1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 for(i=0; i<pToplevel->nTableLock; i++){ 63 p = &pToplevel->aTableLock[i]; 64 if( p->iDb==iDb && p->iTab==iTab ){ 65 p->isWriteLock = (p->isWriteLock || isWriteLock); 66 return; 67 } 68 } 69 70 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 71 pToplevel->aTableLock = 72 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 73 if( pToplevel->aTableLock ){ 74 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 75 p->iDb = iDb; 76 p->iTab = iTab; 77 p->isWriteLock = isWriteLock; 78 p->zName = zName; 79 }else{ 80 pToplevel->nTableLock = 0; 81 sqlite3OomFault(pToplevel->db); 82 } 83 } 84 85 /* 86 ** Code an OP_TableLock instruction for each table locked by the 87 ** statement (configured by calls to sqlite3TableLock()). 88 */ 89 static void codeTableLocks(Parse *pParse){ 90 int i; 91 Vdbe *pVdbe; 92 93 pVdbe = sqlite3GetVdbe(pParse); 94 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 95 96 for(i=0; i<pParse->nTableLock; i++){ 97 TableLock *p = &pParse->aTableLock[i]; 98 int p1 = p->iDb; 99 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 100 p->zName, P4_STATIC); 101 } 102 } 103 #else 104 #define codeTableLocks(x) 105 #endif 106 107 /* 108 ** Return TRUE if the given yDbMask object is empty - if it contains no 109 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 110 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 111 */ 112 #if SQLITE_MAX_ATTACHED>30 113 int sqlite3DbMaskAllZero(yDbMask m){ 114 int i; 115 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 116 return 1; 117 } 118 #endif 119 120 /* 121 ** This routine is called after a single SQL statement has been 122 ** parsed and a VDBE program to execute that statement has been 123 ** prepared. This routine puts the finishing touches on the 124 ** VDBE program and resets the pParse structure for the next 125 ** parse. 126 ** 127 ** Note that if an error occurred, it might be the case that 128 ** no VDBE code was generated. 129 */ 130 void sqlite3FinishCoding(Parse *pParse){ 131 sqlite3 *db; 132 Vdbe *v; 133 134 assert( pParse->pToplevel==0 ); 135 db = pParse->db; 136 if( pParse->nested ) return; 137 if( db->mallocFailed || pParse->nErr ){ 138 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 139 return; 140 } 141 142 /* Begin by generating some termination code at the end of the 143 ** vdbe program 144 */ 145 v = sqlite3GetVdbe(pParse); 146 assert( !pParse->isMultiWrite 147 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 148 if( v ){ 149 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} 150 sqlite3VdbeAddOp0(v, OP_Halt); 151 152 #if SQLITE_USER_AUTHENTICATION 153 if( pParse->nTableLock>0 && db->init.busy==0 ){ 154 sqlite3UserAuthInit(db); 155 if( db->auth.authLevel<UAUTH_User ){ 156 pParse->rc = SQLITE_AUTH_USER; 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 return; 159 } 160 } 161 #endif 162 163 /* The cookie mask contains one bit for each database file open. 164 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 165 ** set for each database that is used. Generate code to start a 166 ** transaction on each used database and to verify the schema cookie 167 ** on each used database. 168 */ 169 if( db->mallocFailed==0 170 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 171 ){ 172 int iDb, i; 173 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 174 sqlite3VdbeJumpHere(v, 0); 175 for(iDb=0; iDb<db->nDb; iDb++){ 176 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 177 sqlite3VdbeUsesBtree(v, iDb); 178 sqlite3VdbeAddOp4Int(v, 179 OP_Transaction, /* Opcode */ 180 iDb, /* P1 */ 181 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 182 pParse->cookieValue[iDb], /* P3 */ 183 db->aDb[iDb].pSchema->iGeneration /* P4 */ 184 ); 185 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 186 VdbeComment((v, 187 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 188 } 189 #ifndef SQLITE_OMIT_VIRTUALTABLE 190 for(i=0; i<pParse->nVtabLock; i++){ 191 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 192 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 193 } 194 pParse->nVtabLock = 0; 195 #endif 196 197 /* Once all the cookies have been verified and transactions opened, 198 ** obtain the required table-locks. This is a no-op unless the 199 ** shared-cache feature is enabled. 200 */ 201 codeTableLocks(pParse); 202 203 /* Initialize any AUTOINCREMENT data structures required. 