1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** This routine is called after a single SQL statement has been 118 ** parsed and a VDBE program to execute that statement has been 119 ** prepared. This routine puts the finishing touches on the 120 ** VDBE program and resets the pParse structure for the next 121 ** parse. 122 ** 123 ** Note that if an error occurred, it might be the case that 124 ** no VDBE code was generated. 125 */ 126 void sqlite3FinishCoding(Parse *pParse){ 127 sqlite3 *db; 128 Vdbe *v; 129 130 assert( pParse->pToplevel==0 ); 131 db = pParse->db; 132 if( db->mallocFailed ) return; 133 if( pParse->nested ) return; 134 if( pParse->nErr ) return; 135 136 /* Begin by generating some termination code at the end of the 137 ** vdbe program 138 */ 139 v = sqlite3GetVdbe(pParse); 140 assert( !pParse->isMultiWrite 141 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 142 if( v ){ 143 sqlite3VdbeAddOp0(v, OP_Halt); 144 145 /* The cookie mask contains one bit for each database file open. 146 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 147 ** set for each database that is used. Generate code to start a 148 ** transaction on each used database and to verify the schema cookie 149 ** on each used database. 150 */ 151 if( pParse->cookieGoto>0 ){ 152 yDbMask mask; 153 int iDb; 154 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 155 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 156 if( (mask & pParse->cookieMask)==0 ) continue; 157 sqlite3VdbeUsesBtree(v, iDb); 158 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 159 if( db->init.busy==0 ){ 160 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 161 sqlite3VdbeAddOp3(v, OP_VerifyCookie, 162 iDb, pParse->cookieValue[iDb], 163 db->aDb[iDb].pSchema->iGeneration); 164 } 165 } 166 #ifndef SQLITE_OMIT_VIRTUALTABLE 167 { 168 int i; 169 for(i=0; i<pParse->nVtabLock; i++){ 170 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 171 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 172 } 173 pParse->nVtabLock = 0; 174 } 175 #endif 176 177 /* Once all the cookies have been verified and transactions opened, 178 ** obtain the required table-locks. This is a no-op unless the 179 ** shared-cache feature is enabled. 180 */ 181 codeTableLocks(pParse); 182 183 /* Initialize any AUTOINCREMENT data structures required. 184 */ 185 sqlite3AutoincrementBegin(pParse); 186 187 /* Finally, jump back to the beginning of the executable code. */ 188 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); 189 } 190 } 191 192 193 /* Get the VDBE program ready for execution 194 */ 195 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 196 #ifdef SQLITE_DEBUG 197 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 198 sqlite3VdbeTrace(v, trace); 199 #endif 200 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 201 /* A minimum of one cursor is required if autoincrement is used 202 * See ticket [a696379c1f08866] */ 203 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 204 sqlite3VdbeMakeReady(v, pParse); 205 pParse->rc = SQLITE_DONE; 206 pParse->colNamesSet = 0; 207 }else{ 208 pParse->rc = SQLITE_ERROR; 209 } 210 pParse->nTab = 0; 211 pParse->nMem = 0; 212 pParse->nSet = 0; 213 pParse->nVar = 0; 214 pParse->cookieMask = 0; 215 pParse->cookieGoto = 0; 216 } 217 218 /* 219 ** Run the parser and code generator recursively in order to generate 220 ** code for the SQL statement given onto the end of the pParse context 221 ** currently under construction. When the parser is run recursively 222 ** this way, the final OP_Halt is not appended and other initialization 223 ** and finalization steps are omitted because those are handling by the 224 ** outermost parser. 225 ** 226 ** Not everything is nestable. This facility is designed to permit 227 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 228 ** care if you decide to try to use this routine for some other purposes. 229 */ 230 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 231 va_list ap; 232 char *zSql; 233 char *zErrMsg = 0; 234 sqlite3 *db = pParse->db; 235 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 236 char saveBuf[SAVE_SZ]; 237 238 if( pParse->nErr ) return; 239 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 240 va_start(ap, zFormat); 241 zSql = sqlite3VMPrintf(db, zFormat, ap); 242 va_end(ap); 243 if( zSql==0 ){ 244 return; /* A malloc must have failed */ 245 } 246 pParse->nested++; 247 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 248 memset(&pParse->nVar, 0, SAVE_SZ); 249 sqlite3RunParser(pParse, zSql, &zErrMsg); 250 sqlite3DbFree(db, zErrMsg); 251 sqlite3DbFree(db, zSql); 252 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 253 pParse->nested--; 254 } 255 256 /* 257 ** Locate the in-memory structure that describes a particular database 258 ** table given the name of that table and (optionally) the name of the 259 ** database containing the table. Return NULL if not found. 260 ** 261 ** If zDatabase is 0, all databases are searched for the table and the 262 ** first matching table is returned. (No checking for duplicate table 263 ** names is done.) The search order is TEMP first, then MAIN, then any 264 ** auxiliary databases added using the ATTACH command. 265 ** 266 ** See also sqlite3LocateTable(). 267 */ 268 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 269 Table *p = 0; 270 int i; 271 int nName; 272 assert( zName!=0 ); 273 nName = sqlite3Strlen30(zName); 274 /* All mutexes are required for schema access. Make sure we hold them. */ 275 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 276 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 277 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 278 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 279 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 280 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 281 if( p ) break; 282 } 283 return p; 284 } 285 286 /* 287 ** Locate the in-memory structure that describes a particular database 288 ** table given the name of that table and (optionally) the name of the 289 ** database containing the table. Return NULL if not found. Also leave an 290 ** error message in pParse->zErrMsg. 291 ** 292 ** The difference between this routine and sqlite3FindTable() is that this 293 ** routine leaves an error message in pParse->zErrMsg where 294 ** sqlite3FindTable() does not. 295 */ 296 Table *sqlite3LocateTable( 297 Parse *pParse, /* context in which to report errors */ 298 int isView, /* True if looking for a VIEW rather than a TABLE */ 299 const char *zName, /* Name of the table we are looking for */ 300 const char *zDbase /* Name of the database. Might be NULL */ 301 ){ 302 Table *p; 303 304 /* Read the database schema. If an error occurs, leave an error message 305 ** and code in pParse and return NULL. */ 306 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 307 return 0; 308 } 309 310 p = sqlite3FindTable(pParse->db, zName, zDbase); 311 if( p==0 ){ 312 const char *zMsg = isView ? "no such view" : "no such table"; 313 if( zDbase ){ 314 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 315 }else{ 316 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 317 } 318 pParse->checkSchema = 1; 319 } 320 return p; 321 } 322 323 /* 324 ** Locate the table identified by *p. 325 ** 326 ** This is a wrapper around sqlite3LocateTable(). The difference between 327 ** sqlite3LocateTable() and this function is that this function restricts 328 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 329 ** non-NULL if it is part of a view or trigger program definition. See 330 ** sqlite3FixSrcList() for details. 331 */ 332 Table *sqlite3LocateTableItem( 333 Parse *pParse, 334 int isView, 335 struct SrcList_item *p 336 ){ 337 const char *zDb; 338 assert( p->pSchema==0 || p->zDatabase==0 ); 339 if( p->pSchema ){ 340 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 341 zDb = pParse->db->aDb[iDb].zName; 342 }else{ 343 zDb = p->zDatabase; 344 } 345 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 346 } 347 348 /* 349 ** Locate the in-memory structure that describes 350 ** a particular index given the name of that index 351 ** and the name of the database that contains the index. 352 ** Return NULL if not found. 353 ** 354 ** If zDatabase is 0, all databases are searched for the 355 ** table and the first matching index is returned. (No checking 356 ** for duplicate index names is done.) The search order is 357 ** TEMP first, then MAIN, then any auxiliary databases added 358 ** using the ATTACH command. 359 */ 360 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 361 Index *p = 0; 362 int i; 363 int nName = sqlite3Strlen30(zName); 364 /* All mutexes are required for schema access. Make sure we hold them. */ 365 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 366 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 367 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 368 Schema *pSchema = db->aDb[j].pSchema; 369 assert( pSchema ); 370 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 371 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 372 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 373 if( p ) break; 374 } 375 return p; 376 } 377 378 /* 379 ** Reclaim the memory used by an index 380 */ 381 static void freeIndex(sqlite3 *db, Index *p){ 382 #ifndef SQLITE_OMIT_ANALYZE 383 sqlite3DeleteIndexSamples(db, p); 384 #endif 385 sqlite3DbFree(db, p->zColAff); 386 sqlite3DbFree(db, p); 387 } 388 389 /* 390 ** For the index called zIdxName which is found in the database iDb, 391 ** unlike that index from its Table then remove the index from 392 ** the index hash table and free all memory structures associated 393 ** with the index. 394 */ 395 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 396 Index *pIndex; 397 int len; 398 Hash *pHash; 399 400 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 401 pHash = &db->aDb[iDb].pSchema->idxHash; 402 len = sqlite3Strlen30(zIdxName); 403 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); 404 if( ALWAYS(pIndex) ){ 405 if( pIndex->pTable->pIndex==pIndex ){ 406 pIndex->pTable->pIndex = pIndex->pNext; 407 }else{ 408 Index *p; 409 /* Justification of ALWAYS(); The index must be on the list of 410 ** indices. */ 411 p = pIndex->pTable->pIndex; 412 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 413 if( ALWAYS(p && p->pNext==pIndex) ){ 414 p->pNext = pIndex->pNext; 415 } 416 } 417 freeIndex(db, pIndex); 418 } 419 db->flags |= SQLITE_InternChanges; 420 } 421 422 /* 423 ** Look through the list of open database files in db->aDb[] and if 424 ** any have been closed, remove them from the list. Reallocate the 425 ** db->aDb[] structure to a smaller size, if possible. 426 ** 427 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 428 ** are never candidates for being collapsed. 429 */ 430 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 431 int i, j; 432 for(i=j=2; i<db->nDb; i++){ 433 struct Db *pDb = &db->aDb[i]; 434 if( pDb->pBt==0 ){ 435 sqlite3DbFree(db, pDb->zName); 436 pDb->zName = 0; 437 continue; 438 } 439 if( j<i ){ 440 db->aDb[j] = db->aDb[i]; 441 } 442 j++; 443 } 444 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 445 db->nDb = j; 446 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 447 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 448 sqlite3DbFree(db, db->aDb); 449 db->aDb = db->aDbStatic; 450 } 451 } 452 453 /* 454 ** Reset the schema for the database at index iDb. Also reset the 455 ** TEMP schema. 456 */ 457 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 458 Db *pDb; 459 assert( iDb<db->nDb ); 460 461 /* Case 1: Reset the single schema identified by iDb */ 462 pDb = &db->aDb[iDb]; 463 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 464 assert( pDb->pSchema!=0 ); 465 sqlite3SchemaClear(pDb->pSchema); 466 467 /* If any database other than TEMP is reset, then also reset TEMP 468 ** since TEMP might be holding triggers that reference tables in the 469 ** other database. 470 */ 471 if( iDb!=1 ){ 472 pDb = &db->aDb[1]; 473 assert( pDb->pSchema!=0 ); 474 sqlite3SchemaClear(pDb->pSchema); 475 } 476 return; 477 } 478 479 /* 480 ** Erase all schema information from all attached databases (including 481 ** "main" and "temp") for a single database connection. 482 */ 483 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 484 int i; 485 sqlite3BtreeEnterAll(db); 486 for(i=0; i<db->nDb; i++){ 487 Db *pDb = &db->aDb[i]; 488 if( pDb->pSchema ){ 489 sqlite3SchemaClear(pDb->pSchema); 490 } 491 } 492 db->flags &= ~SQLITE_InternChanges; 493 sqlite3VtabUnlockList(db); 494 sqlite3BtreeLeaveAll(db); 495 sqlite3CollapseDatabaseArray(db); 496 } 497 498 /* 499 ** This routine is called when a commit occurs. 500 */ 501 void sqlite3CommitInternalChanges(sqlite3 *db){ 502 db->flags &= ~SQLITE_InternChanges; 503 } 504 505 /* 506 ** Delete memory allocated for the column names of a table or view (the 507 ** Table.aCol[] array). 508 */ 509 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 510 int i; 511 Column *pCol; 512 assert( pTable!=0 ); 513 if( (pCol = pTable->aCol)!=0 ){ 514 for(i=0; i<pTable->nCol; i++, pCol++){ 515 sqlite3DbFree(db, pCol->zName); 516 sqlite3ExprDelete(db, pCol->pDflt); 517 sqlite3DbFree(db, pCol->zDflt); 518 sqlite3DbFree(db, pCol->zType); 519 sqlite3DbFree(db, pCol->zColl); 520 } 521 sqlite3DbFree(db, pTable->aCol); 522 } 523 } 524 525 /* 526 ** Remove the memory data structures associated with the given 527 ** Table. No changes are made to disk by this routine. 528 ** 529 ** This routine just deletes the data structure. It does not unlink 530 ** the table data structure from the hash table. But it does destroy 531 ** memory structures of the indices and foreign keys associated with 532 ** the table. 533 ** 534 ** The db parameter is optional. It is needed if the Table object 535 ** contains lookaside memory. (Table objects in the schema do not use 536 ** lookaside memory, but some ephemeral Table objects do.) Or the 537 ** db parameter can be used with db->pnBytesFreed to measure the memory 538 ** used by the Table object. 539 */ 540 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 541 Index *pIndex, *pNext; 542 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 543 544 assert( !pTable || pTable->nRef>0 ); 545 546 /* Do not delete the table until the reference count reaches zero. */ 547 if( !pTable ) return; 548 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 549 550 /* Record the number of outstanding lookaside allocations in schema Tables 551 ** prior to doing any free() operations. Since schema Tables do not use 552 ** lookaside, this number should not change. */ 553 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 554 db->lookaside.nOut : 0 ); 555 556 /* Delete all indices associated with this table. */ 557 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 558 pNext = pIndex->pNext; 559 assert( pIndex->pSchema==pTable->pSchema ); 560 if( !db || db->pnBytesFreed==0 ){ 561 char *zName = pIndex->zName; 562 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 563 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 564 ); 565 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 566 assert( pOld==pIndex || pOld==0 ); 567 } 568 freeIndex(db, pIndex); 569 } 570 571 /* Delete any foreign keys attached to this table. */ 572 sqlite3FkDelete(db, pTable); 573 574 /* Delete the Table structure itself. 575 */ 576 sqliteDeleteColumnNames(db, pTable); 577 sqlite3DbFree(db, pTable->zName); 578 sqlite3DbFree(db, pTable->zColAff); 579 sqlite3SelectDelete(db, pTable->pSelect); 580 #ifndef SQLITE_OMIT_CHECK 581 sqlite3ExprListDelete(db, pTable->pCheck); 582 #endif 583 #ifndef SQLITE_OMIT_VIRTUALTABLE 584 sqlite3VtabClear(db, pTable); 585 #endif 586 sqlite3DbFree(db, pTable); 587 588 /* Verify that no lookaside memory was used by schema tables */ 589 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 590 } 591 592 /* 593 ** Unlink the given table from the hash tables and the delete the 594 ** table structure with all its indices and foreign keys. 595 */ 596 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 597 Table *p; 598 Db *pDb; 599 600 assert( db!