1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 ** 25 ** $Id: build.c,v 1.412 2006/12/16 16:25:15 drh Exp $ 26 */ 27 #include "sqliteInt.h" 28 #include <ctype.h> 29 30 /* 31 ** This routine is called when a new SQL statement is beginning to 32 ** be parsed. Initialize the pParse structure as needed. 33 */ 34 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 35 pParse->explain = explainFlag; 36 pParse->nVar = 0; 37 } 38 39 #ifndef SQLITE_OMIT_SHARED_CACHE 40 /* 41 ** The TableLock structure is only used by the sqlite3TableLock() and 42 ** codeTableLocks() functions. 43 */ 44 struct TableLock { 45 int iDb; /* The database containing the table to be locked */ 46 int iTab; /* The root page of the table to be locked */ 47 u8 isWriteLock; /* True for write lock. False for a read lock */ 48 const char *zName; /* Name of the table */ 49 }; 50 51 /* 52 ** Record the fact that we want to lock a table at run-time. 53 ** 54 ** The table to be locked has root page iTab and is found in database iDb. 55 ** A read or a write lock can be taken depending on isWritelock. 56 ** 57 ** This routine just records the fact that the lock is desired. The 58 ** code to make the lock occur is generated by a later call to 59 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 60 */ 61 void sqlite3TableLock( 62 Parse *pParse, /* Parsing context */ 63 int iDb, /* Index of the database containing the table to lock */ 64 int iTab, /* Root page number of the table to be locked */ 65 u8 isWriteLock, /* True for a write lock */ 66 const char *zName /* Name of the table to be locked */ 67 ){ 68 int i; 69 int nBytes; 70 TableLock *p; 71 72 if( 0==sqlite3ThreadDataReadOnly()->useSharedData || iDb<0 ){ 73 return; 74 } 75 76 for(i=0; i<pParse->nTableLock; i++){ 77 p = &pParse->aTableLock[i]; 78 if( p->iDb==iDb && p->iTab==iTab ){ 79 p->isWriteLock = (p->isWriteLock || isWriteLock); 80 return; 81 } 82 } 83 84 nBytes = sizeof(TableLock) * (pParse->nTableLock+1); 85 sqliteReallocOrFree((void **)&pParse->aTableLock, nBytes); 86 if( pParse->aTableLock ){ 87 p = &pParse->aTableLock[pParse->nTableLock++]; 88 p->iDb = iDb; 89 p->iTab = iTab; 90 p->isWriteLock = isWriteLock; 91 p->zName = zName; 92 } 93 } 94 95 /* 96 ** Code an OP_TableLock instruction for each table locked by the 97 ** statement (configured by calls to sqlite3TableLock()). 98 */ 99 static void codeTableLocks(Parse *pParse){ 100 int i; 101 Vdbe *pVdbe; 102 assert( sqlite3ThreadDataReadOnly()->useSharedData || pParse->nTableLock==0 ); 103 104 if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ 105 return; 106 } 107 108 for(i=0; i<pParse->nTableLock; i++){ 109 TableLock *p = &pParse->aTableLock[i]; 110 int p1 = p->iDb; 111 if( p->isWriteLock ){ 112 p1 = -1*(p1+1); 113 } 114 sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC); 115 } 116 } 117 #else 118 #define codeTableLocks(x) 119 #endif 120 121 /* 122 ** This routine is called after a single SQL statement has been 123 ** parsed and a VDBE program to execute that statement has been 124 ** prepared. This routine puts the finishing touches on the 125 ** VDBE program and resets the pParse structure for the next 126 ** parse. 127 ** 128 ** Note that if an error occurred, it might be the case that 129 ** no VDBE code was generated. 130 */ 131 void sqlite3FinishCoding(Parse *pParse){ 132 sqlite3 *db; 133 Vdbe *v; 134 135 if( sqlite3MallocFailed() ) return; 136 if( pParse->nested ) return; 137 if( !pParse->pVdbe ){ 138 if( pParse->rc==SQLITE_OK && pParse->nErr ){ 139 pParse->rc = SQLITE_ERROR; 140 return; 141 } 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 db = pParse->db; 148 v = sqlite3GetVdbe(pParse); 149 if( v ){ 150 sqlite3VdbeAddOp(v, OP_Halt, 0, 0); 151 152 /* The cookie mask contains one bit for each database file open. 153 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 154 ** set for each database that is used. Generate code to start a 155 ** transaction on each used database and to verify the schema cookie 156 ** on each used database. 157 */ 158 if( pParse->cookieGoto>0 ){ 159 u32 mask; 160 int iDb; 161 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 162 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 163 if( (mask & pParse->cookieMask)==0 ) continue; 164 sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 165 sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); 166 } 167 #ifndef SQLITE_OMIT_VIRTUALTABLE 168 if( pParse->pVirtualLock ){ 169 char *vtab = (char *)pParse->pVirtualLock->pVtab; 170 sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB); 171 } 172 #endif 173 174 /* Once all the cookies have been verified and transactions opened, 175 ** obtain the required table-locks. This is a no-op unless the 176 ** shared-cache feature is enabled. 177 */ 178 codeTableLocks(pParse); 179 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto); 180 } 181 182 #ifndef SQLITE_OMIT_TRACE 183 /* Add a No-op that contains the complete text of the compiled SQL 184 ** statement as its P3 argument. This does not change the functionality 185 ** of the program. 186 ** 187 ** This is used to implement sqlite3_trace(). 188 */ 189 sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql); 190 #endif /* SQLITE_OMIT_TRACE */ 191 } 192 193 194 /* Get the VDBE program ready for execution 195 */ 196 if( v && pParse->nErr==0 && !sqlite3MallocFailed() ){ 197 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 198 sqlite3VdbeTrace(v, trace); 199 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, 200 pParse->nTab+3, pParse->explain); 201 pParse->rc = SQLITE_DONE; 202 pParse->colNamesSet = 0; 203 }else if( pParse->rc==SQLITE_OK ){ 204 pParse->rc = SQLITE_ERROR; 205 } 206 pParse->nTab = 0; 207 pParse->nMem = 0; 208 pParse->nSet = 0; 209 pParse->nVar = 0; 210 pParse->cookieMask = 0; 211 pParse->cookieGoto = 0; 212 } 213 214 /* 215 ** Run the parser and code generator recursively in order to generate 216 ** code for the SQL statement given onto the end of the pParse context 217 ** currently under construction. When the parser is run recursively 218 ** this way, the final OP_Halt is not appended and other initialization 219 ** and finalization steps are omitted because those are handling by the 220 ** outermost parser. 221 ** 222 ** Not everything is nestable. This facility is designed to permit 223 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 224 ** care if you decide to try to use this routine for some other purposes. 225 */ 226 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 227 va_list ap; 228 char *zSql; 229 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 230 char saveBuf[SAVE_SZ]; 231 232 if( pParse->nErr ) return; 233 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 234 va_start(ap, zFormat); 235 zSql = sqlite3VMPrintf(zFormat, ap); 236 va_end(ap); 237 if( zSql==0 ){ 238 return; /* A malloc must have failed */ 239 } 240 pParse->nested++; 241 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 242 memset(&pParse->nVar, 0, SAVE_SZ); 243 sqlite3RunParser(pParse, zSql, 0); 244 sqliteFree(zSql); 245 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 246 pParse->nested--; 247 } 248 249 /* 250 ** Locate the in-memory structure that describes a particular database 251 ** table given the name of that table and (optionally) the name of the 252 ** database containing the table. Return NULL if not found. 253 ** 254 ** If zDatabase is 0, all databases are searched for the table and the 255 ** first matching table is returned. (No checking for duplicate table 256 ** names is done.) The search order is TEMP first, then MAIN, then any 257 ** auxiliary databases added using the ATTACH command. 258 ** 259 ** See also sqlite3LocateTable(). 260 */ 261 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 262 Table *p = 0; 263 int i; 264 assert( zName!=0 ); 265 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 266 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 267 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 268 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1); 269 if( p ) break; 270 } 271 return p; 272 } 273 274 /* 275 ** Locate the in-memory structure that describes a particular database 276 ** table given the name of that table and (optionally) the name of the 277 ** database containing the table. Return NULL if not found. Also leave an 278 ** error message in pParse->zErrMsg. 279 ** 280 ** The difference between this routine and sqlite3FindTable() is that this 281 ** routine leaves an error message in pParse->zErrMsg where 282 ** sqlite3FindTable() does not. 283 */ 284 Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){ 285 Table *p; 286 287 /* Read the database schema. If an error occurs, leave an error message 288 ** and code in pParse and return NULL. */ 289 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 290 return 0; 291 } 292 293 p = sqlite3FindTable(pParse->db, zName, zDbase); 294 if( p==0 ){ 295 if( zDbase ){ 296 sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName); 297 }else{ 298 sqlite3ErrorMsg(pParse, "no such table: %s", zName); 299 } 300 pParse->checkSchema = 1; 301 } 302 return p; 303 } 304 305 /* 306 ** Locate the in-memory structure that describes 307 ** a particular index given the name of that index 308 ** and the name of the database that contains the index. 309 ** Return NULL if not found. 310 ** 311 ** If zDatabase is 0, all databases are searched for the 312 ** table and the first matching index is returned. (No checking 313 ** for duplicate index names is done.) The search order is 314 ** TEMP first, then MAIN, then any auxiliary databases added 315 ** using the ATTACH command. 316 */ 317 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 318 Index *p = 0; 319 int i; 320 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 321 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 322 Schema *pSchema = db->aDb[j].pSchema; 323 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 324 assert( pSchema || (j==1 && !db->aDb[1].pBt) ); 325 if( pSchema ){ 326 p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1); 327 } 328 if( p ) break; 329 } 330 return p; 331 } 332 333 /* 334 ** Reclaim the memory used by an index 335 */ 336 static void freeIndex(Index *p){ 337 sqliteFree(p->zColAff); 338 sqliteFree(p); 339 } 340 341 /* 342 ** Remove the given index from the index hash table, and free 343 ** its memory structures. 344 ** 345 ** The index is removed from the database hash tables but 346 ** it is not unlinked from the Table that it indexes. 347 ** Unlinking from the Table must be done by the calling function. 348 */ 349 static void sqliteDeleteIndex(Index *p){ 350 Index *pOld; 351 const char *zName = p->zName; 352 353 pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0); 354 assert( pOld==0 || pOld==p ); 355 freeIndex(p); 356 } 357 358 /* 359 ** For the index called zIdxName which is found in the database iDb, 360 ** unlike that index from its Table then remove the index from 361 ** the index hash table and free all memory structures associated 362 ** with the index. 363 */ 364 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 365 Index *pIndex; 366 int len; 367 Hash *pHash = &db->aDb[iDb].pSchema->idxHash; 368 369 len = strlen(zIdxName); 370 pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); 371 if( pIndex ){ 372 if( pIndex->pTable->pIndex==pIndex ){ 373 pIndex->pTable->pIndex = pIndex->pNext; 374 }else{ 375 Index *p; 376 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} 377 if( p && p->pNext==pIndex ){ 378 p->pNext = pIndex->pNext; 379 } 380 } 381 freeIndex(pIndex); 382 } 383 db->flags |= SQLITE_InternChanges; 384 } 385 386 /* 387 ** Erase all schema information from the in-memory hash tables of 388 ** a single database. This routine is called to reclaim memory 389 ** before the database closes. It is also called during a rollback 390 ** if there were schema changes during the transaction or if a 391 ** schema-cookie mismatch occurs. 392 ** 393 ** If iDb<=0 then reset the internal schema tables for all database 394 ** files. If iDb>=2 then reset the internal schema for only the 395 ** single file indicated. 396 */ 397 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 398 int i, j; 399 400 assert( iDb>=0 && iDb<db->nDb ); 401 for(i=iDb; i<db->nDb; i++){ 402 Db *pDb = &db->aDb[i]; 403 if( pDb->pSchema ){ 404 sqlite3SchemaFree(pDb->pSchema); 405 } 406 if( iDb>0 ) return; 407 } 408 assert( iDb==0 ); 409 db->flags &= ~SQLITE_InternChanges; 410 411 /* If one or more of the auxiliary database files has been closed, 412 ** then remove them from the auxiliary database list. We take the 413 ** opportunity to do this here since we have just deleted all of the 414 ** schema hash tables and therefore do not have to make any changes 415 ** to any of those tables. 416 */ 417 for(i=0; i<db->nDb; i++){ 418 struct Db *pDb = &db->aDb[i]; 419 if( pDb->pBt==0 ){ 420 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); 421 pDb->pAux = 0; 422 } 423 } 424 for(i=j=2; i<db->nDb; i++){ 425 struct Db *pDb = &db->aDb[i]; 426 if( pDb->pBt==0 ){ 427 sqliteFree(pDb->zName); 428 pDb->zName = 0; 429 continue; 430 } 431 if( j<i ){ 432 db->aDb[j] = db->aDb[i]; 433 } 434 j++; 435 } 436 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 437 db->nDb = j; 438 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 439 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 440 sqliteFree(db->aDb); 441 db->aDb = db->aDbStatic; 442 } 443 } 444 445 /* 446 ** This routine is called whenever a rollback occurs. If there were 447 ** schema changes during the transaction, then we have to reset the 448 ** internal hash tables and reload them from disk. 449 */ 450 void sqlite3RollbackInternalChanges(sqlite3 *db){ 451 if( db->flags & SQLITE_InternChanges ){ 452 sqlite3ResetInternalSchema(db, 0); 453 } 454 } 455 456 /* 457 ** This routine is called when a commit occurs. 