1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 Pgno iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 Pgno iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel; 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 pToplevel = sqlite3ParseToplevel(pParse); 65 for(i=0; i<pToplevel->nTableLock; i++){ 66 p = &pToplevel->aTableLock[i]; 67 if( p->iDb==iDb && p->iTab==iTab ){ 68 p->isWriteLock = (p->isWriteLock || isWriteLock); 69 return; 70 } 71 } 72 73 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 74 pToplevel->aTableLock = 75 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 76 if( pToplevel->aTableLock ){ 77 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 78 p->iDb = iDb; 79 p->iTab = iTab; 80 p->isWriteLock = isWriteLock; 81 p->zLockName = zName; 82 }else{ 83 pToplevel->nTableLock = 0; 84 sqlite3OomFault(pToplevel->db); 85 } 86 } 87 88 /* 89 ** Code an OP_TableLock instruction for each table locked by the 90 ** statement (configured by calls to sqlite3TableLock()). 91 */ 92 static void codeTableLocks(Parse *pParse){ 93 int i; 94 Vdbe *pVdbe = pParse->pVdbe; 95 assert( pVdbe!=0 ); 96 97 for(i=0; i<pParse->nTableLock; i++){ 98 TableLock *p = &pParse->aTableLock[i]; 99 int p1 = p->iDb; 100 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 101 p->zLockName, P4_STATIC); 102 } 103 } 104 #else 105 #define codeTableLocks(x) 106 #endif 107 108 /* 109 ** Return TRUE if the given yDbMask object is empty - if it contains no 110 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 111 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 112 */ 113 #if SQLITE_MAX_ATTACHED>30 114 int sqlite3DbMaskAllZero(yDbMask m){ 115 int i; 116 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 117 return 1; 118 } 119 #endif 120 121 /* 122 ** This routine is called after a single SQL statement has been 123 ** parsed and a VDBE program to execute that statement has been 124 ** prepared. This routine puts the finishing touches on the 125 ** VDBE program and resets the pParse structure for the next 126 ** parse. 127 ** 128 ** Note that if an error occurred, it might be the case that 129 ** no VDBE code was generated. 130 */ 131 void sqlite3FinishCoding(Parse *pParse){ 132 sqlite3 *db; 133 Vdbe *v; 134 135 assert( pParse->pToplevel==0 ); 136 db = pParse->db; 137 if( pParse->nested ) return; 138 if( db->mallocFailed || pParse->nErr ){ 139 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 140 return; 141 } 142 143 /* Begin by generating some termination code at the end of the 144 ** vdbe program 145 */ 146 v = pParse->pVdbe; 147 if( v==0 ){ 148 if( db->init.busy ){ 149 pParse->rc = SQLITE_DONE; 150 return; 151 } 152 v = sqlite3GetVdbe(pParse); 153 if( v==0 ) pParse->rc = SQLITE_ERROR; 154 } 155 assert( !pParse->isMultiWrite 156 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 157 if( v ){ 158 if( pParse->bReturning ){ 159 Returning *pReturning = pParse->u1.pReturning; 160 int addrRewind; 161 int i; 162 int reg; 163 164 addrRewind = 165 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); 166 VdbeCoverage(v); 167 reg = pReturning->iRetReg; 168 for(i=0; i<pReturning->nRetCol; i++){ 169 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); 170 } 171 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); 172 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); 173 VdbeCoverage(v); 174 sqlite3VdbeJumpHere(v, addrRewind); 175 } 176 sqlite3VdbeAddOp0(v, OP_Halt); 177 178 #if SQLITE_USER_AUTHENTICATION 179 if( pParse->nTableLock>0 && db->init.busy==0 ){ 180 sqlite3UserAuthInit(db); 181 if( db->auth.authLevel<UAUTH_User ){ 182 sqlite3ErrorMsg(pParse, "user not authenticated"); 183 pParse->rc = SQLITE_AUTH_USER; 184 return; 185 } 186 } 187 #endif 188 189 /* The cookie mask contains one bit for each database file open. 190 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 191 ** set for each database that is used. Generate code to start a 192 ** transaction on each used database and to verify the schema cookie 193 ** on each used database. 194 */ 195 if( db->mallocFailed==0 196 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 197 ){ 198 int iDb, i; 199 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 200 sqlite3VdbeJumpHere(v, 0); 201 for(iDb=0; iDb<db->nDb; iDb++){ 202 Schema *pSchema; 203 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 204 sqlite3VdbeUsesBtree(v, iDb); 205 pSchema = db->aDb[iDb].pSchema; 206 sqlite3VdbeAddOp4Int(v, 207 OP_Transaction, /* Opcode */ 208 iDb, /* P1 */ 209 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 210 pSchema->schema_cookie, /* P3 */ 211 pSchema->iGeneration /* P4 */ 212 ); 213 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 214 VdbeComment((v, 215 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 216 } 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 for(i=0; i<pParse->nVtabLock; i++){ 219 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 220 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 221 } 222 pParse->nVtabLock = 0; 223 #endif 224 225 /* Once all the cookies have been verified and transactions opened, 226 ** obtain the required table-locks. This is a no-op unless the 227 ** shared-cache feature is enabled. 228 */ 229 codeTableLocks(pParse); 230 231 /* Initialize any AUTOINCREMENT data structures required. 232 */ 233 sqlite3AutoincrementBegin(pParse); 234 235 /* Code constant expressions that where factored out of inner loops. 236 ** 237 ** The pConstExpr list might also contain expressions that we simply 238 ** want to keep around until the Parse object is deleted. Such 239 ** expressions have iConstExprReg==0. Do not generate code for 240 ** those expressions, of course. 241 */ 242 if( pParse->pConstExpr ){ 243 ExprList *pEL = pParse->pConstExpr; 244 pParse->okConstFactor = 0; 245 for(i=0; i<pEL->nExpr; i++){ 246 int iReg = pEL->a[i].u.iConstExprReg; 247 if( iReg>0 ){ 248 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); 249 } 250 } 251 } 252 253 if( pParse->bReturning ){ 254 Returning *pRet = pParse->u1.pReturning; 255 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); 256 } 257 258 /* Finally, jump back to the beginning of the executable code. */ 259 sqlite3VdbeGoto(v, 1); 260 } 261 } 262 263 /* Get the VDBE program ready for execution 264 */ 265 if( v && pParse->nErr==0 && !db->mallocFailed ){ 266 /* A minimum of one cursor is required if autoincrement is used 267 * See ticket [a696379c1f08866] */ 268 assert( pParse->pAinc==0 || pParse->nTab>0 ); 269 sqlite3VdbeMakeReady(v, pParse); 270 pParse->rc = SQLITE_DONE; 271 }else{ 272 pParse->rc = SQLITE_ERROR; 273 } 274 } 275 276 /* 277 ** Run the parser and code generator recursively in order to generate 278 ** code for the SQL statement given onto the end of the pParse context 279 ** currently under construction. When the parser is run recursively 280 ** this way, the final OP_Halt is not appended and other initialization 281 ** and finalization steps are omitted because those are handling by the 282 ** outermost parser. 283 ** 284 ** Not everything is nestable. This facility is designed to permit 285 ** INSERT, UPDATE, and DELETE operations against the schema table. Use 286 ** care if you decide to try to use this routine for some other purposes. 287 */ 288 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 289 va_list ap; 290 char *zSql; 291 char *zErrMsg = 0; 292 sqlite3 *db = pParse->db; 293 char saveBuf[PARSE_TAIL_SZ]; 294 295 if( pParse->nErr ) return; 296 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 297 va_start(ap, zFormat); 298 zSql = sqlite3VMPrintf(db, zFormat, ap); 299 va_end(ap); 300 if( zSql==0 ){ 301 /* This can result either from an OOM or because the formatted string 302 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 303 ** an error */ 304 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 305 pParse->nErr++; 306 return; 307 } 308 pParse->nested++; 309 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 310 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 311 sqlite3RunParser(pParse, zSql, &zErrMsg); 312 sqlite3DbFree(db, zErrMsg); 313 sqlite3DbFree(db, zSql); 314 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 315 pParse->nested--; 316 } 317 318 #if SQLITE_USER_AUTHENTICATION 319 /* 320 ** Return TRUE if zTable is the name of the system table that stores the 321 ** list of users and their access credentials. 322 */ 323 int sqlite3UserAuthTable(const char *zTable){ 324 return sqlite3_stricmp(zTable, "sqlite_user")==0; 325 } 326 #endif 327 328 /* 329 ** Locate the in-memory structure that describes a particular database 330 ** table given the name of that table and (optionally) the name of the 331 ** database containing the table. Return NULL if not found. 332 ** 333 ** If zDatabase is 0, all databases are searched for the table and the 334 ** first matching table is returned. (No checking for duplicate table 335 ** names is done.) The search order is TEMP first, then MAIN, then any 336 ** auxiliary databases added using the ATTACH command. 337 ** 338 ** See also sqlite3LocateTable(). 339 */ 340 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 341 Table *p = 0; 342 int i; 343 344 /* All mutexes are required for schema access. Make sure we hold them. */ 345 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 346 #if SQLITE_USER_AUTHENTICATION 347 /* Only the admin user is allowed to know that the sqlite_user table 348 ** exists */ 349 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 350 return 0; 351 } 352 #endif 353 if( zDatabase ){ 354 for(i=0; i<db->nDb; i++){ 355 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 356 } 357 if( i>=db->nDb ){ 358 /* No match against the official names. But always match "main" 359 ** to schema 0 as a legacy fallback. */ 360 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 361 i = 0; 362 }else{ 363 return 0; 364 } 365 } 366 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 367 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 368 if( i==1 ){ 369 if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 370 || sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 371 || sqlite3StrICmp(zName+7, &DFLT_SCHEMA_TABLE[7])==0 372 ){ 373 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 374 DFLT_TEMP_SCHEMA_TABLE); 375 } 376 }else{ 377 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 378 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, 379 DFLT_SCHEMA_TABLE); 380 } 381 } 382 } 383 }else{ 384 /* Match against TEMP first */ 385 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 386 if( p ) return p; 387 /* The main database is second */ 388 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 389 if( p ) return p; 390 /* Attached databases are in order of attachment */ 391 for(i=2; i<db->nDb; i++){ 392 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 393 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 394 if( p ) break; 395 } 396 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ 397 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){ 398 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE); 399 }else if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 ){ 400 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, 401 DFLT_TEMP_SCHEMA_TABLE); 402 } 403 } 404 } 405 return p; 406 } 407 408 /* 409 ** Locate the in-memory structure that describes a particular database 410 ** table given the name of that table and (optionally) the name of the 411 ** database containing the table. Return NULL if not found. Also leave an 412 ** error message in pParse->zErrMsg. 413 ** 414 ** The difference between this routine and sqlite3FindTable() is that this 415 ** routine leaves an error message in pParse->zErrMsg where 416 ** sqlite3FindTable() does not. 417 */ 418 Table *sqlite3LocateTable( 419 Parse *pParse, /* context in which to report errors */ 420 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 421 const char *zName, /* Name of the table we are looking for */ 422 const char *zDbase /* Name of the database. Might be NULL */ 423 ){ 424 Table *p; 425 sqlite3 *db = pParse->db; 426 427 /* Read the database schema. If an error occurs, leave an error message 428 ** and code in pParse and return NULL. */ 429 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 430 && SQLITE_OK!=sqlite3ReadSchema(pParse) 431 ){ 432 return 0; 433 } 434 435 p = sqlite3FindTable(db, zName, zDbase); 436 if( p==0 ){ 437 #ifndef SQLITE_OMIT_VIRTUALTABLE 438 /* If zName is the not the name of a table in the schema created using 439 ** CREATE, then check to see if it is the name of an virtual table that 440 ** can be an eponymous virtual table. */ 441 if( pParse->disableVtab==0 ){ 442 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 443 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 444 pMod = sqlite3PragmaVtabRegister(db, zName); 445 } 446 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 447 return pMod->pEpoTab; 448 } 449 } 450 #endif 451 if( flags & LOCATE_NOERR ) return 0; 452 pParse->checkSchema = 1; 453 }else if( IsVirtual(p) && pParse->disableVtab ){ 454 p = 0; 455 } 456 457 if( p==0 ){ 458 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 459 if( zDbase ){ 460 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 461 }else{ 462 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 463 } 464 } 465 466 return p; 467 } 468 469 /* 470 ** Locate the table identified by *p. 471 ** 472 ** This is a wrapper around sqlite3LocateTable(). The difference between 473 ** sqlite3LocateTable() and this function is that this function restricts 474 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 475 ** non-NULL if it is part of a view or trigger program definition. See 476 ** sqlite3FixSrcList() for details. 477 */ 478 Table *sqlite3LocateTableItem( 479 Parse *pParse, 480 u32 flags, 481 SrcItem *p 482 ){ 483 const char *zDb; 484 assert( p->pSchema==0 || p->zDatabase==0 ); 485 if( p->pSchema ){ 486 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 487 zDb = pParse->db->aDb[iDb].zDbSName; 488 }else{ 489 zDb = p->zDatabase; 490 } 491 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 492 } 493 494 /* 495 ** Locate the in-memory structure that describes 496 ** a particular index given the name of that index 497 ** and the name of the database that contains the index. 498 ** Return NULL if not found. 499 ** 500 ** If zDatabase is 0, all databases are searched for the 501 ** table and the first matching index is returned. (No checking 502 ** for duplicate index names is done.) The search order is 503 ** TEMP first, then MAIN, then any auxiliary databases added 504 ** using the ATTACH command. 505 */ 506 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 507 Index *p = 0; 508 int i; 509 /* All mutexes are required for schema access. Make sure we hold them. */ 510 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 511 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 512 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 513 Schema *pSchema = db->aDb[j].pSchema; 514 assert( pSchema ); 515 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 516 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 517 p = sqlite3HashFind(&pSchema->idxHash, zName); 518 if( p ) break; 519 } 520 return p; 521 } 522 523 /* 524 ** Reclaim the memory used by an index 525 */ 526 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 527 #ifndef SQLITE_OMIT_ANALYZE 528 sqlite3DeleteIndexSamples(db, p); 529 #endif 530 sqlite3ExprDelete(db, p->pPartIdxWhere); 531 sqlite3ExprListDelete(db, p->aColExpr); 532 sqlite3DbFree(db, p->zColAff); 533 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 534 #ifdef SQLITE_ENABLE_STAT4 535 sqlite3_free(p->aiRowEst); 536 #endif 537 sqlite3DbFree(db, p); 538 } 539 540 /* 541 ** For the index called zIdxName which is found in the database iDb, 542 ** unlike that index from its Table then remove the index from 543 ** the index hash table and free all memory structures associated 544 ** with the index. 545 */ 546 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 547 Index *pIndex; 548 Hash *pHash; 549 550 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 551 pHash = &db->aDb[iDb].pSchema->idxHash; 552 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 553 if( ALWAYS(pIndex) ){ 554 if( pIndex->pTable->pIndex==pIndex ){ 555 pIndex->pTable->pIndex = pIndex->pNext; 556 }else{ 557 Index *p; 558 /* Justification of ALWAYS(); The index must be on the list of 559 ** indices. */ 560 p = pIndex->pTable->pIndex; 561 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 562 if( ALWAYS(p && p->pNext==pIndex) ){ 563 p->pNext = pIndex->pNext; 564 } 565 } 566 sqlite3FreeIndex(db, pIndex); 567 } 568 db->mDbFlags |= DBFLAG_SchemaChange; 569 } 570 571 /* 572 ** Look through the list of open database files in db->aDb[] and if 573 ** any have been closed, remove them from the list. Reallocate the 574 ** db->aDb[] structure to a smaller size, if possible. 575 ** 576 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 577 ** are never candidates for being collapsed. 578 */ 579 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 580 int i, j; 581 for(i=j=2; i<db->nDb; i++){ 582 struct Db *pDb = &db->aDb[i]; 583 if( pDb->pBt==0 ){ 584 sqlite3DbFree(db, pDb->zDbSName); 585 pDb->zDbSName = 0; 586 continue; 587 } 588 if( j<i ){ 589 db->aDb[j] = db->aDb[i]; 590 } 591 j++; 592 } 593 db->nDb = j; 594 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 595 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 596 sqlite3DbFree(db, db->aDb); 597 db->aDb = db->aDbStatic; 598 } 599 } 600 601 /* 602 ** Reset the schema for the database at index iDb. Also reset the 603 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 604 ** Deferred resets may be run by calling with iDb<0. 605 */ 606 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 607 int i; 608 assert( iDb<db->nDb ); 609 610 if( iDb>=0 ){ 611 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 612 DbSetProperty(db, iDb, DB_ResetWanted); 613 DbSetProperty(db, 1, DB_ResetWanted); 614 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 615 } 616 617 if( db->nSchemaLock==0 ){ 618 for(i=0; i<db->nDb; i++){ 619 if( DbHasProperty(db, i, DB_ResetWanted) ){ 620 sqlite3SchemaClear(db->aDb[i].pSchema); 621 } 622 } 623 } 624 } 625 626 /* 627 ** Erase all schema information from all attached databases (including 628 ** "main" and "temp") for a single database connection. 629 */ 630 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 631 int i; 632 sqlite3BtreeEnterAll(db); 633 for(i=0; i<db->nDb; i++){ 634 Db *pDb = &db->aDb[i]; 635 if( pDb->pSchema ){ 636 if( db->nSchemaLock==0 ){ 637 sqlite3SchemaClear(pDb->pSchema); 638 }else{ 639 DbSetProperty(db, i, DB_ResetWanted); 640 } 641 } 642 } 643 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 644 sqlite3VtabUnlockList(db); 645 sqlite3BtreeLeaveAll(db); 646 if( db->nSchemaLock==0 ){ 647 sqlite3CollapseDatabaseArray(db); 648 } 649 } 650 651 /* 652 ** This routine is called when a commit occurs. 653 */ 654 void sqlite3CommitInternalChanges(sqlite3 *db){ 655 db->mDbFlags &= ~DBFLAG_SchemaChange; 656 } 657 658 /* 659 ** Delete memory allocated for the column names of a table or view (the 660 ** Table.aCol[] array). 661 */ 662 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 663 int i; 664 Column *pCol; 665 assert( pTable!=0 ); 666 if( (pCol = pTable->aCol)!=0 ){ 667 for(i=0; i<pTable->nCol; i++, pCol++){ 668 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) ); 669 sqlite3DbFree(db, pCol->zName); 670 sqlite3ExprDelete(db, pCol->pDflt); 671 sqlite3DbFree(db, pCol->zColl); 672 } 673 sqlite3DbFree(db, pTable->aCol); 674 } 675 } 676 677 /* 678 ** Remove the memory data structures associated with the given 679 ** Table. No changes are made to disk by this routine. 680 ** 681 ** This routine just deletes the data structure. It does not unlink 682 ** the table data structure from the hash table. But it does destroy 683 ** memory structures of the indices and foreign keys associated with 684 ** the table. 685 ** 686 ** The db parameter is optional. It is needed if the Table object 687 ** contains lookaside memory. (Table objects in the schema do not use 688 ** lookaside memory, but some ephemeral Table objects do.) Or the 689 ** db parameter can be used with db->pnBytesFreed to measure the memory 690 ** used by the Table object. 691 */ 692 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 693 Index *pIndex, *pNext; 694 695 #ifdef SQLITE_DEBUG 696 /* Record the number of outstanding lookaside allocations in schema Tables 697 ** prior to doing any free() operations. Since schema Tables do not use 698 ** lookaside, this number should not change. 699 ** 700 ** If malloc has already failed, it may be that it failed while allocating 701 ** a Table object that was going to be marked ephemeral. So do not check 702 ** that no lookaside memory is used in this case either. */ 703 int nLookaside = 0; 704 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 705 nLookaside = sqlite3LookasideUsed(db, 0); 706 } 707 #endif 708 709 /* Delete all indices associated with this table. */ 710 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 711 pNext = pIndex->pNext; 712 assert( pIndex->pSchema==pTable->pSchema 713 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 714 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 715 char *zName = pIndex->zName; 716 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 717 &pIndex->pSchema->idxHash, zName, 0 718 ); 719 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 720 assert( pOld==pIndex || pOld==0 ); 721 } 722 sqlite3FreeIndex(db, pIndex); 723 } 724 725 /* Delete any foreign keys attached to this table. */ 726 sqlite3FkDelete(db, pTable); 727 728 /* Delete the Table structure itself. 729 */ 730 sqlite3DeleteColumnNames(db, pTable); 731 sqlite3DbFree(db, pTable->zName); 732 sqlite3DbFree(db, pTable->zColAff); 733 sqlite3SelectDelete(db, pTable->pSelect); 734 sqlite3ExprListDelete(db, pTable->pCheck); 735 #ifndef SQLITE_OMIT_VIRTUALTABLE 736 sqlite3VtabClear(db, pTable); 737 #endif 738 sqlite3DbFree(db, pTable); 739 740 /* Verify that no lookaside memory was used by schema tables */ 741 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 742 } 743 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 744 /* Do not delete the table until the reference count reaches zero. */ 745 if( !pTable ) return; 746 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 747 deleteTable(db, pTable); 748 } 749 750 751 /* 752 ** Unlink the given table from the hash tables and the delete the 753 ** table structure with all its indices and foreign keys. 754 */ 755 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 756 Table *p; 757 Db *pDb; 758 759 assert( db!