1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** This routine is called after a single SQL statement has been 118 ** parsed and a VDBE program to execute that statement has been 119 ** prepared. This routine puts the finishing touches on the 120 ** VDBE program and resets the pParse structure for the next 121 ** parse. 122 ** 123 ** Note that if an error occurred, it might be the case that 124 ** no VDBE code was generated. 125 */ 126 void sqlite3FinishCoding(Parse *pParse){ 127 sqlite3 *db; 128 Vdbe *v; 129 130 db = pParse->db; 131 if( db->mallocFailed ) return; 132 if( pParse->nested ) return; 133 if( pParse->nErr ) return; 134 135 /* Begin by generating some termination code at the end of the 136 ** vdbe program 137 */ 138 v = sqlite3GetVdbe(pParse); 139 assert( !pParse->isMultiWrite 140 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 141 if( v ){ 142 sqlite3VdbeAddOp0(v, OP_Halt); 143 144 /* The cookie mask contains one bit for each database file open. 145 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 146 ** set for each database that is used. Generate code to start a 147 ** transaction on each used database and to verify the schema cookie 148 ** on each used database. 149 */ 150 if( pParse->cookieGoto>0 ){ 151 yDbMask mask; 152 int iDb; 153 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 154 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 155 if( (mask & pParse->cookieMask)==0 ) continue; 156 sqlite3VdbeUsesBtree(v, iDb); 157 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 158 if( db->init.busy==0 ){ 159 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 160 sqlite3VdbeAddOp3(v, OP_VerifyCookie, 161 iDb, pParse->cookieValue[iDb], 162 db->aDb[iDb].pSchema->iGeneration); 163 } 164 } 165 #ifndef SQLITE_OMIT_VIRTUALTABLE 166 { 167 int i; 168 for(i=0; i<pParse->nVtabLock; i++){ 169 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 170 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 171 } 172 pParse->nVtabLock = 0; 173 } 174 #endif 175 176 /* Once all the cookies have been verified and transactions opened, 177 ** obtain the required table-locks. This is a no-op unless the 178 ** shared-cache feature is enabled. 179 */ 180 codeTableLocks(pParse); 181 182 /* Initialize any AUTOINCREMENT data structures required. 183 */ 184 sqlite3AutoincrementBegin(pParse); 185 186 /* Finally, jump back to the beginning of the executable code. */ 187 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); 188 } 189 } 190 191 192 /* Get the VDBE program ready for execution 193 */ 194 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 195 #ifdef SQLITE_DEBUG 196 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 197 sqlite3VdbeTrace(v, trace); 198 #endif 199 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 200 /* A minimum of one cursor is required if autoincrement is used 201 * See ticket [a696379c1f08866] */ 202 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 203 sqlite3VdbeMakeReady(v, pParse); 204 pParse->rc = SQLITE_DONE; 205 pParse->colNamesSet = 0; 206 }else{ 207 pParse->rc = SQLITE_ERROR; 208 } 209 pParse->nTab = 0; 210 pParse->nMem = 0; 211 pParse->nSet = 0; 212 pParse->nVar = 0; 213 pParse->cookieMask = 0; 214 pParse->cookieGoto = 0; 215 } 216 217 /* 218 ** Run the parser and code generator recursively in order to generate 219 ** code for the SQL statement given onto the end of the pParse context 220 ** currently under construction. When the parser is run recursively 221 ** this way, the final OP_Halt is not appended and other initialization 222 ** and finalization steps are omitted because those are handling by the 223 ** outermost parser. 224 ** 225 ** Not everything is nestable. This facility is designed to permit 226 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 227 ** care if you decide to try to use this routine for some other purposes. 228 */ 229 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 230 va_list ap; 231 char *zSql; 232 char *zErrMsg = 0; 233 sqlite3 *db = pParse->db; 234 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 235 char saveBuf[SAVE_SZ]; 236 237 if( pParse->nErr ) return; 238 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 239 va_start(ap, zFormat); 240 zSql = sqlite3VMPrintf(db, zFormat, ap); 241 va_end(ap); 242 if( zSql==0 ){ 243 return; /* A malloc must have failed */ 244 } 245 pParse->nested++; 246 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 247 memset(&pParse->nVar, 0, SAVE_SZ); 248 sqlite3RunParser(pParse, zSql, &zErrMsg); 249 sqlite3DbFree(db, zErrMsg); 250 sqlite3DbFree(db, zSql); 251 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 252 pParse->nested--; 253 } 254 255 /* 256 ** Locate the in-memory structure that describes a particular database 257 ** table given the name of that table and (optionally) the name of the 258 ** database containing the table. Return NULL if not found. 259 ** 260 ** If zDatabase is 0, all databases are searched for the table and the 261 ** first matching table is returned. (No checking for duplicate table 262 ** names is done.) The search order is TEMP first, then MAIN, then any 263 ** auxiliary databases added using the ATTACH command. 264 ** 265 ** See also sqlite3LocateTable(). 266 */ 267 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 268 Table *p = 0; 269 int i; 270 int nName; 271 assert( zName!=0 ); 272 nName = sqlite3Strlen30(zName); 273 /* All mutexes are required for schema access. Make sure we hold them. */ 274 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 275 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 276 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 277 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 278 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 279 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 280 if( p ) break; 281 } 282 return p; 283 } 284 285 /* 286 ** Locate the in-memory structure that describes a particular database 287 ** table given the name of that table and (optionally) the name of the 288 ** database containing the table. Return NULL if not found. Also leave an 289 ** error message in pParse->zErrMsg. 290 ** 291 ** The difference between this routine and sqlite3FindTable() is that this 292 ** routine leaves an error message in pParse->zErrMsg where 293 ** sqlite3FindTable() does not. 294 */ 295 Table *sqlite3LocateTable( 296 Parse *pParse, /* context in which to report errors */ 297 int isView, /* True if looking for a VIEW rather than a TABLE */ 298 const char *zName, /* Name of the table we are looking for */ 299 const char *zDbase /* Name of the database. Might be NULL */ 300 ){ 301 Table *p; 302 303 /* Read the database schema. If an error occurs, leave an error message 304 ** and code in pParse and return NULL. */ 305 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 306 return 0; 307 } 308 309 p = sqlite3FindTable(pParse->db, zName, zDbase); 310 if( p==0 ){ 311 const char *zMsg = isView ? "no such view" : "no such table"; 312 if( zDbase ){ 313 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 314 }else{ 315 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 316 } 317 pParse->checkSchema = 1; 318 } 319 return p; 320 } 321 322 /* 323 ** Locate the in-memory structure that describes 324 ** a particular index given the name of that index 325 ** and the name of the database that contains the index. 326 ** Return NULL if not found. 327 ** 328 ** If zDatabase is 0, all databases are searched for the 329 ** table and the first matching index is returned. (No checking 330 ** for duplicate index names is done.) The search order is 331 ** TEMP first, then MAIN, then any auxiliary databases added 332 ** using the ATTACH command. 333 */ 334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 335 Index *p = 0; 336 int i; 337 int nName = sqlite3Strlen30(zName); 338 /* All mutexes are required for schema access. Make sure we hold them. */ 339 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 340 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 341 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 342 Schema *pSchema = db->aDb[j].pSchema; 343 assert( pSchema ); 344 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 345 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 346 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 347 if( p ) break; 348 } 349 return p; 350 } 351 352 /* 353 ** Reclaim the memory used by an index 354 */ 355 static void freeIndex(sqlite3 *db, Index *p){ 356 #ifndef SQLITE_OMIT_ANALYZE 357 sqlite3DeleteIndexSamples(db, p); 358 #endif 359 sqlite3DbFree(db, p->zColAff); 360 sqlite3DbFree(db, p); 361 } 362 363 /* 364 ** For the index called zIdxName which is found in the database iDb, 365 ** unlike that index from its Table then remove the index from 366 ** the index hash table and free all memory structures associated 367 ** with the index. 368 */ 369 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 370 Index *pIndex; 371 int len; 372 Hash *pHash; 373 374 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 375 pHash = &db->aDb[iDb].pSchema->idxHash; 376 len = sqlite3Strlen30(zIdxName); 377 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); 378 if( ALWAYS(pIndex) ){ 379 if( pIndex->pTable->pIndex==pIndex ){ 380 pIndex->pTable->pIndex = pIndex->pNext; 381 }else{ 382 Index *p; 383 /* Justification of ALWAYS(); The index must be on the list of 384 ** indices. */ 385 p = pIndex->pTable->pIndex; 386 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 387 if( ALWAYS(p && p->pNext==pIndex) ){ 388 p->pNext = pIndex->pNext; 389 } 390 } 391 freeIndex(db, pIndex); 392 } 393 db->flags |= SQLITE_InternChanges; 394 } 395 396 /* 397 ** Erase all schema information from the in-memory hash tables of 398 ** a single database. This routine is called to reclaim memory 399 ** before the database closes. It is also called during a rollback 400 ** if there were schema changes during the transaction or if a 401 ** schema-cookie mismatch occurs. 402 ** 403 ** If iDb<0 then reset the internal schema tables for all database 404 ** files. If iDb>=0 then reset the internal schema for only the 405 ** single file indicated. 406 */ 407 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 408 int i, j; 409 assert( iDb<db->nDb ); 410 411 if( iDb>=0 ){ 412 /* Case 1: Reset the single schema identified by iDb */ 413 Db *pDb = &db->aDb[iDb]; 414 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 415 assert( pDb->pSchema!=0 ); 416 sqlite3SchemaClear(pDb->pSchema); 417 418 /* If any database other than TEMP is reset, then also reset TEMP 419 ** since TEMP might be holding triggers that reference tables in the 420 ** other database. 421 */ 422 if( iDb!=1 ){ 423 pDb = &db->aDb[1]; 424 assert( pDb->pSchema!=0 ); 425 sqlite3SchemaClear(pDb->pSchema); 426 } 427 return; 428 } 429 /* Case 2 (from here to the end): Reset all schemas for all attached 430 ** databases. */ 431 assert( iDb<0 ); 432 sqlite3BtreeEnterAll(db); 433 for(i=0; i<db->nDb; i++){ 434 Db *pDb = &db->aDb[i]; 435 if( pDb->pSchema ){ 436 sqlite3SchemaClear(pDb->pSchema); 437 } 438 } 439 db->flags &= ~SQLITE_InternChanges; 440 sqlite3VtabUnlockList(db); 441 sqlite3BtreeLeaveAll(db); 442 443 /* If one or more of the auxiliary database files has been closed, 444 ** then remove them from the auxiliary database list. We take the 445 ** opportunity to do this here since we have just deleted all of the 446 ** schema hash tables and therefore do not have to make any changes 447 ** to any of those tables. 448 */ 449 for(i=j=2; i<db->nDb; i++){ 450 struct Db *pDb = &db->aDb[i]; 451 if( pDb->pBt==0 ){ 452 sqlite3DbFree(db, pDb->zName); 453 pDb->zName = 0; 454 continue; 455 } 456 if( j<i ){ 457 db->aDb[j] = db->aDb[i]; 458 } 459 j++; 460 } 461 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 462 db->nDb = j; 463 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 464 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 465 sqlite3DbFree(db, db->aDb); 466 db->aDb = db->aDbStatic; 467 } 468 } 469 470 /* 471 ** This routine is called when a commit occurs. 472 */ 473 void sqlite3CommitInternalChanges(sqlite3 *db){ 474 db->flags &= ~SQLITE_InternChanges; 475 } 476 477 /* 478 ** Delete memory allocated for the column names of a table or view (the 479 ** Table.aCol[] array). 480 */ 481 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 482 int i; 483 Column *pCol; 484 assert( pTable!=0 ); 485 if( (pCol = pTable->aCol)!=0 ){ 486 for(i=0; i<pTable->nCol; i++, pCol++){ 487 sqlite3DbFree(db, pCol->zName); 488 sqlite3ExprDelete(db, pCol->pDflt); 489 sqlite3DbFree(db, pCol->zDflt); 490 sqlite3DbFree(db, pCol->zType); 491 sqlite3DbFree(db, pCol->zColl); 492 } 493 sqlite3DbFree(db, pTable->aCol); 494 } 495 } 496 497 /* 498 ** Remove the memory data structures associated with the given 499 ** Table. No changes are made to disk by this routine. 500 ** 501 ** This routine just deletes the data structure. It does not unlink 502 ** the table data structure from the hash table. But it does destroy 503 ** memory structures of the indices and foreign keys associated with 504 ** the table. 505 */ 506 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 507 Index *pIndex, *pNext; 508 509 assert( !pTable || pTable->nRef>0 ); 510 511 /* Do not delete the table until the reference count reaches zero. */ 512 if( !pTable ) return; 513 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 514 515 /* Delete all indices associated with this table. */ 516 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 517 pNext = pIndex->pNext; 518 assert( pIndex->pSchema==pTable->pSchema ); 519 if( !db || db->pnBytesFreed==0 ){ 520 char *zName = pIndex->zName; 521 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 522 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 523 ); 524 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 525 assert( pOld==pIndex || pOld==0 ); 526 } 527 freeIndex(db, pIndex); 528 } 529 530 /* Delete any foreign keys attached to this table. */ 531 sqlite3FkDelete(db, pTable); 532 533 /* Delete the Table structure itself. 534 */ 535 sqliteDeleteColumnNames(db, pTable); 536 sqlite3DbFree(db, pTable->zName); 537 sqlite3DbFree(db, pTable->zColAff); 538 sqlite3SelectDelete(db, pTable->pSelect); 539 #ifndef SQLITE_OMIT_CHECK 540 sqlite3ExprListDelete(db, pTable->pCheck); 541 #endif 542 #ifndef SQLITE_OMIT_VIRTUALTABLE 543 sqlite3VtabClear(db, pTable); 544 #endif 545 sqlite3DbFree(db, pTable); 546 } 547 548 /* 549 ** Unlink the given table from the hash tables and the delete the 550 ** table structure with all its indices and foreign keys. 551 */ 552 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 553 Table *p; 554 Db *pDb; 555 556 assert( db!=0 ); 557 assert( iDb>=0 && iDb<db->nDb ); 558 assert( zTabName ); 559 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 560 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 561 pDb = &db->aDb[iDb]; 562 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 563 sqlite3Strlen30(zTabName),0); 564 sqlite3DeleteTable(db, p); 565 db->flags |= SQLITE_InternChanges; 566 } 567 568 /* 569 ** Given a token, return a string that consists of the text of that 570 ** token. Space to hold the returned string 571 ** is obtained from sqliteMalloc() and must be freed by the calling 572 ** function. 573 ** 574 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 575 ** surround the body of the token are removed. 576 ** 577 ** Tokens are often just pointers into the original SQL text and so 578 ** are not \000 terminated and are not persistent. The returned string 579 ** is \000 terminated and is persistent. 580 */ 581 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 582 char *zName; 583 if( pName ){ 584 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 585 sqlite3Dequote(zName); 586 }else{ 587 zName = 0; 588 } 589 return zName; 590 } 591 592 /* 593 ** Open the sqlite_master table stored in database number iDb for 594 ** writing. The table is opened using cursor 0. 