1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** Return TRUE if the given yDbMask object is empty - if it contains no 118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 120 */ 121 #if SQLITE_MAX_ATTACHED>30 122 int sqlite3DbMaskAllZero(yDbMask m){ 123 int i; 124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 125 return 1; 126 } 127 #endif 128 129 /* 130 ** This routine is called after a single SQL statement has been 131 ** parsed and a VDBE program to execute that statement has been 132 ** prepared. This routine puts the finishing touches on the 133 ** VDBE program and resets the pParse structure for the next 134 ** parse. 135 ** 136 ** Note that if an error occurred, it might be the case that 137 ** no VDBE code was generated. 138 */ 139 void sqlite3FinishCoding(Parse *pParse){ 140 sqlite3 *db; 141 Vdbe *v; 142 143 assert( pParse->pToplevel==0 ); 144 db = pParse->db; 145 if( pParse->nested ) return; 146 if( db->mallocFailed || pParse->nErr ){ 147 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 148 return; 149 } 150 151 /* Begin by generating some termination code at the end of the 152 ** vdbe program 153 */ 154 v = sqlite3GetVdbe(pParse); 155 assert( !pParse->isMultiWrite 156 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 157 if( v ){ 158 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 159 sqlite3VdbeAddOp0(v, OP_Halt); 160 161 #if SQLITE_USER_AUTHENTICATION 162 if( pParse->nTableLock>0 && db->init.busy==0 ){ 163 sqlite3UserAuthInit(db); 164 if( db->auth.authLevel<UAUTH_User ){ 165 pParse->rc = SQLITE_AUTH_USER; 166 sqlite3ErrorMsg(pParse, "user not authenticated"); 167 return; 168 } 169 } 170 #endif 171 172 /* The cookie mask contains one bit for each database file open. 173 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 174 ** set for each database that is used. Generate code to start a 175 ** transaction on each used database and to verify the schema cookie 176 ** on each used database. 177 */ 178 if( db->mallocFailed==0 179 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 180 ){ 181 int iDb, i; 182 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 183 sqlite3VdbeJumpHere(v, 0); 184 for(iDb=0; iDb<db->nDb; iDb++){ 185 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 186 sqlite3VdbeUsesBtree(v, iDb); 187 sqlite3VdbeAddOp4Int(v, 188 OP_Transaction, /* Opcode */ 189 iDb, /* P1 */ 190 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 191 pParse->cookieValue[iDb], /* P3 */ 192 db->aDb[iDb].pSchema->iGeneration /* P4 */ 193 ); 194 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 195 } 196 #ifndef SQLITE_OMIT_VIRTUALTABLE 197 for(i=0; i<pParse->nVtabLock; i++){ 198 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 199 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 200 } 201 pParse->nVtabLock = 0; 202 #endif 203 204 /* Once all the cookies have been verified and transactions opened, 205 ** obtain the required table-locks. This is a no-op unless the 206 ** shared-cache feature is enabled. 207 */ 208 codeTableLocks(pParse); 209 210 /* Initialize any AUTOINCREMENT data structures required. 211 */ 212 sqlite3AutoincrementBegin(pParse); 213 214 /* Code constant expressions that where factored out of inner loops */ 215 if( pParse->pConstExpr ){ 216 ExprList *pEL = pParse->pConstExpr; 217 pParse->okConstFactor = 0; 218 for(i=0; i<pEL->nExpr; i++){ 219 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 220 } 221 } 222 223 /* Finally, jump back to the beginning of the executable code. */ 224 sqlite3VdbeGoto(v, 1); 225 } 226 } 227 228 229 /* Get the VDBE program ready for execution 230 */ 231 if( v && pParse->nErr==0 && !db->mallocFailed ){ 232 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 233 /* A minimum of one cursor is required if autoincrement is used 234 * See ticket [a696379c1f08866] */ 235 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 236 sqlite3VdbeMakeReady(v, pParse); 237 pParse->rc = SQLITE_DONE; 238 pParse->colNamesSet = 0; 239 }else{ 240 pParse->rc = SQLITE_ERROR; 241 } 242 pParse->nTab = 0; 243 pParse->nMem = 0; 244 pParse->nSet = 0; 245 pParse->nVar = 0; 246 DbMaskZero(pParse->cookieMask); 247 } 248 249 /* 250 ** Run the parser and code generator recursively in order to generate 251 ** code for the SQL statement given onto the end of the pParse context 252 ** currently under construction. When the parser is run recursively 253 ** this way, the final OP_Halt is not appended and other initialization 254 ** and finalization steps are omitted because those are handling by the 255 ** outermost parser. 256 ** 257 ** Not everything is nestable. This facility is designed to permit 258 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 259 ** care if you decide to try to use this routine for some other purposes. 260 */ 261 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 262 va_list ap; 263 char *zSql; 264 char *zErrMsg = 0; 265 sqlite3 *db = pParse->db; 266 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 267 char saveBuf[SAVE_SZ]; 268 269 if( pParse->nErr ) return; 270 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 271 va_start(ap, zFormat); 272 zSql = sqlite3VMPrintf(db, zFormat, ap); 273 va_end(ap); 274 if( zSql==0 ){ 275 return; /* A malloc must have failed */ 276 } 277 pParse->nested++; 278 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 279 memset(&pParse->nVar, 0, SAVE_SZ); 280 sqlite3RunParser(pParse, zSql, &zErrMsg); 281 sqlite3DbFree(db, zErrMsg); 282 sqlite3DbFree(db, zSql); 283 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 284 pParse->nested--; 285 } 286 287 #if SQLITE_USER_AUTHENTICATION 288 /* 289 ** Return TRUE if zTable is the name of the system table that stores the 290 ** list of users and their access credentials. 291 */ 292 int sqlite3UserAuthTable(const char *zTable){ 293 return sqlite3_stricmp(zTable, "sqlite_user")==0; 294 } 295 #endif 296 297 /* 298 ** Locate the in-memory structure that describes a particular database 299 ** table given the name of that table and (optionally) the name of the 300 ** database containing the table. Return NULL if not found. 301 ** 302 ** If zDatabase is 0, all databases are searched for the table and the 303 ** first matching table is returned. (No checking for duplicate table 304 ** names is done.) The search order is TEMP first, then MAIN, then any 305 ** auxiliary databases added using the ATTACH command. 306 ** 307 ** See also sqlite3LocateTable(). 308 */ 309 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 310 Table *p = 0; 311 int i; 312 313 /* All mutexes are required for schema access. Make sure we hold them. */ 314 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 315 #if SQLITE_USER_AUTHENTICATION 316 /* Only the admin user is allowed to know that the sqlite_user table 317 ** exists */ 318 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 319 return 0; 320 } 321 #endif 322 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 323 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 324 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 325 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 326 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 327 if( p ) break; 328 } 329 return p; 330 } 331 332 /* 333 ** Locate the in-memory structure that describes a particular database 334 ** table given the name of that table and (optionally) the name of the 335 ** database containing the table. Return NULL if not found. Also leave an 336 ** error message in pParse->zErrMsg. 337 ** 338 ** The difference between this routine and sqlite3FindTable() is that this 339 ** routine leaves an error message in pParse->zErrMsg where 340 ** sqlite3FindTable() does not. 341 */ 342 Table *sqlite3LocateTable( 343 Parse *pParse, /* context in which to report errors */ 344 int isView, /* True if looking for a VIEW rather than a TABLE */ 345 const char *zName, /* Name of the table we are looking for */ 346 const char *zDbase /* Name of the database. Might be NULL */ 347 ){ 348 Table *p; 349 350 /* Read the database schema. If an error occurs, leave an error message 351 ** and code in pParse and return NULL. */ 352 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 353 return 0; 354 } 355 356 p = sqlite3FindTable(pParse->db, zName, zDbase); 357 if( p==0 ){ 358 const char *zMsg = isView ? "no such view" : "no such table"; 359 #ifndef SQLITE_OMIT_VIRTUALTABLE 360 /* If zName is the not the name of a table in the schema created using 361 ** CREATE, then check to see if it is the name of an virtual table that 362 ** can be an eponymous virtual table. */ 363 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 364 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 365 return pMod->pEpoTab; 366 } 367 #endif 368 if( zDbase ){ 369 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 370 }else{ 371 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 372 } 373 pParse->checkSchema = 1; 374 } 375 #if SQLITE_USER_AUTHENICATION 376 else if( pParse->db->auth.authLevel<UAUTH_User ){ 377 sqlite3ErrorMsg(pParse, "user not authenticated"); 378 p = 0; 379 } 380 #endif 381 return p; 382 } 383 384 /* 385 ** Locate the table identified by *p. 386 ** 387 ** This is a wrapper around sqlite3LocateTable(). The difference between 388 ** sqlite3LocateTable() and this function is that this function restricts 389 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 390 ** non-NULL if it is part of a view or trigger program definition. See 391 ** sqlite3FixSrcList() for details. 392 */ 393 Table *sqlite3LocateTableItem( 394 Parse *pParse, 395 int isView, 396 struct SrcList_item *p 397 ){ 398 const char *zDb; 399 assert( p->pSchema==0 || p->zDatabase==0 ); 400 if( p->pSchema ){ 401 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 402 zDb = pParse->db->aDb[iDb].zName; 403 }else{ 404 zDb = p->zDatabase; 405 } 406 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 407 } 408 409 /* 410 ** Locate the in-memory structure that describes 411 ** a particular index given the name of that index 412 ** and the name of the database that contains the index. 413 ** Return NULL if not found. 414 ** 415 ** If zDatabase is 0, all databases are searched for the 416 ** table and the first matching index is returned. (No checking 417 ** for duplicate index names is done.) The search order is 418 ** TEMP first, then MAIN, then any auxiliary databases added 419 ** using the ATTACH command. 420 */ 421 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 422 Index *p = 0; 423 int i; 424 /* All mutexes are required for schema access. Make sure we hold them. */ 425 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 426 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 427 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 428 Schema *pSchema = db->aDb[j].pSchema; 429 assert( pSchema ); 430 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 431 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 432 p = sqlite3HashFind(&pSchema->idxHash, zName); 433 if( p ) break; 434 } 435 return p; 436 } 437 438 /* 439 ** Reclaim the memory used by an index 440 */ 441 static void freeIndex(sqlite3 *db, Index *p){ 442 #ifndef SQLITE_OMIT_ANALYZE 443 sqlite3DeleteIndexSamples(db, p); 444 #endif 445 sqlite3ExprDelete(db, p->pPartIdxWhere); 446 sqlite3DbFree(db, p->zColAff); 447 if( p->isResized ) sqlite3DbFree(db, p->azColl); 448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 449 sqlite3_free(p->aiRowEst); 450 #endif 451 sqlite3DbFree(db, p); 452 } 453 454 /* 455 ** For the index called zIdxName which is found in the database iDb, 456 ** unlike that index from its Table then remove the index from 457 ** the index hash table and free all memory structures associated 458 ** with the index. 459 */ 460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 461 Index *pIndex; 462 Hash *pHash; 463 464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 465 pHash = &db->aDb[iDb].pSchema->idxHash; 466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 467 if( ALWAYS(pIndex) ){ 468 if( pIndex->pTable->pIndex==pIndex ){ 469 pIndex->pTable->pIndex = pIndex->pNext; 470 }else{ 471 Index *p; 472 /* Justification of ALWAYS(); The index must be on the list of 473 ** indices. */ 474 p = pIndex->pTable->pIndex; 475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 476 if( ALWAYS(p && p->pNext==pIndex) ){ 477 p->pNext = pIndex->pNext; 478 } 479 } 480 freeIndex(db, pIndex); 481 } 482 db->flags |= SQLITE_InternChanges; 483 } 484 485 /* 486 ** Look through the list of open database files in db->aDb[] and if 487 ** any have been closed, remove them from the list. Reallocate the 488 ** db->aDb[] structure to a smaller size, if possible. 489 ** 490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 491 ** are never candidates for being collapsed. 492 */ 493 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 494 int i, j; 495 for(i=j=2; i<db->nDb; i++){ 496 struct Db *pDb = &db->aDb[i]; 497 if( pDb->pBt==0 ){ 498 sqlite3DbFree(db, pDb->zName); 499 pDb->zName = 0; 500 continue; 501 } 502 if( j<i ){ 503 db->aDb[j] = db->aDb[i]; 504 } 505 j++; 506 } 507 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 508 db->nDb = j; 509 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 510 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 511 sqlite3DbFree(db, db->aDb); 512 db->aDb = db->aDbStatic; 513 } 514 } 515 516 /* 517 ** Reset the schema for the database at index iDb. Also reset the 518 ** TEMP schema. 519 */ 520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 521 Db *pDb; 522 assert( iDb<db->nDb ); 523 524 /* Case 1: Reset the single schema identified by iDb */ 525 pDb = &db->aDb[iDb]; 526 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 527 assert( pDb->pSchema!=0 ); 528 sqlite3SchemaClear(pDb->pSchema); 529 530 /* If any database other than TEMP is reset, then also reset TEMP 531 ** since TEMP might be holding triggers that reference tables in the 532 ** other database. 533 */ 534 if( iDb!=1 ){ 535 pDb = &db->aDb[1]; 536 assert( pDb->pSchema!=0 ); 537 sqlite3SchemaClear(pDb->pSchema); 538 } 539 return; 540 } 541 542 /* 543 ** Erase all schema information from all attached databases (including 544 ** "main" and "temp") for a single database connection. 545 */ 546 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 547 int i; 548 sqlite3BtreeEnterAll(db); 549 for(i=0; i<db->nDb; i++){ 550 Db *pDb = &db->aDb[i]; 551 if( pDb->pSchema ){ 552 sqlite3SchemaClear(pDb->pSchema); 553 } 554 } 555 db->flags &= ~SQLITE_InternChanges; 556 sqlite3VtabUnlockList(db); 557 sqlite3BtreeLeaveAll(db); 558 sqlite3CollapseDatabaseArray(db); 559 } 560 561 /* 562 ** This routine is called when a commit occurs. 563 */ 564 void sqlite3CommitInternalChanges(sqlite3 *db){ 565 db->flags &= ~SQLITE_InternChanges; 566 } 567 568 /* 569 ** Delete memory allocated for the column names of a table or view (the 570 ** Table.aCol[] array). 571 */ 572 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 573 int i; 574 Column *pCol; 575 assert( pTable!=0 ); 576 if( (pCol = pTable->aCol)!=0 ){ 577 for(i=0; i<pTable->nCol; i++, pCol++){ 578 sqlite3DbFree(db, pCol->zName); 579 sqlite3ExprDelete(db, pCol->pDflt); 580 sqlite3DbFree(db, pCol->zDflt); 581 sqlite3DbFree(db, pCol->zType); 582 sqlite3DbFree(db, pCol->zColl); 583 } 584 sqlite3DbFree(db, pTable->aCol); 585 } 586 } 587 588 /* 589 ** Remove the memory data structures associated with the given 590 ** Table. No changes are made to disk by this routine. 591 ** 592 ** This routine just deletes the data structure. It does not unlink 593 ** the table data structure from the hash table. But it does destroy 594 ** memory structures of the indices and foreign keys associated with 595 ** the table. 596 ** 597 ** The db parameter is optional. It is needed if the Table object 598 ** contains lookaside memory. (Table objects in the schema do not use 599 ** lookaside memory, but some ephemeral Table objects do.) Or the 600 ** db parameter can be used with db->pnBytesFreed to measure the memory 601 ** used by the Table object. 602 */ 603 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 604 Index *pIndex, *pNext; 605 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 606 607 assert( !pTable || pTable->nRef>0 ); 608 609 /* Do not delete the table until the reference count reaches zero. */ 610 if( !pTable ) return; 611 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 612 613 /* Record the number of outstanding lookaside allocations in schema Tables 614 ** prior to doing any free() operations. Since schema Tables do not use 615 ** lookaside, this number should not change. */ 616 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 617 db->lookaside.nOut : 0 ); 618 619 /* Delete all indices associated with this table. */ 620 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 621 pNext = pIndex->pNext; 622 assert( pIndex->pSchema==pTable->pSchema ); 623 if( !db || db->pnBytesFreed==0 ){ 624 char *zName = pIndex->zName; 625 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 626 &pIndex->pSchema->idxHash, zName, 0 627 ); 628 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 629 assert( pOld==pIndex || pOld==0 ); 630 } 631 freeIndex(db, pIndex); 632 } 633 634 /* Delete any foreign keys attached to this table. */ 635 sqlite3FkDelete(db, pTable); 636 637 /* Delete the Table structure itself. 638 */ 639 sqlite3DeleteColumnNames(db, pTable); 640 sqlite3DbFree(db, pTable->zName); 641 sqlite3DbFree(db, pTable->zColAff); 642 sqlite3SelectDelete(db, pTable->pSelect); 643 sqlite3ExprListDelete(db, pTable->pCheck); 644 #ifndef SQLITE_OMIT_VIRTUALTABLE 645 sqlite3VtabClear(db, pTable); 646 #endif 647 sqlite3DbFree(db, pTable); 648 649 /* Verify that no lookaside memory was used by schema tables */ 650 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 651 } 652 653 /* 654 ** Unlink the given table from the hash tables and the delete the 655 ** table structure with all its indices and foreign keys. 656 */ 657 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 658 Table *p; 659 Db *pDb; 660 661 assert( db!