=0 ); 601 assert( iDb>=0 && iDb<db->nDb ); 602 assert( zTabName ); 603 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 604 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 605 pDb = &db->aDb[iDb]; 606 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 607 sqlite3Strlen30(zTabName),0); 608 sqlite3DeleteTable(db, p); 609 db->flags |= SQLITE_InternChanges; 610 } 611 612 /* 613 ** Given a token, return a string that consists of the text of that 614 ** token. Space to hold the returned string 615 ** is obtained from sqliteMalloc() and must be freed by the calling 616 ** function. 617 ** 618 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 619 ** surround the body of the token are removed. 620 ** 621 ** Tokens are often just pointers into the original SQL text and so 622 ** are not \000 terminated and are not persistent. The returned string 623 ** is \000 terminated and is persistent. 624 */ 625 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 626 char *zName; 627 if( pName ){ 628 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 629 sqlite3Dequote(zName); 630 }else{ 631 zName = 0; 632 } 633 return zName; 634 } 635 636 /* 637 ** Open the sqlite_master table stored in database number iDb for 638 ** writing. The table is opened using cursor 0. 639 */ 640 void sqlite3OpenMasterTable(Parse *p, int iDb){ 641 Vdbe *v = sqlite3GetVdbe(p); 642 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 643 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); 644 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ 645 if( p->nTab==0 ){ 646 p->nTab = 1; 647 } 648 } 649 650 /* 651 ** Parameter zName points to a nul-terminated buffer containing the name 652 ** of a database ("main", "temp" or the name of an attached db). This 653 ** function returns the index of the named database in db->aDb[], or 654 ** -1 if the named db cannot be found. 655 */ 656 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 657 int i = -1; /* Database number */ 658 if( zName ){ 659 Db *pDb; 660 int n = sqlite3Strlen30(zName); 661 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 662 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 663 0==sqlite3StrICmp(pDb->zName, zName) ){ 664 break; 665 } 666 } 667 } 668 return i; 669 } 670 671 /* 672 ** The token *pName contains the name of a database (either "main" or 673 ** "temp" or the name of an attached db). This routine returns the 674 ** index of the named database in db->aDb[], or -1 if the named db 675 ** does not exist. 676 */ 677 int sqlite3FindDb(sqlite3 *db, Token *pName){ 678 int i; /* Database number */ 679 char *zName; /* Name we are searching for */ 680 zName = sqlite3NameFromToken(db, pName); 681 i = sqlite3FindDbName(db, zName); 682 sqlite3DbFree(db, zName); 683 return i; 684 } 685 686 /* The table or view or trigger name is passed to this routine via tokens 687 ** pName1 and pName2. If the table name was fully qualified, for example: 688 ** 689 ** CREATE TABLE xxx.yyy (...); 690 ** 691 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 692 ** the table name is not fully qualified, i.e.: 693 ** 694 ** CREATE TABLE yyy(...); 695 ** 696 ** Then pName1 is set to "yyy" and pName2 is "". 697 ** 698 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 699 ** pName2) that stores the unqualified table name. The index of the 700 ** database "xxx" is returned. 701 */ 702 int sqlite3TwoPartName( 703 Parse *pParse, /* Parsing and code generating context */ 704 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 705 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 706 Token **pUnqual /* Write the unqualified object name here */ 707 ){ 708 int iDb; /* Database holding the object */ 709 sqlite3 *db = pParse->db; 710 711 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 712 if( db->init.busy ) { 713 sqlite3ErrorMsg(pParse, "corrupt database"); 714 pParse->nErr++; 715 return -1; 716 } 717 *pUnqual = pName2; 718 iDb = sqlite3FindDb(db, pName1); 719 if( iDb<0 ){ 720 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 721 pParse->nErr++; 722 return -1; 723 } 724 }else{ 725 assert( db->init.iDb==0 || db->init.busy ); 726 iDb = db->init.iDb; 727 *pUnqual = pName1; 728 } 729 return iDb; 730 } 731 732 /* 733 ** This routine is used to check if the UTF-8 string zName is a legal 734 ** unqualified name for a new schema object (table, index, view or 735 ** trigger). All names are legal except those that begin with the string 736 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 737 ** is reserved for internal use. 738 */ 739 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 740 if( !pParse->db->init.busy && pParse->nested==0 741 && (pParse->db->flags & SQLITE_WriteSchema)==0 742 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 743 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 744 return SQLITE_ERROR; 745 } 746 return SQLITE_OK; 747 } 748 749 /* 750 ** Begin constructing a new table representation in memory. This is 751 ** the first of several action routines that get called in response 752 ** to a CREATE TABLE statement. In particular, this routine is called 753 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 754 ** flag is true if the table should be stored in the auxiliary database 755 ** file instead of in the main database file. This is normally the case 756 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 757 ** CREATE and TABLE. 758 ** 759 ** The new table record is initialized and put in pParse->pNewTable. 760 ** As more of the CREATE TABLE statement is parsed, additional action 761 ** routines will be called to add more information to this record. 762 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 763 ** is called to complete the construction of the new table record. 764 */ 765 void sqlite3StartTable( 766 Parse *pParse, /* Parser context */ 767 Token *pName1, /* First part of the name of the table or view */ 768 Token *pName2, /* Second part of the name of the table or view */ 769 int isTemp, /* True if this is a TEMP table */ 770 int isView, /* True if this is a VIEW */ 771 int isVirtual, /* True if this is a VIRTUAL table */ 772 int noErr /* Do nothing if table already exists */ 773 ){ 774 Table *pTable; 775 char *zName = 0; /* The name of the new table */ 776 sqlite3 *db = pParse->db; 777 Vdbe *v; 778 int iDb; /* Database number to create the table in */ 779 Token *pName; /* Unqualified name of the table to create */ 780 781 /* The table or view name to create is passed to this routine via tokens 782 ** pName1 and pName2. If the table name was fully qualified, for example: 783 ** 784 ** CREATE TABLE xxx.yyy (...); 785 ** 786 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 787 ** the table name is not fully qualified, i.e.: 788 ** 789 ** CREATE TABLE yyy(...); 790 ** 791 ** Then pName1 is set to "yyy" and pName2 is "". 792 ** 793 ** The call below sets the pName pointer to point at the token (pName1 or 794 ** pName2) that stores the unqualified table name. The variable iDb is 795 ** set to the index of the database that the table or view is to be 796 ** created in. 797 */ 798 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 799 if( iDb<0 ) return; 800 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 801 /* If creating a temp table, the name may not be qualified. Unless 802 ** the database name is "temp" anyway. */ 803 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 804 return; 805 } 806 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 807 808 pParse->sNameToken = *pName; 809 zName = sqlite3NameFromToken(db, pName); 810 if( zName==0 ) return; 811 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 812 goto begin_table_error; 813 } 814 if( db->init.iDb==1 ) isTemp = 1; 815 #ifndef SQLITE_OMIT_AUTHORIZATION 816 assert( (isTemp & 1)==isTemp ); 817 { 818 int code; 819 char *zDb = db->aDb[iDb].zName; 820 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 821 goto begin_table_error; 822 } 823 if( isView ){ 824 if( !OMIT_TEMPDB && isTemp ){ 825 code = SQLITE_CREATE_TEMP_VIEW; 826 }else{ 827 code = SQLITE_CREATE_VIEW; 828 } 829 }else{ 830 if( !OMIT_TEMPDB && isTemp ){ 831 code = SQLITE_CREATE_TEMP_TABLE; 832 }else{ 833 code = SQLITE_CREATE_TABLE; 834 } 835 } 836 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 837 goto begin_table_error; 838 } 839 } 840 #endif 841 842 /* Make sure the new table name does not collide with an existing 843 ** index or table name in the same database. Issue an error message if 844 ** it does. The exception is if the statement being parsed was passed 845 ** to an sqlite3_declare_vtab() call. In that case only the column names 846 ** and types will be used, so there is no need to test for namespace 847 ** collisions. 848 */ 849 if( !IN_DECLARE_VTAB ){ 850 char *zDb = db->aDb[iDb].zName; 851 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 852 goto begin_table_error; 853 } 854 pTable = sqlite3FindTable(db, zName, zDb); 855 if( pTable ){ 856 if( !noErr ){ 857 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 858 }else{ 859 assert( !db->init.busy ); 860 sqlite3CodeVerifySchema(pParse, iDb); 861 } 862 goto begin_table_error; 863 } 864 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 865 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 866 goto begin_table_error; 867 } 868 } 869 870 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 871 if( pTable==0 ){ 872 db->mallocFailed = 1; 873 pParse->rc = SQLITE_NOMEM; 874 pParse->nErr++; 875 goto begin_table_error; 876 } 877 pTable->zName = zName; 878 pTable->iPKey = -1; 879 pTable->pSchema = db->aDb[iDb].pSchema; 880 pTable->nRef = 1; 881 pTable->nRowEst = 1000000; 882 assert( pParse->pNewTable==0 ); 883 pParse->pNewTable = pTable; 884 885 /* If this is the magic sqlite_sequence table used by autoincrement, 886 ** then record a pointer to this table in the main database structure 887 ** so that INSERT can find the table easily. 888 */ 889 #ifndef SQLITE_OMIT_AUTOINCREMENT 890 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 891 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 892 pTable->pSchema->pSeqTab = pTable; 893 } 894 #endif 895 896 /* Begin generating the code that will insert the table record into 897 ** the SQLITE_MASTER table. Note in particular that we must go ahead 898 ** and allocate the record number for the table entry now. Before any 899 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 900 ** indices to be created and the table record must come before the 901 ** indices. Hence, the record number for the table must be allocated 902 ** now. 903 */ 904 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 905 int j1; 906 int fileFormat; 907 int reg1, reg2, reg3; 908 sqlite3BeginWriteOperation(pParse, 0, iDb); 909 910 #ifndef SQLITE_OMIT_VIRTUALTABLE 911 if( isVirtual ){ 912 sqlite3VdbeAddOp0(v, OP_VBegin); 913 } 914 #endif 915 916 /* If the file format and encoding in the database have not been set, 917 ** set them now. 918 */ 919 reg1 = pParse->regRowid = ++pParse->nMem; 920 reg2 = pParse->regRoot = ++pParse->nMem; 921 reg3 = ++pParse->nMem; 922 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 923 sqlite3VdbeUsesBtree(v, iDb); 924 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); 925 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 926 1 : SQLITE_MAX_FILE_FORMAT; 927 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 928 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 929 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 930 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 931 sqlite3VdbeJumpHere(v, j1); 932 933 /* This just creates a place-holder record in the sqlite_master table. 934 ** The record created does not contain anything yet. It will be replaced 935 ** by the real entry in code generated at sqlite3EndTable(). 936 ** 937 ** The rowid for the new entry is left in register pParse->regRowid. 938 ** The root page number of the new table is left in reg pParse->regRoot. 939 ** The rowid and root page number values are needed by the code that 940 ** sqlite3EndTable will generate. 941 */ 942 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 943 if( isView || isVirtual ){ 944 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 945 }else 946 #endif 947 { 948 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 949 } 950 sqlite3OpenMasterTable(pParse, iDb); 951 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 952 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 953 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 954 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 955 sqlite3VdbeAddOp0(v, OP_Close); 956 } 957 958 /* Normal (non-error) return. */ 959 return; 960 961 /* If an error occurs, we jump here */ 962 begin_table_error: 963 sqlite3DbFree(db, zName); 964 return; 965 } 966 967 /* 968 ** This macro is used to compare two strings in a case-insensitive manner. 969 ** It is slightly faster than calling sqlite3StrICmp() directly, but 970 ** produces larger code. 971 ** 972 ** WARNING: This macro is not compatible with the strcmp() family. It 973 ** returns true if the two strings are equal, otherwise false. 974 */ 975 #define STRICMP(x, y) (\ 976 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 977 sqlite3UpperToLower[*(unsigned char *)(y)] \ 978 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 979 980 /* 981 ** Add a new column to the table currently being constructed. 982 ** 983 ** The parser calls this routine once for each column declaration 984 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 985 ** first to get things going. Then this routine is called for each 986 ** column. 987 */ 988 void sqlite3AddColumn(Parse *pParse, Token *pName){ 989 Table *p; 990 int i; 991 char *z; 992 Column *pCol; 993 sqlite3 *db = pParse->db; 994 if( (p = pParse->pNewTable)==0 ) return; 995 #if SQLITE_MAX_COLUMN 996 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 997 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 998 return; 999 } 1000 #endif 1001 z = sqlite3NameFromToken(db, pName); 1002 if( z==0 ) return; 1003 for(i=0; i<p->nCol; i++){ 1004 if( STRICMP(z, p->aCol[i].zName) ){ 1005 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1006 sqlite3DbFree(db, z); 1007 return; 1008 } 1009 } 1010 if( (p->nCol & 0x7)==0 ){ 1011 Column *aNew; 1012 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1013 if( aNew==0 ){ 1014 sqlite3DbFree(db, z); 1015 return; 1016 } 1017 p->aCol = aNew; 1018 } 1019 pCol = &p->aCol[p->nCol]; 1020 memset(pCol, 0, sizeof(p->aCol[0])); 1021 pCol->zName = z; 1022 1023 /* If there is no type specified, columns have the default affinity 1024 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 1025 ** be called next to set pCol->affinity correctly. 1026 */ 1027 pCol->affinity = SQLITE_AFF_NONE; 1028 p->nCol++; 1029 } 1030 1031 /* 1032 ** This routine is called by the parser while in the middle of 1033 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1034 ** been seen on a column. This routine sets the notNull flag on 1035 ** the column currently under construction. 1036 */ 1037 void sqlite3AddNotNull(Parse *pParse, int onError){ 1038 Table *p; 1039 p = pParse->pNewTable; 1040 if( p==0 || NEVER(p->nCol<1) ) return; 1041 p->aCol[p->nCol-1].notNull = (u8)onError; 1042 } 1043 1044 /* 1045 ** Scan the column type name zType (length nType) and return the 1046 ** associated affinity type. 1047 ** 1048 ** This routine does a case-independent search of zType for the 1049 ** substrings in the following table. If one of the substrings is 1050 ** found, the corresponding affinity is returned. If zType contains 1051 ** more than one of the substrings, entries toward the top of 1052 ** the table take priority. For example, if zType is 'BLOBINT', 1053 ** SQLITE_AFF_INTEGER is returned. 