xref: /sqlite-3.40.0/src/build.c (revision 4dcbdbff)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 **
25 ** $Id: build.c,v 1.338 2005/07/28 16:51:51 drh Exp $
26 */
27 #include "sqliteInt.h"
28 #include <ctype.h>
29 
30 /*
31 ** This routine is called when a new SQL statement is beginning to
32 ** be parsed.  Initialize the pParse structure as needed.
33 */
34 void sqlite3BeginParse(Parse *pParse, int explainFlag){
35   pParse->explain = explainFlag;
36   pParse->nVar = 0;
37 }
38 
39 /*
40 ** This routine is called after a single SQL statement has been
41 ** parsed and a VDBE program to execute that statement has been
42 ** prepared.  This routine puts the finishing touches on the
43 ** VDBE program and resets the pParse structure for the next
44 ** parse.
45 **
46 ** Note that if an error occurred, it might be the case that
47 ** no VDBE code was generated.
48 */
49 void sqlite3FinishCoding(Parse *pParse){
50   sqlite3 *db;
51   Vdbe *v;
52 
53   if( sqlite3_malloc_failed ) return;
54   if( pParse->nested ) return;
55   if( !pParse->pVdbe ){
56     if( pParse->rc==SQLITE_OK && pParse->nErr ){
57       pParse->rc = SQLITE_ERROR;
58     }
59     return;
60   }
61 
62   /* Begin by generating some termination code at the end of the
63   ** vdbe program
64   */
65   db = pParse->db;
66   v = sqlite3GetVdbe(pParse);
67   if( v ){
68     sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
69 
70     /* The cookie mask contains one bit for each database file open.
71     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
72     ** set for each database that is used.  Generate code to start a
73     ** transaction on each used database and to verify the schema cookie
74     ** on each used database.
75     */
76     if( pParse->cookieGoto>0 ){
77       u32 mask;
78       int iDb;
79       sqlite3VdbeChangeP2(v, pParse->cookieGoto-1, sqlite3VdbeCurrentAddr(v));
80       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
81         if( (mask & pParse->cookieMask)==0 ) continue;
82         sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
83         sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
84       }
85       sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto);
86     }
87 
88     /* Add a No-op that contains the complete text of the compiled SQL
89     ** statement as its P3 argument.  This does not change the functionality
90     ** of the program.
91     **
92     ** This is used to implement sqlite3_trace().
93     */
94     sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql);
95   }
96 
97 
98   /* Get the VDBE program ready for execution
99   */
100   if( v && pParse->nErr==0 ){
101     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
102     sqlite3VdbeTrace(v, trace);
103     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
104                          pParse->nTab+3, pParse->nMaxDepth+1, pParse->explain);
105     pParse->rc = SQLITE_DONE;
106     pParse->colNamesSet = 0;
107   }else if( pParse->rc==SQLITE_OK ){
108     pParse->rc = SQLITE_ERROR;
109   }
110   pParse->nTab = 0;
111   pParse->nMem = 0;
112   pParse->nSet = 0;
113   pParse->nVar = 0;
114   pParse->cookieMask = 0;
115   pParse->cookieGoto = 0;
116 }
117 
118 /*
119 ** Run the parser and code generator recursively in order to generate
120 ** code for the SQL statement given onto the end of the pParse context
121 ** currently under construction.  When the parser is run recursively
122 ** this way, the final OP_Halt is not appended and other initialization
123 ** and finalization steps are omitted because those are handling by the
124 ** outermost parser.
125 **
126 ** Not everything is nestable.  This facility is designed to permit
127 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
128 ** care if you decide to try to use this routine for some other purposes.
129 */
130 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
131   va_list ap;
132   char *zSql;
133   int rc;
134 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
135   char saveBuf[SAVE_SZ];
136 
137   if( pParse->nErr ) return;
138   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
139   va_start(ap, zFormat);
140   zSql = sqlite3VMPrintf(zFormat, ap);
141   va_end(ap);
142   if( zSql==0 ){
143     return;   /* A malloc must have failed */
144   }
145   pParse->nested++;
146   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
147   memset(&pParse->nVar, 0, SAVE_SZ);
148   rc = sqlite3RunParser(pParse, zSql, 0);
149   sqliteFree(zSql);
150   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
151   pParse->nested--;
152 }
153 
154 /*
155 ** Locate the in-memory structure that describes a particular database
156 ** table given the name of that table and (optionally) the name of the
157 ** database containing the table.  Return NULL if not found.
158 **
159 ** If zDatabase is 0, all databases are searched for the table and the
160 ** first matching table is returned.  (No checking for duplicate table
161 ** names is done.)  The search order is TEMP first, then MAIN, then any
162 ** auxiliary databases added using the ATTACH command.
163 **
164 ** See also sqlite3LocateTable().
165 */
166 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
167   Table *p = 0;
168   int i;
169   assert( zName!=0 );
170   assert( (db->flags & SQLITE_Initialized) || db->init.busy );
171   for(i=OMIT_TEMPDB; i<db->nDb; i++){
172     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
173     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
174     p = sqlite3HashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
175     if( p ) break;
176   }
177   return p;
178 }
179 
180 /*
181 ** Locate the in-memory structure that describes a particular database
182 ** table given the name of that table and (optionally) the name of the
183 ** database containing the table.  Return NULL if not found.  Also leave an
184 ** error message in pParse->zErrMsg.
185 **
186 ** The difference between this routine and sqlite3FindTable() is that this
187 ** routine leaves an error message in pParse->zErrMsg where
188 ** sqlite3FindTable() does not.
189 */
190 Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
191   Table *p;
192 
193   /* Read the database schema. If an error occurs, leave an error message
194   ** and code in pParse and return NULL. */
195   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
196     return 0;
197   }
198 
199   p = sqlite3FindTable(pParse->db, zName, zDbase);
200   if( p==0 ){
201     if( zDbase ){
202       sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
203     }else if( sqlite3FindTable(pParse->db, zName, 0)!=0 ){
204       sqlite3ErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
205          zName, zDbase);
206     }else{
207       sqlite3ErrorMsg(pParse, "no such table: %s", zName);
208     }
209     pParse->checkSchema = 1;
210   }
211   return p;
212 }
213 
214 /*
215 ** Locate the in-memory structure that describes
216 ** a particular index given the name of that index
217 ** and the name of the database that contains the index.
218 ** Return NULL if not found.
219 **
220 ** If zDatabase is 0, all databases are searched for the
221 ** table and the first matching index is returned.  (No checking
222 ** for duplicate index names is done.)  The search order is
223 ** TEMP first, then MAIN, then any auxiliary databases added
224 ** using the ATTACH command.
225 */
226 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
227   Index *p = 0;
228   int i;
229   assert( (db->flags & SQLITE_Initialized) || db->init.busy );
230   for(i=OMIT_TEMPDB; i<db->nDb; i++){
231     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
232     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
233     p = sqlite3HashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
234     if( p ) break;
235   }
236   return p;
237 }
238 
239 /*
240 ** Reclaim the memory used by an index
241 */
242 static void freeIndex(Index *p){
243   sqliteFree(p->zColAff);
244   sqliteFree(p);
245 }
246 
247 /*
248 ** Remove the given index from the index hash table, and free
249 ** its memory structures.
250 **
251 ** The index is removed from the database hash tables but
252 ** it is not unlinked from the Table that it indexes.
253 ** Unlinking from the Table must be done by the calling function.
254 */
255 static void sqliteDeleteIndex(sqlite3 *db, Index *p){
256   Index *pOld;
257 
258   assert( db!=0 && p->zName!=0 );
259   pOld = sqlite3HashInsert(&db->aDb[p->iDb].idxHash, p->zName,
260                           strlen(p->zName)+1, 0);
261   if( pOld!=0 && pOld!=p ){
262     sqlite3HashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
263                      strlen(pOld->zName)+1, pOld);
264   }
265   freeIndex(p);
266 }
267 
268 /*
269 ** For the index called zIdxName which is found in the database iDb,
270 ** unlike that index from its Table then remove the index from
271 ** the index hash table and free all memory structures associated
272 ** with the index.
273 */
274 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
275   Index *pIndex;
276   int len;
277 
278   len = strlen(zIdxName);
279   pIndex = sqlite3HashInsert(&db->aDb[iDb].idxHash, zIdxName, len+1, 0);
280   if( pIndex ){
281     if( pIndex->pTable->pIndex==pIndex ){
282       pIndex->pTable->pIndex = pIndex->pNext;
283     }else{
284       Index *p;
285       for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
286       if( p && p->pNext==pIndex ){
287         p->pNext = pIndex->pNext;
288       }
289     }
290     freeIndex(pIndex);
291   }
292   db->flags |= SQLITE_InternChanges;
293 }
294 
295 /*
296 ** Erase all schema information from the in-memory hash tables of
297 ** a single database.  This routine is called to reclaim memory
298 ** before the database closes.  It is also called during a rollback
299 ** if there were schema changes during the transaction or if a
300 ** schema-cookie mismatch occurs.
301 **
302 ** If iDb<=0 then reset the internal schema tables for all database
303 ** files.  If iDb>=2 then reset the internal schema for only the
304 ** single file indicated.
305 */
306 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
307   HashElem *pElem;
308   Hash temp1;
309   Hash temp2;
310   int i, j;
311 
312   assert( iDb>=0 && iDb<db->nDb );
313   db->flags &= ~SQLITE_Initialized;
314   for(i=iDb; i<db->nDb; i++){
315     Db *pDb = &db->aDb[i];
316     temp1 = pDb->tblHash;
317     temp2 = pDb->trigHash;
318     sqlite3HashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
319     sqlite3HashClear(&pDb->aFKey);
320     sqlite3HashClear(&pDb->idxHash);
321     for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
322       sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
323     }
324     sqlite3HashClear(&temp2);
325     sqlite3HashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
326     for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
327       Table *pTab = sqliteHashData(pElem);
328       sqlite3DeleteTable(db, pTab);
329     }
330     sqlite3HashClear(&temp1);
331     pDb->pSeqTab = 0;
332     DbClearProperty(db, i, DB_SchemaLoaded);
333     if( iDb>0 ) return;
334   }
335   assert( iDb==0 );
336   db->flags &= ~SQLITE_InternChanges;
337 
338   /* If one or more of the auxiliary database files has been closed,
339   ** then remove then from the auxiliary database list.  We take the
340   ** opportunity to do this here since we have just deleted all of the
341   ** schema hash tables and therefore do not have to make any changes
342   ** to any of those tables.
343   */
344   for(i=0; i<db->nDb; i++){
345     struct Db *pDb = &db->aDb[i];
346     if( pDb->pBt==0 ){
347       if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
348       pDb->pAux = 0;
349     }
350   }
351   for(i=j=2; i<db->nDb; i++){
352     struct Db *pDb = &db->aDb[i];
353     if( pDb->pBt==0 ){
354       sqliteFree(pDb->zName);
355       pDb->zName = 0;
356       continue;
357     }
358     if( j<i ){
359       db->aDb[j] = db->aDb[i];
360     }
361     j++;
362   }
363   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
364   db->nDb = j;
365   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
366     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
367     sqliteFree(db->aDb);
368     db->aDb = db->aDbStatic;
369   }
370 }
371 
372 /*
373 ** This routine is called whenever a rollback occurs.  If there were
374 ** schema changes during the transaction, then we have to reset the
375 ** internal hash tables and reload them from disk.
376 */
377 void sqlite3RollbackInternalChanges(sqlite3 *db){
378   if( db->flags & SQLITE_InternChanges ){
379     sqlite3ResetInternalSchema(db, 0);
380   }
381 }
382 
383 /*
384 ** This routine is called when a commit occurs.
385 */
386 void sqlite3CommitInternalChanges(sqlite3 *db){
387   db->flags &= ~SQLITE_InternChanges;
388 }
389 
390 /*
391 ** Clear the column names from a table or view.
392 */
393 static void sqliteResetColumnNames(Table *pTable){
394   int i;
395   Column *pCol;
396   assert( pTable!=0 );
397   if( (pCol = pTable->aCol)!=0 ){
398     for(i=0; i<pTable->nCol; i++, pCol++){
399       sqliteFree(pCol->zName);
400       sqlite3ExprDelete(pCol->pDflt);
401       sqliteFree(pCol->zType);
402     }
403     sqliteFree(pTable->aCol);
404   }
405   pTable->aCol = 0;
406   pTable->nCol = 0;
407 }
408 
409 /*
410 ** Remove the memory data structures associated with the given
411 ** Table.  No changes are made to disk by this routine.