595 */ 596 void sqlite3OpenMasterTable(Parse *p, int iDb){ 597 Vdbe *v = sqlite3GetVdbe(p); 598 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 599 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); 600 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ 601 if( p->nTab==0 ){ 602 p->nTab = 1; 603 } 604 } 605 606 /* 607 ** Parameter zName points to a nul-terminated buffer containing the name 608 ** of a database ("main", "temp" or the name of an attached db). This 609 ** function returns the index of the named database in db->aDb[], or 610 ** -1 if the named db cannot be found. 611 */ 612 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 613 int i = -1; /* Database number */ 614 if( zName ){ 615 Db *pDb; 616 int n = sqlite3Strlen30(zName); 617 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 618 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 619 0==sqlite3StrICmp(pDb->zName, zName) ){ 620 break; 621 } 622 } 623 } 624 return i; 625 } 626 627 /* 628 ** The token *pName contains the name of a database (either "main" or 629 ** "temp" or the name of an attached db). This routine returns the 630 ** index of the named database in db->aDb[], or -1 if the named db 631 ** does not exist. 632 */ 633 int sqlite3FindDb(sqlite3 *db, Token *pName){ 634 int i; /* Database number */ 635 char *zName; /* Name we are searching for */ 636 zName = sqlite3NameFromToken(db, pName); 637 i = sqlite3FindDbName(db, zName); 638 sqlite3DbFree(db, zName); 639 return i; 640 } 641 642 /* The table or view or trigger name is passed to this routine via tokens 643 ** pName1 and pName2. If the table name was fully qualified, for example: 644 ** 645 ** CREATE TABLE xxx.yyy (...); 646 ** 647 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 648 ** the table name is not fully qualified, i.e.: 649 ** 650 ** CREATE TABLE yyy(...); 651 ** 652 ** Then pName1 is set to "yyy" and pName2 is "". 653 ** 654 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 655 ** pName2) that stores the unqualified table name. The index of the 656 ** database "xxx" is returned. 657 */ 658 int sqlite3TwoPartName( 659 Parse *pParse, /* Parsing and code generating context */ 660 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 661 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 662 Token **pUnqual /* Write the unqualified object name here */ 663 ){ 664 int iDb; /* Database holding the object */ 665 sqlite3 *db = pParse->db; 666 667 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 668 if( db->init.busy ) { 669 sqlite3ErrorMsg(pParse, "corrupt database"); 670 pParse->nErr++; 671 return -1; 672 } 673 *pUnqual = pName2; 674 iDb = sqlite3FindDb(db, pName1); 675 if( iDb<0 ){ 676 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 677 pParse->nErr++; 678 return -1; 679 } 680 }else{ 681 assert( db->init.iDb==0 || db->init.busy ); 682 iDb = db->init.iDb; 683 *pUnqual = pName1; 684 } 685 return iDb; 686 } 687 688 /* 689 ** This routine is used to check if the UTF-8 string zName is a legal 690 ** unqualified name for a new schema object (table, index, view or 691 ** trigger). All names are legal except those that begin with the string 692 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 693 ** is reserved for internal use. 694 */ 695 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 696 if( !pParse->db->init.busy && pParse->nested==0 697 && (pParse->db->flags & SQLITE_WriteSchema)==0 698 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 699 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 700 return SQLITE_ERROR; 701 } 702 return SQLITE_OK; 703 } 704 705 /* 706 ** Begin constructing a new table representation in memory. This is 707 ** the first of several action routines that get called in response 708 ** to a CREATE TABLE statement. In particular, this routine is called 709 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 710 ** flag is true if the table should be stored in the auxiliary database 711 ** file instead of in the main database file. This is normally the case 712 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 713 ** CREATE and TABLE. 714 ** 715 ** The new table record is initialized and put in pParse->pNewTable. 716 ** As more of the CREATE TABLE statement is parsed, additional action 717 ** routines will be called to add more information to this record. 718 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 719 ** is called to complete the construction of the new table record. 720 */ 721 void sqlite3StartTable( 722 Parse *pParse, /* Parser context */ 723 Token *pName1, /* First part of the name of the table or view */ 724 Token *pName2, /* Second part of the name of the table or view */ 725 int isTemp, /* True if this is a TEMP table */ 726 int isView, /* True if this is a VIEW */ 727 int isVirtual, /* True if this is a VIRTUAL table */ 728 int noErr /* Do nothing if table already exists */ 729 ){ 730 Table *pTable; 731 char *zName = 0; /* The name of the new table */ 732 sqlite3 *db = pParse->db; 733 Vdbe *v; 734 int iDb; /* Database number to create the table in */ 735 Token *pName; /* Unqualified name of the table to create */ 736 737 /* The table or view name to create is passed to this routine via tokens 738 ** pName1 and pName2. If the table name was fully qualified, for example: 739 ** 740 ** CREATE TABLE xxx.yyy (...); 741 ** 742 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 743 ** the table name is not fully qualified, i.e.: 744 ** 745 ** CREATE TABLE yyy(...); 746 ** 747 ** Then pName1 is set to "yyy" and pName2 is "". 748 ** 749 ** The call below sets the pName pointer to point at the token (pName1 or 750 ** pName2) that stores the unqualified table name. The variable iDb is 751 ** set to the index of the database that the table or view is to be 752 ** created in. 753 */ 754 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 755 if( iDb<0 ) return; 756 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 757 /* If creating a temp table, the name may not be qualified. Unless 758 ** the database name is "temp" anyway. */ 759 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 760 return; 761 } 762 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 763 764 pParse->sNameToken = *pName; 765 zName = sqlite3NameFromToken(db, pName); 766 if( zName==0 ) return; 767 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 768 goto begin_table_error; 769 } 770 if( db->init.iDb==1 ) isTemp = 1; 771 #ifndef SQLITE_OMIT_AUTHORIZATION 772 assert( (isTemp & 1)==isTemp ); 773 { 774 int code; 775 char *zDb = db->aDb[iDb].zName; 776 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 777 goto begin_table_error; 778 } 779 if( isView ){ 780 if( !OMIT_TEMPDB && isTemp ){ 781 code = SQLITE_CREATE_TEMP_VIEW; 782 }else{ 783 code = SQLITE_CREATE_VIEW; 784 } 785 }else{ 786 if( !OMIT_TEMPDB && isTemp ){ 787 code = SQLITE_CREATE_TEMP_TABLE; 788 }else{ 789 code = SQLITE_CREATE_TABLE; 790 } 791 } 792 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 793 goto begin_table_error; 794 } 795 } 796 #endif 797 798 /* Make sure the new table name does not collide with an existing 799 ** index or table name in the same database. Issue an error message if 800 ** it does. The exception is if the statement being parsed was passed 801 ** to an sqlite3_declare_vtab() call. In that case only the column names 802 ** and types will be used, so there is no need to test for namespace 803 ** collisions. 804 */ 805 if( !IN_DECLARE_VTAB ){ 806 char *zDb = db->aDb[iDb].zName; 807 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 808 goto begin_table_error; 809 } 810 pTable = sqlite3FindTable(db, zName, zDb); 811 if( pTable ){ 812 if( !noErr ){ 813 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 814 }else{ 815 assert( !db->init.busy ); 816 sqlite3CodeVerifySchema(pParse, iDb); 817 } 818 goto begin_table_error; 819 } 820 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 821 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 822 goto begin_table_error; 823 } 824 } 825 826 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 827 if( pTable==0 ){ 828 db->mallocFailed = 1; 829 pParse->rc = SQLITE_NOMEM; 830 pParse->nErr++; 831 goto begin_table_error; 832 } 833 pTable->zName = zName; 834 pTable->iPKey = -1; 835 pTable->pSchema = db->aDb[iDb].pSchema; 836 pTable->nRef = 1; 837 pTable->nRowEst = 1000000; 838 assert( pParse->pNewTable==0 ); 839 pParse->pNewTable = pTable; 840 841 /* If this is the magic sqlite_sequence table used by autoincrement, 842 ** then record a pointer to this table in the main database structure 843 ** so that INSERT can find the table easily. 844 */ 845 #ifndef SQLITE_OMIT_AUTOINCREMENT 846 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 847 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 848 pTable->pSchema->pSeqTab = pTable; 849 } 850 #endif 851 852 /* Begin generating the code that will insert the table record into 853 ** the SQLITE_MASTER table. Note in particular that we must go ahead 854 ** and allocate the record number for the table entry now. Before any 855 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 856 ** indices to be created and the table record must come before the 857 ** indices. Hence, the record number for the table must be allocated 858 ** now. 859 */ 860 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 861 int j1; 862 int fileFormat; 863 int reg1, reg2, reg3; 864 sqlite3BeginWriteOperation(pParse, 0, iDb); 865 866 #ifndef SQLITE_OMIT_VIRTUALTABLE 867 if( isVirtual ){ 868 sqlite3VdbeAddOp0(v, OP_VBegin); 869 } 870 #endif 871 872 /* If the file format and encoding in the database have not been set, 873 ** set them now. 874 */ 875 reg1 = pParse->regRowid = ++pParse->nMem; 876 reg2 = pParse->regRoot = ++pParse->nMem; 877 reg3 = ++pParse->nMem; 878 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 879 sqlite3VdbeUsesBtree(v, iDb); 880 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); 881 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 882 1 : SQLITE_MAX_FILE_FORMAT; 883 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 884 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 885 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 886 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 887 sqlite3VdbeJumpHere(v, j1); 888 889 /* This just creates a place-holder record in the sqlite_master table. 890 ** The record created does not contain anything yet. It will be replaced 891 ** by the real entry in code generated at sqlite3EndTable(). 892 ** 893 ** The rowid for the new entry is left in register pParse->regRowid. 894 ** The root page number of the new table is left in reg pParse->regRoot. 895 ** The rowid and root page number values are needed by the code that 896 ** sqlite3EndTable will generate. 897 */ 898 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 899 if( isView || isVirtual ){ 900 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 901 }else 902 #endif 903 { 904 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 905 } 906 sqlite3OpenMasterTable(pParse, iDb); 907 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 908 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 909 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 910 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 911 sqlite3VdbeAddOp0(v, OP_Close); 912 } 913 914 /* Normal (non-error) return. */ 915 return; 916 917 /* If an error occurs, we jump here */ 918 begin_table_error: 919 sqlite3DbFree(db, zName); 920 return; 921 } 922 923 /* 924 ** This macro is used to compare two strings in a case-insensitive manner. 925 ** It is slightly faster than calling sqlite3StrICmp() directly, but 926 ** produces larger code. 927 ** 928 ** WARNING: This macro is not compatible with the strcmp() family. It 929 ** returns true if the two strings are equal, otherwise false. 930 */ 931 #define STRICMP(x, y) (\ 932 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 933 sqlite3UpperToLower[*(unsigned char *)(y)] \ 934 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 935 936 /* 937 ** Add a new column to the table currently being constructed. 938 ** 939 ** The parser calls this routine once for each column declaration 940 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 941 ** first to get things going. Then this routine is called for each 942 ** column. 943 */ 944 void sqlite3AddColumn(Parse *pParse, Token *pName){ 945 Table *p; 946 int i; 947 char *z; 948 Column *pCol; 949 sqlite3 *db = pParse->db; 950 if( (p = pParse->pNewTable)==0 ) return; 951 #if SQLITE_MAX_COLUMN 952 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 953 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 954 return; 955 } 956 #endif 957 z = sqlite3NameFromToken(db, pName); 958 if( z==0 ) return; 959 for(i=0; i<p->nCol; i++){ 960 if( STRICMP(z, p->aCol[i].zName) ){ 961 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 962 sqlite3DbFree(db, z); 963 return; 964 } 965 } 966 if( (p->nCol & 0x7)==0 ){ 967 Column *aNew; 968 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 969 if( aNew==0 ){ 970 sqlite3DbFree(db, z); 971 return; 972 } 973 p->aCol = aNew; 974 } 975 pCol = &p->aCol[p->nCol]; 976 memset(pCol, 0, sizeof(p->aCol[0])); 977 pCol->zName = z; 978 979 /* If there is no type specified, columns have the default affinity 980 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 981 ** be called next to set pCol->affinity correctly. 982 */ 983 pCol->affinity = SQLITE_AFF_NONE; 984 p->nCol++; 985 } 986 987 /* 988 ** This routine is called by the parser while in the middle of 989 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 990 ** been seen on a column. This routine sets the notNull flag on 991 ** the column currently under construction. 992 */ 993 void sqlite3AddNotNull(Parse *pParse, int onError){ 994 Table *p; 995 p = pParse->pNewTable; 996 if( p==0 || NEVER(p->nCol<1) ) return; 997 p->aCol[p->nCol-1].notNull = (u8)onError; 998 } 999 1000 /* 1001 ** Scan the column type name zType (length nType) and return the 1002 ** associated affinity type. 1003 ** 1004 ** This routine does a case-independent search of zType for the 1005 ** substrings in the following table. If one of the substrings is 1006 ** found, the corresponding affinity is returned. If zType contains 1007 ** more than one of the substrings, entries toward the top of 1008 ** the table take priority. For example, if zType is 'BLOBINT', 1009 ** SQLITE_AFF_INTEGER is returned. 1010 ** 1011 ** Substring | Affinity 1012 ** -------------------------------- 1013 ** 'INT' | SQLITE_AFF_INTEGER 1014 ** 'CHAR' | SQLITE_AFF_TEXT 1015 ** 'CLOB' | SQLITE_AFF_TEXT 1016 ** 'TEXT' | SQLITE_AFF_TEXT 1017 ** 'BLOB' | SQLITE_AFF_NONE 1018 ** 'REAL' | SQLITE_AFF_REAL 1019 ** 'FLOA' | SQLITE_AFF_REAL 1020 ** 'DOUB' | SQLITE_AFF_REAL 1021 ** 1022 ** If none of the substrings in the above table are found, 1023 ** SQLITE_AFF_NUMERIC is returned. 1024 */ 1025 char sqlite3AffinityType(const char *zIn){ 1026 u32 h = 0; 1027 char aff = SQLITE_AFF_NUMERIC; 1028 1029 if( zIn ) while( zIn[0] ){ 1030 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1031 zIn++; 1032 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1033 aff = SQLITE_AFF_TEXT; 1034 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1035 aff = SQLITE_AFF_TEXT; 1036 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1037 aff = SQLITE_AFF_TEXT; 1038 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1039 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1040 aff = SQLITE_AFF_NONE; 1041 #ifndef SQLITE_OMIT_FLOATING_POINT 1042 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1043 && aff==SQLITE_AFF_NUMERIC ){ 1044 aff = SQLITE_AFF_REAL; 1045 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1046 && aff==SQLITE_AFF_NUMERIC ){ 1047 aff = SQLITE_AFF_REAL; 1048 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1049 && aff==SQLITE_AFF_NUMERIC ){ 1050 aff = SQLITE_AFF_REAL; 1051 #endif 1052 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1053 aff = SQLITE_AFF_INTEGER; 1054 break; 1055 } 1056 } 1057 1058 return aff; 1059 } 1060 1061 /* 1062 ** This routine is called by the parser while in the middle of 1063 ** parsing a CREATE TABLE statement. The pFirst token is the first 1064 ** token in the sequence of tokens that describe the type of the 1065 ** column currently under construction. pLast is the last token 1066 ** in the sequence. Use this information to construct a string 1067 ** that contains the typename of the column and store that string 1068 ** in zType. 