1054 ** 1055 ** Substring | Affinity 1056 ** -------------------------------- 1057 ** 'INT' | SQLITE_AFF_INTEGER 1058 ** 'CHAR' | SQLITE_AFF_TEXT 1059 ** 'CLOB' | SQLITE_AFF_TEXT 1060 ** 'TEXT' | SQLITE_AFF_TEXT 1061 ** 'BLOB' | SQLITE_AFF_NONE 1062 ** 'REAL' | SQLITE_AFF_REAL 1063 ** 'FLOA' | SQLITE_AFF_REAL 1064 ** 'DOUB' | SQLITE_AFF_REAL 1065 ** 1066 ** If none of the substrings in the above table are found, 1067 ** SQLITE_AFF_NUMERIC is returned. 1068 */ 1069 char sqlite3AffinityType(const char *zIn){ 1070 u32 h = 0; 1071 char aff = SQLITE_AFF_NUMERIC; 1072 1073 if( zIn ) while( zIn[0] ){ 1074 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1075 zIn++; 1076 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1077 aff = SQLITE_AFF_TEXT; 1078 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1079 aff = SQLITE_AFF_TEXT; 1080 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1081 aff = SQLITE_AFF_TEXT; 1082 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1083 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1084 aff = SQLITE_AFF_NONE; 1085 #ifndef SQLITE_OMIT_FLOATING_POINT 1086 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1087 && aff==SQLITE_AFF_NUMERIC ){ 1088 aff = SQLITE_AFF_REAL; 1089 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1090 && aff==SQLITE_AFF_NUMERIC ){ 1091 aff = SQLITE_AFF_REAL; 1092 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1093 && aff==SQLITE_AFF_NUMERIC ){ 1094 aff = SQLITE_AFF_REAL; 1095 #endif 1096 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1097 aff = SQLITE_AFF_INTEGER; 1098 break; 1099 } 1100 } 1101 1102 return aff; 1103 } 1104 1105 /* 1106 ** This routine is called by the parser while in the middle of 1107 ** parsing a CREATE TABLE statement. The pFirst token is the first 1108 ** token in the sequence of tokens that describe the type of the 1109 ** column currently under construction. pLast is the last token 1110 ** in the sequence. Use this information to construct a string 1111 ** that contains the typename of the column and store that string 1112 ** in zType. 1113 */ 1114 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1115 Table *p; 1116 Column *pCol; 1117 1118 p = pParse->pNewTable; 1119 if( p==0 || NEVER(p->nCol<1) ) return; 1120 pCol = &p->aCol[p->nCol-1]; 1121 assert( pCol->zType==0 ); 1122 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1123 pCol->affinity = sqlite3AffinityType(pCol->zType); 1124 } 1125 1126 /* 1127 ** The expression is the default value for the most recently added column 1128 ** of the table currently under construction. 1129 ** 1130 ** Default value expressions must be constant. Raise an exception if this 1131 ** is not the case. 1132 ** 1133 ** This routine is called by the parser while in the middle of 1134 ** parsing a CREATE TABLE statement. 1135 */ 1136 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1137 Table *p; 1138 Column *pCol; 1139 sqlite3 *db = pParse->db; 1140 p = pParse->pNewTable; 1141 if( p!=0 ){ 1142 pCol = &(p->aCol[p->nCol-1]); 1143 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1144 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1145 pCol->zName); 1146 }else{ 1147 /* A copy of pExpr is used instead of the original, as pExpr contains 1148 ** tokens that point to volatile memory. The 'span' of the expression 1149 ** is required by pragma table_info. 1150 */ 1151 sqlite3ExprDelete(db, pCol->pDflt); 1152 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1153 sqlite3DbFree(db, pCol->zDflt); 1154 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1155 (int)(pSpan->zEnd - pSpan->zStart)); 1156 } 1157 } 1158 sqlite3ExprDelete(db, pSpan->pExpr); 1159 } 1160 1161 /* 1162 ** Designate the PRIMARY KEY for the table. pList is a list of names 1163 ** of columns that form the primary key. If pList is NULL, then the 1164 ** most recently added column of the table is the primary key. 1165 ** 1166 ** A table can have at most one primary key. If the table already has 1167 ** a primary key (and this is the second primary key) then create an 1168 ** error. 1169 ** 1170 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1171 ** then we will try to use that column as the rowid. Set the Table.iPKey 1172 ** field of the table under construction to be the index of the 1173 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1174 ** no INTEGER PRIMARY KEY. 1175 ** 1176 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1177 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1178 */ 1179 void sqlite3AddPrimaryKey( 1180 Parse *pParse, /* Parsing context */ 1181 ExprList *pList, /* List of field names to be indexed */ 1182 int onError, /* What to do with a uniqueness conflict */ 1183 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1184 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1185 ){ 1186 Table *pTab = pParse->pNewTable; 1187 char *zType = 0; 1188 int iCol = -1, i; 1189 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1190 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1191 sqlite3ErrorMsg(pParse, 1192 "table \"%s\" has more than one primary key", pTab->zName); 1193 goto primary_key_exit; 1194 } 1195 pTab->tabFlags |= TF_HasPrimaryKey; 1196 if( pList==0 ){ 1197 iCol = pTab->nCol - 1; 1198 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1199 }else{ 1200 for(i=0; i<pList->nExpr; i++){ 1201 for(iCol=0; iCol<pTab->nCol; iCol++){ 1202 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1203 break; 1204 } 1205 } 1206 if( iCol<pTab->nCol ){ 1207 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1208 } 1209 } 1210 if( pList->nExpr>1 ) iCol = -1; 1211 } 1212 if( iCol>=0 && iCol<pTab->nCol ){ 1213 zType = pTab->aCol[iCol].zType; 1214 } 1215 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1216 && sortOrder==SQLITE_SO_ASC ){ 1217 pTab->iPKey = iCol; 1218 pTab->keyConf = (u8)onError; 1219 assert( autoInc==0 || autoInc==1 ); 1220 pTab->tabFlags |= autoInc*TF_Autoincrement; 1221 }else if( autoInc ){ 1222 #ifndef SQLITE_OMIT_AUTOINCREMENT 1223 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1224 "INTEGER PRIMARY KEY"); 1225 #endif 1226 }else{ 1227 Index *p; 1228 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1229 if( p ){ 1230 p->autoIndex = 2; 1231 } 1232 pList = 0; 1233 } 1234 1235 primary_key_exit: 1236 sqlite3ExprListDelete(pParse->db, pList); 1237 return; 1238 } 1239 1240 /* 1241 ** Add a new CHECK constraint to the table currently under construction. 1242 */ 1243 void sqlite3AddCheckConstraint( 1244 Parse *pParse, /* Parsing context */ 1245 Expr *pCheckExpr /* The check expression */ 1246 ){ 1247 #ifndef SQLITE_OMIT_CHECK 1248 Table *pTab = pParse->pNewTable; 1249 if( pTab && !IN_DECLARE_VTAB ){ 1250 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1251 if( pParse->constraintName.n ){ 1252 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1253 } 1254 }else 1255 #endif 1256 { 1257 sqlite3ExprDelete(pParse->db, pCheckExpr); 1258 } 1259 } 1260 1261 /* 1262 ** Set the collation function of the most recently parsed table column 1263 ** to the CollSeq given. 1264 */ 1265 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1266 Table *p; 1267 int i; 1268 char *zColl; /* Dequoted name of collation sequence */ 1269 sqlite3 *db; 1270 1271 if( (p = pParse->pNewTable)==0 ) return; 1272 i = p->nCol-1; 1273 db = pParse->db; 1274 zColl = sqlite3NameFromToken(db, pToken); 1275 if( !zColl ) return; 1276 1277 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1278 Index *pIdx; 1279 p->aCol[i].zColl = zColl; 1280 1281 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1282 ** then an index may have been created on this column before the 1283 ** collation type was added. Correct this if it is the case. 1284 */ 1285 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1286 assert( pIdx->nColumn==1 ); 1287 if( pIdx->aiColumn[0]==i ){ 1288 pIdx->azColl[0] = p->aCol[i].zColl; 1289 } 1290 } 1291 }else{ 1292 sqlite3DbFree(db, zColl); 1293 } 1294 } 1295 1296 /* 1297 ** This function returns the collation sequence for database native text 1298 ** encoding identified by the string zName, length nName. 1299 ** 1300 ** If the requested collation sequence is not available, or not available 1301 ** in the database native encoding, the collation factory is invoked to 1302 ** request it. If the collation factory does not supply such a sequence, 1303 ** and the sequence is available in another text encoding, then that is 1304 ** returned instead. 1305 ** 1306 ** If no versions of the requested collations sequence are available, or 1307 ** another error occurs, NULL is returned and an error message written into 1308 ** pParse. 1309 ** 1310 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1311 ** invokes the collation factory if the named collation cannot be found 1312 ** and generates an error message. 1313 ** 1314 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1315 */ 1316 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1317 sqlite3 *db = pParse->db; 1318 u8 enc = ENC(db); 1319 u8 initbusy = db->init.busy; 1320 CollSeq *pColl; 1321 1322 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1323 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1324 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1325 } 1326 1327 return pColl; 1328 } 1329 1330 1331 /* 1332 ** Generate code that will increment the schema cookie. 1333 ** 1334 ** The schema cookie is used to determine when the schema for the 1335 ** database changes. After each schema change, the cookie value 1336 ** changes. When a process first reads the schema it records the 1337 ** cookie. Thereafter, whenever it goes to access the database, 1338 ** it checks the cookie to make sure the schema has not changed 1339 ** since it was last read. 1340 ** 1341 ** This plan is not completely bullet-proof. It is possible for 1342 ** the schema to change multiple times and for the cookie to be 1343 ** set back to prior value. But schema changes are infrequent 1344 ** and the probability of hitting the same cookie value is only 1345 ** 1 chance in 2^32. So we're safe enough. 1346 */ 1347 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1348 int r1 = sqlite3GetTempReg(pParse); 1349 sqlite3 *db = pParse->db; 1350 Vdbe *v = pParse->pVdbe; 1351 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1352 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1353 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1354 sqlite3ReleaseTempReg(pParse, r1); 1355 } 1356 1357 /* 1358 ** Measure the number of characters needed to output the given 1359 ** identifier. The number returned includes any quotes used 1360 ** but does not include the null terminator. 1361 ** 1362 ** The estimate is conservative. It might be larger that what is 1363 ** really needed. 1364 */ 1365 static int identLength(const char *z){ 1366 int n; 1367 for(n=0; *z; n++, z++){ 1368 if( *z=='"' ){ n++; } 1369 } 1370 return n + 2; 1371 } 1372 1373 /* 1374 ** The first parameter is a pointer to an output buffer. The second 1375 ** parameter is a pointer to an integer that contains the offset at 1376 ** which to write into the output buffer. This function copies the 1377 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1378 ** to the specified offset in the buffer and updates *pIdx to refer 1379 ** to the first byte after the last byte written before returning. 1380 ** 1381 ** If the string zSignedIdent consists entirely of alpha-numeric 1382 ** characters, does not begin with a digit and is not an SQL keyword, 1383 ** then it is copied to the output buffer exactly as it is. Otherwise, 1384 ** it is quoted using double-quotes. 1385 */ 1386 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1387 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1388 int i, j, needQuote; 1389 i = *pIdx; 1390 1391 for(j=0; zIdent[j]; j++){ 1392 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1393 } 1394 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1395 if( !needQuote ){ 1396 needQuote = zIdent[j]; 1397 } 1398 1399 if( needQuote ) z[i++] = '"'; 1400 for(j=0; zIdent[j]; j++){ 1401 z[i++] = zIdent[j]; 1402 if( zIdent[j]=='"' ) z[i++] = '"'; 1403 } 1404 if( needQuote ) z[i++] = '"'; 1405 z[i] = 0; 1406 *pIdx = i; 1407 } 1408 1409 /* 1410 ** Generate a CREATE TABLE statement appropriate for the given 1411 ** table. Memory to hold the text of the statement is obtained 1412 ** from sqliteMalloc() and must be freed by the calling function. 1413 */ 1414 static char *createTableStmt(sqlite3 *db, Table *p){ 1415 int i, k, n; 1416 char *zStmt; 1417 char *zSep, *zSep2, *zEnd; 1418 Column *pCol; 1419 n = 0; 1420 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1421 n += identLength(pCol->zName) + 5; 1422 } 1423 n += identLength(p->zName); 1424 if( n<50 ){ 1425 zSep = ""; 1426 zSep2 = ","; 1427 zEnd = ")"; 1428 }else{ 1429 zSep = "\n "; 1430 zSep2 = ",\n "; 1431 zEnd = "\n)"; 1432 } 1433 n += 35 + 6*p->nCol; 1434 zStmt = sqlite3DbMallocRaw(0, n); 1435 if( zStmt==0 ){ 1436 db->mallocFailed = 1; 1437 return 0; 1438 } 1439 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1440 k = sqlite3Strlen30(zStmt); 1441 identPut(zStmt, &k, p->zName); 1442 zStmt[k++] = '('; 1443 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1444 static const char * const azType[] = { 1445 /* SQLITE_AFF_TEXT */ " TEXT", 1446 /* SQLITE_AFF_NONE */ "", 1447 /* SQLITE_AFF_NUMERIC */ " NUM", 1448 /* SQLITE_AFF_INTEGER */ " INT", 1449 /* SQLITE_AFF_REAL */ " REAL" 1450 }; 1451 int len; 1452 const char *zType; 1453 1454 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1455 k += sqlite3Strlen30(&zStmt[k]); 1456 zSep = zSep2; 1457 identPut(zStmt, &k, pCol->zName); 1458 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1459 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); 1460 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1461 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1462 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1463 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1464 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1465 1466 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1467 len = sqlite3Strlen30(zType); 1468 assert( pCol->affinity==SQLITE_AFF_NONE 1469 || pCol->affinity==sqlite3AffinityType(zType) ); 1470 memcpy(&zStmt[k], zType, len); 1471 k += len; 1472 assert( k<=n ); 1473 } 1474 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1475 return zStmt; 1476 } 1477 1478 /* 1479 ** This routine is called to report the final ")" that terminates 1480 ** a CREATE TABLE statement. 1481 ** 1482 ** The table structure that other action routines have been building 1483 ** is added to the internal hash tables, assuming no errors have 1484 ** occurred. 1485 ** 1486 ** An entry for the table is made in the master table on disk, unless 1487 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1488 ** it means we are reading the sqlite_master table because we just 1489 ** connected to the database or because the sqlite_master table has 1490 ** recently changed, so the entry for this table already exists in 1491 ** the sqlite_master table. We do not want to create it again. 1492 ** 1493 ** If the pSelect argument is not NULL, it means that this routine 1494 ** was called to create a table generated from a 1495 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1496 ** the new table will match the result set of the SELECT. 1497 */ 1498 void sqlite3EndTable( 1499 Parse *pParse, /* Parse context */ 1500 Token *pCons, /* The ',' token after the last column defn. */ 1501 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1502 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1503 ){ 1504 Table *p; 1505 sqlite3 *db = pParse->db; 1506 int iDb; 1507 1508 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1509 return; 1510 } 1511 p = pParse->pNewTable; 1512 if( p==0 ) return; 1513 1514 assert( !db->init.busy || !pSelect ); 1515 1516 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1517 1518 #ifndef SQLITE_OMIT_CHECK 1519 /* Resolve names in all CHECK constraint expressions. 