1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 /* A minimum of one cursor is required if autoincrement is used 229 * See ticket [a696379c1f08866] */ 230 assert( pParse->pAinc==0 || pParse->nTab>0 ); 231 sqlite3VdbeMakeReady(v, pParse); 232 pParse->rc = SQLITE_DONE; 233 }else{ 234 pParse->rc = SQLITE_ERROR; 235 } 236 } 237 238 /* 239 ** Run the parser and code generator recursively in order to generate 240 ** code for the SQL statement given onto the end of the pParse context 241 ** currently under construction. When the parser is run recursively 242 ** this way, the final OP_Halt is not appended and other initialization 243 ** and finalization steps are omitted because those are handling by the 244 ** outermost parser. 245 ** 246 ** Not everything is nestable. This facility is designed to permit 247 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 248 ** care if you decide to try to use this routine for some other purposes. 249 */ 250 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 251 va_list ap; 252 char *zSql; 253 char *zErrMsg = 0; 254 sqlite3 *db = pParse->db; 255 char saveBuf[PARSE_TAIL_SZ]; 256 257 if( pParse->nErr ) return; 258 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 259 va_start(ap, zFormat); 260 zSql = sqlite3VMPrintf(db, zFormat, ap); 261 va_end(ap); 262 if( zSql==0 ){ 263 /* This can result either from an OOM or because the formatted string 264 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 265 ** an error */ 266 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 267 pParse->nErr++; 268 return; 269 } 270 pParse->nested++; 271 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 272 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 273 sqlite3RunParser(pParse, zSql, &zErrMsg); 274 sqlite3DbFree(db, zErrMsg); 275 sqlite3DbFree(db, zSql); 276 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 277 pParse->nested--; 278 } 279 280 #if SQLITE_USER_AUTHENTICATION 281 /* 282 ** Return TRUE if zTable is the name of the system table that stores the 283 ** list of users and their access credentials. 284 */ 285 int sqlite3UserAuthTable(const char *zTable){ 286 return sqlite3_stricmp(zTable, "sqlite_user")==0; 287 } 288 #endif 289 290 /* 291 ** Locate the in-memory structure that describes a particular database 292 ** table given the name of that table and (optionally) the name of the 293 ** database containing the table. Return NULL if not found. 294 ** 295 ** If zDatabase is 0, all databases are searched for the table and the 296 ** first matching table is returned. (No checking for duplicate table 297 ** names is done.) The search order is TEMP first, then MAIN, then any 298 ** auxiliary databases added using the ATTACH command. 299 ** 300 ** See also sqlite3LocateTable(). 301 */ 302 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 303 Table *p = 0; 304 int i; 305 306 /* All mutexes are required for schema access. Make sure we hold them. */ 307 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 308 #if SQLITE_USER_AUTHENTICATION 309 /* Only the admin user is allowed to know that the sqlite_user table 310 ** exists */ 311 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 312 return 0; 313 } 314 #endif 315 if( zDatabase ){ 316 for(i=0; i<db->nDb; i++){ 317 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; 318 } 319 if( i>=db->nDb ){ 320 /* No match against the official names. But always match "main" 321 ** to schema 0 as a legacy fallback. */ 322 if( sqlite3StrICmp(zDatabase,"main")==0 ){ 323 i = 0; 324 }else{ 325 return 0; 326 } 327 } 328 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 329 if( p==0 && i==1 && sqlite3StrICmp(zName, MASTER_NAME)==0 ){ 330 /* All temp.sqlite_master to be an alias for sqlite_temp_master */ 331 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, TEMP_MASTER_NAME); 332 } 333 }else{ 334 /* Match against TEMP first */ 335 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); 336 if( p ) return p; 337 /* The main database is second */ 338 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); 339 if( p ) return p; 340 /* Attached databases are in order of attachment */ 341 for(i=2; i<db->nDb; i++){ 342 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 343 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); 344 if( p ) break; 345 } 346 } 347 return p; 348 } 349 350 /* 351 ** Locate the in-memory structure that describes a particular database 352 ** table given the name of that table and (optionally) the name of the 353 ** database containing the table. Return NULL if not found. Also leave an 354 ** error message in pParse->zErrMsg. 355 ** 356 ** The difference between this routine and sqlite3FindTable() is that this 357 ** routine leaves an error message in pParse->zErrMsg where 358 ** sqlite3FindTable() does not. 359 */ 360 Table *sqlite3LocateTable( 361 Parse *pParse, /* context in which to report errors */ 362 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 363 const char *zName, /* Name of the table we are looking for */ 364 const char *zDbase /* Name of the database. Might be NULL */ 365 ){ 366 Table *p; 367 sqlite3 *db = pParse->db; 368 369 /* Read the database schema. If an error occurs, leave an error message 370 ** and code in pParse and return NULL. */ 371 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 372 && SQLITE_OK!=sqlite3ReadSchema(pParse) 373 ){ 374 return 0; 375 } 376 377 p = sqlite3FindTable(db, zName, zDbase); 378 if( p==0 ){ 379 #ifndef SQLITE_OMIT_VIRTUALTABLE 380 /* If zName is the not the name of a table in the schema created using 381 ** CREATE, then check to see if it is the name of an virtual table that 382 ** can be an eponymous virtual table. */ 383 if( pParse->disableVtab==0 ){ 384 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 385 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 386 pMod = sqlite3PragmaVtabRegister(db, zName); 387 } 388 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 389 return pMod->pEpoTab; 390 } 391 } 392 #endif 393 if( flags & LOCATE_NOERR ) return 0; 394 pParse->checkSchema = 1; 395 }else if( IsVirtual(p) && pParse->disableVtab ){ 396 p = 0; 397 } 398 399 if( p==0 ){ 400 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 401 if( zDbase ){ 402 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 403 }else{ 404 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 405 } 406 } 407 408 return p; 409 } 410 411 /* 412 ** Locate the table identified by *p. 413 ** 414 ** This is a wrapper around sqlite3LocateTable(). The difference between 415 ** sqlite3LocateTable() and this function is that this function restricts 416 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 417 ** non-NULL if it is part of a view or trigger program definition. See 418 ** sqlite3FixSrcList() for details. 419 */ 420 Table *sqlite3LocateTableItem( 421 Parse *pParse, 422 u32 flags, 423 struct SrcList_item *p 424 ){ 425 const char *zDb; 426 assert( p->pSchema==0 || p->zDatabase==0 ); 427 if( p->pSchema ){ 428 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 429 zDb = pParse->db->aDb[iDb].zDbSName; 430 }else{ 431 zDb = p->zDatabase; 432 } 433 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 434 } 435 436 /* 437 ** Locate the in-memory structure that describes 438 ** a particular index given the name of that index 439 ** and the name of the database that contains the index. 440 ** Return NULL if not found. 441 ** 442 ** If zDatabase is 0, all databases are searched for the 443 ** table and the first matching index is returned. (No checking 444 ** for duplicate index names is done.) The search order is 445 ** TEMP first, then MAIN, then any auxiliary databases added 446 ** using the ATTACH command. 447 */ 448 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 449 Index *p = 0; 450 int i; 451 /* All mutexes are required for schema access. Make sure we hold them. */ 452 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 453 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 454 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 455 Schema *pSchema = db->aDb[j].pSchema; 456 assert( pSchema ); 457 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; 458 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 459 p = sqlite3HashFind(&pSchema->idxHash, zName); 460 if( p ) break; 461 } 462 return p; 463 } 464 465 /* 466 ** Reclaim the memory used by an index 467 */ 468 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 469 #ifndef SQLITE_OMIT_ANALYZE 470 sqlite3DeleteIndexSamples(db, p); 471 #endif 472 sqlite3ExprDelete(db, p->pPartIdxWhere); 473 sqlite3ExprListDelete(db, p->aColExpr); 474 sqlite3DbFree(db, p->zColAff); 475 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 476 #ifdef SQLITE_ENABLE_STAT4 477 sqlite3_free(p->aiRowEst); 478 #endif 479 sqlite3DbFree(db, p); 480 } 481 482 /* 483 ** For the index called zIdxName which is found in the database iDb, 484 ** unlike that index from its Table then remove the index from 485 ** the index hash table and free all memory structures associated 486 ** with the index. 487 */ 488 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 489 Index *pIndex; 490 Hash *pHash; 491 492 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 493 pHash = &db->aDb[iDb].pSchema->idxHash; 494 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 495 if( ALWAYS(pIndex) ){ 496 if( pIndex->pTable->pIndex==pIndex ){ 497 pIndex->pTable->pIndex = pIndex->pNext; 498 }else{ 499 Index *p; 500 /* Justification of ALWAYS(); The index must be on the list of 501 ** indices. */ 502 p = pIndex->pTable->pIndex; 503 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 504 if( ALWAYS(p && p->pNext==pIndex) ){ 505 p->pNext = pIndex->pNext; 506 } 507 } 508 sqlite3FreeIndex(db, pIndex); 509 } 510 db->mDbFlags |= DBFLAG_SchemaChange; 511 } 512 513 /* 514 ** Look through the list of open database files in db->aDb[] and if 515 ** any have been closed, remove them from the list. Reallocate the 516 ** db->aDb[] structure to a smaller size, if possible. 517 ** 518 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 519 ** are never candidates for being collapsed. 520 */ 521 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 522 int i, j; 523 for(i=j=2; i<db->nDb; i++){ 524 struct Db *pDb = &db->aDb[i]; 525 if( pDb->pBt==0 ){ 526 sqlite3DbFree(db, pDb->zDbSName); 527 pDb->zDbSName = 0; 528 continue; 529 } 530 if( j<i ){ 531 db->aDb[j] = db->aDb[i]; 532 } 533 j++; 534 } 535 db->nDb = j; 536 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 537 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 538 sqlite3DbFree(db, db->aDb); 539 db->aDb = db->aDbStatic; 540 } 541 } 542 543 /* 544 ** Reset the schema for the database at index iDb. Also reset the 545 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 546 ** Deferred resets may be run by calling with iDb<0. 547 */ 548 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 549 int i; 550 assert( iDb<db->nDb ); 551 552 if( iDb>=0 ){ 553 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 554 DbSetProperty(db, iDb, DB_ResetWanted); 555 DbSetProperty(db, 1, DB_ResetWanted); 556 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 557 } 558 559 if( db->nSchemaLock==0 ){ 560 for(i=0; i<db->nDb; i++){ 561 if( DbHasProperty(db, i, DB_ResetWanted) ){ 562 sqlite3SchemaClear(db->aDb[i].pSchema); 563 } 564 } 565 } 566 } 567 568 /* 569 ** Erase all schema information from all attached databases (including 570 ** "main" and "temp") for a single database connection. 571 */ 572 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 573 int i; 574 sqlite3BtreeEnterAll(db); 575 for(i=0; i<db->nDb; i++){ 576 Db *pDb = &db->aDb[i]; 577 if( pDb->pSchema ){ 578 if( db->nSchemaLock==0 ){ 579 sqlite3SchemaClear(pDb->pSchema); 580 }else{ 581 DbSetProperty(db, i, DB_ResetWanted); 582 } 583 } 584 } 585 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 586 sqlite3VtabUnlockList(db); 587 sqlite3BtreeLeaveAll(db); 588 if( db->nSchemaLock==0 ){ 589 sqlite3CollapseDatabaseArray(db); 590 } 591 } 592 593 /* 594 ** This routine is called when a commit occurs. 595 */ 596 void sqlite3CommitInternalChanges(sqlite3 *db){ 597 db->mDbFlags &= ~DBFLAG_SchemaChange; 598 } 599 600 /* 601 ** Delete memory allocated for the column names of a table or view (the 602 ** Table.aCol[] array). 603 */ 604 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 605 int i; 606 Column *pCol; 607 assert( pTable!=0 ); 608 if( (pCol = pTable->aCol)!=0 ){ 609 for(i=0; i<pTable->nCol; i++, pCol++){ 610 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) ); 611 sqlite3DbFree(db, pCol->zName); 612 sqlite3ExprDelete(db, pCol->pDflt); 613 sqlite3DbFree(db, pCol->zColl); 614 } 615 sqlite3DbFree(db, pTable->aCol); 616 } 617 } 618 619 /* 620 ** Remove the memory data structures associated with the given 621 ** Table. No changes are made to disk by this routine. 622 ** 623 ** This routine just deletes the data structure. It does not unlink 624 ** the table data structure from the hash table. But it does destroy 625 ** memory structures of the indices and foreign keys associated with 626 ** the table. 627 ** 628 ** The db parameter is optional. It is needed if the Table object 629 ** contains lookaside memory. (Table objects in the schema do not use 630 ** lookaside memory, but some ephemeral Table objects do.) Or the 631 ** db parameter can be used with db->pnBytesFreed to measure the memory 632 ** used by the Table object. 633 */ 634 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 635 Index *pIndex, *pNext; 636 637 #ifdef SQLITE_DEBUG 638 /* Record the number of outstanding lookaside allocations in schema Tables 639 ** prior to doing any free() operations. Since schema Tables do not use 640 ** lookaside, this number should not change. 641 ** 642 ** If malloc has already failed, it may be that it failed while allocating 643 ** a Table object that was going to be marked ephemeral. So do not check 644 ** that no lookaside memory is used in this case either. */ 645 int nLookaside = 0; 646 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 647 nLookaside = sqlite3LookasideUsed(db, 0); 648 } 649 #endif 650 651 /* Delete all indices associated with this table. */ 652 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 653 pNext = pIndex->pNext; 654 assert( pIndex->pSchema==pTable->pSchema 655 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 656 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 657 char *zName = pIndex->zName; 658 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 659 &pIndex->pSchema->idxHash, zName, 0 660 ); 661 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 662 assert( pOld==pIndex || pOld==0 ); 663 } 664 sqlite3FreeIndex(db, pIndex); 665 } 666 667 /* Delete any foreign keys attached to this table. */ 668 sqlite3FkDelete(db, pTable); 669 670 /* Delete the Table structure itself. 671 */ 672 sqlite3DeleteColumnNames(db, pTable); 673 sqlite3DbFree(db, pTable->zName); 674 sqlite3DbFree(db, pTable->zColAff); 675 sqlite3SelectDelete(db, pTable->pSelect); 676 sqlite3ExprListDelete(db, pTable->pCheck); 677 #ifndef SQLITE_OMIT_VIRTUALTABLE 678 sqlite3VtabClear(db, pTable); 679 #endif 680 sqlite3DbFree(db, pTable); 681 682 /* Verify that no lookaside memory was used by schema tables */ 683 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 684 } 685 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 686 /* Do not delete the table until the reference count reaches zero. */ 687 if( !pTable ) return; 688 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 689 deleteTable(db, pTable); 690 } 691 692 693 /* 694 ** Unlink the given table from the hash tables and the delete the 695 ** table structure with all its indices and foreign keys. 696 */ 697 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 698 Table *p; 699 Db *pDb; 700 701 assert( db!=0 ); 702 assert( iDb>=0 && iDb<db->nDb ); 703 assert( zTabName ); 704 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 705 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 706 pDb = &db->aDb[iDb]; 707 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 708 sqlite3DeleteTable(db, p); 709 db->mDbFlags |= DBFLAG_SchemaChange; 710 } 711 712 /* 713 ** Given a token, return a string that consists of the text of that 714 ** token. Space to hold the returned string 715 ** is obtained from sqliteMalloc() and must be freed by the calling 716 ** function. 717 ** 718 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 719 ** surround the body of the token are removed. 720 ** 721 ** Tokens are often just pointers into the original SQL text and so 722 ** are not \000 terminated and are not persistent. The returned string 723 ** is \000 terminated and is persistent. 724 */ 725 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 726 char *zName; 727 if( pName ){ 728 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 729 sqlite3Dequote(zName); 730 }else{ 731 zName = 0; 732 } 733 return zName; 734 } 735 736 /* 737 ** Open the sqlite_master table stored in database number iDb for 738 ** writing. The table is opened using cursor 0. 739 */ 740 void sqlite3OpenMasterTable(Parse *p, int iDb){ 741 Vdbe *v = sqlite3GetVdbe(p); 742 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 743 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 744 if( p->nTab==0 ){ 745 p->nTab = 1; 746 } 747 } 748 749 /* 750 ** Parameter zName points to a nul-terminated buffer containing the name 751 ** of a database ("main", "temp" or the name of an attached db). This 752 ** function returns the index of the named database in db->aDb[], or 753 ** -1 if the named db cannot be found. 754 */ 755 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 756 int i = -1; /* Database number */ 757 if( zName ){ 758 Db *pDb; 759 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 760 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 761 /* "main" is always an acceptable alias for the primary database 762 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 763 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 764 } 765 } 766 return i; 767 } 768 769 /* 770 ** The token *pName contains the name of a database (either "main" or 771 ** "temp" or the name of an attached db). This routine returns the 772 ** index of the named database in db->aDb[], or -1 if the named db 773 ** does not exist. 774 */ 775 int sqlite3FindDb(sqlite3 *db, Token *pName){ 776 int i; /* Database number */ 777 char *zName; /* Name we are searching for */ 778 zName = sqlite3NameFromToken(db, pName); 779 i = sqlite3FindDbName(db, zName); 780 sqlite3DbFree(db, zName); 781 return i; 782 } 783 784 /* The table or view or trigger name is passed to this routine via tokens 785 ** pName1 and pName2. If the table name was fully qualified, for example: 786 ** 787 ** CREATE TABLE xxx.yyy (...); 788 ** 789 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 790 ** the table name is not fully qualified, i.e.: 791 ** 792 ** CREATE TABLE yyy(...); 793 ** 794 ** Then pName1 is set to "yyy" and pName2 is "". 795 ** 796 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 797 ** pName2) that stores the unqualified table name. The index of the 798 ** database "xxx" is returned. 799 */ 800 int sqlite3TwoPartName( 801 Parse *pParse, /* Parsing and code generating context */ 802 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 803 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 804 Token **pUnqual /* Write the unqualified object name here */ 805 ){ 806 int iDb; /* Database holding the object */ 807 sqlite3 *db = pParse->db; 808 809 assert( pName2!