=0 ); 760 assert( iDb>=0 && iDb<db->nDb ); 761 assert( zTabName ); 762 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 763 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 764 pDb = &db->aDb[iDb]; 765 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 766 sqlite3DeleteTable(db, p); 767 db->mDbFlags |= DBFLAG_SchemaChange; 768 } 769 770 /* 771 ** Given a token, return a string that consists of the text of that 772 ** token. Space to hold the returned string 773 ** is obtained from sqliteMalloc() and must be freed by the calling 774 ** function. 775 ** 776 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 777 ** surround the body of the token are removed. 778 ** 779 ** Tokens are often just pointers into the original SQL text and so 780 ** are not \000 terminated and are not persistent. The returned string 781 ** is \000 terminated and is persistent. 782 */ 783 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 784 char *zName; 785 if( pName ){ 786 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 787 sqlite3Dequote(zName); 788 }else{ 789 zName = 0; 790 } 791 return zName; 792 } 793 794 /* 795 ** Open the sqlite_schema table stored in database number iDb for 796 ** writing. The table is opened using cursor 0. 797 */ 798 void sqlite3OpenSchemaTable(Parse *p, int iDb){ 799 Vdbe *v = sqlite3GetVdbe(p); 800 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE); 801 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); 802 if( p->nTab==0 ){ 803 p->nTab = 1; 804 } 805 } 806 807 /* 808 ** Parameter zName points to a nul-terminated buffer containing the name 809 ** of a database ("main", "temp" or the name of an attached db). This 810 ** function returns the index of the named database in db->aDb[], or 811 ** -1 if the named db cannot be found. 812 */ 813 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 814 int i = -1; /* Database number */ 815 if( zName ){ 816 Db *pDb; 817 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 818 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 819 /* "main" is always an acceptable alias for the primary database 820 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 821 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 822 } 823 } 824 return i; 825 } 826 827 /* 828 ** The token *pName contains the name of a database (either "main" or 829 ** "temp" or the name of an attached db). This routine returns the 830 ** index of the named database in db->aDb[], or -1 if the named db 831 ** does not exist. 832 */ 833 int sqlite3FindDb(sqlite3 *db, Token *pName){ 834 int i; /* Database number */ 835 char *zName; /* Name we are searching for */ 836 zName = sqlite3NameFromToken(db, pName); 837 i = sqlite3FindDbName(db, zName); 838 sqlite3DbFree(db, zName); 839 return i; 840 } 841 842 /* The table or view or trigger name is passed to this routine via tokens 843 ** pName1 and pName2. If the table name was fully qualified, for example: 844 ** 845 ** CREATE TABLE xxx.yyy (...); 846 ** 847 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 848 ** the table name is not fully qualified, i.e.: 849 ** 850 ** CREATE TABLE yyy(...); 851 ** 852 ** Then pName1 is set to "yyy" and pName2 is "". 853 ** 854 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 855 ** pName2) that stores the unqualified table name. The index of the 856 ** database "xxx" is returned. 857 */ 858 int sqlite3TwoPartName( 859 Parse *pParse, /* Parsing and code generating context */ 860 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 861 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 862 Token **pUnqual /* Write the unqualified object name here */ 863 ){ 864 int iDb; /* Database holding the object */ 865 sqlite3 *db = pParse->db; 866 867 assert( pName2!=0 ); 868 if( pName2->n>0 ){ 869 if( db->init.busy ) { 870 sqlite3ErrorMsg(pParse, "corrupt database"); 871 return -1; 872 } 873 *pUnqual = pName2; 874 iDb = sqlite3FindDb(db, pName1); 875 if( iDb<0 ){ 876 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 877 return -1; 878 } 879 }else{ 880 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 881 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 882 iDb = db->init.iDb; 883 *pUnqual = pName1; 884 } 885 return iDb; 886 } 887 888 /* 889 ** True if PRAGMA writable_schema is ON 890 */ 891 int sqlite3WritableSchema(sqlite3 *db){ 892 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 893 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 894 SQLITE_WriteSchema ); 895 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 896 SQLITE_Defensive ); 897 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 898 (SQLITE_WriteSchema|SQLITE_Defensive) ); 899 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 900 } 901 902 /* 903 ** This routine is used to check if the UTF-8 string zName is a legal 904 ** unqualified name for a new schema object (table, index, view or 905 ** trigger). All names are legal except those that begin with the string 906 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 907 ** is reserved for internal use. 908 ** 909 ** When parsing the sqlite_schema table, this routine also checks to 910 ** make sure the "type", "name", and "tbl_name" columns are consistent 911 ** with the SQL. 912 */ 913 int sqlite3CheckObjectName( 914 Parse *pParse, /* Parsing context */ 915 const char *zName, /* Name of the object to check */ 916 const char *zType, /* Type of this object */ 917 const char *zTblName /* Parent table name for triggers and indexes */ 918 ){ 919 sqlite3 *db = pParse->db; 920 if( sqlite3WritableSchema(db) 921 || db->init.imposterTable 922 || !sqlite3Config.bExtraSchemaChecks 923 ){ 924 /* Skip these error checks for writable_schema=ON */ 925 return SQLITE_OK; 926 } 927 if( db->init.busy ){ 928 if( sqlite3_stricmp(zType, db->init.azInit[0]) 929 || sqlite3_stricmp(zName, db->init.azInit[1]) 930 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 931 ){ 932 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 933 return SQLITE_ERROR; 934 } 935 }else{ 936 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 937 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 938 ){ 939 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 940 zName); 941 return SQLITE_ERROR; 942 } 943 944 } 945 return SQLITE_OK; 946 } 947 948 /* 949 ** Return the PRIMARY KEY index of a table 950 */ 951 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 952 Index *p; 953 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 954 return p; 955 } 956 957 /* 958 ** Convert an table column number into a index column number. That is, 959 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 960 ** find the (first) offset of that column in index pIdx. Or return -1 961 ** if column iCol is not used in index pIdx. 962 */ 963 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 964 int i; 965 for(i=0; i<pIdx->nColumn; i++){ 966 if( iCol==pIdx->aiColumn[i] ) return i; 967 } 968 return -1; 969 } 970 971 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 972 /* Convert a storage column number into a table column number. 973 ** 974 ** The storage column number (0,1,2,....) is the index of the value 975 ** as it appears in the record on disk. The true column number 976 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 977 ** 978 ** The storage column number is less than the table column number if 979 ** and only there are VIRTUAL columns to the left. 980 ** 981 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 982 */ 983 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 984 if( pTab->tabFlags & TF_HasVirtual ){ 985 int i; 986 for(i=0; i<=iCol; i++){ 987 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 988 } 989 } 990 return iCol; 991 } 992 #endif 993 994 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 995 /* Convert a table column number into a storage column number. 996 ** 997 ** The storage column number (0,1,2,....) is the index of the value 998 ** as it appears in the record on disk. Or, if the input column is 999 ** the N-th virtual column (zero-based) then the storage number is 1000 ** the number of non-virtual columns in the table plus N. 1001 ** 1002 ** The true column number is the index (0,1,2,...) of the column in 1003 ** the CREATE TABLE statement. 1004 ** 1005 ** If the input column is a VIRTUAL column, then it should not appear 1006 ** in storage. But the value sometimes is cached in registers that 1007 ** follow the range of registers used to construct storage. This 1008 ** avoids computing the same VIRTUAL column multiple times, and provides 1009 ** values for use by OP_Param opcodes in triggers. Hence, if the 1010 ** input column is a VIRTUAL table, put it after all the other columns. 1011 ** 1012 ** In the following, N means "normal column", S means STORED, and 1013 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 1014 ** 1015 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 1016 ** -- 0 1 2 3 4 5 6 7 8 1017 ** 1018 ** Then the mapping from this function is as follows: 1019 ** 1020 ** INPUTS: 0 1 2 3 4 5 6 7 8 1021 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 1022 ** 1023 ** So, in other words, this routine shifts all the virtual columns to 1024 ** the end. 1025 ** 1026 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 1027 ** this routine is a no-op macro. If the pTab does not have any virtual 1028 ** columns, then this routine is no-op that always return iCol. If iCol 1029 ** is negative (indicating the ROWID column) then this routine return iCol. 1030 */ 1031 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 1032 int i; 1033 i16 n; 1034 assert( iCol<pTab->nCol ); 1035 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 1036 for(i=0, n=0; i<iCol; i++){ 1037 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 1038 } 1039 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 1040 /* iCol is a virtual column itself */ 1041 return pTab->nNVCol + i - n; 1042 }else{ 1043 /* iCol is a normal or stored column */ 1044 return n; 1045 } 1046 } 1047 #endif 1048 1049 /* 1050 ** Begin constructing a new table representation in memory. This is 1051 ** the first of several action routines that get called in response 1052 ** to a CREATE TABLE statement. In particular, this routine is called 1053 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 1054 ** flag is true if the table should be stored in the auxiliary database 1055 ** file instead of in the main database file. This is normally the case 1056 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 1057 ** CREATE and TABLE. 1058 ** 1059 ** The new table record is initialized and put in pParse->pNewTable. 1060 ** As more of the CREATE TABLE statement is parsed, additional action 1061 ** routines will be called to add more information to this record. 1062 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1063 ** is called to complete the construction of the new table record. 1064 */ 1065 void sqlite3StartTable( 1066 Parse *pParse, /* Parser context */ 1067 Token *pName1, /* First part of the name of the table or view */ 1068 Token *pName2, /* Second part of the name of the table or view */ 1069 int isTemp, /* True if this is a TEMP table */ 1070 int isView, /* True if this is a VIEW */ 1071 int isVirtual, /* True if this is a VIRTUAL table */ 1072 int noErr /* Do nothing if table already exists */ 1073 ){ 1074 Table *pTable; 1075 char *zName = 0; /* The name of the new table */ 1076 sqlite3 *db = pParse->db; 1077 Vdbe *v; 1078 int iDb; /* Database number to create the table in */ 1079 Token *pName; /* Unqualified name of the table to create */ 1080 1081 if( db->init.busy && db->init.newTnum==1 ){ 1082 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ 1083 iDb = db->init.iDb; 1084 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1085 pName = pName1; 1086 }else{ 1087 /* The common case */ 1088 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1089 if( iDb<0 ) return; 1090 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1091 /* If creating a temp table, the name may not be qualified. Unless 1092 ** the database name is "temp" anyway. */ 1093 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1094 return; 1095 } 1096 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1097 zName = sqlite3NameFromToken(db, pName); 1098 if( IN_RENAME_OBJECT ){ 1099 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1100 } 1101 } 1102 pParse->sNameToken = *pName; 1103 if( zName==0 ) return; 1104 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1105 goto begin_table_error; 1106 } 1107 if( db->init.iDb==1 ) isTemp = 1; 1108 #ifndef SQLITE_OMIT_AUTHORIZATION 1109 assert( isTemp==0 || isTemp==1 ); 1110 assert( isView==0 || isView==1 ); 1111 { 1112 static const u8 aCode[] = { 1113 SQLITE_CREATE_TABLE, 1114 SQLITE_CREATE_TEMP_TABLE, 1115 SQLITE_CREATE_VIEW, 1116 SQLITE_CREATE_TEMP_VIEW 1117 }; 1118 char *zDb = db->aDb[iDb].zDbSName; 1119 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1120 goto begin_table_error; 1121 } 1122 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1123 zName, 0, zDb) ){ 1124 goto begin_table_error; 1125 } 1126 } 1127 #endif 1128 1129 /* Make sure the new table name does not collide with an existing 1130 ** index or table name in the same database. Issue an error message if 1131 ** it does. The exception is if the statement being parsed was passed 1132 ** to an sqlite3_declare_vtab() call. In that case only the column names 1133 ** and types will be used, so there is no need to test for namespace 1134 ** collisions. 1135 */ 1136 if( !IN_SPECIAL_PARSE ){ 1137 char *zDb = db->aDb[iDb].zDbSName; 1138 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1139 goto begin_table_error; 1140 } 1141 pTable = sqlite3FindTable(db, zName, zDb); 1142 if( pTable ){ 1143 if( !noErr ){ 1144 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1145 }else{ 1146 assert( !db->init.busy || CORRUPT_DB ); 1147 sqlite3CodeVerifySchema(pParse, iDb); 1148 } 1149 goto begin_table_error; 1150 } 1151 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1152 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1153 goto begin_table_error; 1154 } 1155 } 1156 1157 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1158 if( pTable==0 ){ 1159 assert( db->mallocFailed ); 1160 pParse->rc = SQLITE_NOMEM_BKPT; 1161 pParse->nErr++; 1162 goto begin_table_error; 1163 } 1164 pTable->zName = zName; 1165 pTable->iPKey = -1; 1166 pTable->pSchema = db->aDb[iDb].pSchema; 1167 pTable->nTabRef = 1; 1168 #ifdef SQLITE_DEFAULT_ROWEST 1169 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1170 #else 1171 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1172 #endif 1173 assert( pParse->pNewTable==0 ); 1174 pParse->pNewTable = pTable; 1175 1176 /* Begin generating the code that will insert the table record into 1177 ** the schema table. Note in particular that we must go ahead 1178 ** and allocate the record number for the table entry now. Before any 1179 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1180 ** indices to be created and the table record must come before the 1181 ** indices. Hence, the record number for the table must be allocated 1182 ** now. 1183 */ 1184 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1185 int addr1; 1186 int fileFormat; 1187 int reg1, reg2, reg3; 1188 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1189 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1190 sqlite3BeginWriteOperation(pParse, 1, iDb); 1191 1192 #ifndef SQLITE_OMIT_VIRTUALTABLE 1193 if( isVirtual ){ 1194 sqlite3VdbeAddOp0(v, OP_VBegin); 1195 } 1196 #endif 1197 1198 /* If the file format and encoding in the database have not been set, 1199 ** set them now. 1200 */ 1201 reg1 = pParse->regRowid = ++pParse->nMem; 1202 reg2 = pParse->regRoot = ++pParse->nMem; 1203 reg3 = ++pParse->nMem; 1204 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1205 sqlite3VdbeUsesBtree(v, iDb); 1206 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1207 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1208 1 : SQLITE_MAX_FILE_FORMAT; 1209 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1210 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1211 sqlite3VdbeJumpHere(v, addr1); 1212 1213 /* This just creates a place-holder record in the sqlite_schema table. 1214 ** The record created does not contain anything yet. It will be replaced 1215 ** by the real entry in code generated at sqlite3EndTable(). 1216 ** 1217 ** The rowid for the new entry is left in register pParse->regRowid. 1218 ** The root page number of the new table is left in reg pParse->regRoot. 1219 ** The rowid and root page number values are needed by the code that 1220 ** sqlite3EndTable will generate. 1221 */ 1222 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1223 if( isView || isVirtual ){ 1224 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1225 }else 1226 #endif 1227 { 1228 assert( !pParse->bReturning ); 1229 pParse->u1.addrCrTab = 1230 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1231 } 1232 sqlite3OpenSchemaTable(pParse, iDb); 1233 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1234 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1235 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1236 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1237 sqlite3VdbeAddOp0(v, OP_Close); 1238 } 1239 1240 /* Normal (non-error) return. */ 1241 return; 1242 1243 /* If an error occurs, we jump here */ 1244 begin_table_error: 1245 sqlite3DbFree(db, zName); 1246 return; 1247 } 1248 1249 /* Set properties of a table column based on the (magical) 1250 ** name of the column. 1251 */ 1252 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1253 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1254 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1255 pCol->colFlags |= COLFLAG_HIDDEN; 1256 if( pTab ) pTab->tabFlags |= TF_HasHidden; 1257 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1258 pTab->tabFlags |= TF_OOOHidden; 1259 } 1260 } 1261 #endif 1262 1263 /* 1264 ** Name of the special TEMP trigger used to implement RETURNING. The 1265 ** name begins with "sqlite_" so that it is guaranteed not to collide 1266 ** with any application-generated triggers. 1267 */ 1268 #define RETURNING_TRIGGER_NAME "sqlite_returning" 1269 1270 /* 1271 ** Clean up the data structures associated with the RETURNING clause. 1272 */ 1273 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ 1274 Hash *pHash; 1275 pHash = &(db->aDb[1].pSchema->trigHash); 1276 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); 1277 sqlite3ExprListDelete(db, pRet->pReturnEL); 1278 sqlite3DbFree(db, pRet); 1279 } 1280 1281 /* 1282 ** Add the RETURNING clause to the parse currently underway. 1283 ** 1284 ** This routine creates a special TEMP trigger that will fire for each row 1285 ** of the DML statement. That TEMP trigger contains a single SELECT 1286 ** statement with a result set that is the argument of the RETURNING clause. 1287 ** The trigger has the Trigger.bReturning flag and an opcode of 1288 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator 1289 ** knows to handle it specially. The TEMP trigger is automatically 1290 ** removed at the end of the parse. 1291 ** 1292 ** When this routine is called, we do not yet know if the RETURNING clause 1293 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a 1294 ** RETURNING trigger instead. It will then be converted into the appropriate 1295 ** type on the first call to sqlite3TriggersExist(). 1296 */ 1297 void sqlite3AddReturning(Parse *pParse, ExprList *pList){ 1298 Returning *pRet; 1299 Hash *pHash; 1300 sqlite3 *db = pParse->db; 1301 if( pParse->pNewTrigger ){ 1302 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); 1303 }else{ 1304 assert( pParse->bReturning==0 ); 1305 } 1306 pParse->bReturning = 1; 1307 pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); 1308 if( pRet==0 ){ 1309 sqlite3ExprListDelete(db, pList); 1310 return; 1311 } 1312 pParse->u1.pReturning = pRet; 1313 pRet->pParse = pParse; 1314 pRet->pReturnEL = pList; 1315 sqlite3ParserAddCleanup(pParse, 1316 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); 1317 testcase( pParse->earlyCleanup ); 1318 if( db->mallocFailed ) return; 1319 pRet->retTrig.zName = RETURNING_TRIGGER_NAME; 1320 pRet->retTrig.op = TK_RETURNING; 1321 pRet->retTrig.tr_tm = TRIGGER_AFTER; 1322 pRet->retTrig.bReturning = 1; 1323 pRet->retTrig.pSchema = db->aDb[1].pSchema; 1324 pRet->retTrig.step_list = &pRet->retTStep; 1325 pRet->retTStep.op = TK_RETURNING; 1326 pRet->retTStep.pTrig = &pRet->retTrig; 1327 pRet->retTStep.pExprList = pList; 1328 pHash = &(db->aDb[1].pSchema->trigHash); 1329 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); 1330 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) 1331 ==&pRet->retTrig ){ 1332 sqlite3OomFault(db); 1333 } 1334 } 1335 1336 /* 1337 ** Add a new column to the table currently being constructed. 1338 ** 1339 ** The parser calls this routine once for each column declaration 1340 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1341 ** first to get things going. Then this routine is called for each 1342 ** column. 1343 */ 1344 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1345 Table *p; 1346 int i; 1347 char *z; 1348 char *zType; 1349 Column *pCol; 1350 sqlite3 *db = pParse->db; 1351 u8 hName; 1352 1353 if( (p = pParse->pNewTable)==0 ) return; 1354 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1355 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1356 return; 1357 } 1358 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1359 if( z==0 ) return; 1360 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1361 memcpy(z, pName->z, pName->n); 1362 z[pName->n] = 0; 1363 sqlite3Dequote(z); 1364 hName = sqlite3StrIHash(z); 1365 for(i=0; i<p->nCol; i++){ 1366 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zName)==0 ){ 1367 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1368 sqlite3DbFree(db, z); 1369 return; 1370 } 1371 } 1372 if( (p->nCol & 0x7)==0 ){ 1373 Column *aNew; 1374 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1375 if( aNew==0 ){ 1376 sqlite3DbFree(db, z); 1377 return; 1378 } 1379 p->aCol = aNew; 1380 } 1381 pCol = &p->aCol[p->nCol]; 1382 memset(pCol, 0, sizeof(p->aCol[0])); 1383 pCol->zName = z; 1384 pCol->hName = hName; 1385 sqlite3ColumnPropertiesFromName(p, pCol); 1386 1387 if( pType->n==0 ){ 1388 /* If there is no type specified, columns have the default affinity 1389 ** 'BLOB' with a default size of 4 bytes. */ 1390 pCol->affinity = SQLITE_AFF_BLOB; 1391 pCol->szEst = 1; 1392 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1393 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1394 pCol->colFlags |= COLFLAG_SORTERREF; 1395 } 1396 #endif 1397 }else{ 1398 zType = z + sqlite3Strlen30(z) + 1; 1399 memcpy(zType, pType->z, pType->n); 1400 zType[pType->n] = 0; 1401 sqlite3Dequote(zType); 1402 pCol->affinity = sqlite3AffinityType(zType, pCol); 1403 pCol->colFlags |= COLFLAG_HASTYPE; 1404 } 1405 p->nCol++; 1406 p->nNVCol++; 1407 pParse->constraintName.n = 0; 1408 } 1409 1410 /* 1411 ** This routine is called by the parser while in the middle of 1412 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1413 ** been seen on a column. This routine sets the notNull flag on 1414 ** the column currently under construction. 