1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 /* 28 ** This routine is called when a new SQL statement is beginning to 29 ** be parsed. Initialize the pParse structure as needed. 30 */ 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 32 pParse->explain = (u8)explainFlag; 33 pParse->nVar = 0; 34 } 35 36 #ifndef SQLITE_OMIT_SHARED_CACHE 37 /* 38 ** The TableLock structure is only used by the sqlite3TableLock() and 39 ** codeTableLocks() functions. 40 */ 41 struct TableLock { 42 int iDb; /* The database containing the table to be locked */ 43 int iTab; /* The root page of the table to be locked */ 44 u8 isWriteLock; /* True for write lock. False for a read lock */ 45 const char *zName; /* Name of the table */ 46 }; 47 48 /* 49 ** Record the fact that we want to lock a table at run-time. 50 ** 51 ** The table to be locked has root page iTab and is found in database iDb. 52 ** A read or a write lock can be taken depending on isWritelock. 53 ** 54 ** This routine just records the fact that the lock is desired. The 55 ** code to make the lock occur is generated by a later call to 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 57 */ 58 void sqlite3TableLock( 59 Parse *pParse, /* Parsing context */ 60 int iDb, /* Index of the database containing the table to lock */ 61 int iTab, /* Root page number of the table to be locked */ 62 u8 isWriteLock, /* True for a write lock */ 63 const char *zName /* Name of the table to be locked */ 64 ){ 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 66 int i; 67 int nBytes; 68 TableLock *p; 69 assert( iDb>=0 ); 70 71 for(i=0; i<pToplevel->nTableLock; i++){ 72 p = &pToplevel->aTableLock[i]; 73 if( p->iDb==iDb && p->iTab==iTab ){ 74 p->isWriteLock = (p->isWriteLock || isWriteLock); 75 return; 76 } 77 } 78 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 80 pToplevel->aTableLock = 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 82 if( pToplevel->aTableLock ){ 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 84 p->iDb = iDb; 85 p->iTab = iTab; 86 p->isWriteLock = isWriteLock; 87 p->zName = zName; 88 }else{ 89 pToplevel->nTableLock = 0; 90 pToplevel->db->mallocFailed = 1; 91 } 92 } 93 94 /* 95 ** Code an OP_TableLock instruction for each table locked by the 96 ** statement (configured by calls to sqlite3TableLock()). 97 */ 98 static void codeTableLocks(Parse *pParse){ 99 int i; 100 Vdbe *pVdbe; 101 102 pVdbe = sqlite3GetVdbe(pParse); 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 104 105 for(i=0; i<pParse->nTableLock; i++){ 106 TableLock *p = &pParse->aTableLock[i]; 107 int p1 = p->iDb; 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 109 p->zName, P4_STATIC); 110 } 111 } 112 #else 113 #define codeTableLocks(x) 114 #endif 115 116 /* 117 ** This routine is called after a single SQL statement has been 118 ** parsed and a VDBE program to execute that statement has been 119 ** prepared. This routine puts the finishing touches on the 120 ** VDBE program and resets the pParse structure for the next 121 ** parse. 122 ** 123 ** Note that if an error occurred, it might be the case that 124 ** no VDBE code was generated. 125 */ 126 void sqlite3FinishCoding(Parse *pParse){ 127 sqlite3 *db; 128 Vdbe *v; 129 130 db = pParse->db; 131 if( db->mallocFailed ) return; 132 if( pParse->nested ) return; 133 if( pParse->nErr ) return; 134 135 /* Begin by generating some termination code at the end of the 136 ** vdbe program 137 */ 138 v = sqlite3GetVdbe(pParse); 139 assert( !pParse->isMultiWrite 140 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 141 if( v ){ 142 sqlite3VdbeAddOp0(v, OP_Halt); 143 144 /* The cookie mask contains one bit for each database file open. 145 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 146 ** set for each database that is used. Generate code to start a 147 ** transaction on each used database and to verify the schema cookie 148 ** on each used database. 149 */ 150 if( pParse->cookieGoto>0 ){ 151 u32 mask; 152 int iDb; 153 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 154 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 155 if( (mask & pParse->cookieMask)==0 ) continue; 156 sqlite3VdbeUsesBtree(v, iDb); 157 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 158 if( db->init.busy==0 ){ 159 sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); 160 } 161 } 162 #ifndef SQLITE_OMIT_VIRTUALTABLE 163 { 164 int i; 165 for(i=0; i<pParse->nVtabLock; i++){ 166 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 167 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 168 } 169 pParse->nVtabLock = 0; 170 } 171 #endif 172 173 /* Once all the cookies have been verified and transactions opened, 174 ** obtain the required table-locks. This is a no-op unless the 175 ** shared-cache feature is enabled. 176 */ 177 codeTableLocks(pParse); 178 179 /* Initialize any AUTOINCREMENT data structures required. 180 */ 181 sqlite3AutoincrementBegin(pParse); 182 183 /* Finally, jump back to the beginning of the executable code. */ 184 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); 185 } 186 } 187 188 189 /* Get the VDBE program ready for execution 190 */ 191 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 192 #ifdef SQLITE_DEBUG 193 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 194 sqlite3VdbeTrace(v, trace); 195 #endif 196 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 197 /* A minimum of one cursor is required if autoincrement is used 198 * See ticket [a696379c1f08866] */ 199 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 200 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem, 201 pParse->nTab, pParse->nMaxArg, pParse->explain, 202 pParse->isMultiWrite && pParse->mayAbort); 203 pParse->rc = SQLITE_DONE; 204 pParse->colNamesSet = 0; 205 }else{ 206 pParse->rc = SQLITE_ERROR; 207 } 208 pParse->nTab = 0; 209 pParse->nMem = 0; 210 pParse->nSet = 0; 211 pParse->nVar = 0; 212 pParse->cookieMask = 0; 213 pParse->cookieGoto = 0; 214 } 215 216 /* 217 ** Run the parser and code generator recursively in order to generate 218 ** code for the SQL statement given onto the end of the pParse context 219 ** currently under construction. When the parser is run recursively 220 ** this way, the final OP_Halt is not appended and other initialization 221 ** and finalization steps are omitted because those are handling by the 222 ** outermost parser. 223 ** 224 ** Not everything is nestable. This facility is designed to permit 225 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 226 ** care if you decide to try to use this routine for some other purposes. 227 */ 228 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 229 va_list ap; 230 char *zSql; 231 char *zErrMsg = 0; 232 sqlite3 *db = pParse->db; 233 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 234 char saveBuf[SAVE_SZ]; 235 236 if( pParse->nErr ) return; 237 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 238 va_start(ap, zFormat); 239 zSql = sqlite3VMPrintf(db, zFormat, ap); 240 va_end(ap); 241 if( zSql==0 ){ 242 return; /* A malloc must have failed */ 243 } 244 pParse->nested++; 245 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 246 memset(&pParse->nVar, 0, SAVE_SZ); 247 sqlite3RunParser(pParse, zSql, &zErrMsg); 248 sqlite3DbFree(db, zErrMsg); 249 sqlite3DbFree(db, zSql); 250 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 251 pParse->nested--; 252 } 253 254 /* 255 ** Locate the in-memory structure that describes a particular database 256 ** table given the name of that table and (optionally) the name of the 257 ** database containing the table. Return NULL if not found. 258 ** 259 ** If zDatabase is 0, all databases are searched for the table and the 260 ** first matching table is returned. (No checking for duplicate table 261 ** names is done.) The search order is TEMP first, then MAIN, then any 262 ** auxiliary databases added using the ATTACH command. 263 ** 264 ** See also sqlite3LocateTable(). 265 */ 266 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 267 Table *p = 0; 268 int i; 269 int nName; 270 assert( zName!=0 ); 271 nName = sqlite3Strlen30(zName); 272 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 273 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 274 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 275 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 276 if( p ) break; 277 } 278 return p; 279 } 280 281 /* 282 ** Locate the in-memory structure that describes a particular database 283 ** table given the name of that table and (optionally) the name of the 284 ** database containing the table. Return NULL if not found. Also leave an 285 ** error message in pParse->zErrMsg. 286 ** 287 ** The difference between this routine and sqlite3FindTable() is that this 288 ** routine leaves an error message in pParse->zErrMsg where 289 ** sqlite3FindTable() does not. 290 */ 291 Table *sqlite3LocateTable( 292 Parse *pParse, /* context in which to report errors */ 293 int isView, /* True if looking for a VIEW rather than a TABLE */ 294 const char *zName, /* Name of the table we are looking for */ 295 const char *zDbase /* Name of the database. Might be NULL */ 296 ){ 297 Table *p; 298 299 /* Read the database schema. If an error occurs, leave an error message 300 ** and code in pParse and return NULL. */ 301 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 302 return 0; 303 } 304 305 p = sqlite3FindTable(pParse->db, zName, zDbase); 306 if( p==0 ){ 307 const char *zMsg = isView ? "no such view" : "no such table"; 308 if( zDbase ){ 309 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 310 }else{ 311 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 312 } 313 pParse->checkSchema = 1; 314 } 315 return p; 316 } 317 318 /* 319 ** Locate the in-memory structure that describes 320 ** a particular index given the name of that index 321 ** and the name of the database that contains the index. 322 ** Return NULL if not found. 323 ** 324 ** If zDatabase is 0, all databases are searched for the 325 ** table and the first matching index is returned. (No checking 326 ** for duplicate index names is done.) The search order is 327 ** TEMP first, then MAIN, then any auxiliary databases added 328 ** using the ATTACH command. 329 */ 330 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 331 Index *p = 0; 332 int i; 333 int nName = sqlite3Strlen30(zName); 334 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 335 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 336 Schema *pSchema = db->aDb[j].pSchema; 337 assert( pSchema ); 338 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 339 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 340 if( p ) break; 341 } 342 return p; 343 } 344 345 /* 346 ** Reclaim the memory used by an index 347 */ 348 static void freeIndex(sqlite3 *db, Index *p){ 349 #ifndef SQLITE_OMIT_ANALYZE 350 sqlite3DeleteIndexSamples(db, p); 351 #endif 352 sqlite3DbFree(db, p->zColAff); 353 sqlite3DbFree(db, p); 354 } 355 356 /* 357 ** For the index called zIdxName which is found in the database iDb, 358 ** unlike that index from its Table then remove the index from 359 ** the index hash table and free all memory structures associated 360 ** with the index. 361 */ 362 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 363 Index *pIndex; 364 int len; 365 Hash *pHash = &db->aDb[iDb].pSchema->idxHash; 366 367 len = sqlite3Strlen30(zIdxName); 368 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); 369 if( pIndex ){ 370 if( pIndex->pTable->pIndex==pIndex ){ 371 pIndex->pTable->pIndex = pIndex->pNext; 372 }else{ 373 Index *p; 374 /* Justification of ALWAYS(); The index must be on the list of 375 ** indices. */ 376 p = pIndex->pTable->pIndex; 377 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 378 if( ALWAYS(p && p->pNext==pIndex) ){ 379 p->pNext = pIndex->pNext; 380 } 381 } 382 freeIndex(db, pIndex); 383 } 384 db->flags |= SQLITE_InternChanges; 385 } 386 387 /* 388 ** Erase all schema information from the in-memory hash tables of 389 ** a single database. This routine is called to reclaim memory 390 ** before the database closes. It is also called during a rollback 391 ** if there were schema changes during the transaction or if a 392 ** schema-cookie mismatch occurs. 393 ** 394 ** If iDb==0 then reset the internal schema tables for all database 395 ** files. If iDb>=1 then reset the internal schema for only the 396 ** single file indicated. 397 */ 398 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 399 int i, j; 400 assert( iDb>=0 && iDb<db->nDb ); 401 402 if( iDb==0 ){ 403 sqlite3BtreeEnterAll(db); 404 } 405 for(i=iDb; i<db->nDb; i++){ 406 Db *pDb = &db->aDb[i]; 407 if( pDb->pSchema ){ 408 assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt))); 409 sqlite3SchemaFree(pDb->pSchema); 410 } 411 if( iDb>0 ) return; 412 } 413 assert( iDb==0 ); 414 db->flags &= ~SQLITE_InternChanges; 415 sqlite3VtabUnlockList(db); 416 sqlite3BtreeLeaveAll(db); 417 418 /* If one or more of the auxiliary database files has been closed, 419 ** then remove them from the auxiliary database list. We take the 420 ** opportunity to do this here since we have just deleted all of the 421 ** schema hash tables and therefore do not have to make any changes 422 ** to any of those tables. 423 */ 424 for(i=j=2; i<db->nDb; i++){ 425 struct Db *pDb = &db->aDb[i]; 426 if( pDb->pBt==0 ){ 427 sqlite3DbFree(db, pDb->zName); 428 pDb->zName = 0; 429 continue; 430 } 431 if( j<i ){ 432 db->aDb[j] = db->aDb[i]; 433 } 434 j++; 435 } 436 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 437 db->nDb = j; 438 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 439 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 440 sqlite3DbFree(db, db->aDb); 441 db->aDb = db->aDbStatic; 442 } 443 } 444 445 /* 446 ** This routine is called when a commit occurs. 447 */ 448 void sqlite3CommitInternalChanges(sqlite3 *db){ 449 db->flags &= ~SQLITE_InternChanges; 450 } 451 452 /* 453 ** Delete memory allocated for the column names of a table or view (the 454 ** Table.aCol[] array). 455 */ 456 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 457 int i; 458 Column *pCol; 459 assert( pTable!=0 ); 460 if( (pCol = pTable->aCol)!=0 ){ 461 for(i=0; i<pTable->nCol; i++, pCol++){ 462 sqlite3DbFree(db, pCol->zName); 463 sqlite3ExprDelete(db, pCol->pDflt); 464 sqlite3DbFree(db, pCol->zDflt); 465 sqlite3DbFree(db, pCol->zType); 466 sqlite3DbFree(db, pCol->zColl); 467 } 468 sqlite3DbFree(db, pTable->aCol); 469 } 470 } 471 472 /* 473 ** Remove the memory data structures associated with the given 474 ** Table. No changes are made to disk by this routine. 475 ** 476 ** This routine just deletes the data structure. It does not unlink 477 ** the table data structure from the hash table. But it does destroy 478 ** memory structures of the indices and foreign keys associated with 479 ** the table. 480 */ 481 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 482 Index *pIndex, *pNext; 483 484 assert( !pTable || pTable->nRef>0 ); 485 486 /* Do not delete the table until the reference count reaches zero. */ 487 if( !pTable ) return; 488 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 489 490 /* Delete all indices associated with this table. */ 491 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 492 pNext = pIndex->pNext; 493 assert( pIndex->pSchema==pTable->pSchema ); 494 if( !db || db->pnBytesFreed==0 ){ 495 char *zName = pIndex->zName; 496 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 497 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 498 ); 499 assert( pOld==pIndex || pOld==0 ); 500 } 501 freeIndex(db, pIndex); 502 } 503 504 /* Delete any foreign keys attached to this table. */ 505 sqlite3FkDelete(db, pTable); 506 507 /* Delete the Table structure itself. 