534 
2535     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2536         sqlite3FixSrcList(&sFix, pTblName)
2537     ){
2538       /* Because the parser constructs pTblName from a single identifier,
2539       ** sqlite3FixSrcList can never fail. */
2540       assert(0);
2541     }
2542     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2543         pTblName->a[0].zDatabase);
2544     if( !pTab || db->mallocFailed ) goto exit_create_index;
2545     assert( db->aDb[iDb].pSchema==pTab->pSchema );
2546   }else{
2547     assert( pName==0 );
2548     assert( pStart==0 );
2549     pTab = pParse->pNewTable;
2550     if( !pTab ) goto exit_create_index;
2551     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2552   }
2553   pDb = &db->aDb[iDb];
2554 
2555   assert( pTab!=0 );
2556   assert( pParse->nErr==0 );
2557   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2558        && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){
2559     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2560     goto exit_create_index;
2561   }
2562 #ifndef SQLITE_OMIT_VIEW
2563   if( pTab->pSelect ){
2564     sqlite3ErrorMsg(pParse, "views may not be indexed");
2565     goto exit_create_index;
2566   }
2567 #endif
2568 #ifndef SQLITE_OMIT_VIRTUALTABLE
2569   if( IsVirtual(pTab) ){
2570     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2571     goto exit_create_index;
2572   }
2573 #endif
2574 
2575   /*
2576   ** Find the name of the index.  Make sure there is not already another
2577   ** index or table with the same name.
2578   **
2579   ** Exception:  If we are reading the names of permanent indices from the
2580   ** sqlite_master table (because some other process changed the schema) and
2581   ** one of the index names collides with the name of a temporary table or
2582   ** index, then we will continue to process this index.
2583   **
2584   ** If pName==0 it means that we are
2585   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2586   ** own name.
2587   */
2588   if( pName ){
2589     zName = sqlite3NameFromToken(db, pName);
2590     if( zName==0 ) goto exit_create_index;
2591     assert( pName->z!=0 );
2592     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2593       goto exit_create_index;
2594     }
2595     if( !db->init.busy ){
2596       if( sqlite3FindTable(db, zName, 0)!=0 ){
2597         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2598         goto exit_create_index;
2599       }
2600     }
2601     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2602       if( !ifNotExist ){
2603         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2604       }else{
2605         assert( !db->init.busy );
2606         sqlite3CodeVerifySchema(pParse, iDb);
2607       }
2608       goto exit_create_index;
2609     }
2610   }else{
2611     int n;
2612     Index *pLoop;
2613     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2614     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2615     if( zName==0 ){
2616       goto exit_create_index;
2617     }
2618   }
2619 
2620   /* Check for authorization to create an index.
2621   */
2622 #ifndef SQLITE_OMIT_AUTHORIZATION
2623   {
2624     const char *zDb = pDb->zName;
2625     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2626       goto exit_create_index;
2627     }
2628     i = SQLITE_CREATE_INDEX;
2629     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2630     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2631       goto exit_create_index;
2632     }
2633   }
2634 #endif
2635 
2636   /* If pList==0, it means this routine was called to make a primary
2637   ** key out of the last column added to the table under construction.
2638   ** So create a fake list to simulate this.
2639   */
2640   if( pList==0 ){
2641     nullId.z = pTab->aCol[pTab->nCol-1].zName;
2642     nullId.n = sqlite3Strlen30((char*)nullId.z);
2643     pList = sqlite3ExprListAppend(pParse, 0, 0);
2644     if( pList==0 ) goto exit_create_index;
2645     sqlite3ExprListSetName(pParse, pList, &nullId, 0);
2646     pList->a[0].sortOrder = (u8)sortOrder;
2647   }
2648 
2649   /* Figure out how many bytes of space are required to store explicitly
2650   ** specified collation sequence names.
2651   */
2652   for(i=0; i<pList->nExpr; i++){
2653     Expr *pExpr = pList->a[i].pExpr;
2654     if( pExpr ){
2655       CollSeq *pColl = pExpr->pColl;
2656       /* Either pColl!=0 or there was an OOM failure.  But if an OOM
2657       ** failure we have quit before reaching this point. */
2658       if( ALWAYS(pColl) ){
2659         nExtra += (1 + sqlite3Strlen30(pColl->zName));
2660       }
2661     }
2662   }
2663 
2664   /*
2665   ** Allocate the index structure.
2666   */
2667   nName = sqlite3Strlen30(zName);
2668   nCol = pList->nExpr;
2669   pIndex = sqlite3DbMallocZero(db,
2670       ROUND8(sizeof(Index)) +              /* Index structure  */
2671       ROUND8(sizeof(tRowcnt)*(nCol+1)) +   /* Index.aiRowEst   */
2672       sizeof(char *)*nCol +                /* Index.azColl     */
2673       sizeof(int)*nCol +                   /* Index.aiColumn   */
2674       sizeof(u8)*nCol +                    /* Index.aSortOrder */
2675       nName + 1 +                          /* Index.zName      */
2676       nExtra                               /* Collation sequence names */
2677   );
2678   if( db->mallocFailed ){
2679     goto exit_create_index;
2680   }
2681   zExtra = (char*)pIndex;
2682   pIndex->aiRowEst = (tRowcnt*)&zExtra[ROUND8(sizeof(Index))];
2683   pIndex->azColl = (char**)
2684      ((char*)pIndex->aiRowEst + ROUND8(sizeof(tRowcnt)*nCol+1));
2685   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowEst) );
2686   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
2687   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2688   pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]);
2689   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2690   zExtra = (char *)(&pIndex->zName[nName+1]);
2691   memcpy(pIndex->zName, zName, nName+1);
2692   pIndex->pTable = pTab;
2693   pIndex->nColumn = pList->nExpr;
2694   pIndex->onError = (u8)onError;
2695   pIndex->autoIndex = (u8)(pName==0);
2696   pIndex->pSchema = db->aDb[iDb].pSchema;
2697   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2698 
2699   /* Check to see if we should honor DESC requests on index columns
2700   */
2701   if( pDb->pSchema->file_format>=4 ){
2702     sortOrderMask = -1;   /* Honor DESC */
2703   }else{
2704     sortOrderMask = 0;    /* Ignore DESC */
2705   }
2706 
2707   /* Scan the names of the columns of the table to be indexed and
2708   ** load the column indices into the Index structure.  Report an error
2709   ** if any column is not found.