1415 */ 1416 void sqlite3AddNotNull(Parse *pParse, int onError){ 1417 Table *p; 1418 Column *pCol; 1419 p = pParse->pNewTable; 1420 if( p==0 || NEVER(p->nCol<1) ) return; 1421 pCol = &p->aCol[p->nCol-1]; 1422 pCol->notNull = (u8)onError; 1423 p->tabFlags |= TF_HasNotNull; 1424 1425 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1426 ** on this column. */ 1427 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1428 Index *pIdx; 1429 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1430 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1431 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1432 pIdx->uniqNotNull = 1; 1433 } 1434 } 1435 } 1436 } 1437 1438 /* 1439 ** Scan the column type name zType (length nType) and return the 1440 ** associated affinity type. 1441 ** 1442 ** This routine does a case-independent search of zType for the 1443 ** substrings in the following table. If one of the substrings is 1444 ** found, the corresponding affinity is returned. If zType contains 1445 ** more than one of the substrings, entries toward the top of 1446 ** the table take priority. For example, if zType is 'BLOBINT', 1447 ** SQLITE_AFF_INTEGER is returned. 1448 ** 1449 ** Substring | Affinity 1450 ** -------------------------------- 1451 ** 'INT' | SQLITE_AFF_INTEGER 1452 ** 'CHAR' | SQLITE_AFF_TEXT 1453 ** 'CLOB' | SQLITE_AFF_TEXT 1454 ** 'TEXT' | SQLITE_AFF_TEXT 1455 ** 'BLOB' | SQLITE_AFF_BLOB 1456 ** 'REAL' | SQLITE_AFF_REAL 1457 ** 'FLOA' | SQLITE_AFF_REAL 1458 ** 'DOUB' | SQLITE_AFF_REAL 1459 ** 1460 ** If none of the substrings in the above table are found, 1461 ** SQLITE_AFF_NUMERIC is returned. 1462 */ 1463 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1464 u32 h = 0; 1465 char aff = SQLITE_AFF_NUMERIC; 1466 const char *zChar = 0; 1467 1468 assert( zIn!=0 ); 1469 while( zIn[0] ){ 1470 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1471 zIn++; 1472 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1473 aff = SQLITE_AFF_TEXT; 1474 zChar = zIn; 1475 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1476 aff = SQLITE_AFF_TEXT; 1477 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1478 aff = SQLITE_AFF_TEXT; 1479 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1480 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1481 aff = SQLITE_AFF_BLOB; 1482 if( zIn[0]=='(' ) zChar = zIn; 1483 #ifndef SQLITE_OMIT_FLOATING_POINT 1484 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1485 && aff==SQLITE_AFF_NUMERIC ){ 1486 aff = SQLITE_AFF_REAL; 1487 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1488 && aff==SQLITE_AFF_NUMERIC ){ 1489 aff = SQLITE_AFF_REAL; 1490 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1491 && aff==SQLITE_AFF_NUMERIC ){ 1492 aff = SQLITE_AFF_REAL; 1493 #endif 1494 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1495 aff = SQLITE_AFF_INTEGER; 1496 break; 1497 } 1498 } 1499 1500 /* If pCol is not NULL, store an estimate of the field size. The 1501 ** estimate is scaled so that the size of an integer is 1. */ 1502 if( pCol ){ 1503 int v = 0; /* default size is approx 4 bytes */ 1504 if( aff<SQLITE_AFF_NUMERIC ){ 1505 if( zChar ){ 1506 while( zChar[0] ){ 1507 if( sqlite3Isdigit(zChar[0]) ){ 1508 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1509 sqlite3GetInt32(zChar, &v); 1510 break; 1511 } 1512 zChar++; 1513 } 1514 }else{ 1515 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1516 } 1517 } 1518 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1519 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1520 pCol->colFlags |= COLFLAG_SORTERREF; 1521 } 1522 #endif 1523 v = v/4 + 1; 1524 if( v>255 ) v = 255; 1525 pCol->szEst = v; 1526 } 1527 return aff; 1528 } 1529 1530 /* 1531 ** The expression is the default value for the most recently added column 1532 ** of the table currently under construction. 1533 ** 1534 ** Default value expressions must be constant. Raise an exception if this 1535 ** is not the case. 1536 ** 1537 ** This routine is called by the parser while in the middle of 1538 ** parsing a CREATE TABLE statement. 1539 */ 1540 void sqlite3AddDefaultValue( 1541 Parse *pParse, /* Parsing context */ 1542 Expr *pExpr, /* The parsed expression of the default value */ 1543 const char *zStart, /* Start of the default value text */ 1544 const char *zEnd /* First character past end of defaut value text */ 1545 ){ 1546 Table *p; 1547 Column *pCol; 1548 sqlite3 *db = pParse->db; 1549 p = pParse->pNewTable; 1550 if( p!=0 ){ 1551 int isInit = db->init.busy && db->init.iDb!=1; 1552 pCol = &(p->aCol[p->nCol-1]); 1553 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1554 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1555 pCol->zName); 1556 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1557 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1558 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1559 testcase( pCol->colFlags & COLFLAG_STORED ); 1560 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1561 #endif 1562 }else{ 1563 /* A copy of pExpr is used instead of the original, as pExpr contains 1564 ** tokens that point to volatile memory. 1565 */ 1566 Expr x; 1567 sqlite3ExprDelete(db, pCol->pDflt); 1568 memset(&x, 0, sizeof(x)); 1569 x.op = TK_SPAN; 1570 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1571 x.pLeft = pExpr; 1572 x.flags = EP_Skip; 1573 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1574 sqlite3DbFree(db, x.u.zToken); 1575 } 1576 } 1577 if( IN_RENAME_OBJECT ){ 1578 sqlite3RenameExprUnmap(pParse, pExpr); 1579 } 1580 sqlite3ExprDelete(db, pExpr); 1581 } 1582 1583 /* 1584 ** Backwards Compatibility Hack: 1585 ** 1586 ** Historical versions of SQLite accepted strings as column names in 1587 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1588 ** 1589 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1590 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1591 ** 1592 ** This is goofy. But to preserve backwards compatibility we continue to 1593 ** accept it. This routine does the necessary conversion. It converts 1594 ** the expression given in its argument from a TK_STRING into a TK_ID 1595 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1596 ** If the expression is anything other than TK_STRING, the expression is 1597 ** unchanged. 1598 */ 1599 static void sqlite3StringToId(Expr *p){ 1600 if( p->op==TK_STRING ){ 1601 p->op = TK_ID; 1602 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1603 p->pLeft->op = TK_ID; 1604 } 1605 } 1606 1607 /* 1608 ** Tag the given column as being part of the PRIMARY KEY 1609 */ 1610 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1611 pCol->colFlags |= COLFLAG_PRIMKEY; 1612 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1613 if( pCol->colFlags & COLFLAG_GENERATED ){ 1614 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1615 testcase( pCol->colFlags & COLFLAG_STORED ); 1616 sqlite3ErrorMsg(pParse, 1617 "generated columns cannot be part of the PRIMARY KEY"); 1618 } 1619 #endif 1620 } 1621 1622 /* 1623 ** Designate the PRIMARY KEY for the table. pList is a list of names 1624 ** of columns that form the primary key. If pList is NULL, then the 1625 ** most recently added column of the table is the primary key. 1626 ** 1627 ** A table can have at most one primary key. If the table already has 1628 ** a primary key (and this is the second primary key) then create an 1629 ** error. 1630 ** 1631 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1632 ** then we will try to use that column as the rowid. Set the Table.iPKey 1633 ** field of the table under construction to be the index of the 1634 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1635 ** no INTEGER PRIMARY KEY. 1636 ** 1637 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1638 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1639 */ 1640 void sqlite3AddPrimaryKey( 1641 Parse *pParse, /* Parsing context */ 1642 ExprList *pList, /* List of field names to be indexed */ 1643 int onError, /* What to do with a uniqueness conflict */ 1644 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1645 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1646 ){ 1647 Table *pTab = pParse->pNewTable; 1648 Column *pCol = 0; 1649 int iCol = -1, i; 1650 int nTerm; 1651 if( pTab==0 ) goto primary_key_exit; 1652 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1653 sqlite3ErrorMsg(pParse, 1654 "table \"%s\" has more than one primary key", pTab->zName); 1655 goto primary_key_exit; 1656 } 1657 pTab->tabFlags |= TF_HasPrimaryKey; 1658 if( pList==0 ){ 1659 iCol = pTab->nCol - 1; 1660 pCol = &pTab->aCol[iCol]; 1661 makeColumnPartOfPrimaryKey(pParse, pCol); 1662 nTerm = 1; 1663 }else{ 1664 nTerm = pList->nExpr; 1665 for(i=0; i<nTerm; i++){ 1666 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1667 assert( pCExpr!=0 ); 1668 sqlite3StringToId(pCExpr); 1669 if( pCExpr->op==TK_ID ){ 1670 const char *zCName = pCExpr->u.zToken; 1671 for(iCol=0; iCol<pTab->nCol; iCol++){ 1672 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1673 pCol = &pTab->aCol[iCol]; 1674 makeColumnPartOfPrimaryKey(pParse, pCol); 1675 break; 1676 } 1677 } 1678 } 1679 } 1680 } 1681 if( nTerm==1 1682 && pCol 1683 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1684 && sortOrder!=SQLITE_SO_DESC 1685 ){ 1686 if( IN_RENAME_OBJECT && pList ){ 1687 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1688 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1689 } 1690 pTab->iPKey = iCol; 1691 pTab->keyConf = (u8)onError; 1692 assert( autoInc==0 || autoInc==1 ); 1693 pTab->tabFlags |= autoInc*TF_Autoincrement; 1694 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1695 (void)sqlite3HasExplicitNulls(pParse, pList); 1696 }else if( autoInc ){ 1697 #ifndef SQLITE_OMIT_AUTOINCREMENT 1698 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1699 "INTEGER PRIMARY KEY"); 1700 #endif 1701 }else{ 1702 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1703 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1704 pList = 0; 1705 } 1706 1707 primary_key_exit: 1708 sqlite3ExprListDelete(pParse->db, pList); 1709 return; 1710 } 1711 1712 /* 1713 ** Add a new CHECK constraint to the table currently under construction. 1714 */ 1715 void sqlite3AddCheckConstraint( 1716 Parse *pParse, /* Parsing context */ 1717 Expr *pCheckExpr, /* The check expression */ 1718 const char *zStart, /* Opening "(" */ 1719 const char *zEnd /* Closing ")" */ 1720 ){ 1721 #ifndef SQLITE_OMIT_CHECK 1722 Table *pTab = pParse->pNewTable; 1723 sqlite3 *db = pParse->db; 1724 if( pTab && !IN_DECLARE_VTAB 1725 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1726 ){ 1727 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1728 if( pParse->constraintName.n ){ 1729 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1730 }else{ 1731 Token t; 1732 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} 1733 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } 1734 t.z = zStart; 1735 t.n = (int)(zEnd - t.z); 1736 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); 1737 } 1738 }else 1739 #endif 1740 { 1741 sqlite3ExprDelete(pParse->db, pCheckExpr); 1742 } 1743 } 1744 1745 /* 1746 ** Set the collation function of the most recently parsed table column 1747 ** to the CollSeq given. 1748 */ 1749 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1750 Table *p; 1751 int i; 1752 char *zColl; /* Dequoted name of collation sequence */ 1753 sqlite3 *db; 1754 1755 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; 1756 i = p->nCol-1; 1757 db = pParse->db; 1758 zColl = sqlite3NameFromToken(db, pToken); 1759 if( !zColl ) return; 1760 1761 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1762 Index *pIdx; 1763 sqlite3DbFree(db, p->aCol[i].zColl); 1764 p->aCol[i].zColl = zColl; 1765 1766 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1767 ** then an index may have been created on this column before the 1768 ** collation type was added. Correct this if it is the case. 1769 */ 1770 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1771 assert( pIdx->nKeyCol==1 ); 1772 if( pIdx->aiColumn[0]==i ){ 1773 pIdx->azColl[0] = p->aCol[i].zColl; 1774 } 1775 } 1776 }else{ 1777 sqlite3DbFree(db, zColl); 1778 } 1779 } 1780 1781 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1782 ** column. 1783 */ 1784 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1785 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1786 u8 eType = COLFLAG_VIRTUAL; 1787 Table *pTab = pParse->pNewTable; 1788 Column *pCol; 1789 if( pTab==0 ){ 1790 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1791 goto generated_done; 1792 } 1793 pCol = &(pTab->aCol[pTab->nCol-1]); 1794 if( IN_DECLARE_VTAB ){ 1795 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1796 goto generated_done; 1797 } 1798 if( pCol->pDflt ) goto generated_error; 1799 if( pType ){ 1800 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1801 /* no-op */ 1802 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1803 eType = COLFLAG_STORED; 1804 }else{ 1805 goto generated_error; 1806 } 1807 } 1808 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1809 pCol->colFlags |= eType; 1810 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1811 assert( TF_HasStored==COLFLAG_STORED ); 1812 pTab->tabFlags |= eType; 1813 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1814 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1815 } 1816 pCol->pDflt = pExpr; 1817 pExpr = 0; 1818 goto generated_done; 1819 1820 generated_error: 1821 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1822 pCol->zName); 1823 generated_done: 1824 sqlite3ExprDelete(pParse->db, pExpr); 1825 #else 1826 /* Throw and error for the GENERATED ALWAYS AS clause if the 1827 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1828 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1829 sqlite3ExprDelete(pParse->db, pExpr); 1830 #endif 1831 } 1832 1833 /* 1834 ** Generate code that will increment the schema cookie. 1835 ** 1836 ** The schema cookie is used to determine when the schema for the 1837 ** database changes. After each schema change, the cookie value 1838 ** changes. When a process first reads the schema it records the 1839 ** cookie. Thereafter, whenever it goes to access the database, 1840 ** it checks the cookie to make sure the schema has not changed 1841 ** since it was last read. 1842 ** 1843 ** This plan is not completely bullet-proof. It is possible for 1844 ** the schema to change multiple times and for the cookie to be 1845 ** set back to prior value. But schema changes are infrequent 1846 ** and the probability of hitting the same cookie value is only 1847 ** 1 chance in 2^32. So we're safe enough. 1848 ** 1849 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1850 ** the schema-version whenever the schema changes. 1851 */ 1852 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1853 sqlite3 *db = pParse->db; 1854 Vdbe *v = pParse->pVdbe; 1855 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1856 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1857 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1858 } 1859 1860 /* 1861 ** Measure the number of characters needed to output the given 1862 ** identifier. The number returned includes any quotes used 1863 ** but does not include the null terminator. 1864 ** 1865 ** The estimate is conservative. It might be larger that what is 1866 ** really needed. 1867 */ 1868 static int identLength(const char *z){ 1869 int n; 1870 for(n=0; *z; n++, z++){ 1871 if( *z=='"' ){ n++; } 1872 } 1873 return n + 2; 1874 } 1875 1876 /* 1877 ** The first parameter is a pointer to an output buffer. The second 1878 ** parameter is a pointer to an integer that contains the offset at 1879 ** which to write into the output buffer. This function copies the 1880 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1881 ** to the specified offset in the buffer and updates *pIdx to refer 1882 ** to the first byte after the last byte written before returning. 1883 ** 1884 ** If the string zSignedIdent consists entirely of alpha-numeric 1885 ** characters, does not begin with a digit and is not an SQL keyword, 1886 ** then it is copied to the output buffer exactly as it is. Otherwise, 1887 ** it is quoted using double-quotes. 1888 */ 1889 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1890 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1891 int i, j, needQuote; 1892 i = *pIdx; 1893 1894 for(j=0; zIdent[j]; j++){ 1895 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1896 } 1897 needQuote = sqlite3Isdigit(zIdent[0]) 1898 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1899 || zIdent[j]!=0 1900 || j==0; 1901 1902 if( needQuote ) z[i++] = '"'; 1903 for(j=0; zIdent[j]; j++){ 1904 z[i++] = zIdent[j]; 1905 if( zIdent[j]=='"' ) z[i++] = '"'; 1906 } 1907 if( needQuote ) z[i++] = '"'; 1908 z[i] = 0; 1909 *pIdx = i; 1910 } 1911 1912 /* 1913 ** Generate a CREATE TABLE statement appropriate for the given 1914 ** table. Memory to hold the text of the statement is obtained 1915 ** from sqliteMalloc() and must be freed by the calling function. 1916 */ 1917 static char *createTableStmt(sqlite3 *db, Table *p){ 1918 int i, k, n; 1919 char *zStmt; 1920 char *zSep, *zSep2, *zEnd; 1921 Column *pCol; 1922 n = 0; 1923 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1924 n += identLength(pCol->zName) + 5; 1925 } 1926 n += identLength(p->zName); 1927 if( n<50 ){ 1928 zSep = ""; 1929 zSep2 = ","; 1930 zEnd = ")"; 1931 }else{ 1932 zSep = "\n "; 1933 zSep2 = ",\n "; 1934 zEnd = "\n)"; 1935 } 1936 n += 35 + 6*p->nCol; 1937 zStmt = sqlite3DbMallocRaw(0, n); 1938 if( zStmt==0 ){ 1939 sqlite3OomFault(db); 1940 return 0; 1941 } 1942 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1943 k = sqlite3Strlen30(zStmt); 1944 identPut(zStmt, &k, p->zName); 1945 zStmt[k++] = '('; 1946 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1947 static const char * const azType[] = { 1948 /* SQLITE_AFF_BLOB */ "", 1949 /* SQLITE_AFF_TEXT */ " TEXT", 1950 /* SQLITE_AFF_NUMERIC */ " NUM", 1951 /* SQLITE_AFF_INTEGER */ " INT", 1952 /* SQLITE_AFF_REAL */ " REAL" 1953 }; 1954 int len; 1955 const char *zType; 1956 1957 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1958 k += sqlite3Strlen30(&zStmt[k]); 1959 zSep = zSep2; 1960 identPut(zStmt, &k, pCol->zName); 1961 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1962 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1963 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1964 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1965 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1966 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1967 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1968 1969 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1970 len = sqlite3Strlen30(zType); 1971 assert( pCol->affinity==SQLITE_AFF_BLOB 1972 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1973 memcpy(&zStmt[k], zType, len); 1974 k += len; 1975 assert( k<=n ); 1976 } 1977 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1978 return zStmt; 1979 } 1980 1981 /* 1982 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1983 ** on success and SQLITE_NOMEM on an OOM error. 1984 */ 1985 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1986 char *zExtra; 1987 int nByte; 1988 if( pIdx->nColumn>=N ) return SQLITE_OK; 1989 assert( pIdx->isResized==0 ); 1990 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; 1991 zExtra = sqlite3DbMallocZero(db, nByte); 1992 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1993 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1994 pIdx->azColl = (const char**)zExtra; 1995 zExtra += sizeof(char*)*N; 1996 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); 1997 pIdx->aiRowLogEst = (LogEst*)zExtra; 1998 zExtra += sizeof(LogEst)*N; 1999 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 2000 pIdx->aiColumn = (i16*)zExtra; 2001 zExtra += sizeof(i16)*N; 2002 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 2003 pIdx->aSortOrder = (u8*)zExtra; 2004 pIdx->nColumn = N; 2005 pIdx->isResized = 1; 2006 return SQLITE_OK; 2007 } 2008 2009 /* 2010 ** Estimate the total row width for a table. 2011 */ 2012 static void estimateTableWidth(Table *pTab){ 2013 unsigned wTable = 0; 2014 const Column *pTabCol; 2015 int i; 2016 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 2017 wTable += pTabCol->szEst; 2018 } 2019 if( pTab->iPKey<0 ) wTable++; 2020 pTab->szTabRow = sqlite3LogEst(wTable*4); 2021 } 2022 2023 /* 2024 ** Estimate the average size of a row for an index. 2025 */ 2026 static void estimateIndexWidth(Index *pIdx){ 2027 unsigned wIndex = 0; 2028 int i; 2029 const Column *aCol = pIdx->pTable->aCol; 2030 for(i=0; i<pIdx->nColumn; i++){ 2031 i16 x = pIdx->aiColumn[i]; 2032 assert( x<pIdx->pTable->nCol ); 2033 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 2034 } 2035 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 2036 } 2037 2038 /* Return true if column number x is any of the first nCol entries of aiCol[]. 2039 ** This is used to determine if the column number x appears in any of the 2040 ** first nCol entries of an index. 2041 */ 2042 static int hasColumn(const i16 *aiCol, int nCol, int x){ 2043 while( nCol-- > 0 ){ 2044 assert( aiCol[0]>=0 ); 2045 if( x==*(aiCol++) ){ 2046 return 1; 2047 } 2048 } 2049 return 0; 2050 } 2051 2052 /* 2053 ** Return true if any of the first nKey entries of index pIdx exactly 2054 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 2055 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 2056 ** or may not be the same index as pPk. 2057 ** 2058 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 2059 ** not a rowid or expression. 2060 ** 2061 ** This routine differs from hasColumn() in that both the column and the 2062 ** collating sequence must match for this routine, but for hasColumn() only 2063 ** the column name must match. 