458 */ 459 void sqlite3CommitInternalChanges(sqlite3 *db){ 460 db->flags &= ~SQLITE_InternChanges; 461 } 462 463 /* 464 ** Clear the column names from a table or view. 465 */ 466 static void sqliteResetColumnNames(Table *pTable){ 467 int i; 468 Column *pCol; 469 assert( pTable!=0 ); 470 if( (pCol = pTable->aCol)!=0 ){ 471 for(i=0; i<pTable->nCol; i++, pCol++){ 472 sqliteFree(pCol->zName); 473 sqlite3ExprDelete(pCol->pDflt); 474 sqliteFree(pCol->zType); 475 sqliteFree(pCol->zColl); 476 } 477 sqliteFree(pTable->aCol); 478 } 479 pTable->aCol = 0; 480 pTable->nCol = 0; 481 } 482 483 /* 484 ** Remove the memory data structures associated with the given 485 ** Table. No changes are made to disk by this routine. 486 ** 487 ** This routine just deletes the data structure. It does not unlink 488 ** the table data structure from the hash table. Nor does it remove 489 ** foreign keys from the sqlite.aFKey hash table. But it does destroy 490 ** memory structures of the indices and foreign keys associated with 491 ** the table. 492 ** 493 ** Indices associated with the table are unlinked from the "db" 494 ** data structure if db!=NULL. If db==NULL, indices attached to 495 ** the table are deleted, but it is assumed they have already been 496 ** unlinked. 497 */ 498 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 499 Index *pIndex, *pNext; 500 FKey *pFKey, *pNextFKey; 501 502 db = 0; 503 504 if( pTable==0 ) return; 505 506 /* Do not delete the table until the reference count reaches zero. */ 507 pTable->nRef--; 508 if( pTable->nRef>0 ){ 509 return; 510 } 511 assert( pTable->nRef==0 ); 512 513 /* Delete all indices associated with this table 514 */ 515 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 516 pNext = pIndex->pNext; 517 assert( pIndex->pSchema==pTable->pSchema ); 518 sqliteDeleteIndex(pIndex); 519 } 520 521 #ifndef SQLITE_OMIT_FOREIGN_KEY 522 /* Delete all foreign keys associated with this table. The keys 523 ** should have already been unlinked from the db->aFKey hash table 524 */ 525 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ 526 pNextFKey = pFKey->pNextFrom; 527 assert( sqlite3HashFind(&pTable->pSchema->aFKey, 528 pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); 529 sqliteFree(pFKey); 530 } 531 #endif 532 533 /* Delete the Table structure itself. 534 */ 535 sqliteResetColumnNames(pTable); 536 sqliteFree(pTable->zName); 537 sqliteFree(pTable->zColAff); 538 sqlite3SelectDelete(pTable->pSelect); 539 #ifndef SQLITE_OMIT_CHECK 540 sqlite3ExprDelete(pTable->pCheck); 541 #endif 542 sqlite3VtabClear(pTable); 543 sqliteFree(pTable); 544 } 545 546 /* 547 ** Unlink the given table from the hash tables and the delete the 548 ** table structure with all its indices and foreign keys. 549 */ 550 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 551 Table *p; 552 FKey *pF1, *pF2; 553 Db *pDb; 554 555 assert( db!=0 ); 556 assert( iDb>=0 && iDb<db->nDb ); 557 assert( zTabName && zTabName[0] ); 558 pDb = &db->aDb[iDb]; 559 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0); 560 if( p ){ 561 #ifndef SQLITE_OMIT_FOREIGN_KEY 562 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ 563 int nTo = strlen(pF1->zTo) + 1; 564 pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); 565 if( pF2==pF1 ){ 566 sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); 567 }else{ 568 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } 569 if( pF2 ){ 570 pF2->pNextTo = pF1->pNextTo; 571 } 572 } 573 } 574 #endif 575 sqlite3DeleteTable(db, p); 576 } 577 db->flags |= SQLITE_InternChanges; 578 } 579 580 /* 581 ** Given a token, return a string that consists of the text of that 582 ** token with any quotations removed. Space to hold the returned string 583 ** is obtained from sqliteMalloc() and must be freed by the calling 584 ** function. 585 ** 586 ** Tokens are often just pointers into the original SQL text and so 587 ** are not \000 terminated and are not persistent. The returned string 588 ** is \000 terminated and is persistent. 589 */ 590 char *sqlite3NameFromToken(Token *pName){ 591 char *zName; 592 if( pName ){ 593 zName = sqliteStrNDup((char*)pName->z, pName->n); 594 sqlite3Dequote(zName); 595 }else{ 596 zName = 0; 597 } 598 return zName; 599 } 600 601 /* 602 ** Open the sqlite_master table stored in database number iDb for 603 ** writing. The table is opened using cursor 0. 604 */ 605 void sqlite3OpenMasterTable(Parse *p, int iDb){ 606 Vdbe *v = sqlite3GetVdbe(p); 607 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 608 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 609 sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT); 610 sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */ 611 } 612 613 /* 614 ** The token *pName contains the name of a database (either "main" or 615 ** "temp" or the name of an attached db). This routine returns the 616 ** index of the named database in db->aDb[], or -1 if the named db 617 ** does not exist. 618 */ 619 int sqlite3FindDb(sqlite3 *db, Token *pName){ 620 int i = -1; /* Database number */ 621 int n; /* Number of characters in the name */ 622 Db *pDb; /* A database whose name space is being searched */ 623 char *zName; /* Name we are searching for */ 624 625 zName = sqlite3NameFromToken(pName); 626 if( zName ){ 627 n = strlen(zName); 628 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 629 if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 630 0==sqlite3StrICmp(pDb->zName, zName) ){ 631 break; 632 } 633 } 634 sqliteFree(zName); 635 } 636 return i; 637 } 638 639 /* The table or view or trigger name is passed to this routine via tokens 640 ** pName1 and pName2. If the table name was fully qualified, for example: 641 ** 642 ** CREATE TABLE xxx.yyy (...); 643 ** 644 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 645 ** the table name is not fully qualified, i.e.: 646 ** 647 ** CREATE TABLE yyy(...); 648 ** 649 ** Then pName1 is set to "yyy" and pName2 is "". 650 ** 651 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 652 ** pName2) that stores the unqualified table name. The index of the 653 ** database "xxx" is returned. 654 */ 655 int sqlite3TwoPartName( 656 Parse *pParse, /* Parsing and code generating context */ 657 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 658 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 659 Token **pUnqual /* Write the unqualified object name here */ 660 ){ 661 int iDb; /* Database holding the object */ 662 sqlite3 *db = pParse->db; 663 664 if( pName2 && pName2->n>0 ){ 665 assert( !db->init.busy ); 666 *pUnqual = pName2; 667 iDb = sqlite3FindDb(db, pName1); 668 if( iDb<0 ){ 669 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 670 pParse->nErr++; 671 return -1; 672 } 673 }else{ 674 assert( db->init.iDb==0 || db->init.busy ); 675 iDb = db->init.iDb; 676 *pUnqual = pName1; 677 } 678 return iDb; 679 } 680 681 /* 682 ** This routine is used to check if the UTF-8 string zName is a legal 683 ** unqualified name for a new schema object (table, index, view or 684 ** trigger). All names are legal except those that begin with the string 685 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 686 ** is reserved for internal use. 687 */ 688 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 689 if( !pParse->db->init.busy && pParse->nested==0 690 && (pParse->db->flags & SQLITE_WriteSchema)==0 691 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 692 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 693 return SQLITE_ERROR; 694 } 695 return SQLITE_OK; 696 } 697 698 /* 699 ** Begin constructing a new table representation in memory. This is 700 ** the first of several action routines that get called in response 701 ** to a CREATE TABLE statement. In particular, this routine is called 702 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 703 ** flag is true if the table should be stored in the auxiliary database 704 ** file instead of in the main database file. This is normally the case 705 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 706 ** CREATE and TABLE. 707 ** 708 ** The new table record is initialized and put in pParse->pNewTable. 709 ** As more of the CREATE TABLE statement is parsed, additional action 710 ** routines will be called to add more information to this record. 711 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 712 ** is called to complete the construction of the new table record. 713 */ 714 void sqlite3StartTable( 715 Parse *pParse, /* Parser context */ 716 Token *pName1, /* First part of the name of the table or view */ 717 Token *pName2, /* Second part of the name of the table or view */ 718 int isTemp, /* True if this is a TEMP table */ 719 int isView, /* True if this is a VIEW */ 720 int isVirtual, /* True if this is a VIRTUAL table */ 721 int noErr /* Do nothing if table already exists */ 722 ){ 723 Table *pTable; 724 char *zName = 0; /* The name of the new table */ 725 sqlite3 *db = pParse->db; 726 Vdbe *v; 727 int iDb; /* Database number to create the table in */ 728 Token *pName; /* Unqualified name of the table to create */ 729 730 /* The table or view name to create is passed to this routine via tokens 731 ** pName1 and pName2. If the table name was fully qualified, for example: 732 ** 733 ** CREATE TABLE xxx.yyy (...); 734 ** 735 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 736 ** the table name is not fully qualified, i.e.: 737 ** 738 ** CREATE TABLE yyy(...); 739 ** 740 ** Then pName1 is set to "yyy" and pName2 is "". 741 ** 742 ** The call below sets the pName pointer to point at the token (pName1 or 743 ** pName2) that stores the unqualified table name. The variable iDb is 744 ** set to the index of the database that the table or view is to be 745 ** created in. 746 */ 747 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 748 if( iDb<0 ) return; 749 if( !OMIT_TEMPDB && isTemp && iDb>1 ){ 750 /* If creating a temp table, the name may not be qualified */ 751 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 752 return; 753 } 754 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 755 756 pParse->sNameToken = *pName; 757 zName = sqlite3NameFromToken(pName); 758 if( zName==0 ) return; 759 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 760 goto begin_table_error; 761 } 762 if( db->init.iDb==1 ) isTemp = 1; 763 #ifndef SQLITE_OMIT_AUTHORIZATION 764 assert( (isTemp & 1)==isTemp ); 765 { 766 int code; 767 char *zDb = db->aDb[iDb].zName; 768 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 769 goto begin_table_error; 770 } 771 if( isView ){ 772 if( !OMIT_TEMPDB && isTemp ){ 773 code = SQLITE_CREATE_TEMP_VIEW; 774 }else{ 775 code = SQLITE_CREATE_VIEW; 776 } 777 }else{ 778 if( !OMIT_TEMPDB && isTemp ){ 779 code = SQLITE_CREATE_TEMP_TABLE; 780 }else{ 781 code = SQLITE_CREATE_TABLE; 782 } 783 } 784 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 785 goto begin_table_error; 786 } 787 } 788 #endif 789 790 /* Make sure the new table name does not collide with an existing 791 ** index or table name in the same database. Issue an error message if 792 ** it does. The exception is if the statement being parsed was passed 793 ** to an sqlite3_declare_vtab() call. In that case only the column names 794 ** and types will be used, so there is no need to test for namespace 795 ** collisions. 796 */ 797 if( !IN_DECLARE_VTAB ){ 798 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 799 goto begin_table_error; 800 } 801 pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); 802 if( pTable ){ 803 if( !noErr ){ 804 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 805 } 806 goto begin_table_error; 807 } 808 if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ 809 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 810 goto begin_table_error; 811 } 812 } 813 814 pTable = sqliteMalloc( sizeof(Table) ); 815 if( pTable==0 ){ 816 pParse->rc = SQLITE_NOMEM; 817 pParse->nErr++; 818 goto begin_table_error; 819 } 820 pTable->zName = zName; 821 pTable->iPKey = -1; 822 pTable->pSchema = db->aDb[iDb].pSchema; 823 pTable->nRef = 1; 824 if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable); 825 pParse->pNewTable = pTable; 826 827 /* If this is the magic sqlite_sequence table used by autoincrement, 828 ** then record a pointer to this table in the main database structure 829 ** so that INSERT can find the table easily. 830 */ 831 #ifndef SQLITE_OMIT_AUTOINCREMENT 832 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 833 pTable->pSchema->pSeqTab = pTable; 834 } 835 #endif 836 837 /* Begin generating the code that will insert the table record into 838 ** the SQLITE_MASTER table. Note in particular that we must go ahead 839 ** and allocate the record number for the table entry now. Before any 840 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 841 ** indices to be created and the table record must come before the 842 ** indices. Hence, the record number for the table must be allocated 843 ** now. 844 */ 845 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 846 int lbl; 847 int fileFormat; 848 sqlite3BeginWriteOperation(pParse, 0, iDb); 849 850 #ifndef SQLITE_OMIT_VIRTUALTABLE 851 if( isVirtual ){ 852 sqlite3VdbeAddOp(v, OP_VBegin, 0, 0); 853 } 854 #endif 855 856 /* If the file format and encoding in the database have not been set, 857 ** set them now. 858 */ 859 sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); /* file_format */ 860 lbl = sqlite3VdbeMakeLabel(v); 861 sqlite3VdbeAddOp(v, OP_If, 0, lbl); 862 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 863 1 : SQLITE_MAX_FILE_FORMAT; 864 sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0); 865 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); 866 sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0); 867 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4); 868 sqlite3VdbeResolveLabel(v, lbl); 869 870 /* This just creates a place-holder record in the sqlite_master table. 871 ** The record created does not contain anything yet. It will be replaced 872 ** by the real entry in code generated at sqlite3EndTable(). 