2710   **
2711   ** TODO:  Add a test to make sure that the same column is not named
2712   ** more than once within the same index.  Only the first instance of
2713   ** the column will ever be used by the optimizer.  Note that using the
2714   ** same column more than once cannot be an error because that would
2715   ** break backwards compatibility - it needs to be a warning.
2716   */
2717   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2718     const char *zColName = pListItem->zName;
2719     Column *pTabCol;
2720     int requestedSortOrder;
2721     char *zColl;                   /* Collation sequence name */
2722 
2723     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2724       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2725     }
2726     if( j>=pTab->nCol ){
2727       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2728         pTab->zName, zColName);
2729       pParse->checkSchema = 1;
2730       goto exit_create_index;
2731     }
2732     pIndex->aiColumn[i] = j;
2733     /* Justification of the ALWAYS(pListItem->pExpr->pColl):  Because of
2734     ** the way the "idxlist" non-terminal is constructed by the parser,
2735     ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
2736     ** must exist or else there must have been an OOM error.  But if there
2737     ** was an OOM error, we would never reach this point. */
2738     if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
2739       int nColl;
2740       zColl = pListItem->pExpr->pColl->zName;
2741       nColl = sqlite3Strlen30(zColl) + 1;
2742       assert( nExtra>=nColl );
2743       memcpy(zExtra, zColl, nColl);
2744       zColl = zExtra;
2745       zExtra += nColl;
2746       nExtra -= nColl;
2747     }else{
2748       zColl = pTab->aCol[j].zColl;
2749       if( !zColl ){
2750         zColl = db->pDfltColl->zName;
2751       }
2752     }
2753     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
2754       goto exit_create_index;
2755     }
2756     pIndex->azColl[i] = zColl;
2757     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2758     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
2759   }
2760   sqlite3DefaultRowEst(pIndex);
2761 
2762   if( pTab==pParse->pNewTable ){
2763     /* This routine has been called to create an automatic index as a
2764     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2765     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2766     ** i.e. one of:
2767     **
2768     ** CREATE TABLE t(x PRIMARY KEY, y);
2769     ** CREATE TABLE t(x, y, UNIQUE(x, y));
2770     **
2771     ** Either way, check to see if the table already has such an index. If
2772     ** so, don't bother creating this one. This only applies to
2773     ** automatically created indices. Users can do as they wish with
2774     ** explicit indices.
2775     **
2776     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
2777     ** (and thus suppressing the second one) even if they have different
2778     ** sort orders.
2779     **
2780     ** If there are different collating sequences or if the columns of
2781     ** the constraint occur in different orders, then the constraints are
2782     ** considered distinct and both result in separate indices.
2783     */
2784     Index *pIdx;
2785     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2786       int k;
2787       assert( pIdx->onError!=OE_None );
2788       assert( pIdx->autoIndex );
2789       assert( pIndex->onError!=OE_None );
2790 
2791       if( pIdx->nColumn!=pIndex->nColumn ) continue;
2792       for(k=0; k<pIdx->nColumn; k++){
2793         const char *z1;
2794         const char *z2;
2795         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2796         z1 = pIdx->azColl[k];
2797         z2 = pIndex->azColl[k];
2798         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2799       }
2800       if( k==pIdx->nColumn ){
2801         if( pIdx->onError!=pIndex->onError ){
2802           /* This constraint creates the same index as a previous
2803           ** constraint specified somewhere in the CREATE TABLE statement.
2804           ** However the ON CONFLICT clauses are different. If both this
2805           ** constraint and the previous equivalent constraint have explicit
2806           ** ON CONFLICT clauses this is an error. Otherwise, use the
2807           ** explicitly specified behaviour for the index.
2808           */
2809           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2810             sqlite3ErrorMsg(pParse,
2811                 "conflicting ON CONFLICT clauses specified", 0);
2812           }
2813           if( pIdx->onError==OE_Default ){
2814             pIdx->onError = pIndex->onError;
2815           }
2816         }
2817         goto exit_create_index;
2818       }
2819     }
2820   }
2821 
2822   /* Link the new Index structure to its table and to the other
2823   ** in-memory database structures.
2824   */
2825   if( db->init.busy ){
2826     Index *p;
2827     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
2828     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2829                           pIndex->zName, sqlite3Strlen30(pIndex->zName),
2830                           pIndex);
2831     if( p ){
2832       assert( p==pIndex );  /* Malloc must have failed */
2833       db->mallocFailed = 1;
2834       goto exit_create_index;
2835     }
2836     db->flags |= SQLITE_InternChanges;
2837     if( pTblName!=0 ){
2838       pIndex->tnum = db->init.newTnum;
2839     }
2840   }
2841 
2842   /* If the db->init.busy is 0 then create the index on disk.  This
2843   ** involves writing the index into the master table and filling in the
2844   ** index with the current table contents.