508 */ 509 sqliteDeleteColumnNames(db, pTable); 510 sqlite3DbFree(db, pTable->zName); 511 sqlite3DbFree(db, pTable->zColAff); 512 sqlite3SelectDelete(db, pTable->pSelect); 513 #ifndef SQLITE_OMIT_CHECK 514 sqlite3ExprDelete(db, pTable->pCheck); 515 #endif 516 #ifndef SQLITE_OMIT_VIRTUALTABLE 517 sqlite3VtabClear(db, pTable); 518 #endif 519 sqlite3DbFree(db, pTable); 520 } 521 522 /* 523 ** Unlink the given table from the hash tables and the delete the 524 ** table structure with all its indices and foreign keys. 525 */ 526 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 527 Table *p; 528 Db *pDb; 529 530 assert( db!=0 ); 531 assert( iDb>=0 && iDb<db->nDb ); 532 assert( zTabName ); 533 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 534 pDb = &db->aDb[iDb]; 535 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 536 sqlite3Strlen30(zTabName),0); 537 sqlite3DeleteTable(db, p); 538 db->flags |= SQLITE_InternChanges; 539 } 540 541 /* 542 ** Given a token, return a string that consists of the text of that 543 ** token. Space to hold the returned string 544 ** is obtained from sqliteMalloc() and must be freed by the calling 545 ** function. 546 ** 547 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 548 ** surround the body of the token are removed. 549 ** 550 ** Tokens are often just pointers into the original SQL text and so 551 ** are not \000 terminated and are not persistent. The returned string 552 ** is \000 terminated and is persistent. 553 */ 554 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 555 char *zName; 556 if( pName ){ 557 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 558 sqlite3Dequote(zName); 559 }else{ 560 zName = 0; 561 } 562 return zName; 563 } 564 565 /* 566 ** Open the sqlite_master table stored in database number iDb for 567 ** writing. The table is opened using cursor 0. 568 */ 569 void sqlite3OpenMasterTable(Parse *p, int iDb){ 570 Vdbe *v = sqlite3GetVdbe(p); 571 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 572 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); 573 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ 574 if( p->nTab==0 ){ 575 p->nTab = 1; 576 } 577 } 578 579 /* 580 ** Parameter zName points to a nul-terminated buffer containing the name 581 ** of a database ("main", "temp" or the name of an attached db). This 582 ** function returns the index of the named database in db->aDb[], or 583 ** -1 if the named db cannot be found. 584 */ 585 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 586 int i = -1; /* Database number */ 587 if( zName ){ 588 Db *pDb; 589 int n = sqlite3Strlen30(zName); 590 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 591 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 592 0==sqlite3StrICmp(pDb->zName, zName) ){ 593 break; 594 } 595 } 596 } 597 return i; 598 } 599 600 /* 601 ** The token *pName contains the name of a database (either "main" or 602 ** "temp" or the name of an attached db). This routine returns the 603 ** index of the named database in db->aDb[], or -1 if the named db 604 ** does not exist. 605 */ 606 int sqlite3FindDb(sqlite3 *db, Token *pName){ 607 int i; /* Database number */ 608 char *zName; /* Name we are searching for */ 609 zName = sqlite3NameFromToken(db, pName); 610 i = sqlite3FindDbName(db, zName); 611 sqlite3DbFree(db, zName); 612 return i; 613 } 614 615 /* The table or view or trigger name is passed to this routine via tokens 616 ** pName1 and pName2. If the table name was fully qualified, for example: 617 ** 618 ** CREATE TABLE xxx.yyy (...); 619 ** 620 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 621 ** the table name is not fully qualified, i.e.: 622 ** 623 ** CREATE TABLE yyy(...); 624 ** 625 ** Then pName1 is set to "yyy" and pName2 is "". 626 ** 627 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 628 ** pName2) that stores the unqualified table name. The index of the 629 ** database "xxx" is returned. 630 */ 631 int sqlite3TwoPartName( 632 Parse *pParse, /* Parsing and code generating context */ 633 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 634 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 635 Token **pUnqual /* Write the unqualified object name here */ 636 ){ 637 int iDb; /* Database holding the object */ 638 sqlite3 *db = pParse->db; 639 640 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 641 if( db->init.busy ) { 642 sqlite3ErrorMsg(pParse, "corrupt database"); 643 pParse->nErr++; 644 return -1; 645 } 646 *pUnqual = pName2; 647 iDb = sqlite3FindDb(db, pName1); 648 if( iDb<0 ){ 649 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 650 pParse->nErr++; 651 return -1; 652 } 653 }else{ 654 assert( db->init.iDb==0 || db->init.busy ); 655 iDb = db->init.iDb; 656 *pUnqual = pName1; 657 } 658 return iDb; 659 } 660 661 /* 662 ** This routine is used to check if the UTF-8 string zName is a legal 663 ** unqualified name for a new schema object (table, index, view or 664 ** trigger). All names are legal except those that begin with the string 665 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 666 ** is reserved for internal use. 667 */ 668 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 669 if( !pParse->db->init.busy && pParse->nested==0 670 && (pParse->db->flags & SQLITE_WriteSchema)==0 671 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 672 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 673 return SQLITE_ERROR; 674 } 675 return SQLITE_OK; 676 } 677 678 /* 679 ** Begin constructing a new table representation in memory. This is 680 ** the first of several action routines that get called in response 681 ** to a CREATE TABLE statement. In particular, this routine is called 682 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 683 ** flag is true if the table should be stored in the auxiliary database 684 ** file instead of in the main database file. This is normally the case 685 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 686 ** CREATE and TABLE. 687 ** 688 ** The new table record is initialized and put in pParse->pNewTable. 689 ** As more of the CREATE TABLE statement is parsed, additional action 690 ** routines will be called to add more information to this record. 691 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 692 ** is called to complete the construction of the new table record. 693 */ 694 void sqlite3StartTable( 695 Parse *pParse, /* Parser context */ 696 Token *pName1, /* First part of the name of the table or view */ 697 Token *pName2, /* Second part of the name of the table or view */ 698 int isTemp, /* True if this is a TEMP table */ 699 int isView, /* True if this is a VIEW */ 700 int isVirtual, /* True if this is a VIRTUAL table */ 701 int noErr /* Do nothing if table already exists */ 702 ){ 703 Table *pTable; 704 char *zName = 0; /* The name of the new table */ 705 sqlite3 *db = pParse->db; 706 Vdbe *v; 707 int iDb; /* Database number to create the table in */ 708 Token *pName; /* Unqualified name of the table to create */ 709 710 /* The table or view name to create is passed to this routine via tokens 711 ** pName1 and pName2. If the table name was fully qualified, for example: 712 ** 713 ** CREATE TABLE xxx.yyy (...); 714 ** 715 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 716 ** the table name is not fully qualified, i.e.: 717 ** 718 ** CREATE TABLE yyy(...); 719 ** 720 ** Then pName1 is set to "yyy" and pName2 is "". 721 ** 722 ** The call below sets the pName pointer to point at the token (pName1 or 723 ** pName2) that stores the unqualified table name. The variable iDb is 724 ** set to the index of the database that the table or view is to be 725 ** created in. 726 */ 727 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 728 if( iDb<0 ) return; 729 if( !OMIT_TEMPDB && isTemp && iDb>1 ){ 730 /* If creating a temp table, the name may not be qualified */ 731 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 732 return; 733 } 734 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 735 736 pParse->sNameToken = *pName; 737 zName = sqlite3NameFromToken(db, pName); 738 if( zName==0 ) return; 739 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 740 goto begin_table_error; 741 } 742 if( db->init.iDb==1 ) isTemp = 1; 743 #ifndef SQLITE_OMIT_AUTHORIZATION 744 assert( (isTemp & 1)==isTemp ); 745 { 746 int code; 747 char *zDb = db->aDb[iDb].zName; 748 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 749 goto begin_table_error; 750 } 751 if( isView ){ 752 if( !OMIT_TEMPDB && isTemp ){ 753 code = SQLITE_CREATE_TEMP_VIEW; 754 }else{ 755 code = SQLITE_CREATE_VIEW; 756 } 757 }else{ 758 if( !OMIT_TEMPDB && isTemp ){ 759 code = SQLITE_CREATE_TEMP_TABLE; 760 }else{ 761 code = SQLITE_CREATE_TABLE; 762 } 763 } 764 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 765 goto begin_table_error; 766 } 767 } 768 #endif 769 770 /* Make sure the new table name does not collide with an existing 771 ** index or table name in the same database. Issue an error message if 772 ** it does. The exception is if the statement being parsed was passed 773 ** to an sqlite3_declare_vtab() call. In that case only the column names 774 ** and types will be used, so there is no need to test for namespace 775 ** collisions. 776 */ 777 if( !IN_DECLARE_VTAB ){ 778 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 779 goto begin_table_error; 780 } 781 pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); 782 if( pTable ){ 783 if( !noErr ){ 784 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 785 } 786 goto begin_table_error; 787 } 788 if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ 789 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 790 goto begin_table_error; 791 } 792 } 793 794 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 795 if( pTable==0 ){ 796 db->mallocFailed = 1; 797 pParse->rc = SQLITE_NOMEM; 798 pParse->nErr++; 799 goto begin_table_error; 800 } 801 pTable->zName = zName; 802 pTable->iPKey = -1; 803 pTable->pSchema = db->aDb[iDb].pSchema; 804 pTable->nRef = 1; 805 assert( pParse->pNewTable==0 ); 806 pParse->pNewTable = pTable; 807 808 /* If this is the magic sqlite_sequence table used by autoincrement, 809 ** then record a pointer to this table in the main database structure 810 ** so that INSERT can find the table easily. 811 */ 812 #ifndef SQLITE_OMIT_AUTOINCREMENT 813 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 814 pTable->pSchema->pSeqTab = pTable; 815 } 816 #endif 817 818 /* Begin generating the code that will insert the table record into 819 ** the SQLITE_MASTER table. Note in particular that we must go ahead 820 ** and allocate the record number for the table entry now. Before any 821 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 822 ** indices to be created and the table record must come before the 823 ** indices. Hence, the record number for the table must be allocated 824 ** now. 825 */ 826 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 827 int j1; 828 int fileFormat; 829 int reg1, reg2, reg3; 830 sqlite3BeginWriteOperation(pParse, 0, iDb); 831 832 #ifndef SQLITE_OMIT_VIRTUALTABLE 833 if( isVirtual ){ 834 sqlite3VdbeAddOp0(v, OP_VBegin); 835 } 836 #endif 837 838 /* If the file format and encoding in the database have not been set, 839 ** set them now. 840 */ 841 reg1 = pParse->regRowid = ++pParse->nMem; 842 reg2 = pParse->regRoot = ++pParse->nMem; 843 reg3 = ++pParse->nMem; 844 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 845 sqlite3VdbeUsesBtree(v, iDb); 846 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); 847 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 848 1 : SQLITE_MAX_FILE_FORMAT; 849 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 850 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 851 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 852 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 853 sqlite3VdbeJumpHere(v, j1); 854 855 /* This just creates a place-holder record in the sqlite_master table. 856 ** The record created does not contain anything yet. It will be replaced 857 ** by the real entry in code generated at sqlite3EndTable(). 858 ** 859 ** The rowid for the new entry is left in register pParse->regRowid. 860 ** The root page number of the new table is left in reg pParse->regRoot. 861 ** The rowid and root page number values are needed by the code that 862 ** sqlite3EndTable will generate. 863 */ 864 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 865 if( isView || isVirtual ){ 866 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 867 }else 868 #endif 869 { 870 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 871 } 872 sqlite3OpenMasterTable(pParse, iDb); 873 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 874 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 875 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 876 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 877 sqlite3VdbeAddOp0(v, OP_Close); 878 } 879 880 /* Normal (non-error) return. */ 881 return; 882 883 /* If an error occurs, we jump here */ 884 begin_table_error: 885 sqlite3DbFree(db, zName); 886 return; 887 } 888 889 /* 890 ** This macro is used to compare two strings in a case-insensitive manner. 891 ** It is slightly faster than calling sqlite3StrICmp() directly, but 892 ** produces larger code. 893 ** 894 ** WARNING: This macro is not compatible with the strcmp() family. It 895 ** returns true if the two strings are equal, otherwise false. 896 */ 897 #define STRICMP(x, y) (\ 898 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 899 sqlite3UpperToLower[*(unsigned char *)(y)] \ 900 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 901 902 /* 903 ** Add a new column to the table currently being constructed. 904 ** 905 ** The parser calls this routine once for each column declaration 906 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 907 ** first to get things going. Then this routine is called for each 908 ** column. 909 */ 910 void sqlite3AddColumn(Parse *pParse, Token *pName){ 911 Table *p; 912 int i; 913 char *z; 914 Column *pCol; 915 sqlite3 *db = pParse->db; 916 if( (p = pParse->pNewTable)==0 ) return; 917 #if SQLITE_MAX_COLUMN 918 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 919 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 920 return; 921 } 922 #endif 923 z = sqlite3NameFromToken(db, pName); 924 if( z==0 ) return; 925 for(i=0; i<p->nCol; i++){ 926 if( STRICMP(z, p->aCol[i].zName) ){ 927 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 928 sqlite3DbFree(db, z); 929 return; 930 } 931 } 932 if( (p->nCol & 0x7)==0 ){ 933 Column *aNew; 934 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 935 if( aNew==0 ){ 936 sqlite3DbFree(db, z); 937 return; 938 } 939 p->aCol = aNew; 940 } 941 pCol = &p->aCol[p->nCol]; 942 memset(pCol, 0, sizeof(p->aCol[0])); 943 pCol->zName = z; 944 945 /* If there is no type specified, columns have the default affinity 946 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 947 ** be called next to set pCol->affinity correctly. 948 */ 949 pCol->affinity = SQLITE_AFF_NONE; 950 p->nCol++; 951 } 952 953 /* 954 ** This routine is called by the parser while in the middle of 955 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 956 ** been seen on a column. This routine sets the notNull flag on 957 ** the column currently under construction. 