1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 ** 25 ** $Id: build.c,v 1.490 2008/07/08 23:40:20 drh Exp $ 26 */ 27 #include "sqliteInt.h" 28 #include <ctype.h> 29 30 /* 31 ** This routine is called when a new SQL statement is beginning to 32 ** be parsed. Initialize the pParse structure as needed. 33 */ 34 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 35 pParse->explain = explainFlag; 36 pParse->nVar = 0; 37 } 38 39 #ifndef SQLITE_OMIT_SHARED_CACHE 40 /* 41 ** The TableLock structure is only used by the sqlite3TableLock() and 42 ** codeTableLocks() functions. 43 */ 44 struct TableLock { 45 int iDb; /* The database containing the table to be locked */ 46 int iTab; /* The root page of the table to be locked */ 47 u8 isWriteLock; /* True for write lock. False for a read lock */ 48 const char *zName; /* Name of the table */ 49 }; 50 51 /* 52 ** Record the fact that we want to lock a table at run-time. 53 ** 54 ** The table to be locked has root page iTab and is found in database iDb. 55 ** A read or a write lock can be taken depending on isWritelock. 56 ** 57 ** This routine just records the fact that the lock is desired. The 58 ** code to make the lock occur is generated by a later call to 59 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 60 */ 61 void sqlite3TableLock( 62 Parse *pParse, /* Parsing context */ 63 int iDb, /* Index of the database containing the table to lock */ 64 int iTab, /* Root page number of the table to be locked */ 65 u8 isWriteLock, /* True for a write lock */ 66 const char *zName /* Name of the table to be locked */ 67 ){ 68 int i; 69 int nBytes; 70 TableLock *p; 71 72 if( iDb<0 ){ 73 return; 74 } 75 76 for(i=0; i<pParse->nTableLock; i++){ 77 p = &pParse->aTableLock[i]; 78 if( p->iDb==iDb && p->iTab==iTab ){ 79 p->isWriteLock = (p->isWriteLock || isWriteLock); 80 return; 81 } 82 } 83 84 nBytes = sizeof(TableLock) * (pParse->nTableLock+1); 85 pParse->aTableLock = 86 sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes); 87 if( pParse->aTableLock ){ 88 p = &pParse->aTableLock[pParse->nTableLock++]; 89 p->iDb = iDb; 90 p->iTab = iTab; 91 p->isWriteLock = isWriteLock; 92 p->zName = zName; 93 }else{ 94 pParse->nTableLock = 0; 95 pParse->db->mallocFailed = 1; 96 } 97 } 98 99 /* 100 ** Code an OP_TableLock instruction for each table locked by the 101 ** statement (configured by calls to sqlite3TableLock()). 102 */ 103 static void codeTableLocks(Parse *pParse){ 104 int i; 105 Vdbe *pVdbe; 106 107 if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ 108 return; 109 } 110 111 for(i=0; i<pParse->nTableLock; i++){ 112 TableLock *p = &pParse->aTableLock[i]; 113 int p1 = p->iDb; 114 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 115 p->zName, P4_STATIC); 116 } 117 } 118 #else 119 #define codeTableLocks(x) 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 db = pParse->db; 137 if( db->mallocFailed ) return; 138 if( pParse->nested ) return; 139 if( pParse->nErr ) return; 140 if( !pParse->pVdbe ){ 141 if( pParse->rc==SQLITE_OK && pParse->nErr ){ 142 pParse->rc = SQLITE_ERROR; 143 return; 144 } 145 } 146 147 /* Begin by generating some termination code at the end of the 148 ** vdbe program 149 */ 150 v = sqlite3GetVdbe(pParse); 151 if( v ){ 152 sqlite3VdbeAddOp0(v, OP_Halt); 153 154 /* The cookie mask contains one bit for each database file open. 155 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 156 ** set for each database that is used. Generate code to start a 157 ** transaction on each used database and to verify the schema cookie 158 ** on each used database. 159 */ 160 if( pParse->cookieGoto>0 ){ 161 u32 mask; 162 int iDb; 163 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 164 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 165 if( (mask & pParse->cookieMask)==0 ) continue; 166 sqlite3VdbeUsesBtree(v, iDb); 167 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 168 sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); 169 } 170 #ifndef SQLITE_OMIT_VIRTUALTABLE 171 { 172 int i; 173 for(i=0; i<pParse->nVtabLock; i++){ 174 char *vtab = (char *)pParse->apVtabLock[i]->pVtab; 175 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 176 } 177 pParse->nVtabLock = 0; 178 } 179 #endif 180 181 /* Once all the cookies have been verified and transactions opened, 182 ** obtain the required table-locks. This is a no-op unless the 183 ** shared-cache feature is enabled. 184 */ 185 codeTableLocks(pParse); 186 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); 187 } 188 189 #ifndef SQLITE_OMIT_TRACE 190 if( !db->init.busy ){ 191 /* Change the P4 argument of the first opcode (which will always be 192 ** an OP_Trace) to be the complete text of the current SQL statement. 193 */ 194 VdbeOp *pOp = sqlite3VdbeGetOp(v, 0); 195 if( pOp && pOp->opcode==OP_Trace ){ 196 sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql); 197 } 198 } 199 #endif /* SQLITE_OMIT_TRACE */ 200 } 201 202 203 /* Get the VDBE program ready for execution 204 */ 205 if( v && pParse->nErr==0 && !db->mallocFailed ){ 206 #ifdef SQLITE_DEBUG 207 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 208 sqlite3VdbeTrace(v, trace); 209 #endif 210 assert( pParse->disableColCache==0 ); /* Disables and re-enables match */ 211 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, 212 pParse->nTab+3, pParse->explain); 213 pParse->rc = SQLITE_DONE; 214 pParse->colNamesSet = 0; 215 }else if( pParse->rc==SQLITE_OK ){ 216 pParse->rc = SQLITE_ERROR; 217 } 218 pParse->nTab = 0; 219 pParse->nMem = 0; 220 pParse->nSet = 0; 221 pParse->nVar = 0; 222 pParse->cookieMask = 0; 223 pParse->cookieGoto = 0; 224 } 225 226 /* 227 ** Run the parser and code generator recursively in order to generate 228 ** code for the SQL statement given onto the end of the pParse context 229 ** currently under construction. When the parser is run recursively 230 ** this way, the final OP_Halt is not appended and other initialization 231 ** and finalization steps are omitted because those are handling by the 232 ** outermost parser. 233 ** 234 ** Not everything is nestable. This facility is designed to permit 235 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 236 ** care if you decide to try to use this routine for some other purposes. 237 */ 238 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 239 va_list ap; 240 char *zSql; 241 char *zErrMsg = 0; 242 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 243 char saveBuf[SAVE_SZ]; 244 245 if( pParse->nErr ) return; 246 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 247 va_start(ap, zFormat); 248 zSql = sqlite3VMPrintf(pParse->db, zFormat, ap); 249 va_end(ap); 250 if( zSql==0 ){ 251 pParse->db->mallocFailed = 1; 252 return; /* A malloc must have failed */ 253 } 254 pParse->nested++; 255 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 256 memset(&pParse->nVar, 0, SAVE_SZ); 257 sqlite3RunParser(pParse, zSql, &zErrMsg); 258 sqlite3_free(zErrMsg); 259 sqlite3_free(zSql); 260 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 261 pParse->nested--; 262 } 263 264 /* 265 ** Locate the in-memory structure that describes a particular database 266 ** table given the name of that table and (optionally) the name of the 267 ** database containing the table. Return NULL if not found. 268 ** 269 ** If zDatabase is 0, all databases are searched for the table and the 270 ** first matching table is returned. (No checking for duplicate table 271 ** names is done.) The search order is TEMP first, then MAIN, then any 272 ** auxiliary databases added using the ATTACH command. 273 ** 274 ** See also sqlite3LocateTable(). 275 */ 276 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 277 Table *p = 0; 278 int i; 279 int nName; 280 assert( zName!=0 ); 281 nName = sqlite3Strlen(db, zName) + 1; 282 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 283 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 284 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 285 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 286 if( p ) break; 287 } 288 return p; 289 } 290 291 /* 292 ** Locate the in-memory structure that describes a particular database 293 ** table given the name of that table and (optionally) the name of the 294 ** database containing the table. Return NULL if not found. Also leave an 295 ** error message in pParse->zErrMsg. 296 ** 297 ** The difference between this routine and sqlite3FindTable() is that this 298 ** routine leaves an error message in pParse->zErrMsg where 299 ** sqlite3FindTable() does not. 300 */ 301 Table *sqlite3LocateTable( 302 Parse *pParse, /* context in which to report errors */ 303 int isView, /* True if looking for a VIEW rather than a TABLE */ 304 const char *zName, /* Name of the table we are looking for */ 305 const char *zDbase /* Name of the database. Might be NULL */ 306 ){ 307 Table *p; 308 309 /* Read the database schema. If an error occurs, leave an error message 310 ** and code in pParse and return NULL. */ 311 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 312 return 0; 313 } 314 315 p = sqlite3FindTable(pParse->db, zName, zDbase); 316 if( p==0 ){ 317 const char *zMsg = isView ? "no such view" : "no such table"; 318 if( zDbase ){ 319 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 320 }else{ 321 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 322 } 323 pParse->checkSchema = 1; 324 } 325 return p; 326 } 327 328 /* 329 ** Locate the in-memory structure that describes 330 ** a particular index given the name of that index 331 ** and the name of the database that contains the index. 332 ** Return NULL if not found. 333 ** 334 ** If zDatabase is 0, all databases are searched for the 335 ** table and the first matching index is returned. (No checking 336 ** for duplicate index names is done.) The search order is 337 ** TEMP first, then MAIN, then any auxiliary databases added 338 ** using the ATTACH command. 339 */ 340 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 341 Index *p = 0; 342 int i; 343 int nName = sqlite3Strlen(db, zName)+1; 344 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 345 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 346 Schema *pSchema = db->aDb[j].pSchema; 347 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 348 assert( pSchema || (j==1 && !db->aDb[1].pBt) ); 349 if( pSchema ){ 350 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 351 } 352 if( p ) break; 353 } 354 return p; 355 } 356 357 /* 358 ** Reclaim the memory used by an index 359 */ 360 static void freeIndex(Index *p){ 361 sqlite3_free(p->zColAff); 362 sqlite3_free(p); 363 } 364 365 /* 366 ** Remove the given index from the index hash table, and free 367 ** its memory structures. 368 ** 369 ** The index is removed from the database hash tables but 370 ** it is not unlinked from the Table that it indexes. 371 ** Unlinking from the Table must be done by the calling function. 372 */ 373 static void sqliteDeleteIndex(Index *p){ 374 Index *pOld; 375 const char *zName = p->zName; 376 377 pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName)+1, 0); 378 assert( pOld==0 || pOld==p ); 379 freeIndex(p); 380 } 381 382 /* 383 ** For the index called zIdxName which is found in the database iDb, 384 ** unlike that index from its Table then remove the index from 385 ** the index hash table and free all memory structures associated 386 ** with the index. 387 */ 388 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 389 Index *pIndex; 390 int len; 391 Hash *pHash = &db->aDb[iDb].pSchema->idxHash; 392 393 len = sqlite3Strlen(db, zIdxName); 394 pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); 395 if( pIndex ){ 396 if( pIndex->pTable->pIndex==pIndex ){ 397 pIndex->pTable->pIndex = pIndex->pNext; 398 }else{ 399 Index *p; 400 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} 401 if( p && p->pNext==pIndex ){ 402 p->pNext = pIndex->pNext; 403 } 404 } 405 freeIndex(pIndex); 406 } 407 db->flags |= SQLITE_InternChanges; 408 } 409 410 /* 411 ** Erase all schema information from the in-memory hash tables of 412 ** a single database. This routine is called to reclaim memory 413 ** before the database closes. It is also called during a rollback 414 ** if there were schema changes during the transaction or if a 415 ** schema-cookie mismatch occurs. 416 ** 417 ** If iDb<=0 then reset the internal schema tables for all database 418 ** files. If iDb>=2 then reset the internal schema for only the 419 ** single file indicated. 420 */ 421 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 422 int i, j; 423 assert( iDb>=0 && iDb<db->nDb ); 424 425 if( iDb==0 ){ 426 sqlite3BtreeEnterAll(db); 427 } 428 for(i=iDb; i<db->nDb; i++){ 429 Db *pDb = &db->aDb[i]; 430 if( pDb->pSchema ){ 431 assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt))); 432 sqlite3SchemaFree(pDb->pSchema); 433 } 434 if( iDb>0 ) return; 435 } 436 assert( iDb==0 ); 437 db->flags &= ~SQLITE_InternChanges; 438 sqlite3BtreeLeaveAll(db); 439 440 /* If one or more of the auxiliary database files has been closed, 441 ** then remove them from the auxiliary database list. We take the 442 ** opportunity to do this here since we have just deleted all of the 443 ** schema hash tables and therefore do not have to make any changes 444 ** to any of those tables. 445 */ 446 for(i=0; i<db->nDb; i++){ 447 struct Db *pDb = &db->aDb[i]; 448 if( pDb->pBt==0 ){ 449 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); 450 pDb->pAux = 0; 451 } 452 } 453 for(i=j=2; i<db->nDb; i++){ 454 struct Db *pDb = &db->aDb[i]; 455 if( pDb->pBt==0 ){ 456 sqlite3_free(pDb->zName); 457 pDb->zName = 0; 458 continue; 459 } 460 if( j<i ){ 461 db->aDb[j] = db->aDb[i]; 462 } 463 j++; 464 } 465 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 466 db->nDb = j; 467 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 468 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 469 sqlite3_free(db->aDb); 470 db->aDb = db->aDbStatic; 471 } 472 } 473 474 /* 475 ** This routine is called when a commit occurs. 476 */ 477 void sqlite3CommitInternalChanges(sqlite3 *db){ 478 db->flags &= ~SQLITE_InternChanges; 479 } 480 481 /* 482 ** Clear the column names from a table or view. 483 */ 484 static void sqliteResetColumnNames(Table *pTable){ 485 int i; 486 Column *pCol; 487 assert( pTable!=0 ); 488 if( (pCol = pTable->aCol)!