xref: /sqlite-3.40.0/src/build.c (revision 4c8404e5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   Pgno iTab;             /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 static SQLITE_NOINLINE void lockTable(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   Pgno iTab,         /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel;
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   pToplevel = sqlite3ParseToplevel(pParse);
63   for(i=0; i<pToplevel->nTableLock; i++){
64     p = &pToplevel->aTableLock[i];
65     if( p->iDb==iDb && p->iTab==iTab ){
66       p->isWriteLock = (p->isWriteLock || isWriteLock);
67       return;
68     }
69   }
70 
71   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
72   pToplevel->aTableLock =
73       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
74   if( pToplevel->aTableLock ){
75     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
76     p->iDb = iDb;
77     p->iTab = iTab;
78     p->isWriteLock = isWriteLock;
79     p->zLockName = zName;
80   }else{
81     pToplevel->nTableLock = 0;
82     sqlite3OomFault(pToplevel->db);
83   }
84 }
85 void sqlite3TableLock(
86   Parse *pParse,     /* Parsing context */
87   int iDb,           /* Index of the database containing the table to lock */
88   Pgno iTab,         /* Root page number of the table to be locked */
89   u8 isWriteLock,    /* True for a write lock */
90   const char *zName  /* Name of the table to be locked */
91 ){
92   if( iDb==1 ) return;
93   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
94   lockTable(pParse, iDb, iTab, isWriteLock, zName);
95 }
96 
97 /*
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
100 */
101 static void codeTableLocks(Parse *pParse){
102   int i;
103   Vdbe *pVdbe = pParse->pVdbe;
104   assert( pVdbe!=0 );
105 
106   for(i=0; i<pParse->nTableLock; i++){
107     TableLock *p = &pParse->aTableLock[i];
108     int p1 = p->iDb;
109     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
110                       p->zLockName, P4_STATIC);
111   }
112 }
113 #else
114   #define codeTableLocks(x)
115 #endif
116 
117 /*
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
121 */
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m){
124   int i;
125   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
126   return 1;
127 }
128 #endif
129 
130 /*
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared.  This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
135 ** parse.
136 **
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
139 */
140 void sqlite3FinishCoding(Parse *pParse){
141   sqlite3 *db;
142   Vdbe *v;
143   int iDb, i;
144 
145   assert( pParse->pToplevel==0 );
146   db = pParse->db;
147   assert( db->pParse==pParse );
148   if( pParse->nested ) return;
149   if( pParse->nErr ){
150     if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM;
151     return;
152   }
153   assert( db->mallocFailed==0 );
154 
155   /* Begin by generating some termination code at the end of the
156   ** vdbe program
157   */
158   v = pParse->pVdbe;
159   if( v==0 ){
160     if( db->init.busy ){
161       pParse->rc = SQLITE_DONE;
162       return;
163     }
164     v = sqlite3GetVdbe(pParse);
165     if( v==0 ) pParse->rc = SQLITE_ERROR;
166   }
167   assert( !pParse->isMultiWrite
168        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
169   if( v ){
170     if( pParse->bReturning ){
171       Returning *pReturning = pParse->u1.pReturning;
172       int addrRewind;
173       int reg;
174 
175       if( pReturning->nRetCol ){
176         sqlite3VdbeAddOp0(v, OP_FkCheck);
177         addrRewind =
178            sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
179         VdbeCoverage(v);
180         reg = pReturning->iRetReg;
181         for(i=0; i<pReturning->nRetCol; i++){
182           sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
183         }
184         sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
185         sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
186         VdbeCoverage(v);
187         sqlite3VdbeJumpHere(v, addrRewind);
188       }
189     }
190     sqlite3VdbeAddOp0(v, OP_Halt);
191 
192 #if SQLITE_USER_AUTHENTICATION
193     if( pParse->nTableLock>0 && db->init.busy==0 ){
194       sqlite3UserAuthInit(db);
195       if( db->auth.authLevel<UAUTH_User ){
196         sqlite3ErrorMsg(pParse, "user not authenticated");
197         pParse->rc = SQLITE_AUTH_USER;
198         return;
199       }
200     }
201 #endif
202 
203     /* The cookie mask contains one bit for each database file open.
204     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
205     ** set for each database that is used.  Generate code to start a
206     ** transaction on each used database and to verify the schema cookie
207     ** on each used database.
208     */
209     assert( pParse->nErr>0 || sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
210     sqlite3VdbeJumpHere(v, 0);
211     assert( db->nDb>0 );
212     iDb = 0;
213     do{
214       Schema *pSchema;
215       if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
216       sqlite3VdbeUsesBtree(v, iDb);
217       pSchema = db->aDb[iDb].pSchema;
218       sqlite3VdbeAddOp4Int(v,
219         OP_Transaction,                    /* Opcode */
220         iDb,                               /* P1 */
221         DbMaskTest(pParse->writeMask,iDb), /* P2 */
222         pSchema->schema_cookie,            /* P3 */
223         pSchema->iGeneration               /* P4 */
224       );
225       if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
226       VdbeComment((v,
227             "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
228     }while( ++iDb<db->nDb );
229 #ifndef SQLITE_OMIT_VIRTUALTABLE
230     for(i=0; i<pParse->nVtabLock; i++){
231       char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
232       sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
233     }
234     pParse->nVtabLock = 0;
235 #endif
236 
237     /* Once all the cookies have been verified and transactions opened,
238     ** obtain the required table-locks. This is a no-op unless the
239     ** shared-cache feature is enabled.
240     */
241     codeTableLocks(pParse);
242 
243     /* Initialize any AUTOINCREMENT data structures required.
244     */
245     sqlite3AutoincrementBegin(pParse);
246 
247     /* Code constant expressions that where factored out of inner loops.
248     **
249     ** The pConstExpr list might also contain expressions that we simply
250     ** want to keep around until the Parse object is deleted.  Such
251     ** expressions have iConstExprReg==0.  Do not generate code for
252     ** those expressions, of course.
253     */
254     if( pParse->pConstExpr ){
255       ExprList *pEL = pParse->pConstExpr;
256       pParse->okConstFactor = 0;
257       for(i=0; i<pEL->nExpr; i++){
258         int iReg = pEL->a[i].u.iConstExprReg;
259         sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
260       }
261     }
262 
263     if( pParse->bReturning ){
264       Returning *pRet = pParse->u1.pReturning;
265       if( pRet->nRetCol ){
266         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
267       }
268     }
269 
270     /* Finally, jump back to the beginning of the executable code. */
271     sqlite3VdbeGoto(v, 1);
272   }
273 
274   /* Get the VDBE program ready for execution
275   */
276   assert( v!=0 || pParse->nErr );
277   assert( db->mallocFailed==0 || pParse->nErr );
278   if( pParse->nErr==0 ){
279     /* A minimum of one cursor is required if autoincrement is used
280     *  See ticket [a696379c1f08866] */
281     assert( pParse->pAinc==0 || pParse->nTab>0 );
282     sqlite3VdbeMakeReady(v, pParse);
283     pParse->rc = SQLITE_DONE;
284   }else{
285     pParse->rc = SQLITE_ERROR;
286   }
287 }
288 
289 /*
290 ** Run the parser and code generator recursively in order to generate
291 ** code for the SQL statement given onto the end of the pParse context
292 ** currently under construction.  Notes:
293 **
294 **   *  The final OP_Halt is not appended and other initialization
295 **      and finalization steps are omitted because those are handling by the
296 **      outermost parser.
297 **
298 **   *  Built-in SQL functions always take precedence over application-defined
299 **      SQL functions.  In other words, it is not possible to override a
300 **      built-in function.
301 */
302 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
303   va_list ap;
304   char *zSql;
305   sqlite3 *db = pParse->db;
306   u32 savedDbFlags = db->mDbFlags;
307   char saveBuf[PARSE_TAIL_SZ];
308 
309   if( pParse->nErr ) return;
310   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
311   va_start(ap, zFormat);
312   zSql = sqlite3VMPrintf(db, zFormat, ap);
313   va_end(ap);
314   if( zSql==0 ){
315     /* This can result either from an OOM or because the formatted string
316     ** exceeds SQLITE_LIMIT_LENGTH.  In the latter case, we need to set
317     ** an error */
318     if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
319     pParse->nErr++;
320     return;
321   }
322   pParse->nested++;
323   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
324   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
325   db->mDbFlags |= DBFLAG_PreferBuiltin;
326   sqlite3RunParser(pParse, zSql);
327   db->mDbFlags = savedDbFlags;
328   sqlite3DbFree(db, zSql);
329   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
330   pParse->nested--;
331 }
332 
333 #if SQLITE_USER_AUTHENTICATION
334 /*
335 ** Return TRUE if zTable is the name of the system table that stores the
336 ** list of users and their access credentials.
337 */
338 int sqlite3UserAuthTable(const char *zTable){
339   return sqlite3_stricmp(zTable, "sqlite_user")==0;
340 }
341 #endif
342 
343 /*
344 ** Locate the in-memory structure that describes a particular database
345 ** table given the name of that table and (optionally) the name of the
346 ** database containing the table.  Return NULL if not found.
347 **
348 ** If zDatabase is 0, all databases are searched for the table and the
349 ** first matching table is returned.  (No checking for duplicate table
350 ** names is done.)  The search order is TEMP first, then MAIN, then any
351 ** auxiliary databases added using the ATTACH command.
352 **
353 ** See also sqlite3LocateTable().
354 */
355 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
356   Table *p = 0;
357   int i;
358 
359   /* All mutexes are required for schema access.  Make sure we hold them. */
360   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
361 #if SQLITE_USER_AUTHENTICATION
362   /* Only the admin user is allowed to know that the sqlite_user table
363   ** exists */
364   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
365     return 0;
366   }
367 #endif
368   if( zDatabase ){
369     for(i=0; i<db->nDb; i++){
370       if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
371     }
372     if( i>=db->nDb ){
373       /* No match against the official names.  But always match "main"
374       ** to schema 0 as a legacy fallback. */
375       if( sqlite3StrICmp(zDatabase,"main")==0 ){
376         i = 0;
377       }else{
378         return 0;
379       }
380     }
381     p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
382     if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
383       if( i==1 ){
384         if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
385          || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
386          || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
387         ){
388           p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
389                               LEGACY_TEMP_SCHEMA_TABLE);
390         }
391       }else{
392         if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
393           p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
394                               LEGACY_SCHEMA_TABLE);
395         }
396       }
397     }
398   }else{
399     /* Match against TEMP first */
400     p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
401     if( p ) return p;
402     /* The main database is second */
403     p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
404     if( p ) return p;
405     /* Attached databases are in order of attachment */
406     for(i=2; i<db->nDb; i++){
407       assert( sqlite3SchemaMutexHeld(db, i, 0) );
408       p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
409       if( p ) break;
410     }
411     if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
412       if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
413         p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
414       }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
415         p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
416                             LEGACY_TEMP_SCHEMA_TABLE);
417       }
418     }
419   }
420   return p;
421 }
422 
423 /*
424 ** Locate the in-memory structure that describes a particular database
425 ** table given the name of that table and (optionally) the name of the
426 ** database containing the table.  Return NULL if not found.  Also leave an
427 ** error message in pParse->zErrMsg.
428 **
429 ** The difference between this routine and sqlite3FindTable() is that this
430 ** routine leaves an error message in pParse->zErrMsg where
431 ** sqlite3FindTable() does not.
432 */
433 Table *sqlite3LocateTable(
434   Parse *pParse,         /* context in which to report errors */
435   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
436   const char *zName,     /* Name of the table we are looking for */
437   const char *zDbase     /* Name of the database.  Might be NULL */
438 ){
439   Table *p;
440   sqlite3 *db = pParse->db;
441 
442   /* Read the database schema. If an error occurs, leave an error message
443   ** and code in pParse and return NULL. */
444   if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
445    && SQLITE_OK!=sqlite3ReadSchema(pParse)
446   ){
447     return 0;
448   }
449 
450   p = sqlite3FindTable(db, zName, zDbase);
451   if( p==0 ){
452 #ifndef SQLITE_OMIT_VIRTUALTABLE
453     /* If zName is the not the name of a table in the schema created using
454     ** CREATE, then check to see if it is the name of an virtual table that
455     ** can be an eponymous virtual table. */
456     if( pParse->disableVtab==0 && db->init.busy==0 ){
457       Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
458       if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
459         pMod = sqlite3PragmaVtabRegister(db, zName);
460       }
461       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
462         testcase( pMod->pEpoTab==0 );
463         return pMod->pEpoTab;
464       }
465     }
466 #endif
467     if( flags & LOCATE_NOERR ) return 0;
468     pParse->checkSchema = 1;
469   }else if( IsVirtual(p) && pParse->disableVtab ){
470     p = 0;
471   }
472 
473   if( p==0 ){
474     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
475     if( zDbase ){
476       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
477     }else{
478       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
479     }
480   }else{
481     assert( HasRowid(p) || p->iPKey<0 );
482   }
483 
484   return p;
485 }
486 
487 /*
488 ** Locate the table identified by *p.
489 **
490 ** This is a wrapper around sqlite3LocateTable(). The difference between
491 ** sqlite3LocateTable() and this function is that this function restricts
492 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
493 ** non-NULL if it is part of a view or trigger program definition. See
494 ** sqlite3FixSrcList() for details.
495 */
496 Table *sqlite3LocateTableItem(
497   Parse *pParse,
498   u32 flags,
499   SrcItem *p
500 ){
501   const char *zDb;
502   assert( p->pSchema==0 || p->zDatabase==0 );
503   if( p->pSchema ){
504     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
505     zDb = pParse->db->aDb[iDb].zDbSName;
506   }else{
507     zDb = p->zDatabase;
508   }
509   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
510 }
511 
512 /*
513 ** Return the preferred table name for system tables.  Translate legacy
514 ** names into the new preferred names, as appropriate.
515 */
516 const char *sqlite3PreferredTableName(const char *zName){
517   if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
518     if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
519       return PREFERRED_SCHEMA_TABLE;
520     }
521     if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
522       return PREFERRED_TEMP_SCHEMA_TABLE;
523     }
524   }
525   return zName;
526 }
527 
528 /*
529 ** Locate the in-memory structure that describes
530 ** a particular index given the name of that index
531 ** and the name of the database that contains the index.
532 ** Return NULL if not found.
533 **
534 ** If zDatabase is 0, all databases are searched for the
535 ** table and the first matching index is returned.  (No checking
536 ** for duplicate index names is done.)  The search order is
537 ** TEMP first, then MAIN, then any auxiliary databases added
538 ** using the ATTACH command.
539 */
540 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
541   Index *p = 0;
542   int i;
543   /* All mutexes are required for schema access.  Make sure we hold them. */
544   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
545   for(i=OMIT_TEMPDB; i<db->nDb; i++){
546     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
547     Schema *pSchema = db->aDb[j].pSchema;
548     assert( pSchema );
549     if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
550     assert( sqlite3SchemaMutexHeld(db, j, 0) );
551     p = sqlite3HashFind(&pSchema->idxHash, zName);
552     if( p ) break;
553   }
554   return p;
555 }
556 
557 /*
558 ** Reclaim the memory used by an index
559 */
560 void sqlite3FreeIndex(sqlite3 *db, Index *p){
561 #ifndef SQLITE_OMIT_ANALYZE
562   sqlite3DeleteIndexSamples(db, p);
563 #endif
564   sqlite3ExprDelete(db, p->pPartIdxWhere);
565   sqlite3ExprListDelete(db, p->aColExpr);
566   sqlite3DbFree(db, p->zColAff);
567   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
568 #ifdef SQLITE_ENABLE_STAT4
569   sqlite3_free(p->aiRowEst);
570 #endif
571   sqlite3DbFree(db, p);
572 }
573 
574 /*
575 ** For the index called zIdxName which is found in the database iDb,
576 ** unlike that index from its Table then remove the index from
577 ** the index hash table and free all memory structures associated
578 ** with the index.
579 */
580 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
581   Index *pIndex;
582   Hash *pHash;
583 
584   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
585   pHash = &db->aDb[iDb].pSchema->idxHash;
586   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
587   if( ALWAYS(pIndex) ){
588     if( pIndex->pTable->pIndex==pIndex ){
589       pIndex->pTable->pIndex = pIndex->pNext;
590     }else{
591       Index *p;
592       /* Justification of ALWAYS();  The index must be on the list of
593       ** indices. */
594       p = pIndex->pTable->pIndex;
595       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
596       if( ALWAYS(p && p->pNext==pIndex) ){
597         p->pNext = pIndex->pNext;
598       }
599     }
600     sqlite3FreeIndex(db, pIndex);
601   }
602   db->mDbFlags |= DBFLAG_SchemaChange;
603 }
604 
605 /*
606 ** Look through the list of open database files in db->aDb[] and if
607 ** any have been closed, remove them from the list.  Reallocate the
608 ** db->aDb[] structure to a smaller size, if possible.
609 **
610 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
611 ** are never candidates for being collapsed.
612 */
613 void sqlite3CollapseDatabaseArray(sqlite3 *db){
614   int i, j;
615   for(i=j=2; i<db->nDb; i++){
616     struct Db *pDb = &db->aDb[i];
617     if( pDb->pBt==0 ){
618       sqlite3DbFree(db, pDb->zDbSName);
619       pDb->zDbSName = 0;
620       continue;
621     }
622     if( j<i ){
623       db->aDb[j] = db->aDb[i];
624     }
625     j++;
626   }
627   db->nDb = j;
628   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
629     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
630     sqlite3DbFree(db, db->aDb);
631     db->aDb = db->aDbStatic;
632   }
633 }
634 
635 /*
636 ** Reset the schema for the database at index iDb.  Also reset the
637 ** TEMP schema.  The reset is deferred if db->nSchemaLock is not zero.
638 ** Deferred resets may be run by calling with iDb<0.
639 */
640 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
641   int i;
642   assert( iDb<db->nDb );
643 
644   if( iDb>=0 ){
645     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
646     DbSetProperty(db, iDb, DB_ResetWanted);
647     DbSetProperty(db, 1, DB_ResetWanted);
648     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
649   }
650 
651   if( db->nSchemaLock==0 ){
652     for(i=0; i<db->nDb; i++){
653       if( DbHasProperty(db, i, DB_ResetWanted) ){
654         sqlite3SchemaClear(db->aDb[i].pSchema);
655       }
656     }
657   }
658 }
659 
660 /*
661 ** Erase all schema information from all attached databases (including
662 ** "main" and "temp") for a single database connection.
663 */
664 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
665   int i;
666   sqlite3BtreeEnterAll(db);
667   for(i=0; i<db->nDb; i++){
668     Db *pDb = &db->aDb[i];
669     if( pDb->pSchema ){
670       if( db->nSchemaLock==0 ){
671         sqlite3SchemaClear(pDb->pSchema);
672       }else{
673         DbSetProperty(db, i, DB_ResetWanted);
674       }
675     }
676   }
677   db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
678   sqlite3VtabUnlockList(db);
679   sqlite3BtreeLeaveAll(db);
680   if( db->nSchemaLock==0 ){
681     sqlite3CollapseDatabaseArray(db);
682   }
683 }
684 
685 /*
686 ** This routine is called when a commit occurs.
687 */
688 void sqlite3CommitInternalChanges(sqlite3 *db){
689   db->mDbFlags &= ~DBFLAG_SchemaChange;
690 }
691 
692 /*
693 ** Set the expression associated with a column.  This is usually
694 ** the DEFAULT value, but might also be the expression that computes
695 ** the value for a generated column.
696 */
697 void sqlite3ColumnSetExpr(
698   Parse *pParse,    /* Parsing context */
699   Table *pTab,      /* The table containing the column */
700   Column *pCol,     /* The column to receive the new DEFAULT expression */
701   Expr *pExpr       /* The new default expression */
702 ){
703   ExprList *pList;
704   assert( IsOrdinaryTable(pTab) );
705   pList = pTab->u.tab.pDfltList;
706   if( pCol->iDflt==0
707    || NEVER(pList==0)
708    || NEVER(pList->nExpr<pCol->iDflt)
709   ){
710     pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
711     pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
712   }else{
713     sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
714     pList->a[pCol->iDflt-1].pExpr = pExpr;
715   }
716 }
717 
718 /*
719 ** Return the expression associated with a column.  The expression might be
720 ** the DEFAULT clause or the AS clause of a generated column.
721 ** Return NULL if the column has no associated expression.
722 */
723 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
724   if( pCol->iDflt==0 ) return 0;
725   if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
726   if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
727   if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
728   return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
729 }
730 
731 /*
732 ** Set the collating sequence name for a column.
733 */
734 void sqlite3ColumnSetColl(
735   sqlite3 *db,
736   Column *pCol,
737   const char *zColl
738 ){
739   i64 nColl;
740   i64 n;
741   char *zNew;
742   assert( zColl!=0 );
743   n = sqlite3Strlen30(pCol->zCnName) + 1;
744   if( pCol->colFlags & COLFLAG_HASTYPE ){
745     n += sqlite3Strlen30(pCol->zCnName+n) + 1;
746   }
747   nColl = sqlite3Strlen30(zColl) + 1;
748   zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
749   if( zNew ){
750     pCol->zCnName = zNew;
751     memcpy(pCol->zCnName + n, zColl, nColl);
752     pCol->colFlags |= COLFLAG_HASCOLL;
753   }
754 }
755 
756 /*
757 ** Return the collating squence name for a column
758 */
759 const char *sqlite3ColumnColl(Column *pCol){
760   const char *z;
761   if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
762   z = pCol->zCnName;
763   while( *z ){ z++; }
764   if( pCol->colFlags & COLFLAG_HASTYPE ){
765     do{ z++; }while( *z );
766   }
767   return z+1;
768 }
769 
770 /*
771 ** Delete memory allocated for the column names of a table or view (the
772 ** Table.aCol[] array).
773 */
774 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
775   int i;
776   Column *pCol;
777   assert( pTable!=0 );
778   assert( db!=0 );
779   if( (pCol = pTable->aCol)!=0 ){
780     for(i=0; i<pTable->nCol; i++, pCol++){
781       assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
782       sqlite3DbFree(db, pCol->zCnName);
783     }
784     sqlite3DbNNFreeNN(db, pTable->aCol);
785     if( IsOrdinaryTable(pTable) ){
786       sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
787     }
788     if( db->pnBytesFreed==0 ){
789       pTable->aCol = 0;
790       pTable->nCol = 0;
791       if( IsOrdinaryTable(pTable) ){
792         pTable->u.tab.pDfltList = 0;
793       }
794     }
795   }
796 }
797 
798 /*
799 ** Remove the memory data structures associated with the given
800 ** Table.  No changes are made to disk by this routine.
801 **
802 ** This routine just deletes the data structure.  It does not unlink
803 ** the table data structure from the hash table.  But it does destroy
804 ** memory structures of the indices and foreign keys associated with
805 ** the table.
806 **
807 ** The db parameter is optional.  It is needed if the Table object
808 ** contains lookaside memory.  (Table objects in the schema do not use
809 ** lookaside memory, but some ephemeral Table objects do.)  Or the
810 ** db parameter can be used with db->pnBytesFreed to measure the memory
811 ** used by the Table object.
812 */
813 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
814   Index *pIndex, *pNext;
815 
816 #ifdef SQLITE_DEBUG
817   /* Record the number of outstanding lookaside allocations in schema Tables
818   ** prior to doing any free() operations. Since schema Tables do not use
819   ** lookaside, this number should not change.
