xref: /sqlite-3.40.0/src/build.c (revision 2e27d28f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   int iTab;              /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 void sqlite3TableLock(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   int iTab,          /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel = sqlite3ParseToplevel(pParse);
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   if( iDb==1 ) return;
63   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64   for(i=0; i<pToplevel->nTableLock; i++){
65     p = &pToplevel->aTableLock[i];
66     if( p->iDb==iDb && p->iTab==iTab ){
67       p->isWriteLock = (p->isWriteLock || isWriteLock);
68       return;
69     }
70   }
71 
72   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73   pToplevel->aTableLock =
74       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75   if( pToplevel->aTableLock ){
76     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77     p->iDb = iDb;
78     p->iTab = iTab;
79     p->isWriteLock = isWriteLock;
80     p->zLockName = zName;
81   }else{
82     pToplevel->nTableLock = 0;
83     sqlite3OomFault(pToplevel->db);
84   }
85 }
86 
87 /*
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
90 */
91 static void codeTableLocks(Parse *pParse){
92   int i;
93   Vdbe *pVdbe;
94 
95   pVdbe = sqlite3GetVdbe(pParse);
96   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
97 
98   for(i=0; i<pParse->nTableLock; i++){
99     TableLock *p = &pParse->aTableLock[i];
100     int p1 = p->iDb;
101     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102                       p->zLockName, P4_STATIC);
103   }
104 }
105 #else
106   #define codeTableLocks(x)
107 #endif
108 
109 /*
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
113 */
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116   int i;
117   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118   return 1;
119 }
120 #endif
121 
122 /*
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared.  This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
128 **
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
131 */
132 void sqlite3FinishCoding(Parse *pParse){
133   sqlite3 *db;
134   Vdbe *v;
135 
136   assert( pParse->pToplevel==0 );
137   db = pParse->db;
138   if( pParse->nested ) return;
139   if( db->mallocFailed || pParse->nErr ){
140     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141     return;
142   }
143 
144   /* Begin by generating some termination code at the end of the
145   ** vdbe program
146   */
147   v = sqlite3GetVdbe(pParse);
148   assert( !pParse->isMultiWrite
149        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150   if( v ){
151     sqlite3VdbeAddOp0(v, OP_Halt);
152 
153 #if SQLITE_USER_AUTHENTICATION
154     if( pParse->nTableLock>0 && db->init.busy==0 ){
155       sqlite3UserAuthInit(db);
156       if( db->auth.authLevel<UAUTH_User ){
157         sqlite3ErrorMsg(pParse, "user not authenticated");
158         pParse->rc = SQLITE_AUTH_USER;
159         return;
160       }
161     }
162 #endif
163 
164     /* The cookie mask contains one bit for each database file open.
165     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
166     ** set for each database that is used.  Generate code to start a
167     ** transaction on each used database and to verify the schema cookie
168     ** on each used database.
169     */
170     if( db->mallocFailed==0
171      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
172     ){
173       int iDb, i;
174       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175       sqlite3VdbeJumpHere(v, 0);
176       for(iDb=0; iDb<db->nDb; iDb++){
177         Schema *pSchema;
178         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179         sqlite3VdbeUsesBtree(v, iDb);
180         pSchema = db->aDb[iDb].pSchema;
181         sqlite3VdbeAddOp4Int(v,
182           OP_Transaction,                    /* Opcode */
183           iDb,                               /* P1 */
184           DbMaskTest(pParse->writeMask,iDb), /* P2 */
185           pSchema->schema_cookie,            /* P3 */
186           pSchema->iGeneration               /* P4 */
187         );
188         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189         VdbeComment((v,
190               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
191       }
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193       for(i=0; i<pParse->nVtabLock; i++){
194         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
196       }
197       pParse->nVtabLock = 0;
198 #endif
199 
200       /* Once all the cookies have been verified and transactions opened,
201       ** obtain the required table-locks. This is a no-op unless the
202       ** shared-cache feature is enabled.
203       */
204       codeTableLocks(pParse);
205 
206       /* Initialize any AUTOINCREMENT data structures required.
207       */
208       sqlite3AutoincrementBegin(pParse);
209 
210       /* Code constant expressions that where factored out of inner loops */
211       if( pParse->pConstExpr ){
212         ExprList *pEL = pParse->pConstExpr;
213         pParse->okConstFactor = 0;
214         for(i=0; i<pEL->nExpr; i++){
215           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
216         }
217       }
218 
219       /* Finally, jump back to the beginning of the executable code. */
220       sqlite3VdbeGoto(v, 1);
221     }
222   }
223 
224 
225   /* Get the VDBE program ready for execution
226   */
227   if( v && pParse->nErr==0 && !db->mallocFailed ){
228     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
229     /* A minimum of one cursor is required if autoincrement is used
230     *  See ticket [a696379c1f08866] */
231     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232     sqlite3VdbeMakeReady(v, pParse);
233     pParse->rc = SQLITE_DONE;
234   }else{
235     pParse->rc = SQLITE_ERROR;
236   }
237 }
238 
239 /*
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction.  When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
246 **
247 ** Not everything is nestable.  This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
249 ** care if you decide to try to use this routine for some other purposes.
250 */
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252   va_list ap;
253   char *zSql;
254   char *zErrMsg = 0;
255   sqlite3 *db = pParse->db;
256   char saveBuf[PARSE_TAIL_SZ];
257 
258   if( pParse->nErr ) return;
259   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
260   va_start(ap, zFormat);
261   zSql = sqlite3VMPrintf(db, zFormat, ap);
262   va_end(ap);
263   if( zSql==0 ){
264     return;   /* A malloc must have failed */
265   }
266   pParse->nested++;
267   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269   sqlite3RunParser(pParse, zSql, &zErrMsg);
270   sqlite3DbFree(db, zErrMsg);
271   sqlite3DbFree(db, zSql);
272   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273   pParse->nested--;
274 }
275 
276 #if SQLITE_USER_AUTHENTICATION
277 /*
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
280 */
281 int sqlite3UserAuthTable(const char *zTable){
282   return sqlite3_stricmp(zTable, "sqlite_user")==0;
283 }
284 #endif
285 
286 /*
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table.  Return NULL if not found.
290 **
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned.  (No checking for duplicate table
293 ** names is done.)  The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
295 **
296 ** See also sqlite3LocateTable().
297 */
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299   Table *p = 0;
300   int i;
301 
302   /* All mutexes are required for schema access.  Make sure we hold them. */
303   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305   /* Only the admin user is allowed to know that the sqlite_user table
306   ** exists */
307   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308     return 0;
309   }
310 #endif
311   while(1){
312     for(i=OMIT_TEMPDB; i<db->nDb; i++){
313       int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
314       if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315         assert( sqlite3SchemaMutexHeld(db, j, 0) );
316         p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317         if( p ) return p;
318       }
319     }
320     /* Not found.  If the name we were looking for was temp.sqlite_master
321     ** then change the name to sqlite_temp_master and try again. */
322     if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323     if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324     zName = TEMP_MASTER_NAME;
325   }
326   return 0;
327 }
328 
329 /*
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table.  Return NULL if not found.  Also leave an
333 ** error message in pParse->zErrMsg.
334 **
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
338 */
339 Table *sqlite3LocateTable(
340   Parse *pParse,         /* context in which to report errors */
341   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
342   const char *zName,     /* Name of the table we are looking for */
343   const char *zDbase     /* Name of the database.  Might be NULL */
344 ){
345   Table *p;
346 
347   /* Read the database schema. If an error occurs, leave an error message
348   ** and code in pParse and return NULL. */
349   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350     return 0;
351   }
352 
353   p = sqlite3FindTable(pParse->db, zName, zDbase);
354   if( p==0 ){
355     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358       /* If zName is the not the name of a table in the schema created using
359       ** CREATE, then check to see if it is the name of an virtual table that
360       ** can be an eponymous virtual table. */
361       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362       if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363         pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
364       }
365       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
366         return pMod->pEpoTab;
367       }
368     }
369 #endif
370     if( (flags & LOCATE_NOERR)==0 ){
371       if( zDbase ){
372         sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373       }else{
374         sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
375       }
376       pParse->checkSchema = 1;
377     }
378   }
379 
380   return p;
381 }
382 
383 /*
384 ** Locate the table identified by *p.
385 **
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
391 */
392 Table *sqlite3LocateTableItem(
393   Parse *pParse,
394   u32 flags,
395   struct SrcList_item *p
396 ){
397   const char *zDb;
398   assert( p->pSchema==0 || p->zDatabase==0 );
399   if( p->pSchema ){
400     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401     zDb = pParse->db->aDb[iDb].zDbSName;
402   }else{
403     zDb = p->zDatabase;
404   }
405   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
406 }
407 
408 /*
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
413 **
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned.  (No checking
416 ** for duplicate index names is done.)  The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
419 */
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421   Index *p = 0;
422   int i;
423   /* All mutexes are required for schema access.  Make sure we hold them. */
424   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425   for(i=OMIT_TEMPDB; i<db->nDb; i++){
426     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
427     Schema *pSchema = db->aDb[j].pSchema;
428     assert( pSchema );
429     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430     assert( sqlite3SchemaMutexHeld(db, j, 0) );
431     p = sqlite3HashFind(&pSchema->idxHash, zName);
432     if( p ) break;
433   }
434   return p;
435 }
436 
437 /*
438 ** Reclaim the memory used by an index
439 */
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442   sqlite3DeleteIndexSamples(db, p);
443 #endif
444   sqlite3ExprDelete(db, p->pPartIdxWhere);
445   sqlite3ExprListDelete(db, p->aColExpr);
446   sqlite3DbFree(db, p->zColAff);
447   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449   sqlite3_free(p->aiRowEst);
450 #endif
451   sqlite3DbFree(db, p);
452 }
453 
454 /*
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
459 */
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461   Index *pIndex;
462   Hash *pHash;
463 
464   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465   pHash = &db->aDb[iDb].pSchema->idxHash;
466   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467   if( ALWAYS(pIndex) ){
468     if( pIndex->pTable->pIndex==pIndex ){
469       pIndex->pTable->pIndex = pIndex->pNext;
470     }else{
471       Index *p;
472       /* Justification of ALWAYS();  The index must be on the list of
473       ** indices. */
474       p = pIndex->pTable->pIndex;
475       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476       if( ALWAYS(p && p->pNext==pIndex) ){
477         p->pNext = pIndex->pNext;
478       }
479     }
480     freeIndex(db, pIndex);
481   }
482   db->mDbFlags |= DBFLAG_SchemaChange;
483 }
484 
485 /*
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list.  Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
489 **
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
492 */
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494   int i, j;
495   for(i=j=2; i<db->nDb; i++){
496     struct Db *pDb = &db->aDb[i];
497     if( pDb->pBt==0 ){
498       sqlite3DbFree(db, pDb->zDbSName);
499       pDb->zDbSName = 0;
500       continue;
501     }
502     if( j<i ){
503       db->aDb[j] = db->aDb[i];
504     }
505     j++;
506   }
507   db->nDb = j;
508   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510     sqlite3DbFree(db, db->aDb);
511     db->aDb = db->aDbStatic;
512   }
513 }
514 
515 /*
516 ** Reset the schema for the database at index iDb.  Also reset the
517 ** TEMP schema.
518 */
519 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
520   Db *pDb;
521   assert( iDb<db->nDb );
522 
523   /* Case 1:  Reset the single schema identified by iDb */
524   pDb = &db->aDb[iDb];
525   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526   assert( pDb->pSchema!=0 );
527   sqlite3SchemaClear(pDb->pSchema);
528 
529   /* If any database other than TEMP is reset, then also reset TEMP
530   ** since TEMP might be holding triggers that reference tables in the
531   ** other database.
532   */
533   if( iDb!=1 ){
534     pDb = &db->aDb[1];
535     assert( pDb->pSchema!=0 );
536     sqlite3SchemaClear(pDb->pSchema);
537   }
538   return;
539 }
540 
541 /*
542 ** Erase all schema information from all attached databases (including
543 ** "main" and "temp") for a single database connection.
544 */
545 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
546   int i;
547   sqlite3BtreeEnterAll(db);
548   for(i=0; i<db->nDb; i++){
549     Db *pDb = &db->aDb[i];
550     if( pDb->pSchema ){
551       sqlite3SchemaClear(pDb->pSchema);
552     }
553   }
554   db->mDbFlags &= ~DBFLAG_SchemaChange;
555   sqlite3VtabUnlockList(db);
556   sqlite3BtreeLeaveAll(db);
557   sqlite3CollapseDatabaseArray(db);
558 }
559 
560 /*
561 ** This routine is called when a commit occurs.
562 */
563 void sqlite3CommitInternalChanges(sqlite3 *db){
564   db->mDbFlags &= ~DBFLAG_SchemaChange;
565 }
566 
567 /*
568 ** Delete memory allocated for the column names of a table or view (the
569 ** Table.aCol[] array).
570 */
571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
572   int i;
573   Column *pCol;
574   assert( pTable!=0 );
575   if( (pCol = pTable->aCol)!=0 ){
576     for(i=0; i<pTable->nCol; i++, pCol++){
577       sqlite3DbFree(db, pCol->zName);
578       sqlite3ExprDelete(db, pCol->pDflt);
579       sqlite3DbFree(db, pCol->zColl);
580     }
581     sqlite3DbFree(db, pTable->aCol);
582   }
583 }
584 
585 /*
586 ** Remove the memory data structures associated with the given
587 ** Table.  No changes are made to disk by this routine.
588 **
589 ** This routine just deletes the data structure.  It does not unlink
590 ** the table data structure from the hash table.  But it does destroy
591 ** memory structures of the indices and foreign keys associated with
592 ** the table.
593 **
594 ** The db parameter is optional.  It is needed if the Table object
595 ** contains lookaside memory.  (Table objects in the schema do not use
596 ** lookaside memory, but some ephemeral Table objects do.)  Or the
597 ** db parameter can be used with db->pnBytesFreed to measure the memory
598 ** used by the Table object.
599 */
600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
601   Index *pIndex, *pNext;
602   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
603 
604   /* Record the number of outstanding lookaside allocations in schema Tables
605   ** prior to doing any free() operations.  Since schema Tables do not use
606   ** lookaside, this number should not change. */
607   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
608                          db->lookaside.nOut : 0 );
609 
610   /* Delete all indices associated with this table. */
611   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
612     pNext = pIndex->pNext;
613     assert( pIndex->pSchema==pTable->pSchema
614          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
615     if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
616       char *zName = pIndex->zName;
617       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
618          &pIndex->pSchema->idxHash, zName, 0
619       );
620       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
621       assert( pOld==pIndex || pOld==0 );
622     }
623     freeIndex(db, pIndex);
624   }
625 
626   /* Delete any foreign keys attached to this table. */
627   sqlite3FkDelete(db, pTable);
628 
629   /* Delete the Table structure itself.
630   */
631   sqlite3DeleteColumnNames(db, pTable);
632   sqlite3DbFree(db, pTable->zName);
633   sqlite3DbFree(db, pTable->zColAff);
634   sqlite3SelectDelete(db, pTable->pSelect);
635   sqlite3ExprListDelete(db, pTable->pCheck);
636 #ifndef SQLITE_OMIT_VIRTUALTABLE
637   sqlite3VtabClear(db, pTable);
638 #endif
639   sqlite3DbFree(db, pTable);
640 
641   /* Verify that no lookaside memory was used by schema tables */
642   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
643 }
644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
645   /* Do not delete the table until the reference count reaches zero. */
646   if( !pTable ) return;
647   if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
648   deleteTable(db, pTable);
649 }
650 
651 
652 /*
653 ** Unlink the given table from the hash tables and the delete the
654 ** table structure with all its indices and foreign keys.
655 */
656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
657   Table *p;
658   Db *pDb;
659 
660   assert( db!=0 );
661   assert( iDb>=0 && iDb<db->nDb );
662   assert( zTabName );
663   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
664   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
665   pDb = &db->aDb[iDb];
666   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
667   sqlite3DeleteTable(db, p);
668   db->mDbFlags |= DBFLAG_SchemaChange;
669 }
670 
671 /*
672 ** Given a token, return a string that consists of the text of that
673 ** token.  Space to hold the returned string
674 ** is obtained from sqliteMalloc() and must be freed by the calling
675 ** function.
676 **
677 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
678 ** surround the body of the token are removed.
679 **
680 ** Tokens are often just pointers into the original SQL text and so
681 ** are not \000 terminated and are not persistent.  The returned string
682 ** is \000 terminated and is persistent.
683 */
684 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
685   char *zName;
686   if( pName ){
687     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
688     sqlite3Dequote(zName);
689   }else{
690     zName = 0;
691   }
692   return zName;
693 }
694 
695 /*
696 ** Open the sqlite_master table stored in database number iDb for
697 ** writing. The table is opened using cursor 0.
698 */
699 void sqlite3OpenMasterTable(Parse *p, int iDb){
700   Vdbe *v = sqlite3GetVdbe(p);
701   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
702   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
703   if( p->nTab==0 ){
704     p->nTab = 1;
705   }
706 }
707 
708 /*
709 ** Parameter zName points to a nul-terminated buffer containing the name
710 ** of a database ("main", "temp" or the name of an attached db). This
711 ** function returns the index of the named database in db->aDb[], or
712 ** -1 if the named db cannot be found.
713 */
714 int sqlite3FindDbName(sqlite3 *db, const char *zName){
715   int i = -1;         /* Database number */
716   if( zName ){
717     Db *pDb;
718     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
719       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
720       /* "main" is always an acceptable alias for the primary database
721       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
722       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
723     }
724   }
725   return i;
726 }
727 
728 /*
729 ** The token *pName contains the name of a database (either "main" or
730 ** "temp" or the name of an attached db). This routine returns the
731 ** index of the named database in db->aDb[], or -1 if the named db
732 ** does not exist.