=0 ){ 489 for(i=0; i<pTable->nCol; i++, pCol++){ 490 sqlite3_free(pCol->zName); 491 sqlite3ExprDelete(pCol->pDflt); 492 sqlite3_free(pCol->zType); 493 sqlite3_free(pCol->zColl); 494 } 495 sqlite3_free(pTable->aCol); 496 } 497 pTable->aCol = 0; 498 pTable->nCol = 0; 499 } 500 501 /* 502 ** Remove the memory data structures associated with the given 503 ** Table. No changes are made to disk by this routine. 504 ** 505 ** This routine just deletes the data structure. It does not unlink 506 ** the table data structure from the hash table. Nor does it remove 507 ** foreign keys from the sqlite.aFKey hash table. But it does destroy 508 ** memory structures of the indices and foreign keys associated with 509 ** the table. 510 */ 511 void sqlite3DeleteTable(Table *pTable){ 512 Index *pIndex, *pNext; 513 FKey *pFKey, *pNextFKey; 514 515 if( pTable==0 ) return; 516 517 /* Do not delete the table until the reference count reaches zero. */ 518 pTable->nRef--; 519 if( pTable->nRef>0 ){ 520 return; 521 } 522 assert( pTable->nRef==0 ); 523 524 /* Delete all indices associated with this table 525 */ 526 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 527 pNext = pIndex->pNext; 528 assert( pIndex->pSchema==pTable->pSchema ); 529 sqliteDeleteIndex(pIndex); 530 } 531 532 #ifndef SQLITE_OMIT_FOREIGN_KEY 533 /* Delete all foreign keys associated with this table. The keys 534 ** should have already been unlinked from the pSchema->aFKey hash table 535 */ 536 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ 537 pNextFKey = pFKey->pNextFrom; 538 assert( sqlite3HashFind(&pTable->pSchema->aFKey, 539 pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); 540 sqlite3_free(pFKey); 541 } 542 #endif 543 544 /* Delete the Table structure itself. 545 */ 546 sqliteResetColumnNames(pTable); 547 sqlite3_free(pTable->zName); 548 sqlite3_free(pTable->zColAff); 549 sqlite3SelectDelete(pTable->pSelect); 550 #ifndef SQLITE_OMIT_CHECK 551 sqlite3ExprDelete(pTable->pCheck); 552 #endif 553 sqlite3VtabClear(pTable); 554 sqlite3_free(pTable); 555 } 556 557 /* 558 ** Unlink the given table from the hash tables and the delete the 559 ** table structure with all its indices and foreign keys. 560 */ 561 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 562 Table *p; 563 FKey *pF1, *pF2; 564 Db *pDb; 565 566 assert( db!=0 ); 567 assert( iDb>=0 && iDb<db->nDb ); 568 assert( zTabName && zTabName[0] ); 569 pDb = &db->aDb[iDb]; 570 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0); 571 if( p ){ 572 #ifndef SQLITE_OMIT_FOREIGN_KEY 573 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ 574 int nTo = strlen(pF1->zTo) + 1; 575 pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); 576 if( pF2==pF1 ){ 577 sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); 578 }else{ 579 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } 580 if( pF2 ){ 581 pF2->pNextTo = pF1->pNextTo; 582 } 583 } 584 } 585 #endif 586 sqlite3DeleteTable(p); 587 } 588 db->flags |= SQLITE_InternChanges; 589 } 590 591 /* 592 ** Given a token, return a string that consists of the text of that 593 ** token with any quotations removed. Space to hold the returned string 594 ** is obtained from sqliteMalloc() and must be freed by the calling 595 ** function. 596 ** 597 ** Tokens are often just pointers into the original SQL text and so 598 ** are not \000 terminated and are not persistent. The returned string 599 ** is \000 terminated and is persistent. 600 */ 601 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 602 char *zName; 603 if( pName ){ 604 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 605 sqlite3Dequote(zName); 606 }else{ 607 zName = 0; 608 } 609 return zName; 610 } 611 612 /* 613 ** Open the sqlite_master table stored in database number iDb for 614 ** writing. The table is opened using cursor 0. 615 */ 616 void sqlite3OpenMasterTable(Parse *p, int iDb){ 617 Vdbe *v = sqlite3GetVdbe(p); 618 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 619 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */ 620 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); 621 } 622 623 /* 624 ** The token *pName contains the name of a database (either "main" or 625 ** "temp" or the name of an attached db). This routine returns the 626 ** index of the named database in db->aDb[], or -1 if the named db 627 ** does not exist. 628 */ 629 int sqlite3FindDb(sqlite3 *db, Token *pName){ 630 int i = -1; /* Database number */ 631 int n; /* Number of characters in the name */ 632 Db *pDb; /* A database whose name space is being searched */ 633 char *zName; /* Name we are searching for */ 634 635 zName = sqlite3NameFromToken(db, pName); 636 if( zName ){ 637 n = strlen(zName); 638 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 639 if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 640 0==sqlite3StrICmp(pDb->zName, zName) ){ 641 break; 642 } 643 } 644 sqlite3_free(zName); 645 } 646 return i; 647 } 648 649 /* The table or view or trigger name is passed to this routine via tokens 650 ** pName1 and pName2. If the table name was fully qualified, for example: 651 ** 652 ** CREATE TABLE xxx.yyy (...); 653 ** 654 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 655 ** the table name is not fully qualified, i.e.: 656 ** 657 ** CREATE TABLE yyy(...); 658 ** 659 ** Then pName1 is set to "yyy" and pName2 is "". 660 ** 661 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 662 ** pName2) that stores the unqualified table name. The index of the 663 ** database "xxx" is returned. 664 */ 665 int sqlite3TwoPartName( 666 Parse *pParse, /* Parsing and code generating context */ 667 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 668 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 669 Token **pUnqual /* Write the unqualified object name here */ 670 ){ 671 int iDb; /* Database holding the object */ 672 sqlite3 *db = pParse->db; 673 674 if( pName2 && pName2->n>0 ){ 675 assert( !db->init.busy ); 676 *pUnqual = pName2; 677 iDb = sqlite3FindDb(db, pName1); 678 if( iDb<0 ){ 679 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 680 pParse->nErr++; 681 return -1; 682 } 683 }else{ 684 assert( db->init.iDb==0 || db->init.busy ); 685 iDb = db->init.iDb; 686 *pUnqual = pName1; 687 } 688 return iDb; 689 } 690 691 /* 692 ** This routine is used to check if the UTF-8 string zName is a legal 693 ** unqualified name for a new schema object (table, index, view or 694 ** trigger). All names are legal except those that begin with the string 695 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 696 ** is reserved for internal use. 697 */ 698 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 699 if( !pParse->db->init.busy && pParse->nested==0 700 && (pParse->db->flags & SQLITE_WriteSchema)==0 701 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 702 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 703 return SQLITE_ERROR; 704 } 705 return SQLITE_OK; 706 } 707 708 /* 709 ** Begin constructing a new table representation in memory. This is 710 ** the first of several action routines that get called in response 711 ** to a CREATE TABLE statement. In particular, this routine is called 712 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 713 ** flag is true if the table should be stored in the auxiliary database 714 ** file instead of in the main database file. This is normally the case 715 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 716 ** CREATE and TABLE. 717 ** 718 ** The new table record is initialized and put in pParse->pNewTable. 719 ** As more of the CREATE TABLE statement is parsed, additional action 720 ** routines will be called to add more information to this record. 721 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 722 ** is called to complete the construction of the new table record. 723 */ 724 void sqlite3StartTable( 725 Parse *pParse, /* Parser context */ 726 Token *pName1, /* First part of the name of the table or view */ 727 Token *pName2, /* Second part of the name of the table or view */ 728 int isTemp, /* True if this is a TEMP table */ 729 int isView, /* True if this is a VIEW */ 730 int isVirtual, /* True if this is a VIRTUAL table */ 731 int noErr /* Do nothing if table already exists */ 732 ){ 733 Table *pTable; 734 char *zName = 0; /* The name of the new table */ 735 sqlite3 *db = pParse->db; 736 Vdbe *v; 737 int iDb; /* Database number to create the table in */ 738 Token *pName; /* Unqualified name of the table to create */ 739 740 /* The table or view name to create is passed to this routine via tokens 741 ** pName1 and pName2. If the table name was fully qualified, for example: 742 ** 743 ** CREATE TABLE xxx.yyy (...); 744 ** 745 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 746 ** the table name is not fully qualified, i.e.: 747 ** 748 ** CREATE TABLE yyy(...); 749 ** 750 ** Then pName1 is set to "yyy" and pName2 is "". 751 ** 752 ** The call below sets the pName pointer to point at the token (pName1 or 753 ** pName2) that stores the unqualified table name. The variable iDb is 754 ** set to the index of the database that the table or view is to be 755 ** created in. 756 */ 757 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 758 if( iDb<0 ) return; 759 if( !OMIT_TEMPDB && isTemp && iDb>1 ){ 760 /* If creating a temp table, the name may not be qualified */ 761 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 762 return; 763 } 764 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 765 766 pParse->sNameToken = *pName; 767 zName = sqlite3NameFromToken(db, pName); 768 if( zName==0 ) return; 769 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 770 goto begin_table_error; 771 } 772 if( db->init.iDb==1 ) isTemp = 1; 773 #ifndef SQLITE_OMIT_AUTHORIZATION 774 assert( (isTemp & 1)==isTemp ); 775 { 776 int code; 777 char *zDb = db->aDb[iDb].zName; 778 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 779 goto begin_table_error; 780 } 781 if( isView ){ 782 if( !OMIT_TEMPDB && isTemp ){ 783 code = SQLITE_CREATE_TEMP_VIEW; 784 }else{ 785 code = SQLITE_CREATE_VIEW; 786 } 787 }else{ 788 if( !OMIT_TEMPDB && isTemp ){ 789 code = SQLITE_CREATE_TEMP_TABLE; 790 }else{ 791 code = SQLITE_CREATE_TABLE; 792 } 793 } 794 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 795 goto begin_table_error; 796 } 797 } 798 #endif 799 800 /* Make sure the new table name does not collide with an existing 801 ** index or table name in the same database. Issue an error message if 802 ** it does. The exception is if the statement being parsed was passed 803 ** to an sqlite3_declare_vtab() call. In that case only the column names 804 ** and types will be used, so there is no need to test for namespace 805 ** collisions. 806 */ 807 if( !IN_DECLARE_VTAB ){ 808 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 809 goto begin_table_error; 810 } 811 pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); 812 if( pTable ){ 813 if( !noErr ){ 814 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 815 } 816 goto begin_table_error; 817 } 818 if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ 819 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 820 goto begin_table_error; 821 } 822 } 823 824 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 825 if( pTable==0 ){ 826 db->mallocFailed = 1; 827 pParse->rc = SQLITE_NOMEM; 828 pParse->nErr++; 829 goto begin_table_error; 830 } 831 pTable->zName = zName; 832 pTable->iPKey = -1; 833 pTable->pSchema = db->aDb[iDb].pSchema; 834 pTable->nRef = 1; 835 if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable); 836 pParse->pNewTable = pTable; 837 838 /* If this is the magic sqlite_sequence table used by autoincrement, 839 ** then record a pointer to this table in the main database structure 840 ** so that INSERT can find the table easily. 841 */ 842 #ifndef SQLITE_OMIT_AUTOINCREMENT 843 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 844 pTable->pSchema->pSeqTab = pTable; 845 } 846 #endif 847 848 /* Begin generating the code that will insert the table record into 849 ** the SQLITE_MASTER table. Note in particular that we must go ahead 850 ** and allocate the record number for the table entry now. Before any 851 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 852 ** indices to be created and the table record must come before the 853 ** indices. Hence, the record number for the table must be allocated 854 ** now. 855 */ 856 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 857 int j1; 858 int fileFormat; 859 int reg1, reg2, reg3; 860 sqlite3BeginWriteOperation(pParse, 0, iDb); 861 862 #ifndef SQLITE_OMIT_VIRTUALTABLE 863 if( isVirtual ){ 864 sqlite3VdbeAddOp0(v, OP_VBegin); 865 } 866 #endif 867 868 /* If the file format and encoding in the database have not been set, 869 ** set them now. 870 */ 871 reg1 = pParse->regRowid = ++pParse->nMem; 872 reg2 = pParse->regRoot = ++pParse->nMem; 873 reg3 = ++pParse->nMem; 874 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */ 875 sqlite3VdbeUsesBtree(v, iDb); 876 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); 877 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 878 1 : SQLITE_MAX_FILE_FORMAT; 879 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 880 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3); 881 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 882 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3); 883 sqlite3VdbeJumpHere(v, j1); 884 885 /* This just creates a place-holder record in the sqlite_master table. 886 ** The record created does not contain anything yet. It will be replaced 887 ** by the real entry in code generated at sqlite3EndTable(). 888 ** 889 ** The rowid for the new entry is left on the top of the stack. 890 ** The rowid value is needed by the code that sqlite3EndTable will 891 ** generate. 892 */ 893 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 894 if( isView || isVirtual ){ 895 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 896 }else 897 #endif 898 { 899 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 900 } 901 sqlite3OpenMasterTable(pParse, iDb); 902 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 903 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 904 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 905 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 906 sqlite3VdbeAddOp0(v, OP_Close); 907 } 908 909 /* Normal (non-error) return. */ 910 return; 911 912 /* If an error occurs, we jump here */ 913 begin_table_error: 914 sqlite3_free(zName); 915 return; 916 } 917 918 /* 919 ** This macro is used to compare two strings in a case-insensitive manner. 