xref: /sqlite-3.40.0/src/build.c (revision 45f31be8)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;             /* The database containing the table to be locked */
34   int iTab;            /* The root page of the table to be locked */
35   u8 isWriteLock;      /* True for write lock.  False for a read lock */
36   const char *zName;   /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 void sqlite3TableLock(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   int iTab,          /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel = sqlite3ParseToplevel(pParse);
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   for(i=0; i<pToplevel->nTableLock; i++){
63     p = &pToplevel->aTableLock[i];
64     if( p->iDb==iDb && p->iTab==iTab ){
65       p->isWriteLock = (p->isWriteLock || isWriteLock);
66       return;
67     }
68   }
69 
70   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
71   pToplevel->aTableLock =
72       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
73   if( pToplevel->aTableLock ){
74     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
75     p->iDb = iDb;
76     p->iTab = iTab;
77     p->isWriteLock = isWriteLock;
78     p->zName = zName;
79   }else{
80     pToplevel->nTableLock = 0;
81     sqlite3OomFault(pToplevel->db);
82   }
83 }
84 
85 /*
86 ** Code an OP_TableLock instruction for each table locked by the
87 ** statement (configured by calls to sqlite3TableLock()).
88 */
89 static void codeTableLocks(Parse *pParse){
90   int i;
91   Vdbe *pVdbe;
92 
93   pVdbe = sqlite3GetVdbe(pParse);
94   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
95 
96   for(i=0; i<pParse->nTableLock; i++){
97     TableLock *p = &pParse->aTableLock[i];
98     int p1 = p->iDb;
99     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
100                       p->zName, P4_STATIC);
101   }
102 }
103 #else
104   #define codeTableLocks(x)
105 #endif
106 
107 /*
108 ** Return TRUE if the given yDbMask object is empty - if it contains no
109 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
110 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
111 */
112 #if SQLITE_MAX_ATTACHED>30
113 int sqlite3DbMaskAllZero(yDbMask m){
114   int i;
115   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
116   return 1;
117 }
118 #endif
119 
120 /*
121 ** This routine is called after a single SQL statement has been
122 ** parsed and a VDBE program to execute that statement has been
123 ** prepared.  This routine puts the finishing touches on the
124 ** VDBE program and resets the pParse structure for the next
125 ** parse.
126 **
127 ** Note that if an error occurred, it might be the case that
128 ** no VDBE code was generated.
129 */
130 void sqlite3FinishCoding(Parse *pParse){
131   sqlite3 *db;
132   Vdbe *v;
133 
134   assert( pParse->pToplevel==0 );
135   db = pParse->db;
136   if( pParse->nested ) return;
137   if( db->mallocFailed || pParse->nErr ){
138     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
139     return;
140   }
141 
142   /* Begin by generating some termination code at the end of the
143   ** vdbe program
144   */
145   v = sqlite3GetVdbe(pParse);
146   assert( !pParse->isMultiWrite
147        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
148   if( v ){
149     while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
150     sqlite3VdbeAddOp0(v, OP_Halt);
151 
152 #if SQLITE_USER_AUTHENTICATION
153     if( pParse->nTableLock>0 && db->init.busy==0 ){
154       sqlite3UserAuthInit(db);
155       if( db->auth.authLevel<UAUTH_User ){
156         pParse->rc = SQLITE_AUTH_USER;
157         sqlite3ErrorMsg(pParse, "user not authenticated");
158         return;
159       }
160     }
161 #endif
162 
163     /* The cookie mask contains one bit for each database file open.
164     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
165     ** set for each database that is used.  Generate code to start a
166     ** transaction on each used database and to verify the schema cookie
167     ** on each used database.
168     */
169     if( db->mallocFailed==0
170      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
171     ){
172       int iDb, i;
173       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
174       sqlite3VdbeJumpHere(v, 0);
175       for(iDb=0; iDb<db->nDb; iDb++){
176         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
177         sqlite3VdbeUsesBtree(v, iDb);
178         sqlite3VdbeAddOp4Int(v,
179           OP_Transaction,                    /* Opcode */
180           iDb,                               /* P1 */
181           DbMaskTest(pParse->writeMask,iDb), /* P2 */
182           pParse->cookieValue[iDb],          /* P3 */
183           db->aDb[iDb].pSchema->iGeneration  /* P4 */
184         );
185         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
186         VdbeComment((v,
187               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
188       }
189 #ifndef SQLITE_OMIT_VIRTUALTABLE
190       for(i=0; i<pParse->nVtabLock; i++){
191         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
192         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
193       }
194       pParse->nVtabLock = 0;
195 #endif
196 
197       /* Once all the cookies have been verified and transactions opened,
198       ** obtain the required table-locks. This is a no-op unless the
199       ** shared-cache feature is enabled.
200       */
201       codeTableLocks(pParse);
202 
203       /* Initialize any AUTOINCREMENT data structures required.
204       */
205       sqlite3AutoincrementBegin(pParse);
206 
207       /* Code constant expressions that where factored out of inner loops */
208       if( pParse->pConstExpr ){
209         ExprList *pEL = pParse->pConstExpr;
210         pParse->okConstFactor = 0;
211         for(i=0; i<pEL->nExpr; i++){
212           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
213         }
214       }
215 
216       /* Finally, jump back to the beginning of the executable code. */
217       sqlite3VdbeGoto(v, 1);
218     }
219   }
220 
221 
222   /* Get the VDBE program ready for execution
223   */
224   if( v && pParse->nErr==0 && !db->mallocFailed ){
225     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
226     /* A minimum of one cursor is required if autoincrement is used
227     *  See ticket [a696379c1f08866] */
228     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
229     sqlite3VdbeMakeReady(v, pParse);
230     pParse->rc = SQLITE_DONE;
231   }else{
232     pParse->rc = SQLITE_ERROR;
233   }
234 
235   /* We are done with this Parse object. There is no need to de-initialize it */
236 #if 0
237   pParse->colNamesSet = 0;
238   pParse->nTab = 0;
239   pParse->nMem = 0;
240   pParse->nSet = 0;
241   pParse->nVar = 0;
242   DbMaskZero(pParse->cookieMask);
243 #endif
244 }
245 
246 /*
247 ** Run the parser and code generator recursively in order to generate
248 ** code for the SQL statement given onto the end of the pParse context
249 ** currently under construction.  When the parser is run recursively
250 ** this way, the final OP_Halt is not appended and other initialization
251 ** and finalization steps are omitted because those are handling by the
252 ** outermost parser.
253 **
254 ** Not everything is nestable.  This facility is designed to permit
255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
256 ** care if you decide to try to use this routine for some other purposes.
257 */
258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
259   va_list ap;
260   char *zSql;
261   char *zErrMsg = 0;
262   sqlite3 *db = pParse->db;
263 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
264   char saveBuf[SAVE_SZ];
265 
266   if( pParse->nErr ) return;
267   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
268   va_start(ap, zFormat);
269   zSql = sqlite3VMPrintf(db, zFormat, ap);
270   va_end(ap);
271   if( zSql==0 ){
272     return;   /* A malloc must have failed */
273   }
274   pParse->nested++;
275   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
276   memset(&pParse->nVar, 0, SAVE_SZ);
277   sqlite3RunParser(pParse, zSql, &zErrMsg);
278   sqlite3DbFree(db, zErrMsg);
279   sqlite3DbFree(db, zSql);
280   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
281   pParse->nested--;
282 }
283 
284 #if SQLITE_USER_AUTHENTICATION
285 /*
286 ** Return TRUE if zTable is the name of the system table that stores the
287 ** list of users and their access credentials.
288 */
289 int sqlite3UserAuthTable(const char *zTable){
290   return sqlite3_stricmp(zTable, "sqlite_user")==0;
291 }
292 #endif
293 
294 /*
295 ** Locate the in-memory structure that describes a particular database
296 ** table given the name of that table and (optionally) the name of the
297 ** database containing the table.  Return NULL if not found.
298 **
299 ** If zDatabase is 0, all databases are searched for the table and the
300 ** first matching table is returned.  (No checking for duplicate table
301 ** names is done.)  The search order is TEMP first, then MAIN, then any
302 ** auxiliary databases added using the ATTACH command.
303 **
304 ** See also sqlite3LocateTable().
305 */
306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
307   Table *p = 0;
308   int i;
309 
310   /* All mutexes are required for schema access.  Make sure we hold them. */
311   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
312 #if SQLITE_USER_AUTHENTICATION
313   /* Only the admin user is allowed to know that the sqlite_user table
314   ** exists */
315   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
316     return 0;
317   }
318 #endif
319   for(i=OMIT_TEMPDB; i<db->nDb; i++){
320     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
321     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
322     assert( sqlite3SchemaMutexHeld(db, j, 0) );
323     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
324     if( p ) break;
325   }
326   return p;
327 }
328 
329 /*
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table.  Return NULL if not found.  Also leave an
333 ** error message in pParse->zErrMsg.
334 **
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
338 */
339 Table *sqlite3LocateTable(
340   Parse *pParse,         /* context in which to report errors */
341   int isView,            /* True if looking for a VIEW rather than a TABLE */
342   const char *zName,     /* Name of the table we are looking for */
343   const char *zDbase     /* Name of the database.  Might be NULL */
344 ){
345   Table *p;
346 
347   /* Read the database schema. If an error occurs, leave an error message
348   ** and code in pParse and return NULL. */
349   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350     return 0;
351   }
352 
353   p = sqlite3FindTable(pParse->db, zName, zDbase);
354   if( p==0 ){
355     const char *zMsg = isView ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358       /* If zName is the not the name of a table in the schema created using
359       ** CREATE, then check to see if it is the name of an virtual table that
360       ** can be an eponymous virtual table. */
361       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
363         return pMod->pEpoTab;
364       }
365     }
366 #endif
367     if( zDbase ){
368       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
369     }else{
370       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
371     }
372     pParse->checkSchema = 1;
373   }
374 
375   return p;
376 }
377 
378 /*
379 ** Locate the table identified by *p.
380 **
381 ** This is a wrapper around sqlite3LocateTable(). The difference between
382 ** sqlite3LocateTable() and this function is that this function restricts
383 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
384 ** non-NULL if it is part of a view or trigger program definition. See
385 ** sqlite3FixSrcList() for details.
386 */
387 Table *sqlite3LocateTableItem(
388   Parse *pParse,
389   int isView,
390   struct SrcList_item *p
391 ){
392   const char *zDb;
393   assert( p->pSchema==0 || p->zDatabase==0 );
394   if( p->pSchema ){
395     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
396     zDb = pParse->db->aDb[iDb].zName;
397   }else{
398     zDb = p->zDatabase;
399   }
400   return sqlite3LocateTable(pParse, isView, p->zName, zDb);
401 }
402 
403 /*
404 ** Locate the in-memory structure that describes
405 ** a particular index given the name of that index
406 ** and the name of the database that contains the index.
407 ** Return NULL if not found.
408 **
409 ** If zDatabase is 0, all databases are searched for the
410 ** table and the first matching index is returned.  (No checking
411 ** for duplicate index names is done.)  The search order is
412 ** TEMP first, then MAIN, then any auxiliary databases added
413 ** using the ATTACH command.
414 */
415 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
416   Index *p = 0;
417   int i;
418   /* All mutexes are required for schema access.  Make sure we hold them. */
419   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
420   for(i=OMIT_TEMPDB; i<db->nDb; i++){
421     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
422     Schema *pSchema = db->aDb[j].pSchema;
423     assert( pSchema );
424     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
425     assert( sqlite3SchemaMutexHeld(db, j, 0) );
426     p = sqlite3HashFind(&pSchema->idxHash, zName);
427     if( p ) break;
428   }
429   return p;
430 }
431 
432 /*
433 ** Reclaim the memory used by an index
434 */
435 static void freeIndex(sqlite3 *db, Index *p){
436 #ifndef SQLITE_OMIT_ANALYZE
437   sqlite3DeleteIndexSamples(db, p);
438 #endif
439   sqlite3ExprDelete(db, p->pPartIdxWhere);
440   sqlite3ExprListDelete(db, p->aColExpr);
441   sqlite3DbFree(db, p->zColAff);
442   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
444   sqlite3_free(p->aiRowEst);
445 #endif
446   sqlite3DbFree(db, p);
447 }
448 
449 /*
450 ** For the index called zIdxName which is found in the database iDb,
451 ** unlike that index from its Table then remove the index from
452 ** the index hash table and free all memory structures associated
453 ** with the index.
454 */
455 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
456   Index *pIndex;
457   Hash *pHash;
458 
459   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
460   pHash = &db->aDb[iDb].pSchema->idxHash;
461   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
462   if( ALWAYS(pIndex) ){
463     if( pIndex->pTable->pIndex==pIndex ){
464       pIndex->pTable->pIndex = pIndex->pNext;
465     }else{
466       Index *p;
467       /* Justification of ALWAYS();  The index must be on the list of
468       ** indices. */
469       p = pIndex->pTable->pIndex;
470       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
471       if( ALWAYS(p && p->pNext==pIndex) ){
472         p->pNext = pIndex->pNext;
473       }
474     }
475     freeIndex(db, pIndex);
476   }
477   db->flags |= SQLITE_InternChanges;
478 }
479 
480 /*
481 ** Look through the list of open database files in db->aDb[] and if
482 ** any have been closed, remove them from the list.  Reallocate the
483 ** db->aDb[] structure to a smaller size, if possible.
484 **
485 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
486 ** are never candidates for being collapsed.
487 */
488 void sqlite3CollapseDatabaseArray(sqlite3 *db){
489   int i, j;
490   for(i=j=2; i<db->nDb; i++){
491     struct Db *pDb = &db->aDb[i];
492     if( pDb->pBt==0 ){
493       sqlite3DbFree(db, pDb->zName);
494       pDb->zName = 0;
495       continue;
496     }
497     if( j<i ){
498       db->aDb[j] = db->aDb[i];
499     }
500     j++;
501   }
502   db->nDb = j;
503   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
504     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
505     sqlite3DbFree(db, db->aDb);
506     db->aDb = db->aDbStatic;
507   }
508 }
509 
510 /*
511 ** Reset the schema for the database at index iDb.  Also reset the
512 ** TEMP schema.
513 */
514 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
515   Db *pDb;
516   assert( iDb<db->nDb );
517 
518   /* Case 1:  Reset the single schema identified by iDb */
519   pDb = &db->aDb[iDb];
520   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
521   assert( pDb->pSchema!=0 );
522   sqlite3SchemaClear(pDb->pSchema);
523 
524   /* If any database other than TEMP is reset, then also reset TEMP
525   ** since TEMP might be holding triggers that reference tables in the
526   ** other database.
527   */
528   if( iDb!=1 ){
529     pDb = &db->aDb[1];
530     assert( pDb->pSchema!=0 );
531     sqlite3SchemaClear(pDb->pSchema);
532   }
533   return;
534 }
535 
536 /*
537 ** Erase all schema information from all attached databases (including
538 ** "main" and "temp") for a single database connection.
539 */
540 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
541   int i;
542   sqlite3BtreeEnterAll(db);
543   for(i=0; i<db->nDb; i++){
544     Db *pDb = &db->aDb[i];
545     if( pDb->pSchema ){
546       sqlite3SchemaClear(pDb->pSchema);
547     }
548   }
549   db->flags &= ~SQLITE_InternChanges;
550   sqlite3VtabUnlockList(db);
551   sqlite3BtreeLeaveAll(db);
552   sqlite3CollapseDatabaseArray(db);
553 }
554 
555 /*
556 ** This routine is called when a commit occurs.
557 */
558 void sqlite3CommitInternalChanges(sqlite3 *db){
559   db->flags &= ~SQLITE_InternChanges;
560 }
561 
562 /*
563 ** Delete memory allocated for the column names of a table or view (the
564 ** Table.aCol[] array).
565 */
566 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
567   int i;
568   Column *pCol;
569   assert( pTable!=0 );
570   if( (pCol = pTable->aCol)!=0 ){
571     for(i=0; i<pTable->nCol; i++, pCol++){
572       sqlite3DbFree(db, pCol->zName);
573       sqlite3ExprDelete(db, pCol->pDflt);
574       sqlite3DbFree(db, pCol->zDflt);
575       sqlite3DbFree(db, pCol->zType);
576       sqlite3DbFree(db, pCol->zColl);
577     }
578     sqlite3DbFree(db, pTable->aCol);
579   }
580 }
581 
582 /*
583 ** Remove the memory data structures associated with the given
584 ** Table.  No changes are made to disk by this routine.
585 **
586 ** This routine just deletes the data structure.  It does not unlink
587 ** the table data structure from the hash table.  But it does destroy
588 ** memory structures of the indices and foreign keys associated with
589 ** the table.
590 **
591 ** The db parameter is optional.  It is needed if the Table object
592 ** contains lookaside memory.  (Table objects in the schema do not use
593 ** lookaside memory, but some ephemeral Table objects do.)  Or the
594 ** db parameter can be used with db->pnBytesFreed to measure the memory
595 ** used by the Table object.
596 */
597 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
598   Index *pIndex, *pNext;
599   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
600 
601   assert( !pTable || pTable->nRef>0 );
602 
603   /* Do not delete the table until the reference count reaches zero. */
604   if( !pTable ) return;
605   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
606 
607   /* Record the number of outstanding lookaside allocations in schema Tables
608   ** prior to doing any free() operations.  Since schema Tables do not use
609   ** lookaside, this number should not change. */
610   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
611                          db->lookaside.nOut : 0 );
612 
613   /* Delete all indices associated with this table. */
614   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
615     pNext = pIndex->pNext;
616     assert( pIndex->pSchema==pTable->pSchema );
617     if( !db || db->pnBytesFreed==0 ){
618       char *zName = pIndex->zName;
619       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
620          &pIndex->pSchema->idxHash, zName, 0
621       );
622       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
623       assert( pOld==pIndex || pOld==0 );
624     }
625     freeIndex(db, pIndex);
626   }
627 
628   /* Delete any foreign keys attached to this table. */
629   sqlite3FkDelete(db, pTable);
630 
631   /* Delete the Table structure itself.
