1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 229 /* A minimum of one cursor is required if autoincrement is used 230 * See ticket [a696379c1f08866] */ 231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 232 sqlite3VdbeMakeReady(v, pParse); 233 pParse->rc = SQLITE_DONE; 234 }else{ 235 pParse->rc = SQLITE_ERROR; 236 } 237 } 238 239 /* 240 ** Run the parser and code generator recursively in order to generate 241 ** code for the SQL statement given onto the end of the pParse context 242 ** currently under construction. When the parser is run recursively 243 ** this way, the final OP_Halt is not appended and other initialization 244 ** and finalization steps are omitted because those are handling by the 245 ** outermost parser. 246 ** 247 ** Not everything is nestable. This facility is designed to permit 248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 249 ** care if you decide to try to use this routine for some other purposes. 250 */ 251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 252 va_list ap; 253 char *zSql; 254 char *zErrMsg = 0; 255 sqlite3 *db = pParse->db; 256 char saveBuf[PARSE_TAIL_SZ]; 257 258 if( pParse->nErr ) return; 259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 260 va_start(ap, zFormat); 261 zSql = sqlite3VMPrintf(db, zFormat, ap); 262 va_end(ap); 263 if( zSql==0 ){ 264 return; /* A malloc must have failed */ 265 } 266 pParse->nested++; 267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 269 sqlite3RunParser(pParse, zSql, &zErrMsg); 270 sqlite3DbFree(db, zErrMsg); 271 sqlite3DbFree(db, zSql); 272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 273 pParse->nested--; 274 } 275 276 #if SQLITE_USER_AUTHENTICATION 277 /* 278 ** Return TRUE if zTable is the name of the system table that stores the 279 ** list of users and their access credentials. 280 */ 281 int sqlite3UserAuthTable(const char *zTable){ 282 return sqlite3_stricmp(zTable, "sqlite_user")==0; 283 } 284 #endif 285 286 /* 287 ** Locate the in-memory structure that describes a particular database 288 ** table given the name of that table and (optionally) the name of the 289 ** database containing the table. Return NULL if not found. 290 ** 291 ** If zDatabase is 0, all databases are searched for the table and the 292 ** first matching table is returned. (No checking for duplicate table 293 ** names is done.) The search order is TEMP first, then MAIN, then any 294 ** auxiliary databases added using the ATTACH command. 295 ** 296 ** See also sqlite3LocateTable(). 297 */ 298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 299 Table *p = 0; 300 int i; 301 302 /* All mutexes are required for schema access. Make sure we hold them. */ 303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 304 #if SQLITE_USER_AUTHENTICATION 305 /* Only the admin user is allowed to know that the sqlite_user table 306 ** exists */ 307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 308 return 0; 309 } 310 #endif 311 while(1){ 312 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ 315 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 317 if( p ) return p; 318 } 319 } 320 /* Not found. If the name we were looking for was temp.sqlite_master 321 ** then change the name to sqlite_temp_master and try again. */ 322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 324 zName = TEMP_MASTER_NAME; 325 } 326 return 0; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName); 364 } 365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 366 return pMod->pEpoTab; 367 } 368 } 369 #endif 370 if( (flags & LOCATE_NOERR)==0 ){ 371 if( zDbase ){ 372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 373 }else{ 374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 375 } 376 pParse->checkSchema = 1; 377 } 378 } 379 380 return p; 381 } 382 383 /* 384 ** Locate the table identified by *p. 385 ** 386 ** This is a wrapper around sqlite3LocateTable(). The difference between 387 ** sqlite3LocateTable() and this function is that this function restricts 388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 389 ** non-NULL if it is part of a view or trigger program definition. See 390 ** sqlite3FixSrcList() for details. 391 */ 392 Table *sqlite3LocateTableItem( 393 Parse *pParse, 394 u32 flags, 395 struct SrcList_item *p 396 ){ 397 const char *zDb; 398 assert( p->pSchema==0 || p->zDatabase==0 ); 399 if( p->pSchema ){ 400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 401 zDb = pParse->db->aDb[iDb].zDbSName; 402 }else{ 403 zDb = p->zDatabase; 404 } 405 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 406 } 407 408 /* 409 ** Locate the in-memory structure that describes 410 ** a particular index given the name of that index 411 ** and the name of the database that contains the index. 412 ** Return NULL if not found. 413 ** 414 ** If zDatabase is 0, all databases are searched for the 415 ** table and the first matching index is returned. (No checking 416 ** for duplicate index names is done.) The search order is 417 ** TEMP first, then MAIN, then any auxiliary databases added 418 ** using the ATTACH command. 419 */ 420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 421 Index *p = 0; 422 int i; 423 /* All mutexes are required for schema access. Make sure we hold them. */ 424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 425 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 427 Schema *pSchema = db->aDb[j].pSchema; 428 assert( pSchema ); 429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; 430 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 431 p = sqlite3HashFind(&pSchema->idxHash, zName); 432 if( p ) break; 433 } 434 return p; 435 } 436 437 /* 438 ** Reclaim the memory used by an index 439 */ 440 static void freeIndex(sqlite3 *db, Index *p){ 441 #ifndef SQLITE_OMIT_ANALYZE 442 sqlite3DeleteIndexSamples(db, p); 443 #endif 444 sqlite3ExprDelete(db, p->pPartIdxWhere); 445 sqlite3ExprListDelete(db, p->aColExpr); 446 sqlite3DbFree(db, p->zColAff); 447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 449 sqlite3_free(p->aiRowEst); 450 #endif 451 sqlite3DbFree(db, p); 452 } 453 454 /* 455 ** For the index called zIdxName which is found in the database iDb, 456 ** unlike that index from its Table then remove the index from 457 ** the index hash table and free all memory structures associated 458 ** with the index. 459 */ 460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 461 Index *pIndex; 462 Hash *pHash; 463 464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 465 pHash = &db->aDb[iDb].pSchema->idxHash; 466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 467 if( ALWAYS(pIndex) ){ 468 if( pIndex->pTable->pIndex==pIndex ){ 469 pIndex->pTable->pIndex = pIndex->pNext; 470 }else{ 471 Index *p; 472 /* Justification of ALWAYS(); The index must be on the list of 473 ** indices. */ 474 p = pIndex->pTable->pIndex; 475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 476 if( ALWAYS(p && p->pNext==pIndex) ){ 477 p->pNext = pIndex->pNext; 478 } 479 } 480 freeIndex(db, pIndex); 481 } 482 db->mDbFlags |= DBFLAG_SchemaChange; 483 } 484 485 /* 486 ** Look through the list of open database files in db->aDb[] and if 487 ** any have been closed, remove them from the list. Reallocate the 488 ** db->aDb[] structure to a smaller size, if possible. 489 ** 490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 491 ** are never candidates for being collapsed. 492 */ 493 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 494 int i, j; 495 for(i=j=2; i<db->nDb; i++){ 496 struct Db *pDb = &db->aDb[i]; 497 if( pDb->pBt==0 ){ 498 sqlite3DbFree(db, pDb->zDbSName); 499 pDb->zDbSName = 0; 500 continue; 501 } 502 if( j<i ){ 503 db->aDb[j] = db->aDb[i]; 504 } 505 j++; 506 } 507 db->nDb = j; 508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 510 sqlite3DbFree(db, db->aDb); 511 db->aDb = db->aDbStatic; 512 } 513 } 514 515 /* 516 ** Reset the schema for the database at index iDb. Also reset the 517 ** TEMP schema. 518 */ 519 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 520 Db *pDb; 521 assert( iDb<db->nDb ); 522 523 /* Case 1: Reset the single schema identified by iDb */ 524 pDb = &db->aDb[iDb]; 525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 526 assert( pDb->pSchema!=0 ); 527 sqlite3SchemaClear(pDb->pSchema); 528 529 /* If any database other than TEMP is reset, then also reset TEMP 530 ** since TEMP might be holding triggers that reference tables in the 531 ** other database. 532 */ 533 if( iDb!=1 ){ 534 pDb = &db->aDb[1]; 535 assert( pDb->pSchema!=0 ); 536 sqlite3SchemaClear(pDb->pSchema); 537 } 538 return; 539 } 540 541 /* 542 ** Erase all schema information from all attached databases (including 543 ** "main" and "temp") for a single database connection. 544 */ 545 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 546 int i; 547 sqlite3BtreeEnterAll(db); 548 for(i=0; i<db->nDb; i++){ 549 Db *pDb = &db->aDb[i]; 550 if( pDb->pSchema ){ 551 sqlite3SchemaClear(pDb->pSchema); 552 } 553 } 554 db->mDbFlags &= ~DBFLAG_SchemaChange; 555 sqlite3VtabUnlockList(db); 556 sqlite3BtreeLeaveAll(db); 557 sqlite3CollapseDatabaseArray(db); 558 } 559 560 /* 561 ** This routine is called when a commit occurs. 562 */ 563 void sqlite3CommitInternalChanges(sqlite3 *db){ 564 db->mDbFlags &= ~DBFLAG_SchemaChange; 565 } 566 567 /* 568 ** Delete memory allocated for the column names of a table or view (the 569 ** Table.aCol[] array). 570 */ 571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 572 int i; 573 Column *pCol; 574 assert( pTable!=0 ); 575 if( (pCol = pTable->aCol)!=0 ){ 576 for(i=0; i<pTable->nCol; i++, pCol++){ 577 sqlite3DbFree(db, pCol->zName); 578 sqlite3ExprDelete(db, pCol->pDflt); 579 sqlite3DbFree(db, pCol->zColl); 580 } 581 sqlite3DbFree(db, pTable->aCol); 582 } 583 } 584 585 /* 586 ** Remove the memory data structures associated with the given 587 ** Table. No changes are made to disk by this routine. 588 ** 589 ** This routine just deletes the data structure. It does not unlink 590 ** the table data structure from the hash table. But it does destroy 591 ** memory structures of the indices and foreign keys associated with 592 ** the table. 593 ** 594 ** The db parameter is optional. It is needed if the Table object 595 ** contains lookaside memory. (Table objects in the schema do not use 596 ** lookaside memory, but some ephemeral Table objects do.) Or the 597 ** db parameter can be used with db->pnBytesFreed to measure the memory 598 ** used by the Table object. 599 */ 600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 601 Index *pIndex, *pNext; 602 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 603 604 /* Record the number of outstanding lookaside allocations in schema Tables 605 ** prior to doing any free() operations. Since schema Tables do not use 606 ** lookaside, this number should not change. */ 607 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 608 db->lookaside.nOut : 0 ); 609 610 /* Delete all indices associated with this table. */ 611 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 612 pNext = pIndex->pNext; 613 assert( pIndex->pSchema==pTable->pSchema 614 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 615 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 616 char *zName = pIndex->zName; 617 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 618 &pIndex->pSchema->idxHash, zName, 0 619 ); 620 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 621 assert( pOld==pIndex || pOld==0 ); 622 } 623 freeIndex(db, pIndex); 624 } 625 626 /* Delete any foreign keys attached to this table. */ 627 sqlite3FkDelete(db, pTable); 628 629 /* Delete the Table structure itself. 630 */ 631 sqlite3DeleteColumnNames(db, pTable); 632 sqlite3DbFree(db, pTable->zName); 633 sqlite3DbFree(db, pTable->zColAff); 634 sqlite3SelectDelete(db, pTable->pSelect); 635 sqlite3ExprListDelete(db, pTable->pCheck); 636 #ifndef SQLITE_OMIT_VIRTUALTABLE 637 sqlite3VtabClear(db, pTable); 638 #endif 639 sqlite3DbFree(db, pTable); 640 641 /* Verify that no lookaside memory was used by schema tables */ 642 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 643 } 644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 645 /* Do not delete the table until the reference count reaches zero. */ 646 if( !pTable ) return; 647 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 648 deleteTable(db, pTable); 649 } 650 651 652 /* 653 ** Unlink the given table from the hash tables and the delete the 654 ** table structure with all its indices and foreign keys. 655 */ 656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 657 Table *p; 658 Db *pDb; 659 660 assert( db!=0 ); 661 assert( iDb>=0 && iDb<db->nDb ); 662 assert( zTabName ); 663 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 664 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 665 pDb = &db->aDb[iDb]; 666 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 667 sqlite3DeleteTable(db, p); 668 db->mDbFlags |= DBFLAG_SchemaChange; 669 } 670 671 /* 672 ** Given a token, return a string that consists of the text of that 673 ** token. Space to hold the returned string 674 ** is obtained from sqliteMalloc() and must be freed by the calling 675 ** function. 676 ** 677 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 678 ** surround the body of the token are removed. 679 ** 680 ** Tokens are often just pointers into the original SQL text and so 681 ** are not \000 terminated and are not persistent. The returned string 682 ** is \000 terminated and is persistent. 683 */ 684 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 685 char *zName; 686 if( pName ){ 687 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 688 sqlite3Dequote(zName); 689 }else{ 690 zName = 0; 691 } 692 return zName; 693 } 694 695 /* 696 ** Open the sqlite_master table stored in database number iDb for 697 ** writing. The table is opened using cursor 0. 698 */ 699 void sqlite3OpenMasterTable(Parse *p, int iDb){ 700 Vdbe *v = sqlite3GetVdbe(p); 701 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 702 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 703 if( p->nTab==0 ){ 704 p->nTab = 1; 705 } 706 } 707 708 /* 709 ** Parameter zName points to a nul-terminated buffer containing the name 710 ** of a database ("main", "temp" or the name of an attached db). This 711 ** function returns the index of the named database in db->aDb[], or 712 ** -1 if the named db cannot be found. 713 */ 714 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 715 int i = -1; /* Database number */ 716 if( zName ){ 717 Db *pDb; 718 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 719 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 720 /* "main" is always an acceptable alias for the primary database 721 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 722 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 723 } 724 } 725 return i; 726 } 727 728 /* 729 ** The token *pName contains the name of a database (either "main" or 730 ** "temp" or the name of an attached db). This routine returns the 731 ** index of the named database in db->aDb[], or -1 if the named db 732 ** does not exist. 733 */ 734 int sqlite3FindDb(sqlite3 *db, Token *pName){ 735 int i; /* Database number */ 736 char *zName; /* Name we are searching for */ 737 zName = sqlite3NameFromToken(db, pName); 738 i = sqlite3FindDbName(db, zName); 739 sqlite3DbFree(db, zName); 740 return i; 741 } 742 743 /* The table or view or trigger name is passed to this routine via tokens 744 ** pName1 and pName2. If the table name was fully qualified, for example: 745 ** 746 ** CREATE TABLE xxx.yyy (...); 747 ** 748 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 749 ** the table name is not fully qualified, i.e.: 750 ** 751 ** CREATE TABLE yyy(...); 752 ** 753 ** Then pName1 is set to "yyy" and pName2 is "". 754 ** 755 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 756 ** pName2) that stores the unqualified table name. The index of the 757 ** database "xxx" is returned. 758 */ 759 int sqlite3TwoPartName( 760 Parse *pParse, /* Parsing and code generating context */ 761 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 762 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 763 Token **pUnqual /* Write the unqualified object name here */ 764 ){ 765 int iDb; /* Database holding the object */ 766 sqlite3 *db = pParse->db; 767 768 assert( pName2!=0 ); 769 if( pName2->n>0 ){ 770 if( db->init.busy ) { 771 sqlite3ErrorMsg(pParse, "corrupt database"); 772 return -1; 773 } 774 *pUnqual = pName2; 775 iDb = sqlite3FindDb(db, pName1); 776 if( iDb<0 ){ 777 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 778 return -1; 779 } 780 }else{ 781 assert( db->init.iDb==0 || db->init.busy 782 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 783 iDb = db->init.iDb; 784 *pUnqual = pName1; 785 } 786 return iDb; 787 } 788 789 /* 790 ** This routine is used to check if the UTF-8 string zName is a legal 791 ** unqualified name for a new schema object (table, index, view or 792 ** trigger). All names are legal except those that begin with the string 793 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 794 ** is reserved for internal use. 795 */ 796 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 797 if( !pParse->db->init.busy && pParse->nested==0 798 && (pParse->db->flags & SQLITE_WriteSchema)==0 799 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 800 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 801 return SQLITE_ERROR; 802 } 803 return SQLITE_OK; 804 } 805 806 /* 807 ** Return the PRIMARY KEY index of a table 808 */ 809 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 810 Index *p; 811 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 812 return p; 813 } 814 815 /* 816 ** Return the column of index pIdx that corresponds to table 817 ** column iCol. Return -1 if not found. 