2845   **
2846   ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2847   ** command.  db->init.busy is 1 when a database is opened and
2848   ** CREATE INDEX statements are read out of the master table.  In
2849   ** the latter case the index already exists on disk, which is why
2850   ** we don't want to recreate it.
2851   **
2852   ** If pTblName==0 it means this index is generated as a primary key
2853   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
2854   ** has just been created, it contains no data and the index initialization
2855   ** step can be skipped.
2856   */
2857   else{ /* if( db->init.busy==0 ) */
2858     Vdbe *v;
2859     char *zStmt;
2860     int iMem = ++pParse->nMem;
2861 
2862     v = sqlite3GetVdbe(pParse);
2863     if( v==0 ) goto exit_create_index;
2864 
2865 
2866     /* Create the rootpage for the index
2867     */
2868     sqlite3BeginWriteOperation(pParse, 1, iDb);
2869     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2870 
2871     /* Gather the complete text of the CREATE INDEX statement into
2872     ** the zStmt variable
2873     */
2874     if( pStart ){
2875       assert( pEnd!=0 );
2876       /* A named index with an explicit CREATE INDEX statement */
2877       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2878         onError==OE_None ? "" : " UNIQUE",
2879         (int)(pEnd->z - pName->z) + 1,
2880         pName->z);
2881     }else{
2882       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2883       /* zStmt = sqlite3MPrintf(""); */
2884       zStmt = 0;
2885     }
2886 
2887     /* Add an entry in sqlite_master for this index
2888     */
2889     sqlite3NestedParse(pParse,
2890         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2891         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2892         pIndex->zName,
2893         pTab->zName,
2894         iMem,
2895         zStmt
2896     );
2897     sqlite3DbFree(db, zStmt);
2898 
2899     /* Fill the index with data and reparse the schema. Code an OP_Expire
2900     ** to invalidate all pre-compiled statements.
2901     */
2902     if( pTblName ){
2903       sqlite3RefillIndex(pParse, pIndex, iMem);
2904       sqlite3ChangeCookie(pParse, iDb);
2905       sqlite3VdbeAddParseSchemaOp(v, iDb,
2906          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
2907       sqlite3VdbeAddOp1(v, OP_Expire, 0);
2908     }
2909   }
2910 
2911   /* When adding an index to the list of indices for a table, make
2912   ** sure all indices labeled OE_Replace come after all those labeled
2913   ** OE_Ignore.  This is necessary for the correct constraint check
2914   ** processing (in sqlite3GenerateConstraintChecks()) as part of
2915   ** UPDATE and INSERT statements.
2916   */
2917   if( db->init.busy || pTblName==0 ){
2918     if( onError!=OE_Replace || pTab->pIndex==0
2919          || pTab->pIndex->onError==OE_Replace){
2920       pIndex->pNext = pTab->pIndex;
2921       pTab->pIndex = pIndex;
2922     }else{
2923       Index *pOther = pTab->pIndex;
2924       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2925         pOther = pOther->pNext;
2926       }
2927       pIndex->pNext = pOther->pNext;
2928       pOther->pNext = pIndex;
2929     }
2930     pRet = pIndex;
2931     pIndex = 0;
2932   }
2933 
2934   /* Clean up before exiting */
2935 exit_create_index:
2936   if( pIndex ){
2937     sqlite3DbFree(db, pIndex->zColAff);
2938     sqlite3DbFree(db, pIndex);
2939   }
2940   sqlite3ExprListDelete(db, pList);
2941   sqlite3SrcListDelete(db, pTblName);
2942   sqlite3DbFree(db, zName);
2943   return pRet;
2944 }
2945 
2946 /*
2947 ** Fill the Index.aiRowEst[] array with default information - information
2948 ** to be used when we have not run the ANALYZE command.
2949 **
2950 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2951 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
2952 ** number of rows in the table that match any particular value of the
2953 ** first column of the index.  aiRowEst[2] is an estimate of the number
2954 ** of rows that match any particular combiniation of the first 2 columns
2955 ** of the index.  And so forth.  It must always be the case that
2956 *
2957 **           aiRowEst[N]<=aiRowEst[N-1]
2958 **           aiRowEst[N]>=1
2959 **
2960 ** Apart from that, we have little to go on besides intuition as to
2961 ** how aiRowEst[] should be initialized.  The numbers generated here
2962 ** are based on typical values found in actual indices.
2963 */
2964 void sqlite3DefaultRowEst(Index *pIdx){
2965   tRowcnt *a = pIdx->aiRowEst;
2966   int i;
2967   tRowcnt n;
2968   assert( a!=0 );
2969   a[0] = pIdx->pTable->nRowEst;
2970   if( a[0]<10 ) a[0] = 10;
2971   n = 10;
2972   for(i=1; i<=pIdx->nColumn; i++){
2973     a[i] = n;
2974     if( n>5 ) n--;
2975   }
2976   if( pIdx->onError!=OE_None ){
2977     a[pIdx->nColumn] = 1;
2978   }
2979 }
2980 
2981 /*
2982 ** This routine will drop an existing named index.  This routine
2983 ** implements the DROP INDEX statement.