632   */
633   sqlite3DeleteColumnNames(db, pTable);
634   sqlite3DbFree(db, pTable->zName);
635   sqlite3DbFree(db, pTable->zColAff);
636   sqlite3SelectDelete(db, pTable->pSelect);
637   sqlite3ExprListDelete(db, pTable->pCheck);
638 #ifndef SQLITE_OMIT_VIRTUALTABLE
639   sqlite3VtabClear(db, pTable);
640 #endif
641   sqlite3DbFree(db, pTable);
642 
643   /* Verify that no lookaside memory was used by schema tables */
644   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
645 }
646 
647 /*
648 ** Unlink the given table from the hash tables and the delete the
649 ** table structure with all its indices and foreign keys.
650 */
651 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
652   Table *p;
653   Db *pDb;
654 
655   assert( db!=0 );
656   assert( iDb>=0 && iDb<db->nDb );
657   assert( zTabName );
658   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
659   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
660   pDb = &db->aDb[iDb];
661   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
662   sqlite3DeleteTable(db, p);
663   db->flags |= SQLITE_InternChanges;
664 }
665 
666 /*
667 ** Given a token, return a string that consists of the text of that
668 ** token.  Space to hold the returned string
669 ** is obtained from sqliteMalloc() and must be freed by the calling
670 ** function.
671 **
672 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
673 ** surround the body of the token are removed.
674 **
675 ** Tokens are often just pointers into the original SQL text and so
676 ** are not \000 terminated and are not persistent.  The returned string
677 ** is \000 terminated and is persistent.
678 */
679 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
680   char *zName;
681   if( pName ){
682     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
683     sqlite3Dequote(zName);
684   }else{
685     zName = 0;
686   }
687   return zName;
688 }
689 
690 /*
691 ** Open the sqlite_master table stored in database number iDb for
692 ** writing. The table is opened using cursor 0.
693 */
694 void sqlite3OpenMasterTable(Parse *p, int iDb){
695   Vdbe *v = sqlite3GetVdbe(p);
696   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
697   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
698   if( p->nTab==0 ){
699     p->nTab = 1;
700   }
701 }
702 
703 /*
704 ** Parameter zName points to a nul-terminated buffer containing the name
705 ** of a database ("main", "temp" or the name of an attached db). This
706 ** function returns the index of the named database in db->aDb[], or
707 ** -1 if the named db cannot be found.
708 */
709 int sqlite3FindDbName(sqlite3 *db, const char *zName){
710   int i = -1;         /* Database number */
711   if( zName ){
712     Db *pDb;
713     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
714       if( 0==sqlite3StrICmp(pDb->zName, zName) ) break;
715     }
716   }
717   return i;
718 }
719 
720 /*
721 ** The token *pName contains the name of a database (either "main" or
722 ** "temp" or the name of an attached db). This routine returns the
723 ** index of the named database in db->aDb[], or -1 if the named db
724 ** does not exist.
725 */
726 int sqlite3FindDb(sqlite3 *db, Token *pName){
727   int i;                               /* Database number */
728   char *zName;                         /* Name we are searching for */
729   zName = sqlite3NameFromToken(db, pName);
730   i = sqlite3FindDbName(db, zName);
731   sqlite3DbFree(db, zName);
732   return i;
733 }
734 
735 /* The table or view or trigger name is passed to this routine via tokens
736 ** pName1 and pName2. If the table name was fully qualified, for example:
737 **
738 ** CREATE TABLE xxx.yyy (...);
739 **
740 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
741 ** the table name is not fully qualified, i.e.:
742 **
743 ** CREATE TABLE yyy(...);
744 **
745 ** Then pName1 is set to "yyy" and pName2 is "".
746 **
747 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
748 ** pName2) that stores the unqualified table name.  The index of the
749 ** database "xxx" is returned.
750 */
751 int sqlite3TwoPartName(
752   Parse *pParse,      /* Parsing and code generating context */
753   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
754   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
755   Token **pUnqual     /* Write the unqualified object name here */
756 ){
757   int iDb;                    /* Database holding the object */
758   sqlite3 *db = pParse->db;
759 
760   assert( pName2!=0 );
761   if( pName2->n>0 ){
762     if( db->init.busy ) {
763       sqlite3ErrorMsg(pParse, "corrupt database");
764       return -1;
765     }
766     *pUnqual = pName2;
767     iDb = sqlite3FindDb(db, pName1);
768     if( iDb<0 ){
769       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
770       return -1;
771     }
772   }else{
773     assert( db->init.iDb==0 || db->init.busy );
774     iDb = db->init.iDb;
775     *pUnqual = pName1;
776   }
777   return iDb;
778 }
779 
780 /*
781 ** This routine is used to check if the UTF-8 string zName is a legal
782 ** unqualified name for a new schema object (table, index, view or
783 ** trigger). All names are legal except those that begin with the string
784 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
785 ** is reserved for internal use.
786 */
787 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
788   if( !pParse->db->init.busy && pParse->nested==0
789           && (pParse->db->flags & SQLITE_WriteSchema)==0
790           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
791     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
792     return SQLITE_ERROR;
793   }
794   return SQLITE_OK;
795 }
796 
797 /*
798 ** Return the PRIMARY KEY index of a table
799 */
800 Index *sqlite3PrimaryKeyIndex(Table *pTab){
801   Index *p;
802   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
803   return p;
804 }
805 
806 /*
807 ** Return the column of index pIdx that corresponds to table
808 ** column iCol.  Return -1 if not found.
809 */
810 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
811   int i;
812   for(i=0; i<pIdx->nColumn; i++){
813     if( iCol==pIdx->aiColumn[i] ) return i;
814   }
815   return -1;
816 }
817 
818 /*
819 ** Begin constructing a new table representation in memory.  This is
820 ** the first of several action routines that get called in response
821 ** to a CREATE TABLE statement.  In particular, this routine is called
822 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
823 ** flag is true if the table should be stored in the auxiliary database
824 ** file instead of in the main database file.  This is normally the case
825 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
826 ** CREATE and TABLE.
827 **
828 ** The new table record is initialized and put in pParse->pNewTable.
829 ** As more of the CREATE TABLE statement is parsed, additional action
830 ** routines will be called to add more information to this record.
831 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
832 ** is called to complete the construction of the new table record.
833 */
834 void sqlite3StartTable(
835   Parse *pParse,   /* Parser context */
836   Token *pName1,   /* First part of the name of the table or view */
837   Token *pName2,   /* Second part of the name of the table or view */
838   int isTemp,      /* True if this is a TEMP table */
839   int isView,      /* True if this is a VIEW */
840   int isVirtual,   /* True if this is a VIRTUAL table */
841   int noErr        /* Do nothing if table already exists */
842 ){
843   Table *pTable;
844   char *zName = 0; /* The name of the new table */
845   sqlite3 *db = pParse->db;
846   Vdbe *v;
847   int iDb;         /* Database number to create the table in */
848   Token *pName;    /* Unqualified name of the table to create */
849 
850   if( db->init.busy && db->init.newTnum==1 ){
851     /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */
852     iDb = db->init.iDb;
853     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
854     pName = pName1;
855   }else{
856     /* The common case */
857     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
858     if( iDb<0 ) return;
859     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
860       /* If creating a temp table, the name may not be qualified. Unless
861       ** the database name is "temp" anyway.  */
862       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
863       return;
864     }
865     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
866     zName = sqlite3NameFromToken(db, pName);
867   }
868   pParse->sNameToken = *pName;
869   if( zName==0 ) return;
870   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
871     goto begin_table_error;
872   }
873   if( db->init.iDb==1 ) isTemp = 1;
874 #ifndef SQLITE_OMIT_AUTHORIZATION
875   assert( isTemp==0 || isTemp==1 );
876   assert( isView==0 || isView==1 );
877   {
878     static const u8 aCode[] = {
879        SQLITE_CREATE_TABLE,
880        SQLITE_CREATE_TEMP_TABLE,
881        SQLITE_CREATE_VIEW,
882        SQLITE_CREATE_TEMP_VIEW
883     };
884     char *zDb = db->aDb[iDb].zName;
885     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
886       goto begin_table_error;
887     }
888     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
889                                        zName, 0, zDb) ){
890       goto begin_table_error;
891     }
892   }
893 #endif
894 
895   /* Make sure the new table name does not collide with an existing
896   ** index or table name in the same database.  Issue an error message if
897   ** it does. The exception is if the statement being parsed was passed
898   ** to an sqlite3_declare_vtab() call. In that case only the column names
899   ** and types will be used, so there is no need to test for namespace
900   ** collisions.
901   */
902   if( !IN_DECLARE_VTAB ){
903     char *zDb = db->aDb[iDb].zName;
904     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
905       goto begin_table_error;
906     }
907     pTable = sqlite3FindTable(db, zName, zDb);
908     if( pTable ){
909       if( !noErr ){
910         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
911       }else{
912         assert( !db->init.busy || CORRUPT_DB );
913         sqlite3CodeVerifySchema(pParse, iDb);
914       }
915       goto begin_table_error;
916     }
917     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
918       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
919       goto begin_table_error;
920     }
921   }
922 
923   pTable = sqlite3DbMallocZero(db, sizeof(Table));
924   if( pTable==0 ){
925     assert( db->mallocFailed );
926     pParse->rc = SQLITE_NOMEM_BKPT;
927     pParse->nErr++;
928     goto begin_table_error;
929   }
930   pTable->zName = zName;
931   pTable->iPKey = -1;
932   pTable->pSchema = db->aDb[iDb].pSchema;
933   pTable->nRef = 1;
934   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
935   assert( pParse->pNewTable==0 );
936   pParse->pNewTable = pTable;
937 
938   /* If this is the magic sqlite_sequence table used by autoincrement,
939   ** then record a pointer to this table in the main database structure
940   ** so that INSERT can find the table easily.
941   */
942 #ifndef SQLITE_OMIT_AUTOINCREMENT
943   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
944     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
945     pTable->pSchema->pSeqTab = pTable;
946   }
947 #endif
948 
949   /* Begin generating the code that will insert the table record into
950   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
951   ** and allocate the record number for the table entry now.  Before any
952   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
953   ** indices to be created and the table record must come before the
954   ** indices.  Hence, the record number for the table must be allocated
955   ** now.
956   */
957   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
958     int addr1;
959     int fileFormat;
960     int reg1, reg2, reg3;
961     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
962     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
963     sqlite3BeginWriteOperation(pParse, 1, iDb);
964 
965 #ifndef SQLITE_OMIT_VIRTUALTABLE
966     if( isVirtual ){
967       sqlite3VdbeAddOp0(v, OP_VBegin);
968     }
969 #endif
970 
971     /* If the file format and encoding in the database have not been set,
972     ** set them now.
973     */
974     reg1 = pParse->regRowid = ++pParse->nMem;
975     reg2 = pParse->regRoot = ++pParse->nMem;
976     reg3 = ++pParse->nMem;
977     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
978     sqlite3VdbeUsesBtree(v, iDb);
979     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
980     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
981                   1 : SQLITE_MAX_FILE_FORMAT;
982     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
983     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
984     sqlite3VdbeJumpHere(v, addr1);
985 
986     /* This just creates a place-holder record in the sqlite_master table.
987     ** The record created does not contain anything yet.  It will be replaced
988     ** by the real entry in code generated at sqlite3EndTable().
989     **
990     ** The rowid for the new entry is left in register pParse->regRowid.
991     ** The root page number of the new table is left in reg pParse->regRoot.
992     ** The rowid and root page number values are needed by the code that
993     ** sqlite3EndTable will generate.
994     */
995 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
996     if( isView || isVirtual ){
997       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
998     }else
999 #endif
1000     {
1001       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1002     }
1003     sqlite3OpenMasterTable(pParse, iDb);
1004     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1005     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1006     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1007     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1008     sqlite3VdbeAddOp0(v, OP_Close);
1009   }
1010 
1011   /* Normal (non-error) return. */
1012   return;
1013 
1014   /* If an error occurs, we jump here */
1015 begin_table_error:
1016   sqlite3DbFree(db, zName);
1017   return;
1018 }
1019 
1020 /* Set properties of a table column based on the (magical)
1021 ** name of the column.
1022 */
1023 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1024 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1025   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1026     pCol->colFlags |= COLFLAG_HIDDEN;
1027   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1028     pTab->tabFlags |= TF_OOOHidden;
1029   }
1030 }
1031 #endif
1032 
1033 
1034 /*
1035 ** Add a new column to the table currently being constructed.
1036 **
1037 ** The parser calls this routine once for each column declaration
1038 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1039 ** first to get things going.  Then this routine is called for each
1040 ** column.
1041 */
1042 void sqlite3AddColumn(Parse *pParse, Token *pName){
1043   Table *p;
1044   int i;
1045   char *z;
1046   Column *pCol;
1047   sqlite3 *db = pParse->db;
1048   if( (p = pParse->pNewTable)==0 ) return;
1049 #if SQLITE_MAX_COLUMN
1050   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1051     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1052     return;
1053   }
1054 #endif
1055   z = sqlite3NameFromToken(db, pName);
1056   if( z==0 ) return;
1057   for(i=0; i<p->nCol; i++){
1058     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1059       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1060       sqlite3DbFree(db, z);
1061       return;
1062     }
1063   }
1064   if( (p->nCol & 0x7)==0 ){
1065     Column *aNew;
1066     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1067     if( aNew==0 ){
1068       sqlite3DbFree(db, z);
1069       return;
1070     }
1071     p->aCol = aNew;
1072   }
1073   pCol = &p->aCol[p->nCol];
1074   memset(pCol, 0, sizeof(p->aCol[0]));
1075   pCol->zName = z;
1076   sqlite3ColumnPropertiesFromName(p, pCol);
1077 
1078   /* If there is no type specified, columns have the default affinity
1079   ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will
1080   ** be called next to set pCol->affinity correctly.
1081   */
1082   pCol->affinity = SQLITE_AFF_BLOB;
1083   pCol->szEst = 1;
1084   p->nCol++;
1085 }
1086 
1087 /*
1088 ** This routine is called by the parser while in the middle of
1089 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1090 ** been seen on a column.  This routine sets the notNull flag on
1091 ** the column currently under construction.
1092 */
1093 void sqlite3AddNotNull(Parse *pParse, int onError){
1094   Table *p;
1095   p = pParse->pNewTable;
1096   if( p==0 || NEVER(p->nCol<1) ) return;
1097   p->aCol[p->nCol-1].notNull = (u8)onError;
1098 }
1099 
1100 /*
1101 ** Scan the column type name zType (length nType) and return the
1102 ** associated affinity type.
1103 **
1104 ** This routine does a case-independent search of zType for the
1105 ** substrings in the following table. If one of the substrings is
1106 ** found, the corresponding affinity is returned. If zType contains
1107 ** more than one of the substrings, entries toward the top of
1108 ** the table take priority. For example, if zType is 'BLOBINT',
1109 ** SQLITE_AFF_INTEGER is returned.
1110 **
1111 ** Substring     | Affinity
1112 ** --------------------------------
1113 ** 'INT'         | SQLITE_AFF_INTEGER
1114 ** 'CHAR'        | SQLITE_AFF_TEXT
1115 ** 'CLOB'        | SQLITE_AFF_TEXT
1116 ** 'TEXT'        | SQLITE_AFF_TEXT
1117 ** 'BLOB'        | SQLITE_AFF_BLOB
1118 ** 'REAL'        | SQLITE_AFF_REAL
1119 ** 'FLOA'        | SQLITE_AFF_REAL
1120 ** 'DOUB'        | SQLITE_AFF_REAL
1121 **
1122 ** If none of the substrings in the above table are found,
1123 ** SQLITE_AFF_NUMERIC is returned.
1124 */
1125 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1126   u32 h = 0;
1127   char aff = SQLITE_AFF_NUMERIC;
1128   const char *zChar = 0;
1129 
1130   if( zIn==0 ) return aff;
1131   while( zIn[0] ){
1132     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1133     zIn++;
1134     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1135       aff = SQLITE_AFF_TEXT;
1136       zChar = zIn;
1137     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1138       aff = SQLITE_AFF_TEXT;
1139     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1140       aff = SQLITE_AFF_TEXT;
1141     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1142         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1143       aff = SQLITE_AFF_BLOB;
1144       if( zIn[0]=='(' ) zChar = zIn;
1145 #ifndef SQLITE_OMIT_FLOATING_POINT
1146     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1147         && aff==SQLITE_AFF_NUMERIC ){
1148       aff = SQLITE_AFF_REAL;
1149     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1150         && aff==SQLITE_AFF_NUMERIC ){
1151       aff = SQLITE_AFF_REAL;
1152     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1153         && aff==SQLITE_AFF_NUMERIC ){
1154       aff = SQLITE_AFF_REAL;
1155 #endif
1156     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1157       aff = SQLITE_AFF_INTEGER;
1158       break;
1159     }
1160   }
1161 
1162   /* If pszEst is not NULL, store an estimate of the field size.  The
1163   ** estimate is scaled so that the size of an integer is 1.  */
1164   if( pszEst ){
1165     *pszEst = 1;   /* default size is approx 4 bytes */
1166     if( aff<SQLITE_AFF_NUMERIC ){
1167       if( zChar ){
1168         while( zChar[0] ){
1169           if( sqlite3Isdigit(zChar[0]) ){
1170             int v = 0;
1171             sqlite3GetInt32(zChar, &v);
1172             v = v/4 + 1;
1173             if( v>255 ) v = 255;
1174             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1175             break;
1176           }
1177           zChar++;
1178         }
1179       }else{
1180         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1181       }
1182     }
1183   }
1184   return aff;
1185 }
1186 
1187 /*
1188 ** This routine is called by the parser while in the middle of
1189 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1190 ** token in the sequence of tokens that describe the type of the
1191 ** column currently under construction.   pLast is the last token
1192 ** in the sequence.  Use this information to construct a string
1193 ** that contains the typename of the column and store that string
1194 ** in zType.