733 */
734 int sqlite3FindDb(sqlite3 *db, Token *pName){
735   int i;                               /* Database number */
736   char *zName;                         /* Name we are searching for */
737   zName = sqlite3NameFromToken(db, pName);
738   i = sqlite3FindDbName(db, zName);
739   sqlite3DbFree(db, zName);
740   return i;
741 }
742 
743 /* The table or view or trigger name is passed to this routine via tokens
744 ** pName1 and pName2. If the table name was fully qualified, for example:
745 **
746 ** CREATE TABLE xxx.yyy (...);
747 **
748 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
749 ** the table name is not fully qualified, i.e.:
750 **
751 ** CREATE TABLE yyy(...);
752 **
753 ** Then pName1 is set to "yyy" and pName2 is "".
754 **
755 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
756 ** pName2) that stores the unqualified table name.  The index of the
757 ** database "xxx" is returned.
758 */
759 int sqlite3TwoPartName(
760   Parse *pParse,      /* Parsing and code generating context */
761   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
762   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
763   Token **pUnqual     /* Write the unqualified object name here */
764 ){
765   int iDb;                    /* Database holding the object */
766   sqlite3 *db = pParse->db;
767 
768   assert( pName2!=0 );
769   if( pName2->n>0 ){
770     if( db->init.busy ) {
771       sqlite3ErrorMsg(pParse, "corrupt database");
772       return -1;
773     }
774     *pUnqual = pName2;
775     iDb = sqlite3FindDb(db, pName1);
776     if( iDb<0 ){
777       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
778       return -1;
779     }
780   }else{
781     assert( db->init.iDb==0 || db->init.busy
782              || (db->mDbFlags & DBFLAG_Vacuum)!=0);
783     iDb = db->init.iDb;
784     *pUnqual = pName1;
785   }
786   return iDb;
787 }
788 
789 /*
790 ** This routine is used to check if the UTF-8 string zName is a legal
791 ** unqualified name for a new schema object (table, index, view or
792 ** trigger). All names are legal except those that begin with the string
793 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
794 ** is reserved for internal use.
795 */
796 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
797   if( !pParse->db->init.busy && pParse->nested==0
798           && (pParse->db->flags & SQLITE_WriteSchema)==0
799           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
800     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
801     return SQLITE_ERROR;
802   }
803   return SQLITE_OK;
804 }
805 
806 /*
807 ** Return the PRIMARY KEY index of a table
808 */
809 Index *sqlite3PrimaryKeyIndex(Table *pTab){
810   Index *p;
811   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
812   return p;
813 }
814 
815 /*
816 ** Return the column of index pIdx that corresponds to table
817 ** column iCol.  Return -1 if not found.
818 */
819 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
820   int i;
821   for(i=0; i<pIdx->nColumn; i++){
822     if( iCol==pIdx->aiColumn[i] ) return i;
823   }
824   return -1;
825 }
826 
827 /*
828 ** Begin constructing a new table representation in memory.  This is
829 ** the first of several action routines that get called in response
830 ** to a CREATE TABLE statement.  In particular, this routine is called
831 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
832 ** flag is true if the table should be stored in the auxiliary database
833 ** file instead of in the main database file.  This is normally the case
834 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
835 ** CREATE and TABLE.
836 **
837 ** The new table record is initialized and put in pParse->pNewTable.
838 ** As more of the CREATE TABLE statement is parsed, additional action
839 ** routines will be called to add more information to this record.
840 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
841 ** is called to complete the construction of the new table record.
842 */
843 void sqlite3StartTable(
844   Parse *pParse,   /* Parser context */
845   Token *pName1,   /* First part of the name of the table or view */
846   Token *pName2,   /* Second part of the name of the table or view */
847   int isTemp,      /* True if this is a TEMP table */
848   int isView,      /* True if this is a VIEW */
849   int isVirtual,   /* True if this is a VIRTUAL table */
850   int noErr        /* Do nothing if table already exists */
851 ){
852   Table *pTable;
853   char *zName = 0; /* The name of the new table */
854   sqlite3 *db = pParse->db;
855   Vdbe *v;
856   int iDb;         /* Database number to create the table in */
857   Token *pName;    /* Unqualified name of the table to create */
858 
859   if( db->init.busy && db->init.newTnum==1 ){
860     /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */
861     iDb = db->init.iDb;
862     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
863     pName = pName1;
864   }else{
865     /* The common case */
866     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
867     if( iDb<0 ) return;
868     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
869       /* If creating a temp table, the name may not be qualified. Unless
870       ** the database name is "temp" anyway.  */
871       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
872       return;
873     }
874     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
875     zName = sqlite3NameFromToken(db, pName);
876   }
877   pParse->sNameToken = *pName;
878   if( zName==0 ) return;
879   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
880     goto begin_table_error;
881   }
882   if( db->init.iDb==1 ) isTemp = 1;
883 #ifndef SQLITE_OMIT_AUTHORIZATION
884   assert( isTemp==0 || isTemp==1 );
885   assert( isView==0 || isView==1 );
886   {
887     static const u8 aCode[] = {
888        SQLITE_CREATE_TABLE,
889        SQLITE_CREATE_TEMP_TABLE,
890        SQLITE_CREATE_VIEW,
891        SQLITE_CREATE_TEMP_VIEW
892     };
893     char *zDb = db->aDb[iDb].zDbSName;
894     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
895       goto begin_table_error;
896     }
897     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
898                                        zName, 0, zDb) ){
899       goto begin_table_error;
900     }
901   }
902 #endif
903 
904   /* Make sure the new table name does not collide with an existing
905   ** index or table name in the same database.  Issue an error message if
906   ** it does. The exception is if the statement being parsed was passed
907   ** to an sqlite3_declare_vtab() call. In that case only the column names
908   ** and types will be used, so there is no need to test for namespace
909   ** collisions.
910   */
911   if( !IN_DECLARE_VTAB ){
912     char *zDb = db->aDb[iDb].zDbSName;
913     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
914       goto begin_table_error;
915     }
916     pTable = sqlite3FindTable(db, zName, zDb);
917     if( pTable ){
918       if( !noErr ){
919         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
920       }else{
921         assert( !db->init.busy || CORRUPT_DB );
922         sqlite3CodeVerifySchema(pParse, iDb);
923       }
924       goto begin_table_error;
925     }
926     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
927       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
928       goto begin_table_error;
929     }
930   }
931 
932   pTable = sqlite3DbMallocZero(db, sizeof(Table));
933   if( pTable==0 ){
934     assert( db->mallocFailed );
935     pParse->rc = SQLITE_NOMEM_BKPT;
936     pParse->nErr++;
937     goto begin_table_error;
938   }
939   pTable->zName = zName;
940   pTable->iPKey = -1;
941   pTable->pSchema = db->aDb[iDb].pSchema;
942   pTable->nTabRef = 1;
943 #ifdef SQLITE_DEFAULT_ROWEST
944   pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
945 #else
946   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
947 #endif
948   assert( pParse->pNewTable==0 );
949   pParse->pNewTable = pTable;
950 
951   /* If this is the magic sqlite_sequence table used by autoincrement,
952   ** then record a pointer to this table in the main database structure
953   ** so that INSERT can find the table easily.
954   */
955 #ifndef SQLITE_OMIT_AUTOINCREMENT
956   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
957     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
958     pTable->pSchema->pSeqTab = pTable;
959   }
960 #endif
961 
962   /* Begin generating the code that will insert the table record into
963   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
964   ** and allocate the record number for the table entry now.  Before any
965   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
966   ** indices to be created and the table record must come before the
967   ** indices.  Hence, the record number for the table must be allocated
968   ** now.
969   */
970   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
971     int addr1;
972     int fileFormat;
973     int reg1, reg2, reg3;
974     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
975     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
976     sqlite3BeginWriteOperation(pParse, 1, iDb);
977 
978 #ifndef SQLITE_OMIT_VIRTUALTABLE
979     if( isVirtual ){
980       sqlite3VdbeAddOp0(v, OP_VBegin);
981     }
982 #endif
983 
984     /* If the file format and encoding in the database have not been set,
985     ** set them now.
986     */
987     reg1 = pParse->regRowid = ++pParse->nMem;
988     reg2 = pParse->regRoot = ++pParse->nMem;
989     reg3 = ++pParse->nMem;
990     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
991     sqlite3VdbeUsesBtree(v, iDb);
992     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
993     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
994                   1 : SQLITE_MAX_FILE_FORMAT;
995     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
996     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
997     sqlite3VdbeJumpHere(v, addr1);
998 
999     /* This just creates a place-holder record in the sqlite_master table.
1000     ** The record created does not contain anything yet.  It will be replaced
1001     ** by the real entry in code generated at sqlite3EndTable().
1002     **
1003     ** The rowid for the new entry is left in register pParse->regRowid.
1004     ** The root page number of the new table is left in reg pParse->regRoot.
1005     ** The rowid and root page number values are needed by the code that
1006     ** sqlite3EndTable will generate.
1007     */
1008 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1009     if( isView || isVirtual ){
1010       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1011     }else
1012 #endif
1013     {
1014       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1015     }
1016     sqlite3OpenMasterTable(pParse, iDb);
1017     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1018     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1019     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1020     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1021     sqlite3VdbeAddOp0(v, OP_Close);
1022   }
1023 
1024   /* Normal (non-error) return. */
1025   return;
1026 
1027   /* If an error occurs, we jump here */
1028 begin_table_error:
1029   sqlite3DbFree(db, zName);
1030   return;
1031 }
1032 
1033 /* Set properties of a table column based on the (magical)
1034 ** name of the column.
1035 */
1036 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1037 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1038   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1039     pCol->colFlags |= COLFLAG_HIDDEN;
1040   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1041     pTab->tabFlags |= TF_OOOHidden;
1042   }
1043 }
1044 #endif
1045 
1046 
1047 /*
1048 ** Add a new column to the table currently being constructed.
1049 **
1050 ** The parser calls this routine once for each column declaration
1051 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1052 ** first to get things going.  Then this routine is called for each
1053 ** column.
1054 */
1055 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1056   Table *p;
1057   int i;
1058   char *z;
1059   char *zType;
1060   Column *pCol;
1061   sqlite3 *db = pParse->db;
1062   if( (p = pParse->pNewTable)==0 ) return;
1063 #if SQLITE_MAX_COLUMN
1064   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1065     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1066     return;
1067   }
1068 #endif
1069   z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1070   if( z==0 ) return;
1071   memcpy(z, pName->z, pName->n);
1072   z[pName->n] = 0;
1073   sqlite3Dequote(z);
1074   for(i=0; i<p->nCol; i++){
1075     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1076       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1077       sqlite3DbFree(db, z);
1078       return;
1079     }
1080   }
1081   if( (p->nCol & 0x7)==0 ){
1082     Column *aNew;
1083     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1084     if( aNew==0 ){
1085       sqlite3DbFree(db, z);
1086       return;
1087     }
1088     p->aCol = aNew;
1089   }
1090   pCol = &p->aCol[p->nCol];
1091   memset(pCol, 0, sizeof(p->aCol[0]));
1092   pCol->zName = z;
1093   sqlite3ColumnPropertiesFromName(p, pCol);
1094 
1095   if( pType->n==0 ){
1096     /* If there is no type specified, columns have the default affinity
1097     ** 'BLOB'. */
1098     pCol->affinity = SQLITE_AFF_BLOB;
1099     pCol->szEst = 1;
1100   }else{
1101     zType = z + sqlite3Strlen30(z) + 1;
1102     memcpy(zType, pType->z, pType->n);
1103     zType[pType->n] = 0;
1104     sqlite3Dequote(zType);
1105     pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1106     pCol->colFlags |= COLFLAG_HASTYPE;
1107   }
1108   p->nCol++;
1109   pParse->constraintName.n = 0;
1110 }
1111 
1112 /*
1113 ** This routine is called by the parser while in the middle of
1114 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1115 ** been seen on a column.  This routine sets the notNull flag on
1116 ** the column currently under construction.
1117 */
1118 void sqlite3AddNotNull(Parse *pParse, int onError){
1119   Table *p;
1120   p = pParse->pNewTable;
1121   if( p==0 || NEVER(p->nCol<1) ) return;
1122   p->aCol[p->nCol-1].notNull = (u8)onError;
1123   p->tabFlags |= TF_HasNotNull;
1124 }
1125 
1126 /*
1127 ** Scan the column type name zType (length nType) and return the
1128 ** associated affinity type.
1129 **
1130 ** This routine does a case-independent search of zType for the
1131 ** substrings in the following table. If one of the substrings is
1132 ** found, the corresponding affinity is returned. If zType contains
1133 ** more than one of the substrings, entries toward the top of
1134 ** the table take priority. For example, if zType is 'BLOBINT',
1135 ** SQLITE_AFF_INTEGER is returned.
1136 **
1137 ** Substring     | Affinity
1138 ** --------------------------------
1139 ** 'INT'         | SQLITE_AFF_INTEGER
1140 ** 'CHAR'        | SQLITE_AFF_TEXT
1141 ** 'CLOB'        | SQLITE_AFF_TEXT
1142 ** 'TEXT'        | SQLITE_AFF_TEXT
1143 ** 'BLOB'        | SQLITE_AFF_BLOB
1144 ** 'REAL'        | SQLITE_AFF_REAL
1145 ** 'FLOA'        | SQLITE_AFF_REAL
1146 ** 'DOUB'        | SQLITE_AFF_REAL
1147 **
1148 ** If none of the substrings in the above table are found,
1149 ** SQLITE_AFF_NUMERIC is returned.
1150 */
1151 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1152   u32 h = 0;
1153   char aff = SQLITE_AFF_NUMERIC;
1154   const char *zChar = 0;
1155 
1156   assert( zIn!=0 );
1157   while( zIn[0] ){
1158     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1159     zIn++;
1160     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1161       aff = SQLITE_AFF_TEXT;
1162       zChar = zIn;
1163     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1164       aff = SQLITE_AFF_TEXT;
1165     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1166       aff = SQLITE_AFF_TEXT;
1167     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1168         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1169       aff = SQLITE_AFF_BLOB;
1170       if( zIn[0]=='(' ) zChar = zIn;
1171 #ifndef SQLITE_OMIT_FLOATING_POINT
1172     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1173         && aff==SQLITE_AFF_NUMERIC ){
1174       aff = SQLITE_AFF_REAL;
1175     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1176         && aff==SQLITE_AFF_NUMERIC ){
1177       aff = SQLITE_AFF_REAL;
1178     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1179         && aff==SQLITE_AFF_NUMERIC ){
1180       aff = SQLITE_AFF_REAL;
1181 #endif
1182     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1183       aff = SQLITE_AFF_INTEGER;
1184       break;
1185     }
1186   }
1187 
1188   /* If pszEst is not NULL, store an estimate of the field size.  The
1189   ** estimate is scaled so that the size of an integer is 1.  */
1190   if( pszEst ){
1191     *pszEst = 1;   /* default size is approx 4 bytes */
1192     if( aff<SQLITE_AFF_NUMERIC ){
1193       if( zChar ){
1194         while( zChar[0] ){
1195           if( sqlite3Isdigit(zChar[0]) ){
1196             int v = 0;
1197             sqlite3GetInt32(zChar, &v);
1198             v = v/4 + 1;
1199             if( v>255 ) v = 255;
1200             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1201             break;
1202           }
1203           zChar++;
1204         }
1205       }else{
1206         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1207       }
1208     }
1209   }
1210   return aff;
1211 }
1212 
1213 /*
1214 ** The expression is the default value for the most recently added column
1215 ** of the table currently under construction.
1216 **
1217 ** Default value expressions must be constant.  Raise an exception if this
1218 ** is not the case.
1219 **
1220 ** This routine is called by the parser while in the middle of
1221 ** parsing a CREATE TABLE statement.
1222 */
1223 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1224   Table *p;
1225   Column *pCol;
1226   sqlite3 *db = pParse->db;
1227   p = pParse->pNewTable;
1228   if( p!=0 ){
1229     pCol = &(p->aCol[p->nCol-1]);
1230     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1231       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1232           pCol->zName);
1233     }else{
1234       /* A copy of pExpr is used instead of the original, as pExpr contains
1235       ** tokens that point to volatile memory. The 'span' of the expression
1236       ** is required by pragma table_info.
1237       */
1238       Expr x;
1239       sqlite3ExprDelete(db, pCol->pDflt);
1240       memset(&x, 0, sizeof(x));
1241       x.op = TK_SPAN;
1242       x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1243                                     (int)(pSpan->zEnd - pSpan->zStart));
1244       x.pLeft = pSpan->pExpr;
1245       x.flags = EP_Skip;
1246       pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1247       sqlite3DbFree(db, x.u.zToken);
1248     }
1249   }
1250   sqlite3ExprDelete(db, pSpan->pExpr);
1251 }
1252 
1253 /*
1254 ** Backwards Compatibility Hack:
1255 **
1256 ** Historical versions of SQLite accepted strings as column names in
1257 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1258 **
1259 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1260 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1261 **
1262 ** This is goofy.  But to preserve backwards compatibility we continue to
1263 ** accept it.  This routine does the necessary conversion.  It converts
1264 ** the expression given in its argument from a TK_STRING into a TK_ID
1265 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1266 ** If the epxression is anything other than TK_STRING, the expression is
1267 ** unchanged.
1268 */
1269 static void sqlite3StringToId(Expr *p){
1270   if( p->op==TK_STRING ){
1271     p->op = TK_ID;
1272   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1273     p->pLeft->op = TK_ID;
1274   }
1275 }
1276 
1277 /*
1278 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1279 ** of columns that form the primary key.  If pList is NULL, then the
1280 ** most recently added column of the table is the primary key.