818 */ 819 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 820 int i; 821 for(i=0; i<pIdx->nColumn; i++){ 822 if( iCol==pIdx->aiColumn[i] ) return i; 823 } 824 return -1; 825 } 826 827 /* 828 ** Begin constructing a new table representation in memory. This is 829 ** the first of several action routines that get called in response 830 ** to a CREATE TABLE statement. In particular, this routine is called 831 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 832 ** flag is true if the table should be stored in the auxiliary database 833 ** file instead of in the main database file. This is normally the case 834 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 835 ** CREATE and TABLE. 836 ** 837 ** The new table record is initialized and put in pParse->pNewTable. 838 ** As more of the CREATE TABLE statement is parsed, additional action 839 ** routines will be called to add more information to this record. 840 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 841 ** is called to complete the construction of the new table record. 842 */ 843 void sqlite3StartTable( 844 Parse *pParse, /* Parser context */ 845 Token *pName1, /* First part of the name of the table or view */ 846 Token *pName2, /* Second part of the name of the table or view */ 847 int isTemp, /* True if this is a TEMP table */ 848 int isView, /* True if this is a VIEW */ 849 int isVirtual, /* True if this is a VIRTUAL table */ 850 int noErr /* Do nothing if table already exists */ 851 ){ 852 Table *pTable; 853 char *zName = 0; /* The name of the new table */ 854 sqlite3 *db = pParse->db; 855 Vdbe *v; 856 int iDb; /* Database number to create the table in */ 857 Token *pName; /* Unqualified name of the table to create */ 858 859 if( db->init.busy && db->init.newTnum==1 ){ 860 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 861 iDb = db->init.iDb; 862 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 863 pName = pName1; 864 }else{ 865 /* The common case */ 866 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 867 if( iDb<0 ) return; 868 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 869 /* If creating a temp table, the name may not be qualified. Unless 870 ** the database name is "temp" anyway. */ 871 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 872 return; 873 } 874 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 875 zName = sqlite3NameFromToken(db, pName); 876 } 877 pParse->sNameToken = *pName; 878 if( zName==0 ) return; 879 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 880 goto begin_table_error; 881 } 882 if( db->init.iDb==1 ) isTemp = 1; 883 #ifndef SQLITE_OMIT_AUTHORIZATION 884 assert( isTemp==0 || isTemp==1 ); 885 assert( isView==0 || isView==1 ); 886 { 887 static const u8 aCode[] = { 888 SQLITE_CREATE_TABLE, 889 SQLITE_CREATE_TEMP_TABLE, 890 SQLITE_CREATE_VIEW, 891 SQLITE_CREATE_TEMP_VIEW 892 }; 893 char *zDb = db->aDb[iDb].zDbSName; 894 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 895 goto begin_table_error; 896 } 897 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 898 zName, 0, zDb) ){ 899 goto begin_table_error; 900 } 901 } 902 #endif 903 904 /* Make sure the new table name does not collide with an existing 905 ** index or table name in the same database. Issue an error message if 906 ** it does. The exception is if the statement being parsed was passed 907 ** to an sqlite3_declare_vtab() call. In that case only the column names 908 ** and types will be used, so there is no need to test for namespace 909 ** collisions. 910 */ 911 if( !IN_DECLARE_VTAB ){ 912 char *zDb = db->aDb[iDb].zDbSName; 913 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 914 goto begin_table_error; 915 } 916 pTable = sqlite3FindTable(db, zName, zDb); 917 if( pTable ){ 918 if( !noErr ){ 919 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 920 }else{ 921 assert( !db->init.busy || CORRUPT_DB ); 922 sqlite3CodeVerifySchema(pParse, iDb); 923 } 924 goto begin_table_error; 925 } 926 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 927 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 928 goto begin_table_error; 929 } 930 } 931 932 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 933 if( pTable==0 ){ 934 assert( db->mallocFailed ); 935 pParse->rc = SQLITE_NOMEM_BKPT; 936 pParse->nErr++; 937 goto begin_table_error; 938 } 939 pTable->zName = zName; 940 pTable->iPKey = -1; 941 pTable->pSchema = db->aDb[iDb].pSchema; 942 pTable->nTabRef = 1; 943 #ifdef SQLITE_DEFAULT_ROWEST 944 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 945 #else 946 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 947 #endif 948 assert( pParse->pNewTable==0 ); 949 pParse->pNewTable = pTable; 950 951 /* If this is the magic sqlite_sequence table used by autoincrement, 952 ** then record a pointer to this table in the main database structure 953 ** so that INSERT can find the table easily. 954 */ 955 #ifndef SQLITE_OMIT_AUTOINCREMENT 956 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 957 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 958 pTable->pSchema->pSeqTab = pTable; 959 } 960 #endif 961 962 /* Begin generating the code that will insert the table record into 963 ** the SQLITE_MASTER table. Note in particular that we must go ahead 964 ** and allocate the record number for the table entry now. Before any 965 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 966 ** indices to be created and the table record must come before the 967 ** indices. Hence, the record number for the table must be allocated 968 ** now. 969 */ 970 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 971 int addr1; 972 int fileFormat; 973 int reg1, reg2, reg3; 974 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 975 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 976 sqlite3BeginWriteOperation(pParse, 1, iDb); 977 978 #ifndef SQLITE_OMIT_VIRTUALTABLE 979 if( isVirtual ){ 980 sqlite3VdbeAddOp0(v, OP_VBegin); 981 } 982 #endif 983 984 /* If the file format and encoding in the database have not been set, 985 ** set them now. 986 */ 987 reg1 = pParse->regRowid = ++pParse->nMem; 988 reg2 = pParse->regRoot = ++pParse->nMem; 989 reg3 = ++pParse->nMem; 990 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 991 sqlite3VdbeUsesBtree(v, iDb); 992 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 993 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 994 1 : SQLITE_MAX_FILE_FORMAT; 995 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 996 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 997 sqlite3VdbeJumpHere(v, addr1); 998 999 /* This just creates a place-holder record in the sqlite_master table. 1000 ** The record created does not contain anything yet. It will be replaced 1001 ** by the real entry in code generated at sqlite3EndTable(). 1002 ** 1003 ** The rowid for the new entry is left in register pParse->regRowid. 1004 ** The root page number of the new table is left in reg pParse->regRoot. 1005 ** The rowid and root page number values are needed by the code that 1006 ** sqlite3EndTable will generate. 1007 */ 1008 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1009 if( isView || isVirtual ){ 1010 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1011 }else 1012 #endif 1013 { 1014 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1015 } 1016 sqlite3OpenMasterTable(pParse, iDb); 1017 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1018 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1019 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1020 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1021 sqlite3VdbeAddOp0(v, OP_Close); 1022 } 1023 1024 /* Normal (non-error) return. */ 1025 return; 1026 1027 /* If an error occurs, we jump here */ 1028 begin_table_error: 1029 sqlite3DbFree(db, zName); 1030 return; 1031 } 1032 1033 /* Set properties of a table column based on the (magical) 1034 ** name of the column. 1035 */ 1036 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1037 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1038 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1039 pCol->colFlags |= COLFLAG_HIDDEN; 1040 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1041 pTab->tabFlags |= TF_OOOHidden; 1042 } 1043 } 1044 #endif 1045 1046 1047 /* 1048 ** Add a new column to the table currently being constructed. 1049 ** 1050 ** The parser calls this routine once for each column declaration 1051 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1052 ** first to get things going. Then this routine is called for each 1053 ** column. 1054 */ 1055 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1056 Table *p; 1057 int i; 1058 char *z; 1059 char *zType; 1060 Column *pCol; 1061 sqlite3 *db = pParse->db; 1062 if( (p = pParse->pNewTable)==0 ) return; 1063 #if SQLITE_MAX_COLUMN 1064 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1065 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1066 return; 1067 } 1068 #endif 1069 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1070 if( z==0 ) return; 1071 memcpy(z, pName->z, pName->n); 1072 z[pName->n] = 0; 1073 sqlite3Dequote(z); 1074 for(i=0; i<p->nCol; i++){ 1075 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1076 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1077 sqlite3DbFree(db, z); 1078 return; 1079 } 1080 } 1081 if( (p->nCol & 0x7)==0 ){ 1082 Column *aNew; 1083 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1084 if( aNew==0 ){ 1085 sqlite3DbFree(db, z); 1086 return; 1087 } 1088 p->aCol = aNew; 1089 } 1090 pCol = &p->aCol[p->nCol]; 1091 memset(pCol, 0, sizeof(p->aCol[0])); 1092 pCol->zName = z; 1093 sqlite3ColumnPropertiesFromName(p, pCol); 1094 1095 if( pType->n==0 ){ 1096 /* If there is no type specified, columns have the default affinity 1097 ** 'BLOB'. */ 1098 pCol->affinity = SQLITE_AFF_BLOB; 1099 pCol->szEst = 1; 1100 }else{ 1101 zType = z + sqlite3Strlen30(z) + 1; 1102 memcpy(zType, pType->z, pType->n); 1103 zType[pType->n] = 0; 1104 sqlite3Dequote(zType); 1105 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst); 1106 pCol->colFlags |= COLFLAG_HASTYPE; 1107 } 1108 p->nCol++; 1109 pParse->constraintName.n = 0; 1110 } 1111 1112 /* 1113 ** This routine is called by the parser while in the middle of 1114 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1115 ** been seen on a column. This routine sets the notNull flag on 1116 ** the column currently under construction. 1117 */ 1118 void sqlite3AddNotNull(Parse *pParse, int onError){ 1119 Table *p; 1120 p = pParse->pNewTable; 1121 if( p==0 || NEVER(p->nCol<1) ) return; 1122 p->aCol[p->nCol-1].notNull = (u8)onError; 1123 p->tabFlags |= TF_HasNotNull; 1124 } 1125 1126 /* 1127 ** Scan the column type name zType (length nType) and return the 1128 ** associated affinity type. 1129 ** 1130 ** This routine does a case-independent search of zType for the 1131 ** substrings in the following table. If one of the substrings is 1132 ** found, the corresponding affinity is returned. If zType contains 1133 ** more than one of the substrings, entries toward the top of 1134 ** the table take priority. For example, if zType is 'BLOBINT', 1135 ** SQLITE_AFF_INTEGER is returned. 1136 ** 1137 ** Substring | Affinity 1138 ** -------------------------------- 1139 ** 'INT' | SQLITE_AFF_INTEGER 1140 ** 'CHAR' | SQLITE_AFF_TEXT 1141 ** 'CLOB' | SQLITE_AFF_TEXT 1142 ** 'TEXT' | SQLITE_AFF_TEXT 1143 ** 'BLOB' | SQLITE_AFF_BLOB 1144 ** 'REAL' | SQLITE_AFF_REAL 1145 ** 'FLOA' | SQLITE_AFF_REAL 1146 ** 'DOUB' | SQLITE_AFF_REAL 1147 ** 1148 ** If none of the substrings in the above table are found, 1149 ** SQLITE_AFF_NUMERIC is returned. 1150 */ 1151 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1152 u32 h = 0; 1153 char aff = SQLITE_AFF_NUMERIC; 1154 const char *zChar = 0; 1155 1156 assert( zIn!=0 ); 1157 while( zIn[0] ){ 1158 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1159 zIn++; 1160 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1161 aff = SQLITE_AFF_TEXT; 1162 zChar = zIn; 1163 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1164 aff = SQLITE_AFF_TEXT; 1165 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1166 aff = SQLITE_AFF_TEXT; 1167 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1168 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1169 aff = SQLITE_AFF_BLOB; 1170 if( zIn[0]=='(' ) zChar = zIn; 1171 #ifndef SQLITE_OMIT_FLOATING_POINT 1172 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1173 && aff==SQLITE_AFF_NUMERIC ){ 1174 aff = SQLITE_AFF_REAL; 1175 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1176 && aff==SQLITE_AFF_NUMERIC ){ 1177 aff = SQLITE_AFF_REAL; 1178 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1179 && aff==SQLITE_AFF_NUMERIC ){ 1180 aff = SQLITE_AFF_REAL; 1181 #endif 1182 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1183 aff = SQLITE_AFF_INTEGER; 1184 break; 1185 } 1186 } 1187 1188 /* If pszEst is not NULL, store an estimate of the field size. The 1189 ** estimate is scaled so that the size of an integer is 1. */ 1190 if( pszEst ){ 1191 *pszEst = 1; /* default size is approx 4 bytes */ 1192 if( aff<SQLITE_AFF_NUMERIC ){ 1193 if( zChar ){ 1194 while( zChar[0] ){ 1195 if( sqlite3Isdigit(zChar[0]) ){ 1196 int v = 0; 1197 sqlite3GetInt32(zChar, &v); 1198 v = v/4 + 1; 1199 if( v>255 ) v = 255; 1200 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1201 break; 1202 } 1203 zChar++; 1204 } 1205 }else{ 1206 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1207 } 1208 } 1209 } 1210 return aff; 1211 } 1212 1213 /* 1214 ** The expression is the default value for the most recently added column 1215 ** of the table currently under construction. 1216 ** 1217 ** Default value expressions must be constant. Raise an exception if this 1218 ** is not the case. 1219 ** 1220 ** This routine is called by the parser while in the middle of 1221 ** parsing a CREATE TABLE statement. 1222 */ 1223 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1224 Table *p; 1225 Column *pCol; 1226 sqlite3 *db = pParse->db; 1227 p = pParse->pNewTable; 1228 if( p!=0 ){ 1229 pCol = &(p->aCol[p->nCol-1]); 1230 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1231 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1232 pCol->zName); 1233 }else{ 1234 /* A copy of pExpr is used instead of the original, as pExpr contains 1235 ** tokens that point to volatile memory. The 'span' of the expression 1236 ** is required by pragma table_info. 1237 */ 1238 Expr x; 1239 sqlite3ExprDelete(db, pCol->pDflt); 1240 memset(&x, 0, sizeof(x)); 1241 x.op = TK_SPAN; 1242 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1243 (int)(pSpan->zEnd - pSpan->zStart)); 1244 x.pLeft = pSpan->pExpr; 1245 x.flags = EP_Skip; 1246 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1247 sqlite3DbFree(db, x.u.zToken); 1248 } 1249 } 1250 sqlite3ExprDelete(db, pSpan->pExpr); 1251 } 1252 1253 /* 1254 ** Backwards Compatibility Hack: 1255 ** 1256 ** Historical versions of SQLite accepted strings as column names in 1257 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1258 ** 1259 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1260 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1261 ** 1262 ** This is goofy. But to preserve backwards compatibility we continue to 1263 ** accept it. This routine does the necessary conversion. It converts 1264 ** the expression given in its argument from a TK_STRING into a TK_ID 1265 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1266 ** If the epxression is anything other than TK_STRING, the expression is 1267 ** unchanged. 1268 */ 1269 static void sqlite3StringToId(Expr *p){ 1270 if( p->op==TK_STRING ){ 1271 p->op = TK_ID; 1272 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1273 p->pLeft->op = TK_ID; 1274 } 1275 } 1276 1277 /* 1278 ** Designate the PRIMARY KEY for the table. pList is a list of names 1279 ** of columns that form the primary key. If pList is NULL, then the 1280 ** most recently added column of the table is the primary key. 1281 ** 1282 ** A table can have at most one primary key. If the table already has 1283 ** a primary key (and this is the second primary key) then create an 1284 ** error. 1285 ** 1286 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1287 ** then we will try to use that column as the rowid. Set the Table.iPKey 1288 ** field of the table under construction to be the index of the 1289 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1290 ** no INTEGER PRIMARY KEY. 1291 ** 1292 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1293 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1294 */ 1295 void sqlite3AddPrimaryKey( 1296 Parse *pParse, /* Parsing context */ 1297 ExprList *pList, /* List of field names to be indexed */ 1298 int onError, /* What to do with a uniqueness conflict */ 1299 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1300 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1301 ){ 1302 Table *pTab = pParse->pNewTable; 1303 Column *pCol = 0; 1304 int iCol = -1, i; 1305 int nTerm; 1306 if( pTab==0 ) goto primary_key_exit; 1307 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1308 sqlite3ErrorMsg(pParse, 1309 "table \"%s\" has more than one primary key", pTab->zName); 1310 goto primary_key_exit; 1311 } 1312 pTab->tabFlags |= TF_HasPrimaryKey; 1313 if( pList==0 ){ 1314 iCol = pTab->nCol - 1; 1315 pCol = &pTab->aCol[iCol]; 1316 pCol->colFlags |= COLFLAG_PRIMKEY; 1317 nTerm = 1; 1318 }else{ 1319 nTerm = pList->nExpr; 1320 for(i=0; i<nTerm; i++){ 1321 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1322 assert( pCExpr!=0 ); 1323 sqlite3StringToId(pCExpr); 1324 if( pCExpr->op==TK_ID ){ 1325 const char *zCName = pCExpr->u.zToken; 1326 for(iCol=0; iCol<pTab->nCol; iCol++){ 1327 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1328 pCol = &pTab->aCol[iCol]; 1329 pCol->colFlags |= COLFLAG_PRIMKEY; 1330 break; 1331 } 1332 } 1333 } 1334 } 1335 } 1336 if( nTerm==1 1337 && pCol 1338 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1339 && sortOrder!