412 **
413 ** This routine just deletes the data structure.  It does not unlink
414 ** the table data structure from the hash table.  Nor does it remove
415 ** foreign keys from the sqlite.aFKey hash table.  But it does destroy
416 ** memory structures of the indices and foreign keys associated with
417 ** the table.
418 **
419 ** Indices associated with the table are unlinked from the "db"
420 ** data structure if db!=NULL.  If db==NULL, indices attached to
421 ** the table are deleted, but it is assumed they have already been
422 ** unlinked.
423 */
424 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
425   Index *pIndex, *pNext;
426   FKey *pFKey, *pNextFKey;
427 
428   if( pTable==0 ) return;
429 
430   /* Do not delete the table until the reference count reaches zero. */
431   pTable->nRef--;
432   if( pTable->nRef>0 ){
433     return;
434   }
435   assert( pTable->nRef==0 );
436 
437   /* Delete all indices associated with this table
438   */
439   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
440     pNext = pIndex->pNext;
441     assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
442     sqliteDeleteIndex(db, pIndex);
443   }
444 
445 #ifndef SQLITE_OMIT_FOREIGN_KEY
446   /* Delete all foreign keys associated with this table.  The keys
447   ** should have already been unlinked from the db->aFKey hash table
448   */
449   for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
450     pNextFKey = pFKey->pNextFrom;
451     assert( pTable->iDb<db->nDb );
452     assert( sqlite3HashFind(&db->aDb[pTable->iDb].aFKey,
453                            pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
454     sqliteFree(pFKey);
455   }
456 #endif
457 
458   /* Delete the Table structure itself.
459   */
460   sqliteResetColumnNames(pTable);
461   sqliteFree(pTable->zName);
462   sqliteFree(pTable->zColAff);
463   sqlite3SelectDelete(pTable->pSelect);
464   sqliteFree(pTable);
465 }
466 
467 /*
468 ** Unlink the given table from the hash tables and the delete the
469 ** table structure with all its indices and foreign keys.
470 */
471 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
472   Table *p;
473   FKey *pF1, *pF2;
474   Db *pDb;
475 
476   assert( db!=0 );
477   assert( iDb>=0 && iDb<db->nDb );
478   assert( zTabName && zTabName[0] );
479   pDb = &db->aDb[iDb];
480   p = sqlite3HashInsert(&pDb->tblHash, zTabName, strlen(zTabName)+1, 0);
481   if( p ){
482 #ifndef SQLITE_OMIT_FOREIGN_KEY
483     for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
484       int nTo = strlen(pF1->zTo) + 1;
485       pF2 = sqlite3HashFind(&pDb->aFKey, pF1->zTo, nTo);
486       if( pF2==pF1 ){
487         sqlite3HashInsert(&pDb->aFKey, pF1->zTo, nTo, pF1->pNextTo);
488       }else{
489         while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
490         if( pF2 ){
491           pF2->pNextTo = pF1->pNextTo;
492         }
493       }
494     }
495 #endif
496     sqlite3DeleteTable(db, p);
497   }
498   db->flags |= SQLITE_InternChanges;
499 }
500 
501 /*
502 ** Given a token, return a string that consists of the text of that
503 ** token with any quotations removed.  Space to hold the returned string
504 ** is obtained from sqliteMalloc() and must be freed by the calling
505 ** function.
506 **
507 ** Tokens are often just pointers into the original SQL text and so
508 ** are not \000 terminated and are not persistent.  The returned string
509 ** is \000 terminated and is persistent.
510 */
511 char *sqlite3NameFromToken(Token *pName){
512   char *zName;
513   if( pName ){
514     zName = sqliteStrNDup(pName->z, pName->n);
515     sqlite3Dequote(zName);
516   }else{
517     zName = 0;
518   }
519   return zName;
520 }
521 
522 /*
523 ** Open the sqlite_master table stored in database number iDb for
524 ** writing. The table is opened using cursor 0.
525 */
526 void sqlite3OpenMasterTable(Vdbe *v, int iDb){
527   sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
528   sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
529   sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
530 }
531 
532 /*
533 ** The token *pName contains the name of a database (either "main" or
534 ** "temp" or the name of an attached db). This routine returns the
535 ** index of the named database in db->aDb[], or -1 if the named db
536 ** does not exist.
537 */
538 int sqlite3FindDb(sqlite3 *db, Token *pName){
539   int i = -1;    /* Database number */
540   int n;         /* Number of characters in the name */
541   Db *pDb;       /* A database whose name space is being searched */
542   char *zName;   /* Name we are searching for */
543 
544   zName = sqlite3NameFromToken(pName);
545   if( zName ){
546     n = strlen(zName);
547     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
548       if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
549           0==sqlite3StrICmp(pDb->zName, zName) ){
550         break;
551       }
552     }
553     sqliteFree(zName);
554   }
555   return i;
556 }
557 
558 /* The table or view or trigger name is passed to this routine via tokens
559 ** pName1 and pName2. If the table name was fully qualified, for example:
560 **
561 ** CREATE TABLE xxx.yyy (...);
562 **
563 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
564 ** the table name is not fully qualified, i.e.:
565 **
566 ** CREATE TABLE yyy(...);
567 **
568 ** Then pName1 is set to "yyy" and pName2 is "".
569 **
570 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
571 ** pName2) that stores the unqualified table name.  The index of the
572 ** database "xxx" is returned.
573 */
574 int sqlite3TwoPartName(
575   Parse *pParse,      /* Parsing and code generating context */
576   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
577   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
578   Token **pUnqual     /* Write the unqualified object name here */
579 ){
580   int iDb;                    /* Database holding the object */
581   sqlite3 *db = pParse->db;
582 
583   if( pName2 && pName2->n>0 ){
584     assert( !db->init.busy );
585     *pUnqual = pName2;
586     iDb = sqlite3FindDb(db, pName1);
587     if( iDb<0 ){
588       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
589       pParse->nErr++;
590       return -1;
591     }
592   }else{
593     assert( db->init.iDb==0 || db->init.busy );
594     iDb = db->init.iDb;
595     *pUnqual = pName1;
596   }
597   return iDb;
598 }
599 
600 /*
601 ** This routine is used to check if the UTF-8 string zName is a legal
602 ** unqualified name for a new schema object (table, index, view or
603 ** trigger). All names are legal except those that begin with the string
604 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
605 ** is reserved for internal use.
606 */
607 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
608   if( !pParse->db->init.busy && pParse->nested==0
609           && (pParse->db->flags & SQLITE_WriteSchema)==0
610           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
611     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
612     return SQLITE_ERROR;
613   }
614   return SQLITE_OK;
615 }
616 
617 /*
618 ** Begin constructing a new table representation in memory.  This is
619 ** the first of several action routines that get called in response
620 ** to a CREATE TABLE statement.  In particular, this routine is called
621 ** after seeing tokens "CREATE" and "TABLE" and the table name.  The
622 ** pStart token is the CREATE and pName is the table name.  The isTemp
623 ** flag is true if the table should be stored in the auxiliary database
624 ** file instead of in the main database file.  This is normally the case
625 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
626 ** CREATE and TABLE.
627 **
628 ** The new table record is initialized and put in pParse->pNewTable.
629 ** As more of the CREATE TABLE statement is parsed, additional action
630 ** routines will be called to add more information to this record.
631 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
632 ** is called to complete the construction of the new table record.
633 */
634 void sqlite3StartTable(
635   Parse *pParse,   /* Parser context */
636   Token *pStart,   /* The "CREATE" token */
637   Token *pName1,   /* First part of the name of the table or view */
638   Token *pName2,   /* Second part of the name of the table or view */
639   int isTemp,      /* True if this is a TEMP table */
640   int isView       /* True if this is a VIEW */
641 ){
642   Table *pTable;
643   Index *pIdx;
644   char *zName = 0; /* The name of the new table */
645   sqlite3 *db = pParse->db;
646   Vdbe *v;
647   int iDb;         /* Database number to create the table in */
648   Token *pName;    /* Unqualified name of the table to create */
649 
650   /* The table or view name to create is passed to this routine via tokens
651   ** pName1 and pName2. If the table name was fully qualified, for example:
652   **
653   ** CREATE TABLE xxx.yyy (...);
654   **
655   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
656   ** the table name is not fully qualified, i.e.:
657   **
658   ** CREATE TABLE yyy(...);
659   **
660   ** Then pName1 is set to "yyy" and pName2 is "".
661   **
662   ** The call below sets the pName pointer to point at the token (pName1 or
663   ** pName2) that stores the unqualified table name. The variable iDb is
664   ** set to the index of the database that the table or view is to be
665   ** created in.
666   */
667   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
668   if( iDb<0 ) return;
669   if( !OMIT_TEMPDB && isTemp && iDb>1 ){
670     /* If creating a temp table, the name may not be qualified */
671     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
672     return;
673   }
674   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
675 
676   pParse->sNameToken = *pName;
677   zName = sqlite3NameFromToken(pName);
678   if( zName==0 ) return;
679   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
680     goto begin_table_error;
681   }
682   if( db->init.iDb==1 ) isTemp = 1;
683 #ifndef SQLITE_OMIT_AUTHORIZATION
684   assert( (isTemp & 1)==isTemp );
685   {
686     int code;
687     char *zDb = db->aDb[iDb].zName;
688     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
689       goto begin_table_error;
690     }
691     if( isView ){
692       if( !OMIT_TEMPDB && isTemp ){
693         code = SQLITE_CREATE_TEMP_VIEW;
694       }else{
695         code = SQLITE_CREATE_VIEW;
696       }
697     }else{
698       if( !OMIT_TEMPDB && isTemp ){
699         code = SQLITE_CREATE_TEMP_TABLE;
700       }else{
701         code = SQLITE_CREATE_TABLE;
702       }
703     }
704     if( sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
705       goto begin_table_error;
706     }
707   }
708 #endif
709 
710   /* Make sure the new table name does not collide with an existing
711   ** index or table name in the same database.  Issue an error message if
712   ** it does.
713   */
714   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
715     goto begin_table_error;
716   }
717   pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
718   if( pTable ){
719     sqlite3ErrorMsg(pParse, "table %T already exists", pName);
720     goto begin_table_error;
721   }
722   if( (pIdx = sqlite3FindIndex(db, zName, 0))!=0 &&
723       ( iDb==0 || !db->init.busy) ){
724     sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
725     goto begin_table_error;
726   }
727   pTable = sqliteMalloc( sizeof(Table) );
728   if( pTable==0 ){
729     pParse->rc = SQLITE_NOMEM;
730     pParse->nErr++;
731     goto begin_table_error;
732   }
733   pTable->zName = zName;
734   pTable->nCol = 0;
735   pTable->aCol = 0;
736   pTable->iPKey = -1;
737   pTable->pIndex = 0;
738   pTable->iDb = iDb;
739   pTable->nRef = 1;
740   if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable);
741   pParse->pNewTable = pTable;
742 
743   /* If this is the magic sqlite_sequence table used by autoincrement,
744   ** then record a pointer to this table in the main database structure
745   ** so that INSERT can find the table easily.
746   */
747 #ifndef SQLITE_OMIT_AUTOINCREMENT
748   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
749     db->aDb[iDb].pSeqTab = pTable;
750   }
751 #endif
752 
753   /* Begin generating the code that will insert the table record into
754   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
755   ** and allocate the record number for the table entry now.  Before any
756   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
757   ** indices to be created and the table record must come before the
758   ** indices.  Hence, the record number for the table must be allocated
759   ** now.
760   */
761   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
762     int lbl;
763     sqlite3BeginWriteOperation(pParse, 0, iDb);
764 
765     /* If the file format and encoding in the database have not been set,
766     ** set them now.
767     */
768     sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);   /* file_format */
769     lbl = sqlite3VdbeMakeLabel(v);
770     sqlite3VdbeAddOp(v, OP_If, 0, lbl);
771     sqlite3VdbeAddOp(v, OP_Integer, db->file_format, 0);
772     sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
773     sqlite3VdbeAddOp(v, OP_Integer, db->enc, 0);
774     sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
775     sqlite3VdbeResolveLabel(v, lbl);
776 
777     /* This just creates a place-holder record in the sqlite_master table.
778     ** The record created does not contain anything yet.  It will be replaced
779     ** by the real entry in code generated at sqlite3EndTable().
780     **
781     ** The rowid for the new entry is left on the top of the stack.
782     ** The rowid value is needed by the code that sqlite3EndTable will
783     ** generate.