1069 */ 1070 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1071 Table *p; 1072 Column *pCol; 1073 1074 p = pParse->pNewTable; 1075 if( p==0 || NEVER(p->nCol<1) ) return; 1076 pCol = &p->aCol[p->nCol-1]; 1077 assert( pCol->zType==0 ); 1078 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1079 pCol->affinity = sqlite3AffinityType(pCol->zType); 1080 } 1081 1082 /* 1083 ** The expression is the default value for the most recently added column 1084 ** of the table currently under construction. 1085 ** 1086 ** Default value expressions must be constant. Raise an exception if this 1087 ** is not the case. 1088 ** 1089 ** This routine is called by the parser while in the middle of 1090 ** parsing a CREATE TABLE statement. 1091 */ 1092 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1093 Table *p; 1094 Column *pCol; 1095 sqlite3 *db = pParse->db; 1096 p = pParse->pNewTable; 1097 if( p!=0 ){ 1098 pCol = &(p->aCol[p->nCol-1]); 1099 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1100 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1101 pCol->zName); 1102 }else{ 1103 /* A copy of pExpr is used instead of the original, as pExpr contains 1104 ** tokens that point to volatile memory. The 'span' of the expression 1105 ** is required by pragma table_info. 1106 */ 1107 sqlite3ExprDelete(db, pCol->pDflt); 1108 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1109 sqlite3DbFree(db, pCol->zDflt); 1110 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1111 (int)(pSpan->zEnd - pSpan->zStart)); 1112 } 1113 } 1114 sqlite3ExprDelete(db, pSpan->pExpr); 1115 } 1116 1117 /* 1118 ** Designate the PRIMARY KEY for the table. pList is a list of names 1119 ** of columns that form the primary key. If pList is NULL, then the 1120 ** most recently added column of the table is the primary key. 1121 ** 1122 ** A table can have at most one primary key. If the table already has 1123 ** a primary key (and this is the second primary key) then create an 1124 ** error. 1125 ** 1126 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1127 ** then we will try to use that column as the rowid. Set the Table.iPKey 1128 ** field of the table under construction to be the index of the 1129 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1130 ** no INTEGER PRIMARY KEY. 1131 ** 1132 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1133 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1134 */ 1135 void sqlite3AddPrimaryKey( 1136 Parse *pParse, /* Parsing context */ 1137 ExprList *pList, /* List of field names to be indexed */ 1138 int onError, /* What to do with a uniqueness conflict */ 1139 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1140 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1141 ){ 1142 Table *pTab = pParse->pNewTable; 1143 char *zType = 0; 1144 int iCol = -1, i; 1145 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1146 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1147 sqlite3ErrorMsg(pParse, 1148 "table \"%s\" has more than one primary key", pTab->zName); 1149 goto primary_key_exit; 1150 } 1151 pTab->tabFlags |= TF_HasPrimaryKey; 1152 if( pList==0 ){ 1153 iCol = pTab->nCol - 1; 1154 pTab->aCol[iCol].isPrimKey = 1; 1155 }else{ 1156 for(i=0; i<pList->nExpr; i++){ 1157 for(iCol=0; iCol<pTab->nCol; iCol++){ 1158 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1159 break; 1160 } 1161 } 1162 if( iCol<pTab->nCol ){ 1163 pTab->aCol[iCol].isPrimKey = 1; 1164 } 1165 } 1166 if( pList->nExpr>1 ) iCol = -1; 1167 } 1168 if( iCol>=0 && iCol<pTab->nCol ){ 1169 zType = pTab->aCol[iCol].zType; 1170 } 1171 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1172 && sortOrder==SQLITE_SO_ASC ){ 1173 pTab->iPKey = iCol; 1174 pTab->keyConf = (u8)onError; 1175 assert( autoInc==0 || autoInc==1 ); 1176 pTab->tabFlags |= autoInc*TF_Autoincrement; 1177 }else if( autoInc ){ 1178 #ifndef SQLITE_OMIT_AUTOINCREMENT 1179 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1180 "INTEGER PRIMARY KEY"); 1181 #endif 1182 }else{ 1183 Index *p; 1184 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1185 if( p ){ 1186 p->autoIndex = 2; 1187 } 1188 pList = 0; 1189 } 1190 1191 primary_key_exit: 1192 sqlite3ExprListDelete(pParse->db, pList); 1193 return; 1194 } 1195 1196 /* 1197 ** Add a new CHECK constraint to the table currently under construction. 1198 */ 1199 void sqlite3AddCheckConstraint( 1200 Parse *pParse, /* Parsing context */ 1201 Expr *pCheckExpr /* The check expression */ 1202 ){ 1203 #ifndef SQLITE_OMIT_CHECK 1204 Table *pTab = pParse->pNewTable; 1205 if( pTab && !IN_DECLARE_VTAB ){ 1206 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1207 if( pParse->constraintName.n ){ 1208 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1209 } 1210 }else 1211 #endif 1212 { 1213 sqlite3ExprDelete(pParse->db, pCheckExpr); 1214 } 1215 } 1216 1217 /* 1218 ** Set the collation function of the most recently parsed table column 1219 ** to the CollSeq given. 1220 */ 1221 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1222 Table *p; 1223 int i; 1224 char *zColl; /* Dequoted name of collation sequence */ 1225 sqlite3 *db; 1226 1227 if( (p = pParse->pNewTable)==0 ) return; 1228 i = p->nCol-1; 1229 db = pParse->db; 1230 zColl = sqlite3NameFromToken(db, pToken); 1231 if( !zColl ) return; 1232 1233 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1234 Index *pIdx; 1235 p->aCol[i].zColl = zColl; 1236 1237 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1238 ** then an index may have been created on this column before the 1239 ** collation type was added. Correct this if it is the case. 1240 */ 1241 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1242 assert( pIdx->nColumn==1 ); 1243 if( pIdx->aiColumn[0]==i ){ 1244 pIdx->azColl[0] = p->aCol[i].zColl; 1245 } 1246 } 1247 }else{ 1248 sqlite3DbFree(db, zColl); 1249 } 1250 } 1251 1252 /* 1253 ** This function returns the collation sequence for database native text 1254 ** encoding identified by the string zName, length nName. 1255 ** 1256 ** If the requested collation sequence is not available, or not available 1257 ** in the database native encoding, the collation factory is invoked to 1258 ** request it. If the collation factory does not supply such a sequence, 1259 ** and the sequence is available in another text encoding, then that is 1260 ** returned instead. 1261 ** 1262 ** If no versions of the requested collations sequence are available, or 1263 ** another error occurs, NULL is returned and an error message written into 1264 ** pParse. 1265 ** 1266 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1267 ** invokes the collation factory if the named collation cannot be found 1268 ** and generates an error message. 1269 ** 1270 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1271 */ 1272 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1273 sqlite3 *db = pParse->db; 1274 u8 enc = ENC(db); 1275 u8 initbusy = db->init.busy; 1276 CollSeq *pColl; 1277 1278 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1279 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1280 pColl = sqlite3GetCollSeq(db, enc, pColl, zName); 1281 if( !pColl ){ 1282 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); 1283 } 1284 } 1285 1286 return pColl; 1287 } 1288 1289 1290 /* 1291 ** Generate code that will increment the schema cookie. 1292 ** 1293 ** The schema cookie is used to determine when the schema for the 1294 ** database changes. After each schema change, the cookie value 1295 ** changes. When a process first reads the schema it records the 1296 ** cookie. Thereafter, whenever it goes to access the database, 1297 ** it checks the cookie to make sure the schema has not changed 1298 ** since it was last read. 1299 ** 1300 ** This plan is not completely bullet-proof. It is possible for 1301 ** the schema to change multiple times and for the cookie to be 1302 ** set back to prior value. But schema changes are infrequent 1303 ** and the probability of hitting the same cookie value is only 1304 ** 1 chance in 2^32. So we're safe enough. 1305 */ 1306 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1307 int r1 = sqlite3GetTempReg(pParse); 1308 sqlite3 *db = pParse->db; 1309 Vdbe *v = pParse->pVdbe; 1310 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1311 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1312 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1313 sqlite3ReleaseTempReg(pParse, r1); 1314 } 1315 1316 /* 1317 ** Measure the number of characters needed to output the given 1318 ** identifier. The number returned includes any quotes used 1319 ** but does not include the null terminator. 1320 ** 1321 ** The estimate is conservative. It might be larger that what is 1322 ** really needed. 1323 */ 1324 static int identLength(const char *z){ 1325 int n; 1326 for(n=0; *z; n++, z++){ 1327 if( *z=='"' ){ n++; } 1328 } 1329 return n + 2; 1330 } 1331 1332 /* 1333 ** The first parameter is a pointer to an output buffer. The second 1334 ** parameter is a pointer to an integer that contains the offset at 1335 ** which to write into the output buffer. This function copies the 1336 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1337 ** to the specified offset in the buffer and updates *pIdx to refer 1338 ** to the first byte after the last byte written before returning. 1339 ** 1340 ** If the string zSignedIdent consists entirely of alpha-numeric 1341 ** characters, does not begin with a digit and is not an SQL keyword, 1342 ** then it is copied to the output buffer exactly as it is. Otherwise, 1343 ** it is quoted using double-quotes. 1344 */ 1345 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1346 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1347 int i, j, needQuote; 1348 i = *pIdx; 1349 1350 for(j=0; zIdent[j]; j++){ 1351 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1352 } 1353 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1354 if( !needQuote ){ 1355 needQuote = zIdent[j]; 1356 } 1357 1358 if( needQuote ) z[i++] = '"'; 1359 for(j=0; zIdent[j]; j++){ 1360 z[i++] = zIdent[j]; 1361 if( zIdent[j]=='"' ) z[i++] = '"'; 1362 } 1363 if( needQuote ) z[i++] = '"'; 1364 z[i] = 0; 1365 *pIdx = i; 1366 } 1367 1368 /* 1369 ** Generate a CREATE TABLE statement appropriate for the given 1370 ** table. Memory to hold the text of the statement is obtained 1371 ** from sqliteMalloc() and must be freed by the calling function. 1372 */ 1373 static char *createTableStmt(sqlite3 *db, Table *p){ 1374 int i, k, n; 1375 char *zStmt; 1376 char *zSep, *zSep2, *zEnd; 1377 Column *pCol; 1378 n = 0; 1379 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1380 n += identLength(pCol->zName) + 5; 1381 } 1382 n += identLength(p->zName); 1383 if( n<50 ){ 1384 zSep = ""; 1385 zSep2 = ","; 1386 zEnd = ")"; 1387 }else{ 1388 zSep = "\n "; 1389 zSep2 = ",\n "; 1390 zEnd = "\n)"; 1391 } 1392 n += 35 + 6*p->nCol; 1393 zStmt = sqlite3DbMallocRaw(0, n); 1394 if( zStmt==0 ){ 1395 db->mallocFailed = 1; 1396 return 0; 1397 } 1398 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1399 k = sqlite3Strlen30(zStmt); 1400 identPut(zStmt, &k, p->zName); 1401 zStmt[k++] = '('; 1402 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1403 static const char * const azType[] = { 1404 /* SQLITE_AFF_TEXT */ " TEXT", 1405 /* SQLITE_AFF_NONE */ "", 1406 /* SQLITE_AFF_NUMERIC */ " NUM", 1407 /* SQLITE_AFF_INTEGER */ " INT", 1408 /* SQLITE_AFF_REAL */ " REAL" 1409 }; 1410 int len; 1411 const char *zType; 1412 1413 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1414 k += sqlite3Strlen30(&zStmt[k]); 1415 zSep = zSep2; 1416 identPut(zStmt, &k, pCol->zName); 1417 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1418 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); 1419 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1420 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1421 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1422 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1423 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1424 1425 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1426 len = sqlite3Strlen30(zType); 1427 assert( pCol->affinity==SQLITE_AFF_NONE 1428 || pCol->affinity==sqlite3AffinityType(zType) ); 1429 memcpy(&zStmt[k], zType, len); 1430 k += len; 1431 assert( k<=n ); 1432 } 1433 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1434 return zStmt; 1435 } 1436 1437 /* 1438 ** This routine is called to report the final ")" that terminates 1439 ** a CREATE TABLE statement. 1440 ** 1441 ** The table structure that other action routines have been building 1442 ** is added to the internal hash tables, assuming no errors have 1443 ** occurred. 1444 ** 1445 ** An entry for the table is made in the master table on disk, unless 1446 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1447 ** it means we are reading the sqlite_master table because we just 1448 ** connected to the database or because the sqlite_master table has 1449 ** recently changed, so the entry for this table already exists in 1450 ** the sqlite_master table. We do not want to create it again. 1451 ** 1452 ** If the pSelect argument is not NULL, it means that this routine 1453 ** was called to create a table generated from a 1454 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1455 ** the new table will match the result set of the SELECT. 1456 */ 1457 void sqlite3EndTable( 1458 Parse *pParse, /* Parse context */ 1459 Token *pCons, /* The ',' token after the last column defn. */ 1460 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1461 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1462 ){ 1463 Table *p; 1464 sqlite3 *db = pParse->db; 1465 int iDb; 1466 1467 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1468 return; 1469 } 1470 p = pParse->pNewTable; 1471 if( p==0 ) return; 1472 1473 assert( !db->init.busy || !pSelect ); 1474 1475 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1476 1477 #ifndef SQLITE_OMIT_CHECK 1478 /* Resolve names in all CHECK constraint expressions. 1479 */ 1480 if( p->pCheck ){ 1481 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1482 NameContext sNC; /* Name context for pParse->pNewTable */ 1483 ExprList *pList; /* List of all CHECK constraints */ 1484 int i; /* Loop counter */ 1485 1486 memset(&sNC, 0, sizeof(sNC)); 1487 memset(&sSrc, 0, sizeof(sSrc)); 1488 sSrc.nSrc = 1; 1489 sSrc.a[0].zName = p->zName; 1490 sSrc.a[0].pTab = p; 1491 sSrc.a[0].iCursor = -1; 1492 sNC.pParse = pParse; 1493 sNC.pSrcList = &sSrc; 1494 sNC.isCheck = 1; 1495 pList = p->pCheck; 1496 for(i=0; i<pList->nExpr; i++){ 1497 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ 1498 return; 1499 } 1500 } 1501 } 1502 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1503 1504 /* If the db->init.busy is 1 it means we are reading the SQL off the 1505 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1506 ** So do not write to the disk again. Extract the root page number 1507 ** for the table from the db->init.newTnum field. (The page number 1508 ** should have been put there by the sqliteOpenCb routine.) 