2984 */
2985 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
2986   Index *pIndex;
2987   Vdbe *v;
2988   sqlite3 *db = pParse->db;
2989   int iDb;
2990 
2991   assert( pParse->nErr==0 );   /* Never called with prior errors */
2992   if( db->mallocFailed ){
2993     goto exit_drop_index;
2994   }
2995   assert( pName->nSrc==1 );
2996   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2997     goto exit_drop_index;
2998   }
2999   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3000   if( pIndex==0 ){
3001     if( !ifExists ){
3002       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3003     }else{
3004       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3005     }
3006     pParse->checkSchema = 1;
3007     goto exit_drop_index;
3008   }
3009   if( pIndex->autoIndex ){
3010     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3011       "or PRIMARY KEY constraint cannot be dropped", 0);
3012     goto exit_drop_index;
3013   }
3014   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3015 #ifndef SQLITE_OMIT_AUTHORIZATION
3016   {
3017     int code = SQLITE_DROP_INDEX;
3018     Table *pTab = pIndex->pTable;
3019     const char *zDb = db->aDb[iDb].zName;
3020     const char *zTab = SCHEMA_TABLE(iDb);
3021     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3022       goto exit_drop_index;
3023     }
3024     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3025     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3026       goto exit_drop_index;
3027     }
3028   }
3029 #endif
3030 
3031   /* Generate code to remove the index and from the master table */
3032   v = sqlite3GetVdbe(pParse);
3033   if( v ){
3034     sqlite3BeginWriteOperation(pParse, 1, iDb);
3035     sqlite3NestedParse(pParse,
3036        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3037        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3038     );
3039     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3040     sqlite3ChangeCookie(pParse, iDb);
3041     destroyRootPage(pParse, pIndex->tnum, iDb);
3042     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3043   }
3044 
3045 exit_drop_index:
3046   sqlite3SrcListDelete(db, pName);
3047 }
3048 
3049 /*
3050 ** pArray is a pointer to an array of objects. Each object in the
3051 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3052 ** to extend the array so that there is space for a new object at the end.
3053 **
3054 ** When this function is called, *pnEntry contains the current size of
3055 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3056 ** in total).
3057 **
3058 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3059 ** space allocated for the new object is zeroed, *pnEntry updated to
3060 ** reflect the new size of the array and a pointer to the new allocation
3061 ** returned. *pIdx is set to the index of the new array entry in this case.
3062 **
3063 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3064 ** unchanged and a copy of pArray returned.
3065 */
3066 void *sqlite3ArrayAllocate(
3067   sqlite3 *db,      /* Connection to notify of malloc failures */
3068   void *pArray,     /* Array of objects.  Might be reallocated */
3069   int szEntry,      /* Size of each object in the array */
3070   int *pnEntry,     /* Number of objects currently in use */
3071   int *pIdx         /* Write the index of a new slot here */
3072 ){
3073   char *z;
3074   int n = *pnEntry;
3075   if( (n & (n-1))==0 ){
3076     int sz = (n==0) ? 1 : 2*n;
3077     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3078     if( pNew==0 ){
3079       *pIdx = -1;
3080       return pArray;
3081     }
3082     pArray = pNew;
3083   }
3084   z = (char*)pArray;
3085   memset(&z[n * szEntry], 0, szEntry);
3086   *pIdx = n;
3087   ++*pnEntry;
3088   return pArray;
3089 }
3090 
3091 /*
3092 ** Append a new element to the given IdList.  Create a new IdList if
3093 ** need be.
3094 **
3095 ** A new IdList is returned, or NULL if malloc() fails.
3096 */
3097 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3098   int i;
3099   if( pList==0 ){
3100     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3101     if( pList==0 ) return 0;
3102   }
3103   pList->a = sqlite3ArrayAllocate(
3104       db,
3105       pList->a,
3106       sizeof(pList->a[0]),
3107       &pList->nId,
3108       &i
3109   );
3110   if( i<0 ){
3111     sqlite3IdListDelete(db, pList);
3112     return 0;
3113   }
3114   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3115   return pList;
3116 }
3117 
3118 /*
3119 ** Delete an IdList.
3120 */
3121 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3122   int i;
3123   if( pList==0 ) return;
3124   for(i=0; i<pList->nId; i++){
3125     sqlite3DbFree(db, pList->a[i].zName);
3126   }
3127   sqlite3DbFree(db, pList->a);
3128   sqlite3DbFree(db, pList);
3129 }
3130 
3131 /*
3132 ** Return the index in pList of the identifier named zId.  Return -1
3133 ** if not found.
3134 */
3135 int sqlite3IdListIndex(IdList *pList, const char *zName){
3136   int i;
3137   if( pList==0 ) return -1;
3138   for(i=0; i<pList->nId; i++){
3139     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3140   }
3141   return -1;
3142 }
3143 
3144 /*
3145 ** Expand the space allocated for the given SrcList object by
3146 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3147 ** New slots are zeroed.
3148 **
3149 ** For example, suppose a SrcList initially contains two entries: A,B.
3150 ** To append 3 new entries onto the end, do this:
3151 **
3152 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3153 **
3154 ** After the call above it would contain:  A, B, nil, nil, nil.
3155 ** If the iStart argument had been 1 instead of 2, then the result
3156 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3157 ** the iStart value would be 0.  The result then would
3158 ** be: nil, nil, nil, A, B.
3159 **
3160 ** If a memory allocation fails the SrcList is unchanged.  The
3161 ** db->mallocFailed flag will be set to true.
