xref: /sqlite-3.40.0/src/build.c (revision 42829635)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed.  Initialize the pParse structure as needed.
30 */
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32   pParse->explain = (u8)explainFlag;
33   pParse->nVar = 0;
34 }
35 
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42   int iDb;             /* The database containing the table to be locked */
43   int iTab;            /* The root page of the table to be locked */
44   u8 isWriteLock;      /* True for write lock.  False for a read lock */
45   const char *zName;   /* Name of the table */
46 };
47 
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired.  The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
58 void sqlite3TableLock(
59   Parse *pParse,     /* Parsing context */
60   int iDb,           /* Index of the database containing the table to lock */
61   int iTab,          /* Root page number of the table to be locked */
62   u8 isWriteLock,    /* True for a write lock */
63   const char *zName  /* Name of the table to be locked */
64 ){
65   Parse *pToplevel = sqlite3ParseToplevel(pParse);
66   int i;
67   int nBytes;
68   TableLock *p;
69   assert( iDb>=0 );
70 
71   for(i=0; i<pToplevel->nTableLock; i++){
72     p = &pToplevel->aTableLock[i];
73     if( p->iDb==iDb && p->iTab==iTab ){
74       p->isWriteLock = (p->isWriteLock || isWriteLock);
75       return;
76     }
77   }
78 
79   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80   pToplevel->aTableLock =
81       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82   if( pToplevel->aTableLock ){
83     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84     p->iDb = iDb;
85     p->iTab = iTab;
86     p->isWriteLock = isWriteLock;
87     p->zName = zName;
88   }else{
89     pToplevel->nTableLock = 0;
90     pToplevel->db->mallocFailed = 1;
91   }
92 }
93 
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
98 static void codeTableLocks(Parse *pParse){
99   int i;
100   Vdbe *pVdbe;
101 
102   pVdbe = sqlite3GetVdbe(pParse);
103   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104 
105   for(i=0; i<pParse->nTableLock; i++){
106     TableLock *p = &pParse->aTableLock[i];
107     int p1 = p->iDb;
108     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109                       p->zName, P4_STATIC);
110   }
111 }
112 #else
113   #define codeTableLocks(x)
114 #endif
115 
116 /*
117 ** This routine is called after a single SQL statement has been
118 ** parsed and a VDBE program to execute that statement has been
119 ** prepared.  This routine puts the finishing touches on the
120 ** VDBE program and resets the pParse structure for the next
121 ** parse.
122 **
123 ** Note that if an error occurred, it might be the case that
124 ** no VDBE code was generated.
125 */
126 void sqlite3FinishCoding(Parse *pParse){
127   sqlite3 *db;
128   Vdbe *v;
129 
130   db = pParse->db;
131   if( db->mallocFailed ) return;
132   if( pParse->nested ) return;
133   if( pParse->nErr ) return;
134 
135   /* Begin by generating some termination code at the end of the
136   ** vdbe program
137   */
138   v = sqlite3GetVdbe(pParse);
139   assert( !pParse->isMultiWrite
140        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
141   if( v ){
142     sqlite3VdbeAddOp0(v, OP_Halt);
143 
144     /* The cookie mask contains one bit for each database file open.
145     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
146     ** set for each database that is used.  Generate code to start a
147     ** transaction on each used database and to verify the schema cookie
148     ** on each used database.
149     */
150     if( pParse->cookieGoto>0 ){
151       yDbMask mask;
152       int iDb;
153       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
154       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
155         if( (mask & pParse->cookieMask)==0 ) continue;
156         sqlite3VdbeUsesBtree(v, iDb);
157         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
158         if( db->init.busy==0 ){
159           assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
160           sqlite3VdbeAddOp3(v, OP_VerifyCookie,
161                             iDb, pParse->cookieValue[iDb],
162                             db->aDb[iDb].pSchema->iGeneration);
163         }
164       }
165 #ifndef SQLITE_OMIT_VIRTUALTABLE
166       {
167         int i;
168         for(i=0; i<pParse->nVtabLock; i++){
169           char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
170           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
171         }
172         pParse->nVtabLock = 0;
173       }
174 #endif
175 
176       /* Once all the cookies have been verified and transactions opened,
177       ** obtain the required table-locks. This is a no-op unless the
178       ** shared-cache feature is enabled.
179       */
180       codeTableLocks(pParse);
181 
182       /* Initialize any AUTOINCREMENT data structures required.
183       */
184       sqlite3AutoincrementBegin(pParse);
185 
186       /* Finally, jump back to the beginning of the executable code. */
187       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
188     }
189   }
190 
191 
192   /* Get the VDBE program ready for execution
193   */
194   if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
195 #ifdef SQLITE_DEBUG
196     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
197     sqlite3VdbeTrace(v, trace);
198 #endif
199     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
200     /* A minimum of one cursor is required if autoincrement is used
201     *  See ticket [a696379c1f08866] */
202     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
203     sqlite3VdbeMakeReady(v, pParse);
204     pParse->rc = SQLITE_DONE;
205     pParse->colNamesSet = 0;
206   }else{
207     pParse->rc = SQLITE_ERROR;
208   }
209   pParse->nTab = 0;
210   pParse->nMem = 0;
211   pParse->nSet = 0;
212   pParse->nVar = 0;
213   pParse->cookieMask = 0;
214   pParse->cookieGoto = 0;
215 }
216 
217 /*
218 ** Run the parser and code generator recursively in order to generate
219 ** code for the SQL statement given onto the end of the pParse context
220 ** currently under construction.  When the parser is run recursively
221 ** this way, the final OP_Halt is not appended and other initialization
222 ** and finalization steps are omitted because those are handling by the
223 ** outermost parser.
224 **
225 ** Not everything is nestable.  This facility is designed to permit
226 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
227 ** care if you decide to try to use this routine for some other purposes.
228 */
229 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
230   va_list ap;
231   char *zSql;
232   char *zErrMsg = 0;
233   sqlite3 *db = pParse->db;
234 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
235   char saveBuf[SAVE_SZ];
236 
237   if( pParse->nErr ) return;
238   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
239   va_start(ap, zFormat);
240   zSql = sqlite3VMPrintf(db, zFormat, ap);
241   va_end(ap);
242   if( zSql==0 ){
243     return;   /* A malloc must have failed */
244   }
245   pParse->nested++;
246   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
247   memset(&pParse->nVar, 0, SAVE_SZ);
248   sqlite3RunParser(pParse, zSql, &zErrMsg);
249   sqlite3DbFree(db, zErrMsg);
250   sqlite3DbFree(db, zSql);
251   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
252   pParse->nested--;
253 }
254 
255 /*
256 ** Locate the in-memory structure that describes a particular database
257 ** table given the name of that table and (optionally) the name of the
258 ** database containing the table.  Return NULL if not found.
259 **
260 ** If zDatabase is 0, all databases are searched for the table and the
261 ** first matching table is returned.  (No checking for duplicate table
262 ** names is done.)  The search order is TEMP first, then MAIN, then any
263 ** auxiliary databases added using the ATTACH command.
264 **
265 ** See also sqlite3LocateTable().
266 */
267 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
268   Table *p = 0;
269   int i;
270   int nName;
271   assert( zName!=0 );
272   nName = sqlite3Strlen30(zName);
273   /* All mutexes are required for schema access.  Make sure we hold them. */
274   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
275   for(i=OMIT_TEMPDB; i<db->nDb; i++){
276     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
277     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
278     assert( sqlite3SchemaMutexHeld(db, j, 0) );
279     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
280     if( p ) break;
281   }
282   return p;
283 }
284 
285 /*
286 ** Locate the in-memory structure that describes a particular database
287 ** table given the name of that table and (optionally) the name of the
288 ** database containing the table.  Return NULL if not found.  Also leave an
289 ** error message in pParse->zErrMsg.
290 **
291 ** The difference between this routine and sqlite3FindTable() is that this
292 ** routine leaves an error message in pParse->zErrMsg where
293 ** sqlite3FindTable() does not.
294 */
295 Table *sqlite3LocateTable(
296   Parse *pParse,         /* context in which to report errors */
297   int isView,            /* True if looking for a VIEW rather than a TABLE */
298   const char *zName,     /* Name of the table we are looking for */
299   const char *zDbase     /* Name of the database.  Might be NULL */
300 ){
301   Table *p;
302 
303   /* Read the database schema. If an error occurs, leave an error message
304   ** and code in pParse and return NULL. */
305   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
306     return 0;
307   }
308 
309   p = sqlite3FindTable(pParse->db, zName, zDbase);
310   if( p==0 ){
311     const char *zMsg = isView ? "no such view" : "no such table";
312     if( zDbase ){
313       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
314     }else{
315       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
316     }
317     pParse->checkSchema = 1;
318   }
319   return p;
320 }
321 
322 /*
323 ** Locate the in-memory structure that describes
324 ** a particular index given the name of that index
325 ** and the name of the database that contains the index.
326 ** Return NULL if not found.
327 **
328 ** If zDatabase is 0, all databases are searched for the
329 ** table and the first matching index is returned.  (No checking
330 ** for duplicate index names is done.)  The search order is
331 ** TEMP first, then MAIN, then any auxiliary databases added
332 ** using the ATTACH command.
333 */
334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
335   Index *p = 0;
336   int i;
337   int nName = sqlite3Strlen30(zName);
338   /* All mutexes are required for schema access.  Make sure we hold them. */
339   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
340   for(i=OMIT_TEMPDB; i<db->nDb; i++){
341     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
342     Schema *pSchema = db->aDb[j].pSchema;
343     assert( pSchema );
344     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
345     assert( sqlite3SchemaMutexHeld(db, j, 0) );
346     p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
347     if( p ) break;
348   }
349   return p;
350 }
351 
352 /*
353 ** Reclaim the memory used by an index
354 */
355 static void freeIndex(sqlite3 *db, Index *p){
356 #ifndef SQLITE_OMIT_ANALYZE
357   sqlite3DeleteIndexSamples(db, p);
358 #endif
359   sqlite3DbFree(db, p->zColAff);
360   sqlite3DbFree(db, p);
361 }
362 
363 /*
364 ** For the index called zIdxName which is found in the database iDb,
365 ** unlike that index from its Table then remove the index from
366 ** the index hash table and free all memory structures associated
367 ** with the index.
368 */
369 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
370   Index *pIndex;
371   int len;
372   Hash *pHash;
373 
374   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
375   pHash = &db->aDb[iDb].pSchema->idxHash;
376   len = sqlite3Strlen30(zIdxName);
377   pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
378   if( ALWAYS(pIndex) ){
379     if( pIndex->pTable->pIndex==pIndex ){
380       pIndex->pTable->pIndex = pIndex->pNext;
381     }else{
382       Index *p;
383       /* Justification of ALWAYS();  The index must be on the list of
384       ** indices. */
385       p = pIndex->pTable->pIndex;
386       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
387       if( ALWAYS(p && p->pNext==pIndex) ){
388         p->pNext = pIndex->pNext;
389       }
390     }
391     freeIndex(db, pIndex);
392   }
393   db->flags |= SQLITE_InternChanges;
394 }
395 
396 /*
397 ** Erase all schema information from the in-memory hash tables of
398 ** a single database.  This routine is called to reclaim memory
399 ** before the database closes.  It is also called during a rollback
400 ** if there were schema changes during the transaction or if a
401 ** schema-cookie mismatch occurs.
402 **
403 ** If iDb<0 then reset the internal schema tables for all database
404 ** files.  If iDb>=0 then reset the internal schema for only the
405 ** single file indicated.
406 */
407 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
408   int i, j;
409   assert( iDb<db->nDb );
410 
411   if( iDb>=0 ){
412     /* Case 1:  Reset the single schema identified by iDb */
413     Db *pDb = &db->aDb[iDb];
414     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
415     assert( pDb->pSchema!=0 );
416     sqlite3SchemaClear(pDb->pSchema);
417 
418     /* If any database other than TEMP is reset, then also reset TEMP
419     ** since TEMP might be holding triggers that reference tables in the
420     ** other database.
421     */
422     if( iDb!=1 ){
423       pDb = &db->aDb[1];
424       assert( pDb->pSchema!=0 );
425       sqlite3SchemaClear(pDb->pSchema);
426     }
427     return;
428   }
429   /* Case 2 (from here to the end): Reset all schemas for all attached
430   ** databases. */
431   assert( iDb<0 );
432   sqlite3BtreeEnterAll(db);
433   for(i=0; i<db->nDb; i++){
434     Db *pDb = &db->aDb[i];
435     if( pDb->pSchema ){
436       sqlite3SchemaClear(pDb->pSchema);
437     }
438   }
439   db->flags &= ~SQLITE_InternChanges;
440   sqlite3VtabUnlockList(db);
441   sqlite3BtreeLeaveAll(db);
442 
443   /* If one or more of the auxiliary database files has been closed,
444   ** then remove them from the auxiliary database list.  We take the
445   ** opportunity to do this here since we have just deleted all of the
446   ** schema hash tables and therefore do not have to make any changes
447   ** to any of those tables.
448   */
449   for(i=j=2; i<db->nDb; i++){
450     struct Db *pDb = &db->aDb[i];
451     if( pDb->pBt==0 ){
452       sqlite3DbFree(db, pDb->zName);
453       pDb->zName = 0;
454       continue;
455     }
456     if( j<i ){
457       db->aDb[j] = db->aDb[i];
458     }
459     j++;
460   }
461   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
462   db->nDb = j;
463   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
464     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
465     sqlite3DbFree(db, db->aDb);
466     db->aDb = db->aDbStatic;
467   }
468 }
469 
470 /*
471 ** This routine is called when a commit occurs.
472 */
473 void sqlite3CommitInternalChanges(sqlite3 *db){
474   db->flags &= ~SQLITE_InternChanges;
475 }
476 
477 /*
478 ** Delete memory allocated for the column names of a table or view (the
479 ** Table.aCol[] array).
480 */
481 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
482   int i;
483   Column *pCol;
484   assert( pTable!=0 );
485   if( (pCol = pTable->aCol)!=0 ){
486     for(i=0; i<pTable->nCol; i++, pCol++){
487       sqlite3DbFree(db, pCol->zName);
488       sqlite3ExprDelete(db, pCol->pDflt);
489       sqlite3DbFree(db, pCol->zDflt);
490       sqlite3DbFree(db, pCol->zType);
491       sqlite3DbFree(db, pCol->zColl);
492     }
493     sqlite3DbFree(db, pTable->aCol);
494   }
495 }
496 
497 /*
498 ** Remove the memory data structures associated with the given
499 ** Table.  No changes are made to disk by this routine.
500 **
501 ** This routine just deletes the data structure.  It does not unlink
502 ** the table data structure from the hash table.  But it does destroy
503 ** memory structures of the indices and foreign keys associated with
504 ** the table.
505 */
506 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
507   Index *pIndex, *pNext;
508 
509   assert( !pTable || pTable->nRef>0 );
510 
511   /* Do not delete the table until the reference count reaches zero. */
512   if( !pTable ) return;
513   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
514 
515   /* Delete all indices associated with this table. */
516   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
517     pNext = pIndex->pNext;
518     assert( pIndex->pSchema==pTable->pSchema );
519     if( !db || db->pnBytesFreed==0 ){
520       char *zName = pIndex->zName;
521       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
522 	  &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
523       );
524       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
525       assert( pOld==pIndex || pOld==0 );
526     }
527     freeIndex(db, pIndex);
528   }
529 
530   /* Delete any foreign keys attached to this table. */
531   sqlite3FkDelete(db, pTable);
532 
533   /* Delete the Table structure itself.