=0 ); 810 if( pName2->n>0 ){ 811 if( db->init.busy ) { 812 sqlite3ErrorMsg(pParse, "corrupt database"); 813 return -1; 814 } 815 *pUnqual = pName2; 816 iDb = sqlite3FindDb(db, pName1); 817 if( iDb<0 ){ 818 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 819 return -1; 820 } 821 }else{ 822 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 823 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 824 iDb = db->init.iDb; 825 *pUnqual = pName1; 826 } 827 return iDb; 828 } 829 830 /* 831 ** True if PRAGMA writable_schema is ON 832 */ 833 int sqlite3WritableSchema(sqlite3 *db){ 834 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 835 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 836 SQLITE_WriteSchema ); 837 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 838 SQLITE_Defensive ); 839 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 840 (SQLITE_WriteSchema|SQLITE_Defensive) ); 841 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 842 } 843 844 /* 845 ** This routine is used to check if the UTF-8 string zName is a legal 846 ** unqualified name for a new schema object (table, index, view or 847 ** trigger). All names are legal except those that begin with the string 848 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 849 ** is reserved for internal use. 850 ** 851 ** When parsing the sqlite_master table, this routine also checks to 852 ** make sure the "type", "name", and "tbl_name" columns are consistent 853 ** with the SQL. 854 */ 855 int sqlite3CheckObjectName( 856 Parse *pParse, /* Parsing context */ 857 const char *zName, /* Name of the object to check */ 858 const char *zType, /* Type of this object */ 859 const char *zTblName /* Parent table name for triggers and indexes */ 860 ){ 861 sqlite3 *db = pParse->db; 862 if( sqlite3WritableSchema(db) || db->init.imposterTable ){ 863 /* Skip these error checks for writable_schema=ON */ 864 return SQLITE_OK; 865 } 866 if( db->init.busy ){ 867 if( sqlite3_stricmp(zType, db->init.azInit[0]) 868 || sqlite3_stricmp(zName, db->init.azInit[1]) 869 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 870 ){ 871 if( sqlite3Config.bExtraSchemaChecks ){ 872 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 873 return SQLITE_ERROR; 874 } 875 } 876 }else{ 877 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 878 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 879 ){ 880 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 881 zName); 882 return SQLITE_ERROR; 883 } 884 885 } 886 return SQLITE_OK; 887 } 888 889 /* 890 ** Return the PRIMARY KEY index of a table 891 */ 892 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 893 Index *p; 894 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 895 return p; 896 } 897 898 /* 899 ** Convert an table column number into a index column number. That is, 900 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 901 ** find the (first) offset of that column in index pIdx. Or return -1 902 ** if column iCol is not used in index pIdx. 903 */ 904 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 905 int i; 906 for(i=0; i<pIdx->nColumn; i++){ 907 if( iCol==pIdx->aiColumn[i] ) return i; 908 } 909 return -1; 910 } 911 912 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 913 /* Convert a storage column number into a table column number. 914 ** 915 ** The storage column number (0,1,2,....) is the index of the value 916 ** as it appears in the record on disk. The true column number 917 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 918 ** 919 ** The storage column number is less than the table column number if 920 ** and only there are VIRTUAL columns to the left. 921 ** 922 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 923 */ 924 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 925 if( pTab->tabFlags & TF_HasVirtual ){ 926 int i; 927 for(i=0; i<=iCol; i++){ 928 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 929 } 930 } 931 return iCol; 932 } 933 #endif 934 935 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 936 /* Convert a table column number into a storage column number. 937 ** 938 ** The storage column number (0,1,2,....) is the index of the value 939 ** as it appears in the record on disk. Or, if the input column is 940 ** the N-th virtual column (zero-based) then the storage number is 941 ** the number of non-virtual columns in the table plus N. 942 ** 943 ** The true column number is the index (0,1,2,...) of the column in 944 ** the CREATE TABLE statement. 945 ** 946 ** If the input column is a VIRTUAL column, then it should not appear 947 ** in storage. But the value sometimes is cached in registers that 948 ** follow the range of registers used to construct storage. This 949 ** avoids computing the same VIRTUAL column multiple times, and provides 950 ** values for use by OP_Param opcodes in triggers. Hence, if the 951 ** input column is a VIRTUAL table, put it after all the other columns. 952 ** 953 ** In the following, N means "normal column", S means STORED, and 954 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 955 ** 956 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 957 ** -- 0 1 2 3 4 5 6 7 8 958 ** 959 ** Then the mapping from this function is as follows: 960 ** 961 ** INPUTS: 0 1 2 3 4 5 6 7 8 962 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 963 ** 964 ** So, in other words, this routine shifts all the virtual columns to 965 ** the end. 966 ** 967 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 968 ** this routine is a no-op macro. If the pTab does not have any virtual 969 ** columns, then this routine is no-op that always return iCol. If iCol 970 ** is negative (indicating the ROWID column) then this routine return iCol. 971 */ 972 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 973 int i; 974 i16 n; 975 assert( iCol<pTab->nCol ); 976 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 977 for(i=0, n=0; i<iCol; i++){ 978 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 979 } 980 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 981 /* iCol is a virtual column itself */ 982 return pTab->nNVCol + i - n; 983 }else{ 984 /* iCol is a normal or stored column */ 985 return n; 986 } 987 } 988 #endif 989 990 /* 991 ** Begin constructing a new table representation in memory. This is 992 ** the first of several action routines that get called in response 993 ** to a CREATE TABLE statement. In particular, this routine is called 994 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 995 ** flag is true if the table should be stored in the auxiliary database 996 ** file instead of in the main database file. This is normally the case 997 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 998 ** CREATE and TABLE. 999 ** 1000 ** The new table record is initialized and put in pParse->pNewTable. 1001 ** As more of the CREATE TABLE statement is parsed, additional action 1002 ** routines will be called to add more information to this record. 1003 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 1004 ** is called to complete the construction of the new table record. 1005 */ 1006 void sqlite3StartTable( 1007 Parse *pParse, /* Parser context */ 1008 Token *pName1, /* First part of the name of the table or view */ 1009 Token *pName2, /* Second part of the name of the table or view */ 1010 int isTemp, /* True if this is a TEMP table */ 1011 int isView, /* True if this is a VIEW */ 1012 int isVirtual, /* True if this is a VIRTUAL table */ 1013 int noErr /* Do nothing if table already exists */ 1014 ){ 1015 Table *pTable; 1016 char *zName = 0; /* The name of the new table */ 1017 sqlite3 *db = pParse->db; 1018 Vdbe *v; 1019 int iDb; /* Database number to create the table in */ 1020 Token *pName; /* Unqualified name of the table to create */ 1021 1022 if( db->init.busy && db->init.newTnum==1 ){ 1023 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 1024 iDb = db->init.iDb; 1025 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1026 pName = pName1; 1027 }else{ 1028 /* The common case */ 1029 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1030 if( iDb<0 ) return; 1031 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1032 /* If creating a temp table, the name may not be qualified. Unless 1033 ** the database name is "temp" anyway. */ 1034 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1035 return; 1036 } 1037 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1038 zName = sqlite3NameFromToken(db, pName); 1039 if( IN_RENAME_OBJECT ){ 1040 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1041 } 1042 } 1043 pParse->sNameToken = *pName; 1044 if( zName==0 ) return; 1045 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1046 goto begin_table_error; 1047 } 1048 if( db->init.iDb==1 ) isTemp = 1; 1049 #ifndef SQLITE_OMIT_AUTHORIZATION 1050 assert( isTemp==0 || isTemp==1 ); 1051 assert( isView==0 || isView==1 ); 1052 { 1053 static const u8 aCode[] = { 1054 SQLITE_CREATE_TABLE, 1055 SQLITE_CREATE_TEMP_TABLE, 1056 SQLITE_CREATE_VIEW, 1057 SQLITE_CREATE_TEMP_VIEW 1058 }; 1059 char *zDb = db->aDb[iDb].zDbSName; 1060 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1061 goto begin_table_error; 1062 } 1063 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1064 zName, 0, zDb) ){ 1065 goto begin_table_error; 1066 } 1067 } 1068 #endif 1069 1070 /* Make sure the new table name does not collide with an existing 1071 ** index or table name in the same database. Issue an error message if 1072 ** it does. The exception is if the statement being parsed was passed 1073 ** to an sqlite3_declare_vtab() call. In that case only the column names 1074 ** and types will be used, so there is no need to test for namespace 1075 ** collisions. 1076 */ 1077 if( !IN_SPECIAL_PARSE ){ 1078 char *zDb = db->aDb[iDb].zDbSName; 1079 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1080 goto begin_table_error; 1081 } 1082 pTable = sqlite3FindTable(db, zName, zDb); 1083 if( pTable ){ 1084 if( !noErr ){ 1085 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1086 }else{ 1087 assert( !db->init.busy || CORRUPT_DB ); 1088 sqlite3CodeVerifySchema(pParse, iDb); 1089 } 1090 goto begin_table_error; 1091 } 1092 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1093 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1094 goto begin_table_error; 1095 } 1096 } 1097 1098 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1099 if( pTable==0 ){ 1100 assert( db->mallocFailed ); 1101 pParse->rc = SQLITE_NOMEM_BKPT; 1102 pParse->nErr++; 1103 goto begin_table_error; 1104 } 1105 pTable->zName = zName; 1106 pTable->iPKey = -1; 1107 pTable->pSchema = db->aDb[iDb].pSchema; 1108 pTable->nTabRef = 1; 1109 #ifdef SQLITE_DEFAULT_ROWEST 1110 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1111 #else 1112 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1113 #endif 1114 assert( pParse->pNewTable==0 ); 1115 pParse->pNewTable = pTable; 1116 1117 /* If this is the magic sqlite_sequence table used by autoincrement, 1118 ** then record a pointer to this table in the main database structure 1119 ** so that INSERT can find the table easily. 1120 */ 1121 #ifndef SQLITE_OMIT_AUTOINCREMENT 1122 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 1123 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1124 pTable->pSchema->pSeqTab = pTable; 1125 } 1126 #endif 1127 1128 /* Begin generating the code that will insert the table record into 1129 ** the SQLITE_MASTER table. Note in particular that we must go ahead 1130 ** and allocate the record number for the table entry now. Before any 1131 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1132 ** indices to be created and the table record must come before the 1133 ** indices. Hence, the record number for the table must be allocated 1134 ** now. 1135 */ 1136 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1137 int addr1; 1138 int fileFormat; 1139 int reg1, reg2, reg3; 1140 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1141 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1142 sqlite3BeginWriteOperation(pParse, 1, iDb); 1143 1144 #ifndef SQLITE_OMIT_VIRTUALTABLE 1145 if( isVirtual ){ 1146 sqlite3VdbeAddOp0(v, OP_VBegin); 1147 } 1148 #endif 1149 1150 /* If the file format and encoding in the database have not been set, 1151 ** set them now. 1152 */ 1153 reg1 = pParse->regRowid = ++pParse->nMem; 1154 reg2 = pParse->regRoot = ++pParse->nMem; 1155 reg3 = ++pParse->nMem; 1156 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1157 sqlite3VdbeUsesBtree(v, iDb); 1158 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1159 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1160 1 : SQLITE_MAX_FILE_FORMAT; 1161 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1162 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1163 sqlite3VdbeJumpHere(v, addr1); 1164 1165 /* This just creates a place-holder record in the sqlite_master table. 1166 ** The record created does not contain anything yet. It will be replaced 1167 ** by the real entry in code generated at sqlite3EndTable(). 1168 ** 1169 ** The rowid for the new entry is left in register pParse->regRowid. 1170 ** The root page number of the new table is left in reg pParse->regRoot. 1171 ** The rowid and root page number values are needed by the code that 1172 ** sqlite3EndTable will generate. 1173 */ 1174 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1175 if( isView || isVirtual ){ 1176 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1177 }else 1178 #endif 1179 { 1180 pParse->addrCrTab = 1181 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1182 } 1183 sqlite3OpenMasterTable(pParse, iDb); 1184 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1185 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1186 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1187 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1188 sqlite3VdbeAddOp0(v, OP_Close); 1189 } 1190 1191 /* Normal (non-error) return. */ 1192 return; 1193 1194 /* If an error occurs, we jump here */ 1195 begin_table_error: 1196 sqlite3DbFree(db, zName); 1197 return; 1198 } 1199 1200 /* Set properties of a table column based on the (magical) 1201 ** name of the column. 1202 */ 1203 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1204 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1205 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1206 pCol->colFlags |= COLFLAG_HIDDEN; 1207 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1208 pTab->tabFlags |= TF_OOOHidden; 1209 } 1210 } 1211 #endif 1212 1213 1214 /* 1215 ** Add a new column to the table currently being constructed. 1216 ** 1217 ** The parser calls this routine once for each column declaration 1218 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1219 ** first to get things going. Then this routine is called for each 1220 ** column. 1221 */ 1222 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1223 Table *p; 1224 int i; 1225 char *z; 1226 char *zType; 1227 Column *pCol; 1228 sqlite3 *db = pParse->db; 1229 if( (p = pParse->pNewTable)==0 ) return; 1230 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1231 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1232 return; 1233 } 1234 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1235 if( z==0 ) return; 1236 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1237 memcpy(z, pName->z, pName->n); 1238 z[pName->n] = 0; 1239 sqlite3Dequote(z); 1240 for(i=0; i<p->nCol; i++){ 1241 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1242 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1243 sqlite3DbFree(db, z); 1244 return; 1245 } 1246 } 1247 if( (p->nCol & 0x7)==0 ){ 1248 Column *aNew; 1249 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1250 if( aNew==0 ){ 1251 sqlite3DbFree(db, z); 1252 return; 1253 } 1254 p->aCol = aNew; 1255 } 1256 pCol = &p->aCol[p->nCol]; 1257 memset(pCol, 0, sizeof(p->aCol[0])); 1258 pCol->zName = z; 1259 pCol->hName = sqlite3StrIHash(z); 1260 sqlite3ColumnPropertiesFromName(p, pCol); 1261 1262 if( pType->n==0 ){ 1263 /* If there is no type specified, columns have the default affinity 1264 ** 'BLOB' with a default size of 4 bytes. */ 1265 pCol->affinity = SQLITE_AFF_BLOB; 1266 pCol->szEst = 1; 1267 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1268 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1269 pCol->colFlags |= COLFLAG_SORTERREF; 1270 } 1271 #endif 1272 }else{ 1273 zType = z + sqlite3Strlen30(z) + 1; 1274 memcpy(zType, pType->z, pType->n); 1275 zType[pType->n] = 0; 1276 sqlite3Dequote(zType); 1277 pCol->affinity = sqlite3AffinityType(zType, pCol); 1278 pCol->colFlags |= COLFLAG_HASTYPE; 1279 } 1280 p->nCol++; 1281 p->nNVCol++; 1282 pParse->constraintName.n = 0; 1283 } 1284 1285 /* 1286 ** This routine is called by the parser while in the middle of 1287 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1288 ** been seen on a column. This routine sets the notNull flag on 1289 ** the column currently under construction. 1290 */ 1291 void sqlite3AddNotNull(Parse *pParse, int onError){ 1292 Table *p; 1293 Column *pCol; 1294 p = pParse->pNewTable; 1295 if( p==0 || NEVER(p->nCol<1) ) return; 1296 pCol = &p->aCol[p->nCol-1]; 1297 pCol->notNull = (u8)onError; 1298 p->tabFlags |= TF_HasNotNull; 1299 1300 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1301 ** on this column. */ 1302 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1303 Index *pIdx; 1304 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1305 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1306 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1307 pIdx->uniqNotNull = 1; 1308 } 1309 } 1310 } 1311 } 1312 1313 /* 1314 ** Scan the column type name zType (length nType) and return the 1315 ** associated affinity type. 1316 ** 1317 ** This routine does a case-independent search of zType for the 1318 ** substrings in the following table. If one of the substrings is 1319 ** found, the corresponding affinity is returned. If zType contains 1320 ** more than one of the substrings, entries toward the top of 1321 ** the table take priority. For example, if zType is 'BLOBINT', 1322 ** SQLITE_AFF_INTEGER is returned. 1323 ** 1324 ** Substring | Affinity 1325 ** -------------------------------- 1326 ** 'INT' | SQLITE_AFF_INTEGER 1327 ** 'CHAR' | SQLITE_AFF_TEXT 1328 ** 'CLOB' | SQLITE_AFF_TEXT 1329 ** 'TEXT' | SQLITE_AFF_TEXT 1330 ** 'BLOB' | SQLITE_AFF_BLOB 1331 ** 'REAL' | SQLITE_AFF_REAL 1332 ** 'FLOA' | SQLITE_AFF_REAL 1333 ** 'DOUB' | SQLITE_AFF_REAL 1334 ** 1335 ** If none of the substrings in the above table are found, 1336 ** SQLITE_AFF_NUMERIC is returned. 1337 */ 1338 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1339 u32 h = 0; 1340 char aff = SQLITE_AFF_NUMERIC; 1341 const char *zChar = 0; 1342 1343 assert( zIn!=0 ); 1344 while( zIn[0] ){ 1345 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1346 zIn++; 1347 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1348 aff = SQLITE_AFF_TEXT; 1349 zChar = zIn; 1350 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1351 aff = SQLITE_AFF_TEXT; 1352 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1353 aff = SQLITE_AFF_TEXT; 1354 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1355 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1356 aff = SQLITE_AFF_BLOB; 1357 if( zIn[0]=='(' ) zChar = zIn; 1358 #ifndef SQLITE_OMIT_FLOATING_POINT 1359 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1360 && aff==SQLITE_AFF_NUMERIC ){ 1361 aff = SQLITE_AFF_REAL; 1362 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1363 && aff==SQLITE_AFF_NUMERIC ){ 1364 aff = SQLITE_AFF_REAL; 1365 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1366 && aff==SQLITE_AFF_NUMERIC ){ 1367 aff = SQLITE_AFF_REAL; 1368 #endif 1369 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1370 aff = SQLITE_AFF_INTEGER; 1371 break; 1372 } 1373 } 1374 1375 /* If pCol is not NULL, store an estimate of the field size. The 1376 ** estimate is scaled so that the size of an integer is 1. */ 1377 if( pCol ){ 1378 int v = 0; /* default size is approx 4 bytes */ 1379 if( aff<SQLITE_AFF_NUMERIC ){ 1380 if( zChar ){ 1381 while( zChar[0] ){ 1382 if( sqlite3Isdigit(zChar[0]) ){ 1383 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1384 sqlite3GetInt32(zChar, &v); 1385 break; 1386 } 1387 zChar++; 1388 } 1389 }else{ 1390 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1391 } 1392 } 1393 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1394 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1395 pCol->colFlags |= COLFLAG_SORTERREF; 1396 } 1397 #endif 1398 v = v/4 + 1; 1399 if( v>255 ) v = 255; 1400 pCol->szEst = v; 1401 } 1402 return aff; 1403 } 1404 1405 /* 1406 ** The expression is the default value for the most recently added column 1407 ** of the table currently under construction. 1408 ** 1409 ** Default value expressions must be constant. Raise an exception if this 1410 ** is not the case. 1411 ** 1412 ** This routine is called by the parser while in the middle of 1413 ** parsing a CREATE TABLE statement. 1414 */ 1415 void sqlite3AddDefaultValue( 1416 Parse *pParse, /* Parsing context */ 1417 Expr *pExpr, /* The parsed expression of the default value */ 1418 const char *zStart, /* Start of the default value text */ 1419 const char *zEnd /* First character past end of defaut value text */ 1420 ){ 1421 Table *p; 1422 Column *pCol; 1423 sqlite3 *db = pParse->db; 1424 p = pParse->pNewTable; 1425 if( p!=0 ){ 1426 int isInit = db->init.busy && db->init.iDb!=1; 1427 pCol = &(p->aCol[p->nCol-1]); 1428 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1429 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1430 pCol->zName); 1431 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1432 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1433 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1434 testcase( pCol->colFlags & COLFLAG_STORED ); 1435 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1436 #endif 1437 }else{ 1438 /* A copy of pExpr is used instead of the original, as pExpr contains 1439 ** tokens that point to volatile memory. 