1195 */
1196 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1197   Table *p;
1198   Column *pCol;
1199 
1200   p = pParse->pNewTable;
1201   if( p==0 || NEVER(p->nCol<1) ) return;
1202   pCol = &p->aCol[p->nCol-1];
1203   assert( pCol->zType==0 || CORRUPT_DB );
1204   sqlite3DbFree(pParse->db, pCol->zType);
1205   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1206   pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
1207 }
1208 
1209 /*
1210 ** The expression is the default value for the most recently added column
1211 ** of the table currently under construction.
1212 **
1213 ** Default value expressions must be constant.  Raise an exception if this
1214 ** is not the case.
1215 **
1216 ** This routine is called by the parser while in the middle of
1217 ** parsing a CREATE TABLE statement.
1218 */
1219 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1220   Table *p;
1221   Column *pCol;
1222   sqlite3 *db = pParse->db;
1223   p = pParse->pNewTable;
1224   if( p!=0 ){
1225     pCol = &(p->aCol[p->nCol-1]);
1226     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1227       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1228           pCol->zName);
1229     }else{
1230       /* A copy of pExpr is used instead of the original, as pExpr contains
1231       ** tokens that point to volatile memory. The 'span' of the expression
1232       ** is required by pragma table_info.
1233       */
1234       sqlite3ExprDelete(db, pCol->pDflt);
1235       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1236       sqlite3DbFree(db, pCol->zDflt);
1237       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1238                                      (int)(pSpan->zEnd - pSpan->zStart));
1239     }
1240   }
1241   sqlite3ExprDelete(db, pSpan->pExpr);
1242 }
1243 
1244 /*
1245 ** Backwards Compatibility Hack:
1246 **
1247 ** Historical versions of SQLite accepted strings as column names in
1248 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1249 **
1250 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1251 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1252 **
1253 ** This is goofy.  But to preserve backwards compatibility we continue to
1254 ** accept it.  This routine does the necessary conversion.  It converts
1255 ** the expression given in its argument from a TK_STRING into a TK_ID
1256 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1257 ** If the epxression is anything other than TK_STRING, the expression is
1258 ** unchanged.
1259 */
1260 static void sqlite3StringToId(Expr *p){
1261   if( p->op==TK_STRING ){
1262     p->op = TK_ID;
1263   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1264     p->pLeft->op = TK_ID;
1265   }
1266 }
1267 
1268 /*
1269 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1270 ** of columns that form the primary key.  If pList is NULL, then the
1271 ** most recently added column of the table is the primary key.
1272 **
1273 ** A table can have at most one primary key.  If the table already has
1274 ** a primary key (and this is the second primary key) then create an
1275 ** error.
1276 **
1277 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1278 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1279 ** field of the table under construction to be the index of the
1280 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1281 ** no INTEGER PRIMARY KEY.
1282 **
1283 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1284 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1285 */
1286 void sqlite3AddPrimaryKey(
1287   Parse *pParse,    /* Parsing context */
1288   ExprList *pList,  /* List of field names to be indexed */
1289   int onError,      /* What to do with a uniqueness conflict */
1290   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1291   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1292 ){
1293   Table *pTab = pParse->pNewTable;
1294   char *zType = 0;
1295   int iCol = -1, i;
1296   int nTerm;
1297   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1298   if( pTab->tabFlags & TF_HasPrimaryKey ){
1299     sqlite3ErrorMsg(pParse,
1300       "table \"%s\" has more than one primary key", pTab->zName);
1301     goto primary_key_exit;
1302   }
1303   pTab->tabFlags |= TF_HasPrimaryKey;
1304   if( pList==0 ){
1305     iCol = pTab->nCol - 1;
1306     pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1307     zType = pTab->aCol[iCol].zType;
1308     nTerm = 1;
1309   }else{
1310     nTerm = pList->nExpr;
1311     for(i=0; i<nTerm; i++){
1312       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1313       assert( pCExpr!=0 );
1314       sqlite3StringToId(pCExpr);
1315       if( pCExpr->op==TK_ID ){
1316         const char *zCName = pCExpr->u.zToken;
1317         for(iCol=0; iCol<pTab->nCol; iCol++){
1318           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1319             pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1320             zType = pTab->aCol[iCol].zType;
1321             break;
1322           }
1323         }
1324       }
1325     }
1326   }
1327   if( nTerm==1
1328    && zType && sqlite3StrICmp(zType, "INTEGER")==0
1329    && sortOrder!=SQLITE_SO_DESC
1330   ){
1331     pTab->iPKey = iCol;
1332     pTab->keyConf = (u8)onError;
1333     assert( autoInc==0 || autoInc==1 );
1334     pTab->tabFlags |= autoInc*TF_Autoincrement;
1335     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1336   }else if( autoInc ){
1337 #ifndef SQLITE_OMIT_AUTOINCREMENT
1338     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1339        "INTEGER PRIMARY KEY");
1340 #endif
1341   }else{
1342     Index *p;
1343     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1344                            0, sortOrder, 0);
1345     if( p ){
1346       p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1347     }
1348     pList = 0;
1349   }
1350 
1351 primary_key_exit:
1352   sqlite3ExprListDelete(pParse->db, pList);
1353   return;
1354 }
1355 
1356 /*
1357 ** Add a new CHECK constraint to the table currently under construction.
1358 */
1359 void sqlite3AddCheckConstraint(
1360   Parse *pParse,    /* Parsing context */
1361   Expr *pCheckExpr  /* The check expression */
1362 ){
1363 #ifndef SQLITE_OMIT_CHECK
1364   Table *pTab = pParse->pNewTable;
1365   sqlite3 *db = pParse->db;
1366   if( pTab && !IN_DECLARE_VTAB
1367    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1368   ){
1369     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1370     if( pParse->constraintName.n ){
1371       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1372     }
1373   }else
1374 #endif
1375   {
1376     sqlite3ExprDelete(pParse->db, pCheckExpr);
1377   }
1378 }
1379 
1380 /*
1381 ** Set the collation function of the most recently parsed table column
1382 ** to the CollSeq given.
1383 */
1384 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1385   Table *p;
1386   int i;
1387   char *zColl;              /* Dequoted name of collation sequence */
1388   sqlite3 *db;
1389 
1390   if( (p = pParse->pNewTable)==0 ) return;
1391   i = p->nCol-1;
1392   db = pParse->db;
1393   zColl = sqlite3NameFromToken(db, pToken);
1394   if( !zColl ) return;
1395 
1396   if( sqlite3LocateCollSeq(pParse, zColl) ){
1397     Index *pIdx;
1398     sqlite3DbFree(db, p->aCol[i].zColl);
1399     p->aCol[i].zColl = zColl;
1400 
1401     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1402     ** then an index may have been created on this column before the
1403     ** collation type was added. Correct this if it is the case.
1404     */
1405     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1406       assert( pIdx->nKeyCol==1 );
1407       if( pIdx->aiColumn[0]==i ){
1408         pIdx->azColl[0] = p->aCol[i].zColl;
1409       }
1410     }
1411   }else{
1412     sqlite3DbFree(db, zColl);
1413   }
1414 }
1415 
1416 /*
1417 ** This function returns the collation sequence for database native text
1418 ** encoding identified by the string zName, length nName.
1419 **
1420 ** If the requested collation sequence is not available, or not available
1421 ** in the database native encoding, the collation factory is invoked to
1422 ** request it. If the collation factory does not supply such a sequence,
1423 ** and the sequence is available in another text encoding, then that is
1424 ** returned instead.
1425 **
1426 ** If no versions of the requested collations sequence are available, or
1427 ** another error occurs, NULL is returned and an error message written into
1428 ** pParse.
1429 **
1430 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1431 ** invokes the collation factory if the named collation cannot be found
1432 ** and generates an error message.
1433 **
1434 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1435 */
1436 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1437   sqlite3 *db = pParse->db;
1438   u8 enc = ENC(db);
1439   u8 initbusy = db->init.busy;
1440   CollSeq *pColl;
1441 
1442   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1443   if( !initbusy && (!pColl || !pColl->xCmp) ){
1444     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1445   }
1446 
1447   return pColl;
1448 }
1449 
1450 
1451 /*
1452 ** Generate code that will increment the schema cookie.
1453 **
1454 ** The schema cookie is used to determine when the schema for the
1455 ** database changes.  After each schema change, the cookie value
1456 ** changes.  When a process first reads the schema it records the
1457 ** cookie.  Thereafter, whenever it goes to access the database,
1458 ** it checks the cookie to make sure the schema has not changed
1459 ** since it was last read.
1460 **
1461 ** This plan is not completely bullet-proof.  It is possible for
1462 ** the schema to change multiple times and for the cookie to be
1463 ** set back to prior value.  But schema changes are infrequent
1464 ** and the probability of hitting the same cookie value is only
1465 ** 1 chance in 2^32.  So we're safe enough.
1466 */
1467 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1468   sqlite3 *db = pParse->db;
1469   Vdbe *v = pParse->pVdbe;
1470   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1471   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1472                     db->aDb[iDb].pSchema->schema_cookie+1);
1473 }
1474 
1475 /*
1476 ** Measure the number of characters needed to output the given
1477 ** identifier.  The number returned includes any quotes used
1478 ** but does not include the null terminator.
1479 **
1480 ** The estimate is conservative.  It might be larger that what is
1481 ** really needed.
1482 */
1483 static int identLength(const char *z){
1484   int n;
1485   for(n=0; *z; n++, z++){
1486     if( *z=='"' ){ n++; }
1487   }
1488   return n + 2;
1489 }
1490 
1491 /*
1492 ** The first parameter is a pointer to an output buffer. The second
1493 ** parameter is a pointer to an integer that contains the offset at
1494 ** which to write into the output buffer. This function copies the
1495 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1496 ** to the specified offset in the buffer and updates *pIdx to refer
1497 ** to the first byte after the last byte written before returning.
1498 **
1499 ** If the string zSignedIdent consists entirely of alpha-numeric
1500 ** characters, does not begin with a digit and is not an SQL keyword,
1501 ** then it is copied to the output buffer exactly as it is. Otherwise,
1502 ** it is quoted using double-quotes.
1503 */
1504 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1505   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1506   int i, j, needQuote;
1507   i = *pIdx;
1508 
1509   for(j=0; zIdent[j]; j++){
1510     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1511   }
1512   needQuote = sqlite3Isdigit(zIdent[0])
1513             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1514             || zIdent[j]!=0
1515             || j==0;
1516 
1517   if( needQuote ) z[i++] = '"';
1518   for(j=0; zIdent[j]; j++){
1519     z[i++] = zIdent[j];
1520     if( zIdent[j]=='"' ) z[i++] = '"';
1521   }
1522   if( needQuote ) z[i++] = '"';
1523   z[i] = 0;
1524   *pIdx = i;
1525 }
1526 
1527 /*
1528 ** Generate a CREATE TABLE statement appropriate for the given
1529 ** table.  Memory to hold the text of the statement is obtained
1530 ** from sqliteMalloc() and must be freed by the calling function.
1531 */
1532 static char *createTableStmt(sqlite3 *db, Table *p){
1533   int i, k, n;
1534   char *zStmt;
1535   char *zSep, *zSep2, *zEnd;
1536   Column *pCol;
1537   n = 0;
1538   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1539     n += identLength(pCol->zName) + 5;
1540   }
1541   n += identLength(p->zName);
1542   if( n<50 ){
1543     zSep = "";
1544     zSep2 = ",";
1545     zEnd = ")";
1546   }else{
1547     zSep = "\n  ";
1548     zSep2 = ",\n  ";
1549     zEnd = "\n)";
1550   }
1551   n += 35 + 6*p->nCol;
1552   zStmt = sqlite3DbMallocRaw(0, n);
1553   if( zStmt==0 ){
1554     sqlite3OomFault(db);
1555     return 0;
1556   }
1557   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1558   k = sqlite3Strlen30(zStmt);
1559   identPut(zStmt, &k, p->zName);
1560   zStmt[k++] = '(';
1561   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1562     static const char * const azType[] = {
1563         /* SQLITE_AFF_BLOB    */ "",
1564         /* SQLITE_AFF_TEXT    */ " TEXT",
1565         /* SQLITE_AFF_NUMERIC */ " NUM",
1566         /* SQLITE_AFF_INTEGER */ " INT",
1567         /* SQLITE_AFF_REAL    */ " REAL"
1568     };
1569     int len;
1570     const char *zType;
1571 
1572     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1573     k += sqlite3Strlen30(&zStmt[k]);
1574     zSep = zSep2;
1575     identPut(zStmt, &k, pCol->zName);
1576     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1577     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1578     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1579     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1580     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1581     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1582     testcase( pCol->affinity==SQLITE_AFF_REAL );
1583 
1584     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1585     len = sqlite3Strlen30(zType);
1586     assert( pCol->affinity==SQLITE_AFF_BLOB
1587             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1588     memcpy(&zStmt[k], zType, len);
1589     k += len;
1590     assert( k<=n );
1591   }
1592   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1593   return zStmt;
1594 }
1595 
1596 /*
1597 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1598 ** on success and SQLITE_NOMEM on an OOM error.
1599 */
1600 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1601   char *zExtra;
1602   int nByte;
1603   if( pIdx->nColumn>=N ) return SQLITE_OK;
1604   assert( pIdx->isResized==0 );
1605   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1606   zExtra = sqlite3DbMallocZero(db, nByte);
1607   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1608   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1609   pIdx->azColl = (const char**)zExtra;
1610   zExtra += sizeof(char*)*N;
1611   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1612   pIdx->aiColumn = (i16*)zExtra;
1613   zExtra += sizeof(i16)*N;
1614   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1615   pIdx->aSortOrder = (u8*)zExtra;
1616   pIdx->nColumn = N;
1617   pIdx->isResized = 1;
1618   return SQLITE_OK;
1619 }
1620 
1621 /*
1622 ** Estimate the total row width for a table.
1623 */
1624 static void estimateTableWidth(Table *pTab){
1625   unsigned wTable = 0;
1626   const Column *pTabCol;
1627   int i;
1628   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1629     wTable += pTabCol->szEst;
1630   }
1631   if( pTab->iPKey<0 ) wTable++;
1632   pTab->szTabRow = sqlite3LogEst(wTable*4);
1633 }
1634 
1635 /*
1636 ** Estimate the average size of a row for an index.
1637 */
1638 static void estimateIndexWidth(Index *pIdx){
1639   unsigned wIndex = 0;
1640   int i;
1641   const Column *aCol = pIdx->pTable->aCol;
1642   for(i=0; i<pIdx->nColumn; i++){
1643     i16 x = pIdx->aiColumn[i];
1644     assert( x<pIdx->pTable->nCol );
1645     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1646   }
1647   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1648 }
1649 
1650 /* Return true if value x is found any of the first nCol entries of aiCol[]
1651 */
1652 static int hasColumn(const i16 *aiCol, int nCol, int x){
1653   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1654   return 0;
1655 }
1656 
1657 /*
1658 ** This routine runs at the end of parsing a CREATE TABLE statement that
1659 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1660 ** internal schema data structures and the generated VDBE code so that they
1661 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1662 ** Changes include:
1663 **
1664 **     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1665 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1666 **          data storage is a covering index btree.
1667 **     (2)  Bypass the creation of the sqlite_master table entry
1668 **          for the PRIMARY KEY as the primary key index is now
1669 **          identified by the sqlite_master table entry of the table itself.
1670 **     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
1671 **          schema to the rootpage from the main table.
1672 **     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1673 **     (5)  Add all table columns to the PRIMARY KEY Index object
1674 **          so that the PRIMARY KEY is a covering index.  The surplus
1675 **          columns are part of KeyInfo.nXField and are not used for
1676 **          sorting or lookup or uniqueness checks.
1677 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1678 **          indices with the PRIMARY KEY columns.
1679 */
1680 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1681   Index *pIdx;
1682   Index *pPk;
1683   int nPk;
1684   int i, j;
1685   sqlite3 *db = pParse->db;
1686   Vdbe *v = pParse->pVdbe;
1687 
1688   /* Convert the OP_CreateTable opcode that would normally create the
1689   ** root-page for the table into an OP_CreateIndex opcode.  The index
1690   ** created will become the PRIMARY KEY index.
1691   */
1692   if( pParse->addrCrTab ){
1693     assert( v );
1694     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1695   }
1696 
1697   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1698   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1699   */
1700   if( pTab->iPKey>=0 ){
1701     ExprList *pList;
1702     Token ipkToken;
1703     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1704     pList = sqlite3ExprListAppend(pParse, 0,
1705                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1706     if( pList==0 ) return;
1707     pList->a[0].sortOrder = pParse->iPkSortOrder;
1708     assert( pParse->pNewTable==pTab );
1709     pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
1710     if( pPk==0 ) return;
1711     pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1712     pTab->iPKey = -1;
1713   }else{
1714     pPk = sqlite3PrimaryKeyIndex(pTab);
1715 
1716     /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1717     ** table entry. This is only required if currently generating VDBE
1718     ** code for a CREATE TABLE (not when parsing one as part of reading
1719     ** a database schema).  */
1720     if( v ){
1721       assert( db->init.busy==0 );
1722       sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1723     }
1724 
1725     /*
1726     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1727     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1728     ** code assumes the PRIMARY KEY contains no repeated columns.