873 ** 874 ** The rowid for the new entry is left on the top of the stack. 875 ** The rowid value is needed by the code that sqlite3EndTable will 876 ** generate. 877 */ 878 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 879 if( isView || isVirtual ){ 880 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 881 }else 882 #endif 883 { 884 sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0); 885 } 886 sqlite3OpenMasterTable(pParse, iDb); 887 sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0); 888 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 889 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 890 sqlite3VdbeAddOp(v, OP_Insert, 0, 0); 891 sqlite3VdbeAddOp(v, OP_Close, 0, 0); 892 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 893 } 894 895 /* Normal (non-error) return. */ 896 return; 897 898 /* If an error occurs, we jump here */ 899 begin_table_error: 900 sqliteFree(zName); 901 return; 902 } 903 904 /* 905 ** This macro is used to compare two strings in a case-insensitive manner. 906 ** It is slightly faster than calling sqlite3StrICmp() directly, but 907 ** produces larger code. 908 ** 909 ** WARNING: This macro is not compatible with the strcmp() family. It 910 ** returns true if the two strings are equal, otherwise false. 911 */ 912 #define STRICMP(x, y) (\ 913 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 914 sqlite3UpperToLower[*(unsigned char *)(y)] \ 915 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 916 917 /* 918 ** Add a new column to the table currently being constructed. 919 ** 920 ** The parser calls this routine once for each column declaration 921 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 922 ** first to get things going. Then this routine is called for each 923 ** column. 924 */ 925 void sqlite3AddColumn(Parse *pParse, Token *pName){ 926 Table *p; 927 int i; 928 char *z; 929 Column *pCol; 930 if( (p = pParse->pNewTable)==0 ) return; 931 z = sqlite3NameFromToken(pName); 932 if( z==0 ) return; 933 for(i=0; i<p->nCol; i++){ 934 if( STRICMP(z, p->aCol[i].zName) ){ 935 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 936 sqliteFree(z); 937 return; 938 } 939 } 940 if( (p->nCol & 0x7)==0 ){ 941 Column *aNew; 942 aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0])); 943 if( aNew==0 ){ 944 sqliteFree(z); 945 return; 946 } 947 p->aCol = aNew; 948 } 949 pCol = &p->aCol[p->nCol]; 950 memset(pCol, 0, sizeof(p->aCol[0])); 951 pCol->zName = z; 952 953 /* If there is no type specified, columns have the default affinity 954 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 955 ** be called next to set pCol->affinity correctly. 956 */ 957 pCol->affinity = SQLITE_AFF_NONE; 958 p->nCol++; 959 } 960 961 /* 962 ** This routine is called by the parser while in the middle of 963 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 964 ** been seen on a column. This routine sets the notNull flag on 965 ** the column currently under construction. 966 */ 967 void sqlite3AddNotNull(Parse *pParse, int onError){ 968 Table *p; 969 int i; 970 if( (p = pParse->pNewTable)==0 ) return; 971 i = p->nCol-1; 972 if( i>=0 ) p->aCol[i].notNull = onError; 973 } 974 975 /* 976 ** Scan the column type name zType (length nType) and return the 977 ** associated affinity type. 978 ** 979 ** This routine does a case-independent search of zType for the 980 ** substrings in the following table. If one of the substrings is 981 ** found, the corresponding affinity is returned. If zType contains 982 ** more than one of the substrings, entries toward the top of 983 ** the table take priority. For example, if zType is 'BLOBINT', 984 ** SQLITE_AFF_INTEGER is returned. 985 ** 986 ** Substring | Affinity 987 ** -------------------------------- 988 ** 'INT' | SQLITE_AFF_INTEGER 989 ** 'CHAR' | SQLITE_AFF_TEXT 990 ** 'CLOB' | SQLITE_AFF_TEXT 991 ** 'TEXT' | SQLITE_AFF_TEXT 992 ** 'BLOB' | SQLITE_AFF_NONE 993 ** 'REAL' | SQLITE_AFF_REAL 994 ** 'FLOA' | SQLITE_AFF_REAL 995 ** 'DOUB' | SQLITE_AFF_REAL 996 ** 997 ** If none of the substrings in the above table are found, 998 ** SQLITE_AFF_NUMERIC is returned. 999 */ 1000 char sqlite3AffinityType(const Token *pType){ 1001 u32 h = 0; 1002 char aff = SQLITE_AFF_NUMERIC; 1003 const unsigned char *zIn = pType->z; 1004 const unsigned char *zEnd = &pType->z[pType->n]; 1005 1006 while( zIn!=zEnd ){ 1007 h = (h<<8) + sqlite3UpperToLower[*zIn]; 1008 zIn++; 1009 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1010 aff = SQLITE_AFF_TEXT; 1011 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1012 aff = SQLITE_AFF_TEXT; 1013 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1014 aff = SQLITE_AFF_TEXT; 1015 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1016 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1017 aff = SQLITE_AFF_NONE; 1018 #ifndef SQLITE_OMIT_FLOATING_POINT 1019 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1020 && aff==SQLITE_AFF_NUMERIC ){ 1021 aff = SQLITE_AFF_REAL; 1022 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1023 && aff==SQLITE_AFF_NUMERIC ){ 1024 aff = SQLITE_AFF_REAL; 1025 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1026 && aff==SQLITE_AFF_NUMERIC ){ 1027 aff = SQLITE_AFF_REAL; 1028 #endif 1029 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1030 aff = SQLITE_AFF_INTEGER; 1031 break; 1032 } 1033 } 1034 1035 return aff; 1036 } 1037 1038 /* 1039 ** This routine is called by the parser while in the middle of 1040 ** parsing a CREATE TABLE statement. The pFirst token is the first 1041 ** token in the sequence of tokens that describe the type of the 1042 ** column currently under construction. pLast is the last token 1043 ** in the sequence. Use this information to construct a string 1044 ** that contains the typename of the column and store that string 1045 ** in zType. 1046 */ 1047 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1048 Table *p; 1049 int i; 1050 Column *pCol; 1051 1052 if( (p = pParse->pNewTable)==0 ) return; 1053 i = p->nCol-1; 1054 if( i<0 ) return; 1055 pCol = &p->aCol[i]; 1056 sqliteFree(pCol->zType); 1057 pCol->zType = sqlite3NameFromToken(pType); 1058 pCol->affinity = sqlite3AffinityType(pType); 1059 } 1060 1061 /* 1062 ** The expression is the default value for the most recently added column 1063 ** of the table currently under construction. 1064 ** 1065 ** Default value expressions must be constant. Raise an exception if this 1066 ** is not the case. 1067 ** 1068 ** This routine is called by the parser while in the middle of 1069 ** parsing a CREATE TABLE statement. 1070 */ 1071 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ 1072 Table *p; 1073 Column *pCol; 1074 if( (p = pParse->pNewTable)!=0 ){ 1075 pCol = &(p->aCol[p->nCol-1]); 1076 if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ 1077 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1078 pCol->zName); 1079 }else{ 1080 Expr *pCopy; 1081 sqlite3ExprDelete(pCol->pDflt); 1082 pCol->pDflt = pCopy = sqlite3ExprDup(pExpr); 1083 if( pCopy ){ 1084 sqlite3TokenCopy(&pCopy->span, &pExpr->span); 1085 } 1086 } 1087 } 1088 sqlite3ExprDelete(pExpr); 1089 } 1090 1091 /* 1092 ** Designate the PRIMARY KEY for the table. pList is a list of names 1093 ** of columns that form the primary key. If pList is NULL, then the 1094 ** most recently added column of the table is the primary key. 1095 ** 1096 ** A table can have at most one primary key. If the table already has 1097 ** a primary key (and this is the second primary key) then create an 1098 ** error. 1099 ** 1100 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1101 ** then we will try to use that column as the rowid. Set the Table.iPKey 1102 ** field of the table under construction to be the index of the 1103 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1104 ** no INTEGER PRIMARY KEY. 1105 ** 1106 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1107 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1108 */ 1109 void sqlite3AddPrimaryKey( 1110 Parse *pParse, /* Parsing context */ 1111 ExprList *pList, /* List of field names to be indexed */ 1112 int onError, /* What to do with a uniqueness conflict */ 1113 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1114 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1115 ){ 1116 Table *pTab = pParse->pNewTable; 1117 char *zType = 0; 1118 int iCol = -1, i; 1119 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1120 if( pTab->hasPrimKey ){ 1121 sqlite3ErrorMsg(pParse, 1122 "table \"%s\" has more than one primary key", pTab->zName); 1123 goto primary_key_exit; 1124 } 1125 pTab->hasPrimKey = 1; 1126 if( pList==0 ){ 1127 iCol = pTab->nCol - 1; 1128 pTab->aCol[iCol].isPrimKey = 1; 1129 }else{ 1130 for(i=0; i<pList->nExpr; i++){ 1131 for(iCol=0; iCol<pTab->nCol; iCol++){ 1132 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1133 break; 1134 } 1135 } 1136 if( iCol<pTab->nCol ){ 1137 pTab->aCol[iCol].isPrimKey = 1; 1138 } 1139 } 1140 if( pList->nExpr>1 ) iCol = -1; 1141 } 1142 if( iCol>=0 && iCol<pTab->nCol ){ 1143 zType = pTab->aCol[iCol].zType; 1144 } 1145 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1146 && sortOrder==SQLITE_SO_ASC ){ 1147 pTab->iPKey = iCol; 1148 pTab->keyConf = onError; 1149 pTab->autoInc = autoInc; 1150 }else if( autoInc ){ 1151 #ifndef SQLITE_OMIT_AUTOINCREMENT 1152 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1153 "INTEGER PRIMARY KEY"); 1154 #endif 1155 }else{ 1156 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1157 pList = 0; 1158 } 1159 1160 primary_key_exit: 1161 sqlite3ExprListDelete(pList); 1162 return; 1163 } 1164 1165 /* 1166 ** Add a new CHECK constraint to the table currently under construction. 1167 */ 1168 void sqlite3AddCheckConstraint( 1169 Parse *pParse, /* Parsing context */ 1170 Expr *pCheckExpr /* The check expression */ 1171 ){ 1172 #ifndef SQLITE_OMIT_CHECK 1173 Table *pTab = pParse->pNewTable; 1174 if( pTab && !IN_DECLARE_VTAB ){ 1175 /* The CHECK expression must be duplicated so that tokens refer 1176 ** to malloced space and not the (ephemeral) text of the CREATE TABLE 1177 ** statement */ 1178 pTab->pCheck = sqlite3ExprAnd(pTab->pCheck, sqlite3ExprDup(pCheckExpr)); 1179 } 1180 #endif 1181 sqlite3ExprDelete(pCheckExpr); 1182 } 1183 1184 /* 1185 ** Set the collation function of the most recently parsed table column 1186 ** to the CollSeq given. 1187 */ 1188 void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){ 1189 Table *p; 1190 int i; 1191 1192 if( (p = pParse->pNewTable)==0 ) return; 1193 i = p->nCol-1; 1194 1195 if( sqlite3LocateCollSeq(pParse, zType, nType) ){ 1196 Index *pIdx; 1197 p->aCol[i].zColl = sqliteStrNDup(zType, nType); 1198 1199 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1200 ** then an index may have been created on this column before the 1201 ** collation type was added. Correct this if it is the case. 1202 */ 1203 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1204 assert( pIdx->nColumn==1 ); 1205 if( pIdx->aiColumn[0]==i ){ 1206 pIdx->azColl[0] = p->aCol[i].zColl; 1207 } 1208 } 1209 } 1210 } 1211 1212 /* 1213 ** This function returns the collation sequence for database native text 1214 ** encoding identified by the string zName, length nName. 1215 ** 1216 ** If the requested collation sequence is not available, or not available 1217 ** in the database native encoding, the collation factory is invoked to 1218 ** request it. If the collation factory does not supply such a sequence, 1219 ** and the sequence is available in another text encoding, then that is 1220 ** returned instead. 1221 ** 1222 ** If no versions of the requested collations sequence are available, or 1223 ** another error occurs, NULL is returned and an error message written into 1224 ** pParse. 1225 */ 1226 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ 1227 sqlite3 *db = pParse->db; 1228 u8 enc = ENC(db); 1229 u8 initbusy = db->init.busy; 1230 CollSeq *pColl; 1231 1232 pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); 1233 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1234 pColl = sqlite3GetCollSeq(db, pColl, zName, nName); 1235 if( !pColl ){ 1236 if( nName<0 ){ 1237 nName = strlen(zName); 1238 } 1239 sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); 1240 pColl = 0; 1241 } 1242 } 1243 1244 return pColl; 1245 } 1246 1247 1248 /* 1249 ** Generate code that will increment the schema cookie. 1250 ** 1251 ** The schema cookie is used to determine when the schema for the 1252 ** database changes. After each schema change, the cookie value 1253 ** changes. When a process first reads the schema it records the 1254 ** cookie. Thereafter, whenever it goes to access the database, 1255 ** it checks the cookie to make sure the schema has not changed 1256 ** since it was last read. 1257 ** 1258 ** This plan is not completely bullet-proof. It is possible for 1259 ** the schema to change multiple times and for the cookie to be 1260 ** set back to prior value. But schema changes are infrequent 1261 ** and the probability of hitting the same cookie value is only 1262 ** 1 chance in 2^32. So we're safe enough. 1263 */ 1264 void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){ 1265 sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0); 1266 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0); 1267 } 1268 1269 /* 1270 ** Measure the number of characters needed to output the given 1271 ** identifier. The number returned includes any quotes used 1272 ** but does not include the null terminator. 1273 ** 1274 ** The estimate is conservative. It might be larger that what is 1275 ** really needed. 1276 */ 1277 static int identLength(const char *z){ 1278 int n; 1279 for(n=0; *z; n++, z++){ 1280 if( *z=='"' ){ n++; } 1281 } 1282 return n + 2; 1283 } 1284 1285 /* 1286 ** Write an identifier onto the end of the given string. Add 1287 ** quote characters as needed. 