1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** This routine is called after a single SQL statement has been 118 ** parsed and a VDBE program to execute that statement has been 119 ** prepared. This routine puts the finishing touches on the 120 ** VDBE program and resets the pParse structure for the next 121 ** parse. 122 ** 123 ** Note that if an error occurred, it might be the case that 124 ** no VDBE code was generated. 125 */ 126 void sqlite3FinishCoding(Parse *pParse){ 127 sqlite3 *db; 128 Vdbe *v; 129 130 assert( pParse->pToplevel==0 ); 131 db = pParse->db; 132 if( db->mallocFailed ) return; 133 if( pParse->nested ) return; 134 if( pParse->nErr ) return; 135 136 /* Begin by generating some termination code at the end of the 137 ** vdbe program 138 */ 139 v = sqlite3GetVdbe(pParse); 140 assert( !pParse->isMultiWrite 141 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 142 if( v ){ 143 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 144 sqlite3VdbeAddOp0(v, OP_Halt); 145 146 /* The cookie mask contains one bit for each database file open. 147 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 148 ** set for each database that is used. Generate code to start a 149 ** transaction on each used database and to verify the schema cookie 150 ** on each used database. 151 */ 152 if( db->mallocFailed==0 && (pParse->cookieMask || pParse->pConstExpr) ){ 153 yDbMask mask; 154 int iDb, i; 155 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 156 sqlite3VdbeJumpHere(v, 0); 157 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 158 if( (mask & pParse->cookieMask)==0 ) continue; 159 sqlite3VdbeUsesBtree(v, iDb); 160 sqlite3VdbeAddOp4Int(v, 161 OP_Transaction, /* Opcode */ 162 iDb, /* P1 */ 163 (mask & pParse->writeMask)!=0, /* P2 */ 164 pParse->cookieValue[iDb], /* P3 */ 165 db->aDb[iDb].pSchema->iGeneration /* P4 */ 166 ); 167 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 168 } 169 #ifndef SQLITE_OMIT_VIRTUALTABLE 170 for(i=0; i<pParse->nVtabLock; i++){ 171 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 172 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 173 } 174 pParse->nVtabLock = 0; 175 #endif 176 177 /* Once all the cookies have been verified and transactions opened, 178 ** obtain the required table-locks. This is a no-op unless the 179 ** shared-cache feature is enabled. 180 */ 181 codeTableLocks(pParse); 182 183 /* Initialize any AUTOINCREMENT data structures required. 184 */ 185 sqlite3AutoincrementBegin(pParse); 186 187 /* Code constant expressions that where factored out of inner loops */ 188 if( pParse->pConstExpr ){ 189 ExprList *pEL = pParse->pConstExpr; 190 pParse->okConstFactor = 0; 191 for(i=0; i<pEL->nExpr; i++){ 192 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 193 } 194 } 195 196 /* Finally, jump back to the beginning of the executable code. */ 197 sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); 198 } 199 } 200 201 202 /* Get the VDBE program ready for execution 203 */ 204 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 205 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 206 /* A minimum of one cursor is required if autoincrement is used 207 * See ticket [a696379c1f08866] */ 208 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 209 sqlite3VdbeMakeReady(v, pParse); 210 pParse->rc = SQLITE_DONE; 211 pParse->colNamesSet = 0; 212 }else{ 213 pParse->rc = SQLITE_ERROR; 214 } 215 pParse->nTab = 0; 216 pParse->nMem = 0; 217 pParse->nSet = 0; 218 pParse->nVar = 0; 219 pParse->cookieMask = 0; 220 } 221 222 /* 223 ** Run the parser and code generator recursively in order to generate 224 ** code for the SQL statement given onto the end of the pParse context 225 ** currently under construction. When the parser is run recursively 226 ** this way, the final OP_Halt is not appended and other initialization 227 ** and finalization steps are omitted because those are handling by the 228 ** outermost parser. 229 ** 230 ** Not everything is nestable. This facility is designed to permit 231 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 232 ** care if you decide to try to use this routine for some other purposes. 233 */ 234 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 235 va_list ap; 236 char *zSql; 237 char *zErrMsg = 0; 238 sqlite3 *db = pParse->db; 239 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 240 char saveBuf[SAVE_SZ]; 241 242 if( pParse->nErr ) return; 243 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 244 va_start(ap, zFormat); 245 zSql = sqlite3VMPrintf(db, zFormat, ap); 246 va_end(ap); 247 if( zSql==0 ){ 248 return; /* A malloc must have failed */ 249 } 250 pParse->nested++; 251 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 252 memset(&pParse->nVar, 0, SAVE_SZ); 253 sqlite3RunParser(pParse, zSql, &zErrMsg); 254 sqlite3DbFree(db, zErrMsg); 255 sqlite3DbFree(db, zSql); 256 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 257 pParse->nested--; 258 } 259 260 /* 261 ** Locate the in-memory structure that describes a particular database 262 ** table given the name of that table and (optionally) the name of the 263 ** database containing the table. Return NULL if not found. 264 ** 265 ** If zDatabase is 0, all databases are searched for the table and the 266 ** first matching table is returned. (No checking for duplicate table 267 ** names is done.) The search order is TEMP first, then MAIN, then any 268 ** auxiliary databases added using the ATTACH command. 269 ** 270 ** See also sqlite3LocateTable(). 271 */ 272 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 273 Table *p = 0; 274 int i; 275 int nName; 276 assert( zName!=0 ); 277 nName = sqlite3Strlen30(zName); 278 /* All mutexes are required for schema access. Make sure we hold them. */ 279 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 280 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 281 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 282 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 283 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 284 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 285 if( p ) break; 286 } 287 return p; 288 } 289 290 /* 291 ** Locate the in-memory structure that describes a particular database 292 ** table given the name of that table and (optionally) the name of the 293 ** database containing the table. Return NULL if not found. Also leave an 294 ** error message in pParse->zErrMsg. 295 ** 296 ** The difference between this routine and sqlite3FindTable() is that this 297 ** routine leaves an error message in pParse->zErrMsg where 298 ** sqlite3FindTable() does not. 299 */ 300 Table *sqlite3LocateTable( 301 Parse *pParse, /* context in which to report errors */ 302 int isView, /* True if looking for a VIEW rather than a TABLE */ 303 const char *zName, /* Name of the table we are looking for */ 304 const char *zDbase /* Name of the database. Might be NULL */ 305 ){ 306 Table *p; 307 308 /* Read the database schema. If an error occurs, leave an error message 309 ** and code in pParse and return NULL. */ 310 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 311 return 0; 312 } 313 314 p = sqlite3FindTable(pParse->db, zName, zDbase); 315 if( p==0 ){ 316 const char *zMsg = isView ? "no such view" : "no such table"; 317 if( zDbase ){ 318 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 319 }else{ 320 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 321 } 322 pParse->checkSchema = 1; 323 } 324 return p; 325 } 326 327 /* 328 ** Locate the table identified by *p. 329 ** 330 ** This is a wrapper around sqlite3LocateTable(). The difference between 331 ** sqlite3LocateTable() and this function is that this function restricts 332 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 333 ** non-NULL if it is part of a view or trigger program definition. See 334 ** sqlite3FixSrcList() for details. 335 */ 336 Table *sqlite3LocateTableItem( 337 Parse *pParse, 338 int isView, 339 struct SrcList_item *p 340 ){ 341 const char *zDb; 342 assert( p->pSchema==0 || p->zDatabase==0 ); 343 if( p->pSchema ){ 344 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 345 zDb = pParse->db->aDb[iDb].zName; 346 }else{ 347 zDb = p->zDatabase; 348 } 349 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 350 } 351 352 /* 353 ** Locate the in-memory structure that describes 354 ** a particular index given the name of that index 355 ** and the name of the database that contains the index. 356 ** Return NULL if not found. 357 ** 358 ** If zDatabase is 0, all databases are searched for the 359 ** table and the first matching index is returned. (No checking 360 ** for duplicate index names is done.) The search order is 361 ** TEMP first, then MAIN, then any auxiliary databases added 362 ** using the ATTACH command. 363 */ 364 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 365 Index *p = 0; 366 int i; 367 int nName = sqlite3Strlen30(zName); 368 /* All mutexes are required for schema access. Make sure we hold them. */ 369 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 370 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 371 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 372 Schema *pSchema = db->aDb[j].pSchema; 373 assert( pSchema ); 374 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 375 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 376 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 377 if( p ) break; 378 } 379 return p; 380 } 381 382 /* 383 ** Reclaim the memory used by an index 384 */ 385 static void freeIndex(sqlite3 *db, Index *p){ 386 #ifndef SQLITE_OMIT_ANALYZE 387 sqlite3DeleteIndexSamples(db, p); 388 #endif 389 if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo); 390 sqlite3ExprDelete(db, p->pPartIdxWhere); 391 sqlite3DbFree(db, p->zColAff); 392 if( p->isResized ) sqlite3DbFree(db, p->azColl); 393 sqlite3DbFree(db, p); 394 } 395 396 /* 397 ** For the index called zIdxName which is found in the database iDb, 398 ** unlike that index from its Table then remove the index from 399 ** the index hash table and free all memory structures associated 400 ** with the index. 401 */ 402 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 403 Index *pIndex; 404 int len; 405 Hash *pHash; 406 407 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 408 pHash = &db->aDb[iDb].pSchema->idxHash; 409 len = sqlite3Strlen30(zIdxName); 410 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); 411 if( ALWAYS(pIndex) ){ 412 if( pIndex->pTable->pIndex==pIndex ){ 413 pIndex->pTable->pIndex = pIndex->pNext; 414 }else{ 415 Index *p; 416 /* Justification of ALWAYS(); The index must be on the list of 417 ** indices. */ 418 p = pIndex->pTable->pIndex; 419 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 420 if( ALWAYS(p && p->pNext==pIndex) ){ 421 p->pNext = pIndex->pNext; 422 } 423 } 424 freeIndex(db, pIndex); 425 } 426 db->flags |= SQLITE_InternChanges; 427 } 428 429 /* 430 ** Look through the list of open database files in db->aDb[] and if 431 ** any have been closed, remove them from the list. Reallocate the 432 ** db->aDb[] structure to a smaller size, if possible. 433 ** 434 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 435 ** are never candidates for being collapsed. 436 */ 437 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 438 int i, j; 439 for(i=j=2; i<db->nDb; i++){ 440 struct Db *pDb = &db->aDb[i]; 441 if( pDb->pBt==0 ){ 442 sqlite3DbFree(db, pDb->zName); 443 pDb->zName = 0; 444 continue; 445 } 446 if( j<i ){ 447 db->aDb[j] = db->aDb[i]; 448 } 449 j++; 450 } 451 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 452 db->nDb = j; 453 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 454 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 455 sqlite3DbFree(db, db->aDb); 456 db->aDb = db->aDbStatic; 457 } 458 } 459 460 /* 461 ** Reset the schema for the database at index iDb. Also reset the 462 ** TEMP schema. 463 */ 464 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 465 Db *pDb; 466 assert( iDb<db->nDb ); 467 468 /* Case 1: Reset the single schema identified by iDb */ 469 pDb = &db->aDb[iDb]; 470 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 471 assert( pDb->pSchema!=0 ); 472 sqlite3SchemaClear(pDb->pSchema); 473 474 /* If any database other than TEMP is reset, then also reset TEMP 475 ** since TEMP might be holding triggers that reference tables in the 476 ** other database. 477 */ 478 if( iDb!=1 ){ 479 pDb = &db->aDb[1]; 480 assert( pDb->pSchema!=0 ); 481 sqlite3SchemaClear(pDb->pSchema); 482 } 483 return; 484 } 485 486 /* 487 ** Erase all schema information from all attached databases (including 488 ** "main" and "temp") for a single database connection. 489 */ 490 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 491 int i; 492 sqlite3BtreeEnterAll(db); 493 for(i=0; i<db->nDb; i++){ 494 Db *pDb = &db->aDb[i]; 495 if( pDb->pSchema ){ 496 sqlite3SchemaClear(pDb->pSchema); 497 } 498 } 499 db->flags &= ~SQLITE_InternChanges; 500 sqlite3VtabUnlockList(db); 501 sqlite3BtreeLeaveAll(db); 502 sqlite3CollapseDatabaseArray(db); 503 } 504 505 /* 506 ** This routine is called when a commit occurs. 507 */ 508 void sqlite3CommitInternalChanges(sqlite3 *db){ 509 db->flags &= ~SQLITE_InternChanges; 510 } 511 512 /* 513 ** Delete memory allocated for the column names of a table or view (the 514 ** Table.aCol[] array). 515 */ 516 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 517 int i; 518 Column *pCol; 519 assert( pTable!=0 ); 520 if( (pCol = pTable->aCol)!=0 ){ 521 for(i=0; i<pTable->nCol; i++, pCol++){ 522 sqlite3DbFree(db, pCol->zName); 523 sqlite3ExprDelete(db, pCol->pDflt); 524 sqlite3DbFree(db, pCol->zDflt); 525 sqlite3DbFree(db, pCol->zType); 526 sqlite3DbFree(db, pCol->zColl); 527 } 528 sqlite3DbFree(db, pTable->aCol); 529 } 530 } 531 532 /* 533 ** Remove the memory data structures associated with the given 534 ** Table. No changes are made to disk by this routine. 535 ** 536 ** This routine just deletes the data structure. It does not unlink 537 ** the table data structure from the hash table. But it does destroy 538 ** memory structures of the indices and foreign keys associated with 539 ** the table. 540 ** 541 ** The db parameter is optional. It is needed if the Table object 542 ** contains lookaside memory. (Table objects in the schema do not use 543 ** lookaside memory, but some ephemeral Table objects do.) Or the 544 ** db parameter can be used with db->pnBytesFreed to measure the memory 545 ** used by the Table object. 546 */ 547 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 548 Index *pIndex, *pNext; 549 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 550 551 assert( !pTable || pTable->nRef>0 ); 552 553 /* Do not delete the table until the reference count reaches zero. */ 554 if( !pTable ) return; 555 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 556 557 /* Record the number of outstanding lookaside allocations in schema Tables 558 ** prior to doing any free() operations. Since schema Tables do not use 559 ** lookaside, this number should not change. */ 560 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 561 db->lookaside.nOut : 0 ); 562 563 /* Delete all indices associated with this table. */ 564 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 565 pNext = pIndex->pNext; 566 assert( pIndex->pSchema==pTable->pSchema ); 567 if( !db || db->pnBytesFreed==0 ){ 568 char *zName = pIndex->zName; 569 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 570 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 571 ); 572 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 573 assert( pOld==pIndex || pOld==0 ); 574 } 575 freeIndex(db, pIndex); 576 } 577 578 /* Delete any foreign keys attached to this table. */ 579 sqlite3FkDelete(db, pTable); 580 581 /* Delete the Table structure itself. 582 */ 583 sqliteDeleteColumnNames(db, pTable); 584 sqlite3DbFree(db, pTable->zName); 585 sqlite3DbFree(db, pTable->zColAff); 586 sqlite3SelectDelete(db, pTable->pSelect); 587 #ifndef SQLITE_OMIT_CHECK 588 sqlite3ExprListDelete(db, pTable->pCheck); 589 #endif 590 #ifndef SQLITE_OMIT_VIRTUALTABLE 591 sqlite3VtabClear(db, pTable); 592 #endif 593 sqlite3DbFree(db, pTable); 594 595 /* Verify that no lookaside memory was used by schema tables */ 596 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 597 } 598 599 /* 600 ** Unlink the given table from the hash tables and the delete the 601 ** table structure with all its indices and foreign keys. 602 */ 603 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 604 Table *p; 605 Db *pDb; 606 607 assert( db!=0 ); 608 assert( iDb>=0 && iDb<db->nDb ); 609 assert( zTabName ); 610 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 611 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 612 pDb = &db->aDb[iDb]; 613 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 614 sqlite3Strlen30(zTabName),0); 615 sqlite3DeleteTable(db, p); 616 db->flags |= SQLITE_InternChanges; 617 } 618 619 /* 620 ** Given a token, return a string that consists of the text of that 621 ** token. Space to hold the returned string 622 ** is obtained from sqliteMalloc() and must be freed by the calling 623 ** function. 624 ** 625 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 626 ** surround the body of the token are removed. 627 ** 628 ** Tokens are often just pointers into the original SQL text and so 629 ** are not \000 terminated and are not persistent. The returned string 630 ** is \000 terminated and is persistent. 