534   */
535   sqliteDeleteColumnNames(db, pTable);
536   sqlite3DbFree(db, pTable->zName);
537   sqlite3DbFree(db, pTable->zColAff);
538   sqlite3SelectDelete(db, pTable->pSelect);
539 #ifndef SQLITE_OMIT_CHECK
540   sqlite3ExprDelete(db, pTable->pCheck);
541 #endif
542 #ifndef SQLITE_OMIT_VIRTUALTABLE
543   sqlite3VtabClear(db, pTable);
544 #endif
545   sqlite3DbFree(db, pTable);
546 }
547 
548 /*
549 ** Unlink the given table from the hash tables and the delete the
550 ** table structure with all its indices and foreign keys.
551 */
552 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
553   Table *p;
554   Db *pDb;
555 
556   assert( db!=0 );
557   assert( iDb>=0 && iDb<db->nDb );
558   assert( zTabName );
559   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
560   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
561   pDb = &db->aDb[iDb];
562   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
563                         sqlite3Strlen30(zTabName),0);
564   sqlite3DeleteTable(db, p);
565   db->flags |= SQLITE_InternChanges;
566 }
567 
568 /*
569 ** Given a token, return a string that consists of the text of that
570 ** token.  Space to hold the returned string
571 ** is obtained from sqliteMalloc() and must be freed by the calling
572 ** function.
573 **
574 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
575 ** surround the body of the token are removed.
576 **
577 ** Tokens are often just pointers into the original SQL text and so
578 ** are not \000 terminated and are not persistent.  The returned string
579 ** is \000 terminated and is persistent.
580 */
581 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
582   char *zName;
583   if( pName ){
584     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
585     sqlite3Dequote(zName);
586   }else{
587     zName = 0;
588   }
589   return zName;
590 }
591 
592 /*
593 ** Open the sqlite_master table stored in database number iDb for
594 ** writing. The table is opened using cursor 0.
595 */
596 void sqlite3OpenMasterTable(Parse *p, int iDb){
597   Vdbe *v = sqlite3GetVdbe(p);
598   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
599   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
600   sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32);  /* 5 column table */
601   if( p->nTab==0 ){
602     p->nTab = 1;
603   }
604 }
605 
606 /*
607 ** Parameter zName points to a nul-terminated buffer containing the name
608 ** of a database ("main", "temp" or the name of an attached db). This
609 ** function returns the index of the named database in db->aDb[], or
610 ** -1 if the named db cannot be found.
611 */
612 int sqlite3FindDbName(sqlite3 *db, const char *zName){
613   int i = -1;         /* Database number */
614   if( zName ){
615     Db *pDb;
616     int n = sqlite3Strlen30(zName);
617     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
618       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
619           0==sqlite3StrICmp(pDb->zName, zName) ){
620         break;
621       }
622     }
623   }
624   return i;
625 }
626 
627 /*
628 ** The token *pName contains the name of a database (either "main" or
629 ** "temp" or the name of an attached db). This routine returns the
630 ** index of the named database in db->aDb[], or -1 if the named db
631 ** does not exist.
632 */
633 int sqlite3FindDb(sqlite3 *db, Token *pName){
634   int i;                               /* Database number */
635   char *zName;                         /* Name we are searching for */
636   zName = sqlite3NameFromToken(db, pName);
637   i = sqlite3FindDbName(db, zName);
638   sqlite3DbFree(db, zName);
639   return i;
640 }
641 
642 /* The table or view or trigger name is passed to this routine via tokens
643 ** pName1 and pName2. If the table name was fully qualified, for example:
644 **
645 ** CREATE TABLE xxx.yyy (...);
646 **
647 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
648 ** the table name is not fully qualified, i.e.:
649 **
650 ** CREATE TABLE yyy(...);
651 **
652 ** Then pName1 is set to "yyy" and pName2 is "".
653 **
654 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
655 ** pName2) that stores the unqualified table name.  The index of the
656 ** database "xxx" is returned.
657 */
658 int sqlite3TwoPartName(
659   Parse *pParse,      /* Parsing and code generating context */
660   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
661   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
662   Token **pUnqual     /* Write the unqualified object name here */
663 ){
664   int iDb;                    /* Database holding the object */
665   sqlite3 *db = pParse->db;
666 
667   if( ALWAYS(pName2!=0) && pName2->n>0 ){
668     if( db->init.busy ) {
669       sqlite3ErrorMsg(pParse, "corrupt database");
670       pParse->nErr++;
671       return -1;
672     }
673     *pUnqual = pName2;
674     iDb = sqlite3FindDb(db, pName1);
675     if( iDb<0 ){
676       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
677       pParse->nErr++;
678       return -1;
679     }
680   }else{
681     assert( db->init.iDb==0 || db->init.busy );
682     iDb = db->init.iDb;
683     *pUnqual = pName1;
684   }
685   return iDb;
686 }
687 
688 /*
689 ** This routine is used to check if the UTF-8 string zName is a legal
690 ** unqualified name for a new schema object (table, index, view or
691 ** trigger). All names are legal except those that begin with the string
692 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
693 ** is reserved for internal use.
694 */
695 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
696   if( !pParse->db->init.busy && pParse->nested==0
697           && (pParse->db->flags & SQLITE_WriteSchema)==0
698           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
699     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
700     return SQLITE_ERROR;
701   }
702   return SQLITE_OK;
703 }
704 
705 /*
706 ** Begin constructing a new table representation in memory.  This is
707 ** the first of several action routines that get called in response
708 ** to a CREATE TABLE statement.  In particular, this routine is called
709 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
710 ** flag is true if the table should be stored in the auxiliary database
711 ** file instead of in the main database file.  This is normally the case
712 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
713 ** CREATE and TABLE.
714 **
715 ** The new table record is initialized and put in pParse->pNewTable.
716 ** As more of the CREATE TABLE statement is parsed, additional action
717 ** routines will be called to add more information to this record.
718 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
719 ** is called to complete the construction of the new table record.
720 */
721 void sqlite3StartTable(
722   Parse *pParse,   /* Parser context */
723   Token *pName1,   /* First part of the name of the table or view */
724   Token *pName2,   /* Second part of the name of the table or view */
725   int isTemp,      /* True if this is a TEMP table */
726   int isView,      /* True if this is a VIEW */
727   int isVirtual,   /* True if this is a VIRTUAL table */
728   int noErr        /* Do nothing if table already exists */
729 ){
730   Table *pTable;
731   char *zName = 0; /* The name of the new table */
732   sqlite3 *db = pParse->db;
733   Vdbe *v;
734   int iDb;         /* Database number to create the table in */
735   Token *pName;    /* Unqualified name of the table to create */
736 
737   /* The table or view name to create is passed to this routine via tokens
738   ** pName1 and pName2. If the table name was fully qualified, for example:
739   **
740   ** CREATE TABLE xxx.yyy (...);
741   **
742   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
743   ** the table name is not fully qualified, i.e.:
744   **
745   ** CREATE TABLE yyy(...);
746   **
747   ** Then pName1 is set to "yyy" and pName2 is "".
748   **
749   ** The call below sets the pName pointer to point at the token (pName1 or
750   ** pName2) that stores the unqualified table name. The variable iDb is
751   ** set to the index of the database that the table or view is to be
752   ** created in.
753   */
754   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
755   if( iDb<0 ) return;
756   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
757     /* If creating a temp table, the name may not be qualified. Unless
758     ** the database name is "temp" anyway.  */
759     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
760     return;
761   }
762   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
763 
764   pParse->sNameToken = *pName;
765   zName = sqlite3NameFromToken(db, pName);
766   if( zName==0 ) return;
767   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
768     goto begin_table_error;
769   }
770   if( db->init.iDb==1 ) isTemp = 1;
771 #ifndef SQLITE_OMIT_AUTHORIZATION
772   assert( (isTemp & 1)==isTemp );
773   {
774     int code;
775     char *zDb = db->aDb[iDb].zName;
776     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
777       goto begin_table_error;
778     }
779     if( isView ){
780       if( !OMIT_TEMPDB && isTemp ){
781         code = SQLITE_CREATE_TEMP_VIEW;
782       }else{
783         code = SQLITE_CREATE_VIEW;
784       }
785     }else{
786       if( !OMIT_TEMPDB && isTemp ){
787         code = SQLITE_CREATE_TEMP_TABLE;
788       }else{
789         code = SQLITE_CREATE_TABLE;
790       }
791     }
792     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
793       goto begin_table_error;
794     }
795   }
796 #endif
797 
798   /* Make sure the new table name does not collide with an existing
799   ** index or table name in the same database.  Issue an error message if
800   ** it does. The exception is if the statement being parsed was passed
801   ** to an sqlite3_declare_vtab() call. In that case only the column names
802   ** and types will be used, so there is no need to test for namespace
803   ** collisions.
804   */
805   if( !IN_DECLARE_VTAB ){
806     char *zDb = db->aDb[iDb].zName;
807     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
808       goto begin_table_error;
809     }
810     pTable = sqlite3FindTable(db, zName, zDb);
811     if( pTable ){
812       if( !noErr ){
813         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
814       }else{
815         assert( !db->init.busy );
816         sqlite3CodeVerifySchema(pParse, iDb);
817       }
818       goto begin_table_error;
819     }
820     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
821       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
822       goto begin_table_error;
823     }
824   }
825 
826   pTable = sqlite3DbMallocZero(db, sizeof(Table));
827   if( pTable==0 ){
828     db->mallocFailed = 1;
829     pParse->rc = SQLITE_NOMEM;
830     pParse->nErr++;
831     goto begin_table_error;
832   }
833   pTable->zName = zName;
834   pTable->iPKey = -1;
835   pTable->pSchema = db->aDb[iDb].pSchema;
836   pTable->nRef = 1;
837   pTable->nRowEst = 1000000;
838   assert( pParse->pNewTable==0 );
839   pParse->pNewTable = pTable;
840 
841   /* If this is the magic sqlite_sequence table used by autoincrement,
842   ** then record a pointer to this table in the main database structure
843   ** so that INSERT can find the table easily.
844   */
845 #ifndef SQLITE_OMIT_AUTOINCREMENT
846   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
847     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
848     pTable->pSchema->pSeqTab = pTable;
849   }
850 #endif
851 
852   /* Begin generating the code that will insert the table record into
853   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
854   ** and allocate the record number for the table entry now.  Before any
855   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
856   ** indices to be created and the table record must come before the
857   ** indices.  Hence, the record number for the table must be allocated
858   ** now.
859   */
860   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
861     int j1;
862     int fileFormat;
863     int reg1, reg2, reg3;
864     sqlite3BeginWriteOperation(pParse, 0, iDb);
865 
866 #ifndef SQLITE_OMIT_VIRTUALTABLE
867     if( isVirtual ){
868       sqlite3VdbeAddOp0(v, OP_VBegin);
869     }
870 #endif
871 
872     /* If the file format and encoding in the database have not been set,
873     ** set them now.
874     */
875     reg1 = pParse->regRowid = ++pParse->nMem;
876     reg2 = pParse->regRoot = ++pParse->nMem;
877     reg3 = ++pParse->nMem;
878     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
879     sqlite3VdbeUsesBtree(v, iDb);
880     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
881     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
882                   1 : SQLITE_MAX_FILE_FORMAT;
883     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
884     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
885     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
886     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
887     sqlite3VdbeJumpHere(v, j1);
888 
889     /* This just creates a place-holder record in the sqlite_master table.
890     ** The record created does not contain anything yet.  It will be replaced
891     ** by the real entry in code generated at sqlite3EndTable().
892     **
893     ** The rowid for the new entry is left in register pParse->regRowid.
894     ** The root page number of the new table is left in reg pParse->regRoot.
895     ** The rowid and root page number values are needed by the code that
896     ** sqlite3EndTable will generate.
897     */
898 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
899     if( isView || isVirtual ){
900       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
901     }else
902 #endif
903     {
904       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
905     }
906     sqlite3OpenMasterTable(pParse, iDb);
907     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
908     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
909     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
910     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
911     sqlite3VdbeAddOp0(v, OP_Close);
912   }
913 
914   /* Normal (non-error) return. */
915   return;
916 
917   /* If an error occurs, we jump here */
918 begin_table_error:
919   sqlite3DbFree(db, zName);
920   return;
921 }
922 
923 /*
924 ** This macro is used to compare two strings in a case-insensitive manner.
925 ** It is slightly faster than calling sqlite3StrICmp() directly, but
926 ** produces larger code.
927 **
928 ** WARNING: This macro is not compatible with the strcmp() family. It
929 ** returns true if the two strings are equal, otherwise false.
930 */
931 #define STRICMP(x, y) (\
932 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
933 sqlite3UpperToLower[*(unsigned char *)(y)]     \
934 && sqlite3StrICmp((x)+1,(y)+1)==0 )
935 
936 /*
937 ** Add a new column to the table currently being constructed.
938 **
939 ** The parser calls this routine once for each column declaration
940 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
941 ** first to get things going.  Then this routine is called for each
942 ** column.
943 */
944 void sqlite3AddColumn(Parse *pParse, Token *pName){
945   Table *p;
946   int i;
947   char *z;
948   Column *pCol;
949   sqlite3 *db = pParse->db;
950   if( (p = pParse->pNewTable)==0 ) return;
951 #if SQLITE_MAX_COLUMN
952   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
953     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
954     return;
955   }
956 #endif
957   z = sqlite3NameFromToken(db, pName);
958   if( z==0 ) return;
959   for(i=0; i<p->nCol; i++){
960     if( STRICMP(z, p->aCol[i].zName) ){
961       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
962       sqlite3DbFree(db, z);
963       return;
964     }
965   }
966   if( (p->nCol & 0x7)==0 ){
967     Column *aNew;
968     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
969     if( aNew==0 ){
970       sqlite3DbFree(db, z);
971       return;
972     }
973     p->aCol = aNew;
974   }
975   pCol = &p->aCol[p->nCol];
976   memset(pCol, 0, sizeof(p->aCol[0]));
977   pCol->zName = z;
978 
979   /* If there is no type specified, columns have the default affinity
980   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
981   ** be called next to set pCol->affinity correctly.
982   */
983   pCol->affinity = SQLITE_AFF_NONE;
984   p->nCol++;
985 }
986 
987 /*
988 ** This routine is called by the parser while in the middle of
989 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
990 ** been seen on a column.  This routine sets the notNull flag on
991 ** the column currently under construction.
992 */
993 void sqlite3AddNotNull(Parse *pParse, int onError){
994   Table *p;
995   p = pParse->pNewTable;
996   if( p==0 || NEVER(p->nCol<1) ) return;
997   p->aCol[p->nCol-1].notNull = (u8)onError;
998 }
999 
1000 /*
1001 ** Scan the column type name zType (length nType) and return the
1002 ** associated affinity type.
1003 **
1004 ** This routine does a case-independent search of zType for the
1005 ** substrings in the following table. If one of the substrings is
1006 ** found, the corresponding affinity is returned. If zType contains
1007 ** more than one of the substrings, entries toward the top of
1008 ** the table take priority. For example, if zType is 'BLOBINT',
1009 ** SQLITE_AFF_INTEGER is returned.
1010 **
1011 ** Substring     | Affinity
1012 ** --------------------------------
1013 ** 'INT'         | SQLITE_AFF_INTEGER
1014 ** 'CHAR'        | SQLITE_AFF_TEXT
1015 ** 'CLOB'        | SQLITE_AFF_TEXT
1016 ** 'TEXT'        | SQLITE_AFF_TEXT
1017 ** 'BLOB'        | SQLITE_AFF_NONE
1018 ** 'REAL'        | SQLITE_AFF_REAL
1019 ** 'FLOA'        | SQLITE_AFF_REAL
1020 ** 'DOUB'        | SQLITE_AFF_REAL
1021 **
1022 ** If none of the substrings in the above table are found,
1023 ** SQLITE_AFF_NUMERIC is returned.