=0 ); 662 assert( iDb>=0 && iDb<db->nDb ); 663 assert( zTabName ); 664 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 665 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 666 pDb = &db->aDb[iDb]; 667 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 668 sqlite3DeleteTable(db, p); 669 db->flags |= SQLITE_InternChanges; 670 } 671 672 /* 673 ** Given a token, return a string that consists of the text of that 674 ** token. Space to hold the returned string 675 ** is obtained from sqliteMalloc() and must be freed by the calling 676 ** function. 677 ** 678 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 679 ** surround the body of the token are removed. 680 ** 681 ** Tokens are often just pointers into the original SQL text and so 682 ** are not \000 terminated and are not persistent. The returned string 683 ** is \000 terminated and is persistent. 684 */ 685 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 686 char *zName; 687 if( pName ){ 688 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 689 sqlite3Dequote(zName); 690 }else{ 691 zName = 0; 692 } 693 return zName; 694 } 695 696 /* 697 ** Open the sqlite_master table stored in database number iDb for 698 ** writing. The table is opened using cursor 0. 699 */ 700 void sqlite3OpenMasterTable(Parse *p, int iDb){ 701 Vdbe *v = sqlite3GetVdbe(p); 702 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 703 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 704 if( p->nTab==0 ){ 705 p->nTab = 1; 706 } 707 } 708 709 /* 710 ** Parameter zName points to a nul-terminated buffer containing the name 711 ** of a database ("main", "temp" or the name of an attached db). This 712 ** function returns the index of the named database in db->aDb[], or 713 ** -1 if the named db cannot be found. 714 */ 715 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 716 int i = -1; /* Database number */ 717 if( zName ){ 718 Db *pDb; 719 int n = sqlite3Strlen30(zName); 720 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 721 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 722 0==sqlite3StrICmp(pDb->zName, zName) ){ 723 break; 724 } 725 } 726 } 727 return i; 728 } 729 730 /* 731 ** The token *pName contains the name of a database (either "main" or 732 ** "temp" or the name of an attached db). This routine returns the 733 ** index of the named database in db->aDb[], or -1 if the named db 734 ** does not exist. 735 */ 736 int sqlite3FindDb(sqlite3 *db, Token *pName){ 737 int i; /* Database number */ 738 char *zName; /* Name we are searching for */ 739 zName = sqlite3NameFromToken(db, pName); 740 i = sqlite3FindDbName(db, zName); 741 sqlite3DbFree(db, zName); 742 return i; 743 } 744 745 /* The table or view or trigger name is passed to this routine via tokens 746 ** pName1 and pName2. If the table name was fully qualified, for example: 747 ** 748 ** CREATE TABLE xxx.yyy (...); 749 ** 750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 751 ** the table name is not fully qualified, i.e.: 752 ** 753 ** CREATE TABLE yyy(...); 754 ** 755 ** Then pName1 is set to "yyy" and pName2 is "". 756 ** 757 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 758 ** pName2) that stores the unqualified table name. The index of the 759 ** database "xxx" is returned. 760 */ 761 int sqlite3TwoPartName( 762 Parse *pParse, /* Parsing and code generating context */ 763 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 764 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 765 Token **pUnqual /* Write the unqualified object name here */ 766 ){ 767 int iDb; /* Database holding the object */ 768 sqlite3 *db = pParse->db; 769 770 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 771 if( db->init.busy ) { 772 sqlite3ErrorMsg(pParse, "corrupt database"); 773 return -1; 774 } 775 *pUnqual = pName2; 776 iDb = sqlite3FindDb(db, pName1); 777 if( iDb<0 ){ 778 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 779 return -1; 780 } 781 }else{ 782 assert( db->init.iDb==0 || db->init.busy ); 783 iDb = db->init.iDb; 784 *pUnqual = pName1; 785 } 786 return iDb; 787 } 788 789 /* 790 ** This routine is used to check if the UTF-8 string zName is a legal 791 ** unqualified name for a new schema object (table, index, view or 792 ** trigger). All names are legal except those that begin with the string 793 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 794 ** is reserved for internal use. 795 */ 796 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 797 if( !pParse->db->init.busy && pParse->nested==0 798 && (pParse->db->flags & SQLITE_WriteSchema)==0 799 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 800 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 801 return SQLITE_ERROR; 802 } 803 return SQLITE_OK; 804 } 805 806 /* 807 ** Return the PRIMARY KEY index of a table 808 */ 809 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 810 Index *p; 811 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 812 return p; 813 } 814 815 /* 816 ** Return the column of index pIdx that corresponds to table 817 ** column iCol. Return -1 if not found. 818 */ 819 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 820 int i; 821 for(i=0; i<pIdx->nColumn; i++){ 822 if( iCol==pIdx->aiColumn[i] ) return i; 823 } 824 return -1; 825 } 826 827 /* 828 ** Begin constructing a new table representation in memory. This is 829 ** the first of several action routines that get called in response 830 ** to a CREATE TABLE statement. In particular, this routine is called 831 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 832 ** flag is true if the table should be stored in the auxiliary database 833 ** file instead of in the main database file. This is normally the case 834 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 835 ** CREATE and TABLE. 836 ** 837 ** The new table record is initialized and put in pParse->pNewTable. 838 ** As more of the CREATE TABLE statement is parsed, additional action 839 ** routines will be called to add more information to this record. 840 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 841 ** is called to complete the construction of the new table record. 842 */ 843 void sqlite3StartTable( 844 Parse *pParse, /* Parser context */ 845 Token *pName1, /* First part of the name of the table or view */ 846 Token *pName2, /* Second part of the name of the table or view */ 847 int isTemp, /* True if this is a TEMP table */ 848 int isView, /* True if this is a VIEW */ 849 int isVirtual, /* True if this is a VIRTUAL table */ 850 int noErr /* Do nothing if table already exists */ 851 ){ 852 Table *pTable; 853 char *zName = 0; /* The name of the new table */ 854 sqlite3 *db = pParse->db; 855 Vdbe *v; 856 int iDb; /* Database number to create the table in */ 857 Token *pName; /* Unqualified name of the table to create */ 858 859 /* The table or view name to create is passed to this routine via tokens 860 ** pName1 and pName2. If the table name was fully qualified, for example: 861 ** 862 ** CREATE TABLE xxx.yyy (...); 863 ** 864 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 865 ** the table name is not fully qualified, i.e.: 866 ** 867 ** CREATE TABLE yyy(...); 868 ** 869 ** Then pName1 is set to "yyy" and pName2 is "". 870 ** 871 ** The call below sets the pName pointer to point at the token (pName1 or 872 ** pName2) that stores the unqualified table name. The variable iDb is 873 ** set to the index of the database that the table or view is to be 874 ** created in. 875 */ 876 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 877 if( iDb<0 ) return; 878 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 879 /* If creating a temp table, the name may not be qualified. Unless 880 ** the database name is "temp" anyway. */ 881 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 882 return; 883 } 884 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 885 886 pParse->sNameToken = *pName; 887 zName = sqlite3NameFromToken(db, pName); 888 if( zName==0 ) return; 889 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 890 goto begin_table_error; 891 } 892 if( db->init.iDb==1 ) isTemp = 1; 893 #ifndef SQLITE_OMIT_AUTHORIZATION 894 assert( (isTemp & 1)==isTemp ); 895 { 896 int code; 897 char *zDb = db->aDb[iDb].zName; 898 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 899 goto begin_table_error; 900 } 901 if( isView ){ 902 if( !OMIT_TEMPDB && isTemp ){ 903 code = SQLITE_CREATE_TEMP_VIEW; 904 }else{ 905 code = SQLITE_CREATE_VIEW; 906 } 907 }else{ 908 if( !OMIT_TEMPDB && isTemp ){ 909 code = SQLITE_CREATE_TEMP_TABLE; 910 }else{ 911 code = SQLITE_CREATE_TABLE; 912 } 913 } 914 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 915 goto begin_table_error; 916 } 917 } 918 #endif 919 920 /* Make sure the new table name does not collide with an existing 921 ** index or table name in the same database. Issue an error message if 922 ** it does. The exception is if the statement being parsed was passed 923 ** to an sqlite3_declare_vtab() call. In that case only the column names 924 ** and types will be used, so there is no need to test for namespace 925 ** collisions. 926 */ 927 if( !IN_DECLARE_VTAB ){ 928 char *zDb = db->aDb[iDb].zName; 929 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 930 goto begin_table_error; 931 } 932 pTable = sqlite3FindTable(db, zName, zDb); 933 if( pTable ){ 934 if( !noErr ){ 935 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 936 }else{ 937 assert( !db->init.busy || CORRUPT_DB ); 938 sqlite3CodeVerifySchema(pParse, iDb); 939 } 940 goto begin_table_error; 941 } 942 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 943 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 944 goto begin_table_error; 945 } 946 } 947 948 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 949 if( pTable==0 ){ 950 db->mallocFailed = 1; 951 pParse->rc = SQLITE_NOMEM; 952 pParse->nErr++; 953 goto begin_table_error; 954 } 955 pTable->zName = zName; 956 pTable->iPKey = -1; 957 pTable->pSchema = db->aDb[iDb].pSchema; 958 pTable->nRef = 1; 959 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 960 assert( pParse->pNewTable==0 ); 961 pParse->pNewTable = pTable; 962 963 /* If this is the magic sqlite_sequence table used by autoincrement, 964 ** then record a pointer to this table in the main database structure 965 ** so that INSERT can find the table easily. 966 */ 967 #ifndef SQLITE_OMIT_AUTOINCREMENT 968 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 969 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 970 pTable->pSchema->pSeqTab = pTable; 971 } 972 #endif 973 974 /* Begin generating the code that will insert the table record into 975 ** the SQLITE_MASTER table. Note in particular that we must go ahead 976 ** and allocate the record number for the table entry now. Before any 977 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 978 ** indices to be created and the table record must come before the 979 ** indices. Hence, the record number for the table must be allocated 980 ** now. 981 */ 982 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 983 int j1; 984 int fileFormat; 985 int reg1, reg2, reg3; 986 sqlite3BeginWriteOperation(pParse, 1, iDb); 987 988 #ifndef SQLITE_OMIT_VIRTUALTABLE 989 if( isVirtual ){ 990 sqlite3VdbeAddOp0(v, OP_VBegin); 991 } 992 #endif 993 994 /* If the file format and encoding in the database have not been set, 995 ** set them now. 996 */ 997 reg1 = pParse->regRowid = ++pParse->nMem; 998 reg2 = pParse->regRoot = ++pParse->nMem; 999 reg3 = ++pParse->nMem; 1000 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1001 sqlite3VdbeUsesBtree(v, iDb); 1002 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1003 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1004 1 : SQLITE_MAX_FILE_FORMAT; 1005 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 1006 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 1007 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 1008 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 1009 sqlite3VdbeJumpHere(v, j1); 1010 1011 /* This just creates a place-holder record in the sqlite_master table. 1012 ** The record created does not contain anything yet. It will be replaced 1013 ** by the real entry in code generated at sqlite3EndTable(). 1014 ** 1015 ** The rowid for the new entry is left in register pParse->regRowid. 1016 ** The root page number of the new table is left in reg pParse->regRoot. 1017 ** The rowid and root page number values are needed by the code that 1018 ** sqlite3EndTable will generate. 1019 */ 1020 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1021 if( isView || isVirtual ){ 1022 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1023 }else 1024 #endif 1025 { 1026 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1027 } 1028 sqlite3OpenMasterTable(pParse, iDb); 1029 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1030 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 1031 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1032 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1033 sqlite3VdbeAddOp0(v, OP_Close); 1034 } 1035 1036 /* Normal (non-error) return. */ 1037 return; 1038 1039 /* If an error occurs, we jump here */ 1040 begin_table_error: 1041 sqlite3DbFree(db, zName); 1042 return; 1043 } 1044 1045 /* 1046 ** This macro is used to compare two strings in a case-insensitive manner. 1047 ** It is slightly faster than calling sqlite3StrICmp() directly, but 1048 ** produces larger code. 1049 ** 1050 ** WARNING: This macro is not compatible with the strcmp() family. It 1051 ** returns true if the two strings are equal, otherwise false. 1052 */ 1053 #define STRICMP(x, y) (\ 1054 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 1055 sqlite3UpperToLower[*(unsigned char *)(y)] \ 1056 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 1057 1058 /* 1059 ** Add a new column to the table currently being constructed. 1060 ** 1061 ** The parser calls this routine once for each column declaration 1062 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1063 ** first to get things going. Then this routine is called for each 1064 ** column. 1065 */ 1066 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1067 Table *p; 1068 int i; 1069 char *z; 1070 Column *pCol; 1071 sqlite3 *db = pParse->db; 1072 if( (p = pParse->pNewTable)==0 ) return; 1073 #if SQLITE_MAX_COLUMN 1074 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1075 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1076 return; 1077 } 1078 #endif 1079 z = sqlite3NameFromToken(db, pName); 1080 if( z==0 ) return; 1081 for(i=0; i<p->nCol; i++){ 1082 if( STRICMP(z, p->aCol[i].zName) ){ 1083 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1084 sqlite3DbFree(db, z); 1085 return; 1086 } 1087 } 1088 if( (p->nCol & 0x7)==0 ){ 1089 Column *aNew; 1090 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1091 if( aNew==0 ){ 1092 sqlite3DbFree(db, z); 1093 return; 1094 } 1095 p->aCol = aNew; 1096 } 1097 pCol = &p->aCol[p->nCol]; 1098 memset(pCol, 0, sizeof(p->aCol[0])); 1099 pCol->zName = z; 1100 1101 /* If there is no type specified, columns have the default affinity 1102 ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will 1103 ** be called next to set pCol->affinity correctly. 1104 */ 1105 pCol->affinity = SQLITE_AFF_BLOB; 1106 pCol->szEst = 1; 1107 p->nCol++; 1108 } 1109 1110 /* 1111 ** This routine is called by the parser while in the middle of 1112 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1113 ** been seen on a column. This routine sets the notNull flag on 1114 ** the column currently under construction. 1115 */ 1116 void sqlite3AddNotNull(Parse *pParse, int onError){ 1117 Table *p; 1118 p = pParse->pNewTable; 1119 if( p==0 || NEVER(p->nCol<1) ) return; 1120 p->aCol[p->nCol-1].notNull = (u8)onError; 1121 } 1122 1123 /* 1124 ** Scan the column type name zType (length nType) and return the 1125 ** associated affinity type. 1126 ** 1127 ** This routine does a case-independent search of zType for the 1128 ** substrings in the following table. If one of the substrings is 1129 ** found, the corresponding affinity is returned. If zType contains 1130 ** more than one of the substrings, entries toward the top of 1131 ** the table take priority. For example, if zType is 'BLOBINT', 1132 ** SQLITE_AFF_INTEGER is returned. 1133 ** 1134 ** Substring | Affinity 1135 ** -------------------------------- 1136 ** 'INT' | SQLITE_AFF_INTEGER 1137 ** 'CHAR' | SQLITE_AFF_TEXT 1138 ** 'CLOB' | SQLITE_AFF_TEXT 1139 ** 'TEXT' | SQLITE_AFF_TEXT 1140 ** 'BLOB' | SQLITE_AFF_BLOB 1141 ** 'REAL' | SQLITE_AFF_REAL 1142 ** 'FLOA' | SQLITE_AFF_REAL 1143 ** 'DOUB' | SQLITE_AFF_REAL 1144 ** 1145 ** If none of the substrings in the above table are found, 1146 ** SQLITE_AFF_NUMERIC is returned. 1147 */ 1148 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1149 u32 h = 0; 1150 char aff = SQLITE_AFF_NUMERIC; 1151 const char *zChar = 0; 1152 1153 if( zIn==0 ) return aff; 1154 while( zIn[0] ){ 1155 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1156 zIn++; 1157 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1158 aff = SQLITE_AFF_TEXT; 1159 zChar = zIn; 1160 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1161 aff = SQLITE_AFF_TEXT; 1162 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1163 aff = SQLITE_AFF_TEXT; 1164 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1165 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1166 aff = SQLITE_AFF_BLOB; 1167 if( zIn[0]=='(' ) zChar = zIn; 1168 #ifndef SQLITE_OMIT_FLOATING_POINT 1169 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1170 && aff==SQLITE_AFF_NUMERIC ){ 1171 aff = SQLITE_AFF_REAL; 1172 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1173 && aff==SQLITE_AFF_NUMERIC ){ 1174 aff = SQLITE_AFF_REAL; 1175 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1176 && aff==SQLITE_AFF_NUMERIC ){ 1177 aff = SQLITE_AFF_REAL; 1178 #endif 1179 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1180 aff = SQLITE_AFF_INTEGER; 1181 break; 1182 } 1183 } 1184 1185 /* If pszEst is not NULL, store an estimate of the field size. The 1186 ** estimate is scaled so that the size of an integer is 1. */ 1187 if( pszEst ){ 1188 *pszEst = 1; /* default size is approx 4 bytes */ 1189 if( aff<SQLITE_AFF_NUMERIC ){ 1190 if( zChar ){ 1191 while( zChar[0] ){ 1192 if( sqlite3Isdigit(zChar[0]) ){ 1193 int v = 0; 1194 sqlite3GetInt32(zChar, &v); 1195 v = v/4 + 1; 1196 if( v>255 ) v = 255; 1197 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1198 break; 1199 } 1200 zChar++; 1201 } 1202 }else{ 1203 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1204 } 1205 } 1206 } 1207 return aff; 1208 } 1209 1210 /* 1211 ** This routine is called by the parser while in the middle of 1212 ** parsing a CREATE TABLE statement. The pFirst token is the first 1213 ** token in the sequence of tokens that describe the type of the 1214 ** column currently under construction. pLast is the last token 1215 ** in the sequence. Use this information to construct a string 1216 ** that contains the typename of the column and store that string 1217 ** in zType. 