204 */ 205 sqlite3AutoincrementBegin(pParse); 206 207 /* Code constant expressions that where factored out of inner loops */ 208 if( pParse->pConstExpr ){ 209 ExprList *pEL = pParse->pConstExpr; 210 pParse->okConstFactor = 0; 211 for(i=0; i<pEL->nExpr; i++){ 212 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 213 } 214 } 215 216 /* Finally, jump back to the beginning of the executable code. */ 217 sqlite3VdbeGoto(v, 1); 218 } 219 } 220 221 222 /* Get the VDBE program ready for execution 223 */ 224 if( v && pParse->nErr==0 && !db->mallocFailed ){ 225 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 226 /* A minimum of one cursor is required if autoincrement is used 227 * See ticket [a696379c1f08866] */ 228 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 229 sqlite3VdbeMakeReady(v, pParse); 230 pParse->rc = SQLITE_DONE; 231 }else{ 232 pParse->rc = SQLITE_ERROR; 233 } 234 235 /* We are done with this Parse object. There is no need to de-initialize it */ 236 #if 0 237 pParse->colNamesSet = 0; 238 pParse->nTab = 0; 239 pParse->nMem = 0; 240 pParse->nSet = 0; 241 pParse->nVar = 0; 242 DbMaskZero(pParse->cookieMask); 243 #endif 244 } 245 246 /* 247 ** Run the parser and code generator recursively in order to generate 248 ** code for the SQL statement given onto the end of the pParse context 249 ** currently under construction. When the parser is run recursively 250 ** this way, the final OP_Halt is not appended and other initialization 251 ** and finalization steps are omitted because those are handling by the 252 ** outermost parser. 253 ** 254 ** Not everything is nestable. This facility is designed to permit 255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 256 ** care if you decide to try to use this routine for some other purposes. 257 */ 258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 259 va_list ap; 260 char *zSql; 261 char *zErrMsg = 0; 262 sqlite3 *db = pParse->db; 263 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 264 char saveBuf[SAVE_SZ]; 265 266 if( pParse->nErr ) return; 267 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 268 va_start(ap, zFormat); 269 zSql = sqlite3VMPrintf(db, zFormat, ap); 270 va_end(ap); 271 if( zSql==0 ){ 272 return; /* A malloc must have failed */ 273 } 274 pParse->nested++; 275 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 276 memset(&pParse->nVar, 0, SAVE_SZ); 277 sqlite3RunParser(pParse, zSql, &zErrMsg); 278 sqlite3DbFree(db, zErrMsg); 279 sqlite3DbFree(db, zSql); 280 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 281 pParse->nested--; 282 } 283 284 #if SQLITE_USER_AUTHENTICATION 285 /* 286 ** Return TRUE if zTable is the name of the system table that stores the 287 ** list of users and their access credentials. 288 */ 289 int sqlite3UserAuthTable(const char *zTable){ 290 return sqlite3_stricmp(zTable, "sqlite_user")==0; 291 } 292 #endif 293 294 /* 295 ** Locate the in-memory structure that describes a particular database 296 ** table given the name of that table and (optionally) the name of the 297 ** database containing the table. Return NULL if not found. 298 ** 299 ** If zDatabase is 0, all databases are searched for the table and the 300 ** first matching table is returned. (No checking for duplicate table 301 ** names is done.) The search order is TEMP first, then MAIN, then any 302 ** auxiliary databases added using the ATTACH command. 303 ** 304 ** See also sqlite3LocateTable(). 305 */ 306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 307 Table *p = 0; 308 int i; 309 310 /* All mutexes are required for schema access. Make sure we hold them. */ 311 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 312 #if SQLITE_USER_AUTHENTICATION 313 /* Only the admin user is allowed to know that the sqlite_user table 314 ** exists */ 315 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 316 return 0; 317 } 318 #endif 319 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 320 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 321 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 322 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 323 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 324 if( p ) break; 325 } 326 return p; 327 } 328 329 /* 330 ** Locate the in-memory structure that describes a particular database 331 ** table given the name of that table and (optionally) the name of the 332 ** database containing the table. Return NULL if not found. Also leave an 333 ** error message in pParse->zErrMsg. 334 ** 335 ** The difference between this routine and sqlite3FindTable() is that this 336 ** routine leaves an error message in pParse->zErrMsg where 337 ** sqlite3FindTable() does not. 338 */ 339 Table *sqlite3LocateTable( 340 Parse *pParse, /* context in which to report errors */ 341 int isView, /* True if looking for a VIEW rather than a TABLE */ 342 const char *zName, /* Name of the table we are looking for */ 343 const char *zDbase /* Name of the database. Might be NULL */ 344 ){ 345 Table *p; 346 347 /* Read the database schema. If an error occurs, leave an error message 348 ** and code in pParse and return NULL. */ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 350 return 0; 351 } 352 353 p = sqlite3FindTable(pParse->db, zName, zDbase); 354 if( p==0 ){ 355 const char *zMsg = isView ? "no such view" : "no such table"; 356 #ifndef SQLITE_OMIT_VIRTUALTABLE 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 358 /* If zName is the not the name of a table in the schema created using 359 ** CREATE, then check to see if it is the name of an virtual table that 360 ** can be an eponymous virtual table. */ 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 362 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 363 return pMod->pEpoTab; 364 } 365 } 366 #endif 367 if( zDbase ){ 368 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 369 }else{ 370 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 371 } 372 pParse->checkSchema = 1; 373 } 374 375 return p; 376 } 377 378 /* 379 ** Locate the table identified by *p. 380 ** 381 ** This is a wrapper around sqlite3LocateTable(). The difference between 382 ** sqlite3LocateTable() and this function is that this function restricts 383 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 384 ** non-NULL if it is part of a view or trigger program definition. See 385 ** sqlite3FixSrcList() for details. 