1024 */
1025 char sqlite3AffinityType(const char *zIn){
1026   u32 h = 0;
1027   char aff = SQLITE_AFF_NUMERIC;
1028 
1029   if( zIn ) while( zIn[0] ){
1030     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1031     zIn++;
1032     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1033       aff = SQLITE_AFF_TEXT;
1034     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1035       aff = SQLITE_AFF_TEXT;
1036     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1037       aff = SQLITE_AFF_TEXT;
1038     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1039         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1040       aff = SQLITE_AFF_NONE;
1041 #ifndef SQLITE_OMIT_FLOATING_POINT
1042     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1043         && aff==SQLITE_AFF_NUMERIC ){
1044       aff = SQLITE_AFF_REAL;
1045     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1046         && aff==SQLITE_AFF_NUMERIC ){
1047       aff = SQLITE_AFF_REAL;
1048     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1049         && aff==SQLITE_AFF_NUMERIC ){
1050       aff = SQLITE_AFF_REAL;
1051 #endif
1052     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1053       aff = SQLITE_AFF_INTEGER;
1054       break;
1055     }
1056   }
1057 
1058   return aff;
1059 }
1060 
1061 /*
1062 ** This routine is called by the parser while in the middle of
1063 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1064 ** token in the sequence of tokens that describe the type of the
1065 ** column currently under construction.   pLast is the last token
1066 ** in the sequence.  Use this information to construct a string
1067 ** that contains the typename of the column and store that string
1068 ** in zType.
1069 */
1070 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1071   Table *p;
1072   Column *pCol;
1073 
1074   p = pParse->pNewTable;
1075   if( p==0 || NEVER(p->nCol<1) ) return;
1076   pCol = &p->aCol[p->nCol-1];
1077   assert( pCol->zType==0 );
1078   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1079   pCol->affinity = sqlite3AffinityType(pCol->zType);
1080 }
1081 
1082 /*
1083 ** The expression is the default value for the most recently added column
1084 ** of the table currently under construction.
1085 **
1086 ** Default value expressions must be constant.  Raise an exception if this
1087 ** is not the case.
1088 **
1089 ** This routine is called by the parser while in the middle of
1090 ** parsing a CREATE TABLE statement.
1091 */
1092 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1093   Table *p;
1094   Column *pCol;
1095   sqlite3 *db = pParse->db;
1096   p = pParse->pNewTable;
1097   if( p!=0 ){
1098     pCol = &(p->aCol[p->nCol-1]);
1099     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
1100       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1101           pCol->zName);
1102     }else{
1103       /* A copy of pExpr is used instead of the original, as pExpr contains
1104       ** tokens that point to volatile memory. The 'span' of the expression
1105       ** is required by pragma table_info.
1106       */
1107       sqlite3ExprDelete(db, pCol->pDflt);
1108       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1109       sqlite3DbFree(db, pCol->zDflt);
1110       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1111                                      (int)(pSpan->zEnd - pSpan->zStart));
1112     }
1113   }
1114   sqlite3ExprDelete(db, pSpan->pExpr);
1115 }
1116 
1117 /*
1118 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1119 ** of columns that form the primary key.  If pList is NULL, then the
1120 ** most recently added column of the table is the primary key.
1121 **
1122 ** A table can have at most one primary key.  If the table already has
1123 ** a primary key (and this is the second primary key) then create an
1124 ** error.
1125 **
1126 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1127 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1128 ** field of the table under construction to be the index of the
1129 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1130 ** no INTEGER PRIMARY KEY.
1131 **
1132 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1133 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1134 */
1135 void sqlite3AddPrimaryKey(
1136   Parse *pParse,    /* Parsing context */
1137   ExprList *pList,  /* List of field names to be indexed */
1138   int onError,      /* What to do with a uniqueness conflict */
1139   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1140   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1141 ){
1142   Table *pTab = pParse->pNewTable;
1143   char *zType = 0;
1144   int iCol = -1, i;
1145   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1146   if( pTab->tabFlags & TF_HasPrimaryKey ){
1147     sqlite3ErrorMsg(pParse,
1148       "table \"%s\" has more than one primary key", pTab->zName);
1149     goto primary_key_exit;
1150   }
1151   pTab->tabFlags |= TF_HasPrimaryKey;
1152   if( pList==0 ){
1153     iCol = pTab->nCol - 1;
1154     pTab->aCol[iCol].isPrimKey = 1;
1155   }else{
1156     for(i=0; i<pList->nExpr; i++){
1157       for(iCol=0; iCol<pTab->nCol; iCol++){
1158         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1159           break;
1160         }
1161       }
1162       if( iCol<pTab->nCol ){
1163         pTab->aCol[iCol].isPrimKey = 1;
1164       }
1165     }
1166     if( pList->nExpr>1 ) iCol = -1;
1167   }
1168   if( iCol>=0 && iCol<pTab->nCol ){
1169     zType = pTab->aCol[iCol].zType;
1170   }
1171   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1172         && sortOrder==SQLITE_SO_ASC ){
1173     pTab->iPKey = iCol;
1174     pTab->keyConf = (u8)onError;
1175     assert( autoInc==0 || autoInc==1 );
1176     pTab->tabFlags |= autoInc*TF_Autoincrement;
1177   }else if( autoInc ){
1178 #ifndef SQLITE_OMIT_AUTOINCREMENT
1179     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1180        "INTEGER PRIMARY KEY");
1181 #endif
1182   }else{
1183     Index *p;
1184     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1185     if( p ){
1186       p->autoIndex = 2;
1187     }
1188     pList = 0;
1189   }
1190 
1191 primary_key_exit:
1192   sqlite3ExprListDelete(pParse->db, pList);
1193   return;
1194 }
1195 
1196 /*
1197 ** Add a new CHECK constraint to the table currently under construction.
1198 */
1199 void sqlite3AddCheckConstraint(
1200   Parse *pParse,    /* Parsing context */
1201   Expr *pCheckExpr  /* The check expression */
1202 ){
1203   sqlite3 *db = pParse->db;
1204 #ifndef SQLITE_OMIT_CHECK
1205   Table *pTab = pParse->pNewTable;
1206   if( pTab && !IN_DECLARE_VTAB ){
1207     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
1208   }else
1209 #endif
1210   {
1211     sqlite3ExprDelete(db, pCheckExpr);
1212   }
1213 }
1214 
1215 /*
1216 ** Set the collation function of the most recently parsed table column
1217 ** to the CollSeq given.
1218 */
1219 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1220   Table *p;
1221   int i;
1222   char *zColl;              /* Dequoted name of collation sequence */
1223   sqlite3 *db;
1224 
1225   if( (p = pParse->pNewTable)==0 ) return;
1226   i = p->nCol-1;
1227   db = pParse->db;
1228   zColl = sqlite3NameFromToken(db, pToken);
1229   if( !zColl ) return;
1230 
1231   if( sqlite3LocateCollSeq(pParse, zColl) ){
1232     Index *pIdx;
1233     p->aCol[i].zColl = zColl;
1234 
1235     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1236     ** then an index may have been created on this column before the
1237     ** collation type was added. Correct this if it is the case.
1238     */
1239     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1240       assert( pIdx->nColumn==1 );
1241       if( pIdx->aiColumn[0]==i ){
1242         pIdx->azColl[0] = p->aCol[i].zColl;
1243       }
1244     }
1245   }else{
1246     sqlite3DbFree(db, zColl);
1247   }
1248 }
1249 
1250 /*
1251 ** This function returns the collation sequence for database native text
1252 ** encoding identified by the string zName, length nName.
1253 **
1254 ** If the requested collation sequence is not available, or not available
1255 ** in the database native encoding, the collation factory is invoked to
1256 ** request it. If the collation factory does not supply such a sequence,
1257 ** and the sequence is available in another text encoding, then that is
1258 ** returned instead.
1259 **
1260 ** If no versions of the requested collations sequence are available, or
1261 ** another error occurs, NULL is returned and an error message written into
1262 ** pParse.
1263 **
1264 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1265 ** invokes the collation factory if the named collation cannot be found
1266 ** and generates an error message.
1267 **
1268 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1269 */
1270 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1271   sqlite3 *db = pParse->db;
1272   u8 enc = ENC(db);
1273   u8 initbusy = db->init.busy;
1274   CollSeq *pColl;
1275 
1276   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1277   if( !initbusy && (!pColl || !pColl->xCmp) ){
1278     pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
1279     if( !pColl ){
1280       sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
1281     }
1282   }
1283 
1284   return pColl;
1285 }
1286 
1287 
1288 /*
1289 ** Generate code that will increment the schema cookie.
1290 **
1291 ** The schema cookie is used to determine when the schema for the
1292 ** database changes.  After each schema change, the cookie value
1293 ** changes.  When a process first reads the schema it records the
1294 ** cookie.  Thereafter, whenever it goes to access the database,
1295 ** it checks the cookie to make sure the schema has not changed
1296 ** since it was last read.
1297 **
1298 ** This plan is not completely bullet-proof.  It is possible for
1299 ** the schema to change multiple times and for the cookie to be
1300 ** set back to prior value.  But schema changes are infrequent
1301 ** and the probability of hitting the same cookie value is only
1302 ** 1 chance in 2^32.  So we're safe enough.
1303 */
1304 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1305   int r1 = sqlite3GetTempReg(pParse);
1306   sqlite3 *db = pParse->db;
1307   Vdbe *v = pParse->pVdbe;
1308   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1309   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1310   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1311   sqlite3ReleaseTempReg(pParse, r1);
1312 }
1313 
1314 /*
1315 ** Measure the number of characters needed to output the given
1316 ** identifier.  The number returned includes any quotes used
1317 ** but does not include the null terminator.
1318 **
1319 ** The estimate is conservative.  It might be larger that what is
1320 ** really needed.
1321 */
1322 static int identLength(const char *z){
1323   int n;
1324   for(n=0; *z; n++, z++){
1325     if( *z=='"' ){ n++; }
1326   }
1327   return n + 2;
1328 }
1329 
1330 /*
1331 ** The first parameter is a pointer to an output buffer. The second
1332 ** parameter is a pointer to an integer that contains the offset at
1333 ** which to write into the output buffer. This function copies the
1334 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1335 ** to the specified offset in the buffer and updates *pIdx to refer
1336 ** to the first byte after the last byte written before returning.
1337 **
1338 ** If the string zSignedIdent consists entirely of alpha-numeric
1339 ** characters, does not begin with a digit and is not an SQL keyword,
1340 ** then it is copied to the output buffer exactly as it is. Otherwise,
1341 ** it is quoted using double-quotes.
1342 */
1343 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1344   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1345   int i, j, needQuote;
1346   i = *pIdx;
1347 
1348   for(j=0; zIdent[j]; j++){
1349     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1350   }
1351   needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1352   if( !needQuote ){
1353     needQuote = zIdent[j];
1354   }
1355 
1356   if( needQuote ) z[i++] = '"';
1357   for(j=0; zIdent[j]; j++){
1358     z[i++] = zIdent[j];
1359     if( zIdent[j]=='"' ) z[i++] = '"';
1360   }
1361   if( needQuote ) z[i++] = '"';
1362   z[i] = 0;
1363   *pIdx = i;
1364 }
1365 
1366 /*
1367 ** Generate a CREATE TABLE statement appropriate for the given
1368 ** table.  Memory to hold the text of the statement is obtained
1369 ** from sqliteMalloc() and must be freed by the calling function.
1370 */
1371 static char *createTableStmt(sqlite3 *db, Table *p){
1372   int i, k, n;
1373   char *zStmt;
1374   char *zSep, *zSep2, *zEnd;
1375   Column *pCol;
1376   n = 0;
1377   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1378     n += identLength(pCol->zName) + 5;
1379   }
1380   n += identLength(p->zName);
1381   if( n<50 ){
1382     zSep = "";
1383     zSep2 = ",";
1384     zEnd = ")";
1385   }else{
1386     zSep = "\n  ";
1387     zSep2 = ",\n  ";
1388     zEnd = "\n)";
1389   }
1390   n += 35 + 6*p->nCol;
1391   zStmt = sqlite3DbMallocRaw(0, n);
1392   if( zStmt==0 ){
1393     db->mallocFailed = 1;
1394     return 0;
1395   }
1396   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1397   k = sqlite3Strlen30(zStmt);
1398   identPut(zStmt, &k, p->zName);
1399   zStmt[k++] = '(';
1400   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1401     static const char * const azType[] = {
1402         /* SQLITE_AFF_TEXT    */ " TEXT",
1403         /* SQLITE_AFF_NONE    */ "",
1404         /* SQLITE_AFF_NUMERIC */ " NUM",
1405         /* SQLITE_AFF_INTEGER */ " INT",
1406         /* SQLITE_AFF_REAL    */ " REAL"
1407     };
1408     int len;
1409     const char *zType;
1410 
1411     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1412     k += sqlite3Strlen30(&zStmt[k]);
1413     zSep = zSep2;
1414     identPut(zStmt, &k, pCol->zName);
1415     assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
1416     assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
1417     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1418     testcase( pCol->affinity==SQLITE_AFF_NONE );
1419     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1420     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1421     testcase( pCol->affinity==SQLITE_AFF_REAL );
1422 
1423     zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
1424     len = sqlite3Strlen30(zType);
1425     assert( pCol->affinity==SQLITE_AFF_NONE
1426             || pCol->affinity==sqlite3AffinityType(zType) );
1427     memcpy(&zStmt[k], zType, len);
1428     k += len;
1429     assert( k<=n );
1430   }
1431   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1432   return zStmt;
1433 }
1434 
1435 /*
1436 ** This routine is called to report the final ")" that terminates
1437 ** a CREATE TABLE statement.
1438 **
1439 ** The table structure that other action routines have been building
1440 ** is added to the internal hash tables, assuming no errors have
1441 ** occurred.
1442 **
1443 ** An entry for the table is made in the master table on disk, unless
1444 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1445 ** it means we are reading the sqlite_master table because we just
1446 ** connected to the database or because the sqlite_master table has
1447 ** recently changed, so the entry for this table already exists in
1448 ** the sqlite_master table.  We do not want to create it again.
1449 **
1450 ** If the pSelect argument is not NULL, it means that this routine
1451 ** was called to create a table generated from a
1452 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1453 ** the new table will match the result set of the SELECT.
1454 */
1455 void sqlite3EndTable(
1456   Parse *pParse,          /* Parse context */
1457   Token *pCons,           /* The ',' token after the last column defn. */
1458   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
1459   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1460 ){
1461   Table *p;
1462   sqlite3 *db = pParse->db;
1463   int iDb;
1464 
1465   if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
1466     return;
1467   }
1468   p = pParse->pNewTable;
1469   if( p==0 ) return;
1470 
1471   assert( !db->init.busy || !pSelect );
1472 
1473   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1474 
1475 #ifndef SQLITE_OMIT_CHECK
1476   /* Resolve names in all CHECK constraint expressions.
1477   */
1478   if( p->pCheck ){
1479     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
1480     NameContext sNC;                /* Name context for pParse->pNewTable */
1481 
1482     memset(&sNC, 0, sizeof(sNC));
1483     memset(&sSrc, 0, sizeof(sSrc));
1484     sSrc.nSrc = 1;
1485     sSrc.a[0].zName = p->zName;
1486     sSrc.a[0].pTab = p;
1487     sSrc.a[0].iCursor = -1;
1488     sNC.pParse = pParse;
1489     sNC.pSrcList = &sSrc;
1490     sNC.isCheck = 1;
1491     if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
1492       return;
1493     }
1494   }
1495 #endif /* !defined(SQLITE_OMIT_CHECK) */
1496 
1497   /* If the db->init.busy is 1 it means we are reading the SQL off the
1498   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1499   ** So do not write to the disk again.  Extract the root page number
1500   ** for the table from the db->init.newTnum field.  (The page number
1501   ** should have been put there by the sqliteOpenCb routine.)