820   **
821   ** If malloc has already failed, it may be that it failed while allocating
822   ** a Table object that was going to be marked ephemeral. So do not check
823   ** that no lookaside memory is used in this case either. */
824   int nLookaside = 0;
825   assert( db!=0 );
826   if( !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
827     nLookaside = sqlite3LookasideUsed(db, 0);
828   }
829 #endif
830 
831   /* Delete all indices associated with this table. */
832   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
833     pNext = pIndex->pNext;
834     assert( pIndex->pSchema==pTable->pSchema
835          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
836     if( db->pnBytesFreed==0 && !IsVirtual(pTable) ){
837       char *zName = pIndex->zName;
838       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
839          &pIndex->pSchema->idxHash, zName, 0
840       );
841       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
842       assert( pOld==pIndex || pOld==0 );
843     }
844     sqlite3FreeIndex(db, pIndex);
845   }
846 
847   if( IsOrdinaryTable(pTable) ){
848     sqlite3FkDelete(db, pTable);
849   }
850 #ifndef SQLITE_OMIT_VIRTUAL_TABLE
851   else if( IsVirtual(pTable) ){
852     sqlite3VtabClear(db, pTable);
853   }
854 #endif
855   else{
856     assert( IsView(pTable) );
857     sqlite3SelectDelete(db, pTable->u.view.pSelect);
858   }
859 
860   /* Delete the Table structure itself.
861   */
862   sqlite3DeleteColumnNames(db, pTable);
863   sqlite3DbFree(db, pTable->zName);
864   sqlite3DbFree(db, pTable->zColAff);
865   sqlite3ExprListDelete(db, pTable->pCheck);
866   sqlite3DbFree(db, pTable);
867 
868   /* Verify that no lookaside memory was used by schema tables */
869   assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
870 }
871 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
872   /* Do not delete the table until the reference count reaches zero. */
873   assert( db!=0 );
874   if( !pTable ) return;
875   if( db->pnBytesFreed==0 && (--pTable->nTabRef)>0 ) return;
876   deleteTable(db, pTable);
877 }
878 
879 
880 /*
881 ** Unlink the given table from the hash tables and the delete the
882 ** table structure with all its indices and foreign keys.
883 */
884 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
885   Table *p;
886   Db *pDb;
887 
888   assert( db!=0 );
889   assert( iDb>=0 && iDb<db->nDb );
890   assert( zTabName );
891   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
892   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
893   pDb = &db->aDb[iDb];
894   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
895   sqlite3DeleteTable(db, p);
896   db->mDbFlags |= DBFLAG_SchemaChange;
897 }
898 
899 /*
900 ** Given a token, return a string that consists of the text of that
901 ** token.  Space to hold the returned string
902 ** is obtained from sqliteMalloc() and must be freed by the calling
903 ** function.
904 **
905 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
906 ** surround the body of the token are removed.
907 **
908 ** Tokens are often just pointers into the original SQL text and so
909 ** are not \000 terminated and are not persistent.  The returned string
910 ** is \000 terminated and is persistent.
911 */
912 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
913   char *zName;
914   if( pName ){
915     zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
916     sqlite3Dequote(zName);
917   }else{
918     zName = 0;
919   }
920   return zName;
921 }
922 
923 /*
924 ** Open the sqlite_schema table stored in database number iDb for
925 ** writing. The table is opened using cursor 0.
926 */
927 void sqlite3OpenSchemaTable(Parse *p, int iDb){
928   Vdbe *v = sqlite3GetVdbe(p);
929   sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
930   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
931   if( p->nTab==0 ){
932     p->nTab = 1;
933   }
934 }
935 
936 /*
937 ** Parameter zName points to a nul-terminated buffer containing the name
938 ** of a database ("main", "temp" or the name of an attached db). This
939 ** function returns the index of the named database in db->aDb[], or
940 ** -1 if the named db cannot be found.
941 */
942 int sqlite3FindDbName(sqlite3 *db, const char *zName){
943   int i = -1;         /* Database number */
944   if( zName ){
945     Db *pDb;
946     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
947       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
948       /* "main" is always an acceptable alias for the primary database
949       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
950       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
951     }
952   }
953   return i;
954 }
955 
956 /*
957 ** The token *pName contains the name of a database (either "main" or
958 ** "temp" or the name of an attached db). This routine returns the
959 ** index of the named database in db->aDb[], or -1 if the named db
960 ** does not exist.
961 */
962 int sqlite3FindDb(sqlite3 *db, Token *pName){
963   int i;                               /* Database number */
964   char *zName;                         /* Name we are searching for */
965   zName = sqlite3NameFromToken(db, pName);
966   i = sqlite3FindDbName(db, zName);
967   sqlite3DbFree(db, zName);
968   return i;
969 }
970 
971 /* The table or view or trigger name is passed to this routine via tokens
972 ** pName1 and pName2. If the table name was fully qualified, for example:
973 **
974 ** CREATE TABLE xxx.yyy (...);
975 **
976 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
977 ** the table name is not fully qualified, i.e.:
978 **
979 ** CREATE TABLE yyy(...);
980 **
981 ** Then pName1 is set to "yyy" and pName2 is "".
982 **
983 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
984 ** pName2) that stores the unqualified table name.  The index of the
985 ** database "xxx" is returned.
986 */
987 int sqlite3TwoPartName(
988   Parse *pParse,      /* Parsing and code generating context */
989   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
990   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
991   Token **pUnqual     /* Write the unqualified object name here */
992 ){
993   int iDb;                    /* Database holding the object */
994   sqlite3 *db = pParse->db;
995 
996   assert( pName2!=0 );
997   if( pName2->n>0 ){
998     if( db->init.busy ) {
999       sqlite3ErrorMsg(pParse, "corrupt database");
1000       return -1;
1001     }
1002     *pUnqual = pName2;
1003     iDb = sqlite3FindDb(db, pName1);
1004     if( iDb<0 ){
1005       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
1006       return -1;
1007     }
1008   }else{
1009     assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
1010              || (db->mDbFlags & DBFLAG_Vacuum)!=0);
1011     iDb = db->init.iDb;
1012     *pUnqual = pName1;
1013   }
1014   return iDb;
1015 }
1016 
1017 /*
1018 ** True if PRAGMA writable_schema is ON
1019 */
1020 int sqlite3WritableSchema(sqlite3 *db){
1021   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
1022   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1023                SQLITE_WriteSchema );
1024   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1025                SQLITE_Defensive );
1026   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1027                (SQLITE_WriteSchema|SQLITE_Defensive) );
1028   return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
1029 }
1030 
1031 /*
1032 ** This routine is used to check if the UTF-8 string zName is a legal
1033 ** unqualified name for a new schema object (table, index, view or
1034 ** trigger). All names are legal except those that begin with the string
1035 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1036 ** is reserved for internal use.
1037 **
1038 ** When parsing the sqlite_schema table, this routine also checks to
1039 ** make sure the "type", "name", and "tbl_name" columns are consistent
1040 ** with the SQL.
1041 */
1042 int sqlite3CheckObjectName(
1043   Parse *pParse,            /* Parsing context */
1044   const char *zName,        /* Name of the object to check */
1045   const char *zType,        /* Type of this object */
1046   const char *zTblName      /* Parent table name for triggers and indexes */
1047 ){
1048   sqlite3 *db = pParse->db;
1049   if( sqlite3WritableSchema(db)
1050    || db->init.imposterTable
1051    || !sqlite3Config.bExtraSchemaChecks
1052   ){
1053     /* Skip these error checks for writable_schema=ON */
1054     return SQLITE_OK;
1055   }
1056   if( db->init.busy ){
1057     if( sqlite3_stricmp(zType, db->init.azInit[0])
1058      || sqlite3_stricmp(zName, db->init.azInit[1])
1059      || sqlite3_stricmp(zTblName, db->init.azInit[2])
1060     ){
1061       sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
1062       return SQLITE_ERROR;
1063     }
1064   }else{
1065     if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
1066      || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
1067     ){
1068       sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
1069                       zName);
1070       return SQLITE_ERROR;
1071     }
1072 
1073   }
1074   return SQLITE_OK;
1075 }
1076 
1077 /*
1078 ** Return the PRIMARY KEY index of a table
1079 */
1080 Index *sqlite3PrimaryKeyIndex(Table *pTab){
1081   Index *p;
1082   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
1083   return p;
1084 }
1085 
1086 /*
1087 ** Convert an table column number into a index column number.  That is,
1088 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1089 ** find the (first) offset of that column in index pIdx.  Or return -1
1090 ** if column iCol is not used in index pIdx.
1091 */
1092 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
1093   int i;
1094   for(i=0; i<pIdx->nColumn; i++){
1095     if( iCol==pIdx->aiColumn[i] ) return i;
1096   }
1097   return -1;
1098 }
1099 
1100 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1101 /* Convert a storage column number into a table column number.
1102 **
1103 ** The storage column number (0,1,2,....) is the index of the value
1104 ** as it appears in the record on disk.  The true column number
1105 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1106 **
1107 ** The storage column number is less than the table column number if
1108 ** and only there are VIRTUAL columns to the left.
1109 **
1110 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1111 */
1112 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
1113   if( pTab->tabFlags & TF_HasVirtual ){
1114     int i;
1115     for(i=0; i<=iCol; i++){
1116       if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
1117     }
1118   }
1119   return iCol;
1120 }
1121 #endif
1122 
1123 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1124 /* Convert a table column number into a storage column number.
1125 **
1126 ** The storage column number (0,1,2,....) is the index of the value
1127 ** as it appears in the record on disk.  Or, if the input column is
1128 ** the N-th virtual column (zero-based) then the storage number is
1129 ** the number of non-virtual columns in the table plus N.
1130 **
1131 ** The true column number is the index (0,1,2,...) of the column in
1132 ** the CREATE TABLE statement.
1133 **
1134 ** If the input column is a VIRTUAL column, then it should not appear
1135 ** in storage.  But the value sometimes is cached in registers that
1136 ** follow the range of registers used to construct storage.  This
1137 ** avoids computing the same VIRTUAL column multiple times, and provides
1138 ** values for use by OP_Param opcodes in triggers.  Hence, if the
1139 ** input column is a VIRTUAL table, put it after all the other columns.
1140 **
1141 ** In the following, N means "normal column", S means STORED, and
1142 ** V means VIRTUAL.  Suppose the CREATE TABLE has columns like this:
1143 **
1144 **        CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1145 **                     -- 0 1 2 3 4 5 6 7 8
1146 **
1147 ** Then the mapping from this function is as follows:
1148 **
1149 **    INPUTS:     0 1 2 3 4 5 6 7 8
1150 **    OUTPUTS:    0 1 6 2 3 7 4 5 8
1151 **
1152 ** So, in other words, this routine shifts all the virtual columns to
1153 ** the end.
1154 **
1155 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1156 ** this routine is a no-op macro.  If the pTab does not have any virtual
1157 ** columns, then this routine is no-op that always return iCol.  If iCol
1158 ** is negative (indicating the ROWID column) then this routine return iCol.
1159 */
1160 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
1161   int i;
1162   i16 n;
1163   assert( iCol<pTab->nCol );
1164   if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
1165   for(i=0, n=0; i<iCol; i++){
1166     if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
1167   }
1168   if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
1169     /* iCol is a virtual column itself */
1170     return pTab->nNVCol + i - n;
1171   }else{
1172     /* iCol is a normal or stored column */
1173     return n;
1174   }
1175 }
1176 #endif
1177 
1178 /*
1179 ** Insert a single OP_JournalMode query opcode in order to force the
1180 ** prepared statement to return false for sqlite3_stmt_readonly().  This
1181 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1182 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1183 ** will return false for sqlite3_stmt_readonly() even if that statement
1184 ** is a read-only no-op.
1185 */
1186 static void sqlite3ForceNotReadOnly(Parse *pParse){
1187   int iReg = ++pParse->nMem;
1188   Vdbe *v = sqlite3GetVdbe(pParse);
1189   if( v ){
1190     sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
1191     sqlite3VdbeUsesBtree(v, 0);
1192   }
1193 }
1194 
1195 /*
1196 ** Begin constructing a new table representation in memory.  This is
1197 ** the first of several action routines that get called in response
1198 ** to a CREATE TABLE statement.  In particular, this routine is called
1199 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1200 ** flag is true if the table should be stored in the auxiliary database
1201 ** file instead of in the main database file.  This is normally the case
1202 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1203 ** CREATE and TABLE.
1204 **
1205 ** The new table record is initialized and put in pParse->pNewTable.
1206 ** As more of the CREATE TABLE statement is parsed, additional action
1207 ** routines will be called to add more information to this record.
1208 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1209 ** is called to complete the construction of the new table record.
1210 */
1211 void sqlite3StartTable(
1212   Parse *pParse,   /* Parser context */
1213   Token *pName1,   /* First part of the name of the table or view */
1214   Token *pName2,   /* Second part of the name of the table or view */
1215   int isTemp,      /* True if this is a TEMP table */
1216   int isView,      /* True if this is a VIEW */
1217   int isVirtual,   /* True if this is a VIRTUAL table */
1218   int noErr        /* Do nothing if table already exists */
1219 ){
1220   Table *pTable;
1221   char *zName = 0; /* The name of the new table */
1222   sqlite3 *db = pParse->db;
1223   Vdbe *v;
1224   int iDb;         /* Database number to create the table in */
1225   Token *pName;    /* Unqualified name of the table to create */
1226 
1227   if( db->init.busy && db->init.newTnum==1 ){
1228     /* Special case:  Parsing the sqlite_schema or sqlite_temp_schema schema */
1229     iDb = db->init.iDb;
1230     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
1231     pName = pName1;
1232   }else{
1233     /* The common case */
1234     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1235     if( iDb<0 ) return;
1236     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
1237       /* If creating a temp table, the name may not be qualified. Unless
1238       ** the database name is "temp" anyway.  */
1239       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
1240       return;
1241     }
1242     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
1243     zName = sqlite3NameFromToken(db, pName);
1244     if( IN_RENAME_OBJECT ){
1245       sqlite3RenameTokenMap(pParse, (void*)zName, pName);
1246     }
1247   }
1248   pParse->sNameToken = *pName;
1249   if( zName==0 ) return;
1250   if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
1251     goto begin_table_error;
1252   }
1253   if( db->init.iDb==1 ) isTemp = 1;
1254 #ifndef SQLITE_OMIT_AUTHORIZATION
1255   assert( isTemp==0 || isTemp==1 );
1256   assert( isView==0 || isView==1 );
1257   {
1258     static const u8 aCode[] = {
1259        SQLITE_CREATE_TABLE,
1260        SQLITE_CREATE_TEMP_TABLE,
1261        SQLITE_CREATE_VIEW,
1262        SQLITE_CREATE_TEMP_VIEW
1263     };
1264     char *zDb = db->aDb[iDb].zDbSName;
1265     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1266       goto begin_table_error;
1267     }
1268     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
1269                                        zName, 0, zDb) ){
1270       goto begin_table_error;
1271     }
1272   }
1273 #endif
1274 
1275   /* Make sure the new table name does not collide with an existing
1276   ** index or table name in the same database.  Issue an error message if
1277   ** it does. The exception is if the statement being parsed was passed
1278   ** to an sqlite3_declare_vtab() call. In that case only the column names
1279   ** and types will be used, so there is no need to test for namespace
1280   ** collisions.
1281   */
1282   if( !IN_SPECIAL_PARSE ){
1283     char *zDb = db->aDb[iDb].zDbSName;
1284     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1285       goto begin_table_error;
1286     }
1287     pTable = sqlite3FindTable(db, zName, zDb);
1288     if( pTable ){
1289       if( !noErr ){
1290         sqlite3ErrorMsg(pParse, "%s %T already exists",
1291                         (IsView(pTable)? "view" : "table"), pName);
1292       }else{
1293         assert( !db->init.busy || CORRUPT_DB );
1294         sqlite3CodeVerifySchema(pParse, iDb);
1295         sqlite3ForceNotReadOnly(pParse);
1296       }
1297       goto begin_table_error;
1298     }
1299     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
1300       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
1301       goto begin_table_error;
1302     }
1303   }
1304 
1305   pTable = sqlite3DbMallocZero(db, sizeof(Table));
1306   if( pTable==0 ){
1307     assert( db->mallocFailed );
1308     pParse->rc = SQLITE_NOMEM_BKPT;
1309     pParse->nErr++;
1310     goto begin_table_error;
1311   }
1312   pTable->zName = zName;
1313   pTable->iPKey = -1;
1314   pTable->pSchema = db->aDb[iDb].pSchema;
1315   pTable->nTabRef = 1;
1316 #ifdef SQLITE_DEFAULT_ROWEST
1317   pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
1318 #else
1319   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1320 #endif
1321   assert( pParse->pNewTable==0 );
1322   pParse->pNewTable = pTable;
1323 
1324   /* Begin generating the code that will insert the table record into
1325   ** the schema table.  Note in particular that we must go ahead
1326   ** and allocate the record number for the table entry now.  Before any
1327   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
1328   ** indices to be created and the table record must come before the
1329   ** indices.  Hence, the record number for the table must be allocated
1330   ** now.
1331   */
1332   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1333     int addr1;
1334     int fileFormat;
1335     int reg1, reg2, reg3;
1336     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1337     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1338     sqlite3BeginWriteOperation(pParse, 1, iDb);
1339 
1340 #ifndef SQLITE_OMIT_VIRTUALTABLE
1341     if( isVirtual ){
1342       sqlite3VdbeAddOp0(v, OP_VBegin);
1343     }
1344 #endif
1345 
1346     /* If the file format and encoding in the database have not been set,
1347     ** set them now.
1348     */
1349     reg1 = pParse->regRowid = ++pParse->nMem;
1350     reg2 = pParse->regRoot = ++pParse->nMem;
1351     reg3 = ++pParse->nMem;
1352     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1353     sqlite3VdbeUsesBtree(v, iDb);
1354     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1355     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1356                   1 : SQLITE_MAX_FILE_FORMAT;
1357     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1358     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1359     sqlite3VdbeJumpHere(v, addr1);
1360 
1361     /* This just creates a place-holder record in the sqlite_schema table.
1362     ** The record created does not contain anything yet.  It will be replaced
1363     ** by the real entry in code generated at sqlite3EndTable().
1364     **
1365     ** The rowid for the new entry is left in register pParse->regRowid.
1366     ** The root page number of the new table is left in reg pParse->regRoot.
1367     ** The rowid and root page number values are needed by the code that
1368     ** sqlite3EndTable will generate.
1369     */
1370 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1371     if( isView || isVirtual ){
1372       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1373     }else
1374 #endif
1375     {
1376       assert( !pParse->bReturning );
1377       pParse->u1.addrCrTab =
1378          sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1379     }
1380     sqlite3OpenSchemaTable(pParse, iDb);
1381     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1382     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1383     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1384     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1385     sqlite3VdbeAddOp0(v, OP_Close);
1386   }
1387 
1388   /* Normal (non-error) return. */
1389   return;
1390 
1391   /* If an error occurs, we jump here */
1392 begin_table_error:
1393   pParse->checkSchema = 1;
1394   sqlite3DbFree(db, zName);
1395   return;
1396 }
1397 
1398 /* Set properties of a table column based on the (magical)
1399 ** name of the column.
1400 */
1401 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1402 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1403   if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
1404     pCol->colFlags |= COLFLAG_HIDDEN;
1405     if( pTab ) pTab->tabFlags |= TF_HasHidden;
1406   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1407     pTab->tabFlags |= TF_OOOHidden;
1408   }
1409 }
1410 #endif
1411 
1412 /*
1413 ** Name of the special TEMP trigger used to implement RETURNING.  The
1414 ** name begins with "sqlite_" so that it is guaranteed not to collide
1415 ** with any application-generated triggers.
1416 */
1417 #define RETURNING_TRIGGER_NAME  "sqlite_returning"
1418 
1419 /*
1420 ** Clean up the data structures associated with the RETURNING clause.
1421 */
1422 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
1423   Hash *pHash;
1424   pHash = &(db->aDb[1].pSchema->trigHash);
1425   sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
1426   sqlite3ExprListDelete(db, pRet->pReturnEL);
1427   sqlite3DbFree(db, pRet);
1428 }
1429 
1430 /*
1431 ** Add the RETURNING clause to the parse currently underway.
1432 **
1433 ** This routine creates a special TEMP trigger that will fire for each row
1434 ** of the DML statement.  That TEMP trigger contains a single SELECT
1435 ** statement with a result set that is the argument of the RETURNING clause.
1436 ** The trigger has the Trigger.bReturning flag and an opcode of
1437 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1438 ** knows to handle it specially.  The TEMP trigger is automatically
1439 ** removed at the end of the parse.
1440 **
1441 ** When this routine is called, we do not yet know if the RETURNING clause
1442 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1443 ** RETURNING trigger instead.  It will then be converted into the appropriate
1444 ** type on the first call to sqlite3TriggersExist().
1445 */
1446 void sqlite3AddReturning(Parse *pParse, ExprList *pList){
1447   Returning *pRet;
1448   Hash *pHash;
1449   sqlite3 *db = pParse->db;
1450   if( pParse->pNewTrigger ){
1451     sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
1452   }else{
1453     assert( pParse->bReturning==0 );
1454   }
1455   pParse->bReturning = 1;
1456   pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
1457   if( pRet==0 ){
1458     sqlite3ExprListDelete(db, pList);
1459     return;
1460   }
1461   pParse->u1.pReturning = pRet;
1462   pRet->pParse = pParse;
1463   pRet->pReturnEL = pList;
1464   sqlite3ParserAddCleanup(pParse,
1465      (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
1466   testcase( pParse->earlyCleanup );
1467   if( db->mallocFailed ) return;
1468   pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
1469   pRet->retTrig.op = TK_RETURNING;
1470   pRet->retTrig.tr_tm = TRIGGER_AFTER;
1471   pRet->retTrig.bReturning = 1;
1472   pRet->retTrig.pSchema = db->aDb[1].pSchema;
1473   pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
1474   pRet->retTrig.step_list = &pRet->retTStep;
1475   pRet->retTStep.op = TK_RETURNING;
1476   pRet->retTStep.pTrig = &pRet->retTrig;
1477   pRet->retTStep.pExprList = pList;
1478   pHash = &(db->aDb[1].pSchema->trigHash);
1479   assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
1480   if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
1481           ==&pRet->retTrig ){
1482     sqlite3OomFault(db);
1483   }
1484 }
1485 
1486 /*
1487 ** Add a new column to the table currently being constructed.
1488 **
1489 ** The parser calls this routine once for each column declaration
1490 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1491 ** first to get things going.  Then this routine is called for each
1492 ** column.
