xref: /sqlite-3.40.0/src/build.c (revision 2b5fbb28)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   Pgno iTab;             /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 static SQLITE_NOINLINE void lockTable(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   Pgno iTab,         /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel;
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   pToplevel = sqlite3ParseToplevel(pParse);
63   for(i=0; i<pToplevel->nTableLock; i++){
64     p = &pToplevel->aTableLock[i];
65     if( p->iDb==iDb && p->iTab==iTab ){
66       p->isWriteLock = (p->isWriteLock || isWriteLock);
67       return;
68     }
69   }
70 
71   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
72   pToplevel->aTableLock =
73       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
74   if( pToplevel->aTableLock ){
75     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
76     p->iDb = iDb;
77     p->iTab = iTab;
78     p->isWriteLock = isWriteLock;
79     p->zLockName = zName;
80   }else{
81     pToplevel->nTableLock = 0;
82     sqlite3OomFault(pToplevel->db);
83   }
84 }
85 void sqlite3TableLock(
86   Parse *pParse,     /* Parsing context */
87   int iDb,           /* Index of the database containing the table to lock */
88   Pgno iTab,         /* Root page number of the table to be locked */
89   u8 isWriteLock,    /* True for a write lock */
90   const char *zName  /* Name of the table to be locked */
91 ){
92   if( iDb==1 ) return;
93   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
94   lockTable(pParse, iDb, iTab, isWriteLock, zName);
95 }
96 
97 /*
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
100 */
101 static void codeTableLocks(Parse *pParse){
102   int i;
103   Vdbe *pVdbe = pParse->pVdbe;
104   assert( pVdbe!=0 );
105 
106   for(i=0; i<pParse->nTableLock; i++){
107     TableLock *p = &pParse->aTableLock[i];
108     int p1 = p->iDb;
109     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
110                       p->zLockName, P4_STATIC);
111   }
112 }
113 #else
114   #define codeTableLocks(x)
115 #endif
116 
117 /*
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
121 */
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m){
124   int i;
125   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
126   return 1;
127 }
128 #endif
129 
130 /*
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared.  This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
135 ** parse.
136 **
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
139 */
140 void sqlite3FinishCoding(Parse *pParse){
141   sqlite3 *db;
142   Vdbe *v;
143 
144   assert( pParse->pToplevel==0 );
145   db = pParse->db;
146   if( pParse->nested ) return;
147   if( db->mallocFailed || pParse->nErr ){
148     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
149     return;
150   }
151 
152   /* Begin by generating some termination code at the end of the
153   ** vdbe program
154   */
155   v = pParse->pVdbe;
156   if( v==0 ){
157     if( db->init.busy ){
158       pParse->rc = SQLITE_DONE;
159       return;
160     }
161     v = sqlite3GetVdbe(pParse);
162     if( v==0 ) pParse->rc = SQLITE_ERROR;
163   }
164   assert( !pParse->isMultiWrite
165        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
166   if( v ){
167     if( pParse->bReturning ){
168       Returning *pReturning = pParse->u1.pReturning;
169       int addrRewind;
170       int i;
171       int reg;
172 
173       if( pReturning->nRetCol==0 ){
174         assert( CORRUPT_DB );
175       }else{
176         sqlite3VdbeAddOp0(v, OP_FkCheck);
177         addrRewind =
178            sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
179         VdbeCoverage(v);
180         reg = pReturning->iRetReg;
181         for(i=0; i<pReturning->nRetCol; i++){
182           sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
183         }
184         sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
185         sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
186         VdbeCoverage(v);
187         sqlite3VdbeJumpHere(v, addrRewind);
188       }
189     }
190     sqlite3VdbeAddOp0(v, OP_Halt);
191 
192 #if SQLITE_USER_AUTHENTICATION
193     if( pParse->nTableLock>0 && db->init.busy==0 ){
194       sqlite3UserAuthInit(db);
195       if( db->auth.authLevel<UAUTH_User ){
196         sqlite3ErrorMsg(pParse, "user not authenticated");
197         pParse->rc = SQLITE_AUTH_USER;
198         return;
199       }
200     }
201 #endif
202 
203     /* The cookie mask contains one bit for each database file open.
204     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
205     ** set for each database that is used.  Generate code to start a
206     ** transaction on each used database and to verify the schema cookie
207     ** on each used database.
208     */
209     if( db->mallocFailed==0
210      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
211     ){
212       int iDb, i;
213       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
214       sqlite3VdbeJumpHere(v, 0);
215       for(iDb=0; iDb<db->nDb; iDb++){
216         Schema *pSchema;
217         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
218         sqlite3VdbeUsesBtree(v, iDb);
219         pSchema = db->aDb[iDb].pSchema;
220         sqlite3VdbeAddOp4Int(v,
221           OP_Transaction,                    /* Opcode */
222           iDb,                               /* P1 */
223           DbMaskTest(pParse->writeMask,iDb), /* P2 */
224           pSchema->schema_cookie,            /* P3 */
225           pSchema->iGeneration               /* P4 */
226         );
227         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
228         VdbeComment((v,
229               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
230       }
231 #ifndef SQLITE_OMIT_VIRTUALTABLE
232       for(i=0; i<pParse->nVtabLock; i++){
233         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
234         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
235       }
236       pParse->nVtabLock = 0;
237 #endif
238 
239       /* Once all the cookies have been verified and transactions opened,
240       ** obtain the required table-locks. This is a no-op unless the
241       ** shared-cache feature is enabled.
242       */
243       codeTableLocks(pParse);
244 
245       /* Initialize any AUTOINCREMENT data structures required.
246       */
247       sqlite3AutoincrementBegin(pParse);
248 
249       /* Code constant expressions that where factored out of inner loops.
250       **
251       ** The pConstExpr list might also contain expressions that we simply
252       ** want to keep around until the Parse object is deleted.  Such
253       ** expressions have iConstExprReg==0.  Do not generate code for
254       ** those expressions, of course.
255       */
256       if( pParse->pConstExpr ){
257         ExprList *pEL = pParse->pConstExpr;
258         pParse->okConstFactor = 0;
259         for(i=0; i<pEL->nExpr; i++){
260           int iReg = pEL->a[i].u.iConstExprReg;
261           if( iReg>0 ){
262             sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
263           }
264         }
265       }
266 
267       if( pParse->bReturning ){
268         Returning *pRet = pParse->u1.pReturning;
269         if( pRet->nRetCol==0 ){
270           assert( CORRUPT_DB );
271         }else{
272           sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
273         }
274       }
275 
276       /* Finally, jump back to the beginning of the executable code. */
277       sqlite3VdbeGoto(v, 1);
278     }
279   }
280 
281   /* Get the VDBE program ready for execution
282   */
283   if( v && pParse->nErr==0 && !db->mallocFailed ){
284     /* A minimum of one cursor is required if autoincrement is used
285     *  See ticket [a696379c1f08866] */
286     assert( pParse->pAinc==0 || pParse->nTab>0 );
287     sqlite3VdbeMakeReady(v, pParse);
288     pParse->rc = SQLITE_DONE;
289   }else{
290     pParse->rc = SQLITE_ERROR;
291   }
292 }
293 
294 /*
295 ** Run the parser and code generator recursively in order to generate
296 ** code for the SQL statement given onto the end of the pParse context
297 ** currently under construction.  Notes:
298 **
299 **   *  The final OP_Halt is not appended and other initialization
300 **      and finalization steps are omitted because those are handling by the
301 **      outermost parser.
302 **
303 **   *  Built-in SQL functions always take precedence over application-defined
304 **      SQL functions.  In other words, it is not possible to override a
305 **      built-in function.
306 */
307 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
308   va_list ap;
309   char *zSql;
310   char *zErrMsg = 0;
311   sqlite3 *db = pParse->db;
312   u32 savedDbFlags = db->mDbFlags;
313   char saveBuf[PARSE_TAIL_SZ];
314 
315   if( pParse->nErr ) return;
316   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
317   va_start(ap, zFormat);
318   zSql = sqlite3VMPrintf(db, zFormat, ap);
319   va_end(ap);
320   if( zSql==0 ){
321     /* This can result either from an OOM or because the formatted string
322     ** exceeds SQLITE_LIMIT_LENGTH.  In the latter case, we need to set
323     ** an error */
324     if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
325     pParse->nErr++;
326     return;
327   }
328   pParse->nested++;
329   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
330   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
331   db->mDbFlags |= DBFLAG_PreferBuiltin;
332   sqlite3RunParser(pParse, zSql, &zErrMsg);
333   db->mDbFlags = savedDbFlags;
334   sqlite3DbFree(db, zErrMsg);
335   sqlite3DbFree(db, zSql);
336   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
337   pParse->nested--;
338 }
339 
340 #if SQLITE_USER_AUTHENTICATION
341 /*
342 ** Return TRUE if zTable is the name of the system table that stores the
343 ** list of users and their access credentials.
344 */
345 int sqlite3UserAuthTable(const char *zTable){
346   return sqlite3_stricmp(zTable, "sqlite_user")==0;
347 }
348 #endif
349 
350 /*
351 ** Locate the in-memory structure that describes a particular database
352 ** table given the name of that table and (optionally) the name of the
353 ** database containing the table.  Return NULL if not found.
354 **
355 ** If zDatabase is 0, all databases are searched for the table and the
356 ** first matching table is returned.  (No checking for duplicate table
357 ** names is done.)  The search order is TEMP first, then MAIN, then any
358 ** auxiliary databases added using the ATTACH command.
359 **
360 ** See also sqlite3LocateTable().
361 */
362 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
363   Table *p = 0;
364   int i;
365 
366   /* All mutexes are required for schema access.  Make sure we hold them. */
367   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
368 #if SQLITE_USER_AUTHENTICATION
369   /* Only the admin user is allowed to know that the sqlite_user table
370   ** exists */
371   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
372     return 0;
373   }
374 #endif
375   if( zDatabase ){
376     for(i=0; i<db->nDb; i++){
377       if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
378     }
379     if( i>=db->nDb ){
380       /* No match against the official names.  But always match "main"
381       ** to schema 0 as a legacy fallback. */
382       if( sqlite3StrICmp(zDatabase,"main")==0 ){
383         i = 0;
384       }else{
385         return 0;
386       }
387     }
388     p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
389     if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
390       if( i==1 ){
391         if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
392          || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
393          || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
394         ){
395           p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
396                               LEGACY_TEMP_SCHEMA_TABLE);
397         }
398       }else{
399         if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
400           p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
401                               LEGACY_SCHEMA_TABLE);
402         }
403       }
404     }
405   }else{
406     /* Match against TEMP first */
407     p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
408     if( p ) return p;
409     /* The main database is second */
410     p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
411     if( p ) return p;
412     /* Attached databases are in order of attachment */
413     for(i=2; i<db->nDb; i++){
414       assert( sqlite3SchemaMutexHeld(db, i, 0) );
415       p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
416       if( p ) break;
417     }
418     if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
419       if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
420         p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
421       }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
422         p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
423                             LEGACY_TEMP_SCHEMA_TABLE);
424       }
425     }
426   }
427   return p;
428 }
429 
430 /*
431 ** Locate the in-memory structure that describes a particular database
432 ** table given the name of that table and (optionally) the name of the
433 ** database containing the table.  Return NULL if not found.  Also leave an
434 ** error message in pParse->zErrMsg.
435 **
436 ** The difference between this routine and sqlite3FindTable() is that this
437 ** routine leaves an error message in pParse->zErrMsg where
438 ** sqlite3FindTable() does not.
439 */
440 Table *sqlite3LocateTable(
441   Parse *pParse,         /* context in which to report errors */
442   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
443   const char *zName,     /* Name of the table we are looking for */
444   const char *zDbase     /* Name of the database.  Might be NULL */
445 ){
446   Table *p;
447   sqlite3 *db = pParse->db;
448 
449   /* Read the database schema. If an error occurs, leave an error message
450   ** and code in pParse and return NULL. */
451   if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
452    && SQLITE_OK!=sqlite3ReadSchema(pParse)
453   ){
454     return 0;
455   }
456 
457   p = sqlite3FindTable(db, zName, zDbase);
458   if( p==0 ){
459 #ifndef SQLITE_OMIT_VIRTUALTABLE
460     /* If zName is the not the name of a table in the schema created using
461     ** CREATE, then check to see if it is the name of an virtual table that
462     ** can be an eponymous virtual table. */
463     if( pParse->disableVtab==0 && db->init.busy==0 ){
464       Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
465       if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
466         pMod = sqlite3PragmaVtabRegister(db, zName);
467       }
468       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
469         testcase( pMod->pEpoTab==0 );
470         return pMod->pEpoTab;
471       }
472     }
473 #endif
474     if( flags & LOCATE_NOERR ) return 0;
475     pParse->checkSchema = 1;
476   }else if( IsVirtual(p) && pParse->disableVtab ){
477     p = 0;
478   }
479 
480   if( p==0 ){
481     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
482     if( zDbase ){
483       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
484     }else{
485       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
486     }
487   }else{
488     assert( HasRowid(p) || p->iPKey<0 );
489   }
490 
491   return p;
492 }
493 
494 /*
495 ** Locate the table identified by *p.
496 **
497 ** This is a wrapper around sqlite3LocateTable(). The difference between
498 ** sqlite3LocateTable() and this function is that this function restricts
499 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
500 ** non-NULL if it is part of a view or trigger program definition. See
501 ** sqlite3FixSrcList() for details.
502 */
503 Table *sqlite3LocateTableItem(
504   Parse *pParse,
505   u32 flags,
506   SrcItem *p
507 ){
508   const char *zDb;
509   assert( p->pSchema==0 || p->zDatabase==0 );
510   if( p->pSchema ){
511     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
512     zDb = pParse->db->aDb[iDb].zDbSName;
513   }else{
514     zDb = p->zDatabase;
515   }
516   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
517 }
518 
519 /*
520 ** Return the preferred table name for system tables.  Translate legacy
521 ** names into the new preferred names, as appropriate.
522 */
523 const char *sqlite3PreferredTableName(const char *zName){
524   if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
525     if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
526       return PREFERRED_SCHEMA_TABLE;
527     }
528     if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
529       return PREFERRED_TEMP_SCHEMA_TABLE;
530     }
531   }
532   return zName;
533 }
534 
535 /*
536 ** Locate the in-memory structure that describes
537 ** a particular index given the name of that index
538 ** and the name of the database that contains the index.
539 ** Return NULL if not found.
540 **
541 ** If zDatabase is 0, all databases are searched for the
542 ** table and the first matching index is returned.  (No checking
543 ** for duplicate index names is done.)  The search order is
544 ** TEMP first, then MAIN, then any auxiliary databases added
545 ** using the ATTACH command.
546 */
547 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
548   Index *p = 0;
549   int i;
550   /* All mutexes are required for schema access.  Make sure we hold them. */
551   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
552   for(i=OMIT_TEMPDB; i<db->nDb; i++){
553     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
554     Schema *pSchema = db->aDb[j].pSchema;
555     assert( pSchema );
556     if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
557     assert( sqlite3SchemaMutexHeld(db, j, 0) );
558     p = sqlite3HashFind(&pSchema->idxHash, zName);
559     if( p ) break;
560   }
561   return p;
562 }
563 
564 /*
565 ** Reclaim the memory used by an index
566 */
567 void sqlite3FreeIndex(sqlite3 *db, Index *p){
568 #ifndef SQLITE_OMIT_ANALYZE
569   sqlite3DeleteIndexSamples(db, p);
570 #endif
571   sqlite3ExprDelete(db, p->pPartIdxWhere);
572   sqlite3ExprListDelete(db, p->aColExpr);
573   sqlite3DbFree(db, p->zColAff);
574   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
575 #ifdef SQLITE_ENABLE_STAT4
576   sqlite3_free(p->aiRowEst);
577 #endif
578   sqlite3DbFree(db, p);
579 }
580 
581 /*
582 ** For the index called zIdxName which is found in the database iDb,
583 ** unlike that index from its Table then remove the index from
584 ** the index hash table and free all memory structures associated
585 ** with the index.
586 */
587 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
588   Index *pIndex;
589   Hash *pHash;
590 
591   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
592   pHash = &db->aDb[iDb].pSchema->idxHash;
593   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
594   if( ALWAYS(pIndex) ){
595     if( pIndex->pTable->pIndex==pIndex ){
596       pIndex->pTable->pIndex = pIndex->pNext;
597     }else{
598       Index *p;
599       /* Justification of ALWAYS();  The index must be on the list of
600       ** indices. */
601       p = pIndex->pTable->pIndex;
602       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
603       if( ALWAYS(p && p->pNext==pIndex) ){
604         p->pNext = pIndex->pNext;
605       }
606     }
607     sqlite3FreeIndex(db, pIndex);
608   }
609   db->mDbFlags |= DBFLAG_SchemaChange;
610 }
611 
612 /*
613 ** Look through the list of open database files in db->aDb[] and if
614 ** any have been closed, remove them from the list.  Reallocate the
615 ** db->aDb[] structure to a smaller size, if possible.
616 **
617 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
618 ** are never candidates for being collapsed.
619 */
620 void sqlite3CollapseDatabaseArray(sqlite3 *db){
621   int i, j;
622   for(i=j=2; i<db->nDb; i++){
623     struct Db *pDb = &db->aDb[i];
624     if( pDb->pBt==0 ){
625       sqlite3DbFree(db, pDb->zDbSName);
626       pDb->zDbSName = 0;
627       continue;
628     }
629     if( j<i ){
630       db->aDb[j] = db->aDb[i];
631     }
632     j++;
633   }
634   db->nDb = j;
635   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
636     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
637     sqlite3DbFree(db, db->aDb);
638     db->aDb = db->aDbStatic;
639   }
640 }
641 
642 /*
643 ** Reset the schema for the database at index iDb.  Also reset the
644 ** TEMP schema.  The reset is deferred if db->nSchemaLock is not zero.
645 ** Deferred resets may be run by calling with iDb<0.
646 */
647 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
648   int i;
649   assert( iDb<db->nDb );
650 
651   if( iDb>=0 ){
652     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
653     DbSetProperty(db, iDb, DB_ResetWanted);
654     DbSetProperty(db, 1, DB_ResetWanted);
655     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
656   }
657 
658   if( db->nSchemaLock==0 ){
659     for(i=0; i<db->nDb; i++){
660       if( DbHasProperty(db, i, DB_ResetWanted) ){
661         sqlite3SchemaClear(db->aDb[i].pSchema);
662       }
663     }
664   }
665 }
666 
667 /*
668 ** Erase all schema information from all attached databases (including
669 ** "main" and "temp") for a single database connection.
670 */
671 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
672   int i;
673   sqlite3BtreeEnterAll(db);
674   for(i=0; i<db->nDb; i++){
675     Db *pDb = &db->aDb[i];
676     if( pDb->pSchema ){
677       if( db->nSchemaLock==0 ){
678         sqlite3SchemaClear(pDb->pSchema);
679       }else{
680         DbSetProperty(db, i, DB_ResetWanted);
681       }
682     }
683   }
684   db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
685   sqlite3VtabUnlockList(db);
686   sqlite3BtreeLeaveAll(db);
687   if( db->nSchemaLock==0 ){
688     sqlite3CollapseDatabaseArray(db);
689   }
690 }
691 
692 /*
693 ** This routine is called when a commit occurs.
694 */
695 void sqlite3CommitInternalChanges(sqlite3 *db){
696   db->mDbFlags &= ~DBFLAG_SchemaChange;
697 }
698 
699 /*
700 ** Set the expression associated with a column.  This is usually
701 ** the DEFAULT value, but might also be the expression that computes
702 ** the value for a generated column.
703 */
704 void sqlite3ColumnSetExpr(
705   Parse *pParse,    /* Parsing context */
706   Table *pTab,      /* The table containing the column */
707   Column *pCol,     /* The column to receive the new DEFAULT expression */
708   Expr *pExpr       /* The new default expression */
709 ){
710   ExprList *pList;
711   assert( IsOrdinaryTable(pTab) );
712   pList = pTab->u.tab.pDfltList;
713   if( pCol->iDflt==0
714    || NEVER(pList==0)
715    || NEVER(pList->nExpr<pCol->iDflt)
716   ){
717     pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
718     pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
719   }else{
720     sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
721     pList->a[pCol->iDflt-1].pExpr = pExpr;
722   }
723 }
724 
725 /*
726 ** Return the expression associated with a column.  The expression might be
727 ** the DEFAULT clause or the AS clause of a generated column.
728 ** Return NULL if the column has no associated expression.
729 */
730 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
731   if( pCol->iDflt==0 ) return 0;
732   if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
733   if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
734   if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
735   return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
736 }
737 
738 /*
739 ** Set the collating sequence name for a column.
740 */
741 void sqlite3ColumnSetColl(
742   sqlite3 *db,
743   Column *pCol,
744   const char *zColl
745 ){
746   i64 nColl;
747   i64 n;
748   char *zNew;
749   assert( zColl!=0 );
750   n = sqlite3Strlen30(pCol->zCnName) + 1;
751   if( pCol->colFlags & COLFLAG_HASTYPE ){
752     n += sqlite3Strlen30(pCol->zCnName+n) + 1;
753   }
754   nColl = sqlite3Strlen30(zColl) + 1;
755   zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
756   if( zNew ){
757     pCol->zCnName = zNew;
758     memcpy(pCol->zCnName + n, zColl, nColl);
759     pCol->colFlags |= COLFLAG_HASCOLL;
760   }
761 }
762 
763 /*
764 ** Return the collating squence name for a column
765 */
766 const char *sqlite3ColumnColl(Column *pCol){
767   const char *z;
768   if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
769   z = pCol->zCnName;
770   while( *z ){ z++; }
771   if( pCol->colFlags & COLFLAG_HASTYPE ){
772     do{ z++; }while( *z );
773   }
774   return z+1;
775 }
776 
777 /*
778 ** Delete memory allocated for the column names of a table or view (the
779 ** Table.aCol[] array).
780 */
781 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
782   int i;
783   Column *pCol;
784   assert( pTable!=0 );
785   if( (pCol = pTable->aCol)!=0 ){
786     for(i=0; i<pTable->nCol; i++, pCol++){
787       assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
788       sqlite3DbFree(db, pCol->zCnName);
789     }
790     sqlite3DbFree(db, pTable->aCol);
791     if( IsOrdinaryTable(pTable) ){
792       sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
793     }
794     if( db==0 || db->pnBytesFreed==0 ){
795       pTable->aCol = 0;
796       pTable->nCol = 0;
797       if( IsOrdinaryTable(pTable) ){
798         pTable->u.tab.pDfltList = 0;
799       }
800     }
801   }
802 }
803 
804 /*
805 ** Remove the memory data structures associated with the given
806 ** Table.  No changes are made to disk by this routine.
807 **
808 ** This routine just deletes the data structure.  It does not unlink
809 ** the table data structure from the hash table.  But it does destroy
810 ** memory structures of the indices and foreign keys associated with
811 ** the table.
812 **
813 ** The db parameter is optional.  It is needed if the Table object
814 ** contains lookaside memory.  (Table objects in the schema do not use
815 ** lookaside memory, but some ephemeral Table objects do.)  Or the
816 ** db parameter can be used with db->pnBytesFreed to measure the memory
817 ** used by the Table object.
818 */
819 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
820   Index *pIndex, *pNext;
821 
822 #ifdef SQLITE_DEBUG
823   /* Record the number of outstanding lookaside allocations in schema Tables
824   ** prior to doing any free() operations. Since schema Tables do not use
825   ** lookaside, this number should not change.
826   **
827   ** If malloc has already failed, it may be that it failed while allocating
828   ** a Table object that was going to be marked ephemeral. So do not check
829   ** that no lookaside memory is used in this case either. */
830   int nLookaside = 0;
831   if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
832     nLookaside = sqlite3LookasideUsed(db, 0);
833   }
834 #endif
835 
836   /* Delete all indices associated with this table. */
837   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
838     pNext = pIndex->pNext;
839     assert( pIndex->pSchema==pTable->pSchema
840          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
841     if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
842       char *zName = pIndex->zName;
843       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
844          &pIndex->pSchema->idxHash, zName, 0
845       );
846       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
847       assert( pOld==pIndex || pOld==0 );
848     }
849     sqlite3FreeIndex(db, pIndex);
850   }
851 
852   if( IsOrdinaryTable(pTable) ){
853     sqlite3FkDelete(db, pTable);
854   }
855 #ifndef SQLITE_OMIT_VIRTUAL_TABLE
856   else if( IsVirtual(pTable) ){
857     sqlite3VtabClear(db, pTable);
858   }
859 #endif
860   else{
861     assert( IsView(pTable) );
862     sqlite3SelectDelete(db, pTable->u.view.pSelect);
863   }
864 
865   /* Delete the Table structure itself.
866   */
867   sqlite3DeleteColumnNames(db, pTable);
868   sqlite3DbFree(db, pTable->zName);
869   sqlite3DbFree(db, pTable->zColAff);
870   sqlite3ExprListDelete(db, pTable->pCheck);
871   sqlite3DbFree(db, pTable);
872 
873   /* Verify that no lookaside memory was used by schema tables */
874   assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
875 }
876 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
877   /* Do not delete the table until the reference count reaches zero. */
878   if( !pTable ) return;
879   if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
880   deleteTable(db, pTable);
881 }
882 
883 
884 /*
885 ** Unlink the given table from the hash tables and the delete the
886 ** table structure with all its indices and foreign keys.
887 */
888 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
889   Table *p;
890   Db *pDb;
891 
892   assert( db!=0 );
893   assert( iDb>=0 && iDb<db->nDb );
894   assert( zTabName );
895   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
896   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
897   pDb = &db->aDb[iDb];
898   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
899   sqlite3DeleteTable(db, p);
900   db->mDbFlags |= DBFLAG_SchemaChange;
901 }
902 
903 /*
904 ** Given a token, return a string that consists of the text of that
905 ** token.  Space to hold the returned string
906 ** is obtained from sqliteMalloc() and must be freed by the calling
907 ** function.
908 **
909 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
910 ** surround the body of the token are removed.
911 **
912 ** Tokens are often just pointers into the original SQL text and so
913 ** are not \000 terminated and are not persistent.  The returned string
914 ** is \000 terminated and is persistent.
915 */
916 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
917   char *zName;
918   if( pName ){
919     zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
920     sqlite3Dequote(zName);
921   }else{
922     zName = 0;
923   }
924   return zName;
925 }
926 
927 /*
928 ** Open the sqlite_schema table stored in database number iDb for
929 ** writing. The table is opened using cursor 0.
930 */
931 void sqlite3OpenSchemaTable(Parse *p, int iDb){
932   Vdbe *v = sqlite3GetVdbe(p);
933   sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
934   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
935   if( p->nTab==0 ){
936     p->nTab = 1;
937   }
938 }
939 
940 /*
941 ** Parameter zName points to a nul-terminated buffer containing the name
942 ** of a database ("main", "temp" or the name of an attached db). This
943 ** function returns the index of the named database in db->aDb[], or
944 ** -1 if the named db cannot be found.
945 */
946 int sqlite3FindDbName(sqlite3 *db, const char *zName){
947   int i = -1;         /* Database number */
948   if( zName ){
949     Db *pDb;
950     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
951       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
952       /* "main" is always an acceptable alias for the primary database
953       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
954       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
955     }
956   }
957   return i;
958 }
959 
960 /*
961 ** The token *pName contains the name of a database (either "main" or
962 ** "temp" or the name of an attached db). This routine returns the
963 ** index of the named database in db->aDb[], or -1 if the named db
964 ** does not exist.
965 */
966 int sqlite3FindDb(sqlite3 *db, Token *pName){
967   int i;                               /* Database number */
968   char *zName;                         /* Name we are searching for */
969   zName = sqlite3NameFromToken(db, pName);
970   i = sqlite3FindDbName(db, zName);
971   sqlite3DbFree(db, zName);
972   return i;
973 }
974 
975 /* The table or view or trigger name is passed to this routine via tokens
976 ** pName1 and pName2. If the table name was fully qualified, for example:
977 **
978 ** CREATE TABLE xxx.yyy (...);
979 **
980 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
981 ** the table name is not fully qualified, i.e.:
982 **
983 ** CREATE TABLE yyy(...);
984 **
985 ** Then pName1 is set to "yyy" and pName2 is "".
986 **
987 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
988 ** pName2) that stores the unqualified table name.  The index of the
989 ** database "xxx" is returned.
990 */
991 int sqlite3TwoPartName(
992   Parse *pParse,      /* Parsing and code generating context */
993   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
994   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
995   Token **pUnqual     /* Write the unqualified object name here */
996 ){
997   int iDb;                    /* Database holding the object */
998   sqlite3 *db = pParse->db;
999 
1000   assert( pName2!=0 );
1001   if( pName2->n>0 ){
1002     if( db->init.busy ) {
1003       sqlite3ErrorMsg(pParse, "corrupt database");
1004       return -1;
1005     }
1006     *pUnqual = pName2;
1007     iDb = sqlite3FindDb(db, pName1);
1008     if( iDb<0 ){
1009       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
1010       return -1;
1011     }
1012   }else{
1013     assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
1014              || (db->mDbFlags & DBFLAG_Vacuum)!=0);
1015     iDb = db->init.iDb;
1016     *pUnqual = pName1;
1017   }
1018   return iDb;
1019 }
1020 
1021 /*
1022 ** True if PRAGMA writable_schema is ON
1023 */
1024 int sqlite3WritableSchema(sqlite3 *db){
1025   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
1026   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1027                SQLITE_WriteSchema );
1028   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1029                SQLITE_Defensive );
1030   testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1031                (SQLITE_WriteSchema|SQLITE_Defensive) );
1032   return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
1033 }
1034 
1035 /*
1036 ** This routine is used to check if the UTF-8 string zName is a legal
1037 ** unqualified name for a new schema object (table, index, view or
1038 ** trigger). All names are legal except those that begin with the string
1039 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1040 ** is reserved for internal use.
1041 **
1042 ** When parsing the sqlite_schema table, this routine also checks to
1043 ** make sure the "type", "name", and "tbl_name" columns are consistent
1044 ** with the SQL.
1045 */
1046 int sqlite3CheckObjectName(
1047   Parse *pParse,            /* Parsing context */
1048   const char *zName,        /* Name of the object to check */
1049   const char *zType,        /* Type of this object */
1050   const char *zTblName      /* Parent table name for triggers and indexes */
1051 ){
1052   sqlite3 *db = pParse->db;
1053   if( sqlite3WritableSchema(db)
1054    || db->init.imposterTable
1055    || !sqlite3Config.bExtraSchemaChecks
1056   ){
1057     /* Skip these error checks for writable_schema=ON */
1058     return SQLITE_OK;
1059   }
1060   if( db->init.busy ){
1061     if( sqlite3_stricmp(zType, db->init.azInit[0])
1062      || sqlite3_stricmp(zName, db->init.azInit[1])
1063      || sqlite3_stricmp(zTblName, db->init.azInit[2])
1064     ){
1065       sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
1066       return SQLITE_ERROR;
1067     }
1068   }else{
1069     if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
1070      || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
1071     ){
1072       sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
1073                       zName);
1074       return SQLITE_ERROR;
1075     }
1076 
1077   }
1078   return SQLITE_OK;
1079 }
1080 
1081 /*
1082 ** Return the PRIMARY KEY index of a table
1083 */
1084 Index *sqlite3PrimaryKeyIndex(Table *pTab){
1085   Index *p;
1086   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
1087   return p;
1088 }
1089 
1090 /*
1091 ** Convert an table column number into a index column number.  That is,
1092 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1093 ** find the (first) offset of that column in index pIdx.  Or return -1
1094 ** if column iCol is not used in index pIdx.
1095 */
1096 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
1097   int i;
1098   for(i=0; i<pIdx->nColumn; i++){
1099     if( iCol==pIdx->aiColumn[i] ) return i;
1100   }
1101   return -1;
1102 }
1103 
1104 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1105 /* Convert a storage column number into a table column number.
1106 **
1107 ** The storage column number (0,1,2,....) is the index of the value
1108 ** as it appears in the record on disk.  The true column number
1109 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1110 **
1111 ** The storage column number is less than the table column number if
1112 ** and only there are VIRTUAL columns to the left.
1113 **
1114 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1115 */
1116 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
1117   if( pTab->tabFlags & TF_HasVirtual ){
1118     int i;
1119     for(i=0; i<=iCol; i++){
1120       if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
1121     }
1122   }
1123   return iCol;
1124 }
1125 #endif
1126 
1127 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1128 /* Convert a table column number into a storage column number.
1129 **
1130 ** The storage column number (0,1,2,....) is the index of the value
1131 ** as it appears in the record on disk.  Or, if the input column is
1132 ** the N-th virtual column (zero-based) then the storage number is
1133 ** the number of non-virtual columns in the table plus N.
1134 **
1135 ** The true column number is the index (0,1,2,...) of the column in
1136 ** the CREATE TABLE statement.
1137 **
1138 ** If the input column is a VIRTUAL column, then it should not appear
1139 ** in storage.  But the value sometimes is cached in registers that
1140 ** follow the range of registers used to construct storage.  This
1141 ** avoids computing the same VIRTUAL column multiple times, and provides
1142 ** values for use by OP_Param opcodes in triggers.  Hence, if the
1143 ** input column is a VIRTUAL table, put it after all the other columns.
1144 **
1145 ** In the following, N means "normal column", S means STORED, and
1146 ** V means VIRTUAL.  Suppose the CREATE TABLE has columns like this:
1147 **
1148 **        CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1149 **                     -- 0 1 2 3 4 5 6 7 8
1150 **
1151 ** Then the mapping from this function is as follows:
1152 **
1153 **    INPUTS:     0 1 2 3 4 5 6 7 8
1154 **    OUTPUTS:    0 1 6 2 3 7 4 5 8
1155 **
1156 ** So, in other words, this routine shifts all the virtual columns to
1157 ** the end.
1158 **
1159 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1160 ** this routine is a no-op macro.  If the pTab does not have any virtual
1161 ** columns, then this routine is no-op that always return iCol.  If iCol
1162 ** is negative (indicating the ROWID column) then this routine return iCol.
1163 */
1164 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
1165   int i;
1166   i16 n;
1167   assert( iCol<pTab->nCol );
1168   if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
1169   for(i=0, n=0; i<iCol; i++){
1170     if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
1171   }
1172   if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
1173     /* iCol is a virtual column itself */
1174     return pTab->nNVCol + i - n;
1175   }else{
1176     /* iCol is a normal or stored column */
1177     return n;
1178   }
1179 }
1180 #endif
1181 
1182 /*
1183 ** Insert a single OP_JournalMode query opcode in order to force the
1184 ** prepared statement to return false for sqlite3_stmt_readonly().  This
1185 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1186 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1187 ** will return false for sqlite3_stmt_readonly() even if that statement
1188 ** is a read-only no-op.
1189 */
1190 static void sqlite3ForceNotReadOnly(Parse *pParse){
1191   int iReg = ++pParse->nMem;
1192   Vdbe *v = sqlite3GetVdbe(pParse);
1193   if( v ){
1194     sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
1195     sqlite3VdbeUsesBtree(v, 0);
1196   }
1197 }
1198 
1199 /*
1200 ** Begin constructing a new table representation in memory.  This is
1201 ** the first of several action routines that get called in response
1202 ** to a CREATE TABLE statement.  In particular, this routine is called
1203 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1204 ** flag is true if the table should be stored in the auxiliary database
1205 ** file instead of in the main database file.  This is normally the case
1206 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1207 ** CREATE and TABLE.
1208 **
1209 ** The new table record is initialized and put in pParse->pNewTable.
1210 ** As more of the CREATE TABLE statement is parsed, additional action
1211 ** routines will be called to add more information to this record.
1212 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1213 ** is called to complete the construction of the new table record.
1214 */
1215 void sqlite3StartTable(
1216   Parse *pParse,   /* Parser context */
1217   Token *pName1,   /* First part of the name of the table or view */
1218   Token *pName2,   /* Second part of the name of the table or view */
1219   int isTemp,      /* True if this is a TEMP table */
1220   int isView,      /* True if this is a VIEW */
1221   int isVirtual,   /* True if this is a VIRTUAL table */
1222   int noErr        /* Do nothing if table already exists */
1223 ){
1224   Table *pTable;
1225   char *zName = 0; /* The name of the new table */
1226   sqlite3 *db = pParse->db;
1227   Vdbe *v;
1228   int iDb;         /* Database number to create the table in */
1229   Token *pName;    /* Unqualified name of the table to create */
1230 
1231   if( db->init.busy && db->init.newTnum==1 ){
1232     /* Special case:  Parsing the sqlite_schema or sqlite_temp_schema schema */
1233     iDb = db->init.iDb;
1234     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
1235     pName = pName1;
1236   }else{
1237     /* The common case */
1238     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1239     if( iDb<0 ) return;
1240     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
1241       /* If creating a temp table, the name may not be qualified. Unless
1242       ** the database name is "temp" anyway.  */
1243       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
1244       return;
1245     }
1246     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
1247     zName = sqlite3NameFromToken(db, pName);
1248     if( IN_RENAME_OBJECT ){
1249       sqlite3RenameTokenMap(pParse, (void*)zName, pName);
1250     }
1251   }
1252   pParse->sNameToken = *pName;
1253   if( zName==0 ) return;
1254   if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
1255     goto begin_table_error;
1256   }
1257   if( db->init.iDb==1 ) isTemp = 1;
1258 #ifndef SQLITE_OMIT_AUTHORIZATION
1259   assert( isTemp==0 || isTemp==1 );
1260   assert( isView==0 || isView==1 );
1261   {
1262     static const u8 aCode[] = {
1263        SQLITE_CREATE_TABLE,
1264        SQLITE_CREATE_TEMP_TABLE,
1265        SQLITE_CREATE_VIEW,
1266        SQLITE_CREATE_TEMP_VIEW
1267     };
1268     char *zDb = db->aDb[iDb].zDbSName;
1269     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1270       goto begin_table_error;
1271     }
1272     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
1273                                        zName, 0, zDb) ){
1274       goto begin_table_error;
1275     }
1276   }
1277 #endif
1278 
1279   /* Make sure the new table name does not collide with an existing
1280   ** index or table name in the same database.  Issue an error message if
1281   ** it does. The exception is if the statement being parsed was passed
1282   ** to an sqlite3_declare_vtab() call. In that case only the column names
1283   ** and types will be used, so there is no need to test for namespace
1284   ** collisions.
1285   */
1286   if( !IN_SPECIAL_PARSE ){
1287     char *zDb = db->aDb[iDb].zDbSName;
1288     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1289       goto begin_table_error;
1290     }
1291     pTable = sqlite3FindTable(db, zName, zDb);
1292     if( pTable ){
1293       if( !noErr ){
1294         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
1295       }else{
1296         assert( !db->init.busy || CORRUPT_DB );
1297         sqlite3CodeVerifySchema(pParse, iDb);
1298         sqlite3ForceNotReadOnly(pParse);
1299       }
1300       goto begin_table_error;
1301     }
1302     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
1303       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
1304       goto begin_table_error;
1305     }
1306   }
1307 
1308   pTable = sqlite3DbMallocZero(db, sizeof(Table));
1309   if( pTable==0 ){
1310     assert( db->mallocFailed );
1311     pParse->rc = SQLITE_NOMEM_BKPT;
1312     pParse->nErr++;
1313     goto begin_table_error;
1314   }
1315   pTable->zName = zName;
1316   pTable->iPKey = -1;
1317   pTable->pSchema = db->aDb[iDb].pSchema;
1318   pTable->nTabRef = 1;
1319 #ifdef SQLITE_DEFAULT_ROWEST
1320   pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
1321 #else
1322   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1323 #endif
1324   assert( pParse->pNewTable==0 );
1325   pParse->pNewTable = pTable;
1326 
1327   /* Begin generating the code that will insert the table record into
1328   ** the schema table.  Note in particular that we must go ahead
1329   ** and allocate the record number for the table entry now.  Before any
1330   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
1331   ** indices to be created and the table record must come before the
1332   ** indices.  Hence, the record number for the table must be allocated
1333   ** now.
1334   */
1335   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1336     int addr1;
1337     int fileFormat;
1338     int reg1, reg2, reg3;
1339     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1340     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1341     sqlite3BeginWriteOperation(pParse, 1, iDb);
1342 
1343 #ifndef SQLITE_OMIT_VIRTUALTABLE
1344     if( isVirtual ){
1345       sqlite3VdbeAddOp0(v, OP_VBegin);
1346     }
1347 #endif
1348 
1349     /* If the file format and encoding in the database have not been set,
1350     ** set them now.
1351     */
1352     reg1 = pParse->regRowid = ++pParse->nMem;
1353     reg2 = pParse->regRoot = ++pParse->nMem;
1354     reg3 = ++pParse->nMem;
1355     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1356     sqlite3VdbeUsesBtree(v, iDb);
1357     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1358     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1359                   1 : SQLITE_MAX_FILE_FORMAT;
1360     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1361     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1362     sqlite3VdbeJumpHere(v, addr1);
1363 
1364     /* This just creates a place-holder record in the sqlite_schema table.
1365     ** The record created does not contain anything yet.  It will be replaced
1366     ** by the real entry in code generated at sqlite3EndTable().
1367     **
1368     ** The rowid for the new entry is left in register pParse->regRowid.
1369     ** The root page number of the new table is left in reg pParse->regRoot.
1370     ** The rowid and root page number values are needed by the code that
1371     ** sqlite3EndTable will generate.
1372     */
1373 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1374     if( isView || isVirtual ){
1375       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1376     }else
1377 #endif
1378     {
1379       assert( !pParse->bReturning );
1380       pParse->u1.addrCrTab =
1381          sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1382     }
1383     sqlite3OpenSchemaTable(pParse, iDb);
1384     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1385     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1386     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1387     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1388     sqlite3VdbeAddOp0(v, OP_Close);
1389   }
1390 
1391   /* Normal (non-error) return. */
1392   return;
1393 
1394   /* If an error occurs, we jump here */
1395 begin_table_error:
1396   pParse->checkSchema = 1;
1397   sqlite3DbFree(db, zName);
1398   return;
1399 }
1400 
1401 /* Set properties of a table column based on the (magical)
1402 ** name of the column.
1403 */
1404 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1405 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1406   if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
1407     pCol->colFlags |= COLFLAG_HIDDEN;
1408     if( pTab ) pTab->tabFlags |= TF_HasHidden;
1409   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1410     pTab->tabFlags |= TF_OOOHidden;
1411   }
1412 }
1413 #endif
1414 
1415 /*
1416 ** Name of the special TEMP trigger used to implement RETURNING.  The
1417 ** name begins with "sqlite_" so that it is guaranteed not to collide
1418 ** with any application-generated triggers.
1419 */
1420 #define RETURNING_TRIGGER_NAME  "sqlite_returning"
1421 
1422 /*
1423 ** Clean up the data structures associated with the RETURNING clause.
1424 */
1425 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
1426   Hash *pHash;
1427   pHash = &(db->aDb[1].pSchema->trigHash);
1428   sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
1429   sqlite3ExprListDelete(db, pRet->pReturnEL);
1430   sqlite3DbFree(db, pRet);
1431 }
1432 
1433 /*
1434 ** Add the RETURNING clause to the parse currently underway.
1435 **
1436 ** This routine creates a special TEMP trigger that will fire for each row
1437 ** of the DML statement.  That TEMP trigger contains a single SELECT
1438 ** statement with a result set that is the argument of the RETURNING clause.
1439 ** The trigger has the Trigger.bReturning flag and an opcode of
1440 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1441 ** knows to handle it specially.  The TEMP trigger is automatically
1442 ** removed at the end of the parse.
1443 **
1444 ** When this routine is called, we do not yet know if the RETURNING clause
1445 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1446 ** RETURNING trigger instead.  It will then be converted into the appropriate
1447 ** type on the first call to sqlite3TriggersExist().
1448 */
1449 void sqlite3AddReturning(Parse *pParse, ExprList *pList){
1450   Returning *pRet;
1451   Hash *pHash;
1452   sqlite3 *db = pParse->db;
1453   if( pParse->pNewTrigger ){
1454     sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
1455   }else{
1456     assert( pParse->bReturning==0 );
1457   }
1458   pParse->bReturning = 1;
1459   pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
1460   if( pRet==0 ){
1461     sqlite3ExprListDelete(db, pList);
1462     return;
1463   }
1464   pParse->u1.pReturning = pRet;
1465   pRet->pParse = pParse;
1466   pRet->pReturnEL = pList;
1467   sqlite3ParserAddCleanup(pParse,
1468      (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
1469   testcase( pParse->earlyCleanup );
1470   if( db->mallocFailed ) return;
1471   pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
1472   pRet->retTrig.op = TK_RETURNING;
1473   pRet->retTrig.tr_tm = TRIGGER_AFTER;
1474   pRet->retTrig.bReturning = 1;
1475   pRet->retTrig.pSchema = db->aDb[1].pSchema;
1476   pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
1477   pRet->retTrig.step_list = &pRet->retTStep;
1478   pRet->retTStep.op = TK_RETURNING;
1479   pRet->retTStep.pTrig = &pRet->retTrig;
1480   pRet->retTStep.pExprList = pList;
1481   pHash = &(db->aDb[1].pSchema->trigHash);
1482   assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
1483   if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
1484           ==&pRet->retTrig ){
1485     sqlite3OomFault(db);
1486   }
1487 }
1488 
1489 /*
1490 ** Add a new column to the table currently being constructed.
1491 **
1492 ** The parser calls this routine once for each column declaration
1493 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1494 ** first to get things going.  Then this routine is called for each
1495 ** column.
1496 */
1497 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
1498   Table *p;
1499   int i;
1500   char *z;
1501   char *zType;
1502   Column *pCol;
1503   sqlite3 *db = pParse->db;
1504   u8 hName;
1505   Column *aNew;
1506   u8 eType = COLTYPE_CUSTOM;
1507   u8 szEst = 1;
1508   char affinity = SQLITE_AFF_BLOB;
1509 
1510   if( (p = pParse->pNewTable)==0 ) return;
1511   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1512     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1513     return;
1514   }
1515   if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
1516 
1517   /* Because keywords GENERATE ALWAYS can be converted into indentifiers
1518   ** by the parser, we can sometimes end up with a typename that ends
1519   ** with "generated always".  Check for this case and omit the surplus
1520   ** text. */
1521   if( sType.n>=16
1522    && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
1523   ){
1524     sType.n -= 6;
1525     while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1526     if( sType.n>=9
1527      && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
1528     ){
1529       sType.n -= 9;
1530       while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1531     }
1532   }
1533 
1534   /* Check for standard typenames.  For standard typenames we will
1535   ** set the Column.eType field rather than storing the typename after
1536   ** the column name, in order to save space. */
1537   if( sType.n>=3 ){
1538     sqlite3DequoteToken(&sType);
1539     for(i=0; i<SQLITE_N_STDTYPE; i++){
1540        if( sType.n==sqlite3StdTypeLen[i]
1541         && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
1542        ){
1543          sType.n = 0;
1544          eType = i+1;
1545          affinity = sqlite3StdTypeAffinity[i];
1546          if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
1547          break;
1548        }
1549     }
1550   }
1551 
1552   z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
1553   if( z==0 ) return;
1554   if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
1555   memcpy(z, sName.z, sName.n);
1556   z[sName.n] = 0;
1557   sqlite3Dequote(z);
1558   hName = sqlite3StrIHash(z);
1559   for(i=0; i<p->nCol; i++){
1560     if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
1561       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1562       sqlite3DbFree(db, z);
1563       return;
1564     }
1565   }
1566   aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
1567   if( aNew==0 ){
1568     sqlite3DbFree(db, z);
1569     return;
1570   }
1571   p->aCol = aNew;
1572   pCol = &p->aCol[p->nCol];
1573   memset(pCol, 0, sizeof(p->aCol[0]));
1574   pCol->zCnName = z;
1575   pCol->hName = hName;
1576   sqlite3ColumnPropertiesFromName(p, pCol);
1577 
1578   if( sType.n==0 ){
1579     /* If there is no type specified, columns have the default affinity
1580     ** 'BLOB' with a default size of 4 bytes. */
1581     pCol->affinity = affinity;
1582     pCol->eCType = eType;
1583     pCol->szEst = szEst;
1584 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1585     if( affinity==SQLITE_AFF_BLOB ){
1586       if( 4>=sqlite3GlobalConfig.szSorterRef ){
1587         pCol->colFlags |= COLFLAG_SORTERREF;
1588       }
1589     }
1590 #endif
1591   }else{
1592     zType = z + sqlite3Strlen30(z) + 1;
1593     memcpy(zType, sType.z, sType.n);
1594     zType[sType.n] = 0;
1595     sqlite3Dequote(zType);
1596     pCol->affinity = sqlite3AffinityType(zType, pCol);
1597     pCol->colFlags |= COLFLAG_HASTYPE;
1598   }
1599   p->nCol++;
1600   p->nNVCol++;
1601   pParse->constraintName.n = 0;
1602 }
1603 
1604 /*
1605 ** This routine is called by the parser while in the middle of
1606 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1607 ** been seen on a column.  This routine sets the notNull flag on
1608 ** the column currently under construction.
1609 */
1610 void sqlite3AddNotNull(Parse *pParse, int onError){
1611   Table *p;
1612   Column *pCol;
1613   p = pParse->pNewTable;
1614   if( p==0 || NEVER(p->nCol<1) ) return;
1615   pCol = &p->aCol[p->nCol-1];
1616   pCol->notNull = (u8)onError;
1617   p->tabFlags |= TF_HasNotNull;
1618 
1619   /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1620   ** on this column.  */
1621   if( pCol->colFlags & COLFLAG_UNIQUE ){
1622     Index *pIdx;
1623     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1624       assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1625       if( pIdx->aiColumn[0]==p->nCol-1 ){
1626         pIdx->uniqNotNull = 1;
1627       }
1628     }
1629   }
1630 }
1631 
1632 /*
1633 ** Scan the column type name zType (length nType) and return the
1634 ** associated affinity type.
1635 **
1636 ** This routine does a case-independent search of zType for the
1637 ** substrings in the following table. If one of the substrings is
1638 ** found, the corresponding affinity is returned. If zType contains
1639 ** more than one of the substrings, entries toward the top of
1640 ** the table take priority. For example, if zType is 'BLOBINT',
1641 ** SQLITE_AFF_INTEGER is returned.
1642 **
1643 ** Substring     | Affinity
1644 ** --------------------------------
1645 ** 'INT'         | SQLITE_AFF_INTEGER
1646 ** 'CHAR'        | SQLITE_AFF_TEXT
1647 ** 'CLOB'        | SQLITE_AFF_TEXT
1648 ** 'TEXT'        | SQLITE_AFF_TEXT
1649 ** 'BLOB'        | SQLITE_AFF_BLOB
1650 ** 'REAL'        | SQLITE_AFF_REAL
1651 ** 'FLOA'        | SQLITE_AFF_REAL
1652 ** 'DOUB'        | SQLITE_AFF_REAL
1653 **
1654 ** If none of the substrings in the above table are found,
1655 ** SQLITE_AFF_NUMERIC is returned.
1656 */
1657 char sqlite3AffinityType(const char *zIn, Column *pCol){
1658   u32 h = 0;
1659   char aff = SQLITE_AFF_NUMERIC;
1660   const char *zChar = 0;
1661 
1662   assert( zIn!=0 );
1663   while( zIn[0] ){
1664     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1665     zIn++;
1666     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1667       aff = SQLITE_AFF_TEXT;
1668       zChar = zIn;
1669     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1670       aff = SQLITE_AFF_TEXT;
1671     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1672       aff = SQLITE_AFF_TEXT;
1673     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1674         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1675       aff = SQLITE_AFF_BLOB;
1676       if( zIn[0]=='(' ) zChar = zIn;
1677 #ifndef SQLITE_OMIT_FLOATING_POINT
1678     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1679         && aff==SQLITE_AFF_NUMERIC ){
1680       aff = SQLITE_AFF_REAL;
1681     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1682         && aff==SQLITE_AFF_NUMERIC ){
1683       aff = SQLITE_AFF_REAL;
1684     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1685         && aff==SQLITE_AFF_NUMERIC ){
1686       aff = SQLITE_AFF_REAL;
1687 #endif
1688     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1689       aff = SQLITE_AFF_INTEGER;
1690       break;
1691     }
1692   }
1693 
1694   /* If pCol is not NULL, store an estimate of the field size.  The
1695   ** estimate is scaled so that the size of an integer is 1.  */
1696   if( pCol ){
1697     int v = 0;   /* default size is approx 4 bytes */
1698     if( aff<SQLITE_AFF_NUMERIC ){
1699       if( zChar ){
1700         while( zChar[0] ){
1701           if( sqlite3Isdigit(zChar[0]) ){
1702             /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1703             sqlite3GetInt32(zChar, &v);
1704             break;
1705           }
1706           zChar++;
1707         }
1708       }else{
1709         v = 16;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1710       }
1711     }
1712 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1713     if( v>=sqlite3GlobalConfig.szSorterRef ){
1714       pCol->colFlags |= COLFLAG_SORTERREF;
1715     }
1716 #endif
1717     v = v/4 + 1;
1718     if( v>255 ) v = 255;
1719     pCol->szEst = v;
1720   }
1721   return aff;
1722 }
1723 
1724 /*
1725 ** The expression is the default value for the most recently added column
1726 ** of the table currently under construction.
1727 **
1728 ** Default value expressions must be constant.  Raise an exception if this
1729 ** is not the case.
1730 **
1731 ** This routine is called by the parser while in the middle of
1732 ** parsing a CREATE TABLE statement.
1733 */
1734 void sqlite3AddDefaultValue(
1735   Parse *pParse,           /* Parsing context */
1736   Expr *pExpr,             /* The parsed expression of the default value */
1737   const char *zStart,      /* Start of the default value text */
1738   const char *zEnd         /* First character past end of defaut value text */
1739 ){
1740   Table *p;
1741   Column *pCol;
1742   sqlite3 *db = pParse->db;
1743   p = pParse->pNewTable;
1744   if( p!=0 ){
1745     int isInit = db->init.busy && db->init.iDb!=1;
1746     pCol = &(p->aCol[p->nCol-1]);
1747     if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
1748       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1749           pCol->zCnName);
1750 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1751     }else if( pCol->colFlags & COLFLAG_GENERATED ){
1752       testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1753       testcase( pCol->colFlags & COLFLAG_STORED );
1754       sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
1755 #endif
1756     }else{
1757       /* A copy of pExpr is used instead of the original, as pExpr contains
1758       ** tokens that point to volatile memory.
1759       */
1760       Expr x, *pDfltExpr;
1761       memset(&x, 0, sizeof(x));
1762       x.op = TK_SPAN;
1763       x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1764       x.pLeft = pExpr;
1765       x.flags = EP_Skip;
1766       pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1767       sqlite3DbFree(db, x.u.zToken);
1768       sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
1769     }
1770   }
1771   if( IN_RENAME_OBJECT ){
1772     sqlite3RenameExprUnmap(pParse, pExpr);
1773   }
1774   sqlite3ExprDelete(db, pExpr);
1775 }
1776 
1777 /*
1778 ** Backwards Compatibility Hack:
1779 **
1780 ** Historical versions of SQLite accepted strings as column names in
1781 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1782 **
1783 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1784 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1785 **
1786 ** This is goofy.  But to preserve backwards compatibility we continue to
1787 ** accept it.  This routine does the necessary conversion.  It converts
1788 ** the expression given in its argument from a TK_STRING into a TK_ID
1789 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1790 ** If the expression is anything other than TK_STRING, the expression is
1791 ** unchanged.
1792 */
1793 static void sqlite3StringToId(Expr *p){
1794   if( p->op==TK_STRING ){
1795     p->op = TK_ID;
1796   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1797     p->pLeft->op = TK_ID;
1798   }
1799 }
1800 
1801 /*
1802 ** Tag the given column as being part of the PRIMARY KEY
1803 */
1804 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
1805   pCol->colFlags |= COLFLAG_PRIMKEY;
1806 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1807   if( pCol->colFlags & COLFLAG_GENERATED ){
1808     testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1809     testcase( pCol->colFlags & COLFLAG_STORED );
1810     sqlite3ErrorMsg(pParse,
1811       "generated columns cannot be part of the PRIMARY KEY");
1812   }
1813 #endif
1814 }
1815 
1816 /*
1817 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1818 ** of columns that form the primary key.  If pList is NULL, then the
1819 ** most recently added column of the table is the primary key.
1820 **
1821 ** A table can have at most one primary key.  If the table already has
1822 ** a primary key (and this is the second primary key) then create an
1823 ** error.
1824 **
1825 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1826 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1827 ** field of the table under construction to be the index of the
1828 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1829 ** no INTEGER PRIMARY KEY.
1830 **
1831 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1832 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1833 */
1834 void sqlite3AddPrimaryKey(
1835   Parse *pParse,    /* Parsing context */
1836   ExprList *pList,  /* List of field names to be indexed */
1837   int onError,      /* What to do with a uniqueness conflict */
1838   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1839   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1840 ){
1841   Table *pTab = pParse->pNewTable;
1842   Column *pCol = 0;
1843   int iCol = -1, i;
1844   int nTerm;
1845   if( pTab==0 ) goto primary_key_exit;
1846   if( pTab->tabFlags & TF_HasPrimaryKey ){
1847     sqlite3ErrorMsg(pParse,
1848       "table \"%s\" has more than one primary key", pTab->zName);
1849     goto primary_key_exit;
1850   }
1851   pTab->tabFlags |= TF_HasPrimaryKey;
1852   if( pList==0 ){
1853     iCol = pTab->nCol - 1;
1854     pCol = &pTab->aCol[iCol];
1855     makeColumnPartOfPrimaryKey(pParse, pCol);
1856     nTerm = 1;
1857   }else{
1858     nTerm = pList->nExpr;
1859     for(i=0; i<nTerm; i++){
1860       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1861       assert( pCExpr!=0 );
1862       sqlite3StringToId(pCExpr);
1863       if( pCExpr->op==TK_ID ){
1864         const char *zCName;
1865         assert( !ExprHasProperty(pCExpr, EP_IntValue) );
1866         zCName = pCExpr->u.zToken;
1867         for(iCol=0; iCol<pTab->nCol; iCol++){
1868           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
1869             pCol = &pTab->aCol[iCol];
1870             makeColumnPartOfPrimaryKey(pParse, pCol);
1871             break;
1872           }
1873         }
1874       }
1875     }
1876   }
1877   if( nTerm==1
1878    && pCol
1879    && pCol->eCType==COLTYPE_INTEGER
1880    && sortOrder!=SQLITE_SO_DESC
1881   ){
1882     if( IN_RENAME_OBJECT && pList ){
1883       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
1884       sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
1885     }
1886     pTab->iPKey = iCol;
1887     pTab->keyConf = (u8)onError;
1888     assert( autoInc==0 || autoInc==1 );
1889     pTab->tabFlags |= autoInc*TF_Autoincrement;
1890     if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags;
1891     (void)sqlite3HasExplicitNulls(pParse, pList);
1892   }else if( autoInc ){
1893 #ifndef SQLITE_OMIT_AUTOINCREMENT
1894     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1895        "INTEGER PRIMARY KEY");
1896 #endif
1897   }else{
1898     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1899                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1900     pList = 0;
1901   }
1902 
1903 primary_key_exit:
1904   sqlite3ExprListDelete(pParse->db, pList);
1905   return;
1906 }
1907 
1908 /*
1909 ** Add a new CHECK constraint to the table currently under construction.
1910 */
1911 void sqlite3AddCheckConstraint(
1912   Parse *pParse,      /* Parsing context */
1913   Expr *pCheckExpr,   /* The check expression */
1914   const char *zStart, /* Opening "(" */
1915   const char *zEnd    /* Closing ")" */
1916 ){
1917 #ifndef SQLITE_OMIT_CHECK
1918   Table *pTab = pParse->pNewTable;
1919   sqlite3 *db = pParse->db;
1920   if( pTab && !IN_DECLARE_VTAB
1921    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1922   ){
1923     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1924     if( pParse->constraintName.n ){
1925       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1926     }else{
1927       Token t;
1928       for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
1929       while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
1930       t.z = zStart;
1931       t.n = (int)(zEnd - t.z);
1932       sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
1933     }
1934   }else
1935 #endif
1936   {
1937     sqlite3ExprDelete(pParse->db, pCheckExpr);
1938   }
1939 }
1940 
1941 /*
1942 ** Set the collation function of the most recently parsed table column
1943 ** to the CollSeq given.
1944 */
1945 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1946   Table *p;
1947   int i;
1948   char *zColl;              /* Dequoted name of collation sequence */
1949   sqlite3 *db;
1950 
1951   if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
1952   i = p->nCol-1;
1953   db = pParse->db;
1954   zColl = sqlite3NameFromToken(db, pToken);
1955   if( !zColl ) return;
1956 
1957   if( sqlite3LocateCollSeq(pParse, zColl) ){
1958     Index *pIdx;
1959     sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
1960 
1961     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1962     ** then an index may have been created on this column before the
1963     ** collation type was added. Correct this if it is the case.
1964     */
1965     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1966       assert( pIdx->nKeyCol==1 );
1967       if( pIdx->aiColumn[0]==i ){
1968         pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
1969       }
1970     }
1971   }
1972   sqlite3DbFree(db, zColl);
1973 }
1974 
1975 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1976 ** column.
1977 */
1978 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
1979 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1980   u8 eType = COLFLAG_VIRTUAL;
1981   Table *pTab = pParse->pNewTable;
1982   Column *pCol;
1983   if( pTab==0 ){
1984     /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1985     goto generated_done;
1986   }
1987   pCol = &(pTab->aCol[pTab->nCol-1]);
1988   if( IN_DECLARE_VTAB ){
1989     sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
1990     goto generated_done;
1991   }
1992   if( pCol->iDflt>0 ) goto generated_error;
1993   if( pType ){
1994     if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
1995       /* no-op */
1996     }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
1997       eType = COLFLAG_STORED;
1998     }else{
1999       goto generated_error;
2000     }
2001   }
2002   if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
2003   pCol->colFlags |= eType;
2004   assert( TF_HasVirtual==COLFLAG_VIRTUAL );
2005   assert( TF_HasStored==COLFLAG_STORED );
2006   pTab->tabFlags |= eType;
2007   if( pCol->colFlags & COLFLAG_PRIMKEY ){
2008     makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
2009   }
2010   sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
2011   pExpr = 0;
2012   goto generated_done;
2013 
2014 generated_error:
2015   sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
2016                   pCol->zCnName);
2017 generated_done:
2018   sqlite3ExprDelete(pParse->db, pExpr);
2019 #else
2020   /* Throw and error for the GENERATED ALWAYS AS clause if the
2021   ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2022   sqlite3ErrorMsg(pParse, "generated columns not supported");
2023   sqlite3ExprDelete(pParse->db, pExpr);
2024 #endif
2025 }
2026 
2027 /*
2028 ** Generate code that will increment the schema cookie.
2029 **
2030 ** The schema cookie is used to determine when the schema for the
2031 ** database changes.  After each schema change, the cookie value
2032 ** changes.  When a process first reads the schema it records the
2033 ** cookie.  Thereafter, whenever it goes to access the database,
2034 ** it checks the cookie to make sure the schema has not changed
2035 ** since it was last read.
2036 **
2037 ** This plan is not completely bullet-proof.  It is possible for
2038 ** the schema to change multiple times and for the cookie to be
2039 ** set back to prior value.  But schema changes are infrequent
2040 ** and the probability of hitting the same cookie value is only
2041 ** 1 chance in 2^32.  So we're safe enough.
2042 **
2043 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2044 ** the schema-version whenever the schema changes.
2045 */
2046 void sqlite3ChangeCookie(Parse *pParse, int iDb){
2047   sqlite3 *db = pParse->db;
2048   Vdbe *v = pParse->pVdbe;
2049   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2050   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
2051                    (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
2052 }
2053 
2054 /*
2055 ** Measure the number of characters needed to output the given
2056 ** identifier.  The number returned includes any quotes used
2057 ** but does not include the null terminator.
2058 **
2059 ** The estimate is conservative.  It might be larger that what is
2060 ** really needed.
2061 */
2062 static int identLength(const char *z){
2063   int n;
2064   for(n=0; *z; n++, z++){
2065     if( *z=='"' ){ n++; }
2066   }
2067   return n + 2;
2068 }
2069 
2070 /*
2071 ** The first parameter is a pointer to an output buffer. The second
2072 ** parameter is a pointer to an integer that contains the offset at
2073 ** which to write into the output buffer. This function copies the
2074 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2075 ** to the specified offset in the buffer and updates *pIdx to refer
2076 ** to the first byte after the last byte written before returning.
2077 **
2078 ** If the string zSignedIdent consists entirely of alpha-numeric
2079 ** characters, does not begin with a digit and is not an SQL keyword,
2080 ** then it is copied to the output buffer exactly as it is. Otherwise,
2081 ** it is quoted using double-quotes.
2082 */
2083 static void identPut(char *z, int *pIdx, char *zSignedIdent){
2084   unsigned char *zIdent = (unsigned char*)zSignedIdent;
2085   int i, j, needQuote;
2086   i = *pIdx;
2087 
2088   for(j=0; zIdent[j]; j++){
2089     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
2090   }
2091   needQuote = sqlite3Isdigit(zIdent[0])
2092             || sqlite3KeywordCode(zIdent, j)!=TK_ID
2093             || zIdent[j]!=0
2094             || j==0;
2095 
2096   if( needQuote ) z[i++] = '"';
2097   for(j=0; zIdent[j]; j++){
2098     z[i++] = zIdent[j];
2099     if( zIdent[j]=='"' ) z[i++] = '"';
2100   }
2101   if( needQuote ) z[i++] = '"';
2102   z[i] = 0;
2103   *pIdx = i;
2104 }
2105 
2106 /*
2107 ** Generate a CREATE TABLE statement appropriate for the given
2108 ** table.  Memory to hold the text of the statement is obtained
2109 ** from sqliteMalloc() and must be freed by the calling function.
2110 */
2111 static char *createTableStmt(sqlite3 *db, Table *p){
2112   int i, k, n;
2113   char *zStmt;
2114   char *zSep, *zSep2, *zEnd;
2115   Column *pCol;
2116   n = 0;
2117   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
2118     n += identLength(pCol->zCnName) + 5;
2119   }
2120   n += identLength(p->zName);
2121   if( n<50 ){
2122     zSep = "";
2123     zSep2 = ",";
2124     zEnd = ")";
2125   }else{
2126     zSep = "\n  ";
2127     zSep2 = ",\n  ";
2128     zEnd = "\n)";
2129   }
2130   n += 35 + 6*p->nCol;
2131   zStmt = sqlite3DbMallocRaw(0, n);
2132   if( zStmt==0 ){
2133     sqlite3OomFault(db);
2134     return 0;
2135   }
2136   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
2137   k = sqlite3Strlen30(zStmt);
2138   identPut(zStmt, &k, p->zName);
2139   zStmt[k++] = '(';
2140   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
2141     static const char * const azType[] = {
2142         /* SQLITE_AFF_BLOB    */ "",
2143         /* SQLITE_AFF_TEXT    */ " TEXT",
2144         /* SQLITE_AFF_NUMERIC */ " NUM",
2145         /* SQLITE_AFF_INTEGER */ " INT",
2146         /* SQLITE_AFF_REAL    */ " REAL"
2147     };
2148     int len;
2149     const char *zType;
2150 
2151     sqlite3_snprintf(n-k, &zStmt[k], zSep);
2152     k += sqlite3Strlen30(&zStmt[k]);
2153     zSep = zSep2;
2154     identPut(zStmt, &k, pCol->zCnName);
2155     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
2156     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
2157     testcase( pCol->affinity==SQLITE_AFF_BLOB );
2158     testcase( pCol->affinity==SQLITE_AFF_TEXT );
2159     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
2160     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
2161     testcase( pCol->affinity==SQLITE_AFF_REAL );
2162 
2163     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
2164     len = sqlite3Strlen30(zType);
2165     assert( pCol->affinity==SQLITE_AFF_BLOB
2166             || pCol->affinity==sqlite3AffinityType(zType, 0) );
2167     memcpy(&zStmt[k], zType, len);
2168     k += len;
2169     assert( k<=n );
2170   }
2171   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
2172   return zStmt;
2173 }
2174 
2175 /*
2176 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
2177 ** on success and SQLITE_NOMEM on an OOM error.
2178 */
2179 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
2180   char *zExtra;
2181   int nByte;
2182   if( pIdx->nColumn>=N ) return SQLITE_OK;
2183   assert( pIdx->isResized==0 );
2184   nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
2185   zExtra = sqlite3DbMallocZero(db, nByte);
2186   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
2187   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
2188   pIdx->azColl = (const char**)zExtra;
2189   zExtra += sizeof(char*)*N;
2190   memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
2191   pIdx->aiRowLogEst = (LogEst*)zExtra;
2192   zExtra += sizeof(LogEst)*N;
2193   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
2194   pIdx->aiColumn = (i16*)zExtra;
2195   zExtra += sizeof(i16)*N;
2196   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
2197   pIdx->aSortOrder = (u8*)zExtra;
2198   pIdx->nColumn = N;
2199   pIdx->isResized = 1;
2200   return SQLITE_OK;
2201 }
2202 
2203 /*
2204 ** Estimate the total row width for a table.
2205 */
2206 static void estimateTableWidth(Table *pTab){
2207   unsigned wTable = 0;
2208   const Column *pTabCol;
2209   int i;
2210   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
2211     wTable += pTabCol->szEst;
2212   }
2213   if( pTab->iPKey<0 ) wTable++;
2214   pTab->szTabRow = sqlite3LogEst(wTable*4);
2215 }
2216 
2217 /*
2218 ** Estimate the average size of a row for an index.
2219 */
2220 static void estimateIndexWidth(Index *pIdx){
2221   unsigned wIndex = 0;
2222   int i;
2223   const Column *aCol = pIdx->pTable->aCol;
2224   for(i=0; i<pIdx->nColumn; i++){
2225     i16 x = pIdx->aiColumn[i];
2226     assert( x<pIdx->pTable->nCol );
2227     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
2228   }
2229   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
2230 }
2231 
2232 /* Return true if column number x is any of the first nCol entries of aiCol[].
2233 ** This is used to determine if the column number x appears in any of the
2234 ** first nCol entries of an index.
2235 */
2236 static int hasColumn(const i16 *aiCol, int nCol, int x){
2237   while( nCol-- > 0 ){
2238     if( x==*(aiCol++) ){
2239       return 1;
2240     }
2241   }
2242   return 0;
2243 }
2244 
2245 /*
2246 ** Return true if any of the first nKey entries of index pIdx exactly
2247 ** match the iCol-th entry of pPk.  pPk is always a WITHOUT ROWID
2248 ** PRIMARY KEY index.  pIdx is an index on the same table.  pIdx may
2249 ** or may not be the same index as pPk.
2250 **
2251 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2252 ** not a rowid or expression.
2253 **
2254 ** This routine differs from hasColumn() in that both the column and the
2255 ** collating sequence must match for this routine, but for hasColumn() only
2256 ** the column name must match.
2257 */
2258 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
2259   int i, j;
2260   assert( nKey<=pIdx->nColumn );
2261   assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
2262   assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
2263   assert( pPk->pTable->tabFlags & TF_WithoutRowid );
2264   assert( pPk->pTable==pIdx->pTable );
2265   testcase( pPk==pIdx );
2266   j = pPk->aiColumn[iCol];
2267   assert( j!=XN_ROWID && j!=XN_EXPR );
2268   for(i=0; i<nKey; i++){
2269     assert( pIdx->aiColumn[i]>=0 || j>=0 );
2270     if( pIdx->aiColumn[i]==j
2271      && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
2272     ){
2273       return 1;
2274     }
2275   }
2276   return 0;
2277 }
2278 
2279 /* Recompute the colNotIdxed field of the Index.
2280 **
2281 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2282 ** columns that are within the first 63 columns of the table.  The
2283 ** high-order bit of colNotIdxed is always 1.  All unindexed columns
2284 ** of the table have a 1.
2285 **
2286 ** 2019-10-24:  For the purpose of this computation, virtual columns are
2287 ** not considered to be covered by the index, even if they are in the
2288 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2289 ** able to find all instances of a reference to the indexed table column
2290 ** and convert them into references to the index.  Hence we always want
2291 ** the actual table at hand in order to recompute the virtual column, if
2292 ** necessary.
2293 **
2294 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2295 ** to determine if the index is covering index.
2296 */
2297 static void recomputeColumnsNotIndexed(Index *pIdx){
2298   Bitmask m = 0;
2299   int j;
2300   Table *pTab = pIdx->pTable;
2301   for(j=pIdx->nColumn-1; j>=0; j--){
2302     int x = pIdx->aiColumn[j];
2303     if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
2304       testcase( x==BMS-1 );
2305       testcase( x==BMS-2 );
2306       if( x<BMS-1 ) m |= MASKBIT(x);
2307     }
2308   }
2309   pIdx->colNotIdxed = ~m;
2310   assert( (pIdx->colNotIdxed>>63)==1 );
2311 }
2312 
2313 /*
2314 ** This routine runs at the end of parsing a CREATE TABLE statement that
2315 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
2316 ** internal schema data structures and the generated VDBE code so that they
2317 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2318 ** Changes include:
2319 **
2320 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2321 **     (2)  Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2322 **          into BTREE_BLOBKEY.
2323 **     (3)  Bypass the creation of the sqlite_schema table entry
2324 **          for the PRIMARY KEY as the primary key index is now
2325 **          identified by the sqlite_schema table entry of the table itself.
2326 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
2327 **          schema to the rootpage from the main table.
2328 **     (5)  Add all table columns to the PRIMARY KEY Index object
2329 **          so that the PRIMARY KEY is a covering index.  The surplus
2330 **          columns are part of KeyInfo.nAllField and are not used for
2331 **          sorting or lookup or uniqueness checks.
2332 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
2333 **          indices with the PRIMARY KEY columns.
2334 **
2335 ** For virtual tables, only (1) is performed.
2336 */
2337 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
2338   Index *pIdx;
2339   Index *pPk;
2340   int nPk;
2341   int nExtra;
2342   int i, j;
2343   sqlite3 *db = pParse->db;
2344   Vdbe *v = pParse->pVdbe;
2345 
2346   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2347   */
2348   if( !db->init.imposterTable ){
2349     for(i=0; i<pTab->nCol; i++){
2350       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
2351        && (pTab->aCol[i].notNull==OE_None)
2352       ){
2353         pTab->aCol[i].notNull = OE_Abort;
2354       }
2355     }
2356     pTab->tabFlags |= TF_HasNotNull;
2357   }
2358 
2359   /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2360   ** into BTREE_BLOBKEY.
2361   */
2362   assert( !pParse->bReturning );
2363   if( pParse->u1.addrCrTab ){
2364     assert( v );
2365     sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
2366   }
2367 
2368   /* Locate the PRIMARY KEY index.  Or, if this table was originally
2369   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2370   */
2371   if( pTab->iPKey>=0 ){
2372     ExprList *pList;
2373     Token ipkToken;
2374     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
2375     pList = sqlite3ExprListAppend(pParse, 0,
2376                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
2377     if( pList==0 ){
2378       pTab->tabFlags &= ~TF_WithoutRowid;
2379       return;
2380     }
2381     if( IN_RENAME_OBJECT ){
2382       sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
2383     }
2384     pList->a[0].sortFlags = pParse->iPkSortOrder;
2385     assert( pParse->pNewTable==pTab );
2386     pTab->iPKey = -1;
2387     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
2388                        SQLITE_IDXTYPE_PRIMARYKEY);
2389     if( db->mallocFailed || pParse->nErr ){
2390       pTab->tabFlags &= ~TF_WithoutRowid;
2391       return;
2392     }
2393     pPk = sqlite3PrimaryKeyIndex(pTab);
2394     assert( pPk->nKeyCol==1 );
2395   }else{
2396     pPk = sqlite3PrimaryKeyIndex(pTab);
2397     assert( pPk!=0 );
2398 
2399     /*
2400     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
2401     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
2402     ** code assumes the PRIMARY KEY contains no repeated columns.
2403     */
2404     for(i=j=1; i<pPk->nKeyCol; i++){
2405       if( isDupColumn(pPk, j, pPk, i) ){
2406         pPk->nColumn--;
2407       }else{
2408         testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
2409         pPk->azColl[j] = pPk->azColl[i];
2410         pPk->aSortOrder[j] = pPk->aSortOrder[i];
2411         pPk->aiColumn[j++] = pPk->aiColumn[i];
2412       }
2413     }
2414     pPk->nKeyCol = j;
2415   }
2416   assert( pPk!=0 );
2417   pPk->isCovering = 1;
2418   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
2419   nPk = pPk->nColumn = pPk->nKeyCol;
2420 
2421   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2422   ** table entry. This is only required if currently generating VDBE
2423   ** code for a CREATE TABLE (not when parsing one as part of reading
2424   ** a database schema).  */
2425   if( v && pPk->tnum>0 ){
2426     assert( db->init.busy==0 );
2427     sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
2428   }
2429 
2430   /* The root page of the PRIMARY KEY is the table root page */
2431   pPk->tnum = pTab->tnum;
2432 
2433   /* Update the in-memory representation of all UNIQUE indices by converting
2434   ** the final rowid column into one or more columns of the PRIMARY KEY.
2435   */
2436   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2437     int n;
2438     if( IsPrimaryKeyIndex(pIdx) ) continue;
2439     for(i=n=0; i<nPk; i++){
2440       if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2441         testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2442         n++;
2443       }
2444     }
2445     if( n==0 ){
2446       /* This index is a superset of the primary key */
2447       pIdx->nColumn = pIdx->nKeyCol;
2448       continue;
2449     }
2450     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
2451     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
2452       if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2453         testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2454         pIdx->aiColumn[j] = pPk->aiColumn[i];
2455         pIdx->azColl[j] = pPk->azColl[i];
2456         if( pPk->aSortOrder[i] ){
2457           /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2458           pIdx->bAscKeyBug = 1;
2459         }
2460         j++;
2461       }
2462     }
2463     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
2464     assert( pIdx->nColumn>=j );
2465   }
2466 
2467   /* Add all table columns to the PRIMARY KEY index
2468   */
2469   nExtra = 0;
2470   for(i=0; i<pTab->nCol; i++){
2471     if( !hasColumn(pPk->aiColumn, nPk, i)
2472      && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
2473   }
2474   if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
2475   for(i=0, j=nPk; i<pTab->nCol; i++){
2476     if( !hasColumn(pPk->aiColumn, j, i)
2477      && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
2478     ){
2479       assert( j<pPk->nColumn );
2480       pPk->aiColumn[j] = i;
2481       pPk->azColl[j] = sqlite3StrBINARY;
2482       j++;
2483     }
2484   }
2485   assert( pPk->nColumn==j );
2486   assert( pTab->nNVCol<=j );
2487   recomputeColumnsNotIndexed(pPk);
2488 }
2489 
2490 
2491 #ifndef SQLITE_OMIT_VIRTUALTABLE
2492 /*
2493 ** Return true if pTab is a virtual table and zName is a shadow table name
2494 ** for that virtual table.
2495 */
2496 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
2497   int nName;                    /* Length of zName */
2498   Module *pMod;                 /* Module for the virtual table */
2499 
2500   if( !IsVirtual(pTab) ) return 0;
2501   nName = sqlite3Strlen30(pTab->zName);
2502   if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
2503   if( zName[nName]!='_' ) return 0;
2504   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2505   if( pMod==0 ) return 0;
2506   if( pMod->pModule->iVersion<3 ) return 0;
2507   if( pMod->pModule->xShadowName==0 ) return 0;
2508   return pMod->pModule->xShadowName(zName+nName+1);
2509 }
2510 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2511 
2512 #ifndef SQLITE_OMIT_VIRTUALTABLE
2513 /*
2514 ** Table pTab is a virtual table.  If it the virtual table implementation
2515 ** exists and has an xShadowName method, then loop over all other ordinary
2516 ** tables within the same schema looking for shadow tables of pTab, and mark
2517 ** any shadow tables seen using the TF_Shadow flag.
2518 */
2519 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
2520   int nName;                    /* Length of pTab->zName */
2521   Module *pMod;                 /* Module for the virtual table */
2522   HashElem *k;                  /* For looping through the symbol table */
2523 
2524   assert( IsVirtual(pTab) );
2525   pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2526   if( pMod==0 ) return;
2527   if( NEVER(pMod->pModule==0) ) return;
2528   if( pMod->pModule->iVersion<3 ) return;
2529   if( pMod->pModule->xShadowName==0 ) return;
2530   assert( pTab->zName!=0 );
2531   nName = sqlite3Strlen30(pTab->zName);
2532   for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
2533     Table *pOther = sqliteHashData(k);
2534     assert( pOther->zName!=0 );
2535     if( !IsOrdinaryTable(pOther) ) continue;
2536     if( pOther->tabFlags & TF_Shadow ) continue;
2537     if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
2538      && pOther->zName[nName]=='_'
2539      && pMod->pModule->xShadowName(pOther->zName+nName+1)
2540     ){
2541       pOther->tabFlags |= TF_Shadow;
2542     }
2543   }
2544 }
2545 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2546 
2547 #ifndef SQLITE_OMIT_VIRTUALTABLE
2548 /*
2549 ** Return true if zName is a shadow table name in the current database
2550 ** connection.
2551 **
2552 ** zName is temporarily modified while this routine is running, but is
2553 ** restored to its original value prior to this routine returning.
2554 */
2555 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
2556   char *zTail;                  /* Pointer to the last "_" in zName */
2557   Table *pTab;                  /* Table that zName is a shadow of */
2558   zTail = strrchr(zName, '_');
2559   if( zTail==0 ) return 0;
2560   *zTail = 0;
2561   pTab = sqlite3FindTable(db, zName, 0);
2562   *zTail = '_';
2563   if( pTab==0 ) return 0;
2564   if( !IsVirtual(pTab) ) return 0;
2565   return sqlite3IsShadowTableOf(db, pTab, zName);
2566 }
2567 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2568 
2569 
2570 #ifdef SQLITE_DEBUG
2571 /*
2572 ** Mark all nodes of an expression as EP_Immutable, indicating that
2573 ** they should not be changed.  Expressions attached to a table or
2574 ** index definition are tagged this way to help ensure that we do
2575 ** not pass them into code generator routines by mistake.
2576 */
2577 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
2578   ExprSetVVAProperty(pExpr, EP_Immutable);
2579   return WRC_Continue;
2580 }
2581 static void markExprListImmutable(ExprList *pList){
2582   if( pList ){
2583     Walker w;
2584     memset(&w, 0, sizeof(w));
2585     w.xExprCallback = markImmutableExprStep;
2586     w.xSelectCallback = sqlite3SelectWalkNoop;
2587     w.xSelectCallback2 = 0;
2588     sqlite3WalkExprList(&w, pList);
2589   }
2590 }
2591 #else
2592 #define markExprListImmutable(X)  /* no-op */
2593 #endif /* SQLITE_DEBUG */
2594 
2595 
2596 /*
2597 ** This routine is called to report the final ")" that terminates
2598 ** a CREATE TABLE statement.
2599 **
2600 ** The table structure that other action routines have been building
2601 ** is added to the internal hash tables, assuming no errors have
2602 ** occurred.
2603 **
2604 ** An entry for the table is made in the schema table on disk, unless
2605 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
2606 ** it means we are reading the sqlite_schema table because we just
2607 ** connected to the database or because the sqlite_schema table has
2608 ** recently changed, so the entry for this table already exists in
2609 ** the sqlite_schema table.  We do not want to create it again.
2610 **
2611 ** If the pSelect argument is not NULL, it means that this routine
2612 ** was called to create a table generated from a
2613 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
2614 ** the new table will match the result set of the SELECT.
2615 */
2616 void sqlite3EndTable(
2617   Parse *pParse,          /* Parse context */
2618   Token *pCons,           /* The ',' token after the last column defn. */
2619   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
2620   u32 tabOpts,            /* Extra table options. Usually 0. */
2621   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
2622 ){
2623   Table *p;                 /* The new table */
2624   sqlite3 *db = pParse->db; /* The database connection */
2625   int iDb;                  /* Database in which the table lives */
2626   Index *pIdx;              /* An implied index of the table */
2627 
2628   if( pEnd==0 && pSelect==0 ){
2629     return;
2630   }
2631   p = pParse->pNewTable;
2632   if( p==0 ) return;
2633 
2634   if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
2635     p->tabFlags |= TF_Shadow;
2636   }
2637 
2638   /* If the db->init.busy is 1 it means we are reading the SQL off the
2639   ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2640   ** So do not write to the disk again.  Extract the root page number
2641   ** for the table from the db->init.newTnum field.  (The page number
2642   ** should have been put there by the sqliteOpenCb routine.)
2643   **
2644   ** If the root page number is 1, that means this is the sqlite_schema
2645   ** table itself.  So mark it read-only.
2646   */
2647   if( db->init.busy ){
2648     if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
2649       sqlite3ErrorMsg(pParse, "");
2650       return;
2651     }
2652     p->tnum = db->init.newTnum;
2653     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
2654   }
2655 
2656   /* Special processing for tables that include the STRICT keyword:
2657   **
2658   **   *  Do not allow custom column datatypes.  Every column must have
2659   **      a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2660   **
2661   **   *  If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2662   **      then all columns of the PRIMARY KEY must have a NOT NULL
2663   **      constraint.
2664   */
2665   if( tabOpts & TF_Strict ){
2666     int ii;
2667     p->tabFlags |= TF_Strict;
2668     for(ii=0; ii<p->nCol; ii++){
2669       Column *pCol = &p->aCol[ii];
2670       if( pCol->eCType==COLTYPE_CUSTOM ){
2671         if( pCol->colFlags & COLFLAG_HASTYPE ){
2672           sqlite3ErrorMsg(pParse,
2673             "unknown datatype for %s.%s: \"%s\"",
2674             p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
2675           );
2676         }else{
2677           sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
2678                           p->zName, pCol->zCnName);
2679         }
2680         return;
2681       }else if( pCol->eCType==COLTYPE_ANY ){
2682         pCol->affinity = SQLITE_AFF_BLOB;
2683       }
2684       if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
2685        && p->iPKey!=ii
2686        && pCol->notNull == OE_None
2687       ){
2688         pCol->notNull = OE_Abort;
2689         p->tabFlags |= TF_HasNotNull;
2690       }
2691     }
2692   }
2693 
2694   assert( (p->tabFlags & TF_HasPrimaryKey)==0
2695        || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
2696   assert( (p->tabFlags & TF_HasPrimaryKey)!=0
2697        || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
2698 
2699   /* Special processing for WITHOUT ROWID Tables */
2700   if( tabOpts & TF_WithoutRowid ){
2701     if( (p->tabFlags & TF_Autoincrement) ){
2702       sqlite3ErrorMsg(pParse,
2703           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2704       return;
2705     }
2706     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2707       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2708       return;
2709     }
2710     p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2711     convertToWithoutRowidTable(pParse, p);
2712   }
2713   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2714 
2715 #ifndef SQLITE_OMIT_CHECK
2716   /* Resolve names in all CHECK constraint expressions.
2717   */
2718   if( p->pCheck ){
2719     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2720     if( pParse->nErr ){
2721       /* If errors are seen, delete the CHECK constraints now, else they might
2722       ** actually be used if PRAGMA writable_schema=ON is set. */
2723       sqlite3ExprListDelete(db, p->pCheck);
2724       p->pCheck = 0;
2725     }else{
2726       markExprListImmutable(p->pCheck);
2727     }
2728   }
2729 #endif /* !defined(SQLITE_OMIT_CHECK) */
2730 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2731   if( p->tabFlags & TF_HasGenerated ){
2732     int ii, nNG = 0;
2733     testcase( p->tabFlags & TF_HasVirtual );
2734     testcase( p->tabFlags & TF_HasStored );
2735     for(ii=0; ii<p->nCol; ii++){
2736       u32 colFlags = p->aCol[ii].colFlags;
2737       if( (colFlags & COLFLAG_GENERATED)!=0 ){
2738         Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
2739         testcase( colFlags & COLFLAG_VIRTUAL );
2740         testcase( colFlags & COLFLAG_STORED );
2741         if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
2742           /* If there are errors in resolving the expression, change the
2743           ** expression to a NULL.  This prevents code generators that operate
2744           ** on the expression from inserting extra parts into the expression
2745           ** tree that have been allocated from lookaside memory, which is
2746           ** illegal in a schema and will lead to errors or heap corruption
2747           ** when the database connection closes. */
2748           sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
2749                sqlite3ExprAlloc(db, TK_NULL, 0, 0));
2750         }
2751       }else{
2752         nNG++;
2753       }
2754     }
2755     if( nNG==0 ){
2756       sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
2757       return;
2758     }
2759   }
2760 #endif
2761 
2762   /* Estimate the average row size for the table and for all implied indices */
2763   estimateTableWidth(p);
2764   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2765     estimateIndexWidth(pIdx);
2766   }
2767 
2768   /* If not initializing, then create a record for the new table
2769   ** in the schema table of the database.
2770   **
2771   ** If this is a TEMPORARY table, write the entry into the auxiliary
2772   ** file instead of into the main database file.
2773   */
2774   if( !db->init.busy ){
2775     int n;
2776     Vdbe *v;
2777     char *zType;    /* "view" or "table" */
2778     char *zType2;   /* "VIEW" or "TABLE" */
2779     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
2780 
2781     v = sqlite3GetVdbe(pParse);
2782     if( NEVER(v==0) ) return;
2783 
2784     sqlite3VdbeAddOp1(v, OP_Close, 0);
2785 
2786     /*
2787     ** Initialize zType for the new view or table.
2788     */
2789     if( IsOrdinaryTable(p) ){
2790       /* A regular table */
2791       zType = "table";
2792       zType2 = "TABLE";
2793 #ifndef SQLITE_OMIT_VIEW
2794     }else{
2795       /* A view */
2796       zType = "view";
2797       zType2 = "VIEW";
2798 #endif
2799     }
2800 
2801     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2802     ** statement to populate the new table. The root-page number for the
2803     ** new table is in register pParse->regRoot.
2804     **
2805     ** Once the SELECT has been coded by sqlite3Select(), it is in a
2806     ** suitable state to query for the column names and types to be used
2807     ** by the new table.
2808     **
2809     ** A shared-cache write-lock is not required to write to the new table,
2810     ** as a schema-lock must have already been obtained to create it. Since
2811     ** a schema-lock excludes all other database users, the write-lock would
2812     ** be redundant.
2813     */
2814     if( pSelect ){
2815       SelectDest dest;    /* Where the SELECT should store results */
2816       int regYield;       /* Register holding co-routine entry-point */
2817       int addrTop;        /* Top of the co-routine */
2818       int regRec;         /* A record to be insert into the new table */
2819       int regRowid;       /* Rowid of the next row to insert */
2820       int addrInsLoop;    /* Top of the loop for inserting rows */
2821       Table *pSelTab;     /* A table that describes the SELECT results */
2822 
2823       regYield = ++pParse->nMem;
2824       regRec = ++pParse->nMem;
2825       regRowid = ++pParse->nMem;
2826       assert(pParse->nTab==1);
2827       sqlite3MayAbort(pParse);
2828       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2829       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2830       pParse->nTab = 2;
2831       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2832       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2833       if( pParse->nErr ) return;
2834       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
2835       if( pSelTab==0 ) return;
2836       assert( p->aCol==0 );
2837       p->nCol = p->nNVCol = pSelTab->nCol;
2838       p->aCol = pSelTab->aCol;
2839       pSelTab->nCol = 0;
2840       pSelTab->aCol = 0;
2841       sqlite3DeleteTable(db, pSelTab);
2842       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2843       sqlite3Select(pParse, pSelect, &dest);
2844       if( pParse->nErr ) return;
2845       sqlite3VdbeEndCoroutine(v, regYield);
2846       sqlite3VdbeJumpHere(v, addrTop - 1);
2847       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2848       VdbeCoverage(v);
2849       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2850       sqlite3TableAffinity(v, p, 0);
2851       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2852       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2853       sqlite3VdbeGoto(v, addrInsLoop);
2854       sqlite3VdbeJumpHere(v, addrInsLoop);
2855       sqlite3VdbeAddOp1(v, OP_Close, 1);
2856     }
2857 
2858     /* Compute the complete text of the CREATE statement */
2859     if( pSelect ){
2860       zStmt = createTableStmt(db, p);
2861     }else{
2862       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2863       n = (int)(pEnd2->z - pParse->sNameToken.z);
2864       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2865       zStmt = sqlite3MPrintf(db,
2866           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2867       );
2868     }
2869 
2870     /* A slot for the record has already been allocated in the
2871     ** schema table.  We just need to update that slot with all
2872     ** the information we've collected.
2873     */
2874     sqlite3NestedParse(pParse,
2875       "UPDATE %Q." LEGACY_SCHEMA_TABLE
2876       " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2877       " WHERE rowid=#%d",
2878       db->aDb[iDb].zDbSName,
2879       zType,
2880       p->zName,
2881       p->zName,
2882       pParse->regRoot,
2883       zStmt,
2884       pParse->regRowid
2885     );
2886     sqlite3DbFree(db, zStmt);
2887     sqlite3ChangeCookie(pParse, iDb);
2888 
2889 #ifndef SQLITE_OMIT_AUTOINCREMENT
2890     /* Check to see if we need to create an sqlite_sequence table for
2891     ** keeping track of autoincrement keys.