784     */
785 #ifndef SQLITE_OMIT_VIEW
786     if( isView ){
787       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
788     }else
789 #endif
790     {
791       sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0);
792     }
793     sqlite3OpenMasterTable(v, iDb);
794     sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0);
795     sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
796     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
797     sqlite3VdbeAddOp(v, OP_Insert, 0, 0);
798     sqlite3VdbeAddOp(v, OP_Close, 0, 0);
799     sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
800   }
801 
802   /* Normal (non-error) return. */
803   return;
804 
805   /* If an error occurs, we jump here */
806 begin_table_error:
807   sqliteFree(zName);
808   return;
809 }
810 
811 /*
812 ** This macro is used to compare two strings in a case-insensitive manner.
813 ** It is slightly faster than calling sqlite3StrICmp() directly, but
814 ** produces larger code.
815 **
816 ** WARNING: This macro is not compatible with the strcmp() family. It
817 ** returns true if the two strings are equal, otherwise false.
818 */
819 #define STRICMP(x, y) (\
820 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
821 sqlite3UpperToLower[*(unsigned char *)(y)]     \
822 && sqlite3StrICmp((x)+1,(y)+1)==0 )
823 
824 /*
825 ** Add a new column to the table currently being constructed.
826 **
827 ** The parser calls this routine once for each column declaration
828 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
829 ** first to get things going.  Then this routine is called for each
830 ** column.
831 */
832 void sqlite3AddColumn(Parse *pParse, Token *pName){
833   Table *p;
834   int i;
835   char *z;
836   Column *pCol;
837   if( (p = pParse->pNewTable)==0 ) return;
838   z = sqlite3NameFromToken(pName);
839   if( z==0 ) return;
840   for(i=0; i<p->nCol; i++){
841     if( STRICMP(z, p->aCol[i].zName) ){
842       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
843       sqliteFree(z);
844       return;
845     }
846   }
847   if( (p->nCol & 0x7)==0 ){
848     Column *aNew;
849     aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
850     if( aNew==0 ){
851       sqliteFree(z);
852       return;
853     }
854     p->aCol = aNew;
855   }
856   pCol = &p->aCol[p->nCol];
857   memset(pCol, 0, sizeof(p->aCol[0]));
858   pCol->zName = z;
859 
860   /* If there is no type specified, columns have the default affinity
861   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
862   ** be called next to set pCol->affinity correctly.
863   */
864   pCol->affinity = SQLITE_AFF_NONE;
865   pCol->pColl = pParse->db->pDfltColl;
866   p->nCol++;
867 }
868 
869 /*
870 ** This routine is called by the parser while in the middle of
871 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
872 ** been seen on a column.  This routine sets the notNull flag on
873 ** the column currently under construction.
874 */
875 void sqlite3AddNotNull(Parse *pParse, int onError){
876   Table *p;
877   int i;
878   if( (p = pParse->pNewTable)==0 ) return;
879   i = p->nCol-1;
880   if( i>=0 ) p->aCol[i].notNull = onError;
881 }
882 
883 /*
884 ** Scan the column type name zType (length nType) and return the
885 ** associated affinity type.
886 **
887 ** This routine does a case-independent search of zType for the
888 ** substrings in the following table. If one of the substrings is
889 ** found, the corresponding affinity is returned. If zType contains
890 ** more than one of the substrings, entries toward the top of
891 ** the table take priority. For example, if zType is 'BLOBINT',
892 ** SQLITE_AFF_INTEGER is returned.
893 **
894 ** Substring     | Affinity
895 ** --------------------------------
896 ** 'INT'         | SQLITE_AFF_INTEGER
897 ** 'CHAR'        | SQLITE_AFF_TEXT
898 ** 'CLOB'        | SQLITE_AFF_TEXT
899 ** 'TEXT'        | SQLITE_AFF_TEXT
900 ** 'BLOB'        | SQLITE_AFF_NONE
901 **
902 ** If none of the substrings in the above table are found,
903 ** SQLITE_AFF_NUMERIC is returned.
904 */
905 char sqlite3AffinityType(const Token *pType){
906   u32 h = 0;
907   char aff = SQLITE_AFF_NUMERIC;
908   const unsigned char *zIn = pType->z;
909   const unsigned char *zEnd = &pType->z[pType->n];
910 
911   while( zIn!=zEnd ){
912     h = (h<<8) + sqlite3UpperToLower[*zIn];
913     zIn++;
914     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
915       aff = SQLITE_AFF_TEXT;
916     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
917       aff = SQLITE_AFF_TEXT;
918     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
919       aff = SQLITE_AFF_TEXT;
920     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
921         && aff==SQLITE_AFF_NUMERIC ){
922       aff = SQLITE_AFF_NONE;
923     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
924       aff = SQLITE_AFF_INTEGER;
925       break;
926     }
927   }
928 
929   return aff;
930 }
931 
932 /*
933 ** This routine is called by the parser while in the middle of
934 ** parsing a CREATE TABLE statement.  The pFirst token is the first
935 ** token in the sequence of tokens that describe the type of the
936 ** column currently under construction.   pLast is the last token
937 ** in the sequence.  Use this information to construct a string
938 ** that contains the typename of the column and store that string
939 ** in zType.
940 */
941 void sqlite3AddColumnType(Parse *pParse, Token *pType){
942   Table *p;
943   int i;
944   Column *pCol;
945 
946   if( (p = pParse->pNewTable)==0 ) return;
947   i = p->nCol-1;
948   if( i<0 ) return;
949   pCol = &p->aCol[i];
950   assert( pCol->zType==0 );
951 #if 0
952   z = pCol->zType = sqliteMallocRaw(n+1);
953   if( z==0 ) return;
954   for(i=j=0; i<n; i++){
955     int c = zIn[i];
956     if( isspace(c) ) continue;
957     z[j++] = c;
958   }
959   z[j] = 0;
960 #endif
961   pCol->zType = sqlite3NameFromToken(pType);
962   pCol->affinity = sqlite3AffinityType(pType);
963 }
964 
965 /*
966 ** The expression is the default value for the most recently added column
967 ** of the table currently under construction.
968 **
969 ** Default value expressions must be constant.  Raise an exception if this
970 ** is not the case.
971 **
972 ** This routine is called by the parser while in the middle of
973 ** parsing a CREATE TABLE statement.
974 */
975 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
976   Table *p;
977   Column *pCol;
978   if( (p = pParse->pNewTable)==0 ) return;
979   pCol = &(p->aCol[p->nCol-1]);
980   if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
981     sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
982         pCol->zName);
983   }else{
984     sqlite3ExprDelete(pCol->pDflt);
985     pCol->pDflt = sqlite3ExprDup(pExpr);
986   }
987   sqlite3ExprDelete(pExpr);
988 }
989 
990 /*
991 ** Designate the PRIMARY KEY for the table.  pList is a list of names
992 ** of columns that form the primary key.  If pList is NULL, then the
993 ** most recently added column of the table is the primary key.
994 **
995 ** A table can have at most one primary key.  If the table already has
996 ** a primary key (and this is the second primary key) then create an
997 ** error.
998 **
999 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1000 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1001 ** field of the table under construction to be the index of the
1002 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1003 ** no INTEGER PRIMARY KEY.
1004 **
1005 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1006 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1007 */
1008 void sqlite3AddPrimaryKey(
1009   Parse *pParse,    /* Parsing context */
1010   ExprList *pList,  /* List of field names to be indexed */
1011   int onError,      /* What to do with a uniqueness conflict */
1012   int autoInc       /* True if the AUTOINCREMENT keyword is present */
1013 ){
1014   Table *pTab = pParse->pNewTable;
1015   char *zType = 0;
1016   int iCol = -1, i;
1017   if( pTab==0 ) goto primary_key_exit;
1018   if( pTab->hasPrimKey ){
1019     sqlite3ErrorMsg(pParse,
1020       "table \"%s\" has more than one primary key", pTab->zName);
1021     goto primary_key_exit;
1022   }
1023   pTab->hasPrimKey = 1;
1024   if( pList==0 ){
1025     iCol = pTab->nCol - 1;
1026     pTab->aCol[iCol].isPrimKey = 1;
1027   }else{
1028     for(i=0; i<pList->nExpr; i++){
1029       for(iCol=0; iCol<pTab->nCol; iCol++){
1030         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1031           break;
1032         }
1033       }
1034       if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
1035     }
1036     if( pList->nExpr>1 ) iCol = -1;
1037   }
1038   if( iCol>=0 && iCol<pTab->nCol ){
1039     zType = pTab->aCol[iCol].zType;
1040   }
1041   if( zType && sqlite3StrICmp(zType, "INTEGER")==0 ){
1042     pTab->iPKey = iCol;
1043     pTab->keyConf = onError;
1044     pTab->autoInc = autoInc;
1045   }else if( autoInc ){
1046 #ifndef SQLITE_OMIT_AUTOINCREMENT
1047     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1048        "INTEGER PRIMARY KEY");
1049 #endif
1050   }else{
1051     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0);
1052     pList = 0;
1053   }
1054 
1055 primary_key_exit:
1056   sqlite3ExprListDelete(pList);
1057   return;
1058 }
1059 
1060 /*
1061 ** Set the collation function of the most recently parsed table column
1062 ** to the CollSeq given.
1063 */
1064 void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
1065   Table *p;
1066   Index *pIdx;
1067   CollSeq *pColl;
1068   int i;
1069 
1070   if( (p = pParse->pNewTable)==0 ) return;
1071   i = p->nCol-1;
1072 
1073   pColl = sqlite3LocateCollSeq(pParse, zType, nType);
1074   p->aCol[i].pColl = pColl;
1075 
1076   /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1077   ** then an index may have been created on this column before the
1078   ** collation type was added. Correct this if it is the case.
1079   */
1080   for(pIdx = p->pIndex; pIdx; pIdx=pIdx->pNext){
1081     assert( pIdx->nColumn==1 );
1082     if( pIdx->aiColumn[0]==i ) pIdx->keyInfo.aColl[0] = pColl;
1083   }
1084 }
1085 
1086 /*
1087 ** Call sqlite3CheckCollSeq() for all collating sequences in an index,
1088 ** in order to verify that all the necessary collating sequences are
1089 ** loaded.
1090 */
1091 int sqlite3CheckIndexCollSeq(Parse *pParse, Index *pIdx){
1092   if( pIdx ){
1093     int i;
1094     for(i=0; i<pIdx->nColumn; i++){
1095       if( sqlite3CheckCollSeq(pParse, pIdx->keyInfo.aColl[i]) ){
1096         return SQLITE_ERROR;
1097       }
1098     }
1099   }
1100   return SQLITE_OK;
1101 }
1102 
1103 /*
1104 ** This function returns the collation sequence for database native text
1105 ** encoding identified by the string zName, length nName.
1106 **
1107 ** If the requested collation sequence is not available, or not available
1108 ** in the database native encoding, the collation factory is invoked to
1109 ** request it. If the collation factory does not supply such a sequence,
1110 ** and the sequence is available in another text encoding, then that is
1111 ** returned instead.
1112 **
1113 ** If no versions of the requested collations sequence are available, or
1114 ** another error occurs, NULL is returned and an error message written into
1115 ** pParse.
1116 */
1117 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
1118   sqlite3 *db = pParse->db;
1119   u8 enc = db->enc;
1120   u8 initbusy = db->init.busy;
1121 
1122   CollSeq *pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
1123   if( !initbusy && (!pColl || !pColl->xCmp) ){
1124     pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
1125     if( !pColl ){
1126       if( nName<0 ){
1127         nName = strlen(zName);
1128       }
1129       sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
1130       pColl = 0;
1131     }
1132   }
1133 
1134   return pColl;
1135 }
1136 
1137 
1138 /*
1139 ** Generate code that will increment the schema cookie.
1140 **
1141 ** The schema cookie is used to determine when the schema for the
1142 ** database changes.  After each schema change, the cookie value
1143 ** changes.  When a process first reads the schema it records the
1144 ** cookie.  Thereafter, whenever it goes to access the database,
1145 ** it checks the cookie to make sure the schema has not changed
1146 ** since it was last read.
1147 **
1148 ** This plan is not completely bullet-proof.  It is possible for
1149 ** the schema to change multiple times and for the cookie to be
1150 ** set back to prior value.  But schema changes are infrequent
1151 ** and the probability of hitting the same cookie value is only
1152 ** 1 chance in 2^32.  So we're safe enough.
1153 */
1154 void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
1155   sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].schema_cookie+1, 0);
1156   sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
1157 }
1158 
1159 /*
1160 ** Measure the number of characters needed to output the given
1161 ** identifier.  The number returned includes any quotes used
1162 ** but does not include the null terminator.
1163 **
1164 ** The estimate is conservative.  It might be larger that what is
1165 ** really needed.
1166 */
1167 static int identLength(const char *z){
1168   int n;
1169   for(n=0; *z; n++, z++){
1170     if( *z=='"' ){ n++; }
1171   }
1172   return n + 2;
1173 }
1174 
1175 /*
1176 ** Write an identifier onto the end of the given string.  Add
1177 ** quote characters as needed.