2064 */ 2065 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 2066 int i, j; 2067 assert( nKey<=pIdx->nColumn ); 2068 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 2069 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 2070 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 2071 assert( pPk->pTable==pIdx->pTable ); 2072 testcase( pPk==pIdx ); 2073 j = pPk->aiColumn[iCol]; 2074 assert( j!=XN_ROWID && j!=XN_EXPR ); 2075 for(i=0; i<nKey; i++){ 2076 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 2077 if( pIdx->aiColumn[i]==j 2078 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 2079 ){ 2080 return 1; 2081 } 2082 } 2083 return 0; 2084 } 2085 2086 /* Recompute the colNotIdxed field of the Index. 2087 ** 2088 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 2089 ** columns that are within the first 63 columns of the table. The 2090 ** high-order bit of colNotIdxed is always 1. All unindexed columns 2091 ** of the table have a 1. 2092 ** 2093 ** 2019-10-24: For the purpose of this computation, virtual columns are 2094 ** not considered to be covered by the index, even if they are in the 2095 ** index, because we do not trust the logic in whereIndexExprTrans() to be 2096 ** able to find all instances of a reference to the indexed table column 2097 ** and convert them into references to the index. Hence we always want 2098 ** the actual table at hand in order to recompute the virtual column, if 2099 ** necessary. 2100 ** 2101 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 2102 ** to determine if the index is covering index. 2103 */ 2104 static void recomputeColumnsNotIndexed(Index *pIdx){ 2105 Bitmask m = 0; 2106 int j; 2107 Table *pTab = pIdx->pTable; 2108 for(j=pIdx->nColumn-1; j>=0; j--){ 2109 int x = pIdx->aiColumn[j]; 2110 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 2111 testcase( x==BMS-1 ); 2112 testcase( x==BMS-2 ); 2113 if( x<BMS-1 ) m |= MASKBIT(x); 2114 } 2115 } 2116 pIdx->colNotIdxed = ~m; 2117 assert( (pIdx->colNotIdxed>>63)==1 ); 2118 } 2119 2120 /* 2121 ** This routine runs at the end of parsing a CREATE TABLE statement that 2122 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 2123 ** internal schema data structures and the generated VDBE code so that they 2124 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 2125 ** Changes include: 2126 ** 2127 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 2128 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 2129 ** into BTREE_BLOBKEY. 2130 ** (3) Bypass the creation of the sqlite_schema table entry 2131 ** for the PRIMARY KEY as the primary key index is now 2132 ** identified by the sqlite_schema table entry of the table itself. 2133 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 2134 ** schema to the rootpage from the main table. 2135 ** (5) Add all table columns to the PRIMARY KEY Index object 2136 ** so that the PRIMARY KEY is a covering index. The surplus 2137 ** columns are part of KeyInfo.nAllField and are not used for 2138 ** sorting or lookup or uniqueness checks. 2139 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2140 ** indices with the PRIMARY KEY columns. 2141 ** 2142 ** For virtual tables, only (1) is performed. 2143 */ 2144 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2145 Index *pIdx; 2146 Index *pPk; 2147 int nPk; 2148 int nExtra; 2149 int i, j; 2150 sqlite3 *db = pParse->db; 2151 Vdbe *v = pParse->pVdbe; 2152 2153 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2154 */ 2155 if( !db->init.imposterTable ){ 2156 for(i=0; i<pTab->nCol; i++){ 2157 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2158 pTab->aCol[i].notNull = OE_Abort; 2159 } 2160 } 2161 pTab->tabFlags |= TF_HasNotNull; 2162 } 2163 2164 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2165 ** into BTREE_BLOBKEY. 2166 */ 2167 assert( !pParse->bReturning ); 2168 if( pParse->u1.addrCrTab ){ 2169 assert( v ); 2170 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); 2171 } 2172 2173 /* Locate the PRIMARY KEY index. Or, if this table was originally 2174 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2175 */ 2176 if( pTab->iPKey>=0 ){ 2177 ExprList *pList; 2178 Token ipkToken; 2179 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2180 pList = sqlite3ExprListAppend(pParse, 0, 2181 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2182 if( pList==0 ) return; 2183 if( IN_RENAME_OBJECT ){ 2184 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2185 } 2186 pList->a[0].sortFlags = pParse->iPkSortOrder; 2187 assert( pParse->pNewTable==pTab ); 2188 pTab->iPKey = -1; 2189 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2190 SQLITE_IDXTYPE_PRIMARYKEY); 2191 if( db->mallocFailed || pParse->nErr ){ 2192 pTab->tabFlags &= ~TF_WithoutRowid; 2193 return; 2194 } 2195 pPk = sqlite3PrimaryKeyIndex(pTab); 2196 assert( pPk->nKeyCol==1 ); 2197 }else{ 2198 pPk = sqlite3PrimaryKeyIndex(pTab); 2199 assert( pPk!=0 ); 2200 2201 /* 2202 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2203 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2204 ** code assumes the PRIMARY KEY contains no repeated columns. 2205 */ 2206 for(i=j=1; i<pPk->nKeyCol; i++){ 2207 if( isDupColumn(pPk, j, pPk, i) ){ 2208 pPk->nColumn--; 2209 }else{ 2210 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2211 pPk->azColl[j] = pPk->azColl[i]; 2212 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2213 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2214 } 2215 } 2216 pPk->nKeyCol = j; 2217 } 2218 assert( pPk!=0 ); 2219 pPk->isCovering = 1; 2220 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2221 nPk = pPk->nColumn = pPk->nKeyCol; 2222 2223 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema 2224 ** table entry. This is only required if currently generating VDBE 2225 ** code for a CREATE TABLE (not when parsing one as part of reading 2226 ** a database schema). */ 2227 if( v && pPk->tnum>0 ){ 2228 assert( db->init.busy==0 ); 2229 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); 2230 } 2231 2232 /* The root page of the PRIMARY KEY is the table root page */ 2233 pPk->tnum = pTab->tnum; 2234 2235 /* Update the in-memory representation of all UNIQUE indices by converting 2236 ** the final rowid column into one or more columns of the PRIMARY KEY. 2237 */ 2238 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2239 int n; 2240 if( IsPrimaryKeyIndex(pIdx) ) continue; 2241 for(i=n=0; i<nPk; i++){ 2242 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2243 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2244 n++; 2245 } 2246 } 2247 if( n==0 ){ 2248 /* This index is a superset of the primary key */ 2249 pIdx->nColumn = pIdx->nKeyCol; 2250 continue; 2251 } 2252 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2253 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2254 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2255 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2256 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2257 pIdx->azColl[j] = pPk->azColl[i]; 2258 if( pPk->aSortOrder[i] ){ 2259 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2260 pIdx->bAscKeyBug = 1; 2261 } 2262 j++; 2263 } 2264 } 2265 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2266 assert( pIdx->nColumn>=j ); 2267 } 2268 2269 /* Add all table columns to the PRIMARY KEY index 2270 */ 2271 nExtra = 0; 2272 for(i=0; i<pTab->nCol; i++){ 2273 if( !hasColumn(pPk->aiColumn, nPk, i) 2274 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2275 } 2276 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2277 for(i=0, j=nPk; i<pTab->nCol; i++){ 2278 if( !hasColumn(pPk->aiColumn, j, i) 2279 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2280 ){ 2281 assert( j<pPk->nColumn ); 2282 pPk->aiColumn[j] = i; 2283 pPk->azColl[j] = sqlite3StrBINARY; 2284 j++; 2285 } 2286 } 2287 assert( pPk->nColumn==j ); 2288 assert( pTab->nNVCol<=j ); 2289 recomputeColumnsNotIndexed(pPk); 2290 } 2291 2292 2293 #ifndef SQLITE_OMIT_VIRTUALTABLE 2294 /* 2295 ** Return true if pTab is a virtual table and zName is a shadow table name 2296 ** for that virtual table. 2297 */ 2298 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2299 int nName; /* Length of zName */ 2300 Module *pMod; /* Module for the virtual table */ 2301 2302 if( !IsVirtual(pTab) ) return 0; 2303 nName = sqlite3Strlen30(pTab->zName); 2304 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2305 if( zName[nName]!='_' ) return 0; 2306 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2307 if( pMod==0 ) return 0; 2308 if( pMod->pModule->iVersion<3 ) return 0; 2309 if( pMod->pModule->xShadowName==0 ) return 0; 2310 return pMod->pModule->xShadowName(zName+nName+1); 2311 } 2312 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2313 2314 #ifndef SQLITE_OMIT_VIRTUALTABLE 2315 /* 2316 ** Return true if zName is a shadow table name in the current database 2317 ** connection. 2318 ** 2319 ** zName is temporarily modified while this routine is running, but is 2320 ** restored to its original value prior to this routine returning. 2321 */ 2322 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2323 char *zTail; /* Pointer to the last "_" in zName */ 2324 Table *pTab; /* Table that zName is a shadow of */ 2325 zTail = strrchr(zName, '_'); 2326 if( zTail==0 ) return 0; 2327 *zTail = 0; 2328 pTab = sqlite3FindTable(db, zName, 0); 2329 *zTail = '_'; 2330 if( pTab==0 ) return 0; 2331 if( !IsVirtual(pTab) ) return 0; 2332 return sqlite3IsShadowTableOf(db, pTab, zName); 2333 } 2334 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2335 2336 2337 #ifdef SQLITE_DEBUG 2338 /* 2339 ** Mark all nodes of an expression as EP_Immutable, indicating that 2340 ** they should not be changed. Expressions attached to a table or 2341 ** index definition are tagged this way to help ensure that we do 2342 ** not pass them into code generator routines by mistake. 2343 */ 2344 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2345 ExprSetVVAProperty(pExpr, EP_Immutable); 2346 return WRC_Continue; 2347 } 2348 static void markExprListImmutable(ExprList *pList){ 2349 if( pList ){ 2350 Walker w; 2351 memset(&w, 0, sizeof(w)); 2352 w.xExprCallback = markImmutableExprStep; 2353 w.xSelectCallback = sqlite3SelectWalkNoop; 2354 w.xSelectCallback2 = 0; 2355 sqlite3WalkExprList(&w, pList); 2356 } 2357 } 2358 #else 2359 #define markExprListImmutable(X) /* no-op */ 2360 #endif /* SQLITE_DEBUG */ 2361 2362 2363 /* 2364 ** This routine is called to report the final ")" that terminates 2365 ** a CREATE TABLE statement. 2366 ** 2367 ** The table structure that other action routines have been building 2368 ** is added to the internal hash tables, assuming no errors have 2369 ** occurred. 2370 ** 2371 ** An entry for the table is made in the schema table on disk, unless 2372 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2373 ** it means we are reading the sqlite_schema table because we just 2374 ** connected to the database or because the sqlite_schema table has 2375 ** recently changed, so the entry for this table already exists in 2376 ** the sqlite_schema table. We do not want to create it again. 2377 ** 2378 ** If the pSelect argument is not NULL, it means that this routine 2379 ** was called to create a table generated from a 2380 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2381 ** the new table will match the result set of the SELECT. 2382 */ 2383 void sqlite3EndTable( 2384 Parse *pParse, /* Parse context */ 2385 Token *pCons, /* The ',' token after the last column defn. */ 2386 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2387 u8 tabOpts, /* Extra table options. Usually 0. */ 2388 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2389 ){ 2390 Table *p; /* The new table */ 2391 sqlite3 *db = pParse->db; /* The database connection */ 2392 int iDb; /* Database in which the table lives */ 2393 Index *pIdx; /* An implied index of the table */ 2394 2395 if( pEnd==0 && pSelect==0 ){ 2396 return; 2397 } 2398 p = pParse->pNewTable; 2399 if( p==0 ) return; 2400 2401 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2402 p->tabFlags |= TF_Shadow; 2403 } 2404 2405 /* If the db->init.busy is 1 it means we are reading the SQL off the 2406 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. 2407 ** So do not write to the disk again. Extract the root page number 2408 ** for the table from the db->init.newTnum field. (The page number 2409 ** should have been put there by the sqliteOpenCb routine.) 2410 ** 2411 ** If the root page number is 1, that means this is the sqlite_schema 2412 ** table itself. So mark it read-only. 2413 */ 2414 if( db->init.busy ){ 2415 if( pSelect ){ 2416 sqlite3ErrorMsg(pParse, ""); 2417 return; 2418 } 2419 p->tnum = db->init.newTnum; 2420 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2421 } 2422 2423 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2424 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2425 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2426 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2427 2428 /* Special processing for WITHOUT ROWID Tables */ 2429 if( tabOpts & TF_WithoutRowid ){ 2430 if( (p->tabFlags & TF_Autoincrement) ){ 2431 sqlite3ErrorMsg(pParse, 2432 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2433 return; 2434 } 2435 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2436 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2437 return; 2438 } 2439 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2440 convertToWithoutRowidTable(pParse, p); 2441 } 2442 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2443 2444 #ifndef SQLITE_OMIT_CHECK 2445 /* Resolve names in all CHECK constraint expressions. 2446 */ 2447 if( p->pCheck ){ 2448 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2449 if( pParse->nErr ){ 2450 /* If errors are seen, delete the CHECK constraints now, else they might 2451 ** actually be used if PRAGMA writable_schema=ON is set. */ 2452 sqlite3ExprListDelete(db, p->pCheck); 2453 p->pCheck = 0; 2454 }else{ 2455 markExprListImmutable(p->pCheck); 2456 } 2457 } 2458 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2459 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2460 if( p->tabFlags & TF_HasGenerated ){ 2461 int ii, nNG = 0; 2462 testcase( p->tabFlags & TF_HasVirtual ); 2463 testcase( p->tabFlags & TF_HasStored ); 2464 for(ii=0; ii<p->nCol; ii++){ 2465 u32 colFlags = p->aCol[ii].colFlags; 2466 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2467 Expr *pX = p->aCol[ii].pDflt; 2468 testcase( colFlags & COLFLAG_VIRTUAL ); 2469 testcase( colFlags & COLFLAG_STORED ); 2470 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2471 /* If there are errors in resolving the expression, change the 2472 ** expression to a NULL. This prevents code generators that operate 2473 ** on the expression from inserting extra parts into the expression 2474 ** tree that have been allocated from lookaside memory, which is 2475 ** illegal in a schema and will lead to errors or heap corruption 2476 ** when the database connection closes. */ 2477 sqlite3ExprDelete(db, pX); 2478 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2479 } 2480 }else{ 2481 nNG++; 2482 } 2483 } 2484 if( nNG==0 ){ 2485 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2486 return; 2487 } 2488 } 2489 #endif 2490 2491 /* Estimate the average row size for the table and for all implied indices */ 2492 estimateTableWidth(p); 2493 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2494 estimateIndexWidth(pIdx); 2495 } 2496 2497 /* If not initializing, then create a record for the new table 2498 ** in the schema table of the database. 2499 ** 2500 ** If this is a TEMPORARY table, write the entry into the auxiliary 2501 ** file instead of into the main database file. 2502 */ 2503 if( !db->init.busy ){ 2504 int n; 2505 Vdbe *v; 2506 char *zType; /* "view" or "table" */ 2507 char *zType2; /* "VIEW" or "TABLE" */ 2508 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2509 2510 v = sqlite3GetVdbe(pParse); 2511 if( NEVER(v==0) ) return; 2512 2513 sqlite3VdbeAddOp1(v, OP_Close, 0); 2514 2515 /* 2516 ** Initialize zType for the new view or table. 2517 */ 2518 if( p->pSelect==0 ){ 2519 /* A regular table */ 2520 zType = "table"; 2521 zType2 = "TABLE"; 2522 #ifndef SQLITE_OMIT_VIEW 2523 }else{ 2524 /* A view */ 2525 zType = "view"; 2526 zType2 = "VIEW"; 2527 #endif 2528 } 2529 2530 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2531 ** statement to populate the new table. The root-page number for the 2532 ** new table is in register pParse->regRoot. 2533 ** 2534 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2535 ** suitable state to query for the column names and types to be used 2536 ** by the new table. 2537 ** 2538 ** A shared-cache write-lock is not required to write to the new table, 2539 ** as a schema-lock must have already been obtained to create it. Since 2540 ** a schema-lock excludes all other database users, the write-lock would 2541 ** be redundant. 2542 */ 2543 if( pSelect ){ 2544 SelectDest dest; /* Where the SELECT should store results */ 2545 int regYield; /* Register holding co-routine entry-point */ 2546 int addrTop; /* Top of the co-routine */ 2547 int regRec; /* A record to be insert into the new table */ 2548 int regRowid; /* Rowid of the next row to insert */ 2549 int addrInsLoop; /* Top of the loop for inserting rows */ 2550 Table *pSelTab; /* A table that describes the SELECT results */ 2551 2552 regYield = ++pParse->nMem; 2553 regRec = ++pParse->nMem; 2554 regRowid = ++pParse->nMem; 2555 assert(pParse->nTab==1); 2556 sqlite3MayAbort(pParse); 2557 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2558 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2559 pParse->nTab = 2; 2560 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2561 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2562 if( pParse->nErr ) return; 2563 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2564 if( pSelTab==0 ) return; 2565 assert( p->aCol==0 ); 2566 p->nCol = p->nNVCol = pSelTab->nCol; 2567 p->aCol = pSelTab->aCol; 2568 pSelTab->nCol = 0; 2569 pSelTab->aCol = 0; 2570 sqlite3DeleteTable(db, pSelTab); 2571 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2572 sqlite3Select(pParse, pSelect, &dest); 2573 if( pParse->nErr ) return; 2574 sqlite3VdbeEndCoroutine(v, regYield); 2575 sqlite3VdbeJumpHere(v, addrTop - 1); 2576 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2577 VdbeCoverage(v); 2578 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2579 sqlite3TableAffinity(v, p, 0); 2580 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2581 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2582 sqlite3VdbeGoto(v, addrInsLoop); 2583 sqlite3VdbeJumpHere(v, addrInsLoop); 2584 sqlite3VdbeAddOp1(v, OP_Close, 1); 2585 } 2586 2587 /* Compute the complete text of the CREATE statement */ 2588 if( pSelect ){ 2589 zStmt = createTableStmt(db, p); 2590 }else{ 2591 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2592 n = (int)(pEnd2->z - pParse->sNameToken.z); 2593 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2594 zStmt = sqlite3MPrintf(db, 2595 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2596 ); 2597 } 2598 2599 /* A slot for the record has already been allocated in the 2600 ** schema table. We just need to update that slot with all 2601 ** the information we've collected. 2602 */ 2603 sqlite3NestedParse(pParse, 2604 "UPDATE %Q." DFLT_SCHEMA_TABLE 2605 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" 2606 " WHERE rowid=#%d", 2607 db->aDb[iDb].zDbSName, 2608 zType, 2609 p->zName, 2610 p->zName, 2611 pParse->regRoot, 2612 zStmt, 2613 pParse->regRowid 2614 ); 2615 sqlite3DbFree(db, zStmt); 2616 sqlite3ChangeCookie(pParse, iDb); 2617 2618 #ifndef SQLITE_OMIT_AUTOINCREMENT 2619 /* Check to see if we need to create an sqlite_sequence table for 2620 ** keeping track of autoincrement keys. 2621 */ 2622 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ 2623 Db *pDb = &db->aDb[iDb]; 2624 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2625 if( pDb->pSchema->pSeqTab==0 ){ 2626 sqlite3NestedParse(pParse, 2627 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2628 pDb->zDbSName 2629 ); 2630 } 2631 } 2632 #endif 2633 2634 /* Reparse everything to update our internal data structures */ 2635 sqlite3VdbeAddParseSchemaOp(v, iDb, 2636 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); 2637 } 2638 2639 /* Add the table to the in-memory representation of the database. 2640 */ 2641 if( db->init.busy ){ 2642 Table *pOld; 2643 Schema *pSchema = p->pSchema; 2644 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2645 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2646 if( pOld ){ 2647 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2648 sqlite3OomFault(db); 2649 return; 2650 } 2651 pParse->pNewTable = 0; 2652 db->mDbFlags |= DBFLAG_SchemaChange; 2653 2654 /* If this is the magic sqlite_sequence table used by autoincrement, 2655 ** then record a pointer to this table in the main database structure 2656 ** so that INSERT can find the table easily. */ 2657 assert( !pParse->nested ); 2658 #ifndef SQLITE_OMIT_AUTOINCREMENT 2659 if( strcmp(p->zName, "sqlite_sequence")==0 ){ 2660 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2661 p->pSchema->pSeqTab = p; 2662 } 2663 #endif 2664 } 2665 2666 #ifndef SQLITE_OMIT_ALTERTABLE 2667 if( !pSelect && !p->pSelect ){ 2668 assert( pCons && pEnd ); 2669 if( pCons->z==0 ){ 2670 pCons = pEnd; 2671 } 2672 p->addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); 2673 } 2674 #endif 2675 } 2676 2677 #ifndef SQLITE_OMIT_VIEW 2678 /* 2679 ** The parser calls this routine in order to create a new VIEW 2680 */ 2681 void sqlite3CreateView( 2682 Parse *pParse, /* The parsing context */ 2683 Token *pBegin, /* The CREATE token that begins the statement */ 2684 Token *pName1, /* The token that holds the name of the view */ 2685 Token *pName2, /* The token that holds the name of the view */ 2686 ExprList *pCNames, /* Optional list of view column names */ 2687 Select *pSelect, /* A SELECT statement that will become the new view */ 2688 int isTemp, /* TRUE for a TEMPORARY view */ 2689 int noErr /* Suppress error messages if VIEW already exists */ 2690 ){ 2691 Table *p; 2692 int n; 2693 const char *z; 2694 Token sEnd; 2695 DbFixer sFix; 2696 Token *pName = 0; 2697 int iDb; 2698 sqlite3 *db = pParse->db; 2699 2700 if( pParse->nVar>0 ){ 2701 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2702 goto create_view_fail; 2703 } 2704 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2705 p = pParse->pNewTable; 2706 if( p==0 || pParse->nErr ) goto create_view_fail; 2707 2708 /* Legacy versions of SQLite allowed the use of the magic "rowid" column 2709 ** on a view, even though views do not have rowids. The following flag 2710 ** setting fixes this problem. But the fix can be disabled by compiling 2711 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that 2712 ** depend upon the old buggy behavior. */ 2713 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 2714 p->tabFlags |= TF_NoVisibleRowid; 2715 #endif 2716 2717 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2718 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2719 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2720 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2721 2722 /* Make a copy of the entire SELECT statement that defines the view. 2723 ** This will force all the Expr.token.z values to be dynamically 2724 ** allocated rather than point to the input string - which means that 2725 ** they will persist after the current sqlite3_exec() call returns. 2726 */ 2727 pSelect->selFlags |= SF_View; 2728 if( IN_RENAME_OBJECT ){ 2729 p->pSelect = pSelect; 2730 pSelect = 0; 2731 }else{ 2732 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2733 } 2734 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2735 if( db->mallocFailed ) goto create_view_fail; 2736 2737 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2738 ** the end. 2739 */ 2740 sEnd = pParse->sLastToken; 2741 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2742 if( sEnd.z[0]!=';' ){ 2743 sEnd.z += sEnd.n; 2744 } 2745 sEnd.n = 0; 2746 n = (int)(sEnd.z - pBegin->z); 2747 assert( n>0 ); 2748 z = pBegin->z; 2749 while( sqlite3Isspace(z[n-1]) ){ n--; } 2750 sEnd.z = &z[n-1]; 2751 sEnd.n = 1; 2752 2753 /* Use sqlite3EndTable() to add the view to the schema table */ 2754 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2755 2756 create_view_fail: 2757 sqlite3SelectDelete(db, pSelect); 2758 if( IN_RENAME_OBJECT ){ 2759 sqlite3RenameExprlistUnmap(pParse, pCNames); 2760 } 2761 sqlite3ExprListDelete(db, pCNames); 2762 return; 2763 } 2764 #endif /* SQLITE_OMIT_VIEW */ 2765 2766 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2767 /* 2768 ** The Table structure pTable is really a VIEW. Fill in the names of 2769 ** the columns of the view in the pTable structure. Return the number 2770 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2771 */ 2772 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2773 Table *pSelTab; /* A fake table from which we get the result set */ 2774 Select *pSel; /* Copy of the SELECT that implements the view */ 2775 int nErr = 0; /* Number of errors encountered */ 2776 int n; /* Temporarily holds the number of cursors assigned */ 2777 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2778 #ifndef SQLITE_OMIT_VIRTUALTABLE 2779 int rc; 2780 #endif 2781 #ifndef SQLITE_OMIT_AUTHORIZATION 2782 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2783 #endif 2784 2785 assert( pTable ); 2786 2787 #ifndef SQLITE_OMIT_VIRTUALTABLE 2788 db->nSchemaLock++; 2789 rc = sqlite3VtabCallConnect(pParse, pTable); 2790 db->nSchemaLock--; 2791 if( rc ){ 2792 return 1; 2793 } 2794 if( IsVirtual(pTable) ) return 0; 2795 #endif 2796 2797 #ifndef SQLITE_OMIT_VIEW 2798 /* A positive nCol means the columns names for this view are 2799 ** already known. 2800 */ 2801 if( pTable->nCol>0 ) return 0; 2802 2803 /* A negative nCol is a special marker meaning that we are currently 2804 ** trying to compute the column names. If we enter this routine with 2805 ** a negative nCol, it means two or more views form a loop, like this: 2806 ** 2807 ** CREATE VIEW one AS SELECT * FROM two; 2808 ** CREATE VIEW two AS SELECT * FROM one; 2809 ** 2810 ** Actually, the error above is now caught prior to reaching this point. 2811 ** But the following test is still important as it does come up 2812 ** in the following: 2813 ** 2814 ** CREATE TABLE main.ex1(a); 2815 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2816 ** SELECT * FROM temp.ex1; 2817 */ 2818 if( pTable->nCol<0 ){ 2819 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2820 return 1; 2821 } 2822 assert( pTable->nCol>=0 ); 2823 2824 /* If we get this far, it means we need to compute the table names. 2825 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2826 ** "*" elements in the results set of the view and will assign cursors 2827 ** to the elements of the FROM clause. But we do not want these changes 2828 ** to be permanent. So the computation is done on a copy of the SELECT 2829 ** statement that defines the view. 2830 */ 2831 assert( pTable->pSelect ); 2832 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2833 if( pSel ){ 2834 u8 eParseMode = pParse->eParseMode; 2835 pParse->eParseMode = PARSE_MODE_NORMAL; 2836 n = pParse->nTab; 2837 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2838 pTable->nCol = -1; 2839 DisableLookaside; 2840 #ifndef SQLITE_OMIT_AUTHORIZATION 2841 xAuth = db->xAuth; 2842 db->xAuth = 0; 2843 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2844 db->xAuth = xAuth; 2845 #else 2846 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2847 #endif 2848 pParse->nTab = n; 2849 if( pSelTab==0 ){ 2850 pTable->nCol = 0; 2851 nErr++; 2852 }else if( pTable->pCheck ){ 2853 /* CREATE VIEW name(arglist) AS ... 2854 ** The names of the columns in the table are taken from 2855 ** arglist which is stored in pTable->pCheck. The pCheck field 2856 ** normally holds CHECK constraints on an ordinary table, but for 2857 ** a VIEW it holds the list of column names. 2858 */ 2859 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2860 &pTable->nCol, &pTable->aCol); 2861 if( db->mallocFailed==0 2862 && pParse->nErr==0 2863 && pTable->nCol==pSel->pEList->nExpr 2864 ){ 2865 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2866 SQLITE_AFF_NONE); 2867 } 2868 }else{ 2869 /* CREATE VIEW name AS... without an argument list. Construct 2870 ** the column names from the SELECT statement that defines the view. 2871 */ 2872 assert( pTable->aCol==0 ); 2873 pTable->nCol = pSelTab->nCol; 2874 pTable->aCol = pSelTab->aCol; 2875 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); 2876 pSelTab->nCol = 0; 2877 pSelTab->aCol = 0; 2878 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2879 } 2880 pTable->nNVCol = pTable->nCol; 2881 sqlite3DeleteTable(db, pSelTab); 2882 sqlite3SelectDelete(db, pSel); 2883 EnableLookaside; 2884 pParse->eParseMode = eParseMode; 2885 } else { 2886 nErr++; 2887 } 2888 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2889 if( db->mallocFailed ){ 2890 sqlite3DeleteColumnNames(db, pTable); 2891 pTable->aCol = 0; 2892 pTable->nCol = 0; 2893 } 2894 #endif /* SQLITE_OMIT_VIEW */ 2895 return nErr; 2896 } 2897 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2898 2899 #ifndef SQLITE_OMIT_VIEW 2900 /* 2901 ** Clear the column names from every VIEW in database idx. 2902 */ 2903 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2904 HashElem *i; 2905 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2906 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2907 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2908 Table *pTab = sqliteHashData(i); 2909 if( pTab->pSelect ){ 2910 sqlite3DeleteColumnNames(db, pTab); 2911 pTab->aCol = 0; 2912 pTab->nCol = 0; 2913 } 2914 } 2915 DbClearProperty(db, idx, DB_UnresetViews); 2916 } 2917 #else 2918 # define sqliteViewResetAll(A,B) 2919 #endif /* SQLITE_OMIT_VIEW */ 2920 2921 /* 2922 ** This function is called by the VDBE to adjust the internal schema 2923 ** used by SQLite when the btree layer moves a table root page. The 2924 ** root-page of a table or index in database iDb has changed from iFrom 2925 ** to iTo. 2926 ** 2927 ** Ticket #1728: The symbol table might still contain information 2928 ** on tables and/or indices that are the process of being deleted. 2929 ** If you are unlucky, one of those deleted indices or tables might 2930 ** have the same rootpage number as the real table or index that is 2931 ** being moved. So we cannot stop searching after the first match 2932 ** because the first match might be for one of the deleted indices 2933 ** or tables and not the table/index that is actually being moved. 2934 ** We must continue looping until all tables and indices with 2935 ** rootpage==iFrom have been converted to have a rootpage of iTo 2936 ** in order to be certain that we got the right one. 2937 */ 2938 #ifndef SQLITE_OMIT_AUTOVACUUM 2939 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ 2940 HashElem *pElem; 2941 Hash *pHash; 2942 Db *pDb; 2943 2944 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2945 pDb = &db->aDb[iDb]; 2946 pHash = &pDb->pSchema->tblHash; 2947 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2948 Table *pTab = sqliteHashData(pElem); 2949 if( pTab->tnum==iFrom ){ 2950 pTab->tnum = iTo; 2951 } 2952 } 2953 pHash = &pDb->pSchema->idxHash; 2954 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2955 Index *pIdx = sqliteHashData(pElem); 2956 if( pIdx->tnum==iFrom ){ 2957 pIdx->tnum = iTo; 2958 } 2959 } 2960 } 2961 #endif 2962 2963 /* 2964 ** Write code to erase the table with root-page iTable from database iDb. 2965 ** Also write code to modify the sqlite_schema table and internal schema 2966 ** if a root-page of another table is moved by the btree-layer whilst 2967 ** erasing iTable (this can happen with an auto-vacuum database). 2968 */ 2969 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2970 Vdbe *v = sqlite3GetVdbe(pParse); 2971 int r1 = sqlite3GetTempReg(pParse); 2972 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2973 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2974 sqlite3MayAbort(pParse); 2975 #ifndef SQLITE_OMIT_AUTOVACUUM 2976 /* OP_Destroy stores an in integer r1. If this integer 2977 ** is non-zero, then it is the root page number of a table moved to 2978 ** location iTable. The following code modifies the sqlite_schema table to 2979 ** reflect this. 2980 ** 2981 ** The "#NNN" in the SQL is a special constant that means whatever value 2982 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2983 ** token for additional information. 2984 */ 2985 sqlite3NestedParse(pParse, 2986 "UPDATE %Q." DFLT_SCHEMA_TABLE 2987 " SET rootpage=%d WHERE #%d AND rootpage=#%d", 2988 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); 2989 #endif 2990 sqlite3ReleaseTempReg(pParse, r1); 2991 } 2992 2993 /* 2994 ** Write VDBE code to erase table pTab and all associated indices on disk. 2995 ** Code to update the sqlite_schema tables and internal schema definitions 2996 ** in case a root-page belonging to another table is moved by the btree layer 2997 ** is also added (this can happen with an auto-vacuum database). 2998 */ 2999 static void destroyTable(Parse *pParse, Table *pTab){ 3000 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 3001 ** is not defined), then it is important to call OP_Destroy on the 3002 ** table and index root-pages in order, starting with the numerically 3003 ** largest root-page number. This guarantees that none of the root-pages 3004 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 3005 ** following were coded: 3006 ** 3007 ** OP_Destroy 4 0 3008 ** ... 3009 ** OP_Destroy 5 0 3010 ** 3011 ** and root page 5 happened to be the largest root-page number in the 3012 ** database, then root page 5 would be moved to page 4 by the 3013 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 3014 ** a free-list page. 3015 */ 3016 Pgno iTab = pTab->tnum; 3017 Pgno iDestroyed = 0; 3018 3019 while( 1 ){ 3020 Index *pIdx; 3021 Pgno iLargest = 0; 3022 3023 if( iDestroyed==0 || iTab<iDestroyed ){ 3024 iLargest = iTab; 3025 } 3026 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3027 Pgno iIdx = pIdx->tnum; 3028 assert( pIdx->pSchema==pTab->pSchema ); 3029 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 3030 iLargest = iIdx; 3031 } 3032 } 3033 if( iLargest==0 ){ 3034 return; 3035 }else{ 3036 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3037 assert( iDb>=0 && iDb<pParse->db->nDb ); 3038 destroyRootPage(pParse, iLargest, iDb); 3039 iDestroyed = iLargest; 3040 } 3041 } 3042 } 3043 3044 /* 3045 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 3046 ** after a DROP INDEX or DROP TABLE command. 3047 */ 3048 static void sqlite3ClearStatTables( 3049 Parse *pParse, /* The parsing context */ 3050 int iDb, /* The database number */ 3051 const char *zType, /* "idx" or "tbl" */ 3052 const char *zName /* Name of index or table */ 3053 ){ 3054 int i; 3055 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 3056 for(i=1; i<=4; i++){ 3057 char zTab[24]; 3058 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 3059 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 3060 sqlite3NestedParse(pParse, 3061 "DELETE FROM %Q.%s WHERE %s=%Q", 3062 zDbName, zTab, zType, zName 3063 ); 3064 } 3065 } 3066 } 3067 3068 /* 3069 ** Generate code to drop a table. 3070 */ 3071 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 3072 Vdbe *v; 3073 sqlite3 *db = pParse->db; 3074 Trigger *pTrigger; 3075 Db *pDb = &db->aDb[iDb]; 3076 3077 v = sqlite3GetVdbe(pParse); 3078 assert( v!=0 ); 3079 sqlite3BeginWriteOperation(pParse, 1, iDb); 3080 3081 #ifndef SQLITE_OMIT_VIRTUALTABLE 3082 if( IsVirtual(pTab) ){ 3083 sqlite3VdbeAddOp0(v, OP_VBegin); 3084 } 3085 #endif 3086 3087 /* Drop all triggers associated with the table being dropped. Code 3088 ** is generated to remove entries from sqlite_schema and/or 3089 ** sqlite_temp_schema if required. 3090 */ 3091 pTrigger = sqlite3TriggerList(pParse, pTab); 3092 while( pTrigger ){ 3093 assert( pTrigger->pSchema==pTab->pSchema || 3094 pTrigger->pSchema==db->aDb[1].pSchema ); 3095 sqlite3DropTriggerPtr(pParse, pTrigger); 3096 pTrigger = pTrigger->pNext; 3097 } 3098 3099 #ifndef SQLITE_OMIT_AUTOINCREMENT 3100 /* Remove any entries of the sqlite_sequence table associated with 3101 ** the table being dropped. This is done before the table is dropped 3102 ** at the btree level, in case the sqlite_sequence table needs to 3103 ** move as a result of the drop (can happen in auto-vacuum mode). 3104 */ 3105 if( pTab->tabFlags & TF_Autoincrement ){ 3106 sqlite3NestedParse(pParse, 3107 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 3108 pDb->zDbSName, pTab->zName 3109 ); 3110 } 3111 #endif 3112 3113 /* Drop all entries in the schema table that refer to the 3114 ** table. The program name loops through the schema table and deletes 3115 ** every row that refers to a table of the same name as the one being 3116 ** dropped. Triggers are handled separately because a trigger can be 3117 ** created in the temp database that refers to a table in another 3118 ** database. 3119 */ 3120 sqlite3NestedParse(pParse, 3121 "DELETE FROM %Q." DFLT_SCHEMA_TABLE 3122 " WHERE tbl_name=%Q and type!='trigger'", 3123 pDb->zDbSName, pTab->zName); 3124 if( !isView && !IsVirtual(pTab) ){ 3125 destroyTable(pParse, pTab); 3126 } 3127 3128 /* Remove the table entry from SQLite's internal schema and modify 3129 ** the schema cookie. 3130 */ 3131 if( IsVirtual(pTab) ){ 3132 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 3133 sqlite3MayAbort(pParse); 3134 } 3135 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 3136 sqlite3ChangeCookie(pParse, iDb); 3137 sqliteViewResetAll(db, iDb); 3138 } 3139 3140 /* 3141 ** Return TRUE if shadow tables should be read-only in the current 3142 ** context. 3143 */ 3144 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 3145 #ifndef SQLITE_OMIT_VIRTUALTABLE 3146 if( (db->flags & SQLITE_Defensive)!=0 3147 && db->pVtabCtx==0 3148 && db->nVdbeExec==0 3149 ){ 3150 return 1; 3151 } 3152 #endif 3153 return 0; 3154 } 3155 3156 /* 3157 ** Return true if it is not allowed to drop the given table 3158 */ 3159 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3160 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3161 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3162 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3163 return 1; 3164 } 3165 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3166 return 1; 3167 } 3168 return 0; 3169 } 3170 3171 /* 3172 ** This routine is called to do the work of a DROP TABLE statement. 3173 ** pName is the name of the table to be dropped. 3174 */ 3175 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3176 Table *pTab; 3177 Vdbe *v; 3178 sqlite3 *db = pParse->db; 3179 int iDb; 3180 3181 if( db->mallocFailed ){ 3182 goto exit_drop_table; 3183 } 3184 assert( pParse->nErr==0 ); 3185 assert( pName->nSrc==1 ); 3186 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3187 if( noErr ) db->suppressErr++; 3188 assert( isView==0 || isView==LOCATE_VIEW ); 3189 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3190 if( noErr ) db->suppressErr--; 3191 3192 if( pTab==0 ){ 3193 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3194 goto exit_drop_table; 3195 } 3196 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3197 assert( iDb>=0 && iDb<db->nDb ); 3198 3199 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3200 ** it is initialized. 3201 */ 3202 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3203 goto exit_drop_table; 3204 } 3205 #ifndef SQLITE_OMIT_AUTHORIZATION 3206 { 3207 int code; 3208 const char *zTab = SCHEMA_TABLE(iDb); 3209 const char *zDb = db->aDb[iDb].zDbSName; 3210 const char *zArg2 = 0; 3211 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3212 goto exit_drop_table; 3213 } 3214 if( isView ){ 3215 if( !OMIT_TEMPDB && iDb==1 ){ 3216 code = SQLITE_DROP_TEMP_VIEW; 3217 }else{ 3218 code = SQLITE_DROP_VIEW; 3219 } 3220 #ifndef SQLITE_OMIT_VIRTUALTABLE 3221 }else if( IsVirtual(pTab) ){ 3222 code = SQLITE_DROP_VTABLE; 3223 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3224 #endif 3225 }else{ 3226 if( !OMIT_TEMPDB && iDb==1 ){ 3227 code = SQLITE_DROP_TEMP_TABLE; 3228 }else{ 3229 code = SQLITE_DROP_TABLE; 3230 } 3231 } 3232 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3233 goto exit_drop_table; 3234 } 3235 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3236 goto exit_drop_table; 3237 } 3238 } 3239 #endif 3240 if( tableMayNotBeDropped(db, pTab) ){ 3241 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3242 goto exit_drop_table; 3243 } 3244 3245 #ifndef SQLITE_OMIT_VIEW 3246 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3247 ** on a table. 3248 */ 3249 if( isView && pTab->pSelect==0 ){ 3250 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3251 goto exit_drop_table; 3252 } 3253 if( !isView && pTab->pSelect ){ 3254 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3255 goto exit_drop_table; 3256 } 3257 #endif 3258 3259 /* Generate code to remove the table from the schema table 3260 ** on disk. 3261 */ 3262 v = sqlite3GetVdbe(pParse); 3263 if( v ){ 3264 sqlite3BeginWriteOperation(pParse, 1, iDb); 3265 if( !isView ){ 3266 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3267 sqlite3FkDropTable(pParse, pName, pTab); 3268 } 3269 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3270 } 3271 3272 exit_drop_table: 3273 sqlite3SrcListDelete(db, pName); 3274 } 3275 3276 /* 3277 ** This routine is called to create a new foreign key on the table 3278 ** currently under construction. pFromCol determines which columns 3279 ** in the current table point to the foreign key. If pFromCol==0 then 3280 ** connect the key to the last column inserted. pTo is the name of 3281 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3282 ** of tables in the parent pTo table. flags contains all 3283 ** information about the conflict resolution algorithms specified 3284 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3285 ** 3286 ** An FKey structure is created and added to the table currently 3287 ** under construction in the pParse->pNewTable field. 3288 ** 3289 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3290 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3291 */ 3292 void sqlite3CreateForeignKey( 3293 Parse *pParse, /* Parsing context */ 3294 ExprList *pFromCol, /* Columns in this table that point to other table */ 3295 Token *pTo, /* Name of the other table */ 3296 ExprList *pToCol, /* Columns in the other table */ 3297 int flags /* Conflict resolution algorithms. */ 3298 ){ 3299 sqlite3 *db = pParse->db; 3300 #ifndef SQLITE_OMIT_FOREIGN_KEY 3301 FKey *pFKey = 0; 3302 FKey *pNextTo; 3303 Table *p = pParse->pNewTable; 3304 int nByte; 3305 int i; 3306 int nCol; 3307 char *z; 3308 3309 assert( pTo!=0 ); 3310 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3311 if( pFromCol==0 ){ 3312 int iCol = p->nCol-1; 3313 if( NEVER(iCol<0) ) goto fk_end; 3314 if( pToCol && pToCol->nExpr!=1 ){ 3315 sqlite3ErrorMsg(pParse, "foreign key on %s" 3316 " should reference only one column of table %T", 3317 p->aCol[iCol].zName, pTo); 3318 goto fk_end; 3319 } 3320 nCol = 1; 3321 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3322 sqlite3ErrorMsg(pParse, 3323 "number of columns in foreign key does not match the number of " 3324 "columns in the referenced table"); 3325 goto fk_end; 3326 }else{ 3327 nCol = pFromCol->nExpr; 3328 } 3329 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3330 if( pToCol ){ 3331 for(i=0; i<pToCol->nExpr; i++){ 3332 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3333 } 3334 } 3335 pFKey = sqlite3DbMallocZero(db, nByte ); 3336 if( pFKey==0 ){ 3337 goto fk_end; 3338 } 3339 pFKey->pFrom = p; 3340 pFKey->pNextFrom = p->pFKey; 3341 z = (char*)&pFKey->aCol[nCol]; 3342 pFKey->zTo = z; 3343 if( IN_RENAME_OBJECT ){ 3344 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3345 } 3346 memcpy(z, pTo->z, pTo->n); 3347 z[pTo->n] = 0; 3348 sqlite3Dequote(z); 3349 z += pTo->n+1; 3350 pFKey->nCol = nCol; 3351 if( pFromCol==0 ){ 3352 pFKey->aCol[0].iFrom = p->nCol-1; 3353 }else{ 3354 for(i=0; i<nCol; i++){ 3355 int j; 3356 for(j=0; j<p->nCol; j++){ 3357 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3358 pFKey->aCol[i].iFrom = j; 3359 break; 3360 } 3361 } 3362 if( j>=p->nCol ){ 3363 sqlite3ErrorMsg(pParse, 3364 "unknown column \"%s\" in foreign key definition", 3365 pFromCol->a[i].zEName); 3366 goto fk_end; 3367 } 3368 if( IN_RENAME_OBJECT ){ 3369 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3370 } 3371 } 3372 } 3373 if( pToCol ){ 3374 for(i=0; i<nCol; i++){ 3375 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3376 pFKey->aCol[i].zCol = z; 3377 if( IN_RENAME_OBJECT ){ 3378 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3379 } 3380 memcpy(z, pToCol->a[i].zEName, n); 3381 z[n] = 0; 3382 z += n+1; 3383 } 3384 } 3385 pFKey->isDeferred = 0; 3386 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3387 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3388 3389 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3390 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3391 pFKey->zTo, (void *)pFKey 3392 ); 3393 if( pNextTo==pFKey ){ 3394 sqlite3OomFault(db); 3395 goto fk_end; 3396 } 3397 if( pNextTo ){ 3398 assert( pNextTo->pPrevTo==0 ); 3399 pFKey->pNextTo = pNextTo; 3400 pNextTo->pPrevTo = pFKey; 3401 } 3402 3403 /* Link the foreign key to the table as the last step. 3404 */ 3405 p->pFKey = pFKey; 3406 pFKey = 0; 3407 3408 fk_end: 3409 sqlite3DbFree(db, pFKey); 3410 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3411 sqlite3ExprListDelete(db, pFromCol); 3412 sqlite3ExprListDelete(db, pToCol); 3413 } 3414 3415 /* 3416 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3417 ** clause is seen as part of a foreign key definition. The isDeferred 3418 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3419 ** The behavior of the most recently created foreign key is adjusted 3420 ** accordingly. 3421 */ 3422 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3423 #ifndef SQLITE_OMIT_FOREIGN_KEY 3424 Table *pTab; 3425 FKey *pFKey; 3426 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3427 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3428 pFKey->isDeferred = (u8)isDeferred; 3429 #endif 3430 } 3431 3432 /* 3433 ** Generate code that will erase and refill index *pIdx. This is 3434 ** used to initialize a newly created index or to recompute the 3435 ** content of an index in response to a REINDEX command. 3436 ** 3437 ** if memRootPage is not negative, it means that the index is newly 3438 ** created. The register specified by memRootPage contains the 3439 ** root page number of the index. If memRootPage is negative, then 3440 ** the index already exists and must be cleared before being refilled and 3441 ** the root page number of the index is taken from pIndex->tnum. 3442 */ 3443 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3444 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3445 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3446 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3447 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3448 int addr1; /* Address of top of loop */ 3449 int addr2; /* Address to jump to for next iteration */ 3450 Pgno tnum; /* Root page of index */ 3451 int iPartIdxLabel; /* Jump to this label to skip a row */ 3452 Vdbe *v; /* Generate code into this virtual machine */ 3453 KeyInfo *pKey; /* KeyInfo for index */ 3454 int regRecord; /* Register holding assembled index record */ 3455 sqlite3 *db = pParse->db; /* The database connection */ 3456 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3457 3458 #ifndef SQLITE_OMIT_AUTHORIZATION 3459 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3460 db->aDb[iDb].zDbSName ) ){ 3461 return; 3462 } 3463 #endif 3464 3465 /* Require a write-lock on the table to perform this operation */ 3466 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3467 3468 v = sqlite3GetVdbe(pParse); 3469 if( v==0 ) return; 3470 if( memRootPage>=0 ){ 3471 tnum = (Pgno)memRootPage; 3472 }else{ 3473 tnum = pIndex->tnum; 3474 } 3475 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3476 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3477 3478 /* Open the sorter cursor if we are to use one. */ 3479 iSorter = pParse->nTab++; 3480 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3481 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3482 3483 /* Open the table. Loop through all rows of the table, inserting index 3484 ** records into the sorter. */ 3485 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3486 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3487 regRecord = sqlite3GetTempReg(pParse); 3488 sqlite3MultiWrite(pParse); 3489 3490 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3491 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3492 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3493 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3494 sqlite3VdbeJumpHere(v, addr1); 3495 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3496 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, 3497 (char *)pKey, P4_KEYINFO); 3498 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3499 3500 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3501 if( IsUniqueIndex(pIndex) ){ 3502 int j2 = sqlite3VdbeGoto(v, 1); 3503 addr2 = sqlite3VdbeCurrentAddr(v); 3504 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3505 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3506 pIndex->nKeyCol); VdbeCoverage(v); 3507 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3508 sqlite3VdbeJumpHere(v, j2); 3509 }else{ 3510 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3511 ** abort. The exception is if one of the indexed expressions contains a 3512 ** user function that throws an exception when it is evaluated. But the 3513 ** overhead of adding a statement journal to a CREATE INDEX statement is 3514 ** very small (since most of the pages written do not contain content that 3515 ** needs to be restored if the statement aborts), so we call 3516 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3517 sqlite3MayAbort(pParse); 3518 addr2 = sqlite3VdbeCurrentAddr(v); 3519 } 3520 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3521 if( !pIndex->bAscKeyBug ){ 3522 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3523 ** faster by avoiding unnecessary seeks. But the optimization does 3524 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3525 ** with DESC primary keys, since those indexes have there keys in 3526 ** a different order from the main table. 3527 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3528 */ 3529 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3530 } 3531 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3532 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3533 sqlite3ReleaseTempReg(pParse, regRecord); 3534 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3535 sqlite3VdbeJumpHere(v, addr1); 3536 3537 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3538 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3539 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3540 } 3541 3542 /* 3543 ** Allocate heap space to hold an Index object with nCol columns. 3544 ** 3545 ** Increase the allocation size to provide an extra nExtra bytes 3546 ** of 8-byte aligned space after the Index object and return a 3547 ** pointer to this extra space in *ppExtra. 3548 */ 3549 Index *sqlite3AllocateIndexObject( 3550 sqlite3 *db, /* Database connection */ 3551 i16 nCol, /* Total number of columns in the index */ 3552 int nExtra, /* Number of bytes of extra space to alloc */ 3553 char **ppExtra /* Pointer to the "extra" space */ 3554 ){ 3555 Index *p; /* Allocated index object */ 3556 int nByte; /* Bytes of space for Index object + arrays */ 3557 3558 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3559 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3560 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3561 sizeof(i16)*nCol + /* Index.aiColumn */ 3562 sizeof(u8)*nCol); /* Index.aSortOrder */ 3563 p = sqlite3DbMallocZero(db, nByte + nExtra); 3564 if( p ){ 3565 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3566 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3567 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3568 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3569 p->aSortOrder = (u8*)pExtra; 3570 p->nColumn = nCol; 3571 p->nKeyCol = nCol - 1; 3572 *ppExtra = ((char*)p) + nByte; 3573 } 3574 return p; 3575 } 3576 3577 /* 3578 ** If expression list pList contains an expression that was parsed with 3579 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3580 ** pParse and return non-zero. Otherwise, return zero. 3581 */ 3582 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3583 if( pList ){ 3584 int i; 3585 for(i=0; i<pList->nExpr; i++){ 3586 if( pList->a[i].bNulls ){ 3587 u8 sf = pList->a[i].sortFlags; 3588 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3589 (sf==0 || sf==3) ? "FIRST" : "LAST" 3590 ); 3591 return 1; 3592 } 3593 } 3594 } 3595 return 0; 3596 } 3597 3598 /* 3599 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3600 ** and pTblList is the name of the table that is to be indexed. Both will 3601 ** be NULL for a primary key or an index that is created to satisfy a 3602 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3603 ** as the table to be indexed. pParse->pNewTable is a table that is 3604 ** currently being constructed by a CREATE TABLE statement. 3605 ** 3606 ** pList is a list of columns to be indexed. pList will be NULL if this 3607 ** is a primary key or unique-constraint on the most recent column added 3608 ** to the table currently under construction. 3609 */ 3610 void sqlite3CreateIndex( 3611 Parse *pParse, /* All information about this parse */ 3612 Token *pName1, /* First part of index name. May be NULL */ 3613 Token *pName2, /* Second part of index name. May be NULL */ 3614 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3615 ExprList *pList, /* A list of columns to be indexed */ 3616 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3617 Token *pStart, /* The CREATE token that begins this statement */ 3618 Expr *pPIWhere, /* WHERE clause for partial indices */ 3619 int sortOrder, /* Sort order of primary key when pList==NULL */ 3620 int ifNotExist, /* Omit error if index already exists */ 3621 u8 idxType /* The index type */ 3622 ){ 3623 Table *pTab = 0; /* Table to be indexed */ 3624 Index *pIndex = 0; /* The index to be created */ 3625 char *zName = 0; /* Name of the index */ 3626 int nName; /* Number of characters in zName */ 3627 int i, j; 3628 DbFixer sFix; /* For assigning database names to pTable */ 3629 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3630 sqlite3 *db = pParse->db; 3631 Db *pDb; /* The specific table containing the indexed database */ 3632 int iDb; /* Index of the database that is being written */ 3633 Token *pName = 0; /* Unqualified name of the index to create */ 3634 struct ExprList_item *pListItem; /* For looping over pList */ 3635 int nExtra = 0; /* Space allocated for zExtra[] */ 3636 int nExtraCol; /* Number of extra columns needed */ 3637 char *zExtra = 0; /* Extra space after the Index object */ 3638 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3639 3640 if( db->mallocFailed || pParse->nErr>0 ){ 3641 goto exit_create_index; 3642 } 3643 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3644 goto exit_create_index; 3645 } 3646 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3647 goto exit_create_index; 3648 } 3649 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3650 goto exit_create_index; 3651 } 3652 3653 /* 3654 ** Find the table that is to be indexed. Return early if not found. 3655 */ 3656 if( pTblName!=0 ){ 3657 3658 /* Use the two-part index name to determine the database 3659 ** to search for the table. 'Fix' the table name to this db 3660 ** before looking up the table. 3661 */ 3662 assert( pName1 && pName2 ); 3663 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3664 if( iDb<0 ) goto exit_create_index; 3665 assert( pName && pName->z ); 3666 3667 #ifndef SQLITE_OMIT_TEMPDB 3668 /* If the index name was unqualified, check if the table 3669 ** is a temp table. If so, set the database to 1. Do not do this 3670 ** if initialising a database schema. 3671 */ 3672 if( !db->init.busy ){ 3673 pTab = sqlite3SrcListLookup(pParse, pTblName); 3674 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3675 iDb = 1; 3676 } 3677 } 3678 #endif 3679 3680 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3681 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3682 /* Because the parser constructs pTblName from a single identifier, 3683 ** sqlite3FixSrcList can never fail. */ 3684 assert(0); 3685 } 3686 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3687 assert( db->mallocFailed==0 || pTab==0 ); 3688 if( pTab==0 ) goto exit_create_index; 3689 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3690 sqlite3ErrorMsg(pParse, 3691 "cannot create a TEMP index on non-TEMP table \"%s\"", 3692 pTab->zName); 3693 goto exit_create_index; 3694 } 3695 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3696 }else{ 3697 assert( pName==0 ); 3698 assert( pStart==0 ); 3699 pTab = pParse->pNewTable; 3700 if( !pTab ) goto exit_create_index; 3701 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3702 } 3703 pDb = &db->aDb[iDb]; 3704 3705 assert( pTab!=0 ); 3706 assert( pParse->nErr==0 ); 3707 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3708 && db->init.busy==0 3709 && pTblName!=0 3710 #if SQLITE_USER_AUTHENTICATION 3711 && sqlite3UserAuthTable(pTab->zName)==0 3712 #endif 3713 ){ 3714 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3715 goto exit_create_index; 3716 } 3717 #ifndef SQLITE_OMIT_VIEW 3718 if( pTab->pSelect ){ 3719 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3720 goto exit_create_index; 3721 } 3722 #endif 3723 #ifndef SQLITE_OMIT_VIRTUALTABLE 3724 if( IsVirtual(pTab) ){ 3725 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3726 goto exit_create_index; 3727 } 3728 #endif 3729 3730 /* 3731 ** Find the name of the index. Make sure there is not already another 3732 ** index or table with the same name. 3733 ** 3734 ** Exception: If we are reading the names of permanent indices from the 3735 ** sqlite_schema table (because some other process changed the schema) and 3736 ** one of the index names collides with the name of a temporary table or 3737 ** index, then we will continue to process this index. 3738 ** 3739 ** If pName==0 it means that we are 3740 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3741 ** own name. 3742 */ 3743 if( pName ){ 3744 zName = sqlite3NameFromToken(db, pName); 3745 if( zName==0 ) goto exit_create_index; 3746 assert( pName->z!=0 ); 3747 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3748 goto exit_create_index; 3749 } 3750 if( !IN_RENAME_OBJECT ){ 3751 if( !db->init.busy ){ 3752 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3753 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3754 goto exit_create_index; 3755 } 3756 } 3757 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3758 if( !ifNotExist ){ 3759 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3760 }else{ 3761 assert( !db->init.busy ); 3762 sqlite3CodeVerifySchema(pParse, iDb); 3763 } 3764 goto exit_create_index; 3765 } 3766 } 3767 }else{ 3768 int n; 3769 Index *pLoop; 3770 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3771 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3772 if( zName==0 ){ 3773 goto exit_create_index; 3774 } 3775 3776 /* Automatic index names generated from within sqlite3_declare_vtab() 3777 ** must have names that are distinct from normal automatic index names. 3778 ** The following statement converts "sqlite3_autoindex..." into 3779 ** "sqlite3_butoindex..." in order to make the names distinct. 3780 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3781 if( IN_SPECIAL_PARSE ) zName[7]++; 3782 } 3783 3784 /* Check for authorization to create an index. 3785 */ 3786 #ifndef SQLITE_OMIT_AUTHORIZATION 3787 if( !IN_RENAME_OBJECT ){ 3788 const char *zDb = pDb->zDbSName; 3789 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3790 goto exit_create_index; 3791 } 3792 i = SQLITE_CREATE_INDEX; 3793 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3794 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3795 goto exit_create_index; 3796 } 3797 } 3798 #endif 3799 3800 /* If pList==0, it means this routine was called to make a primary 3801 ** key out of the last column added to the table under construction. 3802 ** So create a fake list to simulate this. 3803 */ 3804 if( pList==0 ){ 3805 Token prevCol; 3806 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3807 pCol->colFlags |= COLFLAG_UNIQUE; 3808 sqlite3TokenInit(&prevCol, pCol->zName); 3809 pList = sqlite3ExprListAppend(pParse, 0, 3810 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3811 if( pList==0 ) goto exit_create_index; 3812 assert( pList->nExpr==1 ); 3813 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3814 }else{ 3815 sqlite3ExprListCheckLength(pParse, pList, "index"); 3816 if( pParse->nErr ) goto exit_create_index; 3817 } 3818 3819 /* Figure out how many bytes of space are required to store explicitly 3820 ** specified collation sequence names. 3821 */ 3822 for(i=0; i<pList->nExpr; i++){ 3823 Expr *pExpr = pList->a[i].pExpr; 3824 assert( pExpr!=0 ); 3825 if( pExpr->op==TK_COLLATE ){ 3826 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3827 } 3828 } 3829 3830 /* 3831 ** Allocate the index structure. 3832 */ 3833 nName = sqlite3Strlen30(zName); 3834 nExtraCol = pPk ? pPk->nKeyCol : 1; 3835 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3836 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3837 nName + nExtra + 1, &zExtra); 3838 if( db->mallocFailed ){ 3839 goto exit_create_index; 3840 } 3841 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3842 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3843 pIndex->zName = zExtra; 3844 zExtra += nName + 1; 3845 memcpy(pIndex->zName, zName, nName+1); 3846 pIndex->pTable = pTab; 3847 pIndex->onError = (u8)onError; 3848 pIndex->uniqNotNull = onError!=OE_None; 3849 pIndex->idxType = idxType; 3850 pIndex->pSchema = db->aDb[iDb].pSchema; 3851 pIndex->nKeyCol = pList->nExpr; 3852 if( pPIWhere ){ 3853 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3854 pIndex->pPartIdxWhere = pPIWhere; 3855 pPIWhere = 0; 3856 } 3857 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3858 3859 /* Check to see if we should honor DESC requests on index columns 3860 */ 3861 if( pDb->pSchema->file_format>=4 ){ 3862 sortOrderMask = -1; /* Honor DESC */ 3863 }else{ 3864 sortOrderMask = 0; /* Ignore DESC */ 3865 } 3866 3867 /* Analyze the list of expressions that form the terms of the index and 3868 ** report any errors. In the common case where the expression is exactly 3869 ** a table column, store that column in aiColumn[]. For general expressions, 3870 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3871 ** 3872 ** TODO: Issue a warning if two or more columns of the index are identical. 3873 ** TODO: Issue a warning if the table primary key is used as part of the 3874 ** index key. 3875 */ 3876 pListItem = pList->a; 3877 if( IN_RENAME_OBJECT ){ 3878 pIndex->aColExpr = pList; 3879 pList = 0; 3880 } 3881 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3882 Expr *pCExpr; /* The i-th index expression */ 3883 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3884 const char *zColl; /* Collation sequence name */ 3885 3886 sqlite3StringToId(pListItem->pExpr); 3887 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3888 if( pParse->nErr ) goto exit_create_index; 3889 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3890 if( pCExpr->op!=TK_COLUMN ){ 3891 if( pTab==pParse->pNewTable ){ 3892 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3893 "UNIQUE constraints"); 3894 goto exit_create_index; 3895 } 3896 if( pIndex->aColExpr==0 ){ 3897 pIndex->aColExpr = pList; 3898 pList = 0; 3899 } 3900 j = XN_EXPR; 3901 pIndex->aiColumn[i] = XN_EXPR; 3902 pIndex->uniqNotNull = 0; 3903 }else{ 3904 j = pCExpr->iColumn; 3905 assert( j<=0x7fff ); 3906 if( j<0 ){ 3907 j = pTab->iPKey; 3908 }else{ 3909 if( pTab->aCol[j].notNull==0 ){ 3910 pIndex->uniqNotNull = 0; 3911 } 3912 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3913 pIndex->bHasVCol = 1; 3914 } 3915 } 3916 pIndex->aiColumn[i] = (i16)j; 3917 } 3918 zColl = 0; 3919 if( pListItem->pExpr->op==TK_COLLATE ){ 3920 int nColl; 3921 zColl = pListItem->pExpr->u.zToken; 3922 nColl = sqlite3Strlen30(zColl) + 1; 3923 assert( nExtra>=nColl ); 3924 memcpy(zExtra, zColl, nColl); 3925 zColl = zExtra; 3926 zExtra += nColl; 3927 nExtra -= nColl; 3928 }else if( j>=0 ){ 3929 zColl = pTab->aCol[j].zColl; 3930 } 3931 if( !zColl ) zColl = sqlite3StrBINARY; 3932 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3933 goto exit_create_index; 3934 } 3935 pIndex->azColl[i] = zColl; 3936 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3937 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3938 } 3939 3940 /* Append the table key to the end of the index. For WITHOUT ROWID 3941 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3942 ** normal tables (when pPk==0) this will be the rowid. 3943 */ 3944 if( pPk ){ 3945 for(j=0; j<pPk->nKeyCol; j++){ 3946 int x = pPk->aiColumn[j]; 3947 assert( x>=0 ); 3948 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3949 pIndex->nColumn--; 3950 }else{ 3951 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3952 pIndex->aiColumn[i] = x; 3953 pIndex->azColl[i] = pPk->azColl[j]; 3954 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3955 i++; 3956 } 3957 } 3958 assert( i==pIndex->nColumn ); 3959 }else{ 3960 pIndex->aiColumn[i] = XN_ROWID; 3961 pIndex->azColl[i] = sqlite3StrBINARY; 3962 } 3963 sqlite3DefaultRowEst(pIndex); 3964 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3965 3966 /* If this index contains every column of its table, then mark 3967 ** it as a covering index */ 3968 assert( HasRowid(pTab) 3969 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 3970 recomputeColumnsNotIndexed(pIndex); 3971 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3972 pIndex->isCovering = 1; 3973 for(j=0; j<pTab->nCol; j++){ 3974 if( j==pTab->iPKey ) continue; 3975 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 3976 pIndex->isCovering = 0; 3977 break; 3978 } 3979 } 3980 3981 if( pTab==pParse->pNewTable ){ 3982 /* This routine has been called to create an automatic index as a 3983 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3984 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3985 ** i.e. one of: 3986 ** 3987 ** CREATE TABLE t(x PRIMARY KEY, y); 3988 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3989 ** 3990 ** Either way, check to see if the table already has such an index. If 3991 ** so, don't bother creating this one. This only applies to 3992 ** automatically created indices. Users can do as they wish with 3993 ** explicit indices. 3994 ** 3995 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3996 ** (and thus suppressing the second one) even if they have different 3997 ** sort orders. 3998 ** 3999 ** If there are different collating sequences or if the columns of 4000 ** the constraint occur in different orders, then the constraints are 4001 ** considered distinct and both result in separate indices. 