1288 */ 1289 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1290 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1291 int i, j, needQuote; 1292 i = *pIdx; 1293 for(j=0; zIdent[j]; j++){ 1294 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1295 } 1296 needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) 1297 || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1298 if( needQuote ) z[i++] = '"'; 1299 for(j=0; zIdent[j]; j++){ 1300 z[i++] = zIdent[j]; 1301 if( zIdent[j]=='"' ) z[i++] = '"'; 1302 } 1303 if( needQuote ) z[i++] = '"'; 1304 z[i] = 0; 1305 *pIdx = i; 1306 } 1307 1308 /* 1309 ** Generate a CREATE TABLE statement appropriate for the given 1310 ** table. Memory to hold the text of the statement is obtained 1311 ** from sqliteMalloc() and must be freed by the calling function. 1312 */ 1313 static char *createTableStmt(Table *p, int isTemp){ 1314 int i, k, n; 1315 char *zStmt; 1316 char *zSep, *zSep2, *zEnd, *z; 1317 Column *pCol; 1318 n = 0; 1319 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1320 n += identLength(pCol->zName); 1321 z = pCol->zType; 1322 if( z ){ 1323 n += (strlen(z) + 1); 1324 } 1325 } 1326 n += identLength(p->zName); 1327 if( n<50 ){ 1328 zSep = ""; 1329 zSep2 = ","; 1330 zEnd = ")"; 1331 }else{ 1332 zSep = "\n "; 1333 zSep2 = ",\n "; 1334 zEnd = "\n)"; 1335 } 1336 n += 35 + 6*p->nCol; 1337 zStmt = sqliteMallocRaw( n ); 1338 if( zStmt==0 ) return 0; 1339 strcpy(zStmt, !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); 1340 k = strlen(zStmt); 1341 identPut(zStmt, &k, p->zName); 1342 zStmt[k++] = '('; 1343 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1344 strcpy(&zStmt[k], zSep); 1345 k += strlen(&zStmt[k]); 1346 zSep = zSep2; 1347 identPut(zStmt, &k, pCol->zName); 1348 if( (z = pCol->zType)!=0 ){ 1349 zStmt[k++] = ' '; 1350 strcpy(&zStmt[k], z); 1351 k += strlen(z); 1352 } 1353 } 1354 strcpy(&zStmt[k], zEnd); 1355 return zStmt; 1356 } 1357 1358 /* 1359 ** This routine is called to report the final ")" that terminates 1360 ** a CREATE TABLE statement. 1361 ** 1362 ** The table structure that other action routines have been building 1363 ** is added to the internal hash tables, assuming no errors have 1364 ** occurred. 1365 ** 1366 ** An entry for the table is made in the master table on disk, unless 1367 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1368 ** it means we are reading the sqlite_master table because we just 1369 ** connected to the database or because the sqlite_master table has 1370 ** recently changed, so the entry for this table already exists in 1371 ** the sqlite_master table. We do not want to create it again. 1372 ** 1373 ** If the pSelect argument is not NULL, it means that this routine 1374 ** was called to create a table generated from a 1375 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1376 ** the new table will match the result set of the SELECT. 1377 */ 1378 void sqlite3EndTable( 1379 Parse *pParse, /* Parse context */ 1380 Token *pCons, /* The ',' token after the last column defn. */ 1381 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1382 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1383 ){ 1384 Table *p; 1385 sqlite3 *db = pParse->db; 1386 int iDb; 1387 1388 if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3MallocFailed() ) { 1389 return; 1390 } 1391 p = pParse->pNewTable; 1392 if( p==0 ) return; 1393 1394 assert( !db->init.busy || !pSelect ); 1395 1396 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1397 1398 #ifndef SQLITE_OMIT_CHECK 1399 /* Resolve names in all CHECK constraint expressions. 1400 */ 1401 if( p->pCheck ){ 1402 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1403 NameContext sNC; /* Name context for pParse->pNewTable */ 1404 1405 memset(&sNC, 0, sizeof(sNC)); 1406 memset(&sSrc, 0, sizeof(sSrc)); 1407 sSrc.nSrc = 1; 1408 sSrc.a[0].zName = p->zName; 1409 sSrc.a[0].pTab = p; 1410 sSrc.a[0].iCursor = -1; 1411 sNC.pParse = pParse; 1412 sNC.pSrcList = &sSrc; 1413 sNC.isCheck = 1; 1414 if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){ 1415 return; 1416 } 1417 } 1418 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1419 1420 /* If the db->init.busy is 1 it means we are reading the SQL off the 1421 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1422 ** So do not write to the disk again. Extract the root page number 1423 ** for the table from the db->init.newTnum field. (The page number 1424 ** should have been put there by the sqliteOpenCb routine.) 1425 */ 1426 if( db->init.busy ){ 1427 p->tnum = db->init.newTnum; 1428 } 1429 1430 /* If not initializing, then create a record for the new table 1431 ** in the SQLITE_MASTER table of the database. The record number 1432 ** for the new table entry should already be on the stack. 1433 ** 1434 ** If this is a TEMPORARY table, write the entry into the auxiliary 1435 ** file instead of into the main database file. 1436 */ 1437 if( !db->init.busy ){ 1438 int n; 1439 Vdbe *v; 1440 char *zType; /* "view" or "table" */ 1441 char *zType2; /* "VIEW" or "TABLE" */ 1442 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1443 1444 v = sqlite3GetVdbe(pParse); 1445 if( v==0 ) return; 1446 1447 sqlite3VdbeAddOp(v, OP_Close, 0, 0); 1448 1449 /* Create the rootpage for the new table and push it onto the stack. 1450 ** A view has no rootpage, so just push a zero onto the stack for 1451 ** views. Initialize zType at the same time. 1452 */ 1453 if( p->pSelect==0 ){ 1454 /* A regular table */ 1455 zType = "table"; 1456 zType2 = "TABLE"; 1457 #ifndef SQLITE_OMIT_VIEW 1458 }else{ 1459 /* A view */ 1460 zType = "view"; 1461 zType2 = "VIEW"; 1462 #endif 1463 } 1464 1465 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1466 ** statement to populate the new table. The root-page number for the 1467 ** new table is on the top of the vdbe stack. 1468 ** 1469 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1470 ** suitable state to query for the column names and types to be used 1471 ** by the new table. 1472 ** 1473 ** A shared-cache write-lock is not required to write to the new table, 1474 ** as a schema-lock must have already been obtained to create it. Since 1475 ** a schema-lock excludes all other database users, the write-lock would 1476 ** be redundant. 1477 */ 1478 if( pSelect ){ 1479 Table *pSelTab; 1480 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1481 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 1482 sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0); 1483 pParse->nTab = 2; 1484 sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0); 1485 sqlite3VdbeAddOp(v, OP_Close, 1, 0); 1486 if( pParse->nErr==0 ){ 1487 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); 1488 if( pSelTab==0 ) return; 1489 assert( p->aCol==0 ); 1490 p->nCol = pSelTab->nCol; 1491 p->aCol = pSelTab->aCol; 1492 pSelTab->nCol = 0; 1493 pSelTab->aCol = 0; 1494 sqlite3DeleteTable(0, pSelTab); 1495 } 1496 } 1497 1498 /* Compute the complete text of the CREATE statement */ 1499 if( pSelect ){ 1500 zStmt = createTableStmt(p, p->pSchema==pParse->db->aDb[1].pSchema); 1501 }else{ 1502 n = pEnd->z - pParse->sNameToken.z + 1; 1503 zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z); 1504 } 1505 1506 /* A slot for the record has already been allocated in the 1507 ** SQLITE_MASTER table. We just need to update that slot with all 1508 ** the information we've collected. The rowid for the preallocated 1509 ** slot is the 2nd item on the stack. The top of the stack is the 1510 ** root page for the new table (or a 0 if this is a view). 1511 */ 1512 sqlite3NestedParse(pParse, 1513 "UPDATE %Q.%s " 1514 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q " 1515 "WHERE rowid=#1", 1516 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1517 zType, 1518 p->zName, 1519 p->zName, 1520 zStmt 1521 ); 1522 sqliteFree(zStmt); 1523 sqlite3ChangeCookie(db, v, iDb); 1524 1525 #ifndef SQLITE_OMIT_AUTOINCREMENT 1526 /* Check to see if we need to create an sqlite_sequence table for 1527 ** keeping track of autoincrement keys. 1528 */ 1529 if( p->autoInc ){ 1530 Db *pDb = &db->aDb[iDb]; 1531 if( pDb->pSchema->pSeqTab==0 ){ 1532 sqlite3NestedParse(pParse, 1533 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1534 pDb->zName 1535 ); 1536 } 1537 } 1538 #endif 1539 1540 /* Reparse everything to update our internal data structures */ 1541 sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, 1542 sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC); 1543 } 1544 1545 1546 /* Add the table to the in-memory representation of the database. 1547 */ 1548 if( db->init.busy && pParse->nErr==0 ){ 1549 Table *pOld; 1550 FKey *pFKey; 1551 Schema *pSchema = p->pSchema; 1552 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p); 1553 if( pOld ){ 1554 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1555 return; 1556 } 1557 #ifndef SQLITE_OMIT_FOREIGN_KEY 1558 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 1559 int nTo = strlen(pFKey->zTo) + 1; 1560 pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); 1561 sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); 1562 } 1563 #endif 1564 pParse->pNewTable = 0; 1565 db->nTable++; 1566 db->flags |= SQLITE_InternChanges; 1567 1568 #ifndef SQLITE_OMIT_ALTERTABLE 1569 if( !p->pSelect ){ 1570 const char *zName = (const char *)pParse->sNameToken.z; 1571 int nName; 1572 assert( !pSelect && pCons && pEnd ); 1573 if( pCons->z==0 ){ 1574 pCons = pEnd; 1575 } 1576 nName = (const char *)pCons->z - zName; 1577 p->addColOffset = 13 + sqlite3utf8CharLen(zName, nName); 1578 } 1579 #endif 1580 } 1581 } 1582 1583 #ifndef SQLITE_OMIT_VIEW 1584 /* 1585 ** The parser calls this routine in order to create a new VIEW 1586 */ 1587 void sqlite3CreateView( 1588 Parse *pParse, /* The parsing context */ 1589 Token *pBegin, /* The CREATE token that begins the statement */ 1590 Token *pName1, /* The token that holds the name of the view */ 1591 Token *pName2, /* The token that holds the name of the view */ 1592 Select *pSelect, /* A SELECT statement that will become the new view */ 1593 int isTemp, /* TRUE for a TEMPORARY view */ 1594 int noErr /* Suppress error messages if VIEW already exists */ 1595 ){ 1596 Table *p; 1597 int n; 1598 const unsigned char *z; 1599 Token sEnd; 1600 DbFixer sFix; 1601 Token *pName; 1602 int iDb; 1603 1604 if( pParse->nVar>0 ){ 1605 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1606 sqlite3SelectDelete(pSelect); 1607 return; 1608 } 1609 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1610 p = pParse->pNewTable; 1611 if( p==0 || pParse->nErr ){ 1612 sqlite3SelectDelete(pSelect); 1613 return; 1614 } 1615 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1616 iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 1617 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1618 && sqlite3FixSelect(&sFix, pSelect) 1619 ){ 1620 sqlite3SelectDelete(pSelect); 1621 return; 1622 } 1623 1624 /* Make a copy of the entire SELECT statement that defines the view. 1625 ** This will force all the Expr.token.z values to be dynamically 1626 ** allocated rather than point to the input string - which means that 1627 ** they will persist after the current sqlite3_exec() call returns. 1628 */ 1629 p->pSelect = sqlite3SelectDup(pSelect); 1630 sqlite3SelectDelete(pSelect); 1631 if( sqlite3MallocFailed() ){ 1632 return; 1633 } 1634 if( !pParse->db->init.busy ){ 1635 sqlite3ViewGetColumnNames(pParse, p); 1636 } 1637 1638 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1639 ** the end. 1640 */ 1641 sEnd = pParse->sLastToken; 1642 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ 1643 sEnd.z += sEnd.n; 1644 } 1645 sEnd.n = 0; 1646 n = sEnd.z - pBegin->z; 1647 z = (const unsigned char*)pBegin->z; 1648 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } 1649 sEnd.z = &z[n-1]; 1650 sEnd.n = 1; 1651 1652 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1653 sqlite3EndTable(pParse, 0, &sEnd, 0); 1654 return; 1655 } 1656 #endif /* SQLITE_OMIT_VIEW */ 1657 1658 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1659 /* 1660 ** The Table structure pTable is really a VIEW. Fill in the names of 1661 ** the columns of the view in the pTable structure. Return the number 1662 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1663 */ 1664 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1665 Table *pSelTab; /* A fake table from which we get the result set */ 1666 Select *pSel; /* Copy of the SELECT that implements the view */ 1667 int nErr = 0; /* Number of errors encountered */ 1668 int n; /* Temporarily holds the number of cursors assigned */ 1669 1670 assert( pTable ); 1671 1672 #ifndef SQLITE_OMIT_VIRTUALTABLE 1673 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1674 return SQLITE_ERROR; 1675 } 1676 if( IsVirtual(pTable) ) return 0; 1677 #endif 1678 1679 #ifndef SQLITE_OMIT_VIEW 1680 /* A positive nCol means the columns names for this view are 1681 ** already known. 1682 */ 1683 if( pTable->nCol>0 ) return 0; 1684 1685 /* A negative nCol is a special marker meaning that we are currently 1686 ** trying to compute the column names. If we enter this routine with 1687 ** a negative nCol, it means two or more views form a loop, like this: 1688 ** 1689 ** CREATE VIEW one AS SELECT * FROM two; 1690 ** CREATE VIEW two AS SELECT * FROM one; 1691 ** 1692 ** Actually, this error is caught previously and so the following test 1693 ** should always fail. But we will leave it in place just to be safe. 1694 */ 1695 if( pTable->nCol<0 ){ 1696 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1697 return 1; 1698 } 1699 assert( pTable->nCol>=0 ); 1700 1701 /* If we get this far, it means we need to compute the table names. 