1178 */
1179 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1180   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1181   int i, j, needQuote;
1182   i = *pIdx;
1183   for(j=0; zIdent[j]; j++){
1184     if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1185   }
1186   needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
1187                   || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1188   if( needQuote ) z[i++] = '"';
1189   for(j=0; zIdent[j]; j++){
1190     z[i++] = zIdent[j];
1191     if( zIdent[j]=='"' ) z[i++] = '"';
1192   }
1193   if( needQuote ) z[i++] = '"';
1194   z[i] = 0;
1195   *pIdx = i;
1196 }
1197 
1198 /*
1199 ** Generate a CREATE TABLE statement appropriate for the given
1200 ** table.  Memory to hold the text of the statement is obtained
1201 ** from sqliteMalloc() and must be freed by the calling function.
1202 */
1203 static char *createTableStmt(Table *p){
1204   int i, k, n;
1205   char *zStmt;
1206   char *zSep, *zSep2, *zEnd, *z;
1207   Column *pCol;
1208   n = 0;
1209   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1210     n += identLength(pCol->zName);
1211     z = pCol->zType;
1212     if( z ){
1213       n += (strlen(z) + 1);
1214     }
1215   }
1216   n += identLength(p->zName);
1217   if( n<50 ){
1218     zSep = "";
1219     zSep2 = ",";
1220     zEnd = ")";
1221   }else{
1222     zSep = "\n  ";
1223     zSep2 = ",\n  ";
1224     zEnd = "\n)";
1225   }
1226   n += 35 + 6*p->nCol;
1227   zStmt = sqliteMallocRaw( n );
1228   if( zStmt==0 ) return 0;
1229   strcpy(zStmt, !OMIT_TEMPDB&&p->iDb==1 ? "CREATE TEMP TABLE ":"CREATE TABLE ");
1230   k = strlen(zStmt);
1231   identPut(zStmt, &k, p->zName);
1232   zStmt[k++] = '(';
1233   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1234     strcpy(&zStmt[k], zSep);
1235     k += strlen(&zStmt[k]);
1236     zSep = zSep2;
1237     identPut(zStmt, &k, pCol->zName);
1238     if( (z = pCol->zType)!=0 ){
1239       zStmt[k++] = ' ';
1240       strcpy(&zStmt[k], z);
1241       k += strlen(z);
1242     }
1243   }
1244   strcpy(&zStmt[k], zEnd);
1245   return zStmt;
1246 }
1247 
1248 /*
1249 ** This routine is called to report the final ")" that terminates
1250 ** a CREATE TABLE statement.
1251 **
1252 ** The table structure that other action routines have been building
1253 ** is added to the internal hash tables, assuming no errors have
1254 ** occurred.
1255 **
1256 ** An entry for the table is made in the master table on disk, unless
1257 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1258 ** it means we are reading the sqlite_master table because we just
1259 ** connected to the database or because the sqlite_master table has
1260 ** recently changed, so the entry for this table already exists in
1261 ** the sqlite_master table.  We do not want to create it again.
1262 **
1263 ** If the pSelect argument is not NULL, it means that this routine
1264 ** was called to create a table generated from a
1265 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1266 ** the new table will match the result set of the SELECT.
1267 */
1268 void sqlite3EndTable(
1269   Parse *pParse,          /* Parse context */
1270   Token *pCons,           /* The ',' token after the last column defn. */
1271   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
1272   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1273 ){
1274   Table *p;
1275   sqlite3 *db = pParse->db;
1276 
1277   if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3_malloc_failed ) return;
1278   p = pParse->pNewTable;
1279   if( p==0 ) return;
1280 
1281   assert( !db->init.busy || !pSelect );
1282 
1283   /* If the db->init.busy is 1 it means we are reading the SQL off the
1284   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1285   ** So do not write to the disk again.  Extract the root page number
1286   ** for the table from the db->init.newTnum field.  (The page number
1287   ** should have been put there by the sqliteOpenCb routine.)
1288   */
1289   if( db->init.busy ){
1290     p->tnum = db->init.newTnum;
1291   }
1292 
1293   /* If not initializing, then create a record for the new table
1294   ** in the SQLITE_MASTER table of the database.  The record number
1295   ** for the new table entry should already be on the stack.
1296   **
1297   ** If this is a TEMPORARY table, write the entry into the auxiliary
1298   ** file instead of into the main database file.
1299   */
1300   if( !db->init.busy ){
1301     int n;
1302     Vdbe *v;
1303     char *zType;    /* "view" or "table" */
1304     char *zType2;   /* "VIEW" or "TABLE" */
1305     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1306 
1307     v = sqlite3GetVdbe(pParse);
1308     if( v==0 ) return;
1309 
1310     sqlite3VdbeAddOp(v, OP_Close, 0, 0);
1311 
1312     /* Create the rootpage for the new table and push it onto the stack.
1313     ** A view has no rootpage, so just push a zero onto the stack for
1314     ** views.  Initialize zType at the same time.
1315     */
1316     if( p->pSelect==0 ){
1317       /* A regular table */
1318       /* sqlite3VdbeAddOp(v, OP_CreateTable, p->iDb, 0); */
1319       zType = "table";
1320       zType2 = "TABLE";
1321 #ifndef SQLITE_OMIT_VIEW
1322     }else{
1323       /* A view */
1324     /*  sqlite3VdbeAddOp(v, OP_Integer, 0, 0); */
1325       zType = "view";
1326       zType2 = "VIEW";
1327 #endif
1328     }
1329 
1330     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1331     ** statement to populate the new table. The root-page number for the
1332     ** new table is on the top of the vdbe stack.
1333     **
1334     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1335     ** suitable state to query for the column names and types to be used
1336     ** by the new table.
1337     */
1338     if( pSelect ){
1339       Table *pSelTab;
1340       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
1341       sqlite3VdbeAddOp(v, OP_Integer, p->iDb, 0);
1342       sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
1343       pParse->nTab = 2;
1344       sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
1345       sqlite3VdbeAddOp(v, OP_Close, 1, 0);
1346       if( pParse->nErr==0 ){
1347         pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
1348         if( pSelTab==0 ) return;
1349         assert( p->aCol==0 );
1350         p->nCol = pSelTab->nCol;
1351         p->aCol = pSelTab->aCol;
1352         pSelTab->nCol = 0;
1353         pSelTab->aCol = 0;
1354         sqlite3DeleteTable(0, pSelTab);
1355       }
1356     }
1357 
1358     /* Compute the complete text of the CREATE statement */
1359     if( pSelect ){
1360       zStmt = createTableStmt(p);
1361     }else{
1362       n = pEnd->z - pParse->sNameToken.z + 1;
1363       zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z);
1364     }
1365 
1366     /* A slot for the record has already been allocated in the
1367     ** SQLITE_MASTER table.  We just need to update that slot with all
1368     ** the information we've collected.  The rowid for the preallocated
1369     ** slot is the 2nd item on the stack.  The top of the stack is the
1370     ** root page for the new table (or a 0 if this is a view).
1371     */
1372     sqlite3NestedParse(pParse,
1373       "UPDATE %Q.%s "
1374          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
1375        "WHERE rowid=#1",
1376       db->aDb[p->iDb].zName, SCHEMA_TABLE(p->iDb),
1377       zType,
1378       p->zName,
1379       p->zName,
1380       zStmt
1381     );
1382     sqliteFree(zStmt);
1383     sqlite3ChangeCookie(db, v, p->iDb);
1384 
1385 #ifndef SQLITE_OMIT_AUTOINCREMENT
1386     /* Check to see if we need to create an sqlite_sequence table for
1387     ** keeping track of autoincrement keys.
1388     */
1389     if( p->autoInc ){
1390       Db *pDb = &db->aDb[p->iDb];
1391       if( pDb->pSeqTab==0 ){
1392         sqlite3NestedParse(pParse,
1393           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1394           pDb->zName
1395         );
1396       }
1397     }
1398 #endif
1399 
1400     /* Reparse everything to update our internal data structures */
1401     sqlite3VdbeOp3(v, OP_ParseSchema, p->iDb, 0,
1402         sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC);
1403   }
1404 
1405 
1406   /* Add the table to the in-memory representation of the database.
1407   */
1408   if( db->init.busy && pParse->nErr==0 ){
1409     Table *pOld;
1410     FKey *pFKey;
1411     Db *pDb = &db->aDb[p->iDb];
1412     pOld = sqlite3HashInsert(&pDb->tblHash, p->zName, strlen(p->zName)+1, p);
1413     if( pOld ){
1414       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
1415       return;
1416     }
1417 #ifndef SQLITE_OMIT_FOREIGN_KEY
1418     for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
1419       int nTo = strlen(pFKey->zTo) + 1;
1420       pFKey->pNextTo = sqlite3HashFind(&pDb->aFKey, pFKey->zTo, nTo);
1421       sqlite3HashInsert(&pDb->aFKey, pFKey->zTo, nTo, pFKey);
1422     }
1423 #endif
1424     pParse->pNewTable = 0;
1425     db->nTable++;
1426     db->flags |= SQLITE_InternChanges;
1427 
1428 #ifndef SQLITE_OMIT_ALTERTABLE
1429     if( !p->pSelect ){
1430       assert( !pSelect && pCons && pEnd );
1431       if( pCons->z==0 ) pCons = pEnd;
1432       p->addColOffset = 13 + (pCons->z - pParse->sNameToken.z);
1433     }
1434 #endif
1435   }
1436 }
1437 
1438 #ifndef SQLITE_OMIT_VIEW
1439 /*
1440 ** The parser calls this routine in order to create a new VIEW
1441 */
1442 void sqlite3CreateView(
1443   Parse *pParse,     /* The parsing context */
1444   Token *pBegin,     /* The CREATE token that begins the statement */
1445   Token *pName1,     /* The token that holds the name of the view */
1446   Token *pName2,     /* The token that holds the name of the view */
1447   Select *pSelect,   /* A SELECT statement that will become the new view */
1448   int isTemp         /* TRUE for a TEMPORARY view */
1449 ){
1450   Table *p;
1451   int n;
1452   const unsigned char *z;
1453   Token sEnd;
1454   DbFixer sFix;
1455   Token *pName;
1456 
1457   if( pParse->nVar>0 ){
1458     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1459     sqlite3SelectDelete(pSelect);
1460     return;
1461   }
1462   sqlite3StartTable(pParse, pBegin, pName1, pName2, isTemp, 1);
1463   p = pParse->pNewTable;
1464   if( p==0 || pParse->nErr ){
1465     sqlite3SelectDelete(pSelect);
1466     return;
1467   }
1468   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1469   if( sqlite3FixInit(&sFix, pParse, p->iDb, "view", pName)
1470     && sqlite3FixSelect(&sFix, pSelect)
1471   ){
1472     sqlite3SelectDelete(pSelect);
1473     return;
1474   }
1475 
1476   /* Make a copy of the entire SELECT statement that defines the view.
1477   ** This will force all the Expr.token.z values to be dynamically
1478   ** allocated rather than point to the input string - which means that
1479   ** they will persist after the current sqlite3_exec() call returns.
1480   */
1481   p->pSelect = sqlite3SelectDup(pSelect);
1482   sqlite3SelectDelete(pSelect);
1483   if( !pParse->db->init.busy ){
1484     sqlite3ViewGetColumnNames(pParse, p);
1485   }
1486 
1487   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
1488   ** the end.
1489   */
1490   sEnd = pParse->sLastToken;
1491   if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
1492     sEnd.z += sEnd.n;
1493   }
1494   sEnd.n = 0;
1495   n = sEnd.z - pBegin->z;
1496   z = (const unsigned char*)pBegin->z;
1497   while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
1498   sEnd.z = &z[n-1];
1499   sEnd.n = 1;
1500 
1501   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1502   sqlite3EndTable(pParse, 0, &sEnd, 0);
1503   return;
1504 }
1505 #endif /* SQLITE_OMIT_VIEW */
1506 
1507 #ifndef SQLITE_OMIT_VIEW
1508 /*
1509 ** The Table structure pTable is really a VIEW.  Fill in the names of
1510 ** the columns of the view in the pTable structure.  Return the number
1511 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
1512 */
1513 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1514   Table *pSelTab;   /* A fake table from which we get the result set */
1515   Select *pSel;     /* Copy of the SELECT that implements the view */
1516   int nErr = 0;     /* Number of errors encountered */
1517   int n;            /* Temporarily holds the number of cursors assigned */
1518 
1519   assert( pTable );
1520 
1521   /* A positive nCol means the columns names for this view are
1522   ** already known.