631 */ 632 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 633 char *zName; 634 if( pName ){ 635 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 636 sqlite3Dequote(zName); 637 }else{ 638 zName = 0; 639 } 640 return zName; 641 } 642 643 /* 644 ** Open the sqlite_master table stored in database number iDb for 645 ** writing. The table is opened using cursor 0. 646 */ 647 void sqlite3OpenMasterTable(Parse *p, int iDb){ 648 Vdbe *v = sqlite3GetVdbe(p); 649 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 650 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 651 if( p->nTab==0 ){ 652 p->nTab = 1; 653 } 654 } 655 656 /* 657 ** Parameter zName points to a nul-terminated buffer containing the name 658 ** of a database ("main", "temp" or the name of an attached db). This 659 ** function returns the index of the named database in db->aDb[], or 660 ** -1 if the named db cannot be found. 661 */ 662 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 663 int i = -1; /* Database number */ 664 if( zName ){ 665 Db *pDb; 666 int n = sqlite3Strlen30(zName); 667 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 668 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 669 0==sqlite3StrICmp(pDb->zName, zName) ){ 670 break; 671 } 672 } 673 } 674 return i; 675 } 676 677 /* 678 ** The token *pName contains the name of a database (either "main" or 679 ** "temp" or the name of an attached db). This routine returns the 680 ** index of the named database in db->aDb[], or -1 if the named db 681 ** does not exist. 682 */ 683 int sqlite3FindDb(sqlite3 *db, Token *pName){ 684 int i; /* Database number */ 685 char *zName; /* Name we are searching for */ 686 zName = sqlite3NameFromToken(db, pName); 687 i = sqlite3FindDbName(db, zName); 688 sqlite3DbFree(db, zName); 689 return i; 690 } 691 692 /* The table or view or trigger name is passed to this routine via tokens 693 ** pName1 and pName2. If the table name was fully qualified, for example: 694 ** 695 ** CREATE TABLE xxx.yyy (...); 696 ** 697 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 698 ** the table name is not fully qualified, i.e.: 699 ** 700 ** CREATE TABLE yyy(...); 701 ** 702 ** Then pName1 is set to "yyy" and pName2 is "". 703 ** 704 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 705 ** pName2) that stores the unqualified table name. The index of the 706 ** database "xxx" is returned. 707 */ 708 int sqlite3TwoPartName( 709 Parse *pParse, /* Parsing and code generating context */ 710 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 711 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 712 Token **pUnqual /* Write the unqualified object name here */ 713 ){ 714 int iDb; /* Database holding the object */ 715 sqlite3 *db = pParse->db; 716 717 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 718 if( db->init.busy ) { 719 sqlite3ErrorMsg(pParse, "corrupt database"); 720 pParse->nErr++; 721 return -1; 722 } 723 *pUnqual = pName2; 724 iDb = sqlite3FindDb(db, pName1); 725 if( iDb<0 ){ 726 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 727 pParse->nErr++; 728 return -1; 729 } 730 }else{ 731 assert( db->init.iDb==0 || db->init.busy ); 732 iDb = db->init.iDb; 733 *pUnqual = pName1; 734 } 735 return iDb; 736 } 737 738 /* 739 ** This routine is used to check if the UTF-8 string zName is a legal 740 ** unqualified name for a new schema object (table, index, view or 741 ** trigger). All names are legal except those that begin with the string 742 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 743 ** is reserved for internal use. 744 */ 745 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 746 if( !pParse->db->init.busy && pParse->nested==0 747 && (pParse->db->flags & SQLITE_WriteSchema)==0 748 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 749 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 750 return SQLITE_ERROR; 751 } 752 return SQLITE_OK; 753 } 754 755 /* 756 ** Return the PRIMARY KEY index of a table 757 */ 758 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 759 Index *p; 760 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 761 return p; 762 } 763 764 /* 765 ** Return the column of index pIdx that corresponds to table 766 ** column iCol. Return -1 if not found. 767 */ 768 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 769 int i; 770 for(i=0; i<pIdx->nColumn; i++){ 771 if( iCol==pIdx->aiColumn[i] ) return i; 772 } 773 return -1; 774 } 775 776 /* 777 ** Begin constructing a new table representation in memory. This is 778 ** the first of several action routines that get called in response 779 ** to a CREATE TABLE statement. In particular, this routine is called 780 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 781 ** flag is true if the table should be stored in the auxiliary database 782 ** file instead of in the main database file. This is normally the case 783 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 784 ** CREATE and TABLE. 785 ** 786 ** The new table record is initialized and put in pParse->pNewTable. 787 ** As more of the CREATE TABLE statement is parsed, additional action 788 ** routines will be called to add more information to this record. 789 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 790 ** is called to complete the construction of the new table record. 791 */ 792 void sqlite3StartTable( 793 Parse *pParse, /* Parser context */ 794 Token *pName1, /* First part of the name of the table or view */ 795 Token *pName2, /* Second part of the name of the table or view */ 796 int isTemp, /* True if this is a TEMP table */ 797 int isView, /* True if this is a VIEW */ 798 int isVirtual, /* True if this is a VIRTUAL table */ 799 int noErr /* Do nothing if table already exists */ 800 ){ 801 Table *pTable; 802 char *zName = 0; /* The name of the new table */ 803 sqlite3 *db = pParse->db; 804 Vdbe *v; 805 int iDb; /* Database number to create the table in */ 806 Token *pName; /* Unqualified name of the table to create */ 807 808 /* The table or view name to create is passed to this routine via tokens 809 ** pName1 and pName2. If the table name was fully qualified, for example: 810 ** 811 ** CREATE TABLE xxx.yyy (...); 812 ** 813 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 814 ** the table name is not fully qualified, i.e.: 815 ** 816 ** CREATE TABLE yyy(...); 817 ** 818 ** Then pName1 is set to "yyy" and pName2 is "". 819 ** 820 ** The call below sets the pName pointer to point at the token (pName1 or 821 ** pName2) that stores the unqualified table name. The variable iDb is 822 ** set to the index of the database that the table or view is to be 823 ** created in. 824 */ 825 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 826 if( iDb<0 ) return; 827 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 828 /* If creating a temp table, the name may not be qualified. Unless 829 ** the database name is "temp" anyway. */ 830 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 831 return; 832 } 833 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 834 835 pParse->sNameToken = *pName; 836 zName = sqlite3NameFromToken(db, pName); 837 if( zName==0 ) return; 838 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 839 goto begin_table_error; 840 } 841 if( db->init.iDb==1 ) isTemp = 1; 842 #ifndef SQLITE_OMIT_AUTHORIZATION 843 assert( (isTemp & 1)==isTemp ); 844 { 845 int code; 846 char *zDb = db->aDb[iDb].zName; 847 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 848 goto begin_table_error; 849 } 850 if( isView ){ 851 if( !OMIT_TEMPDB && isTemp ){ 852 code = SQLITE_CREATE_TEMP_VIEW; 853 }else{ 854 code = SQLITE_CREATE_VIEW; 855 } 856 }else{ 857 if( !OMIT_TEMPDB && isTemp ){ 858 code = SQLITE_CREATE_TEMP_TABLE; 859 }else{ 860 code = SQLITE_CREATE_TABLE; 861 } 862 } 863 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 864 goto begin_table_error; 865 } 866 } 867 #endif 868 869 /* Make sure the new table name does not collide with an existing 870 ** index or table name in the same database. Issue an error message if 871 ** it does. The exception is if the statement being parsed was passed 872 ** to an sqlite3_declare_vtab() call. In that case only the column names 873 ** and types will be used, so there is no need to test for namespace 874 ** collisions. 875 */ 876 if( !IN_DECLARE_VTAB ){ 877 char *zDb = db->aDb[iDb].zName; 878 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 879 goto begin_table_error; 880 } 881 pTable = sqlite3FindTable(db, zName, zDb); 882 if( pTable ){ 883 if( !noErr ){ 884 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 885 }else{ 886 assert( !db->init.busy ); 887 sqlite3CodeVerifySchema(pParse, iDb); 888 } 889 goto begin_table_error; 890 } 891 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 892 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 893 goto begin_table_error; 894 } 895 } 896 897 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 898 if( pTable==0 ){ 899 db->mallocFailed = 1; 900 pParse->rc = SQLITE_NOMEM; 901 pParse->nErr++; 902 goto begin_table_error; 903 } 904 pTable->zName = zName; 905 pTable->iPKey = -1; 906 pTable->pSchema = db->aDb[iDb].pSchema; 907 pTable->nRef = 1; 908 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 909 assert( pParse->pNewTable==0 ); 910 pParse->pNewTable = pTable; 911 912 /* If this is the magic sqlite_sequence table used by autoincrement, 913 ** then record a pointer to this table in the main database structure 914 ** so that INSERT can find the table easily. 915 */ 916 #ifndef SQLITE_OMIT_AUTOINCREMENT 917 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 918 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 919 pTable->pSchema->pSeqTab = pTable; 920 } 921 #endif 922 923 /* Begin generating the code that will insert the table record into 924 ** the SQLITE_MASTER table. Note in particular that we must go ahead 925 ** and allocate the record number for the table entry now. Before any 926 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 927 ** indices to be created and the table record must come before the 928 ** indices. Hence, the record number for the table must be allocated 929 ** now. 930 */ 931 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 932 int j1; 933 int fileFormat; 934 int reg1, reg2, reg3; 935 sqlite3BeginWriteOperation(pParse, 0, iDb); 936 937 #ifndef SQLITE_OMIT_VIRTUALTABLE 938 if( isVirtual ){ 939 sqlite3VdbeAddOp0(v, OP_VBegin); 940 } 941 #endif 942 943 /* If the file format and encoding in the database have not been set, 944 ** set them now. 945 */ 946 reg1 = pParse->regRowid = ++pParse->nMem; 947 reg2 = pParse->regRoot = ++pParse->nMem; 948 reg3 = ++pParse->nMem; 949 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 950 sqlite3VdbeUsesBtree(v, iDb); 951 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 952 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 953 1 : SQLITE_MAX_FILE_FORMAT; 954 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 955 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 956 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 957 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 958 sqlite3VdbeJumpHere(v, j1); 959 960 /* This just creates a place-holder record in the sqlite_master table. 961 ** The record created does not contain anything yet. It will be replaced 962 ** by the real entry in code generated at sqlite3EndTable(). 963 ** 964 ** The rowid for the new entry is left in register pParse->regRowid. 965 ** The root page number of the new table is left in reg pParse->regRoot. 966 ** The rowid and root page number values are needed by the code that 967 ** sqlite3EndTable will generate. 968 */ 969 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 970 if( isView || isVirtual ){ 971 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 972 }else 973 #endif 974 { 975 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 976 } 977 sqlite3OpenMasterTable(pParse, iDb); 978 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 979 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 980 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 981 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 982 sqlite3VdbeAddOp0(v, OP_Close); 983 } 984 985 /* Normal (non-error) return. */ 986 return; 987 988 /* If an error occurs, we jump here */ 989 begin_table_error: 990 sqlite3DbFree(db, zName); 991 return; 992 } 993 994 /* 995 ** This macro is used to compare two strings in a case-insensitive manner. 996 ** It is slightly faster than calling sqlite3StrICmp() directly, but 997 ** produces larger code. 998 ** 999 ** WARNING: This macro is not compatible with the strcmp() family. It 1000 ** returns true if the two strings are equal, otherwise false. 1001 */ 1002 #define STRICMP(x, y) (\ 1003 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 1004 sqlite3UpperToLower[*(unsigned char *)(y)] \ 1005 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 1006 1007 /* 1008 ** Add a new column to the table currently being constructed. 1009 ** 1010 ** The parser calls this routine once for each column declaration 1011 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1012 ** first to get things going. Then this routine is called for each 1013 ** column. 1014 */ 1015 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1016 Table *p; 1017 int i; 1018 char *z; 1019 Column *pCol; 1020 sqlite3 *db = pParse->db; 1021 if( (p = pParse->pNewTable)==0 ) return; 1022 #if SQLITE_MAX_COLUMN 1023 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1024 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1025 return; 1026 } 1027 #endif 1028 z = sqlite3NameFromToken(db, pName); 1029 if( z==0 ) return; 1030 for(i=0; i<p->nCol; i++){ 1031 if( STRICMP(z, p->aCol[i].zName) ){ 1032 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1033 sqlite3DbFree(db, z); 1034 return; 1035 } 1036 } 1037 if( (p->nCol & 0x7)==0 ){ 1038 Column *aNew; 1039 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1040 if( aNew==0 ){ 1041 sqlite3DbFree(db, z); 1042 return; 1043 } 1044 p->aCol = aNew; 1045 } 1046 pCol = &p->aCol[p->nCol]; 1047 memset(pCol, 0, sizeof(p->aCol[0])); 1048 pCol->zName = z; 1049 1050 /* If there is no type specified, columns have the default affinity 1051 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 1052 ** be called next to set pCol->affinity correctly. 1053 */ 1054 pCol->affinity = SQLITE_AFF_NONE; 1055 pCol->szEst = 1; 1056 p->nCol++; 1057 } 1058 1059 /* 1060 ** This routine is called by the parser while in the middle of 1061 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1062 ** been seen on a column. This routine sets the notNull flag on 1063 ** the column currently under construction. 1064 */ 1065 void sqlite3AddNotNull(Parse *pParse, int onError){ 1066 Table *p; 1067 p = pParse->pNewTable; 1068 if( p==0 || NEVER(p->nCol<1) ) return; 1069 p->aCol[p->nCol-1].notNull = (u8)onError; 1070 } 1071 1072 /* 1073 ** Scan the column type name zType (length nType) and return the 1074 ** associated affinity type. 1075 ** 1076 ** This routine does a case-independent search of zType for the 1077 ** substrings in the following table. If one of the substrings is 1078 ** found, the corresponding affinity is returned. If zType contains 1079 ** more than one of the substrings, entries toward the top of 1080 ** the table take priority. For example, if zType is 'BLOBINT', 1081 ** SQLITE_AFF_INTEGER is returned. 1082 ** 1083 ** Substring | Affinity 1084 ** -------------------------------- 1085 ** 'INT' | SQLITE_AFF_INTEGER 1086 ** 'CHAR' | SQLITE_AFF_TEXT 1087 ** 'CLOB' | SQLITE_AFF_TEXT 1088 ** 'TEXT' | SQLITE_AFF_TEXT 1089 ** 'BLOB' | SQLITE_AFF_NONE 1090 ** 'REAL' | SQLITE_AFF_REAL 1091 ** 'FLOA' | SQLITE_AFF_REAL 1092 ** 'DOUB' | SQLITE_AFF_REAL 1093 ** 1094 ** If none of the substrings in the above table are found, 1095 ** SQLITE_AFF_NUMERIC is returned. 1096 */ 1097 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1098 u32 h = 0; 1099 char aff = SQLITE_AFF_NUMERIC; 1100 const char *zChar = 0; 1101 1102 if( zIn==0 ) return aff; 1103 while( zIn[0] ){ 1104 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1105 zIn++; 1106 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1107 aff = SQLITE_AFF_TEXT; 1108 zChar = zIn; 1109 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1110 aff = SQLITE_AFF_TEXT; 1111 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1112 aff = SQLITE_AFF_TEXT; 1113 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1114 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1115 aff = SQLITE_AFF_NONE; 1116 if( zIn[0]=='(' ) zChar = zIn; 1117 #ifndef SQLITE_OMIT_FLOATING_POINT 1118 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1119 && aff==SQLITE_AFF_NUMERIC ){ 1120 aff = SQLITE_AFF_REAL; 1121 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1122 && aff==SQLITE_AFF_NUMERIC ){ 1123 aff = SQLITE_AFF_REAL; 1124 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1125 && aff==SQLITE_AFF_NUMERIC ){ 1126 aff = SQLITE_AFF_REAL; 1127 #endif 1128 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1129 aff = SQLITE_AFF_INTEGER; 1130 break; 1131 } 1132 } 1133 1134 /* If pszEst is not NULL, store an estimate of the field size. The 1135 ** estimate is scaled so that the size of an integer is 1. */ 1136 if( pszEst ){ 1137 *pszEst = 1; /* default size is approx 4 bytes */ 1138 if( aff<=SQLITE_AFF_NONE ){ 1139 if( zChar ){ 1140 while( zChar[0] ){ 1141 if( sqlite3Isdigit(zChar[0]) ){ 1142 int v = 0; 1143 sqlite3GetInt32(zChar, &v); 1144 v = v/4 + 1; 1145 if( v>255 ) v = 255; 1146 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1147 break; 1148 } 1149 zChar++; 1150 } 1151 }else{ 1152 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1153 } 1154 } 1155 } 1156 return aff; 1157 } 1158 1159 /* 1160 ** This routine is called by the parser while in the middle of 1161 ** parsing a CREATE TABLE statement. The pFirst token is the first 1162 ** token in the sequence of tokens that describe the type of the 1163 ** column currently under construction. pLast is the last token 1164 ** in the sequence. Use this information to construct a string 1165 ** that contains the typename of the column and store that string 1166 ** in zType. 