4002 */ 4003 Index *pIdx; 4004 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4005 int k; 4006 assert( IsUniqueIndex(pIdx) ); 4007 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 4008 assert( IsUniqueIndex(pIndex) ); 4009 4010 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 4011 for(k=0; k<pIdx->nKeyCol; k++){ 4012 const char *z1; 4013 const char *z2; 4014 assert( pIdx->aiColumn[k]>=0 ); 4015 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 4016 z1 = pIdx->azColl[k]; 4017 z2 = pIndex->azColl[k]; 4018 if( sqlite3StrICmp(z1, z2) ) break; 4019 } 4020 if( k==pIdx->nKeyCol ){ 4021 if( pIdx->onError!=pIndex->onError ){ 4022 /* This constraint creates the same index as a previous 4023 ** constraint specified somewhere in the CREATE TABLE statement. 4024 ** However the ON CONFLICT clauses are different. If both this 4025 ** constraint and the previous equivalent constraint have explicit 4026 ** ON CONFLICT clauses this is an error. Otherwise, use the 4027 ** explicitly specified behavior for the index. 4028 */ 4029 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 4030 sqlite3ErrorMsg(pParse, 4031 "conflicting ON CONFLICT clauses specified", 0); 4032 } 4033 if( pIdx->onError==OE_Default ){ 4034 pIdx->onError = pIndex->onError; 4035 } 4036 } 4037 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 4038 if( IN_RENAME_OBJECT ){ 4039 pIndex->pNext = pParse->pNewIndex; 4040 pParse->pNewIndex = pIndex; 4041 pIndex = 0; 4042 } 4043 goto exit_create_index; 4044 } 4045 } 4046 } 4047 4048 if( !IN_RENAME_OBJECT ){ 4049 4050 /* Link the new Index structure to its table and to the other 4051 ** in-memory database structures. 4052 */ 4053 assert( pParse->nErr==0 ); 4054 if( db->init.busy ){ 4055 Index *p; 4056 assert( !IN_SPECIAL_PARSE ); 4057 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 4058 if( pTblName!=0 ){ 4059 pIndex->tnum = db->init.newTnum; 4060 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 4061 sqlite3ErrorMsg(pParse, "invalid rootpage"); 4062 pParse->rc = SQLITE_CORRUPT_BKPT; 4063 goto exit_create_index; 4064 } 4065 } 4066 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 4067 pIndex->zName, pIndex); 4068 if( p ){ 4069 assert( p==pIndex ); /* Malloc must have failed */ 4070 sqlite3OomFault(db); 4071 goto exit_create_index; 4072 } 4073 db->mDbFlags |= DBFLAG_SchemaChange; 4074 } 4075 4076 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 4077 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 4078 ** emit code to allocate the index rootpage on disk and make an entry for 4079 ** the index in the sqlite_schema table and populate the index with 4080 ** content. But, do not do this if we are simply reading the sqlite_schema 4081 ** table to parse the schema, or if this index is the PRIMARY KEY index 4082 ** of a WITHOUT ROWID table. 4083 ** 4084 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 4085 ** or UNIQUE index in a CREATE TABLE statement. Since the table 4086 ** has just been created, it contains no data and the index initialization 4087 ** step can be skipped. 4088 */ 4089 else if( HasRowid(pTab) || pTblName!=0 ){ 4090 Vdbe *v; 4091 char *zStmt; 4092 int iMem = ++pParse->nMem; 4093 4094 v = sqlite3GetVdbe(pParse); 4095 if( v==0 ) goto exit_create_index; 4096 4097 sqlite3BeginWriteOperation(pParse, 1, iDb); 4098 4099 /* Create the rootpage for the index using CreateIndex. But before 4100 ** doing so, code a Noop instruction and store its address in 4101 ** Index.tnum. This is required in case this index is actually a 4102 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 4103 ** that case the convertToWithoutRowidTable() routine will replace 4104 ** the Noop with a Goto to jump over the VDBE code generated below. */ 4105 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); 4106 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 4107 4108 /* Gather the complete text of the CREATE INDEX statement into 4109 ** the zStmt variable 4110 */ 4111 assert( pName!=0 || pStart==0 ); 4112 if( pStart ){ 4113 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 4114 if( pName->z[n-1]==';' ) n--; 4115 /* A named index with an explicit CREATE INDEX statement */ 4116 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 4117 onError==OE_None ? "" : " UNIQUE", n, pName->z); 4118 }else{ 4119 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 4120 /* zStmt = sqlite3MPrintf(""); */ 4121 zStmt = 0; 4122 } 4123 4124 /* Add an entry in sqlite_schema for this index 4125 */ 4126 sqlite3NestedParse(pParse, 4127 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", 4128 db->aDb[iDb].zDbSName, 4129 pIndex->zName, 4130 pTab->zName, 4131 iMem, 4132 zStmt 4133 ); 4134 sqlite3DbFree(db, zStmt); 4135 4136 /* Fill the index with data and reparse the schema. Code an OP_Expire 4137 ** to invalidate all pre-compiled statements. 4138 */ 4139 if( pTblName ){ 4140 sqlite3RefillIndex(pParse, pIndex, iMem); 4141 sqlite3ChangeCookie(pParse, iDb); 4142 sqlite3VdbeAddParseSchemaOp(v, iDb, 4143 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); 4144 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 4145 } 4146 4147 sqlite3VdbeJumpHere(v, (int)pIndex->tnum); 4148 } 4149 } 4150 if( db->init.busy || pTblName==0 ){ 4151 pIndex->pNext = pTab->pIndex; 4152 pTab->pIndex = pIndex; 4153 pIndex = 0; 4154 } 4155 else if( IN_RENAME_OBJECT ){ 4156 assert( pParse->pNewIndex==0 ); 4157 pParse->pNewIndex = pIndex; 4158 pIndex = 0; 4159 } 4160 4161 /* Clean up before exiting */ 4162 exit_create_index: 4163 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4164 if( pTab ){ 4165 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. 4166 ** The list was already ordered when this routine was entered, so at this 4167 ** point at most a single index (the newly added index) will be out of 4168 ** order. So we have to reorder at most one index. */ 4169 Index **ppFrom = &pTab->pIndex; 4170 Index *pThis; 4171 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4172 Index *pNext; 4173 if( pThis->onError!=OE_Replace ) continue; 4174 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4175 *ppFrom = pNext; 4176 pThis->pNext = pNext->pNext; 4177 pNext->pNext = pThis; 4178 ppFrom = &pNext->pNext; 4179 } 4180 break; 4181 } 4182 #ifdef SQLITE_DEBUG 4183 /* Verify that all REPLACE indexes really are now at the end 4184 ** of the index list. In other words, no other index type ever 4185 ** comes after a REPLACE index on the list. */ 4186 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ 4187 assert( pThis->onError!=OE_Replace 4188 || pThis->pNext==0 4189 || pThis->pNext->onError==OE_Replace ); 4190 } 4191 #endif 4192 } 4193 sqlite3ExprDelete(db, pPIWhere); 4194 sqlite3ExprListDelete(db, pList); 4195 sqlite3SrcListDelete(db, pTblName); 4196 sqlite3DbFree(db, zName); 4197 } 4198 4199 /* 4200 ** Fill the Index.aiRowEst[] array with default information - information 4201 ** to be used when we have not run the ANALYZE command. 4202 ** 4203 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4204 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4205 ** number of rows in the table that match any particular value of the 4206 ** first column of the index. aiRowEst[2] is an estimate of the number 4207 ** of rows that match any particular combination of the first 2 columns 4208 ** of the index. And so forth. It must always be the case that 4209 * 4210 ** aiRowEst[N]<=aiRowEst[N-1] 4211 ** aiRowEst[N]>=1 4212 ** 4213 ** Apart from that, we have little to go on besides intuition as to 4214 ** how aiRowEst[] should be initialized. The numbers generated here 4215 ** are based on typical values found in actual indices. 4216 */ 4217 void sqlite3DefaultRowEst(Index *pIdx){ 4218 /* 10, 9, 8, 7, 6 */ 4219 static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4220 LogEst *a = pIdx->aiRowLogEst; 4221 LogEst x; 4222 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4223 int i; 4224 4225 /* Indexes with default row estimates should not have stat1 data */ 4226 assert( !pIdx->hasStat1 ); 4227 4228 /* Set the first entry (number of rows in the index) to the estimated 4229 ** number of rows in the table, or half the number of rows in the table 4230 ** for a partial index. 4231 ** 4232 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 4233 ** table but other parts we are having to guess at, then do not let the 4234 ** estimated number of rows in the table be less than 1000 (LogEst 99). 4235 ** Failure to do this can cause the indexes for which we do not have 4236 ** stat1 data to be ignored by the query planner. 4237 */ 4238 x = pIdx->pTable->nRowLogEst; 4239 assert( 99==sqlite3LogEst(1000) ); 4240 if( x<99 ){ 4241 pIdx->pTable->nRowLogEst = x = 99; 4242 } 4243 if( pIdx->pPartIdxWhere!=0 ) x -= 10; assert( 10==sqlite3LogEst(2) ); 4244 a[0] = x; 4245 4246 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4247 ** 6 and each subsequent value (if any) is 5. */ 4248 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4249 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4250 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4251 } 4252 4253 assert( 0==sqlite3LogEst(1) ); 4254 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4255 } 4256 4257 /* 4258 ** This routine will drop an existing named index. This routine 4259 ** implements the DROP INDEX statement. 4260 */ 4261 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4262 Index *pIndex; 4263 Vdbe *v; 4264 sqlite3 *db = pParse->db; 4265 int iDb; 4266 4267 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4268 if( db->mallocFailed ){ 4269 goto exit_drop_index; 4270 } 4271 assert( pName->nSrc==1 ); 4272 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4273 goto exit_drop_index; 4274 } 4275 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4276 if( pIndex==0 ){ 4277 if( !ifExists ){ 4278 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); 4279 }else{ 4280 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4281 } 4282 pParse->checkSchema = 1; 4283 goto exit_drop_index; 4284 } 4285 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4286 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4287 "or PRIMARY KEY constraint cannot be dropped", 0); 4288 goto exit_drop_index; 4289 } 4290 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4291 #ifndef SQLITE_OMIT_AUTHORIZATION 4292 { 4293 int code = SQLITE_DROP_INDEX; 4294 Table *pTab = pIndex->pTable; 4295 const char *zDb = db->aDb[iDb].zDbSName; 4296 const char *zTab = SCHEMA_TABLE(iDb); 4297 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4298 goto exit_drop_index; 4299 } 4300 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 4301 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4302 goto exit_drop_index; 4303 } 4304 } 4305 #endif 4306 4307 /* Generate code to remove the index and from the schema table */ 4308 v = sqlite3GetVdbe(pParse); 4309 if( v ){ 4310 sqlite3BeginWriteOperation(pParse, 1, iDb); 4311 sqlite3NestedParse(pParse, 4312 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'", 4313 db->aDb[iDb].zDbSName, pIndex->zName 4314 ); 4315 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4316 sqlite3ChangeCookie(pParse, iDb); 4317 destroyRootPage(pParse, pIndex->tnum, iDb); 4318 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4319 } 4320 4321 exit_drop_index: 4322 sqlite3SrcListDelete(db, pName); 4323 } 4324 4325 /* 4326 ** pArray is a pointer to an array of objects. Each object in the 4327 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4328 ** to extend the array so that there is space for a new object at the end. 4329 ** 4330 ** When this function is called, *pnEntry contains the current size of 4331 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4332 ** in total). 4333 ** 4334 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4335 ** space allocated for the new object is zeroed, *pnEntry updated to 4336 ** reflect the new size of the array and a pointer to the new allocation 4337 ** returned. *pIdx is set to the index of the new array entry in this case. 4338 ** 4339 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4340 ** unchanged and a copy of pArray returned. 4341 */ 4342 void *sqlite3ArrayAllocate( 4343 sqlite3 *db, /* Connection to notify of malloc failures */ 4344 void *pArray, /* Array of objects. Might be reallocated */ 4345 int szEntry, /* Size of each object in the array */ 4346 int *pnEntry, /* Number of objects currently in use */ 4347 int *pIdx /* Write the index of a new slot here */ 4348 ){ 4349 char *z; 4350 sqlite3_int64 n = *pIdx = *pnEntry; 4351 if( (n & (n-1))==0 ){ 4352 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4353 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4354 if( pNew==0 ){ 4355 *pIdx = -1; 4356 return pArray; 4357 } 4358 pArray = pNew; 4359 } 4360 z = (char*)pArray; 4361 memset(&z[n * szEntry], 0, szEntry); 4362 ++*pnEntry; 4363 return pArray; 4364 } 4365 4366 /* 4367 ** Append a new element to the given IdList. Create a new IdList if 4368 ** need be. 4369 ** 4370 ** A new IdList is returned, or NULL if malloc() fails. 4371 */ 4372 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4373 sqlite3 *db = pParse->db; 4374 int i; 4375 if( pList==0 ){ 4376 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4377 if( pList==0 ) return 0; 4378 } 4379 pList->a = sqlite3ArrayAllocate( 4380 db, 4381 pList->a, 4382 sizeof(pList->a[0]), 4383 &pList->nId, 4384 &i 4385 ); 4386 if( i<0 ){ 4387 sqlite3IdListDelete(db, pList); 4388 return 0; 4389 } 4390 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4391 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4392 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4393 } 4394 return pList; 4395 } 4396 4397 /* 4398 ** Delete an IdList. 4399 */ 4400 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4401 int i; 4402 if( pList==0 ) return; 4403 for(i=0; i<pList->nId; i++){ 4404 sqlite3DbFree(db, pList->a[i].zName); 4405 } 4406 sqlite3DbFree(db, pList->a); 4407 sqlite3DbFreeNN(db, pList); 4408 } 4409 4410 /* 4411 ** Return the index in pList of the identifier named zId. Return -1 4412 ** if not found. 4413 */ 4414 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4415 int i; 4416 if( pList==0 ) return -1; 4417 for(i=0; i<pList->nId; i++){ 4418 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4419 } 4420 return -1; 4421 } 4422 4423 /* 4424 ** Maximum size of a SrcList object. 4425 ** The SrcList object is used to represent the FROM clause of a 4426 ** SELECT statement, and the query planner cannot deal with more 4427 ** than 64 tables in a join. So any value larger than 64 here 4428 ** is sufficient for most uses. Smaller values, like say 10, are 4429 ** appropriate for small and memory-limited applications. 4430 */ 4431 #ifndef SQLITE_MAX_SRCLIST 4432 # define SQLITE_MAX_SRCLIST 200 4433 #endif 4434 4435 /* 4436 ** Expand the space allocated for the given SrcList object by 4437 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4438 ** New slots are zeroed. 4439 ** 4440 ** For example, suppose a SrcList initially contains two entries: A,B. 4441 ** To append 3 new entries onto the end, do this: 4442 ** 4443 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4444 ** 4445 ** After the call above it would contain: A, B, nil, nil, nil. 4446 ** If the iStart argument had been 1 instead of 2, then the result 4447 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4448 ** the iStart value would be 0. The result then would 4449 ** be: nil, nil, nil, A, B. 4450 ** 4451 ** If a memory allocation fails or the SrcList becomes too large, leave 4452 ** the original SrcList unchanged, return NULL, and leave an error message 4453 ** in pParse. 4454 */ 4455 SrcList *sqlite3SrcListEnlarge( 4456 Parse *pParse, /* Parsing context into which errors are reported */ 4457 SrcList *pSrc, /* The SrcList to be enlarged */ 4458 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4459 int iStart /* Index in pSrc->a[] of first new slot */ 4460 ){ 4461 int i; 4462 4463 /* Sanity checking on calling parameters */ 4464 assert( iStart>=0 ); 4465 assert( nExtra>=1 ); 4466 assert( pSrc!=0 ); 4467 assert( iStart<=pSrc->nSrc ); 4468 4469 /* Allocate additional space if needed */ 4470 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4471 SrcList *pNew; 4472 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4473 sqlite3 *db = pParse->db; 4474 4475 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4476 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4477 SQLITE_MAX_SRCLIST); 4478 return 0; 4479 } 4480 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4481 pNew = sqlite3DbRealloc(db, pSrc, 4482 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4483 if( pNew==0 ){ 4484 assert( db->mallocFailed ); 4485 return 0; 4486 } 4487 pSrc = pNew; 4488 pSrc->nAlloc = nAlloc; 4489 } 4490 4491 /* Move existing slots that come after the newly inserted slots 4492 ** out of the way */ 4493 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4494 pSrc->a[i+nExtra] = pSrc->a[i]; 4495 } 4496 pSrc->nSrc += nExtra; 4497 4498 /* Zero the newly allocated slots */ 4499 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4500 for(i=iStart; i<iStart+nExtra; i++){ 4501 pSrc->a[i].iCursor = -1; 4502 } 4503 4504 /* Return a pointer to the enlarged SrcList */ 4505 return pSrc; 4506 } 4507 4508 4509 /* 4510 ** Append a new table name to the given SrcList. Create a new SrcList if 4511 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4512 ** 4513 ** A SrcList is returned, or NULL if there is an OOM error or if the 4514 ** SrcList grows to large. The returned 4515 ** SrcList might be the same as the SrcList that was input or it might be 4516 ** a new one. If an OOM error does occurs, then the prior value of pList 4517 ** that is input to this routine is automatically freed. 4518 ** 4519 ** If pDatabase is not null, it means that the table has an optional 4520 ** database name prefix. Like this: "database.table". The pDatabase 4521 ** points to the table name and the pTable points to the database name. 4522 ** The SrcList.a[].zName field is filled with the table name which might 4523 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4524 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4525 ** or with NULL if no database is specified. 4526 ** 4527 ** In other words, if call like this: 4528 ** 4529 ** sqlite3SrcListAppend(D,A,B,0); 4530 ** 4531 ** Then B is a table name and the database name is unspecified. If called 4532 ** like this: 4533 ** 4534 ** sqlite3SrcListAppend(D,A,B,C); 4535 ** 4536 ** Then C is the table name and B is the database name. If C is defined 4537 ** then so is B. In other words, we never have a case where: 4538 ** 4539 ** sqlite3SrcListAppend(D,A,0,C); 4540 ** 4541 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4542 ** before being added to the SrcList. 4543 */ 4544 SrcList *sqlite3SrcListAppend( 4545 Parse *pParse, /* Parsing context, in which errors are reported */ 4546 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4547 Token *pTable, /* Table to append */ 4548 Token *pDatabase /* Database of the table */ 4549 ){ 4550 SrcItem *pItem; 4551 sqlite3 *db; 4552 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4553 assert( pParse!=0 ); 4554 assert( pParse->db!=0 ); 4555 db = pParse->db; 4556 if( pList==0 ){ 4557 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4558 if( pList==0 ) return 0; 4559 pList->nAlloc = 1; 4560 pList->nSrc = 1; 4561 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4562 pList->a[0].iCursor = -1; 4563 }else{ 4564 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4565 if( pNew==0 ){ 4566 sqlite3SrcListDelete(db, pList); 4567 return 0; 4568 }else{ 4569 pList = pNew; 4570 } 4571 } 4572 pItem = &pList->a[pList->nSrc-1]; 4573 if( pDatabase && pDatabase->z==0 ){ 4574 pDatabase = 0; 4575 } 4576 if( pDatabase ){ 4577 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4578 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4579 }else{ 4580 pItem->zName = sqlite3NameFromToken(db, pTable); 4581 pItem->zDatabase = 0; 4582 } 4583 return pList; 4584 } 4585 4586 /* 4587 ** Assign VdbeCursor index numbers to all tables in a SrcList 4588 */ 4589 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4590 int i; 4591 SrcItem *pItem; 4592 assert(pList || pParse->db->mallocFailed ); 4593 if( pList ){ 4594 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4595 if( pItem->iCursor>=0 ) continue; 4596 pItem->iCursor = pParse->nTab++; 4597 if( pItem->pSelect ){ 4598 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4599 } 4600 } 4601 } 4602 } 4603 4604 /* 4605 ** Delete an entire SrcList including all its substructure. 4606 */ 4607 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4608 int i; 4609 SrcItem *pItem; 4610 if( pList==0 ) return; 4611 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4612 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase); 4613 sqlite3DbFree(db, pItem->zName); 4614 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias); 4615 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4616 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4617 sqlite3DeleteTable(db, pItem->pTab); 4618 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); 4619 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn); 4620 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing); 4621 } 4622 sqlite3DbFreeNN(db, pList); 4623 } 4624 4625 /* 4626 ** This routine is called by the parser to add a new term to the 4627 ** end of a growing FROM clause. The "p" parameter is the part of 4628 ** the FROM clause that has already been constructed. "p" is NULL 4629 ** if this is the first term of the FROM clause. pTable and pDatabase 4630 ** are the name of the table and database named in the FROM clause term. 4631 ** pDatabase is NULL if the database name qualifier is missing - the 4632 ** usual case. If the term has an alias, then pAlias points to the 4633 ** alias token. If the term is a subquery, then pSubquery is the 4634 ** SELECT statement that the subquery encodes. The pTable and 4635 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4636 ** parameters are the content of the ON and USING clauses. 4637 ** 4638 ** Return a new SrcList which encodes is the FROM with the new 4639 ** term added. 4640 */ 4641 SrcList *sqlite3SrcListAppendFromTerm( 4642 Parse *pParse, /* Parsing context */ 4643 SrcList *p, /* The left part of the FROM clause already seen */ 4644 Token *pTable, /* Name of the table to add to the FROM clause */ 4645 Token *pDatabase, /* Name of the database containing pTable */ 4646 Token *pAlias, /* The right-hand side of the AS subexpression */ 4647 Select *pSubquery, /* A subquery used in place of a table name */ 4648 Expr *pOn, /* The ON clause of a join */ 4649 IdList *pUsing /* The USING clause of a join */ 4650 ){ 4651 SrcItem *pItem; 4652 sqlite3 *db = pParse->db; 4653 if( !p && (pOn || pUsing) ){ 4654 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4655 (pOn ? "ON" : "USING") 4656 ); 4657 goto append_from_error; 4658 } 4659 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4660 if( p==0 ){ 4661 goto append_from_error; 4662 } 4663 assert( p->nSrc>0 ); 4664 pItem = &p->a[p->nSrc-1]; 4665 assert( (pTable==0)==(pDatabase==0) ); 4666 assert( pItem->zName==0 || pDatabase!