1440 */ 1441 Expr x; 1442 sqlite3ExprDelete(db, pCol->pDflt); 1443 memset(&x, 0, sizeof(x)); 1444 x.op = TK_SPAN; 1445 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1446 x.pLeft = pExpr; 1447 x.flags = EP_Skip; 1448 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1449 sqlite3DbFree(db, x.u.zToken); 1450 } 1451 } 1452 if( IN_RENAME_OBJECT ){ 1453 sqlite3RenameExprUnmap(pParse, pExpr); 1454 } 1455 sqlite3ExprDelete(db, pExpr); 1456 } 1457 1458 /* 1459 ** Backwards Compatibility Hack: 1460 ** 1461 ** Historical versions of SQLite accepted strings as column names in 1462 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1463 ** 1464 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1465 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1466 ** 1467 ** This is goofy. But to preserve backwards compatibility we continue to 1468 ** accept it. This routine does the necessary conversion. It converts 1469 ** the expression given in its argument from a TK_STRING into a TK_ID 1470 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1471 ** If the expression is anything other than TK_STRING, the expression is 1472 ** unchanged. 1473 */ 1474 static void sqlite3StringToId(Expr *p){ 1475 if( p->op==TK_STRING ){ 1476 p->op = TK_ID; 1477 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1478 p->pLeft->op = TK_ID; 1479 } 1480 } 1481 1482 /* 1483 ** Tag the given column as being part of the PRIMARY KEY 1484 */ 1485 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1486 pCol->colFlags |= COLFLAG_PRIMKEY; 1487 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1488 if( pCol->colFlags & COLFLAG_GENERATED ){ 1489 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1490 testcase( pCol->colFlags & COLFLAG_STORED ); 1491 sqlite3ErrorMsg(pParse, 1492 "generated columns cannot be part of the PRIMARY KEY"); 1493 } 1494 #endif 1495 } 1496 1497 /* 1498 ** Designate the PRIMARY KEY for the table. pList is a list of names 1499 ** of columns that form the primary key. If pList is NULL, then the 1500 ** most recently added column of the table is the primary key. 1501 ** 1502 ** A table can have at most one primary key. If the table already has 1503 ** a primary key (and this is the second primary key) then create an 1504 ** error. 1505 ** 1506 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1507 ** then we will try to use that column as the rowid. Set the Table.iPKey 1508 ** field of the table under construction to be the index of the 1509 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1510 ** no INTEGER PRIMARY KEY. 1511 ** 1512 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1513 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1514 */ 1515 void sqlite3AddPrimaryKey( 1516 Parse *pParse, /* Parsing context */ 1517 ExprList *pList, /* List of field names to be indexed */ 1518 int onError, /* What to do with a uniqueness conflict */ 1519 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1520 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1521 ){ 1522 Table *pTab = pParse->pNewTable; 1523 Column *pCol = 0; 1524 int iCol = -1, i; 1525 int nTerm; 1526 if( pTab==0 ) goto primary_key_exit; 1527 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1528 sqlite3ErrorMsg(pParse, 1529 "table \"%s\" has more than one primary key", pTab->zName); 1530 goto primary_key_exit; 1531 } 1532 pTab->tabFlags |= TF_HasPrimaryKey; 1533 if( pList==0 ){ 1534 iCol = pTab->nCol - 1; 1535 pCol = &pTab->aCol[iCol]; 1536 makeColumnPartOfPrimaryKey(pParse, pCol); 1537 nTerm = 1; 1538 }else{ 1539 nTerm = pList->nExpr; 1540 for(i=0; i<nTerm; i++){ 1541 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1542 assert( pCExpr!=0 ); 1543 sqlite3StringToId(pCExpr); 1544 if( pCExpr->op==TK_ID ){ 1545 const char *zCName = pCExpr->u.zToken; 1546 for(iCol=0; iCol<pTab->nCol; iCol++){ 1547 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1548 pCol = &pTab->aCol[iCol]; 1549 makeColumnPartOfPrimaryKey(pParse, pCol); 1550 break; 1551 } 1552 } 1553 } 1554 } 1555 } 1556 if( nTerm==1 1557 && pCol 1558 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1559 && sortOrder!=SQLITE_SO_DESC 1560 ){ 1561 if( IN_RENAME_OBJECT && pList ){ 1562 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1563 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1564 } 1565 pTab->iPKey = iCol; 1566 pTab->keyConf = (u8)onError; 1567 assert( autoInc==0 || autoInc==1 ); 1568 pTab->tabFlags |= autoInc*TF_Autoincrement; 1569 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1570 (void)sqlite3HasExplicitNulls(pParse, pList); 1571 }else if( autoInc ){ 1572 #ifndef SQLITE_OMIT_AUTOINCREMENT 1573 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1574 "INTEGER PRIMARY KEY"); 1575 #endif 1576 }else{ 1577 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1578 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1579 pList = 0; 1580 } 1581 1582 primary_key_exit: 1583 sqlite3ExprListDelete(pParse->db, pList); 1584 return; 1585 } 1586 1587 /* 1588 ** Add a new CHECK constraint to the table currently under construction. 1589 */ 1590 void sqlite3AddCheckConstraint( 1591 Parse *pParse, /* Parsing context */ 1592 Expr *pCheckExpr /* The check expression */ 1593 ){ 1594 #ifndef SQLITE_OMIT_CHECK 1595 Table *pTab = pParse->pNewTable; 1596 sqlite3 *db = pParse->db; 1597 if( pTab && !IN_DECLARE_VTAB 1598 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1599 ){ 1600 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1601 if( pParse->constraintName.n ){ 1602 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1603 } 1604 }else 1605 #endif 1606 { 1607 sqlite3ExprDelete(pParse->db, pCheckExpr); 1608 } 1609 } 1610 1611 /* 1612 ** Set the collation function of the most recently parsed table column 1613 ** to the CollSeq given. 1614 */ 1615 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1616 Table *p; 1617 int i; 1618 char *zColl; /* Dequoted name of collation sequence */ 1619 sqlite3 *db; 1620 1621 if( (p = pParse->pNewTable)==0 ) return; 1622 i = p->nCol-1; 1623 db = pParse->db; 1624 zColl = sqlite3NameFromToken(db, pToken); 1625 if( !zColl ) return; 1626 1627 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1628 Index *pIdx; 1629 sqlite3DbFree(db, p->aCol[i].zColl); 1630 p->aCol[i].zColl = zColl; 1631 1632 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1633 ** then an index may have been created on this column before the 1634 ** collation type was added. Correct this if it is the case. 1635 */ 1636 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1637 assert( pIdx->nKeyCol==1 ); 1638 if( pIdx->aiColumn[0]==i ){ 1639 pIdx->azColl[0] = p->aCol[i].zColl; 1640 } 1641 } 1642 }else{ 1643 sqlite3DbFree(db, zColl); 1644 } 1645 } 1646 1647 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1648 ** column. 1649 */ 1650 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1651 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1652 u8 eType = COLFLAG_VIRTUAL; 1653 Table *pTab = pParse->pNewTable; 1654 Column *pCol; 1655 if( pTab==0 ){ 1656 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1657 goto generated_done; 1658 } 1659 pCol = &(pTab->aCol[pTab->nCol-1]); 1660 if( IN_DECLARE_VTAB ){ 1661 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1662 goto generated_done; 1663 } 1664 if( pCol->pDflt ) goto generated_error; 1665 if( pType ){ 1666 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1667 /* no-op */ 1668 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1669 eType = COLFLAG_STORED; 1670 }else{ 1671 goto generated_error; 1672 } 1673 } 1674 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1675 pCol->colFlags |= eType; 1676 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1677 assert( TF_HasStored==COLFLAG_STORED ); 1678 pTab->tabFlags |= eType; 1679 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1680 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1681 } 1682 pCol->pDflt = pExpr; 1683 pExpr = 0; 1684 goto generated_done; 1685 1686 generated_error: 1687 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1688 pCol->zName); 1689 generated_done: 1690 sqlite3ExprDelete(pParse->db, pExpr); 1691 #else 1692 /* Throw and error for the GENERATED ALWAYS AS clause if the 1693 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1694 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1695 sqlite3ExprDelete(pParse->db, pExpr); 1696 #endif 1697 } 1698 1699 /* 1700 ** Generate code that will increment the schema cookie. 1701 ** 1702 ** The schema cookie is used to determine when the schema for the 1703 ** database changes. After each schema change, the cookie value 1704 ** changes. When a process first reads the schema it records the 1705 ** cookie. Thereafter, whenever it goes to access the database, 1706 ** it checks the cookie to make sure the schema has not changed 1707 ** since it was last read. 1708 ** 1709 ** This plan is not completely bullet-proof. It is possible for 1710 ** the schema to change multiple times and for the cookie to be 1711 ** set back to prior value. But schema changes are infrequent 1712 ** and the probability of hitting the same cookie value is only 1713 ** 1 chance in 2^32. So we're safe enough. 1714 ** 1715 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1716 ** the schema-version whenever the schema changes. 1717 */ 1718 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1719 sqlite3 *db = pParse->db; 1720 Vdbe *v = pParse->pVdbe; 1721 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1722 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1723 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1724 } 1725 1726 /* 1727 ** Measure the number of characters needed to output the given 1728 ** identifier. The number returned includes any quotes used 1729 ** but does not include the null terminator. 1730 ** 1731 ** The estimate is conservative. It might be larger that what is 1732 ** really needed. 1733 */ 1734 static int identLength(const char *z){ 1735 int n; 1736 for(n=0; *z; n++, z++){ 1737 if( *z=='"' ){ n++; } 1738 } 1739 return n + 2; 1740 } 1741 1742 /* 1743 ** The first parameter is a pointer to an output buffer. The second 1744 ** parameter is a pointer to an integer that contains the offset at 1745 ** which to write into the output buffer. This function copies the 1746 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1747 ** to the specified offset in the buffer and updates *pIdx to refer 1748 ** to the first byte after the last byte written before returning. 1749 ** 1750 ** If the string zSignedIdent consists entirely of alpha-numeric 1751 ** characters, does not begin with a digit and is not an SQL keyword, 1752 ** then it is copied to the output buffer exactly as it is. Otherwise, 1753 ** it is quoted using double-quotes. 1754 */ 1755 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1756 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1757 int i, j, needQuote; 1758 i = *pIdx; 1759 1760 for(j=0; zIdent[j]; j++){ 1761 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1762 } 1763 needQuote = sqlite3Isdigit(zIdent[0]) 1764 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1765 || zIdent[j]!=0 1766 || j==0; 1767 1768 if( needQuote ) z[i++] = '"'; 1769 for(j=0; zIdent[j]; j++){ 1770 z[i++] = zIdent[j]; 1771 if( zIdent[j]=='"' ) z[i++] = '"'; 1772 } 1773 if( needQuote ) z[i++] = '"'; 1774 z[i] = 0; 1775 *pIdx = i; 1776 } 1777 1778 /* 1779 ** Generate a CREATE TABLE statement appropriate for the given 1780 ** table. Memory to hold the text of the statement is obtained 1781 ** from sqliteMalloc() and must be freed by the calling function. 1782 */ 1783 static char *createTableStmt(sqlite3 *db, Table *p){ 1784 int i, k, n; 1785 char *zStmt; 1786 char *zSep, *zSep2, *zEnd; 1787 Column *pCol; 1788 n = 0; 1789 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1790 n += identLength(pCol->zName) + 5; 1791 } 1792 n += identLength(p->zName); 1793 if( n<50 ){ 1794 zSep = ""; 1795 zSep2 = ","; 1796 zEnd = ")"; 1797 }else{ 1798 zSep = "\n "; 1799 zSep2 = ",\n "; 1800 zEnd = "\n)"; 1801 } 1802 n += 35 + 6*p->nCol; 1803 zStmt = sqlite3DbMallocRaw(0, n); 1804 if( zStmt==0 ){ 1805 sqlite3OomFault(db); 1806 return 0; 1807 } 1808 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1809 k = sqlite3Strlen30(zStmt); 1810 identPut(zStmt, &k, p->zName); 1811 zStmt[k++] = '('; 1812 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1813 static const char * const azType[] = { 1814 /* SQLITE_AFF_BLOB */ "", 1815 /* SQLITE_AFF_TEXT */ " TEXT", 1816 /* SQLITE_AFF_NUMERIC */ " NUM", 1817 /* SQLITE_AFF_INTEGER */ " INT", 1818 /* SQLITE_AFF_REAL */ " REAL" 1819 }; 1820 int len; 1821 const char *zType; 1822 1823 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1824 k += sqlite3Strlen30(&zStmt[k]); 1825 zSep = zSep2; 1826 identPut(zStmt, &k, pCol->zName); 1827 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1828 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1829 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1830 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1831 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1832 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1833 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1834 1835 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1836 len = sqlite3Strlen30(zType); 1837 assert( pCol->affinity==SQLITE_AFF_BLOB 1838 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1839 memcpy(&zStmt[k], zType, len); 1840 k += len; 1841 assert( k<=n ); 1842 } 1843 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1844 return zStmt; 1845 } 1846 1847 /* 1848 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1849 ** on success and SQLITE_NOMEM on an OOM error. 1850 */ 1851 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1852 char *zExtra; 1853 int nByte; 1854 if( pIdx->nColumn>=N ) return SQLITE_OK; 1855 assert( pIdx->isResized==0 ); 1856 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1857 zExtra = sqlite3DbMallocZero(db, nByte); 1858 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1859 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1860 pIdx->azColl = (const char**)zExtra; 1861 zExtra += sizeof(char*)*N; 1862 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1863 pIdx->aiColumn = (i16*)zExtra; 1864 zExtra += sizeof(i16)*N; 1865 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1866 pIdx->aSortOrder = (u8*)zExtra; 1867 pIdx->nColumn = N; 1868 pIdx->isResized = 1; 1869 return SQLITE_OK; 1870 } 1871 1872 /* 1873 ** Estimate the total row width for a table. 1874 */ 1875 static void estimateTableWidth(Table *pTab){ 1876 unsigned wTable = 0; 1877 const Column *pTabCol; 1878 int i; 1879 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1880 wTable += pTabCol->szEst; 1881 } 1882 if( pTab->iPKey<0 ) wTable++; 1883 pTab->szTabRow = sqlite3LogEst(wTable*4); 1884 } 1885 1886 /* 1887 ** Estimate the average size of a row for an index. 1888 */ 1889 static void estimateIndexWidth(Index *pIdx){ 1890 unsigned wIndex = 0; 1891 int i; 1892 const Column *aCol = pIdx->pTable->aCol; 1893 for(i=0; i<pIdx->nColumn; i++){ 1894 i16 x = pIdx->aiColumn[i]; 1895 assert( x<pIdx->pTable->nCol ); 1896 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1897 } 1898 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1899 } 1900 1901 /* Return true if column number x is any of the first nCol entries of aiCol[]. 1902 ** This is used to determine if the column number x appears in any of the 1903 ** first nCol entries of an index. 1904 */ 1905 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1906 while( nCol-- > 0 ){ 1907 assert( aiCol[0]>=0 ); 1908 if( x==*(aiCol++) ){ 1909 return 1; 1910 } 1911 } 1912 return 0; 1913 } 1914 1915 /* 1916 ** Return true if any of the first nKey entries of index pIdx exactly 1917 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 1918 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 1919 ** or may not be the same index as pPk. 1920 ** 1921 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 1922 ** not a rowid or expression. 1923 ** 1924 ** This routine differs from hasColumn() in that both the column and the 1925 ** collating sequence must match for this routine, but for hasColumn() only 1926 ** the column name must match. 1927 */ 1928 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 1929 int i, j; 1930 assert( nKey<=pIdx->nColumn ); 1931 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 1932 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 1933 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 1934 assert( pPk->pTable==pIdx->pTable ); 1935 testcase( pPk==pIdx ); 1936 j = pPk->aiColumn[iCol]; 1937 assert( j!=XN_ROWID && j!=XN_EXPR ); 1938 for(i=0; i<nKey; i++){ 1939 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 1940 if( pIdx->aiColumn[i]==j 1941 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 1942 ){ 1943 return 1; 1944 } 1945 } 1946 return 0; 1947 } 1948 1949 /* Recompute the colNotIdxed field of the Index. 1950 ** 1951 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 1952 ** columns that are within the first 63 columns of the table. The 1953 ** high-order bit of colNotIdxed is always 1. All unindexed columns 1954 ** of the table have a 1. 1955 ** 1956 ** 2019-10-24: For the purpose of this computation, virtual columns are 1957 ** not considered to be covered by the index, even if they are in the 1958 ** index, because we do not trust the logic in whereIndexExprTrans() to be 1959 ** able to find all instances of a reference to the indexed table column 1960 ** and convert them into references to the index. Hence we always want 1961 ** the actual table at hand in order to recompute the virtual column, if 1962 ** necessary. 1963 ** 1964 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 1965 ** to determine if the index is covering index. 1966 */ 1967 static void recomputeColumnsNotIndexed(Index *pIdx){ 1968 Bitmask m = 0; 1969 int j; 1970 Table *pTab = pIdx->pTable; 1971 for(j=pIdx->nColumn-1; j>=0; j--){ 1972 int x = pIdx->aiColumn[j]; 1973 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 1974 testcase( x==BMS-1 ); 1975 testcase( x==BMS-2 ); 1976 if( x<BMS-1 ) m |= MASKBIT(x); 1977 } 1978 } 1979 pIdx->colNotIdxed = ~m; 1980 assert( (pIdx->colNotIdxed>>63)==1 ); 1981 } 1982 1983 /* 1984 ** This routine runs at the end of parsing a CREATE TABLE statement that 1985 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1986 ** internal schema data structures and the generated VDBE code so that they 1987 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1988 ** Changes include: 1989 ** 1990 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1991 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 1992 ** into BTREE_BLOBKEY. 1993 ** (3) Bypass the creation of the sqlite_master table entry 1994 ** for the PRIMARY KEY as the primary key index is now 1995 ** identified by the sqlite_master table entry of the table itself. 1996 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1997 ** schema to the rootpage from the main table. 1998 ** (5) Add all table columns to the PRIMARY KEY Index object 1999 ** so that the PRIMARY KEY is a covering index. The surplus 2000 ** columns are part of KeyInfo.nAllField and are not used for 2001 ** sorting or lookup or uniqueness checks. 2002 ** (6) Replace the rowid tail on all automatically generated UNIQUE 2003 ** indices with the PRIMARY KEY columns. 2004 ** 2005 ** For virtual tables, only (1) is performed. 2006 */ 2007 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 2008 Index *pIdx; 2009 Index *pPk; 2010 int nPk; 2011 int nExtra; 2012 int i, j; 2013 sqlite3 *db = pParse->db; 2014 Vdbe *v = pParse->pVdbe; 2015 2016 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2017 */ 2018 if( !db->init.imposterTable ){ 2019 for(i=0; i<pTab->nCol; i++){ 2020 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2021 pTab->aCol[i].notNull = OE_Abort; 2022 } 2023 } 2024 pTab->tabFlags |= TF_HasNotNull; 2025 } 2026 2027 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2028 ** into BTREE_BLOBKEY. 2029 */ 2030 if( pParse->addrCrTab ){ 2031 assert( v ); 2032 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 2033 } 2034 2035 /* Locate the PRIMARY KEY index. Or, if this table was originally 2036 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2037 */ 2038 if( pTab->iPKey>=0 ){ 2039 ExprList *pList; 2040 Token ipkToken; 2041 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2042 pList = sqlite3ExprListAppend(pParse, 0, 2043 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2044 if( pList==0 ) return; 2045 if( IN_RENAME_OBJECT ){ 2046 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2047 } 2048 pList->a[0].sortFlags = pParse->iPkSortOrder; 2049 assert( pParse->pNewTable==pTab ); 2050 pTab->iPKey = -1; 2051 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2052 SQLITE_IDXTYPE_PRIMARYKEY); 2053 if( db->mallocFailed || pParse->nErr ) return; 2054 pPk = sqlite3PrimaryKeyIndex(pTab); 2055 assert( pPk->nKeyCol==1 ); 2056 }else{ 2057 pPk = sqlite3PrimaryKeyIndex(pTab); 2058 assert( pPk!