958 */ 959 void sqlite3AddNotNull(Parse *pParse, int onError){ 960 Table *p; 961 p = pParse->pNewTable; 962 if( p==0 || NEVER(p->nCol<1) ) return; 963 p->aCol[p->nCol-1].notNull = (u8)onError; 964 } 965 966 /* 967 ** Scan the column type name zType (length nType) and return the 968 ** associated affinity type. 969 ** 970 ** This routine does a case-independent search of zType for the 971 ** substrings in the following table. If one of the substrings is 972 ** found, the corresponding affinity is returned. If zType contains 973 ** more than one of the substrings, entries toward the top of 974 ** the table take priority. For example, if zType is 'BLOBINT', 975 ** SQLITE_AFF_INTEGER is returned. 976 ** 977 ** Substring | Affinity 978 ** -------------------------------- 979 ** 'INT' | SQLITE_AFF_INTEGER 980 ** 'CHAR' | SQLITE_AFF_TEXT 981 ** 'CLOB' | SQLITE_AFF_TEXT 982 ** 'TEXT' | SQLITE_AFF_TEXT 983 ** 'BLOB' | SQLITE_AFF_NONE 984 ** 'REAL' | SQLITE_AFF_REAL 985 ** 'FLOA' | SQLITE_AFF_REAL 986 ** 'DOUB' | SQLITE_AFF_REAL 987 ** 988 ** If none of the substrings in the above table are found, 989 ** SQLITE_AFF_NUMERIC is returned. 990 */ 991 char sqlite3AffinityType(const char *zIn){ 992 u32 h = 0; 993 char aff = SQLITE_AFF_NUMERIC; 994 995 if( zIn ) while( zIn[0] ){ 996 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 997 zIn++; 998 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 999 aff = SQLITE_AFF_TEXT; 1000 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1001 aff = SQLITE_AFF_TEXT; 1002 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1003 aff = SQLITE_AFF_TEXT; 1004 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1005 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1006 aff = SQLITE_AFF_NONE; 1007 #ifndef SQLITE_OMIT_FLOATING_POINT 1008 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1009 && aff==SQLITE_AFF_NUMERIC ){ 1010 aff = SQLITE_AFF_REAL; 1011 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1012 && aff==SQLITE_AFF_NUMERIC ){ 1013 aff = SQLITE_AFF_REAL; 1014 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1015 && aff==SQLITE_AFF_NUMERIC ){ 1016 aff = SQLITE_AFF_REAL; 1017 #endif 1018 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1019 aff = SQLITE_AFF_INTEGER; 1020 break; 1021 } 1022 } 1023 1024 return aff; 1025 } 1026 1027 /* 1028 ** This routine is called by the parser while in the middle of 1029 ** parsing a CREATE TABLE statement. The pFirst token is the first 1030 ** token in the sequence of tokens that describe the type of the 1031 ** column currently under construction. pLast is the last token 1032 ** in the sequence. Use this information to construct a string 1033 ** that contains the typename of the column and store that string 1034 ** in zType. 1035 */ 1036 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1037 Table *p; 1038 Column *pCol; 1039 1040 p = pParse->pNewTable; 1041 if( p==0 || NEVER(p->nCol<1) ) return; 1042 pCol = &p->aCol[p->nCol-1]; 1043 assert( pCol->zType==0 ); 1044 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1045 pCol->affinity = sqlite3AffinityType(pCol->zType); 1046 } 1047 1048 /* 1049 ** The expression is the default value for the most recently added column 1050 ** of the table currently under construction. 1051 ** 1052 ** Default value expressions must be constant. Raise an exception if this 1053 ** is not the case. 1054 ** 1055 ** This routine is called by the parser while in the middle of 1056 ** parsing a CREATE TABLE statement. 1057 */ 1058 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1059 Table *p; 1060 Column *pCol; 1061 sqlite3 *db = pParse->db; 1062 p = pParse->pNewTable; 1063 if( p!=0 ){ 1064 pCol = &(p->aCol[p->nCol-1]); 1065 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1066 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1067 pCol->zName); 1068 }else{ 1069 /* A copy of pExpr is used instead of the original, as pExpr contains 1070 ** tokens that point to volatile memory. The 'span' of the expression 1071 ** is required by pragma table_info. 1072 */ 1073 sqlite3ExprDelete(db, pCol->pDflt); 1074 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1075 sqlite3DbFree(db, pCol->zDflt); 1076 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1077 (int)(pSpan->zEnd - pSpan->zStart)); 1078 } 1079 } 1080 sqlite3ExprDelete(db, pSpan->pExpr); 1081 } 1082 1083 /* 1084 ** Designate the PRIMARY KEY for the table. pList is a list of names 1085 ** of columns that form the primary key. If pList is NULL, then the 1086 ** most recently added column of the table is the primary key. 1087 ** 1088 ** A table can have at most one primary key. If the table already has 1089 ** a primary key (and this is the second primary key) then create an 1090 ** error. 1091 ** 1092 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1093 ** then we will try to use that column as the rowid. Set the Table.iPKey 1094 ** field of the table under construction to be the index of the 1095 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1096 ** no INTEGER PRIMARY KEY. 1097 ** 1098 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1099 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1100 */ 1101 void sqlite3AddPrimaryKey( 1102 Parse *pParse, /* Parsing context */ 1103 ExprList *pList, /* List of field names to be indexed */ 1104 int onError, /* What to do with a uniqueness conflict */ 1105 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1106 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1107 ){ 1108 Table *pTab = pParse->pNewTable; 1109 char *zType = 0; 1110 int iCol = -1, i; 1111 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1112 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1113 sqlite3ErrorMsg(pParse, 1114 "table \"%s\" has more than one primary key", pTab->zName); 1115 goto primary_key_exit; 1116 } 1117 pTab->tabFlags |= TF_HasPrimaryKey; 1118 if( pList==0 ){ 1119 iCol = pTab->nCol - 1; 1120 pTab->aCol[iCol].isPrimKey = 1; 1121 }else{ 1122 for(i=0; i<pList->nExpr; i++){ 1123 for(iCol=0; iCol<pTab->nCol; iCol++){ 1124 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1125 break; 1126 } 1127 } 1128 if( iCol<pTab->nCol ){ 1129 pTab->aCol[iCol].isPrimKey = 1; 1130 } 1131 } 1132 if( pList->nExpr>1 ) iCol = -1; 1133 } 1134 if( iCol>=0 && iCol<pTab->nCol ){ 1135 zType = pTab->aCol[iCol].zType; 1136 } 1137 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1138 && sortOrder==SQLITE_SO_ASC ){ 1139 pTab->iPKey = iCol; 1140 pTab->keyConf = (u8)onError; 1141 assert( autoInc==0 || autoInc==1 ); 1142 pTab->tabFlags |= autoInc*TF_Autoincrement; 1143 }else if( autoInc ){ 1144 #ifndef SQLITE_OMIT_AUTOINCREMENT 1145 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1146 "INTEGER PRIMARY KEY"); 1147 #endif 1148 }else{ 1149 Index *p; 1150 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1151 if( p ){ 1152 p->autoIndex = 2; 1153 } 1154 pList = 0; 1155 } 1156 1157 primary_key_exit: 1158 sqlite3ExprListDelete(pParse->db, pList); 1159 return; 1160 } 1161 1162 /* 1163 ** Add a new CHECK constraint to the table currently under construction. 1164 */ 1165 void sqlite3AddCheckConstraint( 1166 Parse *pParse, /* Parsing context */ 1167 Expr *pCheckExpr /* The check expression */ 1168 ){ 1169 sqlite3 *db = pParse->db; 1170 #ifndef SQLITE_OMIT_CHECK 1171 Table *pTab = pParse->pNewTable; 1172 if( pTab && !IN_DECLARE_VTAB ){ 1173 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr); 1174 }else 1175 #endif 1176 { 1177 sqlite3ExprDelete(db, pCheckExpr); 1178 } 1179 } 1180 1181 /* 1182 ** Set the collation function of the most recently parsed table column 1183 ** to the CollSeq given. 1184 */ 1185 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1186 Table *p; 1187 int i; 1188 char *zColl; /* Dequoted name of collation sequence */ 1189 sqlite3 *db; 1190 1191 if( (p = pParse->pNewTable)==0 ) return; 1192 i = p->nCol-1; 1193 db = pParse->db; 1194 zColl = sqlite3NameFromToken(db, pToken); 1195 if( !zColl ) return; 1196 1197 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1198 Index *pIdx; 1199 p->aCol[i].zColl = zColl; 1200 1201 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1202 ** then an index may have been created on this column before the 1203 ** collation type was added. Correct this if it is the case. 1204 */ 1205 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1206 assert( pIdx->nColumn==1 ); 1207 if( pIdx->aiColumn[0]==i ){ 1208 pIdx->azColl[0] = p->aCol[i].zColl; 1209 } 1210 } 1211 }else{ 1212 sqlite3DbFree(db, zColl); 1213 } 1214 } 1215 1216 /* 1217 ** This function returns the collation sequence for database native text 1218 ** encoding identified by the string zName, length nName. 1219 ** 1220 ** If the requested collation sequence is not available, or not available 1221 ** in the database native encoding, the collation factory is invoked to 1222 ** request it. If the collation factory does not supply such a sequence, 1223 ** and the sequence is available in another text encoding, then that is 1224 ** returned instead. 1225 ** 1226 ** If no versions of the requested collations sequence are available, or 1227 ** another error occurs, NULL is returned and an error message written into 1228 ** pParse. 1229 ** 1230 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1231 ** invokes the collation factory if the named collation cannot be found 1232 ** and generates an error message. 1233 ** 1234 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1235 */ 1236 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1237 sqlite3 *db = pParse->db; 1238 u8 enc = ENC(db); 1239 u8 initbusy = db->init.busy; 1240 CollSeq *pColl; 1241 1242 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1243 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1244 pColl = sqlite3GetCollSeq(db, enc, pColl, zName); 1245 if( !pColl ){ 1246 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); 1247 } 1248 } 1249 1250 return pColl; 1251 } 1252 1253 1254 /* 1255 ** Generate code that will increment the schema cookie. 1256 ** 1257 ** The schema cookie is used to determine when the schema for the 1258 ** database changes. After each schema change, the cookie value 1259 ** changes. When a process first reads the schema it records the 1260 ** cookie. Thereafter, whenever it goes to access the database, 1261 ** it checks the cookie to make sure the schema has not changed 1262 ** since it was last read. 1263 ** 1264 ** This plan is not completely bullet-proof. It is possible for 1265 ** the schema to change multiple times and for the cookie to be 1266 ** set back to prior value. But schema changes are infrequent 1267 ** and the probability of hitting the same cookie value is only 1268 ** 1 chance in 2^32. So we're safe enough. 1269 */ 1270 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1271 int r1 = sqlite3GetTempReg(pParse); 1272 sqlite3 *db = pParse->db; 1273 Vdbe *v = pParse->pVdbe; 1274 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1275 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1276 sqlite3ReleaseTempReg(pParse, r1); 1277 } 1278 1279 /* 1280 ** Measure the number of characters needed to output the given 1281 ** identifier. The number returned includes any quotes used 1282 ** but does not include the null terminator. 1283 ** 1284 ** The estimate is conservative. It might be larger that what is 1285 ** really needed. 1286 */ 1287 static int identLength(const char *z){ 1288 int n; 1289 for(n=0; *z; n++, z++){ 1290 if( *z=='"' ){ n++; } 1291 } 1292 return n + 2; 1293 } 1294 1295 /* 1296 ** The first parameter is a pointer to an output buffer. The second 1297 ** parameter is a pointer to an integer that contains the offset at 1298 ** which to write into the output buffer. This function copies the 1299 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1300 ** to the specified offset in the buffer and updates *pIdx to refer 1301 ** to the first byte after the last byte written before returning. 1302 ** 1303 ** If the string zSignedIdent consists entirely of alpha-numeric 1304 ** characters, does not begin with a digit and is not an SQL keyword, 1305 ** then it is copied to the output buffer exactly as it is. Otherwise, 1306 ** it is quoted using double-quotes. 1307 */ 1308 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1309 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1310 int i, j, needQuote; 1311 i = *pIdx; 1312 1313 for(j=0; zIdent[j]; j++){ 1314 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1315 } 1316 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1317 if( !needQuote ){ 1318 needQuote = zIdent[j]; 1319 } 1320 1321 if( needQuote ) z[i++] = '"'; 1322 for(j=0; zIdent[j]; j++){ 1323 z[i++] = zIdent[j]; 1324 if( zIdent[j]=='"' ) z[i++] = '"'; 1325 } 1326 if( needQuote ) z[i++] = '"'; 1327 z[i] = 0; 1328 *pIdx = i; 1329 } 1330 1331 /* 1332 ** Generate a CREATE TABLE statement appropriate for the given 1333 ** table. Memory to hold the text of the statement is obtained 1334 ** from sqliteMalloc() and must be freed by the calling function. 1335 */ 1336 static char *createTableStmt(sqlite3 *db, Table *p){ 1337 int i, k, n; 1338 char *zStmt; 1339 char *zSep, *zSep2, *zEnd; 1340 Column *pCol; 1341 n = 0; 1342 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1343 n += identLength(pCol->zName) + 5; 1344 } 1345 n += identLength(p->zName); 1346 if( n<50 ){ 1347 zSep = ""; 1348 zSep2 = ","; 1349 zEnd = ")"; 1350 }else{ 1351 zSep = "\n "; 1352 zSep2 = ",\n "; 1353 zEnd = "\n)"; 1354 } 1355 n += 35 + 6*p->nCol; 1356 zStmt = sqlite3DbMallocRaw(0, n); 1357 if( zStmt==0 ){ 1358 db->mallocFailed = 1; 1359 return 0; 1360 } 1361 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1362 k = sqlite3Strlen30(zStmt); 1363 identPut(zStmt, &k, p->zName); 1364 zStmt[k++] = '('; 1365 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1366 static const char * const azType[] = { 1367 /* SQLITE_AFF_TEXT */ " TEXT", 1368 /* SQLITE_AFF_NONE */ "", 1369 /* SQLITE_AFF_NUMERIC */ " NUM", 1370 /* SQLITE_AFF_INTEGER */ " INT", 1371 /* SQLITE_AFF_REAL */ " REAL" 1372 }; 1373 int len; 1374 const char *zType; 1375 1376 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1377 k += sqlite3Strlen30(&zStmt[k]); 1378 zSep = zSep2; 1379 identPut(zStmt, &k, pCol->zName); 1380 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1381 assert( pCol->affinity-SQLITE_AFF_TEXT < sizeof(azType)/sizeof(azType[0]) ); 1382 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1383 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1384 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1385 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1386 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1387 1388 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1389 len = sqlite3Strlen30(zType); 1390 assert( pCol->affinity==SQLITE_AFF_NONE 1391 || pCol->affinity==sqlite3AffinityType(zType) ); 1392 memcpy(&zStmt[k], zType, len); 1393 k += len; 1394 assert( k<=n ); 1395 } 1396 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1397 return zStmt; 1398 } 1399 1400 /* 1401 ** This routine is called to report the final ")" that terminates 1402 ** a CREATE TABLE statement. 1403 ** 1404 ** The table structure that other action routines have been building 1405 ** is added to the internal hash tables, assuming no errors have 1406 ** occurred. 1407 ** 1408 ** An entry for the table is made in the master table on disk, unless 1409 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1410 ** it means we are reading the sqlite_master table because we just 1411 ** connected to the database or because the sqlite_master table has 1412 ** recently changed, so the entry for this table already exists in 1413 ** the sqlite_master table. We do not want to create it again. 