=0 ); 4667 if( IN_RENAME_OBJECT && pItem->zName ){ 4668 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4669 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4670 } 4671 assert( pAlias!=0 ); 4672 if( pAlias->n ){ 4673 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4674 } 4675 pItem->pSelect = pSubquery; 4676 pItem->pOn = pOn; 4677 pItem->pUsing = pUsing; 4678 return p; 4679 4680 append_from_error: 4681 assert( p==0 ); 4682 sqlite3ExprDelete(db, pOn); 4683 sqlite3IdListDelete(db, pUsing); 4684 sqlite3SelectDelete(db, pSubquery); 4685 return 0; 4686 } 4687 4688 /* 4689 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4690 ** element of the source-list passed as the second argument. 4691 */ 4692 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4693 assert( pIndexedBy!=0 ); 4694 if( p && pIndexedBy->n>0 ){ 4695 SrcItem *pItem; 4696 assert( p->nSrc>0 ); 4697 pItem = &p->a[p->nSrc-1]; 4698 assert( pItem->fg.notIndexed==0 ); 4699 assert( pItem->fg.isIndexedBy==0 ); 4700 assert( pItem->fg.isTabFunc==0 ); 4701 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4702 /* A "NOT INDEXED" clause was supplied. See parse.y 4703 ** construct "indexed_opt" for details. */ 4704 pItem->fg.notIndexed = 1; 4705 }else{ 4706 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4707 pItem->fg.isIndexedBy = 1; 4708 } 4709 } 4710 } 4711 4712 /* 4713 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting 4714 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 4715 ** are deleted by this function. 4716 */ 4717 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ 4718 assert( p1 && p1->nSrc==1 ); 4719 if( p2 ){ 4720 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); 4721 if( pNew==0 ){ 4722 sqlite3SrcListDelete(pParse->db, p2); 4723 }else{ 4724 p1 = pNew; 4725 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); 4726 sqlite3DbFree(pParse->db, p2); 4727 } 4728 } 4729 return p1; 4730 } 4731 4732 /* 4733 ** Add the list of function arguments to the SrcList entry for a 4734 ** table-valued-function. 4735 */ 4736 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4737 if( p ){ 4738 SrcItem *pItem = &p->a[p->nSrc-1]; 4739 assert( pItem->fg.notIndexed==0 ); 4740 assert( pItem->fg.isIndexedBy==0 ); 4741 assert( pItem->fg.isTabFunc==0 ); 4742 pItem->u1.pFuncArg = pList; 4743 pItem->fg.isTabFunc = 1; 4744 }else{ 4745 sqlite3ExprListDelete(pParse->db, pList); 4746 } 4747 } 4748 4749 /* 4750 ** When building up a FROM clause in the parser, the join operator 4751 ** is initially attached to the left operand. But the code generator 4752 ** expects the join operator to be on the right operand. This routine 4753 ** Shifts all join operators from left to right for an entire FROM 4754 ** clause. 4755 ** 4756 ** Example: Suppose the join is like this: 4757 ** 4758 ** A natural cross join B 4759 ** 4760 ** The operator is "natural cross join". The A and B operands are stored 4761 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4762 ** operator with A. This routine shifts that operator over to B. 4763 */ 4764 void sqlite3SrcListShiftJoinType(SrcList *p){ 4765 if( p ){ 4766 int i; 4767 for(i=p->nSrc-1; i>0; i--){ 4768 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4769 } 4770 p->a[0].fg.jointype = 0; 4771 } 4772 } 4773 4774 /* 4775 ** Generate VDBE code for a BEGIN statement. 4776 */ 4777 void sqlite3BeginTransaction(Parse *pParse, int type){ 4778 sqlite3 *db; 4779 Vdbe *v; 4780 int i; 4781 4782 assert( pParse!=0 ); 4783 db = pParse->db; 4784 assert( db!=0 ); 4785 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4786 return; 4787 } 4788 v = sqlite3GetVdbe(pParse); 4789 if( !v ) return; 4790 if( type!=TK_DEFERRED ){ 4791 for(i=0; i<db->nDb; i++){ 4792 int eTxnType; 4793 Btree *pBt = db->aDb[i].pBt; 4794 if( pBt && sqlite3BtreeIsReadonly(pBt) ){ 4795 eTxnType = 0; /* Read txn */ 4796 }else if( type==TK_EXCLUSIVE ){ 4797 eTxnType = 2; /* Exclusive txn */ 4798 }else{ 4799 eTxnType = 1; /* Write txn */ 4800 } 4801 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); 4802 sqlite3VdbeUsesBtree(v, i); 4803 } 4804 } 4805 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4806 } 4807 4808 /* 4809 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4810 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4811 ** code is generated for a COMMIT. 4812 */ 4813 void sqlite3EndTransaction(Parse *pParse, int eType){ 4814 Vdbe *v; 4815 int isRollback; 4816 4817 assert( pParse!=0 ); 4818 assert( pParse->db!=0 ); 4819 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4820 isRollback = eType==TK_ROLLBACK; 4821 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4822 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4823 return; 4824 } 4825 v = sqlite3GetVdbe(pParse); 4826 if( v ){ 4827 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4828 } 4829 } 4830 4831 /* 4832 ** This function is called by the parser when it parses a command to create, 4833 ** release or rollback an SQL savepoint. 4834 */ 4835 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4836 char *zName = sqlite3NameFromToken(pParse->db, pName); 4837 if( zName ){ 4838 Vdbe *v = sqlite3GetVdbe(pParse); 4839 #ifndef SQLITE_OMIT_AUTHORIZATION 4840 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4841 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4842 #endif 4843 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4844 sqlite3DbFree(pParse->db, zName); 4845 return; 4846 } 4847 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4848 } 4849 } 4850 4851 /* 4852 ** Make sure the TEMP database is open and available for use. Return 4853 ** the number of errors. Leave any error messages in the pParse structure. 4854 */ 4855 int sqlite3OpenTempDatabase(Parse *pParse){ 4856 sqlite3 *db = pParse->db; 4857 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4858 int rc; 4859 Btree *pBt; 4860 static const int flags = 4861 SQLITE_OPEN_READWRITE | 4862 SQLITE_OPEN_CREATE | 4863 SQLITE_OPEN_EXCLUSIVE | 4864 SQLITE_OPEN_DELETEONCLOSE | 4865 SQLITE_OPEN_TEMP_DB; 4866 4867 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4868 if( rc!=SQLITE_OK ){ 4869 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4870 "file for storing temporary tables"); 4871 pParse->rc = rc; 4872 return 1; 4873 } 4874 db->aDb[1].pBt = pBt; 4875 assert( db->aDb[1].pSchema ); 4876 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 4877 sqlite3OomFault(db); 4878 return 1; 4879 } 4880 } 4881 return 0; 4882 } 4883 4884 /* 4885 ** Record the fact that the schema cookie will need to be verified 4886 ** for database iDb. The code to actually verify the schema cookie 4887 ** will occur at the end of the top-level VDBE and will be generated 4888 ** later, by sqlite3FinishCoding(). 4889 */ 4890 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ 4891 assert( iDb>=0 && iDb<pToplevel->db->nDb ); 4892 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); 4893 assert( iDb<SQLITE_MAX_DB ); 4894 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) ); 4895 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4896 DbMaskSet(pToplevel->cookieMask, iDb); 4897 if( !OMIT_TEMPDB && iDb==1 ){ 4898 sqlite3OpenTempDatabase(pToplevel); 4899 } 4900 } 4901 } 4902 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4903 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); 4904 } 4905 4906 4907 /* 4908 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4909 ** attached database. Otherwise, invoke it for the database named zDb only. 4910 */ 4911 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4912 sqlite3 *db = pParse->db; 4913 int i; 4914 for(i=0; i<db->nDb; i++){ 4915 Db *pDb = &db->aDb[i]; 4916 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4917 sqlite3CodeVerifySchema(pParse, i); 4918 } 4919 } 4920 } 4921 4922 /* 4923 ** Generate VDBE code that prepares for doing an operation that 4924 ** might change the database. 4925 ** 4926 ** This routine starts a new transaction if we are not already within 4927 ** a transaction. If we are already within a transaction, then a checkpoint 4928 ** is set if the setStatement parameter is true. A checkpoint should 4929 ** be set for operations that might fail (due to a constraint) part of 4930 ** the way through and which will need to undo some writes without having to 4931 ** rollback the whole transaction. For operations where all constraints 4932 ** can be checked before any changes are made to the database, it is never 4933 ** necessary to undo a write and the checkpoint should not be set. 4934 */ 4935 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4936 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4937 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); 4938 DbMaskSet(pToplevel->writeMask, iDb); 4939 pToplevel->isMultiWrite |= setStatement; 4940 } 4941 4942 /* 4943 ** Indicate that the statement currently under construction might write 4944 ** more than one entry (example: deleting one row then inserting another, 4945 ** inserting multiple rows in a table, or inserting a row and index entries.) 4946 ** If an abort occurs after some of these writes have completed, then it will 4947 ** be necessary to undo the completed writes. 4948 */ 4949 void sqlite3MultiWrite(Parse *pParse){ 4950 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4951 pToplevel->isMultiWrite = 1; 4952 } 4953 4954 /* 4955 ** The code generator calls this routine if is discovers that it is 4956 ** possible to abort a statement prior to completion. In order to 4957 ** perform this abort without corrupting the database, we need to make 4958 ** sure that the statement is protected by a statement transaction. 4959 ** 4960 ** Technically, we only need to set the mayAbort flag if the 4961 ** isMultiWrite flag was previously set. There is a time dependency 4962 ** such that the abort must occur after the multiwrite. This makes 4963 ** some statements involving the REPLACE conflict resolution algorithm 4964 ** go a little faster. But taking advantage of this time dependency 4965 ** makes it more difficult to prove that the code is correct (in 4966 ** particular, it prevents us from writing an effective 4967 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4968 ** to take the safe route and skip the optimization. 4969 */ 4970 void sqlite3MayAbort(Parse *pParse){ 4971 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4972 pToplevel->mayAbort = 1; 4973 } 4974 4975 /* 4976 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4977 ** error. The onError parameter determines which (if any) of the statement 4978 ** and/or current transaction is rolled back. 4979 */ 4980 void sqlite3HaltConstraint( 4981 Parse *pParse, /* Parsing context */ 4982 int errCode, /* extended error code */ 4983 int onError, /* Constraint type */ 4984 char *p4, /* Error message */ 4985 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4986 u8 p5Errmsg /* P5_ErrMsg type */ 4987 ){ 4988 Vdbe *v; 4989 assert( pParse->pVdbe!=0 ); 4990 v = sqlite3GetVdbe(pParse); 4991 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 4992 if( onError==OE_Abort ){ 4993 sqlite3MayAbort(pParse); 4994 } 4995 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4996 sqlite3VdbeChangeP5(v, p5Errmsg); 4997 } 4998 4999 /* 5000 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 5001 */ 5002 void sqlite3UniqueConstraint( 5003 Parse *pParse, /* Parsing context */ 5004 int onError, /* Constraint type */ 5005 Index *pIdx /* The index that triggers the constraint */ 5006 ){ 5007 char *zErr; 5008 int j; 5009 StrAccum errMsg; 5010 Table *pTab = pIdx->pTable; 5011 5012 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 5013 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 5014 if( pIdx->aColExpr ){ 5015 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 5016 }else{ 5017 for(j=0; j<pIdx->nKeyCol; j++){ 5018 char *zCol; 5019 assert( pIdx->aiColumn[j]>=0 ); 5020 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 5021 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 5022 sqlite3_str_appendall(&errMsg, pTab->zName); 5023 sqlite3_str_append(&errMsg, ".", 1); 5024 sqlite3_str_appendall(&errMsg, zCol); 5025 } 5026 } 5027 zErr = sqlite3StrAccumFinish(&errMsg); 5028 sqlite3HaltConstraint(pParse, 5029 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 5030 : SQLITE_CONSTRAINT_UNIQUE, 5031 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 5032 } 5033 5034 5035 /* 5036 ** Code an OP_Halt due to non-unique rowid. 5037 */ 5038 void sqlite3RowidConstraint( 5039 Parse *pParse, /* Parsing context */ 5040 int onError, /* Conflict resolution algorithm */ 5041 Table *pTab /* The table with the non-unique rowid */ 5042 ){ 5043 char *zMsg; 5044 int rc; 5045 if( pTab->iPKey>=0 ){ 5046 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 5047 pTab->aCol[pTab->iPKey].zName); 5048 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 5049 }else{ 5050 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 5051 rc = SQLITE_CONSTRAINT_ROWID; 5052 } 5053 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 5054 P5_ConstraintUnique); 5055 } 5056 5057 /* 5058 ** Check to see if pIndex uses the collating sequence pColl. Return 5059 ** true if it does and false if it does not. 5060 */ 5061 #ifndef SQLITE_OMIT_REINDEX 5062 static int collationMatch(const char *zColl, Index *pIndex){ 5063 int i; 5064 assert( zColl!=0 ); 5065 for(i=0; i<pIndex->nColumn; i++){ 5066 const char *z = pIndex->azColl[i]; 5067 assert( z!=0 || pIndex->aiColumn[i]<0 ); 5068 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 5069 return 1; 5070 } 5071 } 5072 return 0; 5073 } 5074 #endif 5075 5076 /* 5077 ** Recompute all indices of pTab that use the collating sequence pColl. 5078 ** If pColl==0 then recompute all indices of pTab. 5079 */ 5080 #ifndef SQLITE_OMIT_REINDEX 5081 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 5082 if( !IsVirtual(pTab) ){ 5083 Index *pIndex; /* An index associated with pTab */ 5084 5085 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 5086 if( zColl==0 || collationMatch(zColl, pIndex) ){ 5087 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5088 sqlite3BeginWriteOperation(pParse, 0, iDb); 5089 sqlite3RefillIndex(pParse, pIndex, -1); 5090 } 5091 } 5092 } 5093 } 5094 #endif 5095 5096 /* 5097 ** Recompute all indices of all tables in all databases where the 5098 ** indices use the collating sequence pColl. If pColl==0 then recompute 5099 ** all indices everywhere. 5100 */ 5101 #ifndef SQLITE_OMIT_REINDEX 5102 static void reindexDatabases(Parse *pParse, char const *zColl){ 5103 Db *pDb; /* A single database */ 5104 int iDb; /* The database index number */ 5105 sqlite3 *db = pParse->db; /* The database connection */ 5106 HashElem *k; /* For looping over tables in pDb */ 5107 Table *pTab; /* A table in the database */ 5108 5109 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 5110 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 5111 assert( pDb!=0 ); 5112 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 5113 pTab = (Table*)sqliteHashData(k); 5114 reindexTable(pParse, pTab, zColl); 5115 } 5116 } 5117 } 5118 #endif 5119 5120 /* 5121 ** Generate code for the REINDEX command. 5122 ** 5123 ** REINDEX -- 1 5124 ** REINDEX <collation> -- 2 5125 ** REINDEX ?<database>.?<tablename> -- 3 5126 ** REINDEX ?<database>.?<indexname> -- 4 5127 ** 5128 ** Form 1 causes all indices in all attached databases to be rebuilt. 5129 ** Form 2 rebuilds all indices in all databases that use the named 5130 ** collating function. Forms 3 and 4 rebuild the named index or all 5131 ** indices associated with the named table. 5132 */ 5133 #ifndef SQLITE_OMIT_REINDEX 5134 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 5135 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 5136 char *z; /* Name of a table or index */ 5137 const char *zDb; /* Name of the database */ 5138 Table *pTab; /* A table in the database */ 5139 Index *pIndex; /* An index associated with pTab */ 5140 int iDb; /* The database index number */ 5141 sqlite3 *db = pParse->db; /* The database connection */ 5142 Token *pObjName; /* Name of the table or index to be reindexed */ 5143 5144 /* Read the database schema. If an error occurs, leave an error message 5145 ** and code in pParse and return NULL. */ 5146 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 5147 return; 5148 } 5149 5150 if( pName1==0 ){ 5151 reindexDatabases(pParse, 0); 5152 return; 5153 }else if( NEVER(pName2==0) || pName2->z==0 ){ 5154 char *zColl; 5155 assert( pName1->z ); 5156 zColl = sqlite3NameFromToken(pParse->db, pName1); 5157 if( !zColl ) return; 5158 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 5159 if( pColl ){ 5160 reindexDatabases(pParse, zColl); 5161 sqlite3DbFree(db, zColl); 5162 return; 5163 } 5164 sqlite3DbFree(db, zColl); 5165 } 5166 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 5167 if( iDb<0 ) return; 5168 z = sqlite3NameFromToken(db, pObjName); 5169 if( z==0 ) return; 5170 zDb = db->aDb[iDb].zDbSName; 5171 pTab = sqlite3FindTable(db, z, zDb); 5172 if( pTab ){ 5173 reindexTable(pParse, pTab, 0); 5174 sqlite3DbFree(db, z); 5175 return; 5176 } 5177 pIndex = sqlite3FindIndex(db, z, zDb); 5178 sqlite3DbFree(db, z); 5179 if( pIndex ){ 5180 sqlite3BeginWriteOperation(pParse, 0, iDb); 5181 sqlite3RefillIndex(pParse, pIndex, -1); 5182 return; 5183 } 5184 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 5185 } 5186 #endif 5187 5188 /* 5189 ** Return a KeyInfo structure that is appropriate for the given Index. 5190 ** 5191 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 5192 ** when it has finished using it. 5193 */ 5194 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 5195 int i; 5196 int nCol = pIdx->nColumn; 5197 int nKey = pIdx->nKeyCol; 5198 KeyInfo *pKey; 5199 if( pParse->nErr ) return 0; 5200 if( pIdx->uniqNotNull ){ 5201 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 5202 }else{ 5203 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 5204 } 5205 if( pKey ){ 5206 assert( sqlite3KeyInfoIsWriteable(pKey) ); 5207 for(i=0; i<nCol; i++){ 5208 const char *zColl = pIdx->azColl[i]; 5209 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 5210 sqlite3LocateCollSeq(pParse, zColl); 5211 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 5212 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5213 } 5214 if( pParse->nErr ){ 5215 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5216 if( pIdx->bNoQuery==0 ){ 5217 /* Deactivate the index because it contains an unknown collating 5218 ** sequence. The only way to reactive the index is to reload the 5219 ** schema. Adding the missing collating sequence later does not 5220 ** reactive the index. The application had the chance to register 5221 ** the missing index using the collation-needed callback. For 5222 ** simplicity, SQLite will not give the application a second chance. 5223 */ 5224 pIdx->bNoQuery = 1; 5225 pParse->rc = SQLITE_ERROR_RETRY; 5226 } 5227 sqlite3KeyInfoUnref(pKey); 5228 pKey = 0; 5229 } 5230 } 5231 return pKey; 5232 } 5233 5234 #ifndef SQLITE_OMIT_CTE 5235 /* 5236 ** Create a new CTE object 5237 */ 5238 Cte *sqlite3CteNew( 5239 Parse *pParse, /* Parsing context */ 5240 Token *pName, /* Name of the common-table */ 5241 ExprList *pArglist, /* Optional column name list for the table */ 5242 Select *pQuery, /* Query used to initialize the table */ 5243 u8 eM10d /* The MATERIALIZED flag */ 5244 ){ 5245 Cte *pNew; 5246 sqlite3 *db = pParse->db; 5247 5248 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); 5249 assert( pNew!=0 || db->mallocFailed ); 5250 5251 if( db->mallocFailed ){ 5252 sqlite3ExprListDelete(db, pArglist); 5253 sqlite3SelectDelete(db, pQuery); 5254 }else{ 5255 pNew->pSelect = pQuery; 5256 pNew->pCols = pArglist; 5257 pNew->zName = sqlite3NameFromToken(pParse->db, pName); 5258 pNew->eM10d = eM10d; 5259 } 5260 return pNew; 5261 } 5262 5263 /* 5264 ** Clear information from a Cte object, but do not deallocate storage 5265 ** for the object itself. 5266 */ 5267 static void cteClear(sqlite3 *db, Cte *pCte){ 5268 assert( pCte!=0 ); 5269 sqlite3ExprListDelete(db, pCte->pCols); 5270 sqlite3SelectDelete(db, pCte->pSelect); 5271 sqlite3DbFree(db, pCte->zName); 5272 } 5273 5274 /* 5275 ** Free the contents of the CTE object passed as the second argument. 5276 */ 5277 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ 5278 assert( pCte!=0 ); 5279 cteClear(db, pCte); 5280 sqlite3DbFree(db, pCte); 5281 } 5282 5283 /* 5284 ** This routine is invoked once per CTE by the parser while parsing a 5285 ** WITH clause. The CTE described by teh third argument is added to 5286 ** the WITH clause of the second argument. If the second argument is 5287 ** NULL, then a new WITH argument is created. 5288 */ 5289 With *sqlite3WithAdd( 5290 Parse *pParse, /* Parsing context */ 5291 With *pWith, /* Existing WITH clause, or NULL */ 5292 Cte *pCte /* CTE to add to the WITH clause */ 5293 ){ 5294 sqlite3 *db = pParse->db; 5295 With *pNew; 5296 char *zName; 5297 5298 if( pCte==0 ){ 5299 return pWith; 5300 } 5301 5302 /* Check that the CTE name is unique within this WITH clause. If 5303 ** not, store an error in the Parse structure. */ 5304 zName = pCte->zName; 5305 if( zName && pWith ){ 5306 int i; 5307 for(i=0; i<pWith->nCte; i++){ 5308 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5309 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5310 } 5311 } 5312 } 5313 5314 if( pWith ){ 5315 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5316 pNew = sqlite3DbRealloc(db, pWith, nByte); 5317 }else{ 5318 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5319 } 5320 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5321 5322 if( db->mallocFailed ){ 5323 sqlite3CteDelete(db, pCte); 5324 pNew = pWith; 5325 }else{ 5326 pNew->a[pNew->nCte++] = *pCte; 5327 sqlite3DbFree(db, pCte); 5328 } 5329 5330 return pNew; 5331 } 5332 5333 /* 5334 ** Free the contents of the With object passed as the second argument. 5335 */ 5336 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5337 if( pWith ){ 5338 int i; 5339 for(i=0; i<pWith->nCte; i++){ 5340 cteClear(db, &pWith->a[i]); 5341 } 5342 sqlite3DbFree(db, pWith); 5343 } 5344 } 5345 #endif /* !defined(SQLITE_OMIT_CTE) */ 5346