=SQLITE_SO_DESC 1340 ){ 1341 pTab->iPKey = iCol; 1342 pTab->keyConf = (u8)onError; 1343 assert( autoInc==0 || autoInc==1 ); 1344 pTab->tabFlags |= autoInc*TF_Autoincrement; 1345 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1346 }else if( autoInc ){ 1347 #ifndef SQLITE_OMIT_AUTOINCREMENT 1348 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1349 "INTEGER PRIMARY KEY"); 1350 #endif 1351 }else{ 1352 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1353 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1354 pList = 0; 1355 } 1356 1357 primary_key_exit: 1358 sqlite3ExprListDelete(pParse->db, pList); 1359 return; 1360 } 1361 1362 /* 1363 ** Add a new CHECK constraint to the table currently under construction. 1364 */ 1365 void sqlite3AddCheckConstraint( 1366 Parse *pParse, /* Parsing context */ 1367 Expr *pCheckExpr /* The check expression */ 1368 ){ 1369 #ifndef SQLITE_OMIT_CHECK 1370 Table *pTab = pParse->pNewTable; 1371 sqlite3 *db = pParse->db; 1372 if( pTab && !IN_DECLARE_VTAB 1373 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1374 ){ 1375 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1376 if( pParse->constraintName.n ){ 1377 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1378 } 1379 }else 1380 #endif 1381 { 1382 sqlite3ExprDelete(pParse->db, pCheckExpr); 1383 } 1384 } 1385 1386 /* 1387 ** Set the collation function of the most recently parsed table column 1388 ** to the CollSeq given. 1389 */ 1390 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1391 Table *p; 1392 int i; 1393 char *zColl; /* Dequoted name of collation sequence */ 1394 sqlite3 *db; 1395 1396 if( (p = pParse->pNewTable)==0 ) return; 1397 i = p->nCol-1; 1398 db = pParse->db; 1399 zColl = sqlite3NameFromToken(db, pToken); 1400 if( !zColl ) return; 1401 1402 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1403 Index *pIdx; 1404 sqlite3DbFree(db, p->aCol[i].zColl); 1405 p->aCol[i].zColl = zColl; 1406 1407 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1408 ** then an index may have been created on this column before the 1409 ** collation type was added. Correct this if it is the case. 1410 */ 1411 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1412 assert( pIdx->nKeyCol==1 ); 1413 if( pIdx->aiColumn[0]==i ){ 1414 pIdx->azColl[0] = p->aCol[i].zColl; 1415 } 1416 } 1417 }else{ 1418 sqlite3DbFree(db, zColl); 1419 } 1420 } 1421 1422 /* 1423 ** This function returns the collation sequence for database native text 1424 ** encoding identified by the string zName, length nName. 1425 ** 1426 ** If the requested collation sequence is not available, or not available 1427 ** in the database native encoding, the collation factory is invoked to 1428 ** request it. If the collation factory does not supply such a sequence, 1429 ** and the sequence is available in another text encoding, then that is 1430 ** returned instead. 1431 ** 1432 ** If no versions of the requested collations sequence are available, or 1433 ** another error occurs, NULL is returned and an error message written into 1434 ** pParse. 1435 ** 1436 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1437 ** invokes the collation factory if the named collation cannot be found 1438 ** and generates an error message. 1439 ** 1440 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1441 */ 1442 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1443 sqlite3 *db = pParse->db; 1444 u8 enc = ENC(db); 1445 u8 initbusy = db->init.busy; 1446 CollSeq *pColl; 1447 1448 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1449 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1450 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1451 } 1452 1453 return pColl; 1454 } 1455 1456 1457 /* 1458 ** Generate code that will increment the schema cookie. 1459 ** 1460 ** The schema cookie is used to determine when the schema for the 1461 ** database changes. After each schema change, the cookie value 1462 ** changes. When a process first reads the schema it records the 1463 ** cookie. Thereafter, whenever it goes to access the database, 1464 ** it checks the cookie to make sure the schema has not changed 1465 ** since it was last read. 1466 ** 1467 ** This plan is not completely bullet-proof. It is possible for 1468 ** the schema to change multiple times and for the cookie to be 1469 ** set back to prior value. But schema changes are infrequent 1470 ** and the probability of hitting the same cookie value is only 1471 ** 1 chance in 2^32. So we're safe enough. 1472 ** 1473 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1474 ** the schema-version whenever the schema changes. 1475 */ 1476 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1477 sqlite3 *db = pParse->db; 1478 Vdbe *v = pParse->pVdbe; 1479 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1480 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1481 db->aDb[iDb].pSchema->schema_cookie+1); 1482 } 1483 1484 /* 1485 ** Measure the number of characters needed to output the given 1486 ** identifier. The number returned includes any quotes used 1487 ** but does not include the null terminator. 1488 ** 1489 ** The estimate is conservative. It might be larger that what is 1490 ** really needed. 1491 */ 1492 static int identLength(const char *z){ 1493 int n; 1494 for(n=0; *z; n++, z++){ 1495 if( *z=='"' ){ n++; } 1496 } 1497 return n + 2; 1498 } 1499 1500 /* 1501 ** The first parameter is a pointer to an output buffer. The second 1502 ** parameter is a pointer to an integer that contains the offset at 1503 ** which to write into the output buffer. This function copies the 1504 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1505 ** to the specified offset in the buffer and updates *pIdx to refer 1506 ** to the first byte after the last byte written before returning. 1507 ** 1508 ** If the string zSignedIdent consists entirely of alpha-numeric 1509 ** characters, does not begin with a digit and is not an SQL keyword, 1510 ** then it is copied to the output buffer exactly as it is. Otherwise, 1511 ** it is quoted using double-quotes. 1512 */ 1513 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1514 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1515 int i, j, needQuote; 1516 i = *pIdx; 1517 1518 for(j=0; zIdent[j]; j++){ 1519 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1520 } 1521 needQuote = sqlite3Isdigit(zIdent[0]) 1522 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1523 || zIdent[j]!=0 1524 || j==0; 1525 1526 if( needQuote ) z[i++] = '"'; 1527 for(j=0; zIdent[j]; j++){ 1528 z[i++] = zIdent[j]; 1529 if( zIdent[j]=='"' ) z[i++] = '"'; 1530 } 1531 if( needQuote ) z[i++] = '"'; 1532 z[i] = 0; 1533 *pIdx = i; 1534 } 1535 1536 /* 1537 ** Generate a CREATE TABLE statement appropriate for the given 1538 ** table. Memory to hold the text of the statement is obtained 1539 ** from sqliteMalloc() and must be freed by the calling function. 1540 */ 1541 static char *createTableStmt(sqlite3 *db, Table *p){ 1542 int i, k, n; 1543 char *zStmt; 1544 char *zSep, *zSep2, *zEnd; 1545 Column *pCol; 1546 n = 0; 1547 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1548 n += identLength(pCol->zName) + 5; 1549 } 1550 n += identLength(p->zName); 1551 if( n<50 ){ 1552 zSep = ""; 1553 zSep2 = ","; 1554 zEnd = ")"; 1555 }else{ 1556 zSep = "\n "; 1557 zSep2 = ",\n "; 1558 zEnd = "\n)"; 1559 } 1560 n += 35 + 6*p->nCol; 1561 zStmt = sqlite3DbMallocRaw(0, n); 1562 if( zStmt==0 ){ 1563 sqlite3OomFault(db); 1564 return 0; 1565 } 1566 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1567 k = sqlite3Strlen30(zStmt); 1568 identPut(zStmt, &k, p->zName); 1569 zStmt[k++] = '('; 1570 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1571 static const char * const azType[] = { 1572 /* SQLITE_AFF_BLOB */ "", 1573 /* SQLITE_AFF_TEXT */ " TEXT", 1574 /* SQLITE_AFF_NUMERIC */ " NUM", 1575 /* SQLITE_AFF_INTEGER */ " INT", 1576 /* SQLITE_AFF_REAL */ " REAL" 1577 }; 1578 int len; 1579 const char *zType; 1580 1581 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1582 k += sqlite3Strlen30(&zStmt[k]); 1583 zSep = zSep2; 1584 identPut(zStmt, &k, pCol->zName); 1585 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1586 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1587 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1588 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1589 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1590 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1591 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1592 1593 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1594 len = sqlite3Strlen30(zType); 1595 assert( pCol->affinity==SQLITE_AFF_BLOB 1596 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1597 memcpy(&zStmt[k], zType, len); 1598 k += len; 1599 assert( k<=n ); 1600 } 1601 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1602 return zStmt; 1603 } 1604 1605 /* 1606 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1607 ** on success and SQLITE_NOMEM on an OOM error. 1608 */ 1609 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1610 char *zExtra; 1611 int nByte; 1612 if( pIdx->nColumn>=N ) return SQLITE_OK; 1613 assert( pIdx->isResized==0 ); 1614 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1615 zExtra = sqlite3DbMallocZero(db, nByte); 1616 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1617 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1618 pIdx->azColl = (const char**)zExtra; 1619 zExtra += sizeof(char*)*N; 1620 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1621 pIdx->aiColumn = (i16*)zExtra; 1622 zExtra += sizeof(i16)*N; 1623 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1624 pIdx->aSortOrder = (u8*)zExtra; 1625 pIdx->nColumn = N; 1626 pIdx->isResized = 1; 1627 return SQLITE_OK; 1628 } 1629 1630 /* 1631 ** Estimate the total row width for a table. 1632 */ 1633 static void estimateTableWidth(Table *pTab){ 1634 unsigned wTable = 0; 1635 const Column *pTabCol; 1636 int i; 1637 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1638 wTable += pTabCol->szEst; 1639 } 1640 if( pTab->iPKey<0 ) wTable++; 1641 pTab->szTabRow = sqlite3LogEst(wTable*4); 1642 } 1643 1644 /* 1645 ** Estimate the average size of a row for an index. 1646 */ 1647 static void estimateIndexWidth(Index *pIdx){ 1648 unsigned wIndex = 0; 1649 int i; 1650 const Column *aCol = pIdx->pTable->aCol; 1651 for(i=0; i<pIdx->nColumn; i++){ 1652 i16 x = pIdx->aiColumn[i]; 1653 assert( x<pIdx->pTable->nCol ); 1654 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1655 } 1656 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1657 } 1658 1659 /* Return true if value x is found any of the first nCol entries of aiCol[] 1660 */ 1661 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1662 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1663 return 0; 1664 } 1665 1666 /* 1667 ** This routine runs at the end of parsing a CREATE TABLE statement that 1668 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1669 ** internal schema data structures and the generated VDBE code so that they 1670 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1671 ** Changes include: 1672 ** 1673 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1674 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is 1675 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1676 ** data storage is a covering index btree. 1677 ** (3) Bypass the creation of the sqlite_master table entry 1678 ** for the PRIMARY KEY as the primary key index is now 1679 ** identified by the sqlite_master table entry of the table itself. 1680 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1681 ** schema to the rootpage from the main table. 1682 ** (5) Add all table columns to the PRIMARY KEY Index object 1683 ** so that the PRIMARY KEY is a covering index. The surplus 1684 ** columns are part of KeyInfo.nAllField and are not used for 1685 ** sorting or lookup or uniqueness checks. 1686 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1687 ** indices with the PRIMARY KEY columns. 1688 ** 1689 ** For virtual tables, only (1) is performed. 1690 */ 1691 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1692 Index *pIdx; 1693 Index *pPk; 1694 int nPk; 1695 int i, j; 1696 sqlite3 *db = pParse->db; 1697 Vdbe *v = pParse->pVdbe; 1698 1699 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 1700 */ 1701 if( !db->init.imposterTable ){ 1702 for(i=0; i<pTab->nCol; i++){ 1703 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 1704 pTab->aCol[i].notNull = OE_Abort; 1705 } 1706 } 1707 } 1708 1709 /* The remaining transformations only apply to b-tree tables, not to 1710 ** virtual tables */ 1711 if( IN_DECLARE_VTAB ) return; 1712 1713 /* Convert the OP_CreateTable opcode that would normally create the 1714 ** root-page for the table into an OP_CreateIndex opcode. The index 1715 ** created will become the PRIMARY KEY index. 1716 */ 1717 if( pParse->addrCrTab ){ 1718 assert( v ); 1719 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1720 } 1721 1722 /* Locate the PRIMARY KEY index. Or, if this table was originally 1723 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1724 */ 1725 if( pTab->iPKey>=0 ){ 1726 ExprList *pList; 1727 Token ipkToken; 1728 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1729 pList = sqlite3ExprListAppend(pParse, 0, 1730 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1731 if( pList==0 ) return; 1732 pList->a[0].sortOrder = pParse->iPkSortOrder; 1733 assert( pParse->pNewTable==pTab ); 1734 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 1735 SQLITE_IDXTYPE_PRIMARYKEY); 1736 if( db->mallocFailed ) return; 1737 pPk = sqlite3PrimaryKeyIndex(pTab); 1738 pTab->iPKey = -1; 1739 }else{ 1740 pPk = sqlite3PrimaryKeyIndex(pTab); 1741 1742 /* 1743 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1744 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1745 ** code assumes the PRIMARY KEY contains no repeated columns. 1746 */ 1747 for(i=j=1; i<pPk->nKeyCol; i++){ 1748 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1749 pPk->nColumn--; 1750 }else{ 1751 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1752 } 1753 } 1754 pPk->nKeyCol = j; 1755 } 1756 assert( pPk!=0 ); 1757 pPk->isCovering = 1; 1758 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 1759 nPk = pPk->nKeyCol; 1760 1761 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1762 ** table entry. This is only required if currently generating VDBE 1763 ** code for a CREATE TABLE (not when parsing one as part of reading 1764 ** a database schema). */ 1765 if( v && pPk->tnum>0 ){ 1766 assert( db->init.busy==0 ); 1767 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1768 } 1769 1770 /* The root page of the PRIMARY KEY is the table root page */ 1771 pPk->tnum = pTab->tnum; 1772 1773 /* Update the in-memory representation of all UNIQUE indices by converting 1774 ** the final rowid column into one or more columns of the PRIMARY KEY. 1775 */ 1776 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1777 int n; 1778 if( IsPrimaryKeyIndex(pIdx) ) continue; 1779 for(i=n=0; i<nPk; i++){ 1780 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1781 } 1782 if( n==0 ){ 1783 /* This index is a superset of the primary key */ 1784 pIdx->nColumn = pIdx->nKeyCol; 1785 continue; 1786 } 1787 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1788 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1789 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1790 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1791 pIdx->azColl[j] = pPk->azColl[i]; 1792 j++; 1793 } 1794 } 1795 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1796 assert( pIdx->nColumn>=j ); 1797 } 1798 1799 /* Add all table columns to the PRIMARY KEY index 1800 */ 1801 if( nPk<pTab->nCol ){ 1802 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1803 for(i=0, j=nPk; i<pTab->nCol; i++){ 1804 if( !hasColumn(pPk->aiColumn, j, i) ){ 1805 assert( j<pPk->nColumn ); 1806 pPk->aiColumn[j] = i; 1807 pPk->azColl[j] = sqlite3StrBINARY; 1808 j++; 1809 } 1810 } 1811 assert( pPk->nColumn==j ); 1812 assert( pTab->nCol==j ); 1813 }else{ 1814 pPk->nColumn = pTab->nCol; 1815 } 1816 } 1817 1818 /* 1819 ** This routine is called to report the final ")" that terminates 1820 ** a CREATE TABLE statement. 1821 ** 1822 ** The table structure that other action routines have been building 1823 ** is added to the internal hash tables, assuming no errors have 1824 ** occurred. 1825 ** 1826 ** An entry for the table is made in the master table on disk, unless 1827 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1828 ** it means we are reading the sqlite_master table because we just 1829 ** connected to the database or because the sqlite_master table has 1830 ** recently changed, so the entry for this table already exists in 1831 ** the sqlite_master table. We do not want to create it again. 1832 ** 1833 ** If the pSelect argument is not NULL, it means that this routine 1834 ** was called to create a table generated from a 1835 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1836 ** the new table will match the result set of the SELECT. 1837 */ 1838 void sqlite3EndTable( 1839 Parse *pParse, /* Parse context */ 1840 Token *pCons, /* The ',' token after the last column defn. */ 1841 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1842 u8 tabOpts, /* Extra table options. Usually 0. */ 1843 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1844 ){ 1845 Table *p; /* The new table */ 1846 sqlite3 *db = pParse->db; /* The database connection */ 1847 int iDb; /* Database in which the table lives */ 1848 Index *pIdx; /* An implied index of the table */ 1849 1850 if( pEnd==0 && pSelect==0 ){ 1851 return; 1852 } 1853 assert( !db->mallocFailed ); 1854 p = pParse->pNewTable; 1855 if( p==0 ) return; 1856 1857 assert( !db->init.busy || !pSelect ); 1858 1859 /* If the db->init.busy is 1 it means we are reading the SQL off the 1860 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1861 ** So do not write to the disk again. Extract the root page number 1862 ** for the table from the db->init.newTnum field. (The page number 1863 ** should have been put there by the sqliteOpenCb routine.) 