1702 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1703 ** "*" elements in the results set of the view and will assign cursors 1704 ** to the elements of the FROM clause. But we do not want these changes 1705 ** to be permanent. So the computation is done on a copy of the SELECT 1706 ** statement that defines the view. 1707 */ 1708 assert( pTable->pSelect ); 1709 pSel = sqlite3SelectDup(pTable->pSelect); 1710 if( pSel ){ 1711 n = pParse->nTab; 1712 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1713 pTable->nCol = -1; 1714 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); 1715 pParse->nTab = n; 1716 if( pSelTab ){ 1717 assert( pTable->aCol==0 ); 1718 pTable->nCol = pSelTab->nCol; 1719 pTable->aCol = pSelTab->aCol; 1720 pSelTab->nCol = 0; 1721 pSelTab->aCol = 0; 1722 sqlite3DeleteTable(0, pSelTab); 1723 pTable->pSchema->flags |= DB_UnresetViews; 1724 }else{ 1725 pTable->nCol = 0; 1726 nErr++; 1727 } 1728 sqlite3SelectDelete(pSel); 1729 } else { 1730 nErr++; 1731 } 1732 #endif /* SQLITE_OMIT_VIEW */ 1733 return nErr; 1734 } 1735 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1736 1737 #ifndef SQLITE_OMIT_VIEW 1738 /* 1739 ** Clear the column names from every VIEW in database idx. 1740 */ 1741 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1742 HashElem *i; 1743 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1744 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1745 Table *pTab = sqliteHashData(i); 1746 if( pTab->pSelect ){ 1747 sqliteResetColumnNames(pTab); 1748 } 1749 } 1750 DbClearProperty(db, idx, DB_UnresetViews); 1751 } 1752 #else 1753 # define sqliteViewResetAll(A,B) 1754 #endif /* SQLITE_OMIT_VIEW */ 1755 1756 /* 1757 ** This function is called by the VDBE to adjust the internal schema 1758 ** used by SQLite when the btree layer moves a table root page. The 1759 ** root-page of a table or index in database iDb has changed from iFrom 1760 ** to iTo. 1761 ** 1762 ** Ticket #1728: The symbol table might still contain information 1763 ** on tables and/or indices that are the process of being deleted. 1764 ** If you are unlucky, one of those deleted indices or tables might 1765 ** have the same rootpage number as the real table or index that is 1766 ** being moved. So we cannot stop searching after the first match 1767 ** because the first match might be for one of the deleted indices 1768 ** or tables and not the table/index that is actually being moved. 1769 ** We must continue looping until all tables and indices with 1770 ** rootpage==iFrom have been converted to have a rootpage of iTo 1771 ** in order to be certain that we got the right one. 1772 */ 1773 #ifndef SQLITE_OMIT_AUTOVACUUM 1774 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ 1775 HashElem *pElem; 1776 Hash *pHash; 1777 1778 pHash = &pDb->pSchema->tblHash; 1779 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1780 Table *pTab = sqliteHashData(pElem); 1781 if( pTab->tnum==iFrom ){ 1782 pTab->tnum = iTo; 1783 } 1784 } 1785 pHash = &pDb->pSchema->idxHash; 1786 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1787 Index *pIdx = sqliteHashData(pElem); 1788 if( pIdx->tnum==iFrom ){ 1789 pIdx->tnum = iTo; 1790 } 1791 } 1792 } 1793 #endif 1794 1795 /* 1796 ** Write code to erase the table with root-page iTable from database iDb. 1797 ** Also write code to modify the sqlite_master table and internal schema 1798 ** if a root-page of another table is moved by the btree-layer whilst 1799 ** erasing iTable (this can happen with an auto-vacuum database). 1800 */ 1801 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1802 Vdbe *v = sqlite3GetVdbe(pParse); 1803 sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb); 1804 #ifndef SQLITE_OMIT_AUTOVACUUM 1805 /* OP_Destroy pushes an integer onto the stack. If this integer 1806 ** is non-zero, then it is the root page number of a table moved to 1807 ** location iTable. The following code modifies the sqlite_master table to 1808 ** reflect this. 1809 ** 1810 ** The "#0" in the SQL is a special constant that means whatever value 1811 ** is on the top of the stack. See sqlite3RegisterExpr(). 1812 */ 1813 sqlite3NestedParse(pParse, 1814 "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0", 1815 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable); 1816 #endif 1817 } 1818 1819 /* 1820 ** Write VDBE code to erase table pTab and all associated indices on disk. 1821 ** Code to update the sqlite_master tables and internal schema definitions 1822 ** in case a root-page belonging to another table is moved by the btree layer 1823 ** is also added (this can happen with an auto-vacuum database). 1824 */ 1825 static void destroyTable(Parse *pParse, Table *pTab){ 1826 #ifdef SQLITE_OMIT_AUTOVACUUM 1827 Index *pIdx; 1828 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1829 destroyRootPage(pParse, pTab->tnum, iDb); 1830 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1831 destroyRootPage(pParse, pIdx->tnum, iDb); 1832 } 1833 #else 1834 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1835 ** is not defined), then it is important to call OP_Destroy on the 1836 ** table and index root-pages in order, starting with the numerically 1837 ** largest root-page number. This guarantees that none of the root-pages 1838 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1839 ** following were coded: 1840 ** 1841 ** OP_Destroy 4 0 1842 ** ... 1843 ** OP_Destroy 5 0 1844 ** 1845 ** and root page 5 happened to be the largest root-page number in the 1846 ** database, then root page 5 would be moved to page 4 by the 1847 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 1848 ** a free-list page. 1849 */ 1850 int iTab = pTab->tnum; 1851 int iDestroyed = 0; 1852 1853 while( 1 ){ 1854 Index *pIdx; 1855 int iLargest = 0; 1856 1857 if( iDestroyed==0 || iTab<iDestroyed ){ 1858 iLargest = iTab; 1859 } 1860 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1861 int iIdx = pIdx->tnum; 1862 assert( pIdx->pSchema==pTab->pSchema ); 1863 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 1864 iLargest = iIdx; 1865 } 1866 } 1867 if( iLargest==0 ){ 1868 return; 1869 }else{ 1870 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1871 destroyRootPage(pParse, iLargest, iDb); 1872 iDestroyed = iLargest; 1873 } 1874 } 1875 #endif 1876 } 1877 1878 /* 1879 ** This routine is called to do the work of a DROP TABLE statement. 1880 ** pName is the name of the table to be dropped. 1881 */ 1882 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 1883 Table *pTab; 1884 Vdbe *v; 1885 sqlite3 *db = pParse->db; 1886 int iDb; 1887 1888 if( pParse->nErr || sqlite3MallocFailed() ){ 1889 goto exit_drop_table; 1890 } 1891 assert( pName->nSrc==1 ); 1892 pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase); 1893 1894 if( pTab==0 ){ 1895 if( noErr ){ 1896 sqlite3ErrorClear(pParse); 1897 } 1898 goto exit_drop_table; 1899 } 1900 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1901 assert( iDb>=0 && iDb<db->nDb ); 1902 #ifndef SQLITE_OMIT_AUTHORIZATION 1903 { 1904 int code; 1905 const char *zTab = SCHEMA_TABLE(iDb); 1906 const char *zDb = db->aDb[iDb].zName; 1907 const char *zArg2 = 0; 1908 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 1909 goto exit_drop_table; 1910 } 1911 if( isView ){ 1912 if( !OMIT_TEMPDB && iDb==1 ){ 1913 code = SQLITE_DROP_TEMP_VIEW; 1914 }else{ 1915 code = SQLITE_DROP_VIEW; 1916 } 1917 #ifndef SQLITE_OMIT_VIRTUALTABLE 1918 }else if( IsVirtual(pTab) ){ 1919 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1920 goto exit_drop_table; 1921 } 1922 code = SQLITE_DROP_VTABLE; 1923 zArg2 = pTab->pMod->zName; 1924 #endif 1925 }else{ 1926 if( !OMIT_TEMPDB && iDb==1 ){ 1927 code = SQLITE_DROP_TEMP_TABLE; 1928 }else{ 1929 code = SQLITE_DROP_TABLE; 1930 } 1931 } 1932 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 1933 goto exit_drop_table; 1934 } 1935 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 1936 goto exit_drop_table; 1937 } 1938 } 1939 #endif 1940 if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){ 1941 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 1942 goto exit_drop_table; 1943 } 1944 1945 #ifndef SQLITE_OMIT_VIEW 1946 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 1947 ** on a table. 1948 */ 1949 if( isView && pTab->pSelect==0 ){ 1950 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 1951 goto exit_drop_table; 1952 } 1953 if( !isView && pTab->pSelect ){ 1954 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 1955 goto exit_drop_table; 1956 } 1957 #endif 1958 1959 /* Generate code to remove the table from the master table 1960 ** on disk. 1961 */ 1962 v = sqlite3GetVdbe(pParse); 1963 if( v ){ 1964 Trigger *pTrigger; 1965 Db *pDb = &db->aDb[iDb]; 1966 sqlite3BeginWriteOperation(pParse, 0, iDb); 1967 1968 #ifndef SQLITE_OMIT_VIRTUALTABLE 1969 if( IsVirtual(pTab) ){ 1970 Vdbe *v = sqlite3GetVdbe(pParse); 1971 if( v ){ 1972 sqlite3VdbeAddOp(v, OP_VBegin, 0, 0); 1973 } 1974 } 1975 #endif 1976 1977 /* Drop all triggers associated with the table being dropped. Code 1978 ** is generated to remove entries from sqlite_master and/or 1979 ** sqlite_temp_master if required. 1980 */ 1981 pTrigger = pTab->pTrigger; 1982 while( pTrigger ){ 1983 assert( pTrigger->pSchema==pTab->pSchema || 1984 pTrigger->pSchema==db->aDb[1].pSchema ); 1985 sqlite3DropTriggerPtr(pParse, pTrigger); 1986 pTrigger = pTrigger->pNext; 1987 } 1988 1989 #ifndef SQLITE_OMIT_AUTOINCREMENT 1990 /* Remove any entries of the sqlite_sequence table associated with 1991 ** the table being dropped. This is done before the table is dropped 1992 ** at the btree level, in case the sqlite_sequence table needs to 1993 ** move as a result of the drop (can happen in auto-vacuum mode). 1994 */ 1995 if( pTab->autoInc ){ 1996 sqlite3NestedParse(pParse, 1997 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", 1998 pDb->zName, pTab->zName 1999 ); 2000 } 2001 #endif 2002 2003 /* Drop all SQLITE_MASTER table and index entries that refer to the 2004 ** table. The program name loops through the master table and deletes 2005 ** every row that refers to a table of the same name as the one being 2006 ** dropped. Triggers are handled seperately because a trigger can be 2007 ** created in the temp database that refers to a table in another 2008 ** database. 2009 */ 2010 sqlite3NestedParse(pParse, 2011 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2012 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2013 if( !isView && !IsVirtual(pTab) ){ 2014 destroyTable(pParse, pTab); 2015 } 2016 2017 /* Remove the table entry from SQLite's internal schema and modify 2018 ** the schema cookie. 2019 */ 2020 if( IsVirtual(pTab) ){ 2021 sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0); 2022 } 2023 sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0); 2024 sqlite3ChangeCookie(db, v, iDb); 2025 } 2026 sqliteViewResetAll(db, iDb); 2027 2028 exit_drop_table: 2029 sqlite3SrcListDelete(pName); 2030 } 2031 2032 /* 2033 ** This routine is called to create a new foreign key on the table 2034 ** currently under construction. pFromCol determines which columns 2035 ** in the current table point to the foreign key. If pFromCol==0 then 2036 ** connect the key to the last column inserted. pTo is the name of 2037 ** the table referred to. pToCol is a list of tables in the other 2038 ** pTo table that the foreign key points to. flags contains all 2039 ** information about the conflict resolution algorithms specified 2040 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2041 ** 2042 ** An FKey structure is created and added to the table currently 2043 ** under construction in the pParse->pNewTable field. The new FKey 2044 ** is not linked into db->aFKey at this point - that does not happen 2045 ** until sqlite3EndTable(). 2046 ** 2047 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2048 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2049 */ 2050 void sqlite3CreateForeignKey( 2051 Parse *pParse, /* Parsing context */ 2052 ExprList *pFromCol, /* Columns in this table that point to other table */ 2053 Token *pTo, /* Name of the other table */ 2054 ExprList *pToCol, /* Columns in the other table */ 2055 int flags /* Conflict resolution algorithms. */ 2056 ){ 2057 #ifndef SQLITE_OMIT_FOREIGN_KEY 2058 FKey *pFKey = 0; 2059 Table *p = pParse->pNewTable; 2060 int nByte; 2061 int i; 2062 int nCol; 2063 char *z; 2064 2065 assert( pTo!=0 ); 2066 if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end; 2067 if( pFromCol==0 ){ 2068 int iCol = p->nCol-1; 2069 if( iCol<0 ) goto fk_end; 2070 if( pToCol && pToCol->nExpr!=1 ){ 2071 sqlite3ErrorMsg(pParse, "foreign key on %s" 2072 " should reference only one column of table %T", 2073 p->aCol[iCol].zName, pTo); 2074 goto fk_end; 2075 } 2076 nCol = 1; 2077 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2078 sqlite3ErrorMsg(pParse, 2079 "number of columns in foreign key does not match the number of " 2080 "columns in the referenced table"); 2081 goto fk_end; 2082 }else{ 2083 nCol = pFromCol->nExpr; 2084 } 2085 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2086 if( pToCol ){ 2087 for(i=0; i<pToCol->nExpr; i++){ 2088 nByte += strlen(pToCol->a[i].zName) + 1; 2089 } 2090 } 2091 pFKey = sqliteMalloc( nByte ); 2092 if( pFKey==0 ) goto fk_end; 2093 pFKey->pFrom = p; 2094 pFKey->pNextFrom = p->pFKey; 2095 z = (char*)&pFKey[1]; 2096 pFKey->aCol = (struct sColMap*)z; 2097 z += sizeof(struct sColMap)*nCol; 2098 pFKey->zTo = z; 2099 memcpy(z, pTo->z, pTo->n); 2100 z[pTo->n] = 0; 2101 z += pTo->n+1; 2102 pFKey->pNextTo = 0; 2103 pFKey->nCol = nCol; 2104 if( pFromCol==0 ){ 2105 pFKey->aCol[0].iFrom = p->nCol-1; 2106 }else{ 2107 for(i=0; i<nCol; i++){ 2108 int j; 2109 for(j=0; j<p->nCol; j++){ 2110 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2111 pFKey->aCol[i].iFrom = j; 2112 break; 2113 } 2114 } 2115 if( j>=p->nCol ){ 2116 sqlite3ErrorMsg(pParse, 2117 "unknown column \"%s\" in foreign key definition", 2118 pFromCol->a[i].zName); 2119 goto fk_end; 2120 } 2121 } 2122 } 2123 if( pToCol ){ 2124 for(i=0; i<nCol; i++){ 2125 int n = strlen(pToCol->a[i].zName); 2126 pFKey->aCol[i].zCol = z; 2127 memcpy(z, pToCol->a[i].zName, n); 2128 z[n] = 0; 2129 z += n+1; 2130 } 2131 } 2132 pFKey->isDeferred = 0; 2133 pFKey->deleteConf = flags & 0xff; 2134 pFKey->updateConf = (flags >> 8 ) & 0xff; 2135 pFKey->insertConf = (flags >> 16 ) & 0xff; 2136 2137 /* Link the foreign key to the table as the last step. 2138 */ 2139 p->pFKey = pFKey; 2140 pFKey = 0; 2141 2142 fk_end: 2143 sqliteFree(pFKey); 2144 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2145 sqlite3ExprListDelete(pFromCol); 2146 sqlite3ExprListDelete(pToCol); 2147 } 2148 2149 /* 2150 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2151 ** clause is seen as part of a foreign key definition. The isDeferred 2152 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2153 ** The behavior of the most recently created foreign key is adjusted 2154 ** accordingly. 