920 ** It is slightly faster than calling sqlite3StrICmp() directly, but 921 ** produces larger code. 922 ** 923 ** WARNING: This macro is not compatible with the strcmp() family. It 924 ** returns true if the two strings are equal, otherwise false. 925 */ 926 #define STRICMP(x, y) (\ 927 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 928 sqlite3UpperToLower[*(unsigned char *)(y)] \ 929 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 930 931 /* 932 ** Add a new column to the table currently being constructed. 933 ** 934 ** The parser calls this routine once for each column declaration 935 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 936 ** first to get things going. Then this routine is called for each 937 ** column. 938 */ 939 void sqlite3AddColumn(Parse *pParse, Token *pName){ 940 Table *p; 941 int i; 942 char *z; 943 Column *pCol; 944 sqlite3 *db = pParse->db; 945 if( (p = pParse->pNewTable)==0 ) return; 946 #if SQLITE_MAX_COLUMN 947 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 948 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 949 return; 950 } 951 #endif 952 z = sqlite3NameFromToken(pParse->db, pName); 953 if( z==0 ) return; 954 for(i=0; i<p->nCol; i++){ 955 if( STRICMP(z, p->aCol[i].zName) ){ 956 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 957 sqlite3_free(z); 958 return; 959 } 960 } 961 if( (p->nCol & 0x7)==0 ){ 962 Column *aNew; 963 aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 964 if( aNew==0 ){ 965 sqlite3_free(z); 966 return; 967 } 968 p->aCol = aNew; 969 } 970 pCol = &p->aCol[p->nCol]; 971 memset(pCol, 0, sizeof(p->aCol[0])); 972 pCol->zName = z; 973 974 /* If there is no type specified, columns have the default affinity 975 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 976 ** be called next to set pCol->affinity correctly. 977 */ 978 pCol->affinity = SQLITE_AFF_NONE; 979 p->nCol++; 980 } 981 982 /* 983 ** This routine is called by the parser while in the middle of 984 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 985 ** been seen on a column. This routine sets the notNull flag on 986 ** the column currently under construction. 987 */ 988 void sqlite3AddNotNull(Parse *pParse, int onError){ 989 Table *p; 990 int i; 991 if( (p = pParse->pNewTable)==0 ) return; 992 i = p->nCol-1; 993 if( i>=0 ) p->aCol[i].notNull = onError; 994 } 995 996 /* 997 ** Scan the column type name zType (length nType) and return the 998 ** associated affinity type. 999 ** 1000 ** This routine does a case-independent search of zType for the 1001 ** substrings in the following table. If one of the substrings is 1002 ** found, the corresponding affinity is returned. If zType contains 1003 ** more than one of the substrings, entries toward the top of 1004 ** the table take priority. For example, if zType is 'BLOBINT', 1005 ** SQLITE_AFF_INTEGER is returned. 1006 ** 1007 ** Substring | Affinity 1008 ** -------------------------------- 1009 ** 'INT' | SQLITE_AFF_INTEGER 1010 ** 'CHAR' | SQLITE_AFF_TEXT 1011 ** 'CLOB' | SQLITE_AFF_TEXT 1012 ** 'TEXT' | SQLITE_AFF_TEXT 1013 ** 'BLOB' | SQLITE_AFF_NONE 1014 ** 'REAL' | SQLITE_AFF_REAL 1015 ** 'FLOA' | SQLITE_AFF_REAL 1016 ** 'DOUB' | SQLITE_AFF_REAL 1017 ** 1018 ** If none of the substrings in the above table are found, 1019 ** SQLITE_AFF_NUMERIC is returned. 1020 */ 1021 char sqlite3AffinityType(const Token *pType){ 1022 u32 h = 0; 1023 char aff = SQLITE_AFF_NUMERIC; 1024 const unsigned char *zIn = pType->z; 1025 const unsigned char *zEnd = &pType->z[pType->n]; 1026 1027 while( zIn!=zEnd ){ 1028 h = (h<<8) + sqlite3UpperToLower[*zIn]; 1029 zIn++; 1030 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1031 aff = SQLITE_AFF_TEXT; 1032 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1033 aff = SQLITE_AFF_TEXT; 1034 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1035 aff = SQLITE_AFF_TEXT; 1036 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1037 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1038 aff = SQLITE_AFF_NONE; 1039 #ifndef SQLITE_OMIT_FLOATING_POINT 1040 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1041 && aff==SQLITE_AFF_NUMERIC ){ 1042 aff = SQLITE_AFF_REAL; 1043 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1044 && aff==SQLITE_AFF_NUMERIC ){ 1045 aff = SQLITE_AFF_REAL; 1046 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1047 && aff==SQLITE_AFF_NUMERIC ){ 1048 aff = SQLITE_AFF_REAL; 1049 #endif 1050 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1051 aff = SQLITE_AFF_INTEGER; 1052 break; 1053 } 1054 } 1055 1056 return aff; 1057 } 1058 1059 /* 1060 ** This routine is called by the parser while in the middle of 1061 ** parsing a CREATE TABLE statement. The pFirst token is the first 1062 ** token in the sequence of tokens that describe the type of the 1063 ** column currently under construction. pLast is the last token 1064 ** in the sequence. Use this information to construct a string 1065 ** that contains the typename of the column and store that string 1066 ** in zType. 1067 */ 1068 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1069 Table *p; 1070 int i; 1071 Column *pCol; 1072 1073 if( (p = pParse->pNewTable)==0 ) return; 1074 i = p->nCol-1; 1075 if( i<0 ) return; 1076 pCol = &p->aCol[i]; 1077 sqlite3_free(pCol->zType); 1078 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1079 pCol->affinity = sqlite3AffinityType(pType); 1080 } 1081 1082 /* 1083 ** The expression is the default value for the most recently added column 1084 ** of the table currently under construction. 1085 ** 1086 ** Default value expressions must be constant. Raise an exception if this 1087 ** is not the case. 1088 ** 1089 ** This routine is called by the parser while in the middle of 1090 ** parsing a CREATE TABLE statement. 1091 */ 1092 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ 1093 Table *p; 1094 Column *pCol; 1095 if( (p = pParse->pNewTable)!=0 ){ 1096 pCol = &(p->aCol[p->nCol-1]); 1097 if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ 1098 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1099 pCol->zName); 1100 }else{ 1101 Expr *pCopy; 1102 sqlite3 *db = pParse->db; 1103 sqlite3ExprDelete(pCol->pDflt); 1104 pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr); 1105 if( pCopy ){ 1106 sqlite3TokenCopy(db, &pCopy->span, &pExpr->span); 1107 } 1108 } 1109 } 1110 sqlite3ExprDelete(pExpr); 1111 } 1112 1113 /* 1114 ** Designate the PRIMARY KEY for the table. pList is a list of names 1115 ** of columns that form the primary key. If pList is NULL, then the 1116 ** most recently added column of the table is the primary key. 1117 ** 1118 ** A table can have at most one primary key. If the table already has 1119 ** a primary key (and this is the second primary key) then create an 1120 ** error. 1121 ** 1122 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1123 ** then we will try to use that column as the rowid. Set the Table.iPKey 1124 ** field of the table under construction to be the index of the 1125 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1126 ** no INTEGER PRIMARY KEY. 1127 ** 1128 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1129 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1130 */ 1131 void sqlite3AddPrimaryKey( 1132 Parse *pParse, /* Parsing context */ 1133 ExprList *pList, /* List of field names to be indexed */ 1134 int onError, /* What to do with a uniqueness conflict */ 1135 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1136 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1137 ){ 1138 Table *pTab = pParse->pNewTable; 1139 char *zType = 0; 1140 int iCol = -1, i; 1141 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1142 if( pTab->hasPrimKey ){ 1143 sqlite3ErrorMsg(pParse, 1144 "table \"%s\" has more than one primary key", pTab->zName); 1145 goto primary_key_exit; 1146 } 1147 pTab->hasPrimKey = 1; 1148 if( pList==0 ){ 1149 iCol = pTab->nCol - 1; 1150 pTab->aCol[iCol].isPrimKey = 1; 1151 }else{ 1152 for(i=0; i<pList->nExpr; i++){ 1153 for(iCol=0; iCol<pTab->nCol; iCol++){ 1154 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1155 break; 1156 } 1157 } 1158 if( iCol<pTab->nCol ){ 1159 pTab->aCol[iCol].isPrimKey = 1; 1160 } 1161 } 1162 if( pList->nExpr>1 ) iCol = -1; 1163 } 1164 if( iCol>=0 && iCol<pTab->nCol ){ 1165 zType = pTab->aCol[iCol].zType; 1166 } 1167 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1168 && sortOrder==SQLITE_SO_ASC ){ 1169 pTab->iPKey = iCol; 1170 pTab->keyConf = onError; 1171 pTab->autoInc = autoInc; 1172 }else if( autoInc ){ 1173 #ifndef SQLITE_OMIT_AUTOINCREMENT 1174 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1175 "INTEGER PRIMARY KEY"); 1176 #endif 1177 }else{ 1178 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1179 pList = 0; 1180 } 1181 1182 primary_key_exit: 1183 sqlite3ExprListDelete(pList); 1184 return; 1185 } 1186 1187 /* 1188 ** Add a new CHECK constraint to the table currently under construction. 1189 */ 1190 void sqlite3AddCheckConstraint( 1191 Parse *pParse, /* Parsing context */ 1192 Expr *pCheckExpr /* The check expression */ 1193 ){ 1194 #ifndef SQLITE_OMIT_CHECK 1195 Table *pTab = pParse->pNewTable; 1196 sqlite3 *db = pParse->db; 1197 if( pTab && !IN_DECLARE_VTAB ){ 1198 /* The CHECK expression must be duplicated so that tokens refer 1199 ** to malloced space and not the (ephemeral) text of the CREATE TABLE 1200 ** statement */ 1201 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, 1202 sqlite3ExprDup(db, pCheckExpr)); 1203 } 1204 #endif 1205 sqlite3ExprDelete(pCheckExpr); 1206 } 1207 1208 /* 1209 ** Set the collation function of the most recently parsed table column 1210 ** to the CollSeq given. 1211 */ 1212 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1213 Table *p; 1214 int i; 1215 char *zColl; /* Dequoted name of collation sequence */ 1216 1217 if( (p = pParse->pNewTable)==0 ) return; 1218 i = p->nCol-1; 1219 1220 zColl = sqlite3NameFromToken(pParse->db, pToken); 1221 if( !zColl ) return; 1222 1223 if( sqlite3LocateCollSeq(pParse, zColl, -1) ){ 1224 Index *pIdx; 1225 p->aCol[i].zColl = zColl; 1226 1227 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1228 ** then an index may have been created on this column before the 1229 ** collation type was added. Correct this if it is the case. 1230 */ 1231 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1232 assert( pIdx->nColumn==1 ); 1233 if( pIdx->aiColumn[0]==i ){ 1234 pIdx->azColl[0] = p->aCol[i].zColl; 1235 } 1236 } 1237 }else{ 1238 sqlite3_free(zColl); 1239 } 1240 } 1241 1242 /* 1243 ** This function returns the collation sequence for database native text 1244 ** encoding identified by the string zName, length nName. 1245 ** 1246 ** If the requested collation sequence is not available, or not available 1247 ** in the database native encoding, the collation factory is invoked to 1248 ** request it. If the collation factory does not supply such a sequence, 1249 ** and the sequence is available in another text encoding, then that is 1250 ** returned instead. 1251 ** 1252 ** If no versions of the requested collations sequence are available, or 1253 ** another error occurs, NULL is returned and an error message written into 1254 ** pParse. 1255 ** 1256 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1257 ** invokes the collation factory if the named collation cannot be found 1258 ** and generates an error message. 1259 */ 1260 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ 1261 sqlite3 *db = pParse->db; 1262 u8 enc = ENC(db); 1263 u8 initbusy = db->init.busy; 1264 CollSeq *pColl; 1265 1266 pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); 1267 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1268 pColl = sqlite3GetCollSeq(db, pColl, zName, nName); 1269 if( !pColl ){ 1270 if( nName<0 ){ 1271 nName = sqlite3Strlen(db, zName); 1272 } 1273 sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); 1274 pColl = 0; 1275 } 1276 } 1277 1278 return pColl; 1279 } 1280 1281 1282 /* 1283 ** Generate code that will increment the schema cookie. 1284 ** 1285 ** The schema cookie is used to determine when the schema for the 1286 ** database changes. After each schema change, the cookie value 1287 ** changes. When a process first reads the schema it records the 1288 ** cookie. Thereafter, whenever it goes to access the database, 1289 ** it checks the cookie to make sure the schema has not changed 1290 ** since it was last read. 1291 ** 1292 ** This plan is not completely bullet-proof. It is possible for 1293 ** the schema to change multiple times and for the cookie to be 1294 ** set back to prior value. But schema changes are infrequent 1295 ** and the probability of hitting the same cookie value is only 1296 ** 1 chance in 2^32. So we're safe enough. 1297 */ 1298 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1299 int r1 = sqlite3GetTempReg(pParse); 1300 sqlite3 *db = pParse->db; 1301 Vdbe *v = pParse->pVdbe; 1302 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1303 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1); 1304 sqlite3ReleaseTempReg(pParse, r1); 1305 } 1306 1307 /* 1308 ** Measure the number of characters needed to output the given 1309 ** identifier. The number returned includes any quotes used 1310 ** but does not include the null terminator. 1311 ** 1312 ** The estimate is conservative. It might be larger that what is 1313 ** really needed. 1314 */ 1315 static int identLength(const char *z){ 1316 int n; 1317 for(n=0; *z; n++, z++){ 1318 if( *z=='"' ){ n++; } 1319 } 1320 return n + 2; 1321 } 1322 1323 /* 1324 ** Write an identifier onto the end of the given string. Add 1325 ** quote characters as needed. 1326 */ 1327 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1328 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1329 int i, j, needQuote; 1330 i = *pIdx; 1331 for(j=0; zIdent[j]; j++){ 1332 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1333 } 1334 needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) 1335 || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1336 if( needQuote ) z[i++] = '"'; 1337 for(j=0; zIdent[j]; j++){ 1338 z[i++] = zIdent[j]; 1339 if( zIdent[j]=='"' ) z[i++] = '"'; 1340 } 1341 if( needQuote ) z[i++] = '"'; 1342 z[i] = 0; 1343 *pIdx = i; 1344 } 1345 1346 /* 1347 ** Generate a CREATE TABLE statement appropriate for the given 1348 ** table. Memory to hold the text of the statement is obtained 1349 ** from sqliteMalloc() and must be freed by the calling function. 