1864 ** 1865 ** If the root page number is 1, that means this is the sqlite_master 1866 ** table itself. So mark it read-only. 1867 */ 1868 if( db->init.busy ){ 1869 p->tnum = db->init.newTnum; 1870 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1871 } 1872 1873 /* Special processing for WITHOUT ROWID Tables */ 1874 if( tabOpts & TF_WithoutRowid ){ 1875 if( (p->tabFlags & TF_Autoincrement) ){ 1876 sqlite3ErrorMsg(pParse, 1877 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1878 return; 1879 } 1880 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1881 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1882 }else{ 1883 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1884 convertToWithoutRowidTable(pParse, p); 1885 } 1886 } 1887 1888 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1889 1890 #ifndef SQLITE_OMIT_CHECK 1891 /* Resolve names in all CHECK constraint expressions. 1892 */ 1893 if( p->pCheck ){ 1894 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1895 } 1896 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1897 1898 /* Estimate the average row size for the table and for all implied indices */ 1899 estimateTableWidth(p); 1900 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1901 estimateIndexWidth(pIdx); 1902 } 1903 1904 /* If not initializing, then create a record for the new table 1905 ** in the SQLITE_MASTER table of the database. 1906 ** 1907 ** If this is a TEMPORARY table, write the entry into the auxiliary 1908 ** file instead of into the main database file. 1909 */ 1910 if( !db->init.busy ){ 1911 int n; 1912 Vdbe *v; 1913 char *zType; /* "view" or "table" */ 1914 char *zType2; /* "VIEW" or "TABLE" */ 1915 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1916 1917 v = sqlite3GetVdbe(pParse); 1918 if( NEVER(v==0) ) return; 1919 1920 sqlite3VdbeAddOp1(v, OP_Close, 0); 1921 1922 /* 1923 ** Initialize zType for the new view or table. 1924 */ 1925 if( p->pSelect==0 ){ 1926 /* A regular table */ 1927 zType = "table"; 1928 zType2 = "TABLE"; 1929 #ifndef SQLITE_OMIT_VIEW 1930 }else{ 1931 /* A view */ 1932 zType = "view"; 1933 zType2 = "VIEW"; 1934 #endif 1935 } 1936 1937 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1938 ** statement to populate the new table. The root-page number for the 1939 ** new table is in register pParse->regRoot. 1940 ** 1941 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1942 ** suitable state to query for the column names and types to be used 1943 ** by the new table. 1944 ** 1945 ** A shared-cache write-lock is not required to write to the new table, 1946 ** as a schema-lock must have already been obtained to create it. Since 1947 ** a schema-lock excludes all other database users, the write-lock would 1948 ** be redundant. 1949 */ 1950 if( pSelect ){ 1951 SelectDest dest; /* Where the SELECT should store results */ 1952 int regYield; /* Register holding co-routine entry-point */ 1953 int addrTop; /* Top of the co-routine */ 1954 int regRec; /* A record to be insert into the new table */ 1955 int regRowid; /* Rowid of the next row to insert */ 1956 int addrInsLoop; /* Top of the loop for inserting rows */ 1957 Table *pSelTab; /* A table that describes the SELECT results */ 1958 1959 regYield = ++pParse->nMem; 1960 regRec = ++pParse->nMem; 1961 regRowid = ++pParse->nMem; 1962 assert(pParse->nTab==1); 1963 sqlite3MayAbort(pParse); 1964 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1965 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1966 pParse->nTab = 2; 1967 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1968 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1969 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1970 sqlite3Select(pParse, pSelect, &dest); 1971 sqlite3VdbeEndCoroutine(v, regYield); 1972 sqlite3VdbeJumpHere(v, addrTop - 1); 1973 if( pParse->nErr ) return; 1974 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1975 if( pSelTab==0 ) return; 1976 assert( p->aCol==0 ); 1977 p->nCol = pSelTab->nCol; 1978 p->aCol = pSelTab->aCol; 1979 pSelTab->nCol = 0; 1980 pSelTab->aCol = 0; 1981 sqlite3DeleteTable(db, pSelTab); 1982 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1983 VdbeCoverage(v); 1984 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1985 sqlite3TableAffinity(v, p, 0); 1986 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1987 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1988 sqlite3VdbeGoto(v, addrInsLoop); 1989 sqlite3VdbeJumpHere(v, addrInsLoop); 1990 sqlite3VdbeAddOp1(v, OP_Close, 1); 1991 } 1992 1993 /* Compute the complete text of the CREATE statement */ 1994 if( pSelect ){ 1995 zStmt = createTableStmt(db, p); 1996 }else{ 1997 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1998 n = (int)(pEnd2->z - pParse->sNameToken.z); 1999 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2000 zStmt = sqlite3MPrintf(db, 2001 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2002 ); 2003 } 2004 2005 /* A slot for the record has already been allocated in the 2006 ** SQLITE_MASTER table. We just need to update that slot with all 2007 ** the information we've collected. 2008 */ 2009 sqlite3NestedParse(pParse, 2010 "UPDATE %Q.%s " 2011 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2012 "WHERE rowid=#%d", 2013 db->aDb[iDb].zDbSName, MASTER_NAME, 2014 zType, 2015 p->zName, 2016 p->zName, 2017 pParse->regRoot, 2018 zStmt, 2019 pParse->regRowid 2020 ); 2021 sqlite3DbFree(db, zStmt); 2022 sqlite3ChangeCookie(pParse, iDb); 2023 2024 #ifndef SQLITE_OMIT_AUTOINCREMENT 2025 /* Check to see if we need to create an sqlite_sequence table for 2026 ** keeping track of autoincrement keys. 2027 */ 2028 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2029 Db *pDb = &db->aDb[iDb]; 2030 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2031 if( pDb->pSchema->pSeqTab==0 ){ 2032 sqlite3NestedParse(pParse, 2033 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2034 pDb->zDbSName 2035 ); 2036 } 2037 } 2038 #endif 2039 2040 /* Reparse everything to update our internal data structures */ 2041 sqlite3VdbeAddParseSchemaOp(v, iDb, 2042 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2043 } 2044 2045 2046 /* Add the table to the in-memory representation of the database. 2047 */ 2048 if( db->init.busy ){ 2049 Table *pOld; 2050 Schema *pSchema = p->pSchema; 2051 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2052 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2053 if( pOld ){ 2054 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2055 sqlite3OomFault(db); 2056 return; 2057 } 2058 pParse->pNewTable = 0; 2059 db->mDbFlags |= DBFLAG_SchemaChange; 2060 2061 #ifndef SQLITE_OMIT_ALTERTABLE 2062 if( !p->pSelect ){ 2063 const char *zName = (const char *)pParse->sNameToken.z; 2064 int nName; 2065 assert( !pSelect && pCons && pEnd ); 2066 if( pCons->z==0 ){ 2067 pCons = pEnd; 2068 } 2069 nName = (int)((const char *)pCons->z - zName); 2070 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2071 } 2072 #endif 2073 } 2074 } 2075 2076 #ifndef SQLITE_OMIT_VIEW 2077 /* 2078 ** The parser calls this routine in order to create a new VIEW 2079 */ 2080 void sqlite3CreateView( 2081 Parse *pParse, /* The parsing context */ 2082 Token *pBegin, /* The CREATE token that begins the statement */ 2083 Token *pName1, /* The token that holds the name of the view */ 2084 Token *pName2, /* The token that holds the name of the view */ 2085 ExprList *pCNames, /* Optional list of view column names */ 2086 Select *pSelect, /* A SELECT statement that will become the new view */ 2087 int isTemp, /* TRUE for a TEMPORARY view */ 2088 int noErr /* Suppress error messages if VIEW already exists */ 2089 ){ 2090 Table *p; 2091 int n; 2092 const char *z; 2093 Token sEnd; 2094 DbFixer sFix; 2095 Token *pName = 0; 2096 int iDb; 2097 sqlite3 *db = pParse->db; 2098 2099 if( pParse->nVar>0 ){ 2100 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2101 goto create_view_fail; 2102 } 2103 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2104 p = pParse->pNewTable; 2105 if( p==0 || pParse->nErr ) goto create_view_fail; 2106 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2107 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2108 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2109 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2110 2111 /* Make a copy of the entire SELECT statement that defines the view. 2112 ** This will force all the Expr.token.z values to be dynamically 2113 ** allocated rather than point to the input string - which means that 2114 ** they will persist after the current sqlite3_exec() call returns. 2115 */ 2116 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2117 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2118 if( db->mallocFailed ) goto create_view_fail; 2119 2120 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2121 ** the end. 2122 */ 2123 sEnd = pParse->sLastToken; 2124 assert( sEnd.z[0]!=0 ); 2125 if( sEnd.z[0]!=';' ){ 2126 sEnd.z += sEnd.n; 2127 } 2128 sEnd.n = 0; 2129 n = (int)(sEnd.z - pBegin->z); 2130 assert( n>0 ); 2131 z = pBegin->z; 2132 while( sqlite3Isspace(z[n-1]) ){ n--; } 2133 sEnd.z = &z[n-1]; 2134 sEnd.n = 1; 2135 2136 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2137 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2138 2139 create_view_fail: 2140 sqlite3SelectDelete(db, pSelect); 2141 sqlite3ExprListDelete(db, pCNames); 2142 return; 2143 } 2144 #endif /* SQLITE_OMIT_VIEW */ 2145 2146 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2147 /* 2148 ** The Table structure pTable is really a VIEW. Fill in the names of 2149 ** the columns of the view in the pTable structure. Return the number 2150 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2151 */ 2152 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2153 Table *pSelTab; /* A fake table from which we get the result set */ 2154 Select *pSel; /* Copy of the SELECT that implements the view */ 2155 int nErr = 0; /* Number of errors encountered */ 2156 int n; /* Temporarily holds the number of cursors assigned */ 2157 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2158 #ifndef SQLITE_OMIT_AUTHORIZATION 2159 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2160 #endif 2161 2162 assert( pTable ); 2163 2164 #ifndef SQLITE_OMIT_VIRTUALTABLE 2165 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2166 return SQLITE_ERROR; 2167 } 2168 if( IsVirtual(pTable) ) return 0; 2169 #endif 2170 2171 #ifndef SQLITE_OMIT_VIEW 2172 /* A positive nCol means the columns names for this view are 2173 ** already known. 2174 */ 2175 if( pTable->nCol>0 ) return 0; 2176 2177 /* A negative nCol is a special marker meaning that we are currently 2178 ** trying to compute the column names. If we enter this routine with 2179 ** a negative nCol, it means two or more views form a loop, like this: 2180 ** 2181 ** CREATE VIEW one AS SELECT * FROM two; 2182 ** CREATE VIEW two AS SELECT * FROM one; 2183 ** 2184 ** Actually, the error above is now caught prior to reaching this point. 2185 ** But the following test is still important as it does come up 2186 ** in the following: 2187 ** 2188 ** CREATE TABLE main.ex1(a); 2189 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2190 ** SELECT * FROM temp.ex1; 2191 */ 2192 if( pTable->nCol<0 ){ 2193 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2194 return 1; 2195 } 2196 assert( pTable->nCol>=0 ); 2197 2198 /* If we get this far, it means we need to compute the table names. 2199 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2200 ** "*" elements in the results set of the view and will assign cursors 2201 ** to the elements of the FROM clause. But we do not want these changes 2202 ** to be permanent. So the computation is done on a copy of the SELECT 2203 ** statement that defines the view. 2204 */ 2205 assert( pTable->pSelect ); 2206 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2207 if( pSel ){ 2208 n = pParse->nTab; 2209 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2210 pTable->nCol = -1; 2211 db->lookaside.bDisable++; 2212 #ifndef SQLITE_OMIT_AUTHORIZATION 2213 xAuth = db->xAuth; 2214 db->xAuth = 0; 2215 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2216 db->xAuth = xAuth; 2217 #else 2218 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2219 #endif 2220 pParse->nTab = n; 2221 if( pTable->pCheck ){ 2222 /* CREATE VIEW name(arglist) AS ... 2223 ** The names of the columns in the table are taken from 2224 ** arglist which is stored in pTable->pCheck. The pCheck field 2225 ** normally holds CHECK constraints on an ordinary table, but for 2226 ** a VIEW it holds the list of column names. 2227 */ 2228 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2229 &pTable->nCol, &pTable->aCol); 2230 if( db->mallocFailed==0 2231 && pParse->nErr==0 2232 && pTable->nCol==pSel->pEList->nExpr 2233 ){ 2234 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2235 } 2236 }else if( pSelTab ){ 2237 /* CREATE VIEW name AS... without an argument list. Construct 2238 ** the column names from the SELECT statement that defines the view. 2239 */ 2240 assert( pTable->aCol==0 ); 2241 pTable->nCol = pSelTab->nCol; 2242 pTable->aCol = pSelTab->aCol; 2243 pSelTab->nCol = 0; 2244 pSelTab->aCol = 0; 2245 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2246 }else{ 2247 pTable->nCol = 0; 2248 nErr++; 2249 } 2250 sqlite3DeleteTable(db, pSelTab); 2251 sqlite3SelectDelete(db, pSel); 2252 db->lookaside.bDisable--; 2253 } else { 2254 nErr++; 2255 } 2256 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2257 #endif /* SQLITE_OMIT_VIEW */ 2258 return nErr; 2259 } 2260 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2261 2262 #ifndef SQLITE_OMIT_VIEW 2263 /* 2264 ** Clear the column names from every VIEW in database idx. 2265 */ 2266 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2267 HashElem *i; 2268 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2269 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2270 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2271 Table *pTab = sqliteHashData(i); 2272 if( pTab->pSelect ){ 2273 sqlite3DeleteColumnNames(db, pTab); 2274 pTab->aCol = 0; 2275 pTab->nCol = 0; 2276 } 2277 } 2278 DbClearProperty(db, idx, DB_UnresetViews); 2279 } 2280 #else 2281 # define sqliteViewResetAll(A,B) 2282 #endif /* SQLITE_OMIT_VIEW */ 2283 2284 /* 2285 ** This function is called by the VDBE to adjust the internal schema 2286 ** used by SQLite when the btree layer moves a table root page. The 2287 ** root-page of a table or index in database iDb has changed from iFrom 2288 ** to iTo. 2289 ** 2290 ** Ticket #1728: The symbol table might still contain information 2291 ** on tables and/or indices that are the process of being deleted. 2292 ** If you are unlucky, one of those deleted indices or tables might 2293 ** have the same rootpage number as the real table or index that is 2294 ** being moved. So we cannot stop searching after the first match 2295 ** because the first match might be for one of the deleted indices 2296 ** or tables and not the table/index that is actually being moved. 2297 ** We must continue looping until all tables and indices with 2298 ** rootpage==iFrom have been converted to have a rootpage of iTo 2299 ** in order to be certain that we got the right one. 2300 */ 2301 #ifndef SQLITE_OMIT_AUTOVACUUM 2302 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2303 HashElem *pElem; 2304 Hash *pHash; 2305 Db *pDb; 2306 2307 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2308 pDb = &db->aDb[iDb]; 2309 pHash = &pDb->pSchema->tblHash; 2310 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2311 Table *pTab = sqliteHashData(pElem); 2312 if( pTab->tnum==iFrom ){ 2313 pTab->tnum = iTo; 2314 } 2315 } 2316 pHash = &pDb->pSchema->idxHash; 2317 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2318 Index *pIdx = sqliteHashData(pElem); 2319 if( pIdx->tnum==iFrom ){ 2320 pIdx->tnum = iTo; 2321 } 2322 } 2323 } 2324 #endif 2325 2326 /* 2327 ** Write code to erase the table with root-page iTable from database iDb. 2328 ** Also write code to modify the sqlite_master table and internal schema 2329 ** if a root-page of another table is moved by the btree-layer whilst 2330 ** erasing iTable (this can happen with an auto-vacuum database). 2331 */ 2332 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2333 Vdbe *v = sqlite3GetVdbe(pParse); 2334 int r1 = sqlite3GetTempReg(pParse); 2335 assert( iTable>1 ); 2336 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2337 sqlite3MayAbort(pParse); 2338 #ifndef SQLITE_OMIT_AUTOVACUUM 2339 /* OP_Destroy stores an in integer r1. If this integer 2340 ** is non-zero, then it is the root page number of a table moved to 2341 ** location iTable. The following code modifies the sqlite_master table to 2342 ** reflect this. 2343 ** 2344 ** The "#NNN" in the SQL is a special constant that means whatever value 2345 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2346 ** token for additional information. 2347 */ 2348 sqlite3NestedParse(pParse, 2349 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2350 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2351 #endif 2352 sqlite3ReleaseTempReg(pParse, r1); 2353 } 2354 2355 /* 2356 ** Write VDBE code to erase table pTab and all associated indices on disk. 2357 ** Code to update the sqlite_master tables and internal schema definitions 2358 ** in case a root-page belonging to another table is moved by the btree layer 2359 ** is also added (this can happen with an auto-vacuum database). 