2155 */ 2156 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2157 #ifndef SQLITE_OMIT_FOREIGN_KEY 2158 Table *pTab; 2159 FKey *pFKey; 2160 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2161 pFKey->isDeferred = isDeferred; 2162 #endif 2163 } 2164 2165 /* 2166 ** Generate code that will erase and refill index *pIdx. This is 2167 ** used to initialize a newly created index or to recompute the 2168 ** content of an index in response to a REINDEX command. 2169 ** 2170 ** if memRootPage is not negative, it means that the index is newly 2171 ** created. The memory cell specified by memRootPage contains the 2172 ** root page number of the index. If memRootPage is negative, then 2173 ** the index already exists and must be cleared before being refilled and 2174 ** the root page number of the index is taken from pIndex->tnum. 2175 */ 2176 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2177 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2178 int iTab = pParse->nTab; /* Btree cursor used for pTab */ 2179 int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ 2180 int addr1; /* Address of top of loop */ 2181 int tnum; /* Root page of index */ 2182 Vdbe *v; /* Generate code into this virtual machine */ 2183 KeyInfo *pKey; /* KeyInfo for index */ 2184 int iDb = sqlite3SchemaToIndex(pParse->db, pIndex->pSchema); 2185 2186 #ifndef SQLITE_OMIT_AUTHORIZATION 2187 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2188 pParse->db->aDb[iDb].zName ) ){ 2189 return; 2190 } 2191 #endif 2192 2193 /* Require a write-lock on the table to perform this operation */ 2194 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2195 2196 v = sqlite3GetVdbe(pParse); 2197 if( v==0 ) return; 2198 if( memRootPage>=0 ){ 2199 sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0); 2200 tnum = 0; 2201 }else{ 2202 tnum = pIndex->tnum; 2203 sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb); 2204 } 2205 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2206 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2207 sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF); 2208 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2209 addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); 2210 sqlite3GenerateIndexKey(v, pIndex, iTab); 2211 if( pIndex->onError!=OE_None ){ 2212 int curaddr = sqlite3VdbeCurrentAddr(v); 2213 int addr2 = curaddr+4; 2214 sqlite3VdbeChangeP2(v, curaddr-1, addr2); 2215 sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0); 2216 sqlite3VdbeAddOp(v, OP_AddImm, 1, 0); 2217 sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2); 2218 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 2219 "indexed columns are not unique", P3_STATIC); 2220 assert( addr2==sqlite3VdbeCurrentAddr(v) ); 2221 } 2222 sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0); 2223 sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1); 2224 sqlite3VdbeJumpHere(v, addr1); 2225 sqlite3VdbeAddOp(v, OP_Close, iTab, 0); 2226 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2227 } 2228 2229 /* 2230 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2231 ** and pTblList is the name of the table that is to be indexed. Both will 2232 ** be NULL for a primary key or an index that is created to satisfy a 2233 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2234 ** as the table to be indexed. pParse->pNewTable is a table that is 2235 ** currently being constructed by a CREATE TABLE statement. 2236 ** 2237 ** pList is a list of columns to be indexed. pList will be NULL if this 2238 ** is a primary key or unique-constraint on the most recent column added 2239 ** to the table currently under construction. 2240 */ 2241 void sqlite3CreateIndex( 2242 Parse *pParse, /* All information about this parse */ 2243 Token *pName1, /* First part of index name. May be NULL */ 2244 Token *pName2, /* Second part of index name. May be NULL */ 2245 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2246 ExprList *pList, /* A list of columns to be indexed */ 2247 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2248 Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */ 2249 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2250 int sortOrder, /* Sort order of primary key when pList==NULL */ 2251 int ifNotExist /* Omit error if index already exists */ 2252 ){ 2253 Table *pTab = 0; /* Table to be indexed */ 2254 Index *pIndex = 0; /* The index to be created */ 2255 char *zName = 0; /* Name of the index */ 2256 int nName; /* Number of characters in zName */ 2257 int i, j; 2258 Token nullId; /* Fake token for an empty ID list */ 2259 DbFixer sFix; /* For assigning database names to pTable */ 2260 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2261 sqlite3 *db = pParse->db; 2262 Db *pDb; /* The specific table containing the indexed database */ 2263 int iDb; /* Index of the database that is being written */ 2264 Token *pName = 0; /* Unqualified name of the index to create */ 2265 struct ExprList_item *pListItem; /* For looping over pList */ 2266 int nCol; 2267 int nExtra = 0; 2268 char *zExtra; 2269 2270 if( pParse->nErr || sqlite3MallocFailed() || IN_DECLARE_VTAB ){ 2271 goto exit_create_index; 2272 } 2273 2274 /* 2275 ** Find the table that is to be indexed. Return early if not found. 2276 */ 2277 if( pTblName!=0 ){ 2278 2279 /* Use the two-part index name to determine the database 2280 ** to search for the table. 'Fix' the table name to this db 2281 ** before looking up the table. 2282 */ 2283 assert( pName1 && pName2 ); 2284 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2285 if( iDb<0 ) goto exit_create_index; 2286 2287 #ifndef SQLITE_OMIT_TEMPDB 2288 /* If the index name was unqualified, check if the the table 2289 ** is a temp table. If so, set the database to 1. 2290 */ 2291 pTab = sqlite3SrcListLookup(pParse, pTblName); 2292 if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2293 iDb = 1; 2294 } 2295 #endif 2296 2297 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2298 sqlite3FixSrcList(&sFix, pTblName) 2299 ){ 2300 /* Because the parser constructs pTblName from a single identifier, 2301 ** sqlite3FixSrcList can never fail. */ 2302 assert(0); 2303 } 2304 pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, 2305 pTblName->a[0].zDatabase); 2306 if( !pTab ) goto exit_create_index; 2307 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2308 }else{ 2309 assert( pName==0 ); 2310 pTab = pParse->pNewTable; 2311 if( !pTab ) goto exit_create_index; 2312 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2313 } 2314 pDb = &db->aDb[iDb]; 2315 2316 if( pTab==0 || pParse->nErr ) goto exit_create_index; 2317 if( pTab->readOnly ){ 2318 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2319 goto exit_create_index; 2320 } 2321 #ifndef SQLITE_OMIT_VIEW 2322 if( pTab->pSelect ){ 2323 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2324 goto exit_create_index; 2325 } 2326 #endif 2327 #ifndef SQLITE_OMIT_VIRTUALTABLE 2328 if( IsVirtual(pTab) ){ 2329 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2330 goto exit_create_index; 2331 } 2332 #endif 2333 2334 /* 2335 ** Find the name of the index. Make sure there is not already another 2336 ** index or table with the same name. 2337 ** 2338 ** Exception: If we are reading the names of permanent indices from the 2339 ** sqlite_master table (because some other process changed the schema) and 2340 ** one of the index names collides with the name of a temporary table or 2341 ** index, then we will continue to process this index. 2342 ** 2343 ** If pName==0 it means that we are 2344 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2345 ** own name. 2346 */ 2347 if( pName ){ 2348 zName = sqlite3NameFromToken(pName); 2349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2350 if( zName==0 ) goto exit_create_index; 2351 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2352 goto exit_create_index; 2353 } 2354 if( !db->init.busy ){ 2355 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; 2356 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2357 if( !ifNotExist ){ 2358 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2359 } 2360 goto exit_create_index; 2361 } 2362 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2363 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2364 goto exit_create_index; 2365 } 2366 } 2367 }else{ 2368 char zBuf[30]; 2369 int n; 2370 Index *pLoop; 2371 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2372 sprintf(zBuf,"_%d",n); 2373 zName = 0; 2374 sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0); 2375 if( zName==0 ) goto exit_create_index; 2376 } 2377 2378 /* Check for authorization to create an index. 2379 */ 2380 #ifndef SQLITE_OMIT_AUTHORIZATION 2381 { 2382 const char *zDb = pDb->zName; 2383 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2384 goto exit_create_index; 2385 } 2386 i = SQLITE_CREATE_INDEX; 2387 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2388 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2389 goto exit_create_index; 2390 } 2391 } 2392 #endif 2393 2394 /* If pList==0, it means this routine was called to make a primary 2395 ** key out of the last column added to the table under construction. 2396 ** So create a fake list to simulate this. 2397 */ 2398 if( pList==0 ){ 2399 nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; 2400 nullId.n = strlen((char*)nullId.z); 2401 pList = sqlite3ExprListAppend(0, 0, &nullId); 2402 if( pList==0 ) goto exit_create_index; 2403 pList->a[0].sortOrder = sortOrder; 2404 } 2405 2406 /* Figure out how many bytes of space are required to store explicitly 2407 ** specified collation sequence names. 2408 */ 2409 for(i=0; i<pList->nExpr; i++){ 2410 Expr *pExpr = pList->a[i].pExpr; 2411 if( pExpr ){ 2412 nExtra += (1 + strlen(pExpr->pColl->zName)); 2413 } 2414 } 2415 2416 /* 2417 ** Allocate the index structure. 2418 */ 2419 nName = strlen(zName); 2420 nCol = pList->nExpr; 2421 pIndex = sqliteMalloc( 2422 sizeof(Index) + /* Index structure */ 2423 sizeof(int)*nCol + /* Index.aiColumn */ 2424 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ 2425 sizeof(char *)*nCol + /* Index.azColl */ 2426 sizeof(u8)*nCol + /* Index.aSortOrder */ 2427 nName + 1 + /* Index.zName */ 2428 nExtra /* Collation sequence names */ 2429 ); 2430 if( sqlite3MallocFailed() ) goto exit_create_index; 2431 pIndex->azColl = (char**)(&pIndex[1]); 2432 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2433 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); 2434 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); 2435 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2436 zExtra = (char *)(&pIndex->zName[nName+1]); 2437 strcpy(pIndex->zName, zName); 2438 pIndex->pTable = pTab; 2439 pIndex->nColumn = pList->nExpr; 2440 pIndex->onError = onError; 2441 pIndex->autoIndex = pName==0; 2442 pIndex->pSchema = db->aDb[iDb].pSchema; 2443 2444 /* Check to see if we should honor DESC requests on index columns 2445 */ 2446 if( pDb->pSchema->file_format>=4 ){ 2447 sortOrderMask = -1; /* Honor DESC */ 2448 }else{ 2449 sortOrderMask = 0; /* Ignore DESC */ 2450 } 2451 2452 /* Scan the names of the columns of the table to be indexed and 2453 ** load the column indices into the Index structure. Report an error 2454 ** if any column is not found. 2455 */ 2456 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2457 const char *zColName = pListItem->zName; 2458 Column *pTabCol; 2459 int requestedSortOrder; 2460 char *zColl; /* Collation sequence */ 2461 2462 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2463 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2464 } 2465 if( j>=pTab->nCol ){ 2466 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2467 pTab->zName, zColName); 2468 goto exit_create_index; 2469 } 2470 pIndex->aiColumn[i] = j; 2471 if( pListItem->pExpr ){ 2472 assert( pListItem->pExpr->pColl ); 2473 zColl = zExtra; 2474 strcpy(zExtra, pListItem->pExpr->pColl->zName); 2475 zExtra += (strlen(zColl) + 1); 2476 }else{ 2477 zColl = pTab->aCol[j].zColl; 2478 if( !zColl ){ 2479 zColl = db->pDfltColl->zName; 2480 } 2481 } 2482 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ 2483 goto exit_create_index; 2484 } 2485 pIndex->azColl[i] = zColl; 2486 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2487 pIndex->aSortOrder[i] = requestedSortOrder; 2488 } 2489 sqlite3DefaultRowEst(pIndex); 2490 2491 if( pTab==pParse->pNewTable ){ 2492 /* This routine has been called to create an automatic index as a 2493 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2494 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2495 ** i.e. one of: 2496 ** 2497 ** CREATE TABLE t(x PRIMARY KEY, y); 2498 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2499 ** 2500 ** Either way, check to see if the table already has such an index. If 2501 ** so, don't bother creating this one. This only applies to 2502 ** automatically created indices. Users can do as they wish with 2503 ** explicit indices. 2504 */ 2505 Index *pIdx; 2506 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2507 int k; 2508 assert( pIdx->onError!=OE_None ); 2509 assert( pIdx->autoIndex ); 2510 assert( pIndex->onError!