1509 */ 1510 if( db->init.busy ){ 1511 p->tnum = db->init.newTnum; 1512 } 1513 1514 /* If not initializing, then create a record for the new table 1515 ** in the SQLITE_MASTER table of the database. 1516 ** 1517 ** If this is a TEMPORARY table, write the entry into the auxiliary 1518 ** file instead of into the main database file. 1519 */ 1520 if( !db->init.busy ){ 1521 int n; 1522 Vdbe *v; 1523 char *zType; /* "view" or "table" */ 1524 char *zType2; /* "VIEW" or "TABLE" */ 1525 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1526 1527 v = sqlite3GetVdbe(pParse); 1528 if( NEVER(v==0) ) return; 1529 1530 sqlite3VdbeAddOp1(v, OP_Close, 0); 1531 1532 /* 1533 ** Initialize zType for the new view or table. 1534 */ 1535 if( p->pSelect==0 ){ 1536 /* A regular table */ 1537 zType = "table"; 1538 zType2 = "TABLE"; 1539 #ifndef SQLITE_OMIT_VIEW 1540 }else{ 1541 /* A view */ 1542 zType = "view"; 1543 zType2 = "VIEW"; 1544 #endif 1545 } 1546 1547 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1548 ** statement to populate the new table. The root-page number for the 1549 ** new table is in register pParse->regRoot. 1550 ** 1551 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1552 ** suitable state to query for the column names and types to be used 1553 ** by the new table. 1554 ** 1555 ** A shared-cache write-lock is not required to write to the new table, 1556 ** as a schema-lock must have already been obtained to create it. Since 1557 ** a schema-lock excludes all other database users, the write-lock would 1558 ** be redundant. 1559 */ 1560 if( pSelect ){ 1561 SelectDest dest; 1562 Table *pSelTab; 1563 1564 assert(pParse->nTab==1); 1565 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1566 sqlite3VdbeChangeP5(v, 1); 1567 pParse->nTab = 2; 1568 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1569 sqlite3Select(pParse, pSelect, &dest); 1570 sqlite3VdbeAddOp1(v, OP_Close, 1); 1571 if( pParse->nErr==0 ){ 1572 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1573 if( pSelTab==0 ) return; 1574 assert( p->aCol==0 ); 1575 p->nCol = pSelTab->nCol; 1576 p->aCol = pSelTab->aCol; 1577 pSelTab->nCol = 0; 1578 pSelTab->aCol = 0; 1579 sqlite3DeleteTable(db, pSelTab); 1580 } 1581 } 1582 1583 /* Compute the complete text of the CREATE statement */ 1584 if( pSelect ){ 1585 zStmt = createTableStmt(db, p); 1586 }else{ 1587 n = (int)(pEnd->z - pParse->sNameToken.z) + 1; 1588 zStmt = sqlite3MPrintf(db, 1589 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1590 ); 1591 } 1592 1593 /* A slot for the record has already been allocated in the 1594 ** SQLITE_MASTER table. We just need to update that slot with all 1595 ** the information we've collected. 1596 */ 1597 sqlite3NestedParse(pParse, 1598 "UPDATE %Q.%s " 1599 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1600 "WHERE rowid=#%d", 1601 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1602 zType, 1603 p->zName, 1604 p->zName, 1605 pParse->regRoot, 1606 zStmt, 1607 pParse->regRowid 1608 ); 1609 sqlite3DbFree(db, zStmt); 1610 sqlite3ChangeCookie(pParse, iDb); 1611 1612 #ifndef SQLITE_OMIT_AUTOINCREMENT 1613 /* Check to see if we need to create an sqlite_sequence table for 1614 ** keeping track of autoincrement keys. 1615 */ 1616 if( p->tabFlags & TF_Autoincrement ){ 1617 Db *pDb = &db->aDb[iDb]; 1618 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1619 if( pDb->pSchema->pSeqTab==0 ){ 1620 sqlite3NestedParse(pParse, 1621 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1622 pDb->zName 1623 ); 1624 } 1625 } 1626 #endif 1627 1628 /* Reparse everything to update our internal data structures */ 1629 sqlite3VdbeAddParseSchemaOp(v, iDb, 1630 sqlite3MPrintf(db, "tbl_name='%q'", p->zName)); 1631 } 1632 1633 1634 /* Add the table to the in-memory representation of the database. 1635 */ 1636 if( db->init.busy ){ 1637 Table *pOld; 1638 Schema *pSchema = p->pSchema; 1639 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1640 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1641 sqlite3Strlen30(p->zName),p); 1642 if( pOld ){ 1643 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1644 db->mallocFailed = 1; 1645 return; 1646 } 1647 pParse->pNewTable = 0; 1648 db->flags |= SQLITE_InternChanges; 1649 1650 #ifndef SQLITE_OMIT_ALTERTABLE 1651 if( !p->pSelect ){ 1652 const char *zName = (const char *)pParse->sNameToken.z; 1653 int nName; 1654 assert( !pSelect && pCons && pEnd ); 1655 if( pCons->z==0 ){ 1656 pCons = pEnd; 1657 } 1658 nName = (int)((const char *)pCons->z - zName); 1659 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1660 } 1661 #endif 1662 } 1663 } 1664 1665 #ifndef SQLITE_OMIT_VIEW 1666 /* 1667 ** The parser calls this routine in order to create a new VIEW 1668 */ 1669 void sqlite3CreateView( 1670 Parse *pParse, /* The parsing context */ 1671 Token *pBegin, /* The CREATE token that begins the statement */ 1672 Token *pName1, /* The token that holds the name of the view */ 1673 Token *pName2, /* The token that holds the name of the view */ 1674 Select *pSelect, /* A SELECT statement that will become the new view */ 1675 int isTemp, /* TRUE for a TEMPORARY view */ 1676 int noErr /* Suppress error messages if VIEW already exists */ 1677 ){ 1678 Table *p; 1679 int n; 1680 const char *z; 1681 Token sEnd; 1682 DbFixer sFix; 1683 Token *pName = 0; 1684 int iDb; 1685 sqlite3 *db = pParse->db; 1686 1687 if( pParse->nVar>0 ){ 1688 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1689 sqlite3SelectDelete(db, pSelect); 1690 return; 1691 } 1692 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1693 p = pParse->pNewTable; 1694 if( p==0 || pParse->nErr ){ 1695 sqlite3SelectDelete(db, pSelect); 1696 return; 1697 } 1698 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1699 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1700 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1701 && sqlite3FixSelect(&sFix, pSelect) 1702 ){ 1703 sqlite3SelectDelete(db, pSelect); 1704 return; 1705 } 1706 1707 /* Make a copy of the entire SELECT statement that defines the view. 1708 ** This will force all the Expr.token.z values to be dynamically 1709 ** allocated rather than point to the input string - which means that 1710 ** they will persist after the current sqlite3_exec() call returns. 1711 */ 1712 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1713 sqlite3SelectDelete(db, pSelect); 1714 if( db->mallocFailed ){ 1715 return; 1716 } 1717 if( !db->init.busy ){ 1718 sqlite3ViewGetColumnNames(pParse, p); 1719 } 1720 1721 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1722 ** the end. 1723 */ 1724 sEnd = pParse->sLastToken; 1725 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 1726 sEnd.z += sEnd.n; 1727 } 1728 sEnd.n = 0; 1729 n = (int)(sEnd.z - pBegin->z); 1730 z = pBegin->z; 1731 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 1732 sEnd.z = &z[n-1]; 1733 sEnd.n = 1; 1734 1735 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1736 sqlite3EndTable(pParse, 0, &sEnd, 0); 1737 return; 1738 } 1739 #endif /* SQLITE_OMIT_VIEW */ 1740 1741 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1742 /* 1743 ** The Table structure pTable is really a VIEW. Fill in the names of 1744 ** the columns of the view in the pTable structure. Return the number 1745 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1746 */ 1747 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1748 Table *pSelTab; /* A fake table from which we get the result set */ 1749 Select *pSel; /* Copy of the SELECT that implements the view */ 1750 int nErr = 0; /* Number of errors encountered */ 1751 int n; /* Temporarily holds the number of cursors assigned */ 1752 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 1753 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1754 1755 assert( pTable ); 1756 1757 #ifndef SQLITE_OMIT_VIRTUALTABLE 1758 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1759 return SQLITE_ERROR; 1760 } 1761 if( IsVirtual(pTable) ) return 0; 1762 #endif 1763 1764 #ifndef SQLITE_OMIT_VIEW 1765 /* A positive nCol means the columns names for this view are 1766 ** already known. 1767 */ 1768 if( pTable->nCol>0 ) return 0; 1769 1770 /* A negative nCol is a special marker meaning that we are currently 1771 ** trying to compute the column names. If we enter this routine with 1772 ** a negative nCol, it means two or more views form a loop, like this: 1773 ** 1774 ** CREATE VIEW one AS SELECT * FROM two; 1775 ** CREATE VIEW two AS SELECT * FROM one; 1776 ** 1777 ** Actually, the error above is now caught prior to reaching this point. 1778 ** But the following test is still important as it does come up 1779 ** in the following: 1780 ** 1781 ** CREATE TABLE main.ex1(a); 1782 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 1783 ** SELECT * FROM temp.ex1; 1784 */ 1785 if( pTable->nCol<0 ){ 1786 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1787 return 1; 1788 } 1789 assert( pTable->nCol>=0 ); 1790 1791 /* If we get this far, it means we need to compute the table names. 1792 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1793 ** "*" elements in the results set of the view and will assign cursors 1794 ** to the elements of the FROM clause. But we do not want these changes 1795 ** to be permanent. So the computation is done on a copy of the SELECT 1796 ** statement that defines the view. 1797 */ 1798 assert( pTable->pSelect ); 1799 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 1800 if( pSel ){ 1801 u8 enableLookaside = db->lookaside.bEnabled; 1802 n = pParse->nTab; 1803 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1804 pTable->nCol = -1; 1805 db->lookaside.bEnabled = 0; 1806 #ifndef SQLITE_OMIT_AUTHORIZATION 1807 xAuth = db->xAuth; 1808 db->xAuth = 0; 1809 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1810 db->xAuth = xAuth; 1811 #else 1812 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1813 #endif 1814 db->lookaside.bEnabled = enableLookaside; 1815 pParse->nTab = n; 1816 if( pSelTab ){ 1817 assert( pTable->aCol==0 ); 1818 pTable->nCol = pSelTab->nCol; 1819 pTable->aCol = pSelTab->aCol; 1820 pSelTab->nCol = 0; 1821 pSelTab->aCol = 0; 1822 sqlite3DeleteTable(db, pSelTab); 1823 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 1824 pTable->pSchema->flags |= DB_UnresetViews; 1825 }else{ 1826 pTable->nCol = 0; 1827 nErr++; 1828 } 1829 sqlite3SelectDelete(db, pSel); 1830 } else { 1831 nErr++; 1832 } 1833 #endif /* SQLITE_OMIT_VIEW */ 1834 return nErr; 1835 } 1836 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1837 1838 #ifndef SQLITE_OMIT_VIEW 1839 /* 1840 ** Clear the column names from every VIEW in database idx. 1841 */ 1842 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1843 HashElem *i; 1844 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 1845 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1846 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1847 Table *pTab = sqliteHashData(i); 1848 if( pTab->pSelect ){ 1849 sqliteDeleteColumnNames(db, pTab); 1850 pTab->aCol = 0; 1851 pTab->nCol = 0; 1852 } 1853 } 1854 DbClearProperty(db, idx, DB_UnresetViews); 1855 } 1856 #else 1857 # define sqliteViewResetAll(A,B) 1858 #endif /* SQLITE_OMIT_VIEW */ 1859 1860 /* 1861 ** This function is called by the VDBE to adjust the internal schema 1862 ** used by SQLite when the btree layer moves a table root page. The 1863 ** root-page of a table or index in database iDb has changed from iFrom 1864 ** to iTo. 1865 ** 1866 ** Ticket #1728: The symbol table might still contain information 1867 ** on tables and/or indices that are the process of being deleted. 1868 ** If you are unlucky, one of those deleted indices or tables might 1869 ** have the same rootpage number as the real table or index that is 1870 ** being moved. So we cannot stop searching after the first match 1871 ** because the first match might be for one of the deleted indices 1872 ** or tables and not the table/index that is actually being moved. 1873 ** We must continue looping until all tables and indices with 1874 ** rootpage==iFrom have been converted to have a rootpage of iTo 1875 ** in order to be certain that we got the right one. 1876 */ 1877 #ifndef SQLITE_OMIT_AUTOVACUUM 1878 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 1879 HashElem *pElem; 1880 Hash *pHash; 1881 Db *pDb; 1882 1883 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1884 pDb = &db->aDb[iDb]; 1885 pHash = &pDb->pSchema->tblHash; 1886 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1887 Table *pTab = sqliteHashData(pElem); 1888 if( pTab->tnum==iFrom ){ 1889 pTab->tnum = iTo; 1890 } 1891 } 1892 pHash = &pDb->pSchema->idxHash; 1893 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1894 Index *pIdx = sqliteHashData(pElem); 1895 if( pIdx->tnum==iFrom ){ 1896 pIdx->tnum = iTo; 1897 } 1898 } 1899 } 1900 #endif 1901 1902 /* 1903 ** Write code to erase the table with root-page iTable from database iDb. 1904 ** Also write code to modify the sqlite_master table and internal schema 1905 ** if a root-page of another table is moved by the btree-layer whilst 1906 ** erasing iTable (this can happen with an auto-vacuum database). 1907 */ 1908 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1909 Vdbe *v = sqlite3GetVdbe(pParse); 1910 int r1 = sqlite3GetTempReg(pParse); 1911 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 1912 sqlite3MayAbort(pParse); 1913 #ifndef SQLITE_OMIT_AUTOVACUUM 1914 /* OP_Destroy stores an in integer r1. If this integer 1915 ** is non-zero, then it is the root page number of a table moved to 1916 ** location iTable. The following code modifies the sqlite_master table to 1917 ** reflect this. 1918 ** 1919 ** The "#NNN" in the SQL is a special constant that means whatever value 1920 ** is in register NNN. See grammar rules associated with the TK_REGISTER 1921 ** token for additional information. 1922 */ 1923 sqlite3NestedParse(pParse, 1924 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 1925 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 1926 #endif 1927 sqlite3ReleaseTempReg(pParse, r1); 1928 } 1929 1930 /* 1931 ** Write VDBE code to erase table pTab and all associated indices on disk. 1932 ** Code to update the sqlite_master tables and internal schema definitions 1933 ** in case a root-page belonging to another table is moved by the btree layer 1934 ** is also added (this can happen with an auto-vacuum database). 1935 */ 1936 static void destroyTable(Parse *pParse, Table *pTab){ 1937 #ifdef SQLITE_OMIT_AUTOVACUUM 1938 Index *pIdx; 1939 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1940 destroyRootPage(pParse, pTab->tnum, iDb); 1941 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1942 destroyRootPage(pParse, pIdx->tnum, iDb); 1943 } 1944 #else 1945 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1946 ** is not defined), then it is important to call OP_Destroy on the 1947 ** table and index root-pages in order, starting with the numerically 1948 ** largest root-page number. This guarantees that none of the root-pages 1949 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1950 ** following were coded: 1951 ** 1952 ** OP_Destroy 4 0 1953 ** ... 1954 ** OP_Destroy 5 0 1955 ** 1956 ** and root page 5 happened to be the largest root-page number in the 1957 ** database, then root page 5 would be moved to page 4 by the 1958 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 1959 ** a free-list page. 1960 */ 1961 int iTab = pTab->tnum; 1962 int iDestroyed = 0; 1963 1964 while( 1 ){ 1965 Index *pIdx; 1966 int iLargest = 0; 1967 1968 if( iDestroyed==0 || iTab<iDestroyed ){ 1969 iLargest = iTab; 1970 } 1971 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1972 int iIdx = pIdx->tnum; 1973 assert( pIdx->pSchema==pTab->pSchema ); 1974 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 1975 iLargest = iIdx; 1976 } 1977 } 1978 if( iLargest==0 ){ 1979 return; 1980 }else{ 1981 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1982 destroyRootPage(pParse, iLargest, iDb); 1983 iDestroyed = iLargest; 1984 } 1985 } 1986 #endif 1987 } 1988 1989 /* 1990 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 1991 ** after a DROP INDEX or DROP TABLE command. 