2360 */ 2361 static void destroyTable(Parse *pParse, Table *pTab){ 2362 #ifdef SQLITE_OMIT_AUTOVACUUM 2363 Index *pIdx; 2364 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2365 destroyRootPage(pParse, pTab->tnum, iDb); 2366 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2367 destroyRootPage(pParse, pIdx->tnum, iDb); 2368 } 2369 #else 2370 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2371 ** is not defined), then it is important to call OP_Destroy on the 2372 ** table and index root-pages in order, starting with the numerically 2373 ** largest root-page number. This guarantees that none of the root-pages 2374 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2375 ** following were coded: 2376 ** 2377 ** OP_Destroy 4 0 2378 ** ... 2379 ** OP_Destroy 5 0 2380 ** 2381 ** and root page 5 happened to be the largest root-page number in the 2382 ** database, then root page 5 would be moved to page 4 by the 2383 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2384 ** a free-list page. 2385 */ 2386 int iTab = pTab->tnum; 2387 int iDestroyed = 0; 2388 2389 while( 1 ){ 2390 Index *pIdx; 2391 int iLargest = 0; 2392 2393 if( iDestroyed==0 || iTab<iDestroyed ){ 2394 iLargest = iTab; 2395 } 2396 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2397 int iIdx = pIdx->tnum; 2398 assert( pIdx->pSchema==pTab->pSchema ); 2399 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2400 iLargest = iIdx; 2401 } 2402 } 2403 if( iLargest==0 ){ 2404 return; 2405 }else{ 2406 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2407 assert( iDb>=0 && iDb<pParse->db->nDb ); 2408 destroyRootPage(pParse, iLargest, iDb); 2409 iDestroyed = iLargest; 2410 } 2411 } 2412 #endif 2413 } 2414 2415 /* 2416 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2417 ** after a DROP INDEX or DROP TABLE command. 2418 */ 2419 static void sqlite3ClearStatTables( 2420 Parse *pParse, /* The parsing context */ 2421 int iDb, /* The database number */ 2422 const char *zType, /* "idx" or "tbl" */ 2423 const char *zName /* Name of index or table */ 2424 ){ 2425 int i; 2426 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2427 for(i=1; i<=4; i++){ 2428 char zTab[24]; 2429 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2430 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2431 sqlite3NestedParse(pParse, 2432 "DELETE FROM %Q.%s WHERE %s=%Q", 2433 zDbName, zTab, zType, zName 2434 ); 2435 } 2436 } 2437 } 2438 2439 /* 2440 ** Generate code to drop a table. 2441 */ 2442 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2443 Vdbe *v; 2444 sqlite3 *db = pParse->db; 2445 Trigger *pTrigger; 2446 Db *pDb = &db->aDb[iDb]; 2447 2448 v = sqlite3GetVdbe(pParse); 2449 assert( v!=0 ); 2450 sqlite3BeginWriteOperation(pParse, 1, iDb); 2451 2452 #ifndef SQLITE_OMIT_VIRTUALTABLE 2453 if( IsVirtual(pTab) ){ 2454 sqlite3VdbeAddOp0(v, OP_VBegin); 2455 } 2456 #endif 2457 2458 /* Drop all triggers associated with the table being dropped. Code 2459 ** is generated to remove entries from sqlite_master and/or 2460 ** sqlite_temp_master if required. 2461 */ 2462 pTrigger = sqlite3TriggerList(pParse, pTab); 2463 while( pTrigger ){ 2464 assert( pTrigger->pSchema==pTab->pSchema || 2465 pTrigger->pSchema==db->aDb[1].pSchema ); 2466 sqlite3DropTriggerPtr(pParse, pTrigger); 2467 pTrigger = pTrigger->pNext; 2468 } 2469 2470 #ifndef SQLITE_OMIT_AUTOINCREMENT 2471 /* Remove any entries of the sqlite_sequence table associated with 2472 ** the table being dropped. This is done before the table is dropped 2473 ** at the btree level, in case the sqlite_sequence table needs to 2474 ** move as a result of the drop (can happen in auto-vacuum mode). 2475 */ 2476 if( pTab->tabFlags & TF_Autoincrement ){ 2477 sqlite3NestedParse(pParse, 2478 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2479 pDb->zDbSName, pTab->zName 2480 ); 2481 } 2482 #endif 2483 2484 /* Drop all SQLITE_MASTER table and index entries that refer to the 2485 ** table. The program name loops through the master table and deletes 2486 ** every row that refers to a table of the same name as the one being 2487 ** dropped. Triggers are handled separately because a trigger can be 2488 ** created in the temp database that refers to a table in another 2489 ** database. 2490 */ 2491 sqlite3NestedParse(pParse, 2492 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2493 pDb->zDbSName, MASTER_NAME, pTab->zName); 2494 if( !isView && !IsVirtual(pTab) ){ 2495 destroyTable(pParse, pTab); 2496 } 2497 2498 /* Remove the table entry from SQLite's internal schema and modify 2499 ** the schema cookie. 2500 */ 2501 if( IsVirtual(pTab) ){ 2502 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2503 } 2504 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2505 sqlite3ChangeCookie(pParse, iDb); 2506 sqliteViewResetAll(db, iDb); 2507 } 2508 2509 /* 2510 ** This routine is called to do the work of a DROP TABLE statement. 2511 ** pName is the name of the table to be dropped. 2512 */ 2513 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2514 Table *pTab; 2515 Vdbe *v; 2516 sqlite3 *db = pParse->db; 2517 int iDb; 2518 2519 if( db->mallocFailed ){ 2520 goto exit_drop_table; 2521 } 2522 assert( pParse->nErr==0 ); 2523 assert( pName->nSrc==1 ); 2524 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2525 if( noErr ) db->suppressErr++; 2526 assert( isView==0 || isView==LOCATE_VIEW ); 2527 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2528 if( noErr ) db->suppressErr--; 2529 2530 if( pTab==0 ){ 2531 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2532 goto exit_drop_table; 2533 } 2534 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2535 assert( iDb>=0 && iDb<db->nDb ); 2536 2537 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2538 ** it is initialized. 2539 */ 2540 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2541 goto exit_drop_table; 2542 } 2543 #ifndef SQLITE_OMIT_AUTHORIZATION 2544 { 2545 int code; 2546 const char *zTab = SCHEMA_TABLE(iDb); 2547 const char *zDb = db->aDb[iDb].zDbSName; 2548 const char *zArg2 = 0; 2549 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2550 goto exit_drop_table; 2551 } 2552 if( isView ){ 2553 if( !OMIT_TEMPDB && iDb==1 ){ 2554 code = SQLITE_DROP_TEMP_VIEW; 2555 }else{ 2556 code = SQLITE_DROP_VIEW; 2557 } 2558 #ifndef SQLITE_OMIT_VIRTUALTABLE 2559 }else if( IsVirtual(pTab) ){ 2560 code = SQLITE_DROP_VTABLE; 2561 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2562 #endif 2563 }else{ 2564 if( !OMIT_TEMPDB && iDb==1 ){ 2565 code = SQLITE_DROP_TEMP_TABLE; 2566 }else{ 2567 code = SQLITE_DROP_TABLE; 2568 } 2569 } 2570 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2571 goto exit_drop_table; 2572 } 2573 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2574 goto exit_drop_table; 2575 } 2576 } 2577 #endif 2578 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2579 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2580 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2581 goto exit_drop_table; 2582 } 2583 2584 #ifndef SQLITE_OMIT_VIEW 2585 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2586 ** on a table. 2587 */ 2588 if( isView && pTab->pSelect==0 ){ 2589 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2590 goto exit_drop_table; 2591 } 2592 if( !isView && pTab->pSelect ){ 2593 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2594 goto exit_drop_table; 2595 } 2596 #endif 2597 2598 /* Generate code to remove the table from the master table 2599 ** on disk. 2600 */ 2601 v = sqlite3GetVdbe(pParse); 2602 if( v ){ 2603 sqlite3BeginWriteOperation(pParse, 1, iDb); 2604 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2605 sqlite3FkDropTable(pParse, pName, pTab); 2606 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2607 } 2608 2609 exit_drop_table: 2610 sqlite3SrcListDelete(db, pName); 2611 } 2612 2613 /* 2614 ** This routine is called to create a new foreign key on the table 2615 ** currently under construction. pFromCol determines which columns 2616 ** in the current table point to the foreign key. If pFromCol==0 then 2617 ** connect the key to the last column inserted. pTo is the name of 2618 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2619 ** of tables in the parent pTo table. flags contains all 2620 ** information about the conflict resolution algorithms specified 2621 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2622 ** 2623 ** An FKey structure is created and added to the table currently 2624 ** under construction in the pParse->pNewTable field. 2625 ** 2626 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2627 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2628 */ 2629 void sqlite3CreateForeignKey( 2630 Parse *pParse, /* Parsing context */ 2631 ExprList *pFromCol, /* Columns in this table that point to other table */ 2632 Token *pTo, /* Name of the other table */ 2633 ExprList *pToCol, /* Columns in the other table */ 2634 int flags /* Conflict resolution algorithms. */ 2635 ){ 2636 sqlite3 *db = pParse->db; 2637 #ifndef SQLITE_OMIT_FOREIGN_KEY 2638 FKey *pFKey = 0; 2639 FKey *pNextTo; 2640 Table *p = pParse->pNewTable; 2641 int nByte; 2642 int i; 2643 int nCol; 2644 char *z; 2645 2646 assert( pTo!=0 ); 2647 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2648 if( pFromCol==0 ){ 2649 int iCol = p->nCol-1; 2650 if( NEVER(iCol<0) ) goto fk_end; 2651 if( pToCol && pToCol->nExpr!=1 ){ 2652 sqlite3ErrorMsg(pParse, "foreign key on %s" 2653 " should reference only one column of table %T", 2654 p->aCol[iCol].zName, pTo); 2655 goto fk_end; 2656 } 2657 nCol = 1; 2658 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2659 sqlite3ErrorMsg(pParse, 2660 "number of columns in foreign key does not match the number of " 2661 "columns in the referenced table"); 2662 goto fk_end; 2663 }else{ 2664 nCol = pFromCol->nExpr; 2665 } 2666 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2667 if( pToCol ){ 2668 for(i=0; i<pToCol->nExpr; i++){ 2669 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2670 } 2671 } 2672 pFKey = sqlite3DbMallocZero(db, nByte ); 2673 if( pFKey==0 ){ 2674 goto fk_end; 2675 } 2676 pFKey->pFrom = p; 2677 pFKey->pNextFrom = p->pFKey; 2678 z = (char*)&pFKey->aCol[nCol]; 2679 pFKey->zTo = z; 2680 memcpy(z, pTo->z, pTo->n); 2681 z[pTo->n] = 0; 2682 sqlite3Dequote(z); 2683 z += pTo->n+1; 2684 pFKey->nCol = nCol; 2685 if( pFromCol==0 ){ 2686 pFKey->aCol[0].iFrom = p->nCol-1; 2687 }else{ 2688 for(i=0; i<nCol; i++){ 2689 int j; 2690 for(j=0; j<p->nCol; j++){ 2691 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2692 pFKey->aCol[i].iFrom = j; 2693 break; 2694 } 2695 } 2696 if( j>=p->nCol ){ 2697 sqlite3ErrorMsg(pParse, 2698 "unknown column \"%s\" in foreign key definition", 2699 pFromCol->a[i].zName); 2700 goto fk_end; 2701 } 2702 } 2703 } 2704 if( pToCol ){ 2705 for(i=0; i<nCol; i++){ 2706 int n = sqlite3Strlen30(pToCol->a[i].zName); 2707 pFKey->aCol[i].zCol = z; 2708 memcpy(z, pToCol->a[i].zName, n); 2709 z[n] = 0; 2710 z += n+1; 2711 } 2712 } 2713 pFKey->isDeferred = 0; 2714 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2715 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2716 2717 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2718 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2719 pFKey->zTo, (void *)pFKey 2720 ); 2721 if( pNextTo==pFKey ){ 2722 sqlite3OomFault(db); 2723 goto fk_end; 2724 } 2725 if( pNextTo ){ 2726 assert( pNextTo->pPrevTo==0 ); 2727 pFKey->pNextTo = pNextTo; 2728 pNextTo->pPrevTo = pFKey; 2729 } 2730 2731 /* Link the foreign key to the table as the last step. 2732 */ 2733 p->pFKey = pFKey; 2734 pFKey = 0; 2735 2736 fk_end: 2737 sqlite3DbFree(db, pFKey); 2738 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2739 sqlite3ExprListDelete(db, pFromCol); 2740 sqlite3ExprListDelete(db, pToCol); 2741 } 2742 2743 /* 2744 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2745 ** clause is seen as part of a foreign key definition. The isDeferred 2746 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2747 ** The behavior of the most recently created foreign key is adjusted 2748 ** accordingly. 2749 */ 2750 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2751 #ifndef SQLITE_OMIT_FOREIGN_KEY 2752 Table *pTab; 2753 FKey *pFKey; 2754 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2755 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2756 pFKey->isDeferred = (u8)isDeferred; 2757 #endif 2758 } 2759 2760 /* 2761 ** Generate code that will erase and refill index *pIdx. This is 2762 ** used to initialize a newly created index or to recompute the 2763 ** content of an index in response to a REINDEX command. 2764 ** 2765 ** if memRootPage is not negative, it means that the index is newly 2766 ** created. The register specified by memRootPage contains the 2767 ** root page number of the index. If memRootPage is negative, then 2768 ** the index already exists and must be cleared before being refilled and 2769 ** the root page number of the index is taken from pIndex->tnum. 2770 */ 2771 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2772 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2773 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2774 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2775 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2776 int addr1; /* Address of top of loop */ 2777 int addr2; /* Address to jump to for next iteration */ 2778 int tnum; /* Root page of index */ 2779 int iPartIdxLabel; /* Jump to this label to skip a row */ 2780 Vdbe *v; /* Generate code into this virtual machine */ 2781 KeyInfo *pKey; /* KeyInfo for index */ 2782 int regRecord; /* Register holding assembled index record */ 2783 sqlite3 *db = pParse->db; /* The database connection */ 2784 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2785 2786 #ifndef SQLITE_OMIT_AUTHORIZATION 2787 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2788 db->aDb[iDb].zDbSName ) ){ 2789 return; 2790 } 2791 #endif 2792 2793 /* Require a write-lock on the table to perform this operation */ 2794 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2795 2796 v = sqlite3GetVdbe(pParse); 2797 if( v==0 ) return; 2798 if( memRootPage>=0 ){ 2799 tnum = memRootPage; 2800 }else{ 2801 tnum = pIndex->tnum; 2802 } 2803 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2804 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2805 2806 /* Open the sorter cursor if we are to use one. */ 2807 iSorter = pParse->nTab++; 2808 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2809 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2810 2811 /* Open the table. Loop through all rows of the table, inserting index 2812 ** records into the sorter. */ 2813 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2814 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2815 regRecord = sqlite3GetTempReg(pParse); 2816 2817 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2818 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2819 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2820 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2821 sqlite3VdbeJumpHere(v, addr1); 2822 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2823 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2824 (char *)pKey, P4_KEYINFO); 2825 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2826 2827 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2828 if( IsUniqueIndex(pIndex) ){ 2829 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2830 sqlite3VdbeGoto(v, j2); 2831 addr2 = sqlite3VdbeCurrentAddr(v); 2832 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2833 pIndex->nKeyCol); VdbeCoverage(v); 2834 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2835 }else{ 2836 addr2 = sqlite3VdbeCurrentAddr(v); 2837 } 2838 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2839 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 2840 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2841 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2842 sqlite3ReleaseTempReg(pParse, regRecord); 2843 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2844 sqlite3VdbeJumpHere(v, addr1); 2845 2846 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2847 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2848 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2849 } 2850 2851 /* 2852 ** Allocate heap space to hold an Index object with nCol columns. 2853 ** 2854 ** Increase the allocation size to provide an extra nExtra bytes 2855 ** of 8-byte aligned space after the Index object and return a 2856 ** pointer to this extra space in *ppExtra. 2857 */ 2858 Index *sqlite3AllocateIndexObject( 2859 sqlite3 *db, /* Database connection */ 2860 i16 nCol, /* Total number of columns in the index */ 2861 int nExtra, /* Number of bytes of extra space to alloc */ 2862 char **ppExtra /* Pointer to the "extra" space */ 2863 ){ 2864 Index *p; /* Allocated index object */ 2865 int nByte; /* Bytes of space for Index object + arrays */ 2866 2867 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2868 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2869 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2870 sizeof(i16)*nCol + /* Index.aiColumn */ 2871 sizeof(u8)*nCol); /* Index.aSortOrder */ 2872 p = sqlite3DbMallocZero(db, nByte + nExtra); 2873 if( p ){ 2874 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2875 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2876 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2877 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2878 p->aSortOrder = (u8*)pExtra; 2879 p->nColumn = nCol; 2880 p->nKeyCol = nCol - 1; 2881 *ppExtra = ((char*)p) + nByte; 2882 } 2883 return p; 2884 } 2885 2886 /* 2887 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2888 ** and pTblList is the name of the table that is to be indexed. Both will 2889 ** be NULL for a primary key or an index that is created to satisfy a 2890 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2891 ** as the table to be indexed. pParse->pNewTable is a table that is 2892 ** currently being constructed by a CREATE TABLE statement. 