1729     */
1730     for(i=j=1; i<pPk->nKeyCol; i++){
1731       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1732         pPk->nColumn--;
1733       }else{
1734         pPk->aiColumn[j++] = pPk->aiColumn[i];
1735       }
1736     }
1737     pPk->nKeyCol = j;
1738   }
1739   pPk->isCovering = 1;
1740   assert( pPk!=0 );
1741   nPk = pPk->nKeyCol;
1742 
1743   /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
1744   ** do not enforce this for imposter tables.) */
1745   if( !db->init.imposterTable ){
1746     for(i=0; i<nPk; i++){
1747       pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort;
1748     }
1749     pPk->uniqNotNull = 1;
1750   }
1751 
1752   /* The root page of the PRIMARY KEY is the table root page */
1753   pPk->tnum = pTab->tnum;
1754 
1755   /* Update the in-memory representation of all UNIQUE indices by converting
1756   ** the final rowid column into one or more columns of the PRIMARY KEY.
1757   */
1758   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1759     int n;
1760     if( IsPrimaryKeyIndex(pIdx) ) continue;
1761     for(i=n=0; i<nPk; i++){
1762       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1763     }
1764     if( n==0 ){
1765       /* This index is a superset of the primary key */
1766       pIdx->nColumn = pIdx->nKeyCol;
1767       continue;
1768     }
1769     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1770     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1771       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1772         pIdx->aiColumn[j] = pPk->aiColumn[i];
1773         pIdx->azColl[j] = pPk->azColl[i];
1774         j++;
1775       }
1776     }
1777     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1778     assert( pIdx->nColumn>=j );
1779   }
1780 
1781   /* Add all table columns to the PRIMARY KEY index
1782   */
1783   if( nPk<pTab->nCol ){
1784     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1785     for(i=0, j=nPk; i<pTab->nCol; i++){
1786       if( !hasColumn(pPk->aiColumn, j, i) ){
1787         assert( j<pPk->nColumn );
1788         pPk->aiColumn[j] = i;
1789         pPk->azColl[j] = sqlite3StrBINARY;
1790         j++;
1791       }
1792     }
1793     assert( pPk->nColumn==j );
1794     assert( pTab->nCol==j );
1795   }else{
1796     pPk->nColumn = pTab->nCol;
1797   }
1798 }
1799 
1800 /*
1801 ** This routine is called to report the final ")" that terminates
1802 ** a CREATE TABLE statement.
1803 **
1804 ** The table structure that other action routines have been building
1805 ** is added to the internal hash tables, assuming no errors have
1806 ** occurred.
1807 **
1808 ** An entry for the table is made in the master table on disk, unless
1809 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1810 ** it means we are reading the sqlite_master table because we just
1811 ** connected to the database or because the sqlite_master table has
1812 ** recently changed, so the entry for this table already exists in
1813 ** the sqlite_master table.  We do not want to create it again.
1814 **
1815 ** If the pSelect argument is not NULL, it means that this routine
1816 ** was called to create a table generated from a
1817 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1818 ** the new table will match the result set of the SELECT.
1819 */
1820 void sqlite3EndTable(
1821   Parse *pParse,          /* Parse context */
1822   Token *pCons,           /* The ',' token after the last column defn. */
1823   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1824   u8 tabOpts,             /* Extra table options. Usually 0. */
1825   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1826 ){
1827   Table *p;                 /* The new table */
1828   sqlite3 *db = pParse->db; /* The database connection */
1829   int iDb;                  /* Database in which the table lives */
1830   Index *pIdx;              /* An implied index of the table */
1831 
1832   if( pEnd==0 && pSelect==0 ){
1833     return;
1834   }
1835   assert( !db->mallocFailed );
1836   p = pParse->pNewTable;
1837   if( p==0 ) return;
1838 
1839   assert( !db->init.busy || !pSelect );
1840 
1841   /* If the db->init.busy is 1 it means we are reading the SQL off the
1842   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1843   ** So do not write to the disk again.  Extract the root page number
1844   ** for the table from the db->init.newTnum field.  (The page number
1845   ** should have been put there by the sqliteOpenCb routine.)
1846   **
1847   ** If the root page number is 1, that means this is the sqlite_master
1848   ** table itself.  So mark it read-only.
1849   */
1850   if( db->init.busy ){
1851     p->tnum = db->init.newTnum;
1852     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1853   }
1854 
1855   /* Special processing for WITHOUT ROWID Tables */
1856   if( tabOpts & TF_WithoutRowid ){
1857     if( (p->tabFlags & TF_Autoincrement) ){
1858       sqlite3ErrorMsg(pParse,
1859           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1860       return;
1861     }
1862     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1863       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1864     }else{
1865       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1866       convertToWithoutRowidTable(pParse, p);
1867     }
1868   }
1869 
1870   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1871 
1872 #ifndef SQLITE_OMIT_CHECK
1873   /* Resolve names in all CHECK constraint expressions.
1874   */
1875   if( p->pCheck ){
1876     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1877   }
1878 #endif /* !defined(SQLITE_OMIT_CHECK) */
1879 
1880   /* Estimate the average row size for the table and for all implied indices */
1881   estimateTableWidth(p);
1882   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1883     estimateIndexWidth(pIdx);
1884   }
1885 
1886   /* If not initializing, then create a record for the new table
1887   ** in the SQLITE_MASTER table of the database.
1888   **
1889   ** If this is a TEMPORARY table, write the entry into the auxiliary
1890   ** file instead of into the main database file.
1891   */
1892   if( !db->init.busy ){
1893     int n;
1894     Vdbe *v;
1895     char *zType;    /* "view" or "table" */
1896     char *zType2;   /* "VIEW" or "TABLE" */
1897     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1898 
1899     v = sqlite3GetVdbe(pParse);
1900     if( NEVER(v==0) ) return;
1901 
1902     sqlite3VdbeAddOp1(v, OP_Close, 0);
1903 
1904     /*
1905     ** Initialize zType for the new view or table.
1906     */
1907     if( p->pSelect==0 ){
1908       /* A regular table */
1909       zType = "table";
1910       zType2 = "TABLE";
1911 #ifndef SQLITE_OMIT_VIEW
1912     }else{
1913       /* A view */
1914       zType = "view";
1915       zType2 = "VIEW";
1916 #endif
1917     }
1918 
1919     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1920     ** statement to populate the new table. The root-page number for the
1921     ** new table is in register pParse->regRoot.
1922     **
1923     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1924     ** suitable state to query for the column names and types to be used
1925     ** by the new table.
1926     **
1927     ** A shared-cache write-lock is not required to write to the new table,
1928     ** as a schema-lock must have already been obtained to create it. Since
1929     ** a schema-lock excludes all other database users, the write-lock would
1930     ** be redundant.
1931     */
1932     if( pSelect ){
1933       SelectDest dest;    /* Where the SELECT should store results */
1934       int regYield;       /* Register holding co-routine entry-point */
1935       int addrTop;        /* Top of the co-routine */
1936       int regRec;         /* A record to be insert into the new table */
1937       int regRowid;       /* Rowid of the next row to insert */
1938       int addrInsLoop;    /* Top of the loop for inserting rows */
1939       Table *pSelTab;     /* A table that describes the SELECT results */
1940 
1941       regYield = ++pParse->nMem;
1942       regRec = ++pParse->nMem;
1943       regRowid = ++pParse->nMem;
1944       assert(pParse->nTab==1);
1945       sqlite3MayAbort(pParse);
1946       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1947       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1948       pParse->nTab = 2;
1949       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1950       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1951       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1952       sqlite3Select(pParse, pSelect, &dest);
1953       sqlite3VdbeEndCoroutine(v, regYield);
1954       sqlite3VdbeJumpHere(v, addrTop - 1);
1955       if( pParse->nErr ) return;
1956       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1957       if( pSelTab==0 ) return;
1958       assert( p->aCol==0 );
1959       p->nCol = pSelTab->nCol;
1960       p->aCol = pSelTab->aCol;
1961       pSelTab->nCol = 0;
1962       pSelTab->aCol = 0;
1963       sqlite3DeleteTable(db, pSelTab);
1964       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1965       VdbeCoverage(v);
1966       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1967       sqlite3TableAffinity(v, p, 0);
1968       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1969       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1970       sqlite3VdbeGoto(v, addrInsLoop);
1971       sqlite3VdbeJumpHere(v, addrInsLoop);
1972       sqlite3VdbeAddOp1(v, OP_Close, 1);
1973     }
1974 
1975     /* Compute the complete text of the CREATE statement */
1976     if( pSelect ){
1977       zStmt = createTableStmt(db, p);
1978     }else{
1979       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1980       n = (int)(pEnd2->z - pParse->sNameToken.z);
1981       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1982       zStmt = sqlite3MPrintf(db,
1983           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1984       );
1985     }
1986 
1987     /* A slot for the record has already been allocated in the
1988     ** SQLITE_MASTER table.  We just need to update that slot with all
1989     ** the information we've collected.
1990     */
1991     sqlite3NestedParse(pParse,
1992       "UPDATE %Q.%s "
1993          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1994        "WHERE rowid=#%d",
1995       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1996       zType,
1997       p->zName,
1998       p->zName,
1999       pParse->regRoot,
2000       zStmt,
2001       pParse->regRowid
2002     );
2003     sqlite3DbFree(db, zStmt);
2004     sqlite3ChangeCookie(pParse, iDb);
2005 
2006 #ifndef SQLITE_OMIT_AUTOINCREMENT
2007     /* Check to see if we need to create an sqlite_sequence table for
2008     ** keeping track of autoincrement keys.
2009     */
2010     if( p->tabFlags & TF_Autoincrement ){
2011       Db *pDb = &db->aDb[iDb];
2012       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2013       if( pDb->pSchema->pSeqTab==0 ){
2014         sqlite3NestedParse(pParse,
2015           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2016           pDb->zName
2017         );
2018       }
2019     }
2020 #endif
2021 
2022     /* Reparse everything to update our internal data structures */
2023     sqlite3VdbeAddParseSchemaOp(v, iDb,
2024            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2025   }
2026 
2027 
2028   /* Add the table to the in-memory representation of the database.
2029   */
2030   if( db->init.busy ){
2031     Table *pOld;
2032     Schema *pSchema = p->pSchema;
2033     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2034     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2035     if( pOld ){
2036       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2037       sqlite3OomFault(db);
2038       return;
2039     }
2040     pParse->pNewTable = 0;
2041     db->flags |= SQLITE_InternChanges;
2042 
2043 #ifndef SQLITE_OMIT_ALTERTABLE
2044     if( !p->pSelect ){
2045       const char *zName = (const char *)pParse->sNameToken.z;
2046       int nName;
2047       assert( !pSelect && pCons && pEnd );
2048       if( pCons->z==0 ){
2049         pCons = pEnd;
2050       }
2051       nName = (int)((const char *)pCons->z - zName);
2052       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2053     }
2054 #endif
2055   }
2056 }
2057 
2058 #ifndef SQLITE_OMIT_VIEW
2059 /*
2060 ** The parser calls this routine in order to create a new VIEW
2061 */
2062 void sqlite3CreateView(
2063   Parse *pParse,     /* The parsing context */
2064   Token *pBegin,     /* The CREATE token that begins the statement */
2065   Token *pName1,     /* The token that holds the name of the view */
2066   Token *pName2,     /* The token that holds the name of the view */
2067   ExprList *pCNames, /* Optional list of view column names */
2068   Select *pSelect,   /* A SELECT statement that will become the new view */
2069   int isTemp,        /* TRUE for a TEMPORARY view */
2070   int noErr          /* Suppress error messages if VIEW already exists */
2071 ){
2072   Table *p;
2073   int n;
2074   const char *z;
2075   Token sEnd;
2076   DbFixer sFix;
2077   Token *pName = 0;
2078   int iDb;
2079   sqlite3 *db = pParse->db;
2080 
2081   if( pParse->nVar>0 ){
2082     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2083     goto create_view_fail;
2084   }
2085   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2086   p = pParse->pNewTable;
2087   if( p==0 || pParse->nErr ) goto create_view_fail;
2088   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2089   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2090   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2091   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2092 
2093   /* Make a copy of the entire SELECT statement that defines the view.
2094   ** This will force all the Expr.token.z values to be dynamically
2095   ** allocated rather than point to the input string - which means that
2096   ** they will persist after the current sqlite3_exec() call returns.
2097   */
2098   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2099   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2100   if( db->mallocFailed ) goto create_view_fail;
2101 
2102   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2103   ** the end.
2104   */
2105   sEnd = pParse->sLastToken;
2106   assert( sEnd.z[0]!=0 );
2107   if( sEnd.z[0]!=';' ){
2108     sEnd.z += sEnd.n;
2109   }
2110   sEnd.n = 0;
2111   n = (int)(sEnd.z - pBegin->z);
2112   assert( n>0 );
2113   z = pBegin->z;
2114   while( sqlite3Isspace(z[n-1]) ){ n--; }
2115   sEnd.z = &z[n-1];
2116   sEnd.n = 1;
2117 
2118   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2119   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2120 
2121 create_view_fail:
2122   sqlite3SelectDelete(db, pSelect);
2123   sqlite3ExprListDelete(db, pCNames);
2124   return;
2125 }
2126 #endif /* SQLITE_OMIT_VIEW */
2127 
2128 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2129 /*
2130 ** The Table structure pTable is really a VIEW.  Fill in the names of
2131 ** the columns of the view in the pTable structure.  Return the number
2132 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2133 */
2134 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2135   Table *pSelTab;   /* A fake table from which we get the result set */
2136   Select *pSel;     /* Copy of the SELECT that implements the view */
2137   int nErr = 0;     /* Number of errors encountered */
2138   int n;            /* Temporarily holds the number of cursors assigned */
2139   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2140   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2141 
2142   assert( pTable );
2143 
2144 #ifndef SQLITE_OMIT_VIRTUALTABLE
2145   if( sqlite3VtabCallConnect(pParse, pTable) ){
2146     return SQLITE_ERROR;
2147   }
2148   if( IsVirtual(pTable) ) return 0;
2149 #endif
2150 
2151 #ifndef SQLITE_OMIT_VIEW
2152   /* A positive nCol means the columns names for this view are
2153   ** already known.
2154   */
2155   if( pTable->nCol>0 ) return 0;
2156 
2157   /* A negative nCol is a special marker meaning that we are currently
2158   ** trying to compute the column names.  If we enter this routine with
2159   ** a negative nCol, it means two or more views form a loop, like this:
2160   **
2161   **     CREATE VIEW one AS SELECT * FROM two;
2162   **     CREATE VIEW two AS SELECT * FROM one;
2163   **
2164   ** Actually, the error above is now caught prior to reaching this point.
2165   ** But the following test is still important as it does come up
2166   ** in the following:
2167   **
2168   **     CREATE TABLE main.ex1(a);
2169   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2170   **     SELECT * FROM temp.ex1;
2171   */
2172   if( pTable->nCol<0 ){
2173     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2174     return 1;
2175   }
2176   assert( pTable->nCol>=0 );
2177 
2178   /* If we get this far, it means we need to compute the table names.
2179   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2180   ** "*" elements in the results set of the view and will assign cursors
2181   ** to the elements of the FROM clause.  But we do not want these changes
2182   ** to be permanent.  So the computation is done on a copy of the SELECT
2183   ** statement that defines the view.
2184   */
2185   assert( pTable->pSelect );
2186   if( pTable->pCheck ){
2187     db->lookaside.bDisable++;
2188     sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2189                                &pTable->nCol, &pTable->aCol);
2190     db->lookaside.bDisable--;
2191   }else{
2192     pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2193     if( pSel ){
2194       n = pParse->nTab;
2195       sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2196       pTable->nCol = -1;
2197       db->lookaside.bDisable++;
2198 #ifndef SQLITE_OMIT_AUTHORIZATION
2199       xAuth = db->xAuth;
2200       db->xAuth = 0;
2201       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2202       db->xAuth = xAuth;
2203 #else
2204       pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2205 #endif
2206       db->lookaside.bDisable--;
2207       pParse->nTab = n;
2208       if( pSelTab ){
2209         assert( pTable->aCol==0 );
2210         pTable->nCol = pSelTab->nCol;
2211         pTable->aCol = pSelTab->aCol;
2212         pSelTab->nCol = 0;
2213         pSelTab->aCol = 0;
2214         sqlite3DeleteTable(db, pSelTab);
2215         assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2216       }else{
2217         pTable->nCol = 0;
2218         nErr++;
2219       }
2220       sqlite3SelectDelete(db, pSel);
2221     } else {
2222       nErr++;
2223     }
2224   }
2225   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2226 #endif /* SQLITE_OMIT_VIEW */
2227   return nErr;
2228 }
2229 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2230 
2231 #ifndef SQLITE_OMIT_VIEW
2232 /*
2233 ** Clear the column names from every VIEW in database idx.
2234 */
2235 static void sqliteViewResetAll(sqlite3 *db, int idx){
2236   HashElem *i;
2237   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2238   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2239   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2240     Table *pTab = sqliteHashData(i);
2241     if( pTab->pSelect ){
2242       sqlite3DeleteColumnNames(db, pTab);
2243       pTab->aCol = 0;
2244       pTab->nCol = 0;
2245     }
2246   }
2247   DbClearProperty(db, idx, DB_UnresetViews);
2248 }
2249 #else
2250 # define sqliteViewResetAll(A,B)
2251 #endif /* SQLITE_OMIT_VIEW */
2252 
2253 /*
2254 ** This function is called by the VDBE to adjust the internal schema
2255 ** used by SQLite when the btree layer moves a table root page. The
2256 ** root-page of a table or index in database iDb has changed from iFrom
2257 ** to iTo.
2258 **
2259 ** Ticket #1728:  The symbol table might still contain information
2260 ** on tables and/or indices that are the process of being deleted.
