1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 229 /* A minimum of one cursor is required if autoincrement is used 230 * See ticket [a696379c1f08866] */ 231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 232 sqlite3VdbeMakeReady(v, pParse); 233 pParse->rc = SQLITE_DONE; 234 }else{ 235 pParse->rc = SQLITE_ERROR; 236 } 237 } 238 239 /* 240 ** Run the parser and code generator recursively in order to generate 241 ** code for the SQL statement given onto the end of the pParse context 242 ** currently under construction. When the parser is run recursively 243 ** this way, the final OP_Halt is not appended and other initialization 244 ** and finalization steps are omitted because those are handling by the 245 ** outermost parser. 246 ** 247 ** Not everything is nestable. This facility is designed to permit 248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 249 ** care if you decide to try to use this routine for some other purposes. 250 */ 251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 252 va_list ap; 253 char *zSql; 254 char *zErrMsg = 0; 255 sqlite3 *db = pParse->db; 256 char saveBuf[PARSE_TAIL_SZ]; 257 258 if( pParse->nErr ) return; 259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 260 va_start(ap, zFormat); 261 zSql = sqlite3VMPrintf(db, zFormat, ap); 262 va_end(ap); 263 if( zSql==0 ){ 264 return; /* A malloc must have failed */ 265 } 266 pParse->nested++; 267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 269 sqlite3RunParser(pParse, zSql, &zErrMsg); 270 sqlite3DbFree(db, zErrMsg); 271 sqlite3DbFree(db, zSql); 272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 273 pParse->nested--; 274 } 275 276 #if SQLITE_USER_AUTHENTICATION 277 /* 278 ** Return TRUE if zTable is the name of the system table that stores the 279 ** list of users and their access credentials. 280 */ 281 int sqlite3UserAuthTable(const char *zTable){ 282 return sqlite3_stricmp(zTable, "sqlite_user")==0; 283 } 284 #endif 285 286 /* 287 ** Locate the in-memory structure that describes a particular database 288 ** table given the name of that table and (optionally) the name of the 289 ** database containing the table. Return NULL if not found. 290 ** 291 ** If zDatabase is 0, all databases are searched for the table and the 292 ** first matching table is returned. (No checking for duplicate table 293 ** names is done.) The search order is TEMP first, then MAIN, then any 294 ** auxiliary databases added using the ATTACH command. 295 ** 296 ** See also sqlite3LocateTable(). 297 */ 298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 299 Table *p = 0; 300 int i; 301 302 /* All mutexes are required for schema access. Make sure we hold them. */ 303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 304 #if SQLITE_USER_AUTHENTICATION 305 /* Only the admin user is allowed to know that the sqlite_user table 306 ** exists */ 307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 308 return 0; 309 } 310 #endif 311 while(1){ 312 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 315 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 317 if( p ) return p; 318 } 319 } 320 /* Not found. If the name we were looking for was temp.sqlite_master 321 ** then change the name to sqlite_temp_master and try again. */ 322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 324 zName = TEMP_MASTER_NAME; 325 } 326 return 0; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName); 364 } 365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 366 return pMod->pEpoTab; 367 } 368 } 369 #endif 370 if( (flags & LOCATE_NOERR)==0 ){ 371 if( zDbase ){ 372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 373 }else{ 374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 375 } 376 pParse->checkSchema = 1; 377 } 378 } 379 380 return p; 381 } 382 383 /* 384 ** Locate the table identified by *p. 385 ** 386 ** This is a wrapper around sqlite3LocateTable(). The difference between 387 ** sqlite3LocateTable() and this function is that this function restricts 388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 389 ** non-NULL if it is part of a view or trigger program definition. See 390 ** sqlite3FixSrcList() for details. 391 */ 392 Table *sqlite3LocateTableItem( 393 Parse *pParse, 394 u32 flags, 395 struct SrcList_item *p 396 ){ 397 const char *zDb; 398 assert( p->pSchema==0 || p->zDatabase==0 ); 399 if( p->pSchema ){ 400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 401 zDb = pParse->db->aDb[iDb].zDbSName; 402 }else{ 403 zDb = p->zDatabase; 404 } 405 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 406 } 407 408 /* 409 ** Locate the in-memory structure that describes 410 ** a particular index given the name of that index 411 ** and the name of the database that contains the index. 412 ** Return NULL if not found. 413 ** 414 ** If zDatabase is 0, all databases are searched for the 415 ** table and the first matching index is returned. (No checking 416 ** for duplicate index names is done.) The search order is 417 ** TEMP first, then MAIN, then any auxiliary databases added 418 ** using the ATTACH command. 419 */ 420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 421 Index *p = 0; 422 int i; 423 /* All mutexes are required for schema access. Make sure we hold them. */ 424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 425 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 427 Schema *pSchema = db->aDb[j].pSchema; 428 assert( pSchema ); 429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 430 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 431 p = sqlite3HashFind(&pSchema->idxHash, zName); 432 if( p ) break; 433 } 434 return p; 435 } 436 437 /* 438 ** Reclaim the memory used by an index 439 */ 440 static void freeIndex(sqlite3 *db, Index *p){ 441 #ifndef SQLITE_OMIT_ANALYZE 442 sqlite3DeleteIndexSamples(db, p); 443 #endif 444 sqlite3ExprDelete(db, p->pPartIdxWhere); 445 sqlite3ExprListDelete(db, p->aColExpr); 446 sqlite3DbFree(db, p->zColAff); 447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 449 sqlite3_free(p->aiRowEst); 450 #endif 451 sqlite3DbFree(db, p); 452 } 453 454 /* 455 ** For the index called zIdxName which is found in the database iDb, 456 ** unlike that index from its Table then remove the index from 457 ** the index hash table and free all memory structures associated 458 ** with the index. 459 */ 460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 461 Index *pIndex; 462 Hash *pHash; 463 464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 465 pHash = &db->aDb[iDb].pSchema->idxHash; 466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 467 if( ALWAYS(pIndex) ){ 468 if( pIndex->pTable->pIndex==pIndex ){ 469 pIndex->pTable->pIndex = pIndex->pNext; 470 }else{ 471 Index *p; 472 /* Justification of ALWAYS(); The index must be on the list of 473 ** indices. */ 474 p = pIndex->pTable->pIndex; 475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 476 if( ALWAYS(p && p->pNext==pIndex) ){ 477 p->pNext = pIndex->pNext; 478 } 479 } 480 freeIndex(db, pIndex); 481 } 482 db->flags |= SQLITE_InternChanges; 483 } 484 485 /* 486 ** Look through the list of open database files in db->aDb[] and if 487 ** any have been closed, remove them from the list. Reallocate the 488 ** db->aDb[] structure to a smaller size, if possible. 489 ** 490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 491 ** are never candidates for being collapsed. 492 */ 493 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 494 int i, j; 495 for(i=j=2; i<db->nDb; i++){ 496 struct Db *pDb = &db->aDb[i]; 497 if( pDb->pBt==0 ){ 498 sqlite3DbFree(db, pDb->zDbSName); 499 pDb->zDbSName = 0; 500 continue; 501 } 502 if( j<i ){ 503 db->aDb[j] = db->aDb[i]; 504 } 505 j++; 506 } 507 db->nDb = j; 508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 510 sqlite3DbFree(db, db->aDb); 511 db->aDb = db->aDbStatic; 512 } 513 } 514 515 /* 516 ** Reset the schema for the database at index iDb. Also reset the 517 ** TEMP schema. 518 */ 519 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 520 Db *pDb; 521 assert( iDb<db->nDb ); 522 523 /* Case 1: Reset the single schema identified by iDb */ 524 pDb = &db->aDb[iDb]; 525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 526 assert( pDb->pSchema!=0 ); 527 sqlite3SchemaClear(pDb->pSchema); 528 529 /* If any database other than TEMP is reset, then also reset TEMP 530 ** since TEMP might be holding triggers that reference tables in the 531 ** other database. 532 */ 533 if( iDb!=1 ){ 534 pDb = &db->aDb[1]; 535 assert( pDb->pSchema!=0 ); 536 sqlite3SchemaClear(pDb->pSchema); 537 } 538 return; 539 } 540 541 /* 542 ** Erase all schema information from all attached databases (including 543 ** "main" and "temp") for a single database connection. 544 */ 545 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 546 int i; 547 sqlite3BtreeEnterAll(db); 548 for(i=0; i<db->nDb; i++){ 549 Db *pDb = &db->aDb[i]; 550 if( pDb->pSchema ){ 551 sqlite3SchemaClear(pDb->pSchema); 552 } 553 } 554 db->flags &= ~SQLITE_InternChanges; 555 sqlite3VtabUnlockList(db); 556 sqlite3BtreeLeaveAll(db); 557 sqlite3CollapseDatabaseArray(db); 558 } 559 560 /* 561 ** This routine is called when a commit occurs. 562 */ 563 void sqlite3CommitInternalChanges(sqlite3 *db){ 564 db->flags &= ~SQLITE_InternChanges; 565 } 566 567 /* 568 ** Delete memory allocated for the column names of a table or view (the 569 ** Table.aCol[] array). 570 */ 571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 572 int i; 573 Column *pCol; 574 assert( pTable!=0 ); 575 if( (pCol = pTable->aCol)!=0 ){ 576 for(i=0; i<pTable->nCol; i++, pCol++){ 577 sqlite3DbFree(db, pCol->zName); 578 sqlite3ExprDelete(db, pCol->pDflt); 579 sqlite3DbFree(db, pCol->zColl); 580 } 581 sqlite3DbFree(db, pTable->aCol); 582 } 583 } 584 585 /* 586 ** Remove the memory data structures associated with the given 587 ** Table. No changes are made to disk by this routine. 588 ** 589 ** This routine just deletes the data structure. It does not unlink 590 ** the table data structure from the hash table. But it does destroy 591 ** memory structures of the indices and foreign keys associated with 592 ** the table. 593 ** 594 ** The db parameter is optional. It is needed if the Table object 595 ** contains lookaside memory. (Table objects in the schema do not use 596 ** lookaside memory, but some ephemeral Table objects do.) Or the 597 ** db parameter can be used with db->pnBytesFreed to measure the memory 598 ** used by the Table object. 599 */ 600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 601 Index *pIndex, *pNext; 602 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 603 604 /* Record the number of outstanding lookaside allocations in schema Tables 605 ** prior to doing any free() operations. Since schema Tables do not use 606 ** lookaside, this number should not change. */ 607 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 608 db->lookaside.nOut : 0 ); 609 610 /* Delete all indices associated with this table. */ 611 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 612 pNext = pIndex->pNext; 613 assert( pIndex->pSchema==pTable->pSchema 614 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 615 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 616 char *zName = pIndex->zName; 617 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 618 &pIndex->pSchema->idxHash, zName, 0 619 ); 620 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 621 assert( pOld==pIndex || pOld==0 ); 622 } 623 freeIndex(db, pIndex); 624 } 625 626 /* Delete any foreign keys attached to this table. */ 627 sqlite3FkDelete(db, pTable); 628 629 /* Delete the Table structure itself. 630 */ 631 sqlite3DeleteColumnNames(db, pTable); 632 sqlite3DbFree(db, pTable->zName); 633 sqlite3DbFree(db, pTable->zColAff); 634 sqlite3SelectDelete(db, pTable->pSelect); 635 sqlite3ExprListDelete(db, pTable->pCheck); 636 #ifndef SQLITE_OMIT_VIRTUALTABLE 637 sqlite3VtabClear(db, pTable); 638 #endif 639 sqlite3DbFree(db, pTable); 640 641 /* Verify that no lookaside memory was used by schema tables */ 642 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 643 } 644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 645 /* Do not delete the table until the reference count reaches zero. */ 646 if( !pTable ) return; 647 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 648 deleteTable(db, pTable); 649 } 650 651 652 /* 653 ** Unlink the given table from the hash tables and the delete the 654 ** table structure with all its indices and foreign keys. 655 */ 656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 657 Table *p; 658 Db *pDb; 659 660 assert( db!=0 ); 661 assert( iDb>=0 && iDb<db->nDb ); 662 assert( zTabName ); 663 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 664 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 665 pDb = &db->aDb[iDb]; 666 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 667 sqlite3DeleteTable(db, p); 668 db->flags |= SQLITE_InternChanges; 669 } 670 671 /* 672 ** Given a token, return a string that consists of the text of that 673 ** token. Space to hold the returned string 674 ** is obtained from sqliteMalloc() and must be freed by the calling 675 ** function. 676 ** 677 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 678 ** surround the body of the token are removed. 679 ** 680 ** Tokens are often just pointers into the original SQL text and so 681 ** are not \000 terminated and are not persistent. The returned string 682 ** is \000 terminated and is persistent. 683 */ 684 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 685 char *zName; 686 if( pName ){ 687 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 688 sqlite3Dequote(zName); 689 }else{ 690 zName = 0; 691 } 692 return zName; 693 } 694 695 /* 696 ** Open the sqlite_master table stored in database number iDb for 697 ** writing. The table is opened using cursor 0. 698 */ 699 void sqlite3OpenMasterTable(Parse *p, int iDb){ 700 Vdbe *v = sqlite3GetVdbe(p); 701 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 702 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 703 if( p->nTab==0 ){ 704 p->nTab = 1; 705 } 706 } 707 708 /* 709 ** Parameter zName points to a nul-terminated buffer containing the name 710 ** of a database ("main", "temp" or the name of an attached db). This 711 ** function returns the index of the named database in db->aDb[], or 712 ** -1 if the named db cannot be found. 713 */ 714 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 715 int i = -1; /* Database number */ 716 if( zName ){ 717 Db *pDb; 718 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 719 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 720 /* "main" is always an acceptable alias for the primary database 721 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 722 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 723 } 724 } 725 return i; 726 } 727 728 /* 729 ** The token *pName contains the name of a database (either "main" or 730 ** "temp" or the name of an attached db). This routine returns the 731 ** index of the named database in db->aDb[], or -1 if the named db 732 ** does not exist. 733 */ 734 int sqlite3FindDb(sqlite3 *db, Token *pName){ 735 int i; /* Database number */ 736 char *zName; /* Name we are searching for */ 737 zName = sqlite3NameFromToken(db, pName); 738 i = sqlite3FindDbName(db, zName); 739 sqlite3DbFree(db, zName); 740 return i; 741 } 742 743 /* The table or view or trigger name is passed to this routine via tokens 744 ** pName1 and pName2. If the table name was fully qualified, for example: 745 ** 746 ** CREATE TABLE xxx.yyy (...); 747 ** 748 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 749 ** the table name is not fully qualified, i.e.: 750 ** 751 ** CREATE TABLE yyy(...); 752 ** 753 ** Then pName1 is set to "yyy" and pName2 is "". 754 ** 755 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 756 ** pName2) that stores the unqualified table name. The index of the 757 ** database "xxx" is returned. 758 */ 759 int sqlite3TwoPartName( 760 Parse *pParse, /* Parsing and code generating context */ 761 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 762 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 763 Token **pUnqual /* Write the unqualified object name here */ 764 ){ 765 int iDb; /* Database holding the object */ 766 sqlite3 *db = pParse->db; 767 768 assert( pName2!=0 ); 769 if( pName2->n>0 ){ 770 if( db->init.busy ) { 771 sqlite3ErrorMsg(pParse, "corrupt database"); 772 return -1; 773 } 774 *pUnqual = pName2; 775 iDb = sqlite3FindDb(db, pName1); 776 if( iDb<0 ){ 777 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 778 return -1; 779 } 780 }else{ 781 assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0); 782 iDb = db->init.iDb; 783 *pUnqual = pName1; 784 } 785 return iDb; 786 } 787 788 /* 789 ** This routine is used to check if the UTF-8 string zName is a legal 790 ** unqualified name for a new schema object (table, index, view or 791 ** trigger). All names are legal except those that begin with the string 792 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 793 ** is reserved for internal use. 794 */ 795 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 796 if( !pParse->db->init.busy && pParse->nested==0 797 && (pParse->db->flags & SQLITE_WriteSchema)==0 798 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 799 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 800 return SQLITE_ERROR; 801 } 802 return SQLITE_OK; 803 } 804 805 /* 806 ** Return the PRIMARY KEY index of a table 807 */ 808 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 809 Index *p; 810 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 811 return p; 812 } 813 814 /* 815 ** Return the column of index pIdx that corresponds to table 816 ** column iCol. Return -1 if not found. 