1493 */
1494 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
1495   Table *p;
1496   int i;
1497   char *z;
1498   char *zType;
1499   Column *pCol;
1500   sqlite3 *db = pParse->db;
1501   u8 hName;
1502   Column *aNew;
1503   u8 eType = COLTYPE_CUSTOM;
1504   u8 szEst = 1;
1505   char affinity = SQLITE_AFF_BLOB;
1506 
1507   if( (p = pParse->pNewTable)==0 ) return;
1508   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1509     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1510     return;
1511   }
1512   if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
1513 
1514   /* Because keywords GENERATE ALWAYS can be converted into indentifiers
1515   ** by the parser, we can sometimes end up with a typename that ends
1516   ** with "generated always".  Check for this case and omit the surplus
1517   ** text. */
1518   if( sType.n>=16
1519    && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
1520   ){
1521     sType.n -= 6;
1522     while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1523     if( sType.n>=9
1524      && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
1525     ){
1526       sType.n -= 9;
1527       while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1528     }
1529   }
1530 
1531   /* Check for standard typenames.  For standard typenames we will
1532   ** set the Column.eType field rather than storing the typename after
1533   ** the column name, in order to save space. */
1534   if( sType.n>=3 ){
1535     sqlite3DequoteToken(&sType);
1536     for(i=0; i<SQLITE_N_STDTYPE; i++){
1537        if( sType.n==sqlite3StdTypeLen[i]
1538         && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
1539        ){
1540          sType.n = 0;
1541          eType = i+1;
1542          affinity = sqlite3StdTypeAffinity[i];
1543          if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
1544          break;
1545        }
1546     }
1547   }
1548 
1549   z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
1550   if( z==0 ) return;
1551   if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
1552   memcpy(z, sName.z, sName.n);
1553   z[sName.n] = 0;
1554   sqlite3Dequote(z);
1555   hName = sqlite3StrIHash(z);
1556   for(i=0; i<p->nCol; i++){
1557     if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
1558       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1559       sqlite3DbFree(db, z);
1560       return;
1561     }
1562   }
1563   aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
1564   if( aNew==0 ){
1565     sqlite3DbFree(db, z);
1566     return;
1567   }
1568   p->aCol = aNew;
1569   pCol = &p->aCol[p->nCol];
1570   memset(pCol, 0, sizeof(p->aCol[0]));
1571   pCol->zCnName = z;
1572   pCol->hName = hName;
1573   sqlite3ColumnPropertiesFromName(p, pCol);
1574 
1575   if( sType.n==0 ){
1576     /* If there is no type specified, columns have the default affinity
1577     ** 'BLOB' with a default size of 4 bytes. */
1578     pCol->affinity = affinity;
1579     pCol->eCType = eType;
1580     pCol->szEst = szEst;
1581 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1582     if( affinity==SQLITE_AFF_BLOB ){
1583       if( 4>=sqlite3GlobalConfig.szSorterRef ){
1584         pCol->colFlags |= COLFLAG_SORTERREF;
1585       }
1586     }
1587 #endif
1588   }else{
1589     zType = z + sqlite3Strlen30(z) + 1;
1590     memcpy(zType, sType.z, sType.n);
1591     zType[sType.n] = 0;
1592     sqlite3Dequote(zType);
1593     pCol->affinity = sqlite3AffinityType(zType, pCol);
1594     pCol->colFlags |= COLFLAG_HASTYPE;
1595   }
1596   p->nCol++;
1597   p->nNVCol++;
1598   pParse->constraintName.n = 0;
1599 }
1600 
1601 /*
1602 ** This routine is called by the parser while in the middle of
1603 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1604 ** been seen on a column.  This routine sets the notNull flag on
1605 ** the column currently under construction.
1606 */
1607 void sqlite3AddNotNull(Parse *pParse, int onError){
1608   Table *p;
1609   Column *pCol;
1610   p = pParse->pNewTable;
1611   if( p==0 || NEVER(p->nCol<1) ) return;
1612   pCol = &p->aCol[p->nCol-1];
1613   pCol->notNull = (u8)onError;
1614   p->tabFlags |= TF_HasNotNull;
1615 
1616   /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1617   ** on this column.  */
1618   if( pCol->colFlags & COLFLAG_UNIQUE ){
1619     Index *pIdx;
1620     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1621       assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1622       if( pIdx->aiColumn[0]==p->nCol-1 ){
1623         pIdx->uniqNotNull = 1;
1624       }
1625     }
1626   }
1627 }
1628 
1629 /*
1630 ** Scan the column type name zType (length nType) and return the
1631 ** associated affinity type.
1632 **
1633 ** This routine does a case-independent search of zType for the
1634 ** substrings in the following table. If one of the substrings is
1635 ** found, the corresponding affinity is returned. If zType contains
1636 ** more than one of the substrings, entries toward the top of
1637 ** the table take priority. For example, if zType is 'BLOBINT',
1638 ** SQLITE_AFF_INTEGER is returned.
1639 **
1640 ** Substring     | Affinity
1641 ** --------------------------------
1642 ** 'INT'         | SQLITE_AFF_INTEGER
1643 ** 'CHAR'        | SQLITE_AFF_TEXT
1644 ** 'CLOB'        | SQLITE_AFF_TEXT
1645 ** 'TEXT'        | SQLITE_AFF_TEXT
1646 ** 'BLOB'        | SQLITE_AFF_BLOB
1647 ** 'REAL'        | SQLITE_AFF_REAL
1648 ** 'FLOA'        | SQLITE_AFF_REAL
1649 ** 'DOUB'        | SQLITE_AFF_REAL
1650 **
1651 ** If none of the substrings in the above table are found,
1652 ** SQLITE_AFF_NUMERIC is returned.
1653 */
1654 char sqlite3AffinityType(const char *zIn, Column *pCol){
1655   u32 h = 0;
1656   char aff = SQLITE_AFF_NUMERIC;
1657   const char *zChar = 0;
1658 
1659   assert( zIn!=0 );
1660   while( zIn[0] ){
1661     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1662     zIn++;
1663     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1664       aff = SQLITE_AFF_TEXT;
1665       zChar = zIn;
1666     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1667       aff = SQLITE_AFF_TEXT;
1668     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1669       aff = SQLITE_AFF_TEXT;
1670     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1671         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1672       aff = SQLITE_AFF_BLOB;
1673       if( zIn[0]=='(' ) zChar = zIn;
1674 #ifndef SQLITE_OMIT_FLOATING_POINT
1675     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1676         && aff==SQLITE_AFF_NUMERIC ){
1677       aff = SQLITE_AFF_REAL;
1678     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1679         && aff==SQLITE_AFF_NUMERIC ){
1680       aff = SQLITE_AFF_REAL;
1681     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1682         && aff==SQLITE_AFF_NUMERIC ){
1683       aff = SQLITE_AFF_REAL;
1684 #endif
1685     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1686       aff = SQLITE_AFF_INTEGER;
1687       break;
1688     }
1689   }
1690 
1691   /* If pCol is not NULL, store an estimate of the field size.  The
1692   ** estimate is scaled so that the size of an integer is 1.  */
1693   if( pCol ){
1694     int v = 0;   /* default size is approx 4 bytes */
1695     if( aff<SQLITE_AFF_NUMERIC ){
1696       if( zChar ){
1697         while( zChar[0] ){
1698           if( sqlite3Isdigit(zChar[0]) ){
1699             /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1700             sqlite3GetInt32(zChar, &v);
1701             break;
1702           }
1703           zChar++;
1704         }
1705       }else{
1706         v = 16;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1707       }
1708     }
1709 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1710     if( v>=sqlite3GlobalConfig.szSorterRef ){
1711       pCol->colFlags |= COLFLAG_SORTERREF;
1712     }
1713 #endif
1714     v = v/4 + 1;
1715     if( v>255 ) v = 255;
1716     pCol->szEst = v;
1717   }
1718   return aff;
1719 }
1720 
1721 /*
1722 ** The expression is the default value for the most recently added column
1723 ** of the table currently under construction.
1724 **
1725 ** Default value expressions must be constant.  Raise an exception if this
1726 ** is not the case.
1727 **
1728 ** This routine is called by the parser while in the middle of
1729 ** parsing a CREATE TABLE statement.
1730 */
1731 void sqlite3AddDefaultValue(
1732   Parse *pParse,           /* Parsing context */
1733   Expr *pExpr,             /* The parsed expression of the default value */
1734   const char *zStart,      /* Start of the default value text */
1735   const char *zEnd         /* First character past end of defaut value text */
1736 ){
1737   Table *p;
1738   Column *pCol;
1739   sqlite3 *db = pParse->db;
1740   p = pParse->pNewTable;
1741   if( p!=0 ){
1742     int isInit = db->init.busy && db->init.iDb!=1;
1743     pCol = &(p->aCol[p->nCol-1]);
1744     if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
1745       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1746           pCol->zCnName);
1747 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1748     }else if( pCol->colFlags & COLFLAG_GENERATED ){
1749       testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1750       testcase( pCol->colFlags & COLFLAG_STORED );
1751       sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
1752 #endif
1753     }else{
1754       /* A copy of pExpr is used instead of the original, as pExpr contains
1755       ** tokens that point to volatile memory.
1756       */
1757       Expr x, *pDfltExpr;
1758       memset(&x, 0, sizeof(x));
1759       x.op = TK_SPAN;
1760       x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1761       x.pLeft = pExpr;
1762       x.flags = EP_Skip;
1763       pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1764       sqlite3DbFree(db, x.u.zToken);
1765       sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
1766     }
1767   }
1768   if( IN_RENAME_OBJECT ){
1769     sqlite3RenameExprUnmap(pParse, pExpr);
1770   }
1771   sqlite3ExprDelete(db, pExpr);
1772 }
1773 
1774 /*
1775 ** Backwards Compatibility Hack:
1776 **
1777 ** Historical versions of SQLite accepted strings as column names in
1778 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1779 **
1780 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1781 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1782 **
1783 ** This is goofy.  But to preserve backwards compatibility we continue to
1784 ** accept it.  This routine does the necessary conversion.  It converts
1785 ** the expression given in its argument from a TK_STRING into a TK_ID
1786 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1787 ** If the expression is anything other than TK_STRING, the expression is
1788 ** unchanged.
1789 */
1790 static void sqlite3StringToId(Expr *p){
1791   if( p->op==TK_STRING ){
1792     p->op = TK_ID;
1793   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1794     p->pLeft->op = TK_ID;
1795   }
1796 }
1797 
1798 /*
1799 ** Tag the given column as being part of the PRIMARY KEY
1800 */
1801 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
1802   pCol->colFlags |= COLFLAG_PRIMKEY;
1803 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1804   if( pCol->colFlags & COLFLAG_GENERATED ){
1805     testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1806     testcase( pCol->colFlags & COLFLAG_STORED );
1807     sqlite3ErrorMsg(pParse,
1808       "generated columns cannot be part of the PRIMARY KEY");
1809   }
1810 #endif
1811 }
1812 
1813 /*
1814 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1815 ** of columns that form the primary key.  If pList is NULL, then the
1816 ** most recently added column of the table is the primary key.
1817 **
1818 ** A table can have at most one primary key.  If the table already has
1819 ** a primary key (and this is the second primary key) then create an
1820 ** error.
1821 **
1822 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1823 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1824 ** field of the table under construction to be the index of the
1825 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1826 ** no INTEGER PRIMARY KEY.
1827 **
1828 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1829 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1830 */
1831 void sqlite3AddPrimaryKey(
1832   Parse *pParse,    /* Parsing context */
1833   ExprList *pList,  /* List of field names to be indexed */
1834   int onError,      /* What to do with a uniqueness conflict */
1835   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1836   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1837 ){
1838   Table *pTab = pParse->pNewTable;
1839   Column *pCol = 0;
1840   int iCol = -1, i;
1841   int nTerm;
1842   if( pTab==0 ) goto primary_key_exit;
1843   if( pTab->tabFlags & TF_HasPrimaryKey ){
1844     sqlite3ErrorMsg(pParse,
1845       "table \"%s\" has more than one primary key", pTab->zName);
1846     goto primary_key_exit;
1847   }
1848   pTab->tabFlags |= TF_HasPrimaryKey;
1849   if( pList==0 ){
1850     iCol = pTab->nCol - 1;
1851     pCol = &pTab->aCol[iCol];
1852     makeColumnPartOfPrimaryKey(pParse, pCol);
1853     nTerm = 1;
1854   }else{
1855     nTerm = pList->nExpr;
1856     for(i=0; i<nTerm; i++){
1857       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1858       assert( pCExpr!=0 );
1859       sqlite3StringToId(pCExpr);
1860       if( pCExpr->op==TK_ID ){
1861         const char *zCName;
1862         assert( !ExprHasProperty(pCExpr, EP_IntValue) );
1863         zCName = pCExpr->u.zToken;
1864         for(iCol=0; iCol<pTab->nCol; iCol++){
1865           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
1866             pCol = &pTab->aCol[iCol];
1867             makeColumnPartOfPrimaryKey(pParse, pCol);
1868             break;
1869           }
1870         }
1871       }
1872     }
1873   }
1874   if( nTerm==1
1875    && pCol
1876    && pCol->eCType==COLTYPE_INTEGER
1877    && sortOrder!=SQLITE_SO_DESC
1878   ){
1879     if( IN_RENAME_OBJECT && pList ){
1880       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
1881       sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
1882     }
1883     pTab->iPKey = iCol;
1884     pTab->keyConf = (u8)onError;
1885     assert( autoInc==0 || autoInc==1 );
1886     pTab->tabFlags |= autoInc*TF_Autoincrement;
1887     if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags;
1888     (void)sqlite3HasExplicitNulls(pParse, pList);
1889   }else if( autoInc ){
1890 #ifndef SQLITE_OMIT_AUTOINCREMENT
1891     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1892        "INTEGER PRIMARY KEY");
1893 #endif
1894   }else{
1895     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1896                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1897     pList = 0;
1898   }
1899 
1900 primary_key_exit:
1901   sqlite3ExprListDelete(pParse->db, pList);
1902   return;
1903 }
1904 
1905 /*
1906 ** Add a new CHECK constraint to the table currently under construction.
1907 */
1908 void sqlite3AddCheckConstraint(
1909   Parse *pParse,      /* Parsing context */
1910   Expr *pCheckExpr,   /* The check expression */
1911   const char *zStart, /* Opening "(" */
1912   const char *zEnd    /* Closing ")" */
1913 ){
1914 #ifndef SQLITE_OMIT_CHECK
1915   Table *pTab = pParse->pNewTable;
1916   sqlite3 *db = pParse->db;
1917   if( pTab && !IN_DECLARE_VTAB
1918    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1919   ){
1920     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1921     if( pParse->constraintName.n ){
1922       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1923     }else{
1924       Token t;
1925       for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
1926       while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
1927       t.z = zStart;
1928       t.n = (int)(zEnd - t.z);
1929       sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
1930     }
1931   }else
1932 #endif
1933   {
1934     sqlite3ExprDelete(pParse->db, pCheckExpr);
1935   }
1936 }
1937 
1938 /*
1939 ** Set the collation function of the most recently parsed table column
1940 ** to the CollSeq given.
1941 */
1942 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1943   Table *p;
1944   int i;
1945   char *zColl;              /* Dequoted name of collation sequence */
1946   sqlite3 *db;
1947 
1948   if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
1949   i = p->nCol-1;
1950   db = pParse->db;
1951   zColl = sqlite3NameFromToken(db, pToken);
1952   if( !zColl ) return;
1953 
1954   if( sqlite3LocateCollSeq(pParse, zColl) ){
1955     Index *pIdx;
1956     sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
1957 
1958     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1959     ** then an index may have been created on this column before the
1960     ** collation type was added. Correct this if it is the case.
1961     */
1962     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1963       assert( pIdx->nKeyCol==1 );
1964       if( pIdx->aiColumn[0]==i ){
1965         pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
1966       }
1967     }
1968   }
1969   sqlite3DbFree(db, zColl);
1970 }
1971 
1972 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1973 ** column.
1974 */
1975 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
1976 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1977   u8 eType = COLFLAG_VIRTUAL;
1978   Table *pTab = pParse->pNewTable;
1979   Column *pCol;
1980   if( pTab==0 ){
1981     /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1982     goto generated_done;
1983   }
1984   pCol = &(pTab->aCol[pTab->nCol-1]);
1985   if( IN_DECLARE_VTAB ){
1986     sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
1987     goto generated_done;
1988   }
1989   if( pCol->iDflt>0 ) goto generated_error;
1990   if( pType ){
1991     if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
1992       /* no-op */
1993     }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
1994       eType = COLFLAG_STORED;
1995     }else{
1996       goto generated_error;
1997     }
1998   }
1999   if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
2000   pCol->colFlags |= eType;
2001   assert( TF_HasVirtual==COLFLAG_VIRTUAL );
2002   assert( TF_HasStored==COLFLAG_STORED );
2003   pTab->tabFlags |= eType;
2004   if( pCol->colFlags & COLFLAG_PRIMKEY ){
2005     makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
2006   }
2007   sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
2008   pExpr = 0;
2009   goto generated_done;
2010 
2011 generated_error:
2012   sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
2013                   pCol->zCnName);
2014 generated_done:
2015   sqlite3ExprDelete(pParse->db, pExpr);
2016 #else
2017   /* Throw and error for the GENERATED ALWAYS AS clause if the
2018   ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2019   sqlite3ErrorMsg(pParse, "generated columns not supported");
2020   sqlite3ExprDelete(pParse->db, pExpr);
2021 #endif
2022 }
2023 
2024 /*
2025 ** Generate code that will increment the schema cookie.
2026 **
2027 ** The schema cookie is used to determine when the schema for the
2028 ** database changes.  After each schema change, the cookie value
2029 ** changes.  When a process first reads the schema it records the
2030 ** cookie.  Thereafter, whenever it goes to access the database,
2031 ** it checks the cookie to make sure the schema has not changed
2032 ** since it was last read.
2033 **
2034 ** This plan is not completely bullet-proof.  It is possible for
2035 ** the schema to change multiple times and for the cookie to be
2036 ** set back to prior value.  But schema changes are infrequent
2037 ** and the probability of hitting the same cookie value is only
2038 ** 1 chance in 2^32.  So we're safe enough.
2039 **
2040 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2041 ** the schema-version whenever the schema changes.
2042 */
2043 void sqlite3ChangeCookie(Parse *pParse, int iDb){
2044   sqlite3 *db = pParse->db;
2045   Vdbe *v = pParse->pVdbe;
2046   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2047   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
2048                    (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
2049 }
2050 
2051 /*
2052 ** Measure the number of characters needed to output the given
2053 ** identifier.  The number returned includes any quotes used
2054 ** but does not include the null terminator.
2055 **
2056 ** The estimate is conservative.  It might be larger that what is
2057 ** really needed.
2058 */
2059 static int identLength(const char *z){
2060   int n;
2061   for(n=0; *z; n++, z++){
2062     if( *z=='"' ){ n++; }
2063   }
2064   return n + 2;
2065 }
2066 
2067 /*
2068 ** The first parameter is a pointer to an output buffer. The second
2069 ** parameter is a pointer to an integer that contains the offset at
2070 ** which to write into the output buffer. This function copies the
2071 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2072 ** to the specified offset in the buffer and updates *pIdx to refer
2073 ** to the first byte after the last byte written before returning.
2074 **
2075 ** If the string zSignedIdent consists entirely of alpha-numeric
2076 ** characters, does not begin with a digit and is not an SQL keyword,
2077 ** then it is copied to the output buffer exactly as it is. Otherwise,
2078 ** it is quoted using double-quotes.
2079 */
2080 static void identPut(char *z, int *pIdx, char *zSignedIdent){
2081   unsigned char *zIdent = (unsigned char*)zSignedIdent;
2082   int i, j, needQuote;
2083   i = *pIdx;
2084 
2085   for(j=0; zIdent[j]; j++){
2086     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
2087   }
2088   needQuote = sqlite3Isdigit(zIdent[0])
2089             || sqlite3KeywordCode(zIdent, j)!=TK_ID
2090             || zIdent[j]!=0
2091             || j==0;
2092 
2093   if( needQuote ) z[i++] = '"';
2094   for(j=0; zIdent[j]; j++){
2095     z[i++] = zIdent[j];
2096     if( zIdent[j]=='"' ) z[i++] = '"';
2097   }
2098   if( needQuote ) z[i++] = '"';
2099   z[i] = 0;
2100   *pIdx = i;
2101 }
2102 
2103 /*
2104 ** Generate a CREATE TABLE statement appropriate for the given
2105 ** table.  Memory to hold the text of the statement is obtained
2106 ** from sqliteMalloc() and must be freed by the calling function.
2107 */
2108 static char *createTableStmt(sqlite3 *db, Table *p){
2109   int i, k, n;
2110   char *zStmt;
2111   char *zSep, *zSep2, *zEnd;
2112   Column *pCol;
2113   n = 0;
2114   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
2115     n += identLength(pCol->zCnName) + 5;
2116   }
2117   n += identLength(p->zName);
2118   if( n<50 ){
2119     zSep = "";
2120     zSep2 = ",";
2121     zEnd = ")";
2122   }else{
2123     zSep = "\n  ";
2124     zSep2 = ",\n  ";
2125     zEnd = "\n)";
2126   }
2127   n += 35 + 6*p->nCol;
2128   zStmt = sqlite3DbMallocRaw(0, n);
2129   if( zStmt==0 ){
2130     sqlite3OomFault(db);
2131     return 0;
2132   }
2133   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
2134   k = sqlite3Strlen30(zStmt);
2135   identPut(zStmt, &k, p->zName);
2136   zStmt[k++] = '(';
2137   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
2138     static const char * const azType[] = {
2139         /* SQLITE_AFF_BLOB    */ "",
2140         /* SQLITE_AFF_TEXT    */ " TEXT",
2141         /* SQLITE_AFF_NUMERIC */ " NUM",
2142         /* SQLITE_AFF_INTEGER */ " INT",
2143         /* SQLITE_AFF_REAL    */ " REAL"
2144     };
2145     int len;
2146     const char *zType;
2147 
2148     sqlite3_snprintf(n-k, &zStmt[k], zSep);
2149     k += sqlite3Strlen30(&zStmt[k]);
2150     zSep = zSep2;
2151     identPut(zStmt, &k, pCol->zCnName);
2152     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
2153     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
2154     testcase( pCol->affinity==SQLITE_AFF_BLOB );
2155     testcase( pCol->affinity==SQLITE_AFF_TEXT );
2156     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
2157     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
2158     testcase( pCol->affinity==SQLITE_AFF_REAL );
2159 
2160     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
2161     len = sqlite3Strlen30(zType);
2162     assert( pCol->affinity==SQLITE_AFF_BLOB
2163             || pCol->affinity==sqlite3AffinityType(zType, 0) );
2164     memcpy(&zStmt[k], zType, len);
2165     k += len;
2166     assert( k<=n );
2167   }
2168   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
2169   return zStmt;
2170 }
2171 
2172 /*
2173 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
2174 ** on success and SQLITE_NOMEM on an OOM error.
2175 */
2176 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
2177   char *zExtra;
2178   int nByte;
2179   if( pIdx->nColumn>=N ) return SQLITE_OK;
2180   assert( pIdx->isResized==0 );
2181   nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
2182   zExtra = sqlite3DbMallocZero(db, nByte);
2183   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
2184   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
2185   pIdx->azColl = (const char**)zExtra;
2186   zExtra += sizeof(char*)*N;
2187   memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
2188   pIdx->aiRowLogEst = (LogEst*)zExtra;
2189   zExtra += sizeof(LogEst)*N;
2190   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
2191   pIdx->aiColumn = (i16*)zExtra;
2192   zExtra += sizeof(i16)*N;
2193   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
2194   pIdx->aSortOrder = (u8*)zExtra;
2195   pIdx->nColumn = N;
2196   pIdx->isResized = 1;
2197   return SQLITE_OK;
2198 }
2199 
2200 /*
2201 ** Estimate the total row width for a table.
2202 */
2203 static void estimateTableWidth(Table *pTab){
2204   unsigned wTable = 0;
2205   const Column *pTabCol;
2206   int i;
2207   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
2208     wTable += pTabCol->szEst;
2209   }
2210   if( pTab->iPKey<0 ) wTable++;
2211   pTab->szTabRow = sqlite3LogEst(wTable*4);
2212 }
2213 
2214 /*
2215 ** Estimate the average size of a row for an index.
2216 */
2217 static void estimateIndexWidth(Index *pIdx){
2218   unsigned wIndex = 0;
2219   int i;
2220   const Column *aCol = pIdx->pTable->aCol;
2221   for(i=0; i<pIdx->nColumn; i++){
2222     i16 x = pIdx->aiColumn[i];
2223     assert( x<pIdx->pTable->nCol );
2224     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
2225   }
2226   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
2227 }
2228 
2229 /* Return true if column number x is any of the first nCol entries of aiCol[].
2230 ** This is used to determine if the column number x appears in any of the
2231 ** first nCol entries of an index.
2232 */
2233 static int hasColumn(const i16 *aiCol, int nCol, int x){
2234   while( nCol-- > 0 ){
2235     if( x==*(aiCol++) ){
2236       return 1;
2237     }
2238   }
2239   return 0;
2240 }
2241 
2242 /*
2243 ** Return true if any of the first nKey entries of index pIdx exactly
2244 ** match the iCol-th entry of pPk.  pPk is always a WITHOUT ROWID
2245 ** PRIMARY KEY index.  pIdx is an index on the same table.  pIdx may
2246 ** or may not be the same index as pPk.