1350 */ 1351 static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){ 1352 int i, k, n; 1353 char *zStmt; 1354 char *zSep, *zSep2, *zEnd, *z; 1355 Column *pCol; 1356 n = 0; 1357 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1358 n += identLength(pCol->zName); 1359 z = pCol->zType; 1360 if( z ){ 1361 n += (strlen(z) + 1); 1362 } 1363 } 1364 n += identLength(p->zName); 1365 if( n<50 ){ 1366 zSep = ""; 1367 zSep2 = ","; 1368 zEnd = ")"; 1369 }else{ 1370 zSep = "\n "; 1371 zSep2 = ",\n "; 1372 zEnd = "\n)"; 1373 } 1374 n += 35 + 6*p->nCol; 1375 zStmt = sqlite3Malloc( n ); 1376 if( zStmt==0 ){ 1377 db->mallocFailed = 1; 1378 return 0; 1379 } 1380 sqlite3_snprintf(n, zStmt, 1381 !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); 1382 k = strlen(zStmt); 1383 identPut(zStmt, &k, p->zName); 1384 zStmt[k++] = '('; 1385 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1386 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1387 k += strlen(&zStmt[k]); 1388 zSep = zSep2; 1389 identPut(zStmt, &k, pCol->zName); 1390 if( (z = pCol->zType)!=0 ){ 1391 zStmt[k++] = ' '; 1392 assert( strlen(z)+k+1<=n ); 1393 sqlite3_snprintf(n-k, &zStmt[k], "%s", z); 1394 k += strlen(z); 1395 } 1396 } 1397 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1398 return zStmt; 1399 } 1400 1401 /* 1402 ** This routine is called to report the final ")" that terminates 1403 ** a CREATE TABLE statement. 1404 ** 1405 ** The table structure that other action routines have been building 1406 ** is added to the internal hash tables, assuming no errors have 1407 ** occurred. 1408 ** 1409 ** An entry for the table is made in the master table on disk, unless 1410 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1411 ** it means we are reading the sqlite_master table because we just 1412 ** connected to the database or because the sqlite_master table has 1413 ** recently changed, so the entry for this table already exists in 1414 ** the sqlite_master table. We do not want to create it again. 1415 ** 1416 ** If the pSelect argument is not NULL, it means that this routine 1417 ** was called to create a table generated from a 1418 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1419 ** the new table will match the result set of the SELECT. 1420 */ 1421 void sqlite3EndTable( 1422 Parse *pParse, /* Parse context */ 1423 Token *pCons, /* The ',' token after the last column defn. */ 1424 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1425 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1426 ){ 1427 Table *p; 1428 sqlite3 *db = pParse->db; 1429 int iDb; 1430 1431 if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) { 1432 return; 1433 } 1434 p = pParse->pNewTable; 1435 if( p==0 ) return; 1436 1437 assert( !db->init.busy || !pSelect ); 1438 1439 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1440 1441 #ifndef SQLITE_OMIT_CHECK 1442 /* Resolve names in all CHECK constraint expressions. 1443 */ 1444 if( p->pCheck ){ 1445 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1446 NameContext sNC; /* Name context for pParse->pNewTable */ 1447 1448 memset(&sNC, 0, sizeof(sNC)); 1449 memset(&sSrc, 0, sizeof(sSrc)); 1450 sSrc.nSrc = 1; 1451 sSrc.a[0].zName = p->zName; 1452 sSrc.a[0].pTab = p; 1453 sSrc.a[0].iCursor = -1; 1454 sNC.pParse = pParse; 1455 sNC.pSrcList = &sSrc; 1456 sNC.isCheck = 1; 1457 if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){ 1458 return; 1459 } 1460 } 1461 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1462 1463 /* If the db->init.busy is 1 it means we are reading the SQL off the 1464 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1465 ** So do not write to the disk again. Extract the root page number 1466 ** for the table from the db->init.newTnum field. (The page number 1467 ** should have been put there by the sqliteOpenCb routine.) 1468 */ 1469 if( db->init.busy ){ 1470 p->tnum = db->init.newTnum; 1471 } 1472 1473 /* If not initializing, then create a record for the new table 1474 ** in the SQLITE_MASTER table of the database. The record number 1475 ** for the new table entry should already be on the stack. 1476 ** 1477 ** If this is a TEMPORARY table, write the entry into the auxiliary 1478 ** file instead of into the main database file. 1479 */ 1480 if( !db->init.busy ){ 1481 int n; 1482 Vdbe *v; 1483 char *zType; /* "view" or "table" */ 1484 char *zType2; /* "VIEW" or "TABLE" */ 1485 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1486 1487 v = sqlite3GetVdbe(pParse); 1488 if( v==0 ) return; 1489 1490 sqlite3VdbeAddOp1(v, OP_Close, 0); 1491 1492 /* Create the rootpage for the new table and push it onto the stack. 1493 ** A view has no rootpage, so just push a zero onto the stack for 1494 ** views. Initialize zType at the same time. 1495 */ 1496 if( p->pSelect==0 ){ 1497 /* A regular table */ 1498 zType = "table"; 1499 zType2 = "TABLE"; 1500 #ifndef SQLITE_OMIT_VIEW 1501 }else{ 1502 /* A view */ 1503 zType = "view"; 1504 zType2 = "VIEW"; 1505 #endif 1506 } 1507 1508 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1509 ** statement to populate the new table. The root-page number for the 1510 ** new table is on the top of the vdbe stack. 1511 ** 1512 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1513 ** suitable state to query for the column names and types to be used 1514 ** by the new table. 1515 ** 1516 ** A shared-cache write-lock is not required to write to the new table, 1517 ** as a schema-lock must have already been obtained to create it. Since 1518 ** a schema-lock excludes all other database users, the write-lock would 1519 ** be redundant. 1520 */ 1521 if( pSelect ){ 1522 SelectDest dest; 1523 Table *pSelTab; 1524 1525 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1526 sqlite3VdbeChangeP5(v, 1); 1527 pParse->nTab = 2; 1528 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1529 sqlite3Select(pParse, pSelect, &dest, 0, 0, 0); 1530 sqlite3VdbeAddOp1(v, OP_Close, 1); 1531 if( pParse->nErr==0 ){ 1532 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); 1533 if( pSelTab==0 ) return; 1534 assert( p->aCol==0 ); 1535 p->nCol = pSelTab->nCol; 1536 p->aCol = pSelTab->aCol; 1537 pSelTab->nCol = 0; 1538 pSelTab->aCol = 0; 1539 sqlite3DeleteTable(pSelTab); 1540 } 1541 } 1542 1543 /* Compute the complete text of the CREATE statement */ 1544 if( pSelect ){ 1545 zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema); 1546 }else{ 1547 n = pEnd->z - pParse->sNameToken.z + 1; 1548 zStmt = sqlite3MPrintf(db, 1549 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1550 ); 1551 } 1552 1553 /* A slot for the record has already been allocated in the 1554 ** SQLITE_MASTER table. We just need to update that slot with all 1555 ** the information we've collected. The rowid for the preallocated 1556 ** slot is the 2nd item on the stack. The top of the stack is the 1557 ** root page for the new table (or a 0 if this is a view). 1558 */ 1559 sqlite3NestedParse(pParse, 1560 "UPDATE %Q.%s " 1561 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1562 "WHERE rowid=#%d", 1563 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1564 zType, 1565 p->zName, 1566 p->zName, 1567 pParse->regRoot, 1568 zStmt, 1569 pParse->regRowid 1570 ); 1571 sqlite3_free(zStmt); 1572 sqlite3ChangeCookie(pParse, iDb); 1573 1574 #ifndef SQLITE_OMIT_AUTOINCREMENT 1575 /* Check to see if we need to create an sqlite_sequence table for 1576 ** keeping track of autoincrement keys. 1577 */ 1578 if( p->autoInc ){ 1579 Db *pDb = &db->aDb[iDb]; 1580 if( pDb->pSchema->pSeqTab==0 ){ 1581 sqlite3NestedParse(pParse, 1582 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1583 pDb->zName 1584 ); 1585 } 1586 } 1587 #endif 1588 1589 /* Reparse everything to update our internal data structures */ 1590 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 1591 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); 1592 } 1593 1594 1595 /* Add the table to the in-memory representation of the database. 1596 */ 1597 if( db->init.busy && pParse->nErr==0 ){ 1598 Table *pOld; 1599 FKey *pFKey; 1600 Schema *pSchema = p->pSchema; 1601 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p); 1602 if( pOld ){ 1603 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1604 db->mallocFailed = 1; 1605 return; 1606 } 1607 #ifndef SQLITE_OMIT_FOREIGN_KEY 1608 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 1609 void *data; 1610 int nTo = strlen(pFKey->zTo) + 1; 1611 pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); 1612 data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); 1613 if( data==(void *)pFKey ){ 1614 db->mallocFailed = 1; 1615 } 1616 } 1617 #endif 1618 pParse->pNewTable = 0; 1619 db->nTable++; 1620 db->flags |= SQLITE_InternChanges; 1621 1622 #ifndef SQLITE_OMIT_ALTERTABLE 1623 if( !p->pSelect ){ 1624 const char *zName = (const char *)pParse->sNameToken.z; 1625 int nName; 1626 assert( !pSelect && pCons && pEnd ); 1627 if( pCons->z==0 ){ 1628 pCons = pEnd; 1629 } 1630 nName = (const char *)pCons->z - zName; 1631 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1632 } 1633 #endif 1634 } 1635 } 1636 1637 #ifndef SQLITE_OMIT_VIEW 1638 /* 1639 ** The parser calls this routine in order to create a new VIEW 1640 */ 1641 void sqlite3CreateView( 1642 Parse *pParse, /* The parsing context */ 1643 Token *pBegin, /* The CREATE token that begins the statement */ 1644 Token *pName1, /* The token that holds the name of the view */ 1645 Token *pName2, /* The token that holds the name of the view */ 1646 Select *pSelect, /* A SELECT statement that will become the new view */ 1647 int isTemp, /* TRUE for a TEMPORARY view */ 1648 int noErr /* Suppress error messages if VIEW already exists */ 1649 ){ 1650 Table *p; 1651 int n; 1652 const unsigned char *z; 1653 Token sEnd; 1654 DbFixer sFix; 1655 Token *pName; 1656 int iDb; 1657 sqlite3 *db = pParse->db; 1658 1659 if( pParse->nVar>0 ){ 1660 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1661 sqlite3SelectDelete(pSelect); 1662 return; 1663 } 1664 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1665 p = pParse->pNewTable; 1666 if( p==0 || pParse->nErr ){ 1667 sqlite3SelectDelete(pSelect); 1668 return; 1669 } 1670 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1671 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1672 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1673 && sqlite3FixSelect(&sFix, pSelect) 1674 ){ 1675 sqlite3SelectDelete(pSelect); 1676 return; 1677 } 1678 1679 /* Make a copy of the entire SELECT statement that defines the view. 1680 ** This will force all the Expr.token.z values to be dynamically 1681 ** allocated rather than point to the input string - which means that 1682 ** they will persist after the current sqlite3_exec() call returns. 1683 */ 1684 p->pSelect = sqlite3SelectDup(db, pSelect); 1685 sqlite3SelectDelete(pSelect); 1686 if( db->mallocFailed ){ 1687 return; 1688 } 1689 if( !db->init.busy ){ 1690 sqlite3ViewGetColumnNames(pParse, p); 1691 } 1692 1693 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1694 ** the end. 1695 */ 1696 sEnd = pParse->sLastToken; 1697 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ 1698 sEnd.z += sEnd.n; 1699 } 1700 sEnd.n = 0; 1701 n = sEnd.z - pBegin->z; 1702 z = (const unsigned char*)pBegin->z; 1703 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } 1704 sEnd.z = &z[n-1]; 1705 sEnd.n = 1; 1706 1707 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1708 sqlite3EndTable(pParse, 0, &sEnd, 0); 1709 return; 1710 } 1711 #endif /* SQLITE_OMIT_VIEW */ 1712 1713 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1714 /* 1715 ** The Table structure pTable is really a VIEW. Fill in the names of 1716 ** the columns of the view in the pTable structure. Return the number 1717 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1718 */ 1719 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1720 Table *pSelTab; /* A fake table from which we get the result set */ 1721 Select *pSel; /* Copy of the SELECT that implements the view */ 1722 int nErr = 0; /* Number of errors encountered */ 1723 int n; /* Temporarily holds the number of cursors assigned */ 1724 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 1725 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1726 1727 assert( pTable ); 1728 1729 #ifndef SQLITE_OMIT_VIRTUALTABLE 1730 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1731 return SQLITE_ERROR; 1732 } 1733 if( IsVirtual(pTable) ) return 0; 1734 #endif 1735 1736 #ifndef SQLITE_OMIT_VIEW 1737 /* A positive nCol means the columns names for this view are 1738 ** already known. 1739 */ 1740 if( pTable->nCol>0 ) return 0; 1741 1742 /* A negative nCol is a special marker meaning that we are currently 1743 ** trying to compute the column names. If we enter this routine with 1744 ** a negative nCol, it means two or more views form a loop, like this: 1745 ** 1746 ** CREATE VIEW one AS SELECT * FROM two; 1747 ** CREATE VIEW two AS SELECT * FROM one; 1748 ** 1749 ** Actually, this error is caught previously and so the following test 1750 ** should always fail. But we will leave it in place just to be safe. 1751 */ 1752 if( pTable->nCol<0 ){ 1753 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1754 return 1; 1755 } 1756 assert( pTable->nCol>=0 ); 1757 1758 /* If we get this far, it means we need to compute the table names. 