2261 ** If you are unlucky, one of those deleted indices or tables might
2262 ** have the same rootpage number as the real table or index that is
2263 ** being moved.  So we cannot stop searching after the first match
2264 ** because the first match might be for one of the deleted indices
2265 ** or tables and not the table/index that is actually being moved.
2266 ** We must continue looping until all tables and indices with
2267 ** rootpage==iFrom have been converted to have a rootpage of iTo
2268 ** in order to be certain that we got the right one.
2269 */
2270 #ifndef SQLITE_OMIT_AUTOVACUUM
2271 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2272   HashElem *pElem;
2273   Hash *pHash;
2274   Db *pDb;
2275 
2276   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2277   pDb = &db->aDb[iDb];
2278   pHash = &pDb->pSchema->tblHash;
2279   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2280     Table *pTab = sqliteHashData(pElem);
2281     if( pTab->tnum==iFrom ){
2282       pTab->tnum = iTo;
2283     }
2284   }
2285   pHash = &pDb->pSchema->idxHash;
2286   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2287     Index *pIdx = sqliteHashData(pElem);
2288     if( pIdx->tnum==iFrom ){
2289       pIdx->tnum = iTo;
2290     }
2291   }
2292 }
2293 #endif
2294 
2295 /*
2296 ** Write code to erase the table with root-page iTable from database iDb.
2297 ** Also write code to modify the sqlite_master table and internal schema
2298 ** if a root-page of another table is moved by the btree-layer whilst
2299 ** erasing iTable (this can happen with an auto-vacuum database).
2300 */
2301 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2302   Vdbe *v = sqlite3GetVdbe(pParse);
2303   int r1 = sqlite3GetTempReg(pParse);
2304   assert( iTable>1 );
2305   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2306   sqlite3MayAbort(pParse);
2307 #ifndef SQLITE_OMIT_AUTOVACUUM
2308   /* OP_Destroy stores an in integer r1. If this integer
2309   ** is non-zero, then it is the root page number of a table moved to
2310   ** location iTable. The following code modifies the sqlite_master table to
2311   ** reflect this.
2312   **
2313   ** The "#NNN" in the SQL is a special constant that means whatever value
2314   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2315   ** token for additional information.
2316   */
2317   sqlite3NestedParse(pParse,
2318      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2319      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2320 #endif
2321   sqlite3ReleaseTempReg(pParse, r1);
2322 }
2323 
2324 /*
2325 ** Write VDBE code to erase table pTab and all associated indices on disk.
2326 ** Code to update the sqlite_master tables and internal schema definitions
2327 ** in case a root-page belonging to another table is moved by the btree layer
2328 ** is also added (this can happen with an auto-vacuum database).
2329 */
2330 static void destroyTable(Parse *pParse, Table *pTab){
2331 #ifdef SQLITE_OMIT_AUTOVACUUM
2332   Index *pIdx;
2333   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2334   destroyRootPage(pParse, pTab->tnum, iDb);
2335   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2336     destroyRootPage(pParse, pIdx->tnum, iDb);
2337   }
2338 #else
2339   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2340   ** is not defined), then it is important to call OP_Destroy on the
2341   ** table and index root-pages in order, starting with the numerically
2342   ** largest root-page number. This guarantees that none of the root-pages
2343   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2344   ** following were coded:
2345   **
2346   ** OP_Destroy 4 0
2347   ** ...
2348   ** OP_Destroy 5 0
2349   **
2350   ** and root page 5 happened to be the largest root-page number in the
2351   ** database, then root page 5 would be moved to page 4 by the
2352   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2353   ** a free-list page.
2354   */
2355   int iTab = pTab->tnum;
2356   int iDestroyed = 0;
2357 
2358   while( 1 ){
2359     Index *pIdx;
2360     int iLargest = 0;
2361 
2362     if( iDestroyed==0 || iTab<iDestroyed ){
2363       iLargest = iTab;
2364     }
2365     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2366       int iIdx = pIdx->tnum;
2367       assert( pIdx->pSchema==pTab->pSchema );
2368       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2369         iLargest = iIdx;
2370       }
2371     }
2372     if( iLargest==0 ){
2373       return;
2374     }else{
2375       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2376       assert( iDb>=0 && iDb<pParse->db->nDb );
2377       destroyRootPage(pParse, iLargest, iDb);
2378       iDestroyed = iLargest;
2379     }
2380   }
2381 #endif
2382 }
2383 
2384 /*
2385 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2386 ** after a DROP INDEX or DROP TABLE command.
2387 */
2388 static void sqlite3ClearStatTables(
2389   Parse *pParse,         /* The parsing context */
2390   int iDb,               /* The database number */
2391   const char *zType,     /* "idx" or "tbl" */
2392   const char *zName      /* Name of index or table */
2393 ){
2394   int i;
2395   const char *zDbName = pParse->db->aDb[iDb].zName;
2396   for(i=1; i<=4; i++){
2397     char zTab[24];
2398     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2399     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2400       sqlite3NestedParse(pParse,
2401         "DELETE FROM %Q.%s WHERE %s=%Q",
2402         zDbName, zTab, zType, zName
2403       );
2404     }
2405   }
2406 }
2407 
2408 /*
2409 ** Generate code to drop a table.
2410 */
2411 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2412   Vdbe *v;
2413   sqlite3 *db = pParse->db;
2414   Trigger *pTrigger;
2415   Db *pDb = &db->aDb[iDb];
2416 
2417   v = sqlite3GetVdbe(pParse);
2418   assert( v!=0 );
2419   sqlite3BeginWriteOperation(pParse, 1, iDb);
2420 
2421 #ifndef SQLITE_OMIT_VIRTUALTABLE
2422   if( IsVirtual(pTab) ){
2423     sqlite3VdbeAddOp0(v, OP_VBegin);
2424   }
2425 #endif
2426 
2427   /* Drop all triggers associated with the table being dropped. Code
2428   ** is generated to remove entries from sqlite_master and/or
2429   ** sqlite_temp_master if required.
2430   */
2431   pTrigger = sqlite3TriggerList(pParse, pTab);
2432   while( pTrigger ){
2433     assert( pTrigger->pSchema==pTab->pSchema ||
2434         pTrigger->pSchema==db->aDb[1].pSchema );
2435     sqlite3DropTriggerPtr(pParse, pTrigger);
2436     pTrigger = pTrigger->pNext;
2437   }
2438 
2439 #ifndef SQLITE_OMIT_AUTOINCREMENT
2440   /* Remove any entries of the sqlite_sequence table associated with
2441   ** the table being dropped. This is done before the table is dropped
2442   ** at the btree level, in case the sqlite_sequence table needs to
2443   ** move as a result of the drop (can happen in auto-vacuum mode).
2444   */
2445   if( pTab->tabFlags & TF_Autoincrement ){
2446     sqlite3NestedParse(pParse,
2447       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2448       pDb->zName, pTab->zName
2449     );
2450   }
2451 #endif
2452 
2453   /* Drop all SQLITE_MASTER table and index entries that refer to the
2454   ** table. The program name loops through the master table and deletes
2455   ** every row that refers to a table of the same name as the one being
2456   ** dropped. Triggers are handled separately because a trigger can be
2457   ** created in the temp database that refers to a table in another
2458   ** database.
2459   */
2460   sqlite3NestedParse(pParse,
2461       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2462       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2463   if( !isView && !IsVirtual(pTab) ){
2464     destroyTable(pParse, pTab);
2465   }
2466 
2467   /* Remove the table entry from SQLite's internal schema and modify
2468   ** the schema cookie.
2469   */
2470   if( IsVirtual(pTab) ){
2471     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2472   }
2473   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2474   sqlite3ChangeCookie(pParse, iDb);
2475   sqliteViewResetAll(db, iDb);
2476 }
2477 
2478 /*
2479 ** This routine is called to do the work of a DROP TABLE statement.
2480 ** pName is the name of the table to be dropped.
2481 */
2482 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2483   Table *pTab;
2484   Vdbe *v;
2485   sqlite3 *db = pParse->db;
2486   int iDb;
2487 
2488   if( db->mallocFailed ){
2489     goto exit_drop_table;
2490   }
2491   assert( pParse->nErr==0 );
2492   assert( pName->nSrc==1 );
2493   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2494   if( noErr ) db->suppressErr++;
2495   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2496   if( noErr ) db->suppressErr--;
2497 
2498   if( pTab==0 ){
2499     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2500     goto exit_drop_table;
2501   }
2502   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2503   assert( iDb>=0 && iDb<db->nDb );
2504 
2505   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2506   ** it is initialized.
2507   */
2508   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2509     goto exit_drop_table;
2510   }
2511 #ifndef SQLITE_OMIT_AUTHORIZATION
2512   {
2513     int code;
2514     const char *zTab = SCHEMA_TABLE(iDb);
2515     const char *zDb = db->aDb[iDb].zName;
2516     const char *zArg2 = 0;
2517     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2518       goto exit_drop_table;
2519     }
2520     if( isView ){
2521       if( !OMIT_TEMPDB && iDb==1 ){
2522         code = SQLITE_DROP_TEMP_VIEW;
2523       }else{
2524         code = SQLITE_DROP_VIEW;
2525       }
2526 #ifndef SQLITE_OMIT_VIRTUALTABLE
2527     }else if( IsVirtual(pTab) ){
2528       code = SQLITE_DROP_VTABLE;
2529       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2530 #endif
2531     }else{
2532       if( !OMIT_TEMPDB && iDb==1 ){
2533         code = SQLITE_DROP_TEMP_TABLE;
2534       }else{
2535         code = SQLITE_DROP_TABLE;
2536       }
2537     }
2538     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2539       goto exit_drop_table;
2540     }
2541     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2542       goto exit_drop_table;
2543     }
2544   }
2545 #endif
2546   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2547     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2548     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2549     goto exit_drop_table;
2550   }
2551 
2552 #ifndef SQLITE_OMIT_VIEW
2553   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2554   ** on a table.
2555   */
2556   if( isView && pTab->pSelect==0 ){
2557     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2558     goto exit_drop_table;
2559   }
2560   if( !isView && pTab->pSelect ){
2561     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2562     goto exit_drop_table;
2563   }
2564 #endif
2565 
2566   /* Generate code to remove the table from the master table
2567   ** on disk.
2568   */
2569   v = sqlite3GetVdbe(pParse);
2570   if( v ){
2571     sqlite3BeginWriteOperation(pParse, 1, iDb);
2572     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2573     sqlite3FkDropTable(pParse, pName, pTab);
2574     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2575   }
2576 
2577 exit_drop_table:
2578   sqlite3SrcListDelete(db, pName);
2579 }
2580 
2581 /*
2582 ** This routine is called to create a new foreign key on the table
2583 ** currently under construction.  pFromCol determines which columns
2584 ** in the current table point to the foreign key.  If pFromCol==0 then
2585 ** connect the key to the last column inserted.  pTo is the name of
2586 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2587 ** of tables in the parent pTo table.  flags contains all
2588 ** information about the conflict resolution algorithms specified
2589 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2590 **
2591 ** An FKey structure is created and added to the table currently
2592 ** under construction in the pParse->pNewTable field.
2593 **
2594 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2595 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2596 */
2597 void sqlite3CreateForeignKey(
2598   Parse *pParse,       /* Parsing context */
2599   ExprList *pFromCol,  /* Columns in this table that point to other table */
2600   Token *pTo,          /* Name of the other table */
2601   ExprList *pToCol,    /* Columns in the other table */
2602   int flags            /* Conflict resolution algorithms. */
2603 ){
2604   sqlite3 *db = pParse->db;
2605 #ifndef SQLITE_OMIT_FOREIGN_KEY
2606   FKey *pFKey = 0;
2607   FKey *pNextTo;
2608   Table *p = pParse->pNewTable;
2609   int nByte;
2610   int i;
2611   int nCol;
2612   char *z;
2613 
2614   assert( pTo!=0 );
2615   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2616   if( pFromCol==0 ){
2617     int iCol = p->nCol-1;
2618     if( NEVER(iCol<0) ) goto fk_end;
2619     if( pToCol && pToCol->nExpr!=1 ){
2620       sqlite3ErrorMsg(pParse, "foreign key on %s"
2621          " should reference only one column of table %T",
2622          p->aCol[iCol].zName, pTo);
2623       goto fk_end;
2624     }
2625     nCol = 1;
2626   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2627     sqlite3ErrorMsg(pParse,
2628         "number of columns in foreign key does not match the number of "
2629         "columns in the referenced table");
2630     goto fk_end;
2631   }else{
2632     nCol = pFromCol->nExpr;
2633   }
2634   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2635   if( pToCol ){
2636     for(i=0; i<pToCol->nExpr; i++){
2637       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2638     }
2639   }
2640   pFKey = sqlite3DbMallocZero(db, nByte );
2641   if( pFKey==0 ){
2642     goto fk_end;
2643   }
2644   pFKey->pFrom = p;
2645   pFKey->pNextFrom = p->pFKey;
2646   z = (char*)&pFKey->aCol[nCol];
2647   pFKey->zTo = z;
2648   memcpy(z, pTo->z, pTo->n);
2649   z[pTo->n] = 0;
2650   sqlite3Dequote(z);
2651   z += pTo->n+1;
2652   pFKey->nCol = nCol;
2653   if( pFromCol==0 ){
2654     pFKey->aCol[0].iFrom = p->nCol-1;
2655   }else{
2656     for(i=0; i<nCol; i++){
2657       int j;
2658       for(j=0; j<p->nCol; j++){
2659         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2660           pFKey->aCol[i].iFrom = j;
2661           break;
2662         }
2663       }
2664       if( j>=p->nCol ){
2665         sqlite3ErrorMsg(pParse,
2666           "unknown column \"%s\" in foreign key definition",
2667           pFromCol->a[i].zName);
2668         goto fk_end;
2669       }
2670     }
2671   }
2672   if( pToCol ){
2673     for(i=0; i<nCol; i++){
2674       int n = sqlite3Strlen30(pToCol->a[i].zName);
2675       pFKey->aCol[i].zCol = z;
2676       memcpy(z, pToCol->a[i].zName, n);
2677       z[n] = 0;
2678       z += n+1;
2679     }
2680   }
2681   pFKey->isDeferred = 0;
2682   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2683   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2684 
2685   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2686   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2687       pFKey->zTo, (void *)pFKey
2688   );
2689   if( pNextTo==pFKey ){
2690     sqlite3OomFault(db);
2691     goto fk_end;
2692   }
2693   if( pNextTo ){
2694     assert( pNextTo->pPrevTo==0 );
2695     pFKey->pNextTo = pNextTo;
2696     pNextTo->pPrevTo = pFKey;
2697   }
2698 
2699   /* Link the foreign key to the table as the last step.
2700   */
2701   p->pFKey = pFKey;
2702   pFKey = 0;
2703 
2704 fk_end:
2705   sqlite3DbFree(db, pFKey);
2706 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2707   sqlite3ExprListDelete(db, pFromCol);
2708   sqlite3ExprListDelete(db, pToCol);
2709 }
2710 
2711 /*
2712 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2713 ** clause is seen as part of a foreign key definition.  The isDeferred
2714 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2715 ** The behavior of the most recently created foreign key is adjusted
2716 ** accordingly.
2717 */
2718 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2719 #ifndef SQLITE_OMIT_FOREIGN_KEY
2720   Table *pTab;
2721   FKey *pFKey;
2722   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2723   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2724   pFKey->isDeferred = (u8)isDeferred;
2725 #endif
2726 }
2727 
2728 /*
2729 ** Generate code that will erase and refill index *pIdx.  This is
2730 ** used to initialize a newly created index or to recompute the
2731 ** content of an index in response to a REINDEX command.
2732 **
2733 ** if memRootPage is not negative, it means that the index is newly
2734 ** created.  The register specified by memRootPage contains the
2735 ** root page number of the index.  If memRootPage is negative, then
2736 ** the index already exists and must be cleared before being refilled and
2737 ** the root page number of the index is taken from pIndex->tnum.
2738 */
2739 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2740   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2741   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2742   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2743   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2744   int addr1;                     /* Address of top of loop */
2745   int addr2;                     /* Address to jump to for next iteration */
2746   int tnum;                      /* Root page of index */
2747   int iPartIdxLabel;             /* Jump to this label to skip a row */
2748   Vdbe *v;                       /* Generate code into this virtual machine */
2749   KeyInfo *pKey;                 /* KeyInfo for index */
2750   int regRecord;                 /* Register holding assembled index record */
2751   sqlite3 *db = pParse->db;      /* The database connection */
2752   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2753 
2754 #ifndef SQLITE_OMIT_AUTHORIZATION
2755   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2756       db->aDb[iDb].zName ) ){
2757     return;
2758   }
2759 #endif
2760 
2761   /* Require a write-lock on the table to perform this operation */
2762   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2763 
2764   v = sqlite3GetVdbe(pParse);
2765   if( v==0 ) return;
2766   if( memRootPage>=0 ){
2767     tnum = memRootPage;
2768   }else{
2769     tnum = pIndex->tnum;
2770   }
2771   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2772 
2773   /* Open the sorter cursor if we are to use one. */
2774   iSorter = pParse->nTab++;
2775   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2776                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2777 
2778   /* Open the table. Loop through all rows of the table, inserting index
2779   ** records into the sorter. */
2780   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2781   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2782   regRecord = sqlite3GetTempReg(pParse);
2783 
2784   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2785   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2786   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2787   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2788   sqlite3VdbeJumpHere(v, addr1);
2789   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2790   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2791                     (char *)pKey, P4_KEYINFO);
2792   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2793 
2794   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2795   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2796   if( IsUniqueIndex(pIndex) && pKey!=0 ){
2797     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2798     sqlite3VdbeGoto(v, j2);
2799     addr2 = sqlite3VdbeCurrentAddr(v);
2800     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2801                          pIndex->nKeyCol); VdbeCoverage(v);
2802     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2803   }else{
2804     addr2 = sqlite3VdbeCurrentAddr(v);
2805   }
2806   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2807   sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2808   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2809   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2810   sqlite3ReleaseTempReg(pParse, regRecord);
2811   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2812   sqlite3VdbeJumpHere(v, addr1);
2813 
2814   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2815   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2816   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2817 }
2818 
2819 /*
2820 ** Allocate heap space to hold an Index object with nCol columns.