3162 */
3163 SrcList *sqlite3SrcListEnlarge(
3164   sqlite3 *db,       /* Database connection to notify of OOM errors */
3165   SrcList *pSrc,     /* The SrcList to be enlarged */
3166   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3167   int iStart         /* Index in pSrc->a[] of first new slot */
3168 ){
3169   int i;
3170 
3171   /* Sanity checking on calling parameters */
3172   assert( iStart>=0 );
3173   assert( nExtra>=1 );
3174   assert( pSrc!=0 );
3175   assert( iStart<=pSrc->nSrc );
3176 
3177   /* Allocate additional space if needed */
3178   if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
3179     SrcList *pNew;
3180     int nAlloc = pSrc->nSrc+nExtra;
3181     int nGot;
3182     pNew = sqlite3DbRealloc(db, pSrc,
3183                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3184     if( pNew==0 ){
3185       assert( db->mallocFailed );
3186       return pSrc;
3187     }
3188     pSrc = pNew;
3189     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3190     pSrc->nAlloc = (u16)nGot;
3191   }
3192 
3193   /* Move existing slots that come after the newly inserted slots
3194   ** out of the way */
3195   for(i=pSrc->nSrc-1; i>=iStart; i--){
3196     pSrc->a[i+nExtra] = pSrc->a[i];
3197   }
3198   pSrc->nSrc += (i16)nExtra;
3199 
3200   /* Zero the newly allocated slots */
3201   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3202   for(i=iStart; i<iStart+nExtra; i++){
3203     pSrc->a[i].iCursor = -1;
3204   }
3205 
3206   /* Return a pointer to the enlarged SrcList */
3207   return pSrc;
3208 }
3209 
3210 
3211 /*
3212 ** Append a new table name to the given SrcList.  Create a new SrcList if
3213 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3214 **
3215 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3216 ** SrcList might be the same as the SrcList that was input or it might be
3217 ** a new one.  If an OOM error does occurs, then the prior value of pList
3218 ** that is input to this routine is automatically freed.
3219 **
3220 ** If pDatabase is not null, it means that the table has an optional
3221 ** database name prefix.  Like this:  "database.table".  The pDatabase
3222 ** points to the table name and the pTable points to the database name.
3223 ** The SrcList.a[].zName field is filled with the table name which might
3224 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3225 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3226 ** or with NULL if no database is specified.
3227 **
3228 ** In other words, if call like this:
3229 **
3230 **         sqlite3SrcListAppend(D,A,B,0);
3231 **
3232 ** Then B is a table name and the database name is unspecified.  If called
3233 ** like this:
3234 **
3235 **         sqlite3SrcListAppend(D,A,B,C);
3236 **
3237 ** Then C is the table name and B is the database name.  If C is defined
3238 ** then so is B.  In other words, we never have a case where:
3239 **
3240 **         sqlite3SrcListAppend(D,A,0,C);
3241 **
3242 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3243 ** before being added to the SrcList.
3244 */
3245 SrcList *sqlite3SrcListAppend(
3246   sqlite3 *db,        /* Connection to notify of malloc failures */
3247   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3248   Token *pTable,      /* Table to append */
3249   Token *pDatabase    /* Database of the table */
3250 ){
3251   struct SrcList_item *pItem;
3252   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3253   if( pList==0 ){
3254     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3255     if( pList==0 ) return 0;
3256     pList->nAlloc = 1;
3257   }
3258   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3259   if( db->mallocFailed ){
3260     sqlite3SrcListDelete(db, pList);
3261     return 0;
3262   }
3263   pItem = &pList->a[pList->nSrc-1];
3264   if( pDatabase && pDatabase->z==0 ){
3265     pDatabase = 0;
3266   }
3267   if( pDatabase ){
3268     Token *pTemp = pDatabase;
3269     pDatabase = pTable;
3270     pTable = pTemp;
3271   }
3272   pItem->zName = sqlite3NameFromToken(db, pTable);
3273   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3274   return pList;
3275 }
3276 
3277 /*
3278 ** Assign VdbeCursor index numbers to all tables in a SrcList
3279 */
3280 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3281   int i;
3282   struct SrcList_item *pItem;
3283   assert(pList || pParse->db->mallocFailed );
3284   if( pList ){
3285     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3286       if( pItem->iCursor>=0 ) break;
3287       pItem->iCursor = pParse->nTab++;
3288       if( pItem->pSelect ){
3289         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3290       }
3291     }
3292   }
3293 }
3294 
3295 /*
3296 ** Delete an entire SrcList including all its substructure.
3297 */
3298 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3299   int i;
3300   struct SrcList_item *pItem;
3301   if( pList==0 ) return;
3302   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3303     sqlite3DbFree(db, pItem->zDatabase);
3304     sqlite3DbFree(db, pItem->zName);
3305     sqlite3DbFree(db, pItem->zAlias);
3306     sqlite3DbFree(db, pItem->zIndex);
3307     sqlite3DeleteTable(db, pItem->pTab);
3308     sqlite3SelectDelete(db, pItem->pSelect);
3309     sqlite3ExprDelete(db, pItem->pOn);
3310     sqlite3IdListDelete(db, pItem->pUsing);
3311   }
3312   sqlite3DbFree(db, pList);
3313 }
3314 
3315 /*
3316 ** This routine is called by the parser to add a new term to the
3317 ** end of a growing FROM clause.  The "p" parameter is the part of
3318 ** the FROM clause that has already been constructed.  "p" is NULL
3319 ** if this is the first term of the FROM clause.  pTable and pDatabase
3320 ** are the name of the table and database named in the FROM clause term.
3321 ** pDatabase is NULL if the database name qualifier is missing - the
3322 ** usual case.  If the term has a alias, then pAlias points to the
3323 ** alias token.  If the term is a subquery, then pSubquery is the
3324 ** SELECT statement that the subquery encodes.  The pTable and
3325 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3326 ** parameters are the content of the ON and USING clauses.
3327 **
3328 ** Return a new SrcList which encodes is the FROM with the new
3329 ** term added.