=0 ); 2059 2060 /* 2061 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2062 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2063 ** code assumes the PRIMARY KEY contains no repeated columns. 2064 */ 2065 for(i=j=1; i<pPk->nKeyCol; i++){ 2066 if( isDupColumn(pPk, j, pPk, i) ){ 2067 pPk->nColumn--; 2068 }else{ 2069 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2070 pPk->azColl[j] = pPk->azColl[i]; 2071 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2072 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2073 } 2074 } 2075 pPk->nKeyCol = j; 2076 } 2077 assert( pPk!=0 ); 2078 pPk->isCovering = 1; 2079 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2080 nPk = pPk->nColumn = pPk->nKeyCol; 2081 2082 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 2083 ** table entry. This is only required if currently generating VDBE 2084 ** code for a CREATE TABLE (not when parsing one as part of reading 2085 ** a database schema). */ 2086 if( v && pPk->tnum>0 ){ 2087 assert( db->init.busy==0 ); 2088 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 2089 } 2090 2091 /* The root page of the PRIMARY KEY is the table root page */ 2092 pPk->tnum = pTab->tnum; 2093 2094 /* Update the in-memory representation of all UNIQUE indices by converting 2095 ** the final rowid column into one or more columns of the PRIMARY KEY. 2096 */ 2097 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2098 int n; 2099 if( IsPrimaryKeyIndex(pIdx) ) continue; 2100 for(i=n=0; i<nPk; i++){ 2101 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2102 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2103 n++; 2104 } 2105 } 2106 if( n==0 ){ 2107 /* This index is a superset of the primary key */ 2108 pIdx->nColumn = pIdx->nKeyCol; 2109 continue; 2110 } 2111 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2112 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2113 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2114 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2115 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2116 pIdx->azColl[j] = pPk->azColl[i]; 2117 if( pPk->aSortOrder[i] ){ 2118 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2119 pIdx->bAscKeyBug = 1; 2120 } 2121 j++; 2122 } 2123 } 2124 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2125 assert( pIdx->nColumn>=j ); 2126 } 2127 2128 /* Add all table columns to the PRIMARY KEY index 2129 */ 2130 nExtra = 0; 2131 for(i=0; i<pTab->nCol; i++){ 2132 if( !hasColumn(pPk->aiColumn, nPk, i) 2133 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2134 } 2135 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2136 for(i=0, j=nPk; i<pTab->nCol; i++){ 2137 if( !hasColumn(pPk->aiColumn, j, i) 2138 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2139 ){ 2140 assert( j<pPk->nColumn ); 2141 pPk->aiColumn[j] = i; 2142 pPk->azColl[j] = sqlite3StrBINARY; 2143 j++; 2144 } 2145 } 2146 assert( pPk->nColumn==j ); 2147 assert( pTab->nNVCol<=j ); 2148 recomputeColumnsNotIndexed(pPk); 2149 } 2150 2151 2152 #ifndef SQLITE_OMIT_VIRTUALTABLE 2153 /* 2154 ** Return true if pTab is a virtual table and zName is a shadow table name 2155 ** for that virtual table. 2156 */ 2157 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ 2158 int nName; /* Length of zName */ 2159 Module *pMod; /* Module for the virtual table */ 2160 2161 if( !IsVirtual(pTab) ) return 0; 2162 nName = sqlite3Strlen30(pTab->zName); 2163 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; 2164 if( zName[nName]!='_' ) return 0; 2165 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2166 if( pMod==0 ) return 0; 2167 if( pMod->pModule->iVersion<3 ) return 0; 2168 if( pMod->pModule->xShadowName==0 ) return 0; 2169 return pMod->pModule->xShadowName(zName+nName+1); 2170 } 2171 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2172 2173 #ifndef SQLITE_OMIT_VIRTUALTABLE 2174 /* 2175 ** Return true if zName is a shadow table name in the current database 2176 ** connection. 2177 ** 2178 ** zName is temporarily modified while this routine is running, but is 2179 ** restored to its original value prior to this routine returning. 2180 */ 2181 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2182 char *zTail; /* Pointer to the last "_" in zName */ 2183 Table *pTab; /* Table that zName is a shadow of */ 2184 zTail = strrchr(zName, '_'); 2185 if( zTail==0 ) return 0; 2186 *zTail = 0; 2187 pTab = sqlite3FindTable(db, zName, 0); 2188 *zTail = '_'; 2189 if( pTab==0 ) return 0; 2190 if( !IsVirtual(pTab) ) return 0; 2191 return sqlite3IsShadowTableOf(db, pTab, zName); 2192 } 2193 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2194 2195 2196 #ifdef SQLITE_DEBUG 2197 /* 2198 ** Mark all nodes of an expression as EP_Immutable, indicating that 2199 ** they should not be changed. Expressions attached to a table or 2200 ** index definition are tagged this way to help ensure that we do 2201 ** not pass them into code generator routines by mistake. 2202 */ 2203 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2204 ExprSetVVAProperty(pExpr, EP_Immutable); 2205 return WRC_Continue; 2206 } 2207 static void markExprListImmutable(ExprList *pList){ 2208 if( pList ){ 2209 Walker w; 2210 memset(&w, 0, sizeof(w)); 2211 w.xExprCallback = markImmutableExprStep; 2212 w.xSelectCallback = sqlite3SelectWalkNoop; 2213 w.xSelectCallback2 = 0; 2214 sqlite3WalkExprList(&w, pList); 2215 } 2216 } 2217 #else 2218 #define markExprListImmutable(X) /* no-op */ 2219 #endif /* SQLITE_DEBUG */ 2220 2221 2222 /* 2223 ** This routine is called to report the final ")" that terminates 2224 ** a CREATE TABLE statement. 2225 ** 2226 ** The table structure that other action routines have been building 2227 ** is added to the internal hash tables, assuming no errors have 2228 ** occurred. 2229 ** 2230 ** An entry for the table is made in the master table on disk, unless 2231 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2232 ** it means we are reading the sqlite_master table because we just 2233 ** connected to the database or because the sqlite_master table has 2234 ** recently changed, so the entry for this table already exists in 2235 ** the sqlite_master table. We do not want to create it again. 2236 ** 2237 ** If the pSelect argument is not NULL, it means that this routine 2238 ** was called to create a table generated from a 2239 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2240 ** the new table will match the result set of the SELECT. 2241 */ 2242 void sqlite3EndTable( 2243 Parse *pParse, /* Parse context */ 2244 Token *pCons, /* The ',' token after the last column defn. */ 2245 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2246 u8 tabOpts, /* Extra table options. Usually 0. */ 2247 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2248 ){ 2249 Table *p; /* The new table */ 2250 sqlite3 *db = pParse->db; /* The database connection */ 2251 int iDb; /* Database in which the table lives */ 2252 Index *pIdx; /* An implied index of the table */ 2253 2254 if( pEnd==0 && pSelect==0 ){ 2255 return; 2256 } 2257 assert( !db->mallocFailed ); 2258 p = pParse->pNewTable; 2259 if( p==0 ) return; 2260 2261 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2262 p->tabFlags |= TF_Shadow; 2263 } 2264 2265 /* If the db->init.busy is 1 it means we are reading the SQL off the 2266 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 2267 ** So do not write to the disk again. Extract the root page number 2268 ** for the table from the db->init.newTnum field. (The page number 2269 ** should have been put there by the sqliteOpenCb routine.) 2270 ** 2271 ** If the root page number is 1, that means this is the sqlite_master 2272 ** table itself. So mark it read-only. 2273 */ 2274 if( db->init.busy ){ 2275 if( pSelect ){ 2276 sqlite3ErrorMsg(pParse, ""); 2277 return; 2278 } 2279 p->tnum = db->init.newTnum; 2280 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2281 } 2282 2283 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2284 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2285 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2286 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2287 2288 /* Special processing for WITHOUT ROWID Tables */ 2289 if( tabOpts & TF_WithoutRowid ){ 2290 if( (p->tabFlags & TF_Autoincrement) ){ 2291 sqlite3ErrorMsg(pParse, 2292 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2293 return; 2294 } 2295 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2296 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2297 return; 2298 } 2299 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2300 convertToWithoutRowidTable(pParse, p); 2301 } 2302 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2303 2304 #ifndef SQLITE_OMIT_CHECK 2305 /* Resolve names in all CHECK constraint expressions. 2306 */ 2307 if( p->pCheck ){ 2308 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2309 if( pParse->nErr ){ 2310 /* If errors are seen, delete the CHECK constraints now, else they might 2311 ** actually be used if PRAGMA writable_schema=ON is set. */ 2312 sqlite3ExprListDelete(db, p->pCheck); 2313 p->pCheck = 0; 2314 }else{ 2315 markExprListImmutable(p->pCheck); 2316 } 2317 } 2318 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2319 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2320 if( p->tabFlags & TF_HasGenerated ){ 2321 int ii, nNG = 0; 2322 testcase( p->tabFlags & TF_HasVirtual ); 2323 testcase( p->tabFlags & TF_HasStored ); 2324 for(ii=0; ii<p->nCol; ii++){ 2325 u32 colFlags = p->aCol[ii].colFlags; 2326 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2327 Expr *pX = p->aCol[ii].pDflt; 2328 testcase( colFlags & COLFLAG_VIRTUAL ); 2329 testcase( colFlags & COLFLAG_STORED ); 2330 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2331 /* If there are errors in resolving the expression, change the 2332 ** expression to a NULL. This prevents code generators that operate 2333 ** on the expression from inserting extra parts into the expression 2334 ** tree that have been allocated from lookaside memory, which is 2335 ** illegal in a schema and will lead to errors or heap corruption 2336 ** when the database connection closes. */ 2337 sqlite3ExprDelete(db, pX); 2338 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2339 } 2340 }else{ 2341 nNG++; 2342 } 2343 } 2344 if( nNG==0 ){ 2345 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2346 return; 2347 } 2348 } 2349 #endif 2350 2351 /* Estimate the average row size for the table and for all implied indices */ 2352 estimateTableWidth(p); 2353 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2354 estimateIndexWidth(pIdx); 2355 } 2356 2357 /* If not initializing, then create a record for the new table 2358 ** in the SQLITE_MASTER table of the database. 2359 ** 2360 ** If this is a TEMPORARY table, write the entry into the auxiliary 2361 ** file instead of into the main database file. 2362 */ 2363 if( !db->init.busy ){ 2364 int n; 2365 Vdbe *v; 2366 char *zType; /* "view" or "table" */ 2367 char *zType2; /* "VIEW" or "TABLE" */ 2368 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2369 2370 v = sqlite3GetVdbe(pParse); 2371 if( NEVER(v==0) ) return; 2372 2373 sqlite3VdbeAddOp1(v, OP_Close, 0); 2374 2375 /* 2376 ** Initialize zType for the new view or table. 2377 */ 2378 if( p->pSelect==0 ){ 2379 /* A regular table */ 2380 zType = "table"; 2381 zType2 = "TABLE"; 2382 #ifndef SQLITE_OMIT_VIEW 2383 }else{ 2384 /* A view */ 2385 zType = "view"; 2386 zType2 = "VIEW"; 2387 #endif 2388 } 2389 2390 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2391 ** statement to populate the new table. The root-page number for the 2392 ** new table is in register pParse->regRoot. 2393 ** 2394 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2395 ** suitable state to query for the column names and types to be used 2396 ** by the new table. 2397 ** 2398 ** A shared-cache write-lock is not required to write to the new table, 2399 ** as a schema-lock must have already been obtained to create it. Since 2400 ** a schema-lock excludes all other database users, the write-lock would 2401 ** be redundant. 2402 */ 2403 if( pSelect ){ 2404 SelectDest dest; /* Where the SELECT should store results */ 2405 int regYield; /* Register holding co-routine entry-point */ 2406 int addrTop; /* Top of the co-routine */ 2407 int regRec; /* A record to be insert into the new table */ 2408 int regRowid; /* Rowid of the next row to insert */ 2409 int addrInsLoop; /* Top of the loop for inserting rows */ 2410 Table *pSelTab; /* A table that describes the SELECT results */ 2411 2412 regYield = ++pParse->nMem; 2413 regRec = ++pParse->nMem; 2414 regRowid = ++pParse->nMem; 2415 assert(pParse->nTab==1); 2416 sqlite3MayAbort(pParse); 2417 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2418 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2419 pParse->nTab = 2; 2420 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2421 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2422 if( pParse->nErr ) return; 2423 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2424 if( pSelTab==0 ) return; 2425 assert( p->aCol==0 ); 2426 p->nCol = p->nNVCol = pSelTab->nCol; 2427 p->aCol = pSelTab->aCol; 2428 pSelTab->nCol = 0; 2429 pSelTab->aCol = 0; 2430 sqlite3DeleteTable(db, pSelTab); 2431 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2432 sqlite3Select(pParse, pSelect, &dest); 2433 if( pParse->nErr ) return; 2434 sqlite3VdbeEndCoroutine(v, regYield); 2435 sqlite3VdbeJumpHere(v, addrTop - 1); 2436 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2437 VdbeCoverage(v); 2438 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2439 sqlite3TableAffinity(v, p, 0); 2440 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2441 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2442 sqlite3VdbeGoto(v, addrInsLoop); 2443 sqlite3VdbeJumpHere(v, addrInsLoop); 2444 sqlite3VdbeAddOp1(v, OP_Close, 1); 2445 } 2446 2447 /* Compute the complete text of the CREATE statement */ 2448 if( pSelect ){ 2449 zStmt = createTableStmt(db, p); 2450 }else{ 2451 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2452 n = (int)(pEnd2->z - pParse->sNameToken.z); 2453 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2454 zStmt = sqlite3MPrintf(db, 2455 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2456 ); 2457 } 2458 2459 /* A slot for the record has already been allocated in the 2460 ** SQLITE_MASTER table. We just need to update that slot with all 2461 ** the information we've collected. 2462 */ 2463 sqlite3NestedParse(pParse, 2464 "UPDATE %Q.%s " 2465 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2466 "WHERE rowid=#%d", 2467 db->aDb[iDb].zDbSName, MASTER_NAME, 2468 zType, 2469 p->zName, 2470 p->zName, 2471 pParse->regRoot, 2472 zStmt, 2473 pParse->regRowid 2474 ); 2475 sqlite3DbFree(db, zStmt); 2476 sqlite3ChangeCookie(pParse, iDb); 2477 2478 #ifndef SQLITE_OMIT_AUTOINCREMENT 2479 /* Check to see if we need to create an sqlite_sequence table for 2480 ** keeping track of autoincrement keys. 2481 */ 2482 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2483 Db *pDb = &db->aDb[iDb]; 2484 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2485 if( pDb->pSchema->pSeqTab==0 ){ 2486 sqlite3NestedParse(pParse, 2487 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2488 pDb->zDbSName 2489 ); 2490 } 2491 } 2492 #endif 2493 2494 /* Reparse everything to update our internal data structures */ 2495 sqlite3VdbeAddParseSchemaOp(v, iDb, 2496 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2497 } 2498 2499 /* Add the table to the in-memory representation of the database. 2500 */ 2501 if( db->init.busy ){ 2502 Table *pOld; 2503 Schema *pSchema = p->pSchema; 2504 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2505 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2506 if( pOld ){ 2507 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2508 sqlite3OomFault(db); 2509 return; 2510 } 2511 pParse->pNewTable = 0; 2512 db->mDbFlags |= DBFLAG_SchemaChange; 2513 2514 #ifndef SQLITE_OMIT_ALTERTABLE 2515 if( !p->pSelect ){ 2516 const char *zName = (const char *)pParse->sNameToken.z; 2517 int nName; 2518 assert( !pSelect && pCons && pEnd ); 2519 if( pCons->z==0 ){ 2520 pCons = pEnd; 2521 } 2522 nName = (int)((const char *)pCons->z - zName); 2523 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2524 } 2525 #endif 2526 } 2527 } 2528 2529 #ifndef SQLITE_OMIT_VIEW 2530 /* 2531 ** The parser calls this routine in order to create a new VIEW 2532 */ 2533 void sqlite3CreateView( 2534 Parse *pParse, /* The parsing context */ 2535 Token *pBegin, /* The CREATE token that begins the statement */ 2536 Token *pName1, /* The token that holds the name of the view */ 2537 Token *pName2, /* The token that holds the name of the view */ 2538 ExprList *pCNames, /* Optional list of view column names */ 2539 Select *pSelect, /* A SELECT statement that will become the new view */ 2540 int isTemp, /* TRUE for a TEMPORARY view */ 2541 int noErr /* Suppress error messages if VIEW already exists */ 2542 ){ 2543 Table *p; 2544 int n; 2545 const char *z; 2546 Token sEnd; 2547 DbFixer sFix; 2548 Token *pName = 0; 2549 int iDb; 2550 sqlite3 *db = pParse->db; 2551 2552 if( pParse->nVar>0 ){ 2553 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2554 goto create_view_fail; 2555 } 2556 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2557 p = pParse->pNewTable; 2558 if( p==0 || pParse->nErr ) goto create_view_fail; 2559 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2560 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2561 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2562 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2563 2564 /* Make a copy of the entire SELECT statement that defines the view. 2565 ** This will force all the Expr.token.z values to be dynamically 2566 ** allocated rather than point to the input string - which means that 2567 ** they will persist after the current sqlite3_exec() call returns. 2568 */ 2569 pSelect->selFlags |= SF_View; 2570 if( IN_RENAME_OBJECT ){ 2571 p->pSelect = pSelect; 2572 pSelect = 0; 2573 }else{ 2574 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2575 } 2576 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2577 if( db->mallocFailed ) goto create_view_fail; 2578 2579 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2580 ** the end. 2581 */ 2582 sEnd = pParse->sLastToken; 2583 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2584 if( sEnd.z[0]!=';' ){ 2585 sEnd.z += sEnd.n; 2586 } 2587 sEnd.n = 0; 2588 n = (int)(sEnd.z - pBegin->z); 2589 assert( n>0 ); 2590 z = pBegin->z; 2591 while( sqlite3Isspace(z[n-1]) ){ n--; } 2592 sEnd.z = &z[n-1]; 2593 sEnd.n = 1; 2594 2595 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2596 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2597 2598 create_view_fail: 2599 sqlite3SelectDelete(db, pSelect); 2600 if( IN_RENAME_OBJECT ){ 2601 sqlite3RenameExprlistUnmap(pParse, pCNames); 2602 } 2603 sqlite3ExprListDelete(db, pCNames); 2604 return; 2605 } 2606 #endif /* SQLITE_OMIT_VIEW */ 2607 2608 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2609 /* 2610 ** The Table structure pTable is really a VIEW. Fill in the names of 2611 ** the columns of the view in the pTable structure. Return the number 2612 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2613 */ 2614 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2615 Table *pSelTab; /* A fake table from which we get the result set */ 2616 Select *pSel; /* Copy of the SELECT that implements the view */ 2617 int nErr = 0; /* Number of errors encountered */ 2618 int n; /* Temporarily holds the number of cursors assigned */ 2619 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2620 #ifndef SQLITE_OMIT_VIRTUALTABLE 2621 int rc; 2622 #endif 2623 #ifndef SQLITE_OMIT_AUTHORIZATION 2624 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2625 #endif 2626 2627 assert( pTable ); 2628 2629 #ifndef SQLITE_OMIT_VIRTUALTABLE 2630 db->nSchemaLock++; 2631 rc = sqlite3VtabCallConnect(pParse, pTable); 2632 db->nSchemaLock--; 2633 if( rc ){ 2634 return 1; 2635 } 2636 if( IsVirtual(pTable) ) return 0; 2637 #endif 2638 2639 #ifndef SQLITE_OMIT_VIEW 2640 /* A positive nCol means the columns names for this view are 2641 ** already known. 2642 */ 2643 if( pTable->nCol>0 ) return 0; 2644 2645 /* A negative nCol is a special marker meaning that we are currently 2646 ** trying to compute the column names. If we enter this routine with 2647 ** a negative nCol, it means two or more views form a loop, like this: 2648 ** 2649 ** CREATE VIEW one AS SELECT * FROM two; 2650 ** CREATE VIEW two AS SELECT * FROM one; 2651 ** 2652 ** Actually, the error above is now caught prior to reaching this point. 2653 ** But the following test is still important as it does come up 2654 ** in the following: 2655 ** 2656 ** CREATE TABLE main.ex1(a); 2657 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2658 ** SELECT * FROM temp.ex1; 2659 */ 2660 if( pTable->nCol<0 ){ 2661 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2662 return 1; 2663 } 2664 assert( pTable->nCol>=0 ); 2665 2666 /* If we get this far, it means we need to compute the table names. 2667 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2668 ** "*" elements in the results set of the view and will assign cursors 2669 ** to the elements of the FROM clause. But we do not want these changes 2670 ** to be permanent. So the computation is done on a copy of the SELECT 2671 ** statement that defines the view. 2672 */ 2673 assert( pTable->pSelect ); 2674 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2675 if( pSel ){ 2676 #ifndef SQLITE_OMIT_ALTERTABLE 2677 u8 eParseMode = pParse->eParseMode; 2678 pParse->eParseMode = PARSE_MODE_NORMAL; 2679 #endif 2680 n = pParse->nTab; 2681 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2682 pTable->nCol = -1; 2683 DisableLookaside; 2684 #ifndef SQLITE_OMIT_AUTHORIZATION 2685 xAuth = db->xAuth; 2686 db->xAuth = 0; 2687 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2688 db->xAuth = xAuth; 2689 #else 2690 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2691 #endif 2692 pParse->nTab = n; 2693 if( pSelTab==0 ){ 2694 pTable->nCol = 0; 2695 nErr++; 2696 }else if( pTable->pCheck ){ 2697 /* CREATE VIEW name(arglist) AS ... 2698 ** The names of the columns in the table are taken from 2699 ** arglist which is stored in pTable->pCheck. The pCheck field 2700 ** normally holds CHECK constraints on an ordinary table, but for 2701 ** a VIEW it holds the list of column names. 2702 */ 2703 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2704 &pTable->nCol, &pTable->aCol); 2705 if( db->mallocFailed==0 2706 && pParse->nErr==0 2707 && pTable->nCol==pSel->pEList->nExpr 2708 ){ 2709 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2710 SQLITE_AFF_NONE); 2711 } 2712 }else{ 2713 /* CREATE VIEW name AS... without an argument list. Construct 2714 ** the column names from the SELECT statement that defines the view. 2715 */ 2716 assert( pTable->aCol==0 ); 2717 pTable->nCol = pSelTab->nCol; 2718 pTable->aCol = pSelTab->aCol; 2719 pSelTab->nCol = 0; 2720 pSelTab->aCol = 0; 2721 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2722 } 2723 pTable->nNVCol = pTable->nCol; 2724 sqlite3DeleteTable(db, pSelTab); 2725 sqlite3SelectDelete(db, pSel); 2726 EnableLookaside; 2727 #ifndef SQLITE_OMIT_ALTERTABLE 2728 pParse->eParseMode = eParseMode; 2729 #endif 2730 } else { 2731 nErr++; 2732 } 2733 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2734 if( db->mallocFailed ){ 2735 sqlite3DeleteColumnNames(db, pTable); 2736 pTable->aCol = 0; 2737 pTable->nCol = 0; 2738 } 2739 #endif /* SQLITE_OMIT_VIEW */ 2740 return nErr; 2741 } 2742 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2743 2744 #ifndef SQLITE_OMIT_VIEW 2745 /* 2746 ** Clear the column names from every VIEW in database idx. 2747 */ 2748 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2749 HashElem *i; 2750 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2751 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2752 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2753 Table *pTab = sqliteHashData(i); 2754 if( pTab->pSelect ){ 2755 sqlite3DeleteColumnNames(db, pTab); 2756 pTab->aCol = 0; 2757 pTab->nCol = 0; 2758 } 2759 } 2760 DbClearProperty(db, idx, DB_UnresetViews); 2761 } 2762 #else 2763 # define sqliteViewResetAll(A,B) 2764 #endif /* SQLITE_OMIT_VIEW */ 2765 2766 /* 2767 ** This function is called by the VDBE to adjust the internal schema 2768 ** used by SQLite when the btree layer moves a table root page. The 2769 ** root-page of a table or index in database iDb has changed from iFrom 2770 ** to iTo. 2771 ** 2772 ** Ticket #1728: The symbol table might still contain information 2773 ** on tables and/or indices that are the process of being deleted. 2774 ** If you are unlucky, one of those deleted indices or tables might 2775 ** have the same rootpage number as the real table or index that is 2776 ** being moved. So we cannot stop searching after the first match 2777 ** because the first match might be for one of the deleted indices 2778 ** or tables and not the table/index that is actually being moved. 2779 ** We must continue looping until all tables and indices with 2780 ** rootpage==iFrom have been converted to have a rootpage of iTo 2781 ** in order to be certain that we got the right one. 2782 */ 2783 #ifndef SQLITE_OMIT_AUTOVACUUM 2784 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2785 HashElem *pElem; 2786 Hash *pHash; 2787 Db *pDb; 2788 2789 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2790 pDb = &db->aDb[iDb]; 2791 pHash = &pDb->pSchema->tblHash; 2792 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2793 Table *pTab = sqliteHashData(pElem); 2794 if( pTab->tnum==iFrom ){ 2795 pTab->tnum = iTo; 2796 } 2797 } 2798 pHash = &pDb->pSchema->idxHash; 2799 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2800 Index *pIdx = sqliteHashData(pElem); 2801 if( pIdx->tnum==iFrom ){ 2802 pIdx->tnum = iTo; 2803 } 2804 } 2805 } 2806 #endif 2807 2808 /* 2809 ** Write code to erase the table with root-page iTable from database iDb. 2810 ** Also write code to modify the sqlite_master table and internal schema 2811 ** if a root-page of another table is moved by the btree-layer whilst 2812 ** erasing iTable (this can happen with an auto-vacuum database). 2813 */ 2814 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2815 Vdbe *v = sqlite3GetVdbe(pParse); 2816 int r1 = sqlite3GetTempReg(pParse); 2817 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2818 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2819 sqlite3MayAbort(pParse); 2820 #ifndef SQLITE_OMIT_AUTOVACUUM 2821 /* OP_Destroy stores an in integer r1. If this integer 2822 ** is non-zero, then it is the root page number of a table moved to 2823 ** location iTable. The following code modifies the sqlite_master table to 2824 ** reflect this. 2825 ** 2826 ** The "#NNN" in the SQL is a special constant that means whatever value 2827 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2828 ** token for additional information. 2829 */ 2830 sqlite3NestedParse(pParse, 2831 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2832 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2833 #endif 2834 sqlite3ReleaseTempReg(pParse, r1); 2835 } 2836 2837 /* 2838 ** Write VDBE code to erase table pTab and all associated indices on disk. 2839 ** Code to update the sqlite_master tables and internal schema definitions 2840 ** in case a root-page belonging to another table is moved by the btree layer 2841 ** is also added (this can happen with an auto-vacuum database). 2842 */ 2843 static void destroyTable(Parse *pParse, Table *pTab){ 2844 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2845 ** is not defined), then it is important to call OP_Destroy on the 2846 ** table and index root-pages in order, starting with the numerically 2847 ** largest root-page number. This guarantees that none of the root-pages 2848 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2849 ** following were coded: 2850 ** 2851 ** OP_Destroy 4 0 2852 ** ... 2853 ** OP_Destroy 5 0 2854 ** 2855 ** and root page 5 happened to be the largest root-page number in the 2856 ** database, then root page 5 would be moved to page 4 by the 2857 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2858 ** a free-list page. 2859 */ 2860 int iTab = pTab->tnum; 2861 int iDestroyed = 0; 2862 2863 while( 1 ){ 2864 Index *pIdx; 2865 int iLargest = 0; 2866 2867 if( iDestroyed==0 || iTab<iDestroyed ){ 2868 iLargest = iTab; 2869 } 2870 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2871 int iIdx = pIdx->tnum; 2872 assert( pIdx->pSchema==pTab->pSchema ); 2873 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2874 iLargest = iIdx; 2875 } 2876 } 2877 if( iLargest==0 ){ 2878 return; 2879 }else{ 2880 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2881 assert( iDb>=0 && iDb<pParse->db->nDb ); 2882 destroyRootPage(pParse, iLargest, iDb); 2883 iDestroyed = iLargest; 2884 } 2885 } 2886 } 2887 2888 /* 2889 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2890 ** after a DROP INDEX or DROP TABLE command. 2891 */ 2892 static void sqlite3ClearStatTables( 2893 Parse *pParse, /* The parsing context */ 2894 int iDb, /* The database number */ 2895 const char *zType, /* "idx" or "tbl" */ 2896 const char *zName /* Name of index or table */ 2897 ){ 2898 int i; 2899 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2900 for(i=1; i<=4; i++){ 2901 char zTab[24]; 2902 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2903 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2904 sqlite3NestedParse(pParse, 2905 "DELETE FROM %Q.%s WHERE %s=%Q", 2906 zDbName, zTab, zType, zName 2907 ); 2908 } 2909 } 2910 } 2911 2912 /* 2913 ** Generate code to drop a table. 2914 */ 2915 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2916 Vdbe *v; 2917 sqlite3 *db = pParse->db; 2918 Trigger *pTrigger; 2919 Db *pDb = &db->aDb[iDb]; 2920 2921 v = sqlite3GetVdbe(pParse); 2922 assert( v!=0 ); 2923 sqlite3BeginWriteOperation(pParse, 1, iDb); 2924 2925 #ifndef SQLITE_OMIT_VIRTUALTABLE 2926 if( IsVirtual(pTab) ){ 2927 sqlite3VdbeAddOp0(v, OP_VBegin); 2928 } 2929 #endif 2930 2931 /* Drop all triggers associated with the table being dropped. Code 2932 ** is generated to remove entries from sqlite_master and/or 2933 ** sqlite_temp_master if required. 2934 */ 2935 pTrigger = sqlite3TriggerList(pParse, pTab); 2936 while( pTrigger ){ 2937 assert( pTrigger->pSchema==pTab->pSchema || 2938 pTrigger->pSchema==db->aDb[1].pSchema ); 2939 sqlite3DropTriggerPtr(pParse, pTrigger); 2940 pTrigger = pTrigger->pNext; 2941 } 2942 2943 #ifndef SQLITE_OMIT_AUTOINCREMENT 2944 /* Remove any entries of the sqlite_sequence table associated with 2945 ** the table being dropped. This is done before the table is dropped 2946 ** at the btree level, in case the sqlite_sequence table needs to 2947 ** move as a result of the drop (can happen in auto-vacuum mode). 2948 */ 2949 if( pTab->tabFlags & TF_Autoincrement ){ 2950 sqlite3NestedParse(pParse, 2951 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2952 pDb->zDbSName, pTab->zName 2953 ); 2954 } 2955 #endif 2956 2957 /* Drop all SQLITE_MASTER table and index entries that refer to the 2958 ** table. The program name loops through the master table and deletes 2959 ** every row that refers to a table of the same name as the one being 2960 ** dropped. Triggers are handled separately because a trigger can be 2961 ** created in the temp database that refers to a table in another 2962 ** database. 2963 */ 2964 sqlite3NestedParse(pParse, 2965 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2966 pDb->zDbSName, MASTER_NAME, pTab->zName); 2967 if( !isView && !IsVirtual(pTab) ){ 2968 destroyTable(pParse, pTab); 2969 } 2970 2971 /* Remove the table entry from SQLite's internal schema and modify 2972 ** the schema cookie. 2973 */ 2974 if( IsVirtual(pTab) ){ 2975 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2976 sqlite3MayAbort(pParse); 2977 } 2978 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2979 sqlite3ChangeCookie(pParse, iDb); 2980 sqliteViewResetAll(db, iDb); 2981 } 2982 2983 /* 2984 ** Return TRUE if shadow tables should be read-only in the current 2985 ** context. 2986 */ 2987 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 2988 #ifndef SQLITE_OMIT_VIRTUALTABLE 2989 if( (db->flags & SQLITE_Defensive)!=0 2990 && db->pVtabCtx==0 2991 && db->nVdbeExec==0 2992 ){ 2993 return 1; 2994 } 2995 #endif 2996 return 0; 2997 } 2998 2999 /* 3000 ** Return true if it is not allowed to drop the given table 3001 */ 3002 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 3003 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 3004 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 3005 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 3006 return 1; 3007 } 3008 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 3009 return 1; 3010 } 3011 return 0; 3012 } 3013 3014 /* 3015 ** This routine is called to do the work of a DROP TABLE statement. 3016 ** pName is the name of the table to be dropped. 3017 */ 3018 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 3019 Table *pTab; 3020 Vdbe *v; 3021 sqlite3 *db = pParse->db; 3022 int iDb; 3023 3024 if( db->mallocFailed ){ 3025 goto exit_drop_table; 3026 } 3027 assert( pParse->nErr==0 ); 3028 assert( pName->nSrc==1 ); 3029 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3030 if( noErr ) db->suppressErr++; 3031 assert( isView==0 || isView==LOCATE_VIEW ); 3032 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3033 if( noErr ) db->suppressErr--; 3034 3035 if( pTab==0 ){ 3036 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3037 goto exit_drop_table; 3038 } 3039 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3040 assert( iDb>=0 && iDb<db->nDb ); 3041 3042 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3043 ** it is initialized. 3044 */ 3045 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3046 goto exit_drop_table; 3047 } 3048 #ifndef SQLITE_OMIT_AUTHORIZATION 3049 { 3050 int code; 3051 const char *zTab = SCHEMA_TABLE(iDb); 3052 const char *zDb = db->aDb[iDb].zDbSName; 3053 const char *zArg2 = 0; 3054 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3055 goto exit_drop_table; 3056 } 3057 if( isView ){ 3058 if( !OMIT_TEMPDB && iDb==1 ){ 3059 code = SQLITE_DROP_TEMP_VIEW; 3060 }else{ 3061 code = SQLITE_DROP_VIEW; 3062 } 3063 #ifndef SQLITE_OMIT_VIRTUALTABLE 3064 }else if( IsVirtual(pTab) ){ 3065 code = SQLITE_DROP_VTABLE; 3066 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3067 #endif 3068 }else{ 3069 if( !OMIT_TEMPDB && iDb==1 ){ 3070 code = SQLITE_DROP_TEMP_TABLE; 3071 }else{ 3072 code = SQLITE_DROP_TABLE; 3073 } 3074 } 3075 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3076 goto exit_drop_table; 3077 } 3078 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3079 goto exit_drop_table; 3080 } 3081 } 3082 #endif 3083 if( tableMayNotBeDropped(db, pTab) ){ 3084 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3085 goto exit_drop_table; 3086 } 3087 3088 #ifndef SQLITE_OMIT_VIEW 3089 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3090 ** on a table. 3091 */ 3092 if( isView && pTab->pSelect==0 ){ 3093 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3094 goto exit_drop_table; 3095 } 3096 if( !isView && pTab->pSelect ){ 3097 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3098 goto exit_drop_table; 3099 } 3100 #endif 3101 3102 /* Generate code to remove the table from the master table 3103 ** on disk. 3104 */ 3105 v = sqlite3GetVdbe(pParse); 3106 if( v ){ 3107 sqlite3BeginWriteOperation(pParse, 1, iDb); 3108 if( !isView ){ 3109 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3110 sqlite3FkDropTable(pParse, pName, pTab); 3111 } 3112 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3113 } 3114 3115 exit_drop_table: 3116 sqlite3SrcListDelete(db, pName); 3117 } 3118 3119 /* 3120 ** This routine is called to create a new foreign key on the table 3121 ** currently under construction. pFromCol determines which columns 3122 ** in the current table point to the foreign key. If pFromCol==0 then 3123 ** connect the key to the last column inserted. pTo is the name of 3124 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3125 ** of tables in the parent pTo table. flags contains all 3126 ** information about the conflict resolution algorithms specified 3127 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3128 ** 3129 ** An FKey structure is created and added to the table currently 3130 ** under construction in the pParse->pNewTable field. 3131 ** 3132 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3133 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3134 */ 3135 void sqlite3CreateForeignKey( 3136 Parse *pParse, /* Parsing context */ 3137 ExprList *pFromCol, /* Columns in this table that point to other table */ 3138 Token *pTo, /* Name of the other table */ 3139 ExprList *pToCol, /* Columns in the other table */ 3140 int flags /* Conflict resolution algorithms. */ 3141 ){ 3142 sqlite3 *db = pParse->db; 3143 #ifndef SQLITE_OMIT_FOREIGN_KEY 3144 FKey *pFKey = 0; 3145 FKey *pNextTo; 3146 Table *p = pParse->pNewTable; 3147 int nByte; 3148 int i; 3149 int nCol; 3150 char *z; 3151 3152 assert( pTo!=0 ); 3153 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3154 if( pFromCol==0 ){ 3155 int iCol = p->nCol-1; 3156 if( NEVER(iCol<0) ) goto fk_end; 3157 if( pToCol && pToCol->nExpr!=1 ){ 3158 sqlite3ErrorMsg(pParse, "foreign key on %s" 3159 " should reference only one column of table %T", 3160 p->aCol[iCol].zName, pTo); 3161 goto fk_end; 3162 } 3163 nCol = 1; 3164 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3165 sqlite3ErrorMsg(pParse, 3166 "number of columns in foreign key does not match the number of " 3167 "columns in the referenced table"); 3168 goto fk_end; 3169 }else{ 3170 nCol = pFromCol->nExpr; 3171 } 3172 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3173 if( pToCol ){ 3174 for(i=0; i<pToCol->nExpr; i++){ 3175 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3176 } 3177 } 3178 pFKey = sqlite3DbMallocZero(db, nByte ); 3179 if( pFKey==0 ){ 3180 goto fk_end; 3181 } 3182 pFKey->pFrom = p; 3183 pFKey->pNextFrom = p->pFKey; 3184 z = (char*)&pFKey->aCol[nCol]; 3185 pFKey->zTo = z; 3186 if( IN_RENAME_OBJECT ){ 3187 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3188 } 3189 memcpy(z, pTo->z, pTo->n); 3190 z[pTo->n] = 0; 3191 sqlite3Dequote(z); 3192 z += pTo->n+1; 3193 pFKey->nCol = nCol; 3194 if( pFromCol==0 ){ 3195 pFKey->aCol[0].iFrom = p->nCol-1; 3196 }else{ 3197 for(i=0; i<nCol; i++){ 3198 int j; 3199 for(j=0; j<p->nCol; j++){ 3200 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3201 pFKey->aCol[i].iFrom = j; 3202 break; 3203 } 3204 } 3205 if( j>=p->nCol ){ 3206 sqlite3ErrorMsg(pParse, 3207 "unknown column \"%s\" in foreign key definition", 3208 pFromCol->a[i].zEName); 3209 goto fk_end; 3210 } 3211 if( IN_RENAME_OBJECT ){ 3212 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3213 } 3214 } 3215 } 3216 if( pToCol ){ 3217 for(i=0; i<nCol; i++){ 3218 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3219 pFKey->aCol[i].zCol = z; 3220 if( IN_RENAME_OBJECT ){ 3221 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3222 } 3223 memcpy(z, pToCol->a[i].zEName, n); 3224 z[n] = 0; 3225 z += n+1; 3226 } 3227 } 3228 pFKey->isDeferred = 0; 3229 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3230 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3231 3232 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3233 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3234 pFKey->zTo, (void *)pFKey 3235 ); 3236 if( pNextTo==pFKey ){ 3237 sqlite3OomFault(db); 3238 goto fk_end; 3239 } 3240 if( pNextTo ){ 3241 assert( pNextTo->pPrevTo==0 ); 3242 pFKey->pNextTo = pNextTo; 3243 pNextTo->pPrevTo = pFKey; 3244 } 3245 3246 /* Link the foreign key to the table as the last step. 3247 */ 3248 p->pFKey = pFKey; 3249 pFKey = 0; 3250 3251 fk_end: 3252 sqlite3DbFree(db, pFKey); 3253 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3254 sqlite3ExprListDelete(db, pFromCol); 3255 sqlite3ExprListDelete(db, pToCol); 3256 } 3257 3258 /* 3259 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3260 ** clause is seen as part of a foreign key definition. The isDeferred 3261 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3262 ** The behavior of the most recently created foreign key is adjusted 3263 ** accordingly. 3264 */ 3265 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3266 #ifndef SQLITE_OMIT_FOREIGN_KEY 3267 Table *pTab; 3268 FKey *pFKey; 3269 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3270 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3271 pFKey->isDeferred = (u8)isDeferred; 3272 #endif 3273 } 3274 3275 /* 3276 ** Generate code that will erase and refill index *pIdx. This is 3277 ** used to initialize a newly created index or to recompute the 3278 ** content of an index in response to a REINDEX command. 