1992 */ 1993 static void sqlite3ClearStatTables( 1994 Parse *pParse, /* The parsing context */ 1995 int iDb, /* The database number */ 1996 const char *zType, /* "idx" or "tbl" */ 1997 const char *zName /* Name of index or table */ 1998 ){ 1999 int i; 2000 const char *zDbName = pParse->db->aDb[iDb].zName; 2001 for(i=1; i<=3; i++){ 2002 char zTab[24]; 2003 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2004 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2005 sqlite3NestedParse(pParse, 2006 "DELETE FROM %Q.%s WHERE %s=%Q", 2007 zDbName, zTab, zType, zName 2008 ); 2009 } 2010 } 2011 } 2012 2013 /* 2014 ** Generate code to drop a table. 2015 */ 2016 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2017 Vdbe *v; 2018 sqlite3 *db = pParse->db; 2019 Trigger *pTrigger; 2020 Db *pDb = &db->aDb[iDb]; 2021 2022 v = sqlite3GetVdbe(pParse); 2023 assert( v!=0 ); 2024 sqlite3BeginWriteOperation(pParse, 1, iDb); 2025 2026 #ifndef SQLITE_OMIT_VIRTUALTABLE 2027 if( IsVirtual(pTab) ){ 2028 sqlite3VdbeAddOp0(v, OP_VBegin); 2029 } 2030 #endif 2031 2032 /* Drop all triggers associated with the table being dropped. Code 2033 ** is generated to remove entries from sqlite_master and/or 2034 ** sqlite_temp_master if required. 2035 */ 2036 pTrigger = sqlite3TriggerList(pParse, pTab); 2037 while( pTrigger ){ 2038 assert( pTrigger->pSchema==pTab->pSchema || 2039 pTrigger->pSchema==db->aDb[1].pSchema ); 2040 sqlite3DropTriggerPtr(pParse, pTrigger); 2041 pTrigger = pTrigger->pNext; 2042 } 2043 2044 #ifndef SQLITE_OMIT_AUTOINCREMENT 2045 /* Remove any entries of the sqlite_sequence table associated with 2046 ** the table being dropped. This is done before the table is dropped 2047 ** at the btree level, in case the sqlite_sequence table needs to 2048 ** move as a result of the drop (can happen in auto-vacuum mode). 2049 */ 2050 if( pTab->tabFlags & TF_Autoincrement ){ 2051 sqlite3NestedParse(pParse, 2052 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2053 pDb->zName, pTab->zName 2054 ); 2055 } 2056 #endif 2057 2058 /* Drop all SQLITE_MASTER table and index entries that refer to the 2059 ** table. The program name loops through the master table and deletes 2060 ** every row that refers to a table of the same name as the one being 2061 ** dropped. Triggers are handled seperately because a trigger can be 2062 ** created in the temp database that refers to a table in another 2063 ** database. 2064 */ 2065 sqlite3NestedParse(pParse, 2066 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2067 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2068 if( !isView && !IsVirtual(pTab) ){ 2069 destroyTable(pParse, pTab); 2070 } 2071 2072 /* Remove the table entry from SQLite's internal schema and modify 2073 ** the schema cookie. 2074 */ 2075 if( IsVirtual(pTab) ){ 2076 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2077 } 2078 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2079 sqlite3ChangeCookie(pParse, iDb); 2080 sqliteViewResetAll(db, iDb); 2081 } 2082 2083 /* 2084 ** This routine is called to do the work of a DROP TABLE statement. 2085 ** pName is the name of the table to be dropped. 2086 */ 2087 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2088 Table *pTab; 2089 Vdbe *v; 2090 sqlite3 *db = pParse->db; 2091 int iDb; 2092 2093 if( db->mallocFailed ){ 2094 goto exit_drop_table; 2095 } 2096 assert( pParse->nErr==0 ); 2097 assert( pName->nSrc==1 ); 2098 if( noErr ) db->suppressErr++; 2099 pTab = sqlite3LocateTable(pParse, isView, 2100 pName->a[0].zName, pName->a[0].zDatabase); 2101 if( noErr ) db->suppressErr--; 2102 2103 if( pTab==0 ){ 2104 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2105 goto exit_drop_table; 2106 } 2107 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2108 assert( iDb>=0 && iDb<db->nDb ); 2109 2110 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2111 ** it is initialized. 2112 */ 2113 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2114 goto exit_drop_table; 2115 } 2116 #ifndef SQLITE_OMIT_AUTHORIZATION 2117 { 2118 int code; 2119 const char *zTab = SCHEMA_TABLE(iDb); 2120 const char *zDb = db->aDb[iDb].zName; 2121 const char *zArg2 = 0; 2122 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2123 goto exit_drop_table; 2124 } 2125 if( isView ){ 2126 if( !OMIT_TEMPDB && iDb==1 ){ 2127 code = SQLITE_DROP_TEMP_VIEW; 2128 }else{ 2129 code = SQLITE_DROP_VIEW; 2130 } 2131 #ifndef SQLITE_OMIT_VIRTUALTABLE 2132 }else if( IsVirtual(pTab) ){ 2133 code = SQLITE_DROP_VTABLE; 2134 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2135 #endif 2136 }else{ 2137 if( !OMIT_TEMPDB && iDb==1 ){ 2138 code = SQLITE_DROP_TEMP_TABLE; 2139 }else{ 2140 code = SQLITE_DROP_TABLE; 2141 } 2142 } 2143 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2144 goto exit_drop_table; 2145 } 2146 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2147 goto exit_drop_table; 2148 } 2149 } 2150 #endif 2151 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2152 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2153 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2154 goto exit_drop_table; 2155 } 2156 2157 #ifndef SQLITE_OMIT_VIEW 2158 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2159 ** on a table. 2160 */ 2161 if( isView && pTab->pSelect==0 ){ 2162 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2163 goto exit_drop_table; 2164 } 2165 if( !isView && pTab->pSelect ){ 2166 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2167 goto exit_drop_table; 2168 } 2169 #endif 2170 2171 /* Generate code to remove the table from the master table 2172 ** on disk. 2173 */ 2174 v = sqlite3GetVdbe(pParse); 2175 if( v ){ 2176 sqlite3BeginWriteOperation(pParse, 1, iDb); 2177 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2178 sqlite3FkDropTable(pParse, pName, pTab); 2179 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2180 } 2181 2182 exit_drop_table: 2183 sqlite3SrcListDelete(db, pName); 2184 } 2185 2186 /* 2187 ** This routine is called to create a new foreign key on the table 2188 ** currently under construction. pFromCol determines which columns 2189 ** in the current table point to the foreign key. If pFromCol==0 then 2190 ** connect the key to the last column inserted. pTo is the name of 2191 ** the table referred to. pToCol is a list of tables in the other 2192 ** pTo table that the foreign key points to. flags contains all 2193 ** information about the conflict resolution algorithms specified 2194 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2195 ** 2196 ** An FKey structure is created and added to the table currently 2197 ** under construction in the pParse->pNewTable field. 2198 ** 2199 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2200 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2201 */ 2202 void sqlite3CreateForeignKey( 2203 Parse *pParse, /* Parsing context */ 2204 ExprList *pFromCol, /* Columns in this table that point to other table */ 2205 Token *pTo, /* Name of the other table */ 2206 ExprList *pToCol, /* Columns in the other table */ 2207 int flags /* Conflict resolution algorithms. */ 2208 ){ 2209 sqlite3 *db = pParse->db; 2210 #ifndef SQLITE_OMIT_FOREIGN_KEY 2211 FKey *pFKey = 0; 2212 FKey *pNextTo; 2213 Table *p = pParse->pNewTable; 2214 int nByte; 2215 int i; 2216 int nCol; 2217 char *z; 2218 2219 assert( pTo!=0 ); 2220 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2221 if( pFromCol==0 ){ 2222 int iCol = p->nCol-1; 2223 if( NEVER(iCol<0) ) goto fk_end; 2224 if( pToCol && pToCol->nExpr!=1 ){ 2225 sqlite3ErrorMsg(pParse, "foreign key on %s" 2226 " should reference only one column of table %T", 2227 p->aCol[iCol].zName, pTo); 2228 goto fk_end; 2229 } 2230 nCol = 1; 2231 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2232 sqlite3ErrorMsg(pParse, 2233 "number of columns in foreign key does not match the number of " 2234 "columns in the referenced table"); 2235 goto fk_end; 2236 }else{ 2237 nCol = pFromCol->nExpr; 2238 } 2239 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2240 if( pToCol ){ 2241 for(i=0; i<pToCol->nExpr; i++){ 2242 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2243 } 2244 } 2245 pFKey = sqlite3DbMallocZero(db, nByte ); 2246 if( pFKey==0 ){ 2247 goto fk_end; 2248 } 2249 pFKey->pFrom = p; 2250 pFKey->pNextFrom = p->pFKey; 2251 z = (char*)&pFKey->aCol[nCol]; 2252 pFKey->zTo = z; 2253 memcpy(z, pTo->z, pTo->n); 2254 z[pTo->n] = 0; 2255 sqlite3Dequote(z); 2256 z += pTo->n+1; 2257 pFKey->nCol = nCol; 2258 if( pFromCol==0 ){ 2259 pFKey->aCol[0].iFrom = p->nCol-1; 2260 }else{ 2261 for(i=0; i<nCol; i++){ 2262 int j; 2263 for(j=0; j<p->nCol; j++){ 2264 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2265 pFKey->aCol[i].iFrom = j; 2266 break; 2267 } 2268 } 2269 if( j>=p->nCol ){ 2270 sqlite3ErrorMsg(pParse, 2271 "unknown column \"%s\" in foreign key definition", 2272 pFromCol->a[i].zName); 2273 goto fk_end; 2274 } 2275 } 2276 } 2277 if( pToCol ){ 2278 for(i=0; i<nCol; i++){ 2279 int n = sqlite3Strlen30(pToCol->a[i].zName); 2280 pFKey->aCol[i].zCol = z; 2281 memcpy(z, pToCol->a[i].zName, n); 2282 z[n] = 0; 2283 z += n+1; 2284 } 2285 } 2286 pFKey->isDeferred = 0; 2287 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2288 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2289 2290 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2291 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2292 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey 2293 ); 2294 if( pNextTo==pFKey ){ 2295 db->mallocFailed = 1; 2296 goto fk_end; 2297 } 2298 if( pNextTo ){ 2299 assert( pNextTo->pPrevTo==0 ); 2300 pFKey->pNextTo = pNextTo; 2301 pNextTo->pPrevTo = pFKey; 2302 } 2303 2304 /* Link the foreign key to the table as the last step. 2305 */ 2306 p->pFKey = pFKey; 2307 pFKey = 0; 2308 2309 fk_end: 2310 sqlite3DbFree(db, pFKey); 2311 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2312 sqlite3ExprListDelete(db, pFromCol); 2313 sqlite3ExprListDelete(db, pToCol); 2314 } 2315 2316 /* 2317 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2318 ** clause is seen as part of a foreign key definition. The isDeferred 2319 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2320 ** The behavior of the most recently created foreign key is adjusted 2321 ** accordingly. 2322 */ 2323 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2324 #ifndef SQLITE_OMIT_FOREIGN_KEY 2325 Table *pTab; 2326 FKey *pFKey; 2327 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2328 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2329 pFKey->isDeferred = (u8)isDeferred; 2330 #endif 2331 } 2332 2333 /* 2334 ** Generate code that will erase and refill index *pIdx. This is 2335 ** used to initialize a newly created index or to recompute the 2336 ** content of an index in response to a REINDEX command. 2337 ** 2338 ** if memRootPage is not negative, it means that the index is newly 2339 ** created. The register specified by memRootPage contains the 2340 ** root page number of the index. If memRootPage is negative, then 2341 ** the index already exists and must be cleared before being refilled and 2342 ** the root page number of the index is taken from pIndex->tnum. 2343 */ 2344 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2345 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2346 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2347 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2348 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2349 int addr1; /* Address of top of loop */ 2350 int addr2; /* Address to jump to for next iteration */ 2351 int tnum; /* Root page of index */ 2352 Vdbe *v; /* Generate code into this virtual machine */ 2353 KeyInfo *pKey; /* KeyInfo for index */ 2354 #ifdef SQLITE_OMIT_MERGE_SORT 2355 int regIdxKey; /* Registers containing the index key */ 2356 #endif 2357 int regRecord; /* Register holding assemblied index record */ 2358 sqlite3 *db = pParse->db; /* The database connection */ 2359 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2360 2361 #ifndef SQLITE_OMIT_AUTHORIZATION 2362 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2363 db->aDb[iDb].zName ) ){ 2364 return; 2365 } 2366 #endif 2367 2368 /* Require a write-lock on the table to perform this operation */ 2369 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2370 2371 v = sqlite3GetVdbe(pParse); 2372 if( v==0 ) return; 2373 if( memRootPage>=0 ){ 2374 tnum = memRootPage; 2375 }else{ 2376 tnum = pIndex->tnum; 2377 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2378 } 2379 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2380 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2381 (char *)pKey, P4_KEYINFO_HANDOFF); 2382 if( memRootPage>=0 ){ 2383 sqlite3VdbeChangeP5(v, 1); 2384 } 2385 2386 #ifndef SQLITE_OMIT_MERGE_SORT 2387 /* Open the sorter cursor if we are to use one. */ 2388 iSorter = pParse->nTab++; 2389 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO); 2390 #else 2391 iSorter = iTab; 2392 #endif 2393 2394 /* Open the table. Loop through all rows of the table, inserting index 2395 ** records into the sorter. */ 2396 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2397 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2398 regRecord = sqlite3GetTempReg(pParse); 2399 2400 #ifndef SQLITE_OMIT_MERGE_SORT 2401 sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2402 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2403 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); 2404 sqlite3VdbeJumpHere(v, addr1); 2405 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); 2406 if( pIndex->onError!=OE_None ){ 2407 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2408 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); 2409 addr2 = sqlite3VdbeCurrentAddr(v); 2410 sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord); 2411 sqlite3HaltConstraint( 2412 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC 2413 ); 2414 }else{ 2415 addr2 = sqlite3VdbeCurrentAddr(v); 2416 } 2417 sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); 2418 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); 2419 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2420 #else 2421 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2422 addr2 = addr1 + 1; 2423 if( pIndex->onError!=OE_None ){ 2424 const int regRowid = regIdxKey + pIndex->nColumn; 2425 const int j2 = sqlite3VdbeCurrentAddr(v) + 2; 2426 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); 2427 2428 /* The registers accessed by the OP_IsUnique opcode were allocated 2429 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() 2430 ** call above. Just before that function was freed they were released 2431 ** (made available to the compiler for reuse) using 2432 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique 2433 ** opcode use the values stored within seems dangerous. However, since 2434 ** we can be sure that no other temp registers have been allocated 2435 ** since sqlite3ReleaseTempRange() was called, it is safe to do so. 2436 */ 2437 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); 2438 sqlite3HaltConstraint( 2439 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); 2440 } 2441 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2442 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2443 #endif 2444 sqlite3ReleaseTempReg(pParse, regRecord); 2445 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); 2446 sqlite3VdbeJumpHere(v, addr1); 2447 2448 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2449 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2450 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2451 } 2452 2453 /* 2454 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2455 ** and pTblList is the name of the table that is to be indexed. Both will 2456 ** be NULL for a primary key or an index that is created to satisfy a 2457 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2458 ** as the table to be indexed. pParse->pNewTable is a table that is 2459 ** currently being constructed by a CREATE TABLE statement. 