1520 */ 1521 if( p->pCheck ){ 1522 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1523 NameContext sNC; /* Name context for pParse->pNewTable */ 1524 ExprList *pList; /* List of all CHECK constraints */ 1525 int i; /* Loop counter */ 1526 1527 memset(&sNC, 0, sizeof(sNC)); 1528 memset(&sSrc, 0, sizeof(sSrc)); 1529 sSrc.nSrc = 1; 1530 sSrc.a[0].zName = p->zName; 1531 sSrc.a[0].pTab = p; 1532 sSrc.a[0].iCursor = -1; 1533 sNC.pParse = pParse; 1534 sNC.pSrcList = &sSrc; 1535 sNC.ncFlags = NC_IsCheck; 1536 pList = p->pCheck; 1537 for(i=0; i<pList->nExpr; i++){ 1538 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ 1539 return; 1540 } 1541 } 1542 } 1543 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1544 1545 /* If the db->init.busy is 1 it means we are reading the SQL off the 1546 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1547 ** So do not write to the disk again. Extract the root page number 1548 ** for the table from the db->init.newTnum field. (The page number 1549 ** should have been put there by the sqliteOpenCb routine.) 1550 */ 1551 if( db->init.busy ){ 1552 p->tnum = db->init.newTnum; 1553 } 1554 1555 /* If not initializing, then create a record for the new table 1556 ** in the SQLITE_MASTER table of the database. 1557 ** 1558 ** If this is a TEMPORARY table, write the entry into the auxiliary 1559 ** file instead of into the main database file. 1560 */ 1561 if( !db->init.busy ){ 1562 int n; 1563 Vdbe *v; 1564 char *zType; /* "view" or "table" */ 1565 char *zType2; /* "VIEW" or "TABLE" */ 1566 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1567 1568 v = sqlite3GetVdbe(pParse); 1569 if( NEVER(v==0) ) return; 1570 1571 sqlite3VdbeAddOp1(v, OP_Close, 0); 1572 1573 /* 1574 ** Initialize zType for the new view or table. 1575 */ 1576 if( p->pSelect==0 ){ 1577 /* A regular table */ 1578 zType = "table"; 1579 zType2 = "TABLE"; 1580 #ifndef SQLITE_OMIT_VIEW 1581 }else{ 1582 /* A view */ 1583 zType = "view"; 1584 zType2 = "VIEW"; 1585 #endif 1586 } 1587 1588 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1589 ** statement to populate the new table. The root-page number for the 1590 ** new table is in register pParse->regRoot. 1591 ** 1592 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1593 ** suitable state to query for the column names and types to be used 1594 ** by the new table. 1595 ** 1596 ** A shared-cache write-lock is not required to write to the new table, 1597 ** as a schema-lock must have already been obtained to create it. Since 1598 ** a schema-lock excludes all other database users, the write-lock would 1599 ** be redundant. 1600 */ 1601 if( pSelect ){ 1602 SelectDest dest; 1603 Table *pSelTab; 1604 1605 assert(pParse->nTab==1); 1606 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1607 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1608 pParse->nTab = 2; 1609 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1610 sqlite3Select(pParse, pSelect, &dest); 1611 sqlite3VdbeAddOp1(v, OP_Close, 1); 1612 if( pParse->nErr==0 ){ 1613 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1614 if( pSelTab==0 ) return; 1615 assert( p->aCol==0 ); 1616 p->nCol = pSelTab->nCol; 1617 p->aCol = pSelTab->aCol; 1618 pSelTab->nCol = 0; 1619 pSelTab->aCol = 0; 1620 sqlite3DeleteTable(db, pSelTab); 1621 } 1622 } 1623 1624 /* Compute the complete text of the CREATE statement */ 1625 if( pSelect ){ 1626 zStmt = createTableStmt(db, p); 1627 }else{ 1628 n = (int)(pEnd->z - pParse->sNameToken.z) + 1; 1629 zStmt = sqlite3MPrintf(db, 1630 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1631 ); 1632 } 1633 1634 /* A slot for the record has already been allocated in the 1635 ** SQLITE_MASTER table. We just need to update that slot with all 1636 ** the information we've collected. 1637 */ 1638 sqlite3NestedParse(pParse, 1639 "UPDATE %Q.%s " 1640 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1641 "WHERE rowid=#%d", 1642 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1643 zType, 1644 p->zName, 1645 p->zName, 1646 pParse->regRoot, 1647 zStmt, 1648 pParse->regRowid 1649 ); 1650 sqlite3DbFree(db, zStmt); 1651 sqlite3ChangeCookie(pParse, iDb); 1652 1653 #ifndef SQLITE_OMIT_AUTOINCREMENT 1654 /* Check to see if we need to create an sqlite_sequence table for 1655 ** keeping track of autoincrement keys. 1656 */ 1657 if( p->tabFlags & TF_Autoincrement ){ 1658 Db *pDb = &db->aDb[iDb]; 1659 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1660 if( pDb->pSchema->pSeqTab==0 ){ 1661 sqlite3NestedParse(pParse, 1662 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1663 pDb->zName 1664 ); 1665 } 1666 } 1667 #endif 1668 1669 /* Reparse everything to update our internal data structures */ 1670 sqlite3VdbeAddParseSchemaOp(v, iDb, 1671 sqlite3MPrintf(db, "tbl_name='%q'", p->zName)); 1672 } 1673 1674 1675 /* Add the table to the in-memory representation of the database. 1676 */ 1677 if( db->init.busy ){ 1678 Table *pOld; 1679 Schema *pSchema = p->pSchema; 1680 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1681 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1682 sqlite3Strlen30(p->zName),p); 1683 if( pOld ){ 1684 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1685 db->mallocFailed = 1; 1686 return; 1687 } 1688 pParse->pNewTable = 0; 1689 db->flags |= SQLITE_InternChanges; 1690 1691 #ifndef SQLITE_OMIT_ALTERTABLE 1692 if( !p->pSelect ){ 1693 const char *zName = (const char *)pParse->sNameToken.z; 1694 int nName; 1695 assert( !pSelect && pCons && pEnd ); 1696 if( pCons->z==0 ){ 1697 pCons = pEnd; 1698 } 1699 nName = (int)((const char *)pCons->z - zName); 1700 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1701 } 1702 #endif 1703 } 1704 } 1705 1706 #ifndef SQLITE_OMIT_VIEW 1707 /* 1708 ** The parser calls this routine in order to create a new VIEW 1709 */ 1710 void sqlite3CreateView( 1711 Parse *pParse, /* The parsing context */ 1712 Token *pBegin, /* The CREATE token that begins the statement */ 1713 Token *pName1, /* The token that holds the name of the view */ 1714 Token *pName2, /* The token that holds the name of the view */ 1715 Select *pSelect, /* A SELECT statement that will become the new view */ 1716 int isTemp, /* TRUE for a TEMPORARY view */ 1717 int noErr /* Suppress error messages if VIEW already exists */ 1718 ){ 1719 Table *p; 1720 int n; 1721 const char *z; 1722 Token sEnd; 1723 DbFixer sFix; 1724 Token *pName = 0; 1725 int iDb; 1726 sqlite3 *db = pParse->db; 1727 1728 if( pParse->nVar>0 ){ 1729 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1730 sqlite3SelectDelete(db, pSelect); 1731 return; 1732 } 1733 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1734 p = pParse->pNewTable; 1735 if( p==0 || pParse->nErr ){ 1736 sqlite3SelectDelete(db, pSelect); 1737 return; 1738 } 1739 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1740 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1741 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1742 && sqlite3FixSelect(&sFix, pSelect) 1743 ){ 1744 sqlite3SelectDelete(db, pSelect); 1745 return; 1746 } 1747 1748 /* Make a copy of the entire SELECT statement that defines the view. 1749 ** This will force all the Expr.token.z values to be dynamically 1750 ** allocated rather than point to the input string - which means that 1751 ** they will persist after the current sqlite3_exec() call returns. 1752 */ 1753 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1754 sqlite3SelectDelete(db, pSelect); 1755 if( db->mallocFailed ){ 1756 return; 1757 } 1758 if( !db->init.busy ){ 1759 sqlite3ViewGetColumnNames(pParse, p); 1760 } 1761 1762 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1763 ** the end. 1764 */ 1765 sEnd = pParse->sLastToken; 1766 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 1767 sEnd.z += sEnd.n; 1768 } 1769 sEnd.n = 0; 1770 n = (int)(sEnd.z - pBegin->z); 1771 z = pBegin->z; 1772 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 1773 sEnd.z = &z[n-1]; 1774 sEnd.n = 1; 1775 1776 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1777 sqlite3EndTable(pParse, 0, &sEnd, 0); 1778 return; 1779 } 1780 #endif /* SQLITE_OMIT_VIEW */ 1781 1782 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1783 /* 1784 ** The Table structure pTable is really a VIEW. Fill in the names of 1785 ** the columns of the view in the pTable structure. Return the number 1786 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1787 */ 1788 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1789 Table *pSelTab; /* A fake table from which we get the result set */ 1790 Select *pSel; /* Copy of the SELECT that implements the view */ 1791 int nErr = 0; /* Number of errors encountered */ 1792 int n; /* Temporarily holds the number of cursors assigned */ 1793 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 1794 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1795 1796 assert( pTable ); 1797 1798 #ifndef SQLITE_OMIT_VIRTUALTABLE 1799 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1800 return SQLITE_ERROR; 1801 } 1802 if( IsVirtual(pTable) ) return 0; 1803 #endif 1804 1805 #ifndef SQLITE_OMIT_VIEW 1806 /* A positive nCol means the columns names for this view are 1807 ** already known. 1808 */ 1809 if( pTable->nCol>0 ) return 0; 1810 1811 /* A negative nCol is a special marker meaning that we are currently 1812 ** trying to compute the column names. If we enter this routine with 1813 ** a negative nCol, it means two or more views form a loop, like this: 1814 ** 1815 ** CREATE VIEW one AS SELECT * FROM two; 1816 ** CREATE VIEW two AS SELECT * FROM one; 1817 ** 1818 ** Actually, the error above is now caught prior to reaching this point. 1819 ** But the following test is still important as it does come up 1820 ** in the following: 1821 ** 1822 ** CREATE TABLE main.ex1(a); 1823 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 1824 ** SELECT * FROM temp.ex1; 1825 */ 1826 if( pTable->nCol<0 ){ 1827 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1828 return 1; 1829 } 1830 assert( pTable->nCol>=0 ); 1831 1832 /* If we get this far, it means we need to compute the table names. 1833 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1834 ** "*" elements in the results set of the view and will assign cursors 1835 ** to the elements of the FROM clause. But we do not want these changes 1836 ** to be permanent. So the computation is done on a copy of the SELECT 1837 ** statement that defines the view. 1838 */ 1839 assert( pTable->pSelect ); 1840 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 1841 if( pSel ){ 1842 u8 enableLookaside = db->lookaside.bEnabled; 1843 n = pParse->nTab; 1844 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1845 pTable->nCol = -1; 1846 db->lookaside.bEnabled = 0; 1847 #ifndef SQLITE_OMIT_AUTHORIZATION 1848 xAuth = db->xAuth; 1849 db->xAuth = 0; 1850 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1851 db->xAuth = xAuth; 1852 #else 1853 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1854 #endif 1855 db->lookaside.bEnabled = enableLookaside; 1856 pParse->nTab = n; 1857 if( pSelTab ){ 1858 assert( pTable->aCol==0 ); 1859 pTable->nCol = pSelTab->nCol; 1860 pTable->aCol = pSelTab->aCol; 1861 pSelTab->nCol = 0; 1862 pSelTab->aCol = 0; 1863 sqlite3DeleteTable(db, pSelTab); 1864 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 1865 pTable->pSchema->flags |= DB_UnresetViews; 1866 }else{ 1867 pTable->nCol = 0; 1868 nErr++; 1869 } 1870 sqlite3SelectDelete(db, pSel); 1871 } else { 1872 nErr++; 1873 } 1874 #endif /* SQLITE_OMIT_VIEW */ 1875 return nErr; 1876 } 1877 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1878 1879 #ifndef SQLITE_OMIT_VIEW 1880 /* 1881 ** Clear the column names from every VIEW in database idx. 1882 */ 1883 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1884 HashElem *i; 1885 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 1886 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1887 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1888 Table *pTab = sqliteHashData(i); 1889 if( pTab->pSelect ){ 1890 sqliteDeleteColumnNames(db, pTab); 1891 pTab->aCol = 0; 1892 pTab->nCol = 0; 1893 } 1894 } 1895 DbClearProperty(db, idx, DB_UnresetViews); 1896 } 1897 #else 1898 # define sqliteViewResetAll(A,B) 1899 #endif /* SQLITE_OMIT_VIEW */ 1900 1901 /* 1902 ** This function is called by the VDBE to adjust the internal schema 1903 ** used by SQLite when the btree layer moves a table root page. The 1904 ** root-page of a table or index in database iDb has changed from iFrom 1905 ** to iTo. 1906 ** 1907 ** Ticket #1728: The symbol table might still contain information 1908 ** on tables and/or indices that are the process of being deleted. 1909 ** If you are unlucky, one of those deleted indices or tables might 1910 ** have the same rootpage number as the real table or index that is 1911 ** being moved. So we cannot stop searching after the first match 1912 ** because the first match might be for one of the deleted indices 1913 ** or tables and not the table/index that is actually being moved. 1914 ** We must continue looping until all tables and indices with 1915 ** rootpage==iFrom have been converted to have a rootpage of iTo 1916 ** in order to be certain that we got the right one. 1917 */ 1918 #ifndef SQLITE_OMIT_AUTOVACUUM 1919 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 1920 HashElem *pElem; 1921 Hash *pHash; 1922 Db *pDb; 1923 1924 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1925 pDb = &db->aDb[iDb]; 1926 pHash = &pDb->pSchema->tblHash; 1927 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1928 Table *pTab = sqliteHashData(pElem); 1929 if( pTab->tnum==iFrom ){ 1930 pTab->tnum = iTo; 1931 } 1932 } 1933 pHash = &pDb->pSchema->idxHash; 1934 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1935 Index *pIdx = sqliteHashData(pElem); 1936 if( pIdx->tnum==iFrom ){ 1937 pIdx->tnum = iTo; 1938 } 1939 } 1940 } 1941 #endif 1942 1943 /* 1944 ** Write code to erase the table with root-page iTable from database iDb. 1945 ** Also write code to modify the sqlite_master table and internal schema 1946 ** if a root-page of another table is moved by the btree-layer whilst 1947 ** erasing iTable (this can happen with an auto-vacuum database). 1948 */ 1949 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1950 Vdbe *v = sqlite3GetVdbe(pParse); 1951 int r1 = sqlite3GetTempReg(pParse); 1952 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 1953 sqlite3MayAbort(pParse); 1954 #ifndef SQLITE_OMIT_AUTOVACUUM 1955 /* OP_Destroy stores an in integer r1. If this integer 1956 ** is non-zero, then it is the root page number of a table moved to 1957 ** location iTable. The following code modifies the sqlite_master table to 1958 ** reflect this. 1959 ** 1960 ** The "#NNN" in the SQL is a special constant that means whatever value 1961 ** is in register NNN. See grammar rules associated with the TK_REGISTER 1962 ** token for additional information. 1963 */ 1964 sqlite3NestedParse(pParse, 1965 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 1966 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 1967 #endif 1968 sqlite3ReleaseTempReg(pParse, r1); 1969 } 1970 1971 /* 1972 ** Write VDBE code to erase table pTab and all associated indices on disk. 1973 ** Code to update the sqlite_master tables and internal schema definitions 1974 ** in case a root-page belonging to another table is moved by the btree layer 1975 ** is also added (this can happen with an auto-vacuum database). 1976 */ 1977 static void destroyTable(Parse *pParse, Table *pTab){ 1978 #ifdef SQLITE_OMIT_AUTOVACUUM 1979 Index *pIdx; 1980 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1981 destroyRootPage(pParse, pTab->tnum, iDb); 1982 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1983 destroyRootPage(pParse, pIdx->tnum, iDb); 1984 } 1985 #else 1986 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1987 ** is not defined), then it is important to call OP_Destroy on the 1988 ** table and index root-pages in order, starting with the numerically 1989 ** largest root-page number. This guarantees that none of the root-pages 1990 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1991 ** following were coded: 1992 ** 1993 ** OP_Destroy 4 0 1994 ** ... 1995 ** OP_Destroy 5 0 1996 ** 1997 ** and root page 5 happened to be the largest root-page number in the 1998 ** database, then root page 5 would be moved to page 4 by the 1999 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2000 ** a free-list page. 2001 */ 2002 int iTab = pTab->tnum; 2003 int iDestroyed = 0; 2004 2005 while( 1 ){ 2006 Index *pIdx; 2007 int iLargest = 0; 2008 2009 if( iDestroyed==0 || iTab<iDestroyed ){ 2010 iLargest = iTab; 2011 } 2012 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2013 int iIdx = pIdx->tnum; 2014 assert( pIdx->pSchema==pTab->pSchema ); 2015 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2016 iLargest = iIdx; 2017 } 2018 } 2019 if( iLargest==0 ){ 2020 return; 2021 }else{ 2022 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2023 assert( iDb>=0 && iDb<pParse->db->nDb ); 2024 destroyRootPage(pParse, iLargest, iDb); 2025 iDestroyed = iLargest; 2026 } 2027 } 2028 #endif 2029 } 2030 2031 /* 2032 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2033 ** after a DROP INDEX or DROP TABLE command. 2034 */ 2035 static void sqlite3ClearStatTables( 2036 Parse *pParse, /* The parsing context */ 2037 int iDb, /* The database number */ 2038 const char *zType, /* "idx" or "tbl" */ 2039 const char *zName /* Name of index or table */ 2040 ){ 2041 int i; 2042 const char *zDbName = pParse->db->aDb[iDb].zName; 2043 for(i=1; i<=3; i++){ 2044 char zTab[24]; 2045 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2046 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2047 sqlite3NestedParse(pParse, 2048 "DELETE FROM %Q.%s WHERE %s=%Q", 2049 zDbName, zTab, zType, zName 2050 ); 2051 } 2052 } 2053 } 2054 2055 /* 2056 ** Generate code to drop a table. 2057 */ 2058 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2059 Vdbe *v; 2060 sqlite3 *db = pParse->db; 2061 Trigger *pTrigger; 2062 Db *pDb = &db->aDb[iDb]; 2063 2064 v = sqlite3GetVdbe(pParse); 2065 assert( v!=0 ); 2066 sqlite3BeginWriteOperation(pParse, 1, iDb); 2067 2068 #ifndef SQLITE_OMIT_VIRTUALTABLE 2069 if( IsVirtual(pTab) ){ 2070 sqlite3VdbeAddOp0(v, OP_VBegin); 2071 } 2072 #endif 2073 2074 /* Drop all triggers associated with the table being dropped. Code 2075 ** is generated to remove entries from sqlite_master and/or 2076 ** sqlite_temp_master if required. 2077 */ 2078 pTrigger = sqlite3TriggerList(pParse, pTab); 2079 while( pTrigger ){ 2080 assert( pTrigger->pSchema==pTab->pSchema || 2081 pTrigger->pSchema==db->aDb[1].pSchema ); 2082 sqlite3DropTriggerPtr(pParse, pTrigger); 2083 pTrigger = pTrigger->pNext; 2084 } 2085 2086 #ifndef SQLITE_OMIT_AUTOINCREMENT 2087 /* Remove any entries of the sqlite_sequence table associated with 2088 ** the table being dropped. This is done before the table is dropped 2089 ** at the btree level, in case the sqlite_sequence table needs to 2090 ** move as a result of the drop (can happen in auto-vacuum mode). 2091 */ 2092 if( pTab->tabFlags & TF_Autoincrement ){ 2093 sqlite3NestedParse(pParse, 2094 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2095 pDb->zName, pTab->zName 2096 ); 2097 } 2098 #endif 2099 2100 /* Drop all SQLITE_MASTER table and index entries that refer to the 2101 ** table. The program name loops through the master table and deletes 2102 ** every row that refers to a table of the same name as the one being 2103 ** dropped. Triggers are handled separately because a trigger can be 2104 ** created in the temp database that refers to a table in another 2105 ** database. 2106 */ 2107 sqlite3NestedParse(pParse, 2108 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2109 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2110 if( !isView && !IsVirtual(pTab) ){ 2111 destroyTable(pParse, pTab); 2112 } 2113 2114 /* Remove the table entry from SQLite's internal schema and modify 2115 ** the schema cookie. 2116 */ 2117 if( IsVirtual(pTab) ){ 2118 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2119 } 2120 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2121 sqlite3ChangeCookie(pParse, iDb); 2122 sqliteViewResetAll(db, iDb); 2123 } 2124 2125 /* 2126 ** This routine is called to do the work of a DROP TABLE statement. 2127 ** pName is the name of the table to be dropped. 2128 */ 2129 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2130 Table *pTab; 2131 Vdbe *v; 2132 sqlite3 *db = pParse->db; 2133 int iDb; 2134 2135 if( db->mallocFailed ){ 2136 goto exit_drop_table; 2137 } 2138 assert( pParse->nErr==0 ); 2139 assert( pName->nSrc==1 ); 2140 if( noErr ) db->suppressErr++; 2141 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2142 if( noErr ) db->suppressErr--; 2143 2144 if( pTab==0 ){ 2145 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2146 goto exit_drop_table; 2147 } 2148 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2149 assert( iDb>=0 && iDb<db->nDb ); 2150 2151 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2152 ** it is initialized. 2153 */ 2154 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2155 goto exit_drop_table; 2156 } 2157 #ifndef SQLITE_OMIT_AUTHORIZATION 2158 { 2159 int code; 2160 const char *zTab = SCHEMA_TABLE(iDb); 2161 const char *zDb = db->aDb[iDb].zName; 2162 const char *zArg2 = 0; 2163 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2164 goto exit_drop_table; 2165 } 2166 if( isView ){ 2167 if( !OMIT_TEMPDB && iDb==1 ){ 2168 code = SQLITE_DROP_TEMP_VIEW; 2169 }else{ 2170 code = SQLITE_DROP_VIEW; 2171 } 2172 #ifndef SQLITE_OMIT_VIRTUALTABLE 2173 }else if( IsVirtual(pTab) ){ 2174 code = SQLITE_DROP_VTABLE; 2175 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2176 #endif 2177 }else{ 2178 if( !OMIT_TEMPDB && iDb==1 ){ 2179 code = SQLITE_DROP_TEMP_TABLE; 2180 }else{ 2181 code = SQLITE_DROP_TABLE; 2182 } 2183 } 2184 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2185 goto exit_drop_table; 2186 } 2187 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2188 goto exit_drop_table; 2189 } 2190 } 2191 #endif 2192 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2193 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2194 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2195 goto exit_drop_table; 2196 } 2197 2198 #ifndef SQLITE_OMIT_VIEW 2199 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2200 ** on a table. 2201 */ 2202 if( isView && pTab->pSelect==0 ){ 2203 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2204 goto exit_drop_table; 2205 } 2206 if( !isView && pTab->pSelect ){ 2207 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2208 goto exit_drop_table; 2209 } 2210 #endif 2211 2212 /* Generate code to remove the table from the master table 2213 ** on disk. 2214 */ 2215 v = sqlite3GetVdbe(pParse); 2216 if( v ){ 2217 sqlite3BeginWriteOperation(pParse, 1, iDb); 2218 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2219 sqlite3FkDropTable(pParse, pName, pTab); 2220 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2221 } 2222 2223 exit_drop_table: 2224 sqlite3SrcListDelete(db, pName); 2225 } 2226 2227 /* 2228 ** This routine is called to create a new foreign key on the table 2229 ** currently under construction. pFromCol determines which columns 2230 ** in the current table point to the foreign key. If pFromCol==0 then 2231 ** connect the key to the last column inserted. pTo is the name of 2232 ** the table referred to. pToCol is a list of tables in the other 2233 ** pTo table that the foreign key points to. flags contains all 2234 ** information about the conflict resolution algorithms specified 2235 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2236 ** 2237 ** An FKey structure is created and added to the table currently 2238 ** under construction in the pParse->pNewTable field. 2239 ** 2240 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2241 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2242 */ 2243 void sqlite3CreateForeignKey( 2244 Parse *pParse, /* Parsing context */ 2245 ExprList *pFromCol, /* Columns in this table that point to other table */ 2246 Token *pTo, /* Name of the other table */ 2247 ExprList *pToCol, /* Columns in the other table */ 2248 int flags /* Conflict resolution algorithms. */ 2249 ){ 2250 sqlite3 *db = pParse->db; 2251 #ifndef SQLITE_OMIT_FOREIGN_KEY 2252 FKey *pFKey = 0; 2253 FKey *pNextTo; 2254 Table *p = pParse->pNewTable; 2255 int nByte; 2256 int i; 2257 int nCol; 2258 char *z; 2259 2260 assert( pTo!=0 ); 2261 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2262 if( pFromCol==0 ){ 2263 int iCol = p->nCol-1; 2264 if( NEVER(iCol<0) ) goto fk_end; 2265 if( pToCol && pToCol->nExpr!=1 ){ 2266 sqlite3ErrorMsg(pParse, "foreign key on %s" 2267 " should reference only one column of table %T", 2268 p->aCol[iCol].zName, pTo); 2269 goto fk_end; 2270 } 2271 nCol = 1; 2272 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2273 sqlite3ErrorMsg(pParse, 2274 "number of columns in foreign key does not match the number of " 2275 "columns in the referenced table"); 2276 goto fk_end; 2277 }else{ 2278 nCol = pFromCol->nExpr; 2279 } 2280 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2281 if( pToCol ){ 2282 for(i=0; i<pToCol->nExpr; i++){ 2283 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2284 } 2285 } 2286 pFKey = sqlite3DbMallocZero(db, nByte ); 2287 if( pFKey==0 ){ 2288 goto fk_end; 2289 } 2290 pFKey->pFrom = p; 2291 pFKey->pNextFrom = p->pFKey; 2292 z = (char*)&pFKey->aCol[nCol]; 2293 pFKey->zTo = z; 2294 memcpy(z, pTo->z, pTo->n); 2295 z[pTo->n] = 0; 2296 sqlite3Dequote(z); 2297 z += pTo->n+1; 2298 pFKey->nCol = nCol; 2299 if( pFromCol==0 ){ 2300 pFKey->aCol[0].iFrom = p->nCol-1; 2301 }else{ 2302 for(i=0; i<nCol; i++){ 2303 int j; 2304 for(j=0; j<p->nCol; j++){ 2305 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2306 pFKey->aCol[i].iFrom = j; 2307 break; 2308 } 2309 } 2310 if( j>=p->nCol ){ 2311 sqlite3ErrorMsg(pParse, 2312 "unknown column \"%s\" in foreign key definition", 2313 pFromCol->a[i].zName); 2314 goto fk_end; 2315 } 2316 } 2317 } 2318 if( pToCol ){ 2319 for(i=0; i<nCol; i++){ 2320 int n = sqlite3Strlen30(pToCol->a[i].zName); 2321 pFKey->aCol[i].zCol = z; 2322 memcpy(z, pToCol->a[i].zName, n); 2323 z[n] = 0; 2324 z += n+1; 2325 } 2326 } 2327 pFKey->isDeferred = 0; 2328 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2329 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2330 2331 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2332 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2333 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey 2334 ); 2335 if( pNextTo==pFKey ){ 2336 db->mallocFailed = 1; 2337 goto fk_end; 2338 } 2339 if( pNextTo ){ 2340 assert( pNextTo->pPrevTo==0 ); 2341 pFKey->pNextTo = pNextTo; 2342 pNextTo->pPrevTo = pFKey; 2343 } 2344 2345 /* Link the foreign key to the table as the last step. 2346 */ 2347 p->pFKey = pFKey; 2348 pFKey = 0; 2349 2350 fk_end: 2351 sqlite3DbFree(db, pFKey); 2352 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2353 sqlite3ExprListDelete(db, pFromCol); 2354 sqlite3ExprListDelete(db, pToCol); 2355 } 2356 2357 /* 2358 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2359 ** clause is seen as part of a foreign key definition. The isDeferred 2360 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2361 ** The behavior of the most recently created foreign key is adjusted 2362 ** accordingly. 2363 */ 2364 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2365 #ifndef SQLITE_OMIT_FOREIGN_KEY 2366 Table *pTab; 2367 FKey *pFKey; 2368 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2369 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2370 pFKey->isDeferred = (u8)isDeferred; 2371 #endif 2372 } 2373 2374 /* 2375 ** Generate code that will erase and refill index *pIdx. This is 2376 ** used to initialize a newly created index or to recompute the 2377 ** content of an index in response to a REINDEX command. 2378 ** 2379 ** if memRootPage is not negative, it means that the index is newly 2380 ** created. The register specified by memRootPage contains the 2381 ** root page number of the index. If memRootPage is negative, then 2382 ** the index already exists and must be cleared before being refilled and 2383 ** the root page number of the index is taken from pIndex->tnum. 2384 */ 2385 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2386 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2387 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2388 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2389 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2390 int addr1; /* Address of top of loop */ 2391 int addr2; /* Address to jump to for next iteration */ 2392 int tnum; /* Root page of index */ 2393 Vdbe *v; /* Generate code into this virtual machine */ 2394 KeyInfo *pKey; /* KeyInfo for index */ 2395 #ifdef SQLITE_OMIT_MERGE_SORT 2396 int regIdxKey; /* Registers containing the index key */ 2397 #endif 2398 int regRecord; /* Register holding assemblied index record */ 2399 sqlite3 *db = pParse->db; /* The database connection */ 2400 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2401 2402 #ifndef SQLITE_OMIT_AUTHORIZATION 2403 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2404 db->aDb[iDb].zName ) ){ 2405 return; 2406 } 2407 #endif 2408 2409 /* Require a write-lock on the table to perform this operation */ 2410 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2411 2412 v = sqlite3GetVdbe(pParse); 2413 if( v==0 ) return; 2414 if( memRootPage>=0 ){ 2415 tnum = memRootPage; 2416 }else{ 2417 tnum = pIndex->tnum; 2418 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2419 } 2420 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2421 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2422 (char *)pKey, P4_KEYINFO_HANDOFF); 2423 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2424 2425 #ifndef SQLITE_OMIT_MERGE_SORT 2426 /* Open the sorter cursor if we are to use one. */ 2427 iSorter = pParse->nTab++; 2428 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO); 2429 #else 2430 iSorter = iTab; 2431 #endif 2432 2433 /* Open the table. Loop through all rows of the table, inserting index 2434 ** records into the sorter. */ 2435 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2436 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2437 regRecord = sqlite3GetTempReg(pParse); 2438 2439 #ifndef SQLITE_OMIT_MERGE_SORT 2440 sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2441 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2442 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); 2443 sqlite3VdbeJumpHere(v, addr1); 2444 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); 2445 if( pIndex->onError!=OE_None ){ 2446 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2447 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); 2448 addr2 = sqlite3VdbeCurrentAddr(v); 2449 sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord); 2450 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE, 2451 OE_Abort, "indexed columns are not unique", P4_STATIC 2452 ); 2453 }else{ 2454 addr2 = sqlite3VdbeCurrentAddr(v); 2455 } 2456 sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); 2457 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); 2458 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2459 #else 2460 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2461 addr2 = addr1 + 1; 2462 if( pIndex->onError!=OE_None ){ 2463 const int regRowid = regIdxKey + pIndex->nColumn; 2464 const int j2 = sqlite3VdbeCurrentAddr(v) + 2; 2465 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); 2466 2467 /* The registers accessed by the OP_IsUnique opcode were allocated 2468 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() 2469 ** call above. Just before that function was freed they were released 2470 ** (made available to the compiler for reuse) using 2471 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique 2472 ** opcode use the values stored within seems dangerous. However, since 2473 ** we can be sure that no other temp registers have been allocated 2474 ** since sqlite3ReleaseTempRange() was called, it is safe to do so. 2475 */ 2476 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); 2477 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE, 2478 "indexed columns are not unique", P4_STATIC); 2479 } 2480 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2481 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2482 #endif 2483 sqlite3ReleaseTempReg(pParse, regRecord); 2484 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); 2485 sqlite3VdbeJumpHere(v, addr1); 2486 2487 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2488 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2489 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2490 } 2491 2492 /* 2493 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2494 ** and pTblList is the name of the table that is to be indexed. Both will 2495 ** be NULL for a primary key or an index that is created to satisfy a 2496 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2497 ** as the table to be indexed. pParse->pNewTable is a table that is 2498 ** currently being constructed by a CREATE TABLE statement. 2499 ** 2500 ** pList is a list of columns to be indexed. pList will be NULL if this 2501 ** is a primary key or unique-constraint on the most recent column added 2502 ** to the table currently under construction. 2503 ** 2504 ** If the index is created successfully, return a pointer to the new Index 2505 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2506 ** as the tables primary key (Index.autoIndex==2). 2507 */ 2508 Index *sqlite3CreateIndex( 2509 Parse *pParse, /* All information about this parse */ 2510 Token *pName1, /* First part of index name. May be NULL */ 2511 Token *pName2, /* Second part of index name. May be NULL */ 2512 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2513 ExprList *pList, /* A list of columns to be indexed */ 2514 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2515 Token *pStart, /* The CREATE token that begins this statement */ 2516 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2517 int sortOrder, /* Sort order of primary key when pList==NULL */ 2518 int ifNotExist /* Omit error if index already exists */ 2519 ){ 2520 Index *pRet = 0; /* Pointer to return */ 2521 Table *pTab = 0; /* Table to be indexed */ 2522 Index *pIndex = 0; /* The index to be created */ 2523 char *zName = 0; /* Name of the index */ 2524 int nName; /* Number of characters in zName */ 2525 int i, j; 2526 Token nullId; /* Fake token for an empty ID list */ 2527 DbFixer sFix; /* For assigning database names to pTable */ 2528 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2529 sqlite3 *db = pParse->db; 2530 Db *pDb; /* The specific table containing the indexed database */ 2531 int iDb; /* Index of the database that is being written */ 2532 Token *pName = 0; /* Unqualified name of the index to create */ 2533 struct ExprList_item *pListItem; /* For looping over pList */ 2534 int nCol; 2535 int nExtra = 0; 2536 char *zExtra; 2537 2538 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ 2539 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2540 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2541 goto exit_create_index; 2542 } 2543 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2544 goto exit_create_index; 2545 } 2546 2547 /* 2548 ** Find the table that is to be indexed. Return early if not found. 2549 */ 2550 if( pTblName!=0 ){ 2551 2552 /* Use the two-part index name to determine the database 2553 ** to search for the table. 'Fix' the table name to this db 2554 ** before looking up the table. 2555 */ 2556 assert( pName1 && pName2 ); 2557 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2558 if( iDb<0 ) goto exit_create_index; 2559 assert( pName && pName->z ); 2560 2561 #ifndef SQLITE_OMIT_TEMPDB 2562 /* If the index name was unqualified, check if the table 2563 ** is a temp table. If so, set the database to 1. Do not do this 2564 ** if initialising a database schema. 2565 */ 2566 if( !db->init.busy ){ 2567 pTab = sqlite3SrcListLookup(pParse, pTblName); 2568 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2569 iDb = 1; 2570 } 2571 } 2572 #endif 2573 2574 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2575 sqlite3FixSrcList(&sFix, pTblName) 2576 ){ 2577 /* Because the parser constructs pTblName from a single identifier, 2578 ** sqlite3FixSrcList can never fail. */ 2579 assert(0); 2580 } 2581 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2582 assert( db->mallocFailed==0 || pTab==0 ); 2583 if( pTab==0 ) goto exit_create_index; 2584 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2585 }else{ 2586 assert( pName==0 ); 2587 assert( pStart==0 ); 2588 pTab = pParse->pNewTable; 2589 if( !pTab ) goto exit_create_index; 2590 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2591 } 2592 pDb = &db->aDb[iDb]; 2593 2594 assert( pTab!=0 ); 2595 assert( pParse->nErr==0 ); 2596 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2597 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2598 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2599 goto exit_create_index; 2600 } 2601 #ifndef SQLITE_OMIT_VIEW 2602 if( pTab->pSelect ){ 2603 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2604 goto exit_create_index; 2605 } 2606 #endif 2607 #ifndef SQLITE_OMIT_VIRTUALTABLE 2608 if( IsVirtual(pTab) ){ 2609 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2610 goto exit_create_index; 2611 } 2612 #endif 2613 2614 /* 2615 ** Find the name of the index. Make sure there is not already another 2616 ** index or table with the same name. 2617 ** 2618 ** Exception: If we are reading the names of permanent indices from the 2619 ** sqlite_master table (because some other process changed the schema) and 2620 ** one of the index names collides with the name of a temporary table or 2621 ** index, then we will continue to process this index. 2622 ** 2623 ** If pName==0 it means that we are 2624 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2625 ** own name. 2626 */ 2627 if( pName ){ 2628 zName = sqlite3NameFromToken(db, pName); 2629 if( zName==0 ) goto exit_create_index; 2630 assert( pName->z!=0 ); 2631 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2632 goto exit_create_index; 2633 } 2634 if( !db->init.busy ){ 2635 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2636 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2637 goto exit_create_index; 2638 } 2639 } 2640 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2641 if( !ifNotExist ){ 2642 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2643 }else{ 2644 assert( !db->init.busy ); 2645 sqlite3CodeVerifySchema(pParse, iDb); 2646 } 2647 goto exit_create_index; 2648 } 2649 }else{ 2650 int n; 2651 Index *pLoop; 2652 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2653 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2654 if( zName==0 ){ 2655 goto exit_create_index; 2656 } 2657 } 2658 2659 /* Check for authorization to create an index. 2660 */ 2661 #ifndef SQLITE_OMIT_AUTHORIZATION 2662 { 2663 const char *zDb = pDb->zName; 2664 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2665 goto exit_create_index; 2666 } 2667 i = SQLITE_CREATE_INDEX; 2668 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2669 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2670 goto exit_create_index; 2671 } 2672 } 2673 #endif 2674 2675 /* If pList==0, it means this routine was called to make a primary 2676 ** key out of the last column added to the table under construction. 2677 ** So create a fake list to simulate this. 2678 */ 2679 if( pList==0 ){ 2680 nullId.z = pTab->aCol[pTab->nCol-1].zName; 2681 nullId.n = sqlite3Strlen30((char*)nullId.z); 2682 pList = sqlite3ExprListAppend(pParse, 0, 0); 2683 if( pList==0 ) goto exit_create_index; 2684 sqlite3ExprListSetName(pParse, pList, &nullId, 0); 2685 pList->a[0].sortOrder = (u8)sortOrder; 2686 } 2687 2688 /* Figure out how many bytes of space are required to store explicitly 2689 ** specified collation sequence names. 2690 */ 2691 for(i=0; i<pList->nExpr; i++){ 2692 Expr *pExpr = pList->a[i].pExpr; 2693 if( pExpr ){ 2694 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); 2695 if( pColl ){ 2696 nExtra += (1 + sqlite3Strlen30(pColl->zName)); 2697 } 2698 } 2699 } 2700 2701 /* 2702 ** Allocate the index structure. 2703 */ 2704 nName = sqlite3Strlen30(zName); 2705 nCol = pList->nExpr; 2706 pIndex = sqlite3DbMallocZero(db, 2707 ROUND8(sizeof(Index)) + /* Index structure */ 2708 ROUND8(sizeof(tRowcnt)*(nCol+1)) + /* Index.aiRowEst */ 2709 sizeof(char *)*nCol + /* Index.azColl */ 2710 sizeof(int)*nCol + /* Index.aiColumn */ 2711 sizeof(u8)*nCol + /* Index.aSortOrder */ 2712 nName + 1 + /* Index.zName */ 2713 nExtra /* Collation sequence names */ 2714 ); 2715 if( db->mallocFailed ){ 2716 goto exit_create_index; 2717 } 2718 zExtra = (char*)pIndex; 2719 pIndex->aiRowEst = (tRowcnt*)&zExtra[ROUND8(sizeof(Index))]; 2720 pIndex->azColl = (char**) 2721 ((char*)pIndex->aiRowEst + ROUND8(sizeof(tRowcnt)*nCol+1)); 2722 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowEst) ); 2723 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 2724 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2725 pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]); 2726 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2727 zExtra = (char *)(&pIndex->zName[nName+1]); 2728 memcpy(pIndex->zName, zName, nName+1); 2729 pIndex->pTable = pTab; 2730 pIndex->nColumn = pList->nExpr; 2731 pIndex->onError = (u8)onError; 2732 pIndex->autoIndex = (u8)(pName==0); 2733 pIndex->pSchema = db->aDb[iDb].pSchema; 2734 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2735 2736 /* Check to see if we should honor DESC requests on index columns 2737 */ 2738 if( pDb->pSchema->file_format>=4 ){ 2739 sortOrderMask = -1; /* Honor DESC */ 2740 }else{ 2741 sortOrderMask = 0; /* Ignore DESC */ 2742 } 2743 2744 /* Scan the names of the columns of the table to be indexed and 2745 ** load the column indices into the Index structure. Report an error 2746 ** if any column is not found. 2747 ** 2748 ** TODO: Add a test to make sure that the same column is not named 2749 ** more than once within the same index. Only the first instance of 2750 ** the column will ever be used by the optimizer. Note that using the 2751 ** same column more than once cannot be an error because that would 2752 ** break backwards compatibility - it needs to be a warning. 2753 */ 2754 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2755 const char *zColName = pListItem->zName; 2756 Column *pTabCol; 2757 int requestedSortOrder; 2758 CollSeq *pColl; /* Collating sequence */ 2759 char *zColl; /* Collation sequence name */ 2760 2761 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2762 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2763 } 2764 if( j>=pTab->nCol ){ 2765 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2766 pTab->zName, zColName); 2767 pParse->checkSchema = 1; 2768 goto exit_create_index; 2769 } 2770 pIndex->aiColumn[i] = j; 2771 if( pListItem->pExpr 2772 && (pColl = sqlite3ExprCollSeq(pParse, pListItem->pExpr))!=0 2773 ){ 2774 int nColl; 2775 zColl = pColl->zName; 2776 nColl = sqlite3Strlen30(zColl) + 1; 2777 assert( nExtra>=nColl ); 2778 memcpy(zExtra, zColl, nColl); 2779 zColl = zExtra; 2780 zExtra += nColl; 2781 nExtra -= nColl; 2782 }else{ 2783 zColl = pTab->aCol[j].zColl; 2784 if( !zColl ){ 2785 zColl = "BINARY"; 2786 } 2787 } 2788 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 2789 goto exit_create_index; 2790 } 2791 pIndex->azColl[i] = zColl; 2792 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2793 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 2794 } 2795 sqlite3DefaultRowEst(pIndex); 2796 2797 if( pTab==pParse->pNewTable ){ 2798 /* This routine has been called to create an automatic index as a 2799 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2800 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2801 ** i.e. one of: 2802 ** 2803 ** CREATE TABLE t(x PRIMARY KEY, y); 2804 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2805 ** 2806 ** Either way, check to see if the table already has such an index. If 2807 ** so, don't bother creating this one. This only applies to 2808 ** automatically created indices. Users can do as they wish with 2809 ** explicit indices. 2810 ** 2811 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 2812 ** (and thus suppressing the second one) even if they have different 2813 ** sort orders. 2814 ** 2815 ** If there are different collating sequences or if the columns of 2816 ** the constraint occur in different orders, then the constraints are 2817 ** considered distinct and both result in separate indices. 2818 */ 2819 Index *pIdx; 2820 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2821 int k; 2822 assert( pIdx->onError!=OE_None ); 2823 assert( pIdx->autoIndex ); 2824 assert( pIndex->onError!=OE_None ); 2825 2826 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2827 for(k=0; k<pIdx->nColumn; k++){ 2828 const char *z1; 2829 const char *z2; 2830 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2831 z1 = pIdx->azColl[k]; 2832 z2 = pIndex->azColl[k]; 2833 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2834 } 2835 if( k==pIdx->nColumn ){ 2836 if( pIdx->onError!=pIndex->onError ){ 2837 /* This constraint creates the same index as a previous 2838 ** constraint specified somewhere in the CREATE TABLE statement. 2839 ** However the ON CONFLICT clauses are different. If both this 2840 ** constraint and the previous equivalent constraint have explicit 2841 ** ON CONFLICT clauses this is an error. Otherwise, use the 2842 ** explicitly specified behavior for the index. 2843 */ 2844 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2845 sqlite3ErrorMsg(pParse, 2846 "conflicting ON CONFLICT clauses specified", 0); 2847 } 2848 if( pIdx->onError==OE_Default ){ 2849 pIdx->onError = pIndex->onError; 2850 } 2851 } 2852 goto exit_create_index; 2853 } 2854 } 2855 } 2856 2857 /* Link the new Index structure to its table and to the other 2858 ** in-memory database structures. 2859 */ 2860 if( db->init.busy ){ 2861 Index *p; 2862 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 2863 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2864 pIndex->zName, sqlite3Strlen30(pIndex->zName), 2865 pIndex); 2866 if( p ){ 2867 assert( p==pIndex ); /* Malloc must have failed */ 2868 db->mallocFailed = 1; 2869 goto exit_create_index; 2870 } 2871 db->flags |= SQLITE_InternChanges; 2872 if( pTblName!=0 ){ 2873 pIndex->tnum = db->init.newTnum; 2874 } 2875 } 2876 2877 /* If the db->init.busy is 0 then create the index on disk. This 2878 ** involves writing the index into the master table and filling in the 2879 ** index with the current table contents. 2880 ** 2881 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2882 ** command. db->init.busy is 1 when a database is opened and 2883 ** CREATE INDEX statements are read out of the master table. In 2884 ** the latter case the index already exists on disk, which is why 2885 ** we don't want to recreate it. 2886 ** 2887 ** If pTblName==0 it means this index is generated as a primary key 2888 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2889 ** has just been created, it contains no data and the index initialization 2890 ** step can be skipped. 2891 */ 2892 else{ /* if( db->init.busy==0 ) */ 2893 Vdbe *v; 2894 char *zStmt; 2895 int iMem = ++pParse->nMem; 2896 2897 v = sqlite3GetVdbe(pParse); 2898 if( v==0 ) goto exit_create_index; 2899 2900 2901 /* Create the rootpage for the index 2902 */ 2903 sqlite3BeginWriteOperation(pParse, 1, iDb); 2904 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 2905 2906 /* Gather the complete text of the CREATE INDEX statement into 2907 ** the zStmt variable 2908 */ 2909 if( pStart ){ 2910 assert( pEnd!=0 ); 2911 /* A named index with an explicit CREATE INDEX statement */ 2912 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 2913 onError==OE_None ? "" : " UNIQUE", 2914 (int)(pEnd->z - pName->z) + 1, 2915 pName->z); 2916 }else{ 2917 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2918 /* zStmt = sqlite3MPrintf(""); */ 2919 zStmt = 0; 2920 } 2921 2922 /* Add an entry in sqlite_master for this index 2923 */ 2924 sqlite3NestedParse(pParse, 2925 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 2926 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2927 pIndex->zName, 2928 pTab->zName, 2929 iMem, 2930 zStmt 2931 ); 2932 sqlite3DbFree(db, zStmt); 2933 2934 /* Fill the index with data and reparse the schema. Code an OP_Expire 2935 ** to invalidate all pre-compiled statements. 2936 */ 2937 if( pTblName ){ 2938 sqlite3RefillIndex(pParse, pIndex, iMem); 2939 sqlite3ChangeCookie(pParse, iDb); 2940 sqlite3VdbeAddParseSchemaOp(v, iDb, 2941 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 2942 sqlite3VdbeAddOp1(v, OP_Expire, 0); 2943 } 2944 } 2945 2946 /* When adding an index to the list of indices for a table, make 2947 ** sure all indices labeled OE_Replace come after all those labeled 2948 ** OE_Ignore. This is necessary for the correct constraint check 2949 ** processing (in sqlite3GenerateConstraintChecks()) as part of 2950 ** UPDATE and INSERT statements. 2951 */ 2952 if( db->init.busy || pTblName==0 ){ 2953 if( onError!=OE_Replace || pTab->pIndex==0 2954 || pTab->pIndex->onError==OE_Replace){ 2955 pIndex->pNext = pTab->pIndex; 2956 pTab->pIndex = pIndex; 2957 }else{ 2958 Index *pOther = pTab->pIndex; 2959 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2960 pOther = pOther->pNext; 2961 } 2962 pIndex->pNext = pOther->pNext; 2963 pOther->pNext = pIndex; 2964 } 2965 pRet = pIndex; 2966 pIndex = 0; 2967 } 2968 2969 /* Clean up before exiting */ 2970 exit_create_index: 2971 if( pIndex ){ 2972 sqlite3DbFree(db, pIndex->zColAff); 2973 sqlite3DbFree(db, pIndex); 2974 } 2975 sqlite3ExprListDelete(db, pList); 2976 sqlite3SrcListDelete(db, pTblName); 2977 sqlite3DbFree(db, zName); 2978 return pRet; 2979 } 2980 2981 /* 2982 ** Fill the Index.aiRowEst[] array with default information - information 2983 ** to be used when we have not run the ANALYZE command. 2984 ** 2985 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2986 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2987 ** number of rows in the table that match any particular value of the 2988 ** first column of the index. aiRowEst[2] is an estimate of the number 2989 ** of rows that match any particular combiniation of the first 2 columns 2990 ** of the index. And so forth. It must always be the case that 2991 * 2992 ** aiRowEst[N]<=aiRowEst[N-1] 2993 ** aiRowEst[N]>=1 2994 ** 2995 ** Apart from that, we have little to go on besides intuition as to 2996 ** how aiRowEst[] should be initialized. The numbers generated here 2997 ** are based on typical values found in actual indices. 2998 */ 2999 void sqlite3DefaultRowEst(Index *pIdx){ 3000 tRowcnt *a = pIdx->aiRowEst; 3001 int i; 3002 tRowcnt n; 3003 assert( a!=0 ); 3004 a[0] = pIdx->pTable->nRowEst; 3005 if( a[0]<10 ) a[0] = 10; 3006 n = 10; 3007 for(i=1; i<=pIdx->nColumn; i++){ 3008 a[i] = n; 3009 if( n>5 ) n--; 3010 } 3011 if( pIdx->onError!=OE_None ){ 3012 a[pIdx->nColumn] = 1; 3013 } 3014 } 3015 3016 /* 3017 ** This routine will drop an existing named index. This routine 3018 ** implements the DROP INDEX statement. 3019 */ 3020 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3021 Index *pIndex; 3022 Vdbe *v; 3023 sqlite3 *db = pParse->db; 3024 int iDb; 3025 3026 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3027 if( db->mallocFailed ){ 3028 goto exit_drop_index; 3029 } 3030 assert( pName->nSrc==1 ); 3031 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3032 goto exit_drop_index; 3033 } 3034 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3035 if( pIndex==0 ){ 3036 if( !ifExists ){ 3037 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3038 }else{ 3039 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3040 } 3041 pParse->checkSchema = 1; 3042 goto exit_drop_index; 3043 } 3044 if( pIndex->autoIndex ){ 3045 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3046 "or PRIMARY KEY constraint cannot be dropped", 0); 3047 goto exit_drop_index; 3048 } 3049 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3050 #ifndef SQLITE_OMIT_AUTHORIZATION 3051 { 3052 int code = SQLITE_DROP_INDEX; 3053 Table *pTab = pIndex->pTable; 3054 const char *zDb = db->aDb[iDb].zName; 3055 const char *zTab = SCHEMA_TABLE(iDb); 3056 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3057 goto exit_drop_index; 3058 } 3059 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3060 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3061 goto exit_drop_index; 3062 } 3063 } 3064 #endif 3065 3066 /* Generate code to remove the index and from the master table */ 3067 v = sqlite3GetVdbe(pParse); 3068 if( v ){ 3069 sqlite3BeginWriteOperation(pParse, 1, iDb); 3070 sqlite3NestedParse(pParse, 3071 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3072 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3073 ); 3074 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3075 sqlite3ChangeCookie(pParse, iDb); 3076 destroyRootPage(pParse, pIndex->tnum, iDb); 3077 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3078 } 3079 3080 exit_drop_index: 3081 sqlite3SrcListDelete(db, pName); 3082 } 3083 3084 /* 3085 ** pArray is a pointer to an array of objects. Each object in the 3086 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3087 ** to extend the array so that there is space for a new object at the end. 3088 ** 3089 ** When this function is called, *pnEntry contains the current size of 3090 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3091 ** in total). 3092 ** 3093 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3094 ** space allocated for the new object is zeroed, *pnEntry updated to 3095 ** reflect the new size of the array and a pointer to the new allocation 3096 ** returned. *pIdx is set to the index of the new array entry in this case. 3097 ** 3098 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3099 ** unchanged and a copy of pArray returned. 3100 */ 3101 void *sqlite3ArrayAllocate( 3102 sqlite3 *db, /* Connection to notify of malloc failures */ 3103 void *pArray, /* Array of objects. Might be reallocated */ 3104 int szEntry, /* Size of each object in the array */ 3105 int *pnEntry, /* Number of objects currently in use */ 3106 int *pIdx /* Write the index of a new slot here */ 3107 ){ 3108 char *z; 3109 int n = *pnEntry; 3110 if( (n & (n-1))==0 ){ 3111 int sz = (n==0) ? 1 : 2*n; 3112 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3113 if( pNew==0 ){ 3114 *pIdx = -1; 3115 return pArray; 3116 } 3117 pArray = pNew; 3118 } 3119 z = (char*)pArray; 3120 memset(&z[n * szEntry], 0, szEntry); 3121 *pIdx = n; 3122 ++*pnEntry; 3123 return pArray; 3124 } 3125 3126 /* 3127 ** Append a new element to the given IdList. Create a new IdList if 3128 ** need be. 3129 ** 3130 ** A new IdList is returned, or NULL if malloc() fails. 3131 */ 3132 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3133 int i; 3134 if( pList==0 ){ 3135 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3136 if( pList==0 ) return 0; 3137 } 3138 pList->a = sqlite3ArrayAllocate( 3139 db, 3140 pList->a, 3141 sizeof(pList->a[0]), 3142 &pList->nId, 3143 &i 3144 ); 3145 if( i<0 ){ 3146 sqlite3IdListDelete(db, pList); 3147 return 0; 3148 } 3149 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3150 return pList; 3151 } 3152 3153 /* 3154 ** Delete an IdList. 3155 */ 3156 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3157 int i; 3158 if( pList==0 ) return; 3159 for(i=0; i<pList->nId; i++){ 3160 sqlite3DbFree(db, pList->a[i].zName); 3161 } 3162 sqlite3DbFree(db, pList->a); 3163 sqlite3DbFree(db, pList); 3164 } 3165 3166 /* 3167 ** Return the index in pList of the identifier named zId. Return -1 3168 ** if not found. 3169 */ 3170 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3171 int i; 3172 if( pList==0 ) return -1; 3173 for(i=0; i<pList->nId; i++){ 3174 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3175 } 3176 return -1; 3177 } 3178 3179 /* 3180 ** Expand the space allocated for the given SrcList object by 3181 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3182 ** New slots are zeroed. 3183 ** 3184 ** For example, suppose a SrcList initially contains two entries: A,B. 3185 ** To append 3 new entries onto the end, do this: 3186 ** 3187 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3188 ** 3189 ** After the call above it would contain: A, B, nil, nil, nil. 3190 ** If the iStart argument had been 1 instead of 2, then the result 3191 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3192 ** the iStart value would be 0. The result then would 3193 ** be: nil, nil, nil, A, B. 3194 ** 3195 ** If a memory allocation fails the SrcList is unchanged. The 3196 ** db->mallocFailed flag will be set to true. 3197 */ 3198 SrcList *sqlite3SrcListEnlarge( 3199 sqlite3 *db, /* Database connection to notify of OOM errors */ 3200 SrcList *pSrc, /* The SrcList to be enlarged */ 3201 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3202 int iStart /* Index in pSrc->a[] of first new slot */ 3203 ){ 3204 int i; 3205 3206 /* Sanity checking on calling parameters */ 3207 assert( iStart>=0 ); 3208 assert( nExtra>=1 ); 3209 assert( pSrc!=0 ); 3210 assert( iStart<=pSrc->nSrc ); 3211 3212 /* Allocate additional space if needed */ 3213 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3214 SrcList *pNew; 3215 int nAlloc = pSrc->nSrc+nExtra; 3216 int nGot; 3217 pNew = sqlite3DbRealloc(db, pSrc, 3218 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3219 if( pNew==0 ){ 3220 assert( db->mallocFailed ); 3221 return pSrc; 3222 } 3223 pSrc = pNew; 3224 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3225 pSrc->nAlloc = (u16)nGot; 3226 } 3227 3228 /* Move existing slots that come after the newly inserted slots 3229 ** out of the way */ 3230 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3231 pSrc->a[i+nExtra] = pSrc->a[i]; 3232 } 3233 pSrc->nSrc += (i16)nExtra; 3234 3235 /* Zero the newly allocated slots */ 3236 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3237 for(i=iStart; i<iStart+nExtra; i++){ 3238 pSrc->a[i].iCursor = -1; 3239 } 3240 3241 /* Return a pointer to the enlarged SrcList */ 3242 return pSrc; 3243 } 3244 3245 3246 /* 3247 ** Append a new table name to the given SrcList. Create a new SrcList if 3248 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3249 ** 3250 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3251 ** SrcList might be the same as the SrcList that was input or it might be 3252 ** a new one. If an OOM error does occurs, then the prior value of pList 3253 ** that is input to this routine is automatically freed. 3254 ** 3255 ** If pDatabase is not null, it means that the table has an optional 3256 ** database name prefix. Like this: "database.table". The pDatabase 3257 ** points to the table name and the pTable points to the database name. 3258 ** The SrcList.a[].zName field is filled with the table name which might 3259 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3260 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3261 ** or with NULL if no database is specified. 3262 ** 3263 ** In other words, if call like this: 3264 ** 3265 ** sqlite3SrcListAppend(D,A,B,0); 3266 ** 3267 ** Then B is a table name and the database name is unspecified. If called 3268 ** like this: 3269 ** 3270 ** sqlite3SrcListAppend(D,A,B,C); 3271 ** 3272 ** Then C is the table name and B is the database name. If C is defined 3273 ** then so is B. In other words, we never have a case where: 3274 ** 3275 ** sqlite3SrcListAppend(D,A,0,C); 3276 ** 3277 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3278 ** before being added to the SrcList. 3279 */ 3280 SrcList *sqlite3SrcListAppend( 3281 sqlite3 *db, /* Connection to notify of malloc failures */ 3282 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3283 Token *pTable, /* Table to append */ 3284 Token *pDatabase /* Database of the table */ 3285 ){ 3286 struct SrcList_item *pItem; 3287 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3288 if( pList==0 ){ 3289 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3290 if( pList==0 ) return 0; 3291 pList->nAlloc = 1; 3292 } 3293 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3294 if( db->mallocFailed ){ 3295 sqlite3SrcListDelete(db, pList); 3296 return 0; 3297 } 3298 pItem = &pList->a[pList->nSrc-1]; 3299 if( pDatabase && pDatabase->z==0 ){ 3300 pDatabase = 0; 3301 } 3302 if( pDatabase ){ 3303 Token *pTemp = pDatabase; 3304 pDatabase = pTable; 3305 pTable = pTemp; 3306 } 3307 pItem->zName = sqlite3NameFromToken(db, pTable); 3308 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3309 return pList; 3310 } 3311 3312 /* 3313 ** Assign VdbeCursor index numbers to all tables in a SrcList 3314 */ 3315 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3316 int i; 3317 struct SrcList_item *pItem; 3318 assert(pList || pParse->db->mallocFailed ); 3319 if( pList ){ 3320 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3321 if( pItem->iCursor>=0 ) break; 3322 pItem->iCursor = pParse->nTab++; 3323 if( pItem->pSelect ){ 3324 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3325 } 3326 } 3327 } 3328 } 3329 3330 /* 3331 ** Delete an entire SrcList including all its substructure. 3332 */ 3333 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3334 int i; 3335 struct SrcList_item *pItem; 3336 if( pList==0 ) return; 3337 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3338 sqlite3DbFree(db, pItem->zDatabase); 3339 sqlite3DbFree(db, pItem->zName); 3340 sqlite3DbFree(db, pItem->zAlias); 3341 sqlite3DbFree(db, pItem->zIndex); 3342 sqlite3DeleteTable(db, pItem->pTab); 3343 sqlite3SelectDelete(db, pItem->pSelect); 3344 sqlite3ExprDelete(db, pItem->pOn); 3345 sqlite3IdListDelete(db, pItem->pUsing); 3346 } 3347 sqlite3DbFree(db, pList); 3348 } 3349 3350 /* 3351 ** This routine is called by the parser to add a new term to the 3352 ** end of a growing FROM clause. The "p" parameter is the part of 3353 ** the FROM clause that has already been constructed. "p" is NULL 3354 ** if this is the first term of the FROM clause. pTable and pDatabase 3355 ** are the name of the table and database named in the FROM clause term. 3356 ** pDatabase is NULL if the database name qualifier is missing - the 3357 ** usual case. If the term has a alias, then pAlias points to the 3358 ** alias token. If the term is a subquery, then pSubquery is the 3359 ** SELECT statement that the subquery encodes. The pTable and 3360 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3361 ** parameters are the content of the ON and USING clauses. 3362 ** 3363 ** Return a new SrcList which encodes is the FROM with the new 3364 ** term added. 3365 */ 3366 SrcList *sqlite3SrcListAppendFromTerm( 3367 Parse *pParse, /* Parsing context */ 3368 SrcList *p, /* The left part of the FROM clause already seen */ 3369 Token *pTable, /* Name of the table to add to the FROM clause */ 3370 Token *pDatabase, /* Name of the database containing pTable */ 3371 Token *pAlias, /* The right-hand side of the AS subexpression */ 3372 Select *pSubquery, /* A subquery used in place of a table name */ 3373 Expr *pOn, /* The ON clause of a join */ 3374 IdList *pUsing /* The USING clause of a join */ 3375 ){ 3376 struct SrcList_item *pItem; 3377 sqlite3 *db = pParse->db; 3378 if( !p && (pOn || pUsing) ){ 3379 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3380 (pOn ? "ON" : "USING") 3381 ); 3382 goto append_from_error; 3383 } 3384 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3385 if( p==0 || NEVER(p->nSrc==0) ){ 3386 goto append_from_error; 3387 } 3388 pItem = &p->a[p->nSrc-1]; 3389 assert( pAlias!=0 ); 3390 if( pAlias->n ){ 3391 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3392 } 3393 pItem->pSelect = pSubquery; 3394 pItem->pOn = pOn; 3395 pItem->pUsing = pUsing; 3396 return p; 3397 3398 append_from_error: 3399 assert( p==0 ); 3400 sqlite3ExprDelete(db, pOn); 3401 sqlite3IdListDelete(db, pUsing); 3402 sqlite3SelectDelete(db, pSubquery); 3403 return 0; 3404 } 3405 3406 /* 3407 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3408 ** element of the source-list passed as the second argument. 