=OE_None ); 2511 2512 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2513 for(k=0; k<pIdx->nColumn; k++){ 2514 const char *z1 = pIdx->azColl[k]; 2515 const char *z2 = pIndex->azColl[k]; 2516 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2517 if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; 2518 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2519 } 2520 if( k==pIdx->nColumn ){ 2521 if( pIdx->onError!=pIndex->onError ){ 2522 /* This constraint creates the same index as a previous 2523 ** constraint specified somewhere in the CREATE TABLE statement. 2524 ** However the ON CONFLICT clauses are different. If both this 2525 ** constraint and the previous equivalent constraint have explicit 2526 ** ON CONFLICT clauses this is an error. Otherwise, use the 2527 ** explicitly specified behaviour for the index. 2528 */ 2529 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2530 sqlite3ErrorMsg(pParse, 2531 "conflicting ON CONFLICT clauses specified", 0); 2532 } 2533 if( pIdx->onError==OE_Default ){ 2534 pIdx->onError = pIndex->onError; 2535 } 2536 } 2537 goto exit_create_index; 2538 } 2539 } 2540 } 2541 2542 /* Link the new Index structure to its table and to the other 2543 ** in-memory database structures. 2544 */ 2545 if( db->init.busy ){ 2546 Index *p; 2547 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2548 pIndex->zName, strlen(pIndex->zName)+1, pIndex); 2549 if( p ){ 2550 assert( p==pIndex ); /* Malloc must have failed */ 2551 goto exit_create_index; 2552 } 2553 db->flags |= SQLITE_InternChanges; 2554 if( pTblName!=0 ){ 2555 pIndex->tnum = db->init.newTnum; 2556 } 2557 } 2558 2559 /* If the db->init.busy is 0 then create the index on disk. This 2560 ** involves writing the index into the master table and filling in the 2561 ** index with the current table contents. 2562 ** 2563 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2564 ** command. db->init.busy is 1 when a database is opened and 2565 ** CREATE INDEX statements are read out of the master table. In 2566 ** the latter case the index already exists on disk, which is why 2567 ** we don't want to recreate it. 2568 ** 2569 ** If pTblName==0 it means this index is generated as a primary key 2570 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2571 ** has just been created, it contains no data and the index initialization 2572 ** step can be skipped. 2573 */ 2574 else if( db->init.busy==0 ){ 2575 Vdbe *v; 2576 char *zStmt; 2577 int iMem = pParse->nMem++; 2578 2579 v = sqlite3GetVdbe(pParse); 2580 if( v==0 ) goto exit_create_index; 2581 2582 2583 /* Create the rootpage for the index 2584 */ 2585 sqlite3BeginWriteOperation(pParse, 1, iDb); 2586 sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0); 2587 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 2588 2589 /* Gather the complete text of the CREATE INDEX statement into 2590 ** the zStmt variable 2591 */ 2592 if( pStart && pEnd ){ 2593 /* A named index with an explicit CREATE INDEX statement */ 2594 zStmt = sqlite3MPrintf("CREATE%s INDEX %.*s", 2595 onError==OE_None ? "" : " UNIQUE", 2596 pEnd->z - pName->z + 1, 2597 pName->z); 2598 }else{ 2599 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2600 /* zStmt = sqlite3MPrintf(""); */ 2601 zStmt = 0; 2602 } 2603 2604 /* Add an entry in sqlite_master for this index 2605 */ 2606 sqlite3NestedParse(pParse, 2607 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);", 2608 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2609 pIndex->zName, 2610 pTab->zName, 2611 zStmt 2612 ); 2613 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2614 sqliteFree(zStmt); 2615 2616 /* Fill the index with data and reparse the schema. Code an OP_Expire 2617 ** to invalidate all pre-compiled statements. 2618 */ 2619 if( pTblName ){ 2620 sqlite3RefillIndex(pParse, pIndex, iMem); 2621 sqlite3ChangeCookie(db, v, iDb); 2622 sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, 2623 sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC); 2624 sqlite3VdbeAddOp(v, OP_Expire, 0, 0); 2625 } 2626 } 2627 2628 /* When adding an index to the list of indices for a table, make 2629 ** sure all indices labeled OE_Replace come after all those labeled 2630 ** OE_Ignore. This is necessary for the correct operation of UPDATE 2631 ** and INSERT. 2632 */ 2633 if( db->init.busy || pTblName==0 ){ 2634 if( onError!=OE_Replace || pTab->pIndex==0 2635 || pTab->pIndex->onError==OE_Replace){ 2636 pIndex->pNext = pTab->pIndex; 2637 pTab->pIndex = pIndex; 2638 }else{ 2639 Index *pOther = pTab->pIndex; 2640 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2641 pOther = pOther->pNext; 2642 } 2643 pIndex->pNext = pOther->pNext; 2644 pOther->pNext = pIndex; 2645 } 2646 pIndex = 0; 2647 } 2648 2649 /* Clean up before exiting */ 2650 exit_create_index: 2651 if( pIndex ){ 2652 freeIndex(pIndex); 2653 } 2654 sqlite3ExprListDelete(pList); 2655 sqlite3SrcListDelete(pTblName); 2656 sqliteFree(zName); 2657 return; 2658 } 2659 2660 /* 2661 ** Generate code to make sure the file format number is at least minFormat. 2662 ** The generated code will increase the file format number if necessary. 2663 */ 2664 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ 2665 Vdbe *v; 2666 v = sqlite3GetVdbe(pParse); 2667 if( v ){ 2668 sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); 2669 sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0); 2670 sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3); 2671 sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0); 2672 sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); 2673 } 2674 } 2675 2676 /* 2677 ** Fill the Index.aiRowEst[] array with default information - information 2678 ** to be used when we have not run the ANALYZE command. 2679 ** 2680 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2681 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2682 ** number of rows in the table that match any particular value of the 2683 ** first column of the index. aiRowEst[2] is an estimate of the number 2684 ** of rows that match any particular combiniation of the first 2 columns 2685 ** of the index. And so forth. It must always be the case that 2686 * 2687 ** aiRowEst[N]<=aiRowEst[N-1] 2688 ** aiRowEst[N]>=1 2689 ** 2690 ** Apart from that, we have little to go on besides intuition as to 2691 ** how aiRowEst[] should be initialized. The numbers generated here 2692 ** are based on typical values found in actual indices. 2693 */ 2694 void sqlite3DefaultRowEst(Index *pIdx){ 2695 unsigned *a = pIdx->aiRowEst; 2696 int i; 2697 assert( a!=0 ); 2698 a[0] = 1000000; 2699 for(i=pIdx->nColumn; i>=5; i--){ 2700 a[i] = 5; 2701 } 2702 while( i>=1 ){ 2703 a[i] = 11 - i; 2704 i--; 2705 } 2706 if( pIdx->onError!=OE_None ){ 2707 a[pIdx->nColumn] = 1; 2708 } 2709 } 2710 2711 /* 2712 ** This routine will drop an existing named index. This routine 2713 ** implements the DROP INDEX statement. 2714 */ 2715 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2716 Index *pIndex; 2717 Vdbe *v; 2718 sqlite3 *db = pParse->db; 2719 int iDb; 2720 2721 if( pParse->nErr || sqlite3MallocFailed() ){ 2722 goto exit_drop_index; 2723 } 2724 assert( pName->nSrc==1 ); 2725 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2726 goto exit_drop_index; 2727 } 2728 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 2729 if( pIndex==0 ){ 2730 if( !ifExists ){ 2731 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 2732 } 2733 pParse->checkSchema = 1; 2734 goto exit_drop_index; 2735 } 2736 if( pIndex->autoIndex ){ 2737 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 2738 "or PRIMARY KEY constraint cannot be dropped", 0); 2739 goto exit_drop_index; 2740 } 2741 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2742 #ifndef SQLITE_OMIT_AUTHORIZATION 2743 { 2744 int code = SQLITE_DROP_INDEX; 2745 Table *pTab = pIndex->pTable; 2746 const char *zDb = db->aDb[iDb].zName; 2747 const char *zTab = SCHEMA_TABLE(iDb); 2748 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 2749 goto exit_drop_index; 2750 } 2751 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 2752 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 2753 goto exit_drop_index; 2754 } 2755 } 2756 #endif 2757 2758 /* Generate code to remove the index and from the master table */ 2759 v = sqlite3GetVdbe(pParse); 2760 if( v ){ 2761 sqlite3NestedParse(pParse, 2762 "DELETE FROM %Q.%s WHERE name=%Q", 2763 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2764 pIndex->zName 2765 ); 2766 sqlite3ChangeCookie(db, v, iDb); 2767 destroyRootPage(pParse, pIndex->tnum, iDb); 2768 sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0); 2769 } 2770 2771 exit_drop_index: 2772 sqlite3SrcListDelete(pName); 2773 } 2774 2775 /* 2776 ** ppArray points into a structure where there is an array pointer 2777 ** followed by two integers. The first integer is the 2778 ** number of elements in the structure array. The second integer 2779 ** is the number of allocated slots in the array. 2780 ** 2781 ** In other words, the structure looks something like this: 2782 ** 2783 ** struct Example1 { 2784 ** struct subElem *aEntry; 2785 ** int nEntry; 2786 ** int nAlloc; 2787 ** } 2788 ** 2789 ** The pnEntry parameter points to the equivalent of Example1.nEntry. 2790 ** 2791 ** This routine allocates a new slot in the array, zeros it out, 2792 ** and returns its index. If malloc fails a negative number is returned. 2793 ** 2794 ** szEntry is the sizeof of a single array entry. initSize is the 2795 ** number of array entries allocated on the initial allocation. 2796 */ 2797 int sqlite3ArrayAllocate(void **ppArray, int szEntry, int initSize){ 2798 char *p; 2799 int *an = (int*)&ppArray[1]; 2800 if( an[0]>=an[1] ){ 2801 void *pNew; 2802 int newSize; 2803 newSize = an[1]*2 + initSize; 2804 pNew = sqliteRealloc(*ppArray, newSize*szEntry); 2805 if( pNew==0 ){ 2806 return -1; 2807 } 2808 an[1] = newSize; 2809 *ppArray = pNew; 2810 } 2811 p = *ppArray; 2812 memset(&p[an[0]*szEntry], 0, szEntry); 2813 return an[0]++; 2814 } 2815 2816 /* 2817 ** Append a new element to the given IdList. Create a new IdList if 2818 ** need be. 2819 ** 2820 ** A new IdList is returned, or NULL if malloc() fails. 2821 */ 2822 IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){ 2823 int i; 2824 if( pList==0 ){ 2825 pList = sqliteMalloc( sizeof(IdList) ); 2826 if( pList==0 ) return 0; 2827 pList->nAlloc = 0; 2828 } 2829 i = sqlite3ArrayAllocate((void**)&pList->a, sizeof(pList->a[0]), 5); 2830 if( i<0 ){ 2831 sqlite3IdListDelete(pList); 2832 return 0; 2833 } 2834 pList->a[i].zName = sqlite3NameFromToken(pToken); 2835 return pList; 2836 } 2837 2838 /* 2839 ** Delete an IdList. 2840 */ 2841 void sqlite3IdListDelete(IdList *pList){ 2842 int i; 2843 if( pList==0 ) return; 2844 for(i=0; i<pList->nId; i++){ 2845 sqliteFree(pList->a[i].zName); 2846 } 2847 sqliteFree(pList->a); 2848 sqliteFree(pList); 2849 } 2850 2851 /* 2852 ** Return the index in pList of the identifier named zId. Return -1 2853 ** if not found. 2854 */ 2855 int sqlite3IdListIndex(IdList *pList, const char *zName){ 2856 int i; 2857 if( pList==0 ) return -1; 2858 for(i=0; i<pList->nId; i++){ 2859 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 2860 } 2861 return -1; 2862 } 2863 2864 /* 2865 ** Append a new table name to the given SrcList. Create a new SrcList if 2866 ** need be. A new entry is created in the SrcList even if pToken is NULL. 2867 ** 2868 ** A new SrcList is returned, or NULL if malloc() fails. 2869 ** 2870 ** If pDatabase is not null, it means that the table has an optional 2871 ** database name prefix. Like this: "database.table". The pDatabase 2872 ** points to the table name and the pTable points to the database name. 2873 ** The SrcList.a[].zName field is filled with the table name which might 2874 ** come from pTable (if pDatabase is NULL) or from pDatabase. 2875 ** SrcList.a[].zDatabase is filled with the database name from pTable, 2876 ** or with NULL if no database is specified. 2877 ** 2878 ** In other words, if call like this: 2879 ** 2880 ** sqlite3SrcListAppend(A,B,0); 2881 ** 2882 ** Then B is a table name and the database name is unspecified. If called 2883 ** like this: 2884 ** 2885 ** sqlite3SrcListAppend(A,B,C); 2886 ** 2887 ** Then C is the table name and B is the database name. 2888 */ 2889 SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){ 2890 struct SrcList_item *pItem; 2891 if( pList==0 ){ 2892 pList = sqliteMalloc( sizeof(SrcList) ); 2893 if( pList==0 ) return 0; 2894 pList->nAlloc = 1; 2895 } 2896 if( pList->nSrc>=pList->nAlloc ){ 2897 SrcList *pNew; 2898 pList->nAlloc *= 2; 2899 pNew = sqliteRealloc(pList, 2900 sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); 2901 if( pNew==0 ){ 2902 sqlite3SrcListDelete(pList); 2903 return 0; 2904 } 2905 pList = pNew; 2906 } 2907 pItem = &pList->a[pList->nSrc]; 2908 memset(pItem, 0, sizeof(pList->a[0])); 2909 if( pDatabase && pDatabase->z==0 ){ 2910 pDatabase = 0; 2911 } 2912 if( pDatabase && pTable ){ 2913 Token *pTemp = pDatabase; 2914 pDatabase = pTable; 2915 pTable = pTemp; 2916 } 2917 pItem->zName = sqlite3NameFromToken(pTable); 2918 pItem->zDatabase = sqlite3NameFromToken(pDatabase); 2919 pItem->iCursor = -1; 2920 pItem->isPopulated = 0; 2921 pList->nSrc++; 2922 return pList; 2923 } 2924 2925 /* 2926 ** Assign cursors to all tables in a SrcList 2927 */ 2928 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 2929 int i; 2930 struct SrcList_item *pItem; 2931 assert(pList || sqlite3MallocFailed() ); 2932 if( pList ){ 2933 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 2934 if( pItem->iCursor>=0 ) break; 2935 pItem->iCursor = pParse->nTab++; 2936 if( pItem->pSelect ){ 2937 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 2938 } 2939 } 2940 } 2941 } 2942 2943 /* 2944 ** Delete an entire SrcList including all its substructure. 