2821 **
2822 ** Increase the allocation size to provide an extra nExtra bytes
2823 ** of 8-byte aligned space after the Index object and return a
2824 ** pointer to this extra space in *ppExtra.
2825 */
2826 Index *sqlite3AllocateIndexObject(
2827   sqlite3 *db,         /* Database connection */
2828   i16 nCol,            /* Total number of columns in the index */
2829   int nExtra,          /* Number of bytes of extra space to alloc */
2830   char **ppExtra       /* Pointer to the "extra" space */
2831 ){
2832   Index *p;            /* Allocated index object */
2833   int nByte;           /* Bytes of space for Index object + arrays */
2834 
2835   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2836           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2837           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2838                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2839                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2840   p = sqlite3DbMallocZero(db, nByte + nExtra);
2841   if( p ){
2842     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2843     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2844     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2845     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2846     p->aSortOrder = (u8*)pExtra;
2847     p->nColumn = nCol;
2848     p->nKeyCol = nCol - 1;
2849     *ppExtra = ((char*)p) + nByte;
2850   }
2851   return p;
2852 }
2853 
2854 /*
2855 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2856 ** and pTblList is the name of the table that is to be indexed.  Both will
2857 ** be NULL for a primary key or an index that is created to satisfy a
2858 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2859 ** as the table to be indexed.  pParse->pNewTable is a table that is
2860 ** currently being constructed by a CREATE TABLE statement.
2861 **
2862 ** pList is a list of columns to be indexed.  pList will be NULL if this
2863 ** is a primary key or unique-constraint on the most recent column added
2864 ** to the table currently under construction.
2865 **
2866 ** If the index is created successfully, return a pointer to the new Index
2867 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2868 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2869 */
2870 Index *sqlite3CreateIndex(
2871   Parse *pParse,     /* All information about this parse */
2872   Token *pName1,     /* First part of index name. May be NULL */
2873   Token *pName2,     /* Second part of index name. May be NULL */
2874   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2875   ExprList *pList,   /* A list of columns to be indexed */
2876   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2877   Token *pStart,     /* The CREATE token that begins this statement */
2878   Expr *pPIWhere,    /* WHERE clause for partial indices */
2879   int sortOrder,     /* Sort order of primary key when pList==NULL */
2880   int ifNotExist     /* Omit error if index already exists */
2881 ){
2882   Index *pRet = 0;     /* Pointer to return */
2883   Table *pTab = 0;     /* Table to be indexed */
2884   Index *pIndex = 0;   /* The index to be created */
2885   char *zName = 0;     /* Name of the index */
2886   int nName;           /* Number of characters in zName */
2887   int i, j;
2888   DbFixer sFix;        /* For assigning database names to pTable */
2889   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2890   sqlite3 *db = pParse->db;
2891   Db *pDb;             /* The specific table containing the indexed database */
2892   int iDb;             /* Index of the database that is being written */
2893   Token *pName = 0;    /* Unqualified name of the index to create */
2894   struct ExprList_item *pListItem; /* For looping over pList */
2895   int nExtra = 0;                  /* Space allocated for zExtra[] */
2896   int nExtraCol;                   /* Number of extra columns needed */
2897   char *zExtra = 0;                /* Extra space after the Index object */
2898   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2899 
2900   if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){
2901     goto exit_create_index;
2902   }
2903   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2904     goto exit_create_index;
2905   }
2906 
2907   /*
2908   ** Find the table that is to be indexed.  Return early if not found.
2909   */
2910   if( pTblName!=0 ){
2911 
2912     /* Use the two-part index name to determine the database
2913     ** to search for the table. 'Fix' the table name to this db
2914     ** before looking up the table.
2915     */
2916     assert( pName1 && pName2 );
2917     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2918     if( iDb<0 ) goto exit_create_index;
2919     assert( pName && pName->z );
2920 
2921 #ifndef SQLITE_OMIT_TEMPDB
2922     /* If the index name was unqualified, check if the table
2923     ** is a temp table. If so, set the database to 1. Do not do this
2924     ** if initialising a database schema.
2925     */
2926     if( !db->init.busy ){
2927       pTab = sqlite3SrcListLookup(pParse, pTblName);
2928       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2929         iDb = 1;
2930       }
2931     }
2932 #endif
2933 
2934     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2935     if( sqlite3FixSrcList(&sFix, pTblName) ){
2936       /* Because the parser constructs pTblName from a single identifier,
2937       ** sqlite3FixSrcList can never fail. */
2938       assert(0);
2939     }
2940     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2941     assert( db->mallocFailed==0 || pTab==0 );
2942     if( pTab==0 ) goto exit_create_index;
2943     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2944       sqlite3ErrorMsg(pParse,
2945            "cannot create a TEMP index on non-TEMP table \"%s\"",
2946            pTab->zName);
2947       goto exit_create_index;
2948     }
2949     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2950   }else{
2951     assert( pName==0 );
2952     assert( pStart==0 );
2953     pTab = pParse->pNewTable;
2954     if( !pTab ) goto exit_create_index;
2955     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2956   }
2957   pDb = &db->aDb[iDb];
2958 
2959   assert( pTab!=0 );
2960   assert( pParse->nErr==0 );
2961   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2962        && db->init.busy==0
2963 #if SQLITE_USER_AUTHENTICATION
2964        && sqlite3UserAuthTable(pTab->zName)==0
2965 #endif
2966        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2967     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2968     goto exit_create_index;
2969   }
2970 #ifndef SQLITE_OMIT_VIEW
2971   if( pTab->pSelect ){
2972     sqlite3ErrorMsg(pParse, "views may not be indexed");
2973     goto exit_create_index;
2974   }
2975 #endif
2976 #ifndef SQLITE_OMIT_VIRTUALTABLE
2977   if( IsVirtual(pTab) ){
2978     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2979     goto exit_create_index;
2980   }
2981 #endif
2982 
2983   /*
2984   ** Find the name of the index.  Make sure there is not already another
2985   ** index or table with the same name.
2986   **
2987   ** Exception:  If we are reading the names of permanent indices from the
2988   ** sqlite_master table (because some other process changed the schema) and
2989   ** one of the index names collides with the name of a temporary table or
2990   ** index, then we will continue to process this index.
2991   **
2992   ** If pName==0 it means that we are
2993   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2994   ** own name.
2995   */
2996   if( pName ){
2997     zName = sqlite3NameFromToken(db, pName);
2998     if( zName==0 ) goto exit_create_index;
2999     assert( pName->z!=0 );
3000     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3001       goto exit_create_index;
3002     }
3003     if( !db->init.busy ){
3004       if( sqlite3FindTable(db, zName, 0)!=0 ){
3005         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3006         goto exit_create_index;
3007       }
3008     }
3009     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
3010       if( !ifNotExist ){
3011         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3012       }else{
3013         assert( !db->init.busy );
3014         sqlite3CodeVerifySchema(pParse, iDb);
3015       }
3016       goto exit_create_index;
3017     }
3018   }else{
3019     int n;
3020     Index *pLoop;
3021     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3022     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3023     if( zName==0 ){
3024       goto exit_create_index;
3025     }
3026   }
3027 
3028   /* Check for authorization to create an index.
3029   */
3030 #ifndef SQLITE_OMIT_AUTHORIZATION
3031   {
3032     const char *zDb = pDb->zName;
3033     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3034       goto exit_create_index;
3035     }
3036     i = SQLITE_CREATE_INDEX;
3037     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3038     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3039       goto exit_create_index;
3040     }
3041   }
3042 #endif
3043 
3044   /* If pList==0, it means this routine was called to make a primary
3045   ** key out of the last column added to the table under construction.
3046   ** So create a fake list to simulate this.
3047   */
3048   if( pList==0 ){
3049     Token prevCol;
3050     sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3051     pList = sqlite3ExprListAppend(pParse, 0,
3052               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3053     if( pList==0 ) goto exit_create_index;
3054     assert( pList->nExpr==1 );
3055     sqlite3ExprListSetSortOrder(pList, sortOrder);
3056   }else{
3057     sqlite3ExprListCheckLength(pParse, pList, "index");
3058   }
3059 
3060   /* Figure out how many bytes of space are required to store explicitly
3061   ** specified collation sequence names.
3062   */
3063   for(i=0; i<pList->nExpr; i++){
3064     Expr *pExpr = pList->a[i].pExpr;
3065     assert( pExpr!=0 );
3066     if( pExpr->op==TK_COLLATE ){
3067       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3068     }
3069   }
3070 
3071   /*
3072   ** Allocate the index structure.
3073   */
3074   nName = sqlite3Strlen30(zName);
3075   nExtraCol = pPk ? pPk->nKeyCol : 1;
3076   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3077                                       nName + nExtra + 1, &zExtra);
3078   if( db->mallocFailed ){
3079     goto exit_create_index;
3080   }
3081   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3082   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3083   pIndex->zName = zExtra;
3084   zExtra += nName + 1;
3085   memcpy(pIndex->zName, zName, nName+1);
3086   pIndex->pTable = pTab;
3087   pIndex->onError = (u8)onError;
3088   pIndex->uniqNotNull = onError!=OE_None;
3089   pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
3090   pIndex->pSchema = db->aDb[iDb].pSchema;
3091   pIndex->nKeyCol = pList->nExpr;
3092   if( pPIWhere ){
3093     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3094     pIndex->pPartIdxWhere = pPIWhere;
3095     pPIWhere = 0;
3096   }
3097   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3098 
3099   /* Check to see if we should honor DESC requests on index columns
3100   */
3101   if( pDb->pSchema->file_format>=4 ){
3102     sortOrderMask = -1;   /* Honor DESC */
3103   }else{
3104     sortOrderMask = 0;    /* Ignore DESC */
3105   }
3106 
3107   /* Analyze the list of expressions that form the terms of the index and
3108   ** report any errors.  In the common case where the expression is exactly
3109   ** a table column, store that column in aiColumn[].  For general expressions,
3110   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3111   **
3112   ** TODO: Issue a warning if two or more columns of the index are identical.
3113   ** TODO: Issue a warning if the table primary key is used as part of the
3114   ** index key.
3115   */
3116   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3117     Expr *pCExpr;                  /* The i-th index expression */
3118     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3119     const char *zColl;             /* Collation sequence name */
3120 
3121     sqlite3StringToId(pListItem->pExpr);
3122     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3123     if( pParse->nErr ) goto exit_create_index;
3124     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3125     if( pCExpr->op!=TK_COLUMN ){
3126       if( pTab==pParse->pNewTable ){
3127         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3128                                 "UNIQUE constraints");
3129         goto exit_create_index;
3130       }
3131       if( pIndex->aColExpr==0 ){
3132         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3133         pIndex->aColExpr = pCopy;
3134         if( !db->mallocFailed ){
3135           assert( pCopy!=0 );
3136           pListItem = &pCopy->a[i];
3137         }
3138       }
3139       j = XN_EXPR;
3140       pIndex->aiColumn[i] = XN_EXPR;
3141       pIndex->uniqNotNull = 0;
3142     }else{
3143       j = pCExpr->iColumn;
3144       assert( j<=0x7fff );
3145       if( j<0 ){
3146         j = pTab->iPKey;
3147       }else if( pTab->aCol[j].notNull==0 ){
3148         pIndex->uniqNotNull = 0;
3149       }
3150       pIndex->aiColumn[i] = (i16)j;
3151     }
3152     zColl = 0;
3153     if( pListItem->pExpr->op==TK_COLLATE ){
3154       int nColl;
3155       zColl = pListItem->pExpr->u.zToken;
3156       nColl = sqlite3Strlen30(zColl) + 1;
3157       assert( nExtra>=nColl );
3158       memcpy(zExtra, zColl, nColl);
3159       zColl = zExtra;
3160       zExtra += nColl;
3161       nExtra -= nColl;
3162     }else if( j>=0 ){
3163       zColl = pTab->aCol[j].zColl;
3164     }
3165     if( !zColl ) zColl = sqlite3StrBINARY;
3166     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3167       goto exit_create_index;
3168     }
3169     pIndex->azColl[i] = zColl;
3170     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3171     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3172   }
3173 
3174   /* Append the table key to the end of the index.  For WITHOUT ROWID
3175   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3176   ** normal tables (when pPk==0) this will be the rowid.
3177   */
3178   if( pPk ){
3179     for(j=0; j<pPk->nKeyCol; j++){
3180       int x = pPk->aiColumn[j];
3181       assert( x>=0 );
3182       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3183         pIndex->nColumn--;
3184       }else{
3185         pIndex->aiColumn[i] = x;
3186         pIndex->azColl[i] = pPk->azColl[j];
3187         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3188         i++;
3189       }
3190     }
3191     assert( i==pIndex->nColumn );
3192   }else{
3193     pIndex->aiColumn[i] = XN_ROWID;
3194     pIndex->azColl[i] = sqlite3StrBINARY;
3195   }
3196   sqlite3DefaultRowEst(pIndex);
3197   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3198 
3199   if( pTab==pParse->pNewTable ){
3200     /* This routine has been called to create an automatic index as a
3201     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3202     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3203     ** i.e. one of:
3204     **
3205     ** CREATE TABLE t(x PRIMARY KEY, y);
3206     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3207     **
3208     ** Either way, check to see if the table already has such an index. If
3209     ** so, don't bother creating this one. This only applies to
3210     ** automatically created indices. Users can do as they wish with
3211     ** explicit indices.
3212     **
3213     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3214     ** (and thus suppressing the second one) even if they have different
3215     ** sort orders.
3216     **
3217     ** If there are different collating sequences or if the columns of
3218     ** the constraint occur in different orders, then the constraints are
3219     ** considered distinct and both result in separate indices.
3220     */
3221     Index *pIdx;
3222     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3223       int k;
3224       assert( IsUniqueIndex(pIdx) );
3225       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3226       assert( IsUniqueIndex(pIndex) );
3227 
3228       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3229       for(k=0; k<pIdx->nKeyCol; k++){
3230         const char *z1;
3231         const char *z2;
3232         assert( pIdx->aiColumn[k]>=0 );
3233         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3234         z1 = pIdx->azColl[k];
3235         z2 = pIndex->azColl[k];
3236         if( sqlite3StrICmp(z1, z2) ) break;
3237       }
3238       if( k==pIdx->nKeyCol ){
3239         if( pIdx->onError!=pIndex->onError ){
3240           /* This constraint creates the same index as a previous
3241           ** constraint specified somewhere in the CREATE TABLE statement.
3242           ** However the ON CONFLICT clauses are different. If both this
3243           ** constraint and the previous equivalent constraint have explicit
3244           ** ON CONFLICT clauses this is an error. Otherwise, use the
3245           ** explicitly specified behavior for the index.
3246           */
3247           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3248             sqlite3ErrorMsg(pParse,
3249                 "conflicting ON CONFLICT clauses specified", 0);
3250           }
3251           if( pIdx->onError==OE_Default ){
3252             pIdx->onError = pIndex->onError;
3253           }
3254         }
3255         pRet = pIdx;
3256         goto exit_create_index;
3257       }
3258     }
3259   }
3260 
3261   /* Link the new Index structure to its table and to the other
3262   ** in-memory database structures.
3263   */
3264   assert( pParse->nErr==0 );
3265   if( db->init.busy ){
3266     Index *p;
3267     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3268     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3269                           pIndex->zName, pIndex);
3270     if( p ){
3271       assert( p==pIndex );  /* Malloc must have failed */
3272       sqlite3OomFault(db);
3273       goto exit_create_index;
3274     }
3275     db->flags |= SQLITE_InternChanges;
3276     if( pTblName!=0 ){
3277       pIndex->tnum = db->init.newTnum;
3278     }
3279   }
3280 
3281   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3282   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3283   ** emit code to allocate the index rootpage on disk and make an entry for
3284   ** the index in the sqlite_master table and populate the index with
3285   ** content.  But, do not do this if we are simply reading the sqlite_master
3286   ** table to parse the schema, or if this index is the PRIMARY KEY index
3287   ** of a WITHOUT ROWID table.
3288   **
3289   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3290   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3291   ** has just been created, it contains no data and the index initialization
3292   ** step can be skipped.
3293   */
3294   else if( HasRowid(pTab) || pTblName!=0 ){
3295     Vdbe *v;
3296     char *zStmt;
3297     int iMem = ++pParse->nMem;
3298 
3299     v = sqlite3GetVdbe(pParse);
3300     if( v==0 ) goto exit_create_index;
3301 
3302     sqlite3BeginWriteOperation(pParse, 1, iDb);
3303 
3304     /* Create the rootpage for the index using CreateIndex. But before
3305     ** doing so, code a Noop instruction and store its address in
3306     ** Index.tnum. This is required in case this index is actually a
3307     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3308     ** that case the convertToWithoutRowidTable() routine will replace
3309     ** the Noop with a Goto to jump over the VDBE code generated below. */
3310     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3311     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3312 
3313     /* Gather the complete text of the CREATE INDEX statement into
3314     ** the zStmt variable
3315     */
3316     if( pStart ){
3317       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3318       if( pName->z[n-1]==';' ) n--;
3319       /* A named index with an explicit CREATE INDEX statement */
3320       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3321         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3322     }else{
3323       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3324       /* zStmt = sqlite3MPrintf(""); */
3325       zStmt = 0;
3326     }
3327 
3328     /* Add an entry in sqlite_master for this index
3329     */
3330     sqlite3NestedParse(pParse,
3331         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3332         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
3333         pIndex->zName,
3334         pTab->zName,
3335         iMem,
3336         zStmt
3337     );
3338     sqlite3DbFree(db, zStmt);
3339 
3340     /* Fill the index with data and reparse the schema. Code an OP_Expire
3341     ** to invalidate all pre-compiled statements.