1502   */
1503   if( db->init.busy ){
1504     p->tnum = db->init.newTnum;
1505   }
1506 
1507   /* If not initializing, then create a record for the new table
1508   ** in the SQLITE_MASTER table of the database.
1509   **
1510   ** If this is a TEMPORARY table, write the entry into the auxiliary
1511   ** file instead of into the main database file.
1512   */
1513   if( !db->init.busy ){
1514     int n;
1515     Vdbe *v;
1516     char *zType;    /* "view" or "table" */
1517     char *zType2;   /* "VIEW" or "TABLE" */
1518     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1519 
1520     v = sqlite3GetVdbe(pParse);
1521     if( NEVER(v==0) ) return;
1522 
1523     sqlite3VdbeAddOp1(v, OP_Close, 0);
1524 
1525     /*
1526     ** Initialize zType for the new view or table.
1527     */
1528     if( p->pSelect==0 ){
1529       /* A regular table */
1530       zType = "table";
1531       zType2 = "TABLE";
1532 #ifndef SQLITE_OMIT_VIEW
1533     }else{
1534       /* A view */
1535       zType = "view";
1536       zType2 = "VIEW";
1537 #endif
1538     }
1539 
1540     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1541     ** statement to populate the new table. The root-page number for the
1542     ** new table is in register pParse->regRoot.
1543     **
1544     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1545     ** suitable state to query for the column names and types to be used
1546     ** by the new table.
1547     **
1548     ** A shared-cache write-lock is not required to write to the new table,
1549     ** as a schema-lock must have already been obtained to create it. Since
1550     ** a schema-lock excludes all other database users, the write-lock would
1551     ** be redundant.
1552     */
1553     if( pSelect ){
1554       SelectDest dest;
1555       Table *pSelTab;
1556 
1557       assert(pParse->nTab==1);
1558       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1559       sqlite3VdbeChangeP5(v, 1);
1560       pParse->nTab = 2;
1561       sqlite3SelectDestInit(&dest, SRT_Table, 1);
1562       sqlite3Select(pParse, pSelect, &dest);
1563       sqlite3VdbeAddOp1(v, OP_Close, 1);
1564       if( pParse->nErr==0 ){
1565         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1566         if( pSelTab==0 ) return;
1567         assert( p->aCol==0 );
1568         p->nCol = pSelTab->nCol;
1569         p->aCol = pSelTab->aCol;
1570         pSelTab->nCol = 0;
1571         pSelTab->aCol = 0;
1572         sqlite3DeleteTable(db, pSelTab);
1573       }
1574     }
1575 
1576     /* Compute the complete text of the CREATE statement */
1577     if( pSelect ){
1578       zStmt = createTableStmt(db, p);
1579     }else{
1580       n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
1581       zStmt = sqlite3MPrintf(db,
1582           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1583       );
1584     }
1585 
1586     /* A slot for the record has already been allocated in the
1587     ** SQLITE_MASTER table.  We just need to update that slot with all
1588     ** the information we've collected.
1589     */
1590     sqlite3NestedParse(pParse,
1591       "UPDATE %Q.%s "
1592          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1593        "WHERE rowid=#%d",
1594       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1595       zType,
1596       p->zName,
1597       p->zName,
1598       pParse->regRoot,
1599       zStmt,
1600       pParse->regRowid
1601     );
1602     sqlite3DbFree(db, zStmt);
1603     sqlite3ChangeCookie(pParse, iDb);
1604 
1605 #ifndef SQLITE_OMIT_AUTOINCREMENT
1606     /* Check to see if we need to create an sqlite_sequence table for
1607     ** keeping track of autoincrement keys.
1608     */
1609     if( p->tabFlags & TF_Autoincrement ){
1610       Db *pDb = &db->aDb[iDb];
1611       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1612       if( pDb->pSchema->pSeqTab==0 ){
1613         sqlite3NestedParse(pParse,
1614           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1615           pDb->zName
1616         );
1617       }
1618     }
1619 #endif
1620 
1621     /* Reparse everything to update our internal data structures */
1622     sqlite3VdbeAddParseSchemaOp(v, iDb,
1623                sqlite3MPrintf(db, "tbl_name='%q'", p->zName));
1624   }
1625 
1626 
1627   /* Add the table to the in-memory representation of the database.
1628   */
1629   if( db->init.busy ){
1630     Table *pOld;
1631     Schema *pSchema = p->pSchema;
1632     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1633     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
1634                              sqlite3Strlen30(p->zName),p);
1635     if( pOld ){
1636       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
1637       db->mallocFailed = 1;
1638       return;
1639     }
1640     pParse->pNewTable = 0;
1641     db->nTable++;
1642     db->flags |= SQLITE_InternChanges;
1643 
1644 #ifndef SQLITE_OMIT_ALTERTABLE
1645     if( !p->pSelect ){
1646       const char *zName = (const char *)pParse->sNameToken.z;
1647       int nName;
1648       assert( !pSelect && pCons && pEnd );
1649       if( pCons->z==0 ){
1650         pCons = pEnd;
1651       }
1652       nName = (int)((const char *)pCons->z - zName);
1653       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1654     }
1655 #endif
1656   }
1657 }
1658 
1659 #ifndef SQLITE_OMIT_VIEW
1660 /*
1661 ** The parser calls this routine in order to create a new VIEW
1662 */
1663 void sqlite3CreateView(
1664   Parse *pParse,     /* The parsing context */
1665   Token *pBegin,     /* The CREATE token that begins the statement */
1666   Token *pName1,     /* The token that holds the name of the view */
1667   Token *pName2,     /* The token that holds the name of the view */
1668   Select *pSelect,   /* A SELECT statement that will become the new view */
1669   int isTemp,        /* TRUE for a TEMPORARY view */
1670   int noErr          /* Suppress error messages if VIEW already exists */
1671 ){
1672   Table *p;
1673   int n;
1674   const char *z;
1675   Token sEnd;
1676   DbFixer sFix;
1677   Token *pName = 0;
1678   int iDb;
1679   sqlite3 *db = pParse->db;
1680 
1681   if( pParse->nVar>0 ){
1682     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1683     sqlite3SelectDelete(db, pSelect);
1684     return;
1685   }
1686   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1687   p = pParse->pNewTable;
1688   if( p==0 || pParse->nErr ){
1689     sqlite3SelectDelete(db, pSelect);
1690     return;
1691   }
1692   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1693   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1694   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1695     && sqlite3FixSelect(&sFix, pSelect)
1696   ){
1697     sqlite3SelectDelete(db, pSelect);
1698     return;
1699   }
1700 
1701   /* Make a copy of the entire SELECT statement that defines the view.
1702   ** This will force all the Expr.token.z values to be dynamically
1703   ** allocated rather than point to the input string - which means that
1704   ** they will persist after the current sqlite3_exec() call returns.
1705   */
1706   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1707   sqlite3SelectDelete(db, pSelect);
1708   if( db->mallocFailed ){
1709     return;
1710   }
1711   if( !db->init.busy ){
1712     sqlite3ViewGetColumnNames(pParse, p);
1713   }
1714 
1715   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
1716   ** the end.
1717   */
1718   sEnd = pParse->sLastToken;
1719   if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
1720     sEnd.z += sEnd.n;
1721   }
1722   sEnd.n = 0;
1723   n = (int)(sEnd.z - pBegin->z);
1724   z = pBegin->z;
1725   while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
1726   sEnd.z = &z[n-1];
1727   sEnd.n = 1;
1728 
1729   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1730   sqlite3EndTable(pParse, 0, &sEnd, 0);
1731   return;
1732 }
1733 #endif /* SQLITE_OMIT_VIEW */
1734 
1735 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1736 /*
1737 ** The Table structure pTable is really a VIEW.  Fill in the names of
1738 ** the columns of the view in the pTable structure.  Return the number
1739 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
1740 */
1741 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1742   Table *pSelTab;   /* A fake table from which we get the result set */
1743   Select *pSel;     /* Copy of the SELECT that implements the view */
1744   int nErr = 0;     /* Number of errors encountered */
1745   int n;            /* Temporarily holds the number of cursors assigned */
1746   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
1747   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1748 
1749   assert( pTable );
1750 
1751 #ifndef SQLITE_OMIT_VIRTUALTABLE
1752   if( sqlite3VtabCallConnect(pParse, pTable) ){
1753     return SQLITE_ERROR;
1754   }
1755   if( IsVirtual(pTable) ) return 0;
1756 #endif
1757 
1758 #ifndef SQLITE_OMIT_VIEW
1759   /* A positive nCol means the columns names for this view are
1760   ** already known.
1761   */
1762   if( pTable->nCol>0 ) return 0;
1763 
1764   /* A negative nCol is a special marker meaning that we are currently
1765   ** trying to compute the column names.  If we enter this routine with
1766   ** a negative nCol, it means two or more views form a loop, like this:
1767   **
1768   **     CREATE VIEW one AS SELECT * FROM two;
1769   **     CREATE VIEW two AS SELECT * FROM one;
1770   **
1771   ** Actually, the error above is now caught prior to reaching this point.
1772   ** But the following test is still important as it does come up
1773   ** in the following:
1774   **
1775   **     CREATE TABLE main.ex1(a);
1776   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
1777   **     SELECT * FROM temp.ex1;
1778   */
1779   if( pTable->nCol<0 ){
1780     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1781     return 1;
1782   }
1783   assert( pTable->nCol>=0 );
1784 
1785   /* If we get this far, it means we need to compute the table names.
1786   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1787   ** "*" elements in the results set of the view and will assign cursors
1788   ** to the elements of the FROM clause.  But we do not want these changes
1789   ** to be permanent.  So the computation is done on a copy of the SELECT
1790   ** statement that defines the view.
1791   */
1792   assert( pTable->pSelect );
1793   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
1794   if( pSel ){
1795     u8 enableLookaside = db->lookaside.bEnabled;
1796     n = pParse->nTab;
1797     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1798     pTable->nCol = -1;
1799     db->lookaside.bEnabled = 0;
1800 #ifndef SQLITE_OMIT_AUTHORIZATION
1801     xAuth = db->xAuth;
1802     db->xAuth = 0;
1803     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1804     db->xAuth = xAuth;
1805 #else
1806     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1807 #endif
1808     db->lookaside.bEnabled = enableLookaside;
1809     pParse->nTab = n;
1810     if( pSelTab ){
1811       assert( pTable->aCol==0 );
1812       pTable->nCol = pSelTab->nCol;
1813       pTable->aCol = pSelTab->aCol;
1814       pSelTab->nCol = 0;
1815       pSelTab->aCol = 0;
1816       sqlite3DeleteTable(db, pSelTab);
1817       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
1818       pTable->pSchema->flags |= DB_UnresetViews;
1819     }else{
1820       pTable->nCol = 0;
1821       nErr++;
1822     }
1823     sqlite3SelectDelete(db, pSel);
1824   } else {
1825     nErr++;
1826   }
1827 #endif /* SQLITE_OMIT_VIEW */
1828   return nErr;
1829 }
1830 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1831 
1832 #ifndef SQLITE_OMIT_VIEW
1833 /*
1834 ** Clear the column names from every VIEW in database idx.
1835 */
1836 static void sqliteViewResetAll(sqlite3 *db, int idx){
1837   HashElem *i;
1838   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
1839   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1840   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1841     Table *pTab = sqliteHashData(i);
1842     if( pTab->pSelect ){
1843       sqliteDeleteColumnNames(db, pTab);
1844       pTab->aCol = 0;
1845       pTab->nCol = 0;
1846     }
1847   }
1848   DbClearProperty(db, idx, DB_UnresetViews);
1849 }
1850 #else
1851 # define sqliteViewResetAll(A,B)
1852 #endif /* SQLITE_OMIT_VIEW */
1853 
1854 /*
1855 ** This function is called by the VDBE to adjust the internal schema
1856 ** used by SQLite when the btree layer moves a table root page. The
1857 ** root-page of a table or index in database iDb has changed from iFrom
1858 ** to iTo.
1859 **
1860 ** Ticket #1728:  The symbol table might still contain information
1861 ** on tables and/or indices that are the process of being deleted.
1862 ** If you are unlucky, one of those deleted indices or tables might
1863 ** have the same rootpage number as the real table or index that is
1864 ** being moved.  So we cannot stop searching after the first match
1865 ** because the first match might be for one of the deleted indices
1866 ** or tables and not the table/index that is actually being moved.
1867 ** We must continue looping until all tables and indices with
1868 ** rootpage==iFrom have been converted to have a rootpage of iTo
1869 ** in order to be certain that we got the right one.
1870 */
1871 #ifndef SQLITE_OMIT_AUTOVACUUM
1872 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
1873   HashElem *pElem;
1874   Hash *pHash;
1875   Db *pDb;
1876 
1877   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1878   pDb = &db->aDb[iDb];
1879   pHash = &pDb->pSchema->tblHash;
1880   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1881     Table *pTab = sqliteHashData(pElem);
1882     if( pTab->tnum==iFrom ){
1883       pTab->tnum = iTo;
1884     }
1885   }
1886   pHash = &pDb->pSchema->idxHash;
1887   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1888     Index *pIdx = sqliteHashData(pElem);
1889     if( pIdx->tnum==iFrom ){
1890       pIdx->tnum = iTo;
1891     }
1892   }
1893 }
1894 #endif
1895 
1896 /*
1897 ** Write code to erase the table with root-page iTable from database iDb.
1898 ** Also write code to modify the sqlite_master table and internal schema
1899 ** if a root-page of another table is moved by the btree-layer whilst
1900 ** erasing iTable (this can happen with an auto-vacuum database).
1901 */
1902 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1903   Vdbe *v = sqlite3GetVdbe(pParse);
1904   int r1 = sqlite3GetTempReg(pParse);
1905   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1906   sqlite3MayAbort(pParse);
1907 #ifndef SQLITE_OMIT_AUTOVACUUM
1908   /* OP_Destroy stores an in integer r1. If this integer
1909   ** is non-zero, then it is the root page number of a table moved to
1910   ** location iTable. The following code modifies the sqlite_master table to
1911   ** reflect this.
1912   **
1913   ** The "#NNN" in the SQL is a special constant that means whatever value
1914   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
1915   ** token for additional information.
1916   */
1917   sqlite3NestedParse(pParse,
1918      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1919      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1920 #endif
1921   sqlite3ReleaseTempReg(pParse, r1);
1922 }
1923 
1924 /*
1925 ** Write VDBE code to erase table pTab and all associated indices on disk.
1926 ** Code to update the sqlite_master tables and internal schema definitions
1927 ** in case a root-page belonging to another table is moved by the btree layer
1928 ** is also added (this can happen with an auto-vacuum database).
1929 */
1930 static void destroyTable(Parse *pParse, Table *pTab){
1931 #ifdef SQLITE_OMIT_AUTOVACUUM
1932   Index *pIdx;
1933   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1934   destroyRootPage(pParse, pTab->tnum, iDb);
1935   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1936     destroyRootPage(pParse, pIdx->tnum, iDb);
1937   }
1938 #else
1939   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1940   ** is not defined), then it is important to call OP_Destroy on the
1941   ** table and index root-pages in order, starting with the numerically
1942   ** largest root-page number. This guarantees that none of the root-pages
1943   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1944   ** following were coded:
1945   **
1946   ** OP_Destroy 4 0
1947   ** ...
1948   ** OP_Destroy 5 0
1949   **
1950   ** and root page 5 happened to be the largest root-page number in the
1951   ** database, then root page 5 would be moved to page 4 by the
1952   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1953   ** a free-list page.