1281 **
1282 ** A table can have at most one primary key.  If the table already has
1283 ** a primary key (and this is the second primary key) then create an
1284 ** error.
1285 **
1286 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1287 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1288 ** field of the table under construction to be the index of the
1289 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1290 ** no INTEGER PRIMARY KEY.
1291 **
1292 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1293 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1294 */
1295 void sqlite3AddPrimaryKey(
1296   Parse *pParse,    /* Parsing context */
1297   ExprList *pList,  /* List of field names to be indexed */
1298   int onError,      /* What to do with a uniqueness conflict */
1299   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1300   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1301 ){
1302   Table *pTab = pParse->pNewTable;
1303   Column *pCol = 0;
1304   int iCol = -1, i;
1305   int nTerm;
1306   if( pTab==0 ) goto primary_key_exit;
1307   if( pTab->tabFlags & TF_HasPrimaryKey ){
1308     sqlite3ErrorMsg(pParse,
1309       "table \"%s\" has more than one primary key", pTab->zName);
1310     goto primary_key_exit;
1311   }
1312   pTab->tabFlags |= TF_HasPrimaryKey;
1313   if( pList==0 ){
1314     iCol = pTab->nCol - 1;
1315     pCol = &pTab->aCol[iCol];
1316     pCol->colFlags |= COLFLAG_PRIMKEY;
1317     nTerm = 1;
1318   }else{
1319     nTerm = pList->nExpr;
1320     for(i=0; i<nTerm; i++){
1321       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1322       assert( pCExpr!=0 );
1323       sqlite3StringToId(pCExpr);
1324       if( pCExpr->op==TK_ID ){
1325         const char *zCName = pCExpr->u.zToken;
1326         for(iCol=0; iCol<pTab->nCol; iCol++){
1327           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1328             pCol = &pTab->aCol[iCol];
1329             pCol->colFlags |= COLFLAG_PRIMKEY;
1330             break;
1331           }
1332         }
1333       }
1334     }
1335   }
1336   if( nTerm==1
1337    && pCol
1338    && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1339    && sortOrder!=SQLITE_SO_DESC
1340   ){
1341     pTab->iPKey = iCol;
1342     pTab->keyConf = (u8)onError;
1343     assert( autoInc==0 || autoInc==1 );
1344     pTab->tabFlags |= autoInc*TF_Autoincrement;
1345     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1346   }else if( autoInc ){
1347 #ifndef SQLITE_OMIT_AUTOINCREMENT
1348     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1349        "INTEGER PRIMARY KEY");
1350 #endif
1351   }else{
1352     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1353                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1354     pList = 0;
1355   }
1356 
1357 primary_key_exit:
1358   sqlite3ExprListDelete(pParse->db, pList);
1359   return;
1360 }
1361 
1362 /*
1363 ** Add a new CHECK constraint to the table currently under construction.
1364 */
1365 void sqlite3AddCheckConstraint(
1366   Parse *pParse,    /* Parsing context */
1367   Expr *pCheckExpr  /* The check expression */
1368 ){
1369 #ifndef SQLITE_OMIT_CHECK
1370   Table *pTab = pParse->pNewTable;
1371   sqlite3 *db = pParse->db;
1372   if( pTab && !IN_DECLARE_VTAB
1373    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1374   ){
1375     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1376     if( pParse->constraintName.n ){
1377       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1378     }
1379   }else
1380 #endif
1381   {
1382     sqlite3ExprDelete(pParse->db, pCheckExpr);
1383   }
1384 }
1385 
1386 /*
1387 ** Set the collation function of the most recently parsed table column
1388 ** to the CollSeq given.
1389 */
1390 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1391   Table *p;
1392   int i;
1393   char *zColl;              /* Dequoted name of collation sequence */
1394   sqlite3 *db;
1395 
1396   if( (p = pParse->pNewTable)==0 ) return;
1397   i = p->nCol-1;
1398   db = pParse->db;
1399   zColl = sqlite3NameFromToken(db, pToken);
1400   if( !zColl ) return;
1401 
1402   if( sqlite3LocateCollSeq(pParse, zColl) ){
1403     Index *pIdx;
1404     sqlite3DbFree(db, p->aCol[i].zColl);
1405     p->aCol[i].zColl = zColl;
1406 
1407     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1408     ** then an index may have been created on this column before the
1409     ** collation type was added. Correct this if it is the case.
1410     */
1411     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1412       assert( pIdx->nKeyCol==1 );
1413       if( pIdx->aiColumn[0]==i ){
1414         pIdx->azColl[0] = p->aCol[i].zColl;
1415       }
1416     }
1417   }else{
1418     sqlite3DbFree(db, zColl);
1419   }
1420 }
1421 
1422 /*
1423 ** This function returns the collation sequence for database native text
1424 ** encoding identified by the string zName, length nName.
1425 **
1426 ** If the requested collation sequence is not available, or not available
1427 ** in the database native encoding, the collation factory is invoked to
1428 ** request it. If the collation factory does not supply such a sequence,
1429 ** and the sequence is available in another text encoding, then that is
1430 ** returned instead.
1431 **
1432 ** If no versions of the requested collations sequence are available, or
1433 ** another error occurs, NULL is returned and an error message written into
1434 ** pParse.
1435 **
1436 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1437 ** invokes the collation factory if the named collation cannot be found
1438 ** and generates an error message.
1439 **
1440 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1441 */
1442 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1443   sqlite3 *db = pParse->db;
1444   u8 enc = ENC(db);
1445   u8 initbusy = db->init.busy;
1446   CollSeq *pColl;
1447 
1448   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1449   if( !initbusy && (!pColl || !pColl->xCmp) ){
1450     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1451   }
1452 
1453   return pColl;
1454 }
1455 
1456 
1457 /*
1458 ** Generate code that will increment the schema cookie.
1459 **
1460 ** The schema cookie is used to determine when the schema for the
1461 ** database changes.  After each schema change, the cookie value
1462 ** changes.  When a process first reads the schema it records the
1463 ** cookie.  Thereafter, whenever it goes to access the database,
1464 ** it checks the cookie to make sure the schema has not changed
1465 ** since it was last read.
1466 **
1467 ** This plan is not completely bullet-proof.  It is possible for
1468 ** the schema to change multiple times and for the cookie to be
1469 ** set back to prior value.  But schema changes are infrequent
1470 ** and the probability of hitting the same cookie value is only
1471 ** 1 chance in 2^32.  So we're safe enough.
1472 **
1473 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1474 ** the schema-version whenever the schema changes.
1475 */
1476 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1477   sqlite3 *db = pParse->db;
1478   Vdbe *v = pParse->pVdbe;
1479   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1480   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1481                     db->aDb[iDb].pSchema->schema_cookie+1);
1482 }
1483 
1484 /*
1485 ** Measure the number of characters needed to output the given
1486 ** identifier.  The number returned includes any quotes used
1487 ** but does not include the null terminator.
1488 **
1489 ** The estimate is conservative.  It might be larger that what is
1490 ** really needed.
1491 */
1492 static int identLength(const char *z){
1493   int n;
1494   for(n=0; *z; n++, z++){
1495     if( *z=='"' ){ n++; }
1496   }
1497   return n + 2;
1498 }
1499 
1500 /*
1501 ** The first parameter is a pointer to an output buffer. The second
1502 ** parameter is a pointer to an integer that contains the offset at
1503 ** which to write into the output buffer. This function copies the
1504 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1505 ** to the specified offset in the buffer and updates *pIdx to refer
1506 ** to the first byte after the last byte written before returning.
1507 **
1508 ** If the string zSignedIdent consists entirely of alpha-numeric
1509 ** characters, does not begin with a digit and is not an SQL keyword,
1510 ** then it is copied to the output buffer exactly as it is. Otherwise,
1511 ** it is quoted using double-quotes.
1512 */
1513 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1514   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1515   int i, j, needQuote;
1516   i = *pIdx;
1517 
1518   for(j=0; zIdent[j]; j++){
1519     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1520   }
1521   needQuote = sqlite3Isdigit(zIdent[0])
1522             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1523             || zIdent[j]!=0
1524             || j==0;
1525 
1526   if( needQuote ) z[i++] = '"';
1527   for(j=0; zIdent[j]; j++){
1528     z[i++] = zIdent[j];
1529     if( zIdent[j]=='"' ) z[i++] = '"';
1530   }
1531   if( needQuote ) z[i++] = '"';
1532   z[i] = 0;
1533   *pIdx = i;
1534 }
1535 
1536 /*
1537 ** Generate a CREATE TABLE statement appropriate for the given
1538 ** table.  Memory to hold the text of the statement is obtained
1539 ** from sqliteMalloc() and must be freed by the calling function.
1540 */
1541 static char *createTableStmt(sqlite3 *db, Table *p){
1542   int i, k, n;
1543   char *zStmt;
1544   char *zSep, *zSep2, *zEnd;
1545   Column *pCol;
1546   n = 0;
1547   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1548     n += identLength(pCol->zName) + 5;
1549   }
1550   n += identLength(p->zName);
1551   if( n<50 ){
1552     zSep = "";
1553     zSep2 = ",";
1554     zEnd = ")";
1555   }else{
1556     zSep = "\n  ";
1557     zSep2 = ",\n  ";
1558     zEnd = "\n)";
1559   }
1560   n += 35 + 6*p->nCol;
1561   zStmt = sqlite3DbMallocRaw(0, n);
1562   if( zStmt==0 ){
1563     sqlite3OomFault(db);
1564     return 0;
1565   }
1566   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1567   k = sqlite3Strlen30(zStmt);
1568   identPut(zStmt, &k, p->zName);
1569   zStmt[k++] = '(';
1570   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1571     static const char * const azType[] = {
1572         /* SQLITE_AFF_BLOB    */ "",
1573         /* SQLITE_AFF_TEXT    */ " TEXT",
1574         /* SQLITE_AFF_NUMERIC */ " NUM",
1575         /* SQLITE_AFF_INTEGER */ " INT",
1576         /* SQLITE_AFF_REAL    */ " REAL"
1577     };
1578     int len;
1579     const char *zType;
1580 
1581     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1582     k += sqlite3Strlen30(&zStmt[k]);
1583     zSep = zSep2;
1584     identPut(zStmt, &k, pCol->zName);
1585     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1586     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1587     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1588     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1589     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1590     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1591     testcase( pCol->affinity==SQLITE_AFF_REAL );
1592 
1593     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1594     len = sqlite3Strlen30(zType);
1595     assert( pCol->affinity==SQLITE_AFF_BLOB
1596             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1597     memcpy(&zStmt[k], zType, len);
1598     k += len;
1599     assert( k<=n );
1600   }
1601   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1602   return zStmt;
1603 }
1604 
1605 /*
1606 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1607 ** on success and SQLITE_NOMEM on an OOM error.
1608 */
1609 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1610   char *zExtra;
1611   int nByte;
1612   if( pIdx->nColumn>=N ) return SQLITE_OK;
1613   assert( pIdx->isResized==0 );
1614   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1615   zExtra = sqlite3DbMallocZero(db, nByte);
1616   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1617   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1618   pIdx->azColl = (const char**)zExtra;
1619   zExtra += sizeof(char*)*N;
1620   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1621   pIdx->aiColumn = (i16*)zExtra;
1622   zExtra += sizeof(i16)*N;
1623   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1624   pIdx->aSortOrder = (u8*)zExtra;
1625   pIdx->nColumn = N;
1626   pIdx->isResized = 1;
1627   return SQLITE_OK;
1628 }
1629 
1630 /*
1631 ** Estimate the total row width for a table.
1632 */
1633 static void estimateTableWidth(Table *pTab){
1634   unsigned wTable = 0;
1635   const Column *pTabCol;
1636   int i;
1637   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1638     wTable += pTabCol->szEst;
1639   }
1640   if( pTab->iPKey<0 ) wTable++;
1641   pTab->szTabRow = sqlite3LogEst(wTable*4);
1642 }
1643 
1644 /*
1645 ** Estimate the average size of a row for an index.
1646 */
1647 static void estimateIndexWidth(Index *pIdx){
1648   unsigned wIndex = 0;
1649   int i;
1650   const Column *aCol = pIdx->pTable->aCol;
1651   for(i=0; i<pIdx->nColumn; i++){
1652     i16 x = pIdx->aiColumn[i];
1653     assert( x<pIdx->pTable->nCol );
1654     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1655   }
1656   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1657 }
1658 
1659 /* Return true if value x is found any of the first nCol entries of aiCol[]
1660 */
1661 static int hasColumn(const i16 *aiCol, int nCol, int x){
1662   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1663   return 0;
1664 }
1665 
1666 /*
1667 ** This routine runs at the end of parsing a CREATE TABLE statement that
1668 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1669 ** internal schema data structures and the generated VDBE code so that they
1670 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1671 ** Changes include:
1672 **
1673 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1674 **     (2)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1675 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1676 **          data storage is a covering index btree.
1677 **     (3)  Bypass the creation of the sqlite_master table entry
1678 **          for the PRIMARY KEY as the primary key index is now
1679 **          identified by the sqlite_master table entry of the table itself.
1680 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
1681 **          schema to the rootpage from the main table.
1682 **     (5)  Add all table columns to the PRIMARY KEY Index object
1683 **          so that the PRIMARY KEY is a covering index.  The surplus
1684 **          columns are part of KeyInfo.nAllField and are not used for
1685 **          sorting or lookup or uniqueness checks.
1686 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1687 **          indices with the PRIMARY KEY columns.
1688 **
1689 ** For virtual tables, only (1) is performed.
1690 */
1691 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1692   Index *pIdx;
1693   Index *pPk;
1694   int nPk;
1695   int i, j;
1696   sqlite3 *db = pParse->db;
1697   Vdbe *v = pParse->pVdbe;
1698 
1699   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1700   */
1701   if( !db->init.imposterTable ){
1702     for(i=0; i<pTab->nCol; i++){
1703       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1704         pTab->aCol[i].notNull = OE_Abort;
1705       }
1706     }
1707   }
1708 
1709   /* The remaining transformations only apply to b-tree tables, not to
1710   ** virtual tables */
1711   if( IN_DECLARE_VTAB ) return;
1712 
1713   /* Convert the OP_CreateTable opcode that would normally create the
1714   ** root-page for the table into an OP_CreateIndex opcode.  The index
1715   ** created will become the PRIMARY KEY index.
1716   */
1717   if( pParse->addrCrTab ){
1718     assert( v );
1719     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1720   }
1721 
1722   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1723   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1724   */
1725   if( pTab->iPKey>=0 ){
1726     ExprList *pList;
1727     Token ipkToken;
1728     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1729     pList = sqlite3ExprListAppend(pParse, 0,
1730                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1731     if( pList==0 ) return;
1732     pList->a[0].sortOrder = pParse->iPkSortOrder;
1733     assert( pParse->pNewTable==pTab );
1734     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1735                        SQLITE_IDXTYPE_PRIMARYKEY);
1736     if( db->mallocFailed ) return;
1737     pPk = sqlite3PrimaryKeyIndex(pTab);
1738     pTab->iPKey = -1;
1739   }else{
1740     pPk = sqlite3PrimaryKeyIndex(pTab);
1741 
1742     /*
1743     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1744     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1745     ** code assumes the PRIMARY KEY contains no repeated columns.
1746     */
1747     for(i=j=1; i<pPk->nKeyCol; i++){
1748       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1749         pPk->nColumn--;
1750       }else{
1751         pPk->aiColumn[j++] = pPk->aiColumn[i];
1752       }
1753     }
1754     pPk->nKeyCol = j;
1755   }
1756   assert( pPk!=0 );
1757   pPk->isCovering = 1;
1758   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1759   nPk = pPk->nKeyCol;
1760 
1761   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1762   ** table entry. This is only required if currently generating VDBE
1763   ** code for a CREATE TABLE (not when parsing one as part of reading
1764   ** a database schema).  */
1765   if( v && pPk->tnum>0 ){
1766     assert( db->init.busy==0 );
1767     sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1768   }
1769 
1770   /* The root page of the PRIMARY KEY is the table root page */
1771   pPk->tnum = pTab->tnum;
1772 
1773   /* Update the in-memory representation of all UNIQUE indices by converting
1774   ** the final rowid column into one or more columns of the PRIMARY KEY.
1775   */
1776   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1777     int n;
1778     if( IsPrimaryKeyIndex(pIdx) ) continue;
1779     for(i=n=0; i<nPk; i++){
1780       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1781     }
1782     if( n==0 ){
1783       /* This index is a superset of the primary key */
1784       pIdx->nColumn = pIdx->nKeyCol;
1785       continue;
1786     }
1787     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1788     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1789       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1790         pIdx->aiColumn[j] = pPk->aiColumn[i];
1791         pIdx->azColl[j] = pPk->azColl[i];
1792         j++;
1793       }
1794     }
1795     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1796     assert( pIdx->nColumn>=j );
1797   }
1798 
1799   /* Add all table columns to the PRIMARY KEY index
1800   */
1801   if( nPk<pTab->nCol ){
1802     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1803     for(i=0, j=nPk; i<pTab->nCol; i++){
1804       if( !hasColumn(pPk->aiColumn, j, i) ){
1805         assert( j<pPk->nColumn );
1806         pPk->aiColumn[j] = i;
1807         pPk->azColl[j] = sqlite3StrBINARY;
1808         j++;
1809       }
1810     }
1811     assert( pPk->nColumn==j );
1812     assert( pTab->nCol==j );
1813   }else{
1814     pPk->nColumn = pTab->nCol;
1815   }
1816 }
1817 
1818 /*
1819 ** This routine is called to report the final ")" that terminates
1820 ** a CREATE TABLE statement.
1821 **
1822 ** The table structure that other action routines have been building
1823 ** is added to the internal hash tables, assuming no errors have
1824 ** occurred.
1825 **
1826 ** An entry for the table is made in the master table on disk, unless
1827 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1828 ** it means we are reading the sqlite_master table because we just
1829 ** connected to the database or because the sqlite_master table has
1830 ** recently changed, so the entry for this table already exists in
1831 ** the sqlite_master table.  We do not want to create it again.
1832 **
1833 ** If the pSelect argument is not NULL, it means that this routine
1834 ** was called to create a table generated from a
1835 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1836 ** the new table will match the result set of the SELECT.
1837 */
1838 void sqlite3EndTable(
1839   Parse *pParse,          /* Parse context */
1840   Token *pCons,           /* The ',' token after the last column defn. */
1841   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1842   u8 tabOpts,             /* Extra table options. Usually 0. */
1843   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1844 ){
1845   Table *p;                 /* The new table */
1846   sqlite3 *db = pParse->db; /* The database connection */
1847   int iDb;                  /* Database in which the table lives */
1848   Index *pIdx;              /* An implied index of the table */
1849 
1850   if( pEnd==0 && pSelect==0 ){
1851     return;
1852   }
1853   assert( !db->mallocFailed );
1854   p = pParse->pNewTable;
1855   if( p==0 ) return;
1856 
1857   assert( !db->init.busy || !pSelect );
1858 
1859   /* If the db->init.busy is 1 it means we are reading the SQL off the
1860   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1861   ** So do not write to the disk again.  Extract the root page number
1862   ** for the table from the db->init.newTnum field.  (The page number
1863   ** should have been put there by the sqliteOpenCb routine.)
1864   **
1865   ** If the root page number is 1, that means this is the sqlite_master
1866   ** table itself.  So mark it read-only.
1867   */
1868   if( db->init.busy ){
1869     p->tnum = db->init.newTnum;
1870     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1871   }
1872 
1873   /* Special processing for WITHOUT ROWID Tables */
1874   if( tabOpts & TF_WithoutRowid ){
1875     if( (p->tabFlags & TF_Autoincrement) ){
1876       sqlite3ErrorMsg(pParse,
1877           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1878       return;
1879     }
1880     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1881       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1882     }else{
1883       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1884       convertToWithoutRowidTable(pParse, p);
1885     }
1886   }
1887 
1888   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1889 
1890 #ifndef SQLITE_OMIT_CHECK
1891   /* Resolve names in all CHECK constraint expressions.
1892   */
1893   if( p->pCheck ){
1894     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1895   }
1896 #endif /* !defined(SQLITE_OMIT_CHECK) */
1897 
1898   /* Estimate the average row size for the table and for all implied indices */
1899   estimateTableWidth(p);
1900   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1901     estimateIndexWidth(pIdx);
1902   }
1903 
1904   /* If not initializing, then create a record for the new table
1905   ** in the SQLITE_MASTER table of the database.
1906   **
1907   ** If this is a TEMPORARY table, write the entry into the auxiliary
1908   ** file instead of into the main database file.
1909   */
1910   if( !db->init.busy ){
1911     int n;
1912     Vdbe *v;
1913     char *zType;    /* "view" or "table" */
1914     char *zType2;   /* "VIEW" or "TABLE" */
1915     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1916 
1917     v = sqlite3GetVdbe(pParse);
1918     if( NEVER(v==0) ) return;
1919 
1920     sqlite3VdbeAddOp1(v, OP_Close, 0);
1921 
1922     /*
1923     ** Initialize zType for the new view or table.
1924     */
1925     if( p->pSelect==0 ){
1926       /* A regular table */
1927       zType = "table";
1928       zType2 = "TABLE";
1929 #ifndef SQLITE_OMIT_VIEW
1930     }else{
1931       /* A view */
1932       zType = "view";
1933       zType2 = "VIEW";
1934 #endif
1935     }
1936 
1937     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1938     ** statement to populate the new table. The root-page number for the
1939     ** new table is in register pParse->regRoot.
1940     **
1941     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1942     ** suitable state to query for the column names and types to be used
1943     ** by the new table.
1944     **
1945     ** A shared-cache write-lock is not required to write to the new table,
1946     ** as a schema-lock must have already been obtained to create it. Since
1947     ** a schema-lock excludes all other database users, the write-lock would
1948     ** be redundant.
1949     */
1950     if( pSelect ){
1951       SelectDest dest;    /* Where the SELECT should store results */
1952       int regYield;       /* Register holding co-routine entry-point */
1953       int addrTop;        /* Top of the co-routine */
1954       int regRec;         /* A record to be insert into the new table */
1955       int regRowid;       /* Rowid of the next row to insert */
1956       int addrInsLoop;    /* Top of the loop for inserting rows */
1957       Table *pSelTab;     /* A table that describes the SELECT results */
1958 
1959       regYield = ++pParse->nMem;
1960       regRec = ++pParse->nMem;
1961       regRowid = ++pParse->nMem;
1962       assert(pParse->nTab==1);
1963       sqlite3MayAbort(pParse);
1964       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1965       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1966       pParse->nTab = 2;
1967       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1968       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1969       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1970       sqlite3Select(pParse, pSelect, &dest);
1971       sqlite3VdbeEndCoroutine(v, regYield);
1972       sqlite3VdbeJumpHere(v, addrTop - 1);
1973       if( pParse->nErr ) return;
1974       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1975       if( pSelTab==0 ) return;
1976       assert( p->aCol==0 );
1977       p->nCol = pSelTab->nCol;
1978       p->aCol = pSelTab->aCol;
1979       pSelTab->nCol = 0;
1980       pSelTab->aCol = 0;
1981       sqlite3DeleteTable(db, pSelTab);
1982       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1983       VdbeCoverage(v);
1984       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1985       sqlite3TableAffinity(v, p, 0);
1986       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1987       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1988       sqlite3VdbeGoto(v, addrInsLoop);
1989       sqlite3VdbeJumpHere(v, addrInsLoop);
1990       sqlite3VdbeAddOp1(v, OP_Close, 1);
1991     }
1992 
1993     /* Compute the complete text of the CREATE statement */
1994     if( pSelect ){
1995       zStmt = createTableStmt(db, p);
1996     }else{
1997       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1998       n = (int)(pEnd2->z - pParse->sNameToken.z);
1999       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2000       zStmt = sqlite3MPrintf(db,
2001           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2002       );
2003     }
2004 
2005     /* A slot for the record has already been allocated in the
2006     ** SQLITE_MASTER table.  We just need to update that slot with all
2007     ** the information we've collected.
2008     */
2009     sqlite3NestedParse(pParse,
2010       "UPDATE %Q.%s "
2011          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2012        "WHERE rowid=#%d",
2013       db->aDb[iDb].zDbSName, MASTER_NAME,
2014       zType,
2015       p->zName,
2016       p->zName,
2017       pParse->regRoot,
2018       zStmt,
2019       pParse->regRowid
2020     );
2021     sqlite3DbFree(db, zStmt);
2022     sqlite3ChangeCookie(pParse, iDb);
2023 
2024 #ifndef SQLITE_OMIT_AUTOINCREMENT
2025     /* Check to see if we need to create an sqlite_sequence table for
2026     ** keeping track of autoincrement keys.
2027     */
2028     if( (p->tabFlags & TF_Autoincrement)!=0 ){
2029       Db *pDb = &db->aDb[iDb];
2030       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2031       if( pDb->pSchema->pSeqTab==0 ){
2032         sqlite3NestedParse(pParse,
2033           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2034           pDb->zDbSName
2035         );
2036       }
2037     }
2038 #endif
2039 
2040     /* Reparse everything to update our internal data structures */
2041     sqlite3VdbeAddParseSchemaOp(v, iDb,
2042            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2043   }
2044 
2045 
2046   /* Add the table to the in-memory representation of the database.
2047   */
2048   if( db->init.busy ){
2049     Table *pOld;
2050     Schema *pSchema = p->pSchema;
2051     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2052     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2053     if( pOld ){
2054       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2055       sqlite3OomFault(db);
2056       return;
2057     }
2058     pParse->pNewTable = 0;
2059     db->mDbFlags |= DBFLAG_SchemaChange;
2060 
2061 #ifndef SQLITE_OMIT_ALTERTABLE
2062     if( !p->pSelect ){
2063       const char *zName = (const char *)pParse->sNameToken.z;
2064       int nName;
2065       assert( !pSelect && pCons && pEnd );
2066       if( pCons->z==0 ){
2067         pCons = pEnd;
2068       }
2069       nName = (int)((const char *)pCons->z - zName);
2070       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2071     }
2072 #endif
2073   }
2074 }
2075 
2076 #ifndef SQLITE_OMIT_VIEW
2077 /*
2078 ** The parser calls this routine in order to create a new VIEW
2079 */
2080 void sqlite3CreateView(
2081   Parse *pParse,     /* The parsing context */
2082   Token *pBegin,     /* The CREATE token that begins the statement */
2083   Token *pName1,     /* The token that holds the name of the view */
2084   Token *pName2,     /* The token that holds the name of the view */
2085   ExprList *pCNames, /* Optional list of view column names */
2086   Select *pSelect,   /* A SELECT statement that will become the new view */
2087   int isTemp,        /* TRUE for a TEMPORARY view */
2088   int noErr          /* Suppress error messages if VIEW already exists */
2089 ){
2090   Table *p;
2091   int n;
2092   const char *z;
2093   Token sEnd;
2094   DbFixer sFix;
2095   Token *pName = 0;
2096   int iDb;
2097   sqlite3 *db = pParse->db;
2098 
2099   if( pParse->nVar>0 ){
2100     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2101     goto create_view_fail;
2102   }
2103   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2104   p = pParse->pNewTable;
2105   if( p==0 || pParse->nErr ) goto create_view_fail;
2106   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2107   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2108   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2109   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2110 
2111   /* Make a copy of the entire SELECT statement that defines the view.
2112   ** This will force all the Expr.token.z values to be dynamically
2113   ** allocated rather than point to the input string - which means that
2114   ** they will persist after the current sqlite3_exec() call returns.
2115   */
2116   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2117   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2118   if( db->mallocFailed ) goto create_view_fail;
2119 
2120   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2121   ** the end.
2122   */
2123   sEnd = pParse->sLastToken;
2124   assert( sEnd.z[0]!=0 );
2125   if( sEnd.z[0]!=';' ){
2126     sEnd.z += sEnd.n;
2127   }
2128   sEnd.n = 0;
2129   n = (int)(sEnd.z - pBegin->z);
2130   assert( n>0 );
2131   z = pBegin->z;
2132   while( sqlite3Isspace(z[n-1]) ){ n--; }
2133   sEnd.z = &z[n-1];
2134   sEnd.n = 1;
2135 
2136   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2137   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2138 
2139 create_view_fail:
2140   sqlite3SelectDelete(db, pSelect);
2141   sqlite3ExprListDelete(db, pCNames);
2142   return;
2143 }
2144 #endif /* SQLITE_OMIT_VIEW */
2145 
2146 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2147 /*
2148 ** The Table structure pTable is really a VIEW.  Fill in the names of
2149 ** the columns of the view in the pTable structure.  Return the number
2150 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2151 */
2152 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2153   Table *pSelTab;   /* A fake table from which we get the result set */
2154   Select *pSel;     /* Copy of the SELECT that implements the view */
2155   int nErr = 0;     /* Number of errors encountered */
2156   int n;            /* Temporarily holds the number of cursors assigned */
2157   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2158 #ifndef SQLITE_OMIT_AUTHORIZATION
2159   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2160 #endif
2161 
2162   assert( pTable );
2163 
2164 #ifndef SQLITE_OMIT_VIRTUALTABLE
2165   if( sqlite3VtabCallConnect(pParse, pTable) ){
2166     return SQLITE_ERROR;
2167   }
2168   if( IsVirtual(pTable) ) return 0;
2169 #endif
2170 
2171 #ifndef SQLITE_OMIT_VIEW
2172   /* A positive nCol means the columns names for this view are
2173   ** already known.
2174   */
2175   if( pTable->nCol>0 ) return 0;
2176 
2177   /* A negative nCol is a special marker meaning that we are currently
2178   ** trying to compute the column names.  If we enter this routine with
2179   ** a negative nCol, it means two or more views form a loop, like this:
2180   **
2181   **     CREATE VIEW one AS SELECT * FROM two;
2182   **     CREATE VIEW two AS SELECT * FROM one;
2183   **
2184   ** Actually, the error above is now caught prior to reaching this point.
2185   ** But the following test is still important as it does come up
2186   ** in the following:
2187   **
2188   **     CREATE TABLE main.ex1(a);
2189   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2190   **     SELECT * FROM temp.ex1;
2191   */
2192   if( pTable->nCol<0 ){
2193     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2194     return 1;
2195   }
2196   assert( pTable->nCol>=0 );
2197 
2198   /* If we get this far, it means we need to compute the table names.
2199   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2200   ** "*" elements in the results set of the view and will assign cursors
2201   ** to the elements of the FROM clause.  But we do not want these changes
2202   ** to be permanent.  So the computation is done on a copy of the SELECT
2203   ** statement that defines the view.
2204   */
2205   assert( pTable->pSelect );
2206   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2207   if( pSel ){
2208     n = pParse->nTab;
2209     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2210     pTable->nCol = -1;
2211     db->lookaside.bDisable++;
2212 #ifndef SQLITE_OMIT_AUTHORIZATION
2213     xAuth = db->xAuth;
2214     db->xAuth = 0;
2215     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2216     db->xAuth = xAuth;
2217 #else
2218     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2219 #endif
2220     pParse->nTab = n;
2221     if( pTable->pCheck ){
2222       /* CREATE VIEW name(arglist) AS ...
2223       ** The names of the columns in the table are taken from
2224       ** arglist which is stored in pTable->pCheck.  The pCheck field
2225       ** normally holds CHECK constraints on an ordinary table, but for
2226       ** a VIEW it holds the list of column names.
2227       */
2228       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2229                                  &pTable->nCol, &pTable->aCol);
2230       if( db->mallocFailed==0
2231        && pParse->nErr==0
2232        && pTable->nCol==pSel->pEList->nExpr
2233       ){
2234         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2235       }
2236     }else if( pSelTab ){
2237       /* CREATE VIEW name AS...  without an argument list.  Construct
2238       ** the column names from the SELECT statement that defines the view.
2239       */
2240       assert( pTable->aCol==0 );
2241       pTable->nCol = pSelTab->nCol;
2242       pTable->aCol = pSelTab->aCol;
2243       pSelTab->nCol = 0;
2244       pSelTab->aCol = 0;
2245       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2246     }else{
2247       pTable->nCol = 0;
2248       nErr++;
2249     }
2250     sqlite3DeleteTable(db, pSelTab);
2251     sqlite3SelectDelete(db, pSel);
2252     db->lookaside.bDisable--;
2253   } else {
2254     nErr++;
2255   }
2256   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2257 #endif /* SQLITE_OMIT_VIEW */
2258   return nErr;
2259 }
2260 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2261 
2262 #ifndef SQLITE_OMIT_VIEW
2263 /*
2264 ** Clear the column names from every VIEW in database idx.
2265 */
2266 static void sqliteViewResetAll(sqlite3 *db, int idx){
2267   HashElem *i;
2268   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2269   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2270   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2271     Table *pTab = sqliteHashData(i);
2272     if( pTab->pSelect ){
2273       sqlite3DeleteColumnNames(db, pTab);
2274       pTab->aCol = 0;
2275       pTab->nCol = 0;
2276     }
2277   }
2278   DbClearProperty(db, idx, DB_UnresetViews);
2279 }
2280 #else
2281 # define sqliteViewResetAll(A,B)
2282 #endif /* SQLITE_OMIT_VIEW */
2283 
2284 /*
2285 ** This function is called by the VDBE to adjust the internal schema
2286 ** used by SQLite when the btree layer moves a table root page. The
2287 ** root-page of a table or index in database iDb has changed from iFrom
2288 ** to iTo.
2289 **
2290 ** Ticket #1728:  The symbol table might still contain information
2291 ** on tables and/or indices that are the process of being deleted.
2292 ** If you are unlucky, one of those deleted indices or tables might
2293 ** have the same rootpage number as the real table or index that is
2294 ** being moved.  So we cannot stop searching after the first match
2295 ** because the first match might be for one of the deleted indices
2296 ** or tables and not the table/index that is actually being moved.
2297 ** We must continue looping until all tables and indices with
2298 ** rootpage==iFrom have been converted to have a rootpage of iTo
2299 ** in order to be certain that we got the right one.
2300 */
2301 #ifndef SQLITE_OMIT_AUTOVACUUM
2302 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2303   HashElem *pElem;
2304   Hash *pHash;
2305   Db *pDb;
2306 
2307   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2308   pDb = &db->aDb[iDb];
2309   pHash = &pDb->pSchema->tblHash;
2310   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2311     Table *pTab = sqliteHashData(pElem);
2312     if( pTab->tnum==iFrom ){
2313       pTab->tnum = iTo;
2314     }
2315   }
2316   pHash = &pDb->pSchema->idxHash;
2317   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2318     Index *pIdx = sqliteHashData(pElem);
2319     if( pIdx->tnum==iFrom ){
2320       pIdx->tnum = iTo;
2321     }
2322   }
2323 }
2324 #endif
2325 
2326 /*
2327 ** Write code to erase the table with root-page iTable from database iDb.
2328 ** Also write code to modify the sqlite_master table and internal schema
2329 ** if a root-page of another table is moved by the btree-layer whilst
2330 ** erasing iTable (this can happen with an auto-vacuum database).
2331 */
2332 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2333   Vdbe *v = sqlite3GetVdbe(pParse);
2334   int r1 = sqlite3GetTempReg(pParse);
2335   assert( iTable>1 );
2336   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2337   sqlite3MayAbort(pParse);
2338 #ifndef SQLITE_OMIT_AUTOVACUUM
2339   /* OP_Destroy stores an in integer r1. If this integer
2340   ** is non-zero, then it is the root page number of a table moved to
2341   ** location iTable. The following code modifies the sqlite_master table to
2342   ** reflect this.
2343   **
2344   ** The "#NNN" in the SQL is a special constant that means whatever value
2345   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2346   ** token for additional information.
2347   */
2348   sqlite3NestedParse(pParse,
2349      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2350      pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2351 #endif
2352   sqlite3ReleaseTempReg(pParse, r1);
2353 }
2354 
2355 /*
2356 ** Write VDBE code to erase table pTab and all associated indices on disk.
2357 ** Code to update the sqlite_master tables and internal schema definitions
2358 ** in case a root-page belonging to another table is moved by the btree layer
2359 ** is also added (this can happen with an auto-vacuum database).
2360 */
2361 static void destroyTable(Parse *pParse, Table *pTab){
2362 #ifdef SQLITE_OMIT_AUTOVACUUM
2363   Index *pIdx;
2364   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2365   destroyRootPage(pParse, pTab->tnum, iDb);
2366   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2367     destroyRootPage(pParse, pIdx->tnum, iDb);
2368   }
2369 #else
2370   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2371   ** is not defined), then it is important to call OP_Destroy on the
2372   ** table and index root-pages in order, starting with the numerically
2373   ** largest root-page number. This guarantees that none of the root-pages
2374   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2375   ** following were coded:
2376   **
2377   ** OP_Destroy 4 0
2378   ** ...
2379   ** OP_Destroy 5 0
2380   **
2381   ** and root page 5 happened to be the largest root-page number in the
2382   ** database, then root page 5 would be moved to page 4 by the
2383   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2384   ** a free-list page.
2385   */
2386   int iTab = pTab->tnum;
2387   int iDestroyed = 0;
2388 
2389   while( 1 ){
2390     Index *pIdx;
2391     int iLargest = 0;
2392 
2393     if( iDestroyed==0 || iTab<iDestroyed ){
2394       iLargest = iTab;
2395     }
2396     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2397       int iIdx = pIdx->tnum;
2398       assert( pIdx->pSchema==pTab->pSchema );
2399       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2400         iLargest = iIdx;
2401       }
2402     }
2403     if( iLargest==0 ){
2404       return;
2405     }else{
2406       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2407       assert( iDb>=0 && iDb<pParse->db->nDb );
2408       destroyRootPage(pParse, iLargest, iDb);
2409       iDestroyed = iLargest;
2410     }
2411   }
2412 #endif
2413 }
2414 
2415 /*
2416 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2417 ** after a DROP INDEX or DROP TABLE command.
2418 */
2419 static void sqlite3ClearStatTables(
2420   Parse *pParse,         /* The parsing context */
2421   int iDb,               /* The database number */
2422   const char *zType,     /* "idx" or "tbl" */
2423   const char *zName      /* Name of index or table */
2424 ){
2425   int i;
2426   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2427   for(i=1; i<=4; i++){
2428     char zTab[24];
2429     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2430     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2431       sqlite3NestedParse(pParse,
2432         "DELETE FROM %Q.%s WHERE %s=%Q",
2433         zDbName, zTab, zType, zName
2434       );
2435     }
2436   }
2437 }
2438 
2439 /*
2440 ** Generate code to drop a table.
2441 */
2442 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2443   Vdbe *v;
2444   sqlite3 *db = pParse->db;
2445   Trigger *pTrigger;
2446   Db *pDb = &db->aDb[iDb];
2447 
2448   v = sqlite3GetVdbe(pParse);
2449   assert( v!=0 );
2450   sqlite3BeginWriteOperation(pParse, 1, iDb);
2451 
2452 #ifndef SQLITE_OMIT_VIRTUALTABLE
2453   if( IsVirtual(pTab) ){
2454     sqlite3VdbeAddOp0(v, OP_VBegin);
2455   }
2456 #endif
2457 
2458   /* Drop all triggers associated with the table being dropped. Code
2459   ** is generated to remove entries from sqlite_master and/or
2460   ** sqlite_temp_master if required.
2461   */
2462   pTrigger = sqlite3TriggerList(pParse, pTab);
2463   while( pTrigger ){
2464     assert( pTrigger->pSchema==pTab->pSchema ||
2465         pTrigger->pSchema==db->aDb[1].pSchema );
2466     sqlite3DropTriggerPtr(pParse, pTrigger);
2467     pTrigger = pTrigger->pNext;
2468   }
2469 
2470 #ifndef SQLITE_OMIT_AUTOINCREMENT
2471   /* Remove any entries of the sqlite_sequence table associated with
2472   ** the table being dropped. This is done before the table is dropped
2473   ** at the btree level, in case the sqlite_sequence table needs to
2474   ** move as a result of the drop (can happen in auto-vacuum mode).
2475   */
2476   if( pTab->tabFlags & TF_Autoincrement ){
2477     sqlite3NestedParse(pParse,
2478       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2479       pDb->zDbSName, pTab->zName
2480     );
2481   }
2482 #endif
2483 
2484   /* Drop all SQLITE_MASTER table and index entries that refer to the
2485   ** table. The program name loops through the master table and deletes
2486   ** every row that refers to a table of the same name as the one being
2487   ** dropped. Triggers are handled separately because a trigger can be
2488   ** created in the temp database that refers to a table in another
2489   ** database.
2490   */
2491   sqlite3NestedParse(pParse,
2492       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2493       pDb->zDbSName, MASTER_NAME, pTab->zName);
2494   if( !isView && !IsVirtual(pTab) ){
2495     destroyTable(pParse, pTab);
2496   }
2497 
2498   /* Remove the table entry from SQLite's internal schema and modify
2499   ** the schema cookie.
2500   */
2501   if( IsVirtual(pTab) ){
2502     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2503   }
2504   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2505   sqlite3ChangeCookie(pParse, iDb);
2506   sqliteViewResetAll(db, iDb);
2507 }
2508 
2509 /*
2510 ** This routine is called to do the work of a DROP TABLE statement.
2511 ** pName is the name of the table to be dropped.
2512 */
2513 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2514   Table *pTab;
2515   Vdbe *v;
2516   sqlite3 *db = pParse->db;
2517   int iDb;
2518 
2519   if( db->mallocFailed ){
2520     goto exit_drop_table;
2521   }
2522   assert( pParse->nErr==0 );
2523   assert( pName->nSrc==1 );
2524   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2525   if( noErr ) db->suppressErr++;
2526   assert( isView==0 || isView==LOCATE_VIEW );
2527   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2528   if( noErr ) db->suppressErr--;
2529 
2530   if( pTab==0 ){
2531     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2532     goto exit_drop_table;
2533   }
2534   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2535   assert( iDb>=0 && iDb<db->nDb );
2536 
2537   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2538   ** it is initialized.
2539   */
2540   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2541     goto exit_drop_table;
2542   }
2543 #ifndef SQLITE_OMIT_AUTHORIZATION
2544   {
2545     int code;
2546     const char *zTab = SCHEMA_TABLE(iDb);
2547     const char *zDb = db->aDb[iDb].zDbSName;
2548     const char *zArg2 = 0;
2549     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2550       goto exit_drop_table;
2551     }
2552     if( isView ){
2553       if( !OMIT_TEMPDB && iDb==1 ){
2554         code = SQLITE_DROP_TEMP_VIEW;
2555       }else{
2556         code = SQLITE_DROP_VIEW;
2557       }
2558 #ifndef SQLITE_OMIT_VIRTUALTABLE
2559     }else if( IsVirtual(pTab) ){
2560       code = SQLITE_DROP_VTABLE;
2561       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2562 #endif
2563     }else{
2564       if( !OMIT_TEMPDB && iDb==1 ){
2565         code = SQLITE_DROP_TEMP_TABLE;
2566       }else{
2567         code = SQLITE_DROP_TABLE;
2568       }
2569     }
2570     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2571       goto exit_drop_table;
2572     }
2573     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2574       goto exit_drop_table;
2575     }
2576   }
2577 #endif
2578   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2579     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2580     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2581     goto exit_drop_table;
2582   }
2583 
2584 #ifndef SQLITE_OMIT_VIEW
2585   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2586   ** on a table.
2587   */
2588   if( isView && pTab->pSelect==0 ){
2589     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2590     goto exit_drop_table;
2591   }
2592   if( !isView && pTab->pSelect ){
2593     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2594     goto exit_drop_table;
2595   }
2596 #endif
2597 
2598   /* Generate code to remove the table from the master table
2599   ** on disk.
2600   */
2601   v = sqlite3GetVdbe(pParse);
2602   if( v ){
2603     sqlite3BeginWriteOperation(pParse, 1, iDb);
2604     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2605     sqlite3FkDropTable(pParse, pName, pTab);
2606     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2607   }
2608 
2609 exit_drop_table:
2610   sqlite3SrcListDelete(db, pName);
2611 }
2612 
2613 /*
2614 ** This routine is called to create a new foreign key on the table
2615 ** currently under construction.  pFromCol determines which columns
2616 ** in the current table point to the foreign key.  If pFromCol==0 then
2617 ** connect the key to the last column inserted.  pTo is the name of
2618 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2619 ** of tables in the parent pTo table.  flags contains all
2620 ** information about the conflict resolution algorithms specified
2621 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2622 **
2623 ** An FKey structure is created and added to the table currently
2624 ** under construction in the pParse->pNewTable field.
2625 **
2626 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2627 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2628 */
2629 void sqlite3CreateForeignKey(
2630   Parse *pParse,       /* Parsing context */
2631   ExprList *pFromCol,  /* Columns in this table that point to other table */
2632   Token *pTo,          /* Name of the other table */
2633   ExprList *pToCol,    /* Columns in the other table */
2634   int flags            /* Conflict resolution algorithms. */
2635 ){
2636   sqlite3 *db = pParse->db;
2637 #ifndef SQLITE_OMIT_FOREIGN_KEY
2638   FKey *pFKey = 0;
2639   FKey *pNextTo;
2640   Table *p = pParse->pNewTable;
2641   int nByte;
2642   int i;
2643   int nCol;
2644   char *z;
2645 
2646   assert( pTo!=0 );
2647   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2648   if( pFromCol==0 ){
2649     int iCol = p->nCol-1;
2650     if( NEVER(iCol<0) ) goto fk_end;
2651     if( pToCol && pToCol->nExpr!=1 ){
2652       sqlite3ErrorMsg(pParse, "foreign key on %s"
2653          " should reference only one column of table %T",
2654          p->aCol[iCol].zName, pTo);
2655       goto fk_end;
2656     }
2657     nCol = 1;
2658   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2659     sqlite3ErrorMsg(pParse,
2660         "number of columns in foreign key does not match the number of "
2661         "columns in the referenced table");
2662     goto fk_end;
2663   }else{
2664     nCol = pFromCol->nExpr;
2665   }
2666   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2667   if( pToCol ){
2668     for(i=0; i<pToCol->nExpr; i++){
2669       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2670     }
2671   }
2672   pFKey = sqlite3DbMallocZero(db, nByte );
2673   if( pFKey==0 ){
2674     goto fk_end;
2675   }
2676   pFKey->pFrom = p;
2677   pFKey->pNextFrom = p->pFKey;
2678   z = (char*)&pFKey->aCol[nCol];
2679   pFKey->zTo = z;
2680   memcpy(z, pTo->z, pTo->n);
2681   z[pTo->n] = 0;
2682   sqlite3Dequote(z);
2683   z += pTo->n+1;
2684   pFKey->nCol = nCol;
2685   if( pFromCol==0 ){
2686     pFKey->aCol[0].iFrom = p->nCol-1;
2687   }else{
2688     for(i=0; i<nCol; i++){
2689       int j;
2690       for(j=0; j<p->nCol; j++){
2691         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2692           pFKey->aCol[i].iFrom = j;
2693           break;
2694         }
2695       }
2696       if( j>=p->nCol ){
2697         sqlite3ErrorMsg(pParse,
2698           "unknown column \"%s\" in foreign key definition",
2699           pFromCol->a[i].zName);
2700         goto fk_end;
2701       }
2702     }
2703   }
2704   if( pToCol ){
2705     for(i=0; i<nCol; i++){
2706       int n = sqlite3Strlen30(pToCol->a[i].zName);
2707       pFKey->aCol[i].zCol = z;
2708       memcpy(z, pToCol->a[i].zName, n);
2709       z[n] = 0;
2710       z += n+1;
2711     }
2712   }
2713   pFKey->isDeferred = 0;
2714   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2715   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2716 
2717   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2718   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2719       pFKey->zTo, (void *)pFKey
2720   );
2721   if( pNextTo==pFKey ){
2722     sqlite3OomFault(db);
2723     goto fk_end;
2724   }
2725   if( pNextTo ){
2726     assert( pNextTo->pPrevTo==0 );
2727     pFKey->pNextTo = pNextTo;
2728     pNextTo->pPrevTo = pFKey;
2729   }
2730 
2731   /* Link the foreign key to the table as the last step.
2732   */
2733   p->pFKey = pFKey;
2734   pFKey = 0;
2735 
2736 fk_end:
2737   sqlite3DbFree(db, pFKey);
2738 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2739   sqlite3ExprListDelete(db, pFromCol);
2740   sqlite3ExprListDelete(db, pToCol);
2741 }
2742 
2743 /*
2744 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2745 ** clause is seen as part of a foreign key definition.  The isDeferred
2746 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2747 ** The behavior of the most recently created foreign key is adjusted
2748 ** accordingly.
2749 */
2750 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2751 #ifndef SQLITE_OMIT_FOREIGN_KEY
2752   Table *pTab;
2753   FKey *pFKey;
2754   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2755   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2756   pFKey->isDeferred = (u8)isDeferred;
2757 #endif
2758 }
2759 
2760 /*
2761 ** Generate code that will erase and refill index *pIdx.  This is
2762 ** used to initialize a newly created index or to recompute the
2763 ** content of an index in response to a REINDEX command.
2764 **
2765 ** if memRootPage is not negative, it means that the index is newly
2766 ** created.  The register specified by memRootPage contains the
2767 ** root page number of the index.  If memRootPage is negative, then
2768 ** the index already exists and must be cleared before being refilled and
2769 ** the root page number of the index is taken from pIndex->tnum.
2770 */
2771 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2772   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2773   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2774   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2775   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2776   int addr1;                     /* Address of top of loop */
2777   int addr2;                     /* Address to jump to for next iteration */
2778   int tnum;                      /* Root page of index */
2779   int iPartIdxLabel;             /* Jump to this label to skip a row */
2780   Vdbe *v;                       /* Generate code into this virtual machine */
2781   KeyInfo *pKey;                 /* KeyInfo for index */
2782   int regRecord;                 /* Register holding assembled index record */
2783   sqlite3 *db = pParse->db;      /* The database connection */
2784   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2785 
2786 #ifndef SQLITE_OMIT_AUTHORIZATION
2787   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2788       db->aDb[iDb].zDbSName ) ){
2789     return;
2790   }
2791 #endif
2792 
2793   /* Require a write-lock on the table to perform this operation */
2794   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2795 
2796   v = sqlite3GetVdbe(pParse);
2797   if( v==0 ) return;
2798   if( memRootPage>=0 ){
2799     tnum = memRootPage;
2800   }else{
2801     tnum = pIndex->tnum;
2802   }
2803   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2804   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2805 
2806   /* Open the sorter cursor if we are to use one. */
2807   iSorter = pParse->nTab++;
2808   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2809                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2810 
2811   /* Open the table. Loop through all rows of the table, inserting index
2812   ** records into the sorter. */
2813   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2814   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2815   regRecord = sqlite3GetTempReg(pParse);
2816 
2817   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2818   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2819   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2820   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2821   sqlite3VdbeJumpHere(v, addr1);
2822   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2823   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2824                     (char *)pKey, P4_KEYINFO);
2825   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2826 
2827   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2828   if( IsUniqueIndex(pIndex) ){
2829     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2830     sqlite3VdbeGoto(v, j2);
2831     addr2 = sqlite3VdbeCurrentAddr(v);
2832     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2833                          pIndex->nKeyCol); VdbeCoverage(v);
2834     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2835   }else{
2836     addr2 = sqlite3VdbeCurrentAddr(v);
2837   }
2838   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2839   sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
2840   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2841   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2842   sqlite3ReleaseTempReg(pParse, regRecord);
2843   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2844   sqlite3VdbeJumpHere(v, addr1);
2845 
2846   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2847   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2848   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2849 }
2850 
2851 /*
2852 ** Allocate heap space to hold an Index object with nCol columns.
2853 **
2854 ** Increase the allocation size to provide an extra nExtra bytes
2855 ** of 8-byte aligned space after the Index object and return a
2856 ** pointer to this extra space in *ppExtra.
2857 */
2858 Index *sqlite3AllocateIndexObject(
2859   sqlite3 *db,         /* Database connection */
2860   i16 nCol,            /* Total number of columns in the index */
2861   int nExtra,          /* Number of bytes of extra space to alloc */
2862   char **ppExtra       /* Pointer to the "extra" space */
2863 ){
2864   Index *p;            /* Allocated index object */
2865   int nByte;           /* Bytes of space for Index object + arrays */
2866 
2867   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2868           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2869           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2870                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2871                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2872   p = sqlite3DbMallocZero(db, nByte + nExtra);
2873   if( p ){
2874     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2875     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2876     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2877     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2878     p->aSortOrder = (u8*)pExtra;
2879     p->nColumn = nCol;
2880     p->nKeyCol = nCol - 1;
2881     *ppExtra = ((char*)p) + nByte;
2882   }
2883   return p;
2884 }
2885 
2886 /*
2887 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2888 ** and pTblList is the name of the table that is to be indexed.  Both will
2889 ** be NULL for a primary key or an index that is created to satisfy a
2890 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2891 ** as the table to be indexed.  pParse->pNewTable is a table that is
2892 ** currently being constructed by a CREATE TABLE statement.
2893 **
2894 ** pList is a list of columns to be indexed.  pList will be NULL if this
2895 ** is a primary key or unique-constraint on the most recent column added
2896 ** to the table currently under construction.
2897 */
2898 void sqlite3CreateIndex(
2899   Parse *pParse,     /* All information about this parse */
2900   Token *pName1,     /* First part of index name. May be NULL */
2901   Token *pName2,     /* Second part of index name. May be NULL */
2902   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2903   ExprList *pList,   /* A list of columns to be indexed */
2904   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2905   Token *pStart,     /* The CREATE token that begins this statement */
2906   Expr *pPIWhere,    /* WHERE clause for partial indices */
2907   int sortOrder,     /* Sort order of primary key when pList==NULL */
2908   int ifNotExist,    /* Omit error if index already exists */
2909   u8 idxType         /* The index type */
2910 ){
2911   Table *pTab = 0;     /* Table to be indexed */
2912   Index *pIndex = 0;   /* The index to be created */
2913   char *zName = 0;     /* Name of the index */
2914   int nName;           /* Number of characters in zName */
2915   int i, j;
2916   DbFixer sFix;        /* For assigning database names to pTable */
2917   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2918   sqlite3 *db = pParse->db;
2919   Db *pDb;             /* The specific table containing the indexed database */
2920   int iDb;             /* Index of the database that is being written */
2921   Token *pName = 0;    /* Unqualified name of the index to create */
2922   struct ExprList_item *pListItem; /* For looping over pList */
2923   int nExtra = 0;                  /* Space allocated for zExtra[] */
2924   int nExtraCol;                   /* Number of extra columns needed */
2925   char *zExtra = 0;                /* Extra space after the Index object */
2926   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2927 
2928   if( db->mallocFailed || pParse->nErr>0 ){
2929     goto exit_create_index;
2930   }
2931   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2932     goto exit_create_index;
2933   }
2934   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2935     goto exit_create_index;
2936   }
2937 
2938   /*
2939   ** Find the table that is to be indexed.  Return early if not found.
2940   */
2941   if( pTblName!=0 ){
2942 
2943     /* Use the two-part index name to determine the database
2944     ** to search for the table. 'Fix' the table name to this db
2945     ** before looking up the table.
2946     */
2947     assert( pName1 && pName2 );
2948     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2949     if( iDb<0 ) goto exit_create_index;
2950     assert( pName && pName->z );
2951 
2952 #ifndef SQLITE_OMIT_TEMPDB
2953     /* If the index name was unqualified, check if the table
2954     ** is a temp table. If so, set the database to 1. Do not do this
2955     ** if initialising a database schema.
2956     */
2957     if( !db->init.busy ){
2958       pTab = sqlite3SrcListLookup(pParse, pTblName);
2959       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2960         iDb = 1;
2961       }
2962     }
2963 #endif
2964 
2965     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2966     if( sqlite3FixSrcList(&sFix, pTblName) ){
2967       /* Because the parser constructs pTblName from a single identifier,
2968       ** sqlite3FixSrcList can never fail. */
2969       assert(0);
2970     }
2971     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2972     assert( db->mallocFailed==0 || pTab==0 );
2973     if( pTab==0 ) goto exit_create_index;
2974     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2975       sqlite3ErrorMsg(pParse,
2976            "cannot create a TEMP index on non-TEMP table \"%s\"",
2977            pTab->zName);
2978       goto exit_create_index;
2979     }
2980     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2981   }else{
2982     assert( pName==0 );
2983     assert( pStart==0 );
2984     pTab = pParse->pNewTable;
2985     if( !pTab ) goto exit_create_index;
2986     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2987   }
2988   pDb = &db->aDb[iDb];
2989 
2990   assert( pTab!=0 );
2991   assert( pParse->nErr==0 );
2992   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2993        && db->init.busy==0
2994 #if SQLITE_USER_AUTHENTICATION
2995        && sqlite3UserAuthTable(pTab->zName)==0
2996 #endif
2997        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2998     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2999     goto exit_create_index;
3000   }
3001 #ifndef SQLITE_OMIT_VIEW
3002   if( pTab->pSelect ){
3003     sqlite3ErrorMsg(pParse, "views may not be indexed");
3004     goto exit_create_index;
3005   }
3006 #endif
3007 #ifndef SQLITE_OMIT_VIRTUALTABLE
3008   if( IsVirtual(pTab) ){
3009     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3010     goto exit_create_index;
3011   }
3012 #endif
3013 
3014   /*
3015   ** Find the name of the index.  Make sure there is not already another
3016   ** index or table with the same name.
3017   **
3018   ** Exception:  If we are reading the names of permanent indices from the
3019   ** sqlite_master table (because some other process changed the schema) and
3020   ** one of the index names collides with the name of a temporary table or
3021   ** index, then we will continue to process this index.
3022   **
3023   ** If pName==0 it means that we are
3024   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
3025   ** own name.
3026   */
3027   if( pName ){
3028     zName = sqlite3NameFromToken(db, pName);
3029     if( zName==0 ) goto exit_create_index;
3030     assert( pName->z!=0 );
3031     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3032       goto exit_create_index;
3033     }
3034     if( !db->init.busy ){
3035       if( sqlite3FindTable(db, zName, 0)!=0 ){
3036         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3037         goto exit_create_index;
3038       }
3039     }
3040     if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3041       if( !ifNotExist ){
3042         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3043       }else{
3044         assert( !db->init.busy );
3045         sqlite3CodeVerifySchema(pParse, iDb);
3046       }
3047       goto exit_create_index;
3048     }
3049   }else{
3050     int n;
3051     Index *pLoop;
3052     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3053     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3054     if( zName==0 ){
3055       goto exit_create_index;
3056     }
3057 
3058     /* Automatic index names generated from within sqlite3_declare_vtab()
3059     ** must have names that are distinct from normal automatic index names.
3060     ** The following statement converts "sqlite3_autoindex..." into
3061     ** "sqlite3_butoindex..." in order to make the names distinct.
3062     ** The "vtab_err.test" test demonstrates the need of this statement. */
3063     if( IN_DECLARE_VTAB ) zName[7]++;
3064   }
3065 
3066   /* Check for authorization to create an index.
3067   */
3068 #ifndef SQLITE_OMIT_AUTHORIZATION
3069   {
3070     const char *zDb = pDb->zDbSName;
3071     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3072       goto exit_create_index;
3073     }
3074     i = SQLITE_CREATE_INDEX;
3075     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3076     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3077       goto exit_create_index;
3078     }
3079   }
3080 #endif
3081 
3082   /* If pList==0, it means this routine was called to make a primary
3083   ** key out of the last column added to the table under construction.
3084   ** So create a fake list to simulate this.
3085   */
3086   if( pList==0 ){
3087     Token prevCol;
3088     sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3089     pList = sqlite3ExprListAppend(pParse, 0,
3090               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3091     if( pList==0 ) goto exit_create_index;
3092     assert( pList->nExpr==1 );
3093     sqlite3ExprListSetSortOrder(pList, sortOrder);
3094   }else{
3095     sqlite3ExprListCheckLength(pParse, pList, "index");
3096   }
3097 
3098   /* Figure out how many bytes of space are required to store explicitly
3099   ** specified collation sequence names.
3100   */
3101   for(i=0; i<pList->nExpr; i++){
3102     Expr *pExpr = pList->a[i].pExpr;
3103     assert( pExpr!=0 );
3104     if( pExpr->op==TK_COLLATE ){
3105       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3106     }
3107   }
3108 
3109   /*
3110   ** Allocate the index structure.
3111   */
3112   nName = sqlite3Strlen30(zName);
3113   nExtraCol = pPk ? pPk->nKeyCol : 1;
3114   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3115                                       nName + nExtra + 1, &zExtra);
3116   if( db->mallocFailed ){
3117     goto exit_create_index;
3118   }
3119   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3120   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3121   pIndex->zName = zExtra;
3122   zExtra += nName + 1;
3123   memcpy(pIndex->zName, zName, nName+1);
3124   pIndex->pTable = pTab;
3125   pIndex->onError = (u8)onError;
3126   pIndex->uniqNotNull = onError!=OE_None;
3127   pIndex->idxType = idxType;
3128   pIndex->pSchema = db->aDb[iDb].pSchema;
3129   pIndex->nKeyCol = pList->nExpr;
3130   if( pPIWhere ){
3131     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3132     pIndex->pPartIdxWhere = pPIWhere;
3133     pPIWhere = 0;
3134   }
3135   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3136 
3137   /* Check to see if we should honor DESC requests on index columns
3138   */
3139   if( pDb->pSchema->file_format>=4 ){
3140     sortOrderMask = -1;   /* Honor DESC */
3141   }else{
3142     sortOrderMask = 0;    /* Ignore DESC */
3143   }
3144 
3145   /* Analyze the list of expressions that form the terms of the index and
3146   ** report any errors.  In the common case where the expression is exactly
3147   ** a table column, store that column in aiColumn[].  For general expressions,
3148   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3149   **
3150   ** TODO: Issue a warning if two or more columns of the index are identical.
3151   ** TODO: Issue a warning if the table primary key is used as part of the
3152   ** index key.
3153   */
3154   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3155     Expr *pCExpr;                  /* The i-th index expression */
3156     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3157     const char *zColl;             /* Collation sequence name */
3158 
3159     sqlite3StringToId(pListItem->pExpr);
3160     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3161     if( pParse->nErr ) goto exit_create_index;
3162     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3163     if( pCExpr->op!=TK_COLUMN ){
3164       if( pTab==pParse->pNewTable ){
3165         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3166                                 "UNIQUE constraints");
3167         goto exit_create_index;
3168       }
3169       if( pIndex->aColExpr==0 ){
3170         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3171         pIndex->aColExpr = pCopy;
3172         if( !db->mallocFailed ){
3173           assert( pCopy!=0 );
3174           pListItem = &pCopy->a[i];
3175         }
3176       }
3177       j = XN_EXPR;
3178       pIndex->aiColumn[i] = XN_EXPR;
3179       pIndex->uniqNotNull = 0;
3180     }else{
3181       j = pCExpr->iColumn;
3182       assert( j<=0x7fff );
3183       if( j<0 ){
3184         j = pTab->iPKey;
3185       }else if( pTab->aCol[j].notNull==0 ){
3186         pIndex->uniqNotNull = 0;
3187       }
3188       pIndex->aiColumn[i] = (i16)j;
3189     }
3190     zColl = 0;
3191     if( pListItem->pExpr->op==TK_COLLATE ){
3192       int nColl;
3193       zColl = pListItem->pExpr->u.zToken;
3194       nColl = sqlite3Strlen30(zColl) + 1;
3195       assert( nExtra>=nColl );
3196       memcpy(zExtra, zColl, nColl);
3197       zColl = zExtra;
3198       zExtra += nColl;
3199       nExtra -= nColl;
3200     }else if( j>=0 ){
3201       zColl = pTab->aCol[j].zColl;
3202     }
3203     if( !zColl ) zColl = sqlite3StrBINARY;
3204     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3205       goto exit_create_index;
3206     }
3207     pIndex->azColl[i] = zColl;
3208     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3209     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3210   }
3211 
3212   /* Append the table key to the end of the index.  For WITHOUT ROWID
3213   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3214   ** normal tables (when pPk==0) this will be the rowid.
3215   */
3216   if( pPk ){
3217     for(j=0; j<pPk->nKeyCol; j++){
3218       int x = pPk->aiColumn[j];
3219       assert( x>=0 );
3220       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3221         pIndex->nColumn--;
3222       }else{
3223         pIndex->aiColumn[i] = x;
3224         pIndex->azColl[i] = pPk->azColl[j];
3225         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3226         i++;
3227       }
3228     }
3229     assert( i==pIndex->nColumn );
3230   }else{
3231     pIndex->aiColumn[i] = XN_ROWID;
3232     pIndex->azColl[i] = sqlite3StrBINARY;
3233   }
3234   sqlite3DefaultRowEst(pIndex);
3235   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3236 
3237   /* If this index contains every column of its table, then mark
3238   ** it as a covering index */
3239   assert( HasRowid(pTab)
3240       || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3241   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3242     pIndex->isCovering = 1;
3243     for(j=0; j<pTab->nCol; j++){
3244       if( j==pTab->iPKey ) continue;
3245       if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3246       pIndex->isCovering = 0;
3247       break;
3248     }
3249   }
3250 
3251   if( pTab==pParse->pNewTable ){
3252     /* This routine has been called to create an automatic index as a
3253     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3254     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3255     ** i.e. one of:
3256     **
3257     ** CREATE TABLE t(x PRIMARY KEY, y);
3258     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3259     **
3260     ** Either way, check to see if the table already has such an index. If
3261     ** so, don't bother creating this one. This only applies to
3262     ** automatically created indices. Users can do as they wish with
3263     ** explicit indices.
3264     **
3265     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3266     ** (and thus suppressing the second one) even if they have different
3267     ** sort orders.
3268     **
3269     ** If there are different collating sequences or if the columns of
3270     ** the constraint occur in different orders, then the constraints are
3271     ** considered distinct and both result in separate indices.
3272     */
3273     Index *pIdx;
3274     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3275       int k;
3276       assert( IsUniqueIndex(pIdx) );
3277       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3278       assert( IsUniqueIndex(pIndex) );
3279 
3280       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3281       for(k=0; k<pIdx->nKeyCol; k++){
3282         const char *z1;
3283         const char *z2;
3284         assert( pIdx->aiColumn[k]>=0 );
3285         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3286         z1 = pIdx->azColl[k];
3287         z2 = pIndex->azColl[k];
3288         if( sqlite3StrICmp(z1, z2) ) break;
3289       }
3290       if( k==pIdx->nKeyCol ){
3291         if( pIdx->onError!=pIndex->onError ){
3292           /* This constraint creates the same index as a previous
3293           ** constraint specified somewhere in the CREATE TABLE statement.
3294           ** However the ON CONFLICT clauses are different. If both this
3295           ** constraint and the previous equivalent constraint have explicit
3296           ** ON CONFLICT clauses this is an error. Otherwise, use the
3297           ** explicitly specified behavior for the index.
3298           */
3299           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3300             sqlite3ErrorMsg(pParse,
3301                 "conflicting ON CONFLICT clauses specified", 0);
3302           }
3303           if( pIdx->onError==OE_Default ){
3304             pIdx->onError = pIndex->onError;
3305           }
3306         }
3307         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3308         goto exit_create_index;
3309       }
3310     }
3311   }
3312 
3313   /* Link the new Index structure to its table and to the other
3314   ** in-memory database structures.
3315   */
3316   assert( pParse->nErr==0 );
3317   if( db->init.busy ){
3318     Index *p;
3319     assert( !IN_DECLARE_VTAB );
3320     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3321     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3322                           pIndex->zName, pIndex);
3323     if( p ){
3324       assert( p==pIndex );  /* Malloc must have failed */
3325       sqlite3OomFault(db);
3326       goto exit_create_index;
3327     }
3328     db->mDbFlags |= DBFLAG_SchemaChange;
3329     if( pTblName!=0 ){
3330       pIndex->tnum = db->init.newTnum;
3331     }
3332   }
3333 
3334   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3335   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3336   ** emit code to allocate the index rootpage on disk and make an entry for
3337   ** the index in the sqlite_master table and populate the index with
3338   ** content.  But, do not do this if we are simply reading the sqlite_master
3339   ** table to parse the schema, or if this index is the PRIMARY KEY index
3340   ** of a WITHOUT ROWID table.
3341   **
3342   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3343   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3344   ** has just been created, it contains no data and the index initialization
3345   ** step can be skipped.
3346   */
3347   else if( HasRowid(pTab) || pTblName!=0 ){
3348     Vdbe *v;
3349     char *zStmt;
3350     int iMem = ++pParse->nMem;
3351 
3352     v = sqlite3GetVdbe(pParse);
3353     if( v==0 ) goto exit_create_index;
3354 
3355     sqlite3BeginWriteOperation(pParse, 1, iDb);
3356 
3357     /* Create the rootpage for the index using CreateIndex. But before
3358     ** doing so, code a Noop instruction and store its address in
3359     ** Index.tnum. This is required in case this index is actually a
3360     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3361     ** that case the convertToWithoutRowidTable() routine will replace
3362     ** the Noop with a Goto to jump over the VDBE code generated below. */
3363     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3364     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3365 
3366     /* Gather the complete text of the CREATE INDEX statement into
3367     ** the zStmt variable
3368     */
3369     if( pStart ){
3370       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3371       if( pName->z[n-1]==';' ) n--;
3372       /* A named index with an explicit CREATE INDEX statement */
3373       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3374         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3375     }else{
3376       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3377       /* zStmt = sqlite3MPrintf(""); */
3378       zStmt = 0;
3379     }
3380 
3381     /* Add an entry in sqlite_master for this index
3382     */
3383     sqlite3NestedParse(pParse,
3384         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3385         db->aDb[iDb].zDbSName, MASTER_NAME,
3386         pIndex->zName,
3387         pTab->zName,
3388         iMem,
3389         zStmt
3390     );
3391     sqlite3DbFree(db, zStmt);
3392 
3393     /* Fill the index with data and reparse the schema. Code an OP_Expire
3394     ** to invalidate all pre-compiled statements.
3395     */
3396     if( pTblName ){
3397       sqlite3RefillIndex(pParse, pIndex, iMem);
3398       sqlite3ChangeCookie(pParse, iDb);
3399       sqlite3VdbeAddParseSchemaOp(v, iDb,
3400          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3401       sqlite3VdbeAddOp0(v, OP_Expire);
3402     }
3403 
3404     sqlite3VdbeJumpHere(v, pIndex->tnum);
3405   }
3406 
3407   /* When adding an index to the list of indices for a table, make
3408   ** sure all indices labeled OE_Replace come after all those labeled
3409   ** OE_Ignore.  This is necessary for the correct constraint check
3410   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3411   ** UPDATE and INSERT statements.
3412   */
3413   if( db->init.busy || pTblName==0 ){
3414     if( onError!=OE_Replace || pTab->pIndex==0
3415          || pTab->pIndex->onError==OE_Replace){
3416       pIndex->pNext = pTab->pIndex;
3417       pTab->pIndex = pIndex;
3418     }else{
3419       Index *pOther = pTab->pIndex;
3420       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3421         pOther = pOther->pNext;
3422       }
3423       pIndex->pNext = pOther->pNext;
3424       pOther->pNext = pIndex;
3425     }
3426     pIndex = 0;
3427   }
3428 
3429   /* Clean up before exiting */
3430 exit_create_index:
3431   if( pIndex ) freeIndex(db, pIndex);
3432   sqlite3ExprDelete(db, pPIWhere);
3433   sqlite3ExprListDelete(db, pList);
3434   sqlite3SrcListDelete(db, pTblName);
3435   sqlite3DbFree(db, zName);
3436 }
3437 
3438 /*
3439 ** Fill the Index.aiRowEst[] array with default information - information
3440 ** to be used when we have not run the ANALYZE command.
3441 **
3442 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3443 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3444 ** number of rows in the table that match any particular value of the
3445 ** first column of the index.  aiRowEst[2] is an estimate of the number
3446 ** of rows that match any particular combination of the first 2 columns
3447 ** of the index.  And so forth.  It must always be the case that
3448 *
3449 **           aiRowEst[N]<=aiRowEst[N-1]
3450 **           aiRowEst[N]>=1
3451 **
3452 ** Apart from that, we have little to go on besides intuition as to
3453 ** how aiRowEst[] should be initialized.  The numbers generated here
3454 ** are based on typical values found in actual indices.
3455 */
3456 void sqlite3DefaultRowEst(Index *pIdx){
3457   /*                10,  9,  8,  7,  6 */
3458   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3459   LogEst *a = pIdx->aiRowLogEst;
3460   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3461   int i;
3462 
3463   /* Indexes with default row estimates should not have stat1 data */
3464   assert( !pIdx->hasStat1 );
3465 
3466   /* Set the first entry (number of rows in the index) to the estimated
3467   ** number of rows in the table, or half the number of rows in the table
3468   ** for a partial index.   But do not let the estimate drop below 10. */
3469   a[0] = pIdx->pTable->nRowLogEst;
3470   if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10;  assert( 10==sqlite3LogEst(2) );
3471   if( a[0]<33 ) a[0] = 33;                  assert( 33==sqlite3LogEst(10) );
3472 
3473   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3474   ** 6 and each subsequent value (if any) is 5.  */
3475   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3476   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3477     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3478   }
3479 
3480   assert( 0==sqlite3LogEst(1) );
3481   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3482 }
3483 
3484 /*
3485 ** This routine will drop an existing named index.  This routine
3486 ** implements the DROP INDEX statement.
3487 */
3488 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3489   Index *pIndex;
3490   Vdbe *v;
3491   sqlite3 *db = pParse->db;
3492   int iDb;
3493 
3494   assert( pParse->nErr==0 );   /* Never called with prior errors */
3495   if( db->mallocFailed ){
3496     goto exit_drop_index;
3497   }
3498   assert( pName->nSrc==1 );
3499   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3500     goto exit_drop_index;
3501   }
3502   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3503   if( pIndex==0 ){
3504     if( !ifExists ){
3505       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3506     }else{
3507       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3508     }
3509     pParse->checkSchema = 1;
3510     goto exit_drop_index;
3511   }
3512   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3513     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3514       "or PRIMARY KEY constraint cannot be dropped", 0);
3515     goto exit_drop_index;
3516   }
3517   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3518 #ifndef SQLITE_OMIT_AUTHORIZATION
3519   {
3520     int code = SQLITE_DROP_INDEX;
3521     Table *pTab = pIndex->pTable;
3522     const char *zDb = db->aDb[iDb].zDbSName;
3523     const char *zTab = SCHEMA_TABLE(iDb);
3524     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3525       goto exit_drop_index;
3526     }
3527     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3528     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3529       goto exit_drop_index;
3530     }
3531   }
3532 #endif
3533 
3534   /* Generate code to remove the index and from the master table */
3535   v = sqlite3GetVdbe(pParse);
3536   if( v ){
3537     sqlite3BeginWriteOperation(pParse, 1, iDb);
3538     sqlite3NestedParse(pParse,
3539        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3540        db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3541     );
3542     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3543     sqlite3ChangeCookie(pParse, iDb);
3544     destroyRootPage(pParse, pIndex->tnum, iDb);
3545     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3546   }
3547 
3548 exit_drop_index:
3549   sqlite3SrcListDelete(db, pName);
3550 }
3551 
3552 /*
3553 ** pArray is a pointer to an array of objects. Each object in the
3554 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3555 ** to extend the array so that there is space for a new object at the end.
3556 **
3557 ** When this function is called, *pnEntry contains the current size of
3558 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3559 ** in total).
3560 **
3561 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3562 ** space allocated for the new object is zeroed, *pnEntry updated to
3563 ** reflect the new size of the array and a pointer to the new allocation
3564 ** returned. *pIdx is set to the index of the new array entry in this case.
3565 **
3566 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3567 ** unchanged and a copy of pArray returned.
3568 */
3569 void *sqlite3ArrayAllocate(
3570   sqlite3 *db,      /* Connection to notify of malloc failures */
3571   void *pArray,     /* Array of objects.  Might be reallocated */
3572   int szEntry,      /* Size of each object in the array */
3573   int *pnEntry,     /* Number of objects currently in use */
3574   int *pIdx         /* Write the index of a new slot here */
3575 ){
3576   char *z;
3577   int n = *pnEntry;
3578   if( (n & (n-1))==0 ){
3579     int sz = (n==0) ? 1 : 2*n;
3580     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3581     if( pNew==0 ){
3582       *pIdx = -1;
3583       return pArray;
3584     }
3585     pArray = pNew;
3586   }
3587   z = (char*)pArray;
3588   memset(&z[n * szEntry], 0, szEntry);
3589   *pIdx = n;
3590   ++*pnEntry;
3591   return pArray;
3592 }
3593 
3594 /*
3595 ** Append a new element to the given IdList.  Create a new IdList if
3596 ** need be.
3597 **
3598 ** A new IdList is returned, or NULL if malloc() fails.
3599 */
3600 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3601   int i;
3602   if( pList==0 ){
3603     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3604     if( pList==0 ) return 0;
3605   }
3606   pList->a = sqlite3ArrayAllocate(
3607       db,
3608       pList->a,
3609       sizeof(pList->a[0]),
3610       &pList->nId,
3611       &i
3612   );
3613   if( i<0 ){
3614     sqlite3IdListDelete(db, pList);
3615     return 0;
3616   }
3617   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3618   return pList;
3619 }
3620 
3621 /*
3622 ** Delete an IdList.
3623 */
3624 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3625   int i;
3626   if( pList==0 ) return;
3627   for(i=0; i<pList->nId; i++){
3628     sqlite3DbFree(db, pList->a[i].zName);
3629   }
3630   sqlite3DbFree(db, pList->a);
3631   sqlite3DbFreeNN(db, pList);
3632 }
3633 
3634 /*
3635 ** Return the index in pList of the identifier named zId.  Return -1
3636 ** if not found.
3637 */
3638 int sqlite3IdListIndex(IdList *pList, const char *zName){
3639   int i;
3640   if( pList==0 ) return -1;
3641   for(i=0; i<pList->nId; i++){
3642     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3643   }
3644   return -1;
3645 }
3646 
3647 /*
3648 ** Expand the space allocated for the given SrcList object by
3649 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3650 ** New slots are zeroed.
3651 **
3652 ** For example, suppose a SrcList initially contains two entries: A,B.
3653 ** To append 3 new entries onto the end, do this:
3654 **
3655 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3656 **
3657 ** After the call above it would contain:  A, B, nil, nil, nil.
3658 ** If the iStart argument had been 1 instead of 2, then the result
3659 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3660 ** the iStart value would be 0.  The result then would
3661 ** be: nil, nil, nil, A, B.
3662 **
3663 ** If a memory allocation fails the SrcList is unchanged.  The
3664 ** db->mallocFailed flag will be set to true.
3665 */
3666 SrcList *sqlite3SrcListEnlarge(
3667   sqlite3 *db,       /* Database connection to notify of OOM errors */
3668   SrcList *pSrc,     /* The SrcList to be enlarged */
3669   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3670   int iStart         /* Index in pSrc->a[] of first new slot */
3671 ){
3672   int i;
3673 
3674   /* Sanity checking on calling parameters */
3675   assert( iStart>=0 );
3676   assert( nExtra>=1 );
3677   assert( pSrc!=0 );
3678   assert( iStart<=pSrc->nSrc );
3679 
3680   /* Allocate additional space if needed */
3681   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3682     SrcList *pNew;
3683     int nAlloc = pSrc->nSrc*2+nExtra;
3684     int nGot;
3685     pNew = sqlite3DbRealloc(db, pSrc,
3686                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3687     if( pNew==0 ){
3688       assert( db->mallocFailed );
3689       return pSrc;
3690     }
3691     pSrc = pNew;
3692     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3693     pSrc->nAlloc = nGot;
3694   }
3695 
3696   /* Move existing slots that come after the newly inserted slots
3697   ** out of the way */
3698   for(i=pSrc->nSrc-1; i>=iStart; i--){
3699     pSrc->a[i+nExtra] = pSrc->a[i];
3700   }
3701   pSrc->nSrc += nExtra;
3702 
3703   /* Zero the newly allocated slots */
3704   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3705   for(i=iStart; i<iStart+nExtra; i++){
3706     pSrc->a[i].iCursor = -1;
3707   }
3708 
3709   /* Return a pointer to the enlarged SrcList */
3710   return pSrc;
3711 }
3712 
3713 
3714 /*
3715 ** Append a new table name to the given SrcList.  Create a new SrcList if
3716 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3717 **
3718 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3719 ** SrcList might be the same as the SrcList that was input or it might be
3720 ** a new one.  If an OOM error does occurs, then the prior value of pList
3721 ** that is input to this routine is automatically freed.
3722 **
3723 ** If pDatabase is not null, it means that the table has an optional
3724 ** database name prefix.  Like this:  "database.table".  The pDatabase
3725 ** points to the table name and the pTable points to the database name.
3726 ** The SrcList.a[].zName field is filled with the table name which might
3727 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3728 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3729 ** or with NULL if no database is specified.
3730 **
3731 ** In other words, if call like this:
3732 **
3733 **         sqlite3SrcListAppend(D,A,B,0);
3734 **
3735 ** Then B is a table name and the database name is unspecified.  If called
3736 ** like this:
3737 **
3738 **         sqlite3SrcListAppend(D,A,B,C);
3739 **
3740 ** Then C is the table name and B is the database name.  If C is defined
3741 ** then so is B.  In other words, we never have a case where:
3742 **
3743 **         sqlite3SrcListAppend(D,A,0,C);
3744 **
3745 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3746 ** before being added to the SrcList.
3747 */
3748 SrcList *sqlite3SrcListAppend(
3749   sqlite3 *db,        /* Connection to notify of malloc failures */
3750   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3751   Token *pTable,      /* Table to append */
3752   Token *pDatabase    /* Database of the table */
3753 ){
3754   struct SrcList_item *pItem;
3755   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3756   assert( db!=0 );
3757   if( pList==0 ){
3758     pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3759     if( pList==0 ) return 0;
3760     pList->nAlloc = 1;
3761     pList->nSrc = 1;
3762     memset(&pList->a[0], 0, sizeof(pList->a[0]));
3763     pList->a[0].iCursor = -1;
3764   }else{
3765     pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3766   }
3767   if( db->mallocFailed ){
3768     sqlite3SrcListDelete(db, pList);
3769     return 0;
3770   }
3771   pItem = &pList->a[pList->nSrc-1];
3772   if( pDatabase && pDatabase->z==0 ){
3773     pDatabase = 0;
3774   }
3775   if( pDatabase ){
3776     pItem->zName = sqlite3NameFromToken(db, pDatabase);
3777     pItem->zDatabase = sqlite3NameFromToken(db, pTable);
3778   }else{
3779     pItem->zName = sqlite3NameFromToken(db, pTable);
3780     pItem->zDatabase = 0;
3781   }
3782   return pList;
3783 }
3784 
3785 /*
3786 ** Assign VdbeCursor index numbers to all tables in a SrcList
3787 */
3788 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3789   int i;
3790   struct SrcList_item *pItem;
3791   assert(pList || pParse->db->mallocFailed );
3792   if( pList ){
3793     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3794       if( pItem->iCursor>=0 ) break;
3795       pItem->iCursor = pParse->nTab++;
3796       if( pItem->pSelect ){
3797         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3798       }
3799     }
3800   }
3801 }
3802 
3803 /*
3804 ** Delete an entire SrcList including all its substructure.
3805 */
3806 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3807   int i;
3808   struct SrcList_item *pItem;
3809   if( pList==0 ) return;
3810   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3811     sqlite3DbFree(db, pItem->zDatabase);
3812     sqlite3DbFree(db, pItem->zName);
3813     sqlite3DbFree(db, pItem->zAlias);
3814     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3815     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3816     sqlite3DeleteTable(db, pItem->pTab);
3817     sqlite3SelectDelete(db, pItem->pSelect);
3818     sqlite3ExprDelete(db, pItem->pOn);
3819     sqlite3IdListDelete(db, pItem->pUsing);
3820   }
3821   sqlite3DbFreeNN(db, pList);
3822 }
3823 
3824 /*
3825 ** This routine is called by the parser to add a new term to the
3826 ** end of a growing FROM clause.  The "p" parameter is the part of
3827 ** the FROM clause that has already been constructed.  "p" is NULL
3828 ** if this is the first term of the FROM clause.  pTable and pDatabase
3829 ** are the name of the table and database named in the FROM clause term.
3830 ** pDatabase is NULL if the database name qualifier is missing - the
3831 ** usual case.  If the term has an alias, then pAlias points to the
3832 ** alias token.  If the term is a subquery, then pSubquery is the
3833 ** SELECT statement that the subquery encodes.  The pTable and
3834 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3835 ** parameters are the content of the ON and USING clauses.
3836 **
3837 ** Return a new SrcList which encodes is the FROM with the new
3838 ** term added.
3839 */
3840 SrcList *sqlite3SrcListAppendFromTerm(
3841   Parse *pParse,          /* Parsing context */
3842   SrcList *p,             /* The left part of the FROM clause already seen */
3843   Token *pTable,          /* Name of the table to add to the FROM clause */
3844   Token *pDatabase,       /* Name of the database containing pTable */
3845   Token *pAlias,          /* The right-hand side of the AS subexpression */
3846   Select *pSubquery,      /* A subquery used in place of a table name */
3847   Expr *pOn,              /* The ON clause of a join */
3848   IdList *pUsing          /* The USING clause of a join */
3849 ){
3850   struct SrcList_item *pItem;
3851   sqlite3 *db = pParse->db;
3852   if( !p && (pOn || pUsing) ){
3853     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3854       (pOn ? "ON" : "USING")
3855     );
3856     goto append_from_error;
3857   }
3858   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3859   if( p==0 || NEVER(p->nSrc==0) ){
3860     goto append_from_error;
3861   }
3862   pItem = &p->a[p->nSrc-1];
3863   assert( pAlias!=0 );
3864   if( pAlias->n ){
3865     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3866   }
3867   pItem->pSelect = pSubquery;
3868   pItem->pOn = pOn;
3869   pItem->pUsing = pUsing;
3870   return p;
3871 
3872  append_from_error:
3873   assert( p==0 );
3874   sqlite3ExprDelete(db, pOn);
3875   sqlite3IdListDelete(db, pUsing);
3876   sqlite3SelectDelete(db, pSubquery);
3877   return 0;
3878 }
3879 
3880 /*
3881 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3882 ** element of the source-list passed as the second argument.
3883 */
3884 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3885   assert( pIndexedBy!=0 );
3886   if( p && ALWAYS(p->nSrc>0) ){
3887     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3888     assert( pItem->fg.notIndexed==0 );
3889     assert( pItem->fg.isIndexedBy==0 );
3890     assert( pItem->fg.isTabFunc==0 );
3891     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3892       /* A "NOT INDEXED" clause was supplied. See parse.y
3893       ** construct "indexed_opt" for details. */
3894       pItem->fg.notIndexed = 1;
3895     }else{
3896       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3897       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3898     }
3899   }
3900 }
3901 
3902 /*
3903 ** Add the list of function arguments to the SrcList entry for a
3904 ** table-valued-function.