386 */ 387 Table *sqlite3LocateTableItem( 388 Parse *pParse, 389 int isView, 390 struct SrcList_item *p 391 ){ 392 const char *zDb; 393 assert( p->pSchema==0 || p->zDatabase==0 ); 394 if( p->pSchema ){ 395 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 396 zDb = pParse->db->aDb[iDb].zName; 397 }else{ 398 zDb = p->zDatabase; 399 } 400 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 401 } 402 403 /* 404 ** Locate the in-memory structure that describes 405 ** a particular index given the name of that index 406 ** and the name of the database that contains the index. 407 ** Return NULL if not found. 408 ** 409 ** If zDatabase is 0, all databases are searched for the 410 ** table and the first matching index is returned. (No checking 411 ** for duplicate index names is done.) The search order is 412 ** TEMP first, then MAIN, then any auxiliary databases added 413 ** using the ATTACH command. 414 */ 415 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 416 Index *p = 0; 417 int i; 418 /* All mutexes are required for schema access. Make sure we hold them. */ 419 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 420 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 421 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 422 Schema *pSchema = db->aDb[j].pSchema; 423 assert( pSchema ); 424 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 425 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 426 p = sqlite3HashFind(&pSchema->idxHash, zName); 427 if( p ) break; 428 } 429 return p; 430 } 431 432 /* 433 ** Reclaim the memory used by an index 434 */ 435 static void freeIndex(sqlite3 *db, Index *p){ 436 #ifndef SQLITE_OMIT_ANALYZE 437 sqlite3DeleteIndexSamples(db, p); 438 #endif 439 sqlite3ExprDelete(db, p->pPartIdxWhere); 440 sqlite3ExprListDelete(db, p->aColExpr); 441 sqlite3DbFree(db, p->zColAff); 442 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 444 sqlite3_free(p->aiRowEst); 445 #endif 446 sqlite3DbFree(db, p); 447 } 448 449 /* 450 ** For the index called zIdxName which is found in the database iDb, 451 ** unlike that index from its Table then remove the index from 452 ** the index hash table and free all memory structures associated 453 ** with the index. 454 */ 455 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 456 Index *pIndex; 457 Hash *pHash; 458 459 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 460 pHash = &db->aDb[iDb].pSchema->idxHash; 461 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 462 if( ALWAYS(pIndex) ){ 463 if( pIndex->pTable->pIndex==pIndex ){ 464 pIndex->pTable->pIndex = pIndex->pNext; 465 }else{ 466 Index *p; 467 /* Justification of ALWAYS(); The index must be on the list of 468 ** indices. */ 469 p = pIndex->pTable->pIndex; 470 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 471 if( ALWAYS(p && p->pNext==pIndex) ){ 472 p->pNext = pIndex->pNext; 473 } 474 } 475 freeIndex(db, pIndex); 476 } 477 db->flags |= SQLITE_InternChanges; 478 } 479 480 /* 481 ** Look through the list of open database files in db->aDb[] and if 482 ** any have been closed, remove them from the list. Reallocate the 483 ** db->aDb[] structure to a smaller size, if possible. 484 ** 485 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 486 ** are never candidates for being collapsed. 487 */ 488 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 489 int i, j; 490 for(i=j=2; i<db->nDb; i++){ 491 struct Db *pDb = &db->aDb[i]; 492 if( pDb->pBt==0 ){ 493 sqlite3DbFree(db, pDb->zName); 494 pDb->zName = 0; 495 continue; 496 } 497 if( j<i ){ 498 db->aDb[j] = db->aDb[i]; 499 } 500 j++; 501 } 502 db->nDb = j; 503 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 504 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 505 sqlite3DbFree(db, db->aDb); 506 db->aDb = db->aDbStatic; 507 } 508 } 509 510 /* 511 ** Reset the schema for the database at index iDb. Also reset the 512 ** TEMP schema. 513 */ 514 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 515 Db *pDb; 516 assert( iDb<db->nDb ); 517 518 /* Case 1: Reset the single schema identified by iDb */ 519 pDb = &db->aDb[iDb]; 520 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 521 assert( pDb->pSchema!=0 ); 522 sqlite3SchemaClear(pDb->pSchema); 523 524 /* If any database other than TEMP is reset, then also reset TEMP 525 ** since TEMP might be holding triggers that reference tables in the 526 ** other database. 527 */ 528 if( iDb!=1 ){ 529 pDb = &db->aDb[1]; 530 assert( pDb->pSchema!=0 ); 531 sqlite3SchemaClear(pDb->pSchema); 532 } 533 return; 534 } 535 536 /* 537 ** Erase all schema information from all attