xref: /sqlite-3.40.0/src/build.c (revision 119fc11e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   int iTab;              /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 void sqlite3TableLock(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   int iTab,          /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel = sqlite3ParseToplevel(pParse);
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   if( iDb==1 ) return;
63   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64   for(i=0; i<pToplevel->nTableLock; i++){
65     p = &pToplevel->aTableLock[i];
66     if( p->iDb==iDb && p->iTab==iTab ){
67       p->isWriteLock = (p->isWriteLock || isWriteLock);
68       return;
69     }
70   }
71 
72   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73   pToplevel->aTableLock =
74       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75   if( pToplevel->aTableLock ){
76     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77     p->iDb = iDb;
78     p->iTab = iTab;
79     p->isWriteLock = isWriteLock;
80     p->zLockName = zName;
81   }else{
82     pToplevel->nTableLock = 0;
83     sqlite3OomFault(pToplevel->db);
84   }
85 }
86 
87 /*
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
90 */
91 static void codeTableLocks(Parse *pParse){
92   int i;
93   Vdbe *pVdbe;
94 
95   pVdbe = sqlite3GetVdbe(pParse);
96   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
97 
98   for(i=0; i<pParse->nTableLock; i++){
99     TableLock *p = &pParse->aTableLock[i];
100     int p1 = p->iDb;
101     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102                       p->zLockName, P4_STATIC);
103   }
104 }
105 #else
106   #define codeTableLocks(x)
107 #endif
108 
109 /*
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
113 */
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116   int i;
117   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118   return 1;
119 }
120 #endif
121 
122 /*
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared.  This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
128 **
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
131 */
132 void sqlite3FinishCoding(Parse *pParse){
133   sqlite3 *db;
134   Vdbe *v;
135 
136   assert( pParse->pToplevel==0 );
137   db = pParse->db;
138   if( pParse->nested ) return;
139   if( db->mallocFailed || pParse->nErr ){
140     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141     return;
142   }
143 
144   /* Begin by generating some termination code at the end of the
145   ** vdbe program
146   */
147   v = sqlite3GetVdbe(pParse);
148   assert( !pParse->isMultiWrite
149        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150   if( v ){
151     sqlite3VdbeAddOp0(v, OP_Halt);
152 
153 #if SQLITE_USER_AUTHENTICATION
154     if( pParse->nTableLock>0 && db->init.busy==0 ){
155       sqlite3UserAuthInit(db);
156       if( db->auth.authLevel<UAUTH_User ){
157         sqlite3ErrorMsg(pParse, "user not authenticated");
158         pParse->rc = SQLITE_AUTH_USER;
159         return;
160       }
161     }
162 #endif
163 
164     /* The cookie mask contains one bit for each database file open.
165     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
166     ** set for each database that is used.  Generate code to start a
167     ** transaction on each used database and to verify the schema cookie
168     ** on each used database.
169     */
170     if( db->mallocFailed==0
171      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
172     ){
173       int iDb, i;
174       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175       sqlite3VdbeJumpHere(v, 0);
176       for(iDb=0; iDb<db->nDb; iDb++){
177         Schema *pSchema;
178         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179         sqlite3VdbeUsesBtree(v, iDb);
180         pSchema = db->aDb[iDb].pSchema;
181         sqlite3VdbeAddOp4Int(v,
182           OP_Transaction,                    /* Opcode */
183           iDb,                               /* P1 */
184           DbMaskTest(pParse->writeMask,iDb), /* P2 */
185           pSchema->schema_cookie,            /* P3 */
186           pSchema->iGeneration               /* P4 */
187         );
188         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189         VdbeComment((v,
190               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
191       }
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193       for(i=0; i<pParse->nVtabLock; i++){
194         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
196       }
197       pParse->nVtabLock = 0;
198 #endif
199 
200       /* Once all the cookies have been verified and transactions opened,
201       ** obtain the required table-locks. This is a no-op unless the
202       ** shared-cache feature is enabled.
203       */
204       codeTableLocks(pParse);
205 
206       /* Initialize any AUTOINCREMENT data structures required.
207       */
208       sqlite3AutoincrementBegin(pParse);
209 
210       /* Code constant expressions that where factored out of inner loops */
211       if( pParse->pConstExpr ){
212         ExprList *pEL = pParse->pConstExpr;
213         pParse->okConstFactor = 0;
214         for(i=0; i<pEL->nExpr; i++){
215           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
216         }
217       }
218 
219       /* Finally, jump back to the beginning of the executable code. */
220       sqlite3VdbeGoto(v, 1);
221     }
222   }
223 
224 
225   /* Get the VDBE program ready for execution
226   */
227   if( v && pParse->nErr==0 && !db->mallocFailed ){
228     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
229     /* A minimum of one cursor is required if autoincrement is used
230     *  See ticket [a696379c1f08866] */
231     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232     sqlite3VdbeMakeReady(v, pParse);
233     pParse->rc = SQLITE_DONE;
234   }else{
235     pParse->rc = SQLITE_ERROR;
236   }
237 }
238 
239 /*
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction.  When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
246 **
247 ** Not everything is nestable.  This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
249 ** care if you decide to try to use this routine for some other purposes.
250 */
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252   va_list ap;
253   char *zSql;
254   char *zErrMsg = 0;
255   sqlite3 *db = pParse->db;
256   char saveBuf[PARSE_TAIL_SZ];
257 
258   if( pParse->nErr ) return;
259   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
260   va_start(ap, zFormat);
261   zSql = sqlite3VMPrintf(db, zFormat, ap);
262   va_end(ap);
263   if( zSql==0 ){
264     return;   /* A malloc must have failed */
265   }
266   pParse->nested++;
267   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269   sqlite3RunParser(pParse, zSql, &zErrMsg);
270   sqlite3DbFree(db, zErrMsg);
271   sqlite3DbFree(db, zSql);
272   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273   pParse->nested--;
274 }
275 
276 #if SQLITE_USER_AUTHENTICATION
277 /*
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
280 */
281 int sqlite3UserAuthTable(const char *zTable){
282   return sqlite3_stricmp(zTable, "sqlite_user")==0;
283 }
284 #endif
285 
286 /*
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table.  Return NULL if not found.
290 **
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned.  (No checking for duplicate table
293 ** names is done.)  The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
295 **
296 ** See also sqlite3LocateTable().
297 */
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299   Table *p = 0;
300   int i;
301 
302   /* All mutexes are required for schema access.  Make sure we hold them. */
303   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305   /* Only the admin user is allowed to know that the sqlite_user table
306   ** exists */
307   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308     return 0;
309   }
310 #endif
311   while(1){
312     for(i=OMIT_TEMPDB; i<db->nDb; i++){
313       int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
314       if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315         assert( sqlite3SchemaMutexHeld(db, j, 0) );
316         p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317         if( p ) return p;
318       }
319     }
320     /* Not found.  If the name we were looking for was temp.sqlite_master
321     ** then change the name to sqlite_temp_master and try again. */
322     if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323     if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324     zName = TEMP_MASTER_NAME;
325   }
326   return 0;
327 }
328 
329 /*
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table.  Return NULL if not found.  Also leave an
333 ** error message in pParse->zErrMsg.
334 **
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
338 */
339 Table *sqlite3LocateTable(
340   Parse *pParse,         /* context in which to report errors */
341   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
342   const char *zName,     /* Name of the table we are looking for */
343   const char *zDbase     /* Name of the database.  Might be NULL */
344 ){
345   Table *p;
346 
347   /* Read the database schema. If an error occurs, leave an error message
348   ** and code in pParse and return NULL. */
349   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350     return 0;
351   }
352 
353   p = sqlite3FindTable(pParse->db, zName, zDbase);
354   if( p==0 ){
355     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358       /* If zName is the not the name of a table in the schema created using
359       ** CREATE, then check to see if it is the name of an virtual table that
360       ** can be an eponymous virtual table. */
361       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362       if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363         pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
364       }
365       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
366         return pMod->pEpoTab;
367       }
368     }
369 #endif
370     if( (flags & LOCATE_NOERR)==0 ){
371       if( zDbase ){
372         sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373       }else{
374         sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
375       }
376       pParse->checkSchema = 1;
377     }
378   }
379 
380   return p;
381 }
382 
383 /*
384 ** Locate the table identified by *p.
385 **
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
391 */
392 Table *sqlite3LocateTableItem(
393   Parse *pParse,
394   u32 flags,
395   struct SrcList_item *p
396 ){
397   const char *zDb;
398   assert( p->pSchema==0 || p->zDatabase==0 );
399   if( p->pSchema ){
400     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401     zDb = pParse->db->aDb[iDb].zDbSName;
402   }else{
403     zDb = p->zDatabase;
404   }
405   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
406 }
407 
408 /*
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
413 **
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned.  (No checking
416 ** for duplicate index names is done.)  The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
419 */
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421   Index *p = 0;
422   int i;
423   /* All mutexes are required for schema access.  Make sure we hold them. */
424   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425   for(i=OMIT_TEMPDB; i<db->nDb; i++){
426     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
427     Schema *pSchema = db->aDb[j].pSchema;
428     assert( pSchema );
429     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430     assert( sqlite3SchemaMutexHeld(db, j, 0) );
431     p = sqlite3HashFind(&pSchema->idxHash, zName);
432     if( p ) break;
433   }
434   return p;
435 }
436 
437 /*
438 ** Reclaim the memory used by an index
439 */
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442   sqlite3DeleteIndexSamples(db, p);
443 #endif
444   sqlite3ExprDelete(db, p->pPartIdxWhere);
445   sqlite3ExprListDelete(db, p->aColExpr);
446   sqlite3DbFree(db, p->zColAff);
447   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449   sqlite3_free(p->aiRowEst);
450 #endif
451   sqlite3DbFree(db, p);
452 }
453 
454 /*
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
459 */
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461   Index *pIndex;
462   Hash *pHash;
463 
464   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465   pHash = &db->aDb[iDb].pSchema->idxHash;
466   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467   if( ALWAYS(pIndex) ){
468     if( pIndex->pTable->pIndex==pIndex ){
469       pIndex->pTable->pIndex = pIndex->pNext;
470     }else{
471       Index *p;
472       /* Justification of ALWAYS();  The index must be on the list of
473       ** indices. */
474       p = pIndex->pTable->pIndex;
475       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476       if( ALWAYS(p && p->pNext==pIndex) ){
477         p->pNext = pIndex->pNext;
478       }
479     }
480     freeIndex(db, pIndex);
481   }
482   db->flags |= SQLITE_InternChanges;
483 }
484 
485 /*
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list.  Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
489 **
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
492 */
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494   int i, j;
495   for(i=j=2; i<db->nDb; i++){
496     struct Db *pDb = &db->aDb[i];
497     if( pDb->pBt==0 ){
498       sqlite3DbFree(db, pDb->zDbSName);
499       pDb->zDbSName = 0;
500       continue;
501     }
502     if( j<i ){
503       db->aDb[j] = db->aDb[i];
504     }
505     j++;
506   }
507   db->nDb = j;
508   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510     sqlite3DbFree(db, db->aDb);
511     db->aDb = db->aDbStatic;
512   }
513 }
514 
515 /*
516 ** Reset the schema for the database at index iDb.  Also reset the
517 ** TEMP schema.
518 */
519 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
520   Db *pDb;
521   assert( iDb<db->nDb );
522 
523   /* Case 1:  Reset the single schema identified by iDb */
524   pDb = &db->aDb[iDb];
525   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526   assert( pDb->pSchema!=0 );
527   sqlite3SchemaClear(pDb->pSchema);
528 
529   /* If any database other than TEMP is reset, then also reset TEMP
530   ** since TEMP might be holding triggers that reference tables in the
531   ** other database.
532   */
533   if( iDb!=1 ){
534     pDb = &db->aDb[1];
535     assert( pDb->pSchema!=0 );
536     sqlite3SchemaClear(pDb->pSchema);
537   }
538   return;
539 }
540 
541 /*
542 ** Erase all schema information from all attached databases (including
543 ** "main" and "temp") for a single database connection.
544 */
545 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
546   int i;
547   sqlite3BtreeEnterAll(db);
548   for(i=0; i<db->nDb; i++){
549     Db *pDb = &db->aDb[i];
550     if( pDb->pSchema ){
551       sqlite3SchemaClear(pDb->pSchema);
552     }
553   }
554   db->flags &= ~SQLITE_InternChanges;
555   sqlite3VtabUnlockList(db);
556   sqlite3BtreeLeaveAll(db);
557   sqlite3CollapseDatabaseArray(db);
558 }
559 
560 /*
561 ** This routine is called when a commit occurs.
562 */
563 void sqlite3CommitInternalChanges(sqlite3 *db){
564   db->flags &= ~SQLITE_InternChanges;
565 }
566 
567 /*
568 ** Delete memory allocated for the column names of a table or view (the
569 ** Table.aCol[] array).
570 */
571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
572   int i;
573   Column *pCol;
574   assert( pTable!=0 );
575   if( (pCol = pTable->aCol)!=0 ){
576     for(i=0; i<pTable->nCol; i++, pCol++){
577       sqlite3DbFree(db, pCol->zName);
578       sqlite3ExprDelete(db, pCol->pDflt);
579       sqlite3DbFree(db, pCol->zColl);
580     }
581     sqlite3DbFree(db, pTable->aCol);
582   }
583 }
584 
585 /*
586 ** Remove the memory data structures associated with the given
587 ** Table.  No changes are made to disk by this routine.
588 **
589 ** This routine just deletes the data structure.  It does not unlink
590 ** the table data structure from the hash table.  But it does destroy
591 ** memory structures of the indices and foreign keys associated with
592 ** the table.
593 **
594 ** The db parameter is optional.  It is needed if the Table object
595 ** contains lookaside memory.  (Table objects in the schema do not use
596 ** lookaside memory, but some ephemeral Table objects do.)  Or the
597 ** db parameter can be used with db->pnBytesFreed to measure the memory
598 ** used by the Table object.
599 */
600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
601   Index *pIndex, *pNext;
602   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
603 
604   /* Record the number of outstanding lookaside allocations in schema Tables
605   ** prior to doing any free() operations.  Since schema Tables do not use
606   ** lookaside, this number should not change. */
607   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
608                          db->lookaside.nOut : 0 );
609 
610   /* Delete all indices associated with this table. */
611   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
612     pNext = pIndex->pNext;
613     assert( pIndex->pSchema==pTable->pSchema
614          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
615     if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
616       char *zName = pIndex->zName;
617       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
618          &pIndex->pSchema->idxHash, zName, 0
619       );
620       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
621       assert( pOld==pIndex || pOld==0 );
622     }
623     freeIndex(db, pIndex);
624   }
625 
626   /* Delete any foreign keys attached to this table. */
627   sqlite3FkDelete(db, pTable);
628 
629   /* Delete the Table structure itself.
630   */
631   sqlite3DeleteColumnNames(db, pTable);
632   sqlite3DbFree(db, pTable->zName);
633   sqlite3DbFree(db, pTable->zColAff);
634   sqlite3SelectDelete(db, pTable->pSelect);
635   sqlite3ExprListDelete(db, pTable->pCheck);
636 #ifndef SQLITE_OMIT_VIRTUALTABLE
637   sqlite3VtabClear(db, pTable);
638 #endif
639   sqlite3DbFree(db, pTable);
640 
641   /* Verify that no lookaside memory was used by schema tables */
642   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
643 }
644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
645   /* Do not delete the table until the reference count reaches zero. */
646   if( !pTable ) return;
647   if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
648   deleteTable(db, pTable);
649 }
650 
651 
652 /*
653 ** Unlink the given table from the hash tables and the delete the
654 ** table structure with all its indices and foreign keys.
655 */
656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
657   Table *p;
658   Db *pDb;
659 
660   assert( db!=0 );
661   assert( iDb>=0 && iDb<db->nDb );
662   assert( zTabName );
663   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
664   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
665   pDb = &db->aDb[iDb];
666   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
667   sqlite3DeleteTable(db, p);
668   db->flags |= SQLITE_InternChanges;
669 }
670 
671 /*
672 ** Given a token, return a string that consists of the text of that
673 ** token.  Space to hold the returned string
674 ** is obtained from sqliteMalloc() and must be freed by the calling
675 ** function.
676 **
677 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
678 ** surround the body of the token are removed.
679 **
680 ** Tokens are often just pointers into the original SQL text and so
681 ** are not \000 terminated and are not persistent.  The returned string
682 ** is \000 terminated and is persistent.
683 */
684 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
685   char *zName;
686   if( pName ){
687     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
688     sqlite3Dequote(zName);
689   }else{
690     zName = 0;
691   }
692   return zName;
693 }
694 
695 /*
696 ** Open the sqlite_master table stored in database number iDb for
697 ** writing. The table is opened using cursor 0.
698 */
699 void sqlite3OpenMasterTable(Parse *p, int iDb){
700   Vdbe *v = sqlite3GetVdbe(p);
701   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
702   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
703   if( p->nTab==0 ){
704     p->nTab = 1;
705   }
706 }
707 
708 /*
709 ** Parameter zName points to a nul-terminated buffer containing the name
710 ** of a database ("main", "temp" or the name of an attached db). This
711 ** function returns the index of the named database in db->aDb[], or
712 ** -1 if the named db cannot be found.
713 */
714 int sqlite3FindDbName(sqlite3 *db, const char *zName){
715   int i = -1;         /* Database number */
716   if( zName ){
717     Db *pDb;
718     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
719       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
720       /* "main" is always an acceptable alias for the primary database
721       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
722       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
723     }
724   }
725   return i;
726 }
727 
728 /*
729 ** The token *pName contains the name of a database (either "main" or
730 ** "temp" or the name of an attached db). This routine returns the
731 ** index of the named database in db->aDb[], or -1 if the named db
732 ** does not exist.
733 */
734 int sqlite3FindDb(sqlite3 *db, Token *pName){
735   int i;                               /* Database number */
736   char *zName;                         /* Name we are searching for */
737   zName = sqlite3NameFromToken(db, pName);
738   i = sqlite3FindDbName(db, zName);
739   sqlite3DbFree(db, zName);
740   return i;
741 }
742 
743 /* The table or view or trigger name is passed to this routine via tokens
744 ** pName1 and pName2. If the table name was fully qualified, for example:
745 **
746 ** CREATE TABLE xxx.yyy (...);
747 **
748 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
749 ** the table name is not fully qualified, i.e.:
750 **
751 ** CREATE TABLE yyy(...);
752 **
753 ** Then pName1 is set to "yyy" and pName2 is "".
754 **
755 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
756 ** pName2) that stores the unqualified table name.  The index of the
757 ** database "xxx" is returned.
758 */
759 int sqlite3TwoPartName(
760   Parse *pParse,      /* Parsing and code generating context */
761   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
762   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
763   Token **pUnqual     /* Write the unqualified object name here */
764 ){
765   int iDb;                    /* Database holding the object */
766   sqlite3 *db = pParse->db;
767 
768   assert( pName2!=0 );
769   if( pName2->n>0 ){
770     if( db->init.busy ) {
771       sqlite3ErrorMsg(pParse, "corrupt database");
772       return -1;
773     }
774     *pUnqual = pName2;
775     iDb = sqlite3FindDb(db, pName1);
776     if( iDb<0 ){
777       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
778       return -1;
779     }
780   }else{
781     assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0);
782     iDb = db->init.iDb;
783     *pUnqual = pName1;
784   }
785   return iDb;
786 }
787 
788 /*
789 ** This routine is used to check if the UTF-8 string zName is a legal
790 ** unqualified name for a new schema object (table, index, view or
791 ** trigger). All names are legal except those that begin with the string
792 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
793 ** is reserved for internal use.
794 */
795 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
796   if( !pParse->db->init.busy && pParse->nested==0
797           && (pParse->db->flags & SQLITE_WriteSchema)==0
798           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
799     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
800     return SQLITE_ERROR;
801   }
802   return SQLITE_OK;
803 }
804 
805 /*
806 ** Return the PRIMARY KEY index of a table
807 */
808 Index *sqlite3PrimaryKeyIndex(Table *pTab){
809   Index *p;
810   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
811   return p;
812 }
813 
814 /*
815 ** Return the column of index pIdx that corresponds to table
816 ** column iCol.  Return -1 if not found.
817 */
818 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
819   int i;
820   for(i=0; i<pIdx->nColumn; i++){
821     if( iCol==pIdx->aiColumn[i] ) return i;
822   }
823   return -1;
824 }
825 
826 /*
827 ** Begin constructing a new table representation in memory.  This is
828 ** the first of several action routines that get called in response
829 ** to a CREATE TABLE statement.  In particular, this routine is called
830 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
831 ** flag is true if the table should be stored in the auxiliary database
832 ** file instead of in the main database file.  This is normally the case
833 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
834 ** CREATE and TABLE.
835 **
836 ** The new table record is initialized and put in pParse->pNewTable.
837 ** As more of the CREATE TABLE statement is parsed, additional action
838 ** routines will be called to add more information to this record.
839 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
840 ** is called to complete the construction of the new table record.
841 */
842 void sqlite3StartTable(
843   Parse *pParse,   /* Parser context */
844   Token *pName1,   /* First part of the name of the table or view */
845   Token *pName2,   /* Second part of the name of the table or view */
846   int isTemp,      /* True if this is a TEMP table */
847   int isView,      /* True if this is a VIEW */
848   int isVirtual,   /* True if this is a VIRTUAL table */
849   int noErr        /* Do nothing if table already exists */
850 ){
851   Table *pTable;
852   char *zName = 0; /* The name of the new table */
853   sqlite3 *db = pParse->db;
854   Vdbe *v;
855   int iDb;         /* Database number to create the table in */
856   Token *pName;    /* Unqualified name of the table to create */
857 
858   if( db->init.busy && db->init.newTnum==1 ){
859     /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */
860     iDb = db->init.iDb;
861     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
862     pName = pName1;
863   }else{
864     /* The common case */
865     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
866     if( iDb<0 ) return;
867     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
868       /* If creating a temp table, the name may not be qualified. Unless
869       ** the database name is "temp" anyway.  */
870       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
871       return;
872     }
873     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
874     zName = sqlite3NameFromToken(db, pName);
875   }
876   pParse->sNameToken = *pName;
877   if( zName==0 ) return;
878   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
879     goto begin_table_error;
880   }
881   if( db->init.iDb==1 ) isTemp = 1;
882 #ifndef SQLITE_OMIT_AUTHORIZATION
883   assert( isTemp==0 || isTemp==1 );
884   assert( isView==0 || isView==1 );
885   {
886     static const u8 aCode[] = {
887        SQLITE_CREATE_TABLE,
888        SQLITE_CREATE_TEMP_TABLE,
889        SQLITE_CREATE_VIEW,
890        SQLITE_CREATE_TEMP_VIEW
891     };
892     char *zDb = db->aDb[iDb].zDbSName;
893     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
894       goto begin_table_error;
895     }
896     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
897                                        zName, 0, zDb) ){
898       goto begin_table_error;
899     }
900   }
901 #endif
902 
903   /* Make sure the new table name does not collide with an existing
904   ** index or table name in the same database.  Issue an error message if
905   ** it does. The exception is if the statement being parsed was passed
906   ** to an sqlite3_declare_vtab() call. In that case only the column names
907   ** and types will be used, so there is no need to test for namespace
908   ** collisions.
909   */
910   if( !IN_DECLARE_VTAB ){
911     char *zDb = db->aDb[iDb].zDbSName;
912     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
913       goto begin_table_error;
914     }
915     pTable = sqlite3FindTable(db, zName, zDb);
916     if( pTable ){
917       if( !noErr ){
918         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
919       }else{
920         assert( !db->init.busy || CORRUPT_DB );
921         sqlite3CodeVerifySchema(pParse, iDb);
922       }
923       goto begin_table_error;
924     }
925     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
926       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
927       goto begin_table_error;
928     }
929   }
930 
931   pTable = sqlite3DbMallocZero(db, sizeof(Table));
932   if( pTable==0 ){
933     assert( db->mallocFailed );
934     pParse->rc = SQLITE_NOMEM_BKPT;
935     pParse->nErr++;
936     goto begin_table_error;
937   }
938   pTable->zName = zName;
939   pTable->iPKey = -1;
940   pTable->pSchema = db->aDb[iDb].pSchema;
941   pTable->nTabRef = 1;
942   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
943   assert( pParse->pNewTable==0 );
944   pParse->pNewTable = pTable;
945 
946   /* If this is the magic sqlite_sequence table used by autoincrement,
947   ** then record a pointer to this table in the main database structure
948   ** so that INSERT can find the table easily.
949   */
950 #ifndef SQLITE_OMIT_AUTOINCREMENT
951   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
952     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
953     pTable->pSchema->pSeqTab = pTable;
954   }
955 #endif
956 
957   /* Begin generating the code that will insert the table record into
958   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
959   ** and allocate the record number for the table entry now.  Before any
960   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
961   ** indices to be created and the table record must come before the
962   ** indices.  Hence, the record number for the table must be allocated
963   ** now.
964   */
965   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
966     int addr1;
967     int fileFormat;
968     int reg1, reg2, reg3;
969     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
970     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
971     sqlite3BeginWriteOperation(pParse, 1, iDb);
972 
973 #ifndef SQLITE_OMIT_VIRTUALTABLE
974     if( isVirtual ){
975       sqlite3VdbeAddOp0(v, OP_VBegin);
976     }
977 #endif
978 
979     /* If the file format and encoding in the database have not been set,
980     ** set them now.
981     */
982     reg1 = pParse->regRowid = ++pParse->nMem;
983     reg2 = pParse->regRoot = ++pParse->nMem;
984     reg3 = ++pParse->nMem;
985     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
986     sqlite3VdbeUsesBtree(v, iDb);
987     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
988     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
989                   1 : SQLITE_MAX_FILE_FORMAT;
990     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
991     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
992     sqlite3VdbeJumpHere(v, addr1);
993 
994     /* This just creates a place-holder record in the sqlite_master table.
995     ** The record created does not contain anything yet.  It will be replaced
996     ** by the real entry in code generated at sqlite3EndTable().
997     **
998     ** The rowid for the new entry is left in register pParse->regRowid.
999     ** The root page number of the new table is left in reg pParse->regRoot.
1000     ** The rowid and root page number values are needed by the code that
1001     ** sqlite3EndTable will generate.
1002     */
1003 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1004     if( isView || isVirtual ){
1005       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1006     }else
1007 #endif
1008     {
1009       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1010     }
1011     sqlite3OpenMasterTable(pParse, iDb);
1012     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1013     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1014     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1015     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1016     sqlite3VdbeAddOp0(v, OP_Close);
1017   }
1018 
1019   /* Normal (non-error) return. */
1020   return;
1021 
1022   /* If an error occurs, we jump here */
1023 begin_table_error:
1024   sqlite3DbFree(db, zName);
1025   return;
1026 }
1027 
1028 /* Set properties of a table column based on the (magical)
1029 ** name of the column.
1030 */
1031 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1032 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1033   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1034     pCol->colFlags |= COLFLAG_HIDDEN;
1035   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1036     pTab->tabFlags |= TF_OOOHidden;
1037   }
1038 }
1039 #endif
1040 
1041 
1042 /*
1043 ** Add a new column to the table currently being constructed.
1044 **
1045 ** The parser calls this routine once for each column declaration
1046 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1047 ** first to get things going.  Then this routine is called for each
1048 ** column.
1049 */
1050 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1051   Table *p;
1052   int i;
1053   char *z;
1054   char *zType;
1055   Column *pCol;
1056   sqlite3 *db = pParse->db;
1057   if( (p = pParse->pNewTable)==0 ) return;
1058 #if SQLITE_MAX_COLUMN
1059   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1060     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1061     return;
1062   }
1063 #endif
1064   z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1065   if( z==0 ) return;
1066   memcpy(z, pName->z, pName->n);
1067   z[pName->n] = 0;
1068   sqlite3Dequote(z);
1069   for(i=0; i<p->nCol; i++){
1070     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1071       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1072       sqlite3DbFree(db, z);
1073       return;
1074     }
1075   }
1076   if( (p->nCol & 0x7)==0 ){
1077     Column *aNew;
1078     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1079     if( aNew==0 ){
1080       sqlite3DbFree(db, z);
1081       return;
1082     }
1083     p->aCol = aNew;
1084   }
1085   pCol = &p->aCol[p->nCol];
1086   memset(pCol, 0, sizeof(p->aCol[0]));
1087   pCol->zName = z;
1088   sqlite3ColumnPropertiesFromName(p, pCol);
1089 
1090   if( pType->n==0 ){
1091     /* If there is no type specified, columns have the default affinity
1092     ** 'BLOB'. */
1093     pCol->affinity = SQLITE_AFF_BLOB;
1094     pCol->szEst = 1;
1095   }else{
1096     zType = z + sqlite3Strlen30(z) + 1;
1097     memcpy(zType, pType->z, pType->n);
1098     zType[pType->n] = 0;
1099     sqlite3Dequote(zType);
1100     pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1101     pCol->colFlags |= COLFLAG_HASTYPE;
1102   }
1103   p->nCol++;
1104   pParse->constraintName.n = 0;
1105 }
1106 
1107 /*
1108 ** This routine is called by the parser while in the middle of
1109 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1110 ** been seen on a column.  This routine sets the notNull flag on
1111 ** the column currently under construction.
1112 */
1113 void sqlite3AddNotNull(Parse *pParse, int onError){
1114   Table *p;
1115   p = pParse->pNewTable;
1116   if( p==0 || NEVER(p->nCol<1) ) return;
1117   p->aCol[p->nCol-1].notNull = (u8)onError;
1118   p->tabFlags |= TF_HasNotNull;
1119 }
1120 
1121 /*
1122 ** Scan the column type name zType (length nType) and return the
1123 ** associated affinity type.
1124 **
1125 ** This routine does a case-independent search of zType for the
1126 ** substrings in the following table. If one of the substrings is
1127 ** found, the corresponding affinity is returned. If zType contains
1128 ** more than one of the substrings, entries toward the top of
1129 ** the table take priority. For example, if zType is 'BLOBINT',
1130 ** SQLITE_AFF_INTEGER is returned.
1131 **
1132 ** Substring     | Affinity
1133 ** --------------------------------
1134 ** 'INT'         | SQLITE_AFF_INTEGER
1135 ** 'CHAR'        | SQLITE_AFF_TEXT
1136 ** 'CLOB'        | SQLITE_AFF_TEXT
1137 ** 'TEXT'        | SQLITE_AFF_TEXT
1138 ** 'BLOB'        | SQLITE_AFF_BLOB
1139 ** 'REAL'        | SQLITE_AFF_REAL
1140 ** 'FLOA'        | SQLITE_AFF_REAL
1141 ** 'DOUB'        | SQLITE_AFF_REAL
1142 **
1143 ** If none of the substrings in the above table are found,
1144 ** SQLITE_AFF_NUMERIC is returned.
1145 */
1146 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1147   u32 h = 0;
1148   char aff = SQLITE_AFF_NUMERIC;
1149   const char *zChar = 0;
1150 
1151   assert( zIn!=0 );
1152   while( zIn[0] ){
1153     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1154     zIn++;
1155     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1156       aff = SQLITE_AFF_TEXT;
1157       zChar = zIn;
1158     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1159       aff = SQLITE_AFF_TEXT;
1160     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1161       aff = SQLITE_AFF_TEXT;
1162     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1163         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1164       aff = SQLITE_AFF_BLOB;
1165       if( zIn[0]=='(' ) zChar = zIn;
1166 #ifndef SQLITE_OMIT_FLOATING_POINT
1167     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1168         && aff==SQLITE_AFF_NUMERIC ){
1169       aff = SQLITE_AFF_REAL;
1170     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1171         && aff==SQLITE_AFF_NUMERIC ){
1172       aff = SQLITE_AFF_REAL;
1173     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1174         && aff==SQLITE_AFF_NUMERIC ){
1175       aff = SQLITE_AFF_REAL;
1176 #endif
1177     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1178       aff = SQLITE_AFF_INTEGER;
1179       break;
1180     }
1181   }
1182 
1183   /* If pszEst is not NULL, store an estimate of the field size.  The
1184   ** estimate is scaled so that the size of an integer is 1.  */
1185   if( pszEst ){
1186     *pszEst = 1;   /* default size is approx 4 bytes */
1187     if( aff<SQLITE_AFF_NUMERIC ){
1188       if( zChar ){
1189         while( zChar[0] ){
1190           if( sqlite3Isdigit(zChar[0]) ){
1191             int v = 0;
1192             sqlite3GetInt32(zChar, &v);
1193             v = v/4 + 1;
1194             if( v>255 ) v = 255;
1195             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1196             break;
1197           }
1198           zChar++;
1199         }
1200       }else{
1201         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1202       }
1203     }
1204   }
1205   return aff;
1206 }
1207 
1208 /*
1209 ** The expression is the default value for the most recently added column
1210 ** of the table currently under construction.
1211 **
1212 ** Default value expressions must be constant.  Raise an exception if this
1213 ** is not the case.
1214 **
1215 ** This routine is called by the parser while in the middle of
1216 ** parsing a CREATE TABLE statement.
1217 */
1218 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1219   Table *p;
1220   Column *pCol;
1221   sqlite3 *db = pParse->db;
1222   p = pParse->pNewTable;
1223   if( p!=0 ){
1224     pCol = &(p->aCol[p->nCol-1]);
1225     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1226       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1227           pCol->zName);
1228     }else{
1229       /* A copy of pExpr is used instead of the original, as pExpr contains
1230       ** tokens that point to volatile memory. The 'span' of the expression
1231       ** is required by pragma table_info.
1232       */
1233       Expr x;
1234       sqlite3ExprDelete(db, pCol->pDflt);
1235       memset(&x, 0, sizeof(x));
1236       x.op = TK_SPAN;
1237       x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1238                                     (int)(pSpan->zEnd - pSpan->zStart));
1239       x.pLeft = pSpan->pExpr;
1240       x.flags = EP_Skip;
1241       pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1242       sqlite3DbFree(db, x.u.zToken);
1243     }
1244   }
1245   sqlite3ExprDelete(db, pSpan->pExpr);
1246 }
1247 
1248 /*
1249 ** Backwards Compatibility Hack:
1250 **
1251 ** Historical versions of SQLite accepted strings as column names in
1252 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1253 **
1254 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1255 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1256 **
1257 ** This is goofy.  But to preserve backwards compatibility we continue to
1258 ** accept it.  This routine does the necessary conversion.  It converts
1259 ** the expression given in its argument from a TK_STRING into a TK_ID
1260 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1261 ** If the epxression is anything other than TK_STRING, the expression is
1262 ** unchanged.
1263 */
1264 static void sqlite3StringToId(Expr *p){
1265   if( p->op==TK_STRING ){
1266     p->op = TK_ID;
1267   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1268     p->pLeft->op = TK_ID;
1269   }
1270 }
1271 
1272 /*
1273 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1274 ** of columns that form the primary key.  If pList is NULL, then the
1275 ** most recently added column of the table is the primary key.
1276 **
1277 ** A table can have at most one primary key.  If the table already has
1278 ** a primary key (and this is the second primary key) then create an
1279 ** error.
1280 **
1281 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1282 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1283 ** field of the table under construction to be the index of the
1284 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1285 ** no INTEGER PRIMARY KEY.
1286 **
1287 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1288 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1289 */
1290 void sqlite3AddPrimaryKey(
1291   Parse *pParse,    /* Parsing context */
1292   ExprList *pList,  /* List of field names to be indexed */
1293   int onError,      /* What to do with a uniqueness conflict */
1294   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1295   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1296 ){
1297   Table *pTab = pParse->pNewTable;
1298   Column *pCol = 0;
1299   int iCol = -1, i;
1300   int nTerm;
1301   if( pTab==0 ) goto primary_key_exit;
1302   if( pTab->tabFlags & TF_HasPrimaryKey ){
1303     sqlite3ErrorMsg(pParse,
1304       "table \"%s\" has more than one primary key", pTab->zName);
1305     goto primary_key_exit;
1306   }
1307   pTab->tabFlags |= TF_HasPrimaryKey;
1308   if( pList==0 ){
1309     iCol = pTab->nCol - 1;
1310     pCol = &pTab->aCol[iCol];
1311     pCol->colFlags |= COLFLAG_PRIMKEY;
1312     nTerm = 1;
1313   }else{
1314     nTerm = pList->nExpr;
1315     for(i=0; i<nTerm; i++){
1316       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1317       assert( pCExpr!=0 );
1318       sqlite3StringToId(pCExpr);
1319       if( pCExpr->op==TK_ID ){
1320         const char *zCName = pCExpr->u.zToken;
1321         for(iCol=0; iCol<pTab->nCol; iCol++){
1322           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1323             pCol = &pTab->aCol[iCol];
1324             pCol->colFlags |= COLFLAG_PRIMKEY;
1325             break;
1326           }
1327         }
1328       }
1329     }
1330   }
1331   if( nTerm==1
1332    && pCol
1333    && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1334    && sortOrder!=SQLITE_SO_DESC
1335   ){
1336     pTab->iPKey = iCol;
1337     pTab->keyConf = (u8)onError;
1338     assert( autoInc==0 || autoInc==1 );
1339     pTab->tabFlags |= autoInc*TF_Autoincrement;
1340     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1341   }else if( autoInc ){
1342 #ifndef SQLITE_OMIT_AUTOINCREMENT
1343     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1344        "INTEGER PRIMARY KEY");
1345 #endif
1346   }else{
1347     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1348                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1349     pList = 0;
1350   }
1351 
1352 primary_key_exit:
1353   sqlite3ExprListDelete(pParse->db, pList);
1354   return;
1355 }
1356 
1357 /*
1358 ** Add a new CHECK constraint to the table currently under construction.
1359 */
1360 void sqlite3AddCheckConstraint(
1361   Parse *pParse,    /* Parsing context */
1362   Expr *pCheckExpr  /* The check expression */
1363 ){
1364 #ifndef SQLITE_OMIT_CHECK
1365   Table *pTab = pParse->pNewTable;
1366   sqlite3 *db = pParse->db;
1367   if( pTab && !IN_DECLARE_VTAB
1368    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1369   ){
1370     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1371     if( pParse->constraintName.n ){
1372       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1373     }
1374   }else
1375 #endif
1376   {
1377     sqlite3ExprDelete(pParse->db, pCheckExpr);
1378   }
1379 }
1380 
1381 /*
1382 ** Set the collation function of the most recently parsed table column
1383 ** to the CollSeq given.
1384 */
1385 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1386   Table *p;
1387   int i;
1388   char *zColl;              /* Dequoted name of collation sequence */
1389   sqlite3 *db;
1390 
1391   if( (p = pParse->pNewTable)==0 ) return;
1392   i = p->nCol-1;
1393   db = pParse->db;
1394   zColl = sqlite3NameFromToken(db, pToken);
1395   if( !zColl ) return;
1396 
1397   if( sqlite3LocateCollSeq(pParse, zColl) ){
1398     Index *pIdx;
1399     sqlite3DbFree(db, p->aCol[i].zColl);
1400     p->aCol[i].zColl = zColl;
1401 
1402     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1403     ** then an index may have been created on this column before the
1404     ** collation type was added. Correct this if it is the case.
1405     */
1406     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1407       assert( pIdx->nKeyCol==1 );
1408       if( pIdx->aiColumn[0]==i ){
1409         pIdx->azColl[0] = p->aCol[i].zColl;
1410       }
1411     }
1412   }else{
1413     sqlite3DbFree(db, zColl);
1414   }
1415 }
1416 
1417 /*
1418 ** This function returns the collation sequence for database native text
1419 ** encoding identified by the string zName, length nName.
1420 **
1421 ** If the requested collation sequence is not available, or not available
1422 ** in the database native encoding, the collation factory is invoked to
1423 ** request it. If the collation factory does not supply such a sequence,
1424 ** and the sequence is available in another text encoding, then that is
1425 ** returned instead.
1426 **
1427 ** If no versions of the requested collations sequence are available, or
1428 ** another error occurs, NULL is returned and an error message written into
1429 ** pParse.
1430 **
1431 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1432 ** invokes the collation factory if the named collation cannot be found
1433 ** and generates an error message.
1434 **
1435 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1436 */
1437 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1438   sqlite3 *db = pParse->db;
1439   u8 enc = ENC(db);
1440   u8 initbusy = db->init.busy;
1441   CollSeq *pColl;
1442 
1443   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1444   if( !initbusy && (!pColl || !pColl->xCmp) ){
1445     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1446   }
1447 
1448   return pColl;
1449 }
1450 
1451 
1452 /*
1453 ** Generate code that will increment the schema cookie.
1454 **
1455 ** The schema cookie is used to determine when the schema for the
1456 ** database changes.  After each schema change, the cookie value
1457 ** changes.  When a process first reads the schema it records the
1458 ** cookie.  Thereafter, whenever it goes to access the database,
1459 ** it checks the cookie to make sure the schema has not changed
1460 ** since it was last read.
1461 **
1462 ** This plan is not completely bullet-proof.  It is possible for
1463 ** the schema to change multiple times and for the cookie to be
1464 ** set back to prior value.  But schema changes are infrequent
1465 ** and the probability of hitting the same cookie value is only
1466 ** 1 chance in 2^32.  So we're safe enough.
1467 **
1468 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1469 ** the schema-version whenever the schema changes.
1470 */
1471 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1472   sqlite3 *db = pParse->db;
1473   Vdbe *v = pParse->pVdbe;
1474   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1475   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1476                     db->aDb[iDb].pSchema->schema_cookie+1);
1477 }
1478 
1479 /*
1480 ** Measure the number of characters needed to output the given
1481 ** identifier.  The number returned includes any quotes used
1482 ** but does not include the null terminator.
1483 **
1484 ** The estimate is conservative.  It might be larger that what is
1485 ** really needed.
1486 */
1487 static int identLength(const char *z){
1488   int n;
1489   for(n=0; *z; n++, z++){
1490     if( *z=='"' ){ n++; }
1491   }
1492   return n + 2;
1493 }
1494 
1495 /*
1496 ** The first parameter is a pointer to an output buffer. The second
1497 ** parameter is a pointer to an integer that contains the offset at
1498 ** which to write into the output buffer. This function copies the
1499 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1500 ** to the specified offset in the buffer and updates *pIdx to refer
1501 ** to the first byte after the last byte written before returning.
1502 **
1503 ** If the string zSignedIdent consists entirely of alpha-numeric
1504 ** characters, does not begin with a digit and is not an SQL keyword,
1505 ** then it is copied to the output buffer exactly as it is. Otherwise,
1506 ** it is quoted using double-quotes.
1507 */
1508 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1509   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1510   int i, j, needQuote;
1511   i = *pIdx;
1512 
1513   for(j=0; zIdent[j]; j++){
1514     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1515   }
1516   needQuote = sqlite3Isdigit(zIdent[0])
1517             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1518             || zIdent[j]!=0
1519             || j==0;
1520 
1521   if( needQuote ) z[i++] = '"';
1522   for(j=0; zIdent[j]; j++){
1523     z[i++] = zIdent[j];
1524     if( zIdent[j]=='"' ) z[i++] = '"';
1525   }
1526   if( needQuote ) z[i++] = '"';
1527   z[i] = 0;
1528   *pIdx = i;
1529 }
1530 
1531 /*
1532 ** Generate a CREATE TABLE statement appropriate for the given
1533 ** table.  Memory to hold the text of the statement is obtained
1534 ** from sqliteMalloc() and must be freed by the calling function.
1535 */
1536 static char *createTableStmt(sqlite3 *db, Table *p){
1537   int i, k, n;
1538   char *zStmt;
1539   char *zSep, *zSep2, *zEnd;
1540   Column *pCol;
1541   n = 0;
1542   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1543     n += identLength(pCol->zName) + 5;
1544   }
1545   n += identLength(p->zName);
1546   if( n<50 ){
1547     zSep = "";
1548     zSep2 = ",";
1549     zEnd = ")";
1550   }else{
1551     zSep = "\n  ";
1552     zSep2 = ",\n  ";
1553     zEnd = "\n)";
1554   }
1555   n += 35 + 6*p->nCol;
1556   zStmt = sqlite3DbMallocRaw(0, n);
1557   if( zStmt==0 ){
1558     sqlite3OomFault(db);
1559     return 0;
1560   }
1561   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1562   k = sqlite3Strlen30(zStmt);
1563   identPut(zStmt, &k, p->zName);
1564   zStmt[k++] = '(';
1565   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1566     static const char * const azType[] = {
1567         /* SQLITE_AFF_BLOB    */ "",
1568         /* SQLITE_AFF_TEXT    */ " TEXT",
1569         /* SQLITE_AFF_NUMERIC */ " NUM",
1570         /* SQLITE_AFF_INTEGER */ " INT",
1571         /* SQLITE_AFF_REAL    */ " REAL"
1572     };
1573     int len;
1574     const char *zType;
1575 
1576     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1577     k += sqlite3Strlen30(&zStmt[k]);
1578     zSep = zSep2;
1579     identPut(zStmt, &k, pCol->zName);
1580     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1581     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1582     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1583     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1584     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1585     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1586     testcase( pCol->affinity==SQLITE_AFF_REAL );
1587 
1588     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1589     len = sqlite3Strlen30(zType);
1590     assert( pCol->affinity==SQLITE_AFF_BLOB
1591             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1592     memcpy(&zStmt[k], zType, len);
1593     k += len;
1594     assert( k<=n );
1595   }
1596   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1597   return zStmt;
1598 }
1599 
1600 /*
1601 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1602 ** on success and SQLITE_NOMEM on an OOM error.
1603 */
1604 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1605   char *zExtra;
1606   int nByte;
1607   if( pIdx->nColumn>=N ) return SQLITE_OK;
1608   assert( pIdx->isResized==0 );
1609   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1610   zExtra = sqlite3DbMallocZero(db, nByte);
1611   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1612   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1613   pIdx->azColl = (const char**)zExtra;
1614   zExtra += sizeof(char*)*N;
1615   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1616   pIdx->aiColumn = (i16*)zExtra;
1617   zExtra += sizeof(i16)*N;
1618   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1619   pIdx->aSortOrder = (u8*)zExtra;
1620   pIdx->nColumn = N;
1621   pIdx->isResized = 1;
1622   return SQLITE_OK;
1623 }
1624 
1625 /*
1626 ** Estimate the total row width for a table.
1627 */
1628 static void estimateTableWidth(Table *pTab){
1629   unsigned wTable = 0;
1630   const Column *pTabCol;
1631   int i;
1632   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1633     wTable += pTabCol->szEst;
1634   }
1635   if( pTab->iPKey<0 ) wTable++;
1636   pTab->szTabRow = sqlite3LogEst(wTable*4);
1637 }
1638 
1639 /*
1640 ** Estimate the average size of a row for an index.
1641 */
1642 static void estimateIndexWidth(Index *pIdx){
1643   unsigned wIndex = 0;
1644   int i;
1645   const Column *aCol = pIdx->pTable->aCol;
1646   for(i=0; i<pIdx->nColumn; i++){
1647     i16 x = pIdx->aiColumn[i];
1648     assert( x<pIdx->pTable->nCol );
1649     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1650   }
1651   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1652 }
1653 
1654 /* Return true if value x is found any of the first nCol entries of aiCol[]
1655 */
1656 static int hasColumn(const i16 *aiCol, int nCol, int x){
1657   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1658   return 0;
1659 }
1660 
1661 /*
1662 ** This routine runs at the end of parsing a CREATE TABLE statement that
1663 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1664 ** internal schema data structures and the generated VDBE code so that they
1665 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1666 ** Changes include:
1667 **
1668 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1669 **     (2)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1670 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1671 **          data storage is a covering index btree.
1672 **     (3)  Bypass the creation of the sqlite_master table entry
1673 **          for the PRIMARY KEY as the primary key index is now
1674 **          identified by the sqlite_master table entry of the table itself.
1675 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
1676 **          schema to the rootpage from the main table.
1677 **     (5)  Add all table columns to the PRIMARY KEY Index object
1678 **          so that the PRIMARY KEY is a covering index.  The surplus
1679 **          columns are part of KeyInfo.nXField and are not used for
1680 **          sorting or lookup or uniqueness checks.
1681 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1682 **          indices with the PRIMARY KEY columns.
1683 **
1684 ** For virtual tables, only (1) is performed.
1685 */
1686 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1687   Index *pIdx;
1688   Index *pPk;
1689   int nPk;
1690   int i, j;
1691   sqlite3 *db = pParse->db;
1692   Vdbe *v = pParse->pVdbe;
1693 
1694   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1695   */
1696   if( !db->init.imposterTable ){
1697     for(i=0; i<pTab->nCol; i++){
1698       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1699         pTab->aCol[i].notNull = OE_Abort;
1700       }
1701     }
1702   }
1703 
1704   /* The remaining transformations only apply to b-tree tables, not to
1705   ** virtual tables */
1706   if( IN_DECLARE_VTAB ) return;
1707 
1708   /* Convert the OP_CreateTable opcode that would normally create the
1709   ** root-page for the table into an OP_CreateIndex opcode.  The index
1710   ** created will become the PRIMARY KEY index.
1711   */
1712   if( pParse->addrCrTab ){
1713     assert( v );
1714     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1715   }
1716 
1717   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1718   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1719   */
1720   if( pTab->iPKey>=0 ){
1721     ExprList *pList;
1722     Token ipkToken;
1723     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1724     pList = sqlite3ExprListAppend(pParse, 0,
1725                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1726     if( pList==0 ) return;
1727     pList->a[0].sortOrder = pParse->iPkSortOrder;
1728     assert( pParse->pNewTable==pTab );
1729     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1730                        SQLITE_IDXTYPE_PRIMARYKEY);
1731     if( db->mallocFailed ) return;
1732     pPk = sqlite3PrimaryKeyIndex(pTab);
1733     pTab->iPKey = -1;
1734   }else{
1735     pPk = sqlite3PrimaryKeyIndex(pTab);
1736 
1737     /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1738     ** table entry. This is only required if currently generating VDBE
1739     ** code for a CREATE TABLE (not when parsing one as part of reading
1740     ** a database schema).  */
1741     if( v ){
1742       assert( db->init.busy==0 );
1743       sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1744     }
1745 
1746     /*
1747     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1748     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1749     ** code assumes the PRIMARY KEY contains no repeated columns.
1750     */
1751     for(i=j=1; i<pPk->nKeyCol; i++){
1752       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1753         pPk->nColumn--;
1754       }else{
1755         pPk->aiColumn[j++] = pPk->aiColumn[i];
1756       }
1757     }
1758     pPk->nKeyCol = j;
1759   }
1760   assert( pPk!=0 );
1761   pPk->isCovering = 1;
1762   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1763   nPk = pPk->nKeyCol;
1764 
1765   /* The root page of the PRIMARY KEY is the table root page */
1766   pPk->tnum = pTab->tnum;
1767 
1768   /* Update the in-memory representation of all UNIQUE indices by converting
1769   ** the final rowid column into one or more columns of the PRIMARY KEY.
1770   */
1771   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1772     int n;
1773     if( IsPrimaryKeyIndex(pIdx) ) continue;
1774     for(i=n=0; i<nPk; i++){
1775       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1776     }
1777     if( n==0 ){
1778       /* This index is a superset of the primary key */
1779       pIdx->nColumn = pIdx->nKeyCol;
1780       continue;
1781     }
1782     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1783     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1784       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1785         pIdx->aiColumn[j] = pPk->aiColumn[i];
1786         pIdx->azColl[j] = pPk->azColl[i];
1787         j++;
1788       }
1789     }
1790     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1791     assert( pIdx->nColumn>=j );
1792   }
1793 
1794   /* Add all table columns to the PRIMARY KEY index
1795   */
1796   if( nPk<pTab->nCol ){
1797     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1798     for(i=0, j=nPk; i<pTab->nCol; i++){
1799       if( !hasColumn(pPk->aiColumn, j, i) ){
1800         assert( j<pPk->nColumn );
1801         pPk->aiColumn[j] = i;
1802         pPk->azColl[j] = sqlite3StrBINARY;
1803         j++;
1804       }
1805     }
1806     assert( pPk->nColumn==j );
1807     assert( pTab->nCol==j );
1808   }else{
1809     pPk->nColumn = pTab->nCol;
1810   }
1811 }
1812 
1813 /*
1814 ** This routine is called to report the final ")" that terminates
1815 ** a CREATE TABLE statement.
1816 **
1817 ** The table structure that other action routines have been building
1818 ** is added to the internal hash tables, assuming no errors have
1819 ** occurred.
1820 **
1821 ** An entry for the table is made in the master table on disk, unless
1822 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1823 ** it means we are reading the sqlite_master table because we just
1824 ** connected to the database or because the sqlite_master table has
1825 ** recently changed, so the entry for this table already exists in
1826 ** the sqlite_master table.  We do not want to create it again.
1827 **
1828 ** If the pSelect argument is not NULL, it means that this routine
1829 ** was called to create a table generated from a
1830 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1831 ** the new table will match the result set of the SELECT.
1832 */
1833 void sqlite3EndTable(
1834   Parse *pParse,          /* Parse context */
1835   Token *pCons,           /* The ',' token after the last column defn. */
1836   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1837   u8 tabOpts,             /* Extra table options. Usually 0. */
1838   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1839 ){
1840   Table *p;                 /* The new table */
1841   sqlite3 *db = pParse->db; /* The database connection */
1842   int iDb;                  /* Database in which the table lives */
1843   Index *pIdx;              /* An implied index of the table */
1844 
1845   if( pEnd==0 && pSelect==0 ){
1846     return;
1847   }
1848   assert( !db->mallocFailed );
1849   p = pParse->pNewTable;
1850   if( p==0 ) return;
1851 
1852   assert( !db->init.busy || !pSelect );
1853 
1854   /* If the db->init.busy is 1 it means we are reading the SQL off the
1855   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1856   ** So do not write to the disk again.  Extract the root page number
1857   ** for the table from the db->init.newTnum field.  (The page number
1858   ** should have been put there by the sqliteOpenCb routine.)
1859   **
1860   ** If the root page number is 1, that means this is the sqlite_master
1861   ** table itself.  So mark it read-only.
1862   */
1863   if( db->init.busy ){
1864     p->tnum = db->init.newTnum;
1865     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1866   }
1867 
1868   /* Special processing for WITHOUT ROWID Tables */
1869   if( tabOpts & TF_WithoutRowid ){
1870     if( (p->tabFlags & TF_Autoincrement) ){
1871       sqlite3ErrorMsg(pParse,
1872           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1873       return;
1874     }
1875     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1876       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1877     }else{
1878       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1879       convertToWithoutRowidTable(pParse, p);
1880     }
1881   }
1882 
1883   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1884 
1885 #ifndef SQLITE_OMIT_CHECK
1886   /* Resolve names in all CHECK constraint expressions.
1887   */
1888   if( p->pCheck ){
1889     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1890   }
1891 #endif /* !defined(SQLITE_OMIT_CHECK) */
1892 
1893   /* Estimate the average row size for the table and for all implied indices */
1894   estimateTableWidth(p);
1895   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1896     estimateIndexWidth(pIdx);
1897   }
1898 
1899   /* If not initializing, then create a record for the new table
1900   ** in the SQLITE_MASTER table of the database.
1901   **
1902   ** If this is a TEMPORARY table, write the entry into the auxiliary
1903   ** file instead of into the main database file.
1904   */
1905   if( !db->init.busy ){
1906     int n;
1907     Vdbe *v;
1908     char *zType;    /* "view" or "table" */
1909     char *zType2;   /* "VIEW" or "TABLE" */
1910     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1911 
1912     v = sqlite3GetVdbe(pParse);
1913     if( NEVER(v==0) ) return;
1914 
1915     sqlite3VdbeAddOp1(v, OP_Close, 0);
1916 
1917     /*
1918     ** Initialize zType for the new view or table.
1919     */
1920     if( p->pSelect==0 ){
1921       /* A regular table */
1922       zType = "table";
1923       zType2 = "TABLE";
1924 #ifndef SQLITE_OMIT_VIEW
1925     }else{
1926       /* A view */
1927       zType = "view";
1928       zType2 = "VIEW";
1929 #endif
1930     }
1931 
1932     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1933     ** statement to populate the new table. The root-page number for the
1934     ** new table is in register pParse->regRoot.
1935     **
1936     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1937     ** suitable state to query for the column names and types to be used
1938     ** by the new table.
1939     **
1940     ** A shared-cache write-lock is not required to write to the new table,
1941     ** as a schema-lock must have already been obtained to create it. Since
1942     ** a schema-lock excludes all other database users, the write-lock would
1943     ** be redundant.
1944     */
1945     if( pSelect ){
1946       SelectDest dest;    /* Where the SELECT should store results */
1947       int regYield;       /* Register holding co-routine entry-point */
1948       int addrTop;        /* Top of the co-routine */
1949       int regRec;         /* A record to be insert into the new table */
1950       int regRowid;       /* Rowid of the next row to insert */
1951       int addrInsLoop;    /* Top of the loop for inserting rows */
1952       Table *pSelTab;     /* A table that describes the SELECT results */
1953 
1954       regYield = ++pParse->nMem;
1955       regRec = ++pParse->nMem;
1956       regRowid = ++pParse->nMem;
1957       assert(pParse->nTab==1);
1958       sqlite3MayAbort(pParse);
1959       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1960       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1961       pParse->nTab = 2;
1962       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1963       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1964       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1965       sqlite3Select(pParse, pSelect, &dest);
1966       sqlite3VdbeEndCoroutine(v, regYield);
1967       sqlite3VdbeJumpHere(v, addrTop - 1);
1968       if( pParse->nErr ) return;
1969       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1970       if( pSelTab==0 ) return;
1971       assert( p->aCol==0 );
1972       p->nCol = pSelTab->nCol;
1973       p->aCol = pSelTab->aCol;
1974       pSelTab->nCol = 0;
1975       pSelTab->aCol = 0;
1976       sqlite3DeleteTable(db, pSelTab);
1977       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1978       VdbeCoverage(v);
1979       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1980       sqlite3TableAffinity(v, p, 0);
1981       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1982       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1983       sqlite3VdbeGoto(v, addrInsLoop);
1984       sqlite3VdbeJumpHere(v, addrInsLoop);
1985       sqlite3VdbeAddOp1(v, OP_Close, 1);
1986     }
1987 
1988     /* Compute the complete text of the CREATE statement */
1989     if( pSelect ){
1990       zStmt = createTableStmt(db, p);
1991     }else{
1992       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1993       n = (int)(pEnd2->z - pParse->sNameToken.z);
1994       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1995       zStmt = sqlite3MPrintf(db,
1996           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1997       );
1998     }
1999 
2000     /* A slot for the record has already been allocated in the
2001     ** SQLITE_MASTER table.  We just need to update that slot with all
2002     ** the information we've collected.
2003     */
2004     sqlite3NestedParse(pParse,
2005       "UPDATE %Q.%s "
2006          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2007        "WHERE rowid=#%d",
2008       db->aDb[iDb].zDbSName, MASTER_NAME,
2009       zType,
2010       p->zName,
2011       p->zName,
2012       pParse->regRoot,
2013       zStmt,
2014       pParse->regRowid
2015     );
2016     sqlite3DbFree(db, zStmt);
2017     sqlite3ChangeCookie(pParse, iDb);
2018 
2019 #ifndef SQLITE_OMIT_AUTOINCREMENT
2020     /* Check to see if we need to create an sqlite_sequence table for
2021     ** keeping track of autoincrement keys.
2022     */
2023     if( (p->tabFlags & TF_Autoincrement)!=0 ){
2024       Db *pDb = &db->aDb[iDb];
2025       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2026       if( pDb->pSchema->pSeqTab==0 ){
2027         sqlite3NestedParse(pParse,
2028           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2029           pDb->zDbSName
2030         );
2031       }
2032     }
2033 #endif
2034 
2035     /* Reparse everything to update our internal data structures */
2036     sqlite3VdbeAddParseSchemaOp(v, iDb,
2037            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2038   }
2039 
2040 
2041   /* Add the table to the in-memory representation of the database.
2042   */
2043   if( db->init.busy ){
2044     Table *pOld;
2045     Schema *pSchema = p->pSchema;
2046     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2047     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2048     if( pOld ){
2049       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2050       sqlite3OomFault(db);
2051       return;
2052     }
2053     pParse->pNewTable = 0;
2054     db->flags |= SQLITE_InternChanges;
2055 
2056 #ifndef SQLITE_OMIT_ALTERTABLE
2057     if( !p->pSelect ){
2058       const char *zName = (const char *)pParse->sNameToken.z;
2059       int nName;
2060       assert( !pSelect && pCons && pEnd );
2061       if( pCons->z==0 ){
2062         pCons = pEnd;
2063       }
2064       nName = (int)((const char *)pCons->z - zName);
2065       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2066     }
2067 #endif
2068   }
2069 }
2070 
2071 #ifndef SQLITE_OMIT_VIEW
2072 /*
2073 ** The parser calls this routine in order to create a new VIEW
2074 */
2075 void sqlite3CreateView(
2076   Parse *pParse,     /* The parsing context */
2077   Token *pBegin,     /* The CREATE token that begins the statement */
2078   Token *pName1,     /* The token that holds the name of the view */
2079   Token *pName2,     /* The token that holds the name of the view */
2080   ExprList *pCNames, /* Optional list of view column names */
2081   Select *pSelect,   /* A SELECT statement that will become the new view */
2082   int isTemp,        /* TRUE for a TEMPORARY view */
2083   int noErr          /* Suppress error messages if VIEW already exists */
2084 ){
2085   Table *p;
2086   int n;
2087   const char *z;
2088   Token sEnd;
2089   DbFixer sFix;
2090   Token *pName = 0;
2091   int iDb;
2092   sqlite3 *db = pParse->db;
2093 
2094   if( pParse->nVar>0 ){
2095     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2096     goto create_view_fail;
2097   }
2098   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2099   p = pParse->pNewTable;
2100   if( p==0 || pParse->nErr ) goto create_view_fail;
2101   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2102   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2103   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2104   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2105 
2106   /* Make a copy of the entire SELECT statement that defines the view.
2107   ** This will force all the Expr.token.z values to be dynamically
2108   ** allocated rather than point to the input string - which means that
2109   ** they will persist after the current sqlite3_exec() call returns.
2110   */
2111   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2112   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2113   if( db->mallocFailed ) goto create_view_fail;
2114 
2115   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2116   ** the end.
2117   */
2118   sEnd = pParse->sLastToken;
2119   assert( sEnd.z[0]!=0 );
2120   if( sEnd.z[0]!=';' ){
2121     sEnd.z += sEnd.n;
2122   }
2123   sEnd.n = 0;
2124   n = (int)(sEnd.z - pBegin->z);
2125   assert( n>0 );
2126   z = pBegin->z;
2127   while( sqlite3Isspace(z[n-1]) ){ n--; }
2128   sEnd.z = &z[n-1];
2129   sEnd.n = 1;
2130 
2131   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2132   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2133 
2134 create_view_fail:
2135   sqlite3SelectDelete(db, pSelect);
2136   sqlite3ExprListDelete(db, pCNames);
2137   return;
2138 }
2139 #endif /* SQLITE_OMIT_VIEW */
2140 
2141 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2142 /*
2143 ** The Table structure pTable is really a VIEW.  Fill in the names of
2144 ** the columns of the view in the pTable structure.  Return the number
2145 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2146 */
2147 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2148   Table *pSelTab;   /* A fake table from which we get the result set */
2149   Select *pSel;     /* Copy of the SELECT that implements the view */
2150   int nErr = 0;     /* Number of errors encountered */
2151   int n;            /* Temporarily holds the number of cursors assigned */
2152   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2153 #ifndef SQLITE_OMIT_AUTHORIZATION
2154   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2155 #endif
2156 
2157   assert( pTable );
2158 
2159 #ifndef SQLITE_OMIT_VIRTUALTABLE
2160   if( sqlite3VtabCallConnect(pParse, pTable) ){
2161     return SQLITE_ERROR;
2162   }
2163   if( IsVirtual(pTable) ) return 0;
2164 #endif
2165 
2166 #ifndef SQLITE_OMIT_VIEW
2167   /* A positive nCol means the columns names for this view are
2168   ** already known.
2169   */
2170   if( pTable->nCol>0 ) return 0;
2171 
2172   /* A negative nCol is a special marker meaning that we are currently
2173   ** trying to compute the column names.  If we enter this routine with
2174   ** a negative nCol, it means two or more views form a loop, like this:
2175   **
2176   **     CREATE VIEW one AS SELECT * FROM two;
2177   **     CREATE VIEW two AS SELECT * FROM one;
2178   **
2179   ** Actually, the error above is now caught prior to reaching this point.
2180   ** But the following test is still important as it does come up
2181   ** in the following:
2182   **
2183   **     CREATE TABLE main.ex1(a);
2184   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2185   **     SELECT * FROM temp.ex1;
2186   */
2187   if( pTable->nCol<0 ){
2188     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2189     return 1;
2190   }
2191   assert( pTable->nCol>=0 );
2192 
2193   /* If we get this far, it means we need to compute the table names.
2194   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2195   ** "*" elements in the results set of the view and will assign cursors
2196   ** to the elements of the FROM clause.  But we do not want these changes
2197   ** to be permanent.  So the computation is done on a copy of the SELECT
2198   ** statement that defines the view.
2199   */
2200   assert( pTable->pSelect );
2201   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2202   if( pSel ){
2203     n = pParse->nTab;
2204     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2205     pTable->nCol = -1;
2206     db->lookaside.bDisable++;
2207 #ifndef SQLITE_OMIT_AUTHORIZATION
2208     xAuth = db->xAuth;
2209     db->xAuth = 0;
2210     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2211     db->xAuth = xAuth;
2212 #else
2213     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2214 #endif
2215     pParse->nTab = n;
2216     if( pTable->pCheck ){
2217       /* CREATE VIEW name(arglist) AS ...
2218       ** The names of the columns in the table are taken from
2219       ** arglist which is stored in pTable->pCheck.  The pCheck field
2220       ** normally holds CHECK constraints on an ordinary table, but for
2221       ** a VIEW it holds the list of column names.
2222       */
2223       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2224                                  &pTable->nCol, &pTable->aCol);
2225       if( db->mallocFailed==0
2226        && pParse->nErr==0
2227        && pTable->nCol==pSel->pEList->nExpr
2228       ){
2229         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2230       }
2231     }else if( pSelTab ){
2232       /* CREATE VIEW name AS...  without an argument list.  Construct
2233       ** the column names from the SELECT statement that defines the view.
2234       */
2235       assert( pTable->aCol==0 );
2236       pTable->nCol = pSelTab->nCol;
2237       pTable->aCol = pSelTab->aCol;
2238       pSelTab->nCol = 0;
2239       pSelTab->aCol = 0;
2240       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2241     }else{
2242       pTable->nCol = 0;
2243       nErr++;
2244     }
2245     sqlite3DeleteTable(db, pSelTab);
2246     sqlite3SelectDelete(db, pSel);
2247     db->lookaside.bDisable--;
2248   } else {
2249     nErr++;
2250   }
2251   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2252 #endif /* SQLITE_OMIT_VIEW */
2253   return nErr;
2254 }
2255 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2256 
2257 #ifndef SQLITE_OMIT_VIEW
2258 /*
2259 ** Clear the column names from every VIEW in database idx.
2260 */
2261 static void sqliteViewResetAll(sqlite3 *db, int idx){
2262   HashElem *i;
2263   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2264   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2265   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2266     Table *pTab = sqliteHashData(i);
2267     if( pTab->pSelect ){
2268       sqlite3DeleteColumnNames(db, pTab);
2269       pTab->aCol = 0;
2270       pTab->nCol = 0;
2271     }
2272   }
2273   DbClearProperty(db, idx, DB_UnresetViews);
2274 }
2275 #else
2276 # define sqliteViewResetAll(A,B)
2277 #endif /* SQLITE_OMIT_VIEW */
2278 
2279 /*
2280 ** This function is called by the VDBE to adjust the internal schema
2281 ** used by SQLite when the btree layer moves a table root page. The
2282 ** root-page of a table or index in database iDb has changed from iFrom
2283 ** to iTo.
2284 **
2285 ** Ticket #1728:  The symbol table might still contain information
2286 ** on tables and/or indices that are the process of being deleted.
2287 ** If you are unlucky, one of those deleted indices or tables might
2288 ** have the same rootpage number as the real table or index that is
2289 ** being moved.  So we cannot stop searching after the first match
2290 ** because the first match might be for one of the deleted indices
2291 ** or tables and not the table/index that is actually being moved.
2292 ** We must continue looping until all tables and indices with
2293 ** rootpage==iFrom have been converted to have a rootpage of iTo
2294 ** in order to be certain that we got the right one.
2295 */
2296 #ifndef SQLITE_OMIT_AUTOVACUUM
2297 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2298   HashElem *pElem;
2299   Hash *pHash;
2300   Db *pDb;
2301 
2302   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2303   pDb = &db->aDb[iDb];
2304   pHash = &pDb->pSchema->tblHash;
2305   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2306     Table *pTab = sqliteHashData(pElem);
2307     if( pTab->tnum==iFrom ){
2308       pTab->tnum = iTo;
2309     }
2310   }
2311   pHash = &pDb->pSchema->idxHash;
2312   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2313     Index *pIdx = sqliteHashData(pElem);
2314     if( pIdx->tnum==iFrom ){
2315       pIdx->tnum = iTo;
2316     }
2317   }
2318 }
2319 #endif
2320 
2321 /*
2322 ** Write code to erase the table with root-page iTable from database iDb.
2323 ** Also write code to modify the sqlite_master table and internal schema
2324 ** if a root-page of another table is moved by the btree-layer whilst
2325 ** erasing iTable (this can happen with an auto-vacuum database).
2326 */
2327 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2328   Vdbe *v = sqlite3GetVdbe(pParse);
2329   int r1 = sqlite3GetTempReg(pParse);
2330   assert( iTable>1 );
2331   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2332   sqlite3MayAbort(pParse);
2333 #ifndef SQLITE_OMIT_AUTOVACUUM
2334   /* OP_Destroy stores an in integer r1. If this integer
2335   ** is non-zero, then it is the root page number of a table moved to
2336   ** location iTable. The following code modifies the sqlite_master table to
2337   ** reflect this.
2338   **
2339   ** The "#NNN" in the SQL is a special constant that means whatever value
2340   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2341   ** token for additional information.
2342   */
2343   sqlite3NestedParse(pParse,
2344      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2345      pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2346 #endif
2347   sqlite3ReleaseTempReg(pParse, r1);
2348 }
2349 
2350 /*
2351 ** Write VDBE code to erase table pTab and all associated indices on disk.
2352 ** Code to update the sqlite_master tables and internal schema definitions
2353 ** in case a root-page belonging to another table is moved by the btree layer
2354 ** is also added (this can happen with an auto-vacuum database).
2355 */
2356 static void destroyTable(Parse *pParse, Table *pTab){
2357 #ifdef SQLITE_OMIT_AUTOVACUUM
2358   Index *pIdx;
2359   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2360   destroyRootPage(pParse, pTab->tnum, iDb);
2361   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2362     destroyRootPage(pParse, pIdx->tnum, iDb);
2363   }
2364 #else
2365   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2366   ** is not defined), then it is important to call OP_Destroy on the
2367   ** table and index root-pages in order, starting with the numerically
2368   ** largest root-page number. This guarantees that none of the root-pages
2369   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2370   ** following were coded:
2371   **
2372   ** OP_Destroy 4 0
2373   ** ...
2374   ** OP_Destroy 5 0
2375   **
2376   ** and root page 5 happened to be the largest root-page number in the
2377   ** database, then root page 5 would be moved to page 4 by the
2378   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2379   ** a free-list page.
2380   */
2381   int iTab = pTab->tnum;
2382   int iDestroyed = 0;
2383 
2384   while( 1 ){
2385     Index *pIdx;
2386     int iLargest = 0;
2387 
2388     if( iDestroyed==0 || iTab<iDestroyed ){
2389       iLargest = iTab;
2390     }
2391     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2392       int iIdx = pIdx->tnum;
2393       assert( pIdx->pSchema==pTab->pSchema );
2394       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2395         iLargest = iIdx;
2396       }
2397     }
2398     if( iLargest==0 ){
2399       return;
2400     }else{
2401       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2402       assert( iDb>=0 && iDb<pParse->db->nDb );
2403       destroyRootPage(pParse, iLargest, iDb);
2404       iDestroyed = iLargest;
2405     }
2406   }
2407 #endif
2408 }
2409 
2410 /*
2411 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2412 ** after a DROP INDEX or DROP TABLE command.
2413 */
2414 static void sqlite3ClearStatTables(
2415   Parse *pParse,         /* The parsing context */
2416   int iDb,               /* The database number */
2417   const char *zType,     /* "idx" or "tbl" */
2418   const char *zName      /* Name of index or table */
2419 ){
2420   int i;
2421   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2422   for(i=1; i<=4; i++){
2423     char zTab[24];
2424     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2425     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2426       sqlite3NestedParse(pParse,
2427         "DELETE FROM %Q.%s WHERE %s=%Q",
2428         zDbName, zTab, zType, zName
2429       );
2430     }
2431   }
2432 }
2433 
2434 /*
2435 ** Generate code to drop a table.
2436 */
2437 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2438   Vdbe *v;
2439   sqlite3 *db = pParse->db;
2440   Trigger *pTrigger;
2441   Db *pDb = &db->aDb[iDb];
2442 
2443   v = sqlite3GetVdbe(pParse);
2444   assert( v!=0 );
2445   sqlite3BeginWriteOperation(pParse, 1, iDb);
2446 
2447 #ifndef SQLITE_OMIT_VIRTUALTABLE
2448   if( IsVirtual(pTab) ){
2449     sqlite3VdbeAddOp0(v, OP_VBegin);
2450   }
2451 #endif
2452 
2453   /* Drop all triggers associated with the table being dropped. Code
2454   ** is generated to remove entries from sqlite_master and/or
2455   ** sqlite_temp_master if required.
2456   */
2457   pTrigger = sqlite3TriggerList(pParse, pTab);
2458   while( pTrigger ){
2459     assert( pTrigger->pSchema==pTab->pSchema ||
2460         pTrigger->pSchema==db->aDb[1].pSchema );
2461     sqlite3DropTriggerPtr(pParse, pTrigger);
2462     pTrigger = pTrigger->pNext;
2463   }
2464 
2465 #ifndef SQLITE_OMIT_AUTOINCREMENT
2466   /* Remove any entries of the sqlite_sequence table associated with
2467   ** the table being dropped. This is done before the table is dropped
2468   ** at the btree level, in case the sqlite_sequence table needs to
2469   ** move as a result of the drop (can happen in auto-vacuum mode).
2470   */
2471   if( pTab->tabFlags & TF_Autoincrement ){
2472     sqlite3NestedParse(pParse,
2473       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2474       pDb->zDbSName, pTab->zName
2475     );
2476   }
2477 #endif
2478 
2479   /* Drop all SQLITE_MASTER table and index entries that refer to the
2480   ** table. The program name loops through the master table and deletes
2481   ** every row that refers to a table of the same name as the one being
2482   ** dropped. Triggers are handled separately because a trigger can be
2483   ** created in the temp database that refers to a table in another
2484   ** database.
2485   */
2486   sqlite3NestedParse(pParse,
2487       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2488       pDb->zDbSName, MASTER_NAME, pTab->zName);
2489   if( !isView && !IsVirtual(pTab) ){
2490     destroyTable(pParse, pTab);
2491   }
2492 
2493   /* Remove the table entry from SQLite's internal schema and modify
2494   ** the schema cookie.
2495   */
2496   if( IsVirtual(pTab) ){
2497     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2498   }
2499   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2500   sqlite3ChangeCookie(pParse, iDb);
2501   sqliteViewResetAll(db, iDb);
2502 }
2503 
2504 /*
2505 ** This routine is called to do the work of a DROP TABLE statement.
2506 ** pName is the name of the table to be dropped.
2507 */
2508 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2509   Table *pTab;
2510   Vdbe *v;
2511   sqlite3 *db = pParse->db;
2512   int iDb;
2513 
2514   if( db->mallocFailed ){
2515     goto exit_drop_table;
2516   }
2517   assert( pParse->nErr==0 );
2518   assert( pName->nSrc==1 );
2519   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2520   if( noErr ) db->suppressErr++;
2521   assert( isView==0 || isView==LOCATE_VIEW );
2522   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2523   if( noErr ) db->suppressErr--;
2524 
2525   if( pTab==0 ){
2526     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2527     goto exit_drop_table;
2528   }
2529   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2530   assert( iDb>=0 && iDb<db->nDb );
2531 
2532   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2533   ** it is initialized.
2534   */
2535   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2536     goto exit_drop_table;
2537   }
2538 #ifndef SQLITE_OMIT_AUTHORIZATION
2539   {
2540     int code;
2541     const char *zTab = SCHEMA_TABLE(iDb);
2542     const char *zDb = db->aDb[iDb].zDbSName;
2543     const char *zArg2 = 0;
2544     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2545       goto exit_drop_table;
2546     }
2547     if( isView ){
2548       if( !OMIT_TEMPDB && iDb==1 ){
2549         code = SQLITE_DROP_TEMP_VIEW;
2550       }else{
2551         code = SQLITE_DROP_VIEW;
2552       }
2553 #ifndef SQLITE_OMIT_VIRTUALTABLE
2554     }else if( IsVirtual(pTab) ){
2555       code = SQLITE_DROP_VTABLE;
2556       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2557 #endif
2558     }else{
2559       if( !OMIT_TEMPDB && iDb==1 ){
2560         code = SQLITE_DROP_TEMP_TABLE;
2561       }else{
2562         code = SQLITE_DROP_TABLE;
2563       }
2564     }
2565     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2566       goto exit_drop_table;
2567     }
2568     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2569       goto exit_drop_table;
2570     }
2571   }
2572 #endif
2573   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2574     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2575     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2576     goto exit_drop_table;
2577   }
2578 
2579 #ifndef SQLITE_OMIT_VIEW
2580   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2581   ** on a table.
2582   */
2583   if( isView && pTab->pSelect==0 ){
2584     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2585     goto exit_drop_table;
2586   }
2587   if( !isView && pTab->pSelect ){
2588     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2589     goto exit_drop_table;
2590   }
2591 #endif
2592 
2593   /* Generate code to remove the table from the master table
2594   ** on disk.
2595   */
2596   v = sqlite3GetVdbe(pParse);
2597   if( v ){
2598     sqlite3BeginWriteOperation(pParse, 1, iDb);
2599     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2600     sqlite3FkDropTable(pParse, pName, pTab);
2601     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2602   }
2603 
2604 exit_drop_table:
2605   sqlite3SrcListDelete(db, pName);
2606 }
2607 
2608 /*
2609 ** This routine is called to create a new foreign key on the table
2610 ** currently under construction.  pFromCol determines which columns
2611 ** in the current table point to the foreign key.  If pFromCol==0 then
2612 ** connect the key to the last column inserted.  pTo is the name of
2613 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2614 ** of tables in the parent pTo table.  flags contains all
2615 ** information about the conflict resolution algorithms specified
2616 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2617 **
2618 ** An FKey structure is created and added to the table currently
2619 ** under construction in the pParse->pNewTable field.
2620 **
2621 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2622 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2623 */
2624 void sqlite3CreateForeignKey(
2625   Parse *pParse,       /* Parsing context */
2626   ExprList *pFromCol,  /* Columns in this table that point to other table */
2627   Token *pTo,          /* Name of the other table */
2628   ExprList *pToCol,    /* Columns in the other table */
2629   int flags            /* Conflict resolution algorithms. */
2630 ){
2631   sqlite3 *db = pParse->db;
2632 #ifndef SQLITE_OMIT_FOREIGN_KEY
2633   FKey *pFKey = 0;
2634   FKey *pNextTo;
2635   Table *p = pParse->pNewTable;
2636   int nByte;
2637   int i;
2638   int nCol;
2639   char *z;
2640 
2641   assert( pTo!=0 );
2642   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2643   if( pFromCol==0 ){
2644     int iCol = p->nCol-1;
2645     if( NEVER(iCol<0) ) goto fk_end;
2646     if( pToCol && pToCol->nExpr!=1 ){
2647       sqlite3ErrorMsg(pParse, "foreign key on %s"
2648          " should reference only one column of table %T",
2649          p->aCol[iCol].zName, pTo);
2650       goto fk_end;
2651     }
2652     nCol = 1;
2653   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2654     sqlite3ErrorMsg(pParse,
2655         "number of columns in foreign key does not match the number of "
2656         "columns in the referenced table");
2657     goto fk_end;
2658   }else{
2659     nCol = pFromCol->nExpr;
2660   }
2661   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2662   if( pToCol ){
2663     for(i=0; i<pToCol->nExpr; i++){
2664       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2665     }
2666   }
2667   pFKey = sqlite3DbMallocZero(db, nByte );
2668   if( pFKey==0 ){
2669     goto fk_end;
2670   }
2671   pFKey->pFrom = p;
2672   pFKey->pNextFrom = p->pFKey;
2673   z = (char*)&pFKey->aCol[nCol];
2674   pFKey->zTo = z;
2675   memcpy(z, pTo->z, pTo->n);
2676   z[pTo->n] = 0;
2677   sqlite3Dequote(z);
2678   z += pTo->n+1;
2679   pFKey->nCol = nCol;
2680   if( pFromCol==0 ){
2681     pFKey->aCol[0].iFrom = p->nCol-1;
2682   }else{
2683     for(i=0; i<nCol; i++){
2684       int j;
2685       for(j=0; j<p->nCol; j++){
2686         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2687           pFKey->aCol[i].iFrom = j;
2688           break;
2689         }
2690       }
2691       if( j>=p->nCol ){
2692         sqlite3ErrorMsg(pParse,
2693           "unknown column \"%s\" in foreign key definition",
2694           pFromCol->a[i].zName);
2695         goto fk_end;
2696       }
2697     }
2698   }
2699   if( pToCol ){
2700     for(i=0; i<nCol; i++){
2701       int n = sqlite3Strlen30(pToCol->a[i].zName);
2702       pFKey->aCol[i].zCol = z;
2703       memcpy(z, pToCol->a[i].zName, n);
2704       z[n] = 0;
2705       z += n+1;
2706     }
2707   }
2708   pFKey->isDeferred = 0;
2709   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2710   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2711 
2712   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2713   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2714       pFKey->zTo, (void *)pFKey
2715   );
2716   if( pNextTo==pFKey ){
2717     sqlite3OomFault(db);
2718     goto fk_end;
2719   }
2720   if( pNextTo ){
2721     assert( pNextTo->pPrevTo==0 );
2722     pFKey->pNextTo = pNextTo;
2723     pNextTo->pPrevTo = pFKey;
2724   }
2725 
2726   /* Link the foreign key to the table as the last step.
2727   */
2728   p->pFKey = pFKey;
2729   pFKey = 0;
2730 
2731 fk_end:
2732   sqlite3DbFree(db, pFKey);
2733 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2734   sqlite3ExprListDelete(db, pFromCol);
2735   sqlite3ExprListDelete(db, pToCol);
2736 }
2737 
2738 /*
2739 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2740 ** clause is seen as part of a foreign key definition.  The isDeferred
2741 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2742 ** The behavior of the most recently created foreign key is adjusted
2743 ** accordingly.
2744 */
2745 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2746 #ifndef SQLITE_OMIT_FOREIGN_KEY
2747   Table *pTab;
2748   FKey *pFKey;
2749   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2750   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2751   pFKey->isDeferred = (u8)isDeferred;
2752 #endif
2753 }
2754 
2755 /*
2756 ** Generate code that will erase and refill index *pIdx.  This is
2757 ** used to initialize a newly created index or to recompute the
2758 ** content of an index in response to a REINDEX command.
2759 **
2760 ** if memRootPage is not negative, it means that the index is newly
2761 ** created.  The register specified by memRootPage contains the
2762 ** root page number of the index.  If memRootPage is negative, then
2763 ** the index already exists and must be cleared before being refilled and
2764 ** the root page number of the index is taken from pIndex->tnum.
2765 */
2766 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2767   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2768   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2769   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2770   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2771   int addr1;                     /* Address of top of loop */
2772   int addr2;                     /* Address to jump to for next iteration */
2773   int tnum;                      /* Root page of index */
2774   int iPartIdxLabel;             /* Jump to this label to skip a row */
2775   Vdbe *v;                       /* Generate code into this virtual machine */
2776   KeyInfo *pKey;                 /* KeyInfo for index */
2777   int regRecord;                 /* Register holding assembled index record */
2778   sqlite3 *db = pParse->db;      /* The database connection */
2779   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2780 
2781 #ifndef SQLITE_OMIT_AUTHORIZATION
2782   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2783       db->aDb[iDb].zDbSName ) ){
2784     return;
2785   }
2786 #endif
2787 
2788   /* Require a write-lock on the table to perform this operation */
2789   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2790 
2791   v = sqlite3GetVdbe(pParse);
2792   if( v==0 ) return;
2793   if( memRootPage>=0 ){
2794     tnum = memRootPage;
2795   }else{
2796     tnum = pIndex->tnum;
2797   }
2798   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2799   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2800 
2801   /* Open the sorter cursor if we are to use one. */
2802   iSorter = pParse->nTab++;
2803   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2804                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2805 
2806   /* Open the table. Loop through all rows of the table, inserting index
2807   ** records into the sorter. */
2808   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2809   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2810   regRecord = sqlite3GetTempReg(pParse);
2811 
2812   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2813   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2814   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2815   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2816   sqlite3VdbeJumpHere(v, addr1);
2817   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2818   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2819                     (char *)pKey, P4_KEYINFO);
2820   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2821 
2822   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2823   if( IsUniqueIndex(pIndex) ){
2824     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2825     sqlite3VdbeGoto(v, j2);
2826     addr2 = sqlite3VdbeCurrentAddr(v);
2827     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2828                          pIndex->nKeyCol); VdbeCoverage(v);
2829     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2830   }else{
2831     addr2 = sqlite3VdbeCurrentAddr(v);
2832   }
2833   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2834   sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2835   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2836   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2837   sqlite3ReleaseTempReg(pParse, regRecord);
2838   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2839   sqlite3VdbeJumpHere(v, addr1);
2840 
2841   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2842   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2843   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2844 }
2845 
2846 /*
2847 ** Allocate heap space to hold an Index object with nCol columns.
2848 **
2849 ** Increase the allocation size to provide an extra nExtra bytes
2850 ** of 8-byte aligned space after the Index object and return a
2851 ** pointer to this extra space in *ppExtra.
2852 */
2853 Index *sqlite3AllocateIndexObject(
2854   sqlite3 *db,         /* Database connection */
2855   i16 nCol,            /* Total number of columns in the index */
2856   int nExtra,          /* Number of bytes of extra space to alloc */
2857   char **ppExtra       /* Pointer to the "extra" space */
2858 ){
2859   Index *p;            /* Allocated index object */
2860   int nByte;           /* Bytes of space for Index object + arrays */
2861 
2862   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2863           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2864           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2865                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2866                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2867   p = sqlite3DbMallocZero(db, nByte + nExtra);
2868   if( p ){
2869     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2870     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2871     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2872     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2873     p->aSortOrder = (u8*)pExtra;
2874     p->nColumn = nCol;
2875     p->nKeyCol = nCol - 1;
2876     *ppExtra = ((char*)p) + nByte;
2877   }
2878   return p;
2879 }
2880 
2881 /*
2882 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2883 ** and pTblList is the name of the table that is to be indexed.  Both will
2884 ** be NULL for a primary key or an index that is created to satisfy a
2885 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2886 ** as the table to be indexed.  pParse->pNewTable is a table that is
2887 ** currently being constructed by a CREATE TABLE statement.
2888 **
2889 ** pList is a list of columns to be indexed.  pList will be NULL if this
2890 ** is a primary key or unique-constraint on the most recent column added
2891 ** to the table currently under construction.
2892 */
2893 void sqlite3CreateIndex(
2894   Parse *pParse,     /* All information about this parse */
2895   Token *pName1,     /* First part of index name. May be NULL */
2896   Token *pName2,     /* Second part of index name. May be NULL */
2897   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2898   ExprList *pList,   /* A list of columns to be indexed */
2899   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2900   Token *pStart,     /* The CREATE token that begins this statement */
2901   Expr *pPIWhere,    /* WHERE clause for partial indices */
2902   int sortOrder,     /* Sort order of primary key when pList==NULL */
2903   int ifNotExist,    /* Omit error if index already exists */
2904   u8 idxType         /* The index type */
2905 ){
2906   Table *pTab = 0;     /* Table to be indexed */
2907   Index *pIndex = 0;   /* The index to be created */
2908   char *zName = 0;     /* Name of the index */
2909   int nName;           /* Number of characters in zName */
2910   int i, j;
2911   DbFixer sFix;        /* For assigning database names to pTable */
2912   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2913   sqlite3 *db = pParse->db;
2914   Db *pDb;             /* The specific table containing the indexed database */
2915   int iDb;             /* Index of the database that is being written */
2916   Token *pName = 0;    /* Unqualified name of the index to create */
2917   struct ExprList_item *pListItem; /* For looping over pList */
2918   int nExtra = 0;                  /* Space allocated for zExtra[] */
2919   int nExtraCol;                   /* Number of extra columns needed */
2920   char *zExtra = 0;                /* Extra space after the Index object */
2921   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2922 
2923   if( db->mallocFailed || pParse->nErr>0 ){
2924     goto exit_create_index;
2925   }
2926   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2927     goto exit_create_index;
2928   }
2929   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2930     goto exit_create_index;
2931   }
2932 
2933   /*
2934   ** Find the table that is to be indexed.  Return early if not found.
2935   */
2936   if( pTblName!=0 ){
2937 
2938     /* Use the two-part index name to determine the database
2939     ** to search for the table. 'Fix' the table name to this db
2940     ** before looking up the table.
2941     */
2942     assert( pName1 && pName2 );
2943     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2944     if( iDb<0 ) goto exit_create_index;
2945     assert( pName && pName->z );
2946 
2947 #ifndef SQLITE_OMIT_TEMPDB
2948     /* If the index name was unqualified, check if the table
2949     ** is a temp table. If so, set the database to 1. Do not do this
2950     ** if initialising a database schema.
2951     */
2952     if( !db->init.busy ){
2953       pTab = sqlite3SrcListLookup(pParse, pTblName);
2954       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2955         iDb = 1;
2956       }
2957     }
2958 #endif
2959 
2960     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2961     if( sqlite3FixSrcList(&sFix, pTblName) ){
2962       /* Because the parser constructs pTblName from a single identifier,
2963       ** sqlite3FixSrcList can never fail. */
2964       assert(0);
2965     }
2966     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2967     assert( db->mallocFailed==0 || pTab==0 );
2968     if( pTab==0 ) goto exit_create_index;
2969     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2970       sqlite3ErrorMsg(pParse,
2971            "cannot create a TEMP index on non-TEMP table \"%s\"",
2972            pTab->zName);
2973       goto exit_create_index;
2974     }
2975     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2976   }else{
2977     assert( pName==0 );
2978     assert( pStart==0 );
2979     pTab = pParse->pNewTable;
2980     if( !pTab ) goto exit_create_index;
2981     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2982   }
2983   pDb = &db->aDb[iDb];
2984 
2985   assert( pTab!=0 );
2986   assert( pParse->nErr==0 );
2987   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2988        && db->init.busy==0
2989 #if SQLITE_USER_AUTHENTICATION
2990        && sqlite3UserAuthTable(pTab->zName)==0
2991 #endif
2992        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2993     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2994     goto exit_create_index;
2995   }
2996 #ifndef SQLITE_OMIT_VIEW
2997   if( pTab->pSelect ){
2998     sqlite3ErrorMsg(pParse, "views may not be indexed");
2999     goto exit_create_index;
3000   }
3001 #endif
3002 #ifndef SQLITE_OMIT_VIRTUALTABLE
3003   if( IsVirtual(pTab) ){
3004     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3005     goto exit_create_index;
3006   }
3007 #endif
3008 
3009   /*
3010   ** Find the name of the index.  Make sure there is not already another
3011   ** index or table with the same name.
3012   **
3013   ** Exception:  If we are reading the names of permanent indices from the
3014   ** sqlite_master table (because some other process changed the schema) and
3015   ** one of the index names collides with the name of a temporary table or
3016   ** index, then we will continue to process this index.
3017   **
3018   ** If pName==0 it means that we are
3019   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
3020   ** own name.
3021   */
3022   if( pName ){
3023     zName = sqlite3NameFromToken(db, pName);
3024     if( zName==0 ) goto exit_create_index;
3025     assert( pName->z!=0 );
3026     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3027       goto exit_create_index;
3028     }
3029     if( !db->init.busy ){
3030       if( sqlite3FindTable(db, zName, 0)!=0 ){
3031         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3032         goto exit_create_index;
3033       }
3034     }
3035     if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3036       if( !ifNotExist ){
3037         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3038       }else{
3039         assert( !db->init.busy );
3040         sqlite3CodeVerifySchema(pParse, iDb);
3041       }
3042       goto exit_create_index;
3043     }
3044   }else{
3045     int n;
3046     Index *pLoop;
3047     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3048     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3049     if( zName==0 ){
3050       goto exit_create_index;
3051     }
3052 
3053     /* Automatic index names generated from within sqlite3_declare_vtab()
3054     ** must have names that are distinct from normal automatic index names.
3055     ** The following statement converts "sqlite3_autoindex..." into
3056     ** "sqlite3_butoindex..." in order to make the names distinct.
3057     ** The "vtab_err.test" test demonstrates the need of this statement. */
3058     if( IN_DECLARE_VTAB ) zName[7]++;
3059   }
3060 
3061   /* Check for authorization to create an index.
3062   */
3063 #ifndef SQLITE_OMIT_AUTHORIZATION
3064   {
3065     const char *zDb = pDb->zDbSName;
3066     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3067       goto exit_create_index;
3068     }
3069     i = SQLITE_CREATE_INDEX;
3070     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3071     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3072       goto exit_create_index;
3073     }
3074   }
3075 #endif
3076 
3077   /* If pList==0, it means this routine was called to make a primary
3078   ** key out of the last column added to the table under construction.
3079   ** So create a fake list to simulate this.
3080   */
3081   if( pList==0 ){
3082     Token prevCol;
3083     sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3084     pList = sqlite3ExprListAppend(pParse, 0,
3085               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3086     if( pList==0 ) goto exit_create_index;
3087     assert( pList->nExpr==1 );
3088     sqlite3ExprListSetSortOrder(pList, sortOrder);
3089   }else{
3090     sqlite3ExprListCheckLength(pParse, pList, "index");
3091   }
3092 
3093   /* Figure out how many bytes of space are required to store explicitly
3094   ** specified collation sequence names.
3095   */
3096   for(i=0; i<pList->nExpr; i++){
3097     Expr *pExpr = pList->a[i].pExpr;
3098     assert( pExpr!=0 );
3099     if( pExpr->op==TK_COLLATE ){
3100       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3101     }
3102   }
3103 
3104   /*
3105   ** Allocate the index structure.
3106   */
3107   nName = sqlite3Strlen30(zName);
3108   nExtraCol = pPk ? pPk->nKeyCol : 1;
3109   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3110                                       nName + nExtra + 1, &zExtra);
3111   if( db->mallocFailed ){
3112     goto exit_create_index;
3113   }
3114   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3115   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3116   pIndex->zName = zExtra;
3117   zExtra += nName + 1;
3118   memcpy(pIndex->zName, zName, nName+1);
3119   pIndex->pTable = pTab;
3120   pIndex->onError = (u8)onError;
3121   pIndex->uniqNotNull = onError!=OE_None;
3122   pIndex->idxType = idxType;
3123   pIndex->pSchema = db->aDb[iDb].pSchema;
3124   pIndex->nKeyCol = pList->nExpr;
3125   if( pPIWhere ){
3126     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3127     pIndex->pPartIdxWhere = pPIWhere;
3128     pPIWhere = 0;
3129   }
3130   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3131 
3132   /* Check to see if we should honor DESC requests on index columns
3133   */
3134   if( pDb->pSchema->file_format>=4 ){
3135     sortOrderMask = -1;   /* Honor DESC */
3136   }else{
3137     sortOrderMask = 0;    /* Ignore DESC */
3138   }
3139 
3140   /* Analyze the list of expressions that form the terms of the index and
3141   ** report any errors.  In the common case where the expression is exactly
3142   ** a table column, store that column in aiColumn[].  For general expressions,
3143   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3144   **
3145   ** TODO: Issue a warning if two or more columns of the index are identical.
3146   ** TODO: Issue a warning if the table primary key is used as part of the
3147   ** index key.
3148   */
3149   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3150     Expr *pCExpr;                  /* The i-th index expression */
3151     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3152     const char *zColl;             /* Collation sequence name */
3153 
3154     sqlite3StringToId(pListItem->pExpr);
3155     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3156     if( pParse->nErr ) goto exit_create_index;
3157     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3158     if( pCExpr->op!=TK_COLUMN ){
3159       if( pTab==pParse->pNewTable ){
3160         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3161                                 "UNIQUE constraints");
3162         goto exit_create_index;
3163       }
3164       if( pIndex->aColExpr==0 ){
3165         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3166         pIndex->aColExpr = pCopy;
3167         if( !db->mallocFailed ){
3168           assert( pCopy!=0 );
3169           pListItem = &pCopy->a[i];
3170         }
3171       }
3172       j = XN_EXPR;
3173       pIndex->aiColumn[i] = XN_EXPR;
3174       pIndex->uniqNotNull = 0;
3175     }else{
3176       j = pCExpr->iColumn;
3177       assert( j<=0x7fff );
3178       if( j<0 ){
3179         j = pTab->iPKey;
3180       }else if( pTab->aCol[j].notNull==0 ){
3181         pIndex->uniqNotNull = 0;
3182       }
3183       pIndex->aiColumn[i] = (i16)j;
3184     }
3185     zColl = 0;
3186     if( pListItem->pExpr->op==TK_COLLATE ){
3187       int nColl;
3188       zColl = pListItem->pExpr->u.zToken;
3189       nColl = sqlite3Strlen30(zColl) + 1;
3190       assert( nExtra>=nColl );
3191       memcpy(zExtra, zColl, nColl);
3192       zColl = zExtra;
3193       zExtra += nColl;
3194       nExtra -= nColl;
3195     }else if( j>=0 ){
3196       zColl = pTab->aCol[j].zColl;
3197     }
3198     if( !zColl ) zColl = sqlite3StrBINARY;
3199     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3200       goto exit_create_index;
3201     }
3202     pIndex->azColl[i] = zColl;
3203     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3204     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3205   }
3206 
3207   /* Append the table key to the end of the index.  For WITHOUT ROWID
3208   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3209   ** normal tables (when pPk==0) this will be the rowid.
3210   */
3211   if( pPk ){
3212     for(j=0; j<pPk->nKeyCol; j++){
3213       int x = pPk->aiColumn[j];
3214       assert( x>=0 );
3215       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3216         pIndex->nColumn--;
3217       }else{
3218         pIndex->aiColumn[i] = x;
3219         pIndex->azColl[i] = pPk->azColl[j];
3220         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3221         i++;
3222       }
3223     }
3224     assert( i==pIndex->nColumn );
3225   }else{
3226     pIndex->aiColumn[i] = XN_ROWID;
3227     pIndex->azColl[i] = sqlite3StrBINARY;
3228   }
3229   sqlite3DefaultRowEst(pIndex);
3230   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3231 
3232   /* If this index contains every column of its table, then mark
3233   ** it as a covering index */
3234   assert( HasRowid(pTab)
3235       || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3236   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3237     pIndex->isCovering = 1;
3238     for(j=0; j<pTab->nCol; j++){
3239       if( j==pTab->iPKey ) continue;
3240       if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3241       pIndex->isCovering = 0;
3242       break;
3243     }
3244   }
3245 
3246   if( pTab==pParse->pNewTable ){
3247     /* This routine has been called to create an automatic index as a
3248     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3249     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3250     ** i.e. one of:
3251     **
3252     ** CREATE TABLE t(x PRIMARY KEY, y);
3253     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3254     **
3255     ** Either way, check to see if the table already has such an index. If
3256     ** so, don't bother creating this one. This only applies to
3257     ** automatically created indices. Users can do as they wish with
3258     ** explicit indices.
3259     **
3260     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3261     ** (and thus suppressing the second one) even if they have different
3262     ** sort orders.
3263     **
3264     ** If there are different collating sequences or if the columns of
3265     ** the constraint occur in different orders, then the constraints are
3266     ** considered distinct and both result in separate indices.
3267     */
3268     Index *pIdx;
3269     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3270       int k;
3271       assert( IsUniqueIndex(pIdx) );
3272       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3273       assert( IsUniqueIndex(pIndex) );
3274 
3275       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3276       for(k=0; k<pIdx->nKeyCol; k++){
3277         const char *z1;
3278         const char *z2;
3279         assert( pIdx->aiColumn[k]>=0 );
3280         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3281         z1 = pIdx->azColl[k];
3282         z2 = pIndex->azColl[k];
3283         if( sqlite3StrICmp(z1, z2) ) break;
3284       }
3285       if( k==pIdx->nKeyCol ){
3286         if( pIdx->onError!=pIndex->onError ){
3287           /* This constraint creates the same index as a previous
3288           ** constraint specified somewhere in the CREATE TABLE statement.
3289           ** However the ON CONFLICT clauses are different. If both this
3290           ** constraint and the previous equivalent constraint have explicit
3291           ** ON CONFLICT clauses this is an error. Otherwise, use the
3292           ** explicitly specified behavior for the index.
3293           */
3294           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3295             sqlite3ErrorMsg(pParse,
3296                 "conflicting ON CONFLICT clauses specified", 0);
3297           }
3298           if( pIdx->onError==OE_Default ){
3299             pIdx->onError = pIndex->onError;
3300           }
3301         }
3302         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3303         goto exit_create_index;
3304       }
3305     }
3306   }
3307 
3308   /* Link the new Index structure to its table and to the other
3309   ** in-memory database structures.
3310   */
3311   assert( pParse->nErr==0 );
3312   if( db->init.busy ){
3313     Index *p;
3314     assert( !IN_DECLARE_VTAB );
3315     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3316     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3317                           pIndex->zName, pIndex);
3318     if( p ){
3319       assert( p==pIndex );  /* Malloc must have failed */
3320       sqlite3OomFault(db);
3321       goto exit_create_index;
3322     }
3323     db->flags |= SQLITE_InternChanges;
3324     if( pTblName!=0 ){
3325       pIndex->tnum = db->init.newTnum;
3326     }
3327   }
3328 
3329   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3330   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3331   ** emit code to allocate the index rootpage on disk and make an entry for
3332   ** the index in the sqlite_master table and populate the index with
3333   ** content.  But, do not do this if we are simply reading the sqlite_master
3334   ** table to parse the schema, or if this index is the PRIMARY KEY index
3335   ** of a WITHOUT ROWID table.
3336   **
3337   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3338   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3339   ** has just been created, it contains no data and the index initialization
3340   ** step can be skipped.
3341   */
3342   else if( HasRowid(pTab) || pTblName!=0 ){
3343     Vdbe *v;
3344     char *zStmt;
3345     int iMem = ++pParse->nMem;
3346 
3347     v = sqlite3GetVdbe(pParse);
3348     if( v==0 ) goto exit_create_index;
3349 
3350     sqlite3BeginWriteOperation(pParse, 1, iDb);
3351 
3352     /* Create the rootpage for the index using CreateIndex. But before
3353     ** doing so, code a Noop instruction and store its address in
3354     ** Index.tnum. This is required in case this index is actually a
3355     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3356     ** that case the convertToWithoutRowidTable() routine will replace
3357     ** the Noop with a Goto to jump over the VDBE code generated below. */
3358     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3359     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3360 
3361     /* Gather the complete text of the CREATE INDEX statement into
3362     ** the zStmt variable
3363     */
3364     if( pStart ){
3365       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3366       if( pName->z[n-1]==';' ) n--;
3367       /* A named index with an explicit CREATE INDEX statement */
3368       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3369         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3370     }else{
3371       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3372       /* zStmt = sqlite3MPrintf(""); */
3373       zStmt = 0;
3374     }
3375 
3376     /* Add an entry in sqlite_master for this index
3377     */
3378     sqlite3NestedParse(pParse,
3379         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3380         db->aDb[iDb].zDbSName, MASTER_NAME,
3381         pIndex->zName,
3382         pTab->zName,
3383         iMem,
3384         zStmt
3385     );
3386     sqlite3DbFree(db, zStmt);
3387 
3388     /* Fill the index with data and reparse the schema. Code an OP_Expire
3389     ** to invalidate all pre-compiled statements.
3390     */
3391     if( pTblName ){
3392       sqlite3RefillIndex(pParse, pIndex, iMem);
3393       sqlite3ChangeCookie(pParse, iDb);
3394       sqlite3VdbeAddParseSchemaOp(v, iDb,
3395          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3396       sqlite3VdbeAddOp0(v, OP_Expire);
3397     }
3398 
3399     sqlite3VdbeJumpHere(v, pIndex->tnum);
3400   }
3401 
3402   /* When adding an index to the list of indices for a table, make
3403   ** sure all indices labeled OE_Replace come after all those labeled
3404   ** OE_Ignore.  This is necessary for the correct constraint check
3405   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3406   ** UPDATE and INSERT statements.
3407   */
3408   if( db->init.busy || pTblName==0 ){
3409     if( onError!=OE_Replace || pTab->pIndex==0
3410          || pTab->pIndex->onError==OE_Replace){
3411       pIndex->pNext = pTab->pIndex;
3412       pTab->pIndex = pIndex;
3413     }else{
3414       Index *pOther = pTab->pIndex;
3415       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3416         pOther = pOther->pNext;
3417       }
3418       pIndex->pNext = pOther->pNext;
3419       pOther->pNext = pIndex;
3420     }
3421     pIndex = 0;
3422   }
3423 
3424   /* Clean up before exiting */
3425 exit_create_index:
3426   if( pIndex ) freeIndex(db, pIndex);
3427   sqlite3ExprDelete(db, pPIWhere);
3428   sqlite3ExprListDelete(db, pList);
3429   sqlite3SrcListDelete(db, pTblName);
3430   sqlite3DbFree(db, zName);
3431 }
3432 
3433 /*
3434 ** Fill the Index.aiRowEst[] array with default information - information
3435 ** to be used when we have not run the ANALYZE command.
3436 **
3437 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3438 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3439 ** number of rows in the table that match any particular value of the
3440 ** first column of the index.  aiRowEst[2] is an estimate of the number
3441 ** of rows that match any particular combination of the first 2 columns
3442 ** of the index.  And so forth.  It must always be the case that
3443 *
3444 **           aiRowEst[N]<=aiRowEst[N-1]
3445 **           aiRowEst[N]>=1
3446 **
3447 ** Apart from that, we have little to go on besides intuition as to
3448 ** how aiRowEst[] should be initialized.  The numbers generated here
3449 ** are based on typical values found in actual indices.
3450 */
3451 void sqlite3DefaultRowEst(Index *pIdx){
3452   /*                10,  9,  8,  7,  6 */
3453   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3454   LogEst *a = pIdx->aiRowLogEst;
3455   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3456   int i;
3457 
3458   /* Indexes with default row estimates should not have stat1 data */
3459   assert( !pIdx->hasStat1 );
3460 
3461   /* Set the first entry (number of rows in the index) to the estimated
3462   ** number of rows in the table, or half the number of rows in the table
3463   ** for a partial index.   But do not let the estimate drop below 10. */
3464   a[0] = pIdx->pTable->nRowLogEst;
3465   if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10;  assert( 10==sqlite3LogEst(2) );
3466   if( a[0]<33 ) a[0] = 33;                  assert( 33==sqlite3LogEst(10) );
3467 
3468   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3469   ** 6 and each subsequent value (if any) is 5.  */
3470   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3471   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3472     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3473   }
3474 
3475   assert( 0==sqlite3LogEst(1) );
3476   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3477 }
3478 
3479 /*
3480 ** This routine will drop an existing named index.  This routine
3481 ** implements the DROP INDEX statement.
3482 */
3483 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3484   Index *pIndex;
3485   Vdbe *v;
3486   sqlite3 *db = pParse->db;
3487   int iDb;
3488 
3489   assert( pParse->nErr==0 );   /* Never called with prior errors */
3490   if( db->mallocFailed ){
3491     goto exit_drop_index;
3492   }
3493   assert( pName->nSrc==1 );
3494   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3495     goto exit_drop_index;
3496   }
3497   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3498   if( pIndex==0 ){
3499     if( !ifExists ){
3500       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3501     }else{
3502       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3503     }
3504     pParse->checkSchema = 1;
3505     goto exit_drop_index;
3506   }
3507   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3508     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3509       "or PRIMARY KEY constraint cannot be dropped", 0);
3510     goto exit_drop_index;
3511   }
3512   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3513 #ifndef SQLITE_OMIT_AUTHORIZATION
3514   {
3515     int code = SQLITE_DROP_INDEX;
3516     Table *pTab = pIndex->pTable;
3517     const char *zDb = db->aDb[iDb].zDbSName;
3518     const char *zTab = SCHEMA_TABLE(iDb);
3519     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3520       goto exit_drop_index;
3521     }
3522     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3523     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3524       goto exit_drop_index;
3525     }
3526   }
3527 #endif
3528 
3529   /* Generate code to remove the index and from the master table */
3530   v = sqlite3GetVdbe(pParse);
3531   if( v ){
3532     sqlite3BeginWriteOperation(pParse, 1, iDb);
3533     sqlite3NestedParse(pParse,
3534        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3535        db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3536     );
3537     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3538     sqlite3ChangeCookie(pParse, iDb);
3539     destroyRootPage(pParse, pIndex->tnum, iDb);
3540     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3541   }
3542 
3543 exit_drop_index:
3544   sqlite3SrcListDelete(db, pName);
3545 }
3546 
3547 /*
3548 ** pArray is a pointer to an array of objects. Each object in the
3549 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3550 ** to extend the array so that there is space for a new object at the end.
3551 **
3552 ** When this function is called, *pnEntry contains the current size of
3553 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3554 ** in total).
3555 **
3556 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3557 ** space allocated for the new object is zeroed, *pnEntry updated to
3558 ** reflect the new size of the array and a pointer to the new allocation
3559 ** returned. *pIdx is set to the index of the new array entry in this case.
3560 **
3561 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3562 ** unchanged and a copy of pArray returned.
3563 */
3564 void *sqlite3ArrayAllocate(
3565   sqlite3 *db,      /* Connection to notify of malloc failures */
3566   void *pArray,     /* Array of objects.  Might be reallocated */
3567   int szEntry,      /* Size of each object in the array */
3568   int *pnEntry,     /* Number of objects currently in use */
3569   int *pIdx         /* Write the index of a new slot here */
3570 ){
3571   char *z;
3572   int n = *pnEntry;
3573   if( (n & (n-1))==0 ){
3574     int sz = (n==0) ? 1 : 2*n;
3575     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3576     if( pNew==0 ){
3577       *pIdx = -1;
3578       return pArray;
3579     }
3580     pArray = pNew;
3581   }
3582   z = (char*)pArray;
3583   memset(&z[n * szEntry], 0, szEntry);
3584   *pIdx = n;
3585   ++*pnEntry;
3586   return pArray;
3587 }
3588 
3589 /*
3590 ** Append a new element to the given IdList.  Create a new IdList if
3591 ** need be.
3592 **
3593 ** A new IdList is returned, or NULL if malloc() fails.
3594 */
3595 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3596   int i;
3597   if( pList==0 ){
3598     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3599     if( pList==0 ) return 0;
3600   }
3601   pList->a = sqlite3ArrayAllocate(
3602       db,
3603       pList->a,
3604       sizeof(pList->a[0]),
3605       &pList->nId,
3606       &i
3607   );
3608   if( i<0 ){
3609     sqlite3IdListDelete(db, pList);
3610     return 0;
3611   }
3612   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3613   return pList;
3614 }
3615 
3616 /*
3617 ** Delete an IdList.
3618 */
3619 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3620   int i;
3621   if( pList==0 ) return;
3622   for(i=0; i<pList->nId; i++){
3623     sqlite3DbFree(db, pList->a[i].zName);
3624   }
3625   sqlite3DbFree(db, pList->a);
3626   sqlite3DbFree(db, pList);
3627 }
3628 
3629 /*
3630 ** Return the index in pList of the identifier named zId.  Return -1
3631 ** if not found.
3632 */
3633 int sqlite3IdListIndex(IdList *pList, const char *zName){
3634   int i;
3635   if( pList==0 ) return -1;
3636   for(i=0; i<pList->nId; i++){
3637     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3638   }
3639   return -1;
3640 }
3641 
3642 /*
3643 ** Expand the space allocated for the given SrcList object by
3644 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3645 ** New slots are zeroed.
3646 **
3647 ** For example, suppose a SrcList initially contains two entries: A,B.
3648 ** To append 3 new entries onto the end, do this:
3649 **
3650 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3651 **
3652 ** After the call above it would contain:  A, B, nil, nil, nil.
3653 ** If the iStart argument had been 1 instead of 2, then the result
3654 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3655 ** the iStart value would be 0.  The result then would
3656 ** be: nil, nil, nil, A, B.
3657 **
3658 ** If a memory allocation fails the SrcList is unchanged.  The
3659 ** db->mallocFailed flag will be set to true.
3660 */
3661 SrcList *sqlite3SrcListEnlarge(
3662   sqlite3 *db,       /* Database connection to notify of OOM errors */
3663   SrcList *pSrc,     /* The SrcList to be enlarged */
3664   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3665   int iStart         /* Index in pSrc->a[] of first new slot */
3666 ){
3667   int i;
3668 
3669   /* Sanity checking on calling parameters */
3670   assert( iStart>=0 );
3671   assert( nExtra>=1 );
3672   assert( pSrc!=0 );
3673   assert( iStart<=pSrc->nSrc );
3674 
3675   /* Allocate additional space if needed */
3676   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3677     SrcList *pNew;
3678     int nAlloc = pSrc->nSrc*2+nExtra;
3679     int nGot;
3680     pNew = sqlite3DbRealloc(db, pSrc,
3681                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3682     if( pNew==0 ){
3683       assert( db->mallocFailed );
3684       return pSrc;
3685     }
3686     pSrc = pNew;
3687     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3688     pSrc->nAlloc = nGot;
3689   }
3690 
3691   /* Move existing slots that come after the newly inserted slots
3692   ** out of the way */
3693   for(i=pSrc->nSrc-1; i>=iStart; i--){
3694     pSrc->a[i+nExtra] = pSrc->a[i];
3695   }
3696   pSrc->nSrc += nExtra;
3697 
3698   /* Zero the newly allocated slots */
3699   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3700   for(i=iStart; i<iStart+nExtra; i++){
3701     pSrc->a[i].iCursor = -1;
3702   }
3703 
3704   /* Return a pointer to the enlarged SrcList */
3705   return pSrc;
3706 }
3707 
3708 
3709 /*
3710 ** Append a new table name to the given SrcList.  Create a new SrcList if
3711 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3712 **
3713 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3714 ** SrcList might be the same as the SrcList that was input or it might be
3715 ** a new one.  If an OOM error does occurs, then the prior value of pList
3716 ** that is input to this routine is automatically freed.
3717 **
3718 ** If pDatabase is not null, it means that the table has an optional
3719 ** database name prefix.  Like this:  "database.table".  The pDatabase
3720 ** points to the table name and the pTable points to the database name.
3721 ** The SrcList.a[].zName field is filled with the table name which might
3722 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3723 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3724 ** or with NULL if no database is specified.
3725 **
3726 ** In other words, if call like this:
3727 **
3728 **         sqlite3SrcListAppend(D,A,B,0);
3729 **
3730 ** Then B is a table name and the database name is unspecified.  If called
3731 ** like this:
3732 **
3733 **         sqlite3SrcListAppend(D,A,B,C);
3734 **
3735 ** Then C is the table name and B is the database name.  If C is defined
3736 ** then so is B.  In other words, we never have a case where:
3737 **
3738 **         sqlite3SrcListAppend(D,A,0,C);
3739 **
3740 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3741 ** before being added to the SrcList.
3742 */
3743 SrcList *sqlite3SrcListAppend(
3744   sqlite3 *db,        /* Connection to notify of malloc failures */
3745   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3746   Token *pTable,      /* Table to append */
3747   Token *pDatabase    /* Database of the table */
3748 ){
3749   struct SrcList_item *pItem;
3750   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3751   assert( db!=0 );
3752   if( pList==0 ){
3753     pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3754     if( pList==0 ) return 0;
3755     pList->nAlloc = 1;
3756     pList->nSrc = 1;
3757     memset(&pList->a[0], 0, sizeof(pList->a[0]));
3758     pList->a[0].iCursor = -1;
3759   }else{
3760     pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3761   }
3762   if( db->mallocFailed ){
3763     sqlite3SrcListDelete(db, pList);
3764     return 0;
3765   }
3766   pItem = &pList->a[pList->nSrc-1];
3767   if( pDatabase && pDatabase->z==0 ){
3768     pDatabase = 0;
3769   }
3770   if( pDatabase ){
3771     Token *pTemp = pDatabase;
3772     pDatabase = pTable;
3773     pTable = pTemp;
3774   }
3775   pItem->zName = sqlite3NameFromToken(db, pTable);
3776   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3777   return pList;
3778 }
3779 
3780 /*
3781 ** Assign VdbeCursor index numbers to all tables in a SrcList
3782 */
3783 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3784   int i;
3785   struct SrcList_item *pItem;
3786   assert(pList || pParse->db->mallocFailed );
3787   if( pList ){
3788     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3789       if( pItem->iCursor>=0 ) break;
3790       pItem->iCursor = pParse->nTab++;
3791       if( pItem->pSelect ){
3792         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3793       }
3794     }
3795   }
3796 }
3797 
3798 /*
3799 ** Delete an entire SrcList including all its substructure.
3800 */
3801 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3802   int i;
3803   struct SrcList_item *pItem;
3804   if( pList==0 ) return;
3805   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3806     sqlite3DbFree(db, pItem->zDatabase);
3807     sqlite3DbFree(db, pItem->zName);
3808     sqlite3DbFree(db, pItem->zAlias);
3809     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3810     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3811     sqlite3DeleteTable(db, pItem->pTab);
3812     sqlite3SelectDelete(db, pItem->pSelect);
3813     sqlite3ExprDelete(db, pItem->pOn);
3814     sqlite3IdListDelete(db, pItem->pUsing);
3815   }
3816   sqlite3DbFree(db, pList);
3817 }
3818 
3819 /*
3820 ** This routine is called by the parser to add a new term to the
3821 ** end of a growing FROM clause.  The "p" parameter is the part of
3822 ** the FROM clause that has already been constructed.  "p" is NULL
3823 ** if this is the first term of the FROM clause.  pTable and pDatabase
3824 ** are the name of the table and database named in the FROM clause term.
3825 ** pDatabase is NULL if the database name qualifier is missing - the
3826 ** usual case.  If the term has an alias, then pAlias points to the
3827 ** alias token.  If the term is a subquery, then pSubquery is the
3828 ** SELECT statement that the subquery encodes.  The pTable and
3829 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3830 ** parameters are the content of the ON and USING clauses.
3831 **
3832 ** Return a new SrcList which encodes is the FROM with the new
3833 ** term added.
3834 */
3835 SrcList *sqlite3SrcListAppendFromTerm(
3836   Parse *pParse,          /* Parsing context */
3837   SrcList *p,             /* The left part of the FROM clause already seen */
3838   Token *pTable,          /* Name of the table to add to the FROM clause */
3839   Token *pDatabase,       /* Name of the database containing pTable */
3840   Token *pAlias,          /* The right-hand side of the AS subexpression */
3841   Select *pSubquery,      /* A subquery used in place of a table name */
3842   Expr *pOn,              /* The ON clause of a join */
3843   IdList *pUsing          /* The USING clause of a join */
3844 ){
3845   struct SrcList_item *pItem;
3846   sqlite3 *db = pParse->db;
3847   if( !p && (pOn || pUsing) ){
3848     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3849       (pOn ? "ON" : "USING")
3850     );
3851     goto append_from_error;
3852   }
3853   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3854   if( p==0 || NEVER(p->nSrc==0) ){
3855     goto append_from_error;
3856   }
3857   pItem = &p->a[p->nSrc-1];
3858   assert( pAlias!=0 );
3859   if( pAlias->n ){
3860     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3861   }
3862   pItem->pSelect = pSubquery;
3863   pItem->pOn = pOn;
3864   pItem->pUsing = pUsing;
3865   return p;
3866 
3867  append_from_error:
3868   assert( p==0 );
3869   sqlite3ExprDelete(db, pOn);
3870   sqlite3IdListDelete(db, pUsing);
3871   sqlite3SelectDelete(db, pSubquery);
3872   return 0;
3873 }
3874 
3875 /*
3876 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3877 ** element of the source-list passed as the second argument.
3878 */
3879 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3880   assert( pIndexedBy!=0 );
3881   if( p && ALWAYS(p->nSrc>0) ){
3882     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3883     assert( pItem->fg.notIndexed==0 );
3884     assert( pItem->fg.isIndexedBy==0 );
3885     assert( pItem->fg.isTabFunc==0 );
3886     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3887       /* A "NOT INDEXED" clause was supplied. See parse.y
3888       ** construct "indexed_opt" for details. */
3889       pItem->fg.notIndexed = 1;
3890     }else{
3891       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3892       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3893     }
3894   }
3895 }
3896 
3897 /*
3898 ** Add the list of function arguments to the SrcList entry for a
3899 ** table-valued-function.
3900 */
3901 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3902   if( p ){
3903     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3904     assert( pItem->fg.notIndexed==0 );
3905     assert( pItem->fg.isIndexedBy==0 );
3906     assert( pItem->fg.isTabFunc==0 );
3907     pItem->u1.pFuncArg = pList;
3908     pItem->fg.isTabFunc = 1;
3909   }else{
3910     sqlite3ExprListDelete(pParse->db, pList);
3911   }
3912 }
3913 
3914 /*
3915 ** When building up a FROM clause in the parser, the join operator
3916 ** is initially attached to the left operand.  But the code generator
3917 ** expects the join operator to be on the right operand.  This routine
3918 ** Shifts all join operators from left to right for an entire FROM
3919 ** clause.
3920 **
3921 ** Example: Suppose the join is like this:
3922 **
3923 **           A natural cross join B
3924 **
3925 ** The operator is "natural cross join".  The A and B operands are stored
3926 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3927 ** operator with A.  This routine shifts that operator over to B.
3928 */
3929 void sqlite3SrcListShiftJoinType(SrcList *p){
3930   if( p ){
3931     int i;
3932     for(i=p->nSrc-1; i>0; i--){
3933       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3934     }
3935     p->a[0].fg.jointype = 0;
3936   }
3937 }
3938 
3939 /*
3940 ** Generate VDBE code for a BEGIN statement.
3941 */
3942 void sqlite3BeginTransaction(Parse *pParse, int type){
3943   sqlite3 *db;
3944   Vdbe *v;
3945   int i;
3946 
3947   assert( pParse!=0 );
3948   db = pParse->db;
3949   assert( db!=0 );
3950   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3951     return;
3952   }
3953   v = sqlite3GetVdbe(pParse);
3954   if( !v ) return;
3955   if( type!=TK_DEFERRED ){
3956     for(i=0; i<db->nDb; i++){
3957       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3958       sqlite3VdbeUsesBtree(v, i);
3959     }
3960   }
3961   sqlite3VdbeAddOp0(v, OP_AutoCommit);
3962 }
3963 
3964 /*
3965 ** Generate VDBE code for a COMMIT statement.
3966 */
3967 void sqlite3CommitTransaction(Parse *pParse){
3968   Vdbe *v;
3969 
3970   assert( pParse!=0 );
3971   assert( pParse->db!=0 );
3972   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3973     return;
3974   }
3975   v = sqlite3GetVdbe(pParse);
3976   if( v ){
3977     sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
3978   }
3979 }
3980 
3981 /*
3982 ** Generate VDBE code for a ROLLBACK statement.
3983 */
3984 void sqlite3RollbackTransaction(Parse *pParse){
3985   Vdbe *v;
3986 
3987   assert( pParse!=0 );
3988   assert( pParse->db!=0 );
3989   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3990     return;
3991   }
3992   v = sqlite3GetVdbe(pParse);
3993   if( v ){
3994     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3995   }
3996 }
3997 
3998 /*
3999 ** This function is called by the parser when it parses a command to create,
4000 ** release or rollback an SQL savepoint.
4001 */
4002 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4003   char *zName = sqlite3NameFromToken(pParse->db, pName);
4004   if( zName ){
4005     Vdbe *v = sqlite3GetVdbe(pParse);
4006 #ifndef SQLITE_OMIT_AUTHORIZATION
4007     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4008     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4009 #endif
4010     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4011       sqlite3DbFree(pParse->db, zName);
4012       return;
4013     }
4014     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4015   }
4016 }
4017 
4018 /*
4019 ** Make sure the TEMP database is open and available for use.  Return
4020 ** the number of errors.  Leave any error messages in the pParse structure.
4021 */
4022 int sqlite3OpenTempDatabase(Parse *pParse){
4023   sqlite3 *db = pParse->db;
4024   if( db->aDb[1].pBt==0 && !pParse->explain ){
4025     int rc;
4026     Btree *pBt;
4027     static const int flags =
4028           SQLITE_OPEN_READWRITE |
4029           SQLITE_OPEN_CREATE |
4030           SQLITE_OPEN_EXCLUSIVE |
4031           SQLITE_OPEN_DELETEONCLOSE |
4032           SQLITE_OPEN_TEMP_DB;
4033 
4034     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4035     if( rc!=SQLITE_OK ){
4036       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4037         "file for storing temporary tables");
4038       pParse->rc = rc;
4039       return 1;
4040     }
4041     db->aDb[1].pBt = pBt;
4042     assert( db->aDb[1].pSchema );
4043     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4044       sqlite3OomFault(db);
4045       return 1;
4046     }
4047   }
4048   return 0;
4049 }
4050 
4051 /*
4052 ** Record the fact that the schema cookie will need to be verified
4053 ** for database iDb.  The code to actually verify the schema cookie
4054 ** will occur at the end of the top-level VDBE and will be generated
4055 ** later, by sqlite3FinishCoding().
4056 */
4057 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4058   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4059 
4060   assert( iDb>=0 && iDb<pParse->db->nDb );
4061   assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4062   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4063   assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4064   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4065     DbMaskSet(pToplevel->cookieMask, iDb);
4066     if( !OMIT_TEMPDB && iDb==1 ){
4067       sqlite3OpenTempDatabase(pToplevel);
4068     }
4069   }
4070 }
4071 
4072 /*
4073 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4074 ** attached database. Otherwise, invoke it for the database named zDb only.
4075 */
4076 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4077   sqlite3 *db = pParse->db;
4078   int i;
4079   for(i=0; i<db->nDb; i++){
4080     Db *pDb = &db->aDb[i];
4081     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4082       sqlite3CodeVerifySchema(pParse, i);
4083     }
4084   }
4085 }
4086 
4087 /*
4088 ** Generate VDBE code that prepares for doing an operation that
4089 ** might change the database.
4090 **
4091 ** This routine starts a new transaction if we are not already within
4092 ** a transaction.  If we are already within a transaction, then a checkpoint
4093 ** is set if the setStatement parameter is true.  A checkpoint should
4094 ** be set for operations that might fail (due to a constraint) part of
4095 ** the way through and which will need to undo some writes without having to
4096 ** rollback the whole transaction.  For operations where all constraints
4097 ** can be checked before any changes are made to the database, it is never
4098 ** necessary to undo a write and the checkpoint should not be set.
4099 */
4100 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4101   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4102   sqlite3CodeVerifySchema(pParse, iDb);
4103   DbMaskSet(pToplevel->writeMask, iDb);
4104   pToplevel->isMultiWrite |= setStatement;
4105 }
4106 
4107 /*
4108 ** Indicate that the statement currently under construction might write
4109 ** more than one entry (example: deleting one row then inserting another,
4110 ** inserting multiple rows in a table, or inserting a row and index entries.)
4111 ** If an abort occurs after some of these writes have completed, then it will
4112 ** be necessary to undo the completed writes.
4113 */
4114 void sqlite3MultiWrite(Parse *pParse){
4115   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4116   pToplevel->isMultiWrite = 1;
4117 }
4118 
4119 /*
4120 ** The code generator calls this routine if is discovers that it is
4121 ** possible to abort a statement prior to completion.  In order to
4122 ** perform this abort without corrupting the database, we need to make
4123 ** sure that the statement is protected by a statement transaction.
4124 **
4125 ** Technically, we only need to set the mayAbort flag if the
4126 ** isMultiWrite flag was previously set.  There is a time dependency
4127 ** such that the abort must occur after the multiwrite.  This makes
4128 ** some statements involving the REPLACE conflict resolution algorithm
4129 ** go a little faster.  But taking advantage of this time dependency
4130 ** makes it more difficult to prove that the code is correct (in
4131 ** particular, it prevents us from writing an effective
4132 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4133 ** to take the safe route and skip the optimization.
4134 */
4135 void sqlite3MayAbort(Parse *pParse){
4136   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4137   pToplevel->mayAbort = 1;
4138 }
4139 
4140 /*
4141 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4142 ** error. The onError parameter determines which (if any) of the statement
4143 ** and/or current transaction is rolled back.
4144 */
4145 void sqlite3HaltConstraint(
4146   Parse *pParse,    /* Parsing context */
4147   int errCode,      /* extended error code */
4148   int onError,      /* Constraint type */
4149   char *p4,         /* Error message */
4150   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4151   u8 p5Errmsg       /* P5_ErrMsg type */
4152 ){
4153   Vdbe *v = sqlite3GetVdbe(pParse);
4154   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4155   if( onError==OE_Abort ){
4156     sqlite3MayAbort(pParse);
4157   }
4158   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4159   sqlite3VdbeChangeP5(v, p5Errmsg);
4160 }
4161 
4162 /*
4163 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4164 */
4165 void sqlite3UniqueConstraint(
4166   Parse *pParse,    /* Parsing context */
4167   int onError,      /* Constraint type */
4168   Index *pIdx       /* The index that triggers the constraint */
4169 ){
4170   char *zErr;
4171   int j;
4172   StrAccum errMsg;
4173   Table *pTab = pIdx->pTable;
4174 
4175   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4176   if( pIdx->aColExpr ){
4177     sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4178   }else{
4179     for(j=0; j<pIdx->nKeyCol; j++){
4180       char *zCol;
4181       assert( pIdx->aiColumn[j]>=0 );
4182       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4183       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4184       sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
4185     }
4186   }
4187   zErr = sqlite3StrAccumFinish(&errMsg);
4188   sqlite3HaltConstraint(pParse,
4189     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4190                             : SQLITE_CONSTRAINT_UNIQUE,
4191     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4192 }
4193 
4194 
4195 /*
4196 ** Code an OP_Halt due to non-unique rowid.
4197 */
4198 void sqlite3RowidConstraint(
4199   Parse *pParse,    /* Parsing context */
4200   int onError,      /* Conflict resolution algorithm */
4201   Table *pTab       /* The table with the non-unique rowid */
4202 ){
4203   char *zMsg;
4204   int rc;
4205   if( pTab->iPKey>=0 ){
4206     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4207                           pTab->aCol[pTab->iPKey].zName);
4208     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4209   }else{
4210     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4211     rc = SQLITE_CONSTRAINT_ROWID;
4212   }
4213   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4214                         P5_ConstraintUnique);
4215 }
4216 
4217 /*
4218 ** Check to see if pIndex uses the collating sequence pColl.  Return
4219 ** true if it does and false if it does not.
4220 */
4221 #ifndef SQLITE_OMIT_REINDEX
4222 static int collationMatch(const char *zColl, Index *pIndex){
4223   int i;
4224   assert( zColl!=0 );
4225   for(i=0; i<pIndex->nColumn; i++){
4226     const char *z = pIndex->azColl[i];
4227     assert( z!=0 || pIndex->aiColumn[i]<0 );
4228     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4229       return 1;
4230     }
4231   }
4232   return 0;
4233 }
4234 #endif
4235 
4236 /*
4237 ** Recompute all indices of pTab that use the collating sequence pColl.
4238 ** If pColl==0 then recompute all indices of pTab.
4239 */
4240 #ifndef SQLITE_OMIT_REINDEX
4241 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4242   Index *pIndex;              /* An index associated with pTab */
4243 
4244   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4245     if( zColl==0 || collationMatch(zColl, pIndex) ){
4246       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4247       sqlite3BeginWriteOperation(pParse, 0, iDb);
4248       sqlite3RefillIndex(pParse, pIndex, -1);
4249     }
4250   }
4251 }
4252 #endif
4253 
4254 /*
4255 ** Recompute all indices of all tables in all databases where the
4256 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4257 ** all indices everywhere.
4258 */
4259 #ifndef SQLITE_OMIT_REINDEX
4260 static void reindexDatabases(Parse *pParse, char const *zColl){
4261   Db *pDb;                    /* A single database */
4262   int iDb;                    /* The database index number */
4263   sqlite3 *db = pParse->db;   /* The database connection */
4264   HashElem *k;                /* For looping over tables in pDb */
4265   Table *pTab;                /* A table in the database */
4266 
4267   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4268   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4269     assert( pDb!=0 );
4270     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4271       pTab = (Table*)sqliteHashData(k);
4272       reindexTable(pParse, pTab, zColl);
4273     }
4274   }
4275 }
4276 #endif
4277 
4278 /*
4279 ** Generate code for the REINDEX command.
4280 **
4281 **        REINDEX                            -- 1
4282 **        REINDEX  <collation>               -- 2
4283 **        REINDEX  ?<database>.?<tablename>  -- 3
4284 **        REINDEX  ?<database>.?<indexname>  -- 4
4285 **
4286 ** Form 1 causes all indices in all attached databases to be rebuilt.
4287 ** Form 2 rebuilds all indices in all databases that use the named
4288 ** collating function.  Forms 3 and 4 rebuild the named index or all
4289 ** indices associated with the named table.
4290 */
4291 #ifndef SQLITE_OMIT_REINDEX
4292 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4293   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4294   char *z;                    /* Name of a table or index */
4295   const char *zDb;            /* Name of the database */
4296   Table *pTab;                /* A table in the database */
4297   Index *pIndex;              /* An index associated with pTab */
4298   int iDb;                    /* The database index number */
4299   sqlite3 *db = pParse->db;   /* The database connection */
4300   Token *pObjName;            /* Name of the table or index to be reindexed */
4301 
4302   /* Read the database schema. If an error occurs, leave an error message
4303   ** and code in pParse and return NULL. */
4304   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4305     return;
4306   }
4307 
4308   if( pName1==0 ){
4309     reindexDatabases(pParse, 0);
4310     return;
4311   }else if( NEVER(pName2==0) || pName2->z==0 ){
4312     char *zColl;
4313     assert( pName1->z );
4314     zColl = sqlite3NameFromToken(pParse->db, pName1);
4315     if( !zColl ) return;
4316     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4317     if( pColl ){
4318       reindexDatabases(pParse, zColl);
4319       sqlite3DbFree(db, zColl);
4320       return;
4321     }
4322     sqlite3DbFree(db, zColl);
4323   }
4324   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4325   if( iDb<0 ) return;
4326   z = sqlite3NameFromToken(db, pObjName);
4327   if( z==0 ) return;
4328   zDb = db->aDb[iDb].zDbSName;
4329   pTab = sqlite3FindTable(db, z, zDb);
4330   if( pTab ){
4331     reindexTable(pParse, pTab, 0);
4332     sqlite3DbFree(db, z);
4333     return;
4334   }
4335   pIndex = sqlite3FindIndex(db, z, zDb);
4336   sqlite3DbFree(db, z);
4337   if( pIndex ){
4338     sqlite3BeginWriteOperation(pParse, 0, iDb);
4339     sqlite3RefillIndex(pParse, pIndex, -1);
4340     return;
4341   }
4342   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4343 }
4344 #endif
4345 
4346 /*
4347 ** Return a KeyInfo structure that is appropriate for the given Index.
4348 **
4349 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4350 ** when it has finished using it.
4351 */
4352 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4353   int i;
4354   int nCol = pIdx->nColumn;
4355   int nKey = pIdx->nKeyCol;
4356   KeyInfo *pKey;
4357   if( pParse->nErr ) return 0;
4358   if( pIdx->uniqNotNull ){
4359     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4360   }else{
4361     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4362   }
4363   if( pKey ){
4364     assert( sqlite3KeyInfoIsWriteable(pKey) );
4365     for(i=0; i<nCol; i++){
4366       const char *zColl = pIdx->azColl[i];
4367       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4368                         sqlite3LocateCollSeq(pParse, zColl);
4369       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4370     }
4371     if( pParse->nErr ){
4372       sqlite3KeyInfoUnref(pKey);
4373       pKey = 0;
4374     }
4375   }
4376   return pKey;
4377 }
4378 
4379 #ifndef SQLITE_OMIT_CTE
4380 /*
4381 ** This routine is invoked once per CTE by the parser while parsing a
4382 ** WITH clause.
4383 */
4384 With *sqlite3WithAdd(
4385   Parse *pParse,          /* Parsing context */
4386   With *pWith,            /* Existing WITH clause, or NULL */
4387   Token *pName,           /* Name of the common-table */
4388   ExprList *pArglist,     /* Optional column name list for the table */
4389   Select *pQuery          /* Query used to initialize the table */
4390 ){
4391   sqlite3 *db = pParse->db;
4392   With *pNew;
4393   char *zName;
4394 
4395   /* Check that the CTE name is unique within this WITH clause. If
4396   ** not, store an error in the Parse structure. */
4397   zName = sqlite3NameFromToken(pParse->db, pName);
4398   if( zName && pWith ){
4399     int i;
4400     for(i=0; i<pWith->nCte; i++){
4401       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4402         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4403       }
4404     }
4405   }
4406 
4407   if( pWith ){
4408     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4409     pNew = sqlite3DbRealloc(db, pWith, nByte);
4410   }else{
4411     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4412   }
4413   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4414 
4415   if( db->mallocFailed ){
4416     sqlite3ExprListDelete(db, pArglist);
4417     sqlite3SelectDelete(db, pQuery);
4418     sqlite3DbFree(db, zName);
4419     pNew = pWith;
4420   }else{
4421     pNew->a[pNew->nCte].pSelect = pQuery;
4422     pNew->a[pNew->nCte].pCols = pArglist;
4423     pNew->a[pNew->nCte].zName = zName;
4424     pNew->a[pNew->nCte].zCteErr = 0;
4425     pNew->nCte++;
4426   }
4427 
4428   return pNew;
4429 }
4430 
4431 /*
4432 ** Free the contents of the With object passed as the second argument.
4433 */
4434 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4435   if( pWith ){
4436     int i;
4437     for(i=0; i<pWith->nCte; i++){
4438       struct Cte *pCte = &pWith->a[i];
4439       sqlite3ExprListDelete(db, pCte->pCols);
4440       sqlite3SelectDelete(db, pCte->pSelect);
4441       sqlite3DbFree(db, pCte->zName);
4442     }
4443     sqlite3DbFree(db, pWith);
4444   }
4445 }
4446 #endif /* !defined(SQLITE_OMIT_CTE) */
4447