2945 */ 2946 void sqlite3SrcListDelete(SrcList *pList){ 2947 int i; 2948 struct SrcList_item *pItem; 2949 if( pList==0 ) return; 2950 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 2951 sqliteFree(pItem->zDatabase); 2952 sqliteFree(pItem->zName); 2953 sqliteFree(pItem->zAlias); 2954 sqlite3DeleteTable(0, pItem->pTab); 2955 sqlite3SelectDelete(pItem->pSelect); 2956 sqlite3ExprDelete(pItem->pOn); 2957 sqlite3IdListDelete(pItem->pUsing); 2958 } 2959 sqliteFree(pList); 2960 } 2961 2962 /* 2963 ** This routine is called by the parser to add a new term to the 2964 ** end of a growing FROM clause. The "p" parameter is the part of 2965 ** the FROM clause that has already been constructed. "p" is NULL 2966 ** if this is the first term of the FROM clause. pTable and pDatabase 2967 ** are the name of the table and database named in the FROM clause term. 2968 ** pDatabase is NULL if the database name qualifier is missing - the 2969 ** usual case. If the term has a alias, then pAlias points to the 2970 ** alias token. If the term is a subquery, then pSubquery is the 2971 ** SELECT statement that the subquery encodes. The pTable and 2972 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 2973 ** parameters are the content of the ON and USING clauses. 2974 ** 2975 ** Return a new SrcList which encodes is the FROM with the new 2976 ** term added. 2977 */ 2978 SrcList *sqlite3SrcListAppendFromTerm( 2979 SrcList *p, /* The left part of the FROM clause already seen */ 2980 Token *pTable, /* Name of the table to add to the FROM clause */ 2981 Token *pDatabase, /* Name of the database containing pTable */ 2982 Token *pAlias, /* The right-hand side of the AS subexpression */ 2983 Select *pSubquery, /* A subquery used in place of a table name */ 2984 Expr *pOn, /* The ON clause of a join */ 2985 IdList *pUsing /* The USING clause of a join */ 2986 ){ 2987 struct SrcList_item *pItem; 2988 p = sqlite3SrcListAppend(p, pTable, pDatabase); 2989 if( p==0 || p->nSrc==0 ){ 2990 sqlite3ExprDelete(pOn); 2991 sqlite3IdListDelete(pUsing); 2992 sqlite3SelectDelete(pSubquery); 2993 return p; 2994 } 2995 pItem = &p->a[p->nSrc-1]; 2996 if( pAlias && pAlias->n ){ 2997 pItem->zAlias = sqlite3NameFromToken(pAlias); 2998 } 2999 pItem->pSelect = pSubquery; 3000 pItem->pOn = pOn; 3001 pItem->pUsing = pUsing; 3002 return p; 3003 } 3004 3005 /* 3006 ** When building up a FROM clause in the parser, the join operator 3007 ** is initially attached to the left operand. But the code generator 3008 ** expects the join operator to be on the right operand. This routine 3009 ** Shifts all join operators from left to right for an entire FROM 3010 ** clause. 3011 ** 3012 ** Example: Suppose the join is like this: 3013 ** 3014 ** A natural cross join B 3015 ** 3016 ** The operator is "natural cross join". The A and B operands are stored 3017 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3018 ** operator with A. This routine shifts that operator over to B. 3019 */ 3020 void sqlite3SrcListShiftJoinType(SrcList *p){ 3021 if( p && p->a ){ 3022 int i; 3023 for(i=p->nSrc-1; i>0; i--){ 3024 p->a[i].jointype = p->a[i-1].jointype; 3025 } 3026 p->a[0].jointype = 0; 3027 } 3028 } 3029 3030 /* 3031 ** Begin a transaction 3032 */ 3033 void sqlite3BeginTransaction(Parse *pParse, int type){ 3034 sqlite3 *db; 3035 Vdbe *v; 3036 int i; 3037 3038 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3039 if( pParse->nErr || sqlite3MallocFailed() ) return; 3040 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; 3041 3042 v = sqlite3GetVdbe(pParse); 3043 if( !v ) return; 3044 if( type!=TK_DEFERRED ){ 3045 for(i=0; i<db->nDb; i++){ 3046 sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3047 } 3048 } 3049 sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0); 3050 } 3051 3052 /* 3053 ** Commit a transaction 3054 */ 3055 void sqlite3CommitTransaction(Parse *pParse){ 3056 sqlite3 *db; 3057 Vdbe *v; 3058 3059 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3060 if( pParse->nErr || sqlite3MallocFailed() ) return; 3061 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; 3062 3063 v = sqlite3GetVdbe(pParse); 3064 if( v ){ 3065 sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0); 3066 } 3067 } 3068 3069 /* 3070 ** Rollback a transaction 3071 */ 3072 void sqlite3RollbackTransaction(Parse *pParse){ 3073 sqlite3 *db; 3074 Vdbe *v; 3075 3076 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; 3077 if( pParse->nErr || sqlite3MallocFailed() ) return; 3078 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; 3079 3080 v = sqlite3GetVdbe(pParse); 3081 if( v ){ 3082 sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1); 3083 } 3084 } 3085 3086 /* 3087 ** Make sure the TEMP database is open and available for use. Return 3088 ** the number of errors. Leave any error messages in the pParse structure. 3089 */ 3090 int sqlite3OpenTempDatabase(Parse *pParse){ 3091 sqlite3 *db = pParse->db; 3092 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3093 int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt); 3094 if( rc!=SQLITE_OK ){ 3095 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3096 "file for storing temporary tables"); 3097 pParse->rc = rc; 3098 return 1; 3099 } 3100 if( db->flags & !db->autoCommit ){ 3101 rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1); 3102 if( rc!=SQLITE_OK ){ 3103 sqlite3ErrorMsg(pParse, "unable to get a write lock on " 3104 "the temporary database file"); 3105 pParse->rc = rc; 3106 return 1; 3107 } 3108 } 3109 assert( db->aDb[1].pSchema ); 3110 } 3111 return 0; 3112 } 3113 3114 /* 3115 ** Generate VDBE code that will verify the schema cookie and start 3116 ** a read-transaction for all named database files. 3117 ** 3118 ** It is important that all schema cookies be verified and all 3119 ** read transactions be started before anything else happens in 3120 ** the VDBE program. But this routine can be called after much other 3121 ** code has been generated. So here is what we do: 3122 ** 3123 ** The first time this routine is called, we code an OP_Goto that 3124 ** will jump to a subroutine at the end of the program. Then we 3125 ** record every database that needs its schema verified in the 3126 ** pParse->cookieMask field. Later, after all other code has been 3127 ** generated, the subroutine that does the cookie verifications and 3128 ** starts the transactions will be coded and the OP_Goto P2 value 3129 ** will be made to point to that subroutine. The generation of the 3130 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3131 ** 3132 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3133 ** schema on any databases. This can be used to position the OP_Goto 3134 ** early in the code, before we know if any database tables will be used. 3135 */ 3136 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3137 sqlite3 *db; 3138 Vdbe *v; 3139 int mask; 3140 3141 v = sqlite3GetVdbe(pParse); 3142 if( v==0 ) return; /* This only happens if there was a prior error */ 3143 db = pParse->db; 3144 if( pParse->cookieGoto==0 ){ 3145 pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1; 3146 } 3147 if( iDb>=0 ){ 3148 assert( iDb<db->nDb ); 3149 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3150 assert( iDb<MAX_ATTACHED+2 ); 3151 mask = 1<<iDb; 3152 if( (pParse->cookieMask & mask)==0 ){ 3153 pParse->cookieMask |= mask; 3154 pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3155 if( !OMIT_TEMPDB && iDb==1 ){ 3156 sqlite3OpenTempDatabase(pParse); 3157 } 3158 } 3159 } 3160 } 3161 3162 /* 3163 ** Generate VDBE code that prepares for doing an operation that 3164 ** might change the database. 3165 ** 3166 ** This routine starts a new transaction if we are not already within 3167 ** a transaction. If we are already within a transaction, then a checkpoint 3168 ** is set if the setStatement parameter is true. A checkpoint should 3169 ** be set for operations that might fail (due to a constraint) part of 3170 ** the way through and which will need to undo some writes without having to 3171 ** rollback the whole transaction. For operations where all constraints 3172 ** can be checked before any changes are made to the database, it is never 3173 ** necessary to undo a write and the checkpoint should not be set. 3174 ** 3175 ** Only database iDb and the temp database are made writable by this call. 3176 ** If iDb==0, then the main and temp databases are made writable. If 3177 ** iDb==1 then only the temp database is made writable. If iDb>1 then the 3178 ** specified auxiliary database and the temp database are made writable. 3179 */ 3180 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3181 Vdbe *v = sqlite3GetVdbe(pParse); 3182 if( v==0 ) return; 3183 sqlite3CodeVerifySchema(pParse, iDb); 3184 pParse->writeMask |= 1<<iDb; 3185 if( setStatement && pParse->nested==0 ){ 3186 sqlite3VdbeAddOp(v, OP_Statement, iDb, 0); 3187 } 3188 if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){ 3189 sqlite3BeginWriteOperation(pParse, setStatement, 1); 3190 } 3191 } 3192 3193 /* 3194 ** Check to see if pIndex uses the collating sequence pColl. Return 3195 ** true if it does and false if it does not. 3196 */ 3197 #ifndef SQLITE_OMIT_REINDEX 3198 static int collationMatch(const char *zColl, Index *pIndex){ 3199 int i; 3200 for(i=0; i<pIndex->nColumn; i++){ 3201 const char *z = pIndex->azColl[i]; 3202 if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ 3203 return 1; 3204 } 3205 } 3206 return 0; 3207 } 3208 #endif 3209 3210 /* 3211 ** Recompute all indices of pTab that use the collating sequence pColl. 3212 ** If pColl==0 then recompute all indices of pTab. 3213 */ 3214 #ifndef SQLITE_OMIT_REINDEX 3215 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3216 Index *pIndex; /* An index associated with pTab */ 3217 3218 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3219 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3220 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3221 sqlite3BeginWriteOperation(pParse, 0, iDb); 3222 sqlite3RefillIndex(pParse, pIndex, -1); 3223 } 3224 } 3225 } 3226 #endif 3227 3228 /* 3229 ** Recompute all indices of all tables in all databases where the 3230 ** indices use the collating sequence pColl. If pColl==0 then recompute 3231 ** all indices everywhere. 3232 */ 3233 #ifndef SQLITE_OMIT_REINDEX 3234 static void reindexDatabases(Parse *pParse, char const *zColl){ 3235 Db *pDb; /* A single database */ 3236 int iDb; /* The database index number */ 3237 sqlite3 *db = pParse->db; /* The database connection */ 3238 HashElem *k; /* For looping over tables in pDb */ 3239 Table *pTab; /* A table in the database */ 3240 3241 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3242 assert( pDb!=0 ); 3243 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3244 pTab = (Table*)sqliteHashData(k); 3245 reindexTable(pParse, pTab, zColl); 3246 } 3247 } 3248 } 3249 #endif 3250 3251 /* 3252 ** Generate code for the REINDEX command. 3253 ** 3254 ** REINDEX -- 1 3255 ** REINDEX <collation> -- 2 3256 ** REINDEX ?<database>.?<tablename> -- 3 3257 ** REINDEX ?<database>.?<indexname> -- 4 3258 ** 3259 ** Form 1 causes all indices in all attached databases to be rebuilt. 3260 ** Form 2 rebuilds all indices in all databases that use the named 3261 ** collating function. Forms 3 and 4 rebuild the named index or all 3262 ** indices associated with the named table. 3263 */ 3264 #ifndef SQLITE_OMIT_REINDEX 3265 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3266 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3267 char *z; /* Name of a table or index */ 3268 const char *zDb; /* Name of the database */ 3269 Table *pTab; /* A table in the database */ 3270 Index *pIndex; /* An index associated with pTab */ 3271 int iDb; /* The database index number */ 3272 sqlite3 *db = pParse->db; /* The database connection */ 3273 Token *pObjName; /* Name of the table or index to be reindexed */ 3274 3275 /* Read the database schema. If an error occurs, leave an error message 3276 ** and code in pParse and return NULL. */ 3277 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3278 return; 3279 } 3280 3281 if( pName1==0 || pName1->z==0 ){ 3282 reindexDatabases(pParse, 0); 3283 return; 3284 }else if( pName2==0 || pName2->z==0 ){ 3285 assert( pName1->z ); 3286 pColl = sqlite3FindCollSeq(db, ENC(db), (char*)pName1->z, pName1->n, 0); 3287 if( pColl ){ 3288 char *zColl = sqliteStrNDup((const char *)pName1->z, pName1->n); 3289 if( zColl ){ 3290 reindexDatabases(pParse, zColl); 3291 sqliteFree(zColl); 3292 } 3293 return; 3294 } 3295 } 3296 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3297 if( iDb<0 ) return; 3298 z = sqlite3NameFromToken(pObjName); 3299 zDb = db->aDb[iDb].zName; 3300 pTab = sqlite3FindTable(db, z, zDb); 3301 if( pTab ){ 3302 reindexTable(pParse, pTab, 0); 3303 sqliteFree(z); 3304 return; 3305 } 3306 pIndex = sqlite3FindIndex(db, z, zDb); 3307 sqliteFree(z); 3308 if( pIndex ){ 3309 sqlite3BeginWriteOperation(pParse, 0, iDb); 3310 sqlite3RefillIndex(pParse, pIndex, -1); 3311 return; 3312 } 3313 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3314 } 3315 #endif 3316 3317 /* 3318 ** Return a dynamicly allocated KeyInfo structure that can be used 3319 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3320 ** 3321 ** If successful, a pointer to the new structure is returned. In this case 3322 ** the caller is responsible for calling sqliteFree() on the returned 3323 ** pointer. If an error occurs (out of memory or missing collation 3324 ** sequence), NULL is returned and the state of pParse updated to reflect 3325 ** the error. 3326 */ 3327 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3328 int i; 3329 int nCol = pIdx->nColumn; 3330 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3331 KeyInfo *pKey = (KeyInfo *)sqliteMalloc(nBytes); 3332 3333 if( pKey ){ 3334 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3335 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3336 for(i=0; i<nCol; i++){ 3337 char *zColl = pIdx->azColl[i]; 3338 assert( zColl ); 3339 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); 3340 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3341 } 3342 pKey->nField = nCol; 3343 } 3344 3345 if( pParse->nErr ){ 3346 sqliteFree(pKey); 3347 pKey = 0; 3348 } 3349 return pKey; 3350 } 3351