1218 */ 1219 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1220 Table *p; 1221 Column *pCol; 1222 1223 p = pParse->pNewTable; 1224 if( p==0 || NEVER(p->nCol<1) ) return; 1225 pCol = &p->aCol[p->nCol-1]; 1226 assert( pCol->zType==0 || CORRUPT_DB ); 1227 sqlite3DbFree(pParse->db, pCol->zType); 1228 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1229 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1230 } 1231 1232 /* 1233 ** The expression is the default value for the most recently added column 1234 ** of the table currently under construction. 1235 ** 1236 ** Default value expressions must be constant. Raise an exception if this 1237 ** is not the case. 1238 ** 1239 ** This routine is called by the parser while in the middle of 1240 ** parsing a CREATE TABLE statement. 1241 */ 1242 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1243 Table *p; 1244 Column *pCol; 1245 sqlite3 *db = pParse->db; 1246 p = pParse->pNewTable; 1247 if( p!=0 ){ 1248 pCol = &(p->aCol[p->nCol-1]); 1249 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1250 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1251 pCol->zName); 1252 }else{ 1253 /* A copy of pExpr is used instead of the original, as pExpr contains 1254 ** tokens that point to volatile memory. The 'span' of the expression 1255 ** is required by pragma table_info. 1256 */ 1257 sqlite3ExprDelete(db, pCol->pDflt); 1258 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1259 sqlite3DbFree(db, pCol->zDflt); 1260 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1261 (int)(pSpan->zEnd - pSpan->zStart)); 1262 } 1263 } 1264 sqlite3ExprDelete(db, pSpan->pExpr); 1265 } 1266 1267 /* 1268 ** Designate the PRIMARY KEY for the table. pList is a list of names 1269 ** of columns that form the primary key. If pList is NULL, then the 1270 ** most recently added column of the table is the primary key. 1271 ** 1272 ** A table can have at most one primary key. If the table already has 1273 ** a primary key (and this is the second primary key) then create an 1274 ** error. 1275 ** 1276 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1277 ** then we will try to use that column as the rowid. Set the Table.iPKey 1278 ** field of the table under construction to be the index of the 1279 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1280 ** no INTEGER PRIMARY KEY. 1281 ** 1282 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1283 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1284 */ 1285 void sqlite3AddPrimaryKey( 1286 Parse *pParse, /* Parsing context */ 1287 ExprList *pList, /* List of field names to be indexed */ 1288 int onError, /* What to do with a uniqueness conflict */ 1289 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1290 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1291 ){ 1292 Table *pTab = pParse->pNewTable; 1293 char *zType = 0; 1294 int iCol = -1, i; 1295 int nTerm; 1296 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1297 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1298 sqlite3ErrorMsg(pParse, 1299 "table \"%s\" has more than one primary key", pTab->zName); 1300 goto primary_key_exit; 1301 } 1302 pTab->tabFlags |= TF_HasPrimaryKey; 1303 if( pList==0 ){ 1304 iCol = pTab->nCol - 1; 1305 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1306 zType = pTab->aCol[iCol].zType; 1307 nTerm = 1; 1308 }else{ 1309 nTerm = pList->nExpr; 1310 for(i=0; i<nTerm; i++){ 1311 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1312 if( pCExpr && pCExpr->op==TK_ID ){ 1313 const char *zCName = pCExpr->u.zToken; 1314 for(iCol=0; iCol<pTab->nCol; iCol++){ 1315 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1316 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1317 zType = pTab->aCol[iCol].zType; 1318 break; 1319 } 1320 } 1321 } 1322 } 1323 } 1324 if( nTerm==1 1325 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1326 && sortOrder!=SQLITE_SO_DESC 1327 ){ 1328 pTab->iPKey = iCol; 1329 pTab->keyConf = (u8)onError; 1330 assert( autoInc==0 || autoInc==1 ); 1331 pTab->tabFlags |= autoInc*TF_Autoincrement; 1332 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1333 }else if( autoInc ){ 1334 #ifndef SQLITE_OMIT_AUTOINCREMENT 1335 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1336 "INTEGER PRIMARY KEY"); 1337 #endif 1338 }else{ 1339 Index *p; 1340 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1341 0, sortOrder, 0); 1342 if( p ){ 1343 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1344 } 1345 pList = 0; 1346 } 1347 1348 primary_key_exit: 1349 sqlite3ExprListDelete(pParse->db, pList); 1350 return; 1351 } 1352 1353 /* 1354 ** Add a new CHECK constraint to the table currently under construction. 1355 */ 1356 void sqlite3AddCheckConstraint( 1357 Parse *pParse, /* Parsing context */ 1358 Expr *pCheckExpr /* The check expression */ 1359 ){ 1360 #ifndef SQLITE_OMIT_CHECK 1361 Table *pTab = pParse->pNewTable; 1362 sqlite3 *db = pParse->db; 1363 if( pTab && !IN_DECLARE_VTAB 1364 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1365 ){ 1366 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1367 if( pParse->constraintName.n ){ 1368 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1369 } 1370 }else 1371 #endif 1372 { 1373 sqlite3ExprDelete(pParse->db, pCheckExpr); 1374 } 1375 } 1376 1377 /* 1378 ** Set the collation function of the most recently parsed table column 1379 ** to the CollSeq given. 1380 */ 1381 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1382 Table *p; 1383 int i; 1384 char *zColl; /* Dequoted name of collation sequence */ 1385 sqlite3 *db; 1386 1387 if( (p = pParse->pNewTable)==0 ) return; 1388 i = p->nCol-1; 1389 db = pParse->db; 1390 zColl = sqlite3NameFromToken(db, pToken); 1391 if( !zColl ) return; 1392 1393 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1394 Index *pIdx; 1395 sqlite3DbFree(db, p->aCol[i].zColl); 1396 p->aCol[i].zColl = zColl; 1397 1398 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1399 ** then an index may have been created on this column before the 1400 ** collation type was added. Correct this if it is the case. 1401 */ 1402 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1403 assert( pIdx->nKeyCol==1 ); 1404 if( pIdx->aiColumn[0]==i ){ 1405 pIdx->azColl[0] = p->aCol[i].zColl; 1406 } 1407 } 1408 }else{ 1409 sqlite3DbFree(db, zColl); 1410 } 1411 } 1412 1413 /* 1414 ** This function returns the collation sequence for database native text 1415 ** encoding identified by the string zName, length nName. 1416 ** 1417 ** If the requested collation sequence is not available, or not available 1418 ** in the database native encoding, the collation factory is invoked to 1419 ** request it. If the collation factory does not supply such a sequence, 1420 ** and the sequence is available in another text encoding, then that is 1421 ** returned instead. 1422 ** 1423 ** If no versions of the requested collations sequence are available, or 1424 ** another error occurs, NULL is returned and an error message written into 1425 ** pParse. 1426 ** 1427 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1428 ** invokes the collation factory if the named collation cannot be found 1429 ** and generates an error message. 1430 ** 1431 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1432 */ 1433 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1434 sqlite3 *db = pParse->db; 1435 u8 enc = ENC(db); 1436 u8 initbusy = db->init.busy; 1437 CollSeq *pColl; 1438 1439 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1440 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1441 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1442 } 1443 1444 return pColl; 1445 } 1446 1447 1448 /* 1449 ** Generate code that will increment the schema cookie. 1450 ** 1451 ** The schema cookie is used to determine when the schema for the 1452 ** database changes. After each schema change, the cookie value 1453 ** changes. When a process first reads the schema it records the 1454 ** cookie. Thereafter, whenever it goes to access the database, 1455 ** it checks the cookie to make sure the schema has not changed 1456 ** since it was last read. 1457 ** 1458 ** This plan is not completely bullet-proof. It is possible for 1459 ** the schema to change multiple times and for the cookie to be 1460 ** set back to prior value. But schema changes are infrequent 1461 ** and the probability of hitting the same cookie value is only 1462 ** 1 chance in 2^32. So we're safe enough. 1463 */ 1464 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1465 int r1 = sqlite3GetTempReg(pParse); 1466 sqlite3 *db = pParse->db; 1467 Vdbe *v = pParse->pVdbe; 1468 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1469 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1470 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1471 sqlite3ReleaseTempReg(pParse, r1); 1472 } 1473 1474 /* 1475 ** Measure the number of characters needed to output the given 1476 ** identifier. The number returned includes any quotes used 1477 ** but does not include the null terminator. 1478 ** 1479 ** The estimate is conservative. It might be larger that what is 1480 ** really needed. 1481 */ 1482 static int identLength(const char *z){ 1483 int n; 1484 for(n=0; *z; n++, z++){ 1485 if( *z=='"' ){ n++; } 1486 } 1487 return n + 2; 1488 } 1489 1490 /* 1491 ** The first parameter is a pointer to an output buffer. The second 1492 ** parameter is a pointer to an integer that contains the offset at 1493 ** which to write into the output buffer. This function copies the 1494 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1495 ** to the specified offset in the buffer and updates *pIdx to refer 1496 ** to the first byte after the last byte written before returning. 1497 ** 1498 ** If the string zSignedIdent consists entirely of alpha-numeric 1499 ** characters, does not begin with a digit and is not an SQL keyword, 1500 ** then it is copied to the output buffer exactly as it is. Otherwise, 1501 ** it is quoted using double-quotes. 1502 */ 1503 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1504 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1505 int i, j, needQuote; 1506 i = *pIdx; 1507 1508 for(j=0; zIdent[j]; j++){ 1509 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1510 } 1511 needQuote = sqlite3Isdigit(zIdent[0]) 1512 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1513 || zIdent[j]!=0 1514 || j==0; 1515 1516 if( needQuote ) z[i++] = '"'; 1517 for(j=0; zIdent[j]; j++){ 1518 z[i++] = zIdent[j]; 1519 if( zIdent[j]=='"' ) z[i++] = '"'; 1520 } 1521 if( needQuote ) z[i++] = '"'; 1522 z[i] = 0; 1523 *pIdx = i; 1524 } 1525 1526 /* 1527 ** Generate a CREATE TABLE statement appropriate for the given 1528 ** table. Memory to hold the text of the statement is obtained 1529 ** from sqliteMalloc() and must be freed by the calling function. 1530 */ 1531 static char *createTableStmt(sqlite3 *db, Table *p){ 1532 int i, k, n; 1533 char *zStmt; 1534 char *zSep, *zSep2, *zEnd; 1535 Column *pCol; 1536 n = 0; 1537 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1538 n += identLength(pCol->zName) + 5; 1539 } 1540 n += identLength(p->zName); 1541 if( n<50 ){ 1542 zSep = ""; 1543 zSep2 = ","; 1544 zEnd = ")"; 1545 }else{ 1546 zSep = "\n "; 1547 zSep2 = ",\n "; 1548 zEnd = "\n)"; 1549 } 1550 n += 35 + 6*p->nCol; 1551 zStmt = sqlite3DbMallocRaw(0, n); 1552 if( zStmt==0 ){ 1553 db->mallocFailed = 1; 1554 return 0; 1555 } 1556 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1557 k = sqlite3Strlen30(zStmt); 1558 identPut(zStmt, &k, p->zName); 1559 zStmt[k++] = '('; 1560 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1561 static const char * const azType[] = { 1562 /* SQLITE_AFF_BLOB */ "", 1563 /* SQLITE_AFF_TEXT */ " TEXT", 1564 /* SQLITE_AFF_NUMERIC */ " NUM", 1565 /* SQLITE_AFF_INTEGER */ " INT", 1566 /* SQLITE_AFF_REAL */ " REAL" 1567 }; 1568 int len; 1569 const char *zType; 1570 1571 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1572 k += sqlite3Strlen30(&zStmt[k]); 1573 zSep = zSep2; 1574 identPut(zStmt, &k, pCol->zName); 1575 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1576 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1577 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1578 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1579 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1580 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1581 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1582 1583 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1584 len = sqlite3Strlen30(zType); 1585 assert( pCol->affinity==SQLITE_AFF_BLOB 1586 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1587 memcpy(&zStmt[k], zType, len); 1588 k += len; 1589 assert( k<=n ); 1590 } 1591 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1592 return zStmt; 1593 } 1594 1595 /* 1596 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1597 ** on success and SQLITE_NOMEM on an OOM error. 1598 */ 1599 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1600 char *zExtra; 1601 int nByte; 1602 if( pIdx->nColumn>=N ) return SQLITE_OK; 1603 assert( pIdx->isResized==0 ); 1604 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1605 zExtra = sqlite3DbMallocZero(db, nByte); 1606 if( zExtra==0 ) return SQLITE_NOMEM; 1607 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1608 pIdx->azColl = (char**)zExtra; 1609 zExtra += sizeof(char*)*N; 1610 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1611 pIdx->aiColumn = (i16*)zExtra; 1612 zExtra += sizeof(i16)*N; 1613 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1614 pIdx->aSortOrder = (u8*)zExtra; 1615 pIdx->nColumn = N; 1616 pIdx->isResized = 1; 1617 return SQLITE_OK; 1618 } 1619 1620 /* 1621 ** Estimate the total row width for a table. 1622 */ 1623 static void estimateTableWidth(Table *pTab){ 1624 unsigned wTable = 0; 1625 const Column *pTabCol; 1626 int i; 1627 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1628 wTable += pTabCol->szEst; 1629 } 1630 if( pTab->iPKey<0 ) wTable++; 1631 pTab->szTabRow = sqlite3LogEst(wTable*4); 1632 } 1633 1634 /* 1635 ** Estimate the average size of a row for an index. 1636 */ 1637 static void estimateIndexWidth(Index *pIdx){ 1638 unsigned wIndex = 0; 1639 int i; 1640 const Column *aCol = pIdx->pTable->aCol; 1641 for(i=0; i<pIdx->nColumn; i++){ 1642 i16 x = pIdx->aiColumn[i]; 1643 assert( x<pIdx->pTable->nCol ); 1644 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1645 } 1646 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1647 } 1648 1649 /* Return true if value x is found any of the first nCol entries of aiCol[] 1650 */ 1651 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1652 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1653 return 0; 1654 } 1655 1656 /* 1657 ** This routine runs at the end of parsing a CREATE TABLE statement that 1658 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1659 ** internal schema data structures and the generated VDBE code so that they 1660 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1661 ** Changes include: 1662 ** 1663 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1664 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1665 ** data storage is a covering index btree. 1666 ** (2) Bypass the creation of the sqlite_master table entry 1667 ** for the PRIMARY KEY as the primary key index is now 1668 ** identified by the sqlite_master table entry of the table itself. 1669 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1670 ** schema to the rootpage from the main table. 1671 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1672 ** (5) Add all table columns to the PRIMARY KEY Index object 1673 ** so that the PRIMARY KEY is a covering index. The surplus 1674 ** columns are part of KeyInfo.nXField and are not used for 1675 ** sorting or lookup or uniqueness checks. 1676 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1677 ** indices with the PRIMARY KEY columns. 1678 */ 1679 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1680 Index *pIdx; 1681 Index *pPk; 1682 int nPk; 1683 int i, j; 1684 sqlite3 *db = pParse->db; 1685 Vdbe *v = pParse->pVdbe; 1686 1687 /* Convert the OP_CreateTable opcode that would normally create the 1688 ** root-page for the table into an OP_CreateIndex opcode. The index 1689 ** created will become the PRIMARY KEY index. 1690 */ 1691 if( pParse->addrCrTab ){ 1692 assert( v ); 1693 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1694 } 1695 1696 /* Locate the PRIMARY KEY index. Or, if this table was originally 1697 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1698 */ 1699 if( pTab->iPKey>=0 ){ 1700 ExprList *pList; 1701 Token ipkToken; 1702 ipkToken.z = pTab->aCol[pTab->iPKey].zName; 1703 ipkToken.n = sqlite3Strlen30(ipkToken.z); 1704 pList = sqlite3ExprListAppend(pParse, 0, 1705 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1706 if( pList==0 ) return; 1707 pList->a[0].sortOrder = pParse->iPkSortOrder; 1708 assert( pParse->pNewTable==pTab ); 1709 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1710 if( pPk==0 ) return; 1711 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1712 pTab->iPKey = -1; 1713 }else{ 1714 pPk = sqlite3PrimaryKeyIndex(pTab); 1715 1716 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1717 ** table entry. This is only required if currently generating VDBE 1718 ** code for a CREATE TABLE (not when parsing one as part of reading 1719 ** a database schema). */ 1720 if( v ){ 1721 assert( db->init.busy==0 ); 1722 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1723 } 1724 1725 /* 1726 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1727 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1728 ** code assumes the PRIMARY KEY contains no repeated columns. 