1523   */
1524   if( pTable->nCol>0 ) return 0;
1525 
1526   /* A negative nCol is a special marker meaning that we are currently
1527   ** trying to compute the column names.  If we enter this routine with
1528   ** a negative nCol, it means two or more views form a loop, like this:
1529   **
1530   **     CREATE VIEW one AS SELECT * FROM two;
1531   **     CREATE VIEW two AS SELECT * FROM one;
1532   **
1533   ** Actually, this error is caught previously and so the following test
1534   ** should always fail.  But we will leave it in place just to be safe.
1535   */
1536   if( pTable->nCol<0 ){
1537     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1538     return 1;
1539   }
1540 
1541   /* If we get this far, it means we need to compute the table names.
1542   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1543   ** "*" elements in the results set of the view and will assign cursors
1544   ** to the elements of the FROM clause.  But we do not want these changes
1545   ** to be permanent.  So the computation is done on a copy of the SELECT
1546   ** statement that defines the view.
1547   */
1548   assert( pTable->pSelect );
1549   pSel = sqlite3SelectDup(pTable->pSelect);
1550   n = pParse->nTab;
1551   sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1552   pTable->nCol = -1;
1553   pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
1554   pParse->nTab = n;
1555   if( pSelTab ){
1556     assert( pTable->aCol==0 );
1557     pTable->nCol = pSelTab->nCol;
1558     pTable->aCol = pSelTab->aCol;
1559     pSelTab->nCol = 0;
1560     pSelTab->aCol = 0;
1561     sqlite3DeleteTable(0, pSelTab);
1562     DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
1563   }else{
1564     pTable->nCol = 0;
1565     nErr++;
1566   }
1567   sqlite3SelectDelete(pSel);
1568   return nErr;
1569 }
1570 #endif /* SQLITE_OMIT_VIEW */
1571 
1572 #ifndef SQLITE_OMIT_VIEW
1573 /*
1574 ** Clear the column names from every VIEW in database idx.
1575 */
1576 static void sqliteViewResetAll(sqlite3 *db, int idx){
1577   HashElem *i;
1578   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1579   for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
1580     Table *pTab = sqliteHashData(i);
1581     if( pTab->pSelect ){
1582       sqliteResetColumnNames(pTab);
1583     }
1584   }
1585   DbClearProperty(db, idx, DB_UnresetViews);
1586 }
1587 #else
1588 # define sqliteViewResetAll(A,B)
1589 #endif /* SQLITE_OMIT_VIEW */
1590 
1591 /*
1592 ** This function is called by the VDBE to adjust the internal schema
1593 ** used by SQLite when the btree layer moves a table root page. The
1594 ** root-page of a table or index in database iDb has changed from iFrom
1595 ** to iTo.
1596 */
1597 #ifndef SQLITE_OMIT_AUTOVACUUM
1598 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
1599   HashElem *pElem;
1600 
1601   for(pElem=sqliteHashFirst(&pDb->tblHash); pElem; pElem=sqliteHashNext(pElem)){
1602     Table *pTab = sqliteHashData(pElem);
1603     if( pTab->tnum==iFrom ){
1604       pTab->tnum = iTo;
1605       return;
1606     }
1607   }
1608   for(pElem=sqliteHashFirst(&pDb->idxHash); pElem; pElem=sqliteHashNext(pElem)){
1609     Index *pIdx = sqliteHashData(pElem);
1610     if( pIdx->tnum==iFrom ){
1611       pIdx->tnum = iTo;
1612       return;
1613     }
1614   }
1615   assert(0);
1616 }
1617 #endif
1618 
1619 /*
1620 ** Write code to erase the table with root-page iTable from database iDb.
1621 ** Also write code to modify the sqlite_master table and internal schema
1622 ** if a root-page of another table is moved by the btree-layer whilst
1623 ** erasing iTable (this can happen with an auto-vacuum database).
1624 */
1625 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1626   Vdbe *v = sqlite3GetVdbe(pParse);
1627   sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb);
1628 #ifndef SQLITE_OMIT_AUTOVACUUM
1629   /* OP_Destroy pushes an integer onto the stack. If this integer
1630   ** is non-zero, then it is the root page number of a table moved to
1631   ** location iTable. The following code modifies the sqlite_master table to
1632   ** reflect this.
1633   **
1634   ** The "#0" in the SQL is a special constant that means whatever value
1635   ** is on the top of the stack.  See sqlite3RegisterExpr().
1636   */
1637   sqlite3NestedParse(pParse,
1638      "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0",
1639      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable);
1640 #endif
1641 }
1642 
1643 /*
1644 ** Write VDBE code to erase table pTab and all associated indices on disk.
1645 ** Code to update the sqlite_master tables and internal schema definitions
1646 ** in case a root-page belonging to another table is moved by the btree layer
1647 ** is also added (this can happen with an auto-vacuum database).
1648 */
1649 static void destroyTable(Parse *pParse, Table *pTab){
1650 #ifdef SQLITE_OMIT_AUTOVACUUM
1651   Index *pIdx;
1652   destroyRootPage(pParse, pTab->tnum, pTab->iDb);
1653   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1654     destroyRootPage(pParse, pIdx->tnum, pIdx->iDb);
1655   }
1656 #else
1657   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1658   ** is not defined), then it is important to call OP_Destroy on the
1659   ** table and index root-pages in order, starting with the numerically
1660   ** largest root-page number. This guarantees that none of the root-pages
1661   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1662   ** following were coded:
1663   **
1664   ** OP_Destroy 4 0
1665   ** ...
1666   ** OP_Destroy 5 0
1667   **
1668   ** and root page 5 happened to be the largest root-page number in the
1669   ** database, then root page 5 would be moved to page 4 by the
1670   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1671   ** a free-list page.
1672   */
1673   int iTab = pTab->tnum;
1674   int iDestroyed = 0;
1675 
1676   while( 1 ){
1677     Index *pIdx;
1678     int iLargest = 0;
1679 
1680     if( iDestroyed==0 || iTab<iDestroyed ){
1681       iLargest = iTab;
1682     }
1683     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1684       int iIdx = pIdx->tnum;
1685       assert( pIdx->iDb==pTab->iDb );
1686       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1687         iLargest = iIdx;
1688       }
1689     }
1690     if( iLargest==0 ) return;
1691     destroyRootPage(pParse, iLargest, pTab->iDb);
1692     iDestroyed = iLargest;
1693   }
1694 #endif
1695 }
1696 
1697 /*
1698 ** This routine is called to do the work of a DROP TABLE statement.
1699 ** pName is the name of the table to be dropped.
1700 */
1701 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView){
1702   Table *pTab;
1703   Vdbe *v;
1704   sqlite3 *db = pParse->db;
1705   int iDb;
1706 
1707   if( pParse->nErr || sqlite3_malloc_failed ) goto exit_drop_table;
1708   assert( pName->nSrc==1 );
1709   pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase);
1710 
1711   if( pTab==0 ) goto exit_drop_table;
1712   iDb = pTab->iDb;
1713   assert( iDb>=0 && iDb<db->nDb );
1714 #ifndef SQLITE_OMIT_AUTHORIZATION
1715   {
1716     int code;
1717     const char *zTab = SCHEMA_TABLE(pTab->iDb);
1718     const char *zDb = db->aDb[pTab->iDb].zName;
1719     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
1720       goto exit_drop_table;
1721     }
1722     if( isView ){
1723       if( !OMIT_TEMPDB && iDb==1 ){
1724         code = SQLITE_DROP_TEMP_VIEW;
1725       }else{
1726         code = SQLITE_DROP_VIEW;
1727       }
1728     }else{
1729       if( !OMIT_TEMPDB && iDb==1 ){
1730         code = SQLITE_DROP_TEMP_TABLE;
1731       }else{
1732         code = SQLITE_DROP_TABLE;
1733       }
1734     }
1735     if( sqlite3AuthCheck(pParse, code, pTab->zName, 0, zDb) ){
1736       goto exit_drop_table;
1737     }
1738     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
1739       goto exit_drop_table;
1740     }
1741   }
1742 #endif
1743   if( pTab->readOnly || pTab==db->aDb[iDb].pSeqTab ){
1744     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
1745     goto exit_drop_table;
1746   }
1747 
1748 #ifndef SQLITE_OMIT_VIEW
1749   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
1750   ** on a table.
1751   */
1752   if( isView && pTab->pSelect==0 ){
1753     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
1754     goto exit_drop_table;
1755   }
1756   if( !isView && pTab->pSelect ){
1757     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
1758     goto exit_drop_table;
1759   }
1760 #endif
1761 
1762   /* Generate code to remove the table from the master table
1763   ** on disk.
1764   */
1765   v = sqlite3GetVdbe(pParse);
1766   if( v ){
1767     Trigger *pTrigger;
1768     int iDb = pTab->iDb;
1769     Db *pDb = &db->aDb[iDb];
1770     sqlite3BeginWriteOperation(pParse, 0, iDb);
1771 
1772     /* Drop all triggers associated with the table being dropped. Code
1773     ** is generated to remove entries from sqlite_master and/or
1774     ** sqlite_temp_master if required.
1775     */
1776     pTrigger = pTab->pTrigger;
1777     while( pTrigger ){
1778       assert( pTrigger->iDb==iDb || pTrigger->iDb==1 );
1779       sqlite3DropTriggerPtr(pParse, pTrigger, 1);
1780       pTrigger = pTrigger->pNext;
1781     }
1782 
1783 #ifndef SQLITE_OMIT_AUTOINCREMENT
1784     /* Remove any entries of the sqlite_sequence table associated with
1785     ** the table being dropped. This is done before the table is dropped
1786     ** at the btree level, in case the sqlite_sequence table needs to
1787     ** move as a result of the drop (can happen in auto-vacuum mode).
1788     */
1789     if( pTab->autoInc ){
1790       sqlite3NestedParse(pParse,
1791         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
1792         pDb->zName, pTab->zName
1793       );
1794     }
1795 #endif
1796 
1797     /* Drop all SQLITE_MASTER table and index entries that refer to the
1798     ** table. The program name loops through the master table and deletes
1799     ** every row that refers to a table of the same name as the one being
1800     ** dropped. Triggers are handled seperately because a trigger can be
1801     ** created in the temp database that refers to a table in another
1802     ** database.
1803     */
1804     sqlite3NestedParse(pParse,
1805         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
1806         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
1807     if( !isView ){
1808       destroyTable(pParse, pTab);
1809     }
1810 
1811     /* Remove the table entry from SQLite's internal schema and modify
1812     ** the schema cookie.
1813     */
1814     sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
1815     sqlite3ChangeCookie(db, v, iDb);
1816   }
1817   sqliteViewResetAll(db, iDb);
1818 
1819 exit_drop_table:
1820   sqlite3SrcListDelete(pName);
1821 }
1822 
1823 /*
1824 ** This routine is called to create a new foreign key on the table
1825 ** currently under construction.  pFromCol determines which columns
1826 ** in the current table point to the foreign key.  If pFromCol==0 then
1827 ** connect the key to the last column inserted.  pTo is the name of
1828 ** the table referred to.  pToCol is a list of tables in the other
1829 ** pTo table that the foreign key points to.  flags contains all
1830 ** information about the conflict resolution algorithms specified
1831 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
1832 **
1833 ** An FKey structure is created and added to the table currently
1834 ** under construction in the pParse->pNewTable field.  The new FKey
1835 ** is not linked into db->aFKey at this point - that does not happen
1836 ** until sqlite3EndTable().
1837 **
1838 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
1839 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
1840 */
1841 void sqlite3CreateForeignKey(
1842   Parse *pParse,       /* Parsing context */
1843   ExprList *pFromCol,  /* Columns in this table that point to other table */
1844   Token *pTo,          /* Name of the other table */
1845   ExprList *pToCol,    /* Columns in the other table */
1846   int flags            /* Conflict resolution algorithms. */
1847 ){
1848 #ifndef SQLITE_OMIT_FOREIGN_KEY
1849   FKey *pFKey = 0;
1850   Table *p = pParse->pNewTable;
1851   int nByte;
1852   int i;
1853   int nCol;
1854   char *z;
1855 
1856   assert( pTo!=0 );
1857   if( p==0 || pParse->nErr ) goto fk_end;
1858   if( pFromCol==0 ){
1859     int iCol = p->nCol-1;
1860     if( iCol<0 ) goto fk_end;
1861     if( pToCol && pToCol->nExpr!=1 ){
1862       sqlite3ErrorMsg(pParse, "foreign key on %s"
1863          " should reference only one column of table %T",
1864          p->aCol[iCol].zName, pTo);
1865       goto fk_end;
1866     }
1867     nCol = 1;
1868   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
1869     sqlite3ErrorMsg(pParse,
1870         "number of columns in foreign key does not match the number of "
1871         "columns in the referenced table");
1872     goto fk_end;
1873   }else{
1874     nCol = pFromCol->nExpr;
1875   }
1876   nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
1877   if( pToCol ){
1878     for(i=0; i<pToCol->nExpr; i++){
1879       nByte += strlen(pToCol->a[i].zName) + 1;
1880     }
1881   }
1882   pFKey = sqliteMalloc( nByte );
1883   if( pFKey==0 ) goto fk_end;
1884   pFKey->pFrom = p;
1885   pFKey->pNextFrom = p->pFKey;
1886   z = (char*)&pFKey[1];
1887   pFKey->aCol = (struct sColMap*)z;
1888   z += sizeof(struct sColMap)*nCol;
1889   pFKey->zTo = z;
1890   memcpy(z, pTo->z, pTo->n);
1891   z[pTo->n] = 0;
1892   z += pTo->n+1;
1893   pFKey->pNextTo = 0;
1894   pFKey->nCol = nCol;
1895   if( pFromCol==0 ){
1896     pFKey->aCol[0].iFrom = p->nCol-1;
1897   }else{
1898     for(i=0; i<nCol; i++){
1899       int j;
1900       for(j=0; j<p->nCol; j++){
1901         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
1902           pFKey->aCol[i].iFrom = j;
1903           break;
1904         }
1905       }
1906       if( j>=p->nCol ){
1907         sqlite3ErrorMsg(pParse,
1908           "unknown column \"%s\" in foreign key definition",
1909           pFromCol->a[i].zName);
1910         goto fk_end;
1911       }
1912     }
1913   }
1914   if( pToCol ){
1915     for(i=0; i<nCol; i++){
1916       int n = strlen(pToCol->a[i].zName);
1917       pFKey->aCol[i].zCol = z;
1918       memcpy(z, pToCol->a[i].zName, n);
1919       z[n] = 0;
1920       z += n+1;
1921     }
1922   }
1923   pFKey->isDeferred = 0;
1924   pFKey->deleteConf = flags & 0xff;
1925   pFKey->updateConf = (flags >> 8 ) & 0xff;
1926   pFKey->insertConf = (flags >> 16 ) & 0xff;
1927 
1928   /* Link the foreign key to the table as the last step.
1929   */
1930   p->pFKey = pFKey;
1931   pFKey = 0;
1932 
1933 fk_end:
1934   sqliteFree(pFKey);
1935 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1936   sqlite3ExprListDelete(pFromCol);
1937   sqlite3ExprListDelete(pToCol);
1938 }
1939 
1940 /*
1941 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
1942 ** clause is seen as part of a foreign key definition.  The isDeferred
1943 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
1944 ** The behavior of the most recently created foreign key is adjusted
1945 ** accordingly.
1946 */
1947 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
1948 #ifndef SQLITE_OMIT_FOREIGN_KEY
1949   Table *pTab;
1950   FKey *pFKey;
1951   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
1952   pFKey->isDeferred = isDeferred;
1953 #endif
1954 }
1955 
1956 /*
1957 ** Generate code that will erase and refill index *pIdx.  This is
1958 ** used to initialize a newly created index or to recompute the
1959 ** content of an index in response to a REINDEX command.
1960 **
1961 ** if memRootPage is not negative, it means that the index is newly
1962 ** created.  The memory cell specified by memRootPage contains the
1963 ** root page number of the index.  If memRootPage is negative, then
1964 ** the index already exists and must be cleared before being refilled and
1965 ** the root page number of the index is taken from pIndex->tnum.
1966 */
1967 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
1968   Table *pTab = pIndex->pTable;  /* The table that is indexed */
1969   int iTab = pParse->nTab;       /* Btree cursor used for pTab */
1970   int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
1971   int addr1;                     /* Address of top of loop */
1972   int tnum;                      /* Root page of index */
1973   Vdbe *v;                       /* Generate code into this virtual machine */
1974 
1975 #ifndef SQLITE_OMIT_AUTHORIZATION
1976   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
1977       pParse->db->aDb[pIndex->iDb].zName ) ){
1978     return;
1979   }
1980 #endif
1981 
1982   /* Ensure all the required collation sequences are available. This
1983   ** routine will invoke the collation-needed callback if necessary (and
1984   ** if one has been registered).
1985   */
1986   if( sqlite3CheckIndexCollSeq(pParse, pIndex) ){
1987     return;
1988   }
1989 
1990   v = sqlite3GetVdbe(pParse);
1991   if( v==0 ) return;
1992   if( memRootPage>=0 ){
1993     sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
1994     tnum = 0;
1995   }else{
1996     tnum = pIndex->tnum;
1997     sqlite3VdbeAddOp(v, OP_Clear, tnum, pIndex->iDb);
1998   }
1999   sqlite3VdbeAddOp(v, OP_Integer, pIndex->iDb, 0);
2000   sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum,
2001                     (char*)&pIndex->keyInfo, P3_KEYINFO);
2002   sqlite3OpenTableForReading(v, iTab, pTab);
2003   addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
2004   sqlite3GenerateIndexKey(v, pIndex, iTab);
2005   if( pIndex->onError!=OE_None ){
2006     int curaddr = sqlite3VdbeCurrentAddr(v);
2007     int addr2 = curaddr+4;
2008     sqlite3VdbeChangeP2(v, curaddr-1, addr2);
2009     sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
2010     sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
2011     sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2);
2012     sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort,
2013                     "indexed columns are not unique", P3_STATIC);
2014     assert( addr2==sqlite3VdbeCurrentAddr(v) );
2015   }
2016   sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0);
2017   sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1);
2018   sqlite3VdbeChangeP2(v, addr1, sqlite3VdbeCurrentAddr(v));
2019   sqlite3VdbeAddOp(v, OP_Close, iTab, 0);
2020   sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
2021 }
2022 
2023 /*
2024 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2025 ** and pTblList is the name of the table that is to be indexed.  Both will
2026 ** be NULL for a primary key or an index that is created to satisfy a
2027 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2028 ** as the table to be indexed.  pParse->pNewTable is a table that is
2029 ** currently being constructed by a CREATE TABLE statement.
2030 **
2031 ** pList is a list of columns to be indexed.  pList will be NULL if this
2032 ** is a primary key or unique-constraint on the most recent column added
2033 ** to the table currently under construction.
2034 */
2035 void sqlite3CreateIndex(
2036   Parse *pParse,     /* All information about this parse */
2037   Token *pName1,     /* First part of index name. May be NULL */
2038   Token *pName2,     /* Second part of index name. May be NULL */
2039   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2040   ExprList *pList,   /* A list of columns to be indexed */
2041   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2042   Token *pStart,     /* The CREATE token that begins a CREATE TABLE statement */
2043   Token *pEnd        /* The ")" that closes the CREATE INDEX statement */
2044 ){
2045   Table *pTab = 0;   /* Table to be indexed */
2046   Index *pIndex = 0; /* The index to be created */
2047   char *zName = 0;
2048   int i, j;
2049   Token nullId;    /* Fake token for an empty ID list */
2050   DbFixer sFix;    /* For assigning database names to pTable */
2051   sqlite3 *db = pParse->db;
2052 
2053   int iDb;          /* Index of the database that is being written */
2054   Token *pName = 0; /* Unqualified name of the index to create */
2055 
2056   if( pParse->nErr || sqlite3_malloc_failed ) goto exit_create_index;
2057 
2058   /*
2059   ** Find the table that is to be indexed.  Return early if not found.
2060   */
2061   if( pTblName!=0 ){
2062 
2063     /* Use the two-part index name to determine the database
2064     ** to search for the table. 'Fix' the table name to this db
2065     ** before looking up the table.
2066     */
2067     assert( pName1 && pName2 );
2068     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2069     if( iDb<0 ) goto exit_create_index;
2070 
2071 #ifndef SQLITE_OMIT_TEMPDB
2072     /* If the index name was unqualified, check if the the table
2073     ** is a temp table. If so, set the database to 1.
2074     */
2075     pTab = sqlite3SrcListLookup(pParse, pTblName);
2076     if( pName2 && pName2->n==0 && pTab && pTab->iDb==1 ){
2077       iDb = 1;
2078     }
2079 #endif
2080 
2081     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2082         sqlite3FixSrcList(&sFix, pTblName)
2083     ){
2084       goto exit_create_index;
2085     }
2086     pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName,
2087         pTblName->a[0].zDatabase);
2088     if( !pTab ) goto exit_create_index;
2089     assert( iDb==pTab->iDb );
2090   }else{
2091     assert( pName==0 );
2092     pTab =  pParse->pNewTable;
2093     iDb = pTab->iDb;
2094   }
2095 
2096   if( pTab==0 || pParse->nErr ) goto exit_create_index;
2097   if( pTab->readOnly ){
2098     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2099     goto exit_create_index;
2100   }
2101 #ifndef SQLITE_OMIT_VIEW
2102   if( pTab->pSelect ){
2103     sqlite3ErrorMsg(pParse, "views may not be indexed");
2104     goto exit_create_index;
2105   }
2106 #endif
2107 
2108   /*
2109   ** Find the name of the index.  Make sure there is not already another
2110   ** index or table with the same name.
2111   **
2112   ** Exception:  If we are reading the names of permanent indices from the
2113   ** sqlite_master table (because some other process changed the schema) and
2114   ** one of the index names collides with the name of a temporary table or
2115   ** index, then we will continue to process this index.
2116   **
2117   ** If pName==0 it means that we are
2118   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2119   ** own name.
2120   */
2121   if( pName ){
2122     zName = sqlite3NameFromToken(pName);
2123     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
2124     if( zName==0 ) goto exit_create_index;
2125     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2126       goto exit_create_index;
2127     }
2128     if( !db->init.busy ){
2129       Index *pISameName;    /* Another index with the same name */
2130       Table *pTSameName;    /* A table with same name as the index */
2131       if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
2132       if( (pISameName = sqlite3FindIndex(db, zName, db->aDb[iDb].zName))!=0 ){
2133         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2134         goto exit_create_index;
2135       }
2136       if( (pTSameName = sqlite3FindTable(db, zName, 0))!=0 ){
2137         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2138         goto exit_create_index;
2139       }
2140     }
2141   }else{
2142     char zBuf[30];
2143     int n;
2144     Index *pLoop;
2145     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2146     sprintf(zBuf,"_%d",n);
2147     zName = 0;
2148     sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
2149     if( zName==0 ) goto exit_create_index;
2150   }
2151 
2152   /* Check for authorization to create an index.
2153   */
2154 #ifndef SQLITE_OMIT_AUTHORIZATION
2155   {
2156     const char *zDb = db->aDb[iDb].zName;
2157     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2158       goto exit_create_index;
2159     }
2160     i = SQLITE_CREATE_INDEX;
2161     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2162     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2163       goto exit_create_index;
2164     }
2165   }
2166 #endif
2167 
2168   /* If pList==0, it means this routine was called to make a primary
2169   ** key out of the last column added to the table under construction.
2170   ** So create a fake list to simulate this.
2171   */
2172   if( pList==0 ){
2173     nullId.z = pTab->aCol[pTab->nCol-1].zName;
2174     nullId.n = strlen(nullId.z);
2175     pList = sqlite3ExprListAppend(0, 0, &nullId);
2176     if( pList==0 ) goto exit_create_index;
2177   }
2178 
2179   /*
2180   ** Allocate the index structure.
2181   */
2182   pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 + sizeof(int) +
2183                         (sizeof(int)*2 + sizeof(CollSeq*))*pList->nExpr );
2184   if( sqlite3_malloc_failed ) goto exit_create_index;
2185   pIndex->aiColumn = (int*)&pIndex->keyInfo.aColl[pList->nExpr];
2186   pIndex->aiRowEst = &pIndex->aiColumn[pList->nExpr];
2187   pIndex->zName = (char*)&pIndex->aiRowEst[pList->nExpr+1];
2188   strcpy(pIndex->zName, zName);
2189   pIndex->pTable = pTab;
2190   pIndex->nColumn = pList->nExpr;
2191   pIndex->onError = onError;
2192   pIndex->autoIndex = pName==0;
2193   pIndex->iDb = iDb;
2194 
2195   /* Scan the names of the columns of the table to be indexed and
2196   ** load the column indices into the Index structure.  Report an error
2197   ** if any column is not found.