1167 */ 1168 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1169 Table *p; 1170 Column *pCol; 1171 1172 p = pParse->pNewTable; 1173 if( p==0 || NEVER(p->nCol<1) ) return; 1174 pCol = &p->aCol[p->nCol-1]; 1175 assert( pCol->zType==0 ); 1176 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1177 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); 1178 } 1179 1180 /* 1181 ** The expression is the default value for the most recently added column 1182 ** of the table currently under construction. 1183 ** 1184 ** Default value expressions must be constant. Raise an exception if this 1185 ** is not the case. 1186 ** 1187 ** This routine is called by the parser while in the middle of 1188 ** parsing a CREATE TABLE statement. 1189 */ 1190 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1191 Table *p; 1192 Column *pCol; 1193 sqlite3 *db = pParse->db; 1194 p = pParse->pNewTable; 1195 if( p!=0 ){ 1196 pCol = &(p->aCol[p->nCol-1]); 1197 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1198 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1199 pCol->zName); 1200 }else{ 1201 /* A copy of pExpr is used instead of the original, as pExpr contains 1202 ** tokens that point to volatile memory. The 'span' of the expression 1203 ** is required by pragma table_info. 1204 */ 1205 sqlite3ExprDelete(db, pCol->pDflt); 1206 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1207 sqlite3DbFree(db, pCol->zDflt); 1208 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1209 (int)(pSpan->zEnd - pSpan->zStart)); 1210 } 1211 } 1212 sqlite3ExprDelete(db, pSpan->pExpr); 1213 } 1214 1215 /* 1216 ** Designate the PRIMARY KEY for the table. pList is a list of names 1217 ** of columns that form the primary key. If pList is NULL, then the 1218 ** most recently added column of the table is the primary key. 1219 ** 1220 ** A table can have at most one primary key. If the table already has 1221 ** a primary key (and this is the second primary key) then create an 1222 ** error. 1223 ** 1224 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1225 ** then we will try to use that column as the rowid. Set the Table.iPKey 1226 ** field of the table under construction to be the index of the 1227 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1228 ** no INTEGER PRIMARY KEY. 1229 ** 1230 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1231 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1232 */ 1233 void sqlite3AddPrimaryKey( 1234 Parse *pParse, /* Parsing context */ 1235 ExprList *pList, /* List of field names to be indexed */ 1236 int onError, /* What to do with a uniqueness conflict */ 1237 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1238 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1239 ){ 1240 Table *pTab = pParse->pNewTable; 1241 char *zType = 0; 1242 int iCol = -1, i; 1243 int nTerm; 1244 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1245 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1246 sqlite3ErrorMsg(pParse, 1247 "table \"%s\" has more than one primary key", pTab->zName); 1248 goto primary_key_exit; 1249 } 1250 pTab->tabFlags |= TF_HasPrimaryKey; 1251 if( pList==0 ){ 1252 iCol = pTab->nCol - 1; 1253 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1254 zType = pTab->aCol[iCol].zType; 1255 nTerm = 1; 1256 }else{ 1257 nTerm = pList->nExpr; 1258 for(i=0; i<nTerm; i++){ 1259 for(iCol=0; iCol<pTab->nCol; iCol++){ 1260 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1261 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1262 zType = pTab->aCol[iCol].zType; 1263 break; 1264 } 1265 } 1266 } 1267 } 1268 if( nTerm==1 1269 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1270 && sortOrder==SQLITE_SO_ASC 1271 ){ 1272 pTab->iPKey = iCol; 1273 pTab->keyConf = (u8)onError; 1274 assert( autoInc==0 || autoInc==1 ); 1275 pTab->tabFlags |= autoInc*TF_Autoincrement; 1276 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1277 }else if( autoInc ){ 1278 #ifndef SQLITE_OMIT_AUTOINCREMENT 1279 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1280 "INTEGER PRIMARY KEY"); 1281 #endif 1282 }else{ 1283 Vdbe *v = pParse->pVdbe; 1284 Index *p; 1285 if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop); 1286 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1287 0, sortOrder, 0); 1288 if( p ){ 1289 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1290 if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK); 1291 } 1292 pList = 0; 1293 } 1294 1295 primary_key_exit: 1296 sqlite3ExprListDelete(pParse->db, pList); 1297 return; 1298 } 1299 1300 /* 1301 ** Add a new CHECK constraint to the table currently under construction. 1302 */ 1303 void sqlite3AddCheckConstraint( 1304 Parse *pParse, /* Parsing context */ 1305 Expr *pCheckExpr /* The check expression */ 1306 ){ 1307 #ifndef SQLITE_OMIT_CHECK 1308 Table *pTab = pParse->pNewTable; 1309 sqlite3 *db = pParse->db; 1310 if( pTab && !IN_DECLARE_VTAB 1311 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1312 ){ 1313 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1314 if( pParse->constraintName.n ){ 1315 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1316 } 1317 }else 1318 #endif 1319 { 1320 sqlite3ExprDelete(pParse->db, pCheckExpr); 1321 } 1322 } 1323 1324 /* 1325 ** Set the collation function of the most recently parsed table column 1326 ** to the CollSeq given. 1327 */ 1328 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1329 Table *p; 1330 int i; 1331 char *zColl; /* Dequoted name of collation sequence */ 1332 sqlite3 *db; 1333 1334 if( (p = pParse->pNewTable)==0 ) return; 1335 i = p->nCol-1; 1336 db = pParse->db; 1337 zColl = sqlite3NameFromToken(db, pToken); 1338 if( !zColl ) return; 1339 1340 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1341 Index *pIdx; 1342 sqlite3DbFree(db, p->aCol[i].zColl); 1343 p->aCol[i].zColl = zColl; 1344 1345 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1346 ** then an index may have been created on this column before the 1347 ** collation type was added. Correct this if it is the case. 1348 */ 1349 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1350 assert( pIdx->nKeyCol==1 ); 1351 if( pIdx->aiColumn[0]==i ){ 1352 pIdx->azColl[0] = p->aCol[i].zColl; 1353 } 1354 } 1355 }else{ 1356 sqlite3DbFree(db, zColl); 1357 } 1358 } 1359 1360 /* 1361 ** This function returns the collation sequence for database native text 1362 ** encoding identified by the string zName, length nName. 1363 ** 1364 ** If the requested collation sequence is not available, or not available 1365 ** in the database native encoding, the collation factory is invoked to 1366 ** request it. If the collation factory does not supply such a sequence, 1367 ** and the sequence is available in another text encoding, then that is 1368 ** returned instead. 1369 ** 1370 ** If no versions of the requested collations sequence are available, or 1371 ** another error occurs, NULL is returned and an error message written into 1372 ** pParse. 1373 ** 1374 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1375 ** invokes the collation factory if the named collation cannot be found 1376 ** and generates an error message. 1377 ** 1378 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1379 */ 1380 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1381 sqlite3 *db = pParse->db; 1382 u8 enc = ENC(db); 1383 u8 initbusy = db->init.busy; 1384 CollSeq *pColl; 1385 1386 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1387 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1388 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1389 } 1390 1391 return pColl; 1392 } 1393 1394 1395 /* 1396 ** Generate code that will increment the schema cookie. 1397 ** 1398 ** The schema cookie is used to determine when the schema for the 1399 ** database changes. After each schema change, the cookie value 1400 ** changes. When a process first reads the schema it records the 1401 ** cookie. Thereafter, whenever it goes to access the database, 1402 ** it checks the cookie to make sure the schema has not changed 1403 ** since it was last read. 1404 ** 1405 ** This plan is not completely bullet-proof. It is possible for 1406 ** the schema to change multiple times and for the cookie to be 1407 ** set back to prior value. But schema changes are infrequent 1408 ** and the probability of hitting the same cookie value is only 1409 ** 1 chance in 2^32. So we're safe enough. 1410 */ 1411 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1412 int r1 = sqlite3GetTempReg(pParse); 1413 sqlite3 *db = pParse->db; 1414 Vdbe *v = pParse->pVdbe; 1415 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1416 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1417 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1418 sqlite3ReleaseTempReg(pParse, r1); 1419 } 1420 1421 /* 1422 ** Measure the number of characters needed to output the given 1423 ** identifier. The number returned includes any quotes used 1424 ** but does not include the null terminator. 1425 ** 1426 ** The estimate is conservative. It might be larger that what is 1427 ** really needed. 1428 */ 1429 static int identLength(const char *z){ 1430 int n; 1431 for(n=0; *z; n++, z++){ 1432 if( *z=='"' ){ n++; } 1433 } 1434 return n + 2; 1435 } 1436 1437 /* 1438 ** The first parameter is a pointer to an output buffer. The second 1439 ** parameter is a pointer to an integer that contains the offset at 1440 ** which to write into the output buffer. This function copies the 1441 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1442 ** to the specified offset in the buffer and updates *pIdx to refer 1443 ** to the first byte after the last byte written before returning. 1444 ** 1445 ** If the string zSignedIdent consists entirely of alpha-numeric 1446 ** characters, does not begin with a digit and is not an SQL keyword, 1447 ** then it is copied to the output buffer exactly as it is. Otherwise, 1448 ** it is quoted using double-quotes. 1449 */ 1450 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1451 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1452 int i, j, needQuote; 1453 i = *pIdx; 1454 1455 for(j=0; zIdent[j]; j++){ 1456 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1457 } 1458 needQuote = sqlite3Isdigit(zIdent[0]) 1459 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1460 || zIdent[j]!=0 1461 || j==0; 1462 1463 if( needQuote ) z[i++] = '"'; 1464 for(j=0; zIdent[j]; j++){ 1465 z[i++] = zIdent[j]; 1466 if( zIdent[j]=='"' ) z[i++] = '"'; 1467 } 1468 if( needQuote ) z[i++] = '"'; 1469 z[i] = 0; 1470 *pIdx = i; 1471 } 1472 1473 /* 1474 ** Generate a CREATE TABLE statement appropriate for the given 1475 ** table. Memory to hold the text of the statement is obtained 1476 ** from sqliteMalloc() and must be freed by the calling function. 1477 */ 1478 static char *createTableStmt(sqlite3 *db, Table *p){ 1479 int i, k, n; 1480 char *zStmt; 1481 char *zSep, *zSep2, *zEnd; 1482 Column *pCol; 1483 n = 0; 1484 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1485 n += identLength(pCol->zName) + 5; 1486 } 1487 n += identLength(p->zName); 1488 if( n<50 ){ 1489 zSep = ""; 1490 zSep2 = ","; 1491 zEnd = ")"; 1492 }else{ 1493 zSep = "\n "; 1494 zSep2 = ",\n "; 1495 zEnd = "\n)"; 1496 } 1497 n += 35 + 6*p->nCol; 1498 zStmt = sqlite3DbMallocRaw(0, n); 1499 if( zStmt==0 ){ 1500 db->mallocFailed = 1; 1501 return 0; 1502 } 1503 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1504 k = sqlite3Strlen30(zStmt); 1505 identPut(zStmt, &k, p->zName); 1506 zStmt[k++] = '('; 1507 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1508 static const char * const azType[] = { 1509 /* SQLITE_AFF_TEXT */ " TEXT", 1510 /* SQLITE_AFF_NONE */ "", 1511 /* SQLITE_AFF_NUMERIC */ " NUM", 1512 /* SQLITE_AFF_INTEGER */ " INT", 1513 /* SQLITE_AFF_REAL */ " REAL" 1514 }; 1515 int len; 1516 const char *zType; 1517 1518 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1519 k += sqlite3Strlen30(&zStmt[k]); 1520 zSep = zSep2; 1521 identPut(zStmt, &k, pCol->zName); 1522 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1523 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); 1524 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1525 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1526 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1527 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1528 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1529 1530 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1531 len = sqlite3Strlen30(zType); 1532 assert( pCol->affinity==SQLITE_AFF_NONE 1533 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1534 memcpy(&zStmt[k], zType, len); 1535 k += len; 1536 assert( k<=n ); 1537 } 1538 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1539 return zStmt; 1540 } 1541 1542 /* 1543 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1544 ** on success and SQLITE_NOMEM on an OOM error. 1545 */ 1546 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1547 char *zExtra; 1548 int nByte; 1549 if( pIdx->nColumn>=N ) return SQLITE_OK; 1550 assert( pIdx->isResized==0 ); 1551 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1552 zExtra = sqlite3DbMallocZero(db, nByte); 1553 if( zExtra==0 ) return SQLITE_NOMEM; 1554 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1555 pIdx->azColl = (char**)zExtra; 1556 zExtra += sizeof(char*)*N; 1557 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1558 pIdx->aiColumn = (i16*)zExtra; 1559 zExtra += sizeof(i16)*N; 1560 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1561 pIdx->aSortOrder = (u8*)zExtra; 1562 pIdx->nColumn = N; 1563 pIdx->isResized = 1; 1564 return SQLITE_OK; 1565 } 1566 1567 /* 1568 ** Estimate the total row width for a table. 1569 */ 1570 static void estimateTableWidth(Table *pTab){ 1571 unsigned wTable = 0; 1572 const Column *pTabCol; 1573 int i; 1574 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1575 wTable += pTabCol->szEst; 1576 } 1577 if( pTab->iPKey<0 ) wTable++; 1578 pTab->szTabRow = sqlite3LogEst(wTable*4); 1579 } 1580 1581 /* 1582 ** Estimate the average size of a row for an index. 1583 */ 1584 static void estimateIndexWidth(Index *pIdx){ 1585 unsigned wIndex = 0; 1586 int i; 1587 const Column *aCol = pIdx->pTable->aCol; 1588 for(i=0; i<pIdx->nColumn; i++){ 1589 i16 x = pIdx->aiColumn[i]; 1590 assert( x<pIdx->pTable->nCol ); 1591 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1592 } 1593 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1594 } 1595 1596 /* Return true if value x is found any of the first nCol entries of aiCol[] 1597 */ 1598 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1599 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1600 return 0; 1601 } 1602 1603 /* 1604 ** This routine runs at the end of parsing a CREATE TABLE statement that 1605 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1606 ** internal schema data structures and the generated VDBE code so that they 1607 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1608 ** Changes include: 1609 ** 1610 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1611 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1612 ** data storage is a covering index btree. 1613 ** (2) Bypass the creation of the sqlite_master table entry 1614 ** for the PRIMARY KEY as the the primary key index is now 1615 ** identified by the sqlite_master table entry of the table itself. 1616 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1617 ** schema to the rootpage from the main table. 1618 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1619 ** (5) Add all table columns to the PRIMARY KEY Index object 1620 ** so that the PRIMARY KEY is a covering index. The surplus 1621 ** columns are part of KeyInfo.nXField and are not used for 1622 ** sorting or lookup or uniqueness checks. 1623 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1624 ** indices with the PRIMARY KEY columns. 1625 */ 1626 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1627 Index *pIdx; 1628 Index *pPk; 1629 int nPk; 1630 int i, j; 1631 sqlite3 *db = pParse->db; 1632 Vdbe *v = pParse->pVdbe; 1633 1634 /* Convert the OP_CreateTable opcode that would normally create the 1635 ** root-page for the table into a OP_CreateIndex opcode. The index 1636 ** created will become the PRIMARY KEY index. 1637 */ 1638 if( pParse->addrCrTab ){ 1639 assert( v ); 1640 sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; 1641 } 1642 1643 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1644 ** table entry. 1645 */ 1646 if( pParse->addrSkipPK ){ 1647 assert( v ); 1648 sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto; 1649 } 1650 1651 /* Locate the PRIMARY KEY index. Or, if this table was originally 1652 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1653 */ 1654 if( pTab->iPKey>=0 ){ 1655 ExprList *pList; 1656 pList = sqlite3ExprListAppend(pParse, 0, 0); 1657 if( pList==0 ) return; 1658 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 1659 pTab->aCol[pTab->iPKey].zName); 1660 pList->a[0].sortOrder = pParse->iPkSortOrder; 1661 assert( pParse->pNewTable==pTab ); 1662 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1663 if( pPk==0 ) return; 1664 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1665 pTab->iPKey = -1; 1666 }else{ 1667 pPk = sqlite3PrimaryKeyIndex(pTab); 1668 } 1669 pPk->isCovering = 1; 1670 assert( pPk!