817 */ 818 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 819 int i; 820 for(i=0; i<pIdx->nColumn; i++){ 821 if( iCol==pIdx->aiColumn[i] ) return i; 822 } 823 return -1; 824 } 825 826 /* 827 ** Begin constructing a new table representation in memory. This is 828 ** the first of several action routines that get called in response 829 ** to a CREATE TABLE statement. In particular, this routine is called 830 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 831 ** flag is true if the table should be stored in the auxiliary database 832 ** file instead of in the main database file. This is normally the case 833 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 834 ** CREATE and TABLE. 835 ** 836 ** The new table record is initialized and put in pParse->pNewTable. 837 ** As more of the CREATE TABLE statement is parsed, additional action 838 ** routines will be called to add more information to this record. 839 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 840 ** is called to complete the construction of the new table record. 841 */ 842 void sqlite3StartTable( 843 Parse *pParse, /* Parser context */ 844 Token *pName1, /* First part of the name of the table or view */ 845 Token *pName2, /* Second part of the name of the table or view */ 846 int isTemp, /* True if this is a TEMP table */ 847 int isView, /* True if this is a VIEW */ 848 int isVirtual, /* True if this is a VIRTUAL table */ 849 int noErr /* Do nothing if table already exists */ 850 ){ 851 Table *pTable; 852 char *zName = 0; /* The name of the new table */ 853 sqlite3 *db = pParse->db; 854 Vdbe *v; 855 int iDb; /* Database number to create the table in */ 856 Token *pName; /* Unqualified name of the table to create */ 857 858 if( db->init.busy && db->init.newTnum==1 ){ 859 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 860 iDb = db->init.iDb; 861 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 862 pName = pName1; 863 }else{ 864 /* The common case */ 865 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 866 if( iDb<0 ) return; 867 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 868 /* If creating a temp table, the name may not be qualified. Unless 869 ** the database name is "temp" anyway. */ 870 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 871 return; 872 } 873 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 874 zName = sqlite3NameFromToken(db, pName); 875 } 876 pParse->sNameToken = *pName; 877 if( zName==0 ) return; 878 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 879 goto begin_table_error; 880 } 881 if( db->init.iDb==1 ) isTemp = 1; 882 #ifndef SQLITE_OMIT_AUTHORIZATION 883 assert( isTemp==0 || isTemp==1 ); 884 assert( isView==0 || isView==1 ); 885 { 886 static const u8 aCode[] = { 887 SQLITE_CREATE_TABLE, 888 SQLITE_CREATE_TEMP_TABLE, 889 SQLITE_CREATE_VIEW, 890 SQLITE_CREATE_TEMP_VIEW 891 }; 892 char *zDb = db->aDb[iDb].zDbSName; 893 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 894 goto begin_table_error; 895 } 896 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 897 zName, 0, zDb) ){ 898 goto begin_table_error; 899 } 900 } 901 #endif 902 903 /* Make sure the new table name does not collide with an existing 904 ** index or table name in the same database. Issue an error message if 905 ** it does. The exception is if the statement being parsed was passed 906 ** to an sqlite3_declare_vtab() call. In that case only the column names 907 ** and types will be used, so there is no need to test for namespace 908 ** collisions. 909 */ 910 if( !IN_DECLARE_VTAB ){ 911 char *zDb = db->aDb[iDb].zDbSName; 912 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 913 goto begin_table_error; 914 } 915 pTable = sqlite3FindTable(db, zName, zDb); 916 if( pTable ){ 917 if( !noErr ){ 918 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 919 }else{ 920 assert( !db->init.busy || CORRUPT_DB ); 921 sqlite3CodeVerifySchema(pParse, iDb); 922 } 923 goto begin_table_error; 924 } 925 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 926 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 927 goto begin_table_error; 928 } 929 } 930 931 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 932 if( pTable==0 ){ 933 assert( db->mallocFailed ); 934 pParse->rc = SQLITE_NOMEM_BKPT; 935 pParse->nErr++; 936 goto begin_table_error; 937 } 938 pTable->zName = zName; 939 pTable->iPKey = -1; 940 pTable->pSchema = db->aDb[iDb].pSchema; 941 pTable->nTabRef = 1; 942 #ifdef SQLITE_DEFAULT_ROWEST 943 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 944 #else 945 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 946 #endif 947 assert( pParse->pNewTable==0 ); 948 pParse->pNewTable = pTable; 949 950 /* If this is the magic sqlite_sequence table used by autoincrement, 951 ** then record a pointer to this table in the main database structure 952 ** so that INSERT can find the table easily. 953 */ 954 #ifndef SQLITE_OMIT_AUTOINCREMENT 955 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 956 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 957 pTable->pSchema->pSeqTab = pTable; 958 } 959 #endif 960 961 /* Begin generating the code that will insert the table record into 962 ** the SQLITE_MASTER table. Note in particular that we must go ahead 963 ** and allocate the record number for the table entry now. Before any 964 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 965 ** indices to be created and the table record must come before the 966 ** indices. Hence, the record number for the table must be allocated 967 ** now. 968 */ 969 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 970 int addr1; 971 int fileFormat; 972 int reg1, reg2, reg3; 973 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 974 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 975 sqlite3BeginWriteOperation(pParse, 1, iDb); 976 977 #ifndef SQLITE_OMIT_VIRTUALTABLE 978 if( isVirtual ){ 979 sqlite3VdbeAddOp0(v, OP_VBegin); 980 } 981 #endif 982 983 /* If the file format and encoding in the database have not been set, 984 ** set them now. 985 */ 986 reg1 = pParse->regRowid = ++pParse->nMem; 987 reg2 = pParse->regRoot = ++pParse->nMem; 988 reg3 = ++pParse->nMem; 989 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 990 sqlite3VdbeUsesBtree(v, iDb); 991 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 992 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 993 1 : SQLITE_MAX_FILE_FORMAT; 994 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 995 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 996 sqlite3VdbeJumpHere(v, addr1); 997 998 /* This just creates a place-holder record in the sqlite_master table. 999 ** The record created does not contain anything yet. It will be replaced 1000 ** by the real entry in code generated at sqlite3EndTable(). 1001 ** 1002 ** The rowid for the new entry is left in register pParse->regRowid. 1003 ** The root page number of the new table is left in reg pParse->regRoot. 1004 ** The rowid and root page number values are needed by the code that 1005 ** sqlite3EndTable will generate. 1006 */ 1007 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1008 if( isView || isVirtual ){ 1009 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1010 }else 1011 #endif 1012 { 1013 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1014 } 1015 sqlite3OpenMasterTable(pParse, iDb); 1016 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1017 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1018 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1019 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1020 sqlite3VdbeAddOp0(v, OP_Close); 1021 } 1022 1023 /* Normal (non-error) return. */ 1024 return; 1025 1026 /* If an error occurs, we jump here */ 1027 begin_table_error: 1028 sqlite3DbFree(db, zName); 1029 return; 1030 } 1031 1032 /* Set properties of a table column based on the (magical) 1033 ** name of the column. 1034 */ 1035 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1036 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1037 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1038 pCol->colFlags |= COLFLAG_HIDDEN; 1039 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1040 pTab->tabFlags |= TF_OOOHidden; 1041 } 1042 } 1043 #endif 1044 1045 1046 /* 1047 ** Add a new column to the table currently being constructed. 1048 ** 1049 ** The parser calls this routine once for each column declaration 1050 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1051 ** first to get things going. Then this routine is called for each 1052 ** column. 1053 */ 1054 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1055 Table *p; 1056 int i; 1057 char *z; 1058 char *zType; 1059 Column *pCol; 1060 sqlite3 *db = pParse->db; 1061 if( (p = pParse->pNewTable)==0 ) return; 1062 #if SQLITE_MAX_COLUMN 1063 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1064 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1065 return; 1066 } 1067 #endif 1068 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1069 if( z==0 ) return; 1070 memcpy(z, pName->z, pName->n); 1071 z[pName->n] = 0; 1072 sqlite3Dequote(z); 1073 for(i=0; i<p->nCol; i++){ 1074 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1075 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1076 sqlite3DbFree(db, z); 1077 return; 1078 } 1079 } 1080 if( (p->nCol & 0x7)==0 ){ 1081 Column *aNew; 1082 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1083 if( aNew==0 ){ 1084 sqlite3DbFree(db, z); 1085 return; 1086 } 1087 p->aCol = aNew; 1088 } 1089 pCol = &p->aCol[p->nCol]; 1090 memset(pCol, 0, sizeof(p->aCol[0])); 1091 pCol->zName = z; 1092 sqlite3ColumnPropertiesFromName(p, pCol); 1093 1094 if( pType->n==0 ){ 1095 /* If there is no type specified, columns have the default affinity 1096 ** 'BLOB'. */ 1097 pCol->affinity = SQLITE_AFF_BLOB; 1098 pCol->szEst = 1; 1099 }else{ 1100 zType = z + sqlite3Strlen30(z) + 1; 1101 memcpy(zType, pType->z, pType->n); 1102 zType[pType->n] = 0; 1103 sqlite3Dequote(zType); 1104 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst); 1105 pCol->colFlags |= COLFLAG_HASTYPE; 1106 } 1107 p->nCol++; 1108 pParse->constraintName.n = 0; 1109 } 1110 1111 /* 1112 ** This routine is called by the parser while in the middle of 1113 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1114 ** been seen on a column. This routine sets the notNull flag on 1115 ** the column currently under construction. 1116 */ 1117 void sqlite3AddNotNull(Parse *pParse, int onError){ 1118 Table *p; 1119 p = pParse->pNewTable; 1120 if( p==0 || NEVER(p->nCol<1) ) return; 1121 p->aCol[p->nCol-1].notNull = (u8)onError; 1122 p->tabFlags |= TF_HasNotNull; 1123 } 1124 1125 /* 1126 ** Scan the column type name zType (length nType) and return the 1127 ** associated affinity type. 1128 ** 1129 ** This routine does a case-independent search of zType for the 1130 ** substrings in the following table. If one of the substrings is 1131 ** found, the corresponding affinity is returned. If zType contains 1132 ** more than one of the substrings, entries toward the top of 1133 ** the table take priority. For example, if zType is 'BLOBINT', 1134 ** SQLITE_AFF_INTEGER is returned. 1135 ** 1136 ** Substring | Affinity 1137 ** -------------------------------- 1138 ** 'INT' | SQLITE_AFF_INTEGER 1139 ** 'CHAR' | SQLITE_AFF_TEXT 1140 ** 'CLOB' | SQLITE_AFF_TEXT 1141 ** 'TEXT' | SQLITE_AFF_TEXT 1142 ** 'BLOB' | SQLITE_AFF_BLOB 1143 ** 'REAL' | SQLITE_AFF_REAL 1144 ** 'FLOA' | SQLITE_AFF_REAL 1145 ** 'DOUB' | SQLITE_AFF_REAL 1146 ** 1147 ** If none of the substrings in the above table are found, 1148 ** SQLITE_AFF_NUMERIC is returned. 1149 */ 1150 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1151 u32 h = 0; 1152 char aff = SQLITE_AFF_NUMERIC; 1153 const char *zChar = 0; 1154 1155 assert( zIn!=0 ); 1156 while( zIn[0] ){ 1157 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1158 zIn++; 1159 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1160 aff = SQLITE_AFF_TEXT; 1161 zChar = zIn; 1162 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1163 aff = SQLITE_AFF_TEXT; 1164 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1165 aff = SQLITE_AFF_TEXT; 1166 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1167 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1168 aff = SQLITE_AFF_BLOB; 1169 if( zIn[0]=='(' ) zChar = zIn; 1170 #ifndef SQLITE_OMIT_FLOATING_POINT 1171 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1172 && aff==SQLITE_AFF_NUMERIC ){ 1173 aff = SQLITE_AFF_REAL; 1174 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1175 && aff==SQLITE_AFF_NUMERIC ){ 1176 aff = SQLITE_AFF_REAL; 1177 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1178 && aff==SQLITE_AFF_NUMERIC ){ 1179 aff = SQLITE_AFF_REAL; 1180 #endif 1181 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1182 aff = SQLITE_AFF_INTEGER; 1183 break; 1184 } 1185 } 1186 1187 /* If pszEst is not NULL, store an estimate of the field size. The 1188 ** estimate is scaled so that the size of an integer is 1. */ 1189 if( pszEst ){ 1190 *pszEst = 1; /* default size is approx 4 bytes */ 1191 if( aff<SQLITE_AFF_NUMERIC ){ 1192 if( zChar ){ 1193 while( zChar[0] ){ 1194 if( sqlite3Isdigit(zChar[0]) ){ 1195 int v = 0; 1196 sqlite3GetInt32(zChar, &v); 1197 v = v/4 + 1; 1198 if( v>255 ) v = 255; 1199 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1200 break; 1201 } 1202 zChar++; 1203 } 1204 }else{ 1205 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1206 } 1207 } 1208 } 1209 return aff; 1210 } 1211 1212 /* 1213 ** The expression is the default value for the most recently added column 1214 ** of the table currently under construction. 1215 ** 1216 ** Default value expressions must be constant. Raise an exception if this 1217 ** is not the case. 1218 ** 1219 ** This routine is called by the parser while in the middle of 1220 ** parsing a CREATE TABLE statement. 1221 */ 1222 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1223 Table *p; 1224 Column *pCol; 1225 sqlite3 *db = pParse->db; 1226 p = pParse->pNewTable; 1227 if( p!=0 ){ 1228 pCol = &(p->aCol[p->nCol-1]); 1229 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1230 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1231 pCol->zName); 1232 }else{ 1233 /* A copy of pExpr is used instead of the original, as pExpr contains 1234 ** tokens that point to volatile memory. The 'span' of the expression 1235 ** is required by pragma table_info. 1236 */ 1237 Expr x; 1238 sqlite3ExprDelete(db, pCol->pDflt); 1239 memset(&x, 0, sizeof(x)); 1240 x.op = TK_SPAN; 1241 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1242 (int)(pSpan->zEnd - pSpan->zStart)); 1243 x.pLeft = pSpan->pExpr; 1244 x.flags = EP_Skip; 1245 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1246 sqlite3DbFree(db, x.u.zToken); 1247 } 1248 } 1249 sqlite3ExprDelete(db, pSpan->pExpr); 1250 } 1251 1252 /* 1253 ** Backwards Compatibility Hack: 1254 ** 1255 ** Historical versions of SQLite accepted strings as column names in 1256 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1257 ** 1258 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1259 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1260 ** 1261 ** This is goofy. But to preserve backwards compatibility we continue to 1262 ** accept it. This routine does the necessary conversion. It converts 1263 ** the expression given in its argument from a TK_STRING into a TK_ID 1264 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1265 ** If the epxression is anything other than TK_STRING, the expression is 1266 ** unchanged. 1267 */ 1268 static void sqlite3StringToId(Expr *p){ 1269 if( p->op==TK_STRING ){ 1270 p->op = TK_ID; 1271 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1272 p->pLeft->op = TK_ID; 1273 } 1274 } 1275 1276 /* 1277 ** Designate the PRIMARY KEY for the table. pList is a list of names 1278 ** of columns that form the primary key. If pList is NULL, then the 1279 ** most recently added column of the table is the primary key. 1280 ** 1281 ** A table can have at most one primary key. If the table already has 1282 ** a primary key (and this is the second primary key) then create an 1283 ** error. 1284 ** 1285 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1286 ** then we will try to use that column as the rowid. Set the Table.iPKey 1287 ** field of the table under construction to be the index of the 1288 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1289 ** no INTEGER PRIMARY KEY. 1290 ** 1291 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1292 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1293 */ 1294 void sqlite3AddPrimaryKey( 1295 Parse *pParse, /* Parsing context */ 1296 ExprList *pList, /* List of field names to be indexed */ 1297 int onError, /* What to do with a uniqueness conflict */ 1298 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1299 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1300 ){ 1301 Table *pTab = pParse->pNewTable; 1302 Column *pCol = 0; 1303 int iCol = -1, i; 1304 int nTerm; 1305 if( pTab==0 ) goto primary_key_exit; 1306 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1307 sqlite3ErrorMsg(pParse, 1308 "table \"%s\" has more than one primary key", pTab->zName); 1309 goto primary_key_exit; 1310 } 1311 pTab->tabFlags |= TF_HasPrimaryKey; 1312 if( pList==0 ){ 1313 iCol = pTab->nCol - 1; 1314 pCol = &pTab->aCol[iCol]; 1315 pCol->colFlags |= COLFLAG_PRIMKEY; 1316 nTerm = 1; 1317 }else{ 1318 nTerm = pList->nExpr; 1319 for(i=0; i<nTerm; i++){ 1320 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1321 assert( pCExpr!=0 ); 1322 sqlite3StringToId(pCExpr); 1323 if( pCExpr->op==TK_ID ){ 1324 const char *zCName = pCExpr->u.zToken; 1325 for(iCol=0; iCol<pTab->nCol; iCol++){ 1326 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1327 pCol = &pTab->aCol[iCol]; 1328 pCol->colFlags |= COLFLAG_PRIMKEY; 1329 break; 1330 } 1331 } 1332 } 1333 } 1334 } 1335 if( nTerm==1 1336 && pCol 1337 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1338 && sortOrder!=SQLITE_SO_DESC 1339 ){ 1340 pTab->iPKey = iCol; 1341 pTab->keyConf = (u8)onError; 1342 assert( autoInc==0 || autoInc==1 ); 1343 pTab->tabFlags |= autoInc*TF_Autoincrement; 1344 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1345 }else if( autoInc ){ 1346 #ifndef SQLITE_OMIT_AUTOINCREMENT 1347 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1348 "INTEGER PRIMARY KEY"); 1349 #endif 1350 }else{ 1351 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1352 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1353 pList = 0; 1354 } 1355 1356 primary_key_exit: 1357 sqlite3ExprListDelete(pParse->db, pList); 1358 return; 1359 } 1360 1361 /* 1362 ** Add a new CHECK constraint to the table currently under construction. 1363 */ 1364 void sqlite3AddCheckConstraint( 1365 Parse *pParse, /* Parsing context */ 1366 Expr *pCheckExpr /* The check expression */ 1367 ){ 1368 #ifndef SQLITE_OMIT_CHECK 1369 Table *pTab = pParse->pNewTable; 1370 sqlite3 *db = pParse->db; 1371 if( pTab && !IN_DECLARE_VTAB 1372 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1373 ){ 1374 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1375 if( pParse->constraintName.n ){ 1376 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1377 } 1378 }else 1379 #endif 1380 { 1381 sqlite3ExprDelete(pParse->db, pCheckExpr); 1382 } 1383 } 1384 1385 /* 1386 ** Set the collation function of the most recently parsed table column 1387 ** to the CollSeq given. 1388 */ 1389 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1390 Table *p; 1391 int i; 1392 char *zColl; /* Dequoted name of collation sequence */ 1393 sqlite3 *db; 1394 1395 if( (p = pParse->pNewTable)==0 ) return; 1396 i = p->nCol-1; 1397 db = pParse->db; 1398 zColl = sqlite3NameFromToken(db, pToken); 1399 if( !zColl ) return; 1400 1401 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1402 Index *pIdx; 1403 sqlite3DbFree(db, p->aCol[i].zColl); 1404 p->aCol[i].zColl = zColl; 1405 1406 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1407 ** then an index may have been created on this column before the 1408 ** collation type was added. Correct this if it is the case. 1409 */ 1410 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1411 assert( pIdx->nKeyCol==1 ); 1412 if( pIdx->aiColumn[0]==i ){ 1413 pIdx->azColl[0] = p->aCol[i].zColl; 1414 } 1415 } 1416 }else{ 1417 sqlite3DbFree(db, zColl); 1418 } 1419 } 1420 1421 /* 1422 ** This function returns the collation sequence for database native text 1423 ** encoding identified by the string zName, length nName. 1424 ** 1425 ** If the requested collation sequence is not available, or not available 1426 ** in the database native encoding, the collation factory is invoked to 1427 ** request it. If the collation factory does not supply such a sequence, 1428 ** and the sequence is available in another text encoding, then that is 1429 ** returned instead. 1430 ** 1431 ** If no versions of the requested collations sequence are available, or 1432 ** another error occurs, NULL is returned and an error message written into 1433 ** pParse. 1434 ** 1435 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1436 ** invokes the collation factory if the named collation cannot be found 1437 ** and generates an error message. 1438 ** 1439 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1440 */ 1441 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1442 sqlite3 *db = pParse->db; 1443 u8 enc = ENC(db); 1444 u8 initbusy = db->init.busy; 1445 CollSeq *pColl; 1446 1447 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1448 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1449 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1450 } 1451 1452 return pColl; 1453 } 1454 1455 1456 /* 1457 ** Generate code that will increment the schema cookie. 1458 ** 1459 ** The schema cookie is used to determine when the schema for the 1460 ** database changes. After each schema change, the cookie value 1461 ** changes. When a process first reads the schema it records the 1462 ** cookie. Thereafter, whenever it goes to access the database, 1463 ** it checks the cookie to make sure the schema has not changed 1464 ** since it was last read. 1465 ** 1466 ** This plan is not completely bullet-proof. It is possible for 1467 ** the schema to change multiple times and for the cookie to be 1468 ** set back to prior value. But schema changes are infrequent 1469 ** and the probability of hitting the same cookie value is only 1470 ** 1 chance in 2^32. So we're safe enough. 1471 ** 1472 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1473 ** the schema-version whenever the schema changes. 1474 */ 1475 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1476 sqlite3 *db = pParse->db; 1477 Vdbe *v = pParse->pVdbe; 1478 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1479 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1480 db->aDb[iDb].pSchema->schema_cookie+1); 1481 } 1482 1483 /* 1484 ** Measure the number of characters needed to output the given 1485 ** identifier. The number returned includes any quotes used 1486 ** but does not include the null terminator. 1487 ** 1488 ** The estimate is conservative. It might be larger that what is 1489 ** really needed. 1490 */ 1491 static int identLength(const char *z){ 1492 int n; 1493 for(n=0; *z; n++, z++){ 1494 if( *z=='"' ){ n++; } 1495 } 1496 return n + 2; 1497 } 1498 1499 /* 1500 ** The first parameter is a pointer to an output buffer. The second 1501 ** parameter is a pointer to an integer that contains the offset at 1502 ** which to write into the output buffer. This function copies the 1503 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1504 ** to the specified offset in the buffer and updates *pIdx to refer 1505 ** to the first byte after the last byte written before returning. 1506 ** 1507 ** If the string zSignedIdent consists entirely of alpha-numeric 1508 ** characters, does not begin with a digit and is not an SQL keyword, 1509 ** then it is copied to the output buffer exactly as it is. Otherwise, 1510 ** it is quoted using double-quotes. 1511 */ 1512 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1513 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1514 int i, j, needQuote; 1515 i = *pIdx; 1516 1517 for(j=0; zIdent[j]; j++){ 1518 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1519 } 1520 needQuote = sqlite3Isdigit(zIdent[0]) 1521 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1522 || zIdent[j]!=0 1523 || j==0; 1524 1525 if( needQuote ) z[i++] = '"'; 1526 for(j=0; zIdent[j]; j++){ 1527 z[i++] = zIdent[j]; 1528 if( zIdent[j]=='"' ) z[i++] = '"'; 1529 } 1530 if( needQuote ) z[i++] = '"'; 1531 z[i] = 0; 1532 *pIdx = i; 1533 } 1534 1535 /* 1536 ** Generate a CREATE TABLE statement appropriate for the given 1537 ** table. Memory to hold the text of the statement is obtained 1538 ** from sqliteMalloc() and must be freed by the calling function. 1539 */ 1540 static char *createTableStmt(sqlite3 *db, Table *p){ 1541 int i, k, n; 1542 char *zStmt; 1543 char *zSep, *zSep2, *zEnd; 1544 Column *pCol; 1545 n = 0; 1546 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1547 n += identLength(pCol->zName) + 5; 1548 } 1549 n += identLength(p->zName); 1550 if( n<50 ){ 1551 zSep = ""; 1552 zSep2 = ","; 1553 zEnd = ")"; 1554 }else{ 1555 zSep = "\n "; 1556 zSep2 = ",\n "; 1557 zEnd = "\n)"; 1558 } 1559 n += 35 + 6*p->nCol; 1560 zStmt = sqlite3DbMallocRaw(0, n); 1561 if( zStmt==0 ){ 1562 sqlite3OomFault(db); 1563 return 0; 1564 } 1565 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1566 k = sqlite3Strlen30(zStmt); 1567 identPut(zStmt, &k, p->zName); 1568 zStmt[k++] = '('; 1569 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1570 static const char * const azType[] = { 1571 /* SQLITE_AFF_BLOB */ "", 1572 /* SQLITE_AFF_TEXT */ " TEXT", 1573 /* SQLITE_AFF_NUMERIC */ " NUM", 1574 /* SQLITE_AFF_INTEGER */ " INT", 1575 /* SQLITE_AFF_REAL */ " REAL" 1576 }; 1577 int len; 1578 const char *zType; 1579 1580 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1581 k += sqlite3Strlen30(&zStmt[k]); 1582 zSep = zSep2; 1583 identPut(zStmt, &k, pCol->zName); 1584 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1585 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1586 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1587 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1588 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1589 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1590 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1591 1592 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1593 len = sqlite3Strlen30(zType); 1594 assert( pCol->affinity==SQLITE_AFF_BLOB 1595 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1596 memcpy(&zStmt[k], zType, len); 1597 k += len; 1598 assert( k<=n ); 1599 } 1600 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1601 return zStmt; 1602 } 1603 1604 /* 1605 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1606 ** on success and SQLITE_NOMEM on an OOM error. 1607 */ 1608 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1609 char *zExtra; 1610 int nByte; 1611 if( pIdx->nColumn>=N ) return SQLITE_OK; 1612 assert( pIdx->isResized==0 ); 1613 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1614 zExtra = sqlite3DbMallocZero(db, nByte); 1615 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1616 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1617 pIdx->azColl = (const char**)zExtra; 1618 zExtra += sizeof(char*)*N; 1619 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1620 pIdx->aiColumn = (i16*)zExtra; 1621 zExtra += sizeof(i16)*N; 1622 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1623 pIdx->aSortOrder = (u8*)zExtra; 1624 pIdx->nColumn = N; 1625 pIdx->isResized = 1; 1626 return SQLITE_OK; 1627 } 1628 1629 /* 1630 ** Estimate the total row width for a table. 1631 */ 1632 static void estimateTableWidth(Table *pTab){ 1633 unsigned wTable = 0; 1634 const Column *pTabCol; 1635 int i; 1636 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1637 wTable += pTabCol->szEst; 1638 } 1639 if( pTab->iPKey<0 ) wTable++; 1640 pTab->szTabRow = sqlite3LogEst(wTable*4); 1641 } 1642 1643 /* 1644 ** Estimate the average size of a row for an index. 1645 */ 1646 static void estimateIndexWidth(Index *pIdx){ 1647 unsigned wIndex = 0; 1648 int i; 1649 const Column *aCol = pIdx->pTable->aCol; 1650 for(i=0; i<pIdx->nColumn; i++){ 1651 i16 x = pIdx->aiColumn[i]; 1652 assert( x<pIdx->pTable->nCol ); 1653 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1654 } 1655 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1656 } 1657 1658 /* Return true if value x is found any of the first nCol entries of aiCol[] 1659 */ 1660 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1661 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1662 return 0; 1663 } 1664 1665 /* 1666 ** This routine runs at the end of parsing a CREATE TABLE statement that 1667 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1668 ** internal schema data structures and the generated VDBE code so that they 1669 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1670 ** Changes include: 1671 ** 1672 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1673 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is 1674 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1675 ** data storage is a covering index btree. 1676 ** (3) Bypass the creation of the sqlite_master table entry 1677 ** for the PRIMARY KEY as the primary key index is now 1678 ** identified by the sqlite_master table entry of the table itself. 1679 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1680 ** schema to the rootpage from the main table. 1681 ** (5) Add all table columns to the PRIMARY KEY Index object 1682 ** so that the PRIMARY KEY is a covering index. The surplus 1683 ** columns are part of KeyInfo.nXField and are not used for 1684 ** sorting or lookup or uniqueness checks. 1685 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1686 ** indices with the PRIMARY KEY columns. 1687 ** 1688 ** For virtual tables, only (1) is performed. 1689 */ 1690 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1691 Index *pIdx; 1692 Index *pPk; 1693 int nPk; 1694 int i, j; 1695 sqlite3 *db = pParse->db; 1696 Vdbe *v = pParse->pVdbe; 1697 1698 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1699 */ 1700 if( !db->init.imposterTable ){ 1701 for(i=0; i<pTab->nCol; i++){ 1702 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1703 pTab->aCol[i].notNull = OE_Abort; 1704 } 1705 } 1706 } 1707 1708 /* The remaining transformations only apply to b-tree tables, not to 1709 ** virtual tables */ 1710 if( IN_DECLARE_VTAB ) return; 1711 1712 /* Convert the OP_CreateTable opcode that would normally create the 1713 ** root-page for the table into an OP_CreateIndex opcode. The index 1714 ** created will become the PRIMARY KEY index. 1715 */ 1716 if( pParse->addrCrTab ){ 1717 assert( v ); 1718 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1719 } 1720 1721 /* Locate the PRIMARY KEY index. Or, if this table was originally 1722 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1723 */ 1724 if( pTab->iPKey>=0 ){ 1725 ExprList *pList; 1726 Token ipkToken; 1727 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1728 pList = sqlite3ExprListAppend(pParse, 0, 1729 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1730 if( pList==0 ) return; 1731 pList->a[0].sortOrder = pParse->iPkSortOrder; 1732 assert( pParse->pNewTable==pTab ); 1733 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1734 SQLITE_IDXTYPE_PRIMARYKEY); 1735 if( db->mallocFailed ) return; 1736 pPk = sqlite3PrimaryKeyIndex(pTab); 1737 pTab->iPKey = -1; 1738 }else{ 1739 pPk = sqlite3PrimaryKeyIndex(pTab); 1740 1741 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1742 ** table entry. This is only required if currently generating VDBE 1743 ** code for a CREATE TABLE (not when parsing one as part of reading 1744 ** a database schema). */ 1745 if( v ){ 1746 assert( db->init.busy==0 ); 1747 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1748 } 1749 1750 /* 1751 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1752 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1753 ** code assumes the PRIMARY KEY contains no repeated columns. 1754 */ 1755 for(i=j=1; i<pPk->nKeyCol; i++){ 1756 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1757 pPk->nColumn--; 1758 }else{ 1759 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1760 } 1761 } 1762 pPk->nKeyCol = j; 1763 } 1764 assert( pPk!=0 ); 1765 pPk->isCovering = 1; 1766 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1767 nPk = pPk->nKeyCol; 1768 1769 /* The root page of the PRIMARY KEY is the table root page */ 1770 pPk->tnum = pTab->tnum; 1771 1772 /* Update the in-memory representation of all UNIQUE indices by converting 1773 ** the final rowid column into one or more columns of the PRIMARY KEY. 1774 */ 1775 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1776 int n; 1777 if( IsPrimaryKeyIndex(pIdx) ) continue; 1778 for(i=n=0; i<nPk; i++){ 1779 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1780 } 1781 if( n==0 ){ 1782 /* This index is a superset of the primary key */ 1783 pIdx->nColumn = pIdx->nKeyCol; 1784 continue; 1785 } 1786 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1787 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1788 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1789 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1790 pIdx->azColl[j] = pPk->azColl[i]; 1791 j++; 1792 } 1793 } 1794 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1795 assert( pIdx->nColumn>=j ); 1796 } 1797 1798 /* Add all table columns to the PRIMARY KEY index 1799 */ 1800 if( nPk<pTab->nCol ){ 1801 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1802 for(i=0, j=nPk; i<pTab->nCol; i++){ 1803 if( !hasColumn(pPk->aiColumn, j, i) ){ 1804 assert( j<pPk->nColumn ); 1805 pPk->aiColumn[j] = i; 1806 pPk->azColl[j] = sqlite3StrBINARY; 1807 j++; 1808 } 1809 } 1810 assert( pPk->nColumn==j ); 1811 assert( pTab->nCol==j ); 1812 }else{ 1813 pPk->nColumn = pTab->nCol; 1814 } 1815 } 1816 1817 /* 1818 ** This routine is called to report the final ")" that terminates 1819 ** a CREATE TABLE statement. 1820 ** 1821 ** The table structure that other action routines have been building 1822 ** is added to the internal hash tables, assuming no errors have 1823 ** occurred. 1824 ** 1825 ** An entry for the table is made in the master table on disk, unless 1826 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1827 ** it means we are reading the sqlite_master table because we just 1828 ** connected to the database or because the sqlite_master table has 1829 ** recently changed, so the entry for this table already exists in 1830 ** the sqlite_master table. We do not want to create it again. 1831 ** 1832 ** If the pSelect argument is not NULL, it means that this routine 1833 ** was called to create a table generated from a 1834 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1835 ** the new table will match the result set of the SELECT. 1836 */ 1837 void sqlite3EndTable( 1838 Parse *pParse, /* Parse context */ 1839 Token *pCons, /* The ',' token after the last column defn. */ 1840 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1841 u8 tabOpts, /* Extra table options. Usually 0. */ 1842 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1843 ){ 1844 Table *p; /* The new table */ 1845 sqlite3 *db = pParse->db; /* The database connection */ 1846 int iDb; /* Database in which the table lives */ 1847 Index *pIdx; /* An implied index of the table */ 1848 1849 if( pEnd==0 && pSelect==0 ){ 1850 return; 1851 } 1852 assert( !db->mallocFailed ); 1853 p = pParse->pNewTable; 1854 if( p==0 ) return; 1855 1856 assert( !db->init.busy || !pSelect ); 1857 1858 /* If the db->init.busy is 1 it means we are reading the SQL off the 1859 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1860 ** So do not write to the disk again. Extract the root page number 1861 ** for the table from the db->init.newTnum field. (The page number 1862 ** should have been put there by the sqliteOpenCb routine.) 1863 ** 1864 ** If the root page number is 1, that means this is the sqlite_master 1865 ** table itself. So mark it read-only. 1866 */ 1867 if( db->init.busy ){ 1868 p->tnum = db->init.newTnum; 1869 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1870 } 1871 1872 /* Special processing for WITHOUT ROWID Tables */ 1873 if( tabOpts & TF_WithoutRowid ){ 1874 if( (p->tabFlags & TF_Autoincrement) ){ 1875 sqlite3ErrorMsg(pParse, 1876 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1877 return; 1878 } 1879 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1880 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1881 }else{ 1882 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1883 convertToWithoutRowidTable(pParse, p); 1884 } 1885 } 1886 1887 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1888 1889 #ifndef SQLITE_OMIT_CHECK 1890 /* Resolve names in all CHECK constraint expressions. 1891 */ 1892 if( p->pCheck ){ 1893 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1894 } 1895 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1896 1897 /* Estimate the average row size for the table and for all implied indices */ 1898 estimateTableWidth(p); 1899 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1900 estimateIndexWidth(pIdx); 1901 } 1902 1903 /* If not initializing, then create a record for the new table 1904 ** in the SQLITE_MASTER table of the database. 1905 ** 1906 ** If this is a TEMPORARY table, write the entry into the auxiliary 1907 ** file instead of into the main database file. 1908 */ 1909 if( !db->init.busy ){ 1910 int n; 1911 Vdbe *v; 1912 char *zType; /* "view" or "table" */ 1913 char *zType2; /* "VIEW" or "TABLE" */ 1914 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1915 1916 v = sqlite3GetVdbe(pParse); 1917 if( NEVER(v==0) ) return; 1918 1919 sqlite3VdbeAddOp1(v, OP_Close, 0); 1920 1921 /* 1922 ** Initialize zType for the new view or table. 1923 */ 1924 if( p->pSelect==0 ){ 1925 /* A regular table */ 1926 zType = "table"; 1927 zType2 = "TABLE"; 1928 #ifndef SQLITE_OMIT_VIEW 1929 }else{ 1930 /* A view */ 1931 zType = "view"; 1932 zType2 = "VIEW"; 1933 #endif 1934 } 1935 1936 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1937 ** statement to populate the new table. The root-page number for the 1938 ** new table is in register pParse->regRoot. 1939 ** 1940 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1941 ** suitable state to query for the column names and types to be used 1942 ** by the new table. 1943 ** 1944 ** A shared-cache write-lock is not required to write to the new table, 1945 ** as a schema-lock must have already been obtained to create it. Since 1946 ** a schema-lock excludes all other database users, the write-lock would 1947 ** be redundant. 1948 */ 1949 if( pSelect ){ 1950 SelectDest dest; /* Where the SELECT should store results */ 1951 int regYield; /* Register holding co-routine entry-point */ 1952 int addrTop; /* Top of the co-routine */ 1953 int regRec; /* A record to be insert into the new table */ 1954 int regRowid; /* Rowid of the next row to insert */ 1955 int addrInsLoop; /* Top of the loop for inserting rows */ 1956 Table *pSelTab; /* A table that describes the SELECT results */ 1957 1958 regYield = ++pParse->nMem; 1959 regRec = ++pParse->nMem; 1960 regRowid = ++pParse->nMem; 1961 assert(pParse->nTab==1); 1962 sqlite3MayAbort(pParse); 1963 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1964 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1965 pParse->nTab = 2; 1966 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1967 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1968 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1969 sqlite3Select(pParse, pSelect, &dest); 1970 sqlite3VdbeEndCoroutine(v, regYield); 1971 sqlite3VdbeJumpHere(v, addrTop - 1); 1972 if( pParse->nErr ) return; 1973 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1974 if( pSelTab==0 ) return; 1975 assert( p->aCol==0 ); 1976 p->nCol = pSelTab->nCol; 1977 p->aCol = pSelTab->aCol; 1978 pSelTab->nCol = 0; 1979 pSelTab->aCol = 0; 1980 sqlite3DeleteTable(db, pSelTab); 1981 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1982 VdbeCoverage(v); 1983 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1984 sqlite3TableAffinity(v, p, 0); 1985 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1986 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1987 sqlite3VdbeGoto(v, addrInsLoop); 1988 sqlite3VdbeJumpHere(v, addrInsLoop); 1989 sqlite3VdbeAddOp1(v, OP_Close, 1); 1990 } 1991 1992 /* Compute the complete text of the CREATE statement */ 1993 if( pSelect ){ 1994 zStmt = createTableStmt(db, p); 1995 }else{ 1996 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1997 n = (int)(pEnd2->z - pParse->sNameToken.z); 1998 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1999 zStmt = sqlite3MPrintf(db, 2000 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2001 ); 2002 } 2003 2004 /* A slot for the record has already been allocated in the 2005 ** SQLITE_MASTER table. We just need to update that slot with all 2006 ** the information we've collected. 2007 */ 2008 sqlite3NestedParse(pParse, 2009 "UPDATE %Q.%s " 2010 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2011 "WHERE rowid=#%d", 2012 db->aDb[iDb].zDbSName, MASTER_NAME, 2013 zType, 2014 p->zName, 2015 p->zName, 2016 pParse->regRoot, 2017 zStmt, 2018 pParse->regRowid 2019 ); 2020 sqlite3DbFree(db, zStmt); 2021 sqlite3ChangeCookie(pParse, iDb); 2022 2023 #ifndef SQLITE_OMIT_AUTOINCREMENT 2024 /* Check to see if we need to create an sqlite_sequence table for 2025 ** keeping track of autoincrement keys. 2026 */ 2027 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2028 Db *pDb = &db->aDb[iDb]; 2029 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2030 if( pDb->pSchema->pSeqTab==0 ){ 2031 sqlite3NestedParse(pParse, 2032 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2033 pDb->zDbSName 2034 ); 2035 } 2036 } 2037 #endif 2038 2039 /* Reparse everything to update our internal data structures */ 2040 sqlite3VdbeAddParseSchemaOp(v, iDb, 2041 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2042 } 2043 2044 2045 /* Add the table to the in-memory representation of the database. 2046 */ 2047 if( db->init.busy ){ 2048 Table *pOld; 2049 Schema *pSchema = p->pSchema; 2050 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2051 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2052 if( pOld ){ 2053 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2054 sqlite3OomFault(db); 2055 return; 2056 } 2057 pParse->pNewTable = 0; 2058 db->flags |= SQLITE_InternChanges; 2059 2060 #ifndef SQLITE_OMIT_ALTERTABLE 2061 if( !p->pSelect ){ 2062 const char *zName = (const char *)pParse->sNameToken.z; 2063 int nName; 2064 assert( !pSelect && pCons && pEnd ); 2065 if( pCons->z==0 ){ 2066 pCons = pEnd; 2067 } 2068 nName = (int)((const char *)pCons->z - zName); 2069 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2070 } 2071 #endif 2072 } 2073 } 2074 2075 #ifndef SQLITE_OMIT_VIEW 2076 /* 2077 ** The parser calls this routine in order to create a new VIEW 2078 */ 2079 void sqlite3CreateView( 2080 Parse *pParse, /* The parsing context */ 2081 Token *pBegin, /* The CREATE token that begins the statement */ 2082 Token *pName1, /* The token that holds the name of the view */ 2083 Token *pName2, /* The token that holds the name of the view */ 2084 ExprList *pCNames, /* Optional list of view column names */ 2085 Select *pSelect, /* A SELECT statement that will become the new view */ 2086 int isTemp, /* TRUE for a TEMPORARY view */ 2087 int noErr /* Suppress error messages if VIEW already exists */ 2088 ){ 2089 Table *p; 2090 int n; 2091 const char *z; 2092 Token sEnd; 2093 DbFixer sFix; 2094 Token *pName = 0; 2095 int iDb; 2096 sqlite3 *db = pParse->db; 2097 2098 if( pParse->nVar>0 ){ 2099 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2100 goto create_view_fail; 2101 } 2102 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2103 p = pParse->pNewTable; 2104 if( p==0 || pParse->nErr ) goto create_view_fail; 2105 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2106 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2107 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2108 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2109 2110 /* Make a copy of the entire SELECT statement that defines the view. 2111 ** This will force all the Expr.token.z values to be dynamically 2112 ** allocated rather than point to the input string - which means that 2113 ** they will persist after the current sqlite3_exec() call returns. 2114 */ 2115 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2116 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2117 if( db->mallocFailed ) goto create_view_fail; 2118 2119 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2120 ** the end. 2121 */ 2122 sEnd = pParse->sLastToken; 2123 assert( sEnd.z[0]!=0 ); 2124 if( sEnd.z[0]!=';' ){ 2125 sEnd.z += sEnd.n; 2126 } 2127 sEnd.n = 0; 2128 n = (int)(sEnd.z - pBegin->z); 2129 assert( n>0 ); 2130 z = pBegin->z; 2131 while( sqlite3Isspace(z[n-1]) ){ n--; } 2132 sEnd.z = &z[n-1]; 2133 sEnd.n = 1; 2134 2135 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2136 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2137 2138 create_view_fail: 2139 sqlite3SelectDelete(db, pSelect); 2140 sqlite3ExprListDelete(db, pCNames); 2141 return; 2142 } 2143 #endif /* SQLITE_OMIT_VIEW */ 2144 2145 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2146 /* 2147 ** The Table structure pTable is really a VIEW. Fill in the names of 2148 ** the columns of the view in the pTable structure. Return the number 2149 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2150 */ 2151 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2152 Table *pSelTab; /* A fake table from which we get the result set */ 2153 Select *pSel; /* Copy of the SELECT that implements the view */ 2154 int nErr = 0; /* Number of errors encountered */ 2155 int n; /* Temporarily holds the number of cursors assigned */ 2156 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2157 #ifndef SQLITE_OMIT_AUTHORIZATION 2158 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2159 #endif 2160 2161 assert( pTable ); 2162 2163 #ifndef SQLITE_OMIT_VIRTUALTABLE 2164 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2165 return SQLITE_ERROR; 2166 } 2167 if( IsVirtual(pTable) ) return 0; 2168 #endif 2169 2170 #ifndef SQLITE_OMIT_VIEW 2171 /* A positive nCol means the columns names for this view are 2172 ** already known. 2173 */ 2174 if( pTable->nCol>0 ) return 0; 2175 2176 /* A negative nCol is a special marker meaning that we are currently 2177 ** trying to compute the column names. If we enter this routine with 2178 ** a negative nCol, it means two or more views form a loop, like this: 2179 ** 2180 ** CREATE VIEW one AS SELECT * FROM two; 2181 ** CREATE VIEW two AS SELECT * FROM one; 2182 ** 2183 ** Actually, the error above is now caught prior to reaching this point. 2184 ** But the following test is still important as it does come up 2185 ** in the following: 2186 ** 2187 ** CREATE TABLE main.ex1(a); 2188 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2189 ** SELECT * FROM temp.ex1; 2190 */ 2191 if( pTable->nCol<0 ){ 2192 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2193 return 1; 2194 } 2195 assert( pTable->nCol>=0 ); 2196 2197 /* If we get this far, it means we need to compute the table names. 2198 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2199 ** "*" elements in the results set of the view and will assign cursors 2200 ** to the elements of the FROM clause. But we do not want these changes 2201 ** to be permanent. So the computation is done on a copy of the SELECT 2202 ** statement that defines the view. 2203 */ 2204 assert( pTable->pSelect ); 2205 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2206 if( pSel ){ 2207 n = pParse->nTab; 2208 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2209 pTable->nCol = -1; 2210 db->lookaside.bDisable++; 2211 #ifndef SQLITE_OMIT_AUTHORIZATION 2212 xAuth = db->xAuth; 2213 db->xAuth = 0; 2214 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2215 db->xAuth = xAuth; 2216 #else 2217 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2218 #endif 2219 pParse->nTab = n; 2220 if( pTable->pCheck ){ 2221 /* CREATE VIEW name(arglist) AS ... 2222 ** The names of the columns in the table are taken from 2223 ** arglist which is stored in pTable->pCheck. The pCheck field 2224 ** normally holds CHECK constraints on an ordinary table, but for 2225 ** a VIEW it holds the list of column names. 2226 */ 2227 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2228 &pTable->nCol, &pTable->aCol); 2229 if( db->mallocFailed==0 2230 && pParse->nErr==0 2231 && pTable->nCol==pSel->pEList->nExpr 2232 ){ 2233 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2234 } 2235 }else if( pSelTab ){ 2236 /* CREATE VIEW name AS... without an argument list. Construct 2237 ** the column names from the SELECT statement that defines the view. 2238 */ 2239 assert( pTable->aCol==0 ); 2240 pTable->nCol = pSelTab->nCol; 2241 pTable->aCol = pSelTab->aCol; 2242 pSelTab->nCol = 0; 2243 pSelTab->aCol = 0; 2244 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2245 }else{ 2246 pTable->nCol = 0; 2247 nErr++; 2248 } 2249 sqlite3DeleteTable(db, pSelTab); 2250 sqlite3SelectDelete(db, pSel); 2251 db->lookaside.bDisable--; 2252 } else { 2253 nErr++; 2254 } 2255 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2256 #endif /* SQLITE_OMIT_VIEW */ 2257 return nErr; 2258 } 2259 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2260 2261 #ifndef SQLITE_OMIT_VIEW 2262 /* 2263 ** Clear the column names from every VIEW in database idx. 2264 */ 2265 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2266 HashElem *i; 2267 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2268 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2269 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2270 Table *pTab = sqliteHashData(i); 2271 if( pTab->pSelect ){ 2272 sqlite3DeleteColumnNames(db, pTab); 2273 pTab->aCol = 0; 2274 pTab->nCol = 0; 2275 } 2276 } 2277 DbClearProperty(db, idx, DB_UnresetViews); 2278 } 2279 #else 2280 # define sqliteViewResetAll(A,B) 2281 #endif /* SQLITE_OMIT_VIEW */ 2282 2283 /* 2284 ** This function is called by the VDBE to adjust the internal schema 2285 ** used by SQLite when the btree layer moves a table root page. The 2286 ** root-page of a table or index in database iDb has changed from iFrom 2287 ** to iTo. 2288 ** 2289 ** Ticket #1728: The symbol table might still contain information 2290 ** on tables and/or indices that are the process of being deleted. 2291 ** If you are unlucky, one of those deleted indices or tables might 2292 ** have the same rootpage number as the real table or index that is 2293 ** being moved. So we cannot stop searching after the first match 2294 ** because the first match might be for one of the deleted indices 2295 ** or tables and not the table/index that is actually being moved. 2296 ** We must continue looping until all tables and indices with 2297 ** rootpage==iFrom have been converted to have a rootpage of iTo 2298 ** in order to be certain that we got the right one. 2299 */ 2300 #ifndef SQLITE_OMIT_AUTOVACUUM 2301 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2302 HashElem *pElem; 2303 Hash *pHash; 2304 Db *pDb; 2305 2306 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2307 pDb = &db->aDb[iDb]; 2308 pHash = &pDb->pSchema->tblHash; 2309 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2310 Table *pTab = sqliteHashData(pElem); 2311 if( pTab->tnum==iFrom ){ 2312 pTab->tnum = iTo; 2313 } 2314 } 2315 pHash = &pDb->pSchema->idxHash; 2316 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2317 Index *pIdx = sqliteHashData(pElem); 2318 if( pIdx->tnum==iFrom ){ 2319 pIdx->tnum = iTo; 2320 } 2321 } 2322 } 2323 #endif 2324 2325 /* 2326 ** Write code to erase the table with root-page iTable from database iDb. 2327 ** Also write code to modify the sqlite_master table and internal schema 2328 ** if a root-page of another table is moved by the btree-layer whilst 2329 ** erasing iTable (this can happen with an auto-vacuum database). 2330 */ 2331 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2332 Vdbe *v = sqlite3GetVdbe(pParse); 2333 int r1 = sqlite3GetTempReg(pParse); 2334 assert( iTable>1 ); 2335 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2336 sqlite3MayAbort(pParse); 2337 #ifndef SQLITE_OMIT_AUTOVACUUM 2338 /* OP_Destroy stores an in integer r1. If this integer 2339 ** is non-zero, then it is the root page number of a table moved to 2340 ** location iTable. The following code modifies the sqlite_master table to 2341 ** reflect this. 2342 ** 2343 ** The "#NNN" in the SQL is a special constant that means whatever value 2344 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2345 ** token for additional information. 2346 */ 2347 sqlite3NestedParse(pParse, 2348 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2349 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2350 #endif 2351 sqlite3ReleaseTempReg(pParse, r1); 2352 } 2353 2354 /* 2355 ** Write VDBE code to erase table pTab and all associated indices on disk. 2356 ** Code to update the sqlite_master tables and internal schema definitions 2357 ** in case a root-page belonging to another table is moved by the btree layer 2358 ** is also added (this can happen with an auto-vacuum database). 2359 */ 2360 static void destroyTable(Parse *pParse, Table *pTab){ 2361 #ifdef SQLITE_OMIT_AUTOVACUUM 2362 Index *pIdx; 2363 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2364 destroyRootPage(pParse, pTab->tnum, iDb); 2365 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2366 destroyRootPage(pParse, pIdx->tnum, iDb); 2367 } 2368 #else 2369 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2370 ** is not defined), then it is important to call OP_Destroy on the 2371 ** table and index root-pages in order, starting with the numerically 2372 ** largest root-page number. This guarantees that none of the root-pages 2373 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2374 ** following were coded: 2375 ** 2376 ** OP_Destroy 4 0 2377 ** ... 2378 ** OP_Destroy 5 0 2379 ** 2380 ** and root page 5 happened to be the largest root-page number in the 2381 ** database, then root page 5 would be moved to page 4 by the 2382 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2383 ** a free-list page. 2384 */ 2385 int iTab = pTab->tnum; 2386 int iDestroyed = 0; 2387 2388 while( 1 ){ 2389 Index *pIdx; 2390 int iLargest = 0; 2391 2392 if( iDestroyed==0 || iTab<iDestroyed ){ 2393 iLargest = iTab; 2394 } 2395 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2396 int iIdx = pIdx->tnum; 2397 assert( pIdx->pSchema==pTab->pSchema ); 2398 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2399 iLargest = iIdx; 2400 } 2401 } 2402 if( iLargest==0 ){ 2403 return; 2404 }else{ 2405 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2406 assert( iDb>=0 && iDb<pParse->db->nDb ); 2407 destroyRootPage(pParse, iLargest, iDb); 2408 iDestroyed = iLargest; 2409 } 2410 } 2411 #endif 2412 } 2413 2414 /* 2415 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2416 ** after a DROP INDEX or DROP TABLE command. 2417 */ 2418 static void sqlite3ClearStatTables( 2419 Parse *pParse, /* The parsing context */ 2420 int iDb, /* The database number */ 2421 const char *zType, /* "idx" or "tbl" */ 2422 const char *zName /* Name of index or table */ 2423 ){ 2424 int i; 2425 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2426 for(i=1; i<=4; i++){ 2427 char zTab[24]; 2428 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2429 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2430 sqlite3NestedParse(pParse, 2431 "DELETE FROM %Q.%s WHERE %s=%Q", 2432 zDbName, zTab, zType, zName 2433 ); 2434 } 2435 } 2436 } 2437 2438 /* 2439 ** Generate code to drop a table. 2440 */ 2441 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2442 Vdbe *v; 2443 sqlite3 *db = pParse->db; 2444 Trigger *pTrigger; 2445 Db *pDb = &db->aDb[iDb]; 2446 2447 v = sqlite3GetVdbe(pParse); 2448 assert( v!=0 ); 2449 sqlite3BeginWriteOperation(pParse, 1, iDb); 2450 2451 #ifndef SQLITE_OMIT_VIRTUALTABLE 2452 if( IsVirtual(pTab) ){ 2453 sqlite3VdbeAddOp0(v, OP_VBegin); 2454 } 2455 #endif 2456 2457 /* Drop all triggers associated with the table being dropped. Code 2458 ** is generated to remove entries from sqlite_master and/or 2459 ** sqlite_temp_master if required. 2460 */ 2461 pTrigger = sqlite3TriggerList(pParse, pTab); 2462 while( pTrigger ){ 2463 assert( pTrigger->pSchema==pTab->pSchema || 2464 pTrigger->pSchema==db->aDb[1].pSchema ); 2465 sqlite3DropTriggerPtr(pParse, pTrigger); 2466 pTrigger = pTrigger->pNext; 2467 } 2468 2469 #ifndef SQLITE_OMIT_AUTOINCREMENT 2470 /* Remove any entries of the sqlite_sequence table associated with 2471 ** the table being dropped. This is done before the table is dropped 2472 ** at the btree level, in case the sqlite_sequence table needs to 2473 ** move as a result of the drop (can happen in auto-vacuum mode). 2474 */ 2475 if( pTab->tabFlags & TF_Autoincrement ){ 2476 sqlite3NestedParse(pParse, 2477 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2478 pDb->zDbSName, pTab->zName 2479 ); 2480 } 2481 #endif 2482 2483 /* Drop all SQLITE_MASTER table and index entries that refer to the 2484 ** table. The program name loops through the master table and deletes 2485 ** every row that refers to a table of the same name as the one being 2486 ** dropped. Triggers are handled separately because a trigger can be 2487 ** created in the temp database that refers to a table in another 2488 ** database. 2489 */ 2490 sqlite3NestedParse(pParse, 2491 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2492 pDb->zDbSName, MASTER_NAME, pTab->zName); 2493 if( !isView && !IsVirtual(pTab) ){ 2494 destroyTable(pParse, pTab); 2495 } 2496 2497 /* Remove the table entry from SQLite's internal schema and modify 2498 ** the schema cookie. 2499 */ 2500 if( IsVirtual(pTab) ){ 2501 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2502 } 2503 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2504 sqlite3ChangeCookie(pParse, iDb); 2505 sqliteViewResetAll(db, iDb); 2506 } 2507 2508 /* 2509 ** This routine is called to do the work of a DROP TABLE statement. 2510 ** pName is the name of the table to be dropped. 2511 */ 2512 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2513 Table *pTab; 2514 Vdbe *v; 2515 sqlite3 *db = pParse->db; 2516 int iDb; 2517 2518 if( db->mallocFailed ){ 2519 goto exit_drop_table; 2520 } 2521 assert( pParse->nErr==0 ); 2522 assert( pName->nSrc==1 ); 2523 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2524 if( noErr ) db->suppressErr++; 2525 assert( isView==0 || isView==LOCATE_VIEW ); 2526 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2527 if( noErr ) db->suppressErr--; 2528 2529 if( pTab==0 ){ 2530 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2531 goto exit_drop_table; 2532 } 2533 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2534 assert( iDb>=0 && iDb<db->nDb ); 2535 2536 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2537 ** it is initialized. 2538 */ 2539 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2540 goto exit_drop_table; 2541 } 2542 #ifndef SQLITE_OMIT_AUTHORIZATION 2543 { 2544 int code; 2545 const char *zTab = SCHEMA_TABLE(iDb); 2546 const char *zDb = db->aDb[iDb].zDbSName; 2547 const char *zArg2 = 0; 2548 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2549 goto exit_drop_table; 2550 } 2551 if( isView ){ 2552 if( !OMIT_TEMPDB && iDb==1 ){ 2553 code = SQLITE_DROP_TEMP_VIEW; 2554 }else{ 2555 code = SQLITE_DROP_VIEW; 2556 } 2557 #ifndef SQLITE_OMIT_VIRTUALTABLE 2558 }else if( IsVirtual(pTab) ){ 2559 code = SQLITE_DROP_VTABLE; 2560 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2561 #endif 2562 }else{ 2563 if( !OMIT_TEMPDB && iDb==1 ){ 2564 code = SQLITE_DROP_TEMP_TABLE; 2565 }else{ 2566 code = SQLITE_DROP_TABLE; 2567 } 2568 } 2569 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2570 goto exit_drop_table; 2571 } 2572 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2573 goto exit_drop_table; 2574 } 2575 } 2576 #endif 2577 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2578 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2579 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2580 goto exit_drop_table; 2581 } 2582 2583 #ifndef SQLITE_OMIT_VIEW 2584 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2585 ** on a table. 2586 */ 2587 if( isView && pTab->pSelect==0 ){ 2588 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2589 goto exit_drop_table; 2590 } 2591 if( !isView && pTab->pSelect ){ 2592 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2593 goto exit_drop_table; 2594 } 2595 #endif 2596 2597 /* Generate code to remove the table from the master table 2598 ** on disk. 2599 */ 2600 v = sqlite3GetVdbe(pParse); 2601 if( v ){ 2602 sqlite3BeginWriteOperation(pParse, 1, iDb); 2603 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2604 sqlite3FkDropTable(pParse, pName, pTab); 2605 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2606 } 2607 2608 exit_drop_table: 2609 sqlite3SrcListDelete(db, pName); 2610 } 2611 2612 /* 2613 ** This routine is called to create a new foreign key on the table 2614 ** currently under construction. pFromCol determines which columns 2615 ** in the current table point to the foreign key. If pFromCol==0 then 2616 ** connect the key to the last column inserted. pTo is the name of 2617 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2618 ** of tables in the parent pTo table. flags contains all 2619 ** information about the conflict resolution algorithms specified 2620 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2621 ** 2622 ** An FKey structure is created and added to the table currently 2623 ** under construction in the pParse->pNewTable field. 2624 ** 2625 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2626 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2627 */ 2628 void sqlite3CreateForeignKey( 2629 Parse *pParse, /* Parsing context */ 2630 ExprList *pFromCol, /* Columns in this table that point to other table */ 2631 Token *pTo, /* Name of the other table */ 2632 ExprList *pToCol, /* Columns in the other table */ 2633 int flags /* Conflict resolution algorithms. */ 2634 ){ 2635 sqlite3 *db = pParse->db; 2636 #ifndef SQLITE_OMIT_FOREIGN_KEY 2637 FKey *pFKey = 0; 2638 FKey *pNextTo; 2639 Table *p = pParse->pNewTable; 2640 int nByte; 2641 int i; 2642 int nCol; 2643 char *z; 2644 2645 assert( pTo!=0 ); 2646 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2647 if( pFromCol==0 ){ 2648 int iCol = p->nCol-1; 2649 if( NEVER(iCol<0) ) goto fk_end; 2650 if( pToCol && pToCol->nExpr!=1 ){ 2651 sqlite3ErrorMsg(pParse, "foreign key on %s" 2652 " should reference only one column of table %T", 2653 p->aCol[iCol].zName, pTo); 2654 goto fk_end; 2655 } 2656 nCol = 1; 2657 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2658 sqlite3ErrorMsg(pParse, 2659 "number of columns in foreign key does not match the number of " 2660 "columns in the referenced table"); 2661 goto fk_end; 2662 }else{ 2663 nCol = pFromCol->nExpr; 2664 } 2665 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2666 if( pToCol ){ 2667 for(i=0; i<pToCol->nExpr; i++){ 2668 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2669 } 2670 } 2671 pFKey = sqlite3DbMallocZero(db, nByte ); 2672 if( pFKey==0 ){ 2673 goto fk_end; 2674 } 2675 pFKey->pFrom = p; 2676 pFKey->pNextFrom = p->pFKey; 2677 z = (char*)&pFKey->aCol[nCol]; 2678 pFKey->zTo = z; 2679 memcpy(z, pTo->z, pTo->n); 2680 z[pTo->n] = 0; 2681 sqlite3Dequote(z); 2682 z += pTo->n+1; 2683 pFKey->nCol = nCol; 2684 if( pFromCol==0 ){ 2685 pFKey->aCol[0].iFrom = p->nCol-1; 2686 }else{ 2687 for(i=0; i<nCol; i++){ 2688 int j; 2689 for(j=0; j<p->nCol; j++){ 2690 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2691 pFKey->aCol[i].iFrom = j; 2692 break; 2693 } 2694 } 2695 if( j>=p->nCol ){ 2696 sqlite3ErrorMsg(pParse, 2697 "unknown column \"%s\" in foreign key definition", 2698 pFromCol->a[i].zName); 2699 goto fk_end; 2700 } 2701 } 2702 } 2703 if( pToCol ){ 2704 for(i=0; i<nCol; i++){ 2705 int n = sqlite3Strlen30(pToCol->a[i].zName); 2706 pFKey->aCol[i].zCol = z; 2707 memcpy(z, pToCol->a[i].zName, n); 2708 z[n] = 0; 2709 z += n+1; 2710 } 2711 } 2712 pFKey->isDeferred = 0; 2713 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2714 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2715 2716 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2717 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2718 pFKey->zTo, (void *)pFKey 2719 ); 2720 if( pNextTo==pFKey ){ 2721 sqlite3OomFault(db); 2722 goto fk_end; 2723 } 2724 if( pNextTo ){ 2725 assert( pNextTo->pPrevTo==0 ); 2726 pFKey->pNextTo = pNextTo; 2727 pNextTo->pPrevTo = pFKey; 2728 } 2729 2730 /* Link the foreign key to the table as the last step. 2731 */ 2732 p->pFKey = pFKey; 2733 pFKey = 0; 2734 2735 fk_end: 2736 sqlite3DbFree(db, pFKey); 2737 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2738 sqlite3ExprListDelete(db, pFromCol); 2739 sqlite3ExprListDelete(db, pToCol); 2740 } 2741 2742 /* 2743 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2744 ** clause is seen as part of a foreign key definition. The isDeferred 2745 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2746 ** The behavior of the most recently created foreign key is adjusted 2747 ** accordingly. 2748 */ 2749 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2750 #ifndef SQLITE_OMIT_FOREIGN_KEY 2751 Table *pTab; 2752 FKey *pFKey; 2753 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2754 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2755 pFKey->isDeferred = (u8)isDeferred; 2756 #endif 2757 } 2758 2759 /* 2760 ** Generate code that will erase and refill index *pIdx. This is 2761 ** used to initialize a newly created index or to recompute the 2762 ** content of an index in response to a REINDEX command. 2763 ** 2764 ** if memRootPage is not negative, it means that the index is newly 2765 ** created. The register specified by memRootPage contains the 2766 ** root page number of the index. If memRootPage is negative, then 2767 ** the index already exists and must be cleared before being refilled and 2768 ** the root page number of the index is taken from pIndex->tnum. 2769 */ 2770 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2771 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2772 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2773 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2774 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2775 int addr1; /* Address of top of loop */ 2776 int addr2; /* Address to jump to for next iteration */ 2777 int tnum; /* Root page of index */ 2778 int iPartIdxLabel; /* Jump to this label to skip a row */ 2779 Vdbe *v; /* Generate code into this virtual machine */ 2780 KeyInfo *pKey; /* KeyInfo for index */ 2781 int regRecord; /* Register holding assembled index record */ 2782 sqlite3 *db = pParse->db; /* The database connection */ 2783 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2784 2785 #ifndef SQLITE_OMIT_AUTHORIZATION 2786 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2787 db->aDb[iDb].zDbSName ) ){ 2788 return; 2789 } 2790 #endif 2791 2792 /* Require a write-lock on the table to perform this operation */ 2793 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2794 2795 v = sqlite3GetVdbe(pParse); 2796 if( v==0 ) return; 2797 if( memRootPage>=0 ){ 2798 tnum = memRootPage; 2799 }else{ 2800 tnum = pIndex->tnum; 2801 } 2802 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2803 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2804 2805 /* Open the sorter cursor if we are to use one. */ 2806 iSorter = pParse->nTab++; 2807 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2808 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2809 2810 /* Open the table. Loop through all rows of the table, inserting index 2811 ** records into the sorter. */ 2812 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2813 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2814 regRecord = sqlite3GetTempReg(pParse); 2815 2816 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2817 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2818 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2819 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2820 sqlite3VdbeJumpHere(v, addr1); 2821 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2822 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2823 (char *)pKey, P4_KEYINFO); 2824 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2825 2826 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2827 if( IsUniqueIndex(pIndex) ){ 2828 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2829 sqlite3VdbeGoto(v, j2); 2830 addr2 = sqlite3VdbeCurrentAddr(v); 2831 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2832 pIndex->nKeyCol); VdbeCoverage(v); 2833 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2834 }else{ 2835 addr2 = sqlite3VdbeCurrentAddr(v); 2836 } 2837 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2838 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2839 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2840 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2841 sqlite3ReleaseTempReg(pParse, regRecord); 2842 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2843 sqlite3VdbeJumpHere(v, addr1); 2844 2845 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2846 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2847 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2848 } 2849 2850 /* 2851 ** Allocate heap space to hold an Index object with nCol columns. 2852 ** 2853 ** Increase the allocation size to provide an extra nExtra bytes 2854 ** of 8-byte aligned space after the Index object and return a 2855 ** pointer to this extra space in *ppExtra. 2856 */ 2857 Index *sqlite3AllocateIndexObject( 2858 sqlite3 *db, /* Database connection */ 2859 i16 nCol, /* Total number of columns in the index */ 2860 int nExtra, /* Number of bytes of extra space to alloc */ 2861 char **ppExtra /* Pointer to the "extra" space */ 2862 ){ 2863 Index *p; /* Allocated index object */ 2864 int nByte; /* Bytes of space for Index object + arrays */ 2865 2866 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2867 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2868 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2869 sizeof(i16)*nCol + /* Index.aiColumn */ 2870 sizeof(u8)*nCol); /* Index.aSortOrder */ 2871 p = sqlite3DbMallocZero(db, nByte + nExtra); 2872 if( p ){ 2873 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2874 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2875 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2876 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2877 p->aSortOrder = (u8*)pExtra; 2878 p->nColumn = nCol; 2879 p->nKeyCol = nCol - 1; 2880 *ppExtra = ((char*)p) + nByte; 2881 } 2882 return p; 2883 } 2884 2885 /* 2886 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2887 ** and pTblList is the name of the table that is to be indexed. Both will 2888 ** be NULL for a primary key or an index that is created to satisfy a 2889 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2890 ** as the table to be indexed. pParse->pNewTable is a table that is 2891 ** currently being constructed by a CREATE TABLE statement. 2892 ** 2893 ** pList is a list of columns to be indexed. pList will be NULL if this 2894 ** is a primary key or unique-constraint on the most recent column added 2895 ** to the table currently under construction. 2896 */ 2897 void sqlite3CreateIndex( 2898 Parse *pParse, /* All information about this parse */ 2899 Token *pName1, /* First part of index name. May be NULL */ 2900 Token *pName2, /* Second part of index name. May be NULL */ 2901 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2902 ExprList *pList, /* A list of columns to be indexed */ 2903 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2904 Token *pStart, /* The CREATE token that begins this statement */ 2905 Expr *pPIWhere, /* WHERE clause for partial indices */ 2906 int sortOrder, /* Sort order of primary key when pList==NULL */ 2907 int ifNotExist, /* Omit error if index already exists */ 2908 u8 idxType /* The index type */ 2909 ){ 2910 Table *pTab = 0; /* Table to be indexed */ 2911 Index *pIndex = 0; /* The index to be created */ 2912 char *zName = 0; /* Name of the index */ 2913 int nName; /* Number of characters in zName */ 2914 int i, j; 2915 DbFixer sFix; /* For assigning database names to pTable */ 2916 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2917 sqlite3 *db = pParse->db; 2918 Db *pDb; /* The specific table containing the indexed database */ 2919 int iDb; /* Index of the database that is being written */ 2920 Token *pName = 0; /* Unqualified name of the index to create */ 2921 struct ExprList_item *pListItem; /* For looping over pList */ 2922 int nExtra = 0; /* Space allocated for zExtra[] */ 2923 int nExtraCol; /* Number of extra columns needed */ 2924 char *zExtra = 0; /* Extra space after the Index object */ 2925 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2926 2927 if( db->mallocFailed || pParse->nErr>0 ){ 2928 goto exit_create_index; 2929 } 2930 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 2931 goto exit_create_index; 2932 } 2933 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2934 goto exit_create_index; 2935 } 2936 2937 /* 2938 ** Find the table that is to be indexed. Return early if not found. 2939 */ 2940 if( pTblName!=0 ){ 2941 2942 /* Use the two-part index name to determine the database 2943 ** to search for the table. 'Fix' the table name to this db 2944 ** before looking up the table. 2945 */ 2946 assert( pName1 && pName2 ); 2947 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2948 if( iDb<0 ) goto exit_create_index; 2949 assert( pName && pName->z ); 2950 2951 #ifndef SQLITE_OMIT_TEMPDB 2952 /* If the index name was unqualified, check if the table 2953 ** is a temp table. If so, set the database to 1. Do not do this 2954 ** if initialising a database schema. 2955 */ 2956 if( !db->init.busy ){ 2957 pTab = sqlite3SrcListLookup(pParse, pTblName); 2958 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2959 iDb = 1; 2960 } 2961 } 2962 #endif 2963 2964 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2965 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2966 /* Because the parser constructs pTblName from a single identifier, 2967 ** sqlite3FixSrcList can never fail. */ 2968 assert(0); 2969 } 2970 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2971 assert( db->mallocFailed==0 || pTab==0 ); 2972 if( pTab==0 ) goto exit_create_index; 2973 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2974 sqlite3ErrorMsg(pParse, 2975 "cannot create a TEMP index on non-TEMP table \"%s\"", 2976 pTab->zName); 2977 goto exit_create_index; 2978 } 2979 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2980 }else{ 2981 assert( pName==0 ); 2982 assert( pStart==0 ); 2983 pTab = pParse->pNewTable; 2984 if( !pTab ) goto exit_create_index; 2985 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2986 } 2987 pDb = &db->aDb[iDb]; 2988 2989 assert( pTab!=0 ); 2990 assert( pParse->nErr==0 ); 2991 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2992 && db->init.busy==0 2993 #if SQLITE_USER_AUTHENTICATION 2994 && sqlite3UserAuthTable(pTab->zName)==0 2995 #endif 2996 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2997 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2998 goto exit_create_index; 2999 } 3000 #ifndef SQLITE_OMIT_VIEW 3001 if( pTab->pSelect ){ 3002 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3003 goto exit_create_index; 3004 } 3005 #endif 3006 #ifndef SQLITE_OMIT_VIRTUALTABLE 3007 if( IsVirtual(pTab) ){ 3008 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3009 goto exit_create_index; 3010 } 3011 #endif 3012 3013 /* 3014 ** Find the name of the index. Make sure there is not already another 3015 ** index or table with the same name. 3016 ** 3017 ** Exception: If we are reading the names of permanent indices from the 3018 ** sqlite_master table (because some other process changed the schema) and 3019 ** one of the index names collides with the name of a temporary table or 3020 ** index, then we will continue to process this index. 3021 ** 3022 ** If pName==0 it means that we are 3023 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3024 ** own name. 3025 */ 3026 if( pName ){ 3027 zName = sqlite3NameFromToken(db, pName); 3028 if( zName==0 ) goto exit_create_index; 3029 assert( pName->z!=0 ); 3030 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3031 goto exit_create_index; 3032 } 3033 if( !db->init.busy ){ 3034 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3035 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3036 goto exit_create_index; 3037 } 3038 } 3039 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3040 if( !ifNotExist ){ 3041 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3042 }else{ 3043 assert( !db->init.busy ); 3044 sqlite3CodeVerifySchema(pParse, iDb); 3045 } 3046 goto exit_create_index; 3047 } 3048 }else{ 3049 int n; 3050 Index *pLoop; 3051 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3052 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3053 if( zName==0 ){ 3054 goto exit_create_index; 3055 } 3056 3057 /* Automatic index names generated from within sqlite3_declare_vtab() 3058 ** must have names that are distinct from normal automatic index names. 3059 ** The following statement converts "sqlite3_autoindex..." into 3060 ** "sqlite3_butoindex..." in order to make the names distinct. 3061 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3062 if( IN_DECLARE_VTAB ) zName[7]++; 3063 } 3064 3065 /* Check for authorization to create an index. 3066 */ 3067 #ifndef SQLITE_OMIT_AUTHORIZATION 3068 { 3069 const char *zDb = pDb->zDbSName; 3070 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3071 goto exit_create_index; 3072 } 3073 i = SQLITE_CREATE_INDEX; 3074 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3075 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3076 goto exit_create_index; 3077 } 3078 } 3079 #endif 3080 3081 /* If pList==0, it means this routine was called to make a primary 3082 ** key out of the last column added to the table under construction. 3083 ** So create a fake list to simulate this. 3084 */ 3085 if( pList==0 ){ 3086 Token prevCol; 3087 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3088 pList = sqlite3ExprListAppend(pParse, 0, 3089 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3090 if( pList==0 ) goto exit_create_index; 3091 assert( pList->nExpr==1 ); 3092 sqlite3ExprListSetSortOrder(pList, sortOrder); 3093 }else{ 3094 sqlite3ExprListCheckLength(pParse, pList, "index"); 3095 } 3096 3097 /* Figure out how many bytes of space are required to store explicitly 3098 ** specified collation sequence names. 3099 */ 3100 for(i=0; i<pList->nExpr; i++){ 3101 Expr *pExpr = pList->a[i].pExpr; 3102 assert( pExpr!=0 ); 3103 if( pExpr->op==TK_COLLATE ){ 3104 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3105 } 3106 } 3107 3108 /* 3109 ** Allocate the index structure. 3110 */ 3111 nName = sqlite3Strlen30(zName); 3112 nExtraCol = pPk ? pPk->nKeyCol : 1; 3113 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3114 nName + nExtra + 1, &zExtra); 3115 if( db->mallocFailed ){ 3116 goto exit_create_index; 3117 } 3118 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3119 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3120 pIndex->zName = zExtra; 3121 zExtra += nName + 1; 3122 memcpy(pIndex->zName, zName, nName+1); 3123 pIndex->pTable = pTab; 3124 pIndex->onError = (u8)onError; 3125 pIndex->uniqNotNull = onError!=OE_None; 3126 pIndex->idxType = idxType; 3127 pIndex->pSchema = db->aDb[iDb].pSchema; 3128 pIndex->nKeyCol = pList->nExpr; 3129 if( pPIWhere ){ 3130 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3131 pIndex->pPartIdxWhere = pPIWhere; 3132 pPIWhere = 0; 3133 } 3134 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3135 3136 /* Check to see if we should honor DESC requests on index columns 3137 */ 3138 if( pDb->pSchema->file_format>=4 ){ 3139 sortOrderMask = -1; /* Honor DESC */ 3140 }else{ 3141 sortOrderMask = 0; /* Ignore DESC */ 3142 } 3143 3144 /* Analyze the list of expressions that form the terms of the index and 3145 ** report any errors. In the common case where the expression is exactly 3146 ** a table column, store that column in aiColumn[]. For general expressions, 3147 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3148 ** 3149 ** TODO: Issue a warning if two or more columns of the index are identical. 3150 ** TODO: Issue a warning if the table primary key is used as part of the 3151 ** index key. 3152 */ 3153 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3154 Expr *pCExpr; /* The i-th index expression */ 3155 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3156 const char *zColl; /* Collation sequence name */ 3157 3158 sqlite3StringToId(pListItem->pExpr); 3159 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3160 if( pParse->nErr ) goto exit_create_index; 3161 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3162 if( pCExpr->op!=TK_COLUMN ){ 3163 if( pTab==pParse->pNewTable ){ 3164 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3165 "UNIQUE constraints"); 3166 goto exit_create_index; 3167 } 3168 if( pIndex->aColExpr==0 ){ 3169 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3170 pIndex->aColExpr = pCopy; 3171 if( !db->mallocFailed ){ 3172 assert( pCopy!=0 ); 3173 pListItem = &pCopy->a[i]; 3174 } 3175 } 3176 j = XN_EXPR; 3177 pIndex->aiColumn[i] = XN_EXPR; 3178 pIndex->uniqNotNull = 0; 3179 }else{ 3180 j = pCExpr->iColumn; 3181 assert( j<=0x7fff ); 3182 if( j<0 ){ 3183 j = pTab->iPKey; 3184 }else if( pTab->aCol[j].notNull==0 ){ 3185 pIndex->uniqNotNull = 0; 3186 } 3187 pIndex->aiColumn[i] = (i16)j; 3188 } 3189 zColl = 0; 3190 if( pListItem->pExpr->op==TK_COLLATE ){ 3191 int nColl; 3192 zColl = pListItem->pExpr->u.zToken; 3193 nColl = sqlite3Strlen30(zColl) + 1; 3194 assert( nExtra>=nColl ); 3195 memcpy(zExtra, zColl, nColl); 3196 zColl = zExtra; 3197 zExtra += nColl; 3198 nExtra -= nColl; 3199 }else if( j>=0 ){ 3200 zColl = pTab->aCol[j].zColl; 3201 } 3202 if( !zColl ) zColl = sqlite3StrBINARY; 3203 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3204 goto exit_create_index; 3205 } 3206 pIndex->azColl[i] = zColl; 3207 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3208 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3209 } 3210 3211 /* Append the table key to the end of the index. For WITHOUT ROWID 3212 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3213 ** normal tables (when pPk==0) this will be the rowid. 3214 */ 3215 if( pPk ){ 3216 for(j=0; j<pPk->nKeyCol; j++){ 3217 int x = pPk->aiColumn[j]; 3218 assert( x>=0 ); 3219 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3220 pIndex->nColumn--; 3221 }else{ 3222 pIndex->aiColumn[i] = x; 3223 pIndex->azColl[i] = pPk->azColl[j]; 3224 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3225 i++; 3226 } 3227 } 3228 assert( i==pIndex->nColumn ); 3229 }else{ 3230 pIndex->aiColumn[i] = XN_ROWID; 3231 pIndex->azColl[i] = sqlite3StrBINARY; 3232 } 3233 sqlite3DefaultRowEst(pIndex); 3234 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3235 3236 /* If this index contains every column of its table, then mark 3237 ** it as a covering index */ 3238 assert( HasRowid(pTab) 3239 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3240 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3241 pIndex->isCovering = 1; 3242 for(j=0; j<pTab->nCol; j++){ 3243 if( j==pTab->iPKey ) continue; 3244 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3245 pIndex->isCovering = 0; 3246 break; 3247 } 3248 } 3249 3250 if( pTab==pParse->pNewTable ){ 3251 /* This routine has been called to create an automatic index as a 3252 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3253 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3254 ** i.e. one of: 3255 ** 3256 ** CREATE TABLE t(x PRIMARY KEY, y); 3257 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3258 ** 3259 ** Either way, check to see if the table already has such an index. If 3260 ** so, don't bother creating this one. This only applies to 3261 ** automatically created indices. Users can do as they wish with 3262 ** explicit indices. 3263 ** 3264 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3265 ** (and thus suppressing the second one) even if they have different 3266 ** sort orders. 3267 ** 3268 ** If there are different collating sequences or if the columns of 3269 ** the constraint occur in different orders, then the constraints are 3270 ** considered distinct and both result in separate indices. 3271 */ 3272 Index *pIdx; 3273 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3274 int k; 3275 assert( IsUniqueIndex(pIdx) ); 3276 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3277 assert( IsUniqueIndex(pIndex) ); 3278 3279 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3280 for(k=0; k<pIdx->nKeyCol; k++){ 3281 const char *z1; 3282 const char *z2; 3283 assert( pIdx->aiColumn[k]>=0 ); 3284 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3285 z1 = pIdx->azColl[k]; 3286 z2 = pIndex->azColl[k]; 3287 if( sqlite3StrICmp(z1, z2) ) break; 3288 } 3289 if( k==pIdx->nKeyCol ){ 3290 if( pIdx->onError!=pIndex->onError ){ 3291 /* This constraint creates the same index as a previous 3292 ** constraint specified somewhere in the CREATE TABLE statement. 3293 ** However the ON CONFLICT clauses are different. If both this 3294 ** constraint and the previous equivalent constraint have explicit 3295 ** ON CONFLICT clauses this is an error. Otherwise, use the 3296 ** explicitly specified behavior for the index. 3297 */ 3298 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3299 sqlite3ErrorMsg(pParse, 3300 "conflicting ON CONFLICT clauses specified", 0); 3301 } 3302 if( pIdx->onError==OE_Default ){ 3303 pIdx->onError = pIndex->onError; 3304 } 3305 } 3306 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3307 goto exit_create_index; 3308 } 3309 } 3310 } 3311 3312 /* Link the new Index structure to its table and to the other 3313 ** in-memory database structures. 3314 */ 3315 assert( pParse->nErr==0 ); 3316 if( db->init.busy ){ 3317 Index *p; 3318 assert( !IN_DECLARE_VTAB ); 3319 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3320 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3321 pIndex->zName, pIndex); 3322 if( p ){ 3323 assert( p==pIndex ); /* Malloc must have failed */ 3324 sqlite3OomFault(db); 3325 goto exit_create_index; 3326 } 3327 db->flags |= SQLITE_InternChanges; 3328 if( pTblName!=0 ){ 3329 pIndex->tnum = db->init.newTnum; 3330 } 3331 } 3332 3333 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3334 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3335 ** emit code to allocate the index rootpage on disk and make an entry for 3336 ** the index in the sqlite_master table and populate the index with 3337 ** content. But, do not do this if we are simply reading the sqlite_master 3338 ** table to parse the schema, or if this index is the PRIMARY KEY index 3339 ** of a WITHOUT ROWID table. 3340 ** 3341 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3342 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3343 ** has just been created, it contains no data and the index initialization 3344 ** step can be skipped. 3345 */ 3346 else if( HasRowid(pTab) || pTblName!=0 ){ 3347 Vdbe *v; 3348 char *zStmt; 3349 int iMem = ++pParse->nMem; 3350 3351 v = sqlite3GetVdbe(pParse); 3352 if( v==0 ) goto exit_create_index; 3353 3354 sqlite3BeginWriteOperation(pParse, 1, iDb); 3355 3356 /* Create the rootpage for the index using CreateIndex. But before 3357 ** doing so, code a Noop instruction and store its address in 3358 ** Index.tnum. This is required in case this index is actually a 3359 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3360 ** that case the convertToWithoutRowidTable() routine will replace 3361 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3362 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3363 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3364 3365 /* Gather the complete text of the CREATE INDEX statement into 3366 ** the zStmt variable 3367 */ 3368 if( pStart ){ 3369 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3370 if( pName->z[n-1]==';' ) n--; 3371 /* A named index with an explicit CREATE INDEX statement */ 3372 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3373 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3374 }else{ 3375 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3376 /* zStmt = sqlite3MPrintf(""); */ 3377 zStmt = 0; 3378 } 3379 3380 /* Add an entry in sqlite_master for this index 3381 */ 3382 sqlite3NestedParse(pParse, 3383 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3384 db->aDb[iDb].zDbSName, MASTER_NAME, 3385 pIndex->zName, 3386 pTab->zName, 3387 iMem, 3388 zStmt 3389 ); 3390 sqlite3DbFree(db, zStmt); 3391 3392 /* Fill the index with data and reparse the schema. Code an OP_Expire 3393 ** to invalidate all pre-compiled statements. 3394 */ 3395 if( pTblName ){ 3396 sqlite3RefillIndex(pParse, pIndex, iMem); 3397 sqlite3ChangeCookie(pParse, iDb); 3398 sqlite3VdbeAddParseSchemaOp(v, iDb, 3399 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3400 sqlite3VdbeAddOp0(v, OP_Expire); 3401 } 3402 3403 sqlite3VdbeJumpHere(v, pIndex->tnum); 3404 } 3405 3406 /* When adding an index to the list of indices for a table, make 3407 ** sure all indices labeled OE_Replace come after all those labeled 3408 ** OE_Ignore. This is necessary for the correct constraint check 3409 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3410 ** UPDATE and INSERT statements. 3411 */ 3412 if( db->init.busy || pTblName==0 ){ 3413 if( onError!=OE_Replace || pTab->pIndex==0 3414 || pTab->pIndex->onError==OE_Replace){ 3415 pIndex->pNext = pTab->pIndex; 3416 pTab->pIndex = pIndex; 3417 }else{ 3418 Index *pOther = pTab->pIndex; 3419 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3420 pOther = pOther->pNext; 3421 } 3422 pIndex->pNext = pOther->pNext; 3423 pOther->pNext = pIndex; 3424 } 3425 pIndex = 0; 3426 } 3427 3428 /* Clean up before exiting */ 3429 exit_create_index: 3430 if( pIndex ) freeIndex(db, pIndex); 3431 sqlite3ExprDelete(db, pPIWhere); 3432 sqlite3ExprListDelete(db, pList); 3433 sqlite3SrcListDelete(db, pTblName); 3434 sqlite3DbFree(db, zName); 3435 } 3436 3437 /* 3438 ** Fill the Index.aiRowEst[] array with default information - information 3439 ** to be used when we have not run the ANALYZE command. 3440 ** 3441 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3442 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3443 ** number of rows in the table that match any particular value of the 3444 ** first column of the index. aiRowEst[2] is an estimate of the number 3445 ** of rows that match any particular combination of the first 2 columns 3446 ** of the index. And so forth. It must always be the case that 3447 * 3448 ** aiRowEst[N]<=aiRowEst[N-1] 3449 ** aiRowEst[N]>=1 3450 ** 3451 ** Apart from that, we have little to go on besides intuition as to 3452 ** how aiRowEst[] should be initialized. The numbers generated here 3453 ** are based on typical values found in actual indices. 3454 */ 3455 void sqlite3DefaultRowEst(Index *pIdx){ 3456 /* 10, 9, 8, 7, 6 */ 3457 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3458 LogEst *a = pIdx->aiRowLogEst; 3459 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3460 int i; 3461 3462 /* Indexes with default row estimates should not have stat1 data */ 3463 assert( !pIdx->hasStat1 ); 3464 3465 /* Set the first entry (number of rows in the index) to the estimated 3466 ** number of rows in the table, or half the number of rows in the table 3467 ** for a partial index. But do not let the estimate drop below 10. */ 3468 a[0] = pIdx->pTable->nRowLogEst; 3469 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3470 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3471 3472 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3473 ** 6 and each subsequent value (if any) is 5. */ 3474 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3475 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3476 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3477 } 3478 3479 assert( 0==sqlite3LogEst(1) ); 3480 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3481 } 3482 3483 /* 3484 ** This routine will drop an existing named index. This routine 3485 ** implements the DROP INDEX statement. 3486 */ 3487 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3488 Index *pIndex; 3489 Vdbe *v; 3490 sqlite3 *db = pParse->db; 3491 int iDb; 3492 3493 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3494 if( db->mallocFailed ){ 3495 goto exit_drop_index; 3496 } 3497 assert( pName->nSrc==1 ); 3498 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3499 goto exit_drop_index; 3500 } 3501 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3502 if( pIndex==0 ){ 3503 if( !ifExists ){ 3504 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3505 }else{ 3506 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3507 } 3508 pParse->checkSchema = 1; 3509 goto exit_drop_index; 3510 } 3511 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3512 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3513 "or PRIMARY KEY constraint cannot be dropped", 0); 3514 goto exit_drop_index; 3515 } 3516 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3517 #ifndef SQLITE_OMIT_AUTHORIZATION 3518 { 3519 int code = SQLITE_DROP_INDEX; 3520 Table *pTab = pIndex->pTable; 3521 const char *zDb = db->aDb[iDb].zDbSName; 3522 const char *zTab = SCHEMA_TABLE(iDb); 3523 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3524 goto exit_drop_index; 3525 } 3526 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3527 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3528 goto exit_drop_index; 3529 } 3530 } 3531 #endif 3532 3533 /* Generate code to remove the index and from the master table */ 3534 v = sqlite3GetVdbe(pParse); 3535 if( v ){ 3536 sqlite3BeginWriteOperation(pParse, 1, iDb); 3537 sqlite3NestedParse(pParse, 3538 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3539 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 3540 ); 3541 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3542 sqlite3ChangeCookie(pParse, iDb); 3543 destroyRootPage(pParse, pIndex->tnum, iDb); 3544 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3545 } 3546 3547 exit_drop_index: 3548 sqlite3SrcListDelete(db, pName); 3549 } 3550 3551 /* 3552 ** pArray is a pointer to an array of objects. Each object in the 3553 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3554 ** to extend the array so that there is space for a new object at the end. 3555 ** 3556 ** When this function is called, *pnEntry contains the current size of 3557 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3558 ** in total). 3559 ** 3560 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3561 ** space allocated for the new object is zeroed, *pnEntry updated to 3562 ** reflect the new size of the array and a pointer to the new allocation 3563 ** returned. *pIdx is set to the index of the new array entry in this case. 3564 ** 3565 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3566 ** unchanged and a copy of pArray returned. 3567 */ 3568 void *sqlite3ArrayAllocate( 3569 sqlite3 *db, /* Connection to notify of malloc failures */ 3570 void *pArray, /* Array of objects. Might be reallocated */ 3571 int szEntry, /* Size of each object in the array */ 3572 int *pnEntry, /* Number of objects currently in use */ 3573 int *pIdx /* Write the index of a new slot here */ 3574 ){ 3575 char *z; 3576 int n = *pnEntry; 3577 if( (n & (n-1))==0 ){ 3578 int sz = (n==0) ? 1 : 2*n; 3579 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3580 if( pNew==0 ){ 3581 *pIdx = -1; 3582 return pArray; 3583 } 3584 pArray = pNew; 3585 } 3586 z = (char*)pArray; 3587 memset(&z[n * szEntry], 0, szEntry); 3588 *pIdx = n; 3589 ++*pnEntry; 3590 return pArray; 3591 } 3592 3593 /* 3594 ** Append a new element to the given IdList. Create a new IdList if 3595 ** need be. 3596 ** 3597 ** A new IdList is returned, or NULL if malloc() fails. 3598 */ 3599 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3600 int i; 3601 if( pList==0 ){ 3602 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3603 if( pList==0 ) return 0; 3604 } 3605 pList->a = sqlite3ArrayAllocate( 3606 db, 3607 pList->a, 3608 sizeof(pList->a[0]), 3609 &pList->nId, 3610 &i 3611 ); 3612 if( i<0 ){ 3613 sqlite3IdListDelete(db, pList); 3614 return 0; 3615 } 3616 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3617 return pList; 3618 } 3619 3620 /* 3621 ** Delete an IdList. 3622 */ 3623 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3624 int i; 3625 if( pList==0 ) return; 3626 for(i=0; i<pList->nId; i++){ 3627 sqlite3DbFree(db, pList->a[i].zName); 3628 } 3629 sqlite3DbFree(db, pList->a); 3630 sqlite3DbFreeNN(db, pList); 3631 } 3632 3633 /* 3634 ** Return the index in pList of the identifier named zId. Return -1 3635 ** if not found. 3636 */ 3637 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3638 int i; 3639 if( pList==0 ) return -1; 3640 for(i=0; i<pList->nId; i++){ 3641 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3642 } 3643 return -1; 3644 } 3645 3646 /* 3647 ** Expand the space allocated for the given SrcList object by 3648 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3649 ** New slots are zeroed. 3650 ** 3651 ** For example, suppose a SrcList initially contains two entries: A,B. 3652 ** To append 3 new entries onto the end, do this: 3653 ** 3654 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3655 ** 3656 ** After the call above it would contain: A, B, nil, nil, nil. 3657 ** If the iStart argument had been 1 instead of 2, then the result 3658 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3659 ** the iStart value would be 0. The result then would 3660 ** be: nil, nil, nil, A, B. 3661 ** 3662 ** If a memory allocation fails the SrcList is unchanged. The 3663 ** db->mallocFailed flag will be set to true. 3664 */ 3665 SrcList *sqlite3SrcListEnlarge( 3666 sqlite3 *db, /* Database connection to notify of OOM errors */ 3667 SrcList *pSrc, /* The SrcList to be enlarged */ 3668 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3669 int iStart /* Index in pSrc->a[] of first new slot */ 3670 ){ 3671 int i; 3672 3673 /* Sanity checking on calling parameters */ 3674 assert( iStart>=0 ); 3675 assert( nExtra>=1 ); 3676 assert( pSrc!=0 ); 3677 assert( iStart<=pSrc->nSrc ); 3678 3679 /* Allocate additional space if needed */ 3680 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3681 SrcList *pNew; 3682 int nAlloc = pSrc->nSrc*2+nExtra; 3683 int nGot; 3684 pNew = sqlite3DbRealloc(db, pSrc, 3685 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3686 if( pNew==0 ){ 3687 assert( db->mallocFailed ); 3688 return pSrc; 3689 } 3690 pSrc = pNew; 3691 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3692 pSrc->nAlloc = nGot; 3693 } 3694 3695 /* Move existing slots that come after the newly inserted slots 3696 ** out of the way */ 3697 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3698 pSrc->a[i+nExtra] = pSrc->a[i]; 3699 } 3700 pSrc->nSrc += nExtra; 3701 3702 /* Zero the newly allocated slots */ 3703 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3704 for(i=iStart; i<iStart+nExtra; i++){ 3705 pSrc->a[i].iCursor = -1; 3706 } 3707 3708 /* Return a pointer to the enlarged SrcList */ 3709 return pSrc; 3710 } 3711 3712 3713 /* 3714 ** Append a new table name to the given SrcList. Create a new SrcList if 3715 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3716 ** 3717 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3718 ** SrcList might be the same as the SrcList that was input or it might be 3719 ** a new one. If an OOM error does occurs, then the prior value of pList 3720 ** that is input to this routine is automatically freed. 3721 ** 3722 ** If pDatabase is not null, it means that the table has an optional 3723 ** database name prefix. Like this: "database.table". The pDatabase 3724 ** points to the table name and the pTable points to the database name. 3725 ** The SrcList.a[].zName field is filled with the table name which might 3726 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3727 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3728 ** or with NULL if no database is specified. 3729 ** 3730 ** In other words, if call like this: 3731 ** 3732 ** sqlite3SrcListAppend(D,A,B,0); 3733 ** 3734 ** Then B is a table name and the database name is unspecified. If called 3735 ** like this: 3736 ** 3737 ** sqlite3SrcListAppend(D,A,B,C); 3738 ** 3739 ** Then C is the table name and B is the database name. If C is defined 3740 ** then so is B. In other words, we never have a case where: 3741 ** 3742 ** sqlite3SrcListAppend(D,A,0,C); 3743 ** 3744 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3745 ** before being added to the SrcList. 3746 */ 3747 SrcList *sqlite3SrcListAppend( 3748 sqlite3 *db, /* Connection to notify of malloc failures */ 3749 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3750 Token *pTable, /* Table to append */ 3751 Token *pDatabase /* Database of the table */ 3752 ){ 3753 struct SrcList_item *pItem; 3754 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3755 assert( db!=0 ); 3756 if( pList==0 ){ 3757 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3758 if( pList==0 ) return 0; 3759 pList->nAlloc = 1; 3760 pList->nSrc = 1; 3761 memset(&pList->a[0], 0, sizeof(pList->a[0])); 3762 pList->a[0].iCursor = -1; 3763 }else{ 3764 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3765 } 3766 if( db->mallocFailed ){ 3767 sqlite3SrcListDelete(db, pList); 3768 return 0; 3769 } 3770 pItem = &pList->a[pList->nSrc-1]; 3771 if( pDatabase && pDatabase->z==0 ){ 3772 pDatabase = 0; 3773 } 3774 if( pDatabase ){ 3775 pItem->zName = sqlite3NameFromToken(db, pDatabase); 3776 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 3777 }else{ 3778 pItem->zName = sqlite3NameFromToken(db, pTable); 3779 pItem->zDatabase = 0; 3780 } 3781 return pList; 3782 } 3783 3784 /* 3785 ** Assign VdbeCursor index numbers to all tables in a SrcList 3786 */ 3787 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3788 int i; 3789 struct SrcList_item *pItem; 3790 assert(pList || pParse->db->mallocFailed ); 3791 if( pList ){ 3792 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3793 if( pItem->iCursor>=0 ) break; 3794 pItem->iCursor = pParse->nTab++; 3795 if( pItem->pSelect ){ 3796 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3797 } 3798 } 3799 } 3800 } 3801 3802 /* 3803 ** Delete an entire SrcList including all its substructure. 3804 */ 3805 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3806 int i; 3807 struct SrcList_item *pItem; 3808 if( pList==0 ) return; 3809 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3810 sqlite3DbFree(db, pItem->zDatabase); 3811 sqlite3DbFree(db, pItem->zName); 3812 sqlite3DbFree(db, pItem->zAlias); 3813 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3814 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3815 sqlite3DeleteTable(db, pItem->pTab); 3816 sqlite3SelectDelete(db, pItem->pSelect); 3817 sqlite3ExprDelete(db, pItem->pOn); 3818 sqlite3IdListDelete(db, pItem->pUsing); 3819 } 3820 sqlite3DbFreeNN(db, pList); 3821 } 3822 3823 /* 3824 ** This routine is called by the parser to add a new term to the 3825 ** end of a growing FROM clause. The "p" parameter is the part of 3826 ** the FROM clause that has already been constructed. "p" is NULL 3827 ** if this is the first term of the FROM clause. pTable and pDatabase 3828 ** are the name of the table and database named in the FROM clause term. 3829 ** pDatabase is NULL if the database name qualifier is missing - the 3830 ** usual case. If the term has an alias, then pAlias points to the 3831 ** alias token. If the term is a subquery, then pSubquery is the 3832 ** SELECT statement that the subquery encodes. The pTable and 3833 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3834 ** parameters are the content of the ON and USING clauses. 3835 ** 3836 ** Return a new SrcList which encodes is the FROM with the new 3837 ** term added. 3838 */ 3839 SrcList *sqlite3SrcListAppendFromTerm( 3840 Parse *pParse, /* Parsing context */ 3841 SrcList *p, /* The left part of the FROM clause already seen */ 3842 Token *pTable, /* Name of the table to add to the FROM clause */ 3843 Token *pDatabase, /* Name of the database containing pTable */ 3844 Token *pAlias, /* The right-hand side of the AS subexpression */ 3845 Select *pSubquery, /* A subquery used in place of a table name */ 3846 Expr *pOn, /* The ON clause of a join */ 3847 IdList *pUsing /* The USING clause of a join */ 3848 ){ 3849 struct SrcList_item *pItem; 3850 sqlite3 *db = pParse->db; 3851 if( !p && (pOn || pUsing) ){ 3852 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3853 (pOn ? "ON" : "USING") 3854 ); 3855 goto append_from_error; 3856 } 3857 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3858 if( p==0 || NEVER(p->nSrc==0) ){ 3859 goto append_from_error; 3860 } 3861 pItem = &p->a[p->nSrc-1]; 3862 assert( pAlias!=0 ); 3863 if( pAlias->n ){ 3864 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3865 } 3866 pItem->pSelect = pSubquery; 3867 pItem->pOn = pOn; 3868 pItem->pUsing = pUsing; 3869 return p; 3870 3871 append_from_error: 3872 assert( p==0 ); 3873 sqlite3ExprDelete(db, pOn); 3874 sqlite3IdListDelete(db, pUsing); 3875 sqlite3SelectDelete(db, pSubquery); 3876 return 0; 3877 } 3878 3879 /* 3880 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3881 ** element of the source-list passed as the second argument. 3882 */ 3883 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3884 assert( pIndexedBy!=0 ); 3885 if( p && ALWAYS(p->nSrc>0) ){ 3886 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3887 assert( pItem->fg.notIndexed==0 ); 3888 assert( pItem->fg.isIndexedBy==0 ); 3889 assert( pItem->fg.isTabFunc==0 ); 3890 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3891 /* A "NOT INDEXED" clause was supplied. See parse.y 3892 ** construct "indexed_opt" for details. */ 3893 pItem->fg.notIndexed = 1; 3894 }else{ 3895 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3896 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3897 } 3898 } 3899 } 3900 3901 /* 3902 ** Add the list of function arguments to the SrcList entry for a 3903 ** table-valued-function. 