3342     */
3343     if( pTblName ){
3344       sqlite3RefillIndex(pParse, pIndex, iMem);
3345       sqlite3ChangeCookie(pParse, iDb);
3346       sqlite3VdbeAddParseSchemaOp(v, iDb,
3347          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3348       sqlite3VdbeAddOp1(v, OP_Expire, 0);
3349     }
3350 
3351     sqlite3VdbeJumpHere(v, pIndex->tnum);
3352   }
3353 
3354   /* When adding an index to the list of indices for a table, make
3355   ** sure all indices labeled OE_Replace come after all those labeled
3356   ** OE_Ignore.  This is necessary for the correct constraint check
3357   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3358   ** UPDATE and INSERT statements.
3359   */
3360   if( db->init.busy || pTblName==0 ){
3361     if( onError!=OE_Replace || pTab->pIndex==0
3362          || pTab->pIndex->onError==OE_Replace){
3363       pIndex->pNext = pTab->pIndex;
3364       pTab->pIndex = pIndex;
3365     }else{
3366       Index *pOther = pTab->pIndex;
3367       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3368         pOther = pOther->pNext;
3369       }
3370       pIndex->pNext = pOther->pNext;
3371       pOther->pNext = pIndex;
3372     }
3373     pRet = pIndex;
3374     pIndex = 0;
3375   }
3376 
3377   /* Clean up before exiting */
3378 exit_create_index:
3379   if( pIndex ) freeIndex(db, pIndex);
3380   sqlite3ExprDelete(db, pPIWhere);
3381   sqlite3ExprListDelete(db, pList);
3382   sqlite3SrcListDelete(db, pTblName);
3383   sqlite3DbFree(db, zName);
3384   return pRet;
3385 }
3386 
3387 /*
3388 ** Fill the Index.aiRowEst[] array with default information - information
3389 ** to be used when we have not run the ANALYZE command.
3390 **
3391 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3392 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3393 ** number of rows in the table that match any particular value of the
3394 ** first column of the index.  aiRowEst[2] is an estimate of the number
3395 ** of rows that match any particular combination of the first 2 columns
3396 ** of the index.  And so forth.  It must always be the case that
3397 *
3398 **           aiRowEst[N]<=aiRowEst[N-1]
3399 **           aiRowEst[N]>=1
3400 **
3401 ** Apart from that, we have little to go on besides intuition as to
3402 ** how aiRowEst[] should be initialized.  The numbers generated here
3403 ** are based on typical values found in actual indices.
3404 */
3405 void sqlite3DefaultRowEst(Index *pIdx){
3406   /*                10,  9,  8,  7,  6 */
3407   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3408   LogEst *a = pIdx->aiRowLogEst;
3409   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3410   int i;
3411 
3412   /* Set the first entry (number of rows in the index) to the estimated
3413   ** number of rows in the table. Or 10, if the estimated number of rows
3414   ** in the table is less than that.  */
3415   a[0] = pIdx->pTable->nRowLogEst;
3416   if( a[0]<33 ) a[0] = 33;        assert( 33==sqlite3LogEst(10) );
3417 
3418   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3419   ** 6 and each subsequent value (if any) is 5.  */
3420   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3421   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3422     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3423   }
3424 
3425   assert( 0==sqlite3LogEst(1) );
3426   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3427 }
3428 
3429 /*
3430 ** This routine will drop an existing named index.  This routine
3431 ** implements the DROP INDEX statement.
3432 */
3433 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3434   Index *pIndex;
3435   Vdbe *v;
3436   sqlite3 *db = pParse->db;
3437   int iDb;
3438 
3439   assert( pParse->nErr==0 );   /* Never called with prior errors */
3440   if( db->mallocFailed ){
3441     goto exit_drop_index;
3442   }
3443   assert( pName->nSrc==1 );
3444   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3445     goto exit_drop_index;
3446   }
3447   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3448   if( pIndex==0 ){
3449     if( !ifExists ){
3450       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3451     }else{
3452       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3453     }
3454     pParse->checkSchema = 1;
3455     goto exit_drop_index;
3456   }
3457   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3458     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3459       "or PRIMARY KEY constraint cannot be dropped", 0);
3460     goto exit_drop_index;
3461   }
3462   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3463 #ifndef SQLITE_OMIT_AUTHORIZATION
3464   {
3465     int code = SQLITE_DROP_INDEX;
3466     Table *pTab = pIndex->pTable;
3467     const char *zDb = db->aDb[iDb].zName;
3468     const char *zTab = SCHEMA_TABLE(iDb);
3469     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3470       goto exit_drop_index;
3471     }
3472     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3473     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3474       goto exit_drop_index;
3475     }
3476   }
3477 #endif
3478 
3479   /* Generate code to remove the index and from the master table */
3480   v = sqlite3GetVdbe(pParse);
3481   if( v ){
3482     sqlite3BeginWriteOperation(pParse, 1, iDb);
3483     sqlite3NestedParse(pParse,
3484        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3485        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3486     );
3487     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3488     sqlite3ChangeCookie(pParse, iDb);
3489     destroyRootPage(pParse, pIndex->tnum, iDb);
3490     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3491   }
3492 
3493 exit_drop_index:
3494   sqlite3SrcListDelete(db, pName);
3495 }
3496 
3497 /*
3498 ** pArray is a pointer to an array of objects. Each object in the
3499 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3500 ** to extend the array so that there is space for a new object at the end.
3501 **
3502 ** When this function is called, *pnEntry contains the current size of
3503 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3504 ** in total).
3505 **
3506 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3507 ** space allocated for the new object is zeroed, *pnEntry updated to
3508 ** reflect the new size of the array and a pointer to the new allocation
3509 ** returned. *pIdx is set to the index of the new array entry in this case.
3510 **
3511 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3512 ** unchanged and a copy of pArray returned.
3513 */
3514 void *sqlite3ArrayAllocate(
3515   sqlite3 *db,      /* Connection to notify of malloc failures */
3516   void *pArray,     /* Array of objects.  Might be reallocated */
3517   int szEntry,      /* Size of each object in the array */
3518   int *pnEntry,     /* Number of objects currently in use */
3519   int *pIdx         /* Write the index of a new slot here */
3520 ){
3521   char *z;
3522   int n = *pnEntry;
3523   if( (n & (n-1))==0 ){
3524     int sz = (n==0) ? 1 : 2*n;
3525     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3526     if( pNew==0 ){
3527       *pIdx = -1;
3528       return pArray;
3529     }
3530     pArray = pNew;
3531   }
3532   z = (char*)pArray;
3533   memset(&z[n * szEntry], 0, szEntry);
3534   *pIdx = n;
3535   ++*pnEntry;
3536   return pArray;
3537 }
3538 
3539 /*
3540 ** Append a new element to the given IdList.  Create a new IdList if
3541 ** need be.
3542 **
3543 ** A new IdList is returned, or NULL if malloc() fails.
3544 */
3545 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3546   int i;
3547   if( pList==0 ){
3548     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3549     if( pList==0 ) return 0;
3550   }
3551   pList->a = sqlite3ArrayAllocate(
3552       db,
3553       pList->a,
3554       sizeof(pList->a[0]),
3555       &pList->nId,
3556       &i
3557   );
3558   if( i<0 ){
3559     sqlite3IdListDelete(db, pList);
3560     return 0;
3561   }
3562   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3563   return pList;
3564 }
3565 
3566 /*
3567 ** Delete an IdList.
3568 */
3569 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3570   int i;
3571   if( pList==0 ) return;
3572   for(i=0; i<pList->nId; i++){
3573     sqlite3DbFree(db, pList->a[i].zName);
3574   }
3575   sqlite3DbFree(db, pList->a);
3576   sqlite3DbFree(db, pList);
3577 }
3578 
3579 /*
3580 ** Return the index in pList of the identifier named zId.  Return -1
3581 ** if not found.
3582 */
3583 int sqlite3IdListIndex(IdList *pList, const char *zName){
3584   int i;
3585   if( pList==0 ) return -1;
3586   for(i=0; i<pList->nId; i++){
3587     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3588   }
3589   return -1;
3590 }
3591 
3592 /*
3593 ** Expand the space allocated for the given SrcList object by
3594 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3595 ** New slots are zeroed.
3596 **
3597 ** For example, suppose a SrcList initially contains two entries: A,B.
3598 ** To append 3 new entries onto the end, do this:
3599 **
3600 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3601 **
3602 ** After the call above it would contain:  A, B, nil, nil, nil.
3603 ** If the iStart argument had been 1 instead of 2, then the result
3604 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3605 ** the iStart value would be 0.  The result then would
3606 ** be: nil, nil, nil, A, B.
3607 **
3608 ** If a memory allocation fails the SrcList is unchanged.  The
3609 ** db->mallocFailed flag will be set to true.
3610 */
3611 SrcList *sqlite3SrcListEnlarge(
3612   sqlite3 *db,       /* Database connection to notify of OOM errors */
3613   SrcList *pSrc,     /* The SrcList to be enlarged */
3614   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3615   int iStart         /* Index in pSrc->a[] of first new slot */
3616 ){
3617   int i;
3618 
3619   /* Sanity checking on calling parameters */
3620   assert( iStart>=0 );
3621   assert( nExtra>=1 );
3622   assert( pSrc!=0 );
3623   assert( iStart<=pSrc->nSrc );
3624 
3625   /* Allocate additional space if needed */
3626   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3627     SrcList *pNew;
3628     int nAlloc = pSrc->nSrc+nExtra;
3629     int nGot;
3630     pNew = sqlite3DbRealloc(db, pSrc,
3631                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3632     if( pNew==0 ){
3633       assert( db->mallocFailed );
3634       return pSrc;
3635     }
3636     pSrc = pNew;
3637     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3638     pSrc->nAlloc = nGot;
3639   }
3640 
3641   /* Move existing slots that come after the newly inserted slots
3642   ** out of the way */
3643   for(i=pSrc->nSrc-1; i>=iStart; i--){
3644     pSrc->a[i+nExtra] = pSrc->a[i];
3645   }
3646   pSrc->nSrc += nExtra;
3647 
3648   /* Zero the newly allocated slots */
3649   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3650   for(i=iStart; i<iStart+nExtra; i++){
3651     pSrc->a[i].iCursor = -1;
3652   }
3653 
3654   /* Return a pointer to the enlarged SrcList */
3655   return pSrc;
3656 }
3657 
3658 
3659 /*
3660 ** Append a new table name to the given SrcList.  Create a new SrcList if
3661 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3662 **
3663 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3664 ** SrcList might be the same as the SrcList that was input or it might be
3665 ** a new one.  If an OOM error does occurs, then the prior value of pList
3666 ** that is input to this routine is automatically freed.
3667 **
3668 ** If pDatabase is not null, it means that the table has an optional
3669 ** database name prefix.  Like this:  "database.table".  The pDatabase
3670 ** points to the table name and the pTable points to the database name.
3671 ** The SrcList.a[].zName field is filled with the table name which might
3672 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3673 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3674 ** or with NULL if no database is specified.
3675 **
3676 ** In other words, if call like this:
3677 **
3678 **         sqlite3SrcListAppend(D,A,B,0);
3679 **
3680 ** Then B is a table name and the database name is unspecified.  If called
3681 ** like this:
3682 **
3683 **         sqlite3SrcListAppend(D,A,B,C);
3684 **
3685 ** Then C is the table name and B is the database name.  If C is defined
3686 ** then so is B.  In other words, we never have a case where:
3687 **
3688 **         sqlite3SrcListAppend(D,A,0,C);
3689 **
3690 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3691 ** before being added to the SrcList.
3692 */
3693 SrcList *sqlite3SrcListAppend(
3694   sqlite3 *db,        /* Connection to notify of malloc failures */
3695   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3696   Token *pTable,      /* Table to append */
3697   Token *pDatabase    /* Database of the table */
3698 ){
3699   struct SrcList_item *pItem;
3700   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3701   assert( db!=0 );
3702   if( pList==0 ){
3703     pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3704     if( pList==0 ) return 0;
3705     pList->nAlloc = 1;
3706     pList->nSrc = 0;
3707   }
3708   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3709   if( db->mallocFailed ){
3710     sqlite3SrcListDelete(db, pList);
3711     return 0;
3712   }
3713   pItem = &pList->a[pList->nSrc-1];
3714   if( pDatabase && pDatabase->z==0 ){
3715     pDatabase = 0;
3716   }
3717   if( pDatabase ){
3718     Token *pTemp = pDatabase;
3719     pDatabase = pTable;
3720     pTable = pTemp;
3721   }
3722   pItem->zName = sqlite3NameFromToken(db, pTable);
3723   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3724   return pList;
3725 }
3726 
3727 /*
3728 ** Assign VdbeCursor index numbers to all tables in a SrcList
3729 */
3730 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3731   int i;
3732   struct SrcList_item *pItem;
3733   assert(pList || pParse->db->mallocFailed );
3734   if( pList ){
3735     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3736       if( pItem->iCursor>=0 ) break;
3737       pItem->iCursor = pParse->nTab++;
3738       if( pItem->pSelect ){
3739         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3740       }
3741     }
3742   }
3743 }
3744 
3745 /*
3746 ** Delete an entire SrcList including all its substructure.
3747 */
3748 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3749   int i;
3750   struct SrcList_item *pItem;
3751   if( pList==0 ) return;
3752   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3753     sqlite3DbFree(db, pItem->zDatabase);
3754     sqlite3DbFree(db, pItem->zName);
3755     sqlite3DbFree(db, pItem->zAlias);
3756     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3757     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3758     sqlite3DeleteTable(db, pItem->pTab);
3759     sqlite3SelectDelete(db, pItem->pSelect);
3760     sqlite3ExprDelete(db, pItem->pOn);
3761     sqlite3IdListDelete(db, pItem->pUsing);
3762   }
3763   sqlite3DbFree(db, pList);
3764 }
3765 
3766 /*
3767 ** This routine is called by the parser to add a new term to the
3768 ** end of a growing FROM clause.  The "p" parameter is the part of
3769 ** the FROM clause that has already been constructed.  "p" is NULL
3770 ** if this is the first term of the FROM clause.  pTable and pDatabase
3771 ** are the name of the table and database named in the FROM clause term.
3772 ** pDatabase is NULL if the database name qualifier is missing - the
3773 ** usual case.  If the term has an alias, then pAlias points to the
3774 ** alias token.  If the term is a subquery, then pSubquery is the
3775 ** SELECT statement that the subquery encodes.  The pTable and
3776 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3777 ** parameters are the content of the ON and USING clauses.
3778 **
3779 ** Return a new SrcList which encodes is the FROM with the new
3780 ** term added.
3781 */
3782 SrcList *sqlite3SrcListAppendFromTerm(
3783   Parse *pParse,          /* Parsing context */
3784   SrcList *p,             /* The left part of the FROM clause already seen */
3785   Token *pTable,          /* Name of the table to add to the FROM clause */
3786   Token *pDatabase,       /* Name of the database containing pTable */
3787   Token *pAlias,          /* The right-hand side of the AS subexpression */
3788   Select *pSubquery,      /* A subquery used in place of a table name */
3789   Expr *pOn,              /* The ON clause of a join */
3790   IdList *pUsing          /* The USING clause of a join */
3791 ){
3792   struct SrcList_item *pItem;
3793   sqlite3 *db = pParse->db;
3794   if( !p && (pOn || pUsing) ){
3795     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3796       (pOn ? "ON" : "USING")
3797     );
3798     goto append_from_error;
3799   }
3800   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3801   if( p==0 || NEVER(p->nSrc==0) ){
3802     goto append_from_error;
3803   }
3804   pItem = &p->a[p->nSrc-1];
3805   assert( pAlias!=0 );
3806   if( pAlias->n ){
3807     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3808   }
3809   pItem->pSelect = pSubquery;
3810   pItem->pOn = pOn;
3811   pItem->pUsing = pUsing;
3812   return p;
3813 
3814  append_from_error:
3815   assert( p==0 );
3816   sqlite3ExprDelete(db, pOn);
3817   sqlite3IdListDelete(db, pUsing);
3818   sqlite3SelectDelete(db, pSubquery);
3819   return 0;
3820 }
3821 
3822 /*
3823 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3824 ** element of the source-list passed as the second argument.
3825 */
3826 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3827   assert( pIndexedBy!=0 );
3828   if( p && ALWAYS(p->nSrc>0) ){
3829     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3830     assert( pItem->fg.notIndexed==0 );
3831     assert( pItem->fg.isIndexedBy==0 );
3832     assert( pItem->fg.isTabFunc==0 );
3833     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3834       /* A "NOT INDEXED" clause was supplied. See parse.y
3835       ** construct "indexed_opt" for details. */
3836       pItem->fg.notIndexed = 1;
3837     }else{
3838       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3839       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3840     }
3841   }
3842 }
3843 
3844 /*
3845 ** Add the list of function arguments to the SrcList entry for a
3846 ** table-valued-function.
3847 */
3848 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3849   if( p ){
3850     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3851     assert( pItem->fg.notIndexed==0 );
3852     assert( pItem->fg.isIndexedBy==0 );
3853     assert( pItem->fg.isTabFunc==0 );
3854     pItem->u1.pFuncArg = pList;
3855     pItem->fg.isTabFunc = 1;
3856   }else{
3857     sqlite3ExprListDelete(pParse->db, pList);
3858   }
3859 }
3860 
3861 /*
3862 ** When building up a FROM clause in the parser, the join operator
3863 ** is initially attached to the left operand.  But the code generator
3864 ** expects the join operator to be on the right operand.  This routine
3865 ** Shifts all join operators from left to right for an entire FROM
3866 ** clause.