1759 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1760 ** "*" elements in the results set of the view and will assign cursors 1761 ** to the elements of the FROM clause. But we do not want these changes 1762 ** to be permanent. So the computation is done on a copy of the SELECT 1763 ** statement that defines the view. 1764 */ 1765 assert( pTable->pSelect ); 1766 pSel = sqlite3SelectDup(db, pTable->pSelect); 1767 if( pSel ){ 1768 n = pParse->nTab; 1769 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1770 pTable->nCol = -1; 1771 #ifndef SQLITE_OMIT_AUTHORIZATION 1772 xAuth = db->xAuth; 1773 db->xAuth = 0; 1774 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); 1775 db->xAuth = xAuth; 1776 #else 1777 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); 1778 #endif 1779 pParse->nTab = n; 1780 if( pSelTab ){ 1781 assert( pTable->aCol==0 ); 1782 pTable->nCol = pSelTab->nCol; 1783 pTable->aCol = pSelTab->aCol; 1784 pSelTab->nCol = 0; 1785 pSelTab->aCol = 0; 1786 sqlite3DeleteTable(pSelTab); 1787 pTable->pSchema->flags |= DB_UnresetViews; 1788 }else{ 1789 pTable->nCol = 0; 1790 nErr++; 1791 } 1792 sqlite3SelectDelete(pSel); 1793 } else { 1794 nErr++; 1795 } 1796 #endif /* SQLITE_OMIT_VIEW */ 1797 return nErr; 1798 } 1799 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1800 1801 #ifndef SQLITE_OMIT_VIEW 1802 /* 1803 ** Clear the column names from every VIEW in database idx. 1804 */ 1805 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1806 HashElem *i; 1807 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1808 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1809 Table *pTab = sqliteHashData(i); 1810 if( pTab->pSelect ){ 1811 sqliteResetColumnNames(pTab); 1812 } 1813 } 1814 DbClearProperty(db, idx, DB_UnresetViews); 1815 } 1816 #else 1817 # define sqliteViewResetAll(A,B) 1818 #endif /* SQLITE_OMIT_VIEW */ 1819 1820 /* 1821 ** This function is called by the VDBE to adjust the internal schema 1822 ** used by SQLite when the btree layer moves a table root page. The 1823 ** root-page of a table or index in database iDb has changed from iFrom 1824 ** to iTo. 1825 ** 1826 ** Ticket #1728: The symbol table might still contain information 1827 ** on tables and/or indices that are the process of being deleted. 1828 ** If you are unlucky, one of those deleted indices or tables might 1829 ** have the same rootpage number as the real table or index that is 1830 ** being moved. So we cannot stop searching after the first match 1831 ** because the first match might be for one of the deleted indices 1832 ** or tables and not the table/index that is actually being moved. 1833 ** We must continue looping until all tables and indices with 1834 ** rootpage==iFrom have been converted to have a rootpage of iTo 1835 ** in order to be certain that we got the right one. 1836 */ 1837 #ifndef SQLITE_OMIT_AUTOVACUUM 1838 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ 1839 HashElem *pElem; 1840 Hash *pHash; 1841 1842 pHash = &pDb->pSchema->tblHash; 1843 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1844 Table *pTab = sqliteHashData(pElem); 1845 if( pTab->tnum==iFrom ){ 1846 pTab->tnum = iTo; 1847 } 1848 } 1849 pHash = &pDb->pSchema->idxHash; 1850 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1851 Index *pIdx = sqliteHashData(pElem); 1852 if( pIdx->tnum==iFrom ){ 1853 pIdx->tnum = iTo; 1854 } 1855 } 1856 } 1857 #endif 1858 1859 /* 1860 ** Write code to erase the table with root-page iTable from database iDb. 1861 ** Also write code to modify the sqlite_master table and internal schema 1862 ** if a root-page of another table is moved by the btree-layer whilst 1863 ** erasing iTable (this can happen with an auto-vacuum database). 1864 */ 1865 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1866 Vdbe *v = sqlite3GetVdbe(pParse); 1867 int r1 = sqlite3GetTempReg(pParse); 1868 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 1869 #ifndef SQLITE_OMIT_AUTOVACUUM 1870 /* OP_Destroy stores an in integer r1. If this integer 1871 ** is non-zero, then it is the root page number of a table moved to 1872 ** location iTable. The following code modifies the sqlite_master table to 1873 ** reflect this. 1874 ** 1875 ** The "#%d" in the SQL is a special constant that means whatever value 1876 ** is on the top of the stack. See sqlite3RegisterExpr(). 1877 */ 1878 sqlite3NestedParse(pParse, 1879 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 1880 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 1881 #endif 1882 sqlite3ReleaseTempReg(pParse, r1); 1883 } 1884 1885 /* 1886 ** Write VDBE code to erase table pTab and all associated indices on disk. 1887 ** Code to update the sqlite_master tables and internal schema definitions 1888 ** in case a root-page belonging to another table is moved by the btree layer 1889 ** is also added (this can happen with an auto-vacuum database). 1890 */ 1891 static void destroyTable(Parse *pParse, Table *pTab){ 1892 #ifdef SQLITE_OMIT_AUTOVACUUM 1893 Index *pIdx; 1894 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1895 destroyRootPage(pParse, pTab->tnum, iDb); 1896 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1897 destroyRootPage(pParse, pIdx->tnum, iDb); 1898 } 1899 #else 1900 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1901 ** is not defined), then it is important to call OP_Destroy on the 1902 ** table and index root-pages in order, starting with the numerically 1903 ** largest root-page number. This guarantees that none of the root-pages 1904 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1905 ** following were coded: 1906 ** 1907 ** OP_Destroy 4 0 1908 ** ... 1909 ** OP_Destroy 5 0 1910 ** 1911 ** and root page 5 happened to be the largest root-page number in the 1912 ** database, then root page 5 would be moved to page 4 by the 1913 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 1914 ** a free-list page. 1915 */ 1916 int iTab = pTab->tnum; 1917 int iDestroyed = 0; 1918 1919 while( 1 ){ 1920 Index *pIdx; 1921 int iLargest = 0; 1922 1923 if( iDestroyed==0 || iTab<iDestroyed ){ 1924 iLargest = iTab; 1925 } 1926 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1927 int iIdx = pIdx->tnum; 1928 assert( pIdx->pSchema==pTab->pSchema ); 1929 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 1930 iLargest = iIdx; 1931 } 1932 } 1933 if( iLargest==0 ){ 1934 return; 1935 }else{ 1936 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1937 destroyRootPage(pParse, iLargest, iDb); 1938 iDestroyed = iLargest; 1939 } 1940 } 1941 #endif 1942 } 1943 1944 /* 1945 ** This routine is called to do the work of a DROP TABLE statement. 1946 ** pName is the name of the table to be dropped. 1947 */ 1948 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 1949 Table *pTab; 1950 Vdbe *v; 1951 sqlite3 *db = pParse->db; 1952 int iDb; 1953 1954 if( pParse->nErr || db->mallocFailed ){ 1955 goto exit_drop_table; 1956 } 1957 assert( pName->nSrc==1 ); 1958 pTab = sqlite3LocateTable(pParse, isView, 1959 pName->a[0].zName, pName->a[0].zDatabase); 1960 1961 if( pTab==0 ){ 1962 if( noErr ){ 1963 sqlite3ErrorClear(pParse); 1964 } 1965 goto exit_drop_table; 1966 } 1967 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1968 assert( iDb>=0 && iDb<db->nDb ); 1969 1970 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 1971 ** it is initialized. 1972 */ 1973 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 1974 goto exit_drop_table; 1975 } 1976 #ifndef SQLITE_OMIT_AUTHORIZATION 1977 { 1978 int code; 1979 const char *zTab = SCHEMA_TABLE(iDb); 1980 const char *zDb = db->aDb[iDb].zName; 1981 const char *zArg2 = 0; 1982 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 1983 goto exit_drop_table; 1984 } 1985 if( isView ){ 1986 if( !OMIT_TEMPDB && iDb==1 ){ 1987 code = SQLITE_DROP_TEMP_VIEW; 1988 }else{ 1989 code = SQLITE_DROP_VIEW; 1990 } 1991 #ifndef SQLITE_OMIT_VIRTUALTABLE 1992 }else if( IsVirtual(pTab) ){ 1993 code = SQLITE_DROP_VTABLE; 1994 zArg2 = pTab->pMod->zName; 1995 #endif 1996 }else{ 1997 if( !OMIT_TEMPDB && iDb==1 ){ 1998 code = SQLITE_DROP_TEMP_TABLE; 1999 }else{ 2000 code = SQLITE_DROP_TABLE; 2001 } 2002 } 2003 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2004 goto exit_drop_table; 2005 } 2006 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2007 goto exit_drop_table; 2008 } 2009 } 2010 #endif 2011 if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){ 2012 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2013 goto exit_drop_table; 2014 } 2015 2016 #ifndef SQLITE_OMIT_VIEW 2017 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2018 ** on a table. 2019 */ 2020 if( isView && pTab->pSelect==0 ){ 2021 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2022 goto exit_drop_table; 2023 } 2024 if( !isView && pTab->pSelect ){ 2025 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2026 goto exit_drop_table; 2027 } 2028 #endif 2029 2030 /* Generate code to remove the table from the master table 2031 ** on disk. 2032 */ 2033 v = sqlite3GetVdbe(pParse); 2034 if( v ){ 2035 Trigger *pTrigger; 2036 Db *pDb = &db->aDb[iDb]; 2037 sqlite3BeginWriteOperation(pParse, 1, iDb); 2038 2039 #ifndef SQLITE_OMIT_VIRTUALTABLE 2040 if( IsVirtual(pTab) ){ 2041 Vdbe *v = sqlite3GetVdbe(pParse); 2042 if( v ){ 2043 sqlite3VdbeAddOp0(v, OP_VBegin); 2044 } 2045 } 2046 #endif 2047 2048 /* Drop all triggers associated with the table being dropped. Code 2049 ** is generated to remove entries from sqlite_master and/or 2050 ** sqlite_temp_master if required. 2051 */ 2052 pTrigger = pTab->pTrigger; 2053 while( pTrigger ){ 2054 assert( pTrigger->pSchema==pTab->pSchema || 2055 pTrigger->pSchema==db->aDb[1].pSchema ); 2056 sqlite3DropTriggerPtr(pParse, pTrigger); 2057 pTrigger = pTrigger->pNext; 2058 } 2059 2060 #ifndef SQLITE_OMIT_AUTOINCREMENT 2061 /* Remove any entries of the sqlite_sequence table associated with 2062 ** the table being dropped. This is done before the table is dropped 2063 ** at the btree level, in case the sqlite_sequence table needs to 2064 ** move as a result of the drop (can happen in auto-vacuum mode). 2065 */ 2066 if( pTab->autoInc ){ 2067 sqlite3NestedParse(pParse, 2068 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", 2069 pDb->zName, pTab->zName 2070 ); 2071 } 2072 #endif 2073 2074 /* Drop all SQLITE_MASTER table and index entries that refer to the 2075 ** table. The program name loops through the master table and deletes 2076 ** every row that refers to a table of the same name as the one being 2077 ** dropped. Triggers are handled seperately because a trigger can be 2078 ** created in the temp database that refers to a table in another 2079 ** database. 2080 */ 2081 sqlite3NestedParse(pParse, 2082 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2083 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2084 2085 /* Drop any statistics from the sqlite_stat1 table, if it exists */ 2086 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2087 sqlite3NestedParse(pParse, 2088 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName 2089 ); 2090 } 2091 2092 if( !isView && !IsVirtual(pTab) ){ 2093 destroyTable(pParse, pTab); 2094 } 2095 2096 /* Remove the table entry from SQLite's internal schema and modify 2097 ** the schema cookie. 2098 */ 2099 if( IsVirtual(pTab) ){ 2100 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2101 } 2102 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2103 sqlite3ChangeCookie(pParse, iDb); 2104 } 2105 sqliteViewResetAll(db, iDb); 2106 2107 exit_drop_table: 2108 sqlite3SrcListDelete(pName); 2109 } 2110 2111 /* 2112 ** This routine is called to create a new foreign key on the table 2113 ** currently under construction. pFromCol determines which columns 2114 ** in the current table point to the foreign key. If pFromCol==0 then 2115 ** connect the key to the last column inserted. pTo is the name of 2116 ** the table referred to. pToCol is a list of tables in the other 2117 ** pTo table that the foreign key points to. flags contains all 2118 ** information about the conflict resolution algorithms specified 2119 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2120 ** 2121 ** An FKey structure is created and added to the table currently 2122 ** under construction in the pParse->pNewTable field. The new FKey 2123 ** is not linked into db->aFKey at this point - that does not happen 2124 ** until sqlite3EndTable(). 2125 ** 2126 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2127 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2128 */ 2129 void sqlite3CreateForeignKey( 2130 Parse *pParse, /* Parsing context */ 2131 ExprList *pFromCol, /* Columns in this table that point to other table */ 2132 Token *pTo, /* Name of the other table */ 2133 ExprList *pToCol, /* Columns in the other table */ 2134 int flags /* Conflict resolution algorithms. */ 2135 ){ 2136 #ifndef SQLITE_OMIT_FOREIGN_KEY 2137 FKey *pFKey = 0; 2138 Table *p = pParse->pNewTable; 2139 int nByte; 2140 int i; 2141 int nCol; 2142 char *z; 2143 2144 assert( pTo!=0 ); 2145 if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end; 2146 if( pFromCol==0 ){ 2147 int iCol = p->nCol-1; 2148 if( iCol<0 ) goto fk_end; 2149 if( pToCol && pToCol->nExpr!=1 ){ 2150 sqlite3ErrorMsg(pParse, "foreign key on %s" 2151 " should reference only one column of table %T", 2152 p->aCol[iCol].zName, pTo); 2153 goto fk_end; 2154 } 2155 nCol = 1; 2156 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2157 sqlite3ErrorMsg(pParse, 2158 "number of columns in foreign key does not match the number of " 2159 "columns in the referenced table"); 2160 goto fk_end; 2161 }else{ 2162 nCol = pFromCol->nExpr; 2163 } 2164 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2165 if( pToCol ){ 2166 for(i=0; i<pToCol->nExpr; i++){ 2167 nByte += strlen(pToCol->a[i].zName) + 1; 2168 } 2169 } 2170 pFKey = sqlite3DbMallocZero(pParse->db, nByte ); 2171 if( pFKey==0 ){ 2172 goto fk_end; 2173 } 2174 pFKey->pFrom = p; 2175 pFKey->pNextFrom = p->pFKey; 2176 z = (char*)&pFKey[1]; 2177 pFKey->aCol = (struct sColMap*)z; 2178 z += sizeof(struct sColMap)*nCol; 2179 pFKey->zTo = z; 2180 memcpy(z, pTo->z, pTo->n); 2181 z[pTo->n] = 0; 2182 z += pTo->n+1; 2183 pFKey->pNextTo = 0; 2184 pFKey->nCol = nCol; 2185 if( pFromCol==0 ){ 2186 pFKey->aCol[0].iFrom = p->nCol-1; 2187 }else{ 2188 for(i=0; i<nCol; i++){ 2189 int j; 2190 for(j=0; j<p->nCol; j++){ 2191 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2192 pFKey->aCol[i].iFrom = j; 2193 break; 2194 } 2195 } 2196 if( j>=p->nCol ){ 2197 sqlite3ErrorMsg(pParse, 2198 "unknown column \"%s\" in foreign key definition", 2199 pFromCol->a[i].zName); 2200 goto fk_end; 2201 } 2202 } 2203 } 2204 if( pToCol ){ 2205 for(i=0; i<nCol; i++){ 2206 int n = strlen(pToCol->a[i].zName); 2207 pFKey->aCol[i].zCol = z; 2208 memcpy(z, pToCol->a[i].zName, n); 2209 z[n] = 0; 2210 z += n+1; 2211 } 2212 } 2213 pFKey->isDeferred = 0; 2214 pFKey->deleteConf = flags & 0xff; 2215 pFKey->updateConf = (flags >> 8 ) & 0xff; 2216 pFKey->insertConf = (flags >> 16 ) & 0xff; 2217 2218 /* Link the foreign key to the table as the last step. 2219 */ 2220 p->pFKey = pFKey; 2221 pFKey = 0; 2222 2223 fk_end: 2224 sqlite3_free(pFKey); 2225 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2226 sqlite3ExprListDelete(pFromCol); 2227 sqlite3ExprListDelete(pToCol); 2228 } 2229 2230 /* 2231 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2232 ** clause is seen as part of a foreign key definition. The isDeferred 2233 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2234 ** The behavior of the most recently created foreign key is adjusted 2235 ** accordingly. 