3409 */ 3410 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3411 assert( pIndexedBy!=0 ); 3412 if( p && ALWAYS(p->nSrc>0) ){ 3413 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3414 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3415 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3416 /* A "NOT INDEXED" clause was supplied. See parse.y 3417 ** construct "indexed_opt" for details. */ 3418 pItem->notIndexed = 1; 3419 }else{ 3420 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3421 } 3422 } 3423 } 3424 3425 /* 3426 ** When building up a FROM clause in the parser, the join operator 3427 ** is initially attached to the left operand. But the code generator 3428 ** expects the join operator to be on the right operand. This routine 3429 ** Shifts all join operators from left to right for an entire FROM 3430 ** clause. 3431 ** 3432 ** Example: Suppose the join is like this: 3433 ** 3434 ** A natural cross join B 3435 ** 3436 ** The operator is "natural cross join". The A and B operands are stored 3437 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3438 ** operator with A. This routine shifts that operator over to B. 3439 */ 3440 void sqlite3SrcListShiftJoinType(SrcList *p){ 3441 if( p ){ 3442 int i; 3443 assert( p->a || p->nSrc==0 ); 3444 for(i=p->nSrc-1; i>0; i--){ 3445 p->a[i].jointype = p->a[i-1].jointype; 3446 } 3447 p->a[0].jointype = 0; 3448 } 3449 } 3450 3451 /* 3452 ** Begin a transaction 3453 */ 3454 void sqlite3BeginTransaction(Parse *pParse, int type){ 3455 sqlite3 *db; 3456 Vdbe *v; 3457 int i; 3458 3459 assert( pParse!=0 ); 3460 db = pParse->db; 3461 assert( db!=0 ); 3462 /* if( db->aDb[0].pBt==0 ) return; */ 3463 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3464 return; 3465 } 3466 v = sqlite3GetVdbe(pParse); 3467 if( !v ) return; 3468 if( type!=TK_DEFERRED ){ 3469 for(i=0; i<db->nDb; i++){ 3470 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3471 sqlite3VdbeUsesBtree(v, i); 3472 } 3473 } 3474 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3475 } 3476 3477 /* 3478 ** Commit a transaction 3479 */ 3480 void sqlite3CommitTransaction(Parse *pParse){ 3481 Vdbe *v; 3482 3483 assert( pParse!=0 ); 3484 assert( pParse->db!=0 ); 3485 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3486 return; 3487 } 3488 v = sqlite3GetVdbe(pParse); 3489 if( v ){ 3490 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3491 } 3492 } 3493 3494 /* 3495 ** Rollback a transaction 3496 */ 3497 void sqlite3RollbackTransaction(Parse *pParse){ 3498 Vdbe *v; 3499 3500 assert( pParse!=0 ); 3501 assert( pParse->db!=0 ); 3502 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3503 return; 3504 } 3505 v = sqlite3GetVdbe(pParse); 3506 if( v ){ 3507 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3508 } 3509 } 3510 3511 /* 3512 ** This function is called by the parser when it parses a command to create, 3513 ** release or rollback an SQL savepoint. 3514 */ 3515 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3516 char *zName = sqlite3NameFromToken(pParse->db, pName); 3517 if( zName ){ 3518 Vdbe *v = sqlite3GetVdbe(pParse); 3519 #ifndef SQLITE_OMIT_AUTHORIZATION 3520 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3521 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3522 #endif 3523 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3524 sqlite3DbFree(pParse->db, zName); 3525 return; 3526 } 3527 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3528 } 3529 } 3530 3531 /* 3532 ** Make sure the TEMP database is open and available for use. Return 3533 ** the number of errors. Leave any error messages in the pParse structure. 3534 */ 3535 int sqlite3OpenTempDatabase(Parse *pParse){ 3536 sqlite3 *db = pParse->db; 3537 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3538 int rc; 3539 Btree *pBt; 3540 static const int flags = 3541 SQLITE_OPEN_READWRITE | 3542 SQLITE_OPEN_CREATE | 3543 SQLITE_OPEN_EXCLUSIVE | 3544 SQLITE_OPEN_DELETEONCLOSE | 3545 SQLITE_OPEN_TEMP_DB; 3546 3547 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3548 if( rc!=SQLITE_OK ){ 3549 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3550 "file for storing temporary tables"); 3551 pParse->rc = rc; 3552 return 1; 3553 } 3554 db->aDb[1].pBt = pBt; 3555 assert( db->aDb[1].pSchema ); 3556 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3557 db->mallocFailed = 1; 3558 return 1; 3559 } 3560 } 3561 return 0; 3562 } 3563 3564 /* 3565 ** Generate VDBE code that will verify the schema cookie and start 3566 ** a read-transaction for all named database files. 3567 ** 3568 ** It is important that all schema cookies be verified and all 3569 ** read transactions be started before anything else happens in 3570 ** the VDBE program. But this routine can be called after much other 3571 ** code has been generated. So here is what we do: 3572 ** 3573 ** The first time this routine is called, we code an OP_Goto that 3574 ** will jump to a subroutine at the end of the program. Then we 3575 ** record every database that needs its schema verified in the 3576 ** pParse->cookieMask field. Later, after all other code has been 3577 ** generated, the subroutine that does the cookie verifications and 3578 ** starts the transactions will be coded and the OP_Goto P2 value 3579 ** will be made to point to that subroutine. The generation of the 3580 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3581 ** 3582 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3583 ** schema on any databases. This can be used to position the OP_Goto 3584 ** early in the code, before we know if any database tables will be used. 3585 */ 3586 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3587 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3588 3589 #ifndef SQLITE_OMIT_TRIGGER 3590 if( pToplevel!=pParse ){ 3591 /* This branch is taken if a trigger is currently being coded. In this 3592 ** case, set cookieGoto to a non-zero value to show that this function 3593 ** has been called. This is used by the sqlite3ExprCodeConstants() 3594 ** function. */ 3595 pParse->cookieGoto = -1; 3596 } 3597 #endif 3598 if( pToplevel->cookieGoto==0 ){ 3599 Vdbe *v = sqlite3GetVdbe(pToplevel); 3600 if( v==0 ) return; /* This only happens if there was a prior error */ 3601 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; 3602 } 3603 if( iDb>=0 ){ 3604 sqlite3 *db = pToplevel->db; 3605 yDbMask mask; 3606 3607 assert( iDb<db->nDb ); 3608 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3609 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3610 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3611 mask = ((yDbMask)1)<<iDb; 3612 if( (pToplevel->cookieMask & mask)==0 ){ 3613 pToplevel->cookieMask |= mask; 3614 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3615 if( !OMIT_TEMPDB && iDb==1 ){ 3616 sqlite3OpenTempDatabase(pToplevel); 3617 } 3618 } 3619 } 3620 } 3621 3622 /* 3623 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3624 ** attached database. Otherwise, invoke it for the database named zDb only. 3625 */ 3626 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3627 sqlite3 *db = pParse->db; 3628 int i; 3629 for(i=0; i<db->nDb; i++){ 3630 Db *pDb = &db->aDb[i]; 3631 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3632 sqlite3CodeVerifySchema(pParse, i); 3633 } 3634 } 3635 } 3636 3637 /* 3638 ** Generate VDBE code that prepares for doing an operation that 3639 ** might change the database. 3640 ** 3641 ** This routine starts a new transaction if we are not already within 3642 ** a transaction. If we are already within a transaction, then a checkpoint 3643 ** is set if the setStatement parameter is true. A checkpoint should 3644 ** be set for operations that might fail (due to a constraint) part of 3645 ** the way through and which will need to undo some writes without having to 3646 ** rollback the whole transaction. For operations where all constraints 3647 ** can be checked before any changes are made to the database, it is never 3648 ** necessary to undo a write and the checkpoint should not be set. 3649 */ 3650 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3651 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3652 sqlite3CodeVerifySchema(pParse, iDb); 3653 pToplevel->writeMask |= ((yDbMask)1)<<iDb; 3654 pToplevel->isMultiWrite |= setStatement; 3655 } 3656 3657 /* 3658 ** Indicate that the statement currently under construction might write 3659 ** more than one entry (example: deleting one row then inserting another, 3660 ** inserting multiple rows in a table, or inserting a row and index entries.) 3661 ** If an abort occurs after some of these writes have completed, then it will 3662 ** be necessary to undo the completed writes. 3663 */ 3664 void sqlite3MultiWrite(Parse *pParse){ 3665 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3666 pToplevel->isMultiWrite = 1; 3667 } 3668 3669 /* 3670 ** The code generator calls this routine if is discovers that it is 3671 ** possible to abort a statement prior to completion. In order to 3672 ** perform this abort without corrupting the database, we need to make 3673 ** sure that the statement is protected by a statement transaction. 3674 ** 3675 ** Technically, we only need to set the mayAbort flag if the 3676 ** isMultiWrite flag was previously set. There is a time dependency 3677 ** such that the abort must occur after the multiwrite. This makes 3678 ** some statements involving the REPLACE conflict resolution algorithm 3679 ** go a little faster. But taking advantage of this time dependency 3680 ** makes it more difficult to prove that the code is correct (in 3681 ** particular, it prevents us from writing an effective 3682 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3683 ** to take the safe route and skip the optimization. 3684 */ 3685 void sqlite3MayAbort(Parse *pParse){ 3686 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3687 pToplevel->mayAbort = 1; 3688 } 3689 3690 /* 3691 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3692 ** error. The onError parameter determines which (if any) of the statement 3693 ** and/or current transaction is rolled back. 3694 */ 3695 void sqlite3HaltConstraint( 3696 Parse *pParse, /* Parsing context */ 3697 int errCode, /* extended error code */ 3698 int onError, /* Constraint type */ 3699 char *p4, /* Error message */ 3700 int p4type /* P4_STATIC or P4_TRANSIENT */ 3701 ){ 3702 Vdbe *v = sqlite3GetVdbe(pParse); 3703 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 3704 if( onError==OE_Abort ){ 3705 sqlite3MayAbort(pParse); 3706 } 3707 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 3708 } 3709 3710 /* 3711 ** Check to see if pIndex uses the collating sequence pColl. Return 3712 ** true if it does and false if it does not. 3713 */ 3714 #ifndef SQLITE_OMIT_REINDEX 3715 static int collationMatch(const char *zColl, Index *pIndex){ 3716 int i; 3717 assert( zColl!=0 ); 3718 for(i=0; i<pIndex->nColumn; i++){ 3719 const char *z = pIndex->azColl[i]; 3720 assert( z!=0 ); 3721 if( 0==sqlite3StrICmp(z, zColl) ){ 3722 return 1; 3723 } 3724 } 3725 return 0; 3726 } 3727 #endif 3728 3729 /* 3730 ** Recompute all indices of pTab that use the collating sequence pColl. 3731 ** If pColl==0 then recompute all indices of pTab. 3732 */ 3733 #ifndef SQLITE_OMIT_REINDEX 3734 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3735 Index *pIndex; /* An index associated with pTab */ 3736 3737 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3738 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3739 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3740 sqlite3BeginWriteOperation(pParse, 0, iDb); 3741 sqlite3RefillIndex(pParse, pIndex, -1); 3742 } 3743 } 3744 } 3745 #endif 3746 3747 /* 3748 ** Recompute all indices of all tables in all databases where the 3749 ** indices use the collating sequence pColl. If pColl==0 then recompute 3750 ** all indices everywhere. 3751 */ 3752 #ifndef SQLITE_OMIT_REINDEX 3753 static void reindexDatabases(Parse *pParse, char const *zColl){ 3754 Db *pDb; /* A single database */ 3755 int iDb; /* The database index number */ 3756 sqlite3 *db = pParse->db; /* The database connection */ 3757 HashElem *k; /* For looping over tables in pDb */ 3758 Table *pTab; /* A table in the database */ 3759 3760 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 3761 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3762 assert( pDb!=0 ); 3763 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3764 pTab = (Table*)sqliteHashData(k); 3765 reindexTable(pParse, pTab, zColl); 3766 } 3767 } 3768 } 3769 #endif 3770 3771 /* 3772 ** Generate code for the REINDEX command. 3773 ** 3774 ** REINDEX -- 1 3775 ** REINDEX <collation> -- 2 3776 ** REINDEX ?<database>.?<tablename> -- 3 3777 ** REINDEX ?<database>.?<indexname> -- 4 3778 ** 3779 ** Form 1 causes all indices in all attached databases to be rebuilt. 3780 ** Form 2 rebuilds all indices in all databases that use the named 3781 ** collating function. Forms 3 and 4 rebuild the named index or all 3782 ** indices associated with the named table. 3783 */ 3784 #ifndef SQLITE_OMIT_REINDEX 3785 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3786 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3787 char *z; /* Name of a table or index */ 3788 const char *zDb; /* Name of the database */ 3789 Table *pTab; /* A table in the database */ 3790 Index *pIndex; /* An index associated with pTab */ 3791 int iDb; /* The database index number */ 3792 sqlite3 *db = pParse->db; /* The database connection */ 3793 Token *pObjName; /* Name of the table or index to be reindexed */ 3794 3795 /* Read the database schema. If an error occurs, leave an error message 3796 ** and code in pParse and return NULL. */ 3797 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3798 return; 3799 } 3800 3801 if( pName1==0 ){ 3802 reindexDatabases(pParse, 0); 3803 return; 3804 }else if( NEVER(pName2==0) || pName2->z==0 ){ 3805 char *zColl; 3806 assert( pName1->z ); 3807 zColl = sqlite3NameFromToken(pParse->db, pName1); 3808 if( !zColl ) return; 3809 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 3810 if( pColl ){ 3811 reindexDatabases(pParse, zColl); 3812 sqlite3DbFree(db, zColl); 3813 return; 3814 } 3815 sqlite3DbFree(db, zColl); 3816 } 3817 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3818 if( iDb<0 ) return; 3819 z = sqlite3NameFromToken(db, pObjName); 3820 if( z==0 ) return; 3821 zDb = db->aDb[iDb].zName; 3822 pTab = sqlite3FindTable(db, z, zDb); 3823 if( pTab ){ 3824 reindexTable(pParse, pTab, 0); 3825 sqlite3DbFree(db, z); 3826 return; 3827 } 3828 pIndex = sqlite3FindIndex(db, z, zDb); 3829 sqlite3DbFree(db, z); 3830 if( pIndex ){ 3831 sqlite3BeginWriteOperation(pParse, 0, iDb); 3832 sqlite3RefillIndex(pParse, pIndex, -1); 3833 return; 3834 } 3835 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3836 } 3837 #endif 3838 3839 /* 3840 ** Return a dynamicly allocated KeyInfo structure that can be used 3841 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3842 ** 3843 ** If successful, a pointer to the new structure is returned. In this case 3844 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 3845 ** pointer. If an error occurs (out of memory or missing collation 3846 ** sequence), NULL is returned and the state of pParse updated to reflect 3847 ** the error. 3848 */ 3849 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3850 int i; 3851 int nCol = pIdx->nColumn; 3852 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3853 sqlite3 *db = pParse->db; 3854 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); 3855 3856 if( pKey ){ 3857 pKey->db = pParse->db; 3858 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3859 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3860 for(i=0; i<nCol; i++){ 3861 char *zColl = pIdx->azColl[i]; 3862 assert( zColl ); 3863 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); 3864 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3865 } 3866 pKey->nField = (u16)nCol; 3867 } 3868 3869 if( pParse->nErr ){ 3870 sqlite3DbFree(db, pKey); 3871 pKey = 0; 3872 } 3873 return pKey; 3874 } 3875