3330 */
3331 SrcList *sqlite3SrcListAppendFromTerm(
3332   Parse *pParse,          /* Parsing context */
3333   SrcList *p,             /* The left part of the FROM clause already seen */
3334   Token *pTable,          /* Name of the table to add to the FROM clause */
3335   Token *pDatabase,       /* Name of the database containing pTable */
3336   Token *pAlias,          /* The right-hand side of the AS subexpression */
3337   Select *pSubquery,      /* A subquery used in place of a table name */
3338   Expr *pOn,              /* The ON clause of a join */
3339   IdList *pUsing          /* The USING clause of a join */
3340 ){
3341   struct SrcList_item *pItem;
3342   sqlite3 *db = pParse->db;
3343   if( !p && (pOn || pUsing) ){
3344     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3345       (pOn ? "ON" : "USING")
3346     );
3347     goto append_from_error;
3348   }
3349   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3350   if( p==0 || NEVER(p->nSrc==0) ){
3351     goto append_from_error;
3352   }
3353   pItem = &p->a[p->nSrc-1];
3354   assert( pAlias!=0 );
3355   if( pAlias->n ){
3356     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3357   }
3358   pItem->pSelect = pSubquery;
3359   pItem->pOn = pOn;
3360   pItem->pUsing = pUsing;
3361   return p;
3362 
3363  append_from_error:
3364   assert( p==0 );
3365   sqlite3ExprDelete(db, pOn);
3366   sqlite3IdListDelete(db, pUsing);
3367   sqlite3SelectDelete(db, pSubquery);
3368   return 0;
3369 }
3370 
3371 /*
3372 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3373 ** element of the source-list passed as the second argument.
3374 */
3375 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3376   assert( pIndexedBy!=0 );
3377   if( p && ALWAYS(p->nSrc>0) ){
3378     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3379     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3380     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3381       /* A "NOT INDEXED" clause was supplied. See parse.y
3382       ** construct "indexed_opt" for details. */
3383       pItem->notIndexed = 1;
3384     }else{
3385       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3386     }
3387   }
3388 }
3389 
3390 /*
3391 ** When building up a FROM clause in the parser, the join operator
3392 ** is initially attached to the left operand.  But the code generator
3393 ** expects the join operator to be on the right operand.  This routine
3394 ** Shifts all join operators from left to right for an entire FROM
3395 ** clause.
3396 **
3397 ** Example: Suppose the join is like this:
3398 **
3399 **           A natural cross join B
3400 **
3401 ** The operator is "natural cross join".  The A and B operands are stored
3402 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3403 ** operator with A.  This routine shifts that operator over to B.
3404 */
3405 void sqlite3SrcListShiftJoinType(SrcList *p){
3406   if( p ){
3407     int i;
3408     assert( p->a || p->nSrc==0 );
3409     for(i=p->nSrc-1; i>0; i--){
3410       p->a[i].jointype = p->a[i-1].jointype;
3411     }
3412     p->a[0].jointype = 0;
3413   }
3414 }
3415 
3416 /*
3417 ** Begin a transaction
3418 */
3419 void sqlite3BeginTransaction(Parse *pParse, int type){
3420   sqlite3 *db;
3421   Vdbe *v;
3422   int i;
3423 
3424   assert( pParse!=0 );
3425   db = pParse->db;
3426   assert( db!=0 );
3427 /*  if( db->aDb[0].pBt==0 ) return; */
3428   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3429     return;
3430   }
3431   v = sqlite3GetVdbe(pParse);
3432   if( !v ) return;
3433   if( type!=TK_DEFERRED ){
3434     for(i=0; i<db->nDb; i++){
3435       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3436       sqlite3VdbeUsesBtree(v, i);
3437     }
3438   }
3439   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3440 }
3441 
3442 /*
3443 ** Commit a transaction
3444 */
3445 void sqlite3CommitTransaction(Parse *pParse){
3446   Vdbe *v;
3447 
3448   assert( pParse!=0 );
3449   assert( pParse->db!=0 );
3450   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3451     return;
3452   }
3453   v = sqlite3GetVdbe(pParse);
3454   if( v ){
3455     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3456   }
3457 }
3458 
3459 /*
3460 ** Rollback a transaction
3461 */
3462 void sqlite3RollbackTransaction(Parse *pParse){
3463   Vdbe *v;
3464 
3465   assert( pParse!=0 );
3466   assert( pParse->db!=0 );
3467   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3468     return;
3469   }
3470   v = sqlite3GetVdbe(pParse);
3471   if( v ){
3472     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3473   }
3474 }
3475 
3476 /*
3477 ** This function is called by the parser when it parses a command to create,
3478 ** release or rollback an SQL savepoint.
3479 */
3480 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3481   char *zName = sqlite3NameFromToken(pParse->db, pName);
3482   if( zName ){
3483     Vdbe *v = sqlite3GetVdbe(pParse);
3484 #ifndef SQLITE_OMIT_AUTHORIZATION
3485     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3486     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3487 #endif
3488     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3489       sqlite3DbFree(pParse->db, zName);
3490       return;
3491     }
3492     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3493   }
3494 }
3495 
3496 /*
3497 ** Make sure the TEMP database is open and available for use.  Return
3498 ** the number of errors.  Leave any error messages in the pParse structure.