2247 **
2248 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2249 ** not a rowid or expression.
2250 **
2251 ** This routine differs from hasColumn() in that both the column and the
2252 ** collating sequence must match for this routine, but for hasColumn() only
2253 ** the column name must match.
2254 */
2255 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
2256   int i, j;
2257   assert( nKey<=pIdx->nColumn );
2258   assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
2259   assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
2260   assert( pPk->pTable->tabFlags & TF_WithoutRowid );
2261   assert( pPk->pTable==pIdx->pTable );
2262   testcase( pPk==pIdx );
2263   j = pPk->aiColumn[iCol];
2264   assert( j!=XN_ROWID && j!=XN_EXPR );
2265   for(i=0; i<nKey; i++){
2266     assert( pIdx->aiColumn[i]>=0 || j>=0 );
2267     if( pIdx->aiColumn[i]==j
2268      && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
2269     ){
2270       return 1;
2271     }
2272   }
2273   return 0;
2274 }
2275 
2276 /* Recompute the colNotIdxed field of the Index.
2277 **
2278 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2279 ** columns that are within the first 63 columns of the table.  The
2280 ** high-order bit of colNotIdxed is always 1.  All unindexed columns
2281 ** of the table have a 1.
2282 **
2283 ** 2019-10-24:  For the purpose of this computation, virtual columns are
2284 ** not considered to be covered by the index, even if they are in the
2285 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2286 ** able to find all instances of a reference to the indexed table column
2287 ** and convert them into references to the index.  Hence we always want
2288 ** the actual table at hand in order to recompute the virtual column, if
2289 ** necessary.
2290 **
2291 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2292 ** to determine if the index is covering index.
2293 */
2294 static void recomputeColumnsNotIndexed(Index *pIdx){
2295   Bitmask m = 0;
2296   int j;
2297   Table *pTab = pIdx->pTable;
2298   for(j=pIdx->nColumn-1; j>=0; j--){
2299     int x = pIdx->aiColumn[j];
2300     if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
2301       testcase( x==BMS-1 );
2302       testcase( x==BMS-2 );
2303       if( x<BMS-1 ) m |= MASKBIT(x);
2304     }
2305   }
2306   pIdx->colNotIdxed = ~m;
2307   assert( (pIdx->colNotIdxed>>63)==1 );
2308 }
2309 
2310 /*
2311 ** This routine runs at the end of parsing a CREATE TABLE statement that
2312 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
2313 ** internal schema data structures and the generated VDBE code so that they
2314 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2315 ** Changes include:
2316 **
2317 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2318 **     (2)  Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2319 **          into BTREE_BLOBKEY.
2320 **     (3)  Bypass the creation of the sqlite_schema table entry
2321 **          for the PRIMARY KEY as the primary key index is now
2322 **          identified by the sqlite_schema table entry of the table itself.
2323 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
2324 **          schema to the rootpage from the main table.
2325 **     (5)  Add all table columns to the PRIMARY KEY Index object
2326 **          so that the PRIMARY KEY is a covering index.  The surplus
2327 **          columns are part of KeyInfo.nAllField and are not used for
2328 **          sorting or lookup or uniqueness checks.
2329 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
2330 **          indices with the PRIMARY KEY columns.
2331 **
2332 ** For virtual tables, only (1) is performed.
2333 */
2334 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
2335   Index *pIdx;
2336   Index *pPk;
2337   int nPk;
2338   int nExtra;
2339   int i, j;
2340   sqlite3 *db = pParse->db;
2341   Vdbe *v = pParse->pVdbe;
2342 
2343   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2344   */
2345   if( !db->init.imposterTable ){
2346     for(i=0; i<pTab->nCol; i++){
2347       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
2348        && (pTab->aCol[i].notNull==OE_None)
2349       ){
2350         pTab->aCol[i].notNull = OE_Abort;
2351       }
2352     }
2353     pTab->tabFlags |= TF_HasNotNull;
2354   }
2355 
2356   /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2357   ** into BTREE_BLOBKEY.
2358   */
2359   assert( !pParse->bReturning );
2360   if( pParse->u1.addrCrTab ){
2361     assert( v );
2362     sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
2363   }
2364 
2365   /* Locate the PRIMARY KEY index.  Or, if this table was originally
2366   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2367   */
2368   if( pTab->iPKey>=0 ){
2369     ExprList *pList;
2370     Token ipkToken;
2371     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
2372     pList = sqlite3ExprListAppend(pParse, 0,
2373                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
2374     if( pList==0 ){
2375       pTab->tabFlags &= ~TF_WithoutRowid;
2376       return;
2377     }
2378     if( IN_RENAME_OBJECT ){
2379       sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
2380     }
2381     pList->a[0].fg.sortFlags = pParse->iPkSortOrder;
2382     assert( pParse->pNewTable==pTab );
2383     pTab->iPKey = -1;
2384     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
2385                        SQLITE_IDXTYPE_PRIMARYKEY);
2386     if( pParse->nErr ){
2387       pTab->tabFlags &= ~TF_WithoutRowid;
2388       return;
2389     }
2390     assert( db->mallocFailed==0 );
2391     pPk = sqlite3PrimaryKeyIndex(pTab);
2392     assert( pPk->nKeyCol==1 );
2393   }else{
2394     pPk = sqlite3PrimaryKeyIndex(pTab);
2395     assert( pPk!=0 );
2396 
2397     /*
2398     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
2399     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
2400     ** code assumes the PRIMARY KEY contains no repeated columns.
2401     */
2402     for(i=j=1; i<pPk->nKeyCol; i++){
2403       if( isDupColumn(pPk, j, pPk, i) ){
2404         pPk->nColumn--;
2405       }else{
2406         testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
2407         pPk->azColl[j] = pPk->azColl[i];
2408         pPk->aSortOrder[j] = pPk->aSortOrder[i];
2409         pPk->aiColumn[j++] = pPk->aiColumn[i];
2410       }
2411     }
2412     pPk->nKeyCol = j;
2413   }
2414   assert( pPk!=0 );
2415   pPk->isCovering = 1;
2416   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
2417   nPk = pPk->nColumn = pPk->nKeyCol;
2418 
2419   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2420   ** table entry. This is only required if currently generating VDBE
2421   ** code for a CREATE TABLE (not when parsing one as part of reading
2422   ** a database schema).  */
2423   if( v && pPk->tnum>0 ){
2424     assert( db->init.busy==0 );
2425     sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
2426   }
2427 
2428   /* The root page of the PRIMARY KEY is the table root page */
2429   pPk->tnum = pTab->tnum;
2430 
2431   /* Update the in-memory representation of all UNIQUE indices by converting
2432   ** the final rowid column into one or more columns of the PRIMARY KEY.
2433   */
2434   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2435     int n;
2436     if( IsPrimaryKeyIndex(pIdx) ) continue;
2437     for(i=n=0; i<nPk; i++){
2438       if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2439         testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2440         n++;
2441       }
2442     }
2443     if( n==0 ){
2444       /* This index is a superset of the primary key */
2445       pIdx->nColumn = pIdx->nKeyCol;
2446       continue;
2447     }
2448     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
2449     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
2450       if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2451         testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2452         pIdx->aiColumn[j] = pPk->aiColumn[i];
2453         pIdx->azColl[j] = pPk->azColl[i];
2454         if( pPk->aSortOrder[i] ){
2455           /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2456           pIdx->bAscKeyBug = 1;
2457         }
2458         j++;
2459       }
2460     }
2461     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
2462     assert( pIdx->nColumn>=j );
2463   }
2464 
2465   /* Add all table columns to the PRIMARY KEY index
2466   */
2467   nExtra = 0;
2468   for(i=0; i<pTab->nCol; i++){
2469     if( !hasColumn(pPk->aiColumn, nPk, i)
2470      && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
2471   }
2472   if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
2473   for(i=0, j=nPk; i<pTab->nCol; i++){
2474     if( !hasColumn(pPk->aiColumn, j, i)
2475      && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
2476     ){
2477       assert( j<pPk->nColumn );
2478       pPk->aiColumn[j] = i;
2479       pPk->azColl[j] = sqlite3StrBINARY;
2480       j++;
2481     }
2482   }
2483   assert( pPk->nColumn==j );
2484   assert( pTab->nNVCol<=j );
2485   recomputeColumnsNotIndexed(pPk);
2486 }
2487 
2488 
2489 #ifndef SQLITE_OMIT_VIRTUALTABLE
2490 /*
2491 ** Return true if pTab is a virtual table and zName is a shadow table name
2492 ** for that virtual table.
2493 */
2494 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
2495   int nName;                    /* Length of zName */
2496   Module *pMod;                 /* Module for the virtual table */
2497 
2498   if( !IsVirtual(pTab) ) return 0;
2499   nName = sqlite3Strlen30(pTab->zName);
2500   if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
2501   if( zName[nName]!='_' ) return 0;
2502   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2503   if( pMod==0 ) return 0;
2504   if( pMod->pModule->iVersion<3 ) return 0;
2505   if( pMod->pModule->xShadowName==0 ) return 0;
2506   return pMod->pModule->xShadowName(zName+nName+1);
2507 }
2508 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2509 
2510 #ifndef SQLITE_OMIT_VIRTUALTABLE
2511 /*
2512 ** Table pTab is a virtual table.  If it the virtual table implementation
2513 ** exists and has an xShadowName method, then loop over all other ordinary
2514 ** tables within the same schema looking for shadow tables of pTab, and mark
2515 ** any shadow tables seen using the TF_Shadow flag.
2516 */
2517 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
2518   int nName;                    /* Length of pTab->zName */
2519   Module *pMod;                 /* Module for the virtual table */
2520   HashElem *k;                  /* For looping through the symbol table */
2521 
2522   assert( IsVirtual(pTab) );
2523   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2524   if( pMod==0 ) return;
2525   if( NEVER(pMod->pModule==0) ) return;
2526   if( pMod->pModule->iVersion<3 ) return;
2527   if( pMod->pModule->xShadowName==0 ) return;
2528   assert( pTab->zName!=0 );
2529   nName = sqlite3Strlen30(pTab->zName);
2530   for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
2531     Table *pOther = sqliteHashData(k);
2532     assert( pOther->zName!=0 );
2533     if( !IsOrdinaryTable(pOther) ) continue;
2534     if( pOther->tabFlags & TF_Shadow ) continue;
2535     if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
2536      && pOther->zName[nName]=='_'
2537      && pMod->pModule->xShadowName(pOther->zName+nName+1)
2538     ){
2539       pOther->tabFlags |= TF_Shadow;
2540     }
2541   }
2542 }
2543 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2544 
2545 #ifndef SQLITE_OMIT_VIRTUALTABLE
2546 /*
2547 ** Return true if zName is a shadow table name in the current database
2548 ** connection.
2549 **
2550 ** zName is temporarily modified while this routine is running, but is
2551 ** restored to its original value prior to this routine returning.
2552 */
2553 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
2554   char *zTail;                  /* Pointer to the last "_" in zName */
2555   Table *pTab;                  /* Table that zName is a shadow of */
2556   zTail = strrchr(zName, '_');
2557   if( zTail==0 ) return 0;
2558   *zTail = 0;
2559   pTab = sqlite3FindTable(db, zName, 0);
2560   *zTail = '_';
2561   if( pTab==0 ) return 0;
2562   if( !IsVirtual(pTab) ) return 0;
2563   return sqlite3IsShadowTableOf(db, pTab, zName);
2564 }
2565 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2566 
2567 
2568 #ifdef SQLITE_DEBUG
2569 /*
2570 ** Mark all nodes of an expression as EP_Immutable, indicating that
2571 ** they should not be changed.  Expressions attached to a table or
2572 ** index definition are tagged this way to help ensure that we do
2573 ** not pass them into code generator routines by mistake.
2574 */
2575 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
2576   ExprSetVVAProperty(pExpr, EP_Immutable);
2577   return WRC_Continue;
2578 }
2579 static void markExprListImmutable(ExprList *pList){
2580   if( pList ){
2581     Walker w;
2582     memset(&w, 0, sizeof(w));
2583     w.xExprCallback = markImmutableExprStep;
2584     w.xSelectCallback = sqlite3SelectWalkNoop;
2585     w.xSelectCallback2 = 0;
2586     sqlite3WalkExprList(&w, pList);
2587   }
2588 }
2589 #else
2590 #define markExprListImmutable(X)  /* no-op */
2591 #endif /* SQLITE_DEBUG */
2592 
2593 
2594 /*
2595 ** This routine is called to report the final ")" that terminates
2596 ** a CREATE TABLE statement.
2597 **
2598 ** The table structure that other action routines have been building
2599 ** is added to the internal hash tables, assuming no errors have
2600 ** occurred.
2601 **
2602 ** An entry for the table is made in the schema table on disk, unless
2603 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
2604 ** it means we are reading the sqlite_schema table because we just
2605 ** connected to the database or because the sqlite_schema table has
2606 ** recently changed, so the entry for this table already exists in
2607 ** the sqlite_schema table.  We do not want to create it again.
2608 **
2609 ** If the pSelect argument is not NULL, it means that this routine
2610 ** was called to create a table generated from a
2611 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
2612 ** the new table will match the result set of the SELECT.
2613 */
2614 void sqlite3EndTable(
2615   Parse *pParse,          /* Parse context */
2616   Token *pCons,           /* The ',' token after the last column defn. */
2617   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
2618   u32 tabOpts,            /* Extra table options. Usually 0. */
2619   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
2620 ){
2621   Table *p;                 /* The new table */
2622   sqlite3 *db = pParse->db; /* The database connection */
2623   int iDb;                  /* Database in which the table lives */
2624   Index *pIdx;              /* An implied index of the table */
2625 
2626   if( pEnd==0 && pSelect==0 ){
2627     return;
2628   }
2629   p = pParse->pNewTable;
2630   if( p==0 ) return;
2631 
2632   if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
2633     p->tabFlags |= TF_Shadow;
2634   }
2635 
2636   /* If the db->init.busy is 1 it means we are reading the SQL off the
2637   ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2638   ** So do not write to the disk again.  Extract the root page number
2639   ** for the table from the db->init.newTnum field.  (The page number
2640   ** should have been put there by the sqliteOpenCb routine.)
2641   **
2642   ** If the root page number is 1, that means this is the sqlite_schema
2643   ** table itself.  So mark it read-only.
2644   */
2645   if( db->init.busy ){
2646     if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
2647       sqlite3ErrorMsg(pParse, "");
2648       return;
2649     }
2650     p->tnum = db->init.newTnum;
2651     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
2652   }
2653 
2654   /* Special processing for tables that include the STRICT keyword:
2655   **
2656   **   *  Do not allow custom column datatypes.  Every column must have
2657   **      a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2658   **
2659   **   *  If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2660   **      then all columns of the PRIMARY KEY must have a NOT NULL
2661   **      constraint.
2662   */
2663   if( tabOpts & TF_Strict ){
2664     int ii;
2665     p->tabFlags |= TF_Strict;
2666     for(ii=0; ii<p->nCol; ii++){
2667       Column *pCol = &p->aCol[ii];
2668       if( pCol->eCType==COLTYPE_CUSTOM ){
2669         if( pCol->colFlags & COLFLAG_HASTYPE ){
2670           sqlite3ErrorMsg(pParse,
2671             "unknown datatype for %s.%s: \"%s\"",
2672             p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
2673           );
2674         }else{
2675           sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
2676                           p->zName, pCol->zCnName);
2677         }
2678         return;
2679       }else if( pCol->eCType==COLTYPE_ANY ){
2680         pCol->affinity = SQLITE_AFF_BLOB;
2681       }
2682       if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
2683        && p->iPKey!=ii
2684        && pCol->notNull == OE_None
2685       ){
2686         pCol->notNull = OE_Abort;
2687         p->tabFlags |= TF_HasNotNull;
2688       }
2689     }
2690   }
2691 
2692   assert( (p->tabFlags & TF_HasPrimaryKey)==0
2693        || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
2694   assert( (p->tabFlags & TF_HasPrimaryKey)!=0
2695        || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
2696 
2697   /* Special processing for WITHOUT ROWID Tables */
2698   if( tabOpts & TF_WithoutRowid ){
2699     if( (p->tabFlags & TF_Autoincrement) ){
2700       sqlite3ErrorMsg(pParse,
2701           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2702       return;
2703     }
2704     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2705       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2706       return;
2707     }
2708     p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2709     convertToWithoutRowidTable(pParse, p);
2710   }
2711   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2712 
2713 #ifndef SQLITE_OMIT_CHECK
2714   /* Resolve names in all CHECK constraint expressions.
2715   */
2716   if( p->pCheck ){
2717     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2718     if( pParse->nErr ){
2719       /* If errors are seen, delete the CHECK constraints now, else they might
2720       ** actually be used if PRAGMA writable_schema=ON is set. */
2721       sqlite3ExprListDelete(db, p->pCheck);
2722       p->pCheck = 0;
2723     }else{
2724       markExprListImmutable(p->pCheck);
2725     }
2726   }
2727 #endif /* !defined(SQLITE_OMIT_CHECK) */
2728 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2729   if( p->tabFlags & TF_HasGenerated ){
2730     int ii, nNG = 0;
2731     testcase( p->tabFlags & TF_HasVirtual );
2732     testcase( p->tabFlags & TF_HasStored );
2733     for(ii=0; ii<p->nCol; ii++){
2734       u32 colFlags = p->aCol[ii].colFlags;
2735       if( (colFlags & COLFLAG_GENERATED)!=0 ){
2736         Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
2737         testcase( colFlags & COLFLAG_VIRTUAL );
2738         testcase( colFlags & COLFLAG_STORED );
2739         if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
2740           /* If there are errors in resolving the expression, change the
2741           ** expression to a NULL.  This prevents code generators that operate
2742           ** on the expression from inserting extra parts into the expression
2743           ** tree that have been allocated from lookaside memory, which is
2744           ** illegal in a schema and will lead to errors or heap corruption
2745           ** when the database connection closes. */
2746           sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
2747                sqlite3ExprAlloc(db, TK_NULL, 0, 0));
2748         }
2749       }else{
2750         nNG++;
2751       }
2752     }
2753     if( nNG==0 ){
2754       sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
2755       return;
2756     }
2757   }
2758 #endif
2759 
2760   /* Estimate the average row size for the table and for all implied indices */
2761   estimateTableWidth(p);
2762   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2763     estimateIndexWidth(pIdx);
2764   }
2765 
2766   /* If not initializing, then create a record for the new table
2767   ** in the schema table of the database.
2768   **
2769   ** If this is a TEMPORARY table, write the entry into the auxiliary
2770   ** file instead of into the main database file.
2771   */
2772   if( !db->init.busy ){
2773     int n;
2774     Vdbe *v;
2775     char *zType;    /* "view" or "table" */
2776     char *zType2;   /* "VIEW" or "TABLE" */
2777     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
2778 
2779     v = sqlite3GetVdbe(pParse);
2780     if( NEVER(v==0) ) return;
2781 
2782     sqlite3VdbeAddOp1(v, OP_Close, 0);
2783 
2784     /*
2785     ** Initialize zType for the new view or table.
2786     */
2787     if( IsOrdinaryTable(p) ){
2788       /* A regular table */
2789       zType = "table";
2790       zType2 = "TABLE";
2791 #ifndef SQLITE_OMIT_VIEW
2792     }else{
2793       /* A view */
2794       zType = "view";
2795       zType2 = "VIEW";
2796 #endif
2797     }
2798 
2799     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2800     ** statement to populate the new table. The root-page number for the
2801     ** new table is in register pParse->regRoot.
2802     **
2803     ** Once the SELECT has been coded by sqlite3Select(), it is in a
2804     ** suitable state to query for the column names and types to be used
2805     ** by the new table.
2806     **
2807     ** A shared-cache write-lock is not required to write to the new table,
2808     ** as a schema-lock must have already been obtained to create it. Since
2809     ** a schema-lock excludes all other database users, the write-lock would
2810     ** be redundant.
2811     */
2812     if( pSelect ){
2813       SelectDest dest;    /* Where the SELECT should store results */
2814       int regYield;       /* Register holding co-routine entry-point */
2815       int addrTop;        /* Top of the co-routine */
2816       int regRec;         /* A record to be insert into the new table */
2817       int regRowid;       /* Rowid of the next row to insert */
2818       int addrInsLoop;    /* Top of the loop for inserting rows */
2819       Table *pSelTab;     /* A table that describes the SELECT results */
2820 
2821       if( IN_SPECIAL_PARSE ){
2822         pParse->rc = SQLITE_ERROR;
2823         pParse->nErr++;
2824         return;
2825       }
2826       regYield = ++pParse->nMem;
2827       regRec = ++pParse->nMem;
2828       regRowid = ++pParse->nMem;
2829       assert(pParse->nTab==1);
2830       sqlite3MayAbort(pParse);
2831       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2832       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2833       pParse->nTab = 2;
2834       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2835       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2836       if( pParse->nErr ) return;
2837       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
2838       if( pSelTab==0 ) return;
2839       assert( p->aCol==0 );
2840       p->nCol = p->nNVCol = pSelTab->nCol;
2841       p->aCol = pSelTab->aCol;
2842       pSelTab->nCol = 0;
2843       pSelTab->aCol = 0;
2844       sqlite3DeleteTable(db, pSelTab);
2845       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2846       sqlite3Select(pParse, pSelect, &dest);
2847       if( pParse->nErr ) return;
2848       sqlite3VdbeEndCoroutine(v, regYield);
2849       sqlite3VdbeJumpHere(v, addrTop - 1);
2850       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2851       VdbeCoverage(v);
2852       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2853       sqlite3TableAffinity(v, p, 0);
2854       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2855       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2856       sqlite3VdbeGoto(v, addrInsLoop);
2857       sqlite3VdbeJumpHere(v, addrInsLoop);
2858       sqlite3VdbeAddOp1(v, OP_Close, 1);
2859     }
2860 
2861     /* Compute the complete text of the CREATE statement */
2862     if( pSelect ){
2863       zStmt = createTableStmt(db, p);
2864     }else{
2865       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2866       n = (int)(pEnd2->z - pParse->sNameToken.z);
2867       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2868       zStmt = sqlite3MPrintf(db,
2869           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2870       );
2871     }
2872 
2873     /* A slot for the record has already been allocated in the
2874     ** schema table.  We just need to update that slot with all
2875     ** the information we've collected.
2876     */
2877     sqlite3NestedParse(pParse,
2878       "UPDATE %Q." LEGACY_SCHEMA_TABLE
2879       " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2880       " WHERE rowid=#%d",
2881       db->aDb[iDb].zDbSName,
2882       zType,
2883       p->zName,
2884       p->zName,
2885       pParse->regRoot,
2886       zStmt,
2887       pParse->regRowid
2888     );
2889     sqlite3DbFree(db, zStmt);
2890     sqlite3ChangeCookie(pParse, iDb);
2891 
2892 #ifndef SQLITE_OMIT_AUTOINCREMENT
2893     /* Check to see if we need to create an sqlite_sequence table for
2894     ** keeping track of autoincrement keys.
2895     */
2896     if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
2897       Db *pDb = &db->aDb[iDb];
2898       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2899       if( pDb->pSchema->pSeqTab==0 ){
2900         sqlite3NestedParse(pParse,
2901           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2902           pDb->zDbSName
2903         );
2904       }
2905     }
2906 #endif
2907 
2908     /* Reparse everything to update our internal data structures */
2909     sqlite3VdbeAddParseSchemaOp(v, iDb,
2910            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
2911   }
2912 
2913   /* Add the table to the in-memory representation of the database.