3867 **
3868 ** Example: Suppose the join is like this:
3869 **
3870 **           A natural cross join B
3871 **
3872 ** The operator is "natural cross join".  The A and B operands are stored
3873 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3874 ** operator with A.  This routine shifts that operator over to B.
3875 */
3876 void sqlite3SrcListShiftJoinType(SrcList *p){
3877   if( p ){
3878     int i;
3879     for(i=p->nSrc-1; i>0; i--){
3880       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3881     }
3882     p->a[0].fg.jointype = 0;
3883   }
3884 }
3885 
3886 /*
3887 ** Generate VDBE code for a BEGIN statement.
3888 */
3889 void sqlite3BeginTransaction(Parse *pParse, int type){
3890   sqlite3 *db;
3891   Vdbe *v;
3892   int i;
3893 
3894   assert( pParse!=0 );
3895   db = pParse->db;
3896   assert( db!=0 );
3897   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3898     return;
3899   }
3900   v = sqlite3GetVdbe(pParse);
3901   if( !v ) return;
3902   if( type!=TK_DEFERRED ){
3903     for(i=0; i<db->nDb; i++){
3904       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3905       sqlite3VdbeUsesBtree(v, i);
3906     }
3907   }
3908   sqlite3VdbeAddOp0(v, OP_AutoCommit);
3909 }
3910 
3911 /*
3912 ** Generate VDBE code for a COMMIT statement.
3913 */
3914 void sqlite3CommitTransaction(Parse *pParse){
3915   Vdbe *v;
3916 
3917   assert( pParse!=0 );
3918   assert( pParse->db!=0 );
3919   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3920     return;
3921   }
3922   v = sqlite3GetVdbe(pParse);
3923   if( v ){
3924     sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
3925   }
3926 }
3927 
3928 /*
3929 ** Generate VDBE code for a ROLLBACK statement.
3930 */
3931 void sqlite3RollbackTransaction(Parse *pParse){
3932   Vdbe *v;
3933 
3934   assert( pParse!=0 );
3935   assert( pParse->db!=0 );
3936   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3937     return;
3938   }
3939   v = sqlite3GetVdbe(pParse);
3940   if( v ){
3941     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3942   }
3943 }
3944 
3945 /*
3946 ** This function is called by the parser when it parses a command to create,
3947 ** release or rollback an SQL savepoint.
3948 */
3949 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3950   char *zName = sqlite3NameFromToken(pParse->db, pName);
3951   if( zName ){
3952     Vdbe *v = sqlite3GetVdbe(pParse);
3953 #ifndef SQLITE_OMIT_AUTHORIZATION
3954     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3955     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3956 #endif
3957     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3958       sqlite3DbFree(pParse->db, zName);
3959       return;
3960     }
3961     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3962   }
3963 }
3964 
3965 /*
3966 ** Make sure the TEMP database is open and available for use.  Return
3967 ** the number of errors.  Leave any error messages in the pParse structure.
3968 */
3969 int sqlite3OpenTempDatabase(Parse *pParse){
3970   sqlite3 *db = pParse->db;
3971   if( db->aDb[1].pBt==0 && !pParse->explain ){
3972     int rc;
3973     Btree *pBt;
3974     static const int flags =
3975           SQLITE_OPEN_READWRITE |
3976           SQLITE_OPEN_CREATE |
3977           SQLITE_OPEN_EXCLUSIVE |
3978           SQLITE_OPEN_DELETEONCLOSE |
3979           SQLITE_OPEN_TEMP_DB;
3980 
3981     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
3982     if( rc!=SQLITE_OK ){
3983       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3984         "file for storing temporary tables");
3985       pParse->rc = rc;
3986       return 1;
3987     }
3988     db->aDb[1].pBt = pBt;
3989     assert( db->aDb[1].pSchema );
3990     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3991       sqlite3OomFault(db);
3992       return 1;
3993     }
3994   }
3995   return 0;
3996 }
3997 
3998 /*
3999 ** Record the fact that the schema cookie will need to be verified
4000 ** for database iDb.  The code to actually verify the schema cookie
4001 ** will occur at the end of the top-level VDBE and will be generated
4002 ** later, by sqlite3FinishCoding().
4003 */
4004 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4005   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4006   sqlite3 *db = pToplevel->db;
4007 
4008   assert( iDb>=0 && iDb<db->nDb );
4009   assert( db->aDb[iDb].pBt!=0 || iDb==1 );
4010   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4011   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4012   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4013     DbMaskSet(pToplevel->cookieMask, iDb);
4014     pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
4015     if( !OMIT_TEMPDB && iDb==1 ){
4016       sqlite3OpenTempDatabase(pToplevel);
4017     }
4018   }
4019 }
4020 
4021 /*
4022 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4023 ** attached database. Otherwise, invoke it for the database named zDb only.
4024 */
4025 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4026   sqlite3 *db = pParse->db;
4027   int i;
4028   for(i=0; i<db->nDb; i++){
4029     Db *pDb = &db->aDb[i];
4030     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
4031       sqlite3CodeVerifySchema(pParse, i);
4032     }
4033   }
4034 }
4035 
4036 /*
4037 ** Generate VDBE code that prepares for doing an operation that
4038 ** might change the database.
4039 **
4040 ** This routine starts a new transaction if we are not already within
4041 ** a transaction.  If we are already within a transaction, then a checkpoint
4042 ** is set if the setStatement parameter is true.  A checkpoint should
4043 ** be set for operations that might fail (due to a constraint) part of
4044 ** the way through and which will need to undo some writes without having to
4045 ** rollback the whole transaction.  For operations where all constraints
4046 ** can be checked before any changes are made to the database, it is never
4047 ** necessary to undo a write and the checkpoint should not be set.
4048 */
4049 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4050   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4051   sqlite3CodeVerifySchema(pParse, iDb);
4052   DbMaskSet(pToplevel->writeMask, iDb);
4053   pToplevel->isMultiWrite |= setStatement;
4054 }
4055 
4056 /*
4057 ** Indicate that the statement currently under construction might write
4058 ** more than one entry (example: deleting one row then inserting another,
4059 ** inserting multiple rows in a table, or inserting a row and index entries.)
4060 ** If an abort occurs after some of these writes have completed, then it will
4061 ** be necessary to undo the completed writes.
4062 */
4063 void sqlite3MultiWrite(Parse *pParse){
4064   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4065   pToplevel->isMultiWrite = 1;
4066 }
4067 
4068 /*
4069 ** The code generator calls this routine if is discovers that it is
4070 ** possible to abort a statement prior to completion.  In order to
4071 ** perform this abort without corrupting the database, we need to make
4072 ** sure that the statement is protected by a statement transaction.
4073 **
4074 ** Technically, we only need to set the mayAbort flag if the
4075 ** isMultiWrite flag was previously set.  There is a time dependency
4076 ** such that the abort must occur after the multiwrite.  This makes
4077 ** some statements involving the REPLACE conflict resolution algorithm
4078 ** go a little faster.  But taking advantage of this time dependency
4079 ** makes it more difficult to prove that the code is correct (in
4080 ** particular, it prevents us from writing an effective
4081 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4082 ** to take the safe route and skip the optimization.
4083 */
4084 void sqlite3MayAbort(Parse *pParse){
4085   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4086   pToplevel->mayAbort = 1;
4087 }
4088 
4089 /*
4090 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4091 ** error. The onError parameter determines which (if any) of the statement
4092 ** and/or current transaction is rolled back.
4093 */
4094 void sqlite3HaltConstraint(
4095   Parse *pParse,    /* Parsing context */
4096   int errCode,      /* extended error code */
4097   int onError,      /* Constraint type */
4098   char *p4,         /* Error message */
4099   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4100   u8 p5Errmsg       /* P5_ErrMsg type */
4101 ){
4102   Vdbe *v = sqlite3GetVdbe(pParse);
4103   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4104   if( onError==OE_Abort ){
4105     sqlite3MayAbort(pParse);
4106   }
4107   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4108   sqlite3VdbeChangeP5(v, p5Errmsg);
4109 }
4110 
4111 /*
4112 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4113 */
4114 void sqlite3UniqueConstraint(
4115   Parse *pParse,    /* Parsing context */
4116   int onError,      /* Constraint type */
4117   Index *pIdx       /* The index that triggers the constraint */
4118 ){
4119   char *zErr;
4120   int j;
4121   StrAccum errMsg;
4122   Table *pTab = pIdx->pTable;
4123 
4124   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4125   if( pIdx->aColExpr ){
4126     sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4127   }else{
4128     for(j=0; j<pIdx->nKeyCol; j++){
4129       char *zCol;
4130       assert( pIdx->aiColumn[j]>=0 );
4131       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4132       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4133       sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
4134     }
4135   }
4136   zErr = sqlite3StrAccumFinish(&errMsg);
4137   sqlite3HaltConstraint(pParse,
4138     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4139                             : SQLITE_CONSTRAINT_UNIQUE,
4140     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4141 }
4142 
4143 
4144 /*
4145 ** Code an OP_Halt due to non-unique rowid.
4146 */
4147 void sqlite3RowidConstraint(
4148   Parse *pParse,    /* Parsing context */
4149   int onError,      /* Conflict resolution algorithm */
4150   Table *pTab       /* The table with the non-unique rowid */
4151 ){
4152   char *zMsg;
4153   int rc;
4154   if( pTab->iPKey>=0 ){
4155     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4156                           pTab->aCol[pTab->iPKey].zName);
4157     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4158   }else{
4159     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4160     rc = SQLITE_CONSTRAINT_ROWID;
4161   }
4162   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4163                         P5_ConstraintUnique);
4164 }
4165 
4166 /*
4167 ** Check to see if pIndex uses the collating sequence pColl.  Return
4168 ** true if it does and false if it does not.
4169 */
4170 #ifndef SQLITE_OMIT_REINDEX
4171 static int collationMatch(const char *zColl, Index *pIndex){
4172   int i;
4173   assert( zColl!=0 );
4174   for(i=0; i<pIndex->nColumn; i++){
4175     const char *z = pIndex->azColl[i];
4176     assert( z!=0 || pIndex->aiColumn[i]<0 );
4177     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4178       return 1;
4179     }
4180   }
4181   return 0;
4182 }
4183 #endif
4184 
4185 /*
4186 ** Recompute all indices of pTab that use the collating sequence pColl.
4187 ** If pColl==0 then recompute all indices of pTab.
4188 */
4189 #ifndef SQLITE_OMIT_REINDEX
4190 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4191   Index *pIndex;              /* An index associated with pTab */
4192 
4193   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4194     if( zColl==0 || collationMatch(zColl, pIndex) ){
4195       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4196       sqlite3BeginWriteOperation(pParse, 0, iDb);
4197       sqlite3RefillIndex(pParse, pIndex, -1);
4198     }
4199   }
4200 }
4201 #endif
4202 
4203 /*
4204 ** Recompute all indices of all tables in all databases where the
4205 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4206 ** all indices everywhere.
4207 */
4208 #ifndef SQLITE_OMIT_REINDEX
4209 static void reindexDatabases(Parse *pParse, char const *zColl){
4210   Db *pDb;                    /* A single database */
4211   int iDb;                    /* The database index number */
4212   sqlite3 *db = pParse->db;   /* The database connection */
4213   HashElem *k;                /* For looping over tables in pDb */
4214   Table *pTab;                /* A table in the database */
4215 
4216   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4217   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4218     assert( pDb!=0 );
4219     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4220       pTab = (Table*)sqliteHashData(k);
4221       reindexTable(pParse, pTab, zColl);
4222     }
4223   }
4224 }
4225 #endif
4226 
4227 /*
4228 ** Generate code for the REINDEX command.
4229 **
4230 **        REINDEX                            -- 1
4231 **        REINDEX  <collation>               -- 2
4232 **        REINDEX  ?<database>.?<tablename>  -- 3
4233 **        REINDEX  ?<database>.?<indexname>  -- 4
4234 **
4235 ** Form 1 causes all indices in all attached databases to be rebuilt.
4236 ** Form 2 rebuilds all indices in all databases that use the named
4237 ** collating function.  Forms 3 and 4 rebuild the named index or all
4238 ** indices associated with the named table.
4239 */
4240 #ifndef SQLITE_OMIT_REINDEX
4241 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4242   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4243   char *z;                    /* Name of a table or index */
4244   const char *zDb;            /* Name of the database */
4245   Table *pTab;                /* A table in the database */
4246   Index *pIndex;              /* An index associated with pTab */
4247   int iDb;                    /* The database index number */
4248   sqlite3 *db = pParse->db;   /* The database connection */
4249   Token *pObjName;            /* Name of the table or index to be reindexed */
4250 
4251   /* Read the database schema. If an error occurs, leave an error message
4252   ** and code in pParse and return NULL. */
4253   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4254     return;
4255   }
4256 
4257   if( pName1==0 ){
4258     reindexDatabases(pParse, 0);
4259     return;
4260   }else if( NEVER(pName2==0) || pName2->z==0 ){
4261     char *zColl;
4262     assert( pName1->z );
4263     zColl = sqlite3NameFromToken(pParse->db, pName1);
4264     if( !zColl ) return;
4265     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4266     if( pColl ){
4267       reindexDatabases(pParse, zColl);
4268       sqlite3DbFree(db, zColl);
4269       return;
4270     }
4271     sqlite3DbFree(db, zColl);
4272   }
4273   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4274   if( iDb<0 ) return;
4275   z = sqlite3NameFromToken(db, pObjName);
4276   if( z==0 ) return;
4277   zDb = db->aDb[iDb].zName;
4278   pTab = sqlite3FindTable(db, z, zDb);
4279   if( pTab ){
4280     reindexTable(pParse, pTab, 0);
4281     sqlite3DbFree(db, z);
4282     return;
4283   }
4284   pIndex = sqlite3FindIndex(db, z, zDb);
4285   sqlite3DbFree(db, z);
4286   if( pIndex ){
4287     sqlite3BeginWriteOperation(pParse, 0, iDb);
4288     sqlite3RefillIndex(pParse, pIndex, -1);
4289     return;
4290   }
4291   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4292 }
4293 #endif
4294 
4295 /*
4296 ** Return a KeyInfo structure that is appropriate for the given Index.
4297 **
4298 ** The KeyInfo structure for an index is cached in the Index object.
4299 ** So there might be multiple references to the returned pointer.  The
4300 ** caller should not try to modify the KeyInfo object.
4301 **
4302 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4303 ** when it has finished using it.
4304 */
4305 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4306   int i;
4307   int nCol = pIdx->nColumn;
4308   int nKey = pIdx->nKeyCol;
4309   KeyInfo *pKey;
4310   if( pParse->nErr ) return 0;
4311   if( pIdx->uniqNotNull ){
4312     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4313   }else{
4314     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4315   }
4316   if( pKey ){
4317     assert( sqlite3KeyInfoIsWriteable(pKey) );
4318     for(i=0; i<nCol; i++){
4319       const char *zColl = pIdx->azColl[i];
4320       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4321                         sqlite3LocateCollSeq(pParse, zColl);
4322       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4323     }
4324     if( pParse->nErr ){
4325       sqlite3KeyInfoUnref(pKey);
4326       pKey = 0;
4327     }
4328   }
4329   return pKey;
4330 }
4331 
4332 #ifndef SQLITE_OMIT_CTE
4333 /*
4334 ** This routine is invoked once per CTE by the parser while parsing a
4335 ** WITH clause.
4336 */
4337 With *sqlite3WithAdd(
4338   Parse *pParse,          /* Parsing context */
4339   With *pWith,            /* Existing WITH clause, or NULL */
4340   Token *pName,           /* Name of the common-table */
4341   ExprList *pArglist,     /* Optional column name list for the table */
4342   Select *pQuery          /* Query used to initialize the table */
4343 ){
4344   sqlite3 *db = pParse->db;
4345   With *pNew;
4346   char *zName;
4347 
4348   /* Check that the CTE name is unique within this WITH clause. If
4349   ** not, store an error in the Parse structure. */
4350   zName = sqlite3NameFromToken(pParse->db, pName);
4351   if( zName && pWith ){
4352     int i;
4353     for(i=0; i<pWith->nCte; i++){
4354       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4355         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4356       }
4357     }
4358   }
4359 
4360   if( pWith ){
4361     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4362     pNew = sqlite3DbRealloc(db, pWith, nByte);
4363   }else{
4364     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4365   }
4366   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4367 
4368   if( db->mallocFailed ){
4369     sqlite3ExprListDelete(db, pArglist);
4370     sqlite3SelectDelete(db, pQuery);
4371     sqlite3DbFree(db, zName);
4372     pNew = pWith;
4373   }else{
4374     pNew->a[pNew->nCte].pSelect = pQuery;
4375     pNew->a[pNew->nCte].pCols = pArglist;
4376     pNew->a[pNew->nCte].zName = zName;
4377     pNew->a[pNew->nCte].zCteErr = 0;
4378     pNew->nCte++;
4379   }
4380 
4381   return pNew;
4382 }
4383 
4384 /*
4385 ** Free the contents of the With object passed as the second argument.
4386 */
4387 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4388   if( pWith ){
4389     int i;
4390     for(i=0; i<pWith->nCte; i++){
4391       struct Cte *pCte = &pWith->a[i];
4392       sqlite3ExprListDelete(db, pCte->pCols);
4393       sqlite3SelectDelete(db, pCte->pSelect);
4394       sqlite3DbFree(db, pCte->zName);
4395     }
4396     sqlite3DbFree(db, pWith);
4397   }
4398 }
4399 #endif /* !defined(SQLITE_OMIT_CTE) */
4400