3499 */
3500 int sqlite3OpenTempDatabase(Parse *pParse){
3501   sqlite3 *db = pParse->db;
3502   if( db->aDb[1].pBt==0 && !pParse->explain ){
3503     int rc;
3504     Btree *pBt;
3505     static const int flags =
3506           SQLITE_OPEN_READWRITE |
3507           SQLITE_OPEN_CREATE |
3508           SQLITE_OPEN_EXCLUSIVE |
3509           SQLITE_OPEN_DELETEONCLOSE |
3510           SQLITE_OPEN_TEMP_DB;
3511 
3512     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
3513     if( rc!=SQLITE_OK ){
3514       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3515         "file for storing temporary tables");
3516       pParse->rc = rc;
3517       return 1;
3518     }
3519     db->aDb[1].pBt = pBt;
3520     assert( db->aDb[1].pSchema );
3521     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3522       db->mallocFailed = 1;
3523       return 1;
3524     }
3525   }
3526   return 0;
3527 }
3528 
3529 /*
3530 ** Generate VDBE code that will verify the schema cookie and start
3531 ** a read-transaction for all named database files.
3532 **
3533 ** It is important that all schema cookies be verified and all
3534 ** read transactions be started before anything else happens in
3535 ** the VDBE program.  But this routine can be called after much other
3536 ** code has been generated.  So here is what we do:
3537 **
3538 ** The first time this routine is called, we code an OP_Goto that
3539 ** will jump to a subroutine at the end of the program.  Then we
3540 ** record every database that needs its schema verified in the
3541 ** pParse->cookieMask field.  Later, after all other code has been
3542 ** generated, the subroutine that does the cookie verifications and
3543 ** starts the transactions will be coded and the OP_Goto P2 value
3544 ** will be made to point to that subroutine.  The generation of the
3545 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3546 **
3547 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3548 ** schema on any databases.  This can be used to position the OP_Goto
3549 ** early in the code, before we know if any database tables will be used.
3550 */
3551 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3552   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3553 
3554   if( pToplevel->cookieGoto==0 ){
3555     Vdbe *v = sqlite3GetVdbe(pToplevel);
3556     if( v==0 ) return;  /* This only happens if there was a prior error */
3557     pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3558   }
3559   if( iDb>=0 ){
3560     sqlite3 *db = pToplevel->db;
3561     yDbMask mask;
3562 
3563     assert( iDb<db->nDb );
3564     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3565     assert( iDb<SQLITE_MAX_ATTACHED+2 );
3566     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3567     mask = ((yDbMask)1)<<iDb;
3568     if( (pToplevel->cookieMask & mask)==0 ){
3569       pToplevel->cookieMask |= mask;
3570       pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3571       if( !OMIT_TEMPDB && iDb==1 ){
3572         sqlite3OpenTempDatabase(pToplevel);
3573       }
3574     }
3575   }
3576 }
3577 
3578 /*
3579 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
3580 ** attached database. Otherwise, invoke it for the database named zDb only.
3581 */
3582 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
3583   sqlite3 *db = pParse->db;
3584   int i;
3585   for(i=0; i<db->nDb; i++){
3586     Db *pDb = &db->aDb[i];
3587     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
3588       sqlite3CodeVerifySchema(pParse, i);
3589     }
3590   }
3591 }
3592 
3593 /*
3594 ** Generate VDBE code that prepares for doing an operation that
3595 ** might change the database.
3596 **
3597 ** This routine starts a new transaction if we are not already within
3598 ** a transaction.  If we are already within a transaction, then a checkpoint
3599 ** is set if the setStatement parameter is true.  A checkpoint should
3600 ** be set for operations that might fail (due to a constraint) part of
3601 ** the way through and which will need to undo some writes without having to
3602 ** rollback the whole transaction.  For operations where all constraints
3603 ** can be checked before any changes are made to the database, it is never
3604 ** necessary to undo a write and the checkpoint should not be set.
3605 */
3606 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3607   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3608   sqlite3CodeVerifySchema(pParse, iDb);
3609   pToplevel->writeMask |= ((yDbMask)1)<<iDb;
3610   pToplevel->isMultiWrite |= setStatement;
3611 }
3612 
3613 /*
3614 ** Indicate that the statement currently under construction might write
3615 ** more than one entry (example: deleting one row then inserting another,
3616 ** inserting multiple rows in a table, or inserting a row and index entries.)
3617 ** If an abort occurs after some of these writes have completed, then it will
3618 ** be necessary to undo the completed writes.
3619 */
3620 void sqlite3MultiWrite(Parse *pParse){
3621   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3622   pToplevel->isMultiWrite = 1;
3623 }
3624 
3625 /*
3626 ** The code generator calls this routine if is discovers that it is
3627 ** possible to abort a statement prior to completion.  In order to
3628 ** perform this abort without corrupting the database, we need to make
3629 ** sure that the statement is protected by a statement transaction.
3630 **
3631 ** Technically, we only need to set the mayAbort flag if the
3632 ** isMultiWrite flag was previously set.  There is a time dependency
3633 ** such that the abort must occur after the multiwrite.  This makes
3634 ** some statements involving the REPLACE conflict resolution algorithm
3635 ** go a little faster.  But taking advantage of this time dependency
3636 ** makes it more difficult to prove that the code is correct (in
3637 ** particular, it prevents us from writing an effective
3638 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3639 ** to take the safe route and skip the optimization.
3640 */
3641 void sqlite3MayAbort(Parse *pParse){
3642   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3643   pToplevel->mayAbort = 1;
3644 }
3645 
3646 /*
3647 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3648 ** error. The onError parameter determines which (if any) of the statement
3649 ** and/or current transaction is rolled back.
3650 */
3651 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
3652   Vdbe *v = sqlite3GetVdbe(pParse);
3653   if( onError==OE_Abort ){
3654     sqlite3MayAbort(pParse);
3655   }
3656   sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
3657 }
3658 
3659 /*
3660 ** Check to see if pIndex uses the collating sequence pColl.  Return
3661 ** true if it does and false if it does not.