2914   */
2915   if( db->init.busy ){
2916     Table *pOld;
2917     Schema *pSchema = p->pSchema;
2918     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2919     assert( HasRowid(p) || p->iPKey<0 );
2920     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2921     if( pOld ){
2922       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2923       sqlite3OomFault(db);
2924       return;
2925     }
2926     pParse->pNewTable = 0;
2927     db->mDbFlags |= DBFLAG_SchemaChange;
2928 
2929     /* If this is the magic sqlite_sequence table used by autoincrement,
2930     ** then record a pointer to this table in the main database structure
2931     ** so that INSERT can find the table easily.  */
2932     assert( !pParse->nested );
2933 #ifndef SQLITE_OMIT_AUTOINCREMENT
2934     if( strcmp(p->zName, "sqlite_sequence")==0 ){
2935       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2936       p->pSchema->pSeqTab = p;
2937     }
2938 #endif
2939   }
2940 
2941 #ifndef SQLITE_OMIT_ALTERTABLE
2942   if( !pSelect && IsOrdinaryTable(p) ){
2943     assert( pCons && pEnd );
2944     if( pCons->z==0 ){
2945       pCons = pEnd;
2946     }
2947     p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
2948   }
2949 #endif
2950 }
2951 
2952 #ifndef SQLITE_OMIT_VIEW
2953 /*
2954 ** The parser calls this routine in order to create a new VIEW
2955 */
2956 void sqlite3CreateView(
2957   Parse *pParse,     /* The parsing context */
2958   Token *pBegin,     /* The CREATE token that begins the statement */
2959   Token *pName1,     /* The token that holds the name of the view */
2960   Token *pName2,     /* The token that holds the name of the view */
2961   ExprList *pCNames, /* Optional list of view column names */
2962   Select *pSelect,   /* A SELECT statement that will become the new view */
2963   int isTemp,        /* TRUE for a TEMPORARY view */
2964   int noErr          /* Suppress error messages if VIEW already exists */
2965 ){
2966   Table *p;
2967   int n;
2968   const char *z;
2969   Token sEnd;
2970   DbFixer sFix;
2971   Token *pName = 0;
2972   int iDb;
2973   sqlite3 *db = pParse->db;
2974 
2975   if( pParse->nVar>0 ){
2976     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2977     goto create_view_fail;
2978   }
2979   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2980   p = pParse->pNewTable;
2981   if( p==0 || pParse->nErr ) goto create_view_fail;
2982 
2983   /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2984   ** on a view, even though views do not have rowids.  The following flag
2985   ** setting fixes this problem.  But the fix can be disabled by compiling
2986   ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2987   ** depend upon the old buggy behavior. */
2988 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2989   p->tabFlags |= TF_NoVisibleRowid;
2990 #endif
2991 
2992   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2993   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2994   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2995   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2996 
2997   /* Make a copy of the entire SELECT statement that defines the view.
2998   ** This will force all the Expr.token.z values to be dynamically
2999   ** allocated rather than point to the input string - which means that
3000   ** they will persist after the current sqlite3_exec() call returns.
3001   */
3002   pSelect->selFlags |= SF_View;
3003   if( IN_RENAME_OBJECT ){
3004     p->u.view.pSelect = pSelect;
3005     pSelect = 0;
3006   }else{
3007     p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
3008   }
3009   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
3010   p->eTabType = TABTYP_VIEW;
3011   if( db->mallocFailed ) goto create_view_fail;
3012 
3013   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
3014   ** the end.
3015   */
3016   sEnd = pParse->sLastToken;
3017   assert( sEnd.z[0]!=0 || sEnd.n==0 );
3018   if( sEnd.z[0]!=';' ){
3019     sEnd.z += sEnd.n;
3020   }
3021   sEnd.n = 0;
3022   n = (int)(sEnd.z - pBegin->z);
3023   assert( n>0 );
3024   z = pBegin->z;
3025   while( sqlite3Isspace(z[n-1]) ){ n--; }
3026   sEnd.z = &z[n-1];
3027   sEnd.n = 1;
3028 
3029   /* Use sqlite3EndTable() to add the view to the schema table */
3030   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
3031 
3032 create_view_fail:
3033   sqlite3SelectDelete(db, pSelect);
3034   if( IN_RENAME_OBJECT ){
3035     sqlite3RenameExprlistUnmap(pParse, pCNames);
3036   }
3037   sqlite3ExprListDelete(db, pCNames);
3038   return;
3039 }
3040 #endif /* SQLITE_OMIT_VIEW */
3041 
3042 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3043 /*
3044 ** The Table structure pTable is really a VIEW.  Fill in the names of
3045 ** the columns of the view in the pTable structure.  Return the number
3046 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
3047 */
3048 static SQLITE_NOINLINE int viewGetColumnNames(Parse *pParse, Table *pTable){
3049   Table *pSelTab;   /* A fake table from which we get the result set */
3050   Select *pSel;     /* Copy of the SELECT that implements the view */
3051   int nErr = 0;     /* Number of errors encountered */
3052   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
3053 #ifndef SQLITE_OMIT_VIRTUALTABLE
3054   int rc;
3055 #endif
3056 #ifndef SQLITE_OMIT_AUTHORIZATION
3057   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
3058 #endif
3059 
3060   assert( pTable );
3061 
3062 #ifndef SQLITE_OMIT_VIRTUALTABLE
3063   if( IsVirtual(pTable) ){
3064     db->nSchemaLock++;
3065     rc = sqlite3VtabCallConnect(pParse, pTable);
3066     db->nSchemaLock--;
3067     return rc;
3068   }
3069 #endif
3070 
3071 #ifndef SQLITE_OMIT_VIEW
3072   /* A positive nCol means the columns names for this view are
3073   ** already known.  This routine is not called unless either the
3074   ** table is virtual or nCol is zero.
3075   */
3076   assert( pTable->nCol<=0 );
3077 
3078   /* A negative nCol is a special marker meaning that we are currently
3079   ** trying to compute the column names.  If we enter this routine with
3080   ** a negative nCol, it means two or more views form a loop, like this:
3081   **
3082   **     CREATE VIEW one AS SELECT * FROM two;
3083   **     CREATE VIEW two AS SELECT * FROM one;
3084   **
3085   ** Actually, the error above is now caught prior to reaching this point.
3086   ** But the following test is still important as it does come up
3087   ** in the following:
3088   **
3089   **     CREATE TABLE main.ex1(a);
3090   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3091   **     SELECT * FROM temp.ex1;
3092   */
3093   if( pTable->nCol<0 ){
3094     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
3095     return 1;
3096   }
3097   assert( pTable->nCol>=0 );
3098 
3099   /* If we get this far, it means we need to compute the table names.
3100   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3101   ** "*" elements in the results set of the view and will assign cursors
3102   ** to the elements of the FROM clause.  But we do not want these changes
3103   ** to be permanent.  So the computation is done on a copy of the SELECT
3104   ** statement that defines the view.
3105   */
3106   assert( IsView(pTable) );
3107   pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
3108   if( pSel ){
3109     u8 eParseMode = pParse->eParseMode;
3110     int nTab = pParse->nTab;
3111     int nSelect = pParse->nSelect;
3112     pParse->eParseMode = PARSE_MODE_NORMAL;
3113     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
3114     pTable->nCol = -1;
3115     DisableLookaside;
3116 #ifndef SQLITE_OMIT_AUTHORIZATION
3117     xAuth = db->xAuth;
3118     db->xAuth = 0;
3119     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3120     db->xAuth = xAuth;
3121 #else
3122     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3123 #endif
3124     pParse->nTab = nTab;
3125     pParse->nSelect = nSelect;
3126     if( pSelTab==0 ){
3127       pTable->nCol = 0;
3128       nErr++;
3129     }else if( pTable->pCheck ){
3130       /* CREATE VIEW name(arglist) AS ...
3131       ** The names of the columns in the table are taken from
3132       ** arglist which is stored in pTable->pCheck.  The pCheck field
3133       ** normally holds CHECK constraints on an ordinary table, but for
3134       ** a VIEW it holds the list of column names.
3135       */
3136       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
3137                                  &pTable->nCol, &pTable->aCol);
3138       if( pParse->nErr==0
3139        && pTable->nCol==pSel->pEList->nExpr
3140       ){
3141         assert( db->mallocFailed==0 );
3142         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
3143                                                SQLITE_AFF_NONE);
3144       }
3145     }else{
3146       /* CREATE VIEW name AS...  without an argument list.  Construct
3147       ** the column names from the SELECT statement that defines the view.
3148       */
3149       assert( pTable->aCol==0 );
3150       pTable->nCol = pSelTab->nCol;
3151       pTable->aCol = pSelTab->aCol;
3152       pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
3153       pSelTab->nCol = 0;
3154       pSelTab->aCol = 0;
3155       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
3156     }
3157     pTable->nNVCol = pTable->nCol;
3158     sqlite3DeleteTable(db, pSelTab);
3159     sqlite3SelectDelete(db, pSel);
3160     EnableLookaside;
3161     pParse->eParseMode = eParseMode;
3162   } else {
3163     nErr++;
3164   }
3165   pTable->pSchema->schemaFlags |= DB_UnresetViews;
3166   if( db->mallocFailed ){
3167     sqlite3DeleteColumnNames(db, pTable);
3168   }
3169 #endif /* SQLITE_OMIT_VIEW */
3170   return nErr;
3171 }
3172 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
3173   assert( pTable!=0 );
3174   if( !IsVirtual(pTable) && pTable->nCol>0 ) return 0;
3175   return viewGetColumnNames(pParse, pTable);
3176 }
3177 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3178 
3179 #ifndef SQLITE_OMIT_VIEW
3180 /*
3181 ** Clear the column names from every VIEW in database idx.
3182 */
3183 static void sqliteViewResetAll(sqlite3 *db, int idx){
3184   HashElem *i;
3185   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
3186   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
3187   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
3188     Table *pTab = sqliteHashData(i);
3189     if( IsView(pTab) ){
3190       sqlite3DeleteColumnNames(db, pTab);
3191     }
3192   }
3193   DbClearProperty(db, idx, DB_UnresetViews);
3194 }
3195 #else
3196 # define sqliteViewResetAll(A,B)
3197 #endif /* SQLITE_OMIT_VIEW */
3198 
3199 /*
3200 ** This function is called by the VDBE to adjust the internal schema
3201 ** used by SQLite when the btree layer moves a table root page. The
3202 ** root-page of a table or index in database iDb has changed from iFrom
3203 ** to iTo.
3204 **
3205 ** Ticket #1728:  The symbol table might still contain information
3206 ** on tables and/or indices that are the process of being deleted.
3207 ** If you are unlucky, one of those deleted indices or tables might
3208 ** have the same rootpage number as the real table or index that is
3209 ** being moved.  So we cannot stop searching after the first match
3210 ** because the first match might be for one of the deleted indices
3211 ** or tables and not the table/index that is actually being moved.
3212 ** We must continue looping until all tables and indices with
3213 ** rootpage==iFrom have been converted to have a rootpage of iTo
3214 ** in order to be certain that we got the right one.
3215 */
3216 #ifndef SQLITE_OMIT_AUTOVACUUM
3217 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
3218   HashElem *pElem;
3219   Hash *pHash;
3220   Db *pDb;
3221 
3222   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3223   pDb = &db->aDb[iDb];
3224   pHash = &pDb->pSchema->tblHash;
3225   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3226     Table *pTab = sqliteHashData(pElem);
3227     if( pTab->tnum==iFrom ){
3228       pTab->tnum = iTo;
3229     }
3230   }
3231   pHash = &pDb->pSchema->idxHash;
3232   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3233     Index *pIdx = sqliteHashData(pElem);
3234     if( pIdx->tnum==iFrom ){
3235       pIdx->tnum = iTo;
3236     }
3237   }
3238 }
3239 #endif
3240 
3241 /*
3242 ** Write code to erase the table with root-page iTable from database iDb.
3243 ** Also write code to modify the sqlite_schema table and internal schema
3244 ** if a root-page of another table is moved by the btree-layer whilst
3245 ** erasing iTable (this can happen with an auto-vacuum database).
3246 */
3247 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
3248   Vdbe *v = sqlite3GetVdbe(pParse);
3249   int r1 = sqlite3GetTempReg(pParse);
3250   if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
3251   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
3252   sqlite3MayAbort(pParse);
3253 #ifndef SQLITE_OMIT_AUTOVACUUM
3254   /* OP_Destroy stores an in integer r1. If this integer
3255   ** is non-zero, then it is the root page number of a table moved to
3256   ** location iTable. The following code modifies the sqlite_schema table to
3257   ** reflect this.
3258   **
3259   ** The "#NNN" in the SQL is a special constant that means whatever value
3260   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
3261   ** token for additional information.
3262   */
3263   sqlite3NestedParse(pParse,
3264      "UPDATE %Q." LEGACY_SCHEMA_TABLE
3265      " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3266      pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
3267 #endif
3268   sqlite3ReleaseTempReg(pParse, r1);
3269 }
3270 
3271 /*
3272 ** Write VDBE code to erase table pTab and all associated indices on disk.
3273 ** Code to update the sqlite_schema tables and internal schema definitions
3274 ** in case a root-page belonging to another table is moved by the btree layer
3275 ** is also added (this can happen with an auto-vacuum database).
3276 */
3277 static void destroyTable(Parse *pParse, Table *pTab){
3278   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3279   ** is not defined), then it is important to call OP_Destroy on the
3280   ** table and index root-pages in order, starting with the numerically
3281   ** largest root-page number. This guarantees that none of the root-pages
3282   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3283   ** following were coded:
3284   **
3285   ** OP_Destroy 4 0
3286   ** ...
3287   ** OP_Destroy 5 0
3288   **
3289   ** and root page 5 happened to be the largest root-page number in the
3290   ** database, then root page 5 would be moved to page 4 by the
3291   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3292   ** a free-list page.
3293   */
3294   Pgno iTab = pTab->tnum;
3295   Pgno iDestroyed = 0;
3296 
3297   while( 1 ){
3298     Index *pIdx;
3299     Pgno iLargest = 0;
3300 
3301     if( iDestroyed==0 || iTab<iDestroyed ){
3302       iLargest = iTab;
3303     }
3304     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3305       Pgno iIdx = pIdx->tnum;
3306       assert( pIdx->pSchema==pTab->pSchema );
3307       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
3308         iLargest = iIdx;
3309       }
3310     }
3311     if( iLargest==0 ){
3312       return;
3313     }else{
3314       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3315       assert( iDb>=0 && iDb<pParse->db->nDb );
3316       destroyRootPage(pParse, iLargest, iDb);
3317       iDestroyed = iLargest;
3318     }
3319   }
3320 }
3321 
3322 /*
3323 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3324 ** after a DROP INDEX or DROP TABLE command.
3325 */
3326 static void sqlite3ClearStatTables(
3327   Parse *pParse,         /* The parsing context */
3328   int iDb,               /* The database number */
3329   const char *zType,     /* "idx" or "tbl" */
3330   const char *zName      /* Name of index or table */
3331 ){
3332   int i;
3333   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
3334   for(i=1; i<=4; i++){
3335     char zTab[24];
3336     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
3337     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
3338       sqlite3NestedParse(pParse,
3339         "DELETE FROM %Q.%s WHERE %s=%Q",
3340         zDbName, zTab, zType, zName
3341       );
3342     }
3343   }
3344 }
3345 
3346 /*
3347 ** Generate code to drop a table.
3348 */
3349 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
3350   Vdbe *v;
3351   sqlite3 *db = pParse->db;
3352   Trigger *pTrigger;
3353   Db *pDb = &db->aDb[iDb];
3354 
3355   v = sqlite3GetVdbe(pParse);
3356   assert( v!=0 );
3357   sqlite3BeginWriteOperation(pParse, 1, iDb);
3358 
3359 #ifndef SQLITE_OMIT_VIRTUALTABLE
3360   if( IsVirtual(pTab) ){
3361     sqlite3VdbeAddOp0(v, OP_VBegin);
3362   }
3363 #endif
3364 
3365   /* Drop all triggers associated with the table being dropped. Code
3366   ** is generated to remove entries from sqlite_schema and/or
3367   ** sqlite_temp_schema if required.
3368   */
3369   pTrigger = sqlite3TriggerList(pParse, pTab);
3370   while( pTrigger ){
3371     assert( pTrigger->pSchema==pTab->pSchema ||
3372         pTrigger->pSchema==db->aDb[1].pSchema );
3373     sqlite3DropTriggerPtr(pParse, pTrigger);
3374     pTrigger = pTrigger->pNext;
3375   }
3376 
3377 #ifndef SQLITE_OMIT_AUTOINCREMENT
3378   /* Remove any entries of the sqlite_sequence table associated with
3379   ** the table being dropped. This is done before the table is dropped
3380   ** at the btree level, in case the sqlite_sequence table needs to
3381   ** move as a result of the drop (can happen in auto-vacuum mode).
3382   */
3383   if( pTab->tabFlags & TF_Autoincrement ){
3384     sqlite3NestedParse(pParse,
3385       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3386       pDb->zDbSName, pTab->zName
3387     );
3388   }
3389 #endif
3390 
3391   /* Drop all entries in the schema table that refer to the
3392   ** table. The program name loops through the schema table and deletes
3393   ** every row that refers to a table of the same name as the one being
3394   ** dropped. Triggers are handled separately because a trigger can be
3395   ** created in the temp database that refers to a table in another
3396   ** database.
3397   */
3398   sqlite3NestedParse(pParse,
3399       "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3400       " WHERE tbl_name=%Q and type!='trigger'",
3401       pDb->zDbSName, pTab->zName);
3402   if( !isView && !IsVirtual(pTab) ){
3403     destroyTable(pParse, pTab);
3404   }
3405 
3406   /* Remove the table entry from SQLite's internal schema and modify
3407   ** the schema cookie.
3408   */
3409   if( IsVirtual(pTab) ){
3410     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
3411     sqlite3MayAbort(pParse);
3412   }
3413   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
3414   sqlite3ChangeCookie(pParse, iDb);
3415   sqliteViewResetAll(db, iDb);
3416 }
3417 
3418 /*
3419 ** Return TRUE if shadow tables should be read-only in the current
3420 ** context.
3421 */
3422 int sqlite3ReadOnlyShadowTables(sqlite3 *db){
3423 #ifndef SQLITE_OMIT_VIRTUALTABLE
3424   if( (db->flags & SQLITE_Defensive)!=0
3425    && db->pVtabCtx==0
3426    && db->nVdbeExec==0
3427    && !sqlite3VtabInSync(db)
3428   ){
3429     return 1;
3430   }
3431 #endif
3432   return 0;
3433 }
3434 
3435 /*
3436 ** Return true if it is not allowed to drop the given table
3437 */
3438 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
3439   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
3440     if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
3441     if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
3442     return 1;
3443   }
3444   if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
3445     return 1;
3446   }
3447   if( pTab->tabFlags & TF_Eponymous ){
3448     return 1;
3449   }
3450   return 0;
3451 }
3452 
3453 /*
3454 ** This routine is called to do the work of a DROP TABLE statement.
3455 ** pName is the name of the table to be dropped.
3456 */
3457 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
3458   Table *pTab;
3459   Vdbe *v;
3460   sqlite3 *db = pParse->db;
3461   int iDb;
3462 
3463   if( db->mallocFailed ){
3464     goto exit_drop_table;
3465   }
3466   assert( pParse->nErr==0 );
3467   assert( pName->nSrc==1 );
3468   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
3469   if( noErr ) db->suppressErr++;
3470   assert( isView==0 || isView==LOCATE_VIEW );
3471   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
3472   if( noErr ) db->suppressErr--;
3473 
3474   if( pTab==0 ){
3475     if( noErr ){
3476       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3477       sqlite3ForceNotReadOnly(pParse);
3478     }
3479     goto exit_drop_table;
3480   }
3481   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3482   assert( iDb>=0 && iDb<db->nDb );
3483 
3484   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3485   ** it is initialized.
3486   */
3487   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
3488     goto exit_drop_table;
3489   }
3490 #ifndef SQLITE_OMIT_AUTHORIZATION
3491   {
3492     int code;
3493     const char *zTab = SCHEMA_TABLE(iDb);
3494     const char *zDb = db->aDb[iDb].zDbSName;
3495     const char *zArg2 = 0;
3496     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
3497       goto exit_drop_table;
3498     }
3499     if( isView ){
3500       if( !OMIT_TEMPDB && iDb==1 ){
3501         code = SQLITE_DROP_TEMP_VIEW;
3502       }else{
3503         code = SQLITE_DROP_VIEW;
3504       }
3505 #ifndef SQLITE_OMIT_VIRTUALTABLE
3506     }else if( IsVirtual(pTab) ){
3507       code = SQLITE_DROP_VTABLE;
3508       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
3509 #endif
3510     }else{
3511       if( !OMIT_TEMPDB && iDb==1 ){
3512         code = SQLITE_DROP_TEMP_TABLE;
3513       }else{
3514         code = SQLITE_DROP_TABLE;
3515       }
3516     }
3517     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
3518       goto exit_drop_table;
3519     }
3520     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
3521       goto exit_drop_table;
3522     }
3523   }
3524 #endif
3525   if( tableMayNotBeDropped(db, pTab) ){
3526     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
3527     goto exit_drop_table;
3528   }
3529 
3530 #ifndef SQLITE_OMIT_VIEW
3531   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3532   ** on a table.
3533   */
3534   if( isView && !IsView(pTab) ){
3535     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
3536     goto exit_drop_table;
3537   }
3538   if( !isView && IsView(pTab) ){
3539     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
3540     goto exit_drop_table;
3541   }
3542 #endif
3543 
3544   /* Generate code to remove the table from the schema table
3545   ** on disk.
3546   */
3547   v = sqlite3GetVdbe(pParse);
3548   if( v ){
3549     sqlite3BeginWriteOperation(pParse, 1, iDb);
3550     if( !isView ){
3551       sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
3552       sqlite3FkDropTable(pParse, pName, pTab);
3553     }
3554     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
3555   }
3556 
3557 exit_drop_table:
3558   sqlite3SrcListDelete(db, pName);
3559 }
3560 
3561 /*
3562 ** This routine is called to create a new foreign key on the table
3563 ** currently under construction.  pFromCol determines which columns
3564 ** in the current table point to the foreign key.  If pFromCol==0 then
3565 ** connect the key to the last column inserted.  pTo is the name of
3566 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
3567 ** of tables in the parent pTo table.  flags contains all
3568 ** information about the conflict resolution algorithms specified
3569 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3570 **
3571 ** An FKey structure is created and added to the table currently
3572 ** under construction in the pParse->pNewTable field.
3573 **
3574 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
3575 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3576 */
3577 void sqlite3CreateForeignKey(
3578   Parse *pParse,       /* Parsing context */
3579   ExprList *pFromCol,  /* Columns in this table that point to other table */
3580   Token *pTo,          /* Name of the other table */
3581   ExprList *pToCol,    /* Columns in the other table */
3582   int flags            /* Conflict resolution algorithms. */
3583 ){
3584   sqlite3 *db = pParse->db;
3585 #ifndef SQLITE_OMIT_FOREIGN_KEY
3586   FKey *pFKey = 0;
3587   FKey *pNextTo;
3588   Table *p = pParse->pNewTable;
3589   i64 nByte;
3590   int i;
3591   int nCol;
3592   char *z;
3593 
3594   assert( pTo!=0 );
3595   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
3596   if( pFromCol==0 ){
3597     int iCol = p->nCol-1;
3598     if( NEVER(iCol<0) ) goto fk_end;
3599     if( pToCol && pToCol->nExpr!=1 ){
3600       sqlite3ErrorMsg(pParse, "foreign key on %s"
3601          " should reference only one column of table %T",
3602          p->aCol[iCol].zCnName, pTo);
3603       goto fk_end;
3604     }
3605     nCol = 1;
3606   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
3607     sqlite3ErrorMsg(pParse,
3608         "number of columns in foreign key does not match the number of "
3609         "columns in the referenced table");
3610     goto fk_end;
3611   }else{
3612     nCol = pFromCol->nExpr;
3613   }
3614   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
3615   if( pToCol ){
3616     for(i=0; i<pToCol->nExpr; i++){
3617       nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
3618     }
3619   }
3620   pFKey = sqlite3DbMallocZero(db, nByte );
3621   if( pFKey==0 ){
3622     goto fk_end;
3623   }
3624   pFKey->pFrom = p;
3625   assert( IsOrdinaryTable(p) );
3626   pFKey->pNextFrom = p->u.tab.pFKey;
3627   z = (char*)&pFKey->aCol[nCol];
3628   pFKey->zTo = z;
3629   if( IN_RENAME_OBJECT ){
3630     sqlite3RenameTokenMap(pParse, (void*)z, pTo);
3631   }
3632   memcpy(z, pTo->z, pTo->n);
3633   z[pTo->n] = 0;
3634   sqlite3Dequote(z);
3635   z += pTo->n+1;
3636   pFKey->nCol = nCol;
3637   if( pFromCol==0 ){
3638     pFKey->aCol[0].iFrom = p->nCol-1;
3639   }else{
3640     for(i=0; i<nCol; i++){
3641       int j;
3642       for(j=0; j<p->nCol; j++){
3643         if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
3644           pFKey->aCol[i].iFrom = j;
3645           break;
3646         }
3647       }
3648       if( j>=p->nCol ){
3649         sqlite3ErrorMsg(pParse,
3650           "unknown column \"%s\" in foreign key definition",
3651           pFromCol->a[i].zEName);
3652         goto fk_end;
3653       }
3654       if( IN_RENAME_OBJECT ){
3655         sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
3656       }
3657     }
3658   }
3659   if( pToCol ){
3660     for(i=0; i<nCol; i++){
3661       int n = sqlite3Strlen30(pToCol->a[i].zEName);
3662       pFKey->aCol[i].zCol = z;
3663       if( IN_RENAME_OBJECT ){
3664         sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
3665       }
3666       memcpy(z, pToCol->a[i].zEName, n);
3667       z[n] = 0;
3668       z += n+1;
3669     }
3670   }
3671   pFKey->isDeferred = 0;
3672   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
3673   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
3674 
3675   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
3676   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
3677       pFKey->zTo, (void *)pFKey
3678   );
3679   if( pNextTo==pFKey ){
3680     sqlite3OomFault(db);
3681     goto fk_end;
3682   }
3683   if( pNextTo ){
3684     assert( pNextTo->pPrevTo==0 );
3685     pFKey->pNextTo = pNextTo;
3686     pNextTo->pPrevTo = pFKey;
3687   }
3688 
3689   /* Link the foreign key to the table as the last step.
3690   */
3691   assert( IsOrdinaryTable(p) );
3692   p->u.tab.pFKey = pFKey;
3693   pFKey = 0;
3694 
3695 fk_end:
3696   sqlite3DbFree(db, pFKey);
3697 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3698   sqlite3ExprListDelete(db, pFromCol);
3699   sqlite3ExprListDelete(db, pToCol);
3700 }
3701 
3702 /*
3703 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3704 ** clause is seen as part of a foreign key definition.  The isDeferred
3705 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3706 ** The behavior of the most recently created foreign key is adjusted
3707 ** accordingly.
3708 */
3709 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
3710 #ifndef SQLITE_OMIT_FOREIGN_KEY
3711   Table *pTab;
3712   FKey *pFKey;
3713   if( (pTab = pParse->pNewTable)==0 ) return;
3714   if( NEVER(!IsOrdinaryTable(pTab)) ) return;
3715   if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
3716   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
3717   pFKey->isDeferred = (u8)isDeferred;
3718 #endif
3719 }
3720 
3721 /*
3722 ** Generate code that will erase and refill index *pIdx.  This is
3723 ** used to initialize a newly created index or to recompute the
3724 ** content of an index in response to a REINDEX command.
3725 **
3726 ** if memRootPage is not negative, it means that the index is newly
3727 ** created.  The register specified by memRootPage contains the
3728 ** root page number of the index.  If memRootPage is negative, then
3729 ** the index already exists and must be cleared before being refilled and
3730 ** the root page number of the index is taken from pIndex->tnum.
3731 */
3732 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
3733   Table *pTab = pIndex->pTable;  /* The table that is indexed */
3734   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
3735   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
3736   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
3737   int addr1;                     /* Address of top of loop */
3738   int addr2;                     /* Address to jump to for next iteration */
3739   Pgno tnum;                     /* Root page of index */
3740   int iPartIdxLabel;             /* Jump to this label to skip a row */
3741   Vdbe *v;                       /* Generate code into this virtual machine */
3742   KeyInfo *pKey;                 /* KeyInfo for index */
3743   int regRecord;                 /* Register holding assembled index record */
3744   sqlite3 *db = pParse->db;      /* The database connection */
3745   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3746 
3747 #ifndef SQLITE_OMIT_AUTHORIZATION
3748   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
3749       db->aDb[iDb].zDbSName ) ){
3750     return;
3751   }
3752 #endif
3753 
3754   /* Require a write-lock on the table to perform this operation */
3755   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
3756 
3757   v = sqlite3GetVdbe(pParse);
3758   if( v==0 ) return;
3759   if( memRootPage>=0 ){
3760     tnum = (Pgno)memRootPage;
3761   }else{
3762     tnum = pIndex->tnum;
3763   }
3764   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
3765   assert( pKey!=0 || pParse->nErr );
3766 
3767   /* Open the sorter cursor if we are to use one. */
3768   iSorter = pParse->nTab++;
3769   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
3770                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
3771 
3772   /* Open the table. Loop through all rows of the table, inserting index
3773   ** records into the sorter. */
3774   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3775   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
3776   regRecord = sqlite3GetTempReg(pParse);
3777   sqlite3MultiWrite(pParse);
3778 
3779   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
3780   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
3781   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
3782   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
3783   sqlite3VdbeJumpHere(v, addr1);
3784   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
3785   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
3786                     (char *)pKey, P4_KEYINFO);
3787   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
3788 
3789   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
3790   if( IsUniqueIndex(pIndex) ){
3791     int j2 = sqlite3VdbeGoto(v, 1);
3792     addr2 = sqlite3VdbeCurrentAddr(v);
3793     sqlite3VdbeVerifyAbortable(v, OE_Abort);
3794     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
3795                          pIndex->nKeyCol); VdbeCoverage(v);
3796     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
3797     sqlite3VdbeJumpHere(v, j2);
3798   }else{
3799     /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3800     ** abort. The exception is if one of the indexed expressions contains a
3801     ** user function that throws an exception when it is evaluated. But the
3802     ** overhead of adding a statement journal to a CREATE INDEX statement is
3803     ** very small (since most of the pages written do not contain content that
3804     ** needs to be restored if the statement aborts), so we call
3805     ** sqlite3MayAbort() for all CREATE INDEX statements.  */
3806     sqlite3MayAbort(pParse);
3807     addr2 = sqlite3VdbeCurrentAddr(v);
3808   }
3809   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
3810   if( !pIndex->bAscKeyBug ){
3811     /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3812     ** faster by avoiding unnecessary seeks.  But the optimization does
3813     ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3814     ** with DESC primary keys, since those indexes have there keys in
3815     ** a different order from the main table.
3816     ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3817     */
3818     sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
3819   }
3820   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
3821   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3822   sqlite3ReleaseTempReg(pParse, regRecord);
3823   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
3824   sqlite3VdbeJumpHere(v, addr1);
3825 
3826   sqlite3VdbeAddOp1(v, OP_Close, iTab);
3827   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3828   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3829 }
3830 
3831 /*
3832 ** Allocate heap space to hold an Index object with nCol columns.
3833 **
3834 ** Increase the allocation size to provide an extra nExtra bytes
3835 ** of 8-byte aligned space after the Index object and return a
3836 ** pointer to this extra space in *ppExtra.
3837 */
3838 Index *sqlite3AllocateIndexObject(
3839   sqlite3 *db,         /* Database connection */
3840   i16 nCol,            /* Total number of columns in the index */
3841   int nExtra,          /* Number of bytes of extra space to alloc */
3842   char **ppExtra       /* Pointer to the "extra" space */
3843 ){
3844   Index *p;            /* Allocated index object */
3845   int nByte;           /* Bytes of space for Index object + arrays */
3846 
3847   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
3848           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
3849           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
3850                  sizeof(i16)*nCol +            /* Index.aiColumn   */
3851                  sizeof(u8)*nCol);             /* Index.aSortOrder */
3852   p = sqlite3DbMallocZero(db, nByte + nExtra);
3853   if( p ){
3854     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3855     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3856     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3857     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
3858     p->aSortOrder = (u8*)pExtra;
3859     p->nColumn = nCol;
3860     p->nKeyCol = nCol - 1;
3861     *ppExtra = ((char*)p) + nByte;
3862   }
3863   return p;
3864 }
3865 
3866 /*
3867 ** If expression list pList contains an expression that was parsed with
3868 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3869 ** pParse and return non-zero. Otherwise, return zero.
3870 */
3871 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
3872   if( pList ){
3873     int i;
3874     for(i=0; i<pList->nExpr; i++){
3875       if( pList->a[i].fg.bNulls ){
3876         u8 sf = pList->a[i].fg.sortFlags;
3877         sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
3878             (sf==0 || sf==3) ? "FIRST" : "LAST"
3879         );
3880         return 1;
3881       }
3882     }
3883   }
3884   return 0;
3885 }
3886 
3887 /*
3888 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
3889 ** and pTblList is the name of the table that is to be indexed.  Both will
3890 ** be NULL for a primary key or an index that is created to satisfy a
3891 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
3892 ** as the table to be indexed.  pParse->pNewTable is a table that is
3893 ** currently being constructed by a CREATE TABLE statement.
3894 **
3895 ** pList is a list of columns to be indexed.  pList will be NULL if this
3896 ** is a primary key or unique-constraint on the most recent column added
3897 ** to the table currently under construction.
3898 */
3899 void sqlite3CreateIndex(
3900   Parse *pParse,     /* All information about this parse */
3901   Token *pName1,     /* First part of index name. May be NULL */
3902   Token *pName2,     /* Second part of index name. May be NULL */
3903   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3904   ExprList *pList,   /* A list of columns to be indexed */
3905   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3906   Token *pStart,     /* The CREATE token that begins this statement */
3907   Expr *pPIWhere,    /* WHERE clause for partial indices */
3908   int sortOrder,     /* Sort order of primary key when pList==NULL */
3909   int ifNotExist,    /* Omit error if index already exists */
3910   u8 idxType         /* The index type */
3911 ){
3912   Table *pTab = 0;     /* Table to be indexed */
3913   Index *pIndex = 0;   /* The index to be created */
3914   char *zName = 0;     /* Name of the index */
3915   int nName;           /* Number of characters in zName */
3916   int i, j;
3917   DbFixer sFix;        /* For assigning database names to pTable */
3918   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
3919   sqlite3 *db = pParse->db;
3920   Db *pDb;             /* The specific table containing the indexed database */
3921   int iDb;             /* Index of the database that is being written */
3922   Token *pName = 0;    /* Unqualified name of the index to create */
3923   struct ExprList_item *pListItem; /* For looping over pList */
3924   int nExtra = 0;                  /* Space allocated for zExtra[] */
3925   int nExtraCol;                   /* Number of extra columns needed */
3926   char *zExtra = 0;                /* Extra space after the Index object */
3927   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
3928 
3929   assert( db->pParse==pParse );
3930   if( pParse->nErr ){
3931     goto exit_create_index;
3932   }
3933   assert( db->mallocFailed==0 );
3934   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3935     goto exit_create_index;
3936   }
3937   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3938     goto exit_create_index;
3939   }
3940   if( sqlite3HasExplicitNulls(pParse, pList) ){
3941     goto exit_create_index;
3942   }
3943 
3944   /*
3945   ** Find the table that is to be indexed.  Return early if not found.
3946   */
3947   if( pTblName!=0 ){
3948 
3949     /* Use the two-part index name to determine the database
3950     ** to search for the table. 'Fix' the table name to this db
3951     ** before looking up the table.
3952     */
3953     assert( pName1 && pName2 );
3954     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3955     if( iDb<0 ) goto exit_create_index;
3956     assert( pName && pName->z );
3957 
3958 #ifndef SQLITE_OMIT_TEMPDB
3959     /* If the index name was unqualified, check if the table
3960     ** is a temp table. If so, set the database to 1. Do not do this
3961     ** if initialising a database schema.
3962     */
3963     if( !db->init.busy ){
3964       pTab = sqlite3SrcListLookup(pParse, pTblName);
3965       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3966         iDb = 1;
3967       }
3968     }
3969 #endif
3970 
3971     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3972     if( sqlite3FixSrcList(&sFix, pTblName) ){
3973       /* Because the parser constructs pTblName from a single identifier,
3974       ** sqlite3FixSrcList can never fail. */
3975       assert(0);
3976     }
3977     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3978     assert( db->mallocFailed==0 || pTab==0 );
3979     if( pTab==0 ) goto exit_create_index;
3980     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3981       sqlite3ErrorMsg(pParse,
3982            "cannot create a TEMP index on non-TEMP table \"%s\"",
3983            pTab->zName);
3984       goto exit_create_index;
3985     }
3986     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3987   }else{
3988     assert( pName==0 );
3989     assert( pStart==0 );
3990     pTab = pParse->pNewTable;
3991     if( !pTab ) goto exit_create_index;
3992     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3993   }
3994   pDb = &db->aDb[iDb];
3995 
3996   assert( pTab!=0 );
3997   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3998        && db->init.busy==0
3999        && pTblName!=0
4000 #if SQLITE_USER_AUTHENTICATION
4001        && sqlite3UserAuthTable(pTab->zName)==0
4002 #endif
4003   ){
4004     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
4005     goto exit_create_index;
4006   }
4007 #ifndef SQLITE_OMIT_VIEW
4008   if( IsView(pTab) ){
4009     sqlite3ErrorMsg(pParse, "views may not be indexed");
4010     goto exit_create_index;
4011   }
4012 #endif
4013 #ifndef SQLITE_OMIT_VIRTUALTABLE
4014   if( IsVirtual(pTab) ){
4015     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
4016     goto exit_create_index;
4017   }
4018 #endif
4019 
4020   /*
4021   ** Find the name of the index.  Make sure there is not already another
4022   ** index or table with the same name.
4023   **
4024   ** Exception:  If we are reading the names of permanent indices from the
4025   ** sqlite_schema table (because some other process changed the schema) and
4026   ** one of the index names collides with the name of a temporary table or
4027   ** index, then we will continue to process this index.
4028   **
4029   ** If pName==0 it means that we are
4030   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
4031   ** own name.
4032   */
4033   if( pName ){
4034     zName = sqlite3NameFromToken(db, pName);
4035     if( zName==0 ) goto exit_create_index;
4036     assert( pName->z!=0 );
4037     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
4038       goto exit_create_index;
4039     }
4040     if( !IN_RENAME_OBJECT ){
4041       if( !db->init.busy ){
4042         if( sqlite3FindTable(db, zName, pDb->zDbSName)!=0 ){
4043           sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
4044           goto exit_create_index;
4045         }
4046       }
4047       if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
4048         if( !ifNotExist ){
4049           sqlite3ErrorMsg(pParse, "index %s already exists", zName);
4050         }else{
4051           assert( !db->init.busy );
4052           sqlite3CodeVerifySchema(pParse, iDb);
4053           sqlite3ForceNotReadOnly(pParse);
4054         }
4055         goto exit_create_index;
4056       }
4057     }
4058   }else{
4059     int n;
4060     Index *pLoop;
4061     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
4062     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
4063     if( zName==0 ){
4064       goto exit_create_index;
4065     }
4066 
4067     /* Automatic index names generated from within sqlite3_declare_vtab()
4068     ** must have names that are distinct from normal automatic index names.
4069     ** The following statement converts "sqlite3_autoindex..." into
4070     ** "sqlite3_butoindex..." in order to make the names distinct.
4071     ** The "vtab_err.test" test demonstrates the need of this statement. */
4072     if( IN_SPECIAL_PARSE ) zName[7]++;
4073   }
4074 
4075   /* Check for authorization to create an index.
4076   */
4077 #ifndef SQLITE_OMIT_AUTHORIZATION
4078   if( !IN_RENAME_OBJECT ){
4079     const char *zDb = pDb->zDbSName;
4080     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
4081       goto exit_create_index;
4082     }
4083     i = SQLITE_CREATE_INDEX;
4084     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
4085     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
4086       goto exit_create_index;
4087     }
4088   }
4089 #endif
4090 
4091   /* If pList==0, it means this routine was called to make a primary
4092   ** key out of the last column added to the table under construction.
4093   ** So create a fake list to simulate this.
4094   */
4095   if( pList==0 ){
4096     Token prevCol;
4097     Column *pCol = &pTab->aCol[pTab->nCol-1];
4098     pCol->colFlags |= COLFLAG_UNIQUE;
4099     sqlite3TokenInit(&prevCol, pCol->zCnName);
4100     pList = sqlite3ExprListAppend(pParse, 0,
4101               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
4102     if( pList==0 ) goto exit_create_index;
4103     assert( pList->nExpr==1 );
4104     sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
4105   }else{
4106     sqlite3ExprListCheckLength(pParse, pList, "index");
4107     if( pParse->nErr ) goto exit_create_index;
4108   }
4109 
4110   /* Figure out how many bytes of space are required to store explicitly
4111   ** specified collation sequence names.
4112   */
4113   for(i=0; i<pList->nExpr; i++){
4114     Expr *pExpr = pList->a[i].pExpr;
4115     assert( pExpr!=0 );
4116     if( pExpr->op==TK_COLLATE ){
4117       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4118       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
4119     }
4120   }
4121 
4122   /*
4123   ** Allocate the index structure.
4124   */
4125   nName = sqlite3Strlen30(zName);
4126   nExtraCol = pPk ? pPk->nKeyCol : 1;
4127   assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
4128   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
4129                                       nName + nExtra + 1, &zExtra);
4130   if( db->mallocFailed ){
4131     goto exit_create_index;
4132   }
4133   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
4134   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
4135   pIndex->zName = zExtra;
4136   zExtra += nName + 1;
4137   memcpy(pIndex->zName, zName, nName+1);
4138   pIndex->pTable = pTab;
4139   pIndex->onError = (u8)onError;
4140   pIndex->uniqNotNull = onError!=OE_None;
4141   pIndex->idxType = idxType;
4142   pIndex->pSchema = db->aDb[iDb].pSchema;
4143   pIndex->nKeyCol = pList->nExpr;
4144   if( pPIWhere ){
4145     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
4146     pIndex->pPartIdxWhere = pPIWhere;
4147     pPIWhere = 0;
4148   }
4149   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4150 
4151   /* Check to see if we should honor DESC requests on index columns
4152   */
4153   if( pDb->pSchema->file_format>=4 ){
4154     sortOrderMask = -1;   /* Honor DESC */
4155   }else{
4156     sortOrderMask = 0;    /* Ignore DESC */
4157   }
4158 
4159   /* Analyze the list of expressions that form the terms of the index and
4160   ** report any errors.  In the common case where the expression is exactly
4161   ** a table column, store that column in aiColumn[].  For general expressions,
4162   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4163   **
4164   ** TODO: Issue a warning if two or more columns of the index are identical.
4165   ** TODO: Issue a warning if the table primary key is used as part of the
4166   ** index key.
4167   */
4168   pListItem = pList->a;
4169   if( IN_RENAME_OBJECT ){
4170     pIndex->aColExpr = pList;
4171     pList = 0;
4172   }
4173   for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
4174     Expr *pCExpr;                  /* The i-th index expression */
4175     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
4176     const char *zColl;             /* Collation sequence name */
4177 
4178     sqlite3StringToId(pListItem->pExpr);
4179     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
4180     if( pParse->nErr ) goto exit_create_index;
4181     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
4182     if( pCExpr->op!=TK_COLUMN ){
4183       if( pTab==pParse->pNewTable ){
4184         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
4185                                 "UNIQUE constraints");
4186         goto exit_create_index;
4187       }
4188       if( pIndex->aColExpr==0 ){
4189         pIndex->aColExpr = pList;
4190         pList = 0;
4191       }
4192       j = XN_EXPR;
4193       pIndex->aiColumn[i] = XN_EXPR;
4194       pIndex->uniqNotNull = 0;
4195     }else{
4196       j = pCExpr->iColumn;
4197       assert( j<=0x7fff );
4198       if( j<0 ){
4199         j = pTab->iPKey;
4200       }else{
4201         if( pTab->aCol[j].notNull==0 ){
4202           pIndex->uniqNotNull = 0;
4203         }
4204         if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
4205           pIndex->bHasVCol = 1;
4206         }
4207       }
4208       pIndex->aiColumn[i] = (i16)j;
4209     }
4210     zColl = 0;
4211     if( pListItem->pExpr->op==TK_COLLATE ){
4212       int nColl;
4213       assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
4214       zColl = pListItem->pExpr->u.zToken;
4215       nColl = sqlite3Strlen30(zColl) + 1;
4216       assert( nExtra>=nColl );
4217       memcpy(zExtra, zColl, nColl);
4218       zColl = zExtra;
4219       zExtra += nColl;
4220       nExtra -= nColl;
4221     }else if( j>=0 ){
4222       zColl = sqlite3ColumnColl(&pTab->aCol[j]);
4223     }
4224     if( !zColl ) zColl = sqlite3StrBINARY;
4225     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
4226       goto exit_create_index;
4227     }
4228     pIndex->azColl[i] = zColl;
4229     requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask;
4230     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
4231   }
4232 
4233   /* Append the table key to the end of the index.  For WITHOUT ROWID
4234   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
4235   ** normal tables (when pPk==0) this will be the rowid.
4236   */
4237   if( pPk ){
4238     for(j=0; j<pPk->nKeyCol; j++){
4239       int x = pPk->aiColumn[j];
4240       assert( x>=0 );
4241       if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
4242         pIndex->nColumn--;
4243       }else{
4244         testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
4245         pIndex->aiColumn[i] = x;
4246         pIndex->azColl[i] = pPk->azColl[j];
4247         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
4248         i++;
4249       }
4250     }
4251     assert( i==pIndex->nColumn );
4252   }else{
4253     pIndex->aiColumn[i] = XN_ROWID;
4254     pIndex->azColl[i] = sqlite3StrBINARY;
4255   }
4256   sqlite3DefaultRowEst(pIndex);
4257   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
4258 
4259   /* If this index contains every column of its table, then mark
4260   ** it as a covering index */
4261   assert( HasRowid(pTab)
4262       || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
4263   recomputeColumnsNotIndexed(pIndex);
4264   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
4265     pIndex->isCovering = 1;
4266     for(j=0; j<pTab->nCol; j++){
4267       if( j==pTab->iPKey ) continue;
4268       if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
4269       pIndex->isCovering = 0;
4270       break;
4271     }
4272   }
4273 
4274   if( pTab==pParse->pNewTable ){
4275     /* This routine has been called to create an automatic index as a
4276     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4277     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4278     ** i.e. one of:
4279     **
4280     ** CREATE TABLE t(x PRIMARY KEY, y);
4281     ** CREATE TABLE t(x, y, UNIQUE(x, y));
4282     **
4283     ** Either way, check to see if the table already has such an index. If
4284     ** so, don't bother creating this one. This only applies to
4285     ** automatically created indices. Users can do as they wish with
4286     ** explicit indices.
4287     **
4288     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4289     ** (and thus suppressing the second one) even if they have different
4290     ** sort orders.
4291     **
4292     ** If there are different collating sequences or if the columns of
4293     ** the constraint occur in different orders, then the constraints are
4294     ** considered distinct and both result in separate indices.