2236 */ 2237 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2238 #ifndef SQLITE_OMIT_FOREIGN_KEY 2239 Table *pTab; 2240 FKey *pFKey; 2241 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2242 pFKey->isDeferred = isDeferred; 2243 #endif 2244 } 2245 2246 /* 2247 ** Generate code that will erase and refill index *pIdx. This is 2248 ** used to initialize a newly created index or to recompute the 2249 ** content of an index in response to a REINDEX command. 2250 ** 2251 ** if memRootPage is not negative, it means that the index is newly 2252 ** created. The register specified by memRootPage contains the 2253 ** root page number of the index. If memRootPage is negative, then 2254 ** the index already exists and must be cleared before being refilled and 2255 ** the root page number of the index is taken from pIndex->tnum. 2256 */ 2257 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2258 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2259 int iTab = pParse->nTab; /* Btree cursor used for pTab */ 2260 int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ 2261 int addr1; /* Address of top of loop */ 2262 int tnum; /* Root page of index */ 2263 Vdbe *v; /* Generate code into this virtual machine */ 2264 KeyInfo *pKey; /* KeyInfo for index */ 2265 int regIdxKey; /* Registers containing the index key */ 2266 int regRecord; /* Register holding assemblied index record */ 2267 sqlite3 *db = pParse->db; /* The database connection */ 2268 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2269 2270 #ifndef SQLITE_OMIT_AUTHORIZATION 2271 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2272 db->aDb[iDb].zName ) ){ 2273 return; 2274 } 2275 #endif 2276 2277 /* Require a write-lock on the table to perform this operation */ 2278 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2279 2280 v = sqlite3GetVdbe(pParse); 2281 if( v==0 ) return; 2282 if( memRootPage>=0 ){ 2283 tnum = memRootPage; 2284 }else{ 2285 tnum = pIndex->tnum; 2286 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2287 } 2288 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2289 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2290 (char *)pKey, P4_KEYINFO_HANDOFF); 2291 if( memRootPage>=0 ){ 2292 sqlite3VdbeChangeP5(v, 1); 2293 } 2294 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2295 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2296 regRecord = sqlite3GetTempReg(pParse); 2297 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2298 if( pIndex->onError!=OE_None ){ 2299 int j1, j2; 2300 int regRowid; 2301 2302 regRowid = regIdxKey + pIndex->nColumn; 2303 j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn); 2304 j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, 2305 0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32); 2306 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0, 2307 "indexed columns are not unique", P4_STATIC); 2308 sqlite3VdbeJumpHere(v, j1); 2309 sqlite3VdbeJumpHere(v, j2); 2310 } 2311 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2312 sqlite3ReleaseTempReg(pParse, regRecord); 2313 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); 2314 sqlite3VdbeJumpHere(v, addr1); 2315 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2316 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2317 } 2318 2319 /* 2320 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2321 ** and pTblList is the name of the table that is to be indexed. Both will 2322 ** be NULL for a primary key or an index that is created to satisfy a 2323 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2324 ** as the table to be indexed. pParse->pNewTable is a table that is 2325 ** currently being constructed by a CREATE TABLE statement. 2326 ** 2327 ** pList is a list of columns to be indexed. pList will be NULL if this 2328 ** is a primary key or unique-constraint on the most recent column added 2329 ** to the table currently under construction. 2330 */ 2331 void sqlite3CreateIndex( 2332 Parse *pParse, /* All information about this parse */ 2333 Token *pName1, /* First part of index name. May be NULL */ 2334 Token *pName2, /* Second part of index name. May be NULL */ 2335 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2336 ExprList *pList, /* A list of columns to be indexed */ 2337 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2338 Token *pStart, /* The CREATE token that begins this statement */ 2339 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2340 int sortOrder, /* Sort order of primary key when pList==NULL */ 2341 int ifNotExist /* Omit error if index already exists */ 2342 ){ 2343 Table *pTab = 0; /* Table to be indexed */ 2344 Index *pIndex = 0; /* The index to be created */ 2345 char *zName = 0; /* Name of the index */ 2346 int nName; /* Number of characters in zName */ 2347 int i, j; 2348 Token nullId; /* Fake token for an empty ID list */ 2349 DbFixer sFix; /* For assigning database names to pTable */ 2350 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2351 sqlite3 *db = pParse->db; 2352 Db *pDb; /* The specific table containing the indexed database */ 2353 int iDb; /* Index of the database that is being written */ 2354 Token *pName = 0; /* Unqualified name of the index to create */ 2355 struct ExprList_item *pListItem; /* For looping over pList */ 2356 int nCol; 2357 int nExtra = 0; 2358 char *zExtra; 2359 2360 if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){ 2361 goto exit_create_index; 2362 } 2363 2364 /* 2365 ** Find the table that is to be indexed. Return early if not found. 2366 */ 2367 if( pTblName!=0 ){ 2368 2369 /* Use the two-part index name to determine the database 2370 ** to search for the table. 'Fix' the table name to this db 2371 ** before looking up the table. 2372 */ 2373 assert( pName1 && pName2 ); 2374 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2375 if( iDb<0 ) goto exit_create_index; 2376 2377 #ifndef SQLITE_OMIT_TEMPDB 2378 /* If the index name was unqualified, check if the the table 2379 ** is a temp table. If so, set the database to 1. Do not do this 2380 ** if initialising a database schema. 2381 */ 2382 if( !db->init.busy ){ 2383 pTab = sqlite3SrcListLookup(pParse, pTblName); 2384 if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2385 iDb = 1; 2386 } 2387 } 2388 #endif 2389 2390 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2391 sqlite3FixSrcList(&sFix, pTblName) 2392 ){ 2393 /* Because the parser constructs pTblName from a single identifier, 2394 ** sqlite3FixSrcList can never fail. */ 2395 assert(0); 2396 } 2397 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 2398 pTblName->a[0].zDatabase); 2399 if( !pTab ) goto exit_create_index; 2400 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2401 }else{ 2402 assert( pName==0 ); 2403 pTab = pParse->pNewTable; 2404 if( !pTab ) goto exit_create_index; 2405 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2406 } 2407 pDb = &db->aDb[iDb]; 2408 2409 if( pTab==0 || pParse->nErr ) goto exit_create_index; 2410 if( pTab->readOnly ){ 2411 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2412 goto exit_create_index; 2413 } 2414 #ifndef SQLITE_OMIT_VIEW 2415 if( pTab->pSelect ){ 2416 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2417 goto exit_create_index; 2418 } 2419 #endif 2420 #ifndef SQLITE_OMIT_VIRTUALTABLE 2421 if( IsVirtual(pTab) ){ 2422 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2423 goto exit_create_index; 2424 } 2425 #endif 2426 2427 /* 2428 ** Find the name of the index. Make sure there is not already another 2429 ** index or table with the same name. 2430 ** 2431 ** Exception: If we are reading the names of permanent indices from the 2432 ** sqlite_master table (because some other process changed the schema) and 2433 ** one of the index names collides with the name of a temporary table or 2434 ** index, then we will continue to process this index. 2435 ** 2436 ** If pName==0 it means that we are 2437 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2438 ** own name. 2439 */ 2440 if( pName ){ 2441 zName = sqlite3NameFromToken(db, pName); 2442 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2443 if( zName==0 ) goto exit_create_index; 2444 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2445 goto exit_create_index; 2446 } 2447 if( !db->init.busy ){ 2448 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2449 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2450 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2451 goto exit_create_index; 2452 } 2453 } 2454 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2455 if( !ifNotExist ){ 2456 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2457 } 2458 goto exit_create_index; 2459 } 2460 }else{ 2461 int n; 2462 Index *pLoop; 2463 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2464 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2465 if( zName==0 ){ 2466 goto exit_create_index; 2467 } 2468 } 2469 2470 /* Check for authorization to create an index. 2471 */ 2472 #ifndef SQLITE_OMIT_AUTHORIZATION 2473 { 2474 const char *zDb = pDb->zName; 2475 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2476 goto exit_create_index; 2477 } 2478 i = SQLITE_CREATE_INDEX; 2479 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2480 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2481 goto exit_create_index; 2482 } 2483 } 2484 #endif 2485 2486 /* If pList==0, it means this routine was called to make a primary 2487 ** key out of the last column added to the table under construction. 2488 ** So create a fake list to simulate this. 2489 */ 2490 if( pList==0 ){ 2491 nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; 2492 nullId.n = strlen((char*)nullId.z); 2493 pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId); 2494 if( pList==0 ) goto exit_create_index; 2495 pList->a[0].sortOrder = sortOrder; 2496 } 2497 2498 /* Figure out how many bytes of space are required to store explicitly 2499 ** specified collation sequence names. 2500 */ 2501 for(i=0; i<pList->nExpr; i++){ 2502 Expr *pExpr = pList->a[i].pExpr; 2503 if( pExpr ){ 2504 nExtra += (1 + strlen(pExpr->pColl->zName)); 2505 } 2506 } 2507 2508 /* 2509 ** Allocate the index structure. 2510 */ 2511 nName = strlen(zName); 2512 nCol = pList->nExpr; 2513 pIndex = sqlite3DbMallocZero(db, 2514 sizeof(Index) + /* Index structure */ 2515 sizeof(int)*nCol + /* Index.aiColumn */ 2516 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ 2517 sizeof(char *)*nCol + /* Index.azColl */ 2518 sizeof(u8)*nCol + /* Index.aSortOrder */ 2519 nName + 1 + /* Index.zName */ 2520 nExtra /* Collation sequence names */ 2521 ); 2522 if( db->mallocFailed ){ 2523 goto exit_create_index; 2524 } 2525 pIndex->azColl = (char**)(&pIndex[1]); 2526 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2527 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); 2528 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); 2529 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2530 zExtra = (char *)(&pIndex->zName[nName+1]); 2531 memcpy(pIndex->zName, zName, nName+1); 2532 pIndex->pTable = pTab; 2533 pIndex->nColumn = pList->nExpr; 2534 pIndex->onError = onError; 2535 pIndex->autoIndex = pName==0; 2536 pIndex->pSchema = db->aDb[iDb].pSchema; 2537 2538 /* Check to see if we should honor DESC requests on index columns 2539 */ 2540 if( pDb->pSchema->file_format>=4 ){ 2541 sortOrderMask = -1; /* Honor DESC */ 2542 }else{ 2543 sortOrderMask = 0; /* Ignore DESC */ 2544 } 2545 2546 /* Scan the names of the columns of the table to be indexed and 2547 ** load the column indices into the Index structure. Report an error 2548 ** if any column is not found. 2549 */ 2550 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2551 const char *zColName = pListItem->zName; 2552 Column *pTabCol; 2553 int requestedSortOrder; 2554 char *zColl; /* Collation sequence name */ 2555 2556 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2557 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2558 } 2559 if( j>=pTab->nCol ){ 2560 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2561 pTab->zName, zColName); 2562 goto exit_create_index; 2563 } 2564 /* TODO: Add a test to make sure that the same column is not named 2565 ** more than once within the same index. Only the first instance of 2566 ** the column will ever be used by the optimizer. Note that using the 2567 ** same column more than once cannot be an error because that would 2568 ** break backwards compatibility - it needs to be a warning. 2569 */ 2570 pIndex->aiColumn[i] = j; 2571 if( pListItem->pExpr ){ 2572 assert( pListItem->pExpr->pColl ); 2573 zColl = zExtra; 2574 sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName); 2575 zExtra += (strlen(zColl) + 1); 2576 }else{ 2577 zColl = pTab->aCol[j].zColl; 2578 if( !zColl ){ 2579 zColl = db->pDfltColl->zName; 2580 } 2581 } 2582 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ 2583 goto exit_create_index; 2584 } 2585 pIndex->azColl[i] = zColl; 2586 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2587 pIndex->aSortOrder[i] = requestedSortOrder; 2588 } 2589 sqlite3DefaultRowEst(pIndex); 2590 2591 if( pTab==pParse->pNewTable ){ 2592 /* This routine has been called to create an automatic index as a 2593 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2594 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2595 ** i.e. one of: 2596 ** 2597 ** CREATE TABLE t(x PRIMARY KEY, y); 2598 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2599 ** 2600 ** Either way, check to see if the table already has such an index. If 2601 ** so, don't bother creating this one. This only applies to 2602 ** automatically created indices. Users can do as they wish with 2603 ** explicit indices. 2604 */ 2605 Index *pIdx; 2606 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2607 int k; 2608 assert( pIdx->onError!=OE_None ); 2609 assert( pIdx->autoIndex ); 2610 assert( pIndex->onError!=OE_None ); 2611 2612 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2613 for(k=0; k<pIdx->nColumn; k++){ 2614 const char *z1 = pIdx->azColl[k]; 2615 const char *z2 = pIndex->azColl[k]; 2616 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2617 if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; 2618 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2619 } 2620 if( k==pIdx->nColumn ){ 2621 if( pIdx->onError!=pIndex->onError ){ 2622 /* This constraint creates the same index as a previous 2623 ** constraint specified somewhere in the CREATE TABLE statement. 2624 ** However the ON CONFLICT clauses are different. If both this 2625 ** constraint and the previous equivalent constraint have explicit 2626 ** ON CONFLICT clauses this is an error. Otherwise, use the 2627 ** explicitly specified behaviour for the index. 2628 */ 2629 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2630 sqlite3ErrorMsg(pParse, 2631 "conflicting ON CONFLICT clauses specified", 0); 2632 } 2633 if( pIdx->onError==OE_Default ){ 2634 pIdx->onError = pIndex->onError; 2635 } 2636 } 2637 goto exit_create_index; 2638 } 2639 } 2640 } 2641 2642 /* Link the new Index structure to its table and to the other 2643 ** in-memory database structures. 2644 */ 2645 if( db->init.busy ){ 2646 Index *p; 2647 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2648 pIndex->zName, strlen(pIndex->zName)+1, pIndex); 2649 if( p ){ 2650 assert( p==pIndex ); /* Malloc must have failed */ 2651 db->mallocFailed = 1; 2652 goto exit_create_index; 2653 } 2654 db->flags |= SQLITE_InternChanges; 2655 if( pTblName!=0 ){ 2656 pIndex->tnum = db->init.newTnum; 2657 } 2658 } 2659 2660 /* If the db->init.busy is 0 then create the index on disk. This 2661 ** involves writing the index into the master table and filling in the 2662 ** index with the current table contents. 2663 ** 2664 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2665 ** command. db->init.busy is 1 when a database is opened and 2666 ** CREATE INDEX statements are read out of the master table. In 2667 ** the latter case the index already exists on disk, which is why 2668 ** we don't want to recreate it. 2669 ** 2670 ** If pTblName==0 it means this index is generated as a primary key 2671 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2672 ** has just been created, it contains no data and the index initialization 2673 ** step can be skipped. 2674 */ 2675 else if( db->init.busy==0 ){ 2676 Vdbe *v; 2677 char *zStmt; 2678 int iMem = ++pParse->nMem; 2679 2680 v = sqlite3GetVdbe(pParse); 2681 if( v==0 ) goto exit_create_index; 2682 2683 2684 /* Create the rootpage for the index 2685 */ 2686 sqlite3BeginWriteOperation(pParse, 1, iDb); 2687 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 2688 2689 /* Gather the complete text of the CREATE INDEX statement into 2690 ** the zStmt variable 2691 */ 2692 if( pStart && pEnd ){ 2693 /* A named index with an explicit CREATE INDEX statement */ 2694 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 2695 onError==OE_None ? "" : " UNIQUE", 2696 pEnd->z - pName->z + 1, 2697 pName->z); 2698 }else{ 2699 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2700 /* zStmt = sqlite3MPrintf(""); */ 2701 zStmt = 0; 2702 } 2703 2704 /* Add an entry in sqlite_master for this index 2705 */ 2706 sqlite3NestedParse(pParse, 2707 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 2708 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2709 pIndex->zName, 2710 pTab->zName, 2711 iMem, 2712 zStmt 2713 ); 2714 sqlite3_free(zStmt); 2715 2716 /* Fill the index with data and reparse the schema. Code an OP_Expire 2717 ** to invalidate all pre-compiled statements. 2718 */ 2719 if( pTblName ){ 2720 sqlite3RefillIndex(pParse, pIndex, iMem); 2721 sqlite3ChangeCookie(pParse, iDb); 2722 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 2723 sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC); 2724 sqlite3VdbeAddOp1(v, OP_Expire, 0); 2725 } 2726 } 2727 2728 /* When adding an index to the list of indices for a table, make 2729 ** sure all indices labeled OE_Replace come after all those labeled 2730 ** OE_Ignore. This is necessary for the correct operation of UPDATE 2731 ** and INSERT. 2732 */ 2733 if( db->init.busy || pTblName==0 ){ 2734 if( onError!=OE_Replace || pTab->pIndex==0 2735 || pTab->pIndex->onError==OE_Replace){ 2736 pIndex->pNext = pTab->pIndex; 2737 pTab->pIndex = pIndex; 2738 }else{ 2739 Index *pOther = pTab->pIndex; 2740 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2741 pOther = pOther->pNext; 2742 } 2743 pIndex->pNext = pOther->pNext; 2744 pOther->pNext = pIndex; 2745 } 2746 pIndex = 0; 2747 } 2748 2749 /* Clean up before exiting */ 2750 exit_create_index: 2751 if( pIndex ){ 2752 freeIndex(pIndex); 2753 } 2754 sqlite3ExprListDelete(pList); 2755 sqlite3SrcListDelete(pTblName); 2756 sqlite3_free(zName); 2757 return; 2758 } 2759 2760 /* 2761 ** Generate code to make sure the file format number is at least minFormat. 2762 ** The generated code will increase the file format number if necessary. 2763 */ 2764 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ 2765 Vdbe *v; 2766 v = sqlite3GetVdbe(pParse); 2767 if( v ){ 2768 int r1 = sqlite3GetTempReg(pParse); 2769 int r2 = sqlite3GetTempReg(pParse); 2770 int j1; 2771 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1); 2772 sqlite3VdbeUsesBtree(v, iDb); 2773 sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); 2774 j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); 2775 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2); 2776 sqlite3VdbeJumpHere(v, j1); 2777 sqlite3ReleaseTempReg(pParse, r1); 2778 sqlite3ReleaseTempReg(pParse, r2); 2779 } 2780 } 2781 2782 /* 2783 ** Fill the Index.aiRowEst[] array with default information - information 2784 ** to be used when we have not run the ANALYZE command. 2785 ** 2786 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2787 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2788 ** number of rows in the table that match any particular value of the 2789 ** first column of the index. aiRowEst[2] is an estimate of the number 2790 ** of rows that match any particular combiniation of the first 2 columns 2791 ** of the index. And so forth. It must always be the case that 2792 * 2793 ** aiRowEst[N]<=aiRowEst[N-1] 2794 ** aiRowEst[N]>=1 2795 ** 2796 ** Apart from that, we have little to go on besides intuition as to 2797 ** how aiRowEst[] should be initialized. The numbers generated here 2798 ** are based on typical values found in actual indices. 2799 */ 2800 void sqlite3DefaultRowEst(Index *pIdx){ 2801 unsigned *a = pIdx->aiRowEst; 2802 int i; 2803 assert( a!=0 ); 2804 a[0] = 1000000; 2805 for(i=pIdx->nColumn; i>=5; i--){ 2806 a[i] = 5; 2807 } 2808 while( i>=1 ){ 2809 a[i] = 11 - i; 2810 i--; 2811 } 2812 if( pIdx->onError!=OE_None ){ 2813 a[pIdx->nColumn] = 1; 2814 } 2815 } 2816 2817 /* 2818 ** This routine will drop an existing named index. This routine 2819 ** implements the DROP INDEX statement. 2820 */ 2821 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2822 Index *pIndex; 2823 Vdbe *v; 2824 sqlite3 *db = pParse->db; 2825 int iDb; 2826 2827 if( pParse->nErr || db->mallocFailed ){ 2828 goto exit_drop_index; 2829 } 2830 assert( pName->nSrc==1 ); 2831 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2832 goto exit_drop_index; 2833 } 2834 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 2835 if( pIndex==0 ){ 2836 if( !ifExists ){ 2837 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 2838 } 2839 pParse->checkSchema = 1; 2840 goto exit_drop_index; 2841 } 2842 if( pIndex->autoIndex ){ 2843 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 2844 "or PRIMARY KEY constraint cannot be dropped", 0); 2845 goto exit_drop_index; 2846 } 2847 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2848 #ifndef SQLITE_OMIT_AUTHORIZATION 2849 { 2850 int code = SQLITE_DROP_INDEX; 2851 Table *pTab = pIndex->pTable; 2852 const char *zDb = db->aDb[iDb].zName; 2853 const char *zTab = SCHEMA_TABLE(iDb); 2854 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 2855 goto exit_drop_index; 2856 } 2857 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 2858 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 2859 goto exit_drop_index; 2860 } 2861 } 2862 #endif 2863 2864 /* Generate code to remove the index and from the master table */ 2865 v = sqlite3GetVdbe(pParse); 2866 if( v ){ 2867 sqlite3BeginWriteOperation(pParse, 1, iDb); 2868 sqlite3NestedParse(pParse, 2869 "DELETE FROM %Q.%s WHERE name=%Q", 2870 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2871 pIndex->zName 2872 ); 2873 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2874 sqlite3NestedParse(pParse, 2875 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", 2876 db->aDb[iDb].zName, pIndex->zName 2877 ); 2878 } 2879 sqlite3ChangeCookie(pParse, iDb); 2880 destroyRootPage(pParse, pIndex->tnum, iDb); 2881 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 2882 } 2883 2884 exit_drop_index: 2885 sqlite3SrcListDelete(pName); 2886 } 2887 2888 /* 2889 ** pArray is a pointer to an array of objects. Each object in the 2890 ** array is szEntry bytes in size. This routine allocates a new 2891 ** object on the end of the array. 2892 ** 2893 ** *pnEntry is the number of entries already in use. *pnAlloc is 2894 ** the previously allocated size of the array. initSize is the 2895 ** suggested initial array size allocation. 2896 ** 2897 ** The index of the new entry is returned in *pIdx. 2898 ** 2899 ** This routine returns a pointer to the array of objects. This 2900 ** might be the same as the pArray parameter or it might be a different 2901 ** pointer if the array was resized. 2902 */ 2903 void *sqlite3ArrayAllocate( 2904 sqlite3 *db, /* Connection to notify of malloc failures */ 2905 void *pArray, /* Array of objects. Might be reallocated */ 2906 int szEntry, /* Size of each object in the array */ 2907 int initSize, /* Suggested initial allocation, in elements */ 2908 int *pnEntry, /* Number of objects currently in use */ 2909 int *pnAlloc, /* Current size of the allocation, in elements */ 2910 int *pIdx /* Write the index of a new slot here */ 2911 ){ 2912 char *z; 2913 if( *pnEntry >= *pnAlloc ){ 2914 void *pNew; 2915 int newSize; 2916 newSize = (*pnAlloc)*2 + initSize; 2917 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); 2918 if( pNew==0 ){ 2919 *pIdx = -1; 2920 return pArray; 2921 } 2922 *pnAlloc = newSize; 2923 pArray = pNew; 2924 } 2925 z = (char*)pArray; 2926 memset(&z[*pnEntry * szEntry], 0, szEntry); 2927 *pIdx = *pnEntry; 2928 ++*pnEntry; 2929 return pArray; 2930 } 2931 2932 /* 2933 ** Append a new element to the given IdList. Create a new IdList if 2934 ** need be. 2935 ** 2936 ** A new IdList is returned, or NULL if malloc() fails. 2937 */ 2938 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 2939 int i; 2940 if( pList==0 ){ 2941 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 2942 if( pList==0 ) return 0; 2943 pList->nAlloc = 0; 2944 } 2945 pList->a = sqlite3ArrayAllocate( 2946 db, 2947 pList->a, 2948 sizeof(pList->a[0]), 2949 5, 2950 &pList->nId, 2951 &pList->nAlloc, 2952 &i 2953 ); 2954 if( i<0 ){ 2955 sqlite3IdListDelete(pList); 2956 return 0; 2957 } 2958 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 2959 return pList; 2960 } 2961 2962 /* 2963 ** Delete an IdList. 2964 */ 2965 void sqlite3IdListDelete(IdList *pList){ 2966 int i; 2967 if( pList==0 ) return; 2968 for(i=0; i<pList->nId; i++){ 2969 sqlite3_free(pList->a[i].zName); 2970 } 2971 sqlite3_free(pList->a); 2972 sqlite3_free(pList); 2973 } 2974 2975 /* 2976 ** Return the index in pList of the identifier named zId. Return -1 2977 ** if not found. 2978 */ 2979 int sqlite3IdListIndex(IdList *pList, const char *zName){ 2980 int i; 2981 if( pList==0 ) return -1; 2982 for(i=0; i<pList->nId; i++){ 2983 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 2984 } 2985 return -1; 2986 } 2987 2988 /* 2989 ** Append a new table name to the given SrcList. Create a new SrcList if 2990 ** need be. A new entry is created in the SrcList even if pToken is NULL. 2991 ** 2992 ** A new SrcList is returned, or NULL if malloc() fails. 2993 ** 2994 ** If pDatabase is not null, it means that the table has an optional 2995 ** database name prefix. Like this: "database.table". The pDatabase 2996 ** points to the table name and the pTable points to the database name. 2997 ** The SrcList.a[].zName field is filled with the table name which might 2998 ** come from pTable (if pDatabase is NULL) or from pDatabase. 2999 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3000 ** or with NULL if no database is specified. 3001 ** 3002 ** In other words, if call like this: 3003 ** 3004 ** sqlite3SrcListAppend(D,A,B,0); 3005 ** 3006 ** Then B is a table name and the database name is unspecified. If called 3007 ** like this: 3008 ** 3009 ** sqlite3SrcListAppend(D,A,B,C); 3010 ** 3011 ** Then C is the table name and B is the database name. 3012 */ 3013 SrcList *sqlite3SrcListAppend( 3014 sqlite3 *db, /* Connection to notify of malloc failures */ 3015 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3016 Token *pTable, /* Table to append */ 3017 Token *pDatabase /* Database of the table */ 3018 ){ 3019 struct SrcList_item *pItem; 3020 if( pList==0 ){ 3021 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3022 if( pList==0 ) return 0; 3023 pList->nAlloc = 1; 3024 } 3025 if( pList->nSrc>=pList->nAlloc ){ 3026 SrcList *pNew; 3027 pList->nAlloc *= 2; 3028 pNew = sqlite3DbRealloc(db, pList, 3029 sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); 3030 if( pNew==0 ){ 3031 sqlite3SrcListDelete(pList); 3032 return 0; 3033 } 3034 pList = pNew; 3035 } 3036 pItem = &pList->a[pList->nSrc]; 3037 memset(pItem, 0, sizeof(pList->a[0])); 3038 if( pDatabase && pDatabase->z==0 ){ 3039 pDatabase = 0; 3040 } 3041 if( pDatabase && pTable ){ 3042 Token *pTemp = pDatabase; 3043 pDatabase = pTable; 3044 pTable = pTemp; 3045 } 3046 pItem->zName = sqlite3NameFromToken(db, pTable); 3047 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3048 pItem->iCursor = -1; 3049 pItem->isPopulated = 0; 3050 pList->nSrc++; 3051 return pList; 3052 } 3053 3054 /* 3055 ** Assign cursors to all tables in a SrcList 3056 */ 3057 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3058 int i; 3059 struct SrcList_item *pItem; 3060 assert(pList || pParse->db->mallocFailed ); 3061 if( pList ){ 3062 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3063 if( pItem->iCursor>=0 ) break; 3064 pItem->iCursor = pParse->nTab++; 3065 if( pItem->pSelect ){ 3066 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3067 } 3068 } 3069 } 3070 } 3071 3072 /* 3073 ** Delete an entire SrcList including all its substructure. 