1729 */ 1730 for(i=j=1; i<pPk->nKeyCol; i++){ 1731 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1732 pPk->nColumn--; 1733 }else{ 1734 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1735 } 1736 } 1737 pPk->nKeyCol = j; 1738 } 1739 pPk->isCovering = 1; 1740 assert( pPk!=0 ); 1741 nPk = pPk->nKeyCol; 1742 1743 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except, 1744 ** do not enforce this for imposter tables.) */ 1745 if( !db->init.imposterTable ){ 1746 for(i=0; i<nPk; i++){ 1747 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1748 } 1749 pPk->uniqNotNull = 1; 1750 } 1751 1752 /* The root page of the PRIMARY KEY is the table root page */ 1753 pPk->tnum = pTab->tnum; 1754 1755 /* Update the in-memory representation of all UNIQUE indices by converting 1756 ** the final rowid column into one or more columns of the PRIMARY KEY. 1757 */ 1758 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1759 int n; 1760 if( IsPrimaryKeyIndex(pIdx) ) continue; 1761 for(i=n=0; i<nPk; i++){ 1762 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1763 } 1764 if( n==0 ){ 1765 /* This index is a superset of the primary key */ 1766 pIdx->nColumn = pIdx->nKeyCol; 1767 continue; 1768 } 1769 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1770 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1771 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1772 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1773 pIdx->azColl[j] = pPk->azColl[i]; 1774 j++; 1775 } 1776 } 1777 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1778 assert( pIdx->nColumn>=j ); 1779 } 1780 1781 /* Add all table columns to the PRIMARY KEY index 1782 */ 1783 if( nPk<pTab->nCol ){ 1784 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1785 for(i=0, j=nPk; i<pTab->nCol; i++){ 1786 if( !hasColumn(pPk->aiColumn, j, i) ){ 1787 assert( j<pPk->nColumn ); 1788 pPk->aiColumn[j] = i; 1789 pPk->azColl[j] = "BINARY"; 1790 j++; 1791 } 1792 } 1793 assert( pPk->nColumn==j ); 1794 assert( pTab->nCol==j ); 1795 }else{ 1796 pPk->nColumn = pTab->nCol; 1797 } 1798 } 1799 1800 /* 1801 ** This routine is called to report the final ")" that terminates 1802 ** a CREATE TABLE statement. 1803 ** 1804 ** The table structure that other action routines have been building 1805 ** is added to the internal hash tables, assuming no errors have 1806 ** occurred. 1807 ** 1808 ** An entry for the table is made in the master table on disk, unless 1809 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1810 ** it means we are reading the sqlite_master table because we just 1811 ** connected to the database or because the sqlite_master table has 1812 ** recently changed, so the entry for this table already exists in 1813 ** the sqlite_master table. We do not want to create it again. 1814 ** 1815 ** If the pSelect argument is not NULL, it means that this routine 1816 ** was called to create a table generated from a 1817 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1818 ** the new table will match the result set of the SELECT. 1819 */ 1820 void sqlite3EndTable( 1821 Parse *pParse, /* Parse context */ 1822 Token *pCons, /* The ',' token after the last column defn. */ 1823 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1824 u8 tabOpts, /* Extra table options. Usually 0. */ 1825 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1826 ){ 1827 Table *p; /* The new table */ 1828 sqlite3 *db = pParse->db; /* The database connection */ 1829 int iDb; /* Database in which the table lives */ 1830 Index *pIdx; /* An implied index of the table */ 1831 1832 if( pEnd==0 && pSelect==0 ){ 1833 return; 1834 } 1835 assert( !db->mallocFailed ); 1836 p = pParse->pNewTable; 1837 if( p==0 ) return; 1838 1839 assert( !db->init.busy || !pSelect ); 1840 1841 /* If the db->init.busy is 1 it means we are reading the SQL off the 1842 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1843 ** So do not write to the disk again. Extract the root page number 1844 ** for the table from the db->init.newTnum field. (The page number 1845 ** should have been put there by the sqliteOpenCb routine.) 1846 */ 1847 if( db->init.busy ){ 1848 p->tnum = db->init.newTnum; 1849 } 1850 1851 /* Special processing for WITHOUT ROWID Tables */ 1852 if( tabOpts & TF_WithoutRowid ){ 1853 if( (p->tabFlags & TF_Autoincrement) ){ 1854 sqlite3ErrorMsg(pParse, 1855 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1856 return; 1857 } 1858 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1859 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1860 }else{ 1861 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1862 convertToWithoutRowidTable(pParse, p); 1863 } 1864 } 1865 1866 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1867 1868 #ifndef SQLITE_OMIT_CHECK 1869 /* Resolve names in all CHECK constraint expressions. 1870 */ 1871 if( p->pCheck ){ 1872 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1873 } 1874 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1875 1876 /* Estimate the average row size for the table and for all implied indices */ 1877 estimateTableWidth(p); 1878 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1879 estimateIndexWidth(pIdx); 1880 } 1881 1882 /* If not initializing, then create a record for the new table 1883 ** in the SQLITE_MASTER table of the database. 1884 ** 1885 ** If this is a TEMPORARY table, write the entry into the auxiliary 1886 ** file instead of into the main database file. 1887 */ 1888 if( !db->init.busy ){ 1889 int n; 1890 Vdbe *v; 1891 char *zType; /* "view" or "table" */ 1892 char *zType2; /* "VIEW" or "TABLE" */ 1893 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1894 1895 v = sqlite3GetVdbe(pParse); 1896 if( NEVER(v==0) ) return; 1897 1898 sqlite3VdbeAddOp1(v, OP_Close, 0); 1899 1900 /* 1901 ** Initialize zType for the new view or table. 1902 */ 1903 if( p->pSelect==0 ){ 1904 /* A regular table */ 1905 zType = "table"; 1906 zType2 = "TABLE"; 1907 #ifndef SQLITE_OMIT_VIEW 1908 }else{ 1909 /* A view */ 1910 zType = "view"; 1911 zType2 = "VIEW"; 1912 #endif 1913 } 1914 1915 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1916 ** statement to populate the new table. The root-page number for the 1917 ** new table is in register pParse->regRoot. 1918 ** 1919 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1920 ** suitable state to query for the column names and types to be used 1921 ** by the new table. 1922 ** 1923 ** A shared-cache write-lock is not required to write to the new table, 1924 ** as a schema-lock must have already been obtained to create it. Since 1925 ** a schema-lock excludes all other database users, the write-lock would 1926 ** be redundant. 1927 */ 1928 if( pSelect ){ 1929 SelectDest dest; /* Where the SELECT should store results */ 1930 int regYield; /* Register holding co-routine entry-point */ 1931 int addrTop; /* Top of the co-routine */ 1932 int regRec; /* A record to be insert into the new table */ 1933 int regRowid; /* Rowid of the next row to insert */ 1934 int addrInsLoop; /* Top of the loop for inserting rows */ 1935 Table *pSelTab; /* A table that describes the SELECT results */ 1936 1937 regYield = ++pParse->nMem; 1938 regRec = ++pParse->nMem; 1939 regRowid = ++pParse->nMem; 1940 assert(pParse->nTab==1); 1941 sqlite3MayAbort(pParse); 1942 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1943 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1944 pParse->nTab = 2; 1945 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1946 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1947 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1948 sqlite3Select(pParse, pSelect, &dest); 1949 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 1950 sqlite3VdbeJumpHere(v, addrTop - 1); 1951 if( pParse->nErr ) return; 1952 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1953 if( pSelTab==0 ) return; 1954 assert( p->aCol==0 ); 1955 p->nCol = pSelTab->nCol; 1956 p->aCol = pSelTab->aCol; 1957 pSelTab->nCol = 0; 1958 pSelTab->aCol = 0; 1959 sqlite3DeleteTable(db, pSelTab); 1960 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1961 VdbeCoverage(v); 1962 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1963 sqlite3TableAffinity(v, p, 0); 1964 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1965 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1966 sqlite3VdbeGoto(v, addrInsLoop); 1967 sqlite3VdbeJumpHere(v, addrInsLoop); 1968 sqlite3VdbeAddOp1(v, OP_Close, 1); 1969 } 1970 1971 /* Compute the complete text of the CREATE statement */ 1972 if( pSelect ){ 1973 zStmt = createTableStmt(db, p); 1974 }else{ 1975 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1976 n = (int)(pEnd2->z - pParse->sNameToken.z); 1977 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1978 zStmt = sqlite3MPrintf(db, 1979 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1980 ); 1981 } 1982 1983 /* A slot for the record has already been allocated in the 1984 ** SQLITE_MASTER table. We just need to update that slot with all 1985 ** the information we've collected. 1986 */ 1987 sqlite3NestedParse(pParse, 1988 "UPDATE %Q.%s " 1989 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1990 "WHERE rowid=#%d", 1991 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1992 zType, 1993 p->zName, 1994 p->zName, 1995 pParse->regRoot, 1996 zStmt, 1997 pParse->regRowid 1998 ); 1999 sqlite3DbFree(db, zStmt); 2000 sqlite3ChangeCookie(pParse, iDb); 2001 2002 #ifndef SQLITE_OMIT_AUTOINCREMENT 2003 /* Check to see if we need to create an sqlite_sequence table for 2004 ** keeping track of autoincrement keys. 2005 */ 2006 if( p->tabFlags & TF_Autoincrement ){ 2007 Db *pDb = &db->aDb[iDb]; 2008 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2009 if( pDb->pSchema->pSeqTab==0 ){ 2010 sqlite3NestedParse(pParse, 2011 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2012 pDb->zName 2013 ); 2014 } 2015 } 2016 #endif 2017 2018 /* Reparse everything to update our internal data structures */ 2019 sqlite3VdbeAddParseSchemaOp(v, iDb, 2020 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2021 } 2022 2023 2024 /* Add the table to the in-memory representation of the database. 2025 */ 2026 if( db->init.busy ){ 2027 Table *pOld; 2028 Schema *pSchema = p->pSchema; 2029 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2030 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2031 if( pOld ){ 2032 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2033 db->mallocFailed = 1; 2034 return; 2035 } 2036 pParse->pNewTable = 0; 2037 db->flags |= SQLITE_InternChanges; 2038 2039 #ifndef SQLITE_OMIT_ALTERTABLE 2040 if( !p->pSelect ){ 2041 const char *zName = (const char *)pParse->sNameToken.z; 2042 int nName; 2043 assert( !pSelect && pCons && pEnd ); 2044 if( pCons->z==0 ){ 2045 pCons = pEnd; 2046 } 2047 nName = (int)((const char *)pCons->z - zName); 2048 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2049 } 2050 #endif 2051 } 2052 } 2053 2054 #ifndef SQLITE_OMIT_VIEW 2055 /* 2056 ** The parser calls this routine in order to create a new VIEW 2057 */ 2058 void sqlite3CreateView( 2059 Parse *pParse, /* The parsing context */ 2060 Token *pBegin, /* The CREATE token that begins the statement */ 2061 Token *pName1, /* The token that holds the name of the view */ 2062 Token *pName2, /* The token that holds the name of the view */ 2063 ExprList *pCNames, /* Optional list of view column names */ 2064 Select *pSelect, /* A SELECT statement that will become the new view */ 2065 int isTemp, /* TRUE for a TEMPORARY view */ 2066 int noErr /* Suppress error messages if VIEW already exists */ 2067 ){ 2068 Table *p; 2069 int n; 2070 const char *z; 2071 Token sEnd; 2072 DbFixer sFix; 2073 Token *pName = 0; 2074 int iDb; 2075 sqlite3 *db = pParse->db; 2076 2077 if( pParse->nVar>0 ){ 2078 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2079 sqlite3SelectDelete(db, pSelect); 2080 return; 2081 } 2082 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2083 p = pParse->pNewTable; 2084 if( p==0 || pParse->nErr ) goto create_view_fail; 2085 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2086 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2087 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2088 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2089 2090 /* Make a copy of the entire SELECT statement that defines the view. 2091 ** This will force all the Expr.token.z values to be dynamically 2092 ** allocated rather than point to the input string - which means that 2093 ** they will persist after the current sqlite3_exec() call returns. 2094 */ 2095 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2096 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2097 if( db->mallocFailed ) goto create_view_fail; 2098 2099 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2100 ** the end. 2101 */ 2102 sEnd = pParse->sLastToken; 2103 assert( sEnd.z[0]!=0 ); 2104 if( sEnd.z[0]!=';' ){ 2105 sEnd.z += sEnd.n; 2106 } 2107 sEnd.n = 0; 2108 n = (int)(sEnd.z - pBegin->z); 2109 assert( n>0 ); 2110 z = pBegin->z; 2111 while( sqlite3Isspace(z[n-1]) ){ n--; } 2112 sEnd.z = &z[n-1]; 2113 sEnd.n = 1; 2114 2115 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2116 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2117 2118 create_view_fail: 2119 sqlite3SelectDelete(db, pSelect); 2120 sqlite3ExprListDelete(db, pCNames); 2121 return; 2122 } 2123 #endif /* SQLITE_OMIT_VIEW */ 2124 2125 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2126 /* 2127 ** The Table structure pTable is really a VIEW. Fill in the names of 2128 ** the columns of the view in the pTable structure. Return the number 2129 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2130 */ 2131 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2132 Table *pSelTab; /* A fake table from which we get the result set */ 2133 Select *pSel; /* Copy of the SELECT that implements the view */ 2134 int nErr = 0; /* Number of errors encountered */ 2135 int n; /* Temporarily holds the number of cursors assigned */ 2136 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2137 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2138 u8 bEnabledLA; /* Saved db->lookaside.bEnabled state */ 2139 2140 assert( pTable ); 2141 2142 #ifndef SQLITE_OMIT_VIRTUALTABLE 2143 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2144 return SQLITE_ERROR; 2145 } 2146 if( IsVirtual(pTable) ) return 0; 2147 #endif 2148 2149 #ifndef SQLITE_OMIT_VIEW 2150 /* A positive nCol means the columns names for this view are 2151 ** already known. 2152 */ 2153 if( pTable->nCol>0 ) return 0; 2154 2155 /* A negative nCol is a special marker meaning that we are currently 2156 ** trying to compute the column names. If we enter this routine with 2157 ** a negative nCol, it means two or more views form a loop, like this: 2158 ** 2159 ** CREATE VIEW one AS SELECT * FROM two; 2160 ** CREATE VIEW two AS SELECT * FROM one; 2161 ** 2162 ** Actually, the error above is now caught prior to reaching this point. 2163 ** But the following test is still important as it does come up 2164 ** in the following: 2165 ** 2166 ** CREATE TABLE main.ex1(a); 2167 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2168 ** SELECT * FROM temp.ex1; 2169 */ 2170 if( pTable->nCol<0 ){ 2171 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2172 return 1; 2173 } 2174 assert( pTable->nCol>=0 ); 2175 2176 /* If we get this far, it means we need to compute the table names. 2177 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2178 ** "*" elements in the results set of the view and will assign cursors 2179 ** to the elements of the FROM clause. But we do not want these changes 2180 ** to be permanent. So the computation is done on a copy of the SELECT 2181 ** statement that defines the view. 2182 */ 2183 assert( pTable->pSelect ); 2184 bEnabledLA = db->lookaside.bEnabled; 2185 if( pTable->pCheck ){ 2186 db->lookaside.bEnabled = 0; 2187 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2188 &pTable->nCol, &pTable->aCol); 2189 }else{ 2190 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2191 if( pSel ){ 2192 n = pParse->nTab; 2193 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2194 pTable->nCol = -1; 2195 db->lookaside.bEnabled = 0; 2196 #ifndef SQLITE_OMIT_AUTHORIZATION 2197 xAuth = db->xAuth; 2198 db->xAuth = 0; 2199 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2200 db->xAuth = xAuth; 2201 #else 2202 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2203 #endif 2204 pParse->nTab = n; 2205 if( pSelTab ){ 2206 assert( pTable->aCol==0 ); 2207 pTable->nCol = pSelTab->nCol; 2208 pTable->aCol = pSelTab->aCol; 2209 pSelTab->nCol = 0; 2210 pSelTab->aCol = 0; 2211 sqlite3DeleteTable(db, pSelTab); 2212 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2213 }else{ 2214 pTable->nCol = 0; 2215 nErr++; 2216 } 2217 sqlite3SelectDelete(db, pSel); 2218 } else { 2219 nErr++; 2220 } 2221 } 2222 db->lookaside.bEnabled = bEnabledLA; 2223 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2224 #endif /* SQLITE_OMIT_VIEW */ 2225 return nErr; 2226 } 2227 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2228 2229 #ifndef SQLITE_OMIT_VIEW 2230 /* 2231 ** Clear the column names from every VIEW in database idx. 2232 */ 2233 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2234 HashElem *i; 2235 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2236 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2237 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2238 Table *pTab = sqliteHashData(i); 2239 if( pTab->pSelect ){ 2240 sqlite3DeleteColumnNames(db, pTab); 2241 pTab->aCol = 0; 2242 pTab->nCol = 0; 2243 } 2244 } 2245 DbClearProperty(db, idx, DB_UnresetViews); 2246 } 2247 #else 2248 # define sqliteViewResetAll(A,B) 2249 #endif /* SQLITE_OMIT_VIEW */ 2250 2251 /* 2252 ** This function is called by the VDBE to adjust the internal schema 2253 ** used by SQLite when the btree layer moves a table root page. The 2254 ** root-page of a table or index in database iDb has changed from iFrom 2255 ** to iTo. 2256 ** 2257 ** Ticket #1728: The symbol table might still contain information 2258 ** on tables and/or indices that are the process of being deleted. 