2460 ** 2461 ** pList is a list of columns to be indexed. pList will be NULL if this 2462 ** is a primary key or unique-constraint on the most recent column added 2463 ** to the table currently under construction. 2464 ** 2465 ** If the index is created successfully, return a pointer to the new Index 2466 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2467 ** as the tables primary key (Index.autoIndex==2). 2468 */ 2469 Index *sqlite3CreateIndex( 2470 Parse *pParse, /* All information about this parse */ 2471 Token *pName1, /* First part of index name. May be NULL */ 2472 Token *pName2, /* Second part of index name. May be NULL */ 2473 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2474 ExprList *pList, /* A list of columns to be indexed */ 2475 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2476 Token *pStart, /* The CREATE token that begins this statement */ 2477 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2478 int sortOrder, /* Sort order of primary key when pList==NULL */ 2479 int ifNotExist /* Omit error if index already exists */ 2480 ){ 2481 Index *pRet = 0; /* Pointer to return */ 2482 Table *pTab = 0; /* Table to be indexed */ 2483 Index *pIndex = 0; /* The index to be created */ 2484 char *zName = 0; /* Name of the index */ 2485 int nName; /* Number of characters in zName */ 2486 int i, j; 2487 Token nullId; /* Fake token for an empty ID list */ 2488 DbFixer sFix; /* For assigning database names to pTable */ 2489 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2490 sqlite3 *db = pParse->db; 2491 Db *pDb; /* The specific table containing the indexed database */ 2492 int iDb; /* Index of the database that is being written */ 2493 Token *pName = 0; /* Unqualified name of the index to create */ 2494 struct ExprList_item *pListItem; /* For looping over pList */ 2495 int nCol; 2496 int nExtra = 0; 2497 char *zExtra; 2498 2499 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ 2500 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2501 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2502 goto exit_create_index; 2503 } 2504 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2505 goto exit_create_index; 2506 } 2507 2508 /* 2509 ** Find the table that is to be indexed. Return early if not found. 2510 */ 2511 if( pTblName!=0 ){ 2512 2513 /* Use the two-part index name to determine the database 2514 ** to search for the table. 'Fix' the table name to this db 2515 ** before looking up the table. 2516 */ 2517 assert( pName1 && pName2 ); 2518 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2519 if( iDb<0 ) goto exit_create_index; 2520 assert( pName && pName->z ); 2521 2522 #ifndef SQLITE_OMIT_TEMPDB 2523 /* If the index name was unqualified, check if the the table 2524 ** is a temp table. If so, set the database to 1. Do not do this 2525 ** if initialising a database schema. 2526 */ 2527 if( !db->init.busy ){ 2528 pTab = sqlite3SrcListLookup(pParse, pTblName); 2529 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2530 iDb = 1; 2531 } 2532 } 2533 #endif 2534 2535 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2536 sqlite3FixSrcList(&sFix, pTblName) 2537 ){ 2538 /* Because the parser constructs pTblName from a single identifier, 2539 ** sqlite3FixSrcList can never fail. */ 2540 assert(0); 2541 } 2542 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 2543 pTblName->a[0].zDatabase); 2544 if( !pTab || db->mallocFailed ) goto exit_create_index; 2545 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2546 }else{ 2547 assert( pName==0 ); 2548 assert( pStart==0 ); 2549 pTab = pParse->pNewTable; 2550 if( !pTab ) goto exit_create_index; 2551 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2552 } 2553 pDb = &db->aDb[iDb]; 2554 2555 assert( pTab!=0 ); 2556 assert( pParse->nErr==0 ); 2557 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2558 && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2559 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2560 goto exit_create_index; 2561 } 2562 #ifndef SQLITE_OMIT_VIEW 2563 if( pTab->pSelect ){ 2564 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2565 goto exit_create_index; 2566 } 2567 #endif 2568 #ifndef SQLITE_OMIT_VIRTUALTABLE 2569 if( IsVirtual(pTab) ){ 2570 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2571 goto exit_create_index; 2572 } 2573 #endif 2574 2575 /* 2576 ** Find the name of the index. Make sure there is not already another 2577 ** index or table with the same name. 2578 ** 2579 ** Exception: If we are reading the names of permanent indices from the 2580 ** sqlite_master table (because some other process changed the schema) and 2581 ** one of the index names collides with the name of a temporary table or 2582 ** index, then we will continue to process this index. 2583 ** 2584 ** If pName==0 it means that we are 2585 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2586 ** own name. 2587 */ 2588 if( pName ){ 2589 zName = sqlite3NameFromToken(db, pName); 2590 if( zName==0 ) goto exit_create_index; 2591 assert( pName->z!=0 ); 2592 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2593 goto exit_create_index; 2594 } 2595 if( !db->init.busy ){ 2596 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2597 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2598 goto exit_create_index; 2599 } 2600 } 2601 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2602 if( !ifNotExist ){ 2603 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2604 }else{ 2605 assert( !db->init.busy ); 2606 sqlite3CodeVerifySchema(pParse, iDb); 2607 } 2608 goto exit_create_index; 2609 } 2610 }else{ 2611 int n; 2612 Index *pLoop; 2613 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2614 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2615 if( zName==0 ){ 2616 goto exit_create_index; 2617 } 2618 } 2619 2620 /* Check for authorization to create an index. 2621 */ 2622 #ifndef SQLITE_OMIT_AUTHORIZATION 2623 { 2624 const char *zDb = pDb->zName; 2625 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2626 goto exit_create_index; 2627 } 2628 i = SQLITE_CREATE_INDEX; 2629 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2630 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2631 goto exit_create_index; 2632 } 2633 } 2634 #endif 2635 2636 /* If pList==0, it means this routine was called to make a primary 2637 ** key out of the last column added to the table under construction. 2638 ** So create a fake list to simulate this. 2639 */ 2640 if( pList==0 ){ 2641 nullId.z = pTab->aCol[pTab->nCol-1].zName; 2642 nullId.n = sqlite3Strlen30((char*)nullId.z); 2643 pList = sqlite3ExprListAppend(pParse, 0, 0); 2644 if( pList==0 ) goto exit_create_index; 2645 sqlite3ExprListSetName(pParse, pList, &nullId, 0); 2646 pList->a[0].sortOrder = (u8)sortOrder; 2647 } 2648 2649 /* Figure out how many bytes of space are required to store explicitly 2650 ** specified collation sequence names. 2651 */ 2652 for(i=0; i<pList->nExpr; i++){ 2653 Expr *pExpr = pList->a[i].pExpr; 2654 if( pExpr ){ 2655 CollSeq *pColl = pExpr->pColl; 2656 /* Either pColl!=0 or there was an OOM failure. But if an OOM 2657 ** failure we have quit before reaching this point. */ 2658 if( ALWAYS(pColl) ){ 2659 nExtra += (1 + sqlite3Strlen30(pColl->zName)); 2660 } 2661 } 2662 } 2663 2664 /* 2665 ** Allocate the index structure. 2666 */ 2667 nName = sqlite3Strlen30(zName); 2668 nCol = pList->nExpr; 2669 pIndex = sqlite3DbMallocZero(db, 2670 ROUND8(sizeof(Index)) + /* Index structure */ 2671 ROUND8(sizeof(tRowcnt)*(nCol+1)) + /* Index.aiRowEst */ 2672 sizeof(char *)*nCol + /* Index.azColl */ 2673 sizeof(int)*nCol + /* Index.aiColumn */ 2674 sizeof(u8)*nCol + /* Index.aSortOrder */ 2675 nName + 1 + /* Index.zName */ 2676 nExtra /* Collation sequence names */ 2677 ); 2678 if( db->mallocFailed ){ 2679 goto exit_create_index; 2680 } 2681 zExtra = (char*)pIndex; 2682 pIndex->aiRowEst = (tRowcnt*)&zExtra[ROUND8(sizeof(Index))]; 2683 pIndex->azColl = (char**) 2684 ((char*)pIndex->aiRowEst + ROUND8(sizeof(tRowcnt)*nCol+1)); 2685 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowEst) ); 2686 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 2687 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2688 pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]); 2689 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2690 zExtra = (char *)(&pIndex->zName[nName+1]); 2691 memcpy(pIndex->zName, zName, nName+1); 2692 pIndex->pTable = pTab; 2693 pIndex->nColumn = pList->nExpr; 2694 pIndex->onError = (u8)onError; 2695 pIndex->autoIndex = (u8)(pName==0); 2696 pIndex->pSchema = db->aDb[iDb].pSchema; 2697 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2698 2699 /* Check to see if we should honor DESC requests on index columns 2700 */ 2701 if( pDb->pSchema->file_format>=4 ){ 2702 sortOrderMask = -1; /* Honor DESC */ 2703 }else{ 2704 sortOrderMask = 0; /* Ignore DESC */ 2705 } 2706 2707 /* Scan the names of the columns of the table to be indexed and 2708 ** load the column indices into the Index structure. Report an error 2709 ** if any column is not found. 2710 ** 2711 ** TODO: Add a test to make sure that the same column is not named 2712 ** more than once within the same index. Only the first instance of 2713 ** the column will ever be used by the optimizer. Note that using the 2714 ** same column more than once cannot be an error because that would 2715 ** break backwards compatibility - it needs to be a warning. 2716 */ 2717 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2718 const char *zColName = pListItem->zName; 2719 Column *pTabCol; 2720 int requestedSortOrder; 2721 char *zColl; /* Collation sequence name */ 2722 2723 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2724 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2725 } 2726 if( j>=pTab->nCol ){ 2727 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2728 pTab->zName, zColName); 2729 pParse->checkSchema = 1; 2730 goto exit_create_index; 2731 } 2732 pIndex->aiColumn[i] = j; 2733 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of 2734 ** the way the "idxlist" non-terminal is constructed by the parser, 2735 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl 2736 ** must exist or else there must have been an OOM error. But if there 2737 ** was an OOM error, we would never reach this point. */ 2738 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){ 2739 int nColl; 2740 zColl = pListItem->pExpr->pColl->zName; 2741 nColl = sqlite3Strlen30(zColl) + 1; 2742 assert( nExtra>=nColl ); 2743 memcpy(zExtra, zColl, nColl); 2744 zColl = zExtra; 2745 zExtra += nColl; 2746 nExtra -= nColl; 2747 }else{ 2748 zColl = pTab->aCol[j].zColl; 2749 if( !zColl ){ 2750 zColl = db->pDfltColl->zName; 2751 } 2752 } 2753 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 2754 goto exit_create_index; 2755 } 2756 pIndex->azColl[i] = zColl; 2757 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2758 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 2759 } 2760 sqlite3DefaultRowEst(pIndex); 2761 2762 if( pTab==pParse->pNewTable ){ 2763 /* This routine has been called to create an automatic index as a 2764 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2765 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2766 ** i.e. one of: 2767 ** 2768 ** CREATE TABLE t(x PRIMARY KEY, y); 2769 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2770 ** 2771 ** Either way, check to see if the table already has such an index. If 2772 ** so, don't bother creating this one. This only applies to 2773 ** automatically created indices. Users can do as they wish with 2774 ** explicit indices. 2775 ** 2776 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 2777 ** (and thus suppressing the second one) even if they have different 2778 ** sort orders. 2779 ** 2780 ** If there are different collating sequences or if the columns of 2781 ** the constraint occur in different orders, then the constraints are 2782 ** considered distinct and both result in separate indices. 2783 */ 2784 Index *pIdx; 2785 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2786 int k; 2787 assert( pIdx->onError!=OE_None ); 2788 assert( pIdx->autoIndex ); 2789 assert( pIndex->onError!=OE_None ); 2790 2791 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2792 for(k=0; k<pIdx->nColumn; k++){ 2793 const char *z1; 2794 const char *z2; 2795 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2796 z1 = pIdx->azColl[k]; 2797 z2 = pIndex->azColl[k]; 2798 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2799 } 2800 if( k==pIdx->nColumn ){ 2801 if( pIdx->onError!=pIndex->onError ){ 2802 /* This constraint creates the same index as a previous 2803 ** constraint specified somewhere in the CREATE TABLE statement. 2804 ** However the ON CONFLICT clauses are different. If both this 2805 ** constraint and the previous equivalent constraint have explicit 2806 ** ON CONFLICT clauses this is an error. Otherwise, use the 2807 ** explicitly specified behaviour for the index. 2808 */ 2809 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2810 sqlite3ErrorMsg(pParse, 2811 "conflicting ON CONFLICT clauses specified", 0); 2812 } 2813 if( pIdx->onError==OE_Default ){ 2814 pIdx->onError = pIndex->onError; 2815 } 2816 } 2817 goto exit_create_index; 2818 } 2819 } 2820 } 2821 2822 /* Link the new Index structure to its table and to the other 2823 ** in-memory database structures. 2824 */ 2825 if( db->init.busy ){ 2826 Index *p; 2827 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 2828 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2829 pIndex->zName, sqlite3Strlen30(pIndex->zName), 2830 pIndex); 2831 if( p ){ 2832 assert( p==pIndex ); /* Malloc must have failed */ 2833 db->mallocFailed = 1; 2834 goto exit_create_index; 2835 } 2836 db->flags |= SQLITE_InternChanges; 2837 if( pTblName!=0 ){ 2838 pIndex->tnum = db->init.newTnum; 2839 } 2840 } 2841 2842 /* If the db->init.busy is 0 then create the index on disk. This 2843 ** involves writing the index into the master table and filling in the 2844 ** index with the current table contents. 2845 ** 2846 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2847 ** command. db->init.busy is 1 when a database is opened and 2848 ** CREATE INDEX statements are read out of the master table. In 2849 ** the latter case the index already exists on disk, which is why 2850 ** we don't want to recreate it. 2851 ** 2852 ** If pTblName==0 it means this index is generated as a primary key 2853 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2854 ** has just been created, it contains no data and the index initialization 2855 ** step can be skipped. 2856 */ 2857 else{ /* if( db->init.busy==0 ) */ 2858 Vdbe *v; 2859 char *zStmt; 2860 int iMem = ++pParse->nMem; 2861 2862 v = sqlite3GetVdbe(pParse); 2863 if( v==0 ) goto exit_create_index; 2864 2865 2866 /* Create the rootpage for the index 2867 */ 2868 sqlite3BeginWriteOperation(pParse, 1, iDb); 2869 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 2870 2871 /* Gather the complete text of the CREATE INDEX statement into 2872 ** the zStmt variable 2873 */ 2874 if( pStart ){ 2875 assert( pEnd!