1414 ** 1415 ** If the pSelect argument is not NULL, it means that this routine 1416 ** was called to create a table generated from a 1417 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1418 ** the new table will match the result set of the SELECT. 1419 */ 1420 void sqlite3EndTable( 1421 Parse *pParse, /* Parse context */ 1422 Token *pCons, /* The ',' token after the last column defn. */ 1423 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1424 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1425 ){ 1426 Table *p; 1427 sqlite3 *db = pParse->db; 1428 int iDb; 1429 1430 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1431 return; 1432 } 1433 p = pParse->pNewTable; 1434 if( p==0 ) return; 1435 1436 assert( !db->init.busy || !pSelect ); 1437 1438 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1439 1440 #ifndef SQLITE_OMIT_CHECK 1441 /* Resolve names in all CHECK constraint expressions. 1442 */ 1443 if( p->pCheck ){ 1444 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1445 NameContext sNC; /* Name context for pParse->pNewTable */ 1446 1447 memset(&sNC, 0, sizeof(sNC)); 1448 memset(&sSrc, 0, sizeof(sSrc)); 1449 sSrc.nSrc = 1; 1450 sSrc.a[0].zName = p->zName; 1451 sSrc.a[0].pTab = p; 1452 sSrc.a[0].iCursor = -1; 1453 sNC.pParse = pParse; 1454 sNC.pSrcList = &sSrc; 1455 sNC.isCheck = 1; 1456 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){ 1457 return; 1458 } 1459 } 1460 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1461 1462 /* If the db->init.busy is 1 it means we are reading the SQL off the 1463 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1464 ** So do not write to the disk again. Extract the root page number 1465 ** for the table from the db->init.newTnum field. (The page number 1466 ** should have been put there by the sqliteOpenCb routine.) 1467 */ 1468 if( db->init.busy ){ 1469 p->tnum = db->init.newTnum; 1470 } 1471 1472 /* If not initializing, then create a record for the new table 1473 ** in the SQLITE_MASTER table of the database. 1474 ** 1475 ** If this is a TEMPORARY table, write the entry into the auxiliary 1476 ** file instead of into the main database file. 1477 */ 1478 if( !db->init.busy ){ 1479 int n; 1480 Vdbe *v; 1481 char *zType; /* "view" or "table" */ 1482 char *zType2; /* "VIEW" or "TABLE" */ 1483 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1484 1485 v = sqlite3GetVdbe(pParse); 1486 if( NEVER(v==0) ) return; 1487 1488 sqlite3VdbeAddOp1(v, OP_Close, 0); 1489 1490 /* 1491 ** Initialize zType for the new view or table. 1492 */ 1493 if( p->pSelect==0 ){ 1494 /* A regular table */ 1495 zType = "table"; 1496 zType2 = "TABLE"; 1497 #ifndef SQLITE_OMIT_VIEW 1498 }else{ 1499 /* A view */ 1500 zType = "view"; 1501 zType2 = "VIEW"; 1502 #endif 1503 } 1504 1505 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1506 ** statement to populate the new table. The root-page number for the 1507 ** new table is in register pParse->regRoot. 1508 ** 1509 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1510 ** suitable state to query for the column names and types to be used 1511 ** by the new table. 1512 ** 1513 ** A shared-cache write-lock is not required to write to the new table, 1514 ** as a schema-lock must have already been obtained to create it. Since 1515 ** a schema-lock excludes all other database users, the write-lock would 1516 ** be redundant. 1517 */ 1518 if( pSelect ){ 1519 SelectDest dest; 1520 Table *pSelTab; 1521 1522 assert(pParse->nTab==1); 1523 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1524 sqlite3VdbeChangeP5(v, 1); 1525 pParse->nTab = 2; 1526 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1527 sqlite3Select(pParse, pSelect, &dest); 1528 sqlite3VdbeAddOp1(v, OP_Close, 1); 1529 if( pParse->nErr==0 ){ 1530 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1531 if( pSelTab==0 ) return; 1532 assert( p->aCol==0 ); 1533 p->nCol = pSelTab->nCol; 1534 p->aCol = pSelTab->aCol; 1535 pSelTab->nCol = 0; 1536 pSelTab->aCol = 0; 1537 sqlite3DeleteTable(db, pSelTab); 1538 } 1539 } 1540 1541 /* Compute the complete text of the CREATE statement */ 1542 if( pSelect ){ 1543 zStmt = createTableStmt(db, p); 1544 }else{ 1545 n = (int)(pEnd->z - pParse->sNameToken.z) + 1; 1546 zStmt = sqlite3MPrintf(db, 1547 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1548 ); 1549 } 1550 1551 /* A slot for the record has already been allocated in the 1552 ** SQLITE_MASTER table. We just need to update that slot with all 1553 ** the information we've collected. 1554 */ 1555 sqlite3NestedParse(pParse, 1556 "UPDATE %Q.%s " 1557 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1558 "WHERE rowid=#%d", 1559 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1560 zType, 1561 p->zName, 1562 p->zName, 1563 pParse->regRoot, 1564 zStmt, 1565 pParse->regRowid 1566 ); 1567 sqlite3DbFree(db, zStmt); 1568 sqlite3ChangeCookie(pParse, iDb); 1569 1570 #ifndef SQLITE_OMIT_AUTOINCREMENT 1571 /* Check to see if we need to create an sqlite_sequence table for 1572 ** keeping track of autoincrement keys. 1573 */ 1574 if( p->tabFlags & TF_Autoincrement ){ 1575 Db *pDb = &db->aDb[iDb]; 1576 if( pDb->pSchema->pSeqTab==0 ){ 1577 sqlite3NestedParse(pParse, 1578 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1579 pDb->zName 1580 ); 1581 } 1582 } 1583 #endif 1584 1585 /* Reparse everything to update our internal data structures */ 1586 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 1587 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); 1588 } 1589 1590 1591 /* Add the table to the in-memory representation of the database. 1592 */ 1593 if( db->init.busy ){ 1594 Table *pOld; 1595 Schema *pSchema = p->pSchema; 1596 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1597 sqlite3Strlen30(p->zName),p); 1598 if( pOld ){ 1599 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1600 db->mallocFailed = 1; 1601 return; 1602 } 1603 pParse->pNewTable = 0; 1604 db->nTable++; 1605 db->flags |= SQLITE_InternChanges; 1606 1607 #ifndef SQLITE_OMIT_ALTERTABLE 1608 if( !p->pSelect ){ 1609 const char *zName = (const char *)pParse->sNameToken.z; 1610 int nName; 1611 assert( !pSelect && pCons && pEnd ); 1612 if( pCons->z==0 ){ 1613 pCons = pEnd; 1614 } 1615 nName = (int)((const char *)pCons->z - zName); 1616 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1617 } 1618 #endif 1619 } 1620 } 1621 1622 #ifndef SQLITE_OMIT_VIEW 1623 /* 1624 ** The parser calls this routine in order to create a new VIEW 1625 */ 1626 void sqlite3CreateView( 1627 Parse *pParse, /* The parsing context */ 1628 Token *pBegin, /* The CREATE token that begins the statement */ 1629 Token *pName1, /* The token that holds the name of the view */ 1630 Token *pName2, /* The token that holds the name of the view */ 1631 Select *pSelect, /* A SELECT statement that will become the new view */ 1632 int isTemp, /* TRUE for a TEMPORARY view */ 1633 int noErr /* Suppress error messages if VIEW already exists */ 1634 ){ 1635 Table *p; 1636 int n; 1637 const char *z; 1638 Token sEnd; 1639 DbFixer sFix; 1640 Token *pName; 1641 int iDb; 1642 sqlite3 *db = pParse->db; 1643 1644 if( pParse->nVar>0 ){ 1645 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1646 sqlite3SelectDelete(db, pSelect); 1647 return; 1648 } 1649 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1650 p = pParse->pNewTable; 1651 if( p==0 || pParse->nErr ){ 1652 sqlite3SelectDelete(db, pSelect); 1653 return; 1654 } 1655 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1656 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1657 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1658 && sqlite3FixSelect(&sFix, pSelect) 1659 ){ 1660 sqlite3SelectDelete(db, pSelect); 1661 return; 1662 } 1663 1664 /* Make a copy of the entire SELECT statement that defines the view. 1665 ** This will force all the Expr.token.z values to be dynamically 1666 ** allocated rather than point to the input string - which means that 1667 ** they will persist after the current sqlite3_exec() call returns. 1668 */ 1669 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1670 sqlite3SelectDelete(db, pSelect); 1671 if( db->mallocFailed ){ 1672 return; 1673 } 1674 if( !db->init.busy ){ 1675 sqlite3ViewGetColumnNames(pParse, p); 1676 } 1677 1678 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1679 ** the end. 1680 */ 1681 sEnd = pParse->sLastToken; 1682 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 1683 sEnd.z += sEnd.n; 1684 } 1685 sEnd.n = 0; 1686 n = (int)(sEnd.z - pBegin->z); 1687 z = pBegin->z; 1688 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 1689 sEnd.z = &z[n-1]; 1690 sEnd.n = 1; 1691 1692 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1693 sqlite3EndTable(pParse, 0, &sEnd, 0); 1694 return; 1695 } 1696 #endif /* SQLITE_OMIT_VIEW */ 1697 1698 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1699 /* 1700 ** The Table structure pTable is really a VIEW. Fill in the names of 1701 ** the columns of the view in the pTable structure. Return the number 1702 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1703 */ 1704 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1705 Table *pSelTab; /* A fake table from which we get the result set */ 1706 Select *pSel; /* Copy of the SELECT that implements the view */ 1707 int nErr = 0; /* Number of errors encountered */ 1708 int n; /* Temporarily holds the number of cursors assigned */ 1709 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 1710 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1711 1712 assert( pTable ); 1713 1714 #ifndef SQLITE_OMIT_VIRTUALTABLE 1715 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1716 return SQLITE_ERROR; 1717 } 1718 if( IsVirtual(pTable) ) return 0; 1719 #endif 1720 1721 #ifndef SQLITE_OMIT_VIEW 1722 /* A positive nCol means the columns names for this view are 1723 ** already known. 1724 */ 1725 if( pTable->nCol>0 ) return 0; 1726 1727 /* A negative nCol is a special marker meaning that we are currently 1728 ** trying to compute the column names. If we enter this routine with 1729 ** a negative nCol, it means two or more views form a loop, like this: 1730 ** 1731 ** CREATE VIEW one AS SELECT * FROM two; 1732 ** CREATE VIEW two AS SELECT * FROM one; 1733 ** 1734 ** Actually, the error above is now caught prior to reaching this point. 1735 ** But the following test is still important as it does come up 1736 ** in the following: 1737 ** 1738 ** CREATE TABLE main.ex1(a); 1739 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 1740 ** SELECT * FROM temp.ex1; 1741 */ 1742 if( pTable->nCol<0 ){ 1743 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1744 return 1; 1745 } 1746 assert( pTable->nCol>=0 ); 1747 1748 /* If we get this far, it means we need to compute the table names. 1749 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1750 ** "*" elements in the results set of the view and will assign cursors 1751 ** to the elements of the FROM clause. But we do not want these changes 1752 ** to be permanent. So the computation is done on a copy of the SELECT 1753 ** statement that defines the view. 1754 */ 1755 assert( pTable->pSelect ); 1756 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 1757 if( pSel ){ 1758 u8 enableLookaside = db->lookaside.bEnabled; 1759 n = pParse->nTab; 1760 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1761 pTable->nCol = -1; 1762 db->lookaside.bEnabled = 0; 1763 #ifndef SQLITE_OMIT_AUTHORIZATION 1764 xAuth = db->xAuth; 1765 db->xAuth = 0; 1766 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1767 db->xAuth = xAuth; 1768 #else 1769 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1770 #endif 1771 db->lookaside.bEnabled = enableLookaside; 1772 pParse->nTab = n; 1773 if( pSelTab ){ 1774 assert( pTable->aCol==0 ); 1775 pTable->nCol = pSelTab->nCol; 1776 pTable->aCol = pSelTab->aCol; 1777 pSelTab->nCol = 0; 1778 pSelTab->aCol = 0; 1779 sqlite3DeleteTable(db, pSelTab); 1780 pTable->pSchema->flags |= DB_UnresetViews; 1781 }else{ 1782 pTable->nCol = 0; 1783 nErr++; 1784 } 1785 sqlite3SelectDelete(db, pSel); 1786 } else { 1787 nErr++; 1788 } 1789 #endif /* SQLITE_OMIT_VIEW */ 1790 return nErr; 1791 } 1792 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1793 1794 #ifndef SQLITE_OMIT_VIEW 1795 /* 1796 ** Clear the column names from every VIEW in database idx. 1797 */ 1798 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1799 HashElem *i; 1800 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1801 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1802 Table *pTab = sqliteHashData(i); 1803 if( pTab->pSelect ){ 1804 sqliteDeleteColumnNames(db, pTab); 1805 pTab->aCol = 0; 1806 pTab->nCol = 0; 1807 } 1808 } 1809 DbClearProperty(db, idx, DB_UnresetViews); 1810 } 1811 #else 1812 # define sqliteViewResetAll(A,B) 1813 #endif /* SQLITE_OMIT_VIEW */ 1814 1815 /* 1816 ** This function is called by the VDBE to adjust the internal schema 1817 ** used by SQLite when the btree layer moves a table root page. The 1818 ** root-page of a table or index in database iDb has changed from iFrom 1819 ** to iTo. 1820 ** 1821 ** Ticket #1728: The symbol table might still contain information 1822 ** on tables and/or indices that are the process of being deleted. 1823 ** If you are unlucky, one of those deleted indices or tables might 1824 ** have the same rootpage number as the real table or index that is 1825 ** being moved. So we cannot stop searching after the first match 1826 ** because the first match might be for one of the deleted indices 1827 ** or tables and not the table/index that is actually being moved. 1828 ** We must continue looping until all tables and indices with 1829 ** rootpage==iFrom have been converted to have a rootpage of iTo 1830 ** in order to be certain that we got the right one. 1831 */ 1832 #ifndef SQLITE_OMIT_AUTOVACUUM 1833 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ 1834 HashElem *pElem; 1835 Hash *pHash; 1836 1837 pHash = &pDb->pSchema->tblHash; 1838 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1839 Table *pTab = sqliteHashData(pElem); 1840 if( pTab->tnum==iFrom ){ 1841 pTab->tnum = iTo; 1842 } 1843 } 1844 pHash = &pDb->pSchema->idxHash; 1845 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1846 Index *pIdx = sqliteHashData(pElem); 1847 if( pIdx->tnum==iFrom ){ 1848 pIdx->tnum = iTo; 1849 } 1850 } 1851 } 1852 #endif 1853 1854 /* 1855 ** Write code to erase the table with root-page iTable from database iDb. 1856 ** Also write code to modify the sqlite_master table and internal schema 1857 ** if a root-page of another table is moved by the btree-layer whilst 1858 ** erasing iTable (this can happen with an auto-vacuum database). 1859 */ 1860 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1861 Vdbe *v = sqlite3GetVdbe(pParse); 1862 int r1 = sqlite3GetTempReg(pParse); 1863 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 1864 sqlite3MayAbort(pParse); 1865 #ifndef SQLITE_OMIT_AUTOVACUUM 1866 /* OP_Destroy stores an in integer r1. If this integer 1867 ** is non-zero, then it is the root page number of a table moved to 1868 ** location iTable. The following code modifies the sqlite_master table to 1869 ** reflect this. 1870 ** 1871 ** The "#NNN" in the SQL is a special constant that means whatever value 1872 ** is in register NNN. See grammar rules associated with the TK_REGISTER 1873 ** token for additional information. 1874 */ 1875 sqlite3NestedParse(pParse, 1876 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 1877 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 1878 #endif 1879 sqlite3ReleaseTempReg(pParse, r1); 1880 } 1881 1882 /* 1883 ** Write VDBE code to erase table pTab and all associated indices on disk. 1884 ** Code to update the sqlite_master tables and internal schema definitions 1885 ** in case a root-page belonging to another table is moved by the btree layer 1886 ** is also added (this can happen with an auto-vacuum database). 1887 */ 1888 static void destroyTable(Parse *pParse, Table *pTab){ 1889 #ifdef SQLITE_OMIT_AUTOVACUUM 1890 Index *pIdx; 1891 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1892 destroyRootPage(pParse, pTab->tnum, iDb); 1893 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1894 destroyRootPage(pParse, pIdx->tnum, iDb); 1895 } 1896 #else 1897 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1898 ** is not defined), then it is important to call OP_Destroy on the 1899 ** table and index root-pages in order, starting with the numerically 1900 ** largest root-page number. This guarantees that none of the root-pages 1901 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1902 ** following were coded: 1903 ** 1904 ** OP_Destroy 4 0 1905 ** ... 1906 ** OP_Destroy 5 0 1907 ** 1908 ** and root page 5 happened to be the largest root-page number in the 1909 ** database, then root page 5 would be moved to page 4 by the 1910 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 1911 ** a free-list page. 1912 */ 1913 int iTab = pTab->tnum; 1914 int iDestroyed = 0; 1915 1916 while( 1 ){ 1917 Index *pIdx; 1918 int iLargest = 0; 1919 1920 if( iDestroyed==0 || iTab<iDestroyed ){ 1921 iLargest = iTab; 1922 } 1923 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1924 int iIdx = pIdx->tnum; 1925 assert( pIdx->pSchema==pTab->pSchema ); 1926 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 1927 iLargest = iIdx; 1928 } 1929 } 1930 if( iLargest==0 ){ 1931 return; 1932 }else{ 1933 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1934 destroyRootPage(pParse, iLargest, iDb); 1935 iDestroyed = iLargest; 1936 } 1937 } 1938 #endif 1939 } 1940 1941 /* 1942 ** This routine is called to do the work of a DROP TABLE statement. 1943 ** pName is the name of the table to be dropped. 1944 */ 1945 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 1946 Table *pTab; 1947 Vdbe *v; 1948 sqlite3 *db = pParse->db; 1949 int iDb; 1950 1951 if( db->mallocFailed ){ 1952 goto exit_drop_table; 1953 } 1954 assert( pParse->nErr==0 ); 1955 assert( pName->nSrc==1 ); 1956 if( noErr ) db->suppressErr++; 1957 pTab = sqlite3LocateTable(pParse, isView, 1958 pName->a[0].zName, pName->a[0].zDatabase); 1959 if( noErr ) db->suppressErr--; 1960 1961 if( pTab==0 ){ 1962 goto exit_drop_table; 1963 } 1964 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1965 assert( iDb>=0 && iDb<db->nDb ); 1966 1967 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 1968 ** it is initialized. 1969 */ 1970 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 1971 goto exit_drop_table; 1972 } 1973 #ifndef SQLITE_OMIT_AUTHORIZATION 1974 { 1975 int code; 1976 const char *zTab = SCHEMA_TABLE(iDb); 1977 const char *zDb = db->aDb[iDb].zName; 1978 const char *zArg2 = 0; 1979 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 1980 goto exit_drop_table; 1981 } 1982 if( isView ){ 1983 if( !OMIT_TEMPDB && iDb==1 ){ 1984 code = SQLITE_DROP_TEMP_VIEW; 1985 }else{ 1986 code = SQLITE_DROP_VIEW; 1987 } 1988 #ifndef SQLITE_OMIT_VIRTUALTABLE 1989 }else if( IsVirtual(pTab) ){ 1990 code = SQLITE_DROP_VTABLE; 1991 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 1992 #endif 1993 }else{ 1994 if( !OMIT_TEMPDB && iDb==1 ){ 1995 code = SQLITE_DROP_TEMP_TABLE; 1996 }else{ 1997 code = SQLITE_DROP_TABLE; 1998 } 1999 } 2000 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2001 goto exit_drop_table; 2002 } 2003 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2004 goto exit_drop_table; 2005 } 2006 } 2007 #endif 2008 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 2009 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2010 goto exit_drop_table; 2011 } 2012 2013 #ifndef SQLITE_OMIT_VIEW 2014 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2015 ** on a table. 2016 */ 2017 if( isView && pTab->pSelect==0 ){ 2018 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2019 goto exit_drop_table; 2020 } 2021 if( !isView && pTab->pSelect ){ 2022 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2023 goto exit_drop_table; 2024 } 2025 #endif 2026 2027 /* Generate code to remove the table from the master table 2028 ** on disk. 2029 */ 2030 v = sqlite3GetVdbe(pParse); 2031 if( v ){ 2032 Trigger *pTrigger; 2033 Db *pDb = &db->aDb[iDb]; 2034 sqlite3BeginWriteOperation(pParse, 1, iDb); 2035 2036 #ifndef SQLITE_OMIT_VIRTUALTABLE 2037 if( IsVirtual(pTab) ){ 2038 sqlite3VdbeAddOp0(v, OP_VBegin); 2039 } 2040 #endif 2041 sqlite3FkDropTable(pParse, pName, pTab); 2042 2043 /* Drop all triggers associated with the table being dropped. Code 2044 ** is generated to remove entries from sqlite_master and/or 2045 ** sqlite_temp_master if required. 2046 */ 2047 pTrigger = sqlite3TriggerList(pParse, pTab); 2048 while( pTrigger ){ 2049 assert( pTrigger->pSchema==pTab->pSchema || 2050 pTrigger->pSchema==db->aDb[1].pSchema ); 2051 sqlite3DropTriggerPtr(pParse, pTrigger); 2052 pTrigger = pTrigger->pNext; 2053 } 2054 2055 #ifndef SQLITE_OMIT_AUTOINCREMENT 2056 /* Remove any entries of the sqlite_sequence table associated with 2057 ** the table being dropped. This is done before the table is dropped 2058 ** at the btree level, in case the sqlite_sequence table needs to 2059 ** move as a result of the drop (can happen in auto-vacuum mode). 2060 */ 2061 if( pTab->tabFlags & TF_Autoincrement ){ 2062 sqlite3NestedParse(pParse, 2063 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", 2064 pDb->zName, pTab->zName 2065 ); 2066 } 2067 #endif 2068 2069 /* Drop all SQLITE_MASTER table and index entries that refer to the 2070 ** table. The program name loops through the master table and deletes 2071 ** every row that refers to a table of the same name as the one being 2072 ** dropped. Triggers are handled seperately because a trigger can be 2073 ** created in the temp database that refers to a table in another 2074 ** database. 2075 */ 2076 sqlite3NestedParse(pParse, 2077 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2078 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2079 2080 /* Drop any statistics from the sqlite_stat1 table, if it exists */ 2081 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2082 sqlite3NestedParse(pParse, 2083 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName 2084 ); 2085 } 2086 2087 if( !isView && !IsVirtual(pTab) ){ 2088 destroyTable(pParse, pTab); 2089 } 2090 2091 /* Remove the table entry from SQLite's internal schema and modify 2092 ** the schema cookie. 2093 */ 2094 if( IsVirtual(pTab) ){ 2095 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2096 } 2097 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2098 sqlite3ChangeCookie(pParse, iDb); 2099 } 2100 sqliteViewResetAll(db, iDb); 2101 2102 exit_drop_table: 2103 sqlite3SrcListDelete(db, pName); 2104 } 2105 2106 /* 2107 ** This routine is called to create a new foreign key on the table 2108 ** currently under construction. pFromCol determines which columns 2109 ** in the current table point to the foreign key. If pFromCol==0 then 2110 ** connect the key to the last column inserted. pTo is the name of 2111 ** the table referred to. pToCol is a list of tables in the other 2112 ** pTo table that the foreign key points to. flags contains all 2113 ** information about the conflict resolution algorithms specified 2114 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2115 ** 2116 ** An FKey structure is created and added to the table currently 2117 ** under construction in the pParse->pNewTable field. 2118 ** 2119 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2120 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2121 */ 2122 void sqlite3CreateForeignKey( 2123 Parse *pParse, /* Parsing context */ 2124 ExprList *pFromCol, /* Columns in this table that point to other table */ 2125 Token *pTo, /* Name of the other table */ 2126 ExprList *pToCol, /* Columns in the other table */ 2127 int flags /* Conflict resolution algorithms. */ 2128 ){ 2129 sqlite3 *db = pParse->db; 2130 #ifndef SQLITE_OMIT_FOREIGN_KEY 2131 FKey *pFKey = 0; 2132 FKey *pNextTo; 2133 Table *p = pParse->pNewTable; 2134 int nByte; 2135 int i; 2136 int nCol; 2137 char *z; 2138 2139 assert( pTo!=0 ); 2140 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2141 if( pFromCol==0 ){ 2142 int iCol = p->nCol-1; 2143 if( NEVER(iCol<0) ) goto fk_end; 2144 if( pToCol && pToCol->nExpr!=1 ){ 2145 sqlite3ErrorMsg(pParse, "foreign key on %s" 2146 " should reference only one column of table %T", 2147 p->aCol[iCol].zName, pTo); 2148 goto fk_end; 2149 } 2150 nCol = 1; 2151 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2152 sqlite3ErrorMsg(pParse, 2153 "number of columns in foreign key does not match the number of " 2154 "columns in the referenced table"); 2155 goto fk_end; 2156 }else{ 2157 nCol = pFromCol->nExpr; 2158 } 2159 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2160 if( pToCol ){ 2161 for(i=0; i<pToCol->nExpr; i++){ 2162 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2163 } 2164 } 2165 pFKey = sqlite3DbMallocZero(db, nByte ); 2166 if( pFKey==0 ){ 2167 goto fk_end; 2168 } 2169 pFKey->pFrom = p; 2170 pFKey->pNextFrom = p->pFKey; 2171 z = (char*)&pFKey->aCol[nCol]; 2172 pFKey->zTo = z; 2173 memcpy(z, pTo->z, pTo->n); 2174 z[pTo->n] = 0; 2175 sqlite3Dequote(z); 2176 z += pTo->n+1; 2177 pFKey->nCol = nCol; 2178 if( pFromCol==0 ){ 2179 pFKey->aCol[0].iFrom = p->nCol-1; 2180 }else{ 2181 for(i=0; i<nCol; i++){ 2182 int j; 2183 for(j=0; j<p->nCol; j++){ 2184 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2185 pFKey->aCol[i].iFrom = j; 2186 break; 2187 } 2188 } 2189 if( j>=p->nCol ){ 2190 sqlite3ErrorMsg(pParse, 2191 "unknown column \"%s\" in foreign key definition", 2192 pFromCol->a[i].zName); 2193 goto fk_end; 2194 } 2195 } 2196 } 2197 if( pToCol ){ 2198 for(i=0; i<nCol; i++){ 2199 int n = sqlite3Strlen30(pToCol->a[i].zName); 2200 pFKey->aCol[i].zCol = z; 2201 memcpy(z, pToCol->a[i].zName, n); 2202 z[n] = 0; 2203 z += n+1; 2204 } 2205 } 2206 pFKey->isDeferred = 0; 2207 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2208 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2209 2210 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2211 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey 2212 ); 2213 if( pNextTo==pFKey ){ 2214 db->mallocFailed = 1; 2215 goto fk_end; 2216 } 2217 if( pNextTo ){ 2218 assert( pNextTo->pPrevTo==0 ); 2219 pFKey->pNextTo = pNextTo; 2220 pNextTo->pPrevTo = pFKey; 2221 } 2222 2223 /* Link the foreign key to the table as the last step. 2224 */ 2225 p->pFKey = pFKey; 2226 pFKey = 0; 2227 2228 fk_end: 2229 sqlite3DbFree(db, pFKey); 2230 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2231 sqlite3ExprListDelete(db, pFromCol); 2232 sqlite3ExprListDelete(db, pToCol); 2233 } 2234 2235 /* 2236 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2237 ** clause is seen as part of a foreign key definition. The isDeferred 2238 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2239 ** The behavior of the most recently created foreign key is adjusted 2240 ** accordingly. 2241 */ 2242 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2243 #ifndef SQLITE_OMIT_FOREIGN_KEY 2244 Table *pTab; 2245 FKey *pFKey; 2246 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2247 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2248 pFKey->isDeferred = (u8)isDeferred; 2249 #endif 2250 } 2251 2252 /* 2253 ** Generate code that will erase and refill index *pIdx. This is 2254 ** used to initialize a newly created index or to recompute the 2255 ** content of an index in response to a REINDEX command. 2256 ** 2257 ** if memRootPage is not negative, it means that the index is newly 2258 ** created. The register specified by memRootPage contains the 2259 ** root page number of the index. If memRootPage is negative, then 2260 ** the index already exists and must be cleared before being refilled and 2261 ** the root page number of the index is taken from pIndex->tnum. 2262 */ 2263 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2264 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2265 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2266 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2267 int addr1; /* Address of top of loop */ 2268 int tnum; /* Root page of index */ 2269 Vdbe *v; /* Generate code into this virtual machine */ 2270 KeyInfo *pKey; /* KeyInfo for index */ 2271 int regIdxKey; /* Registers containing the index key */ 2272 int regRecord; /* Register holding assemblied index record */ 2273 sqlite3 *db = pParse->db; /* The database connection */ 2274 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2275 2276 #ifndef SQLITE_OMIT_AUTHORIZATION 2277 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2278 db->aDb[iDb].zName ) ){ 2279 return; 2280 } 2281 #endif 2282 2283 /* Require a write-lock on the table to perform this operation */ 2284 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2285 2286 v = sqlite3GetVdbe(pParse); 2287 if( v==0 ) return; 2288 if( memRootPage>=0 ){ 2289 tnum = memRootPage; 2290 }else{ 2291 tnum = pIndex->tnum; 2292 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2293 } 2294 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2295 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2296 (char *)pKey, P4_KEYINFO_HANDOFF); 2297 if( memRootPage>=0 ){ 2298 sqlite3VdbeChangeP5(v, 1); 2299 } 2300 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2301 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2302 regRecord = sqlite3GetTempReg(pParse); 2303 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2304 if( pIndex->onError!=OE_None ){ 2305 const int regRowid = regIdxKey + pIndex->nColumn; 2306 const int j2 = sqlite3VdbeCurrentAddr(v) + 2; 2307 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); 2308 2309 /* The registers accessed by the OP_IsUnique opcode were allocated 2310 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() 2311 ** call above. Just before that function was freed they were released 2312 ** (made available to the compiler for reuse) using 2313 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique 2314 ** opcode use the values stored within seems dangerous. However, since 2315 ** we can be sure that no other temp registers have been allocated 2316 ** since sqlite3ReleaseTempRange() was called, it is safe to do so. 2317 */ 2318 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); 2319 sqlite3HaltConstraint( 2320 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); 2321 } 2322 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2323 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2324 sqlite3ReleaseTempReg(pParse, regRecord); 2325 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); 2326 sqlite3VdbeJumpHere(v, addr1); 2327 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2328 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2329 } 2330 2331 /* 2332 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2333 ** and pTblList is the name of the table that is to be indexed. Both will 2334 ** be NULL for a primary key or an index that is created to satisfy a 2335 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2336 ** as the table to be indexed. pParse->pNewTable is a table that is 2337 ** currently being constructed by a CREATE TABLE statement. 2338 ** 2339 ** pList is a list of columns to be indexed. pList will be NULL if this 2340 ** is a primary key or unique-constraint on the most recent column added 2341 ** to the table currently under construction. 2342 ** 2343 ** If the index is created successfully, return a pointer to the new Index 2344 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2345 ** as the tables primary key (Index.autoIndex==2). 2346 */ 2347 Index *sqlite3CreateIndex( 2348 Parse *pParse, /* All information about this parse */ 2349 Token *pName1, /* First part of index name. May be NULL */ 2350 Token *pName2, /* Second part of index name. May be NULL */ 2351 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2352 ExprList *pList, /* A list of columns to be indexed */ 2353 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2354 Token *pStart, /* The CREATE token that begins this statement */ 2355 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2356 int sortOrder, /* Sort order of primary key when pList==NULL */ 2357 int ifNotExist /* Omit error if index already exists */ 2358 ){ 2359 Index *pRet = 0; /* Pointer to return */ 2360 Table *pTab = 0; /* Table to be indexed */ 2361 Index *pIndex = 0; /* The index to be created */ 2362 char *zName = 0; /* Name of the index */ 2363 int nName; /* Number of characters in zName */ 2364 int i, j; 2365 Token nullId; /* Fake token for an empty ID list */ 2366 DbFixer sFix; /* For assigning database names to pTable */ 2367 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2368 sqlite3 *db = pParse->db; 2369 Db *pDb; /* The specific table containing the indexed database */ 2370 int iDb; /* Index of the database that is being written */ 2371 Token *pName = 0; /* Unqualified name of the index to create */ 2372 struct ExprList_item *pListItem; /* For looping over pList */ 2373 int nCol; 2374 int nExtra = 0; 2375 char *zExtra; 2376 2377 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ 2378 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2379 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2380 goto exit_create_index; 2381 } 2382 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2383 goto exit_create_index; 2384 } 2385 2386 /* 2387 ** Find the table that is to be indexed. Return early if not found. 2388 */ 2389 if( pTblName!=0 ){ 2390 2391 /* Use the two-part index name to determine the database 2392 ** to search for the table. 'Fix' the table name to this db 2393 ** before looking up the table. 2394 */ 2395 assert( pName1 && pName2 ); 2396 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2397 if( iDb<0 ) goto exit_create_index; 2398 2399 #ifndef SQLITE_OMIT_TEMPDB 2400 /* If the index name was unqualified, check if the the table 2401 ** is a temp table. If so, set the database to 1. Do not do this 2402 ** if initialising a database schema. 2403 */ 2404 if( !db->init.busy ){ 2405 pTab = sqlite3SrcListLookup(pParse, pTblName); 2406 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2407 iDb = 1; 2408 } 2409 } 2410 #endif 2411 2412 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2413 sqlite3FixSrcList(&sFix, pTblName) 2414 ){ 2415 /* Because the parser constructs pTblName from a single identifier, 2416 ** sqlite3FixSrcList can never fail. */ 2417 assert(0); 2418 } 2419 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 2420 pTblName->a[0].zDatabase); 2421 if( !pTab || db->mallocFailed ) goto exit_create_index; 2422 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2423 }else{ 2424 assert( pName==0 ); 2425 pTab = pParse->pNewTable; 2426 if( !pTab ) goto exit_create_index; 2427 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2428 } 2429 pDb = &db->aDb[iDb]; 2430 2431 assert( pTab!=0 ); 2432 assert( pParse->nErr==0 ); 2433 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2434 && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2435 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2436 goto exit_create_index; 2437 } 2438 #ifndef SQLITE_OMIT_VIEW 2439 if( pTab->pSelect ){ 2440 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2441 goto exit_create_index; 2442 } 2443 #endif 2444 #ifndef SQLITE_OMIT_VIRTUALTABLE 2445 if( IsVirtual(pTab) ){ 2446 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2447 goto exit_create_index; 2448 } 2449 #endif 2450 2451 /* 2452 ** Find the name of the index. Make sure there is not already another 2453 ** index or table with the same name. 2454 ** 2455 ** Exception: If we are reading the names of permanent indices from the 2456 ** sqlite_master table (because some other process changed the schema) and 2457 ** one of the index names collides with the name of a temporary table or 2458 ** index, then we will continue to process this index. 2459 ** 2460 ** If pName==0 it means that we are 2461 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2462 ** own name. 2463 */ 2464 if( pName ){ 2465 zName = sqlite3NameFromToken(db, pName); 2466 if( zName==0 ) goto exit_create_index; 2467 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2468 goto exit_create_index; 2469 } 2470 if( !db->init.busy ){ 2471 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2472 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2473 goto exit_create_index; 2474 } 2475 } 2476 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2477 if( !ifNotExist ){ 2478 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2479 } 2480 goto exit_create_index; 2481 } 2482 }else{ 2483 int n; 2484 Index *pLoop; 2485 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2486 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2487 if( zName==0 ){ 2488 goto exit_create_index; 2489 } 2490 } 2491 2492 /* Check for authorization to create an index. 2493 */ 2494 #ifndef SQLITE_OMIT_AUTHORIZATION 2495 { 2496 const char *zDb = pDb->zName; 2497 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2498 goto exit_create_index; 2499 } 2500 i = SQLITE_CREATE_INDEX; 2501 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2502 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2503 goto exit_create_index; 2504 } 2505 } 2506 #endif 2507 2508 /* If pList==0, it means this routine was called to make a primary 2509 ** key out of the last column added to the table under construction. 2510 ** So create a fake list to simulate this. 2511 */ 2512 if( pList==0 ){ 2513 nullId.z = pTab->aCol[pTab->nCol-1].zName; 2514 nullId.n = sqlite3Strlen30((char*)nullId.z); 2515 pList = sqlite3ExprListAppend(pParse, 0, 0); 2516 if( pList==0 ) goto exit_create_index; 2517 sqlite3ExprListSetName(pParse, pList, &nullId, 0); 2518 pList->a[0].sortOrder = (u8)sortOrder; 2519 } 2520 2521 /* Figure out how many bytes of space are required to store explicitly 2522 ** specified collation sequence names. 2523 */ 2524 for(i=0; i<pList->nExpr; i++){ 2525 Expr *pExpr = pList->a[i].pExpr; 2526 if( pExpr ){ 2527 CollSeq *pColl = pExpr->pColl; 2528 /* Either pColl!=0 or there was an OOM failure. But if an OOM 2529 ** failure we have quit before reaching this point. */ 2530 if( ALWAYS(pColl) ){ 2531 nExtra += (1 + sqlite3Strlen30(pColl->zName)); 2532 } 2533 } 2534 } 2535 2536 /* 2537 ** Allocate the index structure. 2538 */ 2539 nName = sqlite3Strlen30(zName); 2540 nCol = pList->nExpr; 2541 pIndex = sqlite3DbMallocZero(db, 2542 sizeof(Index) + /* Index structure */ 2543 sizeof(int)*nCol + /* Index.aiColumn */ 2544 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ 2545 sizeof(char *)*nCol + /* Index.azColl */ 2546 sizeof(u8)*nCol + /* Index.aSortOrder */ 2547 nName + 1 + /* Index.zName */ 2548 nExtra /* Collation sequence names */ 2549 ); 2550 if( db->mallocFailed ){ 2551 goto exit_create_index; 2552 } 2553 pIndex->azColl = (char**)(&pIndex[1]); 2554 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2555 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); 2556 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); 2557 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2558 zExtra = (char *)(&pIndex->zName[nName+1]); 2559 memcpy(pIndex->zName, zName, nName+1); 2560 pIndex->pTable = pTab; 2561 pIndex->nColumn = pList->nExpr; 2562 pIndex->onError = (u8)onError; 2563 pIndex->autoIndex = (u8)(pName==0); 2564 pIndex->pSchema = db->aDb[iDb].pSchema; 2565 2566 /* Check to see if we should honor DESC requests on index columns 2567 */ 2568 if( pDb->pSchema->file_format>=4 ){ 2569 sortOrderMask = -1; /* Honor DESC */ 2570 }else{ 2571 sortOrderMask = 0; /* Ignore DESC */ 2572 } 2573 2574 /* Scan the names of the columns of the table to be indexed and 2575 ** load the column indices into the Index structure. Report an error 2576 ** if any column is not found. 2577 ** 2578 ** TODO: Add a test to make sure that the same column is not named 2579 ** more than once within the same index. Only the first instance of 2580 ** the column will ever be used by the optimizer. Note that using the 2581 ** same column more than once cannot be an error because that would 2582 ** break backwards compatibility - it needs to be a warning. 2583 */ 2584 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2585 const char *zColName = pListItem->zName; 2586 Column *pTabCol; 2587 int requestedSortOrder; 2588 char *zColl; /* Collation sequence name */ 2589 2590 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2591 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2592 } 2593 if( j>=pTab->nCol ){ 2594 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2595 pTab->zName, zColName); 2596 pParse->checkSchema = 1; 2597 goto exit_create_index; 2598 } 2599 pIndex->aiColumn[i] = j; 2600 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of 2601 ** the way the "idxlist" non-terminal is constructed by the parser, 2602 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl 2603 ** must exist or else there must have been an OOM error. But if there 2604 ** was an OOM error, we would never reach this point. */ 2605 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){ 2606 int nColl; 2607 zColl = pListItem->pExpr->pColl->zName; 2608 nColl = sqlite3Strlen30(zColl) + 1; 2609 assert( nExtra>=nColl ); 2610 memcpy(zExtra, zColl, nColl); 2611 zColl = zExtra; 2612 zExtra += nColl; 2613 nExtra -= nColl; 2614 }else{ 2615 zColl = pTab->aCol[j].zColl; 2616 if( !zColl ){ 2617 zColl = db->pDfltColl->zName; 2618 } 2619 } 2620 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 2621 goto exit_create_index; 2622 } 2623 pIndex->azColl[i] = zColl; 2624 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2625 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 2626 } 2627 sqlite3DefaultRowEst(pIndex); 2628 2629 if( pTab==pParse->pNewTable ){ 2630 /* This routine has been called to create an automatic index as a 2631 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2632 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2633 ** i.e. one of: 2634 ** 2635 ** CREATE TABLE t(x PRIMARY KEY, y); 2636 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2637 ** 2638 ** Either way, check to see if the table already has such an index. If 2639 ** so, don't bother creating this one. This only applies to 2640 ** automatically created indices. Users can do as they wish with 2641 ** explicit indices. 2642 ** 2643 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 2644 ** (and thus suppressing the second one) even if they have different 2645 ** sort orders. 2646 ** 2647 ** If there are different collating sequences or if the columns of 2648 ** the constraint occur in different orders, then the constraints are 2649 ** considered distinct and both result in separate indices. 2650 */ 2651 Index *pIdx; 2652 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2653 int k; 2654 assert( pIdx->onError!=OE_None ); 2655 assert( pIdx->autoIndex ); 2656 assert( pIndex->onError!=OE_None ); 2657 2658 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2659 for(k=0; k<pIdx->nColumn; k++){ 2660 const char *z1; 2661 const char *z2; 2662 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2663 z1 = pIdx->azColl[k]; 2664 z2 = pIndex->azColl[k]; 2665 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2666 } 2667 if( k==pIdx->nColumn ){ 2668 if( pIdx->onError!=pIndex->onError ){ 2669 /* This constraint creates the same index as a previous 2670 ** constraint specified somewhere in the CREATE TABLE statement. 2671 ** However the ON CONFLICT clauses are different. If both this 2672 ** constraint and the previous equivalent constraint have explicit 2673 ** ON CONFLICT clauses this is an error. Otherwise, use the 2674 ** explicitly specified behaviour for the index. 2675 */ 2676 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2677 sqlite3ErrorMsg(pParse, 2678 "conflicting ON CONFLICT clauses specified", 0); 2679 } 2680 if( pIdx->onError==OE_Default ){ 2681 pIdx->onError = pIndex->onError; 2682 } 2683 } 2684 goto exit_create_index; 2685 } 2686 } 2687 } 2688 2689 /* Link the new Index structure to its table and to the other 2690 ** in-memory database structures. 2691 */ 2692 if( db->init.busy ){ 2693 Index *p; 2694 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2695 pIndex->zName, sqlite3Strlen30(pIndex->zName), 2696 pIndex); 2697 if( p ){ 2698 assert( p==pIndex ); /* Malloc must have failed */ 2699 db->mallocFailed = 1; 2700 goto exit_create_index; 2701 } 2702 db->flags |= SQLITE_InternChanges; 2703 if( pTblName!=0 ){ 2704 pIndex->tnum = db->init.newTnum; 2705 } 2706 } 2707 2708 /* If the db->init.busy is 0 then create the index on disk. This 2709 ** involves writing the index into the master table and filling in the 2710 ** index with the current table contents. 2711 ** 2712 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2713 ** command. db->init.busy is 1 when a database is opened and 2714 ** CREATE INDEX statements are read out of the master table. In 2715 ** the latter case the index already exists on disk, which is why 2716 ** we don't want to recreate it. 2717 ** 2718 ** If pTblName==0 it means this index is generated as a primary key 2719 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2720 ** has just been created, it contains no data and the index initialization 2721 ** step can be skipped. 2722 */ 2723 else{ /* if( db->init.busy==0 ) */ 2724 Vdbe *v; 2725 char *zStmt; 2726 int iMem = ++pParse->nMem; 2727 2728 v = sqlite3GetVdbe(pParse); 2729 if( v==0 ) goto exit_create_index; 2730 2731 2732 /* Create the rootpage for the index 2733 */ 2734 sqlite3BeginWriteOperation(pParse, 1, iDb); 2735 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 2736 2737 /* Gather the complete text of the CREATE INDEX statement into 2738 ** the zStmt variable 2739 */ 2740 if( pStart ){ 2741 assert( pEnd!=0 ); 2742 /* A named index with an explicit CREATE INDEX statement */ 2743 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 2744 onError==OE_None ? "" : " UNIQUE", 2745 pEnd->z - pName->z + 1, 2746 pName->z); 2747 }else{ 2748 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2749 /* zStmt = sqlite3MPrintf(""); */ 2750 zStmt = 0; 2751 } 2752 2753 /* Add an entry in sqlite_master for this index 2754 */ 2755 sqlite3NestedParse(pParse, 2756 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 2757 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2758 pIndex->zName, 2759 pTab->zName, 2760 iMem, 2761 zStmt 2762 ); 2763 sqlite3DbFree(db, zStmt); 2764 2765 /* Fill the index with data and reparse the schema. Code an OP_Expire 2766 ** to invalidate all pre-compiled statements. 2767 */ 2768 if( pTblName ){ 2769 sqlite3RefillIndex(pParse, pIndex, iMem); 2770 sqlite3ChangeCookie(pParse, iDb); 2771 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 2772 sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC); 2773 sqlite3VdbeAddOp1(v, OP_Expire, 0); 2774 } 2775 } 2776 2777 /* When adding an index to the list of indices for a table, make 2778 ** sure all indices labeled OE_Replace come after all those labeled 2779 ** OE_Ignore. This is necessary for the correct constraint check 2780 ** processing (in sqlite3GenerateConstraintChecks()) as part of 2781 ** UPDATE and INSERT statements. 2782 */ 2783 if( db->init.busy || pTblName==0 ){ 2784 if( onError!=OE_Replace || pTab->pIndex==0 2785 || pTab->pIndex->onError==OE_Replace){ 2786 pIndex->pNext = pTab->pIndex; 2787 pTab->pIndex = pIndex; 2788 }else{ 2789 Index *pOther = pTab->pIndex; 2790 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2791 pOther = pOther->pNext; 2792 } 2793 pIndex->pNext = pOther->pNext; 2794 pOther->pNext = pIndex; 2795 } 2796 pRet = pIndex; 2797 pIndex = 0; 2798 } 2799 2800 /* Clean up before exiting */ 2801 exit_create_index: 2802 if( pIndex ){ 2803 sqlite3DbFree(db, pIndex->zColAff); 2804 sqlite3DbFree(db, pIndex); 2805 } 2806 sqlite3ExprListDelete(db, pList); 2807 sqlite3SrcListDelete(db, pTblName); 2808 sqlite3DbFree(db, zName); 2809 return pRet; 2810 } 2811 2812 /* 2813 ** Fill the Index.aiRowEst[] array with default information - information 2814 ** to be used when we have not run the ANALYZE command. 2815 ** 2816 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2817 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2818 ** number of rows in the table that match any particular value of the 2819 ** first column of the index. aiRowEst[2] is an estimate of the number 2820 ** of rows that match any particular combiniation of the first 2 columns 2821 ** of the index. And so forth. It must always be the case that 2822 * 2823 ** aiRowEst[N]<=aiRowEst[N-1] 2824 ** aiRowEst[N]>=1 2825 ** 2826 ** Apart from that, we have little to go on besides intuition as to 2827 ** how aiRowEst[] should be initialized. The numbers generated here 2828 ** are based on typical values found in actual indices. 2829 */ 2830 void sqlite3DefaultRowEst(Index *pIdx){ 2831 unsigned *a = pIdx->aiRowEst; 2832 int i; 2833 assert( a!=0 ); 2834 a[0] = 1000000; 2835 for(i=pIdx->nColumn; i>=5; i--){ 2836 a[i] = 5; 2837 } 2838 while( i>=1 ){ 2839 a[i] = 11 - i; 2840 i--; 2841 } 2842 if( pIdx->onError!=OE_None ){ 2843 a[pIdx->nColumn] = 1; 2844 } 2845 } 2846 2847 /* 2848 ** This routine will drop an existing named index. This routine 2849 ** implements the DROP INDEX statement. 2850 */ 2851 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2852 Index *pIndex; 2853 Vdbe *v; 2854 sqlite3 *db = pParse->db; 2855 int iDb; 2856 2857 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2858 if( db->mallocFailed ){ 2859 goto exit_drop_index; 2860 } 2861 assert( pName->nSrc==1 ); 2862 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2863 goto exit_drop_index; 2864 } 2865 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 2866 if( pIndex==0 ){ 2867 if( !ifExists ){ 2868 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 2869 } 2870 pParse->checkSchema = 1; 2871 goto exit_drop_index; 2872 } 2873 if( pIndex->autoIndex ){ 2874 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 2875 "or PRIMARY KEY constraint cannot be dropped", 0); 2876 goto exit_drop_index; 2877 } 2878 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2879 #ifndef SQLITE_OMIT_AUTHORIZATION 2880 { 2881 int code = SQLITE_DROP_INDEX; 2882 Table *pTab = pIndex->pTable; 2883 const char *zDb = db->aDb[iDb].zName; 2884 const char *zTab = SCHEMA_TABLE(iDb); 2885 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 2886 goto exit_drop_index; 2887 } 2888 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 2889 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 2890 goto exit_drop_index; 2891 } 2892 } 2893 #endif 2894 2895 /* Generate code to remove the index and from the master table */ 2896 v = sqlite3GetVdbe(pParse); 2897 if( v ){ 2898 sqlite3BeginWriteOperation(pParse, 1, iDb); 2899 sqlite3NestedParse(pParse, 2900 "DELETE FROM %Q.%s WHERE name=%Q", 2901 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2902 pIndex->zName 2903 ); 2904 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2905 sqlite3NestedParse(pParse, 2906 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", 2907 db->aDb[iDb].zName, pIndex->zName 2908 ); 2909 } 2910 sqlite3ChangeCookie(pParse, iDb); 2911 destroyRootPage(pParse, pIndex->tnum, iDb); 2912 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 2913 } 2914 2915 exit_drop_index: 2916 sqlite3SrcListDelete(db, pName); 2917 } 2918 2919 /* 2920 ** pArray is a pointer to an array of objects. Each object in the 2921 ** array is szEntry bytes in size. This routine allocates a new 2922 ** object on the end of the array. 2923 ** 2924 ** *pnEntry is the number of entries already in use. *pnAlloc is 2925 ** the previously allocated size of the array. initSize is the 2926 ** suggested initial array size allocation. 2927 ** 2928 ** The index of the new entry is returned in *pIdx. 2929 ** 2930 ** This routine returns a pointer to the array of objects. This 2931 ** might be the same as the pArray parameter or it might be a different 2932 ** pointer if the array was resized. 2933 */ 2934 void *sqlite3ArrayAllocate( 2935 sqlite3 *db, /* Connection to notify of malloc failures */ 2936 void *pArray, /* Array of objects. Might be reallocated */ 2937 int szEntry, /* Size of each object in the array */ 2938 int initSize, /* Suggested initial allocation, in elements */ 2939 int *pnEntry, /* Number of objects currently in use */ 2940 int *pnAlloc, /* Current size of the allocation, in elements */ 2941 int *pIdx /* Write the index of a new slot here */ 2942 ){ 2943 char *z; 2944 if( *pnEntry >= *pnAlloc ){ 2945 void *pNew; 2946 int newSize; 2947 newSize = (*pnAlloc)*2 + initSize; 2948 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); 2949 if( pNew==0 ){ 2950 *pIdx = -1; 2951 return pArray; 2952 } 2953 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry; 2954 pArray = pNew; 2955 } 2956 z = (char*)pArray; 2957 memset(&z[*pnEntry * szEntry], 0, szEntry); 2958 *pIdx = *pnEntry; 2959 ++*pnEntry; 2960 return pArray; 2961 } 2962 2963 /* 2964 ** Append a new element to the given IdList. Create a new IdList if 2965 ** need be. 2966 ** 2967 ** A new IdList is returned, or NULL if malloc() fails. 2968 */ 2969 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 2970 int i; 2971 if( pList==0 ){ 2972 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 2973 if( pList==0 ) return 0; 2974 pList->nAlloc = 0; 2975 } 2976 pList->a = sqlite3ArrayAllocate( 2977 db, 2978 pList->a, 2979 sizeof(pList->a[0]), 2980 5, 2981 &pList->nId, 2982 &pList->nAlloc, 2983 &i 2984 ); 2985 if( i<0 ){ 2986 sqlite3IdListDelete(db, pList); 2987 return 0; 2988 } 2989 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 2990 return pList; 2991 } 2992 2993 /* 2994 ** Delete an IdList. 2995 */ 2996 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 2997 int i; 2998 if( pList==0 ) return; 2999 for(i=0; i<pList->nId; i++){ 3000 sqlite3DbFree(db, pList->a[i].zName); 3001 } 3002 sqlite3DbFree(db, pList->a); 3003 sqlite3DbFree(db, pList); 3004 } 3005 3006 /* 3007 ** Return the index in pList of the identifier named zId. Return -1 3008 ** if not found. 3009 */ 3010 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3011 int i; 3012 if( pList==0 ) return -1; 3013 for(i=0; i<pList->nId; i++){ 3014 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3015 } 3016 return -1; 3017 } 3018 3019 /* 3020 ** Expand the space allocated for the given SrcList object by 3021 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3022 ** New slots are zeroed. 3023 ** 3024 ** For example, suppose a SrcList initially contains two entries: A,B. 3025 ** To append 3 new entries onto the end, do this: 3026 ** 3027 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3028 ** 3029 ** After the call above it would contain: A, B, nil, nil, nil. 3030 ** If the iStart argument had been 1 instead of 2, then the result 3031 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3032 ** the iStart value would be 0. The result then would 3033 ** be: nil, nil, nil, A, B. 3034 ** 3035 ** If a memory allocation fails the SrcList is unchanged. The 3036 ** db->mallocFailed flag will be set to true. 3037 */ 3038 SrcList *sqlite3SrcListEnlarge( 3039 sqlite3 *db, /* Database connection to notify of OOM errors */ 3040 SrcList *pSrc, /* The SrcList to be enlarged */ 3041 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3042 int iStart /* Index in pSrc->a[] of first new slot */ 3043 ){ 3044 int i; 3045 3046 /* Sanity checking on calling parameters */ 3047 assert( iStart>=0 ); 3048 assert( nExtra>=1 ); 3049 assert( pSrc!=0 ); 3050 assert( iStart<=pSrc->nSrc ); 3051 3052 /* Allocate additional space if needed */ 3053 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3054 SrcList *pNew; 3055 int nAlloc = pSrc->nSrc+nExtra; 3056 int nGot; 3057 pNew = sqlite3DbRealloc(db, pSrc, 3058 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3059 if( pNew==0 ){ 3060 assert( db->mallocFailed ); 3061 return pSrc; 3062 } 3063 pSrc = pNew; 3064 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3065 pSrc->nAlloc = (u16)nGot; 3066 } 3067 3068 /* Move existing slots that come after the newly inserted slots 3069 ** out of the way */ 3070 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3071 pSrc->a[i+nExtra] = pSrc->a[i]; 3072 } 3073 pSrc->nSrc += (i16)nExtra; 3074 3075 /* Zero the newly allocated slots */ 3076 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3077 for(i=iStart; i<iStart+nExtra; i++){ 3078 pSrc->a[i].iCursor = -1; 3079 } 3080 3081 /* Return a pointer to the enlarged SrcList */ 3082 return pSrc; 3083 } 3084 3085 3086 /* 3087 ** Append a new table name to the given SrcList. Create a new SrcList if 3088 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3089 ** 3090 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3091 ** SrcList might be the same as the SrcList that was input or it might be 3092 ** a new one. If an OOM error does occurs, then the prior value of pList 3093 ** that is input to this routine is automatically freed. 3094 ** 3095 ** If pDatabase is not null, it means that the table has an optional 3096 ** database name prefix. Like this: "database.table". The pDatabase 3097 ** points to the table name and the pTable points to the database name. 3098 ** The SrcList.a[].zName field is filled with the table name which might 3099 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3100 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3101 ** or with NULL if no database is specified. 3102 ** 3103 ** In other words, if call like this: 3104 ** 3105 ** sqlite3SrcListAppend(D,A,B,0); 3106 ** 3107 ** Then B is a table name and the database name is unspecified. If called 3108 ** like this: 3109 ** 3110 ** sqlite3SrcListAppend(D,A,B,C); 3111 ** 3112 ** Then C is the table name and B is the database name. If C is defined 3113 ** then so is B. In other words, we never have a case where: 3114 ** 3115 ** sqlite3SrcListAppend(D,A,0,C); 3116 ** 3117 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3118 ** before being added to the SrcList. 3119 */ 3120 SrcList *sqlite3SrcListAppend( 3121 sqlite3 *db, /* Connection to notify of malloc failures */ 3122 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3123 Token *pTable, /* Table to append */ 3124 Token *pDatabase /* Database of the table */ 3125 ){ 3126 struct SrcList_item *pItem; 3127 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3128 if( pList==0 ){ 3129 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3130 if( pList==0 ) return 0; 3131 pList->nAlloc = 1; 3132 } 3133 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3134 if( db->mallocFailed ){ 3135 sqlite3SrcListDelete(db, pList); 3136 return 0; 3137 } 3138 pItem = &pList->a[pList->nSrc-1]; 3139 if( pDatabase && pDatabase->z==0 ){ 3140 pDatabase = 0; 3141 } 3142 if( pDatabase ){ 3143 Token *pTemp = pDatabase; 3144 pDatabase = pTable; 3145 pTable = pTemp; 3146 } 3147 pItem->zName = sqlite3NameFromToken(db, pTable); 3148 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3149 return pList; 3150 } 3151 3152 /* 3153 ** Assign VdbeCursor index numbers to all tables in a SrcList 3154 */ 3155 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3156 int i; 3157 struct SrcList_item *pItem; 3158 assert(pList || pParse->db->mallocFailed ); 3159 if( pList ){ 3160 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3161 if( pItem->iCursor>=0 ) break; 3162 pItem->iCursor = pParse->nTab++; 3163 if( pItem->pSelect ){ 3164 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3165 } 3166 } 3167 } 3168 } 3169 3170 /* 3171 ** Delete an entire SrcList including all its substructure. 3172 */ 3173 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3174 int i; 3175 struct SrcList_item *pItem; 3176 if( pList==0 ) return; 3177 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3178 sqlite3DbFree(db, pItem->zDatabase); 3179 sqlite3DbFree(db, pItem->zName); 3180 sqlite3DbFree(db, pItem->zAlias); 3181 sqlite3DbFree(db, pItem->zIndex); 3182 sqlite3DeleteTable(db, pItem->pTab); 3183 sqlite3SelectDelete(db, pItem->pSelect); 3184 sqlite3ExprDelete(db, pItem->pOn); 3185 sqlite3IdListDelete(db, pItem->pUsing); 3186 } 3187 sqlite3DbFree(db, pList); 3188 } 3189 3190 /* 3191 ** This routine is called by the parser to add a new term to the 3192 ** end of a growing FROM clause. The "p" parameter is the part of 3193 ** the FROM clause that has already been constructed. "p" is NULL 3194 ** if this is the first term of the FROM clause. pTable and pDatabase 3195 ** are the name of the table and database named in the FROM clause term. 3196 ** pDatabase is NULL if the database name qualifier is missing - the 3197 ** usual case. If the term has a alias, then pAlias points to the 3198 ** alias token. If the term is a subquery, then pSubquery is the 3199 ** SELECT statement that the subquery encodes. The pTable and 3200 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3201 ** parameters are the content of the ON and USING clauses. 3202 ** 3203 ** Return a new SrcList which encodes is the FROM with the new 3204 ** term added. 3205 */ 3206 SrcList *sqlite3SrcListAppendFromTerm( 3207 Parse *pParse, /* Parsing context */ 3208 SrcList *p, /* The left part of the FROM clause already seen */ 3209 Token *pTable, /* Name of the table to add to the FROM clause */ 3210 Token *pDatabase, /* Name of the database containing pTable */ 3211 Token *pAlias, /* The right-hand side of the AS subexpression */ 3212 Select *pSubquery, /* A subquery used in place of a table name */ 3213 Expr *pOn, /* The ON clause of a join */ 3214 IdList *pUsing /* The USING clause of a join */ 3215 ){ 3216 struct SrcList_item *pItem; 3217 sqlite3 *db = pParse->db; 3218 if( !p && (pOn || pUsing) ){ 3219 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3220 (pOn ? "ON" : "USING") 3221 ); 3222 goto append_from_error; 3223 } 3224 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3225 if( p==0 || NEVER(p->nSrc==0) ){ 3226 goto append_from_error; 3227 } 3228 pItem = &p->a[p->nSrc-1]; 3229 assert( pAlias!=0 ); 3230 if( pAlias->n ){ 3231 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3232 } 3233 pItem->pSelect = pSubquery; 3234 pItem->pOn = pOn; 3235 pItem->pUsing = pUsing; 3236 return p; 3237 3238 append_from_error: 3239 assert( p==0 ); 3240 sqlite3ExprDelete(db, pOn); 3241 sqlite3IdListDelete(db, pUsing); 3242 sqlite3SelectDelete(db, pSubquery); 3243 return 0; 3244 } 3245 3246 /* 3247 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3248 ** element of the source-list passed as the second argument. 3249 */ 3250 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3251 assert( pIndexedBy!=0 ); 3252 if( p && ALWAYS(p->nSrc>0) ){ 3253 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3254 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3255 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3256 /* A "NOT INDEXED" clause was supplied. See parse.y 3257 ** construct "indexed_opt" for details. */ 3258 pItem->notIndexed = 1; 3259 }else{ 3260 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3261 } 3262 } 3263 } 3264 3265 /* 3266 ** When building up a FROM clause in the parser, the join operator 3267 ** is initially attached to the left operand. But the code generator 3268 ** expects the join operator to be on the right operand. This routine 3269 ** Shifts all join operators from left to right for an entire FROM 3270 ** clause. 3271 ** 3272 ** Example: Suppose the join is like this: 3273 ** 3274 ** A natural cross join B 3275 ** 3276 ** The operator is "natural cross join". The A and B operands are stored 3277 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3278 ** operator with A. This routine shifts that operator over to B. 3279 */ 3280 void sqlite3SrcListShiftJoinType(SrcList *p){ 3281 if( p && p->a ){ 3282 int i; 3283 for(i=p->nSrc-1; i>0; i--){ 3284 p->a[i].jointype = p->a[i-1].jointype; 3285 } 3286 p->a[0].jointype = 0; 3287 } 3288 } 3289 3290 /* 3291 ** Begin a transaction 3292 */ 3293 void sqlite3BeginTransaction(Parse *pParse, int type){ 3294 sqlite3 *db; 3295 Vdbe *v; 3296 int i; 3297 3298 assert( pParse!=0 ); 3299 db = pParse->db; 3300 assert( db!=0 ); 3301 /* if( db->aDb[0].pBt==0 ) return; */ 3302 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3303 return; 3304 } 3305 v = sqlite3GetVdbe(pParse); 3306 if( !v ) return; 3307 if( type!=TK_DEFERRED ){ 3308 for(i=0; i<db->nDb; i++){ 3309 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3310 sqlite3VdbeUsesBtree(v, i); 3311 } 3312 } 3313 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3314 } 3315 3316 /* 3317 ** Commit a transaction 3318 */ 3319 void sqlite3CommitTransaction(Parse *pParse){ 3320 sqlite3 *db; 3321 Vdbe *v; 3322 3323 assert( pParse!=0 ); 3324 db = pParse->db; 3325 assert( db!=0 ); 3326 /* if( db->aDb[0].pBt==0 ) return; */ 3327 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3328 return; 3329 } 3330 v = sqlite3GetVdbe(pParse); 3331 if( v ){ 3332 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3333 } 3334 } 3335 3336 /* 3337 ** Rollback a transaction 3338 */ 3339 void sqlite3RollbackTransaction(Parse *pParse){ 3340 sqlite3 *db; 3341 Vdbe *v; 3342 3343 assert( pParse!=0 ); 3344 db = pParse->db; 3345 assert( db!=0 ); 3346 /* if( db->aDb[0].pBt==0 ) return; */ 3347 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3348 return; 3349 } 3350 v = sqlite3GetVdbe(pParse); 3351 if( v ){ 3352 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3353 } 3354 } 3355 3356 /* 3357 ** This function is called by the parser when it parses a command to create, 3358 ** release or rollback an SQL savepoint. 3359 */ 3360 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3361 char *zName = sqlite3NameFromToken(pParse->db, pName); 3362 if( zName ){ 3363 Vdbe *v = sqlite3GetVdbe(pParse); 3364 #ifndef SQLITE_OMIT_AUTHORIZATION 3365 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3366 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3367 #endif 3368 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3369 sqlite3DbFree(pParse->db, zName); 3370 return; 3371 } 3372 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3373 } 3374 } 3375 3376 /* 3377 ** Make sure the TEMP database is open and available for use. Return 3378 ** the number of errors. Leave any error messages in the pParse structure. 3379 */ 3380 int sqlite3OpenTempDatabase(Parse *pParse){ 3381 sqlite3 *db = pParse->db; 3382 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3383 int rc; 3384 Btree *pBt; 3385 static const int flags = 3386 SQLITE_OPEN_READWRITE | 3387 SQLITE_OPEN_CREATE | 3388 SQLITE_OPEN_EXCLUSIVE | 3389 SQLITE_OPEN_DELETEONCLOSE | 3390 SQLITE_OPEN_TEMP_DB; 3391 3392 rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags); 3393 if( rc!=SQLITE_OK ){ 3394 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3395 "file for storing temporary tables"); 3396 pParse->rc = rc; 3397 return 1; 3398 } 3399 db->aDb[1].pBt = pBt; 3400 assert( db->aDb[1].pSchema ); 3401 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3402 db->mallocFailed = 1; 3403 return 1; 3404 } 3405 } 3406 return 0; 3407 } 3408 3409 /* 3410 ** Generate VDBE code that will verify the schema cookie and start 3411 ** a read-transaction for all named database files. 3412 ** 3413 ** It is important that all schema cookies be verified and all 3414 ** read transactions be started before anything else happens in 3415 ** the VDBE program. But this routine can be called after much other 3416 ** code has been generated. So here is what we do: 3417 ** 3418 ** The first time this routine is called, we code an OP_Goto that 3419 ** will jump to a subroutine at the end of the program. Then we 3420 ** record every database that needs its schema verified in the 3421 ** pParse->cookieMask field. Later, after all other code has been 3422 ** generated, the subroutine that does the cookie verifications and 3423 ** starts the transactions will be coded and the OP_Goto P2 value 3424 ** will be made to point to that subroutine. The generation of the 3425 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3426 ** 3427 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3428 ** schema on any databases. This can be used to position the OP_Goto 3429 ** early in the code, before we know if any database tables will be used. 3430 */ 3431 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3432 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3433 3434 if( pToplevel->cookieGoto==0 ){ 3435 Vdbe *v = sqlite3GetVdbe(pToplevel); 3436 if( v==0 ) return; /* This only happens if there was a prior error */ 3437 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; 3438 } 3439 if( iDb>=0 ){ 3440 sqlite3 *db = pToplevel->db; 3441 int mask; 3442 3443 assert( iDb<db->nDb ); 3444 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3445 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3446 mask = 1<<iDb; 3447 if( (pToplevel->cookieMask & mask)==0 ){ 3448 pToplevel->cookieMask |= mask; 3449 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3450 if( !OMIT_TEMPDB && iDb==1 ){ 3451 sqlite3OpenTempDatabase(pToplevel); 3452 } 3453 } 3454 } 3455 } 3456 3457 /* 3458 ** Generate VDBE code that prepares for doing an operation that 3459 ** might change the database. 3460 ** 3461 ** This routine starts a new transaction if we are not already within 3462 ** a transaction. If we are already within a transaction, then a checkpoint 3463 ** is set if the setStatement parameter is true. A checkpoint should 3464 ** be set for operations that might fail (due to a constraint) part of 3465 ** the way through and which will need to undo some writes without having to 3466 ** rollback the whole transaction. For operations where all constraints 3467 ** can be checked before any changes are made to the database, it is never 3468 ** necessary to undo a write and the checkpoint should not be set. 3469 */ 3470 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3471 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3472 sqlite3CodeVerifySchema(pParse, iDb); 3473 pToplevel->writeMask |= 1<<iDb; 3474 pToplevel->isMultiWrite |= setStatement; 3475 } 3476 3477 /* 3478 ** Indicate that the statement currently under construction might write 3479 ** more than one entry (example: deleting one row then inserting another, 3480 ** inserting multiple rows in a table, or inserting a row and index entries.) 3481 ** If an abort occurs after some of these writes have completed, then it will 3482 ** be necessary to undo the completed writes. 3483 */ 3484 void sqlite3MultiWrite(Parse *pParse){ 3485 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3486 pToplevel->isMultiWrite = 1; 3487 } 3488 3489 /* 3490 ** The code generator calls this routine if is discovers that it is 3491 ** possible to abort a statement prior to completion. In order to 3492 ** perform this abort without corrupting the database, we need to make 3493 ** sure that the statement is protected by a statement transaction. 3494 ** 3495 ** Technically, we only need to set the mayAbort flag if the 3496 ** isMultiWrite flag was previously set. There is a time dependency 3497 ** such that the abort must occur after the multiwrite. This makes 3498 ** some statements involving the REPLACE conflict resolution algorithm 3499 ** go a little faster. But taking advantage of this time dependency 3500 ** makes it more difficult to prove that the code is correct (in 3501 ** particular, it prevents us from writing an effective 3502 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3503 ** to take the safe route and skip the optimization. 3504 */ 3505 void sqlite3MayAbort(Parse *pParse){ 3506 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3507 pToplevel->mayAbort = 1; 3508 } 3509 3510 /* 3511 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3512 ** error. The onError parameter determines which (if any) of the statement 3513 ** and/or current transaction is rolled back. 3514 */ 3515 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){ 3516 Vdbe *v = sqlite3GetVdbe(pParse); 3517 if( onError==OE_Abort ){ 3518 sqlite3MayAbort(pParse); 3519 } 3520 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type); 3521 } 3522 3523 /* 3524 ** Check to see if pIndex uses the collating sequence pColl. Return 3525 ** true if it does and false if it does not. 3526 */ 3527 #ifndef SQLITE_OMIT_REINDEX 3528 static int collationMatch(const char *zColl, Index *pIndex){ 3529 int i; 3530 assert( zColl!=0 ); 3531 for(i=0; i<pIndex->nColumn; i++){ 3532 const char *z = pIndex->azColl[i]; 3533 assert( z!=0 ); 3534 if( 0==sqlite3StrICmp(z, zColl) ){ 3535 return 1; 3536 } 3537 } 3538 return 0; 3539 } 3540 #endif 3541 3542 /* 3543 ** Recompute all indices of pTab that use the collating sequence pColl. 3544 ** If pColl==0 then recompute all indices of pTab. 3545 */ 3546 #ifndef SQLITE_OMIT_REINDEX 3547 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3548 Index *pIndex; /* An index associated with pTab */ 3549 3550 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3551 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3552 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3553 sqlite3BeginWriteOperation(pParse, 0, iDb); 3554 sqlite3RefillIndex(pParse, pIndex, -1); 3555 } 3556 } 3557 } 3558 #endif 3559 3560 /* 3561 ** Recompute all indices of all tables in all databases where the 3562 ** indices use the collating sequence pColl. If pColl==0 then recompute 3563 ** all indices everywhere. 3564 */ 3565 #ifndef SQLITE_OMIT_REINDEX 3566 static void reindexDatabases(Parse *pParse, char const *zColl){ 3567 Db *pDb; /* A single database */ 3568 int iDb; /* The database index number */ 3569 sqlite3 *db = pParse->db; /* The database connection */ 3570 HashElem *k; /* For looping over tables in pDb */ 3571 Table *pTab; /* A table in the database */ 3572 3573 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3574 assert( pDb!=0 ); 3575 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3576 pTab = (Table*)sqliteHashData(k); 3577 reindexTable(pParse, pTab, zColl); 3578 } 3579 } 3580 } 3581 #endif 3582 3583 /* 3584 ** Generate code for the REINDEX command. 3585 ** 3586 ** REINDEX -- 1 3587 ** REINDEX <collation> -- 2 3588 ** REINDEX ?<database>.?<tablename> -- 3 3589 ** REINDEX ?<database>.?<indexname> -- 4 3590 ** 3591 ** Form 1 causes all indices in all attached databases to be rebuilt. 3592 ** Form 2 rebuilds all indices in all databases that use the named 3593 ** collating function. Forms 3 and 4 rebuild the named index or all 3594 ** indices associated with the named table. 3595 */ 3596 #ifndef SQLITE_OMIT_REINDEX 3597 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3598 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3599 char *z; /* Name of a table or index */ 3600 const char *zDb; /* Name of the database */ 3601 Table *pTab; /* A table in the database */ 3602 Index *pIndex; /* An index associated with pTab */ 3603 int iDb; /* The database index number */ 3604 sqlite3 *db = pParse->db; /* The database connection */ 3605 Token *pObjName; /* Name of the table or index to be reindexed */ 3606 3607 /* Read the database schema. If an error occurs, leave an error message 3608 ** and code in pParse and return NULL. */ 3609 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3610 return; 3611 } 3612 3613 if( pName1==0 ){ 3614 reindexDatabases(pParse, 0); 3615 return; 3616 }else if( NEVER(pName2==0) || pName2->z==0 ){ 3617 char *zColl; 3618 assert( pName1->z ); 3619 zColl = sqlite3NameFromToken(pParse->db, pName1); 3620 if( !zColl ) return; 3621 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 3622 if( pColl ){ 3623 reindexDatabases(pParse, zColl); 3624 sqlite3DbFree(db, zColl); 3625 return; 3626 } 3627 sqlite3DbFree(db, zColl); 3628 } 3629 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3630 if( iDb<0 ) return; 3631 z = sqlite3NameFromToken(db, pObjName); 3632 if( z==0 ) return; 3633 zDb = db->aDb[iDb].zName; 3634 pTab = sqlite3FindTable(db, z, zDb); 3635 if( pTab ){ 3636 reindexTable(pParse, pTab, 0); 3637 sqlite3DbFree(db, z); 3638 return; 3639 } 3640 pIndex = sqlite3FindIndex(db, z, zDb); 3641 sqlite3DbFree(db, z); 3642 if( pIndex ){ 3643 sqlite3BeginWriteOperation(pParse, 0, iDb); 3644 sqlite3RefillIndex(pParse, pIndex, -1); 3645 return; 3646 } 3647 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3648 } 3649 #endif 3650 3651 /* 3652 ** Return a dynamicly allocated KeyInfo structure that can be used 3653 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3654 ** 3655 ** If successful, a pointer to the new structure is returned. In this case 3656 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 3657 ** pointer. If an error occurs (out of memory or missing collation 3658 ** sequence), NULL is returned and the state of pParse updated to reflect 3659 ** the error. 3660 */ 3661 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3662 int i; 3663 int nCol = pIdx->nColumn; 3664 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3665 sqlite3 *db = pParse->db; 3666 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); 3667 3668 if( pKey ){ 3669 pKey->db = pParse->db; 3670 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3671 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3672 for(i=0; i<nCol; i++){ 3673 char *zColl = pIdx->azColl[i]; 3674 assert( zColl ); 3675 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); 3676 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3677 } 3678 pKey->nField = (u16)nCol; 3679 } 3680 3681 if( pParse->nErr ){ 3682 sqlite3DbFree(db, pKey); 3683 pKey = 0; 3684 } 3685 return pKey; 3686 } 3687