3905 */
3906 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3907   if( p ){
3908     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3909     assert( pItem->fg.notIndexed==0 );
3910     assert( pItem->fg.isIndexedBy==0 );
3911     assert( pItem->fg.isTabFunc==0 );
3912     pItem->u1.pFuncArg = pList;
3913     pItem->fg.isTabFunc = 1;
3914   }else{
3915     sqlite3ExprListDelete(pParse->db, pList);
3916   }
3917 }
3918 
3919 /*
3920 ** When building up a FROM clause in the parser, the join operator
3921 ** is initially attached to the left operand.  But the code generator
3922 ** expects the join operator to be on the right operand.  This routine
3923 ** Shifts all join operators from left to right for an entire FROM
3924 ** clause.
3925 **
3926 ** Example: Suppose the join is like this:
3927 **
3928 **           A natural cross join B
3929 **
3930 ** The operator is "natural cross join".  The A and B operands are stored
3931 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3932 ** operator with A.  This routine shifts that operator over to B.
3933 */
3934 void sqlite3SrcListShiftJoinType(SrcList *p){
3935   if( p ){
3936     int i;
3937     for(i=p->nSrc-1; i>0; i--){
3938       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3939     }
3940     p->a[0].fg.jointype = 0;
3941   }
3942 }
3943 
3944 /*
3945 ** Generate VDBE code for a BEGIN statement.
3946 */
3947 void sqlite3BeginTransaction(Parse *pParse, int type){
3948   sqlite3 *db;
3949   Vdbe *v;
3950   int i;
3951 
3952   assert( pParse!=0 );
3953   db = pParse->db;
3954   assert( db!=0 );
3955   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3956     return;
3957   }
3958   v = sqlite3GetVdbe(pParse);
3959   if( !v ) return;
3960   if( type!=TK_DEFERRED ){
3961     for(i=0; i<db->nDb; i++){
3962       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3963       sqlite3VdbeUsesBtree(v, i);
3964     }
3965   }
3966   sqlite3VdbeAddOp0(v, OP_AutoCommit);
3967 }
3968 
3969 /*
3970 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
3971 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
3972 ** code is generated for a COMMIT.
3973 */
3974 void sqlite3EndTransaction(Parse *pParse, int eType){
3975   Vdbe *v;
3976   int isRollback;
3977 
3978   assert( pParse!=0 );
3979   assert( pParse->db!=0 );
3980   assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
3981   isRollback = eType==TK_ROLLBACK;
3982   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
3983        isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
3984     return;
3985   }
3986   v = sqlite3GetVdbe(pParse);
3987   if( v ){
3988     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
3989   }
3990 }
3991 
3992 /*
3993 ** This function is called by the parser when it parses a command to create,
3994 ** release or rollback an SQL savepoint.
3995 */
3996 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3997   char *zName = sqlite3NameFromToken(pParse->db, pName);
3998   if( zName ){
3999     Vdbe *v = sqlite3GetVdbe(pParse);
4000 #ifndef SQLITE_OMIT_AUTHORIZATION
4001     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4002     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4003 #endif
4004     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4005       sqlite3DbFree(pParse->db, zName);
4006       return;
4007     }
4008     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4009   }
4010 }
4011 
4012 /*
4013 ** Make sure the TEMP database is open and available for use.  Return
4014 ** the number of errors.  Leave any error messages in the pParse structure.
4015 */
4016 int sqlite3OpenTempDatabase(Parse *pParse){
4017   sqlite3 *db = pParse->db;
4018   if( db->aDb[1].pBt==0 && !pParse->explain ){
4019     int rc;
4020     Btree *pBt;
4021     static const int flags =
4022           SQLITE_OPEN_READWRITE |
4023           SQLITE_OPEN_CREATE |
4024           SQLITE_OPEN_EXCLUSIVE |
4025           SQLITE_OPEN_DELETEONCLOSE |
4026           SQLITE_OPEN_TEMP_DB;
4027 
4028     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4029     if( rc!=SQLITE_OK ){
4030       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4031         "file for storing temporary tables");
4032       pParse->rc = rc;
4033       return 1;
4034     }
4035     db->aDb[1].pBt = pBt;
4036     assert( db->aDb[1].pSchema );
4037     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4038       sqlite3OomFault(db);
4039       return 1;
4040     }
4041   }
4042   return 0;
4043 }
4044 
4045 /*
4046 ** Record the fact that the schema cookie will need to be verified
4047 ** for database iDb.  The code to actually verify the schema cookie
4048 ** will occur at the end of the top-level VDBE and will be generated
4049 ** later, by sqlite3FinishCoding().
4050 */
4051 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4052   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4053 
4054   assert( iDb>=0 && iDb<pParse->db->nDb );
4055   assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4056   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4057   assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4058   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4059     DbMaskSet(pToplevel->cookieMask, iDb);
4060     if( !OMIT_TEMPDB && iDb==1 ){
4061       sqlite3OpenTempDatabase(pToplevel);
4062     }
4063   }
4064 }
4065 
4066 /*
4067 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4068 ** attached database. Otherwise, invoke it for the database named zDb only.
4069 */
4070 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4071   sqlite3 *db = pParse->db;
4072   int i;
4073   for(i=0; i<db->nDb; i++){
4074     Db *pDb = &db->aDb[i];
4075     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4076       sqlite3CodeVerifySchema(pParse, i);
4077     }
4078   }
4079 }
4080 
4081 /*
4082 ** Generate VDBE code that prepares for doing an operation that
4083 ** might change the database.
4084 **
4085 ** This routine starts a new transaction if we are not already within
4086 ** a transaction.  If we are already within a transaction, then a checkpoint
4087 ** is set if the setStatement parameter is true.  A checkpoint should
4088 ** be set for operations that might fail (due to a constraint) part of
4089 ** the way through and which will need to undo some writes without having to
4090 ** rollback the whole transaction.  For operations where all constraints
4091 ** can be checked before any changes are made to the database, it is never
4092 ** necessary to undo a write and the checkpoint should not be set.
4093 */
4094 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4095   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4096   sqlite3CodeVerifySchema(pParse, iDb);
4097   DbMaskSet(pToplevel->writeMask, iDb);
4098   pToplevel->isMultiWrite |= setStatement;
4099 }
4100 
4101 /*
4102 ** Indicate that the statement currently under construction might write
4103 ** more than one entry (example: deleting one row then inserting another,
4104 ** inserting multiple rows in a table, or inserting a row and index entries.)
4105 ** If an abort occurs after some of these writes have completed, then it will
4106 ** be necessary to undo the completed writes.
4107 */
4108 void sqlite3MultiWrite(Parse *pParse){
4109   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4110   pToplevel->isMultiWrite = 1;
4111 }
4112 
4113 /*
4114 ** The code generator calls this routine if is discovers that it is
4115 ** possible to abort a statement prior to completion.  In order to
4116 ** perform this abort without corrupting the database, we need to make
4117 ** sure that the statement is protected by a statement transaction.
4118 **
4119 ** Technically, we only need to set the mayAbort flag if the
4120 ** isMultiWrite flag was previously set.  There is a time dependency
4121 ** such that the abort must occur after the multiwrite.  This makes
4122 ** some statements involving the REPLACE conflict resolution algorithm
4123 ** go a little faster.  But taking advantage of this time dependency
4124 ** makes it more difficult to prove that the code is correct (in
4125 ** particular, it prevents us from writing an effective
4126 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4127 ** to take the safe route and skip the optimization.
4128 */
4129 void sqlite3MayAbort(Parse *pParse){
4130   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4131   pToplevel->mayAbort = 1;
4132 }
4133 
4134 /*
4135 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4136 ** error. The onError parameter determines which (if any) of the statement
4137 ** and/or current transaction is rolled back.
4138 */
4139 void sqlite3HaltConstraint(
4140   Parse *pParse,    /* Parsing context */
4141   int errCode,      /* extended error code */
4142   int onError,      /* Constraint type */
4143   char *p4,         /* Error message */
4144   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4145   u8 p5Errmsg       /* P5_ErrMsg type */
4146 ){
4147   Vdbe *v = sqlite3GetVdbe(pParse);
4148   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4149   if( onError==OE_Abort ){
4150     sqlite3MayAbort(pParse);
4151   }
4152   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4153   sqlite3VdbeChangeP5(v, p5Errmsg);
4154 }
4155 
4156 /*
4157 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4158 */
4159 void sqlite3UniqueConstraint(
4160   Parse *pParse,    /* Parsing context */
4161   int onError,      /* Constraint type */
4162   Index *pIdx       /* The index that triggers the constraint */
4163 ){
4164   char *zErr;
4165   int j;
4166   StrAccum errMsg;
4167   Table *pTab = pIdx->pTable;
4168 
4169   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4170   if( pIdx->aColExpr ){
4171     sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4172   }else{
4173     for(j=0; j<pIdx->nKeyCol; j++){
4174       char *zCol;
4175       assert( pIdx->aiColumn[j]>=0 );
4176       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4177       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4178       sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
4179       sqlite3StrAccumAppend(&errMsg, ".", 1);
4180       sqlite3StrAccumAppendAll(&errMsg, zCol);
4181     }
4182   }
4183   zErr = sqlite3StrAccumFinish(&errMsg);
4184   sqlite3HaltConstraint(pParse,
4185     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4186                             : SQLITE_CONSTRAINT_UNIQUE,
4187     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4188 }
4189 
4190 
4191 /*
4192 ** Code an OP_Halt due to non-unique rowid.
4193 */
4194 void sqlite3RowidConstraint(
4195   Parse *pParse,    /* Parsing context */
4196   int onError,      /* Conflict resolution algorithm */
4197   Table *pTab       /* The table with the non-unique rowid */
4198 ){
4199   char *zMsg;
4200   int rc;
4201   if( pTab->iPKey>=0 ){
4202     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4203                           pTab->aCol[pTab->iPKey].zName);
4204     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4205   }else{
4206     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4207     rc = SQLITE_CONSTRAINT_ROWID;
4208   }
4209   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4210                         P5_ConstraintUnique);
4211 }
4212 
4213 /*
4214 ** Check to see if pIndex uses the collating sequence pColl.  Return
4215 ** true if it does and false if it does not.
4216 */
4217 #ifndef SQLITE_OMIT_REINDEX
4218 static int collationMatch(const char *zColl, Index *pIndex){
4219   int i;
4220   assert( zColl!=0 );
4221   for(i=0; i<pIndex->nColumn; i++){
4222     const char *z = pIndex->azColl[i];
4223     assert( z!=0 || pIndex->aiColumn[i]<0 );
4224     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4225       return 1;
4226     }
4227   }
4228   return 0;
4229 }
4230 #endif
4231 
4232 /*
4233 ** Recompute all indices of pTab that use the collating sequence pColl.
4234 ** If pColl==0 then recompute all indices of pTab.
4235 */
4236 #ifndef SQLITE_OMIT_REINDEX
4237 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4238   Index *pIndex;              /* An index associated with pTab */
4239 
4240   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4241     if( zColl==0 || collationMatch(zColl, pIndex) ){
4242       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4243       sqlite3BeginWriteOperation(pParse, 0, iDb);
4244       sqlite3RefillIndex(pParse, pIndex, -1);
4245     }
4246   }
4247 }
4248 #endif
4249 
4250 /*
4251 ** Recompute all indices of all tables in all databases where the
4252 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4253 ** all indices everywhere.
4254 */
4255 #ifndef SQLITE_OMIT_REINDEX
4256 static void reindexDatabases(Parse *pParse, char const *zColl){
4257   Db *pDb;                    /* A single database */
4258   int iDb;                    /* The database index number */
4259   sqlite3 *db = pParse->db;   /* The database connection */
4260   HashElem *k;                /* For looping over tables in pDb */
4261   Table *pTab;                /* A table in the database */
4262 
4263   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4264   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4265     assert( pDb!=0 );
4266     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4267       pTab = (Table*)sqliteHashData(k);
4268       reindexTable(pParse, pTab, zColl);
4269     }
4270   }
4271 }
4272 #endif
4273 
4274 /*
4275 ** Generate code for the REINDEX command.
4276 **
4277 **        REINDEX                            -- 1
4278 **        REINDEX  <collation>               -- 2
4279 **        REINDEX  ?<database>.?<tablename>  -- 3
4280 **        REINDEX  ?<database>.?<indexname>  -- 4
4281 **
4282 ** Form 1 causes all indices in all attached databases to be rebuilt.
4283 ** Form 2 rebuilds all indices in all databases that use the named
4284 ** collating function.  Forms 3 and 4 rebuild the named index or all
4285 ** indices associated with the named table.
4286 */
4287 #ifndef SQLITE_OMIT_REINDEX
4288 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4289   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4290   char *z;                    /* Name of a table or index */
4291   const char *zDb;            /* Name of the database */
4292   Table *pTab;                /* A table in the database */
4293   Index *pIndex;              /* An index associated with pTab */
4294   int iDb;                    /* The database index number */
4295   sqlite3 *db = pParse->db;   /* The database connection */
4296   Token *pObjName;            /* Name of the table or index to be reindexed */
4297 
4298   /* Read the database schema. If an error occurs, leave an error message
4299   ** and code in pParse and return NULL. */
4300   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4301     return;
4302   }
4303 
4304   if( pName1==0 ){
4305     reindexDatabases(pParse, 0);
4306     return;
4307   }else if( NEVER(pName2==0) || pName2->z==0 ){
4308     char *zColl;
4309     assert( pName1->z );
4310     zColl = sqlite3NameFromToken(pParse->db, pName1);
4311     if( !zColl ) return;
4312     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4313     if( pColl ){
4314       reindexDatabases(pParse, zColl);
4315       sqlite3DbFree(db, zColl);
4316       return;
4317     }
4318     sqlite3DbFree(db, zColl);
4319   }
4320   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4321   if( iDb<0 ) return;
4322   z = sqlite3NameFromToken(db, pObjName);
4323   if( z==0 ) return;
4324   zDb = db->aDb[iDb].zDbSName;
4325   pTab = sqlite3FindTable(db, z, zDb);
4326   if( pTab ){
4327     reindexTable(pParse, pTab, 0);
4328     sqlite3DbFree(db, z);
4329     return;
4330   }
4331   pIndex = sqlite3FindIndex(db, z, zDb);
4332   sqlite3DbFree(db, z);
4333   if( pIndex ){
4334     sqlite3BeginWriteOperation(pParse, 0, iDb);
4335     sqlite3RefillIndex(pParse, pIndex, -1);
4336     return;
4337   }
4338   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4339 }
4340 #endif
4341 
4342 /*
4343 ** Return a KeyInfo structure that is appropriate for the given Index.
4344 **
4345 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4346 ** when it has finished using it.
4347 */
4348 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4349   int i;
4350   int nCol = pIdx->nColumn;
4351   int nKey = pIdx->nKeyCol;
4352   KeyInfo *pKey;
4353   if( pParse->nErr ) return 0;
4354   if( pIdx->uniqNotNull ){
4355     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4356   }else{
4357     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4358   }
4359   if( pKey ){
4360     assert( sqlite3KeyInfoIsWriteable(pKey) );
4361     for(i=0; i<nCol; i++){
4362       const char *zColl = pIdx->azColl[i];
4363       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4364                         sqlite3LocateCollSeq(pParse, zColl);
4365       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4366     }
4367     if( pParse->nErr ){
4368       sqlite3KeyInfoUnref(pKey);
4369       pKey = 0;
4370     }
4371   }
4372   return pKey;
4373 }
4374 
4375 #ifndef SQLITE_OMIT_CTE
4376 /*
4377 ** This routine is invoked once per CTE by the parser while parsing a
4378 ** WITH clause.
4379 */
4380 With *sqlite3WithAdd(
4381   Parse *pParse,          /* Parsing context */
4382   With *pWith,            /* Existing WITH clause, or NULL */
4383   Token *pName,           /* Name of the common-table */
4384   ExprList *pArglist,     /* Optional column name list for the table */
4385   Select *pQuery          /* Query used to initialize the table */
4386 ){
4387   sqlite3 *db = pParse->db;
4388   With *pNew;
4389   char *zName;
4390 
4391   /* Check that the CTE name is unique within this WITH clause. If
4392   ** not, store an error in the Parse structure. */
4393   zName = sqlite3NameFromToken(pParse->db, pName);
4394   if( zName && pWith ){
4395     int i;
4396     for(i=0; i<pWith->nCte; i++){
4397       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4398         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4399       }
4400     }
4401   }
4402 
4403   if( pWith ){
4404     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4405     pNew = sqlite3DbRealloc(db, pWith, nByte);
4406   }else{
4407     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4408   }
4409   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4410 
4411   if( db->mallocFailed ){
4412     sqlite3ExprListDelete(db, pArglist);
4413     sqlite3SelectDelete(db, pQuery);
4414     sqlite3DbFree(db, zName);
4415     pNew = pWith;
4416   }else{
4417     pNew->a[pNew->nCte].pSelect = pQuery;
4418     pNew->a[pNew->nCte].pCols = pArglist;
4419     pNew->a[pNew->nCte].zName = zName;
4420     pNew->a[pNew->nCte].zCteErr = 0;
4421     pNew->nCte++;
4422   }
4423 
4424   return pNew;
4425 }
4426 
4427 /*
4428 ** Free the contents of the With object passed as the second argument.
4429 */
4430 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4431   if( pWith ){
4432     int i;
4433     for(i=0; i<pWith->nCte; i++){
4434       struct Cte *pCte = &pWith->a[i];
4435       sqlite3ExprListDelete(db, pCte->pCols);
4436       sqlite3SelectDelete(db, pCte->pSelect);
4437       sqlite3DbFree(db, pCte->zName);
4438     }
4439     sqlite3DbFree(db, pWith);
4440   }
4441 }
4442 #endif /* !defined(SQLITE_OMIT_CTE) */
4443