1954   */
1955   int iTab = pTab->tnum;
1956   int iDestroyed = 0;
1957 
1958   while( 1 ){
1959     Index *pIdx;
1960     int iLargest = 0;
1961 
1962     if( iDestroyed==0 || iTab<iDestroyed ){
1963       iLargest = iTab;
1964     }
1965     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1966       int iIdx = pIdx->tnum;
1967       assert( pIdx->pSchema==pTab->pSchema );
1968       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1969         iLargest = iIdx;
1970       }
1971     }
1972     if( iLargest==0 ){
1973       return;
1974     }else{
1975       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1976       destroyRootPage(pParse, iLargest, iDb);
1977       iDestroyed = iLargest;
1978     }
1979   }
1980 #endif
1981 }
1982 
1983 /*
1984 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
1985 ** after a DROP INDEX or DROP TABLE command.
1986 */
1987 static void sqlite3ClearStatTables(
1988   Parse *pParse,         /* The parsing context */
1989   int iDb,               /* The database number */
1990   const char *zType,     /* "idx" or "tbl" */
1991   const char *zName      /* Name of index or table */
1992 ){
1993   int i;
1994   const char *zDbName = pParse->db->aDb[iDb].zName;
1995   for(i=1; i<=3; i++){
1996     char zTab[24];
1997     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
1998     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
1999       sqlite3NestedParse(pParse,
2000         "DELETE FROM %Q.%s WHERE %s=%Q",
2001         zDbName, zTab, zType, zName
2002       );
2003     }
2004   }
2005 }
2006 
2007 /*
2008 ** Generate code to drop a table.
2009 */
2010 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2011   Vdbe *v;
2012   sqlite3 *db = pParse->db;
2013   Trigger *pTrigger;
2014   Db *pDb = &db->aDb[iDb];
2015 
2016   v = sqlite3GetVdbe(pParse);
2017   assert( v!=0 );
2018   sqlite3BeginWriteOperation(pParse, 1, iDb);
2019 
2020 #ifndef SQLITE_OMIT_VIRTUALTABLE
2021   if( IsVirtual(pTab) ){
2022     sqlite3VdbeAddOp0(v, OP_VBegin);
2023   }
2024 #endif
2025 
2026   /* Drop all triggers associated with the table being dropped. Code
2027   ** is generated to remove entries from sqlite_master and/or
2028   ** sqlite_temp_master if required.
2029   */
2030   pTrigger = sqlite3TriggerList(pParse, pTab);
2031   while( pTrigger ){
2032     assert( pTrigger->pSchema==pTab->pSchema ||
2033         pTrigger->pSchema==db->aDb[1].pSchema );
2034     sqlite3DropTriggerPtr(pParse, pTrigger);
2035     pTrigger = pTrigger->pNext;
2036   }
2037 
2038 #ifndef SQLITE_OMIT_AUTOINCREMENT
2039   /* Remove any entries of the sqlite_sequence table associated with
2040   ** the table being dropped. This is done before the table is dropped
2041   ** at the btree level, in case the sqlite_sequence table needs to
2042   ** move as a result of the drop (can happen in auto-vacuum mode).
2043   */
2044   if( pTab->tabFlags & TF_Autoincrement ){
2045     sqlite3NestedParse(pParse,
2046       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2047       pDb->zName, pTab->zName
2048     );
2049   }
2050 #endif
2051 
2052   /* Drop all SQLITE_MASTER table and index entries that refer to the
2053   ** table. The program name loops through the master table and deletes
2054   ** every row that refers to a table of the same name as the one being
2055   ** dropped. Triggers are handled seperately because a trigger can be
2056   ** created in the temp database that refers to a table in another
2057   ** database.
2058   */
2059   sqlite3NestedParse(pParse,
2060       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2061       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2062   if( !isView && !IsVirtual(pTab) ){
2063     destroyTable(pParse, pTab);
2064   }
2065 
2066   /* Remove the table entry from SQLite's internal schema and modify
2067   ** the schema cookie.
2068   */
2069   if( IsVirtual(pTab) ){
2070     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2071   }
2072   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2073   sqlite3ChangeCookie(pParse, iDb);
2074   sqliteViewResetAll(db, iDb);
2075 }
2076 
2077 /*
2078 ** This routine is called to do the work of a DROP TABLE statement.
2079 ** pName is the name of the table to be dropped.
2080 */
2081 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2082   Table *pTab;
2083   Vdbe *v;
2084   sqlite3 *db = pParse->db;
2085   int iDb;
2086 
2087   if( db->mallocFailed ){
2088     goto exit_drop_table;
2089   }
2090   assert( pParse->nErr==0 );
2091   assert( pName->nSrc==1 );
2092   if( noErr ) db->suppressErr++;
2093   pTab = sqlite3LocateTable(pParse, isView,
2094                             pName->a[0].zName, pName->a[0].zDatabase);
2095   if( noErr ) db->suppressErr--;
2096 
2097   if( pTab==0 ){
2098     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2099     goto exit_drop_table;
2100   }
2101   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2102   assert( iDb>=0 && iDb<db->nDb );
2103 
2104   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2105   ** it is initialized.
2106   */
2107   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2108     goto exit_drop_table;
2109   }
2110 #ifndef SQLITE_OMIT_AUTHORIZATION
2111   {
2112     int code;
2113     const char *zTab = SCHEMA_TABLE(iDb);
2114     const char *zDb = db->aDb[iDb].zName;
2115     const char *zArg2 = 0;
2116     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2117       goto exit_drop_table;
2118     }
2119     if( isView ){
2120       if( !OMIT_TEMPDB && iDb==1 ){
2121         code = SQLITE_DROP_TEMP_VIEW;
2122       }else{
2123         code = SQLITE_DROP_VIEW;
2124       }
2125 #ifndef SQLITE_OMIT_VIRTUALTABLE
2126     }else if( IsVirtual(pTab) ){
2127       code = SQLITE_DROP_VTABLE;
2128       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2129 #endif
2130     }else{
2131       if( !OMIT_TEMPDB && iDb==1 ){
2132         code = SQLITE_DROP_TEMP_TABLE;
2133       }else{
2134         code = SQLITE_DROP_TABLE;
2135       }
2136     }
2137     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2138       goto exit_drop_table;
2139     }
2140     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2141       goto exit_drop_table;
2142     }
2143   }
2144 #endif
2145   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2146     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2147     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2148     goto exit_drop_table;
2149   }
2150 
2151 #ifndef SQLITE_OMIT_VIEW
2152   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2153   ** on a table.
2154   */
2155   if( isView && pTab->pSelect==0 ){
2156     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2157     goto exit_drop_table;
2158   }
2159   if( !isView && pTab->pSelect ){
2160     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2161     goto exit_drop_table;
2162   }
2163 #endif
2164 
2165   /* Generate code to remove the table from the master table
2166   ** on disk.
2167   */
2168   v = sqlite3GetVdbe(pParse);
2169   if( v ){
2170     sqlite3BeginWriteOperation(pParse, 1, iDb);
2171     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2172     sqlite3FkDropTable(pParse, pName, pTab);
2173     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2174   }
2175 
2176 exit_drop_table:
2177   sqlite3SrcListDelete(db, pName);
2178 }
2179 
2180 /*
2181 ** This routine is called to create a new foreign key on the table
2182 ** currently under construction.  pFromCol determines which columns
2183 ** in the current table point to the foreign key.  If pFromCol==0 then
2184 ** connect the key to the last column inserted.  pTo is the name of
2185 ** the table referred to.  pToCol is a list of tables in the other
2186 ** pTo table that the foreign key points to.  flags contains all
2187 ** information about the conflict resolution algorithms specified
2188 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2189 **
2190 ** An FKey structure is created and added to the table currently
2191 ** under construction in the pParse->pNewTable field.
2192 **
2193 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2194 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2195 */
2196 void sqlite3CreateForeignKey(
2197   Parse *pParse,       /* Parsing context */
2198   ExprList *pFromCol,  /* Columns in this table that point to other table */
2199   Token *pTo,          /* Name of the other table */
2200   ExprList *pToCol,    /* Columns in the other table */
2201   int flags            /* Conflict resolution algorithms. */
2202 ){
2203   sqlite3 *db = pParse->db;
2204 #ifndef SQLITE_OMIT_FOREIGN_KEY
2205   FKey *pFKey = 0;
2206   FKey *pNextTo;
2207   Table *p = pParse->pNewTable;
2208   int nByte;
2209   int i;
2210   int nCol;
2211   char *z;
2212 
2213   assert( pTo!=0 );
2214   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2215   if( pFromCol==0 ){
2216     int iCol = p->nCol-1;
2217     if( NEVER(iCol<0) ) goto fk_end;
2218     if( pToCol && pToCol->nExpr!=1 ){
2219       sqlite3ErrorMsg(pParse, "foreign key on %s"
2220          " should reference only one column of table %T",
2221          p->aCol[iCol].zName, pTo);
2222       goto fk_end;
2223     }
2224     nCol = 1;
2225   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2226     sqlite3ErrorMsg(pParse,
2227         "number of columns in foreign key does not match the number of "
2228         "columns in the referenced table");
2229     goto fk_end;
2230   }else{
2231     nCol = pFromCol->nExpr;
2232   }
2233   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2234   if( pToCol ){
2235     for(i=0; i<pToCol->nExpr; i++){
2236       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2237     }
2238   }
2239   pFKey = sqlite3DbMallocZero(db, nByte );
2240   if( pFKey==0 ){
2241     goto fk_end;
2242   }
2243   pFKey->pFrom = p;
2244   pFKey->pNextFrom = p->pFKey;
2245   z = (char*)&pFKey->aCol[nCol];
2246   pFKey->zTo = z;
2247   memcpy(z, pTo->z, pTo->n);
2248   z[pTo->n] = 0;
2249   sqlite3Dequote(z);
2250   z += pTo->n+1;
2251   pFKey->nCol = nCol;
2252   if( pFromCol==0 ){
2253     pFKey->aCol[0].iFrom = p->nCol-1;
2254   }else{
2255     for(i=0; i<nCol; i++){
2256       int j;
2257       for(j=0; j<p->nCol; j++){
2258         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2259           pFKey->aCol[i].iFrom = j;
2260           break;
2261         }
2262       }
2263       if( j>=p->nCol ){
2264         sqlite3ErrorMsg(pParse,
2265           "unknown column \"%s\" in foreign key definition",
2266           pFromCol->a[i].zName);
2267         goto fk_end;
2268       }
2269     }
2270   }
2271   if( pToCol ){
2272     for(i=0; i<nCol; i++){
2273       int n = sqlite3Strlen30(pToCol->a[i].zName);
2274       pFKey->aCol[i].zCol = z;
2275       memcpy(z, pToCol->a[i].zName, n);
2276       z[n] = 0;
2277       z += n+1;
2278     }
2279   }
2280   pFKey->isDeferred = 0;
2281   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2282   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2283 
2284   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2285   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2286       pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
2287   );
2288   if( pNextTo==pFKey ){
2289     db->mallocFailed = 1;
2290     goto fk_end;
2291   }
2292   if( pNextTo ){
2293     assert( pNextTo->pPrevTo==0 );
2294     pFKey->pNextTo = pNextTo;
2295     pNextTo->pPrevTo = pFKey;
2296   }
2297 
2298   /* Link the foreign key to the table as the last step.
2299   */
2300   p->pFKey = pFKey;
2301   pFKey = 0;
2302 
2303 fk_end:
2304   sqlite3DbFree(db, pFKey);
2305 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2306   sqlite3ExprListDelete(db, pFromCol);
2307   sqlite3ExprListDelete(db, pToCol);
2308 }
2309 
2310 /*
2311 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2312 ** clause is seen as part of a foreign key definition.  The isDeferred
2313 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2314 ** The behavior of the most recently created foreign key is adjusted
2315 ** accordingly.
2316 */
2317 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2318 #ifndef SQLITE_OMIT_FOREIGN_KEY
2319   Table *pTab;
2320   FKey *pFKey;
2321   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2322   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2323   pFKey->isDeferred = (u8)isDeferred;
2324 #endif
2325 }
2326 
2327 /*
2328 ** Generate code that will erase and refill index *pIdx.  This is
2329 ** used to initialize a newly created index or to recompute the
2330 ** content of an index in response to a REINDEX command.
2331 **
2332 ** if memRootPage is not negative, it means that the index is newly
2333 ** created.  The register specified by memRootPage contains the
2334 ** root page number of the index.  If memRootPage is negative, then
2335 ** the index already exists and must be cleared before being refilled and
2336 ** the root page number of the index is taken from pIndex->tnum.
2337 */
2338 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2339   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2340   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2341   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2342   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2343   int addr1;                     /* Address of top of loop */
2344   int addr2;                     /* Address to jump to for next iteration */
2345   int tnum;                      /* Root page of index */
2346   Vdbe *v;                       /* Generate code into this virtual machine */
2347   KeyInfo *pKey;                 /* KeyInfo for index */
2348 #ifdef SQLITE_OMIT_MERGE_SORT
2349   int regIdxKey;                 /* Registers containing the index key */
2350 #endif
2351   int regRecord;                 /* Register holding assemblied index record */
2352   sqlite3 *db = pParse->db;      /* The database connection */
2353   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2354 
2355 #ifndef SQLITE_OMIT_AUTHORIZATION
2356   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2357       db->aDb[iDb].zName ) ){
2358     return;
2359   }
2360 #endif
2361 
2362   /* Require a write-lock on the table to perform this operation */
2363   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2364 
2365   v = sqlite3GetVdbe(pParse);
2366   if( v==0 ) return;
2367   if( memRootPage>=0 ){
2368     tnum = memRootPage;
2369   }else{
2370     tnum = pIndex->tnum;
2371     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2372   }
2373   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2374   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2375                     (char *)pKey, P4_KEYINFO_HANDOFF);
2376   if( memRootPage>=0 ){
2377     sqlite3VdbeChangeP5(v, 1);
2378   }
2379 
2380 #ifndef SQLITE_OMIT_MERGE_SORT
2381   /* Open the sorter cursor if we are to use one. */
2382   iSorter = pParse->nTab++;
2383   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO);
2384 #else
2385   iSorter = iTab;
2386 #endif
2387 
2388   /* Open the table. Loop through all rows of the table, inserting index
2389   ** records into the sorter. */
2390   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2391   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2392   regRecord = sqlite3GetTempReg(pParse);
2393 
2394 #ifndef SQLITE_OMIT_MERGE_SORT
2395   sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2396   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2397   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2398   sqlite3VdbeJumpHere(v, addr1);
2399   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
2400   if( pIndex->onError!=OE_None ){
2401     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2402     sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
2403     addr2 = sqlite3VdbeCurrentAddr(v);
2404     sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord);
2405     sqlite3HaltConstraint(
2406         pParse, OE_Abort, "indexed columns are not unique", P4_STATIC
2407     );
2408   }else{
2409     addr2 = sqlite3VdbeCurrentAddr(v);
2410   }
2411   sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
2412   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
2413   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2414 #else
2415   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2416   addr2 = addr1 + 1;
2417   if( pIndex->onError!=OE_None ){
2418     const int regRowid = regIdxKey + pIndex->nColumn;
2419     const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
2420     void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
2421 
2422     /* The registers accessed by the OP_IsUnique opcode were allocated
2423     ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
2424     ** call above. Just before that function was freed they were released
2425     ** (made available to the compiler for reuse) using
2426     ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
2427     ** opcode use the values stored within seems dangerous. However, since
2428     ** we can be sure that no other temp registers have been allocated
2429     ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
2430     */
2431     sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
2432     sqlite3HaltConstraint(
2433         pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
2434   }
2435   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2436   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2437 #endif
2438   sqlite3ReleaseTempReg(pParse, regRecord);
2439   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2);
2440   sqlite3VdbeJumpHere(v, addr1);
2441 
2442   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2443   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2444   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2445 }
2446 
2447 /*
2448 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2449 ** and pTblList is the name of the table that is to be indexed.  Both will
2450 ** be NULL for a primary key or an index that is created to satisfy a
2451 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2452 ** as the table to be indexed.  pParse->pNewTable is a table that is
2453 ** currently being constructed by a CREATE TABLE statement.
2454 **
2455 ** pList is a list of columns to be indexed.  pList will be NULL if this
2456 ** is a primary key or unique-constraint on the most recent column added
2457 ** to the table currently under construction.
2458 **
2459 ** If the index is created successfully, return a pointer to the new Index
2460 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2461 ** as the tables primary key (Index.autoIndex==2).
2462 */
2463 Index *sqlite3CreateIndex(
2464   Parse *pParse,     /* All information about this parse */
2465   Token *pName1,     /* First part of index name. May be NULL */
2466   Token *pName2,     /* Second part of index name. May be NULL */
2467   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2468   ExprList *pList,   /* A list of columns to be indexed */
2469   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2470   Token *pStart,     /* The CREATE token that begins this statement */
2471   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
2472   int sortOrder,     /* Sort order of primary key when pList==NULL */
2473   int ifNotExist     /* Omit error if index already exists */
2474 ){
2475   Index *pRet = 0;     /* Pointer to return */
2476   Table *pTab = 0;     /* Table to be indexed */
2477   Index *pIndex = 0;   /* The index to be created */
2478   char *zName = 0;     /* Name of the index */
2479   int nName;           /* Number of characters in zName */
2480   int i, j;
2481   Token nullId;        /* Fake token for an empty ID list */
2482   DbFixer sFix;        /* For assigning database names to pTable */
2483   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2484   sqlite3 *db = pParse->db;
2485   Db *pDb;             /* The specific table containing the indexed database */
2486   int iDb;             /* Index of the database that is being written */
2487   Token *pName = 0;    /* Unqualified name of the index to create */
2488   struct ExprList_item *pListItem; /* For looping over pList */
2489   int nCol;
2490   int nExtra = 0;
2491   char *zExtra;
2492 
2493   assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
2494   assert( pParse->nErr==0 );      /* Never called with prior errors */
2495   if( db->mallocFailed || IN_DECLARE_VTAB ){
2496     goto exit_create_index;
2497   }
2498   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2499     goto exit_create_index;
2500   }
2501 
2502   /*
2503   ** Find the table that is to be indexed.  Return early if not found.
2504   */
2505   if( pTblName!=0 ){
2506 
2507     /* Use the two-part index name to determine the database
2508     ** to search for the table. 'Fix' the table name to this db
2509     ** before looking up the table.
2510     */
2511     assert( pName1 && pName2 );
2512     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2513     if( iDb<0 ) goto exit_create_index;
2514     assert( pName && pName->z );
2515 
2516 #ifndef SQLITE_OMIT_TEMPDB
2517     /* If the index name was unqualified, check if the the table
2518     ** is a temp table. If so, set the database to 1. Do not do this
2519     ** if initialising a database schema.
2520     */
2521     if( !db->init.busy ){
2522       pTab = sqlite3SrcListLookup(pParse, pTblName);
2523       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2524         iDb = 1;
2525       }
2526     }
2527 #endif
2528 
2529     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2530         sqlite3FixSrcList(&sFix, pTblName)
2531     ){
2532       /* Because the parser constructs pTblName from a single identifier,
2533       ** sqlite3FixSrcList can never fail. */
2534       assert(0);
2535     }
2536     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2537         pTblName->a[0].zDatabase);
2538     if( !pTab || db->mallocFailed ) goto exit_create_index;
2539     assert( db->aDb[iDb].pSchema==pTab->pSchema );
2540   }else{
2541     assert( pName==0 );
2542     assert( pStart==0 );
2543     pTab = pParse->pNewTable;
2544     if( !pTab ) goto exit_create_index;
2545     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2546   }
2547   pDb = &db->aDb[iDb];
2548 
2549   assert( pTab!=0 );
2550   assert( pParse->nErr==0 );
2551   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2552        && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){
2553     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2554     goto exit_create_index;
2555   }
2556 #ifndef SQLITE_OMIT_VIEW
2557   if( pTab->pSelect ){
2558     sqlite3ErrorMsg(pParse, "views may not be indexed");
2559     goto exit_create_index;
2560   }
2561 #endif
2562 #ifndef SQLITE_OMIT_VIRTUALTABLE
2563   if( IsVirtual(pTab) ){
2564     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2565     goto exit_create_index;
2566   }
2567 #endif
2568 
2569   /*
2570   ** Find the name of the index.  Make sure there is not already another
2571   ** index or table with the same name.
2572   **
2573   ** Exception:  If we are reading the names of permanent indices from the
2574   ** sqlite_master table (because some other process changed the schema) and
2575   ** one of the index names collides with the name of a temporary table or
2576   ** index, then we will continue to process this index.
2577   **
2578   ** If pName==0 it means that we are
2579   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2580   ** own name.
2581   */
2582   if( pName ){
2583     zName = sqlite3NameFromToken(db, pName);
2584     if( zName==0 ) goto exit_create_index;
2585     assert( pName->z!=0 );
2586     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2587       goto exit_create_index;
2588     }
2589     if( !db->init.busy ){
2590       if( sqlite3FindTable(db, zName, 0)!=0 ){
2591         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2592         goto exit_create_index;
2593       }
2594     }
2595     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2596       if( !ifNotExist ){
2597         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2598       }else{
2599         assert( !db->init.busy );
2600         sqlite3CodeVerifySchema(pParse, iDb);
2601       }
2602       goto exit_create_index;
2603     }
2604   }else{
2605     int n;
2606     Index *pLoop;
2607     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2608     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2609     if( zName==0 ){
2610       goto exit_create_index;
2611     }
2612   }
2613 
2614   /* Check for authorization to create an index.
2615   */
2616 #ifndef SQLITE_OMIT_AUTHORIZATION
2617   {
2618     const char *zDb = pDb->zName;
2619     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2620       goto exit_create_index;
2621     }
2622     i = SQLITE_CREATE_INDEX;
2623     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2624     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2625       goto exit_create_index;
2626     }
2627   }
2628 #endif
2629 
2630   /* If pList==0, it means this routine was called to make a primary
2631   ** key out of the last column added to the table under construction.
2632   ** So create a fake list to simulate this.
2633   */
2634   if( pList==0 ){
2635     nullId.z = pTab->aCol[pTab->nCol-1].zName;
2636     nullId.n = sqlite3Strlen30((char*)nullId.z);
2637     pList = sqlite3ExprListAppend(pParse, 0, 0);
2638     if( pList==0 ) goto exit_create_index;
2639     sqlite3ExprListSetName(pParse, pList, &nullId, 0);
2640     pList->a[0].sortOrder = (u8)sortOrder;
2641   }
2642 
2643   /* Figure out how many bytes of space are required to store explicitly
2644   ** specified collation sequence names.
2645   */
2646   for(i=0; i<pList->nExpr; i++){
2647     Expr *pExpr = pList->a[i].pExpr;
2648     if( pExpr ){
2649       CollSeq *pColl = pExpr->pColl;
2650       /* Either pColl!=0 or there was an OOM failure.  But if an OOM
2651       ** failure we have quit before reaching this point. */
2652       if( ALWAYS(pColl) ){
2653         nExtra += (1 + sqlite3Strlen30(pColl->zName));
2654       }
2655     }
2656   }
2657 
2658   /*
2659   ** Allocate the index structure.
2660   */
2661   nName = sqlite3Strlen30(zName);
2662   nCol = pList->nExpr;
2663   pIndex = sqlite3DbMallocZero(db,
2664       ROUND8(sizeof(Index)) +              /* Index structure  */
2665       ROUND8(sizeof(tRowcnt)*(nCol+1)) +   /* Index.aiRowEst   */
2666       sizeof(char *)*nCol +                /* Index.azColl     */
2667       sizeof(int)*nCol +                   /* Index.aiColumn   */
2668       sizeof(u8)*nCol +                    /* Index.aSortOrder */
2669       nName + 1 +                          /* Index.zName      */
2670       nExtra                               /* Collation sequence names */
2671   );
2672   if( db->mallocFailed ){
2673     goto exit_create_index;
2674   }
2675   zExtra = (char*)pIndex;
2676   pIndex->aiRowEst = (tRowcnt*)&zExtra[ROUND8(sizeof(Index))];
2677   pIndex->azColl = (char**)
2678      ((char*)pIndex->aiRowEst + ROUND8(sizeof(tRowcnt)*nCol+1));
2679   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowEst) );
2680   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
2681   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2682   pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]);
2683   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2684   zExtra = (char *)(&pIndex->zName[nName+1]);
2685   memcpy(pIndex->zName, zName, nName+1);
2686   pIndex->pTable = pTab;
2687   pIndex->nColumn = pList->nExpr;
2688   pIndex->onError = (u8)onError;
2689   pIndex->autoIndex = (u8)(pName==0);
2690   pIndex->pSchema = db->aDb[iDb].pSchema;
2691   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2692 
2693   /* Check to see if we should honor DESC requests on index columns
2694   */
2695   if( pDb->pSchema->file_format>=4 ){
2696     sortOrderMask = -1;   /* Honor DESC */
2697   }else{
2698     sortOrderMask = 0;    /* Ignore DESC */
2699   }
2700 
2701   /* Scan the names of the columns of the table to be indexed and
2702   ** load the column indices into the Index structure.  Report an error
2703   ** if any column is not found.
2704   **
2705   ** TODO:  Add a test to make sure that the same column is not named
2706   ** more than once within the same index.  Only the first instance of
2707   ** the column will ever be used by the optimizer.  Note that using the
2708   ** same column more than once cannot be an error because that would
2709   ** break backwards compatibility - it needs to be a warning.
2710   */
2711   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2712     const char *zColName = pListItem->zName;
2713     Column *pTabCol;
2714     int requestedSortOrder;
2715     char *zColl;                   /* Collation sequence name */
2716 
2717     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2718       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2719     }
2720     if( j>=pTab->nCol ){
2721       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2722         pTab->zName, zColName);
2723       pParse->checkSchema = 1;
2724       goto exit_create_index;
2725     }
2726     pIndex->aiColumn[i] = j;
2727     /* Justification of the ALWAYS(pListItem->pExpr->pColl):  Because of
2728     ** the way the "idxlist" non-terminal is constructed by the parser,
2729     ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
2730     ** must exist or else there must have been an OOM error.  But if there
2731     ** was an OOM error, we would never reach this point. */
2732     if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
2733       int nColl;
2734       zColl = pListItem->pExpr->pColl->zName;
2735       nColl = sqlite3Strlen30(zColl) + 1;
2736       assert( nExtra>=nColl );
2737       memcpy(zExtra, zColl, nColl);
2738       zColl = zExtra;
2739       zExtra += nColl;
2740       nExtra -= nColl;
2741     }else{
2742       zColl = pTab->aCol[j].zColl;
2743       if( !zColl ){
2744         zColl = db->pDfltColl->zName;
2745       }
2746     }
2747     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
2748       goto exit_create_index;
2749     }
2750     pIndex->azColl[i] = zColl;
2751     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2752     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
2753   }
2754   sqlite3DefaultRowEst(pIndex);
2755 
2756   if( pTab==pParse->pNewTable ){
2757     /* This routine has been called to create an automatic index as a
2758     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2759     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2760     ** i.e. one of:
2761     **
2762     ** CREATE TABLE t(x PRIMARY KEY, y);
2763     ** CREATE TABLE t(x, y, UNIQUE(x, y));
2764     **
2765     ** Either way, check to see if the table already has such an index. If
2766     ** so, don't bother creating this one. This only applies to
2767     ** automatically created indices. Users can do as they wish with
2768     ** explicit indices.
2769     **
2770     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
2771     ** (and thus suppressing the second one) even if they have different
2772     ** sort orders.
2773     **
2774     ** If there are different collating sequences or if the columns of
2775     ** the constraint occur in different orders, then the constraints are
2776     ** considered distinct and both result in separate indices.
2777     */
2778     Index *pIdx;
2779     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2780       int k;
2781       assert( pIdx->onError!=OE_None );
2782       assert( pIdx->autoIndex );
2783       assert( pIndex->onError!=OE_None );
2784 
2785       if( pIdx->nColumn!=pIndex->nColumn ) continue;
2786       for(k=0; k<pIdx->nColumn; k++){
2787         const char *z1;
2788         const char *z2;
2789         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2790         z1 = pIdx->azColl[k];
2791         z2 = pIndex->azColl[k];
2792         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2793       }
2794       if( k==pIdx->nColumn ){
2795         if( pIdx->onError!=pIndex->onError ){
2796           /* This constraint creates the same index as a previous
2797           ** constraint specified somewhere in the CREATE TABLE statement.
2798           ** However the ON CONFLICT clauses are different. If both this
2799           ** constraint and the previous equivalent constraint have explicit
2800           ** ON CONFLICT clauses this is an error. Otherwise, use the
2801           ** explicitly specified behaviour for the index.
2802           */
2803           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2804             sqlite3ErrorMsg(pParse,
2805                 "conflicting ON CONFLICT clauses specified", 0);
2806           }
2807           if( pIdx->onError==OE_Default ){
2808             pIdx->onError = pIndex->onError;
2809           }
2810         }
2811         goto exit_create_index;
2812       }
2813     }
2814   }
2815 
2816   /* Link the new Index structure to its table and to the other
2817   ** in-memory database structures.
2818   */
2819   if( db->init.busy ){
2820     Index *p;
2821     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
2822     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2823                           pIndex->zName, sqlite3Strlen30(pIndex->zName),
2824                           pIndex);
2825     if( p ){
2826       assert( p==pIndex );  /* Malloc must have failed */
2827       db->mallocFailed = 1;
2828       goto exit_create_index;
2829     }
2830     db->flags |= SQLITE_InternChanges;
2831     if( pTblName!=0 ){
2832       pIndex->tnum = db->init.newTnum;
2833     }
2834   }
2835 
2836   /* If the db->init.busy is 0 then create the index on disk.  This
2837   ** involves writing the index into the master table and filling in the
2838   ** index with the current table contents.
2839   **
2840   ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2841   ** command.  db->init.busy is 1 when a database is opened and
2842   ** CREATE INDEX statements are read out of the master table.  In
2843   ** the latter case the index already exists on disk, which is why
2844   ** we don't want to recreate it.
2845   **
2846   ** If pTblName==0 it means this index is generated as a primary key
2847   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
2848   ** has just been created, it contains no data and the index initialization
2849   ** step can be skipped.
2850   */
2851   else{ /* if( db->init.busy==0 ) */
2852     Vdbe *v;
2853     char *zStmt;
2854     int iMem = ++pParse->nMem;
2855 
2856     v = sqlite3GetVdbe(pParse);
2857     if( v==0 ) goto exit_create_index;
2858 
2859 
2860     /* Create the rootpage for the index
2861     */
2862     sqlite3BeginWriteOperation(pParse, 1, iDb);
2863     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2864 
2865     /* Gather the complete text of the CREATE INDEX statement into
2866     ** the zStmt variable
2867     */
2868     if( pStart ){
2869       assert( pEnd!=0 );
2870       /* A named index with an explicit CREATE INDEX statement */
2871       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2872         onError==OE_None ? "" : " UNIQUE",
2873         (int)(pEnd->z - pName->z) + 1,
2874         pName->z);
2875     }else{
2876       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2877       /* zStmt = sqlite3MPrintf(""); */
2878       zStmt = 0;
2879     }
2880 
2881     /* Add an entry in sqlite_master for this index
2882     */
2883     sqlite3NestedParse(pParse,
2884         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2885         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2886         pIndex->zName,
2887         pTab->zName,
2888         iMem,
2889         zStmt
2890     );
2891     sqlite3DbFree(db, zStmt);
2892 
2893     /* Fill the index with data and reparse the schema. Code an OP_Expire
2894     ** to invalidate all pre-compiled statements.