3074 */ 3075 void sqlite3SrcListDelete(SrcList *pList){ 3076 int i; 3077 struct SrcList_item *pItem; 3078 if( pList==0 ) return; 3079 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3080 sqlite3_free(pItem->zDatabase); 3081 sqlite3_free(pItem->zName); 3082 sqlite3_free(pItem->zAlias); 3083 sqlite3DeleteTable(pItem->pTab); 3084 sqlite3SelectDelete(pItem->pSelect); 3085 sqlite3ExprDelete(pItem->pOn); 3086 sqlite3IdListDelete(pItem->pUsing); 3087 } 3088 sqlite3_free(pList); 3089 } 3090 3091 /* 3092 ** This routine is called by the parser to add a new term to the 3093 ** end of a growing FROM clause. The "p" parameter is the part of 3094 ** the FROM clause that has already been constructed. "p" is NULL 3095 ** if this is the first term of the FROM clause. pTable and pDatabase 3096 ** are the name of the table and database named in the FROM clause term. 3097 ** pDatabase is NULL if the database name qualifier is missing - the 3098 ** usual case. If the term has a alias, then pAlias points to the 3099 ** alias token. If the term is a subquery, then pSubquery is the 3100 ** SELECT statement that the subquery encodes. The pTable and 3101 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3102 ** parameters are the content of the ON and USING clauses. 3103 ** 3104 ** Return a new SrcList which encodes is the FROM with the new 3105 ** term added. 3106 */ 3107 SrcList *sqlite3SrcListAppendFromTerm( 3108 Parse *pParse, /* Parsing context */ 3109 SrcList *p, /* The left part of the FROM clause already seen */ 3110 Token *pTable, /* Name of the table to add to the FROM clause */ 3111 Token *pDatabase, /* Name of the database containing pTable */ 3112 Token *pAlias, /* The right-hand side of the AS subexpression */ 3113 Select *pSubquery, /* A subquery used in place of a table name */ 3114 Expr *pOn, /* The ON clause of a join */ 3115 IdList *pUsing /* The USING clause of a join */ 3116 ){ 3117 struct SrcList_item *pItem; 3118 sqlite3 *db = pParse->db; 3119 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3120 if( p==0 || p->nSrc==0 ){ 3121 sqlite3ExprDelete(pOn); 3122 sqlite3IdListDelete(pUsing); 3123 sqlite3SelectDelete(pSubquery); 3124 return p; 3125 } 3126 pItem = &p->a[p->nSrc-1]; 3127 if( pAlias && pAlias->n ){ 3128 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3129 } 3130 pItem->pSelect = pSubquery; 3131 pItem->pOn = pOn; 3132 pItem->pUsing = pUsing; 3133 return p; 3134 } 3135 3136 /* 3137 ** When building up a FROM clause in the parser, the join operator 3138 ** is initially attached to the left operand. But the code generator 3139 ** expects the join operator to be on the right operand. This routine 3140 ** Shifts all join operators from left to right for an entire FROM 3141 ** clause. 3142 ** 3143 ** Example: Suppose the join is like this: 3144 ** 3145 ** A natural cross join B 3146 ** 3147 ** The operator is "natural cross join". The A and B operands are stored 3148 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3149 ** operator with A. This routine shifts that operator over to B. 3150 */ 3151 void sqlite3SrcListShiftJoinType(SrcList *p){ 3152 if( p && p->a ){ 3153 int i; 3154 for(i=p->nSrc-1; i>0; i--){ 3155 p->a[i].jointype = p->a[i-1].jointype; 3156 } 3157 p->a[0].jointype = 0; 3158 } 3159 } 3160 3161 /* 3162 ** Begin a transaction 3163 */ 3164 void sqlite3BeginTransaction(Parse *pParse, int type){ 3165 sqlite3 *db; 3166 Vdbe *v; 3167 int i; 3168 3169 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3170 if( pParse->nErr || db->mallocFailed ) return; 3171 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; 3172 3173 v = sqlite3GetVdbe(pParse); 3174 if( !v ) return; 3175 if( type!=TK_DEFERRED ){ 3176 for(i=0; i<db->nDb; i++){ 3177 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3178 sqlite3VdbeUsesBtree(v, i); 3179 } 3180 } 3181 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3182 } 3183 3184 /* 3185 ** Commit a transaction 3186 */ 3187 void sqlite3CommitTransaction(Parse *pParse){ 3188 sqlite3 *db; 3189 Vdbe *v; 3190 3191 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3192 if( pParse->nErr || db->mallocFailed ) return; 3193 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; 3194 3195 v = sqlite3GetVdbe(pParse); 3196 if( v ){ 3197 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3198 } 3199 } 3200 3201 /* 3202 ** Rollback a transaction 3203 */ 3204 void sqlite3RollbackTransaction(Parse *pParse){ 3205 sqlite3 *db; 3206 Vdbe *v; 3207 3208 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3209 if( pParse->nErr || db->mallocFailed ) return; 3210 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; 3211 3212 v = sqlite3GetVdbe(pParse); 3213 if( v ){ 3214 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3215 } 3216 } 3217 3218 /* 3219 ** Make sure the TEMP database is open and available for use. Return 3220 ** the number of errors. Leave any error messages in the pParse structure. 3221 */ 3222 int sqlite3OpenTempDatabase(Parse *pParse){ 3223 sqlite3 *db = pParse->db; 3224 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3225 int rc; 3226 static const int flags = 3227 SQLITE_OPEN_READWRITE | 3228 SQLITE_OPEN_CREATE | 3229 SQLITE_OPEN_EXCLUSIVE | 3230 SQLITE_OPEN_DELETEONCLOSE | 3231 SQLITE_OPEN_TEMP_DB; 3232 3233 rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags, 3234 &db->aDb[1].pBt); 3235 if( rc!=SQLITE_OK ){ 3236 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3237 "file for storing temporary tables"); 3238 pParse->rc = rc; 3239 return 1; 3240 } 3241 assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit ); 3242 assert( db->aDb[1].pSchema ); 3243 sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt), 3244 db->dfltJournalMode); 3245 } 3246 return 0; 3247 } 3248 3249 /* 3250 ** Generate VDBE code that will verify the schema cookie and start 3251 ** a read-transaction for all named database files. 3252 ** 3253 ** It is important that all schema cookies be verified and all 3254 ** read transactions be started before anything else happens in 3255 ** the VDBE program. But this routine can be called after much other 3256 ** code has been generated. So here is what we do: 3257 ** 3258 ** The first time this routine is called, we code an OP_Goto that 3259 ** will jump to a subroutine at the end of the program. Then we 3260 ** record every database that needs its schema verified in the 3261 ** pParse->cookieMask field. Later, after all other code has been 3262 ** generated, the subroutine that does the cookie verifications and 3263 ** starts the transactions will be coded and the OP_Goto P2 value 3264 ** will be made to point to that subroutine. The generation of the 3265 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3266 ** 3267 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3268 ** schema on any databases. This can be used to position the OP_Goto 3269 ** early in the code, before we know if any database tables will be used. 3270 */ 3271 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3272 sqlite3 *db; 3273 Vdbe *v; 3274 int mask; 3275 3276 v = sqlite3GetVdbe(pParse); 3277 if( v==0 ) return; /* This only happens if there was a prior error */ 3278 db = pParse->db; 3279 if( pParse->cookieGoto==0 ){ 3280 pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; 3281 } 3282 if( iDb>=0 ){ 3283 assert( iDb<db->nDb ); 3284 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3285 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3286 mask = 1<<iDb; 3287 if( (pParse->cookieMask & mask)==0 ){ 3288 pParse->cookieMask |= mask; 3289 pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3290 if( !OMIT_TEMPDB && iDb==1 ){ 3291 sqlite3OpenTempDatabase(pParse); 3292 } 3293 } 3294 } 3295 } 3296 3297 /* 3298 ** Generate VDBE code that prepares for doing an operation that 3299 ** might change the database. 3300 ** 3301 ** This routine starts a new transaction if we are not already within 3302 ** a transaction. If we are already within a transaction, then a checkpoint 3303 ** is set if the setStatement parameter is true. A checkpoint should 3304 ** be set for operations that might fail (due to a constraint) part of 3305 ** the way through and which will need to undo some writes without having to 3306 ** rollback the whole transaction. For operations where all constraints 3307 ** can be checked before any changes are made to the database, it is never 3308 ** necessary to undo a write and the checkpoint should not be set. 3309 ** 3310 ** Only database iDb and the temp database are made writable by this call. 3311 ** If iDb==0, then the main and temp databases are made writable. If 3312 ** iDb==1 then only the temp database is made writable. If iDb>1 then the 3313 ** specified auxiliary database and the temp database are made writable. 3314 */ 3315 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3316 Vdbe *v = sqlite3GetVdbe(pParse); 3317 if( v==0 ) return; 3318 sqlite3CodeVerifySchema(pParse, iDb); 3319 pParse->writeMask |= 1<<iDb; 3320 if( setStatement && pParse->nested==0 ){ 3321 sqlite3VdbeAddOp1(v, OP_Statement, iDb); 3322 } 3323 if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){ 3324 sqlite3BeginWriteOperation(pParse, setStatement, 1); 3325 } 3326 } 3327 3328 /* 3329 ** Check to see if pIndex uses the collating sequence pColl. Return 3330 ** true if it does and false if it does not. 3331 */ 3332 #ifndef SQLITE_OMIT_REINDEX 3333 static int collationMatch(const char *zColl, Index *pIndex){ 3334 int i; 3335 for(i=0; i<pIndex->nColumn; i++){ 3336 const char *z = pIndex->azColl[i]; 3337 if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ 3338 return 1; 3339 } 3340 } 3341 return 0; 3342 } 3343 #endif 3344 3345 /* 3346 ** Recompute all indices of pTab that use the collating sequence pColl. 3347 ** If pColl==0 then recompute all indices of pTab. 3348 */ 3349 #ifndef SQLITE_OMIT_REINDEX 3350 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3351 Index *pIndex; /* An index associated with pTab */ 3352 3353 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3354 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3355 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3356 sqlite3BeginWriteOperation(pParse, 0, iDb); 3357 sqlite3RefillIndex(pParse, pIndex, -1); 3358 } 3359 } 3360 } 3361 #endif 3362 3363 /* 3364 ** Recompute all indices of all tables in all databases where the 3365 ** indices use the collating sequence pColl. If pColl==0 then recompute 3366 ** all indices everywhere. 3367 */ 3368 #ifndef SQLITE_OMIT_REINDEX 3369 static void reindexDatabases(Parse *pParse, char const *zColl){ 3370 Db *pDb; /* A single database */ 3371 int iDb; /* The database index number */ 3372 sqlite3 *db = pParse->db; /* The database connection */ 3373 HashElem *k; /* For looping over tables in pDb */ 3374 Table *pTab; /* A table in the database */ 3375 3376 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3377 assert( pDb!=0 ); 3378 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3379 pTab = (Table*)sqliteHashData(k); 3380 reindexTable(pParse, pTab, zColl); 3381 } 3382 } 3383 } 3384 #endif 3385 3386 /* 3387 ** Generate code for the REINDEX command. 3388 ** 3389 ** REINDEX -- 1 3390 ** REINDEX <collation> -- 2 3391 ** REINDEX ?<database>.?<tablename> -- 3 3392 ** REINDEX ?<database>.?<indexname> -- 4 3393 ** 3394 ** Form 1 causes all indices in all attached databases to be rebuilt. 3395 ** Form 2 rebuilds all indices in all databases that use the named 3396 ** collating function. Forms 3 and 4 rebuild the named index or all 3397 ** indices associated with the named table. 3398 */ 3399 #ifndef SQLITE_OMIT_REINDEX 3400 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3401 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3402 char *z; /* Name of a table or index */ 3403 const char *zDb; /* Name of the database */ 3404 Table *pTab; /* A table in the database */ 3405 Index *pIndex; /* An index associated with pTab */ 3406 int iDb; /* The database index number */ 3407 sqlite3 *db = pParse->db; /* The database connection */ 3408 Token *pObjName; /* Name of the table or index to be reindexed */ 3409 3410 /* Read the database schema. If an error occurs, leave an error message 3411 ** and code in pParse and return NULL. */ 3412 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3413 return; 3414 } 3415 3416 if( pName1==0 || pName1->z==0 ){ 3417 reindexDatabases(pParse, 0); 3418 return; 3419 }else if( pName2==0 || pName2->z==0 ){ 3420 char *zColl; 3421 assert( pName1->z ); 3422 zColl = sqlite3NameFromToken(pParse->db, pName1); 3423 if( !zColl ) return; 3424 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0); 3425 if( pColl ){ 3426 if( zColl ){ 3427 reindexDatabases(pParse, zColl); 3428 sqlite3_free(zColl); 3429 } 3430 return; 3431 } 3432 sqlite3_free(zColl); 3433 } 3434 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3435 if( iDb<0 ) return; 3436 z = sqlite3NameFromToken(db, pObjName); 3437 if( z==0 ) return; 3438 zDb = db->aDb[iDb].zName; 3439 pTab = sqlite3FindTable(db, z, zDb); 3440 if( pTab ){ 3441 reindexTable(pParse, pTab, 0); 3442 sqlite3_free(z); 3443 return; 3444 } 3445 pIndex = sqlite3FindIndex(db, z, zDb); 3446 sqlite3_free(z); 3447 if( pIndex ){ 3448 sqlite3BeginWriteOperation(pParse, 0, iDb); 3449 sqlite3RefillIndex(pParse, pIndex, -1); 3450 return; 3451 } 3452 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3453 } 3454 #endif 3455 3456 /* 3457 ** Return a dynamicly allocated KeyInfo structure that can be used 3458 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3459 ** 3460 ** If successful, a pointer to the new structure is returned. In this case 3461 ** the caller is responsible for calling sqlite3_free() on the returned 3462 ** pointer. If an error occurs (out of memory or missing collation 3463 ** sequence), NULL is returned and the state of pParse updated to reflect 3464 ** the error. 3465 */ 3466 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3467 int i; 3468 int nCol = pIdx->nColumn; 3469 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3470 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes); 3471 3472 if( pKey ){ 3473 pKey->db = pParse->db; 3474 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3475 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3476 for(i=0; i<nCol; i++){ 3477 char *zColl = pIdx->azColl[i]; 3478 assert( zColl ); 3479 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); 3480 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3481 } 3482 pKey->nField = nCol; 3483 } 3484 3485 if( pParse->nErr ){ 3486 sqlite3_free(pKey); 3487 pKey = 0; 3488 } 3489 return pKey; 3490 } 3491