3279 ** 3280 ** if memRootPage is not negative, it means that the index is newly 3281 ** created. The register specified by memRootPage contains the 3282 ** root page number of the index. If memRootPage is negative, then 3283 ** the index already exists and must be cleared before being refilled and 3284 ** the root page number of the index is taken from pIndex->tnum. 3285 */ 3286 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3287 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3288 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3289 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3290 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3291 int addr1; /* Address of top of loop */ 3292 int addr2; /* Address to jump to for next iteration */ 3293 int tnum; /* Root page of index */ 3294 int iPartIdxLabel; /* Jump to this label to skip a row */ 3295 Vdbe *v; /* Generate code into this virtual machine */ 3296 KeyInfo *pKey; /* KeyInfo for index */ 3297 int regRecord; /* Register holding assembled index record */ 3298 sqlite3 *db = pParse->db; /* The database connection */ 3299 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3300 3301 #ifndef SQLITE_OMIT_AUTHORIZATION 3302 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3303 db->aDb[iDb].zDbSName ) ){ 3304 return; 3305 } 3306 #endif 3307 3308 /* Require a write-lock on the table to perform this operation */ 3309 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3310 3311 v = sqlite3GetVdbe(pParse); 3312 if( v==0 ) return; 3313 if( memRootPage>=0 ){ 3314 tnum = memRootPage; 3315 }else{ 3316 tnum = pIndex->tnum; 3317 } 3318 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3319 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3320 3321 /* Open the sorter cursor if we are to use one. */ 3322 iSorter = pParse->nTab++; 3323 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3324 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3325 3326 /* Open the table. Loop through all rows of the table, inserting index 3327 ** records into the sorter. */ 3328 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3329 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3330 regRecord = sqlite3GetTempReg(pParse); 3331 sqlite3MultiWrite(pParse); 3332 3333 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3334 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3335 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3336 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3337 sqlite3VdbeJumpHere(v, addr1); 3338 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3339 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 3340 (char *)pKey, P4_KEYINFO); 3341 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3342 3343 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3344 if( IsUniqueIndex(pIndex) ){ 3345 int j2 = sqlite3VdbeGoto(v, 1); 3346 addr2 = sqlite3VdbeCurrentAddr(v); 3347 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3348 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3349 pIndex->nKeyCol); VdbeCoverage(v); 3350 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3351 sqlite3VdbeJumpHere(v, j2); 3352 }else{ 3353 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3354 ** abort. The exception is if one of the indexed expressions contains a 3355 ** user function that throws an exception when it is evaluated. But the 3356 ** overhead of adding a statement journal to a CREATE INDEX statement is 3357 ** very small (since most of the pages written do not contain content that 3358 ** needs to be restored if the statement aborts), so we call 3359 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3360 sqlite3MayAbort(pParse); 3361 addr2 = sqlite3VdbeCurrentAddr(v); 3362 } 3363 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3364 if( !pIndex->bAscKeyBug ){ 3365 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3366 ** faster by avoiding unnecessary seeks. But the optimization does 3367 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3368 ** with DESC primary keys, since those indexes have there keys in 3369 ** a different order from the main table. 3370 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3371 */ 3372 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3373 } 3374 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3375 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3376 sqlite3ReleaseTempReg(pParse, regRecord); 3377 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3378 sqlite3VdbeJumpHere(v, addr1); 3379 3380 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3381 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3382 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3383 } 3384 3385 /* 3386 ** Allocate heap space to hold an Index object with nCol columns. 3387 ** 3388 ** Increase the allocation size to provide an extra nExtra bytes 3389 ** of 8-byte aligned space after the Index object and return a 3390 ** pointer to this extra space in *ppExtra. 3391 */ 3392 Index *sqlite3AllocateIndexObject( 3393 sqlite3 *db, /* Database connection */ 3394 i16 nCol, /* Total number of columns in the index */ 3395 int nExtra, /* Number of bytes of extra space to alloc */ 3396 char **ppExtra /* Pointer to the "extra" space */ 3397 ){ 3398 Index *p; /* Allocated index object */ 3399 int nByte; /* Bytes of space for Index object + arrays */ 3400 3401 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3402 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3403 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3404 sizeof(i16)*nCol + /* Index.aiColumn */ 3405 sizeof(u8)*nCol); /* Index.aSortOrder */ 3406 p = sqlite3DbMallocZero(db, nByte + nExtra); 3407 if( p ){ 3408 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3409 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3410 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3411 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3412 p->aSortOrder = (u8*)pExtra; 3413 p->nColumn = nCol; 3414 p->nKeyCol = nCol - 1; 3415 *ppExtra = ((char*)p) + nByte; 3416 } 3417 return p; 3418 } 3419 3420 /* 3421 ** If expression list pList contains an expression that was parsed with 3422 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3423 ** pParse and return non-zero. Otherwise, return zero. 3424 */ 3425 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3426 if( pList ){ 3427 int i; 3428 for(i=0; i<pList->nExpr; i++){ 3429 if( pList->a[i].bNulls ){ 3430 u8 sf = pList->a[i].sortFlags; 3431 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3432 (sf==0 || sf==3) ? "FIRST" : "LAST" 3433 ); 3434 return 1; 3435 } 3436 } 3437 } 3438 return 0; 3439 } 3440 3441 /* 3442 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3443 ** and pTblList is the name of the table that is to be indexed. Both will 3444 ** be NULL for a primary key or an index that is created to satisfy a 3445 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3446 ** as the table to be indexed. pParse->pNewTable is a table that is 3447 ** currently being constructed by a CREATE TABLE statement. 3448 ** 3449 ** pList is a list of columns to be indexed. pList will be NULL if this 3450 ** is a primary key or unique-constraint on the most recent column added 3451 ** to the table currently under construction. 3452 */ 3453 void sqlite3CreateIndex( 3454 Parse *pParse, /* All information about this parse */ 3455 Token *pName1, /* First part of index name. May be NULL */ 3456 Token *pName2, /* Second part of index name. May be NULL */ 3457 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3458 ExprList *pList, /* A list of columns to be indexed */ 3459 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3460 Token *pStart, /* The CREATE token that begins this statement */ 3461 Expr *pPIWhere, /* WHERE clause for partial indices */ 3462 int sortOrder, /* Sort order of primary key when pList==NULL */ 3463 int ifNotExist, /* Omit error if index already exists */ 3464 u8 idxType /* The index type */ 3465 ){ 3466 Table *pTab = 0; /* Table to be indexed */ 3467 Index *pIndex = 0; /* The index to be created */ 3468 char *zName = 0; /* Name of the index */ 3469 int nName; /* Number of characters in zName */ 3470 int i, j; 3471 DbFixer sFix; /* For assigning database names to pTable */ 3472 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3473 sqlite3 *db = pParse->db; 3474 Db *pDb; /* The specific table containing the indexed database */ 3475 int iDb; /* Index of the database that is being written */ 3476 Token *pName = 0; /* Unqualified name of the index to create */ 3477 struct ExprList_item *pListItem; /* For looping over pList */ 3478 int nExtra = 0; /* Space allocated for zExtra[] */ 3479 int nExtraCol; /* Number of extra columns needed */ 3480 char *zExtra = 0; /* Extra space after the Index object */ 3481 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3482 3483 if( db->mallocFailed || pParse->nErr>0 ){ 3484 goto exit_create_index; 3485 } 3486 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3487 goto exit_create_index; 3488 } 3489 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3490 goto exit_create_index; 3491 } 3492 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3493 goto exit_create_index; 3494 } 3495 3496 /* 3497 ** Find the table that is to be indexed. Return early if not found. 3498 */ 3499 if( pTblName!=0 ){ 3500 3501 /* Use the two-part index name to determine the database 3502 ** to search for the table. 'Fix' the table name to this db 3503 ** before looking up the table. 3504 */ 3505 assert( pName1 && pName2 ); 3506 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3507 if( iDb<0 ) goto exit_create_index; 3508 assert( pName && pName->z ); 3509 3510 #ifndef SQLITE_OMIT_TEMPDB 3511 /* If the index name was unqualified, check if the table 3512 ** is a temp table. If so, set the database to 1. Do not do this 3513 ** if initialising a database schema. 3514 */ 3515 if( !db->init.busy ){ 3516 pTab = sqlite3SrcListLookup(pParse, pTblName); 3517 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3518 iDb = 1; 3519 } 3520 } 3521 #endif 3522 3523 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3524 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3525 /* Because the parser constructs pTblName from a single identifier, 3526 ** sqlite3FixSrcList can never fail. */ 3527 assert(0); 3528 } 3529 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3530 assert( db->mallocFailed==0 || pTab==0 ); 3531 if( pTab==0 ) goto exit_create_index; 3532 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3533 sqlite3ErrorMsg(pParse, 3534 "cannot create a TEMP index on non-TEMP table \"%s\"", 3535 pTab->zName); 3536 goto exit_create_index; 3537 } 3538 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3539 }else{ 3540 assert( pName==0 ); 3541 assert( pStart==0 ); 3542 pTab = pParse->pNewTable; 3543 if( !pTab ) goto exit_create_index; 3544 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3545 } 3546 pDb = &db->aDb[iDb]; 3547 3548 assert( pTab!=0 ); 3549 assert( pParse->nErr==0 ); 3550 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3551 && db->init.busy==0 3552 && pTblName!=0 3553 #if SQLITE_USER_AUTHENTICATION 3554 && sqlite3UserAuthTable(pTab->zName)==0 3555 #endif 3556 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX 3557 && sqlite3StrICmp(&pTab->zName[7],"master")!=0 3558 #endif 3559 ){ 3560 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3561 goto exit_create_index; 3562 } 3563 #ifndef SQLITE_OMIT_VIEW 3564 if( pTab->pSelect ){ 3565 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3566 goto exit_create_index; 3567 } 3568 #endif 3569 #ifndef SQLITE_OMIT_VIRTUALTABLE 3570 if( IsVirtual(pTab) ){ 3571 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3572 goto exit_create_index; 3573 } 3574 #endif 3575 3576 /* 3577 ** Find the name of the index. Make sure there is not already another 3578 ** index or table with the same name. 3579 ** 3580 ** Exception: If we are reading the names of permanent indices from the 3581 ** sqlite_master table (because some other process changed the schema) and 3582 ** one of the index names collides with the name of a temporary table or 3583 ** index, then we will continue to process this index. 3584 ** 3585 ** If pName==0 it means that we are 3586 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3587 ** own name. 3588 */ 3589 if( pName ){ 3590 zName = sqlite3NameFromToken(db, pName); 3591 if( zName==0 ) goto exit_create_index; 3592 assert( pName->z!=0 ); 3593 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3594 goto exit_create_index; 3595 } 3596 if( !IN_RENAME_OBJECT ){ 3597 if( !db->init.busy ){ 3598 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3599 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3600 goto exit_create_index; 3601 } 3602 } 3603 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3604 if( !ifNotExist ){ 3605 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3606 }else{ 3607 assert( !db->init.busy ); 3608 sqlite3CodeVerifySchema(pParse, iDb); 3609 } 3610 goto exit_create_index; 3611 } 3612 } 3613 }else{ 3614 int n; 3615 Index *pLoop; 3616 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3617 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3618 if( zName==0 ){ 3619 goto exit_create_index; 3620 } 3621 3622 /* Automatic index names generated from within sqlite3_declare_vtab() 3623 ** must have names that are distinct from normal automatic index names. 3624 ** The following statement converts "sqlite3_autoindex..." into 3625 ** "sqlite3_butoindex..." in order to make the names distinct. 3626 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3627 if( IN_SPECIAL_PARSE ) zName[7]++; 3628 } 3629 3630 /* Check for authorization to create an index. 3631 */ 3632 #ifndef SQLITE_OMIT_AUTHORIZATION 3633 if( !IN_RENAME_OBJECT ){ 3634 const char *zDb = pDb->zDbSName; 3635 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3636 goto exit_create_index; 3637 } 3638 i = SQLITE_CREATE_INDEX; 3639 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3640 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3641 goto exit_create_index; 3642 } 3643 } 3644 #endif 3645 3646 /* If pList==0, it means this routine was called to make a primary 3647 ** key out of the last column added to the table under construction. 3648 ** So create a fake list to simulate this. 3649 */ 3650 if( pList==0 ){ 3651 Token prevCol; 3652 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3653 pCol->colFlags |= COLFLAG_UNIQUE; 3654 sqlite3TokenInit(&prevCol, pCol->zName); 3655 pList = sqlite3ExprListAppend(pParse, 0, 3656 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3657 if( pList==0 ) goto exit_create_index; 3658 assert( pList->nExpr==1 ); 3659 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3660 }else{ 3661 sqlite3ExprListCheckLength(pParse, pList, "index"); 3662 if( pParse->nErr ) goto exit_create_index; 3663 } 3664 3665 /* Figure out how many bytes of space are required to store explicitly 3666 ** specified collation sequence names. 3667 */ 3668 for(i=0; i<pList->nExpr; i++){ 3669 Expr *pExpr = pList->a[i].pExpr; 3670 assert( pExpr!=0 ); 3671 if( pExpr->op==TK_COLLATE ){ 3672 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3673 } 3674 } 3675 3676 /* 3677 ** Allocate the index structure. 3678 */ 3679 nName = sqlite3Strlen30(zName); 3680 nExtraCol = pPk ? pPk->nKeyCol : 1; 3681 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3682 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3683 nName + nExtra + 1, &zExtra); 3684 if( db->mallocFailed ){ 3685 goto exit_create_index; 3686 } 3687 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3688 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3689 pIndex->zName = zExtra; 3690 zExtra += nName + 1; 3691 memcpy(pIndex->zName, zName, nName+1); 3692 pIndex->pTable = pTab; 3693 pIndex->onError = (u8)onError; 3694 pIndex->uniqNotNull = onError!=OE_None; 3695 pIndex->idxType = idxType; 3696 pIndex->pSchema = db->aDb[iDb].pSchema; 3697 pIndex->nKeyCol = pList->nExpr; 3698 if( pPIWhere ){ 3699 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3700 pIndex->pPartIdxWhere = pPIWhere; 3701 pPIWhere = 0; 3702 } 3703 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3704 3705 /* Check to see if we should honor DESC requests on index columns 3706 */ 3707 if( pDb->pSchema->file_format>=4 ){ 3708 sortOrderMask = -1; /* Honor DESC */ 3709 }else{ 3710 sortOrderMask = 0; /* Ignore DESC */ 3711 } 3712 3713 /* Analyze the list of expressions that form the terms of the index and 3714 ** report any errors. In the common case where the expression is exactly 3715 ** a table column, store that column in aiColumn[]. For general expressions, 3716 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3717 ** 3718 ** TODO: Issue a warning if two or more columns of the index are identical. 3719 ** TODO: Issue a warning if the table primary key is used as part of the 3720 ** index key. 3721 */ 3722 pListItem = pList->a; 3723 if( IN_RENAME_OBJECT ){ 3724 pIndex->aColExpr = pList; 3725 pList = 0; 3726 } 3727 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3728 Expr *pCExpr; /* The i-th index expression */ 3729 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3730 const char *zColl; /* Collation sequence name */ 3731 3732 sqlite3StringToId(pListItem->pExpr); 3733 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3734 if( pParse->nErr ) goto exit_create_index; 3735 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3736 if( pCExpr->op!=TK_COLUMN ){ 3737 if( pTab==pParse->pNewTable ){ 3738 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3739 "UNIQUE constraints"); 3740 goto exit_create_index; 3741 } 3742 if( pIndex->aColExpr==0 ){ 3743 pIndex->aColExpr = pList; 3744 pList = 0; 3745 } 3746 j = XN_EXPR; 3747 pIndex->aiColumn[i] = XN_EXPR; 3748 pIndex->uniqNotNull = 0; 3749 }else{ 3750 j = pCExpr->iColumn; 3751 assert( j<=0x7fff ); 3752 if( j<0 ){ 3753 j = pTab->iPKey; 3754 }else{ 3755 if( pTab->aCol[j].notNull==0 ){ 3756 pIndex->uniqNotNull = 0; 3757 } 3758 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3759 pIndex->bHasVCol = 1; 3760 } 3761 } 3762 pIndex->aiColumn[i] = (i16)j; 3763 } 3764 zColl = 0; 3765 if( pListItem->pExpr->op==TK_COLLATE ){ 3766 int nColl; 3767 zColl = pListItem->pExpr->u.zToken; 3768 nColl = sqlite3Strlen30(zColl) + 1; 3769 assert( nExtra>=nColl ); 3770 memcpy(zExtra, zColl, nColl); 3771 zColl = zExtra; 3772 zExtra += nColl; 3773 nExtra -= nColl; 3774 }else if( j>=0 ){ 3775 zColl = pTab->aCol[j].zColl; 3776 } 3777 if( !zColl ) zColl = sqlite3StrBINARY; 3778 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3779 goto exit_create_index; 3780 } 3781 pIndex->azColl[i] = zColl; 3782 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3783 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3784 } 3785 3786 /* Append the table key to the end of the index. For WITHOUT ROWID 3787 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3788 ** normal tables (when pPk==0) this will be the rowid. 3789 */ 3790 if( pPk ){ 3791 for(j=0; j<pPk->nKeyCol; j++){ 3792 int x = pPk->aiColumn[j]; 3793 assert( x>=0 ); 3794 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3795 pIndex->nColumn--; 3796 }else{ 3797 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3798 pIndex->aiColumn[i] = x; 3799 pIndex->azColl[i] = pPk->azColl[j]; 3800 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3801 i++; 3802 } 3803 } 3804 assert( i==pIndex->nColumn ); 3805 }else{ 3806 pIndex->aiColumn[i] = XN_ROWID; 3807 pIndex->azColl[i] = sqlite3StrBINARY; 3808 } 3809 sqlite3DefaultRowEst(pIndex); 3810 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3811 3812 /* If this index contains every column of its table, then mark 3813 ** it as a covering index */ 3814 assert( HasRowid(pTab) 3815 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 3816 recomputeColumnsNotIndexed(pIndex); 3817 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3818 pIndex->isCovering = 1; 3819 for(j=0; j<pTab->nCol; j++){ 3820 if( j==pTab->iPKey ) continue; 3821 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 3822 pIndex->isCovering = 0; 3823 break; 3824 } 3825 } 3826 3827 if( pTab==pParse->pNewTable ){ 3828 /* This routine has been called to create an automatic index as a 3829 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3830 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3831 ** i.e. one of: 3832 ** 3833 ** CREATE TABLE t(x PRIMARY KEY, y); 3834 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3835 ** 3836 ** Either way, check to see if the table already has such an index. If 3837 ** so, don't bother creating this one. This only applies to 3838 ** automatically created indices. Users can do as they wish with 3839 ** explicit indices. 3840 ** 3841 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3842 ** (and thus suppressing the second one) even if they have different 3843 ** sort orders. 3844 ** 3845 ** If there are different collating sequences or if the columns of 3846 ** the constraint occur in different orders, then the constraints are 3847 ** considered distinct and both result in separate indices. 3848 */ 3849 Index *pIdx; 3850 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3851 int k; 3852 assert( IsUniqueIndex(pIdx) ); 3853 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3854 assert( IsUniqueIndex(pIndex) ); 3855 3856 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3857 for(k=0; k<pIdx->nKeyCol; k++){ 3858 const char *z1; 3859 const char *z2; 3860 assert( pIdx->aiColumn[k]>=0 ); 3861 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3862 z1 = pIdx->azColl[k]; 3863 z2 = pIndex->azColl[k]; 3864 if( sqlite3StrICmp(z1, z2) ) break; 3865 } 3866 if( k==pIdx->nKeyCol ){ 3867 if( pIdx->onError!=pIndex->onError ){ 3868 /* This constraint creates the same index as a previous 3869 ** constraint specified somewhere in the CREATE TABLE statement. 3870 ** However the ON CONFLICT clauses are different. If both this 3871 ** constraint and the previous equivalent constraint have explicit 3872 ** ON CONFLICT clauses this is an error. Otherwise, use the 3873 ** explicitly specified behavior for the index. 3874 */ 3875 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3876 sqlite3ErrorMsg(pParse, 3877 "conflicting ON CONFLICT clauses specified", 0); 3878 } 3879 if( pIdx->onError==OE_Default ){ 3880 pIdx->onError = pIndex->onError; 3881 } 3882 } 3883 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3884 if( IN_RENAME_OBJECT ){ 3885 pIndex->pNext = pParse->pNewIndex; 3886 pParse->pNewIndex = pIndex; 3887 pIndex = 0; 3888 } 3889 goto exit_create_index; 3890 } 3891 } 3892 } 3893 3894 if( !IN_RENAME_OBJECT ){ 3895 3896 /* Link the new Index structure to its table and to the other 3897 ** in-memory database structures. 3898 */ 3899 assert( pParse->nErr==0 ); 3900 if( db->init.busy ){ 3901 Index *p; 3902 assert( !IN_SPECIAL_PARSE ); 3903 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3904 if( pTblName!=0 ){ 3905 pIndex->tnum = db->init.newTnum; 3906 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 3907 sqlite3ErrorMsg(pParse, "invalid rootpage"); 3908 pParse->rc = SQLITE_CORRUPT_BKPT; 3909 goto exit_create_index; 3910 } 3911 } 3912 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3913 pIndex->zName, pIndex); 3914 if( p ){ 3915 assert( p==pIndex ); /* Malloc must have failed */ 3916 sqlite3OomFault(db); 3917 goto exit_create_index; 3918 } 3919 db->mDbFlags |= DBFLAG_SchemaChange; 3920 } 3921 3922 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3923 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3924 ** emit code to allocate the index rootpage on disk and make an entry for 3925 ** the index in the sqlite_master table and populate the index with 3926 ** content. But, do not do this if we are simply reading the sqlite_master 3927 ** table to parse the schema, or if this index is the PRIMARY KEY index 3928 ** of a WITHOUT ROWID table. 3929 ** 3930 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3931 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3932 ** has just been created, it contains no data and the index initialization 3933 ** step can be skipped. 3934 */ 3935 else if( HasRowid(pTab) || pTblName!=0 ){ 3936 Vdbe *v; 3937 char *zStmt; 3938 int iMem = ++pParse->nMem; 3939 3940 v = sqlite3GetVdbe(pParse); 3941 if( v==0 ) goto exit_create_index; 3942 3943 sqlite3BeginWriteOperation(pParse, 1, iDb); 3944 3945 /* Create the rootpage for the index using CreateIndex. But before 3946 ** doing so, code a Noop instruction and store its address in 3947 ** Index.tnum. This is required in case this index is actually a 3948 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3949 ** that case the convertToWithoutRowidTable() routine will replace 3950 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3951 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3952 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3953 3954 /* Gather the complete text of the CREATE INDEX statement into 3955 ** the zStmt variable 3956 */ 3957 assert( pName!=0 || pStart==0 ); 3958 if( pStart ){ 3959 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3960 if( pName->z[n-1]==';' ) n--; 3961 /* A named index with an explicit CREATE INDEX statement */ 3962 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3963 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3964 }else{ 3965 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3966 /* zStmt = sqlite3MPrintf(""); */ 3967 zStmt = 0; 3968 } 3969 3970 /* Add an entry in sqlite_master for this index 3971 */ 3972 sqlite3NestedParse(pParse, 3973 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3974 db->aDb[iDb].zDbSName, MASTER_NAME, 3975 pIndex->zName, 3976 pTab->zName, 3977 iMem, 3978 zStmt 3979 ); 3980 sqlite3DbFree(db, zStmt); 3981 3982 /* Fill the index with data and reparse the schema. Code an OP_Expire 3983 ** to invalidate all pre-compiled statements. 3984 */ 3985 if( pTblName ){ 3986 sqlite3RefillIndex(pParse, pIndex, iMem); 3987 sqlite3ChangeCookie(pParse, iDb); 3988 sqlite3VdbeAddParseSchemaOp(v, iDb, 3989 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3990 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 3991 } 3992 3993 sqlite3VdbeJumpHere(v, pIndex->tnum); 3994 } 3995 } 3996 if( db->init.busy || pTblName==0 ){ 3997 pIndex->pNext = pTab->pIndex; 3998 pTab->pIndex = pIndex; 3999 pIndex = 0; 4000 } 4001 else if( IN_RENAME_OBJECT ){ 4002 assert( pParse->pNewIndex==0 ); 4003 pParse->pNewIndex = pIndex; 4004 pIndex = 0; 4005 } 4006 4007 /* Clean up before exiting */ 4008 exit_create_index: 4009 if( pIndex ) sqlite3FreeIndex(db, pIndex); 4010 if( pTab ){ /* Ensure all REPLACE indexes are at the end of the list */ 4011 Index **ppFrom = &pTab->pIndex; 4012 Index *pThis; 4013 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 4014 Index *pNext; 4015 if( pThis->onError!=OE_Replace ) continue; 4016 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 4017 *ppFrom = pNext; 4018 pThis->pNext = pNext->pNext; 4019 pNext->pNext = pThis; 4020 ppFrom = &pNext->pNext; 4021 } 4022 break; 4023 } 4024 } 4025 sqlite3ExprDelete(db, pPIWhere); 4026 sqlite3ExprListDelete(db, pList); 4027 sqlite3SrcListDelete(db, pTblName); 4028 sqlite3DbFree(db, zName); 4029 } 4030 4031 /* 4032 ** Fill the Index.aiRowEst[] array with default information - information 4033 ** to be used when we have not run the ANALYZE command. 4034 ** 4035 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4036 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4037 ** number of rows in the table that match any particular value of the 4038 ** first column of the index. aiRowEst[2] is an estimate of the number 4039 ** of rows that match any particular combination of the first 2 columns 4040 ** of the index. And so forth. It must always be the case that 4041 * 4042 ** aiRowEst[N]<=aiRowEst[N-1] 4043 ** aiRowEst[N]>=1 4044 ** 4045 ** Apart from that, we have little to go on besides intuition as to 4046 ** how aiRowEst[] should be initialized. The numbers generated here 4047 ** are based on typical values found in actual indices. 4048 */ 4049 void sqlite3DefaultRowEst(Index *pIdx){ 4050 /* 10, 9, 8, 7, 6 */ 4051 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4052 LogEst *a = pIdx->aiRowLogEst; 4053 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4054 int i; 4055 4056 /* Indexes with default row estimates should not have stat1 data */ 4057 assert( !pIdx->hasStat1 ); 4058 4059 /* Set the first entry (number of rows in the index) to the estimated 4060 ** number of rows in the table, or half the number of rows in the table 4061 ** for a partial index. But do not let the estimate drop below 10. */ 4062 a[0] = pIdx->pTable->nRowLogEst; 4063 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 4064 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 4065 4066 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4067 ** 6 and each subsequent value (if any) is 5. */ 4068 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4069 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4070 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4071 } 4072 4073 assert( 0==sqlite3LogEst(1) ); 4074 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4075 } 4076 4077 /* 4078 ** This routine will drop an existing named index. This routine 4079 ** implements the DROP INDEX statement. 4080 */ 4081 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4082 Index *pIndex; 4083 Vdbe *v; 4084 sqlite3 *db = pParse->db; 4085 int iDb; 4086 4087 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4088 if( db->mallocFailed ){ 4089 goto exit_drop_index; 4090 } 4091 assert( pName->nSrc==1 ); 4092 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4093 goto exit_drop_index; 4094 } 4095 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4096 if( pIndex==0 ){ 4097 if( !ifExists ){ 4098 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 4099 }else{ 4100 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4101 } 4102 pParse->checkSchema = 1; 4103 goto exit_drop_index; 4104 } 4105 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4106 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4107 "or PRIMARY KEY constraint cannot be dropped", 0); 4108 goto exit_drop_index; 4109 } 4110 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4111 #ifndef SQLITE_OMIT_AUTHORIZATION 4112 { 4113 int code = SQLITE_DROP_INDEX; 4114 Table *pTab = pIndex->pTable; 4115 const char *zDb = db->aDb[iDb].zDbSName; 4116 const char *zTab = SCHEMA_TABLE(iDb); 4117 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4118 goto exit_drop_index; 4119 } 4120 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 4121 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4122 goto exit_drop_index; 4123 } 4124 } 4125 #endif 4126 4127 /* Generate code to remove the index and from the master table */ 4128 v = sqlite3GetVdbe(pParse); 4129 if( v ){ 4130 sqlite3BeginWriteOperation(pParse, 1, iDb); 4131 sqlite3NestedParse(pParse, 4132 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 4133 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 4134 ); 4135 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4136 sqlite3ChangeCookie(pParse, iDb); 4137 destroyRootPage(pParse, pIndex->tnum, iDb); 4138 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4139 } 4140 4141 exit_drop_index: 4142 sqlite3SrcListDelete(db, pName); 4143 } 4144 4145 /* 4146 ** pArray is a pointer to an array of objects. Each object in the 4147 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4148 ** to extend the array so that there is space for a new object at the end. 4149 ** 4150 ** When this function is called, *pnEntry contains the current size of 4151 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4152 ** in total). 4153 ** 4154 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4155 ** space allocated for the new object is zeroed, *pnEntry updated to 4156 ** reflect the new size of the array and a pointer to the new allocation 4157 ** returned. *pIdx is set to the index of the new array entry in this case. 4158 ** 4159 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4160 ** unchanged and a copy of pArray returned. 4161 */ 4162 void *sqlite3ArrayAllocate( 4163 sqlite3 *db, /* Connection to notify of malloc failures */ 4164 void *pArray, /* Array of objects. Might be reallocated */ 4165 int szEntry, /* Size of each object in the array */ 4166 int *pnEntry, /* Number of objects currently in use */ 4167 int *pIdx /* Write the index of a new slot here */ 4168 ){ 4169 char *z; 4170 sqlite3_int64 n = *pIdx = *pnEntry; 4171 if( (n & (n-1))==0 ){ 4172 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4173 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4174 if( pNew==0 ){ 4175 *pIdx = -1; 4176 return pArray; 4177 } 4178 pArray = pNew; 4179 } 4180 z = (char*)pArray; 4181 memset(&z[n * szEntry], 0, szEntry); 4182 ++*pnEntry; 4183 return pArray; 4184 } 4185 4186 /* 4187 ** Append a new element to the given IdList. Create a new IdList if 4188 ** need be. 4189 ** 4190 ** A new IdList is returned, or NULL if malloc() fails. 4191 */ 4192 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4193 sqlite3 *db = pParse->db; 4194 int i; 4195 if( pList==0 ){ 4196 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4197 if( pList==0 ) return 0; 4198 } 4199 pList->a = sqlite3ArrayAllocate( 4200 db, 4201 pList->a, 4202 sizeof(pList->a[0]), 4203 &pList->nId, 4204 &i 4205 ); 4206 if( i<0 ){ 4207 sqlite3IdListDelete(db, pList); 4208 return 0; 4209 } 4210 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4211 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4212 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4213 } 4214 return pList; 4215 } 4216 4217 /* 4218 ** Delete an IdList. 4219 */ 4220 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4221 int i; 4222 if( pList==0 ) return; 4223 for(i=0; i<pList->nId; i++){ 4224 sqlite3DbFree(db, pList->a[i].zName); 4225 } 4226 sqlite3DbFree(db, pList->a); 4227 sqlite3DbFreeNN(db, pList); 4228 } 4229 4230 /* 4231 ** Return the index in pList of the identifier named zId. Return -1 4232 ** if not found. 4233 */ 4234 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4235 int i; 4236 if( pList==0 ) return -1; 4237 for(i=0; i<pList->nId; i++){ 4238 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4239 } 4240 return -1; 4241 } 4242 4243 /* 4244 ** Maximum size of a SrcList object. 4245 ** The SrcList object is used to represent the FROM clause of a 4246 ** SELECT statement, and the query planner cannot deal with more 4247 ** than 64 tables in a join. So any value larger than 64 here 4248 ** is sufficient for most uses. Smaller values, like say 10, are 4249 ** appropriate for small and memory-limited applications. 4250 */ 4251 #ifndef SQLITE_MAX_SRCLIST 4252 # define SQLITE_MAX_SRCLIST 200 4253 #endif 4254 4255 /* 4256 ** Expand the space allocated for the given SrcList object by 4257 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4258 ** New slots are zeroed. 4259 ** 4260 ** For example, suppose a SrcList initially contains two entries: A,B. 4261 ** To append 3 new entries onto the end, do this: 4262 ** 4263 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4264 ** 4265 ** After the call above it would contain: A, B, nil, nil, nil. 4266 ** If the iStart argument had been 1 instead of 2, then the result 4267 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4268 ** the iStart value would be 0. The result then would 4269 ** be: nil, nil, nil, A, B. 4270 ** 4271 ** If a memory allocation fails or the SrcList becomes too large, leave 4272 ** the original SrcList unchanged, return NULL, and leave an error message 4273 ** in pParse. 4274 */ 4275 SrcList *sqlite3SrcListEnlarge( 4276 Parse *pParse, /* Parsing context into which errors are reported */ 4277 SrcList *pSrc, /* The SrcList to be enlarged */ 4278 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4279 int iStart /* Index in pSrc->a[] of first new slot */ 4280 ){ 4281 int i; 4282 4283 /* Sanity checking on calling parameters */ 4284 assert( iStart>=0 ); 4285 assert( nExtra>=1 ); 4286 assert( pSrc!=0 ); 4287 assert( iStart<=pSrc->nSrc ); 4288 4289 /* Allocate additional space if needed */ 4290 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4291 SrcList *pNew; 4292 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4293 sqlite3 *db = pParse->db; 4294 4295 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4296 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4297 SQLITE_MAX_SRCLIST); 4298 return 0; 4299 } 4300 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4301 pNew = sqlite3DbRealloc(db, pSrc, 4302 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4303 if( pNew==0 ){ 4304 assert( db->mallocFailed ); 4305 return 0; 4306 } 4307 pSrc = pNew; 4308 pSrc->nAlloc = nAlloc; 4309 } 4310 4311 /* Move existing slots that come after the newly inserted slots 4312 ** out of the way */ 4313 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4314 pSrc->a[i+nExtra] = pSrc->a[i]; 4315 } 4316 pSrc->nSrc += nExtra; 4317 4318 /* Zero the newly allocated slots */ 4319 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4320 for(i=iStart; i<iStart+nExtra; i++){ 4321 pSrc->a[i].iCursor = -1; 4322 } 4323 4324 /* Return a pointer to the enlarged SrcList */ 4325 return pSrc; 4326 } 4327 4328 4329 /* 4330 ** Append a new table name to the given SrcList. Create a new SrcList if 4331 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4332 ** 4333 ** A SrcList is returned, or NULL if there is an OOM error or if the 4334 ** SrcList grows to large. The returned 4335 ** SrcList might be the same as the SrcList that was input or it might be 4336 ** a new one. If an OOM error does occurs, then the prior value of pList 4337 ** that is input to this routine is automatically freed. 4338 ** 4339 ** If pDatabase is not null, it means that the table has an optional 4340 ** database name prefix. Like this: "database.table". The pDatabase 4341 ** points to the table name and the pTable points to the database name. 4342 ** The SrcList.a[].zName field is filled with the table name which might 4343 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4344 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4345 ** or with NULL if no database is specified. 4346 ** 4347 ** In other words, if call like this: 4348 ** 4349 ** sqlite3SrcListAppend(D,A,B,0); 4350 ** 4351 ** Then B is a table name and the database name is unspecified. If called 4352 ** like this: 4353 ** 4354 ** sqlite3SrcListAppend(D,A,B,C); 4355 ** 4356 ** Then C is the table name and B is the database name. If C is defined 4357 ** then so is B. In other words, we never have a case where: 4358 ** 4359 ** sqlite3SrcListAppend(D,A,0,C); 4360 ** 4361 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4362 ** before being added to the SrcList. 4363 */ 4364 SrcList *sqlite3SrcListAppend( 4365 Parse *pParse, /* Parsing context, in which errors are reported */ 4366 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4367 Token *pTable, /* Table to append */ 4368 Token *pDatabase /* Database of the table */ 4369 ){ 4370 struct SrcList_item *pItem; 4371 sqlite3 *db; 4372 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4373 assert( pParse!=0 ); 4374 assert( pParse->db!=0 ); 4375 db = pParse->db; 4376 if( pList==0 ){ 4377 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4378 if( pList==0 ) return 0; 4379 pList->nAlloc = 1; 4380 pList->nSrc = 1; 4381 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4382 pList->a[0].iCursor = -1; 4383 }else{ 4384 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4385 if( pNew==0 ){ 4386 sqlite3SrcListDelete(db, pList); 4387 return 0; 4388 }else{ 4389 pList = pNew; 4390 } 4391 } 4392 pItem = &pList->a[pList->nSrc-1]; 4393 if( pDatabase && pDatabase->z==0 ){ 4394 pDatabase = 0; 4395 } 4396 if( pDatabase ){ 4397 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4398 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4399 }else{ 4400 pItem->zName = sqlite3NameFromToken(db, pTable); 4401 pItem->zDatabase = 0; 4402 } 4403 return pList; 4404 } 4405 4406 /* 4407 ** Assign VdbeCursor index numbers to all tables in a SrcList 4408 */ 4409 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4410 int i; 4411 struct SrcList_item *pItem; 4412 assert(pList || pParse->db->mallocFailed ); 4413 if( pList ){ 4414 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4415 if( pItem->iCursor>=0 ) break; 4416 pItem->iCursor = pParse->nTab++; 4417 if( pItem->pSelect ){ 4418 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4419 } 4420 } 4421 } 4422 } 4423 4424 /* 4425 ** Delete an entire SrcList including all its substructure. 4426 */ 4427 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4428 int i; 4429 struct SrcList_item *pItem; 4430 if( pList==0 ) return; 4431 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4432 sqlite3DbFree(db, pItem->zDatabase); 4433 sqlite3DbFree(db, pItem->zName); 4434 sqlite3DbFree(db, pItem->zAlias); 4435 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4436 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4437 sqlite3DeleteTable(db, pItem->pTab); 4438 sqlite3SelectDelete(db, pItem->pSelect); 4439 sqlite3ExprDelete(db, pItem->pOn); 4440 sqlite3IdListDelete(db, pItem->pUsing); 4441 } 4442 sqlite3DbFreeNN(db, pList); 4443 } 4444 4445 /* 4446 ** This routine is called by the parser to add a new term to the 4447 ** end of a growing FROM clause. The "p" parameter is the part of 4448 ** the FROM clause that has already been constructed. "p" is NULL 4449 ** if this is the first term of the FROM clause. pTable and pDatabase 4450 ** are the name of the table and database named in the FROM clause term. 4451 ** pDatabase is NULL if the database name qualifier is missing - the 4452 ** usual case. If the term has an alias, then pAlias points to the 4453 ** alias token. If the term is a subquery, then pSubquery is the 4454 ** SELECT statement that the subquery encodes. The pTable and 4455 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4456 ** parameters are the content of the ON and USING clauses. 4457 ** 4458 ** Return a new SrcList which encodes is the FROM with the new 4459 ** term added. 