2893 ** 2894 ** pList is a list of columns to be indexed. pList will be NULL if this 2895 ** is a primary key or unique-constraint on the most recent column added 2896 ** to the table currently under construction. 2897 */ 2898 void sqlite3CreateIndex( 2899 Parse *pParse, /* All information about this parse */ 2900 Token *pName1, /* First part of index name. May be NULL */ 2901 Token *pName2, /* Second part of index name. May be NULL */ 2902 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2903 ExprList *pList, /* A list of columns to be indexed */ 2904 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2905 Token *pStart, /* The CREATE token that begins this statement */ 2906 Expr *pPIWhere, /* WHERE clause for partial indices */ 2907 int sortOrder, /* Sort order of primary key when pList==NULL */ 2908 int ifNotExist, /* Omit error if index already exists */ 2909 u8 idxType /* The index type */ 2910 ){ 2911 Table *pTab = 0; /* Table to be indexed */ 2912 Index *pIndex = 0; /* The index to be created */ 2913 char *zName = 0; /* Name of the index */ 2914 int nName; /* Number of characters in zName */ 2915 int i, j; 2916 DbFixer sFix; /* For assigning database names to pTable */ 2917 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2918 sqlite3 *db = pParse->db; 2919 Db *pDb; /* The specific table containing the indexed database */ 2920 int iDb; /* Index of the database that is being written */ 2921 Token *pName = 0; /* Unqualified name of the index to create */ 2922 struct ExprList_item *pListItem; /* For looping over pList */ 2923 int nExtra = 0; /* Space allocated for zExtra[] */ 2924 int nExtraCol; /* Number of extra columns needed */ 2925 char *zExtra = 0; /* Extra space after the Index object */ 2926 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2927 2928 if( db->mallocFailed || pParse->nErr>0 ){ 2929 goto exit_create_index; 2930 } 2931 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 2932 goto exit_create_index; 2933 } 2934 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2935 goto exit_create_index; 2936 } 2937 2938 /* 2939 ** Find the table that is to be indexed. Return early if not found. 2940 */ 2941 if( pTblName!=0 ){ 2942 2943 /* Use the two-part index name to determine the database 2944 ** to search for the table. 'Fix' the table name to this db 2945 ** before looking up the table. 2946 */ 2947 assert( pName1 && pName2 ); 2948 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2949 if( iDb<0 ) goto exit_create_index; 2950 assert( pName && pName->z ); 2951 2952 #ifndef SQLITE_OMIT_TEMPDB 2953 /* If the index name was unqualified, check if the table 2954 ** is a temp table. If so, set the database to 1. Do not do this 2955 ** if initialising a database schema. 2956 */ 2957 if( !db->init.busy ){ 2958 pTab = sqlite3SrcListLookup(pParse, pTblName); 2959 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2960 iDb = 1; 2961 } 2962 } 2963 #endif 2964 2965 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2966 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2967 /* Because the parser constructs pTblName from a single identifier, 2968 ** sqlite3FixSrcList can never fail. */ 2969 assert(0); 2970 } 2971 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2972 assert( db->mallocFailed==0 || pTab==0 ); 2973 if( pTab==0 ) goto exit_create_index; 2974 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2975 sqlite3ErrorMsg(pParse, 2976 "cannot create a TEMP index on non-TEMP table \"%s\"", 2977 pTab->zName); 2978 goto exit_create_index; 2979 } 2980 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2981 }else{ 2982 assert( pName==0 ); 2983 assert( pStart==0 ); 2984 pTab = pParse->pNewTable; 2985 if( !pTab ) goto exit_create_index; 2986 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2987 } 2988 pDb = &db->aDb[iDb]; 2989 2990 assert( pTab!=0 ); 2991 assert( pParse->nErr==0 ); 2992 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2993 && db->init.busy==0 2994 #if SQLITE_USER_AUTHENTICATION 2995 && sqlite3UserAuthTable(pTab->zName)==0 2996 #endif 2997 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2998 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2999 goto exit_create_index; 3000 } 3001 #ifndef SQLITE_OMIT_VIEW 3002 if( pTab->pSelect ){ 3003 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3004 goto exit_create_index; 3005 } 3006 #endif 3007 #ifndef SQLITE_OMIT_VIRTUALTABLE 3008 if( IsVirtual(pTab) ){ 3009 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3010 goto exit_create_index; 3011 } 3012 #endif 3013 3014 /* 3015 ** Find the name of the index. Make sure there is not already another 3016 ** index or table with the same name. 3017 ** 3018 ** Exception: If we are reading the names of permanent indices from the 3019 ** sqlite_master table (because some other process changed the schema) and 3020 ** one of the index names collides with the name of a temporary table or 3021 ** index, then we will continue to process this index. 3022 ** 3023 ** If pName==0 it means that we are 3024 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3025 ** own name. 3026 */ 3027 if( pName ){ 3028 zName = sqlite3NameFromToken(db, pName); 3029 if( zName==0 ) goto exit_create_index; 3030 assert( pName->z!=0 ); 3031 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3032 goto exit_create_index; 3033 } 3034 if( !db->init.busy ){ 3035 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3036 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3037 goto exit_create_index; 3038 } 3039 } 3040 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3041 if( !ifNotExist ){ 3042 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3043 }else{ 3044 assert( !db->init.busy ); 3045 sqlite3CodeVerifySchema(pParse, iDb); 3046 } 3047 goto exit_create_index; 3048 } 3049 }else{ 3050 int n; 3051 Index *pLoop; 3052 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3053 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3054 if( zName==0 ){ 3055 goto exit_create_index; 3056 } 3057 3058 /* Automatic index names generated from within sqlite3_declare_vtab() 3059 ** must have names that are distinct from normal automatic index names. 3060 ** The following statement converts "sqlite3_autoindex..." into 3061 ** "sqlite3_butoindex..." in order to make the names distinct. 3062 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3063 if( IN_DECLARE_VTAB ) zName[7]++; 3064 } 3065 3066 /* Check for authorization to create an index. 3067 */ 3068 #ifndef SQLITE_OMIT_AUTHORIZATION 3069 { 3070 const char *zDb = pDb->zDbSName; 3071 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3072 goto exit_create_index; 3073 } 3074 i = SQLITE_CREATE_INDEX; 3075 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3076 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3077 goto exit_create_index; 3078 } 3079 } 3080 #endif 3081 3082 /* If pList==0, it means this routine was called to make a primary 3083 ** key out of the last column added to the table under construction. 3084 ** So create a fake list to simulate this. 3085 */ 3086 if( pList==0 ){ 3087 Token prevCol; 3088 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3089 pList = sqlite3ExprListAppend(pParse, 0, 3090 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3091 if( pList==0 ) goto exit_create_index; 3092 assert( pList->nExpr==1 ); 3093 sqlite3ExprListSetSortOrder(pList, sortOrder); 3094 }else{ 3095 sqlite3ExprListCheckLength(pParse, pList, "index"); 3096 } 3097 3098 /* Figure out how many bytes of space are required to store explicitly 3099 ** specified collation sequence names. 3100 */ 3101 for(i=0; i<pList->nExpr; i++){ 3102 Expr *pExpr = pList->a[i].pExpr; 3103 assert( pExpr!=0 ); 3104 if( pExpr->op==TK_COLLATE ){ 3105 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3106 } 3107 } 3108 3109 /* 3110 ** Allocate the index structure. 3111 */ 3112 nName = sqlite3Strlen30(zName); 3113 nExtraCol = pPk ? pPk->nKeyCol : 1; 3114 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3115 nName + nExtra + 1, &zExtra); 3116 if( db->mallocFailed ){ 3117 goto exit_create_index; 3118 } 3119 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3120 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3121 pIndex->zName = zExtra; 3122 zExtra += nName + 1; 3123 memcpy(pIndex->zName, zName, nName+1); 3124 pIndex->pTable = pTab; 3125 pIndex->onError = (u8)onError; 3126 pIndex->uniqNotNull = onError!=OE_None; 3127 pIndex->idxType = idxType; 3128 pIndex->pSchema = db->aDb[iDb].pSchema; 3129 pIndex->nKeyCol = pList->nExpr; 3130 if( pPIWhere ){ 3131 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3132 pIndex->pPartIdxWhere = pPIWhere; 3133 pPIWhere = 0; 3134 } 3135 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3136 3137 /* Check to see if we should honor DESC requests on index columns 3138 */ 3139 if( pDb->pSchema->file_format>=4 ){ 3140 sortOrderMask = -1; /* Honor DESC */ 3141 }else{ 3142 sortOrderMask = 0; /* Ignore DESC */ 3143 } 3144 3145 /* Analyze the list of expressions that form the terms of the index and 3146 ** report any errors. In the common case where the expression is exactly 3147 ** a table column, store that column in aiColumn[]. For general expressions, 3148 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3149 ** 3150 ** TODO: Issue a warning if two or more columns of the index are identical. 3151 ** TODO: Issue a warning if the table primary key is used as part of the 3152 ** index key. 3153 */ 3154 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3155 Expr *pCExpr; /* The i-th index expression */ 3156 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3157 const char *zColl; /* Collation sequence name */ 3158 3159 sqlite3StringToId(pListItem->pExpr); 3160 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3161 if( pParse->nErr ) goto exit_create_index; 3162 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3163 if( pCExpr->op!=TK_COLUMN ){ 3164 if( pTab==pParse->pNewTable ){ 3165 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3166 "UNIQUE constraints"); 3167 goto exit_create_index; 3168 } 3169 if( pIndex->aColExpr==0 ){ 3170 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3171 pIndex->aColExpr = pCopy; 3172 if( !db->mallocFailed ){ 3173 assert( pCopy!=0 ); 3174 pListItem = &pCopy->a[i]; 3175 } 3176 } 3177 j = XN_EXPR; 3178 pIndex->aiColumn[i] = XN_EXPR; 3179 pIndex->uniqNotNull = 0; 3180 }else{ 3181 j = pCExpr->iColumn; 3182 assert( j<=0x7fff ); 3183 if( j<0 ){ 3184 j = pTab->iPKey; 3185 }else if( pTab->aCol[j].notNull==0 ){ 3186 pIndex->uniqNotNull = 0; 3187 } 3188 pIndex->aiColumn[i] = (i16)j; 3189 } 3190 zColl = 0; 3191 if( pListItem->pExpr->op==TK_COLLATE ){ 3192 int nColl; 3193 zColl = pListItem->pExpr->u.zToken; 3194 nColl = sqlite3Strlen30(zColl) + 1; 3195 assert( nExtra>=nColl ); 3196 memcpy(zExtra, zColl, nColl); 3197 zColl = zExtra; 3198 zExtra += nColl; 3199 nExtra -= nColl; 3200 }else if( j>=0 ){ 3201 zColl = pTab->aCol[j].zColl; 3202 } 3203 if( !zColl ) zColl = sqlite3StrBINARY; 3204 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3205 goto exit_create_index; 3206 } 3207 pIndex->azColl[i] = zColl; 3208 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3209 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3210 } 3211 3212 /* Append the table key to the end of the index. For WITHOUT ROWID 3213 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3214 ** normal tables (when pPk==0) this will be the rowid. 3215 */ 3216 if( pPk ){ 3217 for(j=0; j<pPk->nKeyCol; j++){ 3218 int x = pPk->aiColumn[j]; 3219 assert( x>=0 ); 3220 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3221 pIndex->nColumn--; 3222 }else{ 3223 pIndex->aiColumn[i] = x; 3224 pIndex->azColl[i] = pPk->azColl[j]; 3225 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3226 i++; 3227 } 3228 } 3229 assert( i==pIndex->nColumn ); 3230 }else{ 3231 pIndex->aiColumn[i] = XN_ROWID; 3232 pIndex->azColl[i] = sqlite3StrBINARY; 3233 } 3234 sqlite3DefaultRowEst(pIndex); 3235 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3236 3237 /* If this index contains every column of its table, then mark 3238 ** it as a covering index */ 3239 assert( HasRowid(pTab) 3240 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3241 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3242 pIndex->isCovering = 1; 3243 for(j=0; j<pTab->nCol; j++){ 3244 if( j==pTab->iPKey ) continue; 3245 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3246 pIndex->isCovering = 0; 3247 break; 3248 } 3249 } 3250 3251 if( pTab==pParse->pNewTable ){ 3252 /* This routine has been called to create an automatic index as a 3253 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3254 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3255 ** i.e. one of: 3256 ** 3257 ** CREATE TABLE t(x PRIMARY KEY, y); 3258 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3259 ** 3260 ** Either way, check to see if the table already has such an index. If 3261 ** so, don't bother creating this one. This only applies to 3262 ** automatically created indices. Users can do as they wish with 3263 ** explicit indices. 3264 ** 3265 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3266 ** (and thus suppressing the second one) even if they have different 3267 ** sort orders. 3268 ** 3269 ** If there are different collating sequences or if the columns of 3270 ** the constraint occur in different orders, then the constraints are 3271 ** considered distinct and both result in separate indices. 3272 */ 3273 Index *pIdx; 3274 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3275 int k; 3276 assert( IsUniqueIndex(pIdx) ); 3277 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3278 assert( IsUniqueIndex(pIndex) ); 3279 3280 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3281 for(k=0; k<pIdx->nKeyCol; k++){ 3282 const char *z1; 3283 const char *z2; 3284 assert( pIdx->aiColumn[k]>=0 ); 3285 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3286 z1 = pIdx->azColl[k]; 3287 z2 = pIndex->azColl[k]; 3288 if( sqlite3StrICmp(z1, z2) ) break; 3289 } 3290 if( k==pIdx->nKeyCol ){ 3291 if( pIdx->onError!=pIndex->onError ){ 3292 /* This constraint creates the same index as a previous 3293 ** constraint specified somewhere in the CREATE TABLE statement. 3294 ** However the ON CONFLICT clauses are different. If both this 3295 ** constraint and the previous equivalent constraint have explicit 3296 ** ON CONFLICT clauses this is an error. Otherwise, use the 3297 ** explicitly specified behavior for the index. 3298 */ 3299 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3300 sqlite3ErrorMsg(pParse, 3301 "conflicting ON CONFLICT clauses specified", 0); 3302 } 3303 if( pIdx->onError==OE_Default ){ 3304 pIdx->onError = pIndex->onError; 3305 } 3306 } 3307 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3308 goto exit_create_index; 3309 } 3310 } 3311 } 3312 3313 /* Link the new Index structure to its table and to the other 3314 ** in-memory database structures. 3315 */ 3316 assert( pParse->nErr==0 ); 3317 if( db->init.busy ){ 3318 Index *p; 3319 assert( !IN_DECLARE_VTAB ); 3320 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3321 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3322 pIndex->zName, pIndex); 3323 if( p ){ 3324 assert( p==pIndex ); /* Malloc must have failed */ 3325 sqlite3OomFault(db); 3326 goto exit_create_index; 3327 } 3328 db->mDbFlags |= DBFLAG_SchemaChange; 3329 if( pTblName!=0 ){ 3330 pIndex->tnum = db->init.newTnum; 3331 } 3332 } 3333 3334 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3335 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3336 ** emit code to allocate the index rootpage on disk and make an entry for 3337 ** the index in the sqlite_master table and populate the index with 3338 ** content. But, do not do this if we are simply reading the sqlite_master 3339 ** table to parse the schema, or if this index is the PRIMARY KEY index 3340 ** of a WITHOUT ROWID table. 3341 ** 3342 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3343 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3344 ** has just been created, it contains no data and the index initialization 3345 ** step can be skipped. 3346 */ 3347 else if( HasRowid(pTab) || pTblName!=0 ){ 3348 Vdbe *v; 3349 char *zStmt; 3350 int iMem = ++pParse->nMem; 3351 3352 v = sqlite3GetVdbe(pParse); 3353 if( v==0 ) goto exit_create_index; 3354 3355 sqlite3BeginWriteOperation(pParse, 1, iDb); 3356 3357 /* Create the rootpage for the index using CreateIndex. But before 3358 ** doing so, code a Noop instruction and store its address in 3359 ** Index.tnum. This is required in case this index is actually a 3360 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3361 ** that case the convertToWithoutRowidTable() routine will replace 3362 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3363 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3364 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3365 3366 /* Gather the complete text of the CREATE INDEX statement into 3367 ** the zStmt variable 3368 */ 3369 if( pStart ){ 3370 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3371 if( pName->z[n-1]==';' ) n--; 3372 /* A named index with an explicit CREATE INDEX statement */ 3373 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3374 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3375 }else{ 3376 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3377 /* zStmt = sqlite3MPrintf(""); */ 3378 zStmt = 0; 3379 } 3380 3381 /* Add an entry in sqlite_master for this index 3382 */ 3383 sqlite3NestedParse(pParse, 3384 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3385 db->aDb[iDb].zDbSName, MASTER_NAME, 3386 pIndex->zName, 3387 pTab->zName, 3388 iMem, 3389 zStmt 3390 ); 3391 sqlite3DbFree(db, zStmt); 3392 3393 /* Fill the index with data and reparse the schema. Code an OP_Expire 3394 ** to invalidate all pre-compiled statements. 