3904 */ 3905 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3906 if( p ){ 3907 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3908 assert( pItem->fg.notIndexed==0 ); 3909 assert( pItem->fg.isIndexedBy==0 ); 3910 assert( pItem->fg.isTabFunc==0 ); 3911 pItem->u1.pFuncArg = pList; 3912 pItem->fg.isTabFunc = 1; 3913 }else{ 3914 sqlite3ExprListDelete(pParse->db, pList); 3915 } 3916 } 3917 3918 /* 3919 ** When building up a FROM clause in the parser, the join operator 3920 ** is initially attached to the left operand. But the code generator 3921 ** expects the join operator to be on the right operand. This routine 3922 ** Shifts all join operators from left to right for an entire FROM 3923 ** clause. 3924 ** 3925 ** Example: Suppose the join is like this: 3926 ** 3927 ** A natural cross join B 3928 ** 3929 ** The operator is "natural cross join". The A and B operands are stored 3930 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3931 ** operator with A. This routine shifts that operator over to B. 3932 */ 3933 void sqlite3SrcListShiftJoinType(SrcList *p){ 3934 if( p ){ 3935 int i; 3936 for(i=p->nSrc-1; i>0; i--){ 3937 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3938 } 3939 p->a[0].fg.jointype = 0; 3940 } 3941 } 3942 3943 /* 3944 ** Generate VDBE code for a BEGIN statement. 3945 */ 3946 void sqlite3BeginTransaction(Parse *pParse, int type){ 3947 sqlite3 *db; 3948 Vdbe *v; 3949 int i; 3950 3951 assert( pParse!=0 ); 3952 db = pParse->db; 3953 assert( db!=0 ); 3954 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3955 return; 3956 } 3957 v = sqlite3GetVdbe(pParse); 3958 if( !v ) return; 3959 if( type!=TK_DEFERRED ){ 3960 for(i=0; i<db->nDb; i++){ 3961 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3962 sqlite3VdbeUsesBtree(v, i); 3963 } 3964 } 3965 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3966 } 3967 3968 /* 3969 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 3970 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 3971 ** code is generated for a COMMIT. 3972 */ 3973 void sqlite3EndTransaction(Parse *pParse, int eType){ 3974 Vdbe *v; 3975 int isRollback; 3976 3977 assert( pParse!=0 ); 3978 assert( pParse->db!=0 ); 3979 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 3980 isRollback = eType==TK_ROLLBACK; 3981 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 3982 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 3983 return; 3984 } 3985 v = sqlite3GetVdbe(pParse); 3986 if( v ){ 3987 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 3988 } 3989 } 3990 3991 /* 3992 ** This function is called by the parser when it parses a command to create, 3993 ** release or rollback an SQL savepoint. 3994 */ 3995 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3996 char *zName = sqlite3NameFromToken(pParse->db, pName); 3997 if( zName ){ 3998 Vdbe *v = sqlite3GetVdbe(pParse); 3999 #ifndef SQLITE_OMIT_AUTHORIZATION 4000 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4001 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4002 #endif 4003 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4004 sqlite3DbFree(pParse->db, zName); 4005 return; 4006 } 4007 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4008 } 4009 } 4010 4011 /* 4012 ** Make sure the TEMP database is open and available for use. Return 4013 ** the number of errors. Leave any error messages in the pParse structure. 4014 */ 4015 int sqlite3OpenTempDatabase(Parse *pParse){ 4016 sqlite3 *db = pParse->db; 4017 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4018 int rc; 4019 Btree *pBt; 4020 static const int flags = 4021 SQLITE_OPEN_READWRITE | 4022 SQLITE_OPEN_CREATE | 4023 SQLITE_OPEN_EXCLUSIVE | 4024 SQLITE_OPEN_DELETEONCLOSE | 4025 SQLITE_OPEN_TEMP_DB; 4026 4027 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4028 if( rc!=SQLITE_OK ){ 4029 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4030 "file for storing temporary tables"); 4031 pParse->rc = rc; 4032 return 1; 4033 } 4034 db->aDb[1].pBt = pBt; 4035 assert( db->aDb[1].pSchema ); 4036 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4037 sqlite3OomFault(db); 4038 return 1; 4039 } 4040 } 4041 return 0; 4042 } 4043 4044 /* 4045 ** Record the fact that the schema cookie will need to be verified 4046 ** for database iDb. The code to actually verify the schema cookie 4047 ** will occur at the end of the top-level VDBE and will be generated 4048 ** later, by sqlite3FinishCoding(). 4049 */ 4050 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4051 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4052 4053 assert( iDb>=0 && iDb<pParse->db->nDb ); 4054 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4055 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4056 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4057 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4058 DbMaskSet(pToplevel->cookieMask, iDb); 4059 if( !OMIT_TEMPDB && iDb==1 ){ 4060 sqlite3OpenTempDatabase(pToplevel); 4061 } 4062 } 4063 } 4064 4065 /* 4066 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4067 ** attached database. Otherwise, invoke it for the database named zDb only. 4068 */ 4069 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4070 sqlite3 *db = pParse->db; 4071 int i; 4072 for(i=0; i<db->nDb; i++){ 4073 Db *pDb = &db->aDb[i]; 4074 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4075 sqlite3CodeVerifySchema(pParse, i); 4076 } 4077 } 4078 } 4079 4080 /* 4081 ** Generate VDBE code that prepares for doing an operation that 4082 ** might change the database. 4083 ** 4084 ** This routine starts a new transaction if we are not already within 4085 ** a transaction. If we are already within a transaction, then a checkpoint 4086 ** is set if the setStatement parameter is true. A checkpoint should 4087 ** be set for operations that might fail (due to a constraint) part of 4088 ** the way through and which will need to undo some writes without having to 4089 ** rollback the whole transaction. For operations where all constraints 4090 ** can be checked before any changes are made to the database, it is never 4091 ** necessary to undo a write and the checkpoint should not be set. 4092 */ 4093 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4094 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4095 sqlite3CodeVerifySchema(pParse, iDb); 4096 DbMaskSet(pToplevel->writeMask, iDb); 4097 pToplevel->isMultiWrite |= setStatement; 4098 } 4099 4100 /* 4101 ** Indicate that the statement currently under construction might write 4102 ** more than one entry (example: deleting one row then inserting another, 4103 ** inserting multiple rows in a table, or inserting a row and index entries.) 4104 ** If an abort occurs after some of these writes have completed, then it will 4105 ** be necessary to undo the completed writes. 4106 */ 4107 void sqlite3MultiWrite(Parse *pParse){ 4108 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4109 pToplevel->isMultiWrite = 1; 4110 } 4111 4112 /* 4113 ** The code generator calls this routine if is discovers that it is 4114 ** possible to abort a statement prior to completion. In order to 4115 ** perform this abort without corrupting the database, we need to make 4116 ** sure that the statement is protected by a statement transaction. 4117 ** 4118 ** Technically, we only need to set the mayAbort flag if the 4119 ** isMultiWrite flag was previously set. There is a time dependency 4120 ** such that the abort must occur after the multiwrite. This makes 4121 ** some statements involving the REPLACE conflict resolution algorithm 4122 ** go a little faster. But taking advantage of this time dependency 4123 ** makes it more difficult to prove that the code is correct (in 4124 ** particular, it prevents us from writing an effective 4125 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4126 ** to take the safe route and skip the optimization. 4127 */ 4128 void sqlite3MayAbort(Parse *pParse){ 4129 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4130 pToplevel->mayAbort = 1; 4131 } 4132 4133 /* 4134 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4135 ** error. The onError parameter determines which (if any) of the statement 4136 ** and/or current transaction is rolled back. 4137 */ 4138 void sqlite3HaltConstraint( 4139 Parse *pParse, /* Parsing context */ 4140 int errCode, /* extended error code */ 4141 int onError, /* Constraint type */ 4142 char *p4, /* Error message */ 4143 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4144 u8 p5Errmsg /* P5_ErrMsg type */ 4145 ){ 4146 Vdbe *v = sqlite3GetVdbe(pParse); 4147 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4148 if( onError==OE_Abort ){ 4149 sqlite3MayAbort(pParse); 4150 } 4151 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4152 sqlite3VdbeChangeP5(v, p5Errmsg); 4153 } 4154 4155 /* 4156 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4157 */ 4158 void sqlite3UniqueConstraint( 4159 Parse *pParse, /* Parsing context */ 4160 int onError, /* Constraint type */ 4161 Index *pIdx /* The index that triggers the constraint */ 4162 ){ 4163 char *zErr; 4164 int j; 4165 StrAccum errMsg; 4166 Table *pTab = pIdx->pTable; 4167 4168 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4169 if( pIdx->aColExpr ){ 4170 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4171 }else{ 4172 for(j=0; j<pIdx->nKeyCol; j++){ 4173 char *zCol; 4174 assert( pIdx->aiColumn[j]>=0 ); 4175 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4176 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4177 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 4178 sqlite3StrAccumAppend(&errMsg, ".", 1); 4179 sqlite3StrAccumAppendAll(&errMsg, zCol); 4180 } 4181 } 4182 zErr = sqlite3StrAccumFinish(&errMsg); 4183 sqlite3HaltConstraint(pParse, 4184 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4185 : SQLITE_CONSTRAINT_UNIQUE, 4186 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4187 } 4188 4189 4190 /* 4191 ** Code an OP_Halt due to non-unique rowid. 4192 */ 4193 void sqlite3RowidConstraint( 4194 Parse *pParse, /* Parsing context */ 4195 int onError, /* Conflict resolution algorithm */ 4196 Table *pTab /* The table with the non-unique rowid */ 4197 ){ 4198 char *zMsg; 4199 int rc; 4200 if( pTab->iPKey>=0 ){ 4201 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4202 pTab->aCol[pTab->iPKey].zName); 4203 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4204 }else{ 4205 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4206 rc = SQLITE_CONSTRAINT_ROWID; 4207 } 4208 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4209 P5_ConstraintUnique); 4210 } 4211 4212 /* 4213 ** Check to see if pIndex uses the collating sequence pColl. Return 4214 ** true if it does and false if it does not. 4215 */ 4216 #ifndef SQLITE_OMIT_REINDEX 4217 static int collationMatch(const char *zColl, Index *pIndex){ 4218 int i; 4219 assert( zColl!=0 ); 4220 for(i=0; i<pIndex->nColumn; i++){ 4221 const char *z = pIndex->azColl[i]; 4222 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4223 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4224 return 1; 4225 } 4226 } 4227 return 0; 4228 } 4229 #endif 4230 4231 /* 4232 ** Recompute all indices of pTab that use the collating sequence pColl. 4233 ** If pColl==0 then recompute all indices of pTab. 4234 */ 4235 #ifndef SQLITE_OMIT_REINDEX 4236 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4237 Index *pIndex; /* An index associated with pTab */ 4238 4239 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4240 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4241 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4242 sqlite3BeginWriteOperation(pParse, 0, iDb); 4243 sqlite3RefillIndex(pParse, pIndex, -1); 4244 } 4245 } 4246 } 4247 #endif 4248 4249 /* 4250 ** Recompute all indices of all tables in all databases where the 4251 ** indices use the collating sequence pColl. If pColl==0 then recompute 4252 ** all indices everywhere. 4253 */ 4254 #ifndef SQLITE_OMIT_REINDEX 4255 static void reindexDatabases(Parse *pParse, char const *zColl){ 4256 Db *pDb; /* A single database */ 4257 int iDb; /* The database index number */ 4258 sqlite3 *db = pParse->db; /* The database connection */ 4259 HashElem *k; /* For looping over tables in pDb */ 4260 Table *pTab; /* A table in the database */ 4261 4262 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4263 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4264 assert( pDb!=0 ); 4265 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4266 pTab = (Table*)sqliteHashData(k); 4267 reindexTable(pParse, pTab, zColl); 4268 } 4269 } 4270 } 4271 #endif 4272 4273 /* 4274 ** Generate code for the REINDEX command. 4275 ** 4276 ** REINDEX -- 1 4277 ** REINDEX <collation> -- 2 4278 ** REINDEX ?<database>.?<tablename> -- 3 4279 ** REINDEX ?<database>.?<indexname> -- 4 4280 ** 4281 ** Form 1 causes all indices in all attached databases to be rebuilt. 4282 ** Form 2 rebuilds all indices in all databases that use the named 4283 ** collating function. Forms 3 and 4 rebuild the named index or all 4284 ** indices associated with the named table. 4285 */ 4286 #ifndef SQLITE_OMIT_REINDEX 4287 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4288 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4289 char *z; /* Name of a table or index */ 4290 const char *zDb; /* Name of the database */ 4291 Table *pTab; /* A table in the database */ 4292 Index *pIndex; /* An index associated with pTab */ 4293 int iDb; /* The database index number */ 4294 sqlite3 *db = pParse->db; /* The database connection */ 4295 Token *pObjName; /* Name of the table or index to be reindexed */ 4296 4297 /* Read the database schema. If an error occurs, leave an error message 4298 ** and code in pParse and return NULL. */ 4299 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4300 return; 4301 } 4302 4303 if( pName1==0 ){ 4304 reindexDatabases(pParse, 0); 4305 return; 4306 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4307 char *zColl; 4308 assert( pName1->z ); 4309 zColl = sqlite3NameFromToken(pParse->db, pName1); 4310 if( !zColl ) return; 4311 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4312 if( pColl ){ 4313 reindexDatabases(pParse, zColl); 4314 sqlite3DbFree(db, zColl); 4315 return; 4316 } 4317 sqlite3DbFree(db, zColl); 4318 } 4319 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4320 if( iDb<0 ) return; 4321 z = sqlite3NameFromToken(db, pObjName); 4322 if( z==0 ) return; 4323 zDb = db->aDb[iDb].zDbSName; 4324 pTab = sqlite3FindTable(db, z, zDb); 4325 if( pTab ){ 4326 reindexTable(pParse, pTab, 0); 4327 sqlite3DbFree(db, z); 4328 return; 4329 } 4330 pIndex = sqlite3FindIndex(db, z, zDb); 4331 sqlite3DbFree(db, z); 4332 if( pIndex ){ 4333 sqlite3BeginWriteOperation(pParse, 0, iDb); 4334 sqlite3RefillIndex(pParse, pIndex, -1); 4335 return; 4336 } 4337 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4338 } 4339 #endif 4340 4341 /* 4342 ** Return a KeyInfo structure that is appropriate for the given Index. 4343 ** 4344 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4345 ** when it has finished using it. 4346 */ 4347 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4348 int i; 4349 int nCol = pIdx->nColumn; 4350 int nKey = pIdx->nKeyCol; 4351 KeyInfo *pKey; 4352 if( pParse->nErr ) return 0; 4353 if( pIdx->uniqNotNull ){ 4354 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4355 }else{ 4356 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4357 } 4358 if( pKey ){ 4359 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4360 for(i=0; i<nCol; i++){ 4361 const char *zColl = pIdx->azColl[i]; 4362 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4363 sqlite3LocateCollSeq(pParse, zColl); 4364 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4365 } 4366 if( pParse->nErr ){ 4367 sqlite3KeyInfoUnref(pKey); 4368 pKey = 0; 4369 } 4370 } 4371 return pKey; 4372 } 4373 4374 #ifndef SQLITE_OMIT_CTE 4375 /* 4376 ** This routine is invoked once per CTE by the parser while parsing a 4377 ** WITH clause. 4378 */ 4379 With *sqlite3WithAdd( 4380 Parse *pParse, /* Parsing context */ 4381 With *pWith, /* Existing WITH clause, or NULL */ 4382 Token *pName, /* Name of the common-table */ 4383 ExprList *pArglist, /* Optional column name list for the table */ 4384 Select *pQuery /* Query used to initialize the table */ 4385 ){ 4386 sqlite3 *db = pParse->db; 4387 With *pNew; 4388 char *zName; 4389 4390 /* Check that the CTE name is unique within this WITH clause. If 4391 ** not, store an error in the Parse structure. */ 4392 zName = sqlite3NameFromToken(pParse->db, pName); 4393 if( zName && pWith ){ 4394 int i; 4395 for(i=0; i<pWith->nCte; i++){ 4396 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4397 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4398 } 4399 } 4400 } 4401 4402 if( pWith ){ 4403 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4404 pNew = sqlite3DbRealloc(db, pWith, nByte); 4405 }else{ 4406 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4407 } 4408 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4409 4410 if( db->mallocFailed ){ 4411 sqlite3ExprListDelete(db, pArglist); 4412 sqlite3SelectDelete(db, pQuery); 4413 sqlite3DbFree(db, zName); 4414 pNew = pWith; 4415 }else{ 4416 pNew->a[pNew->nCte].pSelect = pQuery; 4417 pNew->a[pNew->nCte].pCols = pArglist; 4418 pNew->a[pNew->nCte].zName = zName; 4419 pNew->a[pNew->nCte].zCteErr = 0; 4420 pNew->nCte++; 4421 } 4422 4423 return pNew; 4424 } 4425 4426 /* 4427 ** Free the contents of the With object passed as the second argument. 4428 */ 4429 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4430 if( pWith ){ 4431 int i; 4432 for(i=0; i<pWith->nCte; i++){ 4433 struct Cte *pCte = &pWith->a[i]; 4434 sqlite3ExprListDelete(db, pCte->pCols); 4435 sqlite3SelectDelete(db, pCte->pSelect); 4436 sqlite3DbFree(db, pCte->zName); 4437 } 4438 sqlite3DbFree(db, pWith); 4439 } 4440 } 4441 #endif /* !defined(SQLITE_OMIT_CTE) */ 4442