2895     */
2896     if( pTblName ){
2897       sqlite3RefillIndex(pParse, pIndex, iMem);
2898       sqlite3ChangeCookie(pParse, iDb);
2899       sqlite3VdbeAddParseSchemaOp(v, iDb,
2900          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
2901       sqlite3VdbeAddOp1(v, OP_Expire, 0);
2902     }
2903   }
2904 
2905   /* When adding an index to the list of indices for a table, make
2906   ** sure all indices labeled OE_Replace come after all those labeled
2907   ** OE_Ignore.  This is necessary for the correct constraint check
2908   ** processing (in sqlite3GenerateConstraintChecks()) as part of
2909   ** UPDATE and INSERT statements.
2910   */
2911   if( db->init.busy || pTblName==0 ){
2912     if( onError!=OE_Replace || pTab->pIndex==0
2913          || pTab->pIndex->onError==OE_Replace){
2914       pIndex->pNext = pTab->pIndex;
2915       pTab->pIndex = pIndex;
2916     }else{
2917       Index *pOther = pTab->pIndex;
2918       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2919         pOther = pOther->pNext;
2920       }
2921       pIndex->pNext = pOther->pNext;
2922       pOther->pNext = pIndex;
2923     }
2924     pRet = pIndex;
2925     pIndex = 0;
2926   }
2927 
2928   /* Clean up before exiting */
2929 exit_create_index:
2930   if( pIndex ){
2931     sqlite3DbFree(db, pIndex->zColAff);
2932     sqlite3DbFree(db, pIndex);
2933   }
2934   sqlite3ExprListDelete(db, pList);
2935   sqlite3SrcListDelete(db, pTblName);
2936   sqlite3DbFree(db, zName);
2937   return pRet;
2938 }
2939 
2940 /*
2941 ** Fill the Index.aiRowEst[] array with default information - information
2942 ** to be used when we have not run the ANALYZE command.
2943 **
2944 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2945 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
2946 ** number of rows in the table that match any particular value of the
2947 ** first column of the index.  aiRowEst[2] is an estimate of the number
2948 ** of rows that match any particular combiniation of the first 2 columns
2949 ** of the index.  And so forth.  It must always be the case that
2950 *
2951 **           aiRowEst[N]<=aiRowEst[N-1]
2952 **           aiRowEst[N]>=1
2953 **
2954 ** Apart from that, we have little to go on besides intuition as to
2955 ** how aiRowEst[] should be initialized.  The numbers generated here
2956 ** are based on typical values found in actual indices.
2957 */
2958 void sqlite3DefaultRowEst(Index *pIdx){
2959   tRowcnt *a = pIdx->aiRowEst;
2960   int i;
2961   tRowcnt n;
2962   assert( a!=0 );
2963   a[0] = pIdx->pTable->nRowEst;
2964   if( a[0]<10 ) a[0] = 10;
2965   n = 10;
2966   for(i=1; i<=pIdx->nColumn; i++){
2967     a[i] = n;
2968     if( n>5 ) n--;
2969   }
2970   if( pIdx->onError!=OE_None ){
2971     a[pIdx->nColumn] = 1;
2972   }
2973 }
2974 
2975 /*
2976 ** This routine will drop an existing named index.  This routine
2977 ** implements the DROP INDEX statement.
2978 */
2979 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
2980   Index *pIndex;
2981   Vdbe *v;
2982   sqlite3 *db = pParse->db;
2983   int iDb;
2984 
2985   assert( pParse->nErr==0 );   /* Never called with prior errors */
2986   if( db->mallocFailed ){
2987     goto exit_drop_index;
2988   }
2989   assert( pName->nSrc==1 );
2990   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2991     goto exit_drop_index;
2992   }
2993   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
2994   if( pIndex==0 ){
2995     if( !ifExists ){
2996       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
2997     }else{
2998       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2999     }
3000     pParse->checkSchema = 1;
3001     goto exit_drop_index;
3002   }
3003   if( pIndex->autoIndex ){
3004     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3005       "or PRIMARY KEY constraint cannot be dropped", 0);
3006     goto exit_drop_index;
3007   }
3008   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3009 #ifndef SQLITE_OMIT_AUTHORIZATION
3010   {
3011     int code = SQLITE_DROP_INDEX;
3012     Table *pTab = pIndex->pTable;
3013     const char *zDb = db->aDb[iDb].zName;
3014     const char *zTab = SCHEMA_TABLE(iDb);
3015     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3016       goto exit_drop_index;
3017     }
3018     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3019     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3020       goto exit_drop_index;
3021     }
3022   }
3023 #endif
3024 
3025   /* Generate code to remove the index and from the master table */
3026   v = sqlite3GetVdbe(pParse);
3027   if( v ){
3028     sqlite3BeginWriteOperation(pParse, 1, iDb);
3029     sqlite3NestedParse(pParse,
3030        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3031        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3032     );
3033     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3034     sqlite3ChangeCookie(pParse, iDb);
3035     destroyRootPage(pParse, pIndex->tnum, iDb);
3036     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3037   }
3038 
3039 exit_drop_index:
3040   sqlite3SrcListDelete(db, pName);
3041 }
3042 
3043 /*
3044 ** pArray is a pointer to an array of objects.  Each object in the
3045 ** array is szEntry bytes in size.  This routine allocates a new
3046 ** object on the end of the array.
3047 **
3048 ** *pnEntry is the number of entries already in use.  *pnAlloc is
3049 ** the previously allocated size of the array.  initSize is the
3050 ** suggested initial array size allocation.
3051 **
3052 ** The index of the new entry is returned in *pIdx.
3053 **
3054 ** This routine returns a pointer to the array of objects.  This
3055 ** might be the same as the pArray parameter or it might be a different
3056 ** pointer if the array was resized.
3057 */
3058 void *sqlite3ArrayAllocate(
3059   sqlite3 *db,      /* Connection to notify of malloc failures */
3060   void *pArray,     /* Array of objects.  Might be reallocated */
3061   int szEntry,      /* Size of each object in the array */
3062   int initSize,     /* Suggested initial allocation, in elements */
3063   int *pnEntry,     /* Number of objects currently in use */
3064   int *pnAlloc,     /* Current size of the allocation, in elements */
3065   int *pIdx         /* Write the index of a new slot here */
3066 ){
3067   char *z;
3068   if( *pnEntry >= *pnAlloc ){
3069     void *pNew;
3070     int newSize;
3071     newSize = (*pnAlloc)*2 + initSize;
3072     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
3073     if( pNew==0 ){
3074       *pIdx = -1;
3075       return pArray;
3076     }
3077     *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
3078     pArray = pNew;
3079   }
3080   z = (char*)pArray;
3081   memset(&z[*pnEntry * szEntry], 0, szEntry);
3082   *pIdx = *pnEntry;
3083   ++*pnEntry;
3084   return pArray;
3085 }
3086 
3087 /*
3088 ** Append a new element to the given IdList.  Create a new IdList if
3089 ** need be.
3090 **
3091 ** A new IdList is returned, or NULL if malloc() fails.
3092 */
3093 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3094   int i;
3095   if( pList==0 ){
3096     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3097     if( pList==0 ) return 0;
3098     pList->nAlloc = 0;
3099   }
3100   pList->a = sqlite3ArrayAllocate(
3101       db,
3102       pList->a,
3103       sizeof(pList->a[0]),
3104       5,
3105       &pList->nId,
3106       &pList->nAlloc,
3107       &i
3108   );
3109   if( i<0 ){
3110     sqlite3IdListDelete(db, pList);
3111     return 0;
3112   }
3113   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3114   return pList;
3115 }
3116 
3117 /*
3118 ** Delete an IdList.
3119 */
3120 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3121   int i;
3122   if( pList==0 ) return;
3123   for(i=0; i<pList->nId; i++){
3124     sqlite3DbFree(db, pList->a[i].zName);
3125   }
3126   sqlite3DbFree(db, pList->a);
3127   sqlite3DbFree(db, pList);
3128 }
3129 
3130 /*
3131 ** Return the index in pList of the identifier named zId.  Return -1
3132 ** if not found.
3133 */
3134 int sqlite3IdListIndex(IdList *pList, const char *zName){
3135   int i;
3136   if( pList==0 ) return -1;
3137   for(i=0; i<pList->nId; i++){
3138     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3139   }
3140   return -1;
3141 }
3142 
3143 /*
3144 ** Expand the space allocated for the given SrcList object by
3145 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3146 ** New slots are zeroed.
3147 **
3148 ** For example, suppose a SrcList initially contains two entries: A,B.
3149 ** To append 3 new entries onto the end, do this:
3150 **
3151 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3152 **
3153 ** After the call above it would contain:  A, B, nil, nil, nil.
3154 ** If the iStart argument had been 1 instead of 2, then the result
3155 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3156 ** the iStart value would be 0.  The result then would
3157 ** be: nil, nil, nil, A, B.
3158 **
3159 ** If a memory allocation fails the SrcList is unchanged.  The
3160 ** db->mallocFailed flag will be set to true.
3161 */
3162 SrcList *sqlite3SrcListEnlarge(
3163   sqlite3 *db,       /* Database connection to notify of OOM errors */
3164   SrcList *pSrc,     /* The SrcList to be enlarged */
3165   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3166   int iStart         /* Index in pSrc->a[] of first new slot */
3167 ){
3168   int i;
3169 
3170   /* Sanity checking on calling parameters */
3171   assert( iStart>=0 );
3172   assert( nExtra>=1 );
3173   assert( pSrc!=0 );
3174   assert( iStart<=pSrc->nSrc );
3175 
3176   /* Allocate additional space if needed */
3177   if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
3178     SrcList *pNew;
3179     int nAlloc = pSrc->nSrc+nExtra;
3180     int nGot;
3181     pNew = sqlite3DbRealloc(db, pSrc,
3182                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3183     if( pNew==0 ){
3184       assert( db->mallocFailed );
3185       return pSrc;
3186     }
3187     pSrc = pNew;
3188     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3189     pSrc->nAlloc = (u16)nGot;
3190   }
3191 
3192   /* Move existing slots that come after the newly inserted slots
3193   ** out of the way */
3194   for(i=pSrc->nSrc-1; i>=iStart; i--){
3195     pSrc->a[i+nExtra] = pSrc->a[i];
3196   }
3197   pSrc->nSrc += (i16)nExtra;
3198 
3199   /* Zero the newly allocated slots */
3200   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3201   for(i=iStart; i<iStart+nExtra; i++){
3202     pSrc->a[i].iCursor = -1;
3203   }
3204 
3205   /* Return a pointer to the enlarged SrcList */
3206   return pSrc;
3207 }
3208 
3209 
3210 /*
3211 ** Append a new table name to the given SrcList.  Create a new SrcList if
3212 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3213 **
3214 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3215 ** SrcList might be the same as the SrcList that was input or it might be
3216 ** a new one.  If an OOM error does occurs, then the prior value of pList
3217 ** that is input to this routine is automatically freed.
3218 **
3219 ** If pDatabase is not null, it means that the table has an optional
3220 ** database name prefix.  Like this:  "database.table".  The pDatabase
3221 ** points to the table name and the pTable points to the database name.
3222 ** The SrcList.a[].zName field is filled with the table name which might
3223 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3224 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3225 ** or with NULL if no database is specified.
3226 **
3227 ** In other words, if call like this:
3228 **
3229 **         sqlite3SrcListAppend(D,A,B,0);
3230 **
3231 ** Then B is a table name and the database name is unspecified.  If called
3232 ** like this:
3233 **
3234 **         sqlite3SrcListAppend(D,A,B,C);
3235 **
3236 ** Then C is the table name and B is the database name.  If C is defined
3237 ** then so is B.  In other words, we never have a case where:
3238 **
3239 **         sqlite3SrcListAppend(D,A,0,C);
3240 **
3241 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3242 ** before being added to the SrcList.
3243 */
3244 SrcList *sqlite3SrcListAppend(
3245   sqlite3 *db,        /* Connection to notify of malloc failures */
3246   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3247   Token *pTable,      /* Table to append */
3248   Token *pDatabase    /* Database of the table */
3249 ){
3250   struct SrcList_item *pItem;
3251   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3252   if( pList==0 ){
3253     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3254     if( pList==0 ) return 0;
3255     pList->nAlloc = 1;
3256   }
3257   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3258   if( db->mallocFailed ){
3259     sqlite3SrcListDelete(db, pList);
3260     return 0;
3261   }
3262   pItem = &pList->a[pList->nSrc-1];
3263   if( pDatabase && pDatabase->z==0 ){
3264     pDatabase = 0;
3265   }
3266   if( pDatabase ){
3267     Token *pTemp = pDatabase;
3268     pDatabase = pTable;
3269     pTable = pTemp;
3270   }
3271   pItem->zName = sqlite3NameFromToken(db, pTable);
3272   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3273   return pList;
3274 }
3275 
3276 /*
3277 ** Assign VdbeCursor index numbers to all tables in a SrcList
3278 */
3279 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3280   int i;
3281   struct SrcList_item *pItem;
3282   assert(pList || pParse->db->mallocFailed );
3283   if( pList ){
3284     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3285       if( pItem->iCursor>=0 ) break;
3286       pItem->iCursor = pParse->nTab++;
3287       if( pItem->pSelect ){
3288         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3289       }
3290     }
3291   }
3292 }
3293 
3294 /*
3295 ** Delete an entire SrcList including all its substructure.
3296 */
3297 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3298   int i;
3299   struct SrcList_item *pItem;
3300   if( pList==0 ) return;
3301   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3302     sqlite3DbFree(db, pItem->zDatabase);
3303     sqlite3DbFree(db, pItem->zName);
3304     sqlite3DbFree(db, pItem->zAlias);
3305     sqlite3DbFree(db, pItem->zIndex);
3306     sqlite3DeleteTable(db, pItem->pTab);
3307     sqlite3SelectDelete(db, pItem->pSelect);
3308     sqlite3ExprDelete(db, pItem->pOn);
3309     sqlite3IdListDelete(db, pItem->pUsing);
3310   }
3311   sqlite3DbFree(db, pList);
3312 }
3313 
3314 /*
3315 ** This routine is called by the parser to add a new term to the
3316 ** end of a growing FROM clause.  The "p" parameter is the part of
3317 ** the FROM clause that has already been constructed.  "p" is NULL
3318 ** if this is the first term of the FROM clause.  pTable and pDatabase
3319 ** are the name of the table and database named in the FROM clause term.
3320 ** pDatabase is NULL if the database name qualifier is missing - the
3321 ** usual case.  If the term has a alias, then pAlias points to the
3322 ** alias token.  If the term is a subquery, then pSubquery is the
3323 ** SELECT statement that the subquery encodes.  The pTable and
3324 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3325 ** parameters are the content of the ON and USING clauses.
3326 **
3327 ** Return a new SrcList which encodes is the FROM with the new
3328 ** term added.