2198   */
2199   for(i=0; i<pList->nExpr; i++){
2200     for(j=0; j<pTab->nCol; j++){
2201       if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
2202     }
2203     if( j>=pTab->nCol ){
2204       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2205         pTab->zName, pList->a[i].zName);
2206       goto exit_create_index;
2207     }
2208     pIndex->aiColumn[i] = j;
2209     if( pList->a[i].pExpr ){
2210       assert( pList->a[i].pExpr->pColl );
2211       pIndex->keyInfo.aColl[i] = pList->a[i].pExpr->pColl;
2212     }else{
2213       pIndex->keyInfo.aColl[i] = pTab->aCol[j].pColl;
2214     }
2215     assert( pIndex->keyInfo.aColl[i] );
2216     if( !db->init.busy &&
2217         sqlite3CheckCollSeq(pParse, pIndex->keyInfo.aColl[i])
2218     ){
2219       goto exit_create_index;
2220     }
2221   }
2222   pIndex->keyInfo.nField = pList->nExpr;
2223   sqlite3DefaultRowEst(pIndex);
2224 
2225   if( pTab==pParse->pNewTable ){
2226     /* This routine has been called to create an automatic index as a
2227     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2228     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2229     ** i.e. one of:
2230     **
2231     ** CREATE TABLE t(x PRIMARY KEY, y);
2232     ** CREATE TABLE t(x, y, UNIQUE(x, y));
2233     **
2234     ** Either way, check to see if the table already has such an index. If
2235     ** so, don't bother creating this one. This only applies to
2236     ** automatically created indices. Users can do as they wish with
2237     ** explicit indices.
2238     */
2239     Index *pIdx;
2240     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2241       int k;
2242       assert( pIdx->onError!=OE_None );
2243       assert( pIdx->autoIndex );
2244       assert( pIndex->onError!=OE_None );
2245 
2246       if( pIdx->nColumn!=pIndex->nColumn ) continue;
2247       for(k=0; k<pIdx->nColumn; k++){
2248         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2249         if( pIdx->keyInfo.aColl[k]!=pIndex->keyInfo.aColl[k] ) break;
2250       }
2251       if( k==pIdx->nColumn ){
2252         if( pIdx->onError!=pIndex->onError ){
2253           /* This constraint creates the same index as a previous
2254           ** constraint specified somewhere in the CREATE TABLE statement.
2255           ** However the ON CONFLICT clauses are different. If both this
2256           ** constraint and the previous equivalent constraint have explicit
2257           ** ON CONFLICT clauses this is an error. Otherwise, use the
2258           ** explicitly specified behaviour for the index.
2259           */
2260           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2261             sqlite3ErrorMsg(pParse,
2262                 "conflicting ON CONFLICT clauses specified", 0);
2263           }
2264           if( pIdx->onError==OE_Default ){
2265             pIdx->onError = pIndex->onError;
2266           }
2267         }
2268         goto exit_create_index;
2269       }
2270     }
2271   }
2272 
2273   /* Link the new Index structure to its table and to the other
2274   ** in-memory database structures.
2275   */
2276   if( db->init.busy ){
2277     Index *p;
2278     p = sqlite3HashInsert(&db->aDb[pIndex->iDb].idxHash,
2279                          pIndex->zName, strlen(pIndex->zName)+1, pIndex);
2280     if( p ){
2281       assert( p==pIndex );  /* Malloc must have failed */
2282       goto exit_create_index;
2283     }
2284     db->flags |= SQLITE_InternChanges;
2285     if( pTblName!=0 ){
2286       pIndex->tnum = db->init.newTnum;
2287     }
2288   }
2289 
2290   /* If the db->init.busy is 0 then create the index on disk.  This
2291   ** involves writing the index into the master table and filling in the
2292   ** index with the current table contents.
2293   **
2294   ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2295   ** command.  db->init.busy is 1 when a database is opened and
2296   ** CREATE INDEX statements are read out of the master table.  In
2297   ** the latter case the index already exists on disk, which is why
2298   ** we don't want to recreate it.
2299   **
2300   ** If pTblName==0 it means this index is generated as a primary key
2301   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
2302   ** has just been created, it contains no data and the index initialization
2303   ** step can be skipped.
2304   */
2305   else if( db->init.busy==0 ){
2306     Vdbe *v;
2307     char *zStmt;
2308     int iMem = pParse->nMem++;
2309 
2310     v = sqlite3GetVdbe(pParse);
2311     if( v==0 ) goto exit_create_index;
2312 
2313     /* Create the rootpage for the index
2314     */
2315     sqlite3BeginWriteOperation(pParse, 1, iDb);
2316     sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0);
2317     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
2318 
2319     /* Gather the complete text of the CREATE INDEX statement into
2320     ** the zStmt variable
2321     */
2322     if( pStart && pEnd ){
2323       /* A named index with an explicit CREATE INDEX statement */
2324       zStmt = sqlite3MPrintf("CREATE%s INDEX %.*s",
2325         onError==OE_None ? "" : " UNIQUE",
2326         pEnd->z - pName->z + 1,
2327         pName->z);
2328     }else{
2329       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2330       /* zStmt = sqlite3MPrintf(""); */
2331       zStmt = 0;
2332     }
2333 
2334     /* Add an entry in sqlite_master for this index
2335     */
2336     sqlite3NestedParse(pParse,
2337         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
2338         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2339         pIndex->zName,
2340         pTab->zName,
2341         zStmt
2342     );
2343     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2344     sqliteFree(zStmt);
2345 
2346     /* Fill the index with data and reparse the schema. Code an OP_Expire
2347     ** to invalidate all pre-compiled statements.
2348     */
2349     if( pTblName ){
2350       sqlite3RefillIndex(pParse, pIndex, iMem);
2351       sqlite3ChangeCookie(db, v, iDb);
2352       sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
2353          sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC);
2354       sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
2355     }
2356   }
2357 
2358   /* When adding an index to the list of indices for a table, make
2359   ** sure all indices labeled OE_Replace come after all those labeled
2360   ** OE_Ignore.  This is necessary for the correct operation of UPDATE
2361   ** and INSERT.
2362   */
2363   if( db->init.busy || pTblName==0 ){
2364     if( onError!=OE_Replace || pTab->pIndex==0
2365          || pTab->pIndex->onError==OE_Replace){
2366       pIndex->pNext = pTab->pIndex;
2367       pTab->pIndex = pIndex;
2368     }else{
2369       Index *pOther = pTab->pIndex;
2370       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2371         pOther = pOther->pNext;
2372       }
2373       pIndex->pNext = pOther->pNext;
2374       pOther->pNext = pIndex;
2375     }
2376     pIndex = 0;
2377   }
2378 
2379   /* Clean up before exiting */
2380 exit_create_index:
2381   if( pIndex ){
2382     freeIndex(pIndex);
2383   }
2384   sqlite3ExprListDelete(pList);
2385   sqlite3SrcListDelete(pTblName);
2386   sqliteFree(zName);
2387   return;
2388 }
2389 
2390 /*
2391 ** Fill the Index.aiRowEst[] array with default information - information
2392 ** to be used when we have no ANALYZE command to run.
2393 **
2394 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2395 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
2396 ** number of rows in the table that match any particular value of the
2397 ** first column of the index.  aiRowEst[2] is an estimate of the number
2398 ** of rows that match any particular combiniation of the first 2 columns
2399 ** of the index.  And so forth.  It must always be the case that
2400 *
2401 **           aiRowEst[N]<=aiRowEst[N-1]
2402 **           aiRowEst[N]>=1
2403 **
2404 ** Apart from that, we have little to go on besides intuition as to
2405 ** how aiRowEst[] should be initialized.  The numbers generated here
2406 ** are based on typical values found in actual indices.
2407 */
2408 void sqlite3DefaultRowEst(Index *pIdx){
2409   int *a = pIdx->aiRowEst;
2410   int i;
2411   assert( a!=0 );
2412   a[0] = 1000000;
2413   for(i=pIdx->nColumn; i>=1; i--){
2414     a[i] = 10;
2415   }
2416   if( pIdx->onError!=OE_None ){
2417     a[pIdx->nColumn] = 1;
2418   }
2419 }
2420 
2421 /*
2422 ** This routine will drop an existing named index.  This routine
2423 ** implements the DROP INDEX statement.
2424 */
2425 void sqlite3DropIndex(Parse *pParse, SrcList *pName){
2426   Index *pIndex;
2427   Vdbe *v;
2428   sqlite3 *db = pParse->db;
2429 
2430   if( pParse->nErr || sqlite3_malloc_failed ){
2431     goto exit_drop_index;
2432   }
2433   assert( pName->nSrc==1 );
2434   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2435     goto exit_drop_index;
2436   }
2437   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
2438   if( pIndex==0 ){
2439     sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
2440     pParse->checkSchema = 1;
2441     goto exit_drop_index;
2442   }
2443   if( pIndex->autoIndex ){
2444     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
2445       "or PRIMARY KEY constraint cannot be dropped", 0);
2446     goto exit_drop_index;
2447   }
2448 #ifndef SQLITE_OMIT_AUTHORIZATION
2449   {
2450     int code = SQLITE_DROP_INDEX;
2451     Table *pTab = pIndex->pTable;
2452     const char *zDb = db->aDb[pIndex->iDb].zName;
2453     const char *zTab = SCHEMA_TABLE(pIndex->iDb);
2454     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
2455       goto exit_drop_index;
2456     }
2457     if( !OMIT_TEMPDB && pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
2458     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
2459       goto exit_drop_index;
2460     }
2461   }
2462 #endif
2463 
2464   /* Generate code to remove the index and from the master table */
2465   v = sqlite3GetVdbe(pParse);
2466   if( v ){
2467     int iDb = pIndex->iDb;
2468     sqlite3NestedParse(pParse,
2469        "DELETE FROM %Q.%s WHERE name=%Q",
2470        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2471        pIndex->zName
2472     );
2473     sqlite3ChangeCookie(db, v, iDb);
2474     destroyRootPage(pParse, pIndex->tnum, iDb);
2475     sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
2476   }
2477 
2478 exit_drop_index:
2479   sqlite3SrcListDelete(pName);
2480 }
2481 
2482 /*
2483 ** Append a new element to the given IdList.  Create a new IdList if
2484 ** need be.
2485 **
2486 ** A new IdList is returned, or NULL if malloc() fails.
2487 */
2488 IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){
2489   if( pList==0 ){
2490     pList = sqliteMalloc( sizeof(IdList) );
2491     if( pList==0 ) return 0;
2492     pList->nAlloc = 0;
2493   }
2494   if( pList->nId>=pList->nAlloc ){
2495     struct IdList_item *a;
2496     pList->nAlloc = pList->nAlloc*2 + 5;
2497     a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
2498     if( a==0 ){
2499       sqlite3IdListDelete(pList);
2500       return 0;
2501     }
2502     pList->a = a;
2503   }
2504   memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
2505   pList->a[pList->nId].zName = sqlite3NameFromToken(pToken);
2506   pList->nId++;
2507   return pList;
2508 }
2509 
2510 /*
2511 ** Delete an IdList.
2512 */
2513 void sqlite3IdListDelete(IdList *pList){
2514   int i;
2515   if( pList==0 ) return;
2516   for(i=0; i<pList->nId; i++){
2517     sqliteFree(pList->a[i].zName);
2518   }
2519   sqliteFree(pList->a);
2520   sqliteFree(pList);
2521 }
2522 
2523 /*
2524 ** Return the index in pList of the identifier named zId.  Return -1
2525 ** if not found.
2526 */
2527 int sqlite3IdListIndex(IdList *pList, const char *zName){
2528   int i;
2529   if( pList==0 ) return -1;
2530   for(i=0; i<pList->nId; i++){
2531     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
2532   }
2533   return -1;
2534 }
2535 
2536 /*
2537 ** Append a new table name to the given SrcList.  Create a new SrcList if
2538 ** need be.  A new entry is created in the SrcList even if pToken is NULL.
2539 **
2540 ** A new SrcList is returned, or NULL if malloc() fails.
2541 **
2542 ** If pDatabase is not null, it means that the table has an optional
2543 ** database name prefix.  Like this:  "database.table".  The pDatabase
2544 ** points to the table name and the pTable points to the database name.
2545 ** The SrcList.a[].zName field is filled with the table name which might
2546 ** come from pTable (if pDatabase is NULL) or from pDatabase.
2547 ** SrcList.a[].zDatabase is filled with the database name from pTable,
2548 ** or with NULL if no database is specified.
2549 **
2550 ** In other words, if call like this:
2551 **
2552 **         sqlite3SrcListAppend(A,B,0);
2553 **
2554 ** Then B is a table name and the database name is unspecified.  If called
2555 ** like this:
2556 **
2557 **         sqlite3SrcListAppend(A,B,C);
2558 **
2559 ** Then C is the table name and B is the database name.