=0 ); 1671 nPk = pPk->nKeyCol; 1672 1673 /* Make sure every column of the PRIMARY KEY is NOT NULL */ 1674 for(i=0; i<nPk; i++){ 1675 pTab->aCol[pPk->aiColumn[i]].notNull = 1; 1676 } 1677 pPk->uniqNotNull = 1; 1678 1679 /* The root page of the PRIMARY KEY is the table root page */ 1680 pPk->tnum = pTab->tnum; 1681 1682 /* Update the in-memory representation of all UNIQUE indices by converting 1683 ** the final rowid column into one or more columns of the PRIMARY KEY. 1684 */ 1685 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1686 int n; 1687 if( IsPrimaryKeyIndex(pIdx) ) continue; 1688 for(i=n=0; i<nPk; i++){ 1689 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1690 } 1691 if( n==0 ){ 1692 /* This index is a superset of the primary key */ 1693 pIdx->nColumn = pIdx->nKeyCol; 1694 continue; 1695 } 1696 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1697 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1698 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1699 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1700 pIdx->azColl[j] = pPk->azColl[i]; 1701 j++; 1702 } 1703 } 1704 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1705 assert( pIdx->nColumn>=j ); 1706 } 1707 1708 /* Add all table columns to the PRIMARY KEY index 1709 */ 1710 if( nPk<pTab->nCol ){ 1711 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1712 for(i=0, j=nPk; i<pTab->nCol; i++){ 1713 if( !hasColumn(pPk->aiColumn, j, i) ){ 1714 assert( j<pPk->nColumn ); 1715 pPk->aiColumn[j] = i; 1716 pPk->azColl[j] = "BINARY"; 1717 j++; 1718 } 1719 } 1720 assert( pPk->nColumn==j ); 1721 assert( pTab->nCol==j ); 1722 }else{ 1723 pPk->nColumn = pTab->nCol; 1724 } 1725 } 1726 1727 /* 1728 ** This routine is called to report the final ")" that terminates 1729 ** a CREATE TABLE statement. 1730 ** 1731 ** The table structure that other action routines have been building 1732 ** is added to the internal hash tables, assuming no errors have 1733 ** occurred. 1734 ** 1735 ** An entry for the table is made in the master table on disk, unless 1736 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1737 ** it means we are reading the sqlite_master table because we just 1738 ** connected to the database or because the sqlite_master table has 1739 ** recently changed, so the entry for this table already exists in 1740 ** the sqlite_master table. We do not want to create it again. 1741 ** 1742 ** If the pSelect argument is not NULL, it means that this routine 1743 ** was called to create a table generated from a 1744 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1745 ** the new table will match the result set of the SELECT. 1746 */ 1747 void sqlite3EndTable( 1748 Parse *pParse, /* Parse context */ 1749 Token *pCons, /* The ',' token after the last column defn. */ 1750 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1751 u8 tabOpts, /* Extra table options. Usually 0. */ 1752 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1753 ){ 1754 Table *p; /* The new table */ 1755 sqlite3 *db = pParse->db; /* The database connection */ 1756 int iDb; /* Database in which the table lives */ 1757 Index *pIdx; /* An implied index of the table */ 1758 1759 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1760 return; 1761 } 1762 p = pParse->pNewTable; 1763 if( p==0 ) return; 1764 1765 assert( !db->init.busy || !pSelect ); 1766 1767 /* If the db->init.busy is 1 it means we are reading the SQL off the 1768 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1769 ** So do not write to the disk again. Extract the root page number 1770 ** for the table from the db->init.newTnum field. (The page number 1771 ** should have been put there by the sqliteOpenCb routine.) 1772 */ 1773 if( db->init.busy ){ 1774 p->tnum = db->init.newTnum; 1775 } 1776 1777 /* Special processing for WITHOUT ROWID Tables */ 1778 if( tabOpts & TF_WithoutRowid ){ 1779 if( (p->tabFlags & TF_Autoincrement) ){ 1780 sqlite3ErrorMsg(pParse, 1781 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1782 return; 1783 } 1784 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1785 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1786 }else{ 1787 p->tabFlags |= TF_WithoutRowid; 1788 convertToWithoutRowidTable(pParse, p); 1789 } 1790 } 1791 1792 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1793 1794 #ifndef SQLITE_OMIT_CHECK 1795 /* Resolve names in all CHECK constraint expressions. 1796 */ 1797 if( p->pCheck ){ 1798 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1799 } 1800 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1801 1802 /* Estimate the average row size for the table and for all implied indices */ 1803 estimateTableWidth(p); 1804 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1805 estimateIndexWidth(pIdx); 1806 } 1807 1808 /* If not initializing, then create a record for the new table 1809 ** in the SQLITE_MASTER table of the database. 1810 ** 1811 ** If this is a TEMPORARY table, write the entry into the auxiliary 1812 ** file instead of into the main database file. 1813 */ 1814 if( !db->init.busy ){ 1815 int n; 1816 Vdbe *v; 1817 char *zType; /* "view" or "table" */ 1818 char *zType2; /* "VIEW" or "TABLE" */ 1819 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1820 1821 v = sqlite3GetVdbe(pParse); 1822 if( NEVER(v==0) ) return; 1823 1824 sqlite3VdbeAddOp1(v, OP_Close, 0); 1825 1826 /* 1827 ** Initialize zType for the new view or table. 1828 */ 1829 if( p->pSelect==0 ){ 1830 /* A regular table */ 1831 zType = "table"; 1832 zType2 = "TABLE"; 1833 #ifndef SQLITE_OMIT_VIEW 1834 }else{ 1835 /* A view */ 1836 zType = "view"; 1837 zType2 = "VIEW"; 1838 #endif 1839 } 1840 1841 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1842 ** statement to populate the new table. The root-page number for the 1843 ** new table is in register pParse->regRoot. 1844 ** 1845 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1846 ** suitable state to query for the column names and types to be used 1847 ** by the new table. 1848 ** 1849 ** A shared-cache write-lock is not required to write to the new table, 1850 ** as a schema-lock must have already been obtained to create it. Since 1851 ** a schema-lock excludes all other database users, the write-lock would 1852 ** be redundant. 1853 */ 1854 if( pSelect ){ 1855 SelectDest dest; 1856 Table *pSelTab; 1857 1858 assert(pParse->nTab==1); 1859 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1860 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1861 pParse->nTab = 2; 1862 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1863 sqlite3Select(pParse, pSelect, &dest); 1864 sqlite3VdbeAddOp1(v, OP_Close, 1); 1865 if( pParse->nErr==0 ){ 1866 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1867 if( pSelTab==0 ) return; 1868 assert( p->aCol==0 ); 1869 p->nCol = pSelTab->nCol; 1870 p->aCol = pSelTab->aCol; 1871 pSelTab->nCol = 0; 1872 pSelTab->aCol = 0; 1873 sqlite3DeleteTable(db, pSelTab); 1874 } 1875 } 1876 1877 /* Compute the complete text of the CREATE statement */ 1878 if( pSelect ){ 1879 zStmt = createTableStmt(db, p); 1880 }else{ 1881 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1882 n = (int)(pEnd2->z - pParse->sNameToken.z); 1883 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1884 zStmt = sqlite3MPrintf(db, 1885 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1886 ); 1887 } 1888 1889 /* A slot for the record has already been allocated in the 1890 ** SQLITE_MASTER table. We just need to update that slot with all 1891 ** the information we've collected. 1892 */ 1893 sqlite3NestedParse(pParse, 1894 "UPDATE %Q.%s " 1895 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1896 "WHERE rowid=#%d", 1897 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1898 zType, 1899 p->zName, 1900 p->zName, 1901 pParse->regRoot, 1902 zStmt, 1903 pParse->regRowid 1904 ); 1905 sqlite3DbFree(db, zStmt); 1906 sqlite3ChangeCookie(pParse, iDb); 1907 1908 #ifndef SQLITE_OMIT_AUTOINCREMENT 1909 /* Check to see if we need to create an sqlite_sequence table for 1910 ** keeping track of autoincrement keys. 1911 */ 1912 if( p->tabFlags & TF_Autoincrement ){ 1913 Db *pDb = &db->aDb[iDb]; 1914 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1915 if( pDb->pSchema->pSeqTab==0 ){ 1916 sqlite3NestedParse(pParse, 1917 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1918 pDb->zName 1919 ); 1920 } 1921 } 1922 #endif 1923 1924 /* Reparse everything to update our internal data structures */ 1925 sqlite3VdbeAddParseSchemaOp(v, iDb, 1926 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 1927 } 1928 1929 1930 /* Add the table to the in-memory representation of the database. 1931 */ 1932 if( db->init.busy ){ 1933 Table *pOld; 1934 Schema *pSchema = p->pSchema; 1935 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1936 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1937 sqlite3Strlen30(p->zName),p); 1938 if( pOld ){ 1939 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1940 db->mallocFailed = 1; 1941 return; 1942 } 1943 pParse->pNewTable = 0; 1944 db->flags |= SQLITE_InternChanges; 1945 1946 #ifndef SQLITE_OMIT_ALTERTABLE 1947 if( !p->pSelect ){ 1948 const char *zName = (const char *)pParse->sNameToken.z; 1949 int nName; 1950 assert( !pSelect && pCons && pEnd ); 1951 if( pCons->z==0 ){ 1952 pCons = pEnd; 1953 } 1954 nName = (int)((const char *)pCons->z - zName); 1955 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1956 } 1957 #endif 1958 } 1959 } 1960 1961 #ifndef SQLITE_OMIT_VIEW 1962 /* 1963 ** The parser calls this routine in order to create a new VIEW 1964 */ 1965 void sqlite3CreateView( 1966 Parse *pParse, /* The parsing context */ 1967 Token *pBegin, /* The CREATE token that begins the statement */ 1968 Token *pName1, /* The token that holds the name of the view */ 1969 Token *pName2, /* The token that holds the name of the view */ 1970 Select *pSelect, /* A SELECT statement that will become the new view */ 1971 int isTemp, /* TRUE for a TEMPORARY view */ 1972 int noErr /* Suppress error messages if VIEW already exists */ 1973 ){ 1974 Table *p; 1975 int n; 1976 const char *z; 1977 Token sEnd; 1978 DbFixer sFix; 1979 Token *pName = 0; 1980 int iDb; 1981 sqlite3 *db = pParse->db; 1982 1983 if( pParse->nVar>0 ){ 1984 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1985 sqlite3SelectDelete(db, pSelect); 1986 return; 1987 } 1988 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1989 p = pParse->pNewTable; 1990 if( p==0 || pParse->nErr ){ 1991 sqlite3SelectDelete(db, pSelect); 1992 return; 1993 } 1994 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1995 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1996 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 1997 if( sqlite3FixSelect(&sFix, pSelect) ){ 1998 sqlite3SelectDelete(db, pSelect); 1999 return; 2000 } 2001 2002 /* Make a copy of the entire SELECT statement that defines the view. 2003 ** This will force all the Expr.token.z values to be dynamically 2004 ** allocated rather than point to the input string - which means that 2005 ** they will persist after the current sqlite3_exec() call returns. 2006 */ 2007 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2008 sqlite3SelectDelete(db, pSelect); 2009 if( db->mallocFailed ){ 2010 return; 2011 } 2012 if( !db->init.busy ){ 2013 sqlite3ViewGetColumnNames(pParse, p); 2014 } 2015 2016 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2017 ** the end. 2018 */ 2019 sEnd = pParse->sLastToken; 2020 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 2021 sEnd.z += sEnd.n; 2022 } 2023 sEnd.n = 0; 2024 n = (int)(sEnd.z - pBegin->z); 2025 z = pBegin->z; 2026 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 2027 sEnd.z = &z[n-1]; 2028 sEnd.n = 1; 2029 2030 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2031 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2032 return; 2033 } 2034 #endif /* SQLITE_OMIT_VIEW */ 2035 2036 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2037 /* 2038 ** The Table structure pTable is really a VIEW. Fill in the names of 2039 ** the columns of the view in the pTable structure. Return the number 2040 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2041 */ 2042 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2043 Table *pSelTab; /* A fake table from which we get the result set */ 2044 Select *pSel; /* Copy of the SELECT that implements the view */ 2045 int nErr = 0; /* Number of errors encountered */ 2046 int n; /* Temporarily holds the number of cursors assigned */ 2047 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2048 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 2049 2050 assert( pTable ); 2051 2052 #ifndef SQLITE_OMIT_VIRTUALTABLE 2053 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2054 return SQLITE_ERROR; 2055 } 2056 if( IsVirtual(pTable) ) return 0; 2057 #endif 2058 2059 #ifndef SQLITE_OMIT_VIEW 2060 /* A positive nCol means the columns names for this view are 2061 ** already known. 2062 */ 2063 if( pTable->nCol>0 ) return 0; 2064 2065 /* A negative nCol is a special marker meaning that we are currently 2066 ** trying to compute the column names. If we enter this routine with 2067 ** a negative nCol, it means two or more views form a loop, like this: 2068 ** 2069 ** CREATE VIEW one AS SELECT * FROM two; 2070 ** CREATE VIEW two AS SELECT * FROM one; 2071 ** 2072 ** Actually, the error above is now caught prior to reaching this point. 2073 ** But the following test is still important as it does come up 2074 ** in the following: 2075 ** 2076 ** CREATE TABLE main.ex1(a); 2077 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2078 ** SELECT * FROM temp.ex1; 2079 */ 2080 if( pTable->nCol<0 ){ 2081 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2082 return 1; 2083 } 2084 assert( pTable->nCol>=0 ); 2085 2086 /* If we get this far, it means we need to compute the table names. 2087 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2088 ** "*" elements in the results set of the view and will assign cursors 2089 ** to the elements of the FROM clause. But we do not want these changes 2090 ** to be permanent. So the computation is done on a copy of the SELECT 2091 ** statement that defines the view. 2092 */ 2093 assert( pTable->pSelect ); 2094 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2095 if( pSel ){ 2096 u8 enableLookaside = db->lookaside.bEnabled; 2097 n = pParse->nTab; 2098 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2099 pTable->nCol = -1; 2100 db->lookaside.bEnabled = 0; 2101 #ifndef SQLITE_OMIT_AUTHORIZATION 2102 xAuth = db->xAuth; 2103 db->xAuth = 0; 2104 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2105 db->xAuth = xAuth; 2106 #else 2107 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2108 #endif 2109 db->lookaside.bEnabled = enableLookaside; 2110 pParse->nTab = n; 2111 if( pSelTab ){ 2112 assert( pTable->aCol==0 ); 2113 pTable->nCol = pSelTab->nCol; 2114 pTable->aCol = pSelTab->aCol; 2115 pSelTab->nCol = 0; 2116 pSelTab->aCol = 0; 2117 sqlite3DeleteTable(db, pSelTab); 2118 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2119 pTable->pSchema->flags |= DB_UnresetViews; 2120 }else{ 2121 pTable->nCol = 0; 2122 nErr++; 2123 } 2124 sqlite3SelectDelete(db, pSel); 2125 } else { 2126 nErr++; 2127 } 2128 #endif /* SQLITE_OMIT_VIEW */ 2129 return nErr; 2130 } 2131 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2132 2133 #ifndef SQLITE_OMIT_VIEW 2134 /* 2135 ** Clear the column names from every VIEW in database idx. 2136 */ 2137 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2138 HashElem *i; 2139 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2140 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2141 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2142 Table *pTab = sqliteHashData(i); 2143 if( pTab->pSelect ){ 2144 sqliteDeleteColumnNames(db, pTab); 2145 pTab->aCol = 0; 2146 pTab->nCol = 0; 2147 } 2148 } 2149 DbClearProperty(db, idx, DB_UnresetViews); 2150 } 2151 #else 2152 # define sqliteViewResetAll(A,B) 2153 #endif /* SQLITE_OMIT_VIEW */ 2154 2155 /* 2156 ** This function is called by the VDBE to adjust the internal schema 2157 ** used by SQLite when the btree layer moves a table root page. The 2158 ** root-page of a table or index in database iDb has changed from iFrom 2159 ** to iTo. 2160 ** 2161 ** Ticket #1728: The symbol table might still contain information 2162 ** on tables and/or indices that are the process of being deleted. 2163 ** If you are unlucky, one of those deleted indices or tables might 2164 ** have the same rootpage number as the real table or index that is 2165 ** being moved. So we cannot stop searching after the first match 2166 ** because the first match might be for one of the deleted indices 2167 ** or tables and not the table/index that is actually being moved. 2168 ** We must continue looping until all tables and indices with 2169 ** rootpage==iFrom have been converted to have a rootpage of iTo 2170 ** in order to be certain that we got the right one. 2171 */ 2172 #ifndef SQLITE_OMIT_AUTOVACUUM 2173 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2174 HashElem *pElem; 2175 Hash *pHash; 2176 Db *pDb; 2177 2178 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2179 pDb = &db->aDb[iDb]; 2180 pHash = &pDb->pSchema->tblHash; 2181 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2182 Table *pTab = sqliteHashData(pElem); 2183 if( pTab->tnum==iFrom ){ 2184 pTab->tnum = iTo; 2185 } 2186 } 2187 pHash = &pDb->pSchema->idxHash; 2188 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2189 Index *pIdx = sqliteHashData(pElem); 2190 if( pIdx->tnum==iFrom ){ 2191 pIdx->tnum = iTo; 2192 } 2193 } 2194 } 2195 #endif 2196 2197 /* 2198 ** Write code to erase the table with root-page iTable from database iDb. 2199 ** Also write code to modify the sqlite_master table and internal schema 2200 ** if a root-page of another table is moved by the btree-layer whilst 2201 ** erasing iTable (this can happen with an auto-vacuum database). 