3329 */
3330 SrcList *sqlite3SrcListAppendFromTerm(
3331   Parse *pParse,          /* Parsing context */
3332   SrcList *p,             /* The left part of the FROM clause already seen */
3333   Token *pTable,          /* Name of the table to add to the FROM clause */
3334   Token *pDatabase,       /* Name of the database containing pTable */
3335   Token *pAlias,          /* The right-hand side of the AS subexpression */
3336   Select *pSubquery,      /* A subquery used in place of a table name */
3337   Expr *pOn,              /* The ON clause of a join */
3338   IdList *pUsing          /* The USING clause of a join */
3339 ){
3340   struct SrcList_item *pItem;
3341   sqlite3 *db = pParse->db;
3342   if( !p && (pOn || pUsing) ){
3343     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3344       (pOn ? "ON" : "USING")
3345     );
3346     goto append_from_error;
3347   }
3348   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3349   if( p==0 || NEVER(p->nSrc==0) ){
3350     goto append_from_error;
3351   }
3352   pItem = &p->a[p->nSrc-1];
3353   assert( pAlias!=0 );
3354   if( pAlias->n ){
3355     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3356   }
3357   pItem->pSelect = pSubquery;
3358   pItem->pOn = pOn;
3359   pItem->pUsing = pUsing;
3360   return p;
3361 
3362  append_from_error:
3363   assert( p==0 );
3364   sqlite3ExprDelete(db, pOn);
3365   sqlite3IdListDelete(db, pUsing);
3366   sqlite3SelectDelete(db, pSubquery);
3367   return 0;
3368 }
3369 
3370 /*
3371 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3372 ** element of the source-list passed as the second argument.
3373 */
3374 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3375   assert( pIndexedBy!=0 );
3376   if( p && ALWAYS(p->nSrc>0) ){
3377     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3378     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3379     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3380       /* A "NOT INDEXED" clause was supplied. See parse.y
3381       ** construct "indexed_opt" for details. */
3382       pItem->notIndexed = 1;
3383     }else{
3384       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3385     }
3386   }
3387 }
3388 
3389 /*
3390 ** When building up a FROM clause in the parser, the join operator
3391 ** is initially attached to the left operand.  But the code generator
3392 ** expects the join operator to be on the right operand.  This routine
3393 ** Shifts all join operators from left to right for an entire FROM
3394 ** clause.
3395 **
3396 ** Example: Suppose the join is like this:
3397 **
3398 **           A natural cross join B
3399 **
3400 ** The operator is "natural cross join".  The A and B operands are stored
3401 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3402 ** operator with A.  This routine shifts that operator over to B.
3403 */
3404 void sqlite3SrcListShiftJoinType(SrcList *p){
3405   if( p ){
3406     int i;
3407     assert( p->a || p->nSrc==0 );
3408     for(i=p->nSrc-1; i>0; i--){
3409       p->a[i].jointype = p->a[i-1].jointype;
3410     }
3411     p->a[0].jointype = 0;
3412   }
3413 }
3414 
3415 /*
3416 ** Begin a transaction
3417 */
3418 void sqlite3BeginTransaction(Parse *pParse, int type){
3419   sqlite3 *db;
3420   Vdbe *v;
3421   int i;
3422 
3423   assert( pParse!=0 );
3424   db = pParse->db;
3425   assert( db!=0 );
3426 /*  if( db->aDb[0].pBt==0 ) return; */
3427   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3428     return;
3429   }
3430   v = sqlite3GetVdbe(pParse);
3431   if( !v ) return;
3432   if( type!=TK_DEFERRED ){
3433     for(i=0; i<db->nDb; i++){
3434       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3435       sqlite3VdbeUsesBtree(v, i);
3436     }
3437   }
3438   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3439 }
3440 
3441 /*
3442 ** Commit a transaction
3443 */
3444 void sqlite3CommitTransaction(Parse *pParse){
3445   Vdbe *v;
3446 
3447   assert( pParse!=0 );
3448   assert( pParse->db!=0 );
3449   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3450     return;
3451   }
3452   v = sqlite3GetVdbe(pParse);
3453   if( v ){
3454     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3455   }
3456 }
3457 
3458 /*
3459 ** Rollback a transaction
3460 */
3461 void sqlite3RollbackTransaction(Parse *pParse){
3462   Vdbe *v;
3463 
3464   assert( pParse!=0 );
3465   assert( pParse->db!=0 );
3466   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3467     return;
3468   }
3469   v = sqlite3GetVdbe(pParse);
3470   if( v ){
3471     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3472   }
3473 }
3474 
3475 /*
3476 ** This function is called by the parser when it parses a command to create,
3477 ** release or rollback an SQL savepoint.
3478 */
3479 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3480   char *zName = sqlite3NameFromToken(pParse->db, pName);
3481   if( zName ){
3482     Vdbe *v = sqlite3GetVdbe(pParse);
3483 #ifndef SQLITE_OMIT_AUTHORIZATION
3484     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3485     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3486 #endif
3487     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3488       sqlite3DbFree(pParse->db, zName);
3489       return;
3490     }
3491     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3492   }
3493 }
3494 
3495 /*
3496 ** Make sure the TEMP database is open and available for use.  Return
3497 ** the number of errors.  Leave any error messages in the pParse structure.
3498 */
3499 int sqlite3OpenTempDatabase(Parse *pParse){
3500   sqlite3 *db = pParse->db;
3501   if( db->aDb[1].pBt==0 && !pParse->explain ){
3502     int rc;
3503     Btree *pBt;
3504     static const int flags =
3505           SQLITE_OPEN_READWRITE |
3506           SQLITE_OPEN_CREATE |
3507           SQLITE_OPEN_EXCLUSIVE |
3508           SQLITE_OPEN_DELETEONCLOSE |
3509           SQLITE_OPEN_TEMP_DB;
3510 
3511     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
3512     if( rc!=SQLITE_OK ){
3513       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3514         "file for storing temporary tables");
3515       pParse->rc = rc;
3516       return 1;
3517     }
3518     db->aDb[1].pBt = pBt;
3519     assert( db->aDb[1].pSchema );
3520     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3521       db->mallocFailed = 1;
3522       return 1;
3523     }
3524   }
3525   return 0;
3526 }
3527 
3528 /*
3529 ** Generate VDBE code that will verify the schema cookie and start
3530 ** a read-transaction for all named database files.
3531 **
3532 ** It is important that all schema cookies be verified and all
3533 ** read transactions be started before anything else happens in
3534 ** the VDBE program.  But this routine can be called after much other
3535 ** code has been generated.  So here is what we do:
3536 **
3537 ** The first time this routine is called, we code an OP_Goto that
3538 ** will jump to a subroutine at the end of the program.  Then we
3539 ** record every database that needs its schema verified in the
3540 ** pParse->cookieMask field.  Later, after all other code has been
3541 ** generated, the subroutine that does the cookie verifications and
3542 ** starts the transactions will be coded and the OP_Goto P2 value
3543 ** will be made to point to that subroutine.  The generation of the
3544 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3545 **
3546 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3547 ** schema on any databases.  This can be used to position the OP_Goto
3548 ** early in the code, before we know if any database tables will be used.
3549 */
3550 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3551   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3552 
3553   if( pToplevel->cookieGoto==0 ){
3554     Vdbe *v = sqlite3GetVdbe(pToplevel);
3555     if( v==0 ) return;  /* This only happens if there was a prior error */
3556     pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3557   }
3558   if( iDb>=0 ){
3559     sqlite3 *db = pToplevel->db;
3560     yDbMask mask;
3561 
3562     assert( iDb<db->nDb );
3563     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3564     assert( iDb<SQLITE_MAX_ATTACHED+2 );
3565     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3566     mask = ((yDbMask)1)<<iDb;
3567     if( (pToplevel->cookieMask & mask)==0 ){
3568       pToplevel->cookieMask |= mask;
3569       pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3570       if( !OMIT_TEMPDB && iDb==1 ){
3571         sqlite3OpenTempDatabase(pToplevel);
3572       }
3573     }
3574   }
3575 }
3576 
3577 /*
3578 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
3579 ** attached database. Otherwise, invoke it for the database named zDb only.
3580 */
3581 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
3582   sqlite3 *db = pParse->db;
3583   int i;
3584   for(i=0; i<db->nDb; i++){
3585     Db *pDb = &db->aDb[i];
3586     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
3587       sqlite3CodeVerifySchema(pParse, i);
3588     }
3589   }
3590 }
3591 
3592 /*
3593 ** Generate VDBE code that prepares for doing an operation that
3594 ** might change the database.
3595 **
3596 ** This routine starts a new transaction if we are not already within
3597 ** a transaction.  If we are already within a transaction, then a checkpoint
3598 ** is set if the setStatement parameter is true.  A checkpoint should
3599 ** be set for operations that might fail (due to a constraint) part of
3600 ** the way through and which will need to undo some writes without having to
3601 ** rollback the whole transaction.  For operations where all constraints
3602 ** can be checked before any changes are made to the database, it is never
3603 ** necessary to undo a write and the checkpoint should not be set.
3604 */
3605 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3606   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3607   sqlite3CodeVerifySchema(pParse, iDb);
3608   pToplevel->writeMask |= ((yDbMask)1)<<iDb;
3609   pToplevel->isMultiWrite |= setStatement;
3610 }
3611 
3612 /*
3613 ** Indicate that the statement currently under construction might write
3614 ** more than one entry (example: deleting one row then inserting another,
3615 ** inserting multiple rows in a table, or inserting a row and index entries.)
3616 ** If an abort occurs after some of these writes have completed, then it will
3617 ** be necessary to undo the completed writes.
3618 */
3619 void sqlite3MultiWrite(Parse *pParse){
3620   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3621   pToplevel->isMultiWrite = 1;
3622 }
3623 
3624 /*
3625 ** The code generator calls this routine if is discovers that it is
3626 ** possible to abort a statement prior to completion.  In order to
3627 ** perform this abort without corrupting the database, we need to make
3628 ** sure that the statement is protected by a statement transaction.
3629 **
3630 ** Technically, we only need to set the mayAbort flag if the
3631 ** isMultiWrite flag was previously set.  There is a time dependency
3632 ** such that the abort must occur after the multiwrite.  This makes
3633 ** some statements involving the REPLACE conflict resolution algorithm
3634 ** go a little faster.  But taking advantage of this time dependency
3635 ** makes it more difficult to prove that the code is correct (in
3636 ** particular, it prevents us from writing an effective
3637 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3638 ** to take the safe route and skip the optimization.
3639 */
3640 void sqlite3MayAbort(Parse *pParse){
3641   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3642   pToplevel->mayAbort = 1;
3643 }
3644 
3645 /*
3646 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3647 ** error. The onError parameter determines which (if any) of the statement
3648 ** and/or current transaction is rolled back.
3649 */
3650 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
3651   Vdbe *v = sqlite3GetVdbe(pParse);
3652   if( onError==OE_Abort ){
3653     sqlite3MayAbort(pParse);
3654   }
3655   sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
3656 }
3657 
3658 /*
3659 ** Check to see if pIndex uses the collating sequence pColl.  Return
3660 ** true if it does and false if it does not.
3661 */
3662 #ifndef SQLITE_OMIT_REINDEX
3663 static int collationMatch(const char *zColl, Index *pIndex){
3664   int i;
3665   assert( zColl!=0 );
3666   for(i=0; i<pIndex->nColumn; i++){
3667     const char *z = pIndex->azColl[i];
3668     assert( z!=0 );
3669     if( 0==sqlite3StrICmp(z, zColl) ){
3670       return 1;
3671     }
3672   }
3673   return 0;
3674 }
3675 #endif
3676 
3677 /*
3678 ** Recompute all indices of pTab that use the collating sequence pColl.
3679 ** If pColl==0 then recompute all indices of pTab.
3680 */
3681 #ifndef SQLITE_OMIT_REINDEX
3682 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3683   Index *pIndex;              /* An index associated with pTab */
3684 
3685   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3686     if( zColl==0 || collationMatch(zColl, pIndex) ){
3687       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3688       sqlite3BeginWriteOperation(pParse, 0, iDb);
3689       sqlite3RefillIndex(pParse, pIndex, -1);
3690     }
3691   }
3692 }
3693 #endif
3694 
3695 /*
3696 ** Recompute all indices of all tables in all databases where the
3697 ** indices use the collating sequence pColl.  If pColl==0 then recompute
3698 ** all indices everywhere.
3699 */
3700 #ifndef SQLITE_OMIT_REINDEX
3701 static void reindexDatabases(Parse *pParse, char const *zColl){
3702   Db *pDb;                    /* A single database */
3703   int iDb;                    /* The database index number */
3704   sqlite3 *db = pParse->db;   /* The database connection */
3705   HashElem *k;                /* For looping over tables in pDb */
3706   Table *pTab;                /* A table in the database */
3707 
3708   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
3709   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3710     assert( pDb!=0 );
3711     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
3712       pTab = (Table*)sqliteHashData(k);
3713       reindexTable(pParse, pTab, zColl);
3714     }
3715   }
3716 }
3717 #endif
3718 
3719 /*
3720 ** Generate code for the REINDEX command.
3721 **
3722 **        REINDEX                            -- 1
3723 **        REINDEX  <collation>               -- 2
3724 **        REINDEX  ?<database>.?<tablename>  -- 3
3725 **        REINDEX  ?<database>.?<indexname>  -- 4
3726 **
3727 ** Form 1 causes all indices in all attached databases to be rebuilt.
3728 ** Form 2 rebuilds all indices in all databases that use the named
3729 ** collating function.  Forms 3 and 4 rebuild the named index or all
3730 ** indices associated with the named table.
3731 */
3732 #ifndef SQLITE_OMIT_REINDEX
3733 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3734   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
3735   char *z;                    /* Name of a table or index */
3736   const char *zDb;            /* Name of the database */
3737   Table *pTab;                /* A table in the database */
3738   Index *pIndex;              /* An index associated with pTab */
3739   int iDb;                    /* The database index number */
3740   sqlite3 *db = pParse->db;   /* The database connection */
3741   Token *pObjName;            /* Name of the table or index to be reindexed */
3742 
3743   /* Read the database schema. If an error occurs, leave an error message
3744   ** and code in pParse and return NULL. */
3745   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3746     return;
3747   }
3748 
3749   if( pName1==0 ){
3750     reindexDatabases(pParse, 0);
3751     return;
3752   }else if( NEVER(pName2==0) || pName2->z==0 ){
3753     char *zColl;
3754     assert( pName1->z );
3755     zColl = sqlite3NameFromToken(pParse->db, pName1);
3756     if( !zColl ) return;
3757     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
3758     if( pColl ){
3759       reindexDatabases(pParse, zColl);
3760       sqlite3DbFree(db, zColl);
3761       return;
3762     }
3763     sqlite3DbFree(db, zColl);
3764   }
3765   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3766   if( iDb<0 ) return;
3767   z = sqlite3NameFromToken(db, pObjName);
3768   if( z==0 ) return;
3769   zDb = db->aDb[iDb].zName;
3770   pTab = sqlite3FindTable(db, z, zDb);
3771   if( pTab ){
3772     reindexTable(pParse, pTab, 0);
3773     sqlite3DbFree(db, z);
3774     return;
3775   }
3776   pIndex = sqlite3FindIndex(db, z, zDb);
3777   sqlite3DbFree(db, z);
3778   if( pIndex ){
3779     sqlite3BeginWriteOperation(pParse, 0, iDb);
3780     sqlite3RefillIndex(pParse, pIndex, -1);
3781     return;
3782   }
3783   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3784 }
3785 #endif
3786 
3787 /*
3788 ** Return a dynamicly allocated KeyInfo structure that can be used
3789 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3790 **
3791 ** If successful, a pointer to the new structure is returned. In this case
3792 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3793 ** pointer. If an error occurs (out of memory or missing collation
3794 ** sequence), NULL is returned and the state of pParse updated to reflect
3795 ** the error.
3796 */
3797 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3798   int i;
3799   int nCol = pIdx->nColumn;
3800   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3801   sqlite3 *db = pParse->db;
3802   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3803 
3804   if( pKey ){
3805     pKey->db = pParse->db;
3806     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3807     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3808     for(i=0; i<nCol; i++){
3809       char *zColl = pIdx->azColl[i];
3810       assert( zColl );
3811       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
3812       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3813     }
3814     pKey->nField = (u16)nCol;
3815   }
3816 
3817   if( pParse->nErr ){
3818     sqlite3DbFree(db, pKey);
3819     pKey = 0;
3820   }
3821   return pKey;
3822 }
3823