3662 */
3663 #ifndef SQLITE_OMIT_REINDEX
3664 static int collationMatch(const char *zColl, Index *pIndex){
3665   int i;
3666   assert( zColl!=0 );
3667   for(i=0; i<pIndex->nColumn; i++){
3668     const char *z = pIndex->azColl[i];
3669     assert( z!=0 );
3670     if( 0==sqlite3StrICmp(z, zColl) ){
3671       return 1;
3672     }
3673   }
3674   return 0;
3675 }
3676 #endif
3677 
3678 /*
3679 ** Recompute all indices of pTab that use the collating sequence pColl.
3680 ** If pColl==0 then recompute all indices of pTab.
3681 */
3682 #ifndef SQLITE_OMIT_REINDEX
3683 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3684   Index *pIndex;              /* An index associated with pTab */
3685 
3686   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3687     if( zColl==0 || collationMatch(zColl, pIndex) ){
3688       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3689       sqlite3BeginWriteOperation(pParse, 0, iDb);
3690       sqlite3RefillIndex(pParse, pIndex, -1);
3691     }
3692   }
3693 }
3694 #endif
3695 
3696 /*
3697 ** Recompute all indices of all tables in all databases where the
3698 ** indices use the collating sequence pColl.  If pColl==0 then recompute
3699 ** all indices everywhere.
3700 */
3701 #ifndef SQLITE_OMIT_REINDEX
3702 static void reindexDatabases(Parse *pParse, char const *zColl){
3703   Db *pDb;                    /* A single database */
3704   int iDb;                    /* The database index number */
3705   sqlite3 *db = pParse->db;   /* The database connection */
3706   HashElem *k;                /* For looping over tables in pDb */
3707   Table *pTab;                /* A table in the database */
3708 
3709   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
3710   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3711     assert( pDb!=0 );
3712     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
3713       pTab = (Table*)sqliteHashData(k);
3714       reindexTable(pParse, pTab, zColl);
3715     }
3716   }
3717 }
3718 #endif
3719 
3720 /*
3721 ** Generate code for the REINDEX command.
3722 **
3723 **        REINDEX                            -- 1
3724 **        REINDEX  <collation>               -- 2
3725 **        REINDEX  ?<database>.?<tablename>  -- 3
3726 **        REINDEX  ?<database>.?<indexname>  -- 4
3727 **
3728 ** Form 1 causes all indices in all attached databases to be rebuilt.
3729 ** Form 2 rebuilds all indices in all databases that use the named
3730 ** collating function.  Forms 3 and 4 rebuild the named index or all
3731 ** indices associated with the named table.
3732 */
3733 #ifndef SQLITE_OMIT_REINDEX
3734 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3735   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
3736   char *z;                    /* Name of a table or index */
3737   const char *zDb;            /* Name of the database */
3738   Table *pTab;                /* A table in the database */
3739   Index *pIndex;              /* An index associated with pTab */
3740   int iDb;                    /* The database index number */
3741   sqlite3 *db = pParse->db;   /* The database connection */
3742   Token *pObjName;            /* Name of the table or index to be reindexed */
3743 
3744   /* Read the database schema. If an error occurs, leave an error message
3745   ** and code in pParse and return NULL. */
3746   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3747     return;
3748   }
3749 
3750   if( pName1==0 ){
3751     reindexDatabases(pParse, 0);
3752     return;
3753   }else if( NEVER(pName2==0) || pName2->z==0 ){
3754     char *zColl;
3755     assert( pName1->z );
3756     zColl = sqlite3NameFromToken(pParse->db, pName1);
3757     if( !zColl ) return;
3758     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
3759     if( pColl ){
3760       reindexDatabases(pParse, zColl);
3761       sqlite3DbFree(db, zColl);
3762       return;
3763     }
3764     sqlite3DbFree(db, zColl);
3765   }
3766   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3767   if( iDb<0 ) return;
3768   z = sqlite3NameFromToken(db, pObjName);
3769   if( z==0 ) return;
3770   zDb = db->aDb[iDb].zName;
3771   pTab = sqlite3FindTable(db, z, zDb);
3772   if( pTab ){
3773     reindexTable(pParse, pTab, 0);
3774     sqlite3DbFree(db, z);
3775     return;
3776   }
3777   pIndex = sqlite3FindIndex(db, z, zDb);
3778   sqlite3DbFree(db, z);
3779   if( pIndex ){
3780     sqlite3BeginWriteOperation(pParse, 0, iDb);
3781     sqlite3RefillIndex(pParse, pIndex, -1);
3782     return;
3783   }
3784   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3785 }
3786 #endif
3787 
3788 /*
3789 ** Return a dynamicly allocated KeyInfo structure that can be used
3790 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3791 **
3792 ** If successful, a pointer to the new structure is returned. In this case
3793 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3794 ** pointer. If an error occurs (out of memory or missing collation
3795 ** sequence), NULL is returned and the state of pParse updated to reflect
3796 ** the error.
3797 */
3798 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3799   int i;
3800   int nCol = pIdx->nColumn;
3801   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3802   sqlite3 *db = pParse->db;
3803   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3804 
3805   if( pKey ){
3806     pKey->db = pParse->db;
3807     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3808     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3809     for(i=0; i<nCol; i++){
3810       char *zColl = pIdx->azColl[i];
3811       assert( zColl );
3812       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
3813       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3814     }
3815     pKey->nField = (u16)nCol;
3816   }
3817 
3818   if( pParse->nErr ){
3819     sqlite3DbFree(db, pKey);
3820     pKey = 0;
3821   }
3822   return pKey;
3823 }
3824