4295     */
4296     Index *pIdx;
4297     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4298       int k;
4299       assert( IsUniqueIndex(pIdx) );
4300       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
4301       assert( IsUniqueIndex(pIndex) );
4302 
4303       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
4304       for(k=0; k<pIdx->nKeyCol; k++){
4305         const char *z1;
4306         const char *z2;
4307         assert( pIdx->aiColumn[k]>=0 );
4308         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
4309         z1 = pIdx->azColl[k];
4310         z2 = pIndex->azColl[k];
4311         if( sqlite3StrICmp(z1, z2) ) break;
4312       }
4313       if( k==pIdx->nKeyCol ){
4314         if( pIdx->onError!=pIndex->onError ){
4315           /* This constraint creates the same index as a previous
4316           ** constraint specified somewhere in the CREATE TABLE statement.
4317           ** However the ON CONFLICT clauses are different. If both this
4318           ** constraint and the previous equivalent constraint have explicit
4319           ** ON CONFLICT clauses this is an error. Otherwise, use the
4320           ** explicitly specified behavior for the index.
4321           */
4322           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
4323             sqlite3ErrorMsg(pParse,
4324                 "conflicting ON CONFLICT clauses specified", 0);
4325           }
4326           if( pIdx->onError==OE_Default ){
4327             pIdx->onError = pIndex->onError;
4328           }
4329         }
4330         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
4331         if( IN_RENAME_OBJECT ){
4332           pIndex->pNext = pParse->pNewIndex;
4333           pParse->pNewIndex = pIndex;
4334           pIndex = 0;
4335         }
4336         goto exit_create_index;
4337       }
4338     }
4339   }
4340 
4341   if( !IN_RENAME_OBJECT ){
4342 
4343     /* Link the new Index structure to its table and to the other
4344     ** in-memory database structures.
4345     */
4346     assert( pParse->nErr==0 );
4347     if( db->init.busy ){
4348       Index *p;
4349       assert( !IN_SPECIAL_PARSE );
4350       assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
4351       if( pTblName!=0 ){
4352         pIndex->tnum = db->init.newTnum;
4353         if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
4354           sqlite3ErrorMsg(pParse, "invalid rootpage");
4355           pParse->rc = SQLITE_CORRUPT_BKPT;
4356           goto exit_create_index;
4357         }
4358       }
4359       p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
4360           pIndex->zName, pIndex);
4361       if( p ){
4362         assert( p==pIndex );  /* Malloc must have failed */
4363         sqlite3OomFault(db);
4364         goto exit_create_index;
4365       }
4366       db->mDbFlags |= DBFLAG_SchemaChange;
4367     }
4368 
4369     /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4370     ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4371     ** emit code to allocate the index rootpage on disk and make an entry for
4372     ** the index in the sqlite_schema table and populate the index with
4373     ** content.  But, do not do this if we are simply reading the sqlite_schema
4374     ** table to parse the schema, or if this index is the PRIMARY KEY index
4375     ** of a WITHOUT ROWID table.
4376     **
4377     ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4378     ** or UNIQUE index in a CREATE TABLE statement.  Since the table
4379     ** has just been created, it contains no data and the index initialization
4380     ** step can be skipped.
4381     */
4382     else if( HasRowid(pTab) || pTblName!=0 ){
4383       Vdbe *v;
4384       char *zStmt;
4385       int iMem = ++pParse->nMem;
4386 
4387       v = sqlite3GetVdbe(pParse);
4388       if( v==0 ) goto exit_create_index;
4389 
4390       sqlite3BeginWriteOperation(pParse, 1, iDb);
4391 
4392       /* Create the rootpage for the index using CreateIndex. But before
4393       ** doing so, code a Noop instruction and store its address in
4394       ** Index.tnum. This is required in case this index is actually a
4395       ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4396       ** that case the convertToWithoutRowidTable() routine will replace
4397       ** the Noop with a Goto to jump over the VDBE code generated below. */
4398       pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
4399       sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
4400 
4401       /* Gather the complete text of the CREATE INDEX statement into
4402       ** the zStmt variable
4403       */
4404       assert( pName!=0 || pStart==0 );
4405       if( pStart ){
4406         int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
4407         if( pName->z[n-1]==';' ) n--;
4408         /* A named index with an explicit CREATE INDEX statement */
4409         zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
4410             onError==OE_None ? "" : " UNIQUE", n, pName->z);
4411       }else{
4412         /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4413         /* zStmt = sqlite3MPrintf(""); */
4414         zStmt = 0;
4415       }
4416 
4417       /* Add an entry in sqlite_schema for this index
4418       */
4419       sqlite3NestedParse(pParse,
4420          "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
4421          db->aDb[iDb].zDbSName,
4422          pIndex->zName,
4423          pTab->zName,
4424          iMem,
4425          zStmt
4426       );
4427       sqlite3DbFree(db, zStmt);
4428 
4429       /* Fill the index with data and reparse the schema. Code an OP_Expire
4430       ** to invalidate all pre-compiled statements.
4431       */
4432       if( pTblName ){
4433         sqlite3RefillIndex(pParse, pIndex, iMem);
4434         sqlite3ChangeCookie(pParse, iDb);
4435         sqlite3VdbeAddParseSchemaOp(v, iDb,
4436             sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
4437         sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
4438       }
4439 
4440       sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
4441     }
4442   }
4443   if( db->init.busy || pTblName==0 ){
4444     pIndex->pNext = pTab->pIndex;
4445     pTab->pIndex = pIndex;
4446     pIndex = 0;
4447   }
4448   else if( IN_RENAME_OBJECT ){
4449     assert( pParse->pNewIndex==0 );
4450     pParse->pNewIndex = pIndex;
4451     pIndex = 0;
4452   }
4453 
4454   /* Clean up before exiting */
4455 exit_create_index:
4456   if( pIndex ) sqlite3FreeIndex(db, pIndex);
4457   if( pTab ){
4458     /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4459     ** The list was already ordered when this routine was entered, so at this
4460     ** point at most a single index (the newly added index) will be out of
4461     ** order.  So we have to reorder at most one index. */
4462     Index **ppFrom;
4463     Index *pThis;
4464     for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
4465       Index *pNext;
4466       if( pThis->onError!=OE_Replace ) continue;
4467       while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
4468         *ppFrom = pNext;
4469         pThis->pNext = pNext->pNext;
4470         pNext->pNext = pThis;
4471         ppFrom = &pNext->pNext;
4472       }
4473       break;
4474     }
4475 #ifdef SQLITE_DEBUG
4476     /* Verify that all REPLACE indexes really are now at the end
4477     ** of the index list.  In other words, no other index type ever
4478     ** comes after a REPLACE index on the list. */
4479     for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
4480       assert( pThis->onError!=OE_Replace
4481            || pThis->pNext==0
4482            || pThis->pNext->onError==OE_Replace );
4483     }
4484 #endif
4485   }
4486   sqlite3ExprDelete(db, pPIWhere);
4487   sqlite3ExprListDelete(db, pList);
4488   sqlite3SrcListDelete(db, pTblName);
4489   sqlite3DbFree(db, zName);
4490 }
4491 
4492 /*
4493 ** Fill the Index.aiRowEst[] array with default information - information
4494 ** to be used when we have not run the ANALYZE command.
4495 **
4496 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4497 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
4498 ** number of rows in the table that match any particular value of the
4499 ** first column of the index.  aiRowEst[2] is an estimate of the number
4500 ** of rows that match any particular combination of the first 2 columns
4501 ** of the index.  And so forth.  It must always be the case that
4502 *
4503 **           aiRowEst[N]<=aiRowEst[N-1]
4504 **           aiRowEst[N]>=1
4505 **
4506 ** Apart from that, we have little to go on besides intuition as to
4507 ** how aiRowEst[] should be initialized.  The numbers generated here
4508 ** are based on typical values found in actual indices.
4509 */
4510 void sqlite3DefaultRowEst(Index *pIdx){
4511                /*                10,  9,  8,  7,  6 */
4512   static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
4513   LogEst *a = pIdx->aiRowLogEst;
4514   LogEst x;
4515   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
4516   int i;
4517 
4518   /* Indexes with default row estimates should not have stat1 data */
4519   assert( !pIdx->hasStat1 );
4520 
4521   /* Set the first entry (number of rows in the index) to the estimated
4522   ** number of rows in the table, or half the number of rows in the table
4523   ** for a partial index.
4524   **
4525   ** 2020-05-27:  If some of the stat data is coming from the sqlite_stat1
4526   ** table but other parts we are having to guess at, then do not let the
4527   ** estimated number of rows in the table be less than 1000 (LogEst 99).
4528   ** Failure to do this can cause the indexes for which we do not have
4529   ** stat1 data to be ignored by the query planner.
4530   */
4531   x = pIdx->pTable->nRowLogEst;
4532   assert( 99==sqlite3LogEst(1000) );
4533   if( x<99 ){
4534     pIdx->pTable->nRowLogEst = x = 99;
4535   }
4536   if( pIdx->pPartIdxWhere!=0 ){ x -= 10;  assert( 10==sqlite3LogEst(2) ); }
4537   a[0] = x;
4538 
4539   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4540   ** 6 and each subsequent value (if any) is 5.  */
4541   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
4542   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
4543     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
4544   }
4545 
4546   assert( 0==sqlite3LogEst(1) );
4547   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
4548 }
4549 
4550 /*
4551 ** This routine will drop an existing named index.  This routine
4552 ** implements the DROP INDEX statement.
4553 */
4554 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
4555   Index *pIndex;
4556   Vdbe *v;
4557   sqlite3 *db = pParse->db;
4558   int iDb;
4559 
4560   if( db->mallocFailed ){
4561     goto exit_drop_index;
4562   }
4563   assert( pParse->nErr==0 );   /* Never called with prior non-OOM errors */
4564   assert( pName->nSrc==1 );
4565   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4566     goto exit_drop_index;
4567   }
4568   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
4569   if( pIndex==0 ){
4570     if( !ifExists ){
4571       sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
4572     }else{
4573       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
4574       sqlite3ForceNotReadOnly(pParse);
4575     }
4576     pParse->checkSchema = 1;
4577     goto exit_drop_index;
4578   }
4579   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
4580     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
4581       "or PRIMARY KEY constraint cannot be dropped", 0);
4582     goto exit_drop_index;
4583   }
4584   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
4585 #ifndef SQLITE_OMIT_AUTHORIZATION
4586   {
4587     int code = SQLITE_DROP_INDEX;
4588     Table *pTab = pIndex->pTable;
4589     const char *zDb = db->aDb[iDb].zDbSName;
4590     const char *zTab = SCHEMA_TABLE(iDb);
4591     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
4592       goto exit_drop_index;
4593     }
4594     if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
4595     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
4596       goto exit_drop_index;
4597     }
4598   }
4599 #endif
4600 
4601   /* Generate code to remove the index and from the schema table */
4602   v = sqlite3GetVdbe(pParse);
4603   if( v ){
4604     sqlite3BeginWriteOperation(pParse, 1, iDb);
4605     sqlite3NestedParse(pParse,
4606        "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
4607        db->aDb[iDb].zDbSName, pIndex->zName
4608     );
4609     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
4610     sqlite3ChangeCookie(pParse, iDb);
4611     destroyRootPage(pParse, pIndex->tnum, iDb);
4612     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
4613   }
4614 
4615 exit_drop_index:
4616   sqlite3SrcListDelete(db, pName);
4617 }
4618 
4619 /*
4620 ** pArray is a pointer to an array of objects. Each object in the
4621 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4622 ** to extend the array so that there is space for a new object at the end.
4623 **
4624 ** When this function is called, *pnEntry contains the current size of
4625 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4626 ** in total).
4627 **
4628 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4629 ** space allocated for the new object is zeroed, *pnEntry updated to
4630 ** reflect the new size of the array and a pointer to the new allocation
4631 ** returned. *pIdx is set to the index of the new array entry in this case.
4632 **
4633 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4634 ** unchanged and a copy of pArray returned.
4635 */
4636 void *sqlite3ArrayAllocate(
4637   sqlite3 *db,      /* Connection to notify of malloc failures */
4638   void *pArray,     /* Array of objects.  Might be reallocated */
4639   int szEntry,      /* Size of each object in the array */
4640   int *pnEntry,     /* Number of objects currently in use */
4641   int *pIdx         /* Write the index of a new slot here */
4642 ){
4643   char *z;
4644   sqlite3_int64 n = *pIdx = *pnEntry;
4645   if( (n & (n-1))==0 ){
4646     sqlite3_int64 sz = (n==0) ? 1 : 2*n;
4647     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
4648     if( pNew==0 ){
4649       *pIdx = -1;
4650       return pArray;
4651     }
4652     pArray = pNew;
4653   }
4654   z = (char*)pArray;
4655   memset(&z[n * szEntry], 0, szEntry);
4656   ++*pnEntry;
4657   return pArray;
4658 }
4659 
4660 /*
4661 ** Append a new element to the given IdList.  Create a new IdList if
4662 ** need be.
4663 **
4664 ** A new IdList is returned, or NULL if malloc() fails.
4665 */
4666 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
4667   sqlite3 *db = pParse->db;
4668   int i;
4669   if( pList==0 ){
4670     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
4671     if( pList==0 ) return 0;
4672   }else{
4673     IdList *pNew;
4674     pNew = sqlite3DbRealloc(db, pList,
4675                  sizeof(IdList) + pList->nId*sizeof(pList->a));
4676     if( pNew==0 ){
4677       sqlite3IdListDelete(db, pList);
4678       return 0;
4679     }
4680     pList = pNew;
4681   }
4682   i = pList->nId++;
4683   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
4684   if( IN_RENAME_OBJECT && pList->a[i].zName ){
4685     sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
4686   }
4687   return pList;
4688 }
4689 
4690 /*
4691 ** Delete an IdList.
4692 */
4693 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
4694   int i;
4695   assert( db!=0 );
4696   if( pList==0 ) return;
4697   assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */
4698   for(i=0; i<pList->nId; i++){
4699     sqlite3DbFree(db, pList->a[i].zName);
4700   }
4701   sqlite3DbNNFreeNN(db, pList);
4702 }
4703 
4704 /*
4705 ** Return the index in pList of the identifier named zId.  Return -1
4706 ** if not found.
4707 */
4708 int sqlite3IdListIndex(IdList *pList, const char *zName){
4709   int i;
4710   assert( pList!=0 );
4711   for(i=0; i<pList->nId; i++){
4712     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
4713   }
4714   return -1;
4715 }
4716 
4717 /*
4718 ** Maximum size of a SrcList object.
4719 ** The SrcList object is used to represent the FROM clause of a
4720 ** SELECT statement, and the query planner cannot deal with more
4721 ** than 64 tables in a join.  So any value larger than 64 here
4722 ** is sufficient for most uses.  Smaller values, like say 10, are
4723 ** appropriate for small and memory-limited applications.
4724 */
4725 #ifndef SQLITE_MAX_SRCLIST
4726 # define SQLITE_MAX_SRCLIST 200
4727 #endif
4728 
4729 /*
4730 ** Expand the space allocated for the given SrcList object by
4731 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
4732 ** New slots are zeroed.
4733 **
4734 ** For example, suppose a SrcList initially contains two entries: A,B.
4735 ** To append 3 new entries onto the end, do this:
4736 **
4737 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4738 **
4739 ** After the call above it would contain:  A, B, nil, nil, nil.
4740 ** If the iStart argument had been 1 instead of 2, then the result
4741 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
4742 ** the iStart value would be 0.  The result then would
4743 ** be: nil, nil, nil, A, B.
4744 **
4745 ** If a memory allocation fails or the SrcList becomes too large, leave
4746 ** the original SrcList unchanged, return NULL, and leave an error message
4747 ** in pParse.
4748 */
4749 SrcList *sqlite3SrcListEnlarge(
4750   Parse *pParse,     /* Parsing context into which errors are reported */
4751   SrcList *pSrc,     /* The SrcList to be enlarged */
4752   int nExtra,        /* Number of new slots to add to pSrc->a[] */
4753   int iStart         /* Index in pSrc->a[] of first new slot */
4754 ){
4755   int i;
4756 
4757   /* Sanity checking on calling parameters */
4758   assert( iStart>=0 );
4759   assert( nExtra>=1 );
4760   assert( pSrc!=0 );
4761   assert( iStart<=pSrc->nSrc );
4762 
4763   /* Allocate additional space if needed */
4764   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
4765     SrcList *pNew;
4766     sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
4767     sqlite3 *db = pParse->db;
4768 
4769     if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
4770       sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
4771                       SQLITE_MAX_SRCLIST);
4772       return 0;
4773     }
4774     if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
4775     pNew = sqlite3DbRealloc(db, pSrc,
4776                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
4777     if( pNew==0 ){
4778       assert( db->mallocFailed );
4779       return 0;
4780     }
4781     pSrc = pNew;
4782     pSrc->nAlloc = nAlloc;
4783   }
4784 
4785   /* Move existing slots that come after the newly inserted slots
4786   ** out of the way */
4787   for(i=pSrc->nSrc-1; i>=iStart; i--){
4788     pSrc->a[i+nExtra] = pSrc->a[i];
4789   }
4790   pSrc->nSrc += nExtra;
4791 
4792   /* Zero the newly allocated slots */
4793   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
4794   for(i=iStart; i<iStart+nExtra; i++){
4795     pSrc->a[i].iCursor = -1;
4796   }
4797 
4798   /* Return a pointer to the enlarged SrcList */
4799   return pSrc;
4800 }
4801 
4802 
4803 /*
4804 ** Append a new table name to the given SrcList.  Create a new SrcList if
4805 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
4806 **
4807 ** A SrcList is returned, or NULL if there is an OOM error or if the
4808 ** SrcList grows to large.  The returned
4809 ** SrcList might be the same as the SrcList that was input or it might be
4810 ** a new one.  If an OOM error does occurs, then the prior value of pList
4811 ** that is input to this routine is automatically freed.
4812 **
4813 ** If pDatabase is not null, it means that the table has an optional
4814 ** database name prefix.  Like this:  "database.table".  The pDatabase
4815 ** points to the table name and the pTable points to the database name.
4816 ** The SrcList.a[].zName field is filled with the table name which might
4817 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4818 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4819 ** or with NULL if no database is specified.
4820 **
4821 ** In other words, if call like this:
4822 **
4823 **         sqlite3SrcListAppend(D,A,B,0);
4824 **
4825 ** Then B is a table name and the database name is unspecified.  If called
4826 ** like this:
4827 **
4828 **         sqlite3SrcListAppend(D,A,B,C);
4829 **
4830 ** Then C is the table name and B is the database name.  If C is defined
4831 ** then so is B.  In other words, we never have a case where:
4832 **
4833 **         sqlite3SrcListAppend(D,A,0,C);
4834 **
4835 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
4836 ** before being added to the SrcList.
4837 */
4838 SrcList *sqlite3SrcListAppend(
4839   Parse *pParse,      /* Parsing context, in which errors are reported */
4840   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
4841   Token *pTable,      /* Table to append */
4842   Token *pDatabase    /* Database of the table */
4843 ){
4844   SrcItem *pItem;
4845   sqlite3 *db;
4846   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
4847   assert( pParse!=0 );
4848   assert( pParse->db!=0 );
4849   db = pParse->db;
4850   if( pList==0 ){
4851     pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
4852     if( pList==0 ) return 0;
4853     pList->nAlloc = 1;
4854     pList->nSrc = 1;
4855     memset(&pList->a[0], 0, sizeof(pList->a[0]));
4856     pList->a[0].iCursor = -1;
4857   }else{
4858     SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
4859     if( pNew==0 ){
4860       sqlite3SrcListDelete(db, pList);
4861       return 0;
4862     }else{
4863       pList = pNew;
4864     }
4865   }
4866   pItem = &pList->a[pList->nSrc-1];
4867   if( pDatabase && pDatabase->z==0 ){
4868     pDatabase = 0;
4869   }
4870   if( pDatabase ){
4871     pItem->zName = sqlite3NameFromToken(db, pDatabase);
4872     pItem->zDatabase = sqlite3NameFromToken(db, pTable);
4873   }else{
4874     pItem->zName = sqlite3NameFromToken(db, pTable);
4875     pItem->zDatabase = 0;
4876   }
4877   return pList;
4878 }
4879 
4880 /*
4881 ** Assign VdbeCursor index numbers to all tables in a SrcList
4882 */
4883 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
4884   int i;
4885   SrcItem *pItem;
4886   assert( pList || pParse->db->mallocFailed );
4887   if( ALWAYS(pList) ){
4888     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4889       if( pItem->iCursor>=0 ) continue;
4890       pItem->iCursor = pParse->nTab++;
4891       if( pItem->pSelect ){
4892         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4893       }
4894     }
4895   }
4896 }
4897 
4898 /*
4899 ** Delete an entire SrcList including all its substructure.
4900 */
4901 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4902   int i;
4903   SrcItem *pItem;
4904   assert( db!=0 );
4905   if( pList==0 ) return;
4906   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4907     if( pItem->zDatabase ) sqlite3DbNNFreeNN(db, pItem->zDatabase);
4908     if( pItem->zName ) sqlite3DbNNFreeNN(db, pItem->zName);
4909     if( pItem->zAlias ) sqlite3DbNNFreeNN(db, pItem->zAlias);
4910     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4911     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4912     sqlite3DeleteTable(db, pItem->pTab);
4913     if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
4914     if( pItem->fg.isUsing ){
4915       sqlite3IdListDelete(db, pItem->u3.pUsing);
4916     }else if( pItem->u3.pOn ){
4917       sqlite3ExprDelete(db, pItem->u3.pOn);
4918     }
4919   }
4920   sqlite3DbNNFreeNN(db, pList);
4921 }
4922 
4923 /*
4924 ** This routine is called by the parser to add a new term to the
4925 ** end of a growing FROM clause.  The "p" parameter is the part of
4926 ** the FROM clause that has already been constructed.  "p" is NULL
4927 ** if this is the first term of the FROM clause.  pTable and pDatabase
4928 ** are the name of the table and database named in the FROM clause term.
4929 ** pDatabase is NULL if the database name qualifier is missing - the
4930 ** usual case.  If the term has an alias, then pAlias points to the
4931 ** alias token.  If the term is a subquery, then pSubquery is the
4932 ** SELECT statement that the subquery encodes.  The pTable and
4933 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
4934 ** parameters are the content of the ON and USING clauses.
4935 **
4936 ** Return a new SrcList which encodes is the FROM with the new
4937 ** term added.
4938 */
4939 SrcList *sqlite3SrcListAppendFromTerm(
4940   Parse *pParse,          /* Parsing context */
4941   SrcList *p,             /* The left part of the FROM clause already seen */
4942   Token *pTable,          /* Name of the table to add to the FROM clause */
4943   Token *pDatabase,       /* Name of the database containing pTable */
4944   Token *pAlias,          /* The right-hand side of the AS subexpression */
4945   Select *pSubquery,      /* A subquery used in place of a table name */
4946   OnOrUsing *pOnUsing     /* Either the ON clause or the USING clause */
4947 ){
4948   SrcItem *pItem;
4949   sqlite3 *db = pParse->db;
4950   if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){
4951     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4952       (pOnUsing->pOn ? "ON" : "USING")
4953     );
4954     goto append_from_error;
4955   }
4956   p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4957   if( p==0 ){
4958     goto append_from_error;
4959   }
4960   assert( p->nSrc>0 );
4961   pItem = &p->a[p->nSrc-1];
4962   assert( (pTable==0)==(pDatabase==0) );
4963   assert( pItem->zName==0 || pDatabase!=0 );
4964   if( IN_RENAME_OBJECT && pItem->zName ){
4965     Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4966     sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4967   }
4968   assert( pAlias!=0 );
4969   if( pAlias->n ){
4970     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4971   }
4972   if( pSubquery ){
4973     pItem->pSelect = pSubquery;
4974     if( pSubquery->selFlags & SF_NestedFrom ){
4975       pItem->fg.isNestedFrom = 1;
4976     }
4977   }
4978   assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 );
4979   assert( pItem->fg.isUsing==0 );
4980   if( pOnUsing==0 ){
4981     pItem->u3.pOn = 0;
4982   }else if( pOnUsing->pUsing ){
4983     pItem->fg.isUsing = 1;
4984     pItem->u3.pUsing = pOnUsing->pUsing;
4985   }else{
4986     pItem->u3.pOn = pOnUsing->pOn;
4987   }
4988   return p;
4989 
4990 append_from_error:
4991   assert( p==0 );
4992   sqlite3ClearOnOrUsing(db, pOnUsing);
4993   sqlite3SelectDelete(db, pSubquery);
4994   return 0;
4995 }
4996 
4997 /*
4998 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4999 ** element of the source-list passed as the second argument.