=0 ); 2876 /* A named index with an explicit CREATE INDEX statement */ 2877 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 2878 onError==OE_None ? "" : " UNIQUE", 2879 (int)(pEnd->z - pName->z) + 1, 2880 pName->z); 2881 }else{ 2882 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2883 /* zStmt = sqlite3MPrintf(""); */ 2884 zStmt = 0; 2885 } 2886 2887 /* Add an entry in sqlite_master for this index 2888 */ 2889 sqlite3NestedParse(pParse, 2890 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 2891 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2892 pIndex->zName, 2893 pTab->zName, 2894 iMem, 2895 zStmt 2896 ); 2897 sqlite3DbFree(db, zStmt); 2898 2899 /* Fill the index with data and reparse the schema. Code an OP_Expire 2900 ** to invalidate all pre-compiled statements. 2901 */ 2902 if( pTblName ){ 2903 sqlite3RefillIndex(pParse, pIndex, iMem); 2904 sqlite3ChangeCookie(pParse, iDb); 2905 sqlite3VdbeAddParseSchemaOp(v, iDb, 2906 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 2907 sqlite3VdbeAddOp1(v, OP_Expire, 0); 2908 } 2909 } 2910 2911 /* When adding an index to the list of indices for a table, make 2912 ** sure all indices labeled OE_Replace come after all those labeled 2913 ** OE_Ignore. This is necessary for the correct constraint check 2914 ** processing (in sqlite3GenerateConstraintChecks()) as part of 2915 ** UPDATE and INSERT statements. 2916 */ 2917 if( db->init.busy || pTblName==0 ){ 2918 if( onError!=OE_Replace || pTab->pIndex==0 2919 || pTab->pIndex->onError==OE_Replace){ 2920 pIndex->pNext = pTab->pIndex; 2921 pTab->pIndex = pIndex; 2922 }else{ 2923 Index *pOther = pTab->pIndex; 2924 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2925 pOther = pOther->pNext; 2926 } 2927 pIndex->pNext = pOther->pNext; 2928 pOther->pNext = pIndex; 2929 } 2930 pRet = pIndex; 2931 pIndex = 0; 2932 } 2933 2934 /* Clean up before exiting */ 2935 exit_create_index: 2936 if( pIndex ){ 2937 sqlite3DbFree(db, pIndex->zColAff); 2938 sqlite3DbFree(db, pIndex); 2939 } 2940 sqlite3ExprListDelete(db, pList); 2941 sqlite3SrcListDelete(db, pTblName); 2942 sqlite3DbFree(db, zName); 2943 return pRet; 2944 } 2945 2946 /* 2947 ** Fill the Index.aiRowEst[] array with default information - information 2948 ** to be used when we have not run the ANALYZE command. 2949 ** 2950 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2951 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2952 ** number of rows in the table that match any particular value of the 2953 ** first column of the index. aiRowEst[2] is an estimate of the number 2954 ** of rows that match any particular combiniation of the first 2 columns 2955 ** of the index. And so forth. It must always be the case that 2956 * 2957 ** aiRowEst[N]<=aiRowEst[N-1] 2958 ** aiRowEst[N]>=1 2959 ** 2960 ** Apart from that, we have little to go on besides intuition as to 2961 ** how aiRowEst[] should be initialized. The numbers generated here 2962 ** are based on typical values found in actual indices. 2963 */ 2964 void sqlite3DefaultRowEst(Index *pIdx){ 2965 tRowcnt *a = pIdx->aiRowEst; 2966 int i; 2967 tRowcnt n; 2968 assert( a!=0 ); 2969 a[0] = pIdx->pTable->nRowEst; 2970 if( a[0]<10 ) a[0] = 10; 2971 n = 10; 2972 for(i=1; i<=pIdx->nColumn; i++){ 2973 a[i] = n; 2974 if( n>5 ) n--; 2975 } 2976 if( pIdx->onError!=OE_None ){ 2977 a[pIdx->nColumn] = 1; 2978 } 2979 } 2980 2981 /* 2982 ** This routine will drop an existing named index. This routine 2983 ** implements the DROP INDEX statement. 2984 */ 2985 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2986 Index *pIndex; 2987 Vdbe *v; 2988 sqlite3 *db = pParse->db; 2989 int iDb; 2990 2991 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2992 if( db->mallocFailed ){ 2993 goto exit_drop_index; 2994 } 2995 assert( pName->nSrc==1 ); 2996 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2997 goto exit_drop_index; 2998 } 2999 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3000 if( pIndex==0 ){ 3001 if( !ifExists ){ 3002 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3003 }else{ 3004 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3005 } 3006 pParse->checkSchema = 1; 3007 goto exit_drop_index; 3008 } 3009 if( pIndex->autoIndex ){ 3010 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3011 "or PRIMARY KEY constraint cannot be dropped", 0); 3012 goto exit_drop_index; 3013 } 3014 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3015 #ifndef SQLITE_OMIT_AUTHORIZATION 3016 { 3017 int code = SQLITE_DROP_INDEX; 3018 Table *pTab = pIndex->pTable; 3019 const char *zDb = db->aDb[iDb].zName; 3020 const char *zTab = SCHEMA_TABLE(iDb); 3021 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3022 goto exit_drop_index; 3023 } 3024 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3025 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3026 goto exit_drop_index; 3027 } 3028 } 3029 #endif 3030 3031 /* Generate code to remove the index and from the master table */ 3032 v = sqlite3GetVdbe(pParse); 3033 if( v ){ 3034 sqlite3BeginWriteOperation(pParse, 1, iDb); 3035 sqlite3NestedParse(pParse, 3036 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3037 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3038 ); 3039 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3040 sqlite3ChangeCookie(pParse, iDb); 3041 destroyRootPage(pParse, pIndex->tnum, iDb); 3042 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3043 } 3044 3045 exit_drop_index: 3046 sqlite3SrcListDelete(db, pName); 3047 } 3048 3049 /* 3050 ** pArray is a pointer to an array of objects. Each object in the 3051 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3052 ** to extend the array so that there is space for a new object at the end. 3053 ** 3054 ** When this function is called, *pnEntry contains the current size of 3055 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3056 ** in total). 3057 ** 3058 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3059 ** space allocated for the new object is zeroed, *pnEntry updated to 3060 ** reflect the new size of the array and a pointer to the new allocation 3061 ** returned. *pIdx is set to the index of the new array entry in this case. 3062 ** 3063 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3064 ** unchanged and a copy of pArray returned. 3065 */ 3066 void *sqlite3ArrayAllocate( 3067 sqlite3 *db, /* Connection to notify of malloc failures */ 3068 void *pArray, /* Array of objects. Might be reallocated */ 3069 int szEntry, /* Size of each object in the array */ 3070 int *pnEntry, /* Number of objects currently in use */ 3071 int *pIdx /* Write the index of a new slot here */ 3072 ){ 3073 char *z; 3074 int n = *pnEntry; 3075 if( (n & (n-1))==0 ){ 3076 int sz = (n==0) ? 1 : 2*n; 3077 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3078 if( pNew==0 ){ 3079 *pIdx = -1; 3080 return pArray; 3081 } 3082 pArray = pNew; 3083 } 3084 z = (char*)pArray; 3085 memset(&z[n * szEntry], 0, szEntry); 3086 *pIdx = n; 3087 ++*pnEntry; 3088 return pArray; 3089 } 3090 3091 /* 3092 ** Append a new element to the given IdList. Create a new IdList if 3093 ** need be. 3094 ** 3095 ** A new IdList is returned, or NULL if malloc() fails. 3096 */ 3097 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3098 int i; 3099 if( pList==0 ){ 3100 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3101 if( pList==0 ) return 0; 3102 } 3103 pList->a = sqlite3ArrayAllocate( 3104 db, 3105 pList->a, 3106 sizeof(pList->a[0]), 3107 &pList->nId, 3108 &i 3109 ); 3110 if( i<0 ){ 3111 sqlite3IdListDelete(db, pList); 3112 return 0; 3113 } 3114 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3115 return pList; 3116 } 3117 3118 /* 3119 ** Delete an IdList. 3120 */ 3121 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3122 int i; 3123 if( pList==0 ) return; 3124 for(i=0; i<pList->nId; i++){ 3125 sqlite3DbFree(db, pList->a[i].zName); 3126 } 3127 sqlite3DbFree(db, pList->a); 3128 sqlite3DbFree(db, pList); 3129 } 3130 3131 /* 3132 ** Return the index in pList of the identifier named zId. Return -1 3133 ** if not found. 3134 */ 3135 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3136 int i; 3137 if( pList==0 ) return -1; 3138 for(i=0; i<pList->nId; i++){ 3139 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3140 } 3141 return -1; 3142 } 3143 3144 /* 3145 ** Expand the space allocated for the given SrcList object by 3146 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3147 ** New slots are zeroed. 3148 ** 3149 ** For example, suppose a SrcList initially contains two entries: A,B. 3150 ** To append 3 new entries onto the end, do this: 3151 ** 3152 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3153 ** 3154 ** After the call above it would contain: A, B, nil, nil, nil. 3155 ** If the iStart argument had been 1 instead of 2, then the result 3156 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3157 ** the iStart value would be 0. The result then would 3158 ** be: nil, nil, nil, A, B. 3159 ** 3160 ** If a memory allocation fails the SrcList is unchanged. The 3161 ** db->mallocFailed flag will be set to true. 3162 */ 3163 SrcList *sqlite3SrcListEnlarge( 3164 sqlite3 *db, /* Database connection to notify of OOM errors */ 3165 SrcList *pSrc, /* The SrcList to be enlarged */ 3166 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3167 int iStart /* Index in pSrc->a[] of first new slot */ 3168 ){ 3169 int i; 3170 3171 /* Sanity checking on calling parameters */ 3172 assert( iStart>=0 ); 3173 assert( nExtra>=1 ); 3174 assert( pSrc!=0 ); 3175 assert( iStart<=pSrc->nSrc ); 3176 3177 /* Allocate additional space if needed */ 3178 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3179 SrcList *pNew; 3180 int nAlloc = pSrc->nSrc+nExtra; 3181 int nGot; 3182 pNew = sqlite3DbRealloc(db, pSrc, 3183 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3184 if( pNew==0 ){ 3185 assert( db->mallocFailed ); 3186 return pSrc; 3187 } 3188 pSrc = pNew; 3189 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3190 pSrc->nAlloc = (u16)nGot; 3191 } 3192 3193 /* Move existing slots that come after the newly inserted slots 3194 ** out of the way */ 3195 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3196 pSrc->a[i+nExtra] = pSrc->a[i]; 3197 } 3198 pSrc->nSrc += (i16)nExtra; 3199 3200 /* Zero the newly allocated slots */ 3201 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3202 for(i=iStart; i<iStart+nExtra; i++){ 3203 pSrc->a[i].iCursor = -1; 3204 } 3205 3206 /* Return a pointer to the enlarged SrcList */ 3207 return pSrc; 3208 } 3209 3210 3211 /* 3212 ** Append a new table name to the given SrcList. Create a new SrcList if 3213 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3214 ** 3215 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3216 ** SrcList might be the same as the SrcList that was input or it might be 3217 ** a new one. If an OOM error does occurs, then the prior value of pList 3218 ** that is input to this routine is automatically freed. 3219 ** 3220 ** If pDatabase is not null, it means that the table has an optional 3221 ** database name prefix. Like this: "database.table". The pDatabase 3222 ** points to the table name and the pTable points to the database name. 3223 ** The SrcList.a[].zName field is filled with the table name which might 3224 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3225 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3226 ** or with NULL if no database is specified. 3227 ** 3228 ** In other words, if call like this: 3229 ** 3230 ** sqlite3SrcListAppend(D,A,B,0); 3231 ** 3232 ** Then B is a table name and the database name is unspecified. If called 3233 ** like this: 3234 ** 3235 ** sqlite3SrcListAppend(D,A,B,C); 3236 ** 3237 ** Then C is the table name and B is the database name. If C is defined 3238 ** then so is B. In other words, we never have a case where: 3239 ** 3240 ** sqlite3SrcListAppend(D,A,0,C); 3241 ** 3242 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3243 ** before being added to the SrcList. 3244 */ 3245 SrcList *sqlite3SrcListAppend( 3246 sqlite3 *db, /* Connection to notify of malloc failures */ 3247 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3248 Token *pTable, /* Table to append */ 3249 Token *pDatabase /* Database of the table */ 3250 ){ 3251 struct SrcList_item *pItem; 3252 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3253 if( pList==0 ){ 3254 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3255 if( pList==0 ) return 0; 3256 pList->nAlloc = 1; 3257 } 3258 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3259 if( db->mallocFailed ){ 3260 sqlite3SrcListDelete(db, pList); 3261 return 0; 3262 } 3263 pItem = &pList->a[pList->nSrc-1]; 3264 if( pDatabase && pDatabase->z==0 ){ 3265 pDatabase = 0; 3266 } 3267 if( pDatabase ){ 3268 Token *pTemp = pDatabase; 3269 pDatabase = pTable; 3270 pTable = pTemp; 3271 } 3272 pItem->zName = sqlite3NameFromToken(db, pTable); 3273 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3274 return pList; 3275 } 3276 3277 /* 3278 ** Assign VdbeCursor index numbers to all tables in a SrcList 3279 */ 3280 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3281 int i; 3282 struct SrcList_item *pItem; 3283 assert(pList || pParse->db->mallocFailed ); 3284 if( pList ){ 3285 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3286 if( pItem->iCursor>=0 ) break; 3287 pItem->iCursor = pParse->nTab++; 3288 if( pItem->pSelect ){ 3289 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3290 } 3291 } 3292 } 3293 } 3294 3295 /* 3296 ** Delete an entire SrcList including all its substructure. 3297 */ 3298 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3299 int i; 3300 struct SrcList_item *pItem; 3301 if( pList==0 ) return; 3302 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3303 sqlite3DbFree(db, pItem->zDatabase); 3304 sqlite3DbFree(db, pItem->zName); 3305 sqlite3DbFree(db, pItem->zAlias); 3306 sqlite3DbFree(db, pItem->zIndex); 3307 sqlite3DeleteTable(db, pItem->pTab); 3308 sqlite3SelectDelete(db, pItem->pSelect); 3309 sqlite3ExprDelete(db, pItem->pOn); 3310 sqlite3IdListDelete(db, pItem->pUsing); 3311 } 3312 sqlite3DbFree(db, pList); 3313 } 3314 3315 /* 3316 ** This routine is called by the parser to add a new term to the 3317 ** end of a growing FROM clause. The "p" parameter is the part of 3318 ** the FROM clause that has already been constructed. "p" is NULL 3319 ** if this is the first term of the FROM clause. pTable and pDatabase 3320 ** are the name of the table and database named in the FROM clause term. 3321 ** pDatabase is NULL if the database name qualifier is missing - the 3322 ** usual case. If the term has a alias, then pAlias points to the 3323 ** alias token. If the term is a subquery, then pSubquery is the 3324 ** SELECT statement that the subquery encodes. The pTable and 3325 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3326 ** parameters are the content of the ON and USING clauses. 3327 ** 3328 ** Return a new SrcList which encodes is the FROM with the new 3329 ** term added. 3330 */ 3331 SrcList *sqlite3SrcListAppendFromTerm( 3332 Parse *pParse, /* Parsing context */ 3333 SrcList *p, /* The left part of the FROM clause already seen */ 3334 Token *pTable, /* Name of the table to add to the FROM clause */ 3335 Token *pDatabase, /* Name of the database containing pTable */ 3336 Token *pAlias, /* The right-hand side of the AS subexpression */ 3337 Select *pSubquery, /* A subquery used in place of a table name */ 3338 Expr *pOn, /* The ON clause of a join */ 3339 IdList *pUsing /* The USING clause of a join */ 3340 ){ 3341 struct SrcList_item *pItem; 3342 sqlite3 *db = pParse->db; 3343 if( !p && (pOn || pUsing) ){ 3344 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3345 (pOn ? "ON" : "USING") 3346 ); 3347 goto append_from_error; 3348 } 3349 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3350 if( p==0 || NEVER(p->nSrc==0) ){ 3351 goto append_from_error; 3352 } 3353 pItem = &p->a[p->nSrc-1]; 3354 assert( pAlias!