2560 */
2561 SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
2562   struct SrcList_item *pItem;
2563   if( pList==0 ){
2564     pList = sqliteMalloc( sizeof(SrcList) );
2565     if( pList==0 ) return 0;
2566     pList->nAlloc = 1;
2567   }
2568   if( pList->nSrc>=pList->nAlloc ){
2569     SrcList *pNew;
2570     pList->nAlloc *= 2;
2571     pNew = sqliteRealloc(pList,
2572                sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
2573     if( pNew==0 ){
2574       sqlite3SrcListDelete(pList);
2575       return 0;
2576     }
2577     pList = pNew;
2578   }
2579   pItem = &pList->a[pList->nSrc];
2580   memset(pItem, 0, sizeof(pList->a[0]));
2581   if( pDatabase && pDatabase->z==0 ){
2582     pDatabase = 0;
2583   }
2584   if( pDatabase && pTable ){
2585     Token *pTemp = pDatabase;
2586     pDatabase = pTable;
2587     pTable = pTemp;
2588   }
2589   pItem->zName = sqlite3NameFromToken(pTable);
2590   pItem->zDatabase = sqlite3NameFromToken(pDatabase);
2591   pItem->iCursor = -1;
2592   pList->nSrc++;
2593   return pList;
2594 }
2595 
2596 /*
2597 ** Assign cursors to all tables in a SrcList
2598 */
2599 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
2600   int i;
2601   struct SrcList_item *pItem;
2602   for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
2603     if( pItem->iCursor>=0 ) break;
2604     pItem->iCursor = pParse->nTab++;
2605     if( pItem->pSelect ){
2606       sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
2607     }
2608   }
2609 }
2610 
2611 /*
2612 ** Add an alias to the last identifier on the given identifier list.
2613 */
2614 void sqlite3SrcListAddAlias(SrcList *pList, Token *pToken){
2615   if( pList && pList->nSrc>0 ){
2616     pList->a[pList->nSrc-1].zAlias = sqlite3NameFromToken(pToken);
2617   }
2618 }
2619 
2620 /*
2621 ** Delete an entire SrcList including all its substructure.
2622 */
2623 void sqlite3SrcListDelete(SrcList *pList){
2624   int i;
2625   struct SrcList_item *pItem;
2626   if( pList==0 ) return;
2627   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
2628     sqliteFree(pItem->zDatabase);
2629     sqliteFree(pItem->zName);
2630     sqliteFree(pItem->zAlias);
2631     sqlite3DeleteTable(0, pItem->pTab);
2632     sqlite3SelectDelete(pItem->pSelect);
2633     sqlite3ExprDelete(pItem->pOn);
2634     sqlite3IdListDelete(pItem->pUsing);
2635   }
2636   sqliteFree(pList);
2637 }
2638 
2639 /*
2640 ** Begin a transaction
2641 */
2642 void sqlite3BeginTransaction(Parse *pParse, int type){
2643   sqlite3 *db;
2644   Vdbe *v;
2645   int i;
2646 
2647   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
2648   if( pParse->nErr || sqlite3_malloc_failed ) return;
2649   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
2650 
2651   v = sqlite3GetVdbe(pParse);
2652   if( !v ) return;
2653   if( type!=TK_DEFERRED ){
2654     for(i=0; i<db->nDb; i++){
2655       sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
2656     }
2657   }
2658   sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
2659 }
2660 
2661 /*
2662 ** Commit a transaction
2663 */
2664 void sqlite3CommitTransaction(Parse *pParse){
2665   sqlite3 *db;
2666   Vdbe *v;
2667 
2668   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
2669   if( pParse->nErr || sqlite3_malloc_failed ) return;
2670   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
2671 
2672   v = sqlite3GetVdbe(pParse);
2673   if( v ){
2674     sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
2675   }
2676 }
2677 
2678 /*
2679 ** Rollback a transaction
2680 */
2681 void sqlite3RollbackTransaction(Parse *pParse){
2682   sqlite3 *db;
2683   Vdbe *v;
2684 
2685   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
2686   if( pParse->nErr || sqlite3_malloc_failed ) return;
2687   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
2688 
2689   v = sqlite3GetVdbe(pParse);
2690   if( v ){
2691     sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
2692   }
2693 }
2694 
2695 /*
2696 ** Make sure the TEMP database is open and available for use.  Return
2697 ** the number of errors.  Leave any error messages in the pParse structure.
2698 */
2699 static int sqlite3OpenTempDatabase(Parse *pParse){
2700   sqlite3 *db = pParse->db;
2701   if( db->aDb[1].pBt==0 && !pParse->explain ){
2702     int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
2703     if( rc!=SQLITE_OK ){
2704       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
2705         "file for storing temporary tables");
2706       pParse->rc = rc;
2707       return 1;
2708     }
2709     if( db->flags & !db->autoCommit ){
2710       rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
2711       if( rc!=SQLITE_OK ){
2712         sqlite3ErrorMsg(pParse, "unable to get a write lock on "
2713           "the temporary database file");
2714         pParse->rc = rc;
2715         return 1;
2716       }
2717     }
2718   }
2719   return 0;
2720 }
2721 
2722 /*
2723 ** Generate VDBE code that will verify the schema cookie and start
2724 ** a read-transaction for all named database files.
2725 **
2726 ** It is important that all schema cookies be verified and all
2727 ** read transactions be started before anything else happens in
2728 ** the VDBE program.  But this routine can be called after much other
2729 ** code has been generated.  So here is what we do:
2730 **
2731 ** The first time this routine is called, we code an OP_Goto that
2732 ** will jump to a subroutine at the end of the program.  Then we
2733 ** record every database that needs its schema verified in the
2734 ** pParse->cookieMask field.  Later, after all other code has been
2735 ** generated, the subroutine that does the cookie verifications and
2736 ** starts the transactions will be coded and the OP_Goto P2 value
2737 ** will be made to point to that subroutine.  The generation of the
2738 ** cookie verification subroutine code happens in sqlite3FinishCoding().
2739 **
2740 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
2741 ** schema on any databases.  This can be used to position the OP_Goto
2742 ** early in the code, before we know if any database tables will be used.
2743 */
2744 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
2745   sqlite3 *db;
2746   Vdbe *v;
2747   int mask;
2748 
2749   v = sqlite3GetVdbe(pParse);
2750   if( v==0 ) return;  /* This only happens if there was a prior error */
2751   db = pParse->db;
2752   if( pParse->cookieGoto==0 ){
2753     pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1;
2754   }
2755   if( iDb>=0 ){
2756     assert( iDb<db->nDb );
2757     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
2758     assert( iDb<32 );
2759     mask = 1<<iDb;
2760     if( (pParse->cookieMask & mask)==0 ){
2761       pParse->cookieMask |= mask;
2762       pParse->cookieValue[iDb] = db->aDb[iDb].schema_cookie;
2763       if( !OMIT_TEMPDB && iDb==1 ){
2764         sqlite3OpenTempDatabase(pParse);
2765       }
2766     }
2767   }
2768 }
2769 
2770 /*
2771 ** Generate VDBE code that prepares for doing an operation that
2772 ** might change the database.
2773 **
2774 ** This routine starts a new transaction if we are not already within
2775 ** a transaction.  If we are already within a transaction, then a checkpoint
2776 ** is set if the setStatement parameter is true.  A checkpoint should
2777 ** be set for operations that might fail (due to a constraint) part of
2778 ** the way through and which will need to undo some writes without having to
2779 ** rollback the whole transaction.  For operations where all constraints
2780 ** can be checked before any changes are made to the database, it is never
2781 ** necessary to undo a write and the checkpoint should not be set.
2782 **
2783 ** Only database iDb and the temp database are made writable by this call.
2784 ** If iDb==0, then the main and temp databases are made writable.   If
2785 ** iDb==1 then only the temp database is made writable.  If iDb>1 then the
2786 ** specified auxiliary database and the temp database are made writable.
2787 */
2788 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
2789   Vdbe *v = sqlite3GetVdbe(pParse);
2790   if( v==0 ) return;
2791   sqlite3CodeVerifySchema(pParse, iDb);
2792   pParse->writeMask |= 1<<iDb;
2793   if( setStatement && pParse->nested==0 ){
2794     sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
2795   }
2796   if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
2797     sqlite3BeginWriteOperation(pParse, setStatement, 1);
2798   }
2799 }
2800 
2801 /*
2802 ** Check to see if pIndex uses the collating sequence pColl.  Return
2803 ** true if it does and false if it does not.
2804 */
2805 #ifndef SQLITE_OMIT_REINDEX
2806 static int collationMatch(CollSeq *pColl, Index *pIndex){
2807   int n = pIndex->keyInfo.nField;
2808   CollSeq **pp = pIndex->keyInfo.aColl;
2809   while( n-- ){
2810     if( *pp==pColl ) return 1;
2811     pp++;
2812   }
2813   return 0;
2814 }
2815 #endif
2816 
2817 /*
2818 ** Recompute all indices of pTab that use the collating sequence pColl.
2819 ** If pColl==0 then recompute all indices of pTab.
2820 */
2821 #ifndef SQLITE_OMIT_REINDEX
2822 void reindexTable(Parse *pParse, Table *pTab, CollSeq *pColl){
2823   Index *pIndex;              /* An index associated with pTab */
2824 
2825   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
2826     if( pColl==0 || collationMatch(pColl,pIndex) ){
2827       sqlite3BeginWriteOperation(pParse, 0, pTab->iDb);
2828       sqlite3RefillIndex(pParse, pIndex, -1);
2829     }
2830   }
2831 }
2832 #endif
2833 
2834 /*
2835 ** Recompute all indices of all tables in all databases where the
2836 ** indices use the collating sequence pColl.  If pColl==0 then recompute
2837 ** all indices everywhere.
2838 */
2839 #ifndef SQLITE_OMIT_REINDEX
2840 void reindexDatabases(Parse *pParse, CollSeq *pColl){
2841   Db *pDb;                    /* A single database */
2842   int iDb;                    /* The database index number */
2843   sqlite3 *db = pParse->db;   /* The database connection */
2844   HashElem *k;                /* For looping over tables in pDb */
2845   Table *pTab;                /* A table in the database */
2846 
2847   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
2848     if( pDb==0 ) continue;
2849     for(k=sqliteHashFirst(&pDb->tblHash);  k; k=sqliteHashNext(k)){
2850       pTab = (Table*)sqliteHashData(k);
2851       reindexTable(pParse, pTab, pColl);
2852     }
2853   }
2854 }
2855 #endif
2856 
2857 /*
2858 ** Generate code for the REINDEX command.
2859 **
2860 **        REINDEX                            -- 1
2861 **        REINDEX  <collation>               -- 2
2862 **        REINDEX  ?<database>.?<tablename>  -- 3
2863 **        REINDEX  ?<database>.?<indexname>  -- 4
2864 **
2865 ** Form 1 causes all indices in all attached databases to be rebuilt.
2866 ** Form 2 rebuilds all indices in all databases that use the named
2867 ** collating function.  Forms 3 and 4 rebuild the named index or all
2868 ** indices associated with the named table.
2869 */
2870 #ifndef SQLITE_OMIT_REINDEX
2871 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
2872   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
2873   char *z;                    /* Name of a table or index */
2874   const char *zDb;            /* Name of the database */
2875   Table *pTab;                /* A table in the database */
2876   Index *pIndex;              /* An index associated with pTab */
2877   int iDb;                    /* The database index number */
2878   sqlite3 *db = pParse->db;   /* The database connection */
2879   Token *pObjName;            /* Name of the table or index to be reindexed */
2880 
2881   /* Read the database schema. If an error occurs, leave an error message
2882   ** and code in pParse and return NULL. */
2883   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2884     return;
2885   }
2886 
2887   if( pName1==0 || pName1->z==0 ){
2888     reindexDatabases(pParse, 0);
2889     return;
2890   }else if( pName2==0 || pName2->z==0 ){
2891     pColl = sqlite3FindCollSeq(db, db->enc, pName1->z, pName1->n, 0);
2892     if( pColl ){
2893       reindexDatabases(pParse, pColl);
2894       return;
2895     }
2896   }
2897   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
2898   if( iDb<0 ) return;
2899   z = sqlite3NameFromToken(pObjName);
2900   zDb = db->aDb[iDb].zName;
2901   pTab = sqlite3FindTable(db, z, zDb);
2902   if( pTab ){
2903     reindexTable(pParse, pTab, 0);
2904     sqliteFree(z);
2905     return;
2906   }
2907   pIndex = sqlite3FindIndex(db, z, zDb);
2908   sqliteFree(z);
2909   if( pIndex ){
2910     sqlite3BeginWriteOperation(pParse, 0, iDb);
2911     sqlite3RefillIndex(pParse, pIndex, -1);
2912     return;
2913   }
2914   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
2915 }
2916 #endif
2917