3395 */ 3396 if( pTblName ){ 3397 sqlite3RefillIndex(pParse, pIndex, iMem); 3398 sqlite3ChangeCookie(pParse, iDb); 3399 sqlite3VdbeAddParseSchemaOp(v, iDb, 3400 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3401 sqlite3VdbeAddOp0(v, OP_Expire); 3402 } 3403 3404 sqlite3VdbeJumpHere(v, pIndex->tnum); 3405 } 3406 3407 /* When adding an index to the list of indices for a table, make 3408 ** sure all indices labeled OE_Replace come after all those labeled 3409 ** OE_Ignore. This is necessary for the correct constraint check 3410 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3411 ** UPDATE and INSERT statements. 3412 */ 3413 if( db->init.busy || pTblName==0 ){ 3414 if( onError!=OE_Replace || pTab->pIndex==0 3415 || pTab->pIndex->onError==OE_Replace){ 3416 pIndex->pNext = pTab->pIndex; 3417 pTab->pIndex = pIndex; 3418 }else{ 3419 Index *pOther = pTab->pIndex; 3420 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3421 pOther = pOther->pNext; 3422 } 3423 pIndex->pNext = pOther->pNext; 3424 pOther->pNext = pIndex; 3425 } 3426 pIndex = 0; 3427 } 3428 3429 /* Clean up before exiting */ 3430 exit_create_index: 3431 if( pIndex ) freeIndex(db, pIndex); 3432 sqlite3ExprDelete(db, pPIWhere); 3433 sqlite3ExprListDelete(db, pList); 3434 sqlite3SrcListDelete(db, pTblName); 3435 sqlite3DbFree(db, zName); 3436 } 3437 3438 /* 3439 ** Fill the Index.aiRowEst[] array with default information - information 3440 ** to be used when we have not run the ANALYZE command. 3441 ** 3442 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3443 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3444 ** number of rows in the table that match any particular value of the 3445 ** first column of the index. aiRowEst[2] is an estimate of the number 3446 ** of rows that match any particular combination of the first 2 columns 3447 ** of the index. And so forth. It must always be the case that 3448 * 3449 ** aiRowEst[N]<=aiRowEst[N-1] 3450 ** aiRowEst[N]>=1 3451 ** 3452 ** Apart from that, we have little to go on besides intuition as to 3453 ** how aiRowEst[] should be initialized. The numbers generated here 3454 ** are based on typical values found in actual indices. 3455 */ 3456 void sqlite3DefaultRowEst(Index *pIdx){ 3457 /* 10, 9, 8, 7, 6 */ 3458 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3459 LogEst *a = pIdx->aiRowLogEst; 3460 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3461 int i; 3462 3463 /* Indexes with default row estimates should not have stat1 data */ 3464 assert( !pIdx->hasStat1 ); 3465 3466 /* Set the first entry (number of rows in the index) to the estimated 3467 ** number of rows in the table, or half the number of rows in the table 3468 ** for a partial index. But do not let the estimate drop below 10. */ 3469 a[0] = pIdx->pTable->nRowLogEst; 3470 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 3471 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3472 3473 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3474 ** 6 and each subsequent value (if any) is 5. */ 3475 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3476 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3477 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3478 } 3479 3480 assert( 0==sqlite3LogEst(1) ); 3481 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3482 } 3483 3484 /* 3485 ** This routine will drop an existing named index. This routine 3486 ** implements the DROP INDEX statement. 3487 */ 3488 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3489 Index *pIndex; 3490 Vdbe *v; 3491 sqlite3 *db = pParse->db; 3492 int iDb; 3493 3494 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3495 if( db->mallocFailed ){ 3496 goto exit_drop_index; 3497 } 3498 assert( pName->nSrc==1 ); 3499 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3500 goto exit_drop_index; 3501 } 3502 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3503 if( pIndex==0 ){ 3504 if( !ifExists ){ 3505 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3506 }else{ 3507 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3508 } 3509 pParse->checkSchema = 1; 3510 goto exit_drop_index; 3511 } 3512 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3513 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3514 "or PRIMARY KEY constraint cannot be dropped", 0); 3515 goto exit_drop_index; 3516 } 3517 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3518 #ifndef SQLITE_OMIT_AUTHORIZATION 3519 { 3520 int code = SQLITE_DROP_INDEX; 3521 Table *pTab = pIndex->pTable; 3522 const char *zDb = db->aDb[iDb].zDbSName; 3523 const char *zTab = SCHEMA_TABLE(iDb); 3524 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3525 goto exit_drop_index; 3526 } 3527 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3528 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3529 goto exit_drop_index; 3530 } 3531 } 3532 #endif 3533 3534 /* Generate code to remove the index and from the master table */ 3535 v = sqlite3GetVdbe(pParse); 3536 if( v ){ 3537 sqlite3BeginWriteOperation(pParse, 1, iDb); 3538 sqlite3NestedParse(pParse, 3539 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3540 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 3541 ); 3542 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3543 sqlite3ChangeCookie(pParse, iDb); 3544 destroyRootPage(pParse, pIndex->tnum, iDb); 3545 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3546 } 3547 3548 exit_drop_index: 3549 sqlite3SrcListDelete(db, pName); 3550 } 3551 3552 /* 3553 ** pArray is a pointer to an array of objects. Each object in the 3554 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3555 ** to extend the array so that there is space for a new object at the end. 3556 ** 3557 ** When this function is called, *pnEntry contains the current size of 3558 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3559 ** in total). 3560 ** 3561 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3562 ** space allocated for the new object is zeroed, *pnEntry updated to 3563 ** reflect the new size of the array and a pointer to the new allocation 3564 ** returned. *pIdx is set to the index of the new array entry in this case. 3565 ** 3566 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3567 ** unchanged and a copy of pArray returned. 3568 */ 3569 void *sqlite3ArrayAllocate( 3570 sqlite3 *db, /* Connection to notify of malloc failures */ 3571 void *pArray, /* Array of objects. Might be reallocated */ 3572 int szEntry, /* Size of each object in the array */ 3573 int *pnEntry, /* Number of objects currently in use */ 3574 int *pIdx /* Write the index of a new slot here */ 3575 ){ 3576 char *z; 3577 int n = *pnEntry; 3578 if( (n & (n-1))==0 ){ 3579 int sz = (n==0) ? 1 : 2*n; 3580 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3581 if( pNew==0 ){ 3582 *pIdx = -1; 3583 return pArray; 3584 } 3585 pArray = pNew; 3586 } 3587 z = (char*)pArray; 3588 memset(&z[n * szEntry], 0, szEntry); 3589 *pIdx = n; 3590 ++*pnEntry; 3591 return pArray; 3592 } 3593 3594 /* 3595 ** Append a new element to the given IdList. Create a new IdList if 3596 ** need be. 3597 ** 3598 ** A new IdList is returned, or NULL if malloc() fails. 3599 */ 3600 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3601 int i; 3602 if( pList==0 ){ 3603 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3604 if( pList==0 ) return 0; 3605 } 3606 pList->a = sqlite3ArrayAllocate( 3607 db, 3608 pList->a, 3609 sizeof(pList->a[0]), 3610 &pList->nId, 3611 &i 3612 ); 3613 if( i<0 ){ 3614 sqlite3IdListDelete(db, pList); 3615 return 0; 3616 } 3617 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3618 return pList; 3619 } 3620 3621 /* 3622 ** Delete an IdList. 3623 */ 3624 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3625 int i; 3626 if( pList==0 ) return; 3627 for(i=0; i<pList->nId; i++){ 3628 sqlite3DbFree(db, pList->a[i].zName); 3629 } 3630 sqlite3DbFree(db, pList->a); 3631 sqlite3DbFreeNN(db, pList); 3632 } 3633 3634 /* 3635 ** Return the index in pList of the identifier named zId. Return -1 3636 ** if not found. 3637 */ 3638 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3639 int i; 3640 if( pList==0 ) return -1; 3641 for(i=0; i<pList->nId; i++){ 3642 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3643 } 3644 return -1; 3645 } 3646 3647 /* 3648 ** Expand the space allocated for the given SrcList object by 3649 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3650 ** New slots are zeroed. 3651 ** 3652 ** For example, suppose a SrcList initially contains two entries: A,B. 3653 ** To append 3 new entries onto the end, do this: 3654 ** 3655 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3656 ** 3657 ** After the call above it would contain: A, B, nil, nil, nil. 3658 ** If the iStart argument had been 1 instead of 2, then the result 3659 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3660 ** the iStart value would be 0. The result then would 3661 ** be: nil, nil, nil, A, B. 3662 ** 3663 ** If a memory allocation fails the SrcList is unchanged. The 3664 ** db->mallocFailed flag will be set to true. 3665 */ 3666 SrcList *sqlite3SrcListEnlarge( 3667 sqlite3 *db, /* Database connection to notify of OOM errors */ 3668 SrcList *pSrc, /* The SrcList to be enlarged */ 3669 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3670 int iStart /* Index in pSrc->a[] of first new slot */ 3671 ){ 3672 int i; 3673 3674 /* Sanity checking on calling parameters */ 3675 assert( iStart>=0 ); 3676 assert( nExtra>=1 ); 3677 assert( pSrc!=0 ); 3678 assert( iStart<=pSrc->nSrc ); 3679 3680 /* Allocate additional space if needed */ 3681 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3682 SrcList *pNew; 3683 int nAlloc = pSrc->nSrc*2+nExtra; 3684 int nGot; 3685 pNew = sqlite3DbRealloc(db, pSrc, 3686 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3687 if( pNew==0 ){ 3688 assert( db->mallocFailed ); 3689 return pSrc; 3690 } 3691 pSrc = pNew; 3692 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3693 pSrc->nAlloc = nGot; 3694 } 3695 3696 /* Move existing slots that come after the newly inserted slots 3697 ** out of the way */ 3698 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3699 pSrc->a[i+nExtra] = pSrc->a[i]; 3700 } 3701 pSrc->nSrc += nExtra; 3702 3703 /* Zero the newly allocated slots */ 3704 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3705 for(i=iStart; i<iStart+nExtra; i++){ 3706 pSrc->a[i].iCursor = -1; 3707 } 3708 3709 /* Return a pointer to the enlarged SrcList */ 3710 return pSrc; 3711 } 3712 3713 3714 /* 3715 ** Append a new table name to the given SrcList. Create a new SrcList if 3716 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3717 ** 3718 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3719 ** SrcList might be the same as the SrcList that was input or it might be 3720 ** a new one. If an OOM error does occurs, then the prior value of pList 3721 ** that is input to this routine is automatically freed. 3722 ** 3723 ** If pDatabase is not null, it means that the table has an optional 3724 ** database name prefix. Like this: "database.table". The pDatabase 3725 ** points to the table name and the pTable points to the database name. 3726 ** The SrcList.a[].zName field is filled with the table name which might 3727 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3728 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3729 ** or with NULL if no database is specified. 3730 ** 3731 ** In other words, if call like this: 3732 ** 3733 ** sqlite3SrcListAppend(D,A,B,0); 3734 ** 3735 ** Then B is a table name and the database name is unspecified. If called 3736 ** like this: 3737 ** 3738 ** sqlite3SrcListAppend(D,A,B,C); 3739 ** 3740 ** Then C is the table name and B is the database name. If C is defined 3741 ** then so is B. In other words, we never have a case where: 3742 ** 3743 ** sqlite3SrcListAppend(D,A,0,C); 3744 ** 3745 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3746 ** before being added to the SrcList. 3747 */ 3748 SrcList *sqlite3SrcListAppend( 3749 sqlite3 *db, /* Connection to notify of malloc failures */ 3750 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3751 Token *pTable, /* Table to append */ 3752 Token *pDatabase /* Database of the table */ 3753 ){ 3754 struct SrcList_item *pItem; 3755 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3756 assert( db!=0 ); 3757 if( pList==0 ){ 3758 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3759 if( pList==0 ) return 0; 3760 pList->nAlloc = 1; 3761 pList->nSrc = 1; 3762 memset(&pList->a[0], 0, sizeof(pList->a[0])); 3763 pList->a[0].iCursor = -1; 3764 }else{ 3765 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3766 } 3767 if( db->mallocFailed ){ 3768 sqlite3SrcListDelete(db, pList); 3769 return 0; 3770 } 3771 pItem = &pList->a[pList->nSrc-1]; 3772 if( pDatabase && pDatabase->z==0 ){ 3773 pDatabase = 0; 3774 } 3775 if( pDatabase ){ 3776 pItem->zName = sqlite3NameFromToken(db, pDatabase); 3777 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 3778 }else{ 3779 pItem->zName = sqlite3NameFromToken(db, pTable); 3780 pItem->zDatabase = 0; 3781 } 3782 return pList; 3783 } 3784 3785 /* 3786 ** Assign VdbeCursor index numbers to all tables in a SrcList 3787 */ 3788 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3789 int i; 3790 struct SrcList_item *pItem; 3791 assert(pList || pParse->db->mallocFailed ); 3792 if( pList ){ 3793 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3794 if( pItem->iCursor>=0 ) break; 3795 pItem->iCursor = pParse->nTab++; 3796 if( pItem->pSelect ){ 3797 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3798 } 3799 } 3800 } 3801 } 3802 3803 /* 3804 ** Delete an entire SrcList including all its substructure. 3805 */ 3806 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3807 int i; 3808 struct SrcList_item *pItem; 3809 if( pList==0 ) return; 3810 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3811 sqlite3DbFree(db, pItem->zDatabase); 3812 sqlite3DbFree(db, pItem->zName); 3813 sqlite3DbFree(db, pItem->zAlias); 3814 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3815 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3816 sqlite3DeleteTable(db, pItem->pTab); 3817 sqlite3SelectDelete(db, pItem->pSelect); 3818 sqlite3ExprDelete(db, pItem->pOn); 3819 sqlite3IdListDelete(db, pItem->pUsing); 3820 } 3821 sqlite3DbFreeNN(db, pList); 3822 } 3823 3824 /* 3825 ** This routine is called by the parser to add a new term to the 3826 ** end of a growing FROM clause. The "p" parameter is the part of 3827 ** the FROM clause that has already been constructed. "p" is NULL 3828 ** if this is the first term of the FROM clause. pTable and pDatabase 3829 ** are the name of the table and database named in the FROM clause term. 3830 ** pDatabase is NULL if the database name qualifier is missing - the 3831 ** usual case. If the term has an alias, then pAlias points to the 3832 ** alias token. If the term is a subquery, then pSubquery is the 3833 ** SELECT statement that the subquery encodes. The pTable and 3834 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3835 ** parameters are the content of the ON and USING clauses. 3836 ** 3837 ** Return a new SrcList which encodes is the FROM with the new 3838 ** term added. 3839 */ 3840 SrcList *sqlite3SrcListAppendFromTerm( 3841 Parse *pParse, /* Parsing context */ 3842 SrcList *p, /* The left part of the FROM clause already seen */ 3843 Token *pTable, /* Name of the table to add to the FROM clause */ 3844 Token *pDatabase, /* Name of the database containing pTable */ 3845 Token *pAlias, /* The right-hand side of the AS subexpression */ 3846 Select *pSubquery, /* A subquery used in place of a table name */ 3847 Expr *pOn, /* The ON clause of a join */ 3848 IdList *pUsing /* The USING clause of a join */ 3849 ){ 3850 struct SrcList_item *pItem; 3851 sqlite3 *db = pParse->db; 3852 if( !p && (pOn || pUsing) ){ 3853 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3854 (pOn ? "ON" : "USING") 3855 ); 3856 goto append_from_error; 3857 } 3858 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3859 if( p==0 || NEVER(p->nSrc==0) ){ 3860 goto append_from_error; 3861 } 3862 pItem = &p->a[p->nSrc-1]; 3863 assert( pAlias!=0 ); 3864 if( pAlias->n ){ 3865 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3866 } 3867 pItem->pSelect = pSubquery; 3868 pItem->pOn = pOn; 3869 pItem->pUsing = pUsing; 3870 return p; 3871 3872 append_from_error: 3873 assert( p==0 ); 3874 sqlite3ExprDelete(db, pOn); 3875 sqlite3IdListDelete(db, pUsing); 3876 sqlite3SelectDelete(db, pSubquery); 3877 return 0; 3878 } 3879 3880 /* 3881 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3882 ** element of the source-list passed as the second argument. 3883 */ 3884 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3885 assert( pIndexedBy!=0 ); 3886 if( p && ALWAYS(p->nSrc>0) ){ 3887 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3888 assert( pItem->fg.notIndexed==0 ); 3889 assert( pItem->fg.isIndexedBy==0 ); 3890 assert( pItem->fg.isTabFunc==0 ); 3891 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3892 /* A "NOT INDEXED" clause was supplied. See parse.y 3893 ** construct "indexed_opt" for details. */ 3894 pItem->fg.notIndexed = 1; 3895 }else{ 3896 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3897 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3898 } 3899 } 3900 } 3901 3902 /* 3903 ** Add the list of function arguments to the SrcList entry for a 3904 ** table-valued-function. 