2892     */
2893     if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
2894       Db *pDb = &db->aDb[iDb];
2895       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2896       if( pDb->pSchema->pSeqTab==0 ){
2897         sqlite3NestedParse(pParse,
2898           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2899           pDb->zDbSName
2900         );
2901       }
2902     }
2903 #endif
2904 
2905     /* Reparse everything to update our internal data structures */
2906     sqlite3VdbeAddParseSchemaOp(v, iDb,
2907            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
2908   }
2909 
2910   /* Add the table to the in-memory representation of the database.
2911   */
2912   if( db->init.busy ){
2913     Table *pOld;
2914     Schema *pSchema = p->pSchema;
2915     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2916     assert( HasRowid(p) || p->iPKey<0 );
2917     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2918     if( pOld ){
2919       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2920       sqlite3OomFault(db);
2921       return;
2922     }
2923     pParse->pNewTable = 0;
2924     db->mDbFlags |= DBFLAG_SchemaChange;
2925 
2926     /* If this is the magic sqlite_sequence table used by autoincrement,
2927     ** then record a pointer to this table in the main database structure
2928     ** so that INSERT can find the table easily.  */
2929     assert( !pParse->nested );
2930 #ifndef SQLITE_OMIT_AUTOINCREMENT
2931     if( strcmp(p->zName, "sqlite_sequence")==0 ){
2932       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2933       p->pSchema->pSeqTab = p;
2934     }
2935 #endif
2936   }
2937 
2938 #ifndef SQLITE_OMIT_ALTERTABLE
2939   if( !pSelect && IsOrdinaryTable(p) ){
2940     assert( pCons && pEnd );
2941     if( pCons->z==0 ){
2942       pCons = pEnd;
2943     }
2944     p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
2945   }
2946 #endif
2947 }
2948 
2949 #ifndef SQLITE_OMIT_VIEW
2950 /*
2951 ** The parser calls this routine in order to create a new VIEW
2952 */
2953 void sqlite3CreateView(
2954   Parse *pParse,     /* The parsing context */
2955   Token *pBegin,     /* The CREATE token that begins the statement */
2956   Token *pName1,     /* The token that holds the name of the view */
2957   Token *pName2,     /* The token that holds the name of the view */
2958   ExprList *pCNames, /* Optional list of view column names */
2959   Select *pSelect,   /* A SELECT statement that will become the new view */
2960   int isTemp,        /* TRUE for a TEMPORARY view */
2961   int noErr          /* Suppress error messages if VIEW already exists */
2962 ){
2963   Table *p;
2964   int n;
2965   const char *z;
2966   Token sEnd;
2967   DbFixer sFix;
2968   Token *pName = 0;
2969   int iDb;
2970   sqlite3 *db = pParse->db;
2971 
2972   if( pParse->nVar>0 ){
2973     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2974     goto create_view_fail;
2975   }
2976   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2977   p = pParse->pNewTable;
2978   if( p==0 || pParse->nErr ) goto create_view_fail;
2979 
2980   /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2981   ** on a view, even though views do not have rowids.  The following flag
2982   ** setting fixes this problem.  But the fix can be disabled by compiling
2983   ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2984   ** depend upon the old buggy behavior. */
2985 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2986   p->tabFlags |= TF_NoVisibleRowid;
2987 #endif
2988 
2989   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2990   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2991   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2992   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2993 
2994   /* Make a copy of the entire SELECT statement that defines the view.
2995   ** This will force all the Expr.token.z values to be dynamically
2996   ** allocated rather than point to the input string - which means that
2997   ** they will persist after the current sqlite3_exec() call returns.
2998   */
2999   pSelect->selFlags |= SF_View;
3000   if( IN_RENAME_OBJECT ){
3001     p->u.view.pSelect = pSelect;
3002     pSelect = 0;
3003   }else{
3004     p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
3005   }
3006   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
3007   p->eTabType = TABTYP_VIEW;
3008   if( db->mallocFailed ) goto create_view_fail;
3009 
3010   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
3011   ** the end.
3012   */
3013   sEnd = pParse->sLastToken;
3014   assert( sEnd.z[0]!=0 || sEnd.n==0 );
3015   if( sEnd.z[0]!=';' ){
3016     sEnd.z += sEnd.n;
3017   }
3018   sEnd.n = 0;
3019   n = (int)(sEnd.z - pBegin->z);
3020   assert( n>0 );
3021   z = pBegin->z;
3022   while( sqlite3Isspace(z[n-1]) ){ n--; }
3023   sEnd.z = &z[n-1];
3024   sEnd.n = 1;
3025 
3026   /* Use sqlite3EndTable() to add the view to the schema table */
3027   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
3028 
3029 create_view_fail:
3030   sqlite3SelectDelete(db, pSelect);
3031   if( IN_RENAME_OBJECT ){
3032     sqlite3RenameExprlistUnmap(pParse, pCNames);
3033   }
3034   sqlite3ExprListDelete(db, pCNames);
3035   return;
3036 }
3037 #endif /* SQLITE_OMIT_VIEW */
3038 
3039 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3040 /*
3041 ** The Table structure pTable is really a VIEW.  Fill in the names of
3042 ** the columns of the view in the pTable structure.  Return the number
3043 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
3044 */
3045 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
3046   Table *pSelTab;   /* A fake table from which we get the result set */
3047   Select *pSel;     /* Copy of the SELECT that implements the view */
3048   int nErr = 0;     /* Number of errors encountered */
3049   int n;            /* Temporarily holds the number of cursors assigned */
3050   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
3051 #ifndef SQLITE_OMIT_VIRTUALTABLE
3052   int rc;
3053 #endif
3054 #ifndef SQLITE_OMIT_AUTHORIZATION
3055   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
3056 #endif
3057 
3058   assert( pTable );
3059 
3060 #ifndef SQLITE_OMIT_VIRTUALTABLE
3061   if( IsVirtual(pTable) ){
3062     db->nSchemaLock++;
3063     rc = sqlite3VtabCallConnect(pParse, pTable);
3064     db->nSchemaLock--;
3065     return rc;
3066   }
3067 #endif
3068 
3069 #ifndef SQLITE_OMIT_VIEW
3070   /* A positive nCol means the columns names for this view are
3071   ** already known.
3072   */
3073   if( pTable->nCol>0 ) return 0;
3074 
3075   /* A negative nCol is a special marker meaning that we are currently
3076   ** trying to compute the column names.  If we enter this routine with
3077   ** a negative nCol, it means two or more views form a loop, like this:
3078   **
3079   **     CREATE VIEW one AS SELECT * FROM two;
3080   **     CREATE VIEW two AS SELECT * FROM one;
3081   **
3082   ** Actually, the error above is now caught prior to reaching this point.
3083   ** But the following test is still important as it does come up
3084   ** in the following:
3085   **
3086   **     CREATE TABLE main.ex1(a);
3087   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3088   **     SELECT * FROM temp.ex1;
3089   */
3090   if( pTable->nCol<0 ){
3091     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
3092     return 1;
3093   }
3094   assert( pTable->nCol>=0 );
3095 
3096   /* If we get this far, it means we need to compute the table names.
3097   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3098   ** "*" elements in the results set of the view and will assign cursors
3099   ** to the elements of the FROM clause.  But we do not want these changes
3100   ** to be permanent.  So the computation is done on a copy of the SELECT
3101   ** statement that defines the view.
3102   */
3103   assert( IsView(pTable) );
3104   pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
3105   if( pSel ){
3106     u8 eParseMode = pParse->eParseMode;
3107     pParse->eParseMode = PARSE_MODE_NORMAL;
3108     n = pParse->nTab;
3109     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
3110     pTable->nCol = -1;
3111     DisableLookaside;
3112 #ifndef SQLITE_OMIT_AUTHORIZATION
3113     xAuth = db->xAuth;
3114     db->xAuth = 0;
3115     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3116     db->xAuth = xAuth;
3117 #else
3118     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3119 #endif
3120     pParse->nTab = n;
3121     if( pSelTab==0 ){
3122       pTable->nCol = 0;
3123       nErr++;
3124     }else if( pTable->pCheck ){
3125       /* CREATE VIEW name(arglist) AS ...
3126       ** The names of the columns in the table are taken from
3127       ** arglist which is stored in pTable->pCheck.  The pCheck field
3128       ** normally holds CHECK constraints on an ordinary table, but for
3129       ** a VIEW it holds the list of column names.
3130       */
3131       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
3132                                  &pTable->nCol, &pTable->aCol);
3133       if( db->mallocFailed==0
3134        && pParse->nErr==0
3135        && pTable->nCol==pSel->pEList->nExpr
3136       ){
3137         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
3138                                                SQLITE_AFF_NONE);
3139       }
3140     }else{
3141       /* CREATE VIEW name AS...  without an argument list.  Construct
3142       ** the column names from the SELECT statement that defines the view.
3143       */
3144       assert( pTable->aCol==0 );
3145       pTable->nCol = pSelTab->nCol;
3146       pTable->aCol = pSelTab->aCol;
3147       pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
3148       pSelTab->nCol = 0;
3149       pSelTab->aCol = 0;
3150       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
3151     }
3152     pTable->nNVCol = pTable->nCol;
3153     sqlite3DeleteTable(db, pSelTab);
3154     sqlite3SelectDelete(db, pSel);
3155     EnableLookaside;
3156     pParse->eParseMode = eParseMode;
3157   } else {
3158     nErr++;
3159   }
3160   pTable->pSchema->schemaFlags |= DB_UnresetViews;
3161   if( db->mallocFailed ){
3162     sqlite3DeleteColumnNames(db, pTable);
3163   }
3164 #endif /* SQLITE_OMIT_VIEW */
3165   return nErr;
3166 }
3167 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3168 
3169 #ifndef SQLITE_OMIT_VIEW
3170 /*
3171 ** Clear the column names from every VIEW in database idx.
3172 */
3173 static void sqliteViewResetAll(sqlite3 *db, int idx){
3174   HashElem *i;
3175   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
3176   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
3177   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
3178     Table *pTab = sqliteHashData(i);
3179     if( IsView(pTab) ){
3180       sqlite3DeleteColumnNames(db, pTab);
3181     }
3182   }
3183   DbClearProperty(db, idx, DB_UnresetViews);
3184 }
3185 #else
3186 # define sqliteViewResetAll(A,B)
3187 #endif /* SQLITE_OMIT_VIEW */
3188 
3189 /*
3190 ** This function is called by the VDBE to adjust the internal schema
3191 ** used by SQLite when the btree layer moves a table root page. The
3192 ** root-page of a table or index in database iDb has changed from iFrom
3193 ** to iTo.
3194 **
3195 ** Ticket #1728:  The symbol table might still contain information
3196 ** on tables and/or indices that are the process of being deleted.
3197 ** If you are unlucky, one of those deleted indices or tables might
3198 ** have the same rootpage number as the real table or index that is
3199 ** being moved.  So we cannot stop searching after the first match
3200 ** because the first match might be for one of the deleted indices
3201 ** or tables and not the table/index that is actually being moved.
3202 ** We must continue looping until all tables and indices with
3203 ** rootpage==iFrom have been converted to have a rootpage of iTo
3204 ** in order to be certain that we got the right one.
3205 */
3206 #ifndef SQLITE_OMIT_AUTOVACUUM
3207 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
3208   HashElem *pElem;
3209   Hash *pHash;
3210   Db *pDb;
3211 
3212   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3213   pDb = &db->aDb[iDb];
3214   pHash = &pDb->pSchema->tblHash;
3215   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3216     Table *pTab = sqliteHashData(pElem);
3217     if( pTab->tnum==iFrom ){
3218       pTab->tnum = iTo;
3219     }
3220   }
3221   pHash = &pDb->pSchema->idxHash;
3222   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3223     Index *pIdx = sqliteHashData(pElem);
3224     if( pIdx->tnum==iFrom ){
3225       pIdx->tnum = iTo;
3226     }
3227   }
3228 }
3229 #endif
3230 
3231 /*
3232 ** Write code to erase the table with root-page iTable from database iDb.
3233 ** Also write code to modify the sqlite_schema table and internal schema
3234 ** if a root-page of another table is moved by the btree-layer whilst
3235 ** erasing iTable (this can happen with an auto-vacuum database).
3236 */
3237 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
3238   Vdbe *v = sqlite3GetVdbe(pParse);
3239   int r1 = sqlite3GetTempReg(pParse);
3240   if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
3241   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
3242   sqlite3MayAbort(pParse);
3243 #ifndef SQLITE_OMIT_AUTOVACUUM
3244   /* OP_Destroy stores an in integer r1. If this integer
3245   ** is non-zero, then it is the root page number of a table moved to
3246   ** location iTable. The following code modifies the sqlite_schema table to
3247   ** reflect this.
3248   **
3249   ** The "#NNN" in the SQL is a special constant that means whatever value
3250   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
3251   ** token for additional information.
3252   */
3253   sqlite3NestedParse(pParse,
3254      "UPDATE %Q." LEGACY_SCHEMA_TABLE
3255      " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3256      pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
3257 #endif
3258   sqlite3ReleaseTempReg(pParse, r1);
3259 }
3260 
3261 /*
3262 ** Write VDBE code to erase table pTab and all associated indices on disk.
3263 ** Code to update the sqlite_schema tables and internal schema definitions
3264 ** in case a root-page belonging to another table is moved by the btree layer
3265 ** is also added (this can happen with an auto-vacuum database).
3266 */
3267 static void destroyTable(Parse *pParse, Table *pTab){
3268   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3269   ** is not defined), then it is important to call OP_Destroy on the
3270   ** table and index root-pages in order, starting with the numerically
3271   ** largest root-page number. This guarantees that none of the root-pages
3272   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3273   ** following were coded:
3274   **
3275   ** OP_Destroy 4 0
3276   ** ...
3277   ** OP_Destroy 5 0
3278   **
3279   ** and root page 5 happened to be the largest root-page number in the
3280   ** database, then root page 5 would be moved to page 4 by the
3281   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3282   ** a free-list page.
3283   */
3284   Pgno iTab = pTab->tnum;
3285   Pgno iDestroyed = 0;
3286 
3287   while( 1 ){
3288     Index *pIdx;
3289     Pgno iLargest = 0;
3290 
3291     if( iDestroyed==0 || iTab<iDestroyed ){
3292       iLargest = iTab;
3293     }
3294     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3295       Pgno iIdx = pIdx->tnum;
3296       assert( pIdx->pSchema==pTab->pSchema );
3297       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
3298         iLargest = iIdx;
3299       }
3300     }
3301     if( iLargest==0 ){
3302       return;
3303     }else{
3304       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3305       assert( iDb>=0 && iDb<pParse->db->nDb );
3306       destroyRootPage(pParse, iLargest, iDb);
3307       iDestroyed = iLargest;
3308     }
3309   }
3310 }
3311 
3312 /*
3313 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3314 ** after a DROP INDEX or DROP TABLE command.
3315 */
3316 static void sqlite3ClearStatTables(
3317   Parse *pParse,         /* The parsing context */
3318   int iDb,               /* The database number */
3319   const char *zType,     /* "idx" or "tbl" */
3320   const char *zName      /* Name of index or table */
3321 ){
3322   int i;
3323   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
3324   for(i=1; i<=4; i++){
3325     char zTab[24];
3326     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
3327     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
3328       sqlite3NestedParse(pParse,
3329         "DELETE FROM %Q.%s WHERE %s=%Q",
3330         zDbName, zTab, zType, zName
3331       );
3332     }
3333   }
3334 }
3335 
3336 /*
3337 ** Generate code to drop a table.
3338 */
3339 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
3340   Vdbe *v;
3341   sqlite3 *db = pParse->db;
3342   Trigger *pTrigger;
3343   Db *pDb = &db->aDb[iDb];
3344 
3345   v = sqlite3GetVdbe(pParse);
3346   assert( v!=0 );
3347   sqlite3BeginWriteOperation(pParse, 1, iDb);
3348 
3349 #ifndef SQLITE_OMIT_VIRTUALTABLE
3350   if( IsVirtual(pTab) ){
3351     sqlite3VdbeAddOp0(v, OP_VBegin);
3352   }
3353 #endif
3354 
3355   /* Drop all triggers associated with the table being dropped. Code
3356   ** is generated to remove entries from sqlite_schema and/or
3357   ** sqlite_temp_schema if required.
3358   */
3359   pTrigger = sqlite3TriggerList(pParse, pTab);
3360   while( pTrigger ){
3361     assert( pTrigger->pSchema==pTab->pSchema ||
3362         pTrigger->pSchema==db->aDb[1].pSchema );
3363     sqlite3DropTriggerPtr(pParse, pTrigger);
3364     pTrigger = pTrigger->pNext;
3365   }
3366 
3367 #ifndef SQLITE_OMIT_AUTOINCREMENT
3368   /* Remove any entries of the sqlite_sequence table associated with
3369   ** the table being dropped. This is done before the table is dropped
3370   ** at the btree level, in case the sqlite_sequence table needs to
3371   ** move as a result of the drop (can happen in auto-vacuum mode).
3372   */
3373   if( pTab->tabFlags & TF_Autoincrement ){
3374     sqlite3NestedParse(pParse,
3375       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3376       pDb->zDbSName, pTab->zName
3377     );
3378   }
3379 #endif
3380 
3381   /* Drop all entries in the schema table that refer to the
3382   ** table. The program name loops through the schema table and deletes
3383   ** every row that refers to a table of the same name as the one being
3384   ** dropped. Triggers are handled separately because a trigger can be
3385   ** created in the temp database that refers to a table in another
3386   ** database.
3387   */
3388   sqlite3NestedParse(pParse,
3389       "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3390       " WHERE tbl_name=%Q and type!='trigger'",
3391       pDb->zDbSName, pTab->zName);
3392   if( !isView && !IsVirtual(pTab) ){
3393     destroyTable(pParse, pTab);
3394   }
3395 
3396   /* Remove the table entry from SQLite's internal schema and modify
3397   ** the schema cookie.
3398   */
3399   if( IsVirtual(pTab) ){
3400     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
3401     sqlite3MayAbort(pParse);
3402   }
3403   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
3404   sqlite3ChangeCookie(pParse, iDb);
3405   sqliteViewResetAll(db, iDb);
3406 }
3407 
3408 /*
3409 ** Return TRUE if shadow tables should be read-only in the current
3410 ** context.
3411 */
3412 int sqlite3ReadOnlyShadowTables(sqlite3 *db){
3413 #ifndef SQLITE_OMIT_VIRTUALTABLE
3414   if( (db->flags & SQLITE_Defensive)!=0
3415    && db->pVtabCtx==0
3416    && db->nVdbeExec==0
3417    && !sqlite3VtabInSync(db)
3418   ){
3419     return 1;
3420   }
3421 #endif
3422   return 0;
3423 }
3424 
3425 /*
3426 ** Return true if it is not allowed to drop the given table
3427 */
3428 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
3429   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
3430     if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
3431     if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
3432     return 1;
3433   }
3434   if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
3435     return 1;
3436   }
3437   if( pTab->tabFlags & TF_Eponymous ){
3438     return 1;
3439   }
3440   return 0;
3441 }
3442 
3443 /*
3444 ** This routine is called to do the work of a DROP TABLE statement.
3445 ** pName is the name of the table to be dropped.
3446 */
3447 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
3448   Table *pTab;
3449   Vdbe *v;
3450   sqlite3 *db = pParse->db;
3451   int iDb;
3452 
3453   if( db->mallocFailed ){
3454     goto exit_drop_table;
3455   }
3456   assert( pParse->nErr==0 );
3457   assert( pName->nSrc==1 );
3458   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
3459   if( noErr ) db->suppressErr++;
3460   assert( isView==0 || isView==LOCATE_VIEW );
3461   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
3462   if( noErr ) db->suppressErr--;
3463 
3464   if( pTab==0 ){
3465     if( noErr ){
3466       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3467       sqlite3ForceNotReadOnly(pParse);
3468     }
3469     goto exit_drop_table;
3470   }
3471   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3472   assert( iDb>=0 && iDb<db->nDb );
3473 
3474   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3475   ** it is initialized.
3476   */
3477   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
3478     goto exit_drop_table;
3479   }
3480 #ifndef SQLITE_OMIT_AUTHORIZATION
3481   {
3482     int code;
3483     const char *zTab = SCHEMA_TABLE(iDb);
3484     const char *zDb = db->aDb[iDb].zDbSName;
3485     const char *zArg2 = 0;
3486     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
3487       goto exit_drop_table;
3488     }
3489     if( isView ){
3490       if( !OMIT_TEMPDB && iDb==1 ){
3491         code = SQLITE_DROP_TEMP_VIEW;
3492       }else{
3493         code = SQLITE_DROP_VIEW;
3494       }
3495 #ifndef SQLITE_OMIT_VIRTUALTABLE
3496     }else if( IsVirtual(pTab) ){
3497       code = SQLITE_DROP_VTABLE;
3498       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
3499 #endif
3500     }else{
3501       if( !OMIT_TEMPDB && iDb==1 ){
3502         code = SQLITE_DROP_TEMP_TABLE;
3503       }else{
3504         code = SQLITE_DROP_TABLE;
3505       }
3506     }
3507     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
3508       goto exit_drop_table;
3509     }
3510     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
3511       goto exit_drop_table;
3512     }
3513   }
3514 #endif
3515   if( tableMayNotBeDropped(db, pTab) ){
3516     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
3517     goto exit_drop_table;
3518   }
3519 
3520 #ifndef SQLITE_OMIT_VIEW
3521   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3522   ** on a table.
3523   */
3524   if( isView && !IsView(pTab) ){
3525     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
3526     goto exit_drop_table;
3527   }
3528   if( !isView && IsView(pTab) ){
3529     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
3530     goto exit_drop_table;
3531   }
3532 #endif
3533 
3534   /* Generate code to remove the table from the schema table
3535   ** on disk.
3536   */
3537   v = sqlite3GetVdbe(pParse);
3538   if( v ){
3539     sqlite3BeginWriteOperation(pParse, 1, iDb);
3540     if( !isView ){
3541       sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
3542       sqlite3FkDropTable(pParse, pName, pTab);
3543     }
3544     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
3545   }
3546 
3547 exit_drop_table:
3548   sqlite3SrcListDelete(db, pName);
3549 }
3550 
3551 /*
3552 ** This routine is called to create a new foreign key on the table
3553 ** currently under construction.  pFromCol determines which columns
3554 ** in the current table point to the foreign key.  If pFromCol==0 then
3555 ** connect the key to the last column inserted.  pTo is the name of
3556 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
3557 ** of tables in the parent pTo table.  flags contains all
3558 ** information about the conflict resolution algorithms specified
3559 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3560 **
3561 ** An FKey structure is created and added to the table currently
3562 ** under construction in the pParse->pNewTable field.
3563 **
3564 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
3565 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3566 */
3567 void sqlite3CreateForeignKey(
3568   Parse *pParse,       /* Parsing context */
3569   ExprList *pFromCol,  /* Columns in this table that point to other table */
3570   Token *pTo,          /* Name of the other table */
3571   ExprList *pToCol,    /* Columns in the other table */
3572   int flags            /* Conflict resolution algorithms. */
3573 ){
3574   sqlite3 *db = pParse->db;
3575 #ifndef SQLITE_OMIT_FOREIGN_KEY
3576   FKey *pFKey = 0;
3577   FKey *pNextTo;
3578   Table *p = pParse->pNewTable;
3579   i64 nByte;
3580   int i;
3581   int nCol;
3582   char *z;
3583 
3584   assert( pTo!=0 );
3585   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
3586   if( pFromCol==0 ){
3587     int iCol = p->nCol-1;
3588     if( NEVER(iCol<0) ) goto fk_end;
3589     if( pToCol && pToCol->nExpr!=1 ){
3590       sqlite3ErrorMsg(pParse, "foreign key on %s"
3591          " should reference only one column of table %T",
3592          p->aCol[iCol].zCnName, pTo);
3593       goto fk_end;
3594     }
3595     nCol = 1;
3596   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
3597     sqlite3ErrorMsg(pParse,
3598         "number of columns in foreign key does not match the number of "
3599         "columns in the referenced table");
3600     goto fk_end;
3601   }else{
3602     nCol = pFromCol->nExpr;
3603   }
3604   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
3605   if( pToCol ){
3606     for(i=0; i<pToCol->nExpr; i++){
3607       nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
3608     }
3609   }
3610   pFKey = sqlite3DbMallocZero(db, nByte );
3611   if( pFKey==0 ){
3612     goto fk_end;
3613   }
3614   pFKey->pFrom = p;
3615   assert( IsOrdinaryTable(p) );
3616   pFKey->pNextFrom = p->u.tab.pFKey;
3617   z = (char*)&pFKey->aCol[nCol];
3618   pFKey->zTo = z;
3619   if( IN_RENAME_OBJECT ){
3620     sqlite3RenameTokenMap(pParse, (void*)z, pTo);
3621   }
3622   memcpy(z, pTo->z, pTo->n);
3623   z[pTo->n] = 0;
3624   sqlite3Dequote(z);
3625   z += pTo->n+1;
3626   pFKey->nCol = nCol;
3627   if( pFromCol==0 ){
3628     pFKey->aCol[0].iFrom = p->nCol-1;
3629   }else{
3630     for(i=0; i<nCol; i++){
3631       int j;
3632       for(j=0; j<p->nCol; j++){
3633         if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
3634           pFKey->aCol[i].iFrom = j;
3635           break;
3636         }
3637       }
3638       if( j>=p->nCol ){
3639         sqlite3ErrorMsg(pParse,
3640           "unknown column \"%s\" in foreign key definition",
3641           pFromCol->a[i].zEName);
3642         goto fk_end;
3643       }
3644       if( IN_RENAME_OBJECT ){
3645         sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
3646       }
3647     }
3648   }
3649   if( pToCol ){
3650     for(i=0; i<nCol; i++){
3651       int n = sqlite3Strlen30(pToCol->a[i].zEName);
3652       pFKey->aCol[i].zCol = z;
3653       if( IN_RENAME_OBJECT ){
3654         sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
3655       }
3656       memcpy(z, pToCol->a[i].zEName, n);
3657       z[n] = 0;
3658       z += n+1;
3659     }
3660   }
3661   pFKey->isDeferred = 0;
3662   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
3663   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
3664 
3665   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
3666   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
3667       pFKey->zTo, (void *)pFKey
3668   );
3669   if( pNextTo==pFKey ){
3670     sqlite3OomFault(db);
3671     goto fk_end;
3672   }
3673   if( pNextTo ){
3674     assert( pNextTo->pPrevTo==0 );
3675     pFKey->pNextTo = pNextTo;
3676     pNextTo->pPrevTo = pFKey;
3677   }
3678 
3679   /* Link the foreign key to the table as the last step.
3680   */
3681   assert( IsOrdinaryTable(p) );
3682   p->u.tab.pFKey = pFKey;
3683   pFKey = 0;
3684 
3685 fk_end:
3686   sqlite3DbFree(db, pFKey);
3687 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3688   sqlite3ExprListDelete(db, pFromCol);
3689   sqlite3ExprListDelete(db, pToCol);
3690 }
3691 
3692 /*
3693 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3694 ** clause is seen as part of a foreign key definition.  The isDeferred
3695 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3696 ** The behavior of the most recently created foreign key is adjusted
3697 ** accordingly.
3698 */
3699 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
3700 #ifndef SQLITE_OMIT_FOREIGN_KEY
3701   Table *pTab;
3702   FKey *pFKey;
3703   if( (pTab = pParse->pNewTable)==0 ) return;
3704   if( NEVER(!IsOrdinaryTable(pTab)) ) return;
3705   if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
3706   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
3707   pFKey->isDeferred = (u8)isDeferred;
3708 #endif
3709 }
3710 
3711 /*
3712 ** Generate code that will erase and refill index *pIdx.  This is
3713 ** used to initialize a newly created index or to recompute the
3714 ** content of an index in response to a REINDEX command.
3715 **
3716 ** if memRootPage is not negative, it means that the index is newly
3717 ** created.  The register specified by memRootPage contains the
3718 ** root page number of the index.  If memRootPage is negative, then
3719 ** the index already exists and must be cleared before being refilled and
3720 ** the root page number of the index is taken from pIndex->tnum.
3721 */
3722 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
3723   Table *pTab = pIndex->pTable;  /* The table that is indexed */
3724   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
3725   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
3726   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
3727   int addr1;                     /* Address of top of loop */
3728   int addr2;                     /* Address to jump to for next iteration */
3729   Pgno tnum;                     /* Root page of index */
3730   int iPartIdxLabel;             /* Jump to this label to skip a row */
3731   Vdbe *v;                       /* Generate code into this virtual machine */
3732   KeyInfo *pKey;                 /* KeyInfo for index */
3733   int regRecord;                 /* Register holding assembled index record */
3734   sqlite3 *db = pParse->db;      /* The database connection */
3735   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3736 
3737 #ifndef SQLITE_OMIT_AUTHORIZATION
3738   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
3739       db->aDb[iDb].zDbSName ) ){
3740     return;
3741   }
3742 #endif
3743 
3744   /* Require a write-lock on the table to perform this operation */
3745   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
3746 
3747   v = sqlite3GetVdbe(pParse);
3748   if( v==0 ) return;
3749   if( memRootPage>=0 ){
3750     tnum = (Pgno)memRootPage;
3751   }else{
3752     tnum = pIndex->tnum;
3753   }
3754   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
3755   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
3756 
3757   /* Open the sorter cursor if we are to use one. */
3758   iSorter = pParse->nTab++;
3759   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
3760                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
3761 
3762   /* Open the table. Loop through all rows of the table, inserting index
3763   ** records into the sorter. */
3764   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3765   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
3766   regRecord = sqlite3GetTempReg(pParse);
3767   sqlite3MultiWrite(pParse);
3768 
3769   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
3770   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
3771   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
3772   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
3773   sqlite3VdbeJumpHere(v, addr1);
3774   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
3775   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
3776                     (char *)pKey, P4_KEYINFO);
3777   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
3778 
3779   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
3780   if( IsUniqueIndex(pIndex) ){
3781     int j2 = sqlite3VdbeGoto(v, 1);
3782     addr2 = sqlite3VdbeCurrentAddr(v);
3783     sqlite3VdbeVerifyAbortable(v, OE_Abort);
3784     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
3785                          pIndex->nKeyCol); VdbeCoverage(v);
3786     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
3787     sqlite3VdbeJumpHere(v, j2);
3788   }else{
3789     /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3790     ** abort. The exception is if one of the indexed expressions contains a
3791     ** user function that throws an exception when it is evaluated. But the
3792     ** overhead of adding a statement journal to a CREATE INDEX statement is
3793     ** very small (since most of the pages written do not contain content that
3794     ** needs to be restored if the statement aborts), so we call
3795     ** sqlite3MayAbort() for all CREATE INDEX statements.  */
3796     sqlite3MayAbort(pParse);
3797     addr2 = sqlite3VdbeCurrentAddr(v);
3798   }
3799   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
3800   if( !pIndex->bAscKeyBug ){
3801     /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3802     ** faster by avoiding unnecessary seeks.  But the optimization does
3803     ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3804     ** with DESC primary keys, since those indexes have there keys in
3805     ** a different order from the main table.
3806     ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3807     */
3808     sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
3809   }
3810   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
3811   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3812   sqlite3ReleaseTempReg(pParse, regRecord);
3813   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
3814   sqlite3VdbeJumpHere(v, addr1);
3815 
3816   sqlite3VdbeAddOp1(v, OP_Close, iTab);
3817   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3818   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3819 }
3820 
3821 /*
3822 ** Allocate heap space to hold an Index object with nCol columns.
3823 **
3824 ** Increase the allocation size to provide an extra nExtra bytes
3825 ** of 8-byte aligned space after the Index object and return a
3826 ** pointer to this extra space in *ppExtra.
3827 */
3828 Index *sqlite3AllocateIndexObject(
3829   sqlite3 *db,         /* Database connection */
3830   i16 nCol,            /* Total number of columns in the index */
3831   int nExtra,          /* Number of bytes of extra space to alloc */
3832   char **ppExtra       /* Pointer to the "extra" space */
3833 ){
3834   Index *p;            /* Allocated index object */
3835   int nByte;           /* Bytes of space for Index object + arrays */
3836 
3837   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
3838           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
3839           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
3840                  sizeof(i16)*nCol +            /* Index.aiColumn   */
3841                  sizeof(u8)*nCol);             /* Index.aSortOrder */
3842   p = sqlite3DbMallocZero(db, nByte + nExtra);
3843   if( p ){
3844     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3845     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3846     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3847     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
3848     p->aSortOrder = (u8*)pExtra;
3849     p->nColumn = nCol;
3850     p->nKeyCol = nCol - 1;
3851     *ppExtra = ((char*)p) + nByte;
3852   }
3853   return p;
3854 }
3855 
3856 /*
3857 ** If expression list pList contains an expression that was parsed with
3858 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3859 ** pParse and return non-zero. Otherwise, return zero.
3860 */
3861 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
3862   if( pList ){
3863     int i;
3864     for(i=0; i<pList->nExpr; i++){
3865       if( pList->a[i].bNulls ){
3866         u8 sf = pList->a[i].sortFlags;
3867         sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
3868             (sf==0 || sf==3) ? "FIRST" : "LAST"
3869         );
3870         return 1;
3871       }
3872     }
3873   }
3874   return 0;
3875 }
3876 
3877 /*
3878 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
3879 ** and pTblList is the name of the table that is to be indexed.  Both will
3880 ** be NULL for a primary key or an index that is created to satisfy a
3881 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
3882 ** as the table to be indexed.  pParse->pNewTable is a table that is
3883 ** currently being constructed by a CREATE TABLE statement.
3884 **
3885 ** pList is a list of columns to be indexed.  pList will be NULL if this
3886 ** is a primary key or unique-constraint on the most recent column added
3887 ** to the table currently under construction.
3888 */
3889 void sqlite3CreateIndex(
3890   Parse *pParse,     /* All information about this parse */
3891   Token *pName1,     /* First part of index name. May be NULL */
3892   Token *pName2,     /* Second part of index name. May be NULL */
3893   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3894   ExprList *pList,   /* A list of columns to be indexed */
3895   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3896   Token *pStart,     /* The CREATE token that begins this statement */
3897   Expr *pPIWhere,    /* WHERE clause for partial indices */
3898   int sortOrder,     /* Sort order of primary key when pList==NULL */
3899   int ifNotExist,    /* Omit error if index already exists */
3900   u8 idxType         /* The index type */
3901 ){
3902   Table *pTab = 0;     /* Table to be indexed */
3903   Index *pIndex = 0;   /* The index to be created */
3904   char *zName = 0;     /* Name of the index */
3905   int nName;           /* Number of characters in zName */
3906   int i, j;
3907   DbFixer sFix;        /* For assigning database names to pTable */
3908   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
3909   sqlite3 *db = pParse->db;
3910   Db *pDb;             /* The specific table containing the indexed database */
3911   int iDb;             /* Index of the database that is being written */
3912   Token *pName = 0;    /* Unqualified name of the index to create */
3913   struct ExprList_item *pListItem; /* For looping over pList */
3914   int nExtra = 0;                  /* Space allocated for zExtra[] */
3915   int nExtraCol;                   /* Number of extra columns needed */
3916   char *zExtra = 0;                /* Extra space after the Index object */
3917   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
3918 
3919   if( db->mallocFailed || pParse->nErr>0 ){
3920     goto exit_create_index;
3921   }
3922   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3923     goto exit_create_index;
3924   }
3925   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3926     goto exit_create_index;
3927   }
3928   if( sqlite3HasExplicitNulls(pParse, pList) ){
3929     goto exit_create_index;
3930   }
3931 
3932   /*
3933   ** Find the table that is to be indexed.  Return early if not found.
3934   */
3935   if( pTblName!=0 ){
3936 
3937     /* Use the two-part index name to determine the database
3938     ** to search for the table. 'Fix' the table name to this db
3939     ** before looking up the table.
3940     */
3941     assert( pName1 && pName2 );
3942     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3943     if( iDb<0 ) goto exit_create_index;
3944     assert( pName && pName->z );
3945 
3946 #ifndef SQLITE_OMIT_TEMPDB
3947     /* If the index name was unqualified, check if the table
3948     ** is a temp table. If so, set the database to 1. Do not do this
3949     ** if initialising a database schema.
3950     */
3951     if( !db->init.busy ){
3952       pTab = sqlite3SrcListLookup(pParse, pTblName);
3953       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3954         iDb = 1;
3955       }
3956     }
3957 #endif
3958 
3959     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3960     if( sqlite3FixSrcList(&sFix, pTblName) ){
3961       /* Because the parser constructs pTblName from a single identifier,
3962       ** sqlite3FixSrcList can never fail. */
3963       assert(0);
3964     }
3965     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3966     assert( db->mallocFailed==0 || pTab==0 );
3967     if( pTab==0 ) goto exit_create_index;
3968     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3969       sqlite3ErrorMsg(pParse,
3970            "cannot create a TEMP index on non-TEMP table \"%s\"",
3971            pTab->zName);
3972       goto exit_create_index;
3973     }
3974     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3975   }else{
3976     assert( pName==0 );
3977     assert( pStart==0 );
3978     pTab = pParse->pNewTable;
3979     if( !pTab ) goto exit_create_index;
3980     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3981   }
3982   pDb = &db->aDb[iDb];
3983 
3984   assert( pTab!=0 );
3985   assert( pParse->nErr==0 );
3986   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3987        && db->init.busy==0
3988        && pTblName!=0
3989 #if SQLITE_USER_AUTHENTICATION
3990        && sqlite3UserAuthTable(pTab->zName)==0
3991 #endif
3992   ){
3993     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3994     goto exit_create_index;
3995   }
3996 #ifndef SQLITE_OMIT_VIEW
3997   if( IsView(pTab) ){
3998     sqlite3ErrorMsg(pParse, "views may not be indexed");
3999     goto exit_create_index;
4000   }
4001 #endif
4002 #ifndef SQLITE_OMIT_VIRTUALTABLE
4003   if( IsVirtual(pTab) ){
4004     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
4005     goto exit_create_index;
4006   }
4007 #endif
4008 
4009   /*
4010   ** Find the name of the index.  Make sure there is not already another
4011   ** index or table with the same name.
4012   **
4013   ** Exception:  If we are reading the names of permanent indices from the
4014   ** sqlite_schema table (because some other process changed the schema) and
4015   ** one of the index names collides with the name of a temporary table or
4016   ** index, then we will continue to process this index.
4017   **
4018   ** If pName==0 it means that we are
4019   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
4020   ** own name.
4021   */
4022   if( pName ){
4023     zName = sqlite3NameFromToken(db, pName);
4024     if( zName==0 ) goto exit_create_index;
4025     assert( pName->z!=0 );
4026     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
4027       goto exit_create_index;
4028     }
4029     if( !IN_RENAME_OBJECT ){
4030       if( !db->init.busy ){
4031         if( sqlite3FindTable(db, zName, 0)!=0 ){
4032           sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
4033           goto exit_create_index;
4034         }
4035       }
4036       if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
4037         if( !ifNotExist ){
4038           sqlite3ErrorMsg(pParse, "index %s already exists", zName);
4039         }else{
4040           assert( !db->init.busy );
4041           sqlite3CodeVerifySchema(pParse, iDb);
4042           sqlite3ForceNotReadOnly(pParse);
4043         }
4044         goto exit_create_index;
4045       }
4046     }
4047   }else{
4048     int n;
4049     Index *pLoop;
4050     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
4051     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
4052     if( zName==0 ){
4053       goto exit_create_index;
4054     }
4055 
4056     /* Automatic index names generated from within sqlite3_declare_vtab()
4057     ** must have names that are distinct from normal automatic index names.
4058     ** The following statement converts "sqlite3_autoindex..." into
4059     ** "sqlite3_butoindex..." in order to make the names distinct.
4060     ** The "vtab_err.test" test demonstrates the need of this statement. */
4061     if( IN_SPECIAL_PARSE ) zName[7]++;
4062   }
4063 
4064   /* Check for authorization to create an index.
4065   */
4066 #ifndef SQLITE_OMIT_AUTHORIZATION
4067   if( !IN_RENAME_OBJECT ){
4068     const char *zDb = pDb->zDbSName;
4069     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
4070       goto exit_create_index;
4071     }
4072     i = SQLITE_CREATE_INDEX;
4073     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
4074     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
4075       goto exit_create_index;
4076     }
4077   }
4078 #endif
4079 
4080   /* If pList==0, it means this routine was called to make a primary
4081   ** key out of the last column added to the table under construction.
4082   ** So create a fake list to simulate this.
4083   */
4084   if( pList==0 ){
4085     Token prevCol;
4086     Column *pCol = &pTab->aCol[pTab->nCol-1];
4087     pCol->colFlags |= COLFLAG_UNIQUE;
4088     sqlite3TokenInit(&prevCol, pCol->zCnName);
4089     pList = sqlite3ExprListAppend(pParse, 0,
4090               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
4091     if( pList==0 ) goto exit_create_index;
4092     assert( pList->nExpr==1 );
4093     sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
4094   }else{
4095     sqlite3ExprListCheckLength(pParse, pList, "index");
4096     if( pParse->nErr ) goto exit_create_index;
4097   }
4098 
4099   /* Figure out how many bytes of space are required to store explicitly
4100   ** specified collation sequence names.
4101   */
4102   for(i=0; i<pList->nExpr; i++){
4103     Expr *pExpr = pList->a[i].pExpr;
4104     assert( pExpr!=0 );
4105     if( pExpr->op==TK_COLLATE ){
4106       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4107       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
4108     }
4109   }
4110 
4111   /*
4112   ** Allocate the index structure.
4113   */
4114   nName = sqlite3Strlen30(zName);
4115   nExtraCol = pPk ? pPk->nKeyCol : 1;
4116   assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
4117   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
4118                                       nName + nExtra + 1, &zExtra);
4119   if( db->mallocFailed ){
4120     goto exit_create_index;
4121   }
4122   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
4123   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
4124   pIndex->zName = zExtra;
4125   zExtra += nName + 1;
4126   memcpy(pIndex->zName, zName, nName+1);
4127   pIndex->pTable = pTab;
4128   pIndex->onError = (u8)onError;
4129   pIndex->uniqNotNull = onError!=OE_None;
4130   pIndex->idxType = idxType;
4131   pIndex->pSchema = db->aDb[iDb].pSchema;
4132   pIndex->nKeyCol = pList->nExpr;
4133   if( pPIWhere ){
4134     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
4135     pIndex->pPartIdxWhere = pPIWhere;
4136     pPIWhere = 0;
4137   }
4138   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4139 
4140   /* Check to see if we should honor DESC requests on index columns
4141   */
4142   if( pDb->pSchema->file_format>=4 ){
4143     sortOrderMask = -1;   /* Honor DESC */
4144   }else{
4145     sortOrderMask = 0;    /* Ignore DESC */
4146   }
4147 
4148   /* Analyze the list of expressions that form the terms of the index and
4149   ** report any errors.  In the common case where the expression is exactly
4150   ** a table column, store that column in aiColumn[].  For general expressions,
4151   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4152   **
4153   ** TODO: Issue a warning if two or more columns of the index are identical.
4154   ** TODO: Issue a warning if the table primary key is used as part of the
4155   ** index key.
4156   */
4157   pListItem = pList->a;
4158   if( IN_RENAME_OBJECT ){
4159     pIndex->aColExpr = pList;
4160     pList = 0;
4161   }
4162   for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
4163     Expr *pCExpr;                  /* The i-th index expression */
4164     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
4165     const char *zColl;             /* Collation sequence name */
4166 
4167     sqlite3StringToId(pListItem->pExpr);
4168     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
4169     if( pParse->nErr ) goto exit_create_index;
4170     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
4171     if( pCExpr->op!=TK_COLUMN ){
4172       if( pTab==pParse->pNewTable ){
4173         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
4174                                 "UNIQUE constraints");
4175         goto exit_create_index;
4176       }
4177       if( pIndex->aColExpr==0 ){
4178         pIndex->aColExpr = pList;
4179         pList = 0;
4180       }
4181       j = XN_EXPR;
4182       pIndex->aiColumn[i] = XN_EXPR;
4183       pIndex->uniqNotNull = 0;
4184     }else{
4185       j = pCExpr->iColumn;
4186       assert( j<=0x7fff );
4187       if( j<0 ){
4188         j = pTab->iPKey;
4189       }else{
4190         if( pTab->aCol[j].notNull==0 ){
4191           pIndex->uniqNotNull = 0;
4192         }
4193         if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
4194           pIndex->bHasVCol = 1;
4195         }
4196       }
4197       pIndex->aiColumn[i] = (i16)j;
4198     }
4199     zColl = 0;
4200     if( pListItem->pExpr->op==TK_COLLATE ){
4201       int nColl;
4202       assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
4203       zColl = pListItem->pExpr->u.zToken;
4204       nColl = sqlite3Strlen30(zColl) + 1;
4205       assert( nExtra>=nColl );
4206       memcpy(zExtra, zColl, nColl);
4207       zColl = zExtra;
4208       zExtra += nColl;
4209       nExtra -= nColl;
4210     }else if( j>=0 ){
4211       zColl = sqlite3ColumnColl(&pTab->aCol[j]);
4212     }
4213     if( !zColl ) zColl = sqlite3StrBINARY;
4214     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
4215       goto exit_create_index;
4216     }
4217     pIndex->azColl[i] = zColl;
4218     requestedSortOrder = pListItem->sortFlags & sortOrderMask;
4219     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
4220   }
4221 
4222   /* Append the table key to the end of the index.  For WITHOUT ROWID
4223   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
4224   ** normal tables (when pPk==0) this will be the rowid.
4225   */
4226   if( pPk ){
4227     for(j=0; j<pPk->nKeyCol; j++){
4228       int x = pPk->aiColumn[j];
4229       assert( x>=0 );
4230       if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
4231         pIndex->nColumn--;
4232       }else{
4233         testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
4234         pIndex->aiColumn[i] = x;
4235         pIndex->azColl[i] = pPk->azColl[j];
4236         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
4237         i++;
4238       }
4239     }
4240     assert( i==pIndex->nColumn );
4241   }else{
4242     pIndex->aiColumn[i] = XN_ROWID;
4243     pIndex->azColl[i] = sqlite3StrBINARY;
4244   }
4245   sqlite3DefaultRowEst(pIndex);
4246   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
4247 
4248   /* If this index contains every column of its table, then mark
4249   ** it as a covering index */
4250   assert( HasRowid(pTab)
4251       || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
4252   recomputeColumnsNotIndexed(pIndex);
4253   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
4254     pIndex->isCovering = 1;
4255     for(j=0; j<pTab->nCol; j++){
4256       if( j==pTab->iPKey ) continue;
4257       if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
4258       pIndex->isCovering = 0;
4259       break;
4260     }
4261   }
4262 
4263   if( pTab==pParse->pNewTable ){
4264     /* This routine has been called to create an automatic index as a
4265     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4266     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4267     ** i.e. one of:
4268     **
4269     ** CREATE TABLE t(x PRIMARY KEY, y);
4270     ** CREATE TABLE t(x, y, UNIQUE(x, y));
4271     **
4272     ** Either way, check to see if the table already has such an index. If
4273     ** so, don't bother creating this one. This only applies to
4274     ** automatically created indices. Users can do as they wish with
4275     ** explicit indices.
4276     **
4277     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4278     ** (and thus suppressing the second one) even if they have different
4279     ** sort orders.
4280     **
4281     ** If there are different collating sequences or if the columns of
4282     ** the constraint occur in different orders, then the constraints are
4283     ** considered distinct and both result in separate indices.
4284     */
4285     Index *pIdx;
4286     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4287       int k;
4288       assert( IsUniqueIndex(pIdx) );
4289       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
4290       assert( IsUniqueIndex(pIndex) );
4291 
4292       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
4293       for(k=0; k<pIdx->nKeyCol; k++){
4294         const char *z1;
4295         const char *z2;
4296         assert( pIdx->aiColumn[k]>=0 );
4297         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
4298         z1 = pIdx->azColl[k];
4299         z2 = pIndex->azColl[k];
4300         if( sqlite3StrICmp(z1, z2) ) break;
4301       }
4302       if( k==pIdx->nKeyCol ){
4303         if( pIdx->onError!=pIndex->onError ){
4304           /* This constraint creates the same index as a previous
4305           ** constraint specified somewhere in the CREATE TABLE statement.
4306           ** However the ON CONFLICT clauses are different. If both this
4307           ** constraint and the previous equivalent constraint have explicit
4308           ** ON CONFLICT clauses this is an error. Otherwise, use the
4309           ** explicitly specified behavior for the index.
4310           */
4311           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
4312             sqlite3ErrorMsg(pParse,
4313                 "conflicting ON CONFLICT clauses specified", 0);
4314           }
4315           if( pIdx->onError==OE_Default ){
4316             pIdx->onError = pIndex->onError;
4317           }
4318         }
4319         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
4320         if( IN_RENAME_OBJECT ){
4321           pIndex->pNext = pParse->pNewIndex;
4322           pParse->pNewIndex = pIndex;
4323           pIndex = 0;
4324         }
4325         goto exit_create_index;
4326       }
4327     }
4328   }
4329 
4330   if( !IN_RENAME_OBJECT ){
4331 
4332     /* Link the new Index structure to its table and to the other
4333     ** in-memory database structures.
4334     */
4335     assert( pParse->nErr==0 );
4336     if( db->init.busy ){
4337       Index *p;
4338       assert( !IN_SPECIAL_PARSE );
4339       assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
4340       if( pTblName!=0 ){
4341         pIndex->tnum = db->init.newTnum;
4342         if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
4343           sqlite3ErrorMsg(pParse, "invalid rootpage");
4344           pParse->rc = SQLITE_CORRUPT_BKPT;
4345           goto exit_create_index;
4346         }
4347       }
4348       p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
4349           pIndex->zName, pIndex);
4350       if( p ){
4351         assert( p==pIndex );  /* Malloc must have failed */
4352         sqlite3OomFault(db);
4353         goto exit_create_index;
4354       }
4355       db->mDbFlags |= DBFLAG_SchemaChange;
4356     }
4357 
4358     /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4359     ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4360     ** emit code to allocate the index rootpage on disk and make an entry for
4361     ** the index in the sqlite_schema table and populate the index with
4362     ** content.  But, do not do this if we are simply reading the sqlite_schema
4363     ** table to parse the schema, or if this index is the PRIMARY KEY index
4364     ** of a WITHOUT ROWID table.
4365     **
4366     ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4367     ** or UNIQUE index in a CREATE TABLE statement.  Since the table
4368     ** has just been created, it contains no data and the index initialization
4369     ** step can be skipped.
4370     */
4371     else if( HasRowid(pTab) || pTblName!=0 ){
4372       Vdbe *v;
4373       char *zStmt;
4374       int iMem = ++pParse->nMem;
4375 
4376       v = sqlite3GetVdbe(pParse);
4377       if( v==0 ) goto exit_create_index;
4378 
4379       sqlite3BeginWriteOperation(pParse, 1, iDb);
4380 
4381       /* Create the rootpage for the index using CreateIndex. But before
4382       ** doing so, code a Noop instruction and store its address in
4383       ** Index.tnum. This is required in case this index is actually a
4384       ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4385       ** that case the convertToWithoutRowidTable() routine will replace
4386       ** the Noop with a Goto to jump over the VDBE code generated below. */
4387       pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
4388       sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
4389 
4390       /* Gather the complete text of the CREATE INDEX statement into
4391       ** the zStmt variable
4392       */
4393       assert( pName!=0 || pStart==0 );
4394       if( pStart ){
4395         int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
4396         if( pName->z[n-1]==';' ) n--;
4397         /* A named index with an explicit CREATE INDEX statement */
4398         zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
4399             onError==OE_None ? "" : " UNIQUE", n, pName->z);
4400       }else{
4401         /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4402         /* zStmt = sqlite3MPrintf(""); */
4403         zStmt = 0;
4404       }
4405 
4406       /* Add an entry in sqlite_schema for this index
4407       */
4408       sqlite3NestedParse(pParse,
4409          "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
4410          db->aDb[iDb].zDbSName,
4411          pIndex->zName,
4412          pTab->zName,
4413          iMem,
4414          zStmt
4415       );
4416       sqlite3DbFree(db, zStmt);
4417 
4418       /* Fill the index with data and reparse the schema. Code an OP_Expire
4419       ** to invalidate all pre-compiled statements.
4420       */
4421       if( pTblName ){
4422         sqlite3RefillIndex(pParse, pIndex, iMem);
4423         sqlite3ChangeCookie(pParse, iDb);
4424         sqlite3VdbeAddParseSchemaOp(v, iDb,
4425             sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
4426         sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
4427       }
4428 
4429       sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
4430     }
4431   }
4432   if( db->init.busy || pTblName==0 ){
4433     pIndex->pNext = pTab->pIndex;
4434     pTab->pIndex = pIndex;
4435     pIndex = 0;
4436   }
4437   else if( IN_RENAME_OBJECT ){
4438     assert( pParse->pNewIndex==0 );
4439     pParse->pNewIndex = pIndex;
4440     pIndex = 0;
4441   }
4442 
4443   /* Clean up before exiting */
4444 exit_create_index:
4445   if( pIndex ) sqlite3FreeIndex(db, pIndex);
4446   if( pTab ){
4447     /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4448     ** The list was already ordered when this routine was entered, so at this
4449     ** point at most a single index (the newly added index) will be out of
4450     ** order.  So we have to reorder at most one index. */
4451     Index **ppFrom;
4452     Index *pThis;
4453     for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
4454       Index *pNext;
4455       if( pThis->onError!=OE_Replace ) continue;
4456       while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
4457         *ppFrom = pNext;
4458         pThis->pNext = pNext->pNext;
4459         pNext->pNext = pThis;
4460         ppFrom = &pNext->pNext;
4461       }
4462       break;
4463     }
4464 #ifdef SQLITE_DEBUG
4465     /* Verify that all REPLACE indexes really are now at the end
4466     ** of the index list.  In other words, no other index type ever
4467     ** comes after a REPLACE index on the list. */
4468     for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
4469       assert( pThis->onError!=OE_Replace
4470            || pThis->pNext==0
4471            || pThis->pNext->onError==OE_Replace );
4472     }
4473 #endif
4474   }
4475   sqlite3ExprDelete(db, pPIWhere);
4476   sqlite3ExprListDelete(db, pList);
4477   sqlite3SrcListDelete(db, pTblName);
4478   sqlite3DbFree(db, zName);
4479 }
4480 
4481 /*
4482 ** Fill the Index.aiRowEst[] array with default information - information
4483 ** to be used when we have not run the ANALYZE command.
4484 **
4485 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4486 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
4487 ** number of rows in the table that match any particular value of the
4488 ** first column of the index.  aiRowEst[2] is an estimate of the number
4489 ** of rows that match any particular combination of the first 2 columns
4490 ** of the index.  And so forth.  It must always be the case that
4491 *
4492 **           aiRowEst[N]<=aiRowEst[N-1]
4493 **           aiRowEst[N]>=1
4494 **
4495 ** Apart from that, we have little to go on besides intuition as to
4496 ** how aiRowEst[] should be initialized.  The numbers generated here
4497 ** are based on typical values found in actual indices.
4498 */
4499 void sqlite3DefaultRowEst(Index *pIdx){
4500                /*                10,  9,  8,  7,  6 */
4501   static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
4502   LogEst *a = pIdx->aiRowLogEst;
4503   LogEst x;
4504   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
4505   int i;
4506 
4507   /* Indexes with default row estimates should not have stat1 data */
4508   assert( !pIdx->hasStat1 );
4509 
4510   /* Set the first entry (number of rows in the index) to the estimated
4511   ** number of rows in the table, or half the number of rows in the table
4512   ** for a partial index.
4513   **
4514   ** 2020-05-27:  If some of the stat data is coming from the sqlite_stat1
4515   ** table but other parts we are having to guess at, then do not let the
4516   ** estimated number of rows in the table be less than 1000 (LogEst 99).
4517   ** Failure to do this can cause the indexes for which we do not have
4518   ** stat1 data to be ignored by the query planner.
4519   */
4520   x = pIdx->pTable->nRowLogEst;
4521   assert( 99==sqlite3LogEst(1000) );
4522   if( x<99 ){
4523     pIdx->pTable->nRowLogEst = x = 99;
4524   }
4525   if( pIdx->pPartIdxWhere!=0 ){ x -= 10;  assert( 10==sqlite3LogEst(2) ); }
4526   a[0] = x;
4527 
4528   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4529   ** 6 and each subsequent value (if any) is 5.  */
4530   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
4531   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
4532     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
4533   }
4534 
4535   assert( 0==sqlite3LogEst(1) );
4536   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
4537 }
4538 
4539 /*
4540 ** This routine will drop an existing named index.  This routine
4541 ** implements the DROP INDEX statement.
4542 */
4543 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
4544   Index *pIndex;
4545   Vdbe *v;
4546   sqlite3 *db = pParse->db;
4547   int iDb;
4548 
4549   assert( pParse->nErr==0 );   /* Never called with prior errors */
4550   if( db->mallocFailed ){
4551     goto exit_drop_index;
4552   }
4553   assert( pName->nSrc==1 );
4554   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4555     goto exit_drop_index;
4556   }
4557   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
4558   if( pIndex==0 ){
4559     if( !ifExists ){
4560       sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
4561     }else{
4562       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
4563       sqlite3ForceNotReadOnly(pParse);
4564     }
4565     pParse->checkSchema = 1;
4566     goto exit_drop_index;
4567   }
4568   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
4569     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
4570       "or PRIMARY KEY constraint cannot be dropped", 0);
4571     goto exit_drop_index;
4572   }
4573   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
4574 #ifndef SQLITE_OMIT_AUTHORIZATION
4575   {
4576     int code = SQLITE_DROP_INDEX;
4577     Table *pTab = pIndex->pTable;
4578     const char *zDb = db->aDb[iDb].zDbSName;
4579     const char *zTab = SCHEMA_TABLE(iDb);
4580     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
4581       goto exit_drop_index;
4582     }
4583     if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
4584     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
4585       goto exit_drop_index;
4586     }
4587   }
4588 #endif
4589 
4590   /* Generate code to remove the index and from the schema table */
4591   v = sqlite3GetVdbe(pParse);
4592   if( v ){
4593     sqlite3BeginWriteOperation(pParse, 1, iDb);
4594     sqlite3NestedParse(pParse,
4595        "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
4596        db->aDb[iDb].zDbSName, pIndex->zName
4597     );
4598     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
4599     sqlite3ChangeCookie(pParse, iDb);
4600     destroyRootPage(pParse, pIndex->tnum, iDb);
4601     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
4602   }
4603 
4604 exit_drop_index:
4605   sqlite3SrcListDelete(db, pName);
4606 }
4607 
4608 /*
4609 ** pArray is a pointer to an array of objects. Each object in the
4610 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4611 ** to extend the array so that there is space for a new object at the end.
4612 **
4613 ** When this function is called, *pnEntry contains the current size of
4614 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4615 ** in total).
4616 **
4617 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4618 ** space allocated for the new object is zeroed, *pnEntry updated to
4619 ** reflect the new size of the array and a pointer to the new allocation
4620 ** returned. *pIdx is set to the index of the new array entry in this case.
4621 **
4622 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4623 ** unchanged and a copy of pArray returned.
4624 */
4625 void *sqlite3ArrayAllocate(
4626   sqlite3 *db,      /* Connection to notify of malloc failures */
4627   void *pArray,     /* Array of objects.  Might be reallocated */
4628   int szEntry,      /* Size of each object in the array */
4629   int *pnEntry,     /* Number of objects currently in use */
4630   int *pIdx         /* Write the index of a new slot here */
4631 ){
4632   char *z;
4633   sqlite3_int64 n = *pIdx = *pnEntry;
4634   if( (n & (n-1))==0 ){
4635     sqlite3_int64 sz = (n==0) ? 1 : 2*n;
4636     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
4637     if( pNew==0 ){
4638       *pIdx = -1;
4639       return pArray;
4640     }
4641     pArray = pNew;
4642   }
4643   z = (char*)pArray;
4644   memset(&z[n * szEntry], 0, szEntry);
4645   ++*pnEntry;
4646   return pArray;
4647 }
4648 
4649 /*
4650 ** Append a new element to the given IdList.  Create a new IdList if
4651 ** need be.
4652 **
4653 ** A new IdList is returned, or NULL if malloc() fails.
4654 */
4655 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
4656   sqlite3 *db = pParse->db;
4657   int i;
4658   if( pList==0 ){
4659     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
4660     if( pList==0 ) return 0;
4661   }
4662   pList->a = sqlite3ArrayAllocate(
4663       db,
4664       pList->a,
4665       sizeof(pList->a[0]),
4666       &pList->nId,
4667       &i
4668   );
4669   if( i<0 ){
4670     sqlite3IdListDelete(db, pList);
4671     return 0;
4672   }
4673   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
4674   if( IN_RENAME_OBJECT && pList->a[i].zName ){
4675     sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
4676   }
4677   return pList;
4678 }
4679 
4680 /*
4681 ** Delete an IdList.
4682 */
4683 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
4684   int i;
4685   if( pList==0 ) return;
4686   for(i=0; i<pList->nId; i++){
4687     sqlite3DbFree(db, pList->a[i].zName);
4688   }
4689   sqlite3DbFree(db, pList->a);
4690   sqlite3DbFreeNN(db, pList);
4691 }
4692 
4693 /*
4694 ** Return the index in pList of the identifier named zId.  Return -1
4695 ** if not found.
4696 */
4697 int sqlite3IdListIndex(IdList *pList, const char *zName){
4698   int i;
4699   if( pList==0 ) return -1;
4700   for(i=0; i<pList->nId; i++){
4701     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
4702   }
4703   return -1;
4704 }
4705 
4706 /*
4707 ** Maximum size of a SrcList object.
4708 ** The SrcList object is used to represent the FROM clause of a
4709 ** SELECT statement, and the query planner cannot deal with more
4710 ** than 64 tables in a join.  So any value larger than 64 here
4711 ** is sufficient for most uses.  Smaller values, like say 10, are
4712 ** appropriate for small and memory-limited applications.
4713 */
4714 #ifndef SQLITE_MAX_SRCLIST
4715 # define SQLITE_MAX_SRCLIST 200
4716 #endif
4717 
4718 /*
4719 ** Expand the space allocated for the given SrcList object by
4720 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
4721 ** New slots are zeroed.
4722 **
4723 ** For example, suppose a SrcList initially contains two entries: A,B.
4724 ** To append 3 new entries onto the end, do this:
4725 **
4726 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4727 **
4728 ** After the call above it would contain:  A, B, nil, nil, nil.
4729 ** If the iStart argument had been 1 instead of 2, then the result
4730 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
4731 ** the iStart value would be 0.  The result then would
4732 ** be: nil, nil, nil, A, B.
4733 **
4734 ** If a memory allocation fails or the SrcList becomes too large, leave
4735 ** the original SrcList unchanged, return NULL, and leave an error message
4736 ** in pParse.
4737 */
4738 SrcList *sqlite3SrcListEnlarge(
4739   Parse *pParse,     /* Parsing context into which errors are reported */
4740   SrcList *pSrc,     /* The SrcList to be enlarged */
4741   int nExtra,        /* Number of new slots to add to pSrc->a[] */
4742   int iStart         /* Index in pSrc->a[] of first new slot */
4743 ){
4744   int i;
4745 
4746   /* Sanity checking on calling parameters */
4747   assert( iStart>=0 );
4748   assert( nExtra>=1 );
4749   assert( pSrc!=0 );
4750   assert( iStart<=pSrc->nSrc );
4751 
4752   /* Allocate additional space if needed */
4753   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
4754     SrcList *pNew;
4755     sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
4756     sqlite3 *db = pParse->db;
4757 
4758     if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
4759       sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
4760                       SQLITE_MAX_SRCLIST);
4761       return 0;
4762     }
4763     if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
4764     pNew = sqlite3DbRealloc(db, pSrc,
4765                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
4766     if( pNew==0 ){
4767       assert( db->mallocFailed );
4768       return 0;
4769     }
4770     pSrc = pNew;
4771     pSrc->nAlloc = nAlloc;
4772   }
4773 
4774   /* Move existing slots that come after the newly inserted slots
4775   ** out of the way */
4776   for(i=pSrc->nSrc-1; i>=iStart; i--){
4777     pSrc->a[i+nExtra] = pSrc->a[i];
4778   }
4779   pSrc->nSrc += nExtra;
4780 
4781   /* Zero the newly allocated slots */
4782   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
4783   for(i=iStart; i<iStart+nExtra; i++){
4784     pSrc->a[i].iCursor = -1;
4785   }
4786 
4787   /* Return a pointer to the enlarged SrcList */
4788   return pSrc;
4789 }
4790 
4791 
4792 /*
4793 ** Append a new table name to the given SrcList.  Create a new SrcList if
4794 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
4795 **
4796 ** A SrcList is returned, or NULL if there is an OOM error or if the
4797 ** SrcList grows to large.  The returned
4798 ** SrcList might be the same as the SrcList that was input or it might be
4799 ** a new one.  If an OOM error does occurs, then the prior value of pList
4800 ** that is input to this routine is automatically freed.
4801 **
4802 ** If pDatabase is not null, it means that the table has an optional
4803 ** database name prefix.  Like this:  "database.table".  The pDatabase
4804 ** points to the table name and the pTable points to the database name.
4805 ** The SrcList.a[].zName field is filled with the table name which might
4806 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4807 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4808 ** or with NULL if no database is specified.
4809 **
4810 ** In other words, if call like this:
4811 **
4812 **         sqlite3SrcListAppend(D,A,B,0);
4813 **
4814 ** Then B is a table name and the database name is unspecified.  If called
4815 ** like this:
4816 **
4817 **         sqlite3SrcListAppend(D,A,B,C);
4818 **
4819 ** Then C is the table name and B is the database name.  If C is defined
4820 ** then so is B.  In other words, we never have a case where:
4821 **
4822 **         sqlite3SrcListAppend(D,A,0,C);
4823 **
4824 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
4825 ** before being added to the SrcList.
4826 */
4827 SrcList *sqlite3SrcListAppend(
4828   Parse *pParse,      /* Parsing context, in which errors are reported */
4829   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
4830   Token *pTable,      /* Table to append */
4831   Token *pDatabase    /* Database of the table */
4832 ){
4833   SrcItem *pItem;
4834   sqlite3 *db;
4835   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
4836   assert( pParse!=0 );
4837   assert( pParse->db!=0 );
4838   db = pParse->db;
4839   if( pList==0 ){
4840     pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
4841     if( pList==0 ) return 0;
4842     pList->nAlloc = 1;
4843     pList->nSrc = 1;
4844     memset(&pList->a[0], 0, sizeof(pList->a[0]));
4845     pList->a[0].iCursor = -1;
4846   }else{
4847     SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
4848     if( pNew==0 ){
4849       sqlite3SrcListDelete(db, pList);
4850       return 0;
4851     }else{
4852       pList = pNew;
4853     }
4854   }
4855   pItem = &pList->a[pList->nSrc-1];
4856   if( pDatabase && pDatabase->z==0 ){
4857     pDatabase = 0;
4858   }
4859   if( pDatabase ){
4860     pItem->zName = sqlite3NameFromToken(db, pDatabase);
4861     pItem->zDatabase = sqlite3NameFromToken(db, pTable);
4862   }else{
4863     pItem->zName = sqlite3NameFromToken(db, pTable);
4864     pItem->zDatabase = 0;
4865   }
4866   return pList;
4867 }
4868 
4869 /*
4870 ** Assign VdbeCursor index numbers to all tables in a SrcList
4871 */
4872 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
4873   int i;
4874   SrcItem *pItem;
4875   assert( pList || pParse->db->mallocFailed );
4876   if( ALWAYS(pList) ){
4877     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4878       if( pItem->iCursor>=0 ) continue;
4879       pItem->iCursor = pParse->nTab++;
4880       if( pItem->pSelect ){
4881         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4882       }
4883     }
4884   }
4885 }
4886 
4887 /*
4888 ** Delete an entire SrcList including all its substructure.
4889 */
4890 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4891   int i;
4892   SrcItem *pItem;
4893   if( pList==0 ) return;
4894   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4895     if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase);
4896     sqlite3DbFree(db, pItem->zName);
4897     if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias);
4898     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4899     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4900     sqlite3DeleteTable(db, pItem->pTab);
4901     if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
4902     if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn);
4903     if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing);
4904   }
4905   sqlite3DbFreeNN(db, pList);
4906 }
4907 
4908 /*
4909 ** This routine is called by the parser to add a new term to the
4910 ** end of a growing FROM clause.  The "p" parameter is the part of
4911 ** the FROM clause that has already been constructed.  "p" is NULL
4912 ** if this is the first term of the FROM clause.  pTable and pDatabase
4913 ** are the name of the table and database named in the FROM clause term.
4914 ** pDatabase is NULL if the database name qualifier is missing - the
4915 ** usual case.  If the term has an alias, then pAlias points to the
4916 ** alias token.  If the term is a subquery, then pSubquery is the
4917 ** SELECT statement that the subquery encodes.  The pTable and
4918 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
4919 ** parameters are the content of the ON and USING clauses.
4920 **
4921 ** Return a new SrcList which encodes is the FROM with the new
4922 ** term added.