5000 */
5001 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
5002   assert( pIndexedBy!=0 );
5003   if( p && pIndexedBy->n>0 ){
5004     SrcItem *pItem;
5005     assert( p->nSrc>0 );
5006     pItem = &p->a[p->nSrc-1];
5007     assert( pItem->fg.notIndexed==0 );
5008     assert( pItem->fg.isIndexedBy==0 );
5009     assert( pItem->fg.isTabFunc==0 );
5010     if( pIndexedBy->n==1 && !pIndexedBy->z ){
5011       /* A "NOT INDEXED" clause was supplied. See parse.y
5012       ** construct "indexed_opt" for details. */
5013       pItem->fg.notIndexed = 1;
5014     }else{
5015       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
5016       pItem->fg.isIndexedBy = 1;
5017       assert( pItem->fg.isCte==0 );  /* No collision on union u2 */
5018     }
5019   }
5020 }
5021 
5022 /*
5023 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
5024 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
5025 ** are deleted by this function.
5026 */
5027 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
5028   assert( p1 && p1->nSrc==1 );
5029   if( p2 ){
5030     SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
5031     if( pNew==0 ){
5032       sqlite3SrcListDelete(pParse->db, p2);
5033     }else{
5034       p1 = pNew;
5035       memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
5036       sqlite3DbFree(pParse->db, p2);
5037       p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype);
5038     }
5039   }
5040   return p1;
5041 }
5042 
5043 /*
5044 ** Add the list of function arguments to the SrcList entry for a
5045 ** table-valued-function.
5046 */
5047 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
5048   if( p ){
5049     SrcItem *pItem = &p->a[p->nSrc-1];
5050     assert( pItem->fg.notIndexed==0 );
5051     assert( pItem->fg.isIndexedBy==0 );
5052     assert( pItem->fg.isTabFunc==0 );
5053     pItem->u1.pFuncArg = pList;
5054     pItem->fg.isTabFunc = 1;
5055   }else{
5056     sqlite3ExprListDelete(pParse->db, pList);
5057   }
5058 }
5059 
5060 /*
5061 ** When building up a FROM clause in the parser, the join operator
5062 ** is initially attached to the left operand.  But the code generator
5063 ** expects the join operator to be on the right operand.  This routine
5064 ** Shifts all join operators from left to right for an entire FROM
5065 ** clause.
5066 **
5067 ** Example: Suppose the join is like this:
5068 **
5069 **           A natural cross join B
5070 **
5071 ** The operator is "natural cross join".  The A and B operands are stored
5072 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
5073 ** operator with A.  This routine shifts that operator over to B.
5074 **
5075 ** Additional changes:
5076 **
5077 **   *   All tables to the left of the right-most RIGHT JOIN are tagged with
5078 **       JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
5079 **       code generator can easily tell that the table is part of
5080 **       the left operand of at least one RIGHT JOIN.
5081 */
5082 void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){
5083   (void)pParse;
5084   if( p && p->nSrc>1 ){
5085     int i = p->nSrc-1;
5086     u8 allFlags = 0;
5087     do{
5088       allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype;
5089     }while( (--i)>0 );
5090     p->a[0].fg.jointype = 0;
5091 
5092     /* All terms to the left of a RIGHT JOIN should be tagged with the
5093     ** JT_LTORJ flags */
5094     if( allFlags & JT_RIGHT ){
5095       for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){}
5096       i--;
5097       assert( i>=0 );
5098       do{
5099         p->a[i].fg.jointype |= JT_LTORJ;
5100       }while( (--i)>=0 );
5101     }
5102   }
5103 }
5104 
5105 /*
5106 ** Generate VDBE code for a BEGIN statement.
5107 */
5108 void sqlite3BeginTransaction(Parse *pParse, int type){
5109   sqlite3 *db;
5110   Vdbe *v;
5111   int i;
5112 
5113   assert( pParse!=0 );
5114   db = pParse->db;
5115   assert( db!=0 );
5116   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
5117     return;
5118   }
5119   v = sqlite3GetVdbe(pParse);
5120   if( !v ) return;
5121   if( type!=TK_DEFERRED ){
5122     for(i=0; i<db->nDb; i++){
5123       int eTxnType;
5124       Btree *pBt = db->aDb[i].pBt;
5125       if( pBt && sqlite3BtreeIsReadonly(pBt) ){
5126         eTxnType = 0;  /* Read txn */
5127       }else if( type==TK_EXCLUSIVE ){
5128         eTxnType = 2;  /* Exclusive txn */
5129       }else{
5130         eTxnType = 1;  /* Write txn */
5131       }
5132       sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
5133       sqlite3VdbeUsesBtree(v, i);
5134     }
5135   }
5136   sqlite3VdbeAddOp0(v, OP_AutoCommit);
5137 }
5138 
5139 /*
5140 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5141 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
5142 ** code is generated for a COMMIT.
5143 */
5144 void sqlite3EndTransaction(Parse *pParse, int eType){
5145   Vdbe *v;
5146   int isRollback;
5147 
5148   assert( pParse!=0 );
5149   assert( pParse->db!=0 );
5150   assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
5151   isRollback = eType==TK_ROLLBACK;
5152   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
5153        isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
5154     return;
5155   }
5156   v = sqlite3GetVdbe(pParse);
5157   if( v ){
5158     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
5159   }
5160 }
5161 
5162 /*
5163 ** This function is called by the parser when it parses a command to create,
5164 ** release or rollback an SQL savepoint.
5165 */
5166 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
5167   char *zName = sqlite3NameFromToken(pParse->db, pName);
5168   if( zName ){
5169     Vdbe *v = sqlite3GetVdbe(pParse);
5170 #ifndef SQLITE_OMIT_AUTHORIZATION
5171     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5172     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
5173 #endif
5174     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
5175       sqlite3DbFree(pParse->db, zName);
5176       return;
5177     }
5178     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
5179   }
5180 }
5181 
5182 /*
5183 ** Make sure the TEMP database is open and available for use.  Return
5184 ** the number of errors.  Leave any error messages in the pParse structure.
5185 */
5186 int sqlite3OpenTempDatabase(Parse *pParse){
5187   sqlite3 *db = pParse->db;
5188   if( db->aDb[1].pBt==0 && !pParse->explain ){
5189     int rc;
5190     Btree *pBt;
5191     static const int flags =
5192           SQLITE_OPEN_READWRITE |
5193           SQLITE_OPEN_CREATE |
5194           SQLITE_OPEN_EXCLUSIVE |
5195           SQLITE_OPEN_DELETEONCLOSE |
5196           SQLITE_OPEN_TEMP_DB;
5197 
5198     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
5199     if( rc!=SQLITE_OK ){
5200       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
5201         "file for storing temporary tables");
5202       pParse->rc = rc;
5203       return 1;
5204     }
5205     db->aDb[1].pBt = pBt;
5206     assert( db->aDb[1].pSchema );
5207     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
5208       sqlite3OomFault(db);
5209       return 1;
5210     }
5211   }
5212   return 0;
5213 }
5214 
5215 /*
5216 ** Record the fact that the schema cookie will need to be verified
5217 ** for database iDb.  The code to actually verify the schema cookie
5218 ** will occur at the end of the top-level VDBE and will be generated
5219 ** later, by sqlite3FinishCoding().
5220 */
5221 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
5222   assert( iDb>=0 && iDb<pToplevel->db->nDb );
5223   assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
5224   assert( iDb<SQLITE_MAX_DB );
5225   assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
5226   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
5227     DbMaskSet(pToplevel->cookieMask, iDb);
5228     if( !OMIT_TEMPDB && iDb==1 ){
5229       sqlite3OpenTempDatabase(pToplevel);
5230     }
5231   }
5232 }
5233 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
5234   sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
5235 }
5236 
5237 
5238 /*
5239 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5240 ** attached database. Otherwise, invoke it for the database named zDb only.
5241 */
5242 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
5243   sqlite3 *db = pParse->db;
5244   int i;
5245   for(i=0; i<db->nDb; i++){
5246     Db *pDb = &db->aDb[i];
5247     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
5248       sqlite3CodeVerifySchema(pParse, i);
5249     }
5250   }
5251 }
5252 
5253 /*
5254 ** Generate VDBE code that prepares for doing an operation that
5255 ** might change the database.
5256 **
5257 ** This routine starts a new transaction if we are not already within
5258 ** a transaction.  If we are already within a transaction, then a checkpoint
5259 ** is set if the setStatement parameter is true.  A checkpoint should
5260 ** be set for operations that might fail (due to a constraint) part of
5261 ** the way through and which will need to undo some writes without having to
5262 ** rollback the whole transaction.  For operations where all constraints
5263 ** can be checked before any changes are made to the database, it is never
5264 ** necessary to undo a write and the checkpoint should not be set.
5265 */
5266 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
5267   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5268   sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
5269   DbMaskSet(pToplevel->writeMask, iDb);
5270   pToplevel->isMultiWrite |= setStatement;
5271 }
5272 
5273 /*
5274 ** Indicate that the statement currently under construction might write
5275 ** more than one entry (example: deleting one row then inserting another,
5276 ** inserting multiple rows in a table, or inserting a row and index entries.)
5277 ** If an abort occurs after some of these writes have completed, then it will
5278 ** be necessary to undo the completed writes.
5279 */
5280 void sqlite3MultiWrite(Parse *pParse){
5281   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5282   pToplevel->isMultiWrite = 1;
5283 }
5284 
5285 /*
5286 ** The code generator calls this routine if is discovers that it is
5287 ** possible to abort a statement prior to completion.  In order to
5288 ** perform this abort without corrupting the database, we need to make
5289 ** sure that the statement is protected by a statement transaction.
5290 **
5291 ** Technically, we only need to set the mayAbort flag if the
5292 ** isMultiWrite flag was previously set.  There is a time dependency
5293 ** such that the abort must occur after the multiwrite.  This makes
5294 ** some statements involving the REPLACE conflict resolution algorithm
5295 ** go a little faster.  But taking advantage of this time dependency
5296 ** makes it more difficult to prove that the code is correct (in
5297 ** particular, it prevents us from writing an effective
5298 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5299 ** to take the safe route and skip the optimization.
5300 */
5301 void sqlite3MayAbort(Parse *pParse){
5302   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5303   pToplevel->mayAbort = 1;
5304 }
5305 
5306 /*
5307 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5308 ** error. The onError parameter determines which (if any) of the statement
5309 ** and/or current transaction is rolled back.
5310 */
5311 void sqlite3HaltConstraint(
5312   Parse *pParse,    /* Parsing context */
5313   int errCode,      /* extended error code */
5314   int onError,      /* Constraint type */
5315   char *p4,         /* Error message */
5316   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
5317   u8 p5Errmsg       /* P5_ErrMsg type */
5318 ){
5319   Vdbe *v;
5320   assert( pParse->pVdbe!=0 );
5321   v = sqlite3GetVdbe(pParse);
5322   assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
5323   if( onError==OE_Abort ){
5324     sqlite3MayAbort(pParse);
5325   }
5326   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
5327   sqlite3VdbeChangeP5(v, p5Errmsg);
5328 }
5329 
5330 /*
5331 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5332 */
5333 void sqlite3UniqueConstraint(
5334   Parse *pParse,    /* Parsing context */
5335   int onError,      /* Constraint type */
5336   Index *pIdx       /* The index that triggers the constraint */
5337 ){
5338   char *zErr;
5339   int j;
5340   StrAccum errMsg;
5341   Table *pTab = pIdx->pTable;
5342 
5343   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
5344                       pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
5345   if( pIdx->aColExpr ){
5346     sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
5347   }else{
5348     for(j=0; j<pIdx->nKeyCol; j++){
5349       char *zCol;
5350       assert( pIdx->aiColumn[j]>=0 );
5351       zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
5352       if( j ) sqlite3_str_append(&errMsg, ", ", 2);
5353       sqlite3_str_appendall(&errMsg, pTab->zName);
5354       sqlite3_str_append(&errMsg, ".", 1);
5355       sqlite3_str_appendall(&errMsg, zCol);
5356     }
5357   }
5358   zErr = sqlite3StrAccumFinish(&errMsg);
5359   sqlite3HaltConstraint(pParse,
5360     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
5361                             : SQLITE_CONSTRAINT_UNIQUE,
5362     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
5363 }
5364 
5365 
5366 /*
5367 ** Code an OP_Halt due to non-unique rowid.
5368 */
5369 void sqlite3RowidConstraint(
5370   Parse *pParse,    /* Parsing context */
5371   int onError,      /* Conflict resolution algorithm */
5372   Table *pTab       /* The table with the non-unique rowid */
5373 ){
5374   char *zMsg;
5375   int rc;
5376   if( pTab->iPKey>=0 ){
5377     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
5378                           pTab->aCol[pTab->iPKey].zCnName);
5379     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
5380   }else{
5381     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
5382     rc = SQLITE_CONSTRAINT_ROWID;
5383   }
5384   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
5385                         P5_ConstraintUnique);
5386 }
5387 
5388 /*
5389 ** Check to see if pIndex uses the collating sequence pColl.  Return
5390 ** true if it does and false if it does not.
5391 */
5392 #ifndef SQLITE_OMIT_REINDEX
5393 static int collationMatch(const char *zColl, Index *pIndex){
5394   int i;
5395   assert( zColl!=0 );
5396   for(i=0; i<pIndex->nColumn; i++){
5397     const char *z = pIndex->azColl[i];
5398     assert( z!=0 || pIndex->aiColumn[i]<0 );
5399     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
5400       return 1;
5401     }
5402   }
5403   return 0;
5404 }
5405 #endif
5406 
5407 /*
5408 ** Recompute all indices of pTab that use the collating sequence pColl.
5409 ** If pColl==0 then recompute all indices of pTab.
5410 */
5411 #ifndef SQLITE_OMIT_REINDEX
5412 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
5413   if( !IsVirtual(pTab) ){
5414     Index *pIndex;              /* An index associated with pTab */
5415 
5416     for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
5417       if( zColl==0 || collationMatch(zColl, pIndex) ){
5418         int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5419         sqlite3BeginWriteOperation(pParse, 0, iDb);
5420         sqlite3RefillIndex(pParse, pIndex, -1);
5421       }
5422     }
5423   }
5424 }
5425 #endif
5426 
5427 /*
5428 ** Recompute all indices of all tables in all databases where the
5429 ** indices use the collating sequence pColl.  If pColl==0 then recompute
5430 ** all indices everywhere.
5431 */
5432 #ifndef SQLITE_OMIT_REINDEX
5433 static void reindexDatabases(Parse *pParse, char const *zColl){
5434   Db *pDb;                    /* A single database */
5435   int iDb;                    /* The database index number */
5436   sqlite3 *db = pParse->db;   /* The database connection */
5437   HashElem *k;                /* For looping over tables in pDb */
5438   Table *pTab;                /* A table in the database */
5439 
5440   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
5441   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
5442     assert( pDb!=0 );
5443     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
5444       pTab = (Table*)sqliteHashData(k);
5445       reindexTable(pParse, pTab, zColl);
5446     }
5447   }
5448 }
5449 #endif
5450 
5451 /*
5452 ** Generate code for the REINDEX command.
5453 **
5454 **        REINDEX                            -- 1
5455 **        REINDEX  <collation>               -- 2
5456 **        REINDEX  ?<database>.?<tablename>  -- 3
5457 **        REINDEX  ?<database>.?<indexname>  -- 4
5458 **
5459 ** Form 1 causes all indices in all attached databases to be rebuilt.
5460 ** Form 2 rebuilds all indices in all databases that use the named
5461 ** collating function.  Forms 3 and 4 rebuild the named index or all
5462 ** indices associated with the named table.
5463 */
5464 #ifndef SQLITE_OMIT_REINDEX
5465 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
5466   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
5467   char *z;                    /* Name of a table or index */
5468   const char *zDb;            /* Name of the database */
5469   Table *pTab;                /* A table in the database */
5470   Index *pIndex;              /* An index associated with pTab */
5471   int iDb;                    /* The database index number */
5472   sqlite3 *db = pParse->db;   /* The database connection */
5473   Token *pObjName;            /* Name of the table or index to be reindexed */
5474 
5475   /* Read the database schema. If an error occurs, leave an error message
5476   ** and code in pParse and return NULL. */
5477   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
5478     return;
5479   }
5480 
5481   if( pName1==0 ){
5482     reindexDatabases(pParse, 0);
5483     return;
5484   }else if( NEVER(pName2==0) || pName2->z==0 ){
5485     char *zColl;
5486     assert( pName1->z );
5487     zColl = sqlite3NameFromToken(pParse->db, pName1);
5488     if( !zColl ) return;
5489     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
5490     if( pColl ){
5491       reindexDatabases(pParse, zColl);
5492       sqlite3DbFree(db, zColl);
5493       return;
5494     }
5495     sqlite3DbFree(db, zColl);
5496   }
5497   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
5498   if( iDb<0 ) return;
5499   z = sqlite3NameFromToken(db, pObjName);
5500   if( z==0 ) return;
5501   zDb = db->aDb[iDb].zDbSName;
5502   pTab = sqlite3FindTable(db, z, zDb);
5503   if( pTab ){
5504     reindexTable(pParse, pTab, 0);
5505     sqlite3DbFree(db, z);
5506     return;
5507   }
5508   pIndex = sqlite3FindIndex(db, z, zDb);
5509   sqlite3DbFree(db, z);
5510   if( pIndex ){
5511     sqlite3BeginWriteOperation(pParse, 0, iDb);
5512     sqlite3RefillIndex(pParse, pIndex, -1);
5513     return;
5514   }
5515   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
5516 }
5517 #endif
5518 
5519 /*
5520 ** Return a KeyInfo structure that is appropriate for the given Index.
5521 **
5522 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5523 ** when it has finished using it.
5524 */
5525 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
5526   int i;
5527   int nCol = pIdx->nColumn;
5528   int nKey = pIdx->nKeyCol;
5529   KeyInfo *pKey;
5530   if( pParse->nErr ) return 0;
5531   if( pIdx->uniqNotNull ){
5532     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
5533   }else{
5534     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
5535   }
5536   if( pKey ){
5537     assert( sqlite3KeyInfoIsWriteable(pKey) );
5538     for(i=0; i<nCol; i++){
5539       const char *zColl = pIdx->azColl[i];
5540       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
5541                         sqlite3LocateCollSeq(pParse, zColl);
5542       pKey->aSortFlags[i] = pIdx->aSortOrder[i];
5543       assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
5544     }
5545     if( pParse->nErr ){
5546       assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
5547       if( pIdx->bNoQuery==0 ){
5548         /* Deactivate the index because it contains an unknown collating
5549         ** sequence.  The only way to reactive the index is to reload the
5550         ** schema.  Adding the missing collating sequence later does not
5551         ** reactive the index.  The application had the chance to register
5552         ** the missing index using the collation-needed callback.  For
5553         ** simplicity, SQLite will not give the application a second chance.
5554         */
5555         pIdx->bNoQuery = 1;
5556         pParse->rc = SQLITE_ERROR_RETRY;
5557       }
5558       sqlite3KeyInfoUnref(pKey);
5559       pKey = 0;
5560     }
5561   }
5562   return pKey;
5563 }
5564 
5565 #ifndef SQLITE_OMIT_CTE
5566 /*
5567 ** Create a new CTE object
5568 */
5569 Cte *sqlite3CteNew(
5570   Parse *pParse,          /* Parsing context */
5571   Token *pName,           /* Name of the common-table */
5572   ExprList *pArglist,     /* Optional column name list for the table */
5573   Select *pQuery,         /* Query used to initialize the table */
5574   u8 eM10d                /* The MATERIALIZED flag */
5575 ){
5576   Cte *pNew;
5577   sqlite3 *db = pParse->db;
5578 
5579   pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
5580   assert( pNew!=0 || db->mallocFailed );
5581 
5582   if( db->mallocFailed ){
5583     sqlite3ExprListDelete(db, pArglist);
5584     sqlite3SelectDelete(db, pQuery);
5585   }else{
5586     pNew->pSelect = pQuery;
5587     pNew->pCols = pArglist;
5588     pNew->zName = sqlite3NameFromToken(pParse->db, pName);
5589     pNew->eM10d = eM10d;
5590   }
5591   return pNew;
5592 }
5593 
5594 /*
5595 ** Clear information from a Cte object, but do not deallocate storage
5596 ** for the object itself.
5597 */
5598 static void cteClear(sqlite3 *db, Cte *pCte){
5599   assert( pCte!=0 );
5600   sqlite3ExprListDelete(db, pCte->pCols);
5601   sqlite3SelectDelete(db, pCte->pSelect);
5602   sqlite3DbFree(db, pCte->zName);
5603 }
5604 
5605 /*
5606 ** Free the contents of the CTE object passed as the second argument.
5607 */
5608 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
5609   assert( pCte!=0 );
5610   cteClear(db, pCte);
5611   sqlite3DbFree(db, pCte);
5612 }
5613 
5614 /*
5615 ** This routine is invoked once per CTE by the parser while parsing a
5616 ** WITH clause.  The CTE described by teh third argument is added to
5617 ** the WITH clause of the second argument.  If the second argument is
5618 ** NULL, then a new WITH argument is created.
5619 */
5620 With *sqlite3WithAdd(
5621   Parse *pParse,          /* Parsing context */
5622   With *pWith,            /* Existing WITH clause, or NULL */
5623   Cte *pCte               /* CTE to add to the WITH clause */
5624 ){
5625   sqlite3 *db = pParse->db;
5626   With *pNew;
5627   char *zName;
5628 
5629   if( pCte==0 ){
5630     return pWith;
5631   }
5632 
5633   /* Check that the CTE name is unique within this WITH clause. If
5634   ** not, store an error in the Parse structure. */
5635   zName = pCte->zName;
5636   if( zName && pWith ){
5637     int i;
5638     for(i=0; i<pWith->nCte; i++){
5639       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
5640         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
5641       }
5642     }
5643   }
5644 
5645   if( pWith ){
5646     sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
5647     pNew = sqlite3DbRealloc(db, pWith, nByte);
5648   }else{
5649     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
5650   }
5651   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
5652 
5653   if( db->mallocFailed ){
5654     sqlite3CteDelete(db, pCte);
5655     pNew = pWith;
5656   }else{
5657     pNew->a[pNew->nCte++] = *pCte;
5658     sqlite3DbFree(db, pCte);
5659   }
5660 
5661   return pNew;
5662 }
5663 
5664 /*
5665 ** Free the contents of the With object passed as the second argument.
5666 */
5667 void sqlite3WithDelete(sqlite3 *db, With *pWith){
5668   if( pWith ){
5669     int i;
5670     for(i=0; i<pWith->nCte; i++){
5671       cteClear(db, &pWith->a[i]);
5672     }
5673     sqlite3DbFree(db, pWith);
5674   }
5675 }
5676 #endif /* !defined(SQLITE_OMIT_CTE) */
5677