=0 ); 3355 if( pAlias->n ){ 3356 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3357 } 3358 pItem->pSelect = pSubquery; 3359 pItem->pOn = pOn; 3360 pItem->pUsing = pUsing; 3361 return p; 3362 3363 append_from_error: 3364 assert( p==0 ); 3365 sqlite3ExprDelete(db, pOn); 3366 sqlite3IdListDelete(db, pUsing); 3367 sqlite3SelectDelete(db, pSubquery); 3368 return 0; 3369 } 3370 3371 /* 3372 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3373 ** element of the source-list passed as the second argument. 3374 */ 3375 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3376 assert( pIndexedBy!=0 ); 3377 if( p && ALWAYS(p->nSrc>0) ){ 3378 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3379 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3380 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3381 /* A "NOT INDEXED" clause was supplied. See parse.y 3382 ** construct "indexed_opt" for details. */ 3383 pItem->notIndexed = 1; 3384 }else{ 3385 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3386 } 3387 } 3388 } 3389 3390 /* 3391 ** When building up a FROM clause in the parser, the join operator 3392 ** is initially attached to the left operand. But the code generator 3393 ** expects the join operator to be on the right operand. This routine 3394 ** Shifts all join operators from left to right for an entire FROM 3395 ** clause. 3396 ** 3397 ** Example: Suppose the join is like this: 3398 ** 3399 ** A natural cross join B 3400 ** 3401 ** The operator is "natural cross join". The A and B operands are stored 3402 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3403 ** operator with A. This routine shifts that operator over to B. 3404 */ 3405 void sqlite3SrcListShiftJoinType(SrcList *p){ 3406 if( p ){ 3407 int i; 3408 assert( p->a || p->nSrc==0 ); 3409 for(i=p->nSrc-1; i>0; i--){ 3410 p->a[i].jointype = p->a[i-1].jointype; 3411 } 3412 p->a[0].jointype = 0; 3413 } 3414 } 3415 3416 /* 3417 ** Begin a transaction 3418 */ 3419 void sqlite3BeginTransaction(Parse *pParse, int type){ 3420 sqlite3 *db; 3421 Vdbe *v; 3422 int i; 3423 3424 assert( pParse!=0 ); 3425 db = pParse->db; 3426 assert( db!=0 ); 3427 /* if( db->aDb[0].pBt==0 ) return; */ 3428 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3429 return; 3430 } 3431 v = sqlite3GetVdbe(pParse); 3432 if( !v ) return; 3433 if( type!=TK_DEFERRED ){ 3434 for(i=0; i<db->nDb; i++){ 3435 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3436 sqlite3VdbeUsesBtree(v, i); 3437 } 3438 } 3439 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3440 } 3441 3442 /* 3443 ** Commit a transaction 3444 */ 3445 void sqlite3CommitTransaction(Parse *pParse){ 3446 Vdbe *v; 3447 3448 assert( pParse!=0 ); 3449 assert( pParse->db!=0 ); 3450 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3451 return; 3452 } 3453 v = sqlite3GetVdbe(pParse); 3454 if( v ){ 3455 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3456 } 3457 } 3458 3459 /* 3460 ** Rollback a transaction 3461 */ 3462 void sqlite3RollbackTransaction(Parse *pParse){ 3463 Vdbe *v; 3464 3465 assert( pParse!=0 ); 3466 assert( pParse->db!=0 ); 3467 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3468 return; 3469 } 3470 v = sqlite3GetVdbe(pParse); 3471 if( v ){ 3472 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3473 } 3474 } 3475 3476 /* 3477 ** This function is called by the parser when it parses a command to create, 3478 ** release or rollback an SQL savepoint. 3479 */ 3480 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3481 char *zName = sqlite3NameFromToken(pParse->db, pName); 3482 if( zName ){ 3483 Vdbe *v = sqlite3GetVdbe(pParse); 3484 #ifndef SQLITE_OMIT_AUTHORIZATION 3485 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3486 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3487 #endif 3488 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3489 sqlite3DbFree(pParse->db, zName); 3490 return; 3491 } 3492 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3493 } 3494 } 3495 3496 /* 3497 ** Make sure the TEMP database is open and available for use. Return 3498 ** the number of errors. Leave any error messages in the pParse structure. 3499 */ 3500 int sqlite3OpenTempDatabase(Parse *pParse){ 3501 sqlite3 *db = pParse->db; 3502 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3503 int rc; 3504 Btree *pBt; 3505 static const int flags = 3506 SQLITE_OPEN_READWRITE | 3507 SQLITE_OPEN_CREATE | 3508 SQLITE_OPEN_EXCLUSIVE | 3509 SQLITE_OPEN_DELETEONCLOSE | 3510 SQLITE_OPEN_TEMP_DB; 3511 3512 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3513 if( rc!=SQLITE_OK ){ 3514 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3515 "file for storing temporary tables"); 3516 pParse->rc = rc; 3517 return 1; 3518 } 3519 db->aDb[1].pBt = pBt; 3520 assert( db->aDb[1].pSchema ); 3521 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3522 db->mallocFailed = 1; 3523 return 1; 3524 } 3525 } 3526 return 0; 3527 } 3528 3529 /* 3530 ** Generate VDBE code that will verify the schema cookie and start 3531 ** a read-transaction for all named database files. 3532 ** 3533 ** It is important that all schema cookies be verified and all 3534 ** read transactions be started before anything else happens in 3535 ** the VDBE program. But this routine can be called after much other 3536 ** code has been generated. So here is what we do: 3537 ** 3538 ** The first time this routine is called, we code an OP_Goto that 3539 ** will jump to a subroutine at the end of the program. Then we 3540 ** record every database that needs its schema verified in the 3541 ** pParse->cookieMask field. Later, after all other code has been 3542 ** generated, the subroutine that does the cookie verifications and 3543 ** starts the transactions will be coded and the OP_Goto P2 value 3544 ** will be made to point to that subroutine. The generation of the 3545 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3546 ** 3547 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3548 ** schema on any databases. This can be used to position the OP_Goto 3549 ** early in the code, before we know if any database tables will be used. 3550 */ 3551 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3552 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3553 3554 if( pToplevel->cookieGoto==0 ){ 3555 Vdbe *v = sqlite3GetVdbe(pToplevel); 3556 if( v==0 ) return; /* This only happens if there was a prior error */ 3557 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; 3558 } 3559 if( iDb>=0 ){ 3560 sqlite3 *db = pToplevel->db; 3561 yDbMask mask; 3562 3563 assert( iDb<db->nDb ); 3564 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3565 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3566 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3567 mask = ((yDbMask)1)<<iDb; 3568 if( (pToplevel->cookieMask & mask)==0 ){ 3569 pToplevel->cookieMask |= mask; 3570 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3571 if( !OMIT_TEMPDB && iDb==1 ){ 3572 sqlite3OpenTempDatabase(pToplevel); 3573 } 3574 } 3575 } 3576 } 3577 3578 /* 3579 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3580 ** attached database. Otherwise, invoke it for the database named zDb only. 3581 */ 3582 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3583 sqlite3 *db = pParse->db; 3584 int i; 3585 for(i=0; i<db->nDb; i++){ 3586 Db *pDb = &db->aDb[i]; 3587 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3588 sqlite3CodeVerifySchema(pParse, i); 3589 } 3590 } 3591 } 3592 3593 /* 3594 ** Generate VDBE code that prepares for doing an operation that 3595 ** might change the database. 3596 ** 3597 ** This routine starts a new transaction if we are not already within 3598 ** a transaction. If we are already within a transaction, then a checkpoint 3599 ** is set if the setStatement parameter is true. A checkpoint should 3600 ** be set for operations that might fail (due to a constraint) part of 3601 ** the way through and which will need to undo some writes without having to 3602 ** rollback the whole transaction. For operations where all constraints 3603 ** can be checked before any changes are made to the database, it is never 3604 ** necessary to undo a write and the checkpoint should not be set. 3605 */ 3606 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3607 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3608 sqlite3CodeVerifySchema(pParse, iDb); 3609 pToplevel->writeMask |= ((yDbMask)1)<<iDb; 3610 pToplevel->isMultiWrite |= setStatement; 3611 } 3612 3613 /* 3614 ** Indicate that the statement currently under construction might write 3615 ** more than one entry (example: deleting one row then inserting another, 3616 ** inserting multiple rows in a table, or inserting a row and index entries.) 3617 ** If an abort occurs after some of these writes have completed, then it will 3618 ** be necessary to undo the completed writes. 3619 */ 3620 void sqlite3MultiWrite(Parse *pParse){ 3621 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3622 pToplevel->isMultiWrite = 1; 3623 } 3624 3625 /* 3626 ** The code generator calls this routine if is discovers that it is 3627 ** possible to abort a statement prior to completion. In order to 3628 ** perform this abort without corrupting the database, we need to make 3629 ** sure that the statement is protected by a statement transaction. 3630 ** 3631 ** Technically, we only need to set the mayAbort flag if the 3632 ** isMultiWrite flag was previously set. There is a time dependency 3633 ** such that the abort must occur after the multiwrite. This makes 3634 ** some statements involving the REPLACE conflict resolution algorithm 3635 ** go a little faster. But taking advantage of this time dependency 3636 ** makes it more difficult to prove that the code is correct (in 3637 ** particular, it prevents us from writing an effective 3638 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3639 ** to take the safe route and skip the optimization. 3640 */ 3641 void sqlite3MayAbort(Parse *pParse){ 3642 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3643 pToplevel->mayAbort = 1; 3644 } 3645 3646 /* 3647 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3648 ** error. The onError parameter determines which (if any) of the statement 3649 ** and/or current transaction is rolled back. 3650 */ 3651 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){ 3652 Vdbe *v = sqlite3GetVdbe(pParse); 3653 if( onError==OE_Abort ){ 3654 sqlite3MayAbort(pParse); 3655 } 3656 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type); 3657 } 3658 3659 /* 3660 ** Check to see if pIndex uses the collating sequence pColl. Return 3661 ** true if it does and false if it does not. 3662 */ 3663 #ifndef SQLITE_OMIT_REINDEX 3664 static int collationMatch(const char *zColl, Index *pIndex){ 3665 int i; 3666 assert( zColl!=0 ); 3667 for(i=0; i<pIndex->nColumn; i++){ 3668 const char *z = pIndex->azColl[i]; 3669 assert( z!=0 ); 3670 if( 0==sqlite3StrICmp(z, zColl) ){ 3671 return 1; 3672 } 3673 } 3674 return 0; 3675 } 3676 #endif 3677 3678 /* 3679 ** Recompute all indices of pTab that use the collating sequence pColl. 3680 ** If pColl==0 then recompute all indices of pTab. 3681 */ 3682 #ifndef SQLITE_OMIT_REINDEX 3683 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3684 Index *pIndex; /* An index associated with pTab */ 3685 3686 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3687 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3688 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3689 sqlite3BeginWriteOperation(pParse, 0, iDb); 3690 sqlite3RefillIndex(pParse, pIndex, -1); 3691 } 3692 } 3693 } 3694 #endif 3695 3696 /* 3697 ** Recompute all indices of all tables in all databases where the 3698 ** indices use the collating sequence pColl. If pColl==0 then recompute 3699 ** all indices everywhere. 3700 */ 3701 #ifndef SQLITE_OMIT_REINDEX 3702 static void reindexDatabases(Parse *pParse, char const *zColl){ 3703 Db *pDb; /* A single database */ 3704 int iDb; /* The database index number */ 3705 sqlite3 *db = pParse->db; /* The database connection */ 3706 HashElem *k; /* For looping over tables in pDb */ 3707 Table *pTab; /* A table in the database */ 3708 3709 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 3710 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3711 assert( pDb!=0 ); 3712 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3713 pTab = (Table*)sqliteHashData(k); 3714 reindexTable(pParse, pTab, zColl); 3715 } 3716 } 3717 } 3718 #endif 3719 3720 /* 3721 ** Generate code for the REINDEX command. 3722 ** 3723 ** REINDEX -- 1 3724 ** REINDEX <collation> -- 2 3725 ** REINDEX ?<database>.?<tablename> -- 3 3726 ** REINDEX ?<database>.?<indexname> -- 4 3727 ** 3728 ** Form 1 causes all indices in all attached databases to be rebuilt. 3729 ** Form 2 rebuilds all indices in all databases that use the named 3730 ** collating function. Forms 3 and 4 rebuild the named index or all 3731 ** indices associated with the named table. 3732 */ 3733 #ifndef SQLITE_OMIT_REINDEX 3734 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3735 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3736 char *z; /* Name of a table or index */ 3737 const char *zDb; /* Name of the database */ 3738 Table *pTab; /* A table in the database */ 3739 Index *pIndex; /* An index associated with pTab */ 3740 int iDb; /* The database index number */ 3741 sqlite3 *db = pParse->db; /* The database connection */ 3742 Token *pObjName; /* Name of the table or index to be reindexed */ 3743 3744 /* Read the database schema. If an error occurs, leave an error message 3745 ** and code in pParse and return NULL. */ 3746 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3747 return; 3748 } 3749 3750 if( pName1==0 ){ 3751 reindexDatabases(pParse, 0); 3752 return; 3753 }else if( NEVER(pName2==0) || pName2->z==0 ){ 3754 char *zColl; 3755 assert( pName1->z ); 3756 zColl = sqlite3NameFromToken(pParse->db, pName1); 3757 if( !zColl ) return; 3758 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 3759 if( pColl ){ 3760 reindexDatabases(pParse, zColl); 3761 sqlite3DbFree(db, zColl); 3762 return; 3763 } 3764 sqlite3DbFree(db, zColl); 3765 } 3766 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3767 if( iDb<0 ) return; 3768 z = sqlite3NameFromToken(db, pObjName); 3769 if( z==0 ) return; 3770 zDb = db->aDb[iDb].zName; 3771 pTab = sqlite3FindTable(db, z, zDb); 3772 if( pTab ){ 3773 reindexTable(pParse, pTab, 0); 3774 sqlite3DbFree(db, z); 3775 return; 3776 } 3777 pIndex = sqlite3FindIndex(db, z, zDb); 3778 sqlite3DbFree(db, z); 3779 if( pIndex ){ 3780 sqlite3BeginWriteOperation(pParse, 0, iDb); 3781 sqlite3RefillIndex(pParse, pIndex, -1); 3782 return; 3783 } 3784 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3785 } 3786 #endif 3787 3788 /* 3789 ** Return a dynamicly allocated KeyInfo structure that can be used 3790 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3791 ** 3792 ** If successful, a pointer to the new structure is returned. In this case 3793 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 3794 ** pointer. If an error occurs (out of memory or missing collation 3795 ** sequence), NULL is returned and the state of pParse updated to reflect 3796 ** the error. 3797 */ 3798 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3799 int i; 3800 int nCol = pIdx->nColumn; 3801 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3802 sqlite3 *db = pParse->db; 3803 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); 3804 3805 if( pKey ){ 3806 pKey->db = pParse->db; 3807 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3808 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3809 for(i=0; i<nCol; i++){ 3810 char *zColl = pIdx->azColl[i]; 3811 assert( zColl ); 3812 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); 3813 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3814 } 3815 pKey->nField = (u16)nCol; 3816 } 3817 3818 if( pParse->nErr ){ 3819 sqlite3DbFree(db, pKey); 3820 pKey = 0; 3821 } 3822 return pKey; 3823 } 3824