4923 */
4924 SrcList *sqlite3SrcListAppendFromTerm(
4925   Parse *pParse,          /* Parsing context */
4926   SrcList *p,             /* The left part of the FROM clause already seen */
4927   Token *pTable,          /* Name of the table to add to the FROM clause */
4928   Token *pDatabase,       /* Name of the database containing pTable */
4929   Token *pAlias,          /* The right-hand side of the AS subexpression */
4930   Select *pSubquery,      /* A subquery used in place of a table name */
4931   Expr *pOn,              /* The ON clause of a join */
4932   IdList *pUsing          /* The USING clause of a join */
4933 ){
4934   SrcItem *pItem;
4935   sqlite3 *db = pParse->db;
4936   if( !p && (pOn || pUsing) ){
4937     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4938       (pOn ? "ON" : "USING")
4939     );
4940     goto append_from_error;
4941   }
4942   p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4943   if( p==0 ){
4944     goto append_from_error;
4945   }
4946   assert( p->nSrc>0 );
4947   pItem = &p->a[p->nSrc-1];
4948   assert( (pTable==0)==(pDatabase==0) );
4949   assert( pItem->zName==0 || pDatabase!=0 );
4950   if( IN_RENAME_OBJECT && pItem->zName ){
4951     Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4952     sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4953   }
4954   assert( pAlias!=0 );
4955   if( pAlias->n ){
4956     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4957   }
4958   pItem->pSelect = pSubquery;
4959   pItem->pOn = pOn;
4960   pItem->pUsing = pUsing;
4961   return p;
4962 
4963 append_from_error:
4964   assert( p==0 );
4965   sqlite3ExprDelete(db, pOn);
4966   sqlite3IdListDelete(db, pUsing);
4967   sqlite3SelectDelete(db, pSubquery);
4968   return 0;
4969 }
4970 
4971 /*
4972 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4973 ** element of the source-list passed as the second argument.
4974 */
4975 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
4976   assert( pIndexedBy!=0 );
4977   if( p && pIndexedBy->n>0 ){
4978     SrcItem *pItem;
4979     assert( p->nSrc>0 );
4980     pItem = &p->a[p->nSrc-1];
4981     assert( pItem->fg.notIndexed==0 );
4982     assert( pItem->fg.isIndexedBy==0 );
4983     assert( pItem->fg.isTabFunc==0 );
4984     if( pIndexedBy->n==1 && !pIndexedBy->z ){
4985       /* A "NOT INDEXED" clause was supplied. See parse.y
4986       ** construct "indexed_opt" for details. */
4987       pItem->fg.notIndexed = 1;
4988     }else{
4989       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
4990       pItem->fg.isIndexedBy = 1;
4991       assert( pItem->fg.isCte==0 );  /* No collision on union u2 */
4992     }
4993   }
4994 }
4995 
4996 /*
4997 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
4998 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
4999 ** are deleted by this function.
5000 */
5001 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
5002   assert( p1 && p1->nSrc==1 );
5003   if( p2 ){
5004     SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
5005     if( pNew==0 ){
5006       sqlite3SrcListDelete(pParse->db, p2);
5007     }else{
5008       p1 = pNew;
5009       memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
5010       sqlite3DbFree(pParse->db, p2);
5011     }
5012   }
5013   return p1;
5014 }
5015 
5016 /*
5017 ** Add the list of function arguments to the SrcList entry for a
5018 ** table-valued-function.
5019 */
5020 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
5021   if( p ){
5022     SrcItem *pItem = &p->a[p->nSrc-1];
5023     assert( pItem->fg.notIndexed==0 );
5024     assert( pItem->fg.isIndexedBy==0 );
5025     assert( pItem->fg.isTabFunc==0 );
5026     pItem->u1.pFuncArg = pList;
5027     pItem->fg.isTabFunc = 1;
5028   }else{
5029     sqlite3ExprListDelete(pParse->db, pList);
5030   }
5031 }
5032 
5033 /*
5034 ** When building up a FROM clause in the parser, the join operator
5035 ** is initially attached to the left operand.  But the code generator
5036 ** expects the join operator to be on the right operand.  This routine
5037 ** Shifts all join operators from left to right for an entire FROM
5038 ** clause.
5039 **
5040 ** Example: Suppose the join is like this:
5041 **
5042 **           A natural cross join B
5043 **
5044 ** The operator is "natural cross join".  The A and B operands are stored
5045 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
5046 ** operator with A.  This routine shifts that operator over to B.
5047 */
5048 void sqlite3SrcListShiftJoinType(SrcList *p){
5049   if( p ){
5050     int i;
5051     for(i=p->nSrc-1; i>0; i--){
5052       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
5053     }
5054     p->a[0].fg.jointype = 0;
5055   }
5056 }
5057 
5058 /*
5059 ** Generate VDBE code for a BEGIN statement.
5060 */
5061 void sqlite3BeginTransaction(Parse *pParse, int type){
5062   sqlite3 *db;
5063   Vdbe *v;
5064   int i;
5065 
5066   assert( pParse!=0 );
5067   db = pParse->db;
5068   assert( db!=0 );
5069   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
5070     return;
5071   }
5072   v = sqlite3GetVdbe(pParse);
5073   if( !v ) return;
5074   if( type!=TK_DEFERRED ){
5075     for(i=0; i<db->nDb; i++){
5076       int eTxnType;
5077       Btree *pBt = db->aDb[i].pBt;
5078       if( pBt && sqlite3BtreeIsReadonly(pBt) ){
5079         eTxnType = 0;  /* Read txn */
5080       }else if( type==TK_EXCLUSIVE ){
5081         eTxnType = 2;  /* Exclusive txn */
5082       }else{
5083         eTxnType = 1;  /* Write txn */
5084       }
5085       sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
5086       sqlite3VdbeUsesBtree(v, i);
5087     }
5088   }
5089   sqlite3VdbeAddOp0(v, OP_AutoCommit);
5090 }
5091 
5092 /*
5093 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5094 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
5095 ** code is generated for a COMMIT.
5096 */
5097 void sqlite3EndTransaction(Parse *pParse, int eType){
5098   Vdbe *v;
5099   int isRollback;
5100 
5101   assert( pParse!=0 );
5102   assert( pParse->db!=0 );
5103   assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
5104   isRollback = eType==TK_ROLLBACK;
5105   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
5106        isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
5107     return;
5108   }
5109   v = sqlite3GetVdbe(pParse);
5110   if( v ){
5111     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
5112   }
5113 }
5114 
5115 /*
5116 ** This function is called by the parser when it parses a command to create,
5117 ** release or rollback an SQL savepoint.
5118 */
5119 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
5120   char *zName = sqlite3NameFromToken(pParse->db, pName);
5121   if( zName ){
5122     Vdbe *v = sqlite3GetVdbe(pParse);
5123 #ifndef SQLITE_OMIT_AUTHORIZATION
5124     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5125     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
5126 #endif
5127     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
5128       sqlite3DbFree(pParse->db, zName);
5129       return;
5130     }
5131     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
5132   }
5133 }
5134 
5135 /*
5136 ** Make sure the TEMP database is open and available for use.  Return
5137 ** the number of errors.  Leave any error messages in the pParse structure.
5138 */
5139 int sqlite3OpenTempDatabase(Parse *pParse){
5140   sqlite3 *db = pParse->db;
5141   if( db->aDb[1].pBt==0 && !pParse->explain ){
5142     int rc;
5143     Btree *pBt;
5144     static const int flags =
5145           SQLITE_OPEN_READWRITE |
5146           SQLITE_OPEN_CREATE |
5147           SQLITE_OPEN_EXCLUSIVE |
5148           SQLITE_OPEN_DELETEONCLOSE |
5149           SQLITE_OPEN_TEMP_DB;
5150 
5151     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
5152     if( rc!=SQLITE_OK ){
5153       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
5154         "file for storing temporary tables");
5155       pParse->rc = rc;
5156       return 1;
5157     }
5158     db->aDb[1].pBt = pBt;
5159     assert( db->aDb[1].pSchema );
5160     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
5161       sqlite3OomFault(db);
5162       return 1;
5163     }
5164   }
5165   return 0;
5166 }
5167 
5168 /*
5169 ** Record the fact that the schema cookie will need to be verified
5170 ** for database iDb.  The code to actually verify the schema cookie
5171 ** will occur at the end of the top-level VDBE and will be generated
5172 ** later, by sqlite3FinishCoding().
5173 */
5174 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
5175   assert( iDb>=0 && iDb<pToplevel->db->nDb );
5176   assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
5177   assert( iDb<SQLITE_MAX_DB );
5178   assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
5179   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
5180     DbMaskSet(pToplevel->cookieMask, iDb);
5181     if( !OMIT_TEMPDB && iDb==1 ){
5182       sqlite3OpenTempDatabase(pToplevel);
5183     }
5184   }
5185 }
5186 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
5187   sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
5188 }
5189 
5190 
5191 /*
5192 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5193 ** attached database. Otherwise, invoke it for the database named zDb only.
5194 */
5195 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
5196   sqlite3 *db = pParse->db;
5197   int i;
5198   for(i=0; i<db->nDb; i++){
5199     Db *pDb = &db->aDb[i];
5200     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
5201       sqlite3CodeVerifySchema(pParse, i);
5202     }
5203   }
5204 }
5205 
5206 /*
5207 ** Generate VDBE code that prepares for doing an operation that
5208 ** might change the database.
5209 **
5210 ** This routine starts a new transaction if we are not already within
5211 ** a transaction.  If we are already within a transaction, then a checkpoint
5212 ** is set if the setStatement parameter is true.  A checkpoint should
5213 ** be set for operations that might fail (due to a constraint) part of
5214 ** the way through and which will need to undo some writes without having to
5215 ** rollback the whole transaction.  For operations where all constraints
5216 ** can be checked before any changes are made to the database, it is never
5217 ** necessary to undo a write and the checkpoint should not be set.
5218 */
5219 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
5220   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5221   sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
5222   DbMaskSet(pToplevel->writeMask, iDb);
5223   pToplevel->isMultiWrite |= setStatement;
5224 }
5225 
5226 /*
5227 ** Indicate that the statement currently under construction might write
5228 ** more than one entry (example: deleting one row then inserting another,
5229 ** inserting multiple rows in a table, or inserting a row and index entries.)
5230 ** If an abort occurs after some of these writes have completed, then it will
5231 ** be necessary to undo the completed writes.
5232 */
5233 void sqlite3MultiWrite(Parse *pParse){
5234   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5235   pToplevel->isMultiWrite = 1;
5236 }
5237 
5238 /*
5239 ** The code generator calls this routine if is discovers that it is
5240 ** possible to abort a statement prior to completion.  In order to
5241 ** perform this abort without corrupting the database, we need to make
5242 ** sure that the statement is protected by a statement transaction.
5243 **
5244 ** Technically, we only need to set the mayAbort flag if the
5245 ** isMultiWrite flag was previously set.  There is a time dependency
5246 ** such that the abort must occur after the multiwrite.  This makes
5247 ** some statements involving the REPLACE conflict resolution algorithm
5248 ** go a little faster.  But taking advantage of this time dependency
5249 ** makes it more difficult to prove that the code is correct (in
5250 ** particular, it prevents us from writing an effective
5251 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5252 ** to take the safe route and skip the optimization.
5253 */
5254 void sqlite3MayAbort(Parse *pParse){
5255   Parse *pToplevel = sqlite3ParseToplevel(pParse);
5256   pToplevel->mayAbort = 1;
5257 }
5258 
5259 /*
5260 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5261 ** error. The onError parameter determines which (if any) of the statement
5262 ** and/or current transaction is rolled back.
5263 */
5264 void sqlite3HaltConstraint(
5265   Parse *pParse,    /* Parsing context */
5266   int errCode,      /* extended error code */
5267   int onError,      /* Constraint type */
5268   char *p4,         /* Error message */
5269   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
5270   u8 p5Errmsg       /* P5_ErrMsg type */
5271 ){
5272   Vdbe *v;
5273   assert( pParse->pVdbe!=0 );
5274   v = sqlite3GetVdbe(pParse);
5275   assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
5276   if( onError==OE_Abort ){
5277     sqlite3MayAbort(pParse);
5278   }
5279   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
5280   sqlite3VdbeChangeP5(v, p5Errmsg);
5281 }
5282 
5283 /*
5284 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5285 */
5286 void sqlite3UniqueConstraint(
5287   Parse *pParse,    /* Parsing context */
5288   int onError,      /* Constraint type */
5289   Index *pIdx       /* The index that triggers the constraint */
5290 ){
5291   char *zErr;
5292   int j;
5293   StrAccum errMsg;
5294   Table *pTab = pIdx->pTable;
5295 
5296   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
5297                       pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
5298   if( pIdx->aColExpr ){
5299     sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
5300   }else{
5301     for(j=0; j<pIdx->nKeyCol; j++){
5302       char *zCol;
5303       assert( pIdx->aiColumn[j]>=0 );
5304       zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
5305       if( j ) sqlite3_str_append(&errMsg, ", ", 2);
5306       sqlite3_str_appendall(&errMsg, pTab->zName);
5307       sqlite3_str_append(&errMsg, ".", 1);
5308       sqlite3_str_appendall(&errMsg, zCol);
5309     }
5310   }
5311   zErr = sqlite3StrAccumFinish(&errMsg);
5312   sqlite3HaltConstraint(pParse,
5313     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
5314                             : SQLITE_CONSTRAINT_UNIQUE,
5315     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
5316 }
5317 
5318 
5319 /*
5320 ** Code an OP_Halt due to non-unique rowid.
5321 */
5322 void sqlite3RowidConstraint(
5323   Parse *pParse,    /* Parsing context */
5324   int onError,      /* Conflict resolution algorithm */
5325   Table *pTab       /* The table with the non-unique rowid */
5326 ){
5327   char *zMsg;
5328   int rc;
5329   if( pTab->iPKey>=0 ){
5330     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
5331                           pTab->aCol[pTab->iPKey].zCnName);
5332     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
5333   }else{
5334     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
5335     rc = SQLITE_CONSTRAINT_ROWID;
5336   }
5337   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
5338                         P5_ConstraintUnique);
5339 }
5340 
5341 /*
5342 ** Check to see if pIndex uses the collating sequence pColl.  Return
5343 ** true if it does and false if it does not.
5344 */
5345 #ifndef SQLITE_OMIT_REINDEX
5346 static int collationMatch(const char *zColl, Index *pIndex){
5347   int i;
5348   assert( zColl!=0 );
5349   for(i=0; i<pIndex->nColumn; i++){
5350     const char *z = pIndex->azColl[i];
5351     assert( z!=0 || pIndex->aiColumn[i]<0 );
5352     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
5353       return 1;
5354     }
5355   }
5356   return 0;
5357 }
5358 #endif
5359 
5360 /*
5361 ** Recompute all indices of pTab that use the collating sequence pColl.
5362 ** If pColl==0 then recompute all indices of pTab.
5363 */
5364 #ifndef SQLITE_OMIT_REINDEX
5365 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
5366   if( !IsVirtual(pTab) ){
5367     Index *pIndex;              /* An index associated with pTab */
5368 
5369     for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
5370       if( zColl==0 || collationMatch(zColl, pIndex) ){
5371         int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5372         sqlite3BeginWriteOperation(pParse, 0, iDb);
5373         sqlite3RefillIndex(pParse, pIndex, -1);
5374       }
5375     }
5376   }
5377 }
5378 #endif
5379 
5380 /*
5381 ** Recompute all indices of all tables in all databases where the
5382 ** indices use the collating sequence pColl.  If pColl==0 then recompute
5383 ** all indices everywhere.
5384 */
5385 #ifndef SQLITE_OMIT_REINDEX
5386 static void reindexDatabases(Parse *pParse, char const *zColl){
5387   Db *pDb;                    /* A single database */
5388   int iDb;                    /* The database index number */
5389   sqlite3 *db = pParse->db;   /* The database connection */
5390   HashElem *k;                /* For looping over tables in pDb */
5391   Table *pTab;                /* A table in the database */
5392 
5393   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
5394   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
5395     assert( pDb!=0 );
5396     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
5397       pTab = (Table*)sqliteHashData(k);
5398       reindexTable(pParse, pTab, zColl);
5399     }
5400   }
5401 }
5402 #endif
5403 
5404 /*
5405 ** Generate code for the REINDEX command.
5406 **
5407 **        REINDEX                            -- 1
5408 **        REINDEX  <collation>               -- 2
5409 **        REINDEX  ?<database>.?<tablename>  -- 3
5410 **        REINDEX  ?<database>.?<indexname>  -- 4
5411 **
5412 ** Form 1 causes all indices in all attached databases to be rebuilt.
5413 ** Form 2 rebuilds all indices in all databases that use the named
5414 ** collating function.  Forms 3 and 4 rebuild the named index or all
5415 ** indices associated with the named table.
5416 */
5417 #ifndef SQLITE_OMIT_REINDEX
5418 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
5419   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
5420   char *z;                    /* Name of a table or index */
5421   const char *zDb;            /* Name of the database */
5422   Table *pTab;                /* A table in the database */
5423   Index *pIndex;              /* An index associated with pTab */
5424   int iDb;                    /* The database index number */
5425   sqlite3 *db = pParse->db;   /* The database connection */
5426   Token *pObjName;            /* Name of the table or index to be reindexed */
5427 
5428   /* Read the database schema. If an error occurs, leave an error message
5429   ** and code in pParse and return NULL. */
5430   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
5431     return;
5432   }
5433 
5434   if( pName1==0 ){
5435     reindexDatabases(pParse, 0);
5436     return;
5437   }else if( NEVER(pName2==0) || pName2->z==0 ){
5438     char *zColl;
5439     assert( pName1->z );
5440     zColl = sqlite3NameFromToken(pParse->db, pName1);
5441     if( !zColl ) return;
5442     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
5443     if( pColl ){
5444       reindexDatabases(pParse, zColl);
5445       sqlite3DbFree(db, zColl);
5446       return;
5447     }
5448     sqlite3DbFree(db, zColl);
5449   }
5450   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
5451   if( iDb<0 ) return;
5452   z = sqlite3NameFromToken(db, pObjName);
5453   if( z==0 ) return;
5454   zDb = db->aDb[iDb].zDbSName;
5455   pTab = sqlite3FindTable(db, z, zDb);
5456   if( pTab ){
5457     reindexTable(pParse, pTab, 0);
5458     sqlite3DbFree(db, z);
5459     return;
5460   }
5461   pIndex = sqlite3FindIndex(db, z, zDb);
5462   sqlite3DbFree(db, z);
5463   if( pIndex ){
5464     sqlite3BeginWriteOperation(pParse, 0, iDb);
5465     sqlite3RefillIndex(pParse, pIndex, -1);
5466     return;
5467   }
5468   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
5469 }
5470 #endif
5471 
5472 /*
5473 ** Return a KeyInfo structure that is appropriate for the given Index.
5474 **
5475 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5476 ** when it has finished using it.
5477 */
5478 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
5479   int i;
5480   int nCol = pIdx->nColumn;
5481   int nKey = pIdx->nKeyCol;
5482   KeyInfo *pKey;
5483   if( pParse->nErr ) return 0;
5484   if( pIdx->uniqNotNull ){
5485     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
5486   }else{
5487     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
5488   }
5489   if( pKey ){
5490     assert( sqlite3KeyInfoIsWriteable(pKey) );
5491     for(i=0; i<nCol; i++){
5492       const char *zColl = pIdx->azColl[i];
5493       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
5494                         sqlite3LocateCollSeq(pParse, zColl);
5495       pKey->aSortFlags[i] = pIdx->aSortOrder[i];
5496       assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
5497     }
5498     if( pParse->nErr ){
5499       assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
5500       if( pIdx->bNoQuery==0 ){
5501         /* Deactivate the index because it contains an unknown collating
5502         ** sequence.  The only way to reactive the index is to reload the
5503         ** schema.  Adding the missing collating sequence later does not
5504         ** reactive the index.  The application had the chance to register
5505         ** the missing index using the collation-needed callback.  For
5506         ** simplicity, SQLite will not give the application a second chance.
5507         */
5508         pIdx->bNoQuery = 1;
5509         pParse->rc = SQLITE_ERROR_RETRY;
5510       }
5511       sqlite3KeyInfoUnref(pKey);
5512       pKey = 0;
5513     }
5514   }
5515   return pKey;
5516 }
5517 
5518 #ifndef SQLITE_OMIT_CTE
5519 /*
5520 ** Create a new CTE object
5521 */
5522 Cte *sqlite3CteNew(
5523   Parse *pParse,          /* Parsing context */
5524   Token *pName,           /* Name of the common-table */
5525   ExprList *pArglist,     /* Optional column name list for the table */
5526   Select *pQuery,         /* Query used to initialize the table */
5527   u8 eM10d                /* The MATERIALIZED flag */
5528 ){
5529   Cte *pNew;
5530   sqlite3 *db = pParse->db;
5531 
5532   pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
5533   assert( pNew!=0 || db->mallocFailed );
5534 
5535   if( db->mallocFailed ){
5536     sqlite3ExprListDelete(db, pArglist);
5537     sqlite3SelectDelete(db, pQuery);
5538   }else{
5539     pNew->pSelect = pQuery;
5540     pNew->pCols = pArglist;
5541     pNew->zName = sqlite3NameFromToken(pParse->db, pName);
5542     pNew->eM10d = eM10d;
5543   }
5544   return pNew;
5545 }
5546 
5547 /*
5548 ** Clear information from a Cte object, but do not deallocate storage
5549 ** for the object itself.
5550 */
5551 static void cteClear(sqlite3 *db, Cte *pCte){
5552   assert( pCte!=0 );
5553   sqlite3ExprListDelete(db, pCte->pCols);
5554   sqlite3SelectDelete(db, pCte->pSelect);
5555   sqlite3DbFree(db, pCte->zName);
5556 }
5557 
5558 /*
5559 ** Free the contents of the CTE object passed as the second argument.
5560 */
5561 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
5562   assert( pCte!=0 );
5563   cteClear(db, pCte);
5564   sqlite3DbFree(db, pCte);
5565 }
5566 
5567 /*
5568 ** This routine is invoked once per CTE by the parser while parsing a
5569 ** WITH clause.  The CTE described by teh third argument is added to
5570 ** the WITH clause of the second argument.  If the second argument is
5571 ** NULL, then a new WITH argument is created.
5572 */
5573 With *sqlite3WithAdd(
5574   Parse *pParse,          /* Parsing context */
5575   With *pWith,            /* Existing WITH clause, or NULL */
5576   Cte *pCte               /* CTE to add to the WITH clause */
5577 ){
5578   sqlite3 *db = pParse->db;
5579   With *pNew;
5580   char *zName;
5581 
5582   if( pCte==0 ){
5583     return pWith;
5584   }
5585 
5586   /* Check that the CTE name is unique within this WITH clause. If
5587   ** not, store an error in the Parse structure. */
5588   zName = pCte->zName;
5589   if( zName && pWith ){
5590     int i;
5591     for(i=0; i<pWith->nCte; i++){
5592       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
5593         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
5594       }
5595     }
5596   }
5597 
5598   if( pWith ){
5599     sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
5600     pNew = sqlite3DbRealloc(db, pWith, nByte);
5601   }else{
5602     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
5603   }
5604   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
5605 
5606   if( db->mallocFailed ){
5607     sqlite3CteDelete(db, pCte);
5608     pNew = pWith;
5609   }else{
5610     pNew->a[pNew->nCte++] = *pCte;
5611     sqlite3DbFree(db, pCte);
5612   }
5613 
5614   return pNew;
5615 }
5616 
5617 /*
5618 ** Free the contents of the With object passed as the second argument.
5619 */
5620 void sqlite3WithDelete(sqlite3 *db, With *pWith){
5621   if( pWith ){
5622     int i;
5623     for(i=0; i<pWith->nCte; i++){
5624       cteClear(db, &pWith->a[i]);
5625     }
5626     sqlite3DbFree(db, pWith);
5627   }
5628 }
5629 #endif /* !defined(SQLITE_OMIT_CTE) */
5630