2202 */ 2203 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2204 Vdbe *v = sqlite3GetVdbe(pParse); 2205 int r1 = sqlite3GetTempReg(pParse); 2206 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2207 sqlite3MayAbort(pParse); 2208 #ifndef SQLITE_OMIT_AUTOVACUUM 2209 /* OP_Destroy stores an in integer r1. If this integer 2210 ** is non-zero, then it is the root page number of a table moved to 2211 ** location iTable. The following code modifies the sqlite_master table to 2212 ** reflect this. 2213 ** 2214 ** The "#NNN" in the SQL is a special constant that means whatever value 2215 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2216 ** token for additional information. 2217 */ 2218 sqlite3NestedParse(pParse, 2219 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2220 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2221 #endif 2222 sqlite3ReleaseTempReg(pParse, r1); 2223 } 2224 2225 /* 2226 ** Write VDBE code to erase table pTab and all associated indices on disk. 2227 ** Code to update the sqlite_master tables and internal schema definitions 2228 ** in case a root-page belonging to another table is moved by the btree layer 2229 ** is also added (this can happen with an auto-vacuum database). 2230 */ 2231 static void destroyTable(Parse *pParse, Table *pTab){ 2232 #ifdef SQLITE_OMIT_AUTOVACUUM 2233 Index *pIdx; 2234 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2235 destroyRootPage(pParse, pTab->tnum, iDb); 2236 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2237 destroyRootPage(pParse, pIdx->tnum, iDb); 2238 } 2239 #else 2240 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2241 ** is not defined), then it is important to call OP_Destroy on the 2242 ** table and index root-pages in order, starting with the numerically 2243 ** largest root-page number. This guarantees that none of the root-pages 2244 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2245 ** following were coded: 2246 ** 2247 ** OP_Destroy 4 0 2248 ** ... 2249 ** OP_Destroy 5 0 2250 ** 2251 ** and root page 5 happened to be the largest root-page number in the 2252 ** database, then root page 5 would be moved to page 4 by the 2253 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2254 ** a free-list page. 2255 */ 2256 int iTab = pTab->tnum; 2257 int iDestroyed = 0; 2258 2259 while( 1 ){ 2260 Index *pIdx; 2261 int iLargest = 0; 2262 2263 if( iDestroyed==0 || iTab<iDestroyed ){ 2264 iLargest = iTab; 2265 } 2266 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2267 int iIdx = pIdx->tnum; 2268 assert( pIdx->pSchema==pTab->pSchema ); 2269 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2270 iLargest = iIdx; 2271 } 2272 } 2273 if( iLargest==0 ){ 2274 return; 2275 }else{ 2276 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2277 assert( iDb>=0 && iDb<pParse->db->nDb ); 2278 destroyRootPage(pParse, iLargest, iDb); 2279 iDestroyed = iLargest; 2280 } 2281 } 2282 #endif 2283 } 2284 2285 /* 2286 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2287 ** after a DROP INDEX or DROP TABLE command. 2288 */ 2289 static void sqlite3ClearStatTables( 2290 Parse *pParse, /* The parsing context */ 2291 int iDb, /* The database number */ 2292 const char *zType, /* "idx" or "tbl" */ 2293 const char *zName /* Name of index or table */ 2294 ){ 2295 int i; 2296 const char *zDbName = pParse->db->aDb[iDb].zName; 2297 for(i=1; i<=4; i++){ 2298 char zTab[24]; 2299 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2300 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2301 sqlite3NestedParse(pParse, 2302 "DELETE FROM %Q.%s WHERE %s=%Q", 2303 zDbName, zTab, zType, zName 2304 ); 2305 } 2306 } 2307 } 2308 2309 /* 2310 ** Generate code to drop a table. 2311 */ 2312 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2313 Vdbe *v; 2314 sqlite3 *db = pParse->db; 2315 Trigger *pTrigger; 2316 Db *pDb = &db->aDb[iDb]; 2317 2318 v = sqlite3GetVdbe(pParse); 2319 assert( v!=0 ); 2320 sqlite3BeginWriteOperation(pParse, 1, iDb); 2321 2322 #ifndef SQLITE_OMIT_VIRTUALTABLE 2323 if( IsVirtual(pTab) ){ 2324 sqlite3VdbeAddOp0(v, OP_VBegin); 2325 } 2326 #endif 2327 2328 /* Drop all triggers associated with the table being dropped. Code 2329 ** is generated to remove entries from sqlite_master and/or 2330 ** sqlite_temp_master if required. 2331 */ 2332 pTrigger = sqlite3TriggerList(pParse, pTab); 2333 while( pTrigger ){ 2334 assert( pTrigger->pSchema==pTab->pSchema || 2335 pTrigger->pSchema==db->aDb[1].pSchema ); 2336 sqlite3DropTriggerPtr(pParse, pTrigger); 2337 pTrigger = pTrigger->pNext; 2338 } 2339 2340 #ifndef SQLITE_OMIT_AUTOINCREMENT 2341 /* Remove any entries of the sqlite_sequence table associated with 2342 ** the table being dropped. This is done before the table is dropped 2343 ** at the btree level, in case the sqlite_sequence table needs to 2344 ** move as a result of the drop (can happen in auto-vacuum mode). 2345 */ 2346 if( pTab->tabFlags & TF_Autoincrement ){ 2347 sqlite3NestedParse(pParse, 2348 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2349 pDb->zName, pTab->zName 2350 ); 2351 } 2352 #endif 2353 2354 /* Drop all SQLITE_MASTER table and index entries that refer to the 2355 ** table. The program name loops through the master table and deletes 2356 ** every row that refers to a table of the same name as the one being 2357 ** dropped. Triggers are handled separately because a trigger can be 2358 ** created in the temp database that refers to a table in another 2359 ** database. 2360 */ 2361 sqlite3NestedParse(pParse, 2362 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2363 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2364 if( !isView && !IsVirtual(pTab) ){ 2365 destroyTable(pParse, pTab); 2366 } 2367 2368 /* Remove the table entry from SQLite's internal schema and modify 2369 ** the schema cookie. 2370 */ 2371 if( IsVirtual(pTab) ){ 2372 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2373 } 2374 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2375 sqlite3ChangeCookie(pParse, iDb); 2376 sqliteViewResetAll(db, iDb); 2377 } 2378 2379 /* 2380 ** This routine is called to do the work of a DROP TABLE statement. 2381 ** pName is the name of the table to be dropped. 2382 */ 2383 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2384 Table *pTab; 2385 Vdbe *v; 2386 sqlite3 *db = pParse->db; 2387 int iDb; 2388 2389 if( db->mallocFailed ){ 2390 goto exit_drop_table; 2391 } 2392 assert( pParse->nErr==0 ); 2393 assert( pName->nSrc==1 ); 2394 if( noErr ) db->suppressErr++; 2395 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2396 if( noErr ) db->suppressErr--; 2397 2398 if( pTab==0 ){ 2399 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2400 goto exit_drop_table; 2401 } 2402 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2403 assert( iDb>=0 && iDb<db->nDb ); 2404 2405 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2406 ** it is initialized. 2407 */ 2408 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2409 goto exit_drop_table; 2410 } 2411 #ifndef SQLITE_OMIT_AUTHORIZATION 2412 { 2413 int code; 2414 const char *zTab = SCHEMA_TABLE(iDb); 2415 const char *zDb = db->aDb[iDb].zName; 2416 const char *zArg2 = 0; 2417 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2418 goto exit_drop_table; 2419 } 2420 if( isView ){ 2421 if( !OMIT_TEMPDB && iDb==1 ){ 2422 code = SQLITE_DROP_TEMP_VIEW; 2423 }else{ 2424 code = SQLITE_DROP_VIEW; 2425 } 2426 #ifndef SQLITE_OMIT_VIRTUALTABLE 2427 }else if( IsVirtual(pTab) ){ 2428 code = SQLITE_DROP_VTABLE; 2429 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2430 #endif 2431 }else{ 2432 if( !OMIT_TEMPDB && iDb==1 ){ 2433 code = SQLITE_DROP_TEMP_TABLE; 2434 }else{ 2435 code = SQLITE_DROP_TABLE; 2436 } 2437 } 2438 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2439 goto exit_drop_table; 2440 } 2441 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2442 goto exit_drop_table; 2443 } 2444 } 2445 #endif 2446 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2447 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2448 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2449 goto exit_drop_table; 2450 } 2451 2452 #ifndef SQLITE_OMIT_VIEW 2453 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2454 ** on a table. 2455 */ 2456 if( isView && pTab->pSelect==0 ){ 2457 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2458 goto exit_drop_table; 2459 } 2460 if( !isView && pTab->pSelect ){ 2461 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2462 goto exit_drop_table; 2463 } 2464 #endif 2465 2466 /* Generate code to remove the table from the master table 2467 ** on disk. 2468 */ 2469 v = sqlite3GetVdbe(pParse); 2470 if( v ){ 2471 sqlite3BeginWriteOperation(pParse, 1, iDb); 2472 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2473 sqlite3FkDropTable(pParse, pName, pTab); 2474 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2475 } 2476 2477 exit_drop_table: 2478 sqlite3SrcListDelete(db, pName); 2479 } 2480 2481 /* 2482 ** This routine is called to create a new foreign key on the table 2483 ** currently under construction. pFromCol determines which columns 2484 ** in the current table point to the foreign key. If pFromCol==0 then 2485 ** connect the key to the last column inserted. pTo is the name of 2486 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2487 ** of tables in the parent pTo table. flags contains all 2488 ** information about the conflict resolution algorithms specified 2489 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2490 ** 2491 ** An FKey structure is created and added to the table currently 2492 ** under construction in the pParse->pNewTable field. 2493 ** 2494 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2495 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2496 */ 2497 void sqlite3CreateForeignKey( 2498 Parse *pParse, /* Parsing context */ 2499 ExprList *pFromCol, /* Columns in this table that point to other table */ 2500 Token *pTo, /* Name of the other table */ 2501 ExprList *pToCol, /* Columns in the other table */ 2502 int flags /* Conflict resolution algorithms. */ 2503 ){ 2504 sqlite3 *db = pParse->db; 2505 #ifndef SQLITE_OMIT_FOREIGN_KEY 2506 FKey *pFKey = 0; 2507 FKey *pNextTo; 2508 Table *p = pParse->pNewTable; 2509 int nByte; 2510 int i; 2511 int nCol; 2512 char *z; 2513 2514 assert( pTo!=0 ); 2515 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2516 if( pFromCol==0 ){ 2517 int iCol = p->nCol-1; 2518 if( NEVER(iCol<0) ) goto fk_end; 2519 if( pToCol && pToCol->nExpr!=1 ){ 2520 sqlite3ErrorMsg(pParse, "foreign key on %s" 2521 " should reference only one column of table %T", 2522 p->aCol[iCol].zName, pTo); 2523 goto fk_end; 2524 } 2525 nCol = 1; 2526 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2527 sqlite3ErrorMsg(pParse, 2528 "number of columns in foreign key does not match the number of " 2529 "columns in the referenced table"); 2530 goto fk_end; 2531 }else{ 2532 nCol = pFromCol->nExpr; 2533 } 2534 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2535 if( pToCol ){ 2536 for(i=0; i<pToCol->nExpr; i++){ 2537 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2538 } 2539 } 2540 pFKey = sqlite3DbMallocZero(db, nByte ); 2541 if( pFKey==0 ){ 2542 goto fk_end; 2543 } 2544 pFKey->pFrom = p; 2545 pFKey->pNextFrom = p->pFKey; 2546 z = (char*)&pFKey->aCol[nCol]; 2547 pFKey->zTo = z; 2548 memcpy(z, pTo->z, pTo->n); 2549 z[pTo->n] = 0; 2550 sqlite3Dequote(z); 2551 z += pTo->n+1; 2552 pFKey->nCol = nCol; 2553 if( pFromCol==0 ){ 2554 pFKey->aCol[0].iFrom = p->nCol-1; 2555 }else{ 2556 for(i=0; i<nCol; i++){ 2557 int j; 2558 for(j=0; j<p->nCol; j++){ 2559 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2560 pFKey->aCol[i].iFrom = j; 2561 break; 2562 } 2563 } 2564 if( j>=p->nCol ){ 2565 sqlite3ErrorMsg(pParse, 2566 "unknown column \"%s\" in foreign key definition", 2567 pFromCol->a[i].zName); 2568 goto fk_end; 2569 } 2570 } 2571 } 2572 if( pToCol ){ 2573 for(i=0; i<nCol; i++){ 2574 int n = sqlite3Strlen30(pToCol->a[i].zName); 2575 pFKey->aCol[i].zCol = z; 2576 memcpy(z, pToCol->a[i].zName, n); 2577 z[n] = 0; 2578 z += n+1; 2579 } 2580 } 2581 pFKey->isDeferred = 0; 2582 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2583 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2584 2585 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2586 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2587 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey 2588 ); 2589 if( pNextTo==pFKey ){ 2590 db->mallocFailed = 1; 2591 goto fk_end; 2592 } 2593 if( pNextTo ){ 2594 assert( pNextTo->pPrevTo==0 ); 2595 pFKey->pNextTo = pNextTo; 2596 pNextTo->pPrevTo = pFKey; 2597 } 2598 2599 /* Link the foreign key to the table as the last step. 2600 */ 2601 p->pFKey = pFKey; 2602 pFKey = 0; 2603 2604 fk_end: 2605 sqlite3DbFree(db, pFKey); 2606 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2607 sqlite3ExprListDelete(db, pFromCol); 2608 sqlite3ExprListDelete(db, pToCol); 2609 } 2610 2611 /* 2612 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2613 ** clause is seen as part of a foreign key definition. The isDeferred 2614 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2615 ** The behavior of the most recently created foreign key is adjusted 2616 ** accordingly. 2617 */ 2618 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2619 #ifndef SQLITE_OMIT_FOREIGN_KEY 2620 Table *pTab; 2621 FKey *pFKey; 2622 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2623 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2624 pFKey->isDeferred = (u8)isDeferred; 2625 #endif 2626 } 2627 2628 /* 2629 ** Generate code that will erase and refill index *pIdx. This is 2630 ** used to initialize a newly created index or to recompute the 2631 ** content of an index in response to a REINDEX command. 2632 ** 2633 ** if memRootPage is not negative, it means that the index is newly 2634 ** created. The register specified by memRootPage contains the 2635 ** root page number of the index. If memRootPage is negative, then 2636 ** the index already exists and must be cleared before being refilled and 2637 ** the root page number of the index is taken from pIndex->tnum. 2638 */ 2639 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2640 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2641 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2642 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2643 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2644 int addr1; /* Address of top of loop */ 2645 int addr2; /* Address to jump to for next iteration */ 2646 int tnum; /* Root page of index */ 2647 int iPartIdxLabel; /* Jump to this label to skip a row */ 2648 Vdbe *v; /* Generate code into this virtual machine */ 2649 KeyInfo *pKey; /* KeyInfo for index */ 2650 int regRecord; /* Register holding assemblied index record */ 2651 sqlite3 *db = pParse->db; /* The database connection */ 2652 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2653 2654 #ifndef SQLITE_OMIT_AUTHORIZATION 2655 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2656 db->aDb[iDb].zName ) ){ 2657 return; 2658 } 2659 #endif 2660 2661 /* Require a write-lock on the table to perform this operation */ 2662 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2663 2664 v = sqlite3GetVdbe(pParse); 2665 if( v==0 ) return; 2666 if( memRootPage>=0 ){ 2667 tnum = memRootPage; 2668 }else{ 2669 tnum = pIndex->tnum; 2670 } 2671 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2672 2673 /* Open the sorter cursor if we are to use one. */ 2674 iSorter = pParse->nTab++; 2675 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*) 2676 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2677 2678 /* Open the table. Loop through all rows of the table, inserting index 2679 ** records into the sorter. */ 2680 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2681 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2682 regRecord = sqlite3GetTempReg(pParse); 2683 2684 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2685 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2686 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2687 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2688 sqlite3VdbeJumpHere(v, addr1); 2689 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2690 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2691 (char *)pKey, P4_KEYINFO); 2692 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2693 2694 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2695 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2696 if( pIndex->onError!=OE_None && pKey!=0 ){ 2697 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2698 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); 2699 addr2 = sqlite3VdbeCurrentAddr(v); 2700 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2701 pKey->nField - pIndex->nKeyCol); VdbeCoverage(v); 2702 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2703 }else{ 2704 addr2 = sqlite3VdbeCurrentAddr(v); 2705 } 2706 sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); 2707 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); 2708 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2709 sqlite3ReleaseTempReg(pParse, regRecord); 2710 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2711 sqlite3VdbeJumpHere(v, addr1); 2712 2713 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2714 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2715 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2716 } 2717 2718 /* 2719 ** Allocate heap space to hold an Index object with nCol columns. 