3905 */ 3906 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3907 if( p ){ 3908 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3909 assert( pItem->fg.notIndexed==0 ); 3910 assert( pItem->fg.isIndexedBy==0 ); 3911 assert( pItem->fg.isTabFunc==0 ); 3912 pItem->u1.pFuncArg = pList; 3913 pItem->fg.isTabFunc = 1; 3914 }else{ 3915 sqlite3ExprListDelete(pParse->db, pList); 3916 } 3917 } 3918 3919 /* 3920 ** When building up a FROM clause in the parser, the join operator 3921 ** is initially attached to the left operand. But the code generator 3922 ** expects the join operator to be on the right operand. This routine 3923 ** Shifts all join operators from left to right for an entire FROM 3924 ** clause. 3925 ** 3926 ** Example: Suppose the join is like this: 3927 ** 3928 ** A natural cross join B 3929 ** 3930 ** The operator is "natural cross join". The A and B operands are stored 3931 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3932 ** operator with A. This routine shifts that operator over to B. 3933 */ 3934 void sqlite3SrcListShiftJoinType(SrcList *p){ 3935 if( p ){ 3936 int i; 3937 for(i=p->nSrc-1; i>0; i--){ 3938 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3939 } 3940 p->a[0].fg.jointype = 0; 3941 } 3942 } 3943 3944 /* 3945 ** Generate VDBE code for a BEGIN statement. 3946 */ 3947 void sqlite3BeginTransaction(Parse *pParse, int type){ 3948 sqlite3 *db; 3949 Vdbe *v; 3950 int i; 3951 3952 assert( pParse!=0 ); 3953 db = pParse->db; 3954 assert( db!=0 ); 3955 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3956 return; 3957 } 3958 v = sqlite3GetVdbe(pParse); 3959 if( !v ) return; 3960 if( type!=TK_DEFERRED ){ 3961 for(i=0; i<db->nDb; i++){ 3962 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3963 sqlite3VdbeUsesBtree(v, i); 3964 } 3965 } 3966 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3967 } 3968 3969 /* 3970 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 3971 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 3972 ** code is generated for a COMMIT. 3973 */ 3974 void sqlite3EndTransaction(Parse *pParse, int eType){ 3975 Vdbe *v; 3976 int isRollback; 3977 3978 assert( pParse!=0 ); 3979 assert( pParse->db!=0 ); 3980 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 3981 isRollback = eType==TK_ROLLBACK; 3982 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 3983 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 3984 return; 3985 } 3986 v = sqlite3GetVdbe(pParse); 3987 if( v ){ 3988 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 3989 } 3990 } 3991 3992 /* 3993 ** This function is called by the parser when it parses a command to create, 3994 ** release or rollback an SQL savepoint. 3995 */ 3996 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3997 char *zName = sqlite3NameFromToken(pParse->db, pName); 3998 if( zName ){ 3999 Vdbe *v = sqlite3GetVdbe(pParse); 4000 #ifndef SQLITE_OMIT_AUTHORIZATION 4001 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4002 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4003 #endif 4004 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4005 sqlite3DbFree(pParse->db, zName); 4006 return; 4007 } 4008 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4009 } 4010 } 4011 4012 /* 4013 ** Make sure the TEMP database is open and available for use. Return 4014 ** the number of errors. Leave any error messages in the pParse structure. 4015 */ 4016 int sqlite3OpenTempDatabase(Parse *pParse){ 4017 sqlite3 *db = pParse->db; 4018 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4019 int rc; 4020 Btree *pBt; 4021 static const int flags = 4022 SQLITE_OPEN_READWRITE | 4023 SQLITE_OPEN_CREATE | 4024 SQLITE_OPEN_EXCLUSIVE | 4025 SQLITE_OPEN_DELETEONCLOSE | 4026 SQLITE_OPEN_TEMP_DB; 4027 4028 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4029 if( rc!=SQLITE_OK ){ 4030 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4031 "file for storing temporary tables"); 4032 pParse->rc = rc; 4033 return 1; 4034 } 4035 db->aDb[1].pBt = pBt; 4036 assert( db->aDb[1].pSchema ); 4037 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4038 sqlite3OomFault(db); 4039 return 1; 4040 } 4041 } 4042 return 0; 4043 } 4044 4045 /* 4046 ** Record the fact that the schema cookie will need to be verified 4047 ** for database iDb. The code to actually verify the schema cookie 4048 ** will occur at the end of the top-level VDBE and will be generated 4049 ** later, by sqlite3FinishCoding(). 4050 */ 4051 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4052 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4053 4054 assert( iDb>=0 && iDb<pParse->db->nDb ); 4055 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4056 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4057 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4058 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4059 DbMaskSet(pToplevel->cookieMask, iDb); 4060 if( !OMIT_TEMPDB && iDb==1 ){ 4061 sqlite3OpenTempDatabase(pToplevel); 4062 } 4063 } 4064 } 4065 4066 /* 4067 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4068 ** attached database. Otherwise, invoke it for the database named zDb only. 4069 */ 4070 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4071 sqlite3 *db = pParse->db; 4072 int i; 4073 for(i=0; i<db->nDb; i++){ 4074 Db *pDb = &db->aDb[i]; 4075 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4076 sqlite3CodeVerifySchema(pParse, i); 4077 } 4078 } 4079 } 4080 4081 /* 4082 ** Generate VDBE code that prepares for doing an operation that 4083 ** might change the database. 4084 ** 4085 ** This routine starts a new transaction if we are not already within 4086 ** a transaction. If we are already within a transaction, then a checkpoint 4087 ** is set if the setStatement parameter is true. A checkpoint should 4088 ** be set for operations that might fail (due to a constraint) part of 4089 ** the way through and which will need to undo some writes without having to 4090 ** rollback the whole transaction. For operations where all constraints 4091 ** can be checked before any changes are made to the database, it is never 4092 ** necessary to undo a write and the checkpoint should not be set. 4093 */ 4094 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4095 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4096 sqlite3CodeVerifySchema(pParse, iDb); 4097 DbMaskSet(pToplevel->writeMask, iDb); 4098 pToplevel->isMultiWrite |= setStatement; 4099 } 4100 4101 /* 4102 ** Indicate that the statement currently under construction might write 4103 ** more than one entry (example: deleting one row then inserting another, 4104 ** inserting multiple rows in a table, or inserting a row and index entries.) 4105 ** If an abort occurs after some of these writes have completed, then it will 4106 ** be necessary to undo the completed writes. 4107 */ 4108 void sqlite3MultiWrite(Parse *pParse){ 4109 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4110 pToplevel->isMultiWrite = 1; 4111 } 4112 4113 /* 4114 ** The code generator calls this routine if is discovers that it is 4115 ** possible to abort a statement prior to completion. In order to 4116 ** perform this abort without corrupting the database, we need to make 4117 ** sure that the statement is protected by a statement transaction. 4118 ** 4119 ** Technically, we only need to set the mayAbort flag if the 4120 ** isMultiWrite flag was previously set. There is a time dependency 4121 ** such that the abort must occur after the multiwrite. This makes 4122 ** some statements involving the REPLACE conflict resolution algorithm 4123 ** go a little faster. But taking advantage of this time dependency 4124 ** makes it more difficult to prove that the code is correct (in 4125 ** particular, it prevents us from writing an effective 4126 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4127 ** to take the safe route and skip the optimization. 4128 */ 4129 void sqlite3MayAbort(Parse *pParse){ 4130 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4131 pToplevel->mayAbort = 1; 4132 } 4133 4134 /* 4135 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4136 ** error. The onError parameter determines which (if any) of the statement 4137 ** and/or current transaction is rolled back. 4138 */ 4139 void sqlite3HaltConstraint( 4140 Parse *pParse, /* Parsing context */ 4141 int errCode, /* extended error code */ 4142 int onError, /* Constraint type */ 4143 char *p4, /* Error message */ 4144 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4145 u8 p5Errmsg /* P5_ErrMsg type */ 4146 ){ 4147 Vdbe *v = sqlite3GetVdbe(pParse); 4148 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4149 if( onError==OE_Abort ){ 4150 sqlite3MayAbort(pParse); 4151 } 4152 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4153 sqlite3VdbeChangeP5(v, p5Errmsg); 4154 } 4155 4156 /* 4157 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4158 */ 4159 void sqlite3UniqueConstraint( 4160 Parse *pParse, /* Parsing context */ 4161 int onError, /* Constraint type */ 4162 Index *pIdx /* The index that triggers the constraint */ 4163 ){ 4164 char *zErr; 4165 int j; 4166 StrAccum errMsg; 4167 Table *pTab = pIdx->pTable; 4168 4169 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4170 if( pIdx->aColExpr ){ 4171 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4172 }else{ 4173 for(j=0; j<pIdx->nKeyCol; j++){ 4174 char *zCol; 4175 assert( pIdx->aiColumn[j]>=0 ); 4176 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4177 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4178 sqlite3StrAccumAppendAll(&errMsg, pTab->zName); 4179 sqlite3StrAccumAppend(&errMsg, ".", 1); 4180 sqlite3StrAccumAppendAll(&errMsg, zCol); 4181 } 4182 } 4183 zErr = sqlite3StrAccumFinish(&errMsg); 4184 sqlite3HaltConstraint(pParse, 4185 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4186 : SQLITE_CONSTRAINT_UNIQUE, 4187 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4188 } 4189 4190 4191 /* 4192 ** Code an OP_Halt due to non-unique rowid. 4193 */ 4194 void sqlite3RowidConstraint( 4195 Parse *pParse, /* Parsing context */ 4196 int onError, /* Conflict resolution algorithm */ 4197 Table *pTab /* The table with the non-unique rowid */ 4198 ){ 4199 char *zMsg; 4200 int rc; 4201 if( pTab->iPKey>=0 ){ 4202 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4203 pTab->aCol[pTab->iPKey].zName); 4204 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4205 }else{ 4206 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4207 rc = SQLITE_CONSTRAINT_ROWID; 4208 } 4209 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4210 P5_ConstraintUnique); 4211 } 4212 4213 /* 4214 ** Check to see if pIndex uses the collating sequence pColl. Return 4215 ** true if it does and false if it does not. 4216 */ 4217 #ifndef SQLITE_OMIT_REINDEX 4218 static int collationMatch(const char *zColl, Index *pIndex){ 4219 int i; 4220 assert( zColl!=0 ); 4221 for(i=0; i<pIndex->nColumn; i++){ 4222 const char *z = pIndex->azColl[i]; 4223 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4224 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4225 return 1; 4226 } 4227 } 4228 return 0; 4229 } 4230 #endif 4231 4232 /* 4233 ** Recompute all indices of pTab that use the collating sequence pColl. 4234 ** If pColl==0 then recompute all indices of pTab. 4235 */ 4236 #ifndef SQLITE_OMIT_REINDEX 4237 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4238 Index *pIndex; /* An index associated with pTab */ 4239 4240 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4241 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4242 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4243 sqlite3BeginWriteOperation(pParse, 0, iDb); 4244 sqlite3RefillIndex(pParse, pIndex, -1); 4245 } 4246 } 4247 } 4248 #endif 4249 4250 /* 4251 ** Recompute all indices of all tables in all databases where the 4252 ** indices use the collating sequence pColl. If pColl==0 then recompute 4253 ** all indices everywhere. 4254 */ 4255 #ifndef SQLITE_OMIT_REINDEX 4256 static void reindexDatabases(Parse *pParse, char const *zColl){ 4257 Db *pDb; /* A single database */ 4258 int iDb; /* The database index number */ 4259 sqlite3 *db = pParse->db; /* The database connection */ 4260 HashElem *k; /* For looping over tables in pDb */ 4261 Table *pTab; /* A table in the database */ 4262 4263 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4264 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4265 assert( pDb!=0 ); 4266 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4267 pTab = (Table*)sqliteHashData(k); 4268 reindexTable(pParse, pTab, zColl); 4269 } 4270 } 4271 } 4272 #endif 4273 4274 /* 4275 ** Generate code for the REINDEX command. 4276 ** 4277 ** REINDEX -- 1 4278 ** REINDEX <collation> -- 2 4279 ** REINDEX ?<database>.?<tablename> -- 3 4280 ** REINDEX ?<database>.?<indexname> -- 4 4281 ** 4282 ** Form 1 causes all indices in all attached databases to be rebuilt. 4283 ** Form 2 rebuilds all indices in all databases that use the named 4284 ** collating function. Forms 3 and 4 rebuild the named index or all 4285 ** indices associated with the named table. 4286 */ 4287 #ifndef SQLITE_OMIT_REINDEX 4288 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4289 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4290 char *z; /* Name of a table or index */ 4291 const char *zDb; /* Name of the database */ 4292 Table *pTab; /* A table in the database */ 4293 Index *pIndex; /* An index associated with pTab */ 4294 int iDb; /* The database index number */ 4295 sqlite3 *db = pParse->db; /* The database connection */ 4296 Token *pObjName; /* Name of the table or index to be reindexed */ 4297 4298 /* Read the database schema. If an error occurs, leave an error message 4299 ** and code in pParse and return NULL. */ 4300 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4301 return; 4302 } 4303 4304 if( pName1==0 ){ 4305 reindexDatabases(pParse, 0); 4306 return; 4307 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4308 char *zColl; 4309 assert( pName1->z ); 4310 zColl = sqlite3NameFromToken(pParse->db, pName1); 4311 if( !zColl ) return; 4312 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4313 if( pColl ){ 4314 reindexDatabases(pParse, zColl); 4315 sqlite3DbFree(db, zColl); 4316 return; 4317 } 4318 sqlite3DbFree(db, zColl); 4319 } 4320 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4321 if( iDb<0 ) return; 4322 z = sqlite3NameFromToken(db, pObjName); 4323 if( z==0 ) return; 4324 zDb = db->aDb[iDb].zDbSName; 4325 pTab = sqlite3FindTable(db, z, zDb); 4326 if( pTab ){ 4327 reindexTable(pParse, pTab, 0); 4328 sqlite3DbFree(db, z); 4329 return; 4330 } 4331 pIndex = sqlite3FindIndex(db, z, zDb); 4332 sqlite3DbFree(db, z); 4333 if( pIndex ){ 4334 sqlite3BeginWriteOperation(pParse, 0, iDb); 4335 sqlite3RefillIndex(pParse, pIndex, -1); 4336 return; 4337 } 4338 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4339 } 4340 #endif 4341 4342 /* 4343 ** Return a KeyInfo structure that is appropriate for the given Index. 4344 ** 4345 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4346 ** when it has finished using it. 4347 */ 4348 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4349 int i; 4350 int nCol = pIdx->nColumn; 4351 int nKey = pIdx->nKeyCol; 4352 KeyInfo *pKey; 4353 if( pParse->nErr ) return 0; 4354 if( pIdx->uniqNotNull ){ 4355 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4356 }else{ 4357 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4358 } 4359 if( pKey ){ 4360 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4361 for(i=0; i<nCol; i++){ 4362 const char *zColl = pIdx->azColl[i]; 4363 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4364 sqlite3LocateCollSeq(pParse, zColl); 4365 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4366 } 4367 if( pParse->nErr ){ 4368 sqlite3KeyInfoUnref(pKey); 4369 pKey = 0; 4370 } 4371 } 4372 return pKey; 4373 } 4374 4375 #ifndef SQLITE_OMIT_CTE 4376 /* 4377 ** This routine is invoked once per CTE by the parser while parsing a 4378 ** WITH clause. 4379 */ 4380 With *sqlite3WithAdd( 4381 Parse *pParse, /* Parsing context */ 4382 With *pWith, /* Existing WITH clause, or NULL */ 4383 Token *pName, /* Name of the common-table */ 4384 ExprList *pArglist, /* Optional column name list for the table */ 4385 Select *pQuery /* Query used to initialize the table */ 4386 ){ 4387 sqlite3 *db = pParse->db; 4388 With *pNew; 4389 char *zName; 4390 4391 /* Check that the CTE name is unique within this WITH clause. If 4392 ** not, store an error in the Parse structure. */ 4393 zName = sqlite3NameFromToken(pParse->db, pName); 4394 if( zName && pWith ){ 4395 int i; 4396 for(i=0; i<pWith->nCte; i++){ 4397 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4398 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4399 } 4400 } 4401 } 4402 4403 if( pWith ){ 4404 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4405 pNew = sqlite3DbRealloc(db, pWith, nByte); 4406 }else{ 4407 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4408 } 4409 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4410 4411 if( db->mallocFailed ){ 4412 sqlite3ExprListDelete(db, pArglist); 4413 sqlite3SelectDelete(db, pQuery); 4414 sqlite3DbFree(db, zName); 4415 pNew = pWith; 4416 }else{ 4417 pNew->a[pNew->nCte].pSelect = pQuery; 4418 pNew->a[pNew->nCte].pCols = pArglist; 4419 pNew->a[pNew->nCte].zName = zName; 4420 pNew->a[pNew->nCte].zCteErr = 0; 4421 pNew->nCte++; 4422 } 4423 4424 return pNew; 4425 } 4426 4427 /* 4428 ** Free the contents of the With object passed as the second argument. 4429 */ 4430 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4431 if( pWith ){ 4432 int i; 4433 for(i=0; i<pWith->nCte; i++){ 4434 struct Cte *pCte = &pWith->a[i]; 4435 sqlite3ExprListDelete(db, pCte->pCols); 4436 sqlite3SelectDelete(db, pCte->pSelect); 4437 sqlite3DbFree(db, pCte->zName); 4438 } 4439 sqlite3DbFree(db, pWith); 4440 } 4441 } 4442 #endif /* !defined(SQLITE_OMIT_CTE) */ 4443