4460 */ 4461 SrcList *sqlite3SrcListAppendFromTerm( 4462 Parse *pParse, /* Parsing context */ 4463 SrcList *p, /* The left part of the FROM clause already seen */ 4464 Token *pTable, /* Name of the table to add to the FROM clause */ 4465 Token *pDatabase, /* Name of the database containing pTable */ 4466 Token *pAlias, /* The right-hand side of the AS subexpression */ 4467 Select *pSubquery, /* A subquery used in place of a table name */ 4468 Expr *pOn, /* The ON clause of a join */ 4469 IdList *pUsing /* The USING clause of a join */ 4470 ){ 4471 struct SrcList_item *pItem; 4472 sqlite3 *db = pParse->db; 4473 if( !p && (pOn || pUsing) ){ 4474 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4475 (pOn ? "ON" : "USING") 4476 ); 4477 goto append_from_error; 4478 } 4479 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4480 if( p==0 ){ 4481 goto append_from_error; 4482 } 4483 assert( p->nSrc>0 ); 4484 pItem = &p->a[p->nSrc-1]; 4485 assert( (pTable==0)==(pDatabase==0) ); 4486 assert( pItem->zName==0 || pDatabase!=0 ); 4487 if( IN_RENAME_OBJECT && pItem->zName ){ 4488 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4489 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4490 } 4491 assert( pAlias!=0 ); 4492 if( pAlias->n ){ 4493 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4494 } 4495 pItem->pSelect = pSubquery; 4496 pItem->pOn = pOn; 4497 pItem->pUsing = pUsing; 4498 return p; 4499 4500 append_from_error: 4501 assert( p==0 ); 4502 sqlite3ExprDelete(db, pOn); 4503 sqlite3IdListDelete(db, pUsing); 4504 sqlite3SelectDelete(db, pSubquery); 4505 return 0; 4506 } 4507 4508 /* 4509 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4510 ** element of the source-list passed as the second argument. 4511 */ 4512 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4513 assert( pIndexedBy!=0 ); 4514 if( p && pIndexedBy->n>0 ){ 4515 struct SrcList_item *pItem; 4516 assert( p->nSrc>0 ); 4517 pItem = &p->a[p->nSrc-1]; 4518 assert( pItem->fg.notIndexed==0 ); 4519 assert( pItem->fg.isIndexedBy==0 ); 4520 assert( pItem->fg.isTabFunc==0 ); 4521 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4522 /* A "NOT INDEXED" clause was supplied. See parse.y 4523 ** construct "indexed_opt" for details. */ 4524 pItem->fg.notIndexed = 1; 4525 }else{ 4526 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4527 pItem->fg.isIndexedBy = 1; 4528 } 4529 } 4530 } 4531 4532 /* 4533 ** Add the list of function arguments to the SrcList entry for a 4534 ** table-valued-function. 4535 */ 4536 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4537 if( p ){ 4538 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 4539 assert( pItem->fg.notIndexed==0 ); 4540 assert( pItem->fg.isIndexedBy==0 ); 4541 assert( pItem->fg.isTabFunc==0 ); 4542 pItem->u1.pFuncArg = pList; 4543 pItem->fg.isTabFunc = 1; 4544 }else{ 4545 sqlite3ExprListDelete(pParse->db, pList); 4546 } 4547 } 4548 4549 /* 4550 ** When building up a FROM clause in the parser, the join operator 4551 ** is initially attached to the left operand. But the code generator 4552 ** expects the join operator to be on the right operand. This routine 4553 ** Shifts all join operators from left to right for an entire FROM 4554 ** clause. 4555 ** 4556 ** Example: Suppose the join is like this: 4557 ** 4558 ** A natural cross join B 4559 ** 4560 ** The operator is "natural cross join". The A and B operands are stored 4561 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4562 ** operator with A. This routine shifts that operator over to B. 4563 */ 4564 void sqlite3SrcListShiftJoinType(SrcList *p){ 4565 if( p ){ 4566 int i; 4567 for(i=p->nSrc-1; i>0; i--){ 4568 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4569 } 4570 p->a[0].fg.jointype = 0; 4571 } 4572 } 4573 4574 /* 4575 ** Generate VDBE code for a BEGIN statement. 4576 */ 4577 void sqlite3BeginTransaction(Parse *pParse, int type){ 4578 sqlite3 *db; 4579 Vdbe *v; 4580 int i; 4581 4582 assert( pParse!=0 ); 4583 db = pParse->db; 4584 assert( db!=0 ); 4585 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4586 return; 4587 } 4588 v = sqlite3GetVdbe(pParse); 4589 if( !v ) return; 4590 if( type!=TK_DEFERRED ){ 4591 for(i=0; i<db->nDb; i++){ 4592 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 4593 sqlite3VdbeUsesBtree(v, i); 4594 } 4595 } 4596 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4597 } 4598 4599 /* 4600 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4601 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4602 ** code is generated for a COMMIT. 4603 */ 4604 void sqlite3EndTransaction(Parse *pParse, int eType){ 4605 Vdbe *v; 4606 int isRollback; 4607 4608 assert( pParse!=0 ); 4609 assert( pParse->db!=0 ); 4610 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4611 isRollback = eType==TK_ROLLBACK; 4612 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4613 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4614 return; 4615 } 4616 v = sqlite3GetVdbe(pParse); 4617 if( v ){ 4618 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4619 } 4620 } 4621 4622 /* 4623 ** This function is called by the parser when it parses a command to create, 4624 ** release or rollback an SQL savepoint. 4625 */ 4626 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4627 char *zName = sqlite3NameFromToken(pParse->db, pName); 4628 if( zName ){ 4629 Vdbe *v = sqlite3GetVdbe(pParse); 4630 #ifndef SQLITE_OMIT_AUTHORIZATION 4631 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4632 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4633 #endif 4634 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4635 sqlite3DbFree(pParse->db, zName); 4636 return; 4637 } 4638 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4639 } 4640 } 4641 4642 /* 4643 ** Make sure the TEMP database is open and available for use. Return 4644 ** the number of errors. Leave any error messages in the pParse structure. 4645 */ 4646 int sqlite3OpenTempDatabase(Parse *pParse){ 4647 sqlite3 *db = pParse->db; 4648 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4649 int rc; 4650 Btree *pBt; 4651 static const int flags = 4652 SQLITE_OPEN_READWRITE | 4653 SQLITE_OPEN_CREATE | 4654 SQLITE_OPEN_EXCLUSIVE | 4655 SQLITE_OPEN_DELETEONCLOSE | 4656 SQLITE_OPEN_TEMP_DB; 4657 4658 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4659 if( rc!=SQLITE_OK ){ 4660 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4661 "file for storing temporary tables"); 4662 pParse->rc = rc; 4663 return 1; 4664 } 4665 db->aDb[1].pBt = pBt; 4666 assert( db->aDb[1].pSchema ); 4667 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ 4668 sqlite3OomFault(db); 4669 return 1; 4670 } 4671 } 4672 return 0; 4673 } 4674 4675 /* 4676 ** Record the fact that the schema cookie will need to be verified 4677 ** for database iDb. The code to actually verify the schema cookie 4678 ** will occur at the end of the top-level VDBE and will be generated 4679 ** later, by sqlite3FinishCoding(). 4680 */ 4681 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4682 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4683 4684 assert( iDb>=0 && iDb<pParse->db->nDb ); 4685 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4686 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4687 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4688 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4689 DbMaskSet(pToplevel->cookieMask, iDb); 4690 if( !OMIT_TEMPDB && iDb==1 ){ 4691 sqlite3OpenTempDatabase(pToplevel); 4692 } 4693 } 4694 } 4695 4696 /* 4697 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4698 ** attached database. Otherwise, invoke it for the database named zDb only. 4699 */ 4700 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4701 sqlite3 *db = pParse->db; 4702 int i; 4703 for(i=0; i<db->nDb; i++){ 4704 Db *pDb = &db->aDb[i]; 4705 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4706 sqlite3CodeVerifySchema(pParse, i); 4707 } 4708 } 4709 } 4710 4711 /* 4712 ** Generate VDBE code that prepares for doing an operation that 4713 ** might change the database. 4714 ** 4715 ** This routine starts a new transaction if we are not already within 4716 ** a transaction. If we are already within a transaction, then a checkpoint 4717 ** is set if the setStatement parameter is true. A checkpoint should 4718 ** be set for operations that might fail (due to a constraint) part of 4719 ** the way through and which will need to undo some writes without having to 4720 ** rollback the whole transaction. For operations where all constraints 4721 ** can be checked before any changes are made to the database, it is never 4722 ** necessary to undo a write and the checkpoint should not be set. 4723 */ 4724 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4725 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4726 sqlite3CodeVerifySchema(pParse, iDb); 4727 DbMaskSet(pToplevel->writeMask, iDb); 4728 pToplevel->isMultiWrite |= setStatement; 4729 } 4730 4731 /* 4732 ** Indicate that the statement currently under construction might write 4733 ** more than one entry (example: deleting one row then inserting another, 4734 ** inserting multiple rows in a table, or inserting a row and index entries.) 4735 ** If an abort occurs after some of these writes have completed, then it will 4736 ** be necessary to undo the completed writes. 4737 */ 4738 void sqlite3MultiWrite(Parse *pParse){ 4739 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4740 pToplevel->isMultiWrite = 1; 4741 } 4742 4743 /* 4744 ** The code generator calls this routine if is discovers that it is 4745 ** possible to abort a statement prior to completion. In order to 4746 ** perform this abort without corrupting the database, we need to make 4747 ** sure that the statement is protected by a statement transaction. 4748 ** 4749 ** Technically, we only need to set the mayAbort flag if the 4750 ** isMultiWrite flag was previously set. There is a time dependency 4751 ** such that the abort must occur after the multiwrite. This makes 4752 ** some statements involving the REPLACE conflict resolution algorithm 4753 ** go a little faster. But taking advantage of this time dependency 4754 ** makes it more difficult to prove that the code is correct (in 4755 ** particular, it prevents us from writing an effective 4756 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4757 ** to take the safe route and skip the optimization. 4758 */ 4759 void sqlite3MayAbort(Parse *pParse){ 4760 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4761 pToplevel->mayAbort = 1; 4762 } 4763 4764 /* 4765 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4766 ** error. The onError parameter determines which (if any) of the statement 4767 ** and/or current transaction is rolled back. 4768 */ 4769 void sqlite3HaltConstraint( 4770 Parse *pParse, /* Parsing context */ 4771 int errCode, /* extended error code */ 4772 int onError, /* Constraint type */ 4773 char *p4, /* Error message */ 4774 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4775 u8 p5Errmsg /* P5_ErrMsg type */ 4776 ){ 4777 Vdbe *v = sqlite3GetVdbe(pParse); 4778 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); 4779 if( onError==OE_Abort ){ 4780 sqlite3MayAbort(pParse); 4781 } 4782 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4783 sqlite3VdbeChangeP5(v, p5Errmsg); 4784 } 4785 4786 /* 4787 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4788 */ 4789 void sqlite3UniqueConstraint( 4790 Parse *pParse, /* Parsing context */ 4791 int onError, /* Constraint type */ 4792 Index *pIdx /* The index that triggers the constraint */ 4793 ){ 4794 char *zErr; 4795 int j; 4796 StrAccum errMsg; 4797 Table *pTab = pIdx->pTable; 4798 4799 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 4800 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 4801 if( pIdx->aColExpr ){ 4802 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4803 }else{ 4804 for(j=0; j<pIdx->nKeyCol; j++){ 4805 char *zCol; 4806 assert( pIdx->aiColumn[j]>=0 ); 4807 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4808 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4809 sqlite3_str_appendall(&errMsg, pTab->zName); 4810 sqlite3_str_append(&errMsg, ".", 1); 4811 sqlite3_str_appendall(&errMsg, zCol); 4812 } 4813 } 4814 zErr = sqlite3StrAccumFinish(&errMsg); 4815 sqlite3HaltConstraint(pParse, 4816 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4817 : SQLITE_CONSTRAINT_UNIQUE, 4818 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4819 } 4820 4821 4822 /* 4823 ** Code an OP_Halt due to non-unique rowid. 4824 */ 4825 void sqlite3RowidConstraint( 4826 Parse *pParse, /* Parsing context */ 4827 int onError, /* Conflict resolution algorithm */ 4828 Table *pTab /* The table with the non-unique rowid */ 4829 ){ 4830 char *zMsg; 4831 int rc; 4832 if( pTab->iPKey>=0 ){ 4833 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4834 pTab->aCol[pTab->iPKey].zName); 4835 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4836 }else{ 4837 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4838 rc = SQLITE_CONSTRAINT_ROWID; 4839 } 4840 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4841 P5_ConstraintUnique); 4842 } 4843 4844 /* 4845 ** Check to see if pIndex uses the collating sequence pColl. Return 4846 ** true if it does and false if it does not. 4847 */ 4848 #ifndef SQLITE_OMIT_REINDEX 4849 static int collationMatch(const char *zColl, Index *pIndex){ 4850 int i; 4851 assert( zColl!=0 ); 4852 for(i=0; i<pIndex->nColumn; i++){ 4853 const char *z = pIndex->azColl[i]; 4854 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4855 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4856 return 1; 4857 } 4858 } 4859 return 0; 4860 } 4861 #endif 4862 4863 /* 4864 ** Recompute all indices of pTab that use the collating sequence pColl. 4865 ** If pColl==0 then recompute all indices of pTab. 4866 */ 4867 #ifndef SQLITE_OMIT_REINDEX 4868 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4869 if( !IsVirtual(pTab) ){ 4870 Index *pIndex; /* An index associated with pTab */ 4871 4872 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4873 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4874 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4875 sqlite3BeginWriteOperation(pParse, 0, iDb); 4876 sqlite3RefillIndex(pParse, pIndex, -1); 4877 } 4878 } 4879 } 4880 } 4881 #endif 4882 4883 /* 4884 ** Recompute all indices of all tables in all databases where the 4885 ** indices use the collating sequence pColl. If pColl==0 then recompute 4886 ** all indices everywhere. 4887 */ 4888 #ifndef SQLITE_OMIT_REINDEX 4889 static void reindexDatabases(Parse *pParse, char const *zColl){ 4890 Db *pDb; /* A single database */ 4891 int iDb; /* The database index number */ 4892 sqlite3 *db = pParse->db; /* The database connection */ 4893 HashElem *k; /* For looping over tables in pDb */ 4894 Table *pTab; /* A table in the database */ 4895 4896 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4897 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4898 assert( pDb!=0 ); 4899 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4900 pTab = (Table*)sqliteHashData(k); 4901 reindexTable(pParse, pTab, zColl); 4902 } 4903 } 4904 } 4905 #endif 4906 4907 /* 4908 ** Generate code for the REINDEX command. 4909 ** 4910 ** REINDEX -- 1 4911 ** REINDEX <collation> -- 2 4912 ** REINDEX ?<database>.?<tablename> -- 3 4913 ** REINDEX ?<database>.?<indexname> -- 4 4914 ** 4915 ** Form 1 causes all indices in all attached databases to be rebuilt. 4916 ** Form 2 rebuilds all indices in all databases that use the named 4917 ** collating function. Forms 3 and 4 rebuild the named index or all 4918 ** indices associated with the named table. 4919 */ 4920 #ifndef SQLITE_OMIT_REINDEX 4921 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4922 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4923 char *z; /* Name of a table or index */ 4924 const char *zDb; /* Name of the database */ 4925 Table *pTab; /* A table in the database */ 4926 Index *pIndex; /* An index associated with pTab */ 4927 int iDb; /* The database index number */ 4928 sqlite3 *db = pParse->db; /* The database connection */ 4929 Token *pObjName; /* Name of the table or index to be reindexed */ 4930 4931 /* Read the database schema. If an error occurs, leave an error message 4932 ** and code in pParse and return NULL. */ 4933 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4934 return; 4935 } 4936 4937 if( pName1==0 ){ 4938 reindexDatabases(pParse, 0); 4939 return; 4940 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4941 char *zColl; 4942 assert( pName1->z ); 4943 zColl = sqlite3NameFromToken(pParse->db, pName1); 4944 if( !zColl ) return; 4945 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4946 if( pColl ){ 4947 reindexDatabases(pParse, zColl); 4948 sqlite3DbFree(db, zColl); 4949 return; 4950 } 4951 sqlite3DbFree(db, zColl); 4952 } 4953 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4954 if( iDb<0 ) return; 4955 z = sqlite3NameFromToken(db, pObjName); 4956 if( z==0 ) return; 4957 zDb = db->aDb[iDb].zDbSName; 4958 pTab = sqlite3FindTable(db, z, zDb); 4959 if( pTab ){ 4960 reindexTable(pParse, pTab, 0); 4961 sqlite3DbFree(db, z); 4962 return; 4963 } 4964 pIndex = sqlite3FindIndex(db, z, zDb); 4965 sqlite3DbFree(db, z); 4966 if( pIndex ){ 4967 sqlite3BeginWriteOperation(pParse, 0, iDb); 4968 sqlite3RefillIndex(pParse, pIndex, -1); 4969 return; 4970 } 4971 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4972 } 4973 #endif 4974 4975 /* 4976 ** Return a KeyInfo structure that is appropriate for the given Index. 4977 ** 4978 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4979 ** when it has finished using it. 4980 */ 4981 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4982 int i; 4983 int nCol = pIdx->nColumn; 4984 int nKey = pIdx->nKeyCol; 4985 KeyInfo *pKey; 4986 if( pParse->nErr ) return 0; 4987 if( pIdx->uniqNotNull ){ 4988 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4989 }else{ 4990 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4991 } 4992 if( pKey ){ 4993 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4994 for(i=0; i<nCol; i++){ 4995 const char *zColl = pIdx->azColl[i]; 4996 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4997 sqlite3LocateCollSeq(pParse, zColl); 4998 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 4999 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 5000 } 5001 if( pParse->nErr ){ 5002 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 5003 if( pIdx->bNoQuery==0 ){ 5004 /* Deactivate the index because it contains an unknown collating 5005 ** sequence. The only way to reactive the index is to reload the 5006 ** schema. Adding the missing collating sequence later does not 5007 ** reactive the index. The application had the chance to register 5008 ** the missing index using the collation-needed callback. For 5009 ** simplicity, SQLite will not give the application a second chance. 5010 */ 5011 pIdx->bNoQuery = 1; 5012 pParse->rc = SQLITE_ERROR_RETRY; 5013 } 5014 sqlite3KeyInfoUnref(pKey); 5015 pKey = 0; 5016 } 5017 } 5018 return pKey; 5019 } 5020 5021 #ifndef SQLITE_OMIT_CTE 5022 /* 5023 ** This routine is invoked once per CTE by the parser while parsing a 5024 ** WITH clause. 5025 */ 5026 With *sqlite3WithAdd( 5027 Parse *pParse, /* Parsing context */ 5028 With *pWith, /* Existing WITH clause, or NULL */ 5029 Token *pName, /* Name of the common-table */ 5030 ExprList *pArglist, /* Optional column name list for the table */ 5031 Select *pQuery /* Query used to initialize the table */ 5032 ){ 5033 sqlite3 *db = pParse->db; 5034 With *pNew; 5035 char *zName; 5036 5037 /* Check that the CTE name is unique within this WITH clause. If 5038 ** not, store an error in the Parse structure. */ 5039 zName = sqlite3NameFromToken(pParse->db, pName); 5040 if( zName && pWith ){ 5041 int i; 5042 for(i=0; i<pWith->nCte; i++){ 5043 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5044 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5045 } 5046 } 5047 } 5048 5049 if( pWith ){ 5050 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5051 pNew = sqlite3DbRealloc(db, pWith, nByte); 5052 }else{ 5053 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5054 } 5055 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5056 5057 if( db->mallocFailed ){ 5058 sqlite3ExprListDelete(db, pArglist); 5059 sqlite3SelectDelete(db, pQuery); 5060 sqlite3DbFree(db, zName); 5061 pNew = pWith; 5062 }else{ 5063 pNew->a[pNew->nCte].pSelect = pQuery; 5064 pNew->a[pNew->nCte].pCols = pArglist; 5065 pNew->a[pNew->nCte].zName = zName; 5066 pNew->a[pNew->nCte].zCteErr = 0; 5067 pNew->nCte++; 5068 } 5069 5070 return pNew; 5071 } 5072 5073 /* 5074 ** Free the contents of the With object passed as the second argument. 5075 */ 5076 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5077 if( pWith ){ 5078 int i; 5079 for(i=0; i<pWith->nCte; i++){ 5080 struct Cte *pCte = &pWith->a[i]; 5081 sqlite3ExprListDelete(db, pCte->pCols); 5082 sqlite3SelectDelete(db, pCte->pSelect); 5083 sqlite3DbFree(db, pCte->zName); 5084 } 5085 sqlite3DbFree(db, pWith); 5086 } 5087 } 5088 #endif /* !defined(SQLITE_OMIT_CTE) */ 5089