2720 ** 2721 ** Increase the allocation size to provide an extra nExtra bytes 2722 ** of 8-byte aligned space after the Index object and return a 2723 ** pointer to this extra space in *ppExtra. 2724 */ 2725 Index *sqlite3AllocateIndexObject( 2726 sqlite3 *db, /* Database connection */ 2727 i16 nCol, /* Total number of columns in the index */ 2728 int nExtra, /* Number of bytes of extra space to alloc */ 2729 char **ppExtra /* Pointer to the "extra" space */ 2730 ){ 2731 Index *p; /* Allocated index object */ 2732 int nByte; /* Bytes of space for Index object + arrays */ 2733 2734 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2735 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2736 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2737 sizeof(i16)*nCol + /* Index.aiColumn */ 2738 sizeof(u8)*nCol); /* Index.aSortOrder */ 2739 p = sqlite3DbMallocZero(db, nByte + nExtra); 2740 if( p ){ 2741 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2742 p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2743 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2744 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2745 p->aSortOrder = (u8*)pExtra; 2746 p->nColumn = nCol; 2747 p->nKeyCol = nCol - 1; 2748 *ppExtra = ((char*)p) + nByte; 2749 } 2750 return p; 2751 } 2752 2753 /* 2754 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2755 ** and pTblList is the name of the table that is to be indexed. Both will 2756 ** be NULL for a primary key or an index that is created to satisfy a 2757 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2758 ** as the table to be indexed. pParse->pNewTable is a table that is 2759 ** currently being constructed by a CREATE TABLE statement. 2760 ** 2761 ** pList is a list of columns to be indexed. pList will be NULL if this 2762 ** is a primary key or unique-constraint on the most recent column added 2763 ** to the table currently under construction. 2764 ** 2765 ** If the index is created successfully, return a pointer to the new Index 2766 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2767 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2768 */ 2769 Index *sqlite3CreateIndex( 2770 Parse *pParse, /* All information about this parse */ 2771 Token *pName1, /* First part of index name. May be NULL */ 2772 Token *pName2, /* Second part of index name. May be NULL */ 2773 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2774 ExprList *pList, /* A list of columns to be indexed */ 2775 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2776 Token *pStart, /* The CREATE token that begins this statement */ 2777 Expr *pPIWhere, /* WHERE clause for partial indices */ 2778 int sortOrder, /* Sort order of primary key when pList==NULL */ 2779 int ifNotExist /* Omit error if index already exists */ 2780 ){ 2781 Index *pRet = 0; /* Pointer to return */ 2782 Table *pTab = 0; /* Table to be indexed */ 2783 Index *pIndex = 0; /* The index to be created */ 2784 char *zName = 0; /* Name of the index */ 2785 int nName; /* Number of characters in zName */ 2786 int i, j; 2787 DbFixer sFix; /* For assigning database names to pTable */ 2788 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2789 sqlite3 *db = pParse->db; 2790 Db *pDb; /* The specific table containing the indexed database */ 2791 int iDb; /* Index of the database that is being written */ 2792 Token *pName = 0; /* Unqualified name of the index to create */ 2793 struct ExprList_item *pListItem; /* For looping over pList */ 2794 const Column *pTabCol; /* A column in the table */ 2795 int nExtra = 0; /* Space allocated for zExtra[] */ 2796 int nExtraCol; /* Number of extra columns needed */ 2797 char *zExtra = 0; /* Extra space after the Index object */ 2798 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2799 2800 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2801 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2802 goto exit_create_index; 2803 } 2804 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2805 goto exit_create_index; 2806 } 2807 2808 /* 2809 ** Find the table that is to be indexed. Return early if not found. 2810 */ 2811 if( pTblName!=0 ){ 2812 2813 /* Use the two-part index name to determine the database 2814 ** to search for the table. 'Fix' the table name to this db 2815 ** before looking up the table. 2816 */ 2817 assert( pName1 && pName2 ); 2818 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2819 if( iDb<0 ) goto exit_create_index; 2820 assert( pName && pName->z ); 2821 2822 #ifndef SQLITE_OMIT_TEMPDB 2823 /* If the index name was unqualified, check if the table 2824 ** is a temp table. If so, set the database to 1. Do not do this 2825 ** if initialising a database schema. 2826 */ 2827 if( !db->init.busy ){ 2828 pTab = sqlite3SrcListLookup(pParse, pTblName); 2829 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2830 iDb = 1; 2831 } 2832 } 2833 #endif 2834 2835 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2836 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2837 /* Because the parser constructs pTblName from a single identifier, 2838 ** sqlite3FixSrcList can never fail. */ 2839 assert(0); 2840 } 2841 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2842 assert( db->mallocFailed==0 || pTab==0 ); 2843 if( pTab==0 ) goto exit_create_index; 2844 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2845 sqlite3ErrorMsg(pParse, 2846 "cannot create a TEMP index on non-TEMP table \"%s\"", 2847 pTab->zName); 2848 goto exit_create_index; 2849 } 2850 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2851 }else{ 2852 assert( pName==0 ); 2853 assert( pStart==0 ); 2854 pTab = pParse->pNewTable; 2855 if( !pTab ) goto exit_create_index; 2856 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2857 } 2858 pDb = &db->aDb[iDb]; 2859 2860 assert( pTab!=0 ); 2861 assert( pParse->nErr==0 ); 2862 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2863 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2864 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2865 goto exit_create_index; 2866 } 2867 #ifndef SQLITE_OMIT_VIEW 2868 if( pTab->pSelect ){ 2869 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2870 goto exit_create_index; 2871 } 2872 #endif 2873 #ifndef SQLITE_OMIT_VIRTUALTABLE 2874 if( IsVirtual(pTab) ){ 2875 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2876 goto exit_create_index; 2877 } 2878 #endif 2879 2880 /* 2881 ** Find the name of the index. Make sure there is not already another 2882 ** index or table with the same name. 2883 ** 2884 ** Exception: If we are reading the names of permanent indices from the 2885 ** sqlite_master table (because some other process changed the schema) and 2886 ** one of the index names collides with the name of a temporary table or 2887 ** index, then we will continue to process this index. 2888 ** 2889 ** If pName==0 it means that we are 2890 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2891 ** own name. 2892 */ 2893 if( pName ){ 2894 zName = sqlite3NameFromToken(db, pName); 2895 if( zName==0 ) goto exit_create_index; 2896 assert( pName->z!=0 ); 2897 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2898 goto exit_create_index; 2899 } 2900 if( !db->init.busy ){ 2901 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2902 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2903 goto exit_create_index; 2904 } 2905 } 2906 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2907 if( !ifNotExist ){ 2908 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2909 }else{ 2910 assert( !db->init.busy ); 2911 sqlite3CodeVerifySchema(pParse, iDb); 2912 } 2913 goto exit_create_index; 2914 } 2915 }else{ 2916 int n; 2917 Index *pLoop; 2918 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2919 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2920 if( zName==0 ){ 2921 goto exit_create_index; 2922 } 2923 } 2924 2925 /* Check for authorization to create an index. 2926 */ 2927 #ifndef SQLITE_OMIT_AUTHORIZATION 2928 { 2929 const char *zDb = pDb->zName; 2930 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2931 goto exit_create_index; 2932 } 2933 i = SQLITE_CREATE_INDEX; 2934 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2935 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2936 goto exit_create_index; 2937 } 2938 } 2939 #endif 2940 2941 /* If pList==0, it means this routine was called to make a primary 2942 ** key out of the last column added to the table under construction. 2943 ** So create a fake list to simulate this. 2944 */ 2945 if( pList==0 ){ 2946 pList = sqlite3ExprListAppend(pParse, 0, 0); 2947 if( pList==0 ) goto exit_create_index; 2948 pList->a[0].zName = sqlite3DbStrDup(pParse->db, 2949 pTab->aCol[pTab->nCol-1].zName); 2950 pList->a[0].sortOrder = (u8)sortOrder; 2951 } 2952 2953 /* Figure out how many bytes of space are required to store explicitly 2954 ** specified collation sequence names. 2955 */ 2956 for(i=0; i<pList->nExpr; i++){ 2957 Expr *pExpr = pList->a[i].pExpr; 2958 if( pExpr ){ 2959 assert( pExpr->op==TK_COLLATE ); 2960 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 2961 } 2962 } 2963 2964 /* 2965 ** Allocate the index structure. 2966 */ 2967 nName = sqlite3Strlen30(zName); 2968 nExtraCol = pPk ? pPk->nKeyCol : 1; 2969 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 2970 nName + nExtra + 1, &zExtra); 2971 if( db->mallocFailed ){ 2972 goto exit_create_index; 2973 } 2974 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 2975 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 2976 pIndex->zName = zExtra; 2977 zExtra += nName + 1; 2978 memcpy(pIndex->zName, zName, nName+1); 2979 pIndex->pTable = pTab; 2980 pIndex->onError = (u8)onError; 2981 pIndex->uniqNotNull = onError!=OE_None; 2982 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 2983 pIndex->pSchema = db->aDb[iDb].pSchema; 2984 pIndex->nKeyCol = pList->nExpr; 2985 if( pPIWhere ){ 2986 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 2987 pIndex->pPartIdxWhere = pPIWhere; 2988 pPIWhere = 0; 2989 } 2990 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2991 2992 /* Check to see if we should honor DESC requests on index columns 2993 */ 2994 if( pDb->pSchema->file_format>=4 ){ 2995 sortOrderMask = -1; /* Honor DESC */ 2996 }else{ 2997 sortOrderMask = 0; /* Ignore DESC */ 2998 } 2999 3000 /* Scan the names of the columns of the table to be indexed and 3001 ** load the column indices into the Index structure. Report an error 3002 ** if any column is not found. 3003 ** 3004 ** TODO: Add a test to make sure that the same column is not named 3005 ** more than once within the same index. Only the first instance of 3006 ** the column will ever be used by the optimizer. Note that using the 3007 ** same column more than once cannot be an error because that would 3008 ** break backwards compatibility - it needs to be a warning. 3009 */ 3010 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3011 const char *zColName = pListItem->zName; 3012 int requestedSortOrder; 3013 char *zColl; /* Collation sequence name */ 3014 3015 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 3016 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 3017 } 3018 if( j>=pTab->nCol ){ 3019 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 3020 pTab->zName, zColName); 3021 pParse->checkSchema = 1; 3022 goto exit_create_index; 3023 } 3024 assert( pTab->nCol<=0x7fff && j<=0x7fff ); 3025 pIndex->aiColumn[i] = (i16)j; 3026 if( pListItem->pExpr ){ 3027 int nColl; 3028 assert( pListItem->pExpr->op==TK_COLLATE ); 3029 zColl = pListItem->pExpr->u.zToken; 3030 nColl = sqlite3Strlen30(zColl) + 1; 3031 assert( nExtra>=nColl ); 3032 memcpy(zExtra, zColl, nColl); 3033 zColl = zExtra; 3034 zExtra += nColl; 3035 nExtra -= nColl; 3036 }else{ 3037 zColl = pTab->aCol[j].zColl; 3038 if( !zColl ) zColl = "BINARY"; 3039 } 3040 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3041 goto exit_create_index; 3042 } 3043 pIndex->azColl[i] = zColl; 3044 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3045 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3046 if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0; 3047 } 3048 if( pPk ){ 3049 for(j=0; j<pPk->nKeyCol; j++){ 3050 int x = pPk->aiColumn[j]; 3051 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3052 pIndex->nColumn--; 3053 }else{ 3054 pIndex->aiColumn[i] = x; 3055 pIndex->azColl[i] = pPk->azColl[j]; 3056 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3057 i++; 3058 } 3059 } 3060 assert( i==pIndex->nColumn ); 3061 }else{ 3062 pIndex->aiColumn[i] = -1; 3063 pIndex->azColl[i] = "BINARY"; 3064 } 3065 sqlite3DefaultRowEst(pIndex); 3066 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3067 3068 if( pTab==pParse->pNewTable ){ 3069 /* This routine has been called to create an automatic index as a 3070 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3071 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3072 ** i.e. one of: 3073 ** 3074 ** CREATE TABLE t(x PRIMARY KEY, y); 3075 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3076 ** 3077 ** Either way, check to see if the table already has such an index. If 3078 ** so, don't bother creating this one. This only applies to 3079 ** automatically created indices. Users can do as they wish with 3080 ** explicit indices. 3081 ** 3082 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3083 ** (and thus suppressing the second one) even if they have different 3084 ** sort orders. 3085 ** 3086 ** If there are different collating sequences or if the columns of 3087 ** the constraint occur in different orders, then the constraints are 3088 ** considered distinct and both result in separate indices. 3089 */ 3090 Index *pIdx; 3091 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3092 int k; 3093 assert( pIdx->onError!=OE_None ); 3094 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3095 assert( pIndex->onError!=OE_None ); 3096 3097 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3098 for(k=0; k<pIdx->nKeyCol; k++){ 3099 const char *z1; 3100 const char *z2; 3101 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3102 z1 = pIdx->azColl[k]; 3103 z2 = pIndex->azColl[k]; 3104 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3105 } 3106 if( k==pIdx->nKeyCol ){ 3107 if( pIdx->onError!=pIndex->onError ){ 3108 /* This constraint creates the same index as a previous 3109 ** constraint specified somewhere in the CREATE TABLE statement. 3110 ** However the ON CONFLICT clauses are different. If both this 3111 ** constraint and the previous equivalent constraint have explicit 3112 ** ON CONFLICT clauses this is an error. Otherwise, use the 3113 ** explicitly specified behavior for the index. 3114 */ 3115 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3116 sqlite3ErrorMsg(pParse, 3117 "conflicting ON CONFLICT clauses specified", 0); 3118 } 3119 if( pIdx->onError==OE_Default ){ 3120 pIdx->onError = pIndex->onError; 3121 } 3122 } 3123 goto exit_create_index; 3124 } 3125 } 3126 } 3127 3128 /* Link the new Index structure to its table and to the other 3129 ** in-memory database structures. 3130 */ 3131 if( db->init.busy ){ 3132 Index *p; 3133 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3134 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3135 pIndex->zName, sqlite3Strlen30(pIndex->zName), 3136 pIndex); 3137 if( p ){ 3138 assert( p==pIndex ); /* Malloc must have failed */ 3139 db->mallocFailed = 1; 3140 goto exit_create_index; 3141 } 3142 db->flags |= SQLITE_InternChanges; 3143 if( pTblName!=0 ){ 3144 pIndex->tnum = db->init.newTnum; 3145 } 3146 } 3147 3148 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3149 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3150 ** emit code to allocate the index rootpage on disk and make an entry for 3151 ** the index in the sqlite_master table and populate the index with 3152 ** content. But, do not do this if we are simply reading the sqlite_master 3153 ** table to parse the schema, or if this index is the PRIMARY KEY index 3154 ** of a WITHOUT ROWID table. 3155 ** 3156 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3157 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3158 ** has just been created, it contains no data and the index initialization 3159 ** step can be skipped. 3160 */ 3161 else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){ 3162 Vdbe *v; 3163 char *zStmt; 3164 int iMem = ++pParse->nMem; 3165 3166 v = sqlite3GetVdbe(pParse); 3167 if( v==0 ) goto exit_create_index; 3168 3169 3170 /* Create the rootpage for the index 3171 */ 3172 sqlite3BeginWriteOperation(pParse, 1, iDb); 3173 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3174 3175 /* Gather the complete text of the CREATE INDEX statement into 3176 ** the zStmt variable 3177 */ 3178 if( pStart ){ 3179 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3180 if( pName->z[n-1]==';' ) n--; 3181 /* A named index with an explicit CREATE INDEX statement */ 3182 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3183 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3184 }else{ 3185 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3186 /* zStmt = sqlite3MPrintf(""); */ 3187 zStmt = 0; 3188 } 3189 3190 /* Add an entry in sqlite_master for this index 3191 */ 3192 sqlite3NestedParse(pParse, 3193 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3194 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3195 pIndex->zName, 3196 pTab->zName, 3197 iMem, 3198 zStmt 3199 ); 3200 sqlite3DbFree(db, zStmt); 3201 3202 /* Fill the index with data and reparse the schema. Code an OP_Expire 3203 ** to invalidate all pre-compiled statements. 3204 */ 3205 if( pTblName ){ 3206 sqlite3RefillIndex(pParse, pIndex, iMem); 3207 sqlite3ChangeCookie(pParse, iDb); 3208 sqlite3VdbeAddParseSchemaOp(v, iDb, 3209 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3210 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3211 } 3212 } 3213 3214 /* When adding an index to the list of indices for a table, make 3215 ** sure all indices labeled OE_Replace come after all those labeled 3216 ** OE_Ignore. This is necessary for the correct constraint check 3217 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3218 ** UPDATE and INSERT statements. 3219 */ 3220 if( db->init.busy || pTblName==0 ){ 3221 if( onError!=OE_Replace || pTab->pIndex==0 3222 || pTab->pIndex->onError==OE_Replace){ 3223 pIndex->pNext = pTab->pIndex; 3224 pTab->pIndex = pIndex; 3225 }else{ 3226 Index *pOther = pTab->pIndex; 3227 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3228 pOther = pOther->pNext; 3229 } 3230 pIndex->pNext = pOther->pNext; 3231 pOther->pNext = pIndex; 3232 } 3233 pRet = pIndex; 3234 pIndex = 0; 3235 } 3236 3237 /* Clean up before exiting */ 3238 exit_create_index: 3239 if( pIndex ) freeIndex(db, pIndex); 3240 sqlite3ExprDelete(db, pPIWhere); 3241 sqlite3ExprListDelete(db, pList); 3242 sqlite3SrcListDelete(db, pTblName); 3243 sqlite3DbFree(db, zName); 3244 return pRet; 3245 } 3246 3247 /* 3248 ** Fill the Index.aiRowEst[] array with default information - information 3249 ** to be used when we have not run the ANALYZE command. 3250 ** 3251 ** aiRowEst[0] is suppose to contain the number of elements in the index. 3252 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3253 ** number of rows in the table that match any particular value of the 3254 ** first column of the index. aiRowEst[2] is an estimate of the number 3255 ** of rows that match any particular combination of the first 2 columns 3256 ** of the index. And so forth. It must always be the case that 3257 * 3258 ** aiRowEst[N]<=aiRowEst[N-1] 3259 ** aiRowEst[N]>=1 3260 ** 3261 ** Apart from that, we have little to go on besides intuition as to 3262 ** how aiRowEst[] should be initialized. The numbers generated here 3263 ** are based on typical values found in actual indices. 3264 */ 3265 void sqlite3DefaultRowEst(Index *pIdx){ 3266 /* 10, 9, 8, 7, 6 */ 3267 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3268 LogEst *a = pIdx->aiRowLogEst; 3269 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3270 int i; 3271 3272 /* Set the first entry (number of rows in the index) to the estimated 3273 ** number of rows in the table. Or 10, if the estimated number of rows 3274 ** in the table is less than that. */ 3275 a[0] = pIdx->pTable->nRowLogEst; 3276 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3277 3278 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3279 ** 6 and each subsequent value (if any) is 5. */ 3280 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3281 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3282 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3283 } 3284 3285 assert( 0==sqlite3LogEst(1) ); 3286 if( pIdx->onError!=OE_None ) a[pIdx->nKeyCol] = 0; 3287 } 3288 3289 /* 3290 ** This routine will drop an existing named index. This routine 3291 ** implements the DROP INDEX statement. 3292 */ 3293 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3294 Index *pIndex; 3295 Vdbe *v; 3296 sqlite3 *db = pParse->db; 3297 int iDb; 3298 3299 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3300 if( db->mallocFailed ){ 3301 goto exit_drop_index; 3302 } 3303 assert( pName->nSrc==1 ); 3304 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3305 goto exit_drop_index; 3306 } 3307 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3308 if( pIndex==0 ){ 3309 if( !ifExists ){ 3310 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3311 }else{ 3312 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3313 } 3314 pParse->checkSchema = 1; 3315 goto exit_drop_index; 3316 } 3317 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3318 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3319 "or PRIMARY KEY constraint cannot be dropped", 0); 3320 goto exit_drop_index; 3321 } 3322 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3323 #ifndef SQLITE_OMIT_AUTHORIZATION 3324 { 3325 int code = SQLITE_DROP_INDEX; 3326 Table *pTab = pIndex->pTable; 3327 const char *zDb = db->aDb[iDb].zName; 3328 const char *zTab = SCHEMA_TABLE(iDb); 3329 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3330 goto exit_drop_index; 3331 } 3332 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3333 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3334 goto exit_drop_index; 3335 } 3336 } 3337 #endif 3338 3339 /* Generate code to remove the index and from the master table */ 3340 v = sqlite3GetVdbe(pParse); 3341 if( v ){ 3342 sqlite3BeginWriteOperation(pParse, 1, iDb); 3343 sqlite3NestedParse(pParse, 3344 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3345 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3346 ); 3347 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3348 sqlite3ChangeCookie(pParse, iDb); 3349 destroyRootPage(pParse, pIndex->tnum, iDb); 3350 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3351 } 3352 3353 exit_drop_index: 3354 sqlite3SrcListDelete(db, pName); 3355 } 3356 3357 /* 3358 ** pArray is a pointer to an array of objects. Each object in the 3359 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3360 ** to extend the array so that there is space for a new object at the end. 3361 ** 3362 ** When this function is called, *pnEntry contains the current size of 3363 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3364 ** in total). 3365 ** 3366 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3367 ** space allocated for the new object is zeroed, *pnEntry updated to 3368 ** reflect the new size of the array and a pointer to the new allocation 3369 ** returned. *pIdx is set to the index of the new array entry in this case. 3370 ** 3371 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3372 ** unchanged and a copy of pArray returned. 3373 */ 3374 void *sqlite3ArrayAllocate( 3375 sqlite3 *db, /* Connection to notify of malloc failures */ 3376 void *pArray, /* Array of objects. Might be reallocated */ 3377 int szEntry, /* Size of each object in the array */ 3378 int *pnEntry, /* Number of objects currently in use */ 3379 int *pIdx /* Write the index of a new slot here */ 3380 ){ 3381 char *z; 3382 int n = *pnEntry; 3383 if( (n & (n-1))==0 ){ 3384 int sz = (n==0) ? 1 : 2*n; 3385 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3386 if( pNew==0 ){ 3387 *pIdx = -1; 3388 return pArray; 3389 } 3390 pArray = pNew; 3391 } 3392 z = (char*)pArray; 3393 memset(&z[n * szEntry], 0, szEntry); 3394 *pIdx = n; 3395 ++*pnEntry; 3396 return pArray; 3397 } 3398 3399 /* 3400 ** Append a new element to the given IdList. Create a new IdList if 3401 ** need be. 3402 ** 3403 ** A new IdList is returned, or NULL if malloc() fails. 3404 */ 3405 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3406 int i; 3407 if( pList==0 ){ 3408 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3409 if( pList==0 ) return 0; 3410 } 3411 pList->a = sqlite3ArrayAllocate( 3412 db, 3413 pList->a, 3414 sizeof(pList->a[0]), 3415 &pList->nId, 3416 &i 3417 ); 3418 if( i<0 ){ 3419 sqlite3IdListDelete(db, pList); 3420 return 0; 3421 } 3422 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3423 return pList; 3424 } 3425 3426 /* 3427 ** Delete an IdList. 3428 */ 3429 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3430 int i; 3431 if( pList==0 ) return; 3432 for(i=0; i<pList->nId; i++){ 3433 sqlite3DbFree(db, pList->a[i].zName); 3434 } 3435 sqlite3DbFree(db, pList->a); 3436 sqlite3DbFree(db, pList); 3437 } 3438 3439 /* 3440 ** Return the index in pList of the identifier named zId. Return -1 3441 ** if not found. 3442 */ 3443 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3444 int i; 3445 if( pList==0 ) return -1; 3446 for(i=0; i<pList->nId; i++){ 3447 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3448 } 3449 return -1; 3450 } 3451 3452 /* 3453 ** Expand the space allocated for the given SrcList object by 3454 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3455 ** New slots are zeroed. 3456 ** 3457 ** For example, suppose a SrcList initially contains two entries: A,B. 3458 ** To append 3 new entries onto the end, do this: 3459 ** 3460 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3461 ** 3462 ** After the call above it would contain: A, B, nil, nil, nil. 3463 ** If the iStart argument had been 1 instead of 2, then the result 3464 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3465 ** the iStart value would be 0. The result then would 3466 ** be: nil, nil, nil, A, B. 3467 ** 3468 ** If a memory allocation fails the SrcList is unchanged. The 3469 ** db->mallocFailed flag will be set to true. 3470 */ 3471 SrcList *sqlite3SrcListEnlarge( 3472 sqlite3 *db, /* Database connection to notify of OOM errors */ 3473 SrcList *pSrc, /* The SrcList to be enlarged */ 3474 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3475 int iStart /* Index in pSrc->a[] of first new slot */ 3476 ){ 3477 int i; 3478 3479 /* Sanity checking on calling parameters */ 3480 assert( iStart>=0 ); 3481 assert( nExtra>=1 ); 3482 assert( pSrc!=0 ); 3483 assert( iStart<=pSrc->nSrc ); 3484 3485 /* Allocate additional space if needed */ 3486 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3487 SrcList *pNew; 3488 int nAlloc = pSrc->nSrc+nExtra; 3489 int nGot; 3490 pNew = sqlite3DbRealloc(db, pSrc, 3491 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3492 if( pNew==0 ){ 3493 assert( db->mallocFailed ); 3494 return pSrc; 3495 } 3496 pSrc = pNew; 3497 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3498 pSrc->nAlloc = nGot; 3499 } 3500 3501 /* Move existing slots that come after the newly inserted slots 3502 ** out of the way */ 3503 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3504 pSrc->a[i+nExtra] = pSrc->a[i]; 3505 } 3506 pSrc->nSrc += nExtra; 3507 3508 /* Zero the newly allocated slots */ 3509 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3510 for(i=iStart; i<iStart+nExtra; i++){ 3511 pSrc->a[i].iCursor = -1; 3512 } 3513 3514 /* Return a pointer to the enlarged SrcList */ 3515 return pSrc; 3516 } 3517 3518 3519 /* 3520 ** Append a new table name to the given SrcList. Create a new SrcList if 3521 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3522 ** 3523 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3524 ** SrcList might be the same as the SrcList that was input or it might be 3525 ** a new one. If an OOM error does occurs, then the prior value of pList 3526 ** that is input to this routine is automatically freed. 3527 ** 3528 ** If pDatabase is not null, it means that the table has an optional 3529 ** database name prefix. Like this: "database.table". The pDatabase 3530 ** points to the table name and the pTable points to the database name. 3531 ** The SrcList.a[].zName field is filled with the table name which might 3532 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3533 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3534 ** or with NULL if no database is specified. 3535 ** 3536 ** In other words, if call like this: 3537 ** 3538 ** sqlite3SrcListAppend(D,A,B,0); 3539 ** 3540 ** Then B is a table name and the database name is unspecified. If called 3541 ** like this: 3542 ** 3543 ** sqlite3SrcListAppend(D,A,B,C); 3544 ** 3545 ** Then C is the table name and B is the database name. If C is defined 3546 ** then so is B. In other words, we never have a case where: 3547 ** 3548 ** sqlite3SrcListAppend(D,A,0,C); 3549 ** 3550 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3551 ** before being added to the SrcList. 3552 */ 3553 SrcList *sqlite3SrcListAppend( 3554 sqlite3 *db, /* Connection to notify of malloc failures */ 3555 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3556 Token *pTable, /* Table to append */ 3557 Token *pDatabase /* Database of the table */ 3558 ){ 3559 struct SrcList_item *pItem; 3560 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3561 if( pList==0 ){ 3562 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3563 if( pList==0 ) return 0; 3564 pList->nAlloc = 1; 3565 } 3566 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3567 if( db->mallocFailed ){ 3568 sqlite3SrcListDelete(db, pList); 3569 return 0; 3570 } 3571 pItem = &pList->a[pList->nSrc-1]; 3572 if( pDatabase && pDatabase->z==0 ){ 3573 pDatabase = 0; 3574 } 3575 if( pDatabase ){ 3576 Token *pTemp = pDatabase; 3577 pDatabase = pTable; 3578 pTable = pTemp; 3579 } 3580 pItem->zName = sqlite3NameFromToken(db, pTable); 3581 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3582 return pList; 3583 } 3584 3585 /* 3586 ** Assign VdbeCursor index numbers to all tables in a SrcList 3587 */ 3588 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3589 int i; 3590 struct SrcList_item *pItem; 3591 assert(pList || pParse->db->mallocFailed ); 3592 if( pList ){ 3593 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3594 if( pItem->iCursor>=0 ) break; 3595 pItem->iCursor = pParse->nTab++; 3596 if( pItem->pSelect ){ 3597 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3598 } 3599 } 3600 } 3601 } 3602 3603 /* 3604 ** Delete an entire SrcList including all its substructure. 3605 */ 3606 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3607 int i; 3608 struct SrcList_item *pItem; 3609 if( pList==0 ) return; 3610 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3611 sqlite3DbFree(db, pItem->zDatabase); 3612 sqlite3DbFree(db, pItem->zName); 3613 sqlite3DbFree(db, pItem->zAlias); 3614 sqlite3DbFree(db, pItem->zIndex); 3615 sqlite3DeleteTable(db, pItem->pTab); 3616 sqlite3SelectDelete(db, pItem->pSelect); 3617 sqlite3ExprDelete(db, pItem->pOn); 3618 sqlite3IdListDelete(db, pItem->pUsing); 3619 } 3620 sqlite3DbFree(db, pList); 3621 } 3622 3623 /* 3624 ** This routine is called by the parser to add a new term to the 3625 ** end of a growing FROM clause. The "p" parameter is the part of 3626 ** the FROM clause that has already been constructed. "p" is NULL 3627 ** if this is the first term of the FROM clause. pTable and pDatabase 3628 ** are the name of the table and database named in the FROM clause term. 3629 ** pDatabase is NULL if the database name qualifier is missing - the 3630 ** usual case. If the term has a alias, then pAlias points to the 3631 ** alias token. If the term is a subquery, then pSubquery is the 3632 ** SELECT statement that the subquery encodes. The pTable and 3633 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3634 ** parameters are the content of the ON and USING clauses. 3635 ** 3636 ** Return a new SrcList which encodes is the FROM with the new 3637 ** term added. 3638 */ 3639 SrcList *sqlite3SrcListAppendFromTerm( 3640 Parse *pParse, /* Parsing context */ 3641 SrcList *p, /* The left part of the FROM clause already seen */ 3642 Token *pTable, /* Name of the table to add to the FROM clause */ 3643 Token *pDatabase, /* Name of the database containing pTable */ 3644 Token *pAlias, /* The right-hand side of the AS subexpression */ 3645 Select *pSubquery, /* A subquery used in place of a table name */ 3646 Expr *pOn, /* The ON clause of a join */ 3647 IdList *pUsing /* The USING clause of a join */ 3648 ){ 3649 struct SrcList_item *pItem; 3650 sqlite3 *db = pParse->db; 3651 if( !p && (pOn || pUsing) ){ 3652 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3653 (pOn ? "ON" : "USING") 3654 ); 3655 goto append_from_error; 3656 } 3657 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3658 if( p==0 || NEVER(p->nSrc==0) ){ 3659 goto append_from_error; 3660 } 3661 pItem = &p->a[p->nSrc-1]; 3662 assert( pAlias!=0 ); 3663 if( pAlias->n ){ 3664 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3665 } 3666 pItem->pSelect = pSubquery; 3667 pItem->pOn = pOn; 3668 pItem->pUsing = pUsing; 3669 return p; 3670 3671 append_from_error: 3672 assert( p==0 ); 3673 sqlite3ExprDelete(db, pOn); 3674 sqlite3IdListDelete(db, pUsing); 3675 sqlite3SelectDelete(db, pSubquery); 3676 return 0; 3677 } 3678 3679 /* 3680 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3681 ** element of the source-list passed as the second argument. 3682 */ 3683 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3684 assert( pIndexedBy!=0 ); 3685 if( p && ALWAYS(p->nSrc>0) ){ 3686 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3687 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3688 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3689 /* A "NOT INDEXED" clause was supplied. See parse.y 3690 ** construct "indexed_opt" for details. */ 3691 pItem->notIndexed = 1; 3692 }else{ 3693 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3694 } 3695 } 3696 } 3697 3698 /* 3699 ** When building up a FROM clause in the parser, the join operator 3700 ** is initially attached to the left operand. But the code generator 3701 ** expects the join operator to be on the right operand. This routine 3702 ** Shifts all join operators from left to right for an entire FROM 3703 ** clause. 3704 ** 3705 ** Example: Suppose the join is like this: 3706 ** 3707 ** A natural cross join B 3708 ** 3709 ** The operator is "natural cross join". The A and B operands are stored 3710 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3711 ** operator with A. This routine shifts that operator over to B. 3712 */ 3713 void sqlite3SrcListShiftJoinType(SrcList *p){ 3714 if( p ){ 3715 int i; 3716 assert( p->a || p->nSrc==0 ); 3717 for(i=p->nSrc-1; i>0; i--){ 3718 p->a[i].jointype = p->a[i-1].jointype; 3719 } 3720 p->a[0].jointype = 0; 3721 } 3722 } 3723 3724 /* 3725 ** Begin a transaction 3726 */ 3727 void sqlite3BeginTransaction(Parse *pParse, int type){ 3728 sqlite3 *db; 3729 Vdbe *v; 3730 int i; 3731 3732 assert( pParse!=0 ); 3733 db = pParse->db; 3734 assert( db!=0 ); 3735 /* if( db->aDb[0].pBt==0 ) return; */ 3736 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3737 return; 3738 } 3739 v = sqlite3GetVdbe(pParse); 3740 if( !v ) return; 3741 if( type!=TK_DEFERRED ){ 3742 for(i=0; i<db->nDb; i++){ 3743 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3744 sqlite3VdbeUsesBtree(v, i); 3745 } 3746 } 3747 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3748 } 3749 3750 /* 3751 ** Commit a transaction 3752 */ 3753 void sqlite3CommitTransaction(Parse *pParse){ 3754 Vdbe *v; 3755 3756 assert( pParse!=0 ); 3757 assert( pParse->db!=0 ); 3758 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3759 return; 3760 } 3761 v = sqlite3GetVdbe(pParse); 3762 if( v ){ 3763 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3764 } 3765 } 3766 3767 /* 3768 ** Rollback a transaction 3769 */ 3770 void sqlite3RollbackTransaction(Parse *pParse){ 3771 Vdbe *v; 3772 3773 assert( pParse!=0 ); 3774 assert( pParse->db!=0 ); 3775 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3776 return; 3777 } 3778 v = sqlite3GetVdbe(pParse); 3779 if( v ){ 3780 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3781 } 3782 } 3783 3784 /* 3785 ** This function is called by the parser when it parses a command to create, 3786 ** release or rollback an SQL savepoint. 3787 */ 3788 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3789 char *zName = sqlite3NameFromToken(pParse->db, pName); 3790 if( zName ){ 3791 Vdbe *v = sqlite3GetVdbe(pParse); 3792 #ifndef SQLITE_OMIT_AUTHORIZATION 3793 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3794 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3795 #endif 3796 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3797 sqlite3DbFree(pParse->db, zName); 3798 return; 3799 } 3800 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3801 } 3802 } 3803 3804 /* 3805 ** Make sure the TEMP database is open and available for use. Return 3806 ** the number of errors. Leave any error messages in the pParse structure. 3807 */ 3808 int sqlite3OpenTempDatabase(Parse *pParse){ 3809 sqlite3 *db = pParse->db; 3810 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3811 int rc; 3812 Btree *pBt; 3813 static const int flags = 3814 SQLITE_OPEN_READWRITE | 3815 SQLITE_OPEN_CREATE | 3816 SQLITE_OPEN_EXCLUSIVE | 3817 SQLITE_OPEN_DELETEONCLOSE | 3818 SQLITE_OPEN_TEMP_DB; 3819 3820 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 3821 if( rc!=SQLITE_OK ){ 3822 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3823 "file for storing temporary tables"); 3824 pParse->rc = rc; 3825 return 1; 3826 } 3827 db->aDb[1].pBt = pBt; 3828 assert( db->aDb[1].pSchema ); 3829 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3830 db->mallocFailed = 1; 3831 return 1; 3832 } 3833 } 3834 return 0; 3835 } 3836 3837 /* 3838 ** Record the fact that the schema cookie will need to be verified 3839 ** for database iDb. The code to actually verify the schema cookie 3840 ** will occur at the end of the top-level VDBE and will be generated 3841 ** later, by sqlite3FinishCoding(). 3842 */ 3843 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3844 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3845 sqlite3 *db = pToplevel->db; 3846 yDbMask mask; 3847 3848 assert( iDb>=0 && iDb<db->nDb ); 3849 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3850 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3851 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3852 mask = ((yDbMask)1)<<iDb; 3853 if( (pToplevel->cookieMask & mask)==0 ){ 3854 pToplevel->cookieMask |= mask; 3855 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3856 if( !OMIT_TEMPDB && iDb==1 ){ 3857 sqlite3OpenTempDatabase(pToplevel); 3858 } 3859 } 3860 } 3861 3862 /* 3863 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3864 ** attached database. Otherwise, invoke it for the database named zDb only. 3865 */ 3866 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3867 sqlite3 *db = pParse->db; 3868 int i; 3869 for(i=0; i<db->nDb; i++){ 3870 Db *pDb = &db->aDb[i]; 3871 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3872 sqlite3CodeVerifySchema(pParse, i); 3873 } 3874 } 3875 } 3876 3877 /* 3878 ** Generate VDBE code that prepares for doing an operation that 3879 ** might change the database. 3880 ** 3881 ** This routine starts a new transaction if we are not already within 3882 ** a transaction. If we are already within a transaction, then a checkpoint 3883 ** is set if the setStatement parameter is true. A checkpoint should 3884 ** be set for operations that might fail (due to a constraint) part of 3885 ** the way through and which will need to undo some writes without having to 3886 ** rollback the whole transaction. For operations where all constraints 3887 ** can be checked before any changes are made to the database, it is never 3888 ** necessary to undo a write and the checkpoint should not be set. 3889 */ 3890 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3891 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3892 sqlite3CodeVerifySchema(pParse, iDb); 3893 pToplevel->writeMask |= ((yDbMask)1)<<iDb; 3894 pToplevel->isMultiWrite |= setStatement; 3895 } 3896 3897 /* 3898 ** Indicate that the statement currently under construction might write 3899 ** more than one entry (example: deleting one row then inserting another, 3900 ** inserting multiple rows in a table, or inserting a row and index entries.) 3901 ** If an abort occurs after some of these writes have completed, then it will 3902 ** be necessary to undo the completed writes. 3903 */ 3904 void sqlite3MultiWrite(Parse *pParse){ 3905 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3906 pToplevel->isMultiWrite = 1; 3907 } 3908 3909 /* 3910 ** The code generator calls this routine if is discovers that it is 3911 ** possible to abort a statement prior to completion. In order to 3912 ** perform this abort without corrupting the database, we need to make 3913 ** sure that the statement is protected by a statement transaction. 3914 ** 3915 ** Technically, we only need to set the mayAbort flag if the 3916 ** isMultiWrite flag was previously set. There is a time dependency 3917 ** such that the abort must occur after the multiwrite. This makes 3918 ** some statements involving the REPLACE conflict resolution algorithm 3919 ** go a little faster. But taking advantage of this time dependency 3920 ** makes it more difficult to prove that the code is correct (in 3921 ** particular, it prevents us from writing an effective 3922 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3923 ** to take the safe route and skip the optimization. 3924 */ 3925 void sqlite3MayAbort(Parse *pParse){ 3926 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3927 pToplevel->mayAbort = 1; 3928 } 3929 3930 /* 3931 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3932 ** error. The onError parameter determines which (if any) of the statement 3933 ** and/or current transaction is rolled back. 3934 */ 3935 void sqlite3HaltConstraint( 3936 Parse *pParse, /* Parsing context */ 3937 int errCode, /* extended error code */ 3938 int onError, /* Constraint type */ 3939 char *p4, /* Error message */ 3940 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 3941 u8 p5Errmsg /* P5_ErrMsg type */ 3942 ){ 3943 Vdbe *v = sqlite3GetVdbe(pParse); 3944 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 3945 if( onError==OE_Abort ){ 3946 sqlite3MayAbort(pParse); 3947 } 3948 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 3949 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 3950 } 3951 3952 /* 3953 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 3954 */ 3955 void sqlite3UniqueConstraint( 3956 Parse *pParse, /* Parsing context */ 3957 int onError, /* Constraint type */ 3958 Index *pIdx /* The index that triggers the constraint */ 3959 ){ 3960 char *zErr; 3961 int j; 3962 StrAccum errMsg; 3963 Table *pTab = pIdx->pTable; 3964 3965 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 3966 errMsg.db = pParse->db; 3967 for(j=0; j<pIdx->nKeyCol; j++){ 3968 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 3969 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 3970 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 3971 sqlite3StrAccumAppend(&errMsg, ".", 1); 3972 sqlite3StrAccumAppendAll(&errMsg, zCol); 3973 } 3974 zErr = sqlite3StrAccumFinish(&errMsg); 3975 sqlite3HaltConstraint(pParse, 3976 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 3977 : SQLITE_CONSTRAINT_UNIQUE, 3978 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 3979 } 3980 3981 3982 /* 3983 ** Code an OP_Halt due to non-unique rowid. 3984 */ 3985 void sqlite3RowidConstraint( 3986 Parse *pParse, /* Parsing context */ 3987 int onError, /* Conflict resolution algorithm */ 3988 Table *pTab /* The table with the non-unique rowid */ 3989 ){ 3990 char *zMsg; 3991 int rc; 3992 if( pTab->iPKey>=0 ){ 3993 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 3994 pTab->aCol[pTab->iPKey].zName); 3995 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 3996 }else{ 3997 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 3998 rc = SQLITE_CONSTRAINT_ROWID; 3999 } 4000 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4001 P5_ConstraintUnique); 4002 } 4003 4004 /* 4005 ** Check to see if pIndex uses the collating sequence pColl. Return 4006 ** true if it does and false if it does not. 4007 */ 4008 #ifndef SQLITE_OMIT_REINDEX 4009 static int collationMatch(const char *zColl, Index *pIndex){ 4010 int i; 4011 assert( zColl!=0 ); 4012 for(i=0; i<pIndex->nColumn; i++){ 4013 const char *z = pIndex->azColl[i]; 4014 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4015 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4016 return 1; 4017 } 4018 } 4019 return 0; 4020 } 4021 #endif 4022 4023 /* 4024 ** Recompute all indices of pTab that use the collating sequence pColl. 4025 ** If pColl==0 then recompute all indices of pTab. 4026 */ 4027 #ifndef SQLITE_OMIT_REINDEX 4028 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4029 Index *pIndex; /* An index associated with pTab */ 4030 4031 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4032 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4033 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4034 sqlite3BeginWriteOperation(pParse, 0, iDb); 4035 sqlite3RefillIndex(pParse, pIndex, -1); 4036 } 4037 } 4038 } 4039 #endif 4040 4041 /* 4042 ** Recompute all indices of all tables in all databases where the 4043 ** indices use the collating sequence pColl. If pColl==0 then recompute 4044 ** all indices everywhere. 4045 */ 4046 #ifndef SQLITE_OMIT_REINDEX 4047 static void reindexDatabases(Parse *pParse, char const *zColl){ 4048 Db *pDb; /* A single database */ 4049 int iDb; /* The database index number */ 4050 sqlite3 *db = pParse->db; /* The database connection */ 4051 HashElem *k; /* For looping over tables in pDb */ 4052 Table *pTab; /* A table in the database */ 4053 4054 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4055 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4056 assert( pDb!=0 ); 4057 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4058 pTab = (Table*)sqliteHashData(k); 4059 reindexTable(pParse, pTab, zColl); 4060 } 4061 } 4062 } 4063 #endif 4064 4065 /* 4066 ** Generate code for the REINDEX command. 4067 ** 4068 ** REINDEX -- 1 4069 ** REINDEX <collation> -- 2 4070 ** REINDEX ?<database>.?<tablename> -- 3 4071 ** REINDEX ?<database>.?<indexname> -- 4 4072 ** 4073 ** Form 1 causes all indices in all attached databases to be rebuilt. 4074 ** Form 2 rebuilds all indices in all databases that use the named 4075 ** collating function. Forms 3 and 4 rebuild the named index or all 4076 ** indices associated with the named table. 4077 */ 4078 #ifndef SQLITE_OMIT_REINDEX 4079 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4080 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4081 char *z; /* Name of a table or index */ 4082 const char *zDb; /* Name of the database */ 4083 Table *pTab; /* A table in the database */ 4084 Index *pIndex; /* An index associated with pTab */ 4085 int iDb; /* The database index number */ 4086 sqlite3 *db = pParse->db; /* The database connection */ 4087 Token *pObjName; /* Name of the table or index to be reindexed */ 4088 4089 /* Read the database schema. If an error occurs, leave an error message 4090 ** and code in pParse and return NULL. */ 4091 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4092 return; 4093 } 4094 4095 if( pName1==0 ){ 4096 reindexDatabases(pParse, 0); 4097 return; 4098 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4099 char *zColl; 4100 assert( pName1->z ); 4101 zColl = sqlite3NameFromToken(pParse->db, pName1); 4102 if( !zColl ) return; 4103 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4104 if( pColl ){ 4105 reindexDatabases(pParse, zColl); 4106 sqlite3DbFree(db, zColl); 4107 return; 4108 } 4109 sqlite3DbFree(db, zColl); 4110 } 4111 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4112 if( iDb<0 ) return; 4113 z = sqlite3NameFromToken(db, pObjName); 4114 if( z==0 ) return; 4115 zDb = db->aDb[iDb].zName; 4116 pTab = sqlite3FindTable(db, z, zDb); 4117 if( pTab ){ 4118 reindexTable(pParse, pTab, 0); 4119 sqlite3DbFree(db, z); 4120 return; 4121 } 4122 pIndex = sqlite3FindIndex(db, z, zDb); 4123 sqlite3DbFree(db, z); 4124 if( pIndex ){ 4125 sqlite3BeginWriteOperation(pParse, 0, iDb); 4126 sqlite3RefillIndex(pParse, pIndex, -1); 4127 return; 4128 } 4129 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4130 } 4131 #endif 4132 4133 /* 4134 ** Return a KeyInfo structure that is appropriate for the given Index. 4135 ** 4136 ** The KeyInfo structure for an index is cached in the Index object. 4137 ** So there might be multiple references to the returned pointer. The 4138 ** caller should not try to modify the KeyInfo object. 4139 ** 4140 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4141 ** when it has finished using it. 4142 */ 4143 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4144 if( pParse->nErr ) return 0; 4145 #ifndef SQLITE_OMIT_SHARED_CACHE 4146 if( pIdx->pKeyInfo && pIdx->pKeyInfo->db!=pParse->db ){ 4147 sqlite3KeyInfoUnref(pIdx->pKeyInfo); 4148 pIdx->pKeyInfo = 0; 4149 } 4150 #endif 4151 if( pIdx->pKeyInfo==0 ){ 4152 int i; 4153 int nCol = pIdx->nColumn; 4154 int nKey = pIdx->nKeyCol; 4155 KeyInfo *pKey; 4156 if( pIdx->uniqNotNull ){ 4157 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4158 }else{ 4159 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4160 } 4161 if( pKey ){ 4162 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4163 for(i=0; i<nCol; i++){ 4164 char *zColl = pIdx->azColl[i]; 4165 assert( zColl!=0 ); 4166 pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 : 4167 sqlite3LocateCollSeq(pParse, zColl); 4168 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4169 } 4170 if( pParse->nErr ){ 4171 sqlite3KeyInfoUnref(pKey); 4172 }else{ 4173 pIdx->pKeyInfo = pKey; 4174 } 4175 } 4176 } 4177 return sqlite3KeyInfoRef(pIdx->pKeyInfo); 4178 } 4179 4180 #ifndef SQLITE_OMIT_CTE 4181 /* 4182 ** This routine is invoked once per CTE by the parser while parsing a 4183 ** WITH clause. 4184 */ 4185 With *sqlite3WithAdd( 4186 Parse *pParse, /* Parsing context */ 4187 With *pWith, /* Existing WITH clause, or NULL */ 4188 Token *pName, /* Name of the common-table */ 4189 ExprList *pArglist, /* Optional column name list for the table */ 4190 Select *pQuery /* Query used to initialize the table */ 4191 ){ 4192 sqlite3 *db = pParse->db; 4193 With *pNew; 4194 char *zName; 4195 4196 /* Check that the CTE name is unique within this WITH clause. If 4197 ** not, store an error in the Parse structure. */ 4198 zName = sqlite3NameFromToken(pParse->db, pName); 4199 if( zName && pWith ){ 4200 int i; 4201 for(i=0; i<pWith->nCte; i++){ 4202 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4203 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4204 } 4205 } 4206 } 4207 4208 if( pWith ){ 4209 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4210 pNew = sqlite3DbRealloc(db, pWith, nByte); 4211 }else{ 4212 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4213 } 4214 assert( zName!=0 || pNew==0 ); 4215 assert( db->mallocFailed==0 || pNew==0 ); 4216 4217 if( pNew==0 ){ 4218 sqlite3ExprListDelete(db, pArglist); 4219 sqlite3SelectDelete(db, pQuery); 4220 sqlite3DbFree(db, zName); 4221 pNew = pWith; 4222 }else{ 4223 pNew->a[pNew->nCte].pSelect = pQuery; 4224 pNew->a[pNew->nCte].pCols = pArglist; 4225 pNew->a[pNew->nCte].zName = zName; 4226 pNew->a[pNew->nCte].zErr = 0; 4227 pNew->nCte++; 4228 } 4229 4230 return pNew; 4231 } 4232 4233 /* 4234 ** Free the contents of the With object passed as the second argument. 4235 */ 4236 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4237 if( pWith ){ 4238 int i; 4239 for(i=0; i<pWith->nCte; i++){ 4240 struct Cte *pCte = &pWith->a[i]; 4241 sqlite3ExprListDelete(db, pCte->pCols); 4242 sqlite3SelectDelete(db, pCte->pSelect); 4243 sqlite3DbFree(db, pCte->zName); 4244 } 4245 sqlite3DbFree(db, pWith); 4246 } 4247 } 4248 #endif /* !defined(SQLITE_OMIT_CTE) */ 4249