2259 ** If you are unlucky, one of those deleted indices or tables might 2260 ** have the same rootpage number as the real table or index that is 2261 ** being moved. So we cannot stop searching after the first match 2262 ** because the first match might be for one of the deleted indices 2263 ** or tables and not the table/index that is actually being moved. 2264 ** We must continue looping until all tables and indices with 2265 ** rootpage==iFrom have been converted to have a rootpage of iTo 2266 ** in order to be certain that we got the right one. 2267 */ 2268 #ifndef SQLITE_OMIT_AUTOVACUUM 2269 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2270 HashElem *pElem; 2271 Hash *pHash; 2272 Db *pDb; 2273 2274 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2275 pDb = &db->aDb[iDb]; 2276 pHash = &pDb->pSchema->tblHash; 2277 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2278 Table *pTab = sqliteHashData(pElem); 2279 if( pTab->tnum==iFrom ){ 2280 pTab->tnum = iTo; 2281 } 2282 } 2283 pHash = &pDb->pSchema->idxHash; 2284 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2285 Index *pIdx = sqliteHashData(pElem); 2286 if( pIdx->tnum==iFrom ){ 2287 pIdx->tnum = iTo; 2288 } 2289 } 2290 } 2291 #endif 2292 2293 /* 2294 ** Write code to erase the table with root-page iTable from database iDb. 2295 ** Also write code to modify the sqlite_master table and internal schema 2296 ** if a root-page of another table is moved by the btree-layer whilst 2297 ** erasing iTable (this can happen with an auto-vacuum database). 2298 */ 2299 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2300 Vdbe *v = sqlite3GetVdbe(pParse); 2301 int r1 = sqlite3GetTempReg(pParse); 2302 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2303 sqlite3MayAbort(pParse); 2304 #ifndef SQLITE_OMIT_AUTOVACUUM 2305 /* OP_Destroy stores an in integer r1. If this integer 2306 ** is non-zero, then it is the root page number of a table moved to 2307 ** location iTable. The following code modifies the sqlite_master table to 2308 ** reflect this. 2309 ** 2310 ** The "#NNN" in the SQL is a special constant that means whatever value 2311 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2312 ** token for additional information. 2313 */ 2314 sqlite3NestedParse(pParse, 2315 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2316 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2317 #endif 2318 sqlite3ReleaseTempReg(pParse, r1); 2319 } 2320 2321 /* 2322 ** Write VDBE code to erase table pTab and all associated indices on disk. 2323 ** Code to update the sqlite_master tables and internal schema definitions 2324 ** in case a root-page belonging to another table is moved by the btree layer 2325 ** is also added (this can happen with an auto-vacuum database). 2326 */ 2327 static void destroyTable(Parse *pParse, Table *pTab){ 2328 #ifdef SQLITE_OMIT_AUTOVACUUM 2329 Index *pIdx; 2330 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2331 destroyRootPage(pParse, pTab->tnum, iDb); 2332 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2333 destroyRootPage(pParse, pIdx->tnum, iDb); 2334 } 2335 #else 2336 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2337 ** is not defined), then it is important to call OP_Destroy on the 2338 ** table and index root-pages in order, starting with the numerically 2339 ** largest root-page number. This guarantees that none of the root-pages 2340 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2341 ** following were coded: 2342 ** 2343 ** OP_Destroy 4 0 2344 ** ... 2345 ** OP_Destroy 5 0 2346 ** 2347 ** and root page 5 happened to be the largest root-page number in the 2348 ** database, then root page 5 would be moved to page 4 by the 2349 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2350 ** a free-list page. 2351 */ 2352 int iTab = pTab->tnum; 2353 int iDestroyed = 0; 2354 2355 while( 1 ){ 2356 Index *pIdx; 2357 int iLargest = 0; 2358 2359 if( iDestroyed==0 || iTab<iDestroyed ){ 2360 iLargest = iTab; 2361 } 2362 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2363 int iIdx = pIdx->tnum; 2364 assert( pIdx->pSchema==pTab->pSchema ); 2365 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2366 iLargest = iIdx; 2367 } 2368 } 2369 if( iLargest==0 ){ 2370 return; 2371 }else{ 2372 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2373 assert( iDb>=0 && iDb<pParse->db->nDb ); 2374 destroyRootPage(pParse, iLargest, iDb); 2375 iDestroyed = iLargest; 2376 } 2377 } 2378 #endif 2379 } 2380 2381 /* 2382 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2383 ** after a DROP INDEX or DROP TABLE command. 2384 */ 2385 static void sqlite3ClearStatTables( 2386 Parse *pParse, /* The parsing context */ 2387 int iDb, /* The database number */ 2388 const char *zType, /* "idx" or "tbl" */ 2389 const char *zName /* Name of index or table */ 2390 ){ 2391 int i; 2392 const char *zDbName = pParse->db->aDb[iDb].zName; 2393 for(i=1; i<=4; i++){ 2394 char zTab[24]; 2395 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2396 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2397 sqlite3NestedParse(pParse, 2398 "DELETE FROM %Q.%s WHERE %s=%Q", 2399 zDbName, zTab, zType, zName 2400 ); 2401 } 2402 } 2403 } 2404 2405 /* 2406 ** Generate code to drop a table. 2407 */ 2408 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2409 Vdbe *v; 2410 sqlite3 *db = pParse->db; 2411 Trigger *pTrigger; 2412 Db *pDb = &db->aDb[iDb]; 2413 2414 v = sqlite3GetVdbe(pParse); 2415 assert( v!=0 ); 2416 sqlite3BeginWriteOperation(pParse, 1, iDb); 2417 2418 #ifndef SQLITE_OMIT_VIRTUALTABLE 2419 if( IsVirtual(pTab) ){ 2420 sqlite3VdbeAddOp0(v, OP_VBegin); 2421 } 2422 #endif 2423 2424 /* Drop all triggers associated with the table being dropped. Code 2425 ** is generated to remove entries from sqlite_master and/or 2426 ** sqlite_temp_master if required. 2427 */ 2428 pTrigger = sqlite3TriggerList(pParse, pTab); 2429 while( pTrigger ){ 2430 assert( pTrigger->pSchema==pTab->pSchema || 2431 pTrigger->pSchema==db->aDb[1].pSchema ); 2432 sqlite3DropTriggerPtr(pParse, pTrigger); 2433 pTrigger = pTrigger->pNext; 2434 } 2435 2436 #ifndef SQLITE_OMIT_AUTOINCREMENT 2437 /* Remove any entries of the sqlite_sequence table associated with 2438 ** the table being dropped. This is done before the table is dropped 2439 ** at the btree level, in case the sqlite_sequence table needs to 2440 ** move as a result of the drop (can happen in auto-vacuum mode). 2441 */ 2442 if( pTab->tabFlags & TF_Autoincrement ){ 2443 sqlite3NestedParse(pParse, 2444 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2445 pDb->zName, pTab->zName 2446 ); 2447 } 2448 #endif 2449 2450 /* Drop all SQLITE_MASTER table and index entries that refer to the 2451 ** table. The program name loops through the master table and deletes 2452 ** every row that refers to a table of the same name as the one being 2453 ** dropped. Triggers are handled separately because a trigger can be 2454 ** created in the temp database that refers to a table in another 2455 ** database. 2456 */ 2457 sqlite3NestedParse(pParse, 2458 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2459 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2460 if( !isView && !IsVirtual(pTab) ){ 2461 destroyTable(pParse, pTab); 2462 } 2463 2464 /* Remove the table entry from SQLite's internal schema and modify 2465 ** the schema cookie. 2466 */ 2467 if( IsVirtual(pTab) ){ 2468 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2469 } 2470 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2471 sqlite3ChangeCookie(pParse, iDb); 2472 sqliteViewResetAll(db, iDb); 2473 } 2474 2475 /* 2476 ** This routine is called to do the work of a DROP TABLE statement. 2477 ** pName is the name of the table to be dropped. 2478 */ 2479 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2480 Table *pTab; 2481 Vdbe *v; 2482 sqlite3 *db = pParse->db; 2483 int iDb; 2484 2485 if( db->mallocFailed ){ 2486 goto exit_drop_table; 2487 } 2488 assert( pParse->nErr==0 ); 2489 assert( pName->nSrc==1 ); 2490 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2491 if( noErr ) db->suppressErr++; 2492 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2493 if( noErr ) db->suppressErr--; 2494 2495 if( pTab==0 ){ 2496 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2497 goto exit_drop_table; 2498 } 2499 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2500 assert( iDb>=0 && iDb<db->nDb ); 2501 2502 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2503 ** it is initialized. 2504 */ 2505 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2506 goto exit_drop_table; 2507 } 2508 #ifndef SQLITE_OMIT_AUTHORIZATION 2509 { 2510 int code; 2511 const char *zTab = SCHEMA_TABLE(iDb); 2512 const char *zDb = db->aDb[iDb].zName; 2513 const char *zArg2 = 0; 2514 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2515 goto exit_drop_table; 2516 } 2517 if( isView ){ 2518 if( !OMIT_TEMPDB && iDb==1 ){ 2519 code = SQLITE_DROP_TEMP_VIEW; 2520 }else{ 2521 code = SQLITE_DROP_VIEW; 2522 } 2523 #ifndef SQLITE_OMIT_VIRTUALTABLE 2524 }else if( IsVirtual(pTab) ){ 2525 code = SQLITE_DROP_VTABLE; 2526 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2527 #endif 2528 }else{ 2529 if( !OMIT_TEMPDB && iDb==1 ){ 2530 code = SQLITE_DROP_TEMP_TABLE; 2531 }else{ 2532 code = SQLITE_DROP_TABLE; 2533 } 2534 } 2535 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2536 goto exit_drop_table; 2537 } 2538 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2539 goto exit_drop_table; 2540 } 2541 } 2542 #endif 2543 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2544 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2545 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2546 goto exit_drop_table; 2547 } 2548 2549 #ifndef SQLITE_OMIT_VIEW 2550 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2551 ** on a table. 2552 */ 2553 if( isView && pTab->pSelect==0 ){ 2554 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2555 goto exit_drop_table; 2556 } 2557 if( !isView && pTab->pSelect ){ 2558 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2559 goto exit_drop_table; 2560 } 2561 #endif 2562 2563 /* Generate code to remove the table from the master table 2564 ** on disk. 2565 */ 2566 v = sqlite3GetVdbe(pParse); 2567 if( v ){ 2568 sqlite3BeginWriteOperation(pParse, 1, iDb); 2569 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2570 sqlite3FkDropTable(pParse, pName, pTab); 2571 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2572 } 2573 2574 exit_drop_table: 2575 sqlite3SrcListDelete(db, pName); 2576 } 2577 2578 /* 2579 ** This routine is called to create a new foreign key on the table 2580 ** currently under construction. pFromCol determines which columns 2581 ** in the current table point to the foreign key. If pFromCol==0 then 2582 ** connect the key to the last column inserted. pTo is the name of 2583 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2584 ** of tables in the parent pTo table. flags contains all 2585 ** information about the conflict resolution algorithms specified 2586 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2587 ** 2588 ** An FKey structure is created and added to the table currently 2589 ** under construction in the pParse->pNewTable field. 2590 ** 2591 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2592 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2593 */ 2594 void sqlite3CreateForeignKey( 2595 Parse *pParse, /* Parsing context */ 2596 ExprList *pFromCol, /* Columns in this table that point to other table */ 2597 Token *pTo, /* Name of the other table */ 2598 ExprList *pToCol, /* Columns in the other table */ 2599 int flags /* Conflict resolution algorithms. */ 2600 ){ 2601 sqlite3 *db = pParse->db; 2602 #ifndef SQLITE_OMIT_FOREIGN_KEY 2603 FKey *pFKey = 0; 2604 FKey *pNextTo; 2605 Table *p = pParse->pNewTable; 2606 int nByte; 2607 int i; 2608 int nCol; 2609 char *z; 2610 2611 assert( pTo!=0 ); 2612 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2613 if( pFromCol==0 ){ 2614 int iCol = p->nCol-1; 2615 if( NEVER(iCol<0) ) goto fk_end; 2616 if( pToCol && pToCol->nExpr!=1 ){ 2617 sqlite3ErrorMsg(pParse, "foreign key on %s" 2618 " should reference only one column of table %T", 2619 p->aCol[iCol].zName, pTo); 2620 goto fk_end; 2621 } 2622 nCol = 1; 2623 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2624 sqlite3ErrorMsg(pParse, 2625 "number of columns in foreign key does not match the number of " 2626 "columns in the referenced table"); 2627 goto fk_end; 2628 }else{ 2629 nCol = pFromCol->nExpr; 2630 } 2631 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2632 if( pToCol ){ 2633 for(i=0; i<pToCol->nExpr; i++){ 2634 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2635 } 2636 } 2637 pFKey = sqlite3DbMallocZero(db, nByte ); 2638 if( pFKey==0 ){ 2639 goto fk_end; 2640 } 2641 pFKey->pFrom = p; 2642 pFKey->pNextFrom = p->pFKey; 2643 z = (char*)&pFKey->aCol[nCol]; 2644 pFKey->zTo = z; 2645 memcpy(z, pTo->z, pTo->n); 2646 z[pTo->n] = 0; 2647 sqlite3Dequote(z); 2648 z += pTo->n+1; 2649 pFKey->nCol = nCol; 2650 if( pFromCol==0 ){ 2651 pFKey->aCol[0].iFrom = p->nCol-1; 2652 }else{ 2653 for(i=0; i<nCol; i++){ 2654 int j; 2655 for(j=0; j<p->nCol; j++){ 2656 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2657 pFKey->aCol[i].iFrom = j; 2658 break; 2659 } 2660 } 2661 if( j>=p->nCol ){ 2662 sqlite3ErrorMsg(pParse, 2663 "unknown column \"%s\" in foreign key definition", 2664 pFromCol->a[i].zName); 2665 goto fk_end; 2666 } 2667 } 2668 } 2669 if( pToCol ){ 2670 for(i=0; i<nCol; i++){ 2671 int n = sqlite3Strlen30(pToCol->a[i].zName); 2672 pFKey->aCol[i].zCol = z; 2673 memcpy(z, pToCol->a[i].zName, n); 2674 z[n] = 0; 2675 z += n+1; 2676 } 2677 } 2678 pFKey->isDeferred = 0; 2679 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2680 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2681 2682 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2683 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2684 pFKey->zTo, (void *)pFKey 2685 ); 2686 if( pNextTo==pFKey ){ 2687 db->mallocFailed = 1; 2688 goto fk_end; 2689 } 2690 if( pNextTo ){ 2691 assert( pNextTo->pPrevTo==0 ); 2692 pFKey->pNextTo = pNextTo; 2693 pNextTo->pPrevTo = pFKey; 2694 } 2695 2696 /* Link the foreign key to the table as the last step. 2697 */ 2698 p->pFKey = pFKey; 2699 pFKey = 0; 2700 2701 fk_end: 2702 sqlite3DbFree(db, pFKey); 2703 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2704 sqlite3ExprListDelete(db, pFromCol); 2705 sqlite3ExprListDelete(db, pToCol); 2706 } 2707 2708 /* 2709 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2710 ** clause is seen as part of a foreign key definition. The isDeferred 2711 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2712 ** The behavior of the most recently created foreign key is adjusted 2713 ** accordingly. 2714 */ 2715 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2716 #ifndef SQLITE_OMIT_FOREIGN_KEY 2717 Table *pTab; 2718 FKey *pFKey; 2719 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2720 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2721 pFKey->isDeferred = (u8)isDeferred; 2722 #endif 2723 } 2724 2725 /* 2726 ** Generate code that will erase and refill index *pIdx. This is 2727 ** used to initialize a newly created index or to recompute the 2728 ** content of an index in response to a REINDEX command. 2729 ** 2730 ** if memRootPage is not negative, it means that the index is newly 2731 ** created. The register specified by memRootPage contains the 2732 ** root page number of the index. If memRootPage is negative, then 2733 ** the index already exists and must be cleared before being refilled and 2734 ** the root page number of the index is taken from pIndex->tnum. 2735 */ 2736 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2737 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2738 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2739 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2740 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2741 int addr1; /* Address of top of loop */ 2742 int addr2; /* Address to jump to for next iteration */ 2743 int tnum; /* Root page of index */ 2744 int iPartIdxLabel; /* Jump to this label to skip a row */ 2745 Vdbe *v; /* Generate code into this virtual machine */ 2746 KeyInfo *pKey; /* KeyInfo for index */ 2747 int regRecord; /* Register holding assembled index record */ 2748 sqlite3 *db = pParse->db; /* The database connection */ 2749 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2750 2751 #ifndef SQLITE_OMIT_AUTHORIZATION 2752 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2753 db->aDb[iDb].zName ) ){ 2754 return; 2755 } 2756 #endif 2757 2758 /* Require a write-lock on the table to perform this operation */ 2759 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2760 2761 v = sqlite3GetVdbe(pParse); 2762 if( v==0 ) return; 2763 if( memRootPage>=0 ){ 2764 tnum = memRootPage; 2765 }else{ 2766 tnum = pIndex->tnum; 2767 } 2768 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2769 2770 /* Open the sorter cursor if we are to use one. */ 2771 iSorter = pParse->nTab++; 2772 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2773 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2774 2775 /* Open the table. Loop through all rows of the table, inserting index 2776 ** records into the sorter. */ 2777 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2778 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2779 regRecord = sqlite3GetTempReg(pParse); 2780 2781 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2782 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2783 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2784 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2785 sqlite3VdbeJumpHere(v, addr1); 2786 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2787 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2788 (char *)pKey, P4_KEYINFO); 2789 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2790 2791 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2792 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2793 if( IsUniqueIndex(pIndex) && pKey!=0 ){ 2794 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2795 sqlite3VdbeGoto(v, j2); 2796 addr2 = sqlite3VdbeCurrentAddr(v); 2797 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2798 pIndex->nKeyCol); VdbeCoverage(v); 2799 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2800 }else{ 2801 addr2 = sqlite3VdbeCurrentAddr(v); 2802 } 2803 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2804 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2805 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2806 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2807 sqlite3ReleaseTempReg(pParse, regRecord); 2808 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2809 sqlite3VdbeJumpHere(v, addr1); 2810 2811 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2812 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2813 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2814 } 2815 2816 /* 2817 ** Allocate heap space to hold an Index object with nCol columns. 2818 ** 2819 ** Increase the allocation size to provide an extra nExtra bytes 2820 ** of 8-byte aligned space after the Index object and return a 2821 ** pointer to this extra space in *ppExtra. 2822 */ 2823 Index *sqlite3AllocateIndexObject( 2824 sqlite3 *db, /* Database connection */ 2825 i16 nCol, /* Total number of columns in the index */ 2826 int nExtra, /* Number of bytes of extra space to alloc */ 2827 char **ppExtra /* Pointer to the "extra" space */ 2828 ){ 2829 Index *p; /* Allocated index object */ 2830 int nByte; /* Bytes of space for Index object + arrays */ 2831 2832 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2833 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2834 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2835 sizeof(i16)*nCol + /* Index.aiColumn */ 2836 sizeof(u8)*nCol); /* Index.aSortOrder */ 2837 p = sqlite3DbMallocZero(db, nByte + nExtra); 2838 if( p ){ 2839 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2840 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2841 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2842 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2843 p->aSortOrder = (u8*)pExtra; 2844 p->nColumn = nCol; 2845 p->nKeyCol = nCol - 1; 2846 *ppExtra = ((char*)p) + nByte; 2847 } 2848 return p; 2849 } 2850 2851 /* 2852 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2853 ** and pTblList is the name of the table that is to be indexed. Both will 2854 ** be NULL for a primary key or an index that is created to satisfy a 2855 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2856 ** as the table to be indexed. pParse->pNewTable is a table that is 2857 ** currently being constructed by a CREATE TABLE statement. 2858 ** 2859 ** pList is a list of columns to be indexed. pList will be NULL if this 2860 ** is a primary key or unique-constraint on the most recent column added 2861 ** to the table currently under construction. 2862 ** 2863 ** If the index is created successfully, return a pointer to the new Index 2864 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2865 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2866 */ 2867 Index *sqlite3CreateIndex( 2868 Parse *pParse, /* All information about this parse */ 2869 Token *pName1, /* First part of index name. May be NULL */ 2870 Token *pName2, /* Second part of index name. May be NULL */ 2871 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2872 ExprList *pList, /* A list of columns to be indexed */ 2873 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2874 Token *pStart, /* The CREATE token that begins this statement */ 2875 Expr *pPIWhere, /* WHERE clause for partial indices */ 2876 int sortOrder, /* Sort order of primary key when pList==NULL */ 2877 int ifNotExist /* Omit error if index already exists */ 2878 ){ 2879 Index *pRet = 0; /* Pointer to return */ 2880 Table *pTab = 0; /* Table to be indexed */ 2881 Index *pIndex = 0; /* The index to be created */ 2882 char *zName = 0; /* Name of the index */ 2883 int nName; /* Number of characters in zName */ 2884 int i, j; 2885 DbFixer sFix; /* For assigning database names to pTable */ 2886 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2887 sqlite3 *db = pParse->db; 2888 Db *pDb; /* The specific table containing the indexed database */ 2889 int iDb; /* Index of the database that is being written */ 2890 Token *pName = 0; /* Unqualified name of the index to create */ 2891 struct ExprList_item *pListItem; /* For looping over pList */ 2892 const Column *pTabCol; /* A column in the table */ 2893 int nExtra = 0; /* Space allocated for zExtra[] */ 2894 int nExtraCol; /* Number of extra columns needed */ 2895 char *zExtra = 0; /* Extra space after the Index object */ 2896 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2897 2898 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ 2899 goto exit_create_index; 2900 } 2901 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2902 goto exit_create_index; 2903 } 2904 2905 /* 2906 ** Find the table that is to be indexed. Return early if not found. 2907 */ 2908 if( pTblName!=0 ){ 2909 2910 /* Use the two-part index name to determine the database 2911 ** to search for the table. 'Fix' the table name to this db 2912 ** before looking up the table. 2913 */ 2914 assert( pName1 && pName2 ); 2915 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2916 if( iDb<0 ) goto exit_create_index; 2917 assert( pName && pName->z ); 2918 2919 #ifndef SQLITE_OMIT_TEMPDB 2920 /* If the index name was unqualified, check if the table 2921 ** is a temp table. If so, set the database to 1. Do not do this 2922 ** if initialising a database schema. 2923 */ 2924 if( !db->init.busy ){ 2925 pTab = sqlite3SrcListLookup(pParse, pTblName); 2926 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2927 iDb = 1; 2928 } 2929 } 2930 #endif 2931 2932 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2933 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2934 /* Because the parser constructs pTblName from a single identifier, 2935 ** sqlite3FixSrcList can never fail. */ 2936 assert(0); 2937 } 2938 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2939 assert( db->mallocFailed==0 || pTab==0 ); 2940 if( pTab==0 ) goto exit_create_index; 2941 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2942 sqlite3ErrorMsg(pParse, 2943 "cannot create a TEMP index on non-TEMP table \"%s\"", 2944 pTab->zName); 2945 goto exit_create_index; 2946 } 2947 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2948 }else{ 2949 assert( pName==0 ); 2950 assert( pStart==0 ); 2951 pTab = pParse->pNewTable; 2952 if( !pTab ) goto exit_create_index; 2953 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2954 } 2955 pDb = &db->aDb[iDb]; 2956 2957 assert( pTab!=0 ); 2958 assert( pParse->nErr==0 ); 2959 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2960 && db->init.busy==0 2961 #if SQLITE_USER_AUTHENTICATION 2962 && sqlite3UserAuthTable(pTab->zName)==0 2963 #endif 2964 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2965 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2966 goto exit_create_index; 2967 } 2968 #ifndef SQLITE_OMIT_VIEW 2969 if( pTab->pSelect ){ 2970 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2971 goto exit_create_index; 2972 } 2973 #endif 2974 #ifndef SQLITE_OMIT_VIRTUALTABLE 2975 if( IsVirtual(pTab) ){ 2976 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2977 goto exit_create_index; 2978 } 2979 #endif 2980 2981 /* 2982 ** Find the name of the index. Make sure there is not already another 2983 ** index or table with the same name. 2984 ** 2985 ** Exception: If we are reading the names of permanent indices from the 2986 ** sqlite_master table (because some other process changed the schema) and 2987 ** one of the index names collides with the name of a temporary table or 2988 ** index, then we will continue to process this index. 2989 ** 2990 ** If pName==0 it means that we are 2991 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2992 ** own name. 2993 */ 2994 if( pName ){ 2995 zName = sqlite3NameFromToken(db, pName); 2996 if( zName==0 ) goto exit_create_index; 2997 assert( pName->z!=0 ); 2998 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2999 goto exit_create_index; 3000 } 3001 if( !db->init.busy ){ 3002 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3003 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3004 goto exit_create_index; 3005 } 3006 } 3007 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 3008 if( !ifNotExist ){ 3009 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3010 }else{ 3011 assert( !db->init.busy ); 3012 sqlite3CodeVerifySchema(pParse, iDb); 3013 } 3014 goto exit_create_index; 3015 } 3016 }else{ 3017 int n; 3018 Index *pLoop; 3019 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3020 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3021 if( zName==0 ){ 3022 goto exit_create_index; 3023 } 3024 } 3025 3026 /* Check for authorization to create an index. 3027 */ 3028 #ifndef SQLITE_OMIT_AUTHORIZATION 3029 { 3030 const char *zDb = pDb->zName; 3031 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3032 goto exit_create_index; 3033 } 3034 i = SQLITE_CREATE_INDEX; 3035 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3036 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3037 goto exit_create_index; 3038 } 3039 } 3040 #endif 3041 3042 /* If pList==0, it means this routine was called to make a primary 3043 ** key out of the last column added to the table under construction. 3044 ** So create a fake list to simulate this. 3045 */ 3046 if( pList==0 ){ 3047 Token prevCol; 3048 prevCol.z = pTab->aCol[pTab->nCol-1].zName; 3049 prevCol.n = sqlite3Strlen30(prevCol.z); 3050 pList = sqlite3ExprListAppend(pParse, 0, 3051 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3052 if( pList==0 ) goto exit_create_index; 3053 assert( pList->nExpr==1 ); 3054 sqlite3ExprListSetSortOrder(pList, sortOrder); 3055 }else{ 3056 sqlite3ExprListCheckLength(pParse, pList, "index"); 3057 } 3058 3059 /* Figure out how many bytes of space are required to store explicitly 3060 ** specified collation sequence names. 3061 */ 3062 for(i=0; i<pList->nExpr; i++){ 3063 Expr *pExpr = pList->a[i].pExpr; 3064 if( pExpr && pExpr->op==TK_COLLATE ){ 3065 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3066 } 3067 } 3068 3069 /* 3070 ** Allocate the index structure. 3071 */ 3072 nName = sqlite3Strlen30(zName); 3073 nExtraCol = pPk ? pPk->nKeyCol : 1; 3074 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3075 nName + nExtra + 1, &zExtra); 3076 if( db->mallocFailed ){ 3077 goto exit_create_index; 3078 } 3079 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3080 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3081 pIndex->zName = zExtra; 3082 zExtra += nName + 1; 3083 memcpy(pIndex->zName, zName, nName+1); 3084 pIndex->pTable = pTab; 3085 pIndex->onError = (u8)onError; 3086 pIndex->uniqNotNull = onError!=OE_None; 3087 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3088 pIndex->pSchema = db->aDb[iDb].pSchema; 3089 pIndex->nKeyCol = pList->nExpr; 3090 if( pPIWhere ){ 3091 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3092 pIndex->pPartIdxWhere = pPIWhere; 3093 pPIWhere = 0; 3094 } 3095 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3096 3097 /* Check to see if we should honor DESC requests on index columns 3098 */ 3099 if( pDb->pSchema->file_format>=4 ){ 3100 sortOrderMask = -1; /* Honor DESC */ 3101 }else{ 3102 sortOrderMask = 0; /* Ignore DESC */ 3103 } 3104 3105 /* Scan the names of the columns of the table to be indexed and 3106 ** load the column indices into the Index structure. Report an error 3107 ** if any column is not found. 3108 ** 3109 ** TODO: Add a test to make sure that the same column is not named 3110 ** more than once within the same index. Only the first instance of 3111 ** the column will ever be used by the optimizer. Note that using the 3112 ** same column more than once cannot be an error because that would 3113 ** break backwards compatibility - it needs to be a warning. 3114 */ 3115 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3116 const char *zColName; 3117 Expr *pCExpr; 3118 int requestedSortOrder; 3119 char *zColl; /* Collation sequence name */ 3120 3121 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3122 if( pCExpr->op!=TK_ID ){ 3123 sqlite3ErrorMsg(pParse, "indexes on expressions not yet supported"); 3124 continue; 3125 } 3126 zColName = pCExpr->u.zToken; 3127 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 3128 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 3129 } 3130 if( j>=pTab->nCol ){ 3131 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 3132 pTab->zName, zColName); 3133 pParse->checkSchema = 1; 3134 goto exit_create_index; 3135 } 3136 assert( j<=0x7fff ); 3137 pIndex->aiColumn[i] = (i16)j; 3138 if( pListItem->pExpr->op==TK_COLLATE ){ 3139 int nColl; 3140 zColl = pListItem->pExpr->u.zToken; 3141 nColl = sqlite3Strlen30(zColl) + 1; 3142 assert( nExtra>=nColl ); 3143 memcpy(zExtra, zColl, nColl); 3144 zColl = zExtra; 3145 zExtra += nColl; 3146 nExtra -= nColl; 3147 }else{ 3148 zColl = pTab->aCol[j].zColl; 3149 if( !zColl ) zColl = "BINARY"; 3150 } 3151 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3152 goto exit_create_index; 3153 } 3154 pIndex->azColl[i] = zColl; 3155 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3156 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3157 if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; 3158 } 3159 if( pPk ){ 3160 for(j=0; j<pPk->nKeyCol; j++){ 3161 int x = pPk->aiColumn[j]; 3162 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3163 pIndex->nColumn--; 3164 }else{ 3165 pIndex->aiColumn[i] = x; 3166 pIndex->azColl[i] = pPk->azColl[j]; 3167 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3168 i++; 3169 } 3170 } 3171 assert( i==pIndex->nColumn ); 3172 }else{ 3173 pIndex->aiColumn[i] = -1; 3174 pIndex->azColl[i] = "BINARY"; 3175 } 3176 sqlite3DefaultRowEst(pIndex); 3177 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3178 3179 if( pTab==pParse->pNewTable ){ 3180 /* This routine has been called to create an automatic index as a 3181 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3182 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3183 ** i.e. one of: 3184 ** 3185 ** CREATE TABLE t(x PRIMARY KEY, y); 3186 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3187 ** 3188 ** Either way, check to see if the table already has such an index. If 3189 ** so, don't bother creating this one. This only applies to 3190 ** automatically created indices. Users can do as they wish with 3191 ** explicit indices. 3192 ** 3193 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3194 ** (and thus suppressing the second one) even if they have different 3195 ** sort orders. 3196 ** 3197 ** If there are different collating sequences or if the columns of 3198 ** the constraint occur in different orders, then the constraints are 3199 ** considered distinct and both result in separate indices. 3200 */ 3201 Index *pIdx; 3202 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3203 int k; 3204 assert( IsUniqueIndex(pIdx) ); 3205 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3206 assert( IsUniqueIndex(pIndex) ); 3207 3208 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3209 for(k=0; k<pIdx->nKeyCol; k++){ 3210 const char *z1; 3211 const char *z2; 3212 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3213 z1 = pIdx->azColl[k]; 3214 z2 = pIndex->azColl[k]; 3215 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3216 } 3217 if( k==pIdx->nKeyCol ){ 3218 if( pIdx->onError!=pIndex->onError ){ 3219 /* This constraint creates the same index as a previous 3220 ** constraint specified somewhere in the CREATE TABLE statement. 3221 ** However the ON CONFLICT clauses are different. If both this 3222 ** constraint and the previous equivalent constraint have explicit 3223 ** ON CONFLICT clauses this is an error. Otherwise, use the 3224 ** explicitly specified behavior for the index. 3225 */ 3226 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3227 sqlite3ErrorMsg(pParse, 3228 "conflicting ON CONFLICT clauses specified", 0); 3229 } 3230 if( pIdx->onError==OE_Default ){ 3231 pIdx->onError = pIndex->onError; 3232 } 3233 } 3234 pRet = pIdx; 3235 goto exit_create_index; 3236 } 3237 } 3238 } 3239 3240 /* Link the new Index structure to its table and to the other 3241 ** in-memory database structures. 3242 */ 3243 if( db->init.busy ){ 3244 Index *p; 3245 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3246 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3247 pIndex->zName, pIndex); 3248 if( p ){ 3249 assert( p==pIndex ); /* Malloc must have failed */ 3250 db->mallocFailed = 1; 3251 goto exit_create_index; 3252 } 3253 db->flags |= SQLITE_InternChanges; 3254 if( pTblName!=0 ){ 3255 pIndex->tnum = db->init.newTnum; 3256 } 3257 } 3258 3259 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3260 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3261 ** emit code to allocate the index rootpage on disk and make an entry for 3262 ** the index in the sqlite_master table and populate the index with 3263 ** content. But, do not do this if we are simply reading the sqlite_master 3264 ** table to parse the schema, or if this index is the PRIMARY KEY index 3265 ** of a WITHOUT ROWID table. 3266 ** 3267 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3268 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3269 ** has just been created, it contains no data and the index initialization 3270 ** step can be skipped. 3271 */ 3272 else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ 3273 Vdbe *v; 3274 char *zStmt; 3275 int iMem = ++pParse->nMem; 3276 3277 v = sqlite3GetVdbe(pParse); 3278 if( v==0 ) goto exit_create_index; 3279 3280 sqlite3BeginWriteOperation(pParse, 1, iDb); 3281 3282 /* Create the rootpage for the index using CreateIndex. But before 3283 ** doing so, code a Noop instruction and store its address in 3284 ** Index.tnum. This is required in case this index is actually a 3285 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3286 ** that case the convertToWithoutRowidTable() routine will replace 3287 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3288 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3289 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3290 3291 /* Gather the complete text of the CREATE INDEX statement into 3292 ** the zStmt variable 3293 */ 3294 if( pStart ){ 3295 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3296 if( pName->z[n-1]==';' ) n--; 3297 /* A named index with an explicit CREATE INDEX statement */ 3298 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3299 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3300 }else{ 3301 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3302 /* zStmt = sqlite3MPrintf(""); */ 3303 zStmt = 0; 3304 } 3305 3306 /* Add an entry in sqlite_master for this index 3307 */ 3308 sqlite3NestedParse(pParse, 3309 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3310 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3311 pIndex->zName, 3312 pTab->zName, 3313 iMem, 3314 zStmt 3315 ); 3316 sqlite3DbFree(db, zStmt); 3317 3318 /* Fill the index with data and reparse the schema. Code an OP_Expire 3319 ** to invalidate all pre-compiled statements. 3320 */ 3321 if( pTblName ){ 3322 sqlite3RefillIndex(pParse, pIndex, iMem); 3323 sqlite3ChangeCookie(pParse, iDb); 3324 sqlite3VdbeAddParseSchemaOp(v, iDb, 3325 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3326 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3327 } 3328 3329 sqlite3VdbeJumpHere(v, pIndex->tnum); 3330 } 3331 3332 /* When adding an index to the list of indices for a table, make 3333 ** sure all indices labeled OE_Replace come after all those labeled 3334 ** OE_Ignore. This is necessary for the correct constraint check 3335 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3336 ** UPDATE and INSERT statements. 3337 */ 3338 if( db->init.busy || pTblName==0 ){ 3339 if( onError!=OE_Replace || pTab->pIndex==0 3340 || pTab->pIndex->onError==OE_Replace){ 3341 pIndex->pNext = pTab->pIndex; 3342 pTab->pIndex = pIndex; 3343 }else{ 3344 Index *pOther = pTab->pIndex; 3345 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3346 pOther = pOther->pNext; 3347 } 3348 pIndex->pNext = pOther->pNext; 3349 pOther->pNext = pIndex; 3350 } 3351 pRet = pIndex; 3352 pIndex = 0; 3353 } 3354 3355 /* Clean up before exiting */ 3356 exit_create_index: 3357 if( pIndex ) freeIndex(db, pIndex); 3358 sqlite3ExprDelete(db, pPIWhere); 3359 sqlite3ExprListDelete(db, pList); 3360 sqlite3SrcListDelete(db, pTblName); 3361 sqlite3DbFree(db, zName); 3362 return pRet; 3363 } 3364 3365 /* 3366 ** Fill the Index.aiRowEst[] array with default information - information 3367 ** to be used when we have not run the ANALYZE command. 3368 ** 3369 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3370 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3371 ** number of rows in the table that match any particular value of the 3372 ** first column of the index. aiRowEst[2] is an estimate of the number 3373 ** of rows that match any particular combination of the first 2 columns 3374 ** of the index. And so forth. It must always be the case that 3375 * 3376 ** aiRowEst[N]<=aiRowEst[N-1] 3377 ** aiRowEst[N]>=1 3378 ** 3379 ** Apart from that, we have little to go on besides intuition as to 3380 ** how aiRowEst[] should be initialized. The numbers generated here 3381 ** are based on typical values found in actual indices. 3382 */ 3383 void sqlite3DefaultRowEst(Index *pIdx){ 3384 /* 10, 9, 8, 7, 6 */ 3385 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3386 LogEst *a = pIdx->aiRowLogEst; 3387 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3388 int i; 3389 3390 /* Set the first entry (number of rows in the index) to the estimated 3391 ** number of rows in the table. Or 10, if the estimated number of rows 3392 ** in the table is less than that. */ 3393 a[0] = pIdx->pTable->nRowLogEst; 3394 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3395 3396 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3397 ** 6 and each subsequent value (if any) is 5. */ 3398 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3399 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3400 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3401 } 3402 3403 assert( 0==sqlite3LogEst(1) ); 3404 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3405 } 3406 3407 /* 3408 ** This routine will drop an existing named index. This routine 3409 ** implements the DROP INDEX statement. 3410 */ 3411 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3412 Index *pIndex; 3413 Vdbe *v; 3414 sqlite3 *db = pParse->db; 3415 int iDb; 3416 3417 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3418 if( db->mallocFailed ){ 3419 goto exit_drop_index; 3420 } 3421 assert( pName->nSrc==1 ); 3422 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3423 goto exit_drop_index; 3424 } 3425 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3426 if( pIndex==0 ){ 3427 if( !ifExists ){ 3428 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3429 }else{ 3430 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3431 } 3432 pParse->checkSchema = 1; 3433 goto exit_drop_index; 3434 } 3435 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3436 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3437 "or PRIMARY KEY constraint cannot be dropped", 0); 3438 goto exit_drop_index; 3439 } 3440 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3441 #ifndef SQLITE_OMIT_AUTHORIZATION 3442 { 3443 int code = SQLITE_DROP_INDEX; 3444 Table *pTab = pIndex->pTable; 3445 const char *zDb = db->aDb[iDb].zName; 3446 const char *zTab = SCHEMA_TABLE(iDb); 3447 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3448 goto exit_drop_index; 3449 } 3450 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3451 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3452 goto exit_drop_index; 3453 } 3454 } 3455 #endif 3456 3457 /* Generate code to remove the index and from the master table */ 3458 v = sqlite3GetVdbe(pParse); 3459 if( v ){ 3460 sqlite3BeginWriteOperation(pParse, 1, iDb); 3461 sqlite3NestedParse(pParse, 3462 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3463 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3464 ); 3465 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3466 sqlite3ChangeCookie(pParse, iDb); 3467 destroyRootPage(pParse, pIndex->tnum, iDb); 3468 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3469 } 3470 3471 exit_drop_index: 3472 sqlite3SrcListDelete(db, pName); 3473 } 3474 3475 /* 3476 ** pArray is a pointer to an array of objects. Each object in the 3477 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3478 ** to extend the array so that there is space for a new object at the end. 3479 ** 3480 ** When this function is called, *pnEntry contains the current size of 3481 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3482 ** in total). 3483 ** 3484 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3485 ** space allocated for the new object is zeroed, *pnEntry updated to 3486 ** reflect the new size of the array and a pointer to the new allocation 3487 ** returned. *pIdx is set to the index of the new array entry in this case. 3488 ** 3489 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3490 ** unchanged and a copy of pArray returned. 3491 */ 3492 void *sqlite3ArrayAllocate( 3493 sqlite3 *db, /* Connection to notify of malloc failures */ 3494 void *pArray, /* Array of objects. Might be reallocated */ 3495 int szEntry, /* Size of each object in the array */ 3496 int *pnEntry, /* Number of objects currently in use */ 3497 int *pIdx /* Write the index of a new slot here */ 3498 ){ 3499 char *z; 3500 int n = *pnEntry; 3501 if( (n & (n-1))==0 ){ 3502 int sz = (n==0) ? 1 : 2*n; 3503 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3504 if( pNew==0 ){ 3505 *pIdx = -1; 3506 return pArray; 3507 } 3508 pArray = pNew; 3509 } 3510 z = (char*)pArray; 3511 memset(&z[n * szEntry], 0, szEntry); 3512 *pIdx = n; 3513 ++*pnEntry; 3514 return pArray; 3515 } 3516 3517 /* 3518 ** Append a new element to the given IdList. Create a new IdList if 3519 ** need be. 3520 ** 3521 ** A new IdList is returned, or NULL if malloc() fails. 3522 */ 3523 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3524 int i; 3525 if( pList==0 ){ 3526 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3527 if( pList==0 ) return 0; 3528 } 3529 pList->a = sqlite3ArrayAllocate( 3530 db, 3531 pList->a, 3532 sizeof(pList->a[0]), 3533 &pList->nId, 3534 &i 3535 ); 3536 if( i<0 ){ 3537 sqlite3IdListDelete(db, pList); 3538 return 0; 3539 } 3540 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3541 return pList; 3542 } 3543 3544 /* 3545 ** Delete an IdList. 3546 */ 3547 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3548 int i; 3549 if( pList==0 ) return; 3550 for(i=0; i<pList->nId; i++){ 3551 sqlite3DbFree(db, pList->a[i].zName); 3552 } 3553 sqlite3DbFree(db, pList->a); 3554 sqlite3DbFree(db, pList); 3555 } 3556 3557 /* 3558 ** Return the index in pList of the identifier named zId. Return -1 3559 ** if not found. 3560 */ 3561 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3562 int i; 3563 if( pList==0 ) return -1; 3564 for(i=0; i<pList->nId; i++){ 3565 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3566 } 3567 return -1; 3568 } 3569 3570 /* 3571 ** Expand the space allocated for the given SrcList object by 3572 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3573 ** New slots are zeroed. 3574 ** 3575 ** For example, suppose a SrcList initially contains two entries: A,B. 3576 ** To append 3 new entries onto the end, do this: 3577 ** 3578 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3579 ** 3580 ** After the call above it would contain: A, B, nil, nil, nil. 3581 ** If the iStart argument had been 1 instead of 2, then the result 3582 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3583 ** the iStart value would be 0. The result then would 3584 ** be: nil, nil, nil, A, B. 3585 ** 3586 ** If a memory allocation fails the SrcList is unchanged. The 3587 ** db->mallocFailed flag will be set to true. 3588 */ 3589 SrcList *sqlite3SrcListEnlarge( 3590 sqlite3 *db, /* Database connection to notify of OOM errors */ 3591 SrcList *pSrc, /* The SrcList to be enlarged */ 3592 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3593 int iStart /* Index in pSrc->a[] of first new slot */ 3594 ){ 3595 int i; 3596 3597 /* Sanity checking on calling parameters */ 3598 assert( iStart>=0 ); 3599 assert( nExtra>=1 ); 3600 assert( pSrc!=0 ); 3601 assert( iStart<=pSrc->nSrc ); 3602 3603 /* Allocate additional space if needed */ 3604 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3605 SrcList *pNew; 3606 int nAlloc = pSrc->nSrc+nExtra; 3607 int nGot; 3608 pNew = sqlite3DbRealloc(db, pSrc, 3609 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3610 if( pNew==0 ){ 3611 assert( db->mallocFailed ); 3612 return pSrc; 3613 } 3614 pSrc = pNew; 3615 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3616 pSrc->nAlloc = nGot; 3617 } 3618 3619 /* Move existing slots that come after the newly inserted slots 3620 ** out of the way */ 3621 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3622 pSrc->a[i+nExtra] = pSrc->a[i]; 3623 } 3624 pSrc->nSrc += nExtra; 3625 3626 /* Zero the newly allocated slots */ 3627 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3628 for(i=iStart; i<iStart+nExtra; i++){ 3629 pSrc->a[i].iCursor = -1; 3630 } 3631 3632 /* Return a pointer to the enlarged SrcList */ 3633 return pSrc; 3634 } 3635 3636 3637 /* 3638 ** Append a new table name to the given SrcList. Create a new SrcList if 3639 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3640 ** 3641 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3642 ** SrcList might be the same as the SrcList that was input or it might be 3643 ** a new one. If an OOM error does occurs, then the prior value of pList 3644 ** that is input to this routine is automatically freed. 3645 ** 3646 ** If pDatabase is not null, it means that the table has an optional 3647 ** database name prefix. Like this: "database.table". The pDatabase 3648 ** points to the table name and the pTable points to the database name. 3649 ** The SrcList.a[].zName field is filled with the table name which might 3650 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3651 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3652 ** or with NULL if no database is specified. 3653 ** 3654 ** In other words, if call like this: 3655 ** 3656 ** sqlite3SrcListAppend(D,A,B,0); 3657 ** 3658 ** Then B is a table name and the database name is unspecified. If called 3659 ** like this: 3660 ** 3661 ** sqlite3SrcListAppend(D,A,B,C); 3662 ** 3663 ** Then C is the table name and B is the database name. If C is defined 3664 ** then so is B. In other words, we never have a case where: 3665 ** 3666 ** sqlite3SrcListAppend(D,A,0,C); 3667 ** 3668 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3669 ** before being added to the SrcList. 3670 */ 3671 SrcList *sqlite3SrcListAppend( 3672 sqlite3 *db, /* Connection to notify of malloc failures */ 3673 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3674 Token *pTable, /* Table to append */ 3675 Token *pDatabase /* Database of the table */ 3676 ){ 3677 struct SrcList_item *pItem; 3678 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3679 if( pList==0 ){ 3680 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3681 if( pList==0 ) return 0; 3682 pList->nAlloc = 1; 3683 } 3684 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3685 if( db->mallocFailed ){ 3686 sqlite3SrcListDelete(db, pList); 3687 return 0; 3688 } 3689 pItem = &pList->a[pList->nSrc-1]; 3690 if( pDatabase && pDatabase->z==0 ){ 3691 pDatabase = 0; 3692 } 3693 if( pDatabase ){ 3694 Token *pTemp = pDatabase; 3695 pDatabase = pTable; 3696 pTable = pTemp; 3697 } 3698 pItem->zName = sqlite3NameFromToken(db, pTable); 3699 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3700 return pList; 3701 } 3702 3703 /* 3704 ** Assign VdbeCursor index numbers to all tables in a SrcList 3705 */ 3706 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3707 int i; 3708 struct SrcList_item *pItem; 3709 assert(pList || pParse->db->mallocFailed ); 3710 if( pList ){ 3711 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3712 if( pItem->iCursor>=0 ) break; 3713 pItem->iCursor = pParse->nTab++; 3714 if( pItem->pSelect ){ 3715 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3716 } 3717 } 3718 } 3719 } 3720 3721 /* 3722 ** Delete an entire SrcList including all its substructure. 3723 */ 3724 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3725 int i; 3726 struct SrcList_item *pItem; 3727 if( pList==0 ) return; 3728 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3729 sqlite3DbFree(db, pItem->zDatabase); 3730 sqlite3DbFree(db, pItem->zName); 3731 sqlite3DbFree(db, pItem->zAlias); 3732 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3733 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3734 sqlite3DeleteTable(db, pItem->pTab); 3735 sqlite3SelectDelete(db, pItem->pSelect); 3736 sqlite3ExprDelete(db, pItem->pOn); 3737 sqlite3IdListDelete(db, pItem->pUsing); 3738 } 3739 sqlite3DbFree(db, pList); 3740 } 3741 3742 /* 3743 ** This routine is called by the parser to add a new term to the 3744 ** end of a growing FROM clause. The "p" parameter is the part of 3745 ** the FROM clause that has already been constructed. "p" is NULL 3746 ** if this is the first term of the FROM clause. pTable and pDatabase 3747 ** are the name of the table and database named in the FROM clause term. 3748 ** pDatabase is NULL if the database name qualifier is missing - the 3749 ** usual case. If the term has an alias, then pAlias points to the 3750 ** alias token. If the term is a subquery, then pSubquery is the 3751 ** SELECT statement that the subquery encodes. The pTable and 3752 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3753 ** parameters are the content of the ON and USING clauses. 3754 ** 3755 ** Return a new SrcList which encodes is the FROM with the new 3756 ** term added. 3757 */ 3758 SrcList *sqlite3SrcListAppendFromTerm( 3759 Parse *pParse, /* Parsing context */ 3760 SrcList *p, /* The left part of the FROM clause already seen */ 3761 Token *pTable, /* Name of the table to add to the FROM clause */ 3762 Token *pDatabase, /* Name of the database containing pTable */ 3763 Token *pAlias, /* The right-hand side of the AS subexpression */ 3764 Select *pSubquery, /* A subquery used in place of a table name */ 3765 Expr *pOn, /* The ON clause of a join */ 3766 IdList *pUsing /* The USING clause of a join */ 3767 ){ 3768 struct SrcList_item *pItem; 3769 sqlite3 *db = pParse->db; 3770 if( !p && (pOn || pUsing) ){ 3771 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3772 (pOn ? "ON" : "USING") 3773 ); 3774 goto append_from_error; 3775 } 3776 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3777 if( p==0 || NEVER(p->nSrc==0) ){ 3778 goto append_from_error; 3779 } 3780 pItem = &p->a[p->nSrc-1]; 3781 assert( pAlias!=0 ); 3782 if( pAlias->n ){ 3783 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3784 } 3785 pItem->pSelect = pSubquery; 3786 pItem->pOn = pOn; 3787 pItem->pUsing = pUsing; 3788 return p; 3789 3790 append_from_error: 3791 assert( p==0 ); 3792 sqlite3ExprDelete(db, pOn); 3793 sqlite3IdListDelete(db, pUsing); 3794 sqlite3SelectDelete(db, pSubquery); 3795 return 0; 3796 } 3797 3798 /* 3799 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3800 ** element of the source-list passed as the second argument. 3801 */ 3802 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3803 assert( pIndexedBy!=0 ); 3804 if( p && ALWAYS(p->nSrc>0) ){ 3805 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3806 assert( pItem->fg.notIndexed==0 ); 3807 assert( pItem->fg.isIndexedBy==0 ); 3808 assert( pItem->fg.isTabFunc==0 ); 3809 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3810 /* A "NOT INDEXED" clause was supplied. See parse.y 3811 ** construct "indexed_opt" for details. */ 3812 pItem->fg.notIndexed = 1; 3813 }else{ 3814 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3815 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3816 } 3817 } 3818 } 3819 3820 /* 3821 ** Add the list of function arguments to the SrcList entry for a 3822 ** table-valued-function. 3823 */ 3824 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3825 if( p && pList ){ 3826 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3827 assert( pItem->fg.notIndexed==0 ); 3828 assert( pItem->fg.isIndexedBy==0 ); 3829 assert( pItem->fg.isTabFunc==0 ); 3830 pItem->u1.pFuncArg = pList; 3831 pItem->fg.isTabFunc = 1; 3832 }else{ 3833 sqlite3ExprListDelete(pParse->db, pList); 3834 } 3835 } 3836 3837 /* 3838 ** When building up a FROM clause in the parser, the join operator 3839 ** is initially attached to the left operand. But the code generator 3840 ** expects the join operator to be on the right operand. This routine 3841 ** Shifts all join operators from left to right for an entire FROM 3842 ** clause. 3843 ** 3844 ** Example: Suppose the join is like this: 3845 ** 3846 ** A natural cross join B 3847 ** 3848 ** The operator is "natural cross join". The A and B operands are stored 3849 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3850 ** operator with A. This routine shifts that operator over to B. 3851 */ 3852 void sqlite3SrcListShiftJoinType(SrcList *p){ 3853 if( p ){ 3854 int i; 3855 for(i=p->nSrc-1; i>0; i--){ 3856 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3857 } 3858 p->a[0].fg.jointype = 0; 3859 } 3860 } 3861 3862 /* 3863 ** Begin a transaction 3864 */ 3865 void sqlite3BeginTransaction(Parse *pParse, int type){ 3866 sqlite3 *db; 3867 Vdbe *v; 3868 int i; 3869 3870 assert( pParse!=0 ); 3871 db = pParse->db; 3872 assert( db!=0 ); 3873 /* if( db->aDb[0].pBt==0 ) return; */ 3874 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3875 return; 3876 } 3877 v = sqlite3GetVdbe(pParse); 3878 if( !v ) return; 3879 if( type!=TK_DEFERRED ){ 3880 for(i=0; i<db->nDb; i++){ 3881 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3882 sqlite3VdbeUsesBtree(v, i); 3883 } 3884 } 3885 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3886 } 3887 3888 /* 3889 ** Commit a transaction 3890 */ 3891 void sqlite3CommitTransaction(Parse *pParse){ 3892 Vdbe *v; 3893 3894 assert( pParse!=0 ); 3895 assert( pParse->db!=0 ); 3896 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3897 return; 3898 } 3899 v = sqlite3GetVdbe(pParse); 3900 if( v ){ 3901 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3902 } 3903 } 3904 3905 /* 3906 ** Rollback a transaction 3907 */ 3908 void sqlite3RollbackTransaction(Parse *pParse){ 3909 Vdbe *v; 3910 3911 assert( pParse!=0 ); 3912 assert( pParse->db!=0 ); 3913 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3914 return; 3915 } 3916 v = sqlite3GetVdbe(pParse); 3917 if( v ){ 3918 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3919 } 3920 } 3921 3922 /* 3923 ** This function is called by the parser when it parses a command to create, 3924 ** release or rollback an SQL savepoint. 3925 */ 3926 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3927 char *zName = sqlite3NameFromToken(pParse->db, pName); 3928 if( zName ){ 3929 Vdbe *v = sqlite3GetVdbe(pParse); 3930 #ifndef SQLITE_OMIT_AUTHORIZATION 3931 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3932 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3933 #endif 3934 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3935 sqlite3DbFree(pParse->db, zName); 3936 return; 3937 } 3938 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3939 } 3940 } 3941 3942 /* 3943 ** Make sure the TEMP database is open and available for use. Return 3944 ** the number of errors. Leave any error messages in the pParse structure. 3945 */ 3946 int sqlite3OpenTempDatabase(Parse *pParse){ 3947 sqlite3 *db = pParse->db; 3948 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3949 int rc; 3950 Btree *pBt; 3951 static const int flags = 3952 SQLITE_OPEN_READWRITE | 3953 SQLITE_OPEN_CREATE | 3954 SQLITE_OPEN_EXCLUSIVE | 3955 SQLITE_OPEN_DELETEONCLOSE | 3956 SQLITE_OPEN_TEMP_DB; 3957 3958 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3959 if( rc!=SQLITE_OK ){ 3960 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3961 "file for storing temporary tables"); 3962 pParse->rc = rc; 3963 return 1; 3964 } 3965 db->aDb[1].pBt = pBt; 3966 assert( db->aDb[1].pSchema ); 3967 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3968 db->mallocFailed = 1; 3969 return 1; 3970 } 3971 } 3972 return 0; 3973 } 3974 3975 /* 3976 ** Record the fact that the schema cookie will need to be verified 3977 ** for database iDb. The code to actually verify the schema cookie 3978 ** will occur at the end of the top-level VDBE and will be generated 3979 ** later, by sqlite3FinishCoding(). 3980 */ 3981 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3982 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3983 sqlite3 *db = pToplevel->db; 3984 3985 assert( iDb>=0 && iDb<db->nDb ); 3986 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3987 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3988 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3989 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 3990 DbMaskSet(pToplevel->cookieMask, iDb); 3991 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3992 if( !OMIT_TEMPDB && iDb==1 ){ 3993 sqlite3OpenTempDatabase(pToplevel); 3994 } 3995 } 3996 } 3997 3998 /* 3999 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4000 ** attached database. Otherwise, invoke it for the database named zDb only. 4001 */ 4002 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4003 sqlite3 *db = pParse->db; 4004 int i; 4005 for(i=0; i<db->nDb; i++){ 4006 Db *pDb = &db->aDb[i]; 4007 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 4008 sqlite3CodeVerifySchema(pParse, i); 4009 } 4010 } 4011 } 4012 4013 /* 4014 ** Generate VDBE code that prepares for doing an operation that 4015 ** might change the database. 4016 ** 4017 ** This routine starts a new transaction if we are not already within 4018 ** a transaction. If we are already within a transaction, then a checkpoint 4019 ** is set if the setStatement parameter is true. A checkpoint should 4020 ** be set for operations that might fail (due to a constraint) part of 4021 ** the way through and which will need to undo some writes without having to 4022 ** rollback the whole transaction. For operations where all constraints 4023 ** can be checked before any changes are made to the database, it is never 4024 ** necessary to undo a write and the checkpoint should not be set. 4025 */ 4026 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4027 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4028 sqlite3CodeVerifySchema(pParse, iDb); 4029 DbMaskSet(pToplevel->writeMask, iDb); 4030 pToplevel->isMultiWrite |= setStatement; 4031 } 4032 4033 /* 4034 ** Indicate that the statement currently under construction might write 4035 ** more than one entry (example: deleting one row then inserting another, 4036 ** inserting multiple rows in a table, or inserting a row and index entries.) 4037 ** If an abort occurs after some of these writes have completed, then it will 4038 ** be necessary to undo the completed writes. 4039 */ 4040 void sqlite3MultiWrite(Parse *pParse){ 4041 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4042 pToplevel->isMultiWrite = 1; 4043 } 4044 4045 /* 4046 ** The code generator calls this routine if is discovers that it is 4047 ** possible to abort a statement prior to completion. In order to 4048 ** perform this abort without corrupting the database, we need to make 4049 ** sure that the statement is protected by a statement transaction. 4050 ** 4051 ** Technically, we only need to set the mayAbort flag if the 4052 ** isMultiWrite flag was previously set. There is a time dependency 4053 ** such that the abort must occur after the multiwrite. This makes 4054 ** some statements involving the REPLACE conflict resolution algorithm 4055 ** go a little faster. But taking advantage of this time dependency 4056 ** makes it more difficult to prove that the code is correct (in 4057 ** particular, it prevents us from writing an effective 4058 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4059 ** to take the safe route and skip the optimization. 4060 */ 4061 void sqlite3MayAbort(Parse *pParse){ 4062 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4063 pToplevel->mayAbort = 1; 4064 } 4065 4066 /* 4067 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4068 ** error. The onError parameter determines which (if any) of the statement 4069 ** and/or current transaction is rolled back. 4070 */ 4071 void sqlite3HaltConstraint( 4072 Parse *pParse, /* Parsing context */ 4073 int errCode, /* extended error code */ 4074 int onError, /* Constraint type */ 4075 char *p4, /* Error message */ 4076 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4077 u8 p5Errmsg /* P5_ErrMsg type */ 4078 ){ 4079 Vdbe *v = sqlite3GetVdbe(pParse); 4080 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4081 if( onError==OE_Abort ){ 4082 sqlite3MayAbort(pParse); 4083 } 4084 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4085 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 4086 } 4087 4088 /* 4089 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4090 */ 4091 void sqlite3UniqueConstraint( 4092 Parse *pParse, /* Parsing context */ 4093 int onError, /* Constraint type */ 4094 Index *pIdx /* The index that triggers the constraint */ 4095 ){ 4096 char *zErr; 4097 int j; 4098 StrAccum errMsg; 4099 Table *pTab = pIdx->pTable; 4100 4101 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4102 for(j=0; j<pIdx->nKeyCol; j++){ 4103 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4104 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4105 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 4106 sqlite3StrAccumAppend(&errMsg, ".", 1); 4107 sqlite3StrAccumAppendAll(&errMsg, zCol); 4108 } 4109 zErr = sqlite3StrAccumFinish(&errMsg); 4110 sqlite3HaltConstraint(pParse, 4111 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4112 : SQLITE_CONSTRAINT_UNIQUE, 4113 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4114 } 4115 4116 4117 /* 4118 ** Code an OP_Halt due to non-unique rowid. 4119 */ 4120 void sqlite3RowidConstraint( 4121 Parse *pParse, /* Parsing context */ 4122 int onError, /* Conflict resolution algorithm */ 4123 Table *pTab /* The table with the non-unique rowid */ 4124 ){ 4125 char *zMsg; 4126 int rc; 4127 if( pTab->iPKey>=0 ){ 4128 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4129 pTab->aCol[pTab->iPKey].zName); 4130 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4131 }else{ 4132 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4133 rc = SQLITE_CONSTRAINT_ROWID; 4134 } 4135 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4136 P5_ConstraintUnique); 4137 } 4138 4139 /* 4140 ** Check to see if pIndex uses the collating sequence pColl. Return 4141 ** true if it does and false if it does not. 4142 */ 4143 #ifndef SQLITE_OMIT_REINDEX 4144 static int collationMatch(const char *zColl, Index *pIndex){ 4145 int i; 4146 assert( zColl!=0 ); 4147 for(i=0; i<pIndex->nColumn; i++){ 4148 const char *z = pIndex->azColl[i]; 4149 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4150 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4151 return 1; 4152 } 4153 } 4154 return 0; 4155 } 4156 #endif 4157 4158 /* 4159 ** Recompute all indices of pTab that use the collating sequence pColl. 4160 ** If pColl==0 then recompute all indices of pTab. 4161 */ 4162 #ifndef SQLITE_OMIT_REINDEX 4163 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4164 Index *pIndex; /* An index associated with pTab */ 4165 4166 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4167 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4168 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4169 sqlite3BeginWriteOperation(pParse, 0, iDb); 4170 sqlite3RefillIndex(pParse, pIndex, -1); 4171 } 4172 } 4173 } 4174 #endif 4175 4176 /* 4177 ** Recompute all indices of all tables in all databases where the 4178 ** indices use the collating sequence pColl. If pColl==0 then recompute 4179 ** all indices everywhere. 4180 */ 4181 #ifndef SQLITE_OMIT_REINDEX 4182 static void reindexDatabases(Parse *pParse, char const *zColl){ 4183 Db *pDb; /* A single database */ 4184 int iDb; /* The database index number */ 4185 sqlite3 *db = pParse->db; /* The database connection */ 4186 HashElem *k; /* For looping over tables in pDb */ 4187 Table *pTab; /* A table in the database */ 4188 4189 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4190 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4191 assert( pDb!=0 ); 4192 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4193 pTab = (Table*)sqliteHashData(k); 4194 reindexTable(pParse, pTab, zColl); 4195 } 4196 } 4197 } 4198 #endif 4199 4200 /* 4201 ** Generate code for the REINDEX command. 4202 ** 4203 ** REINDEX -- 1 4204 ** REINDEX <collation> -- 2 4205 ** REINDEX ?<database>.?<tablename> -- 3 4206 ** REINDEX ?<database>.?<indexname> -- 4 4207 ** 4208 ** Form 1 causes all indices in all attached databases to be rebuilt. 4209 ** Form 2 rebuilds all indices in all databases that use the named 4210 ** collating function. Forms 3 and 4 rebuild the named index or all 4211 ** indices associated with the named table. 4212 */ 4213 #ifndef SQLITE_OMIT_REINDEX 4214 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4215 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4216 char *z; /* Name of a table or index */ 4217 const char *zDb; /* Name of the database */ 4218 Table *pTab; /* A table in the database */ 4219 Index *pIndex; /* An index associated with pTab */ 4220 int iDb; /* The database index number */ 4221 sqlite3 *db = pParse->db; /* The database connection */ 4222 Token *pObjName; /* Name of the table or index to be reindexed */ 4223 4224 /* Read the database schema. If an error occurs, leave an error message 4225 ** and code in pParse and return NULL. */ 4226 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4227 return; 4228 } 4229 4230 if( pName1==0 ){ 4231 reindexDatabases(pParse, 0); 4232 return; 4233 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4234 char *zColl; 4235 assert( pName1->z ); 4236 zColl = sqlite3NameFromToken(pParse->db, pName1); 4237 if( !zColl ) return; 4238 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4239 if( pColl ){ 4240 reindexDatabases(pParse, zColl); 4241 sqlite3DbFree(db, zColl); 4242 return; 4243 } 4244 sqlite3DbFree(db, zColl); 4245 } 4246 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4247 if( iDb<0 ) return; 4248 z = sqlite3NameFromToken(db, pObjName); 4249 if( z==0 ) return; 4250 zDb = db->aDb[iDb].zName; 4251 pTab = sqlite3FindTable(db, z, zDb); 4252 if( pTab ){ 4253 reindexTable(pParse, pTab, 0); 4254 sqlite3DbFree(db, z); 4255 return; 4256 } 4257 pIndex = sqlite3FindIndex(db, z, zDb); 4258 sqlite3DbFree(db, z); 4259 if( pIndex ){ 4260 sqlite3BeginWriteOperation(pParse, 0, iDb); 4261 sqlite3RefillIndex(pParse, pIndex, -1); 4262 return; 4263 } 4264 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4265 } 4266 #endif 4267 4268 /* 4269 ** Return a KeyInfo structure that is appropriate for the given Index. 4270 ** 4271 ** The KeyInfo structure for an index is cached in the Index object. 4272 ** So there might be multiple references to the returned pointer. The 4273 ** caller should not try to modify the KeyInfo object. 4274 ** 4275 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4276 ** when it has finished using it. 4277 */ 4278 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4279 int i; 4280 int nCol = pIdx->nColumn; 4281 int nKey = pIdx->nKeyCol; 4282 KeyInfo *pKey; 4283 if( pParse->nErr ) return 0; 4284 if( pIdx->uniqNotNull ){ 4285 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4286 }else{ 4287 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4288 } 4289 if( pKey ){ 4290 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4291 for(i=0; i<nCol; i++){ 4292 char *zColl = pIdx->azColl[i]; 4293 assert( zColl!=0 ); 4294 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4295 sqlite3LocateCollSeq(pParse, zColl); 4296 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4297 } 4298 if( pParse->nErr ){ 4299 sqlite3KeyInfoUnref(pKey); 4300 pKey = 0; 4301 } 4302 } 4303 return pKey; 4304 } 4305 4306 #ifndef SQLITE_OMIT_CTE 4307 /* 4308 ** This routine is invoked once per CTE by the parser while parsing a 4309 ** WITH clause. 4310 */ 4311 With *sqlite3WithAdd( 4312 Parse *pParse, /* Parsing context */ 4313 With *pWith, /* Existing WITH clause, or NULL */ 4314 Token *pName, /* Name of the common-table */ 4315 ExprList *pArglist, /* Optional column name list for the table */ 4316 Select *pQuery /* Query used to initialize the table */ 4317 ){ 4318 sqlite3 *db = pParse->db; 4319 With *pNew; 4320 char *zName; 4321 4322 /* Check that the CTE name is unique within this WITH clause. If 4323 ** not, store an error in the Parse structure. */ 4324 zName = sqlite3NameFromToken(pParse->db, pName); 4325 if( zName && pWith ){ 4326 int i; 4327 for(i=0; i<pWith->nCte; i++){ 4328 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4329 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4330 } 4331 } 4332 } 4333 4334 if( pWith ){ 4335 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4336 pNew = sqlite3DbRealloc(db, pWith, nByte); 4337 }else{ 4338 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4339 } 4340 assert( zName!=0 || pNew==0 ); 4341 assert( db->mallocFailed==0 || pNew==0 ); 4342 4343 if( pNew==0 ){ 4344 sqlite3ExprListDelete(db, pArglist); 4345 sqlite3SelectDelete(db, pQuery); 4346 sqlite3DbFree(db, zName); 4347 pNew = pWith; 4348 }else{ 4349 pNew->a[pNew->nCte].pSelect = pQuery; 4350 pNew->a[pNew->nCte].pCols = pArglist; 4351 pNew->a[pNew->nCte].zName = zName; 4352 pNew->a[pNew->nCte].zCteErr = 0; 4353 pNew->nCte++; 4354 } 4355 4356 return pNew; 4357 } 4358 4359 /* 4360 ** Free the contents of the With object passed as the second argument. 4361 */ 4362 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4363 if( pWith ){ 4364 int i; 4365 for(i=0; i<pWith->nCte; i++){ 4366 struct Cte *pCte = &pWith->a[i]; 4367 sqlite3ExprListDelete(db, pCte->pCols); 4368 sqlite3SelectDelete(db, pCte->pSelect); 4369 sqlite3DbFree(db, pCte->zName); 4370 } 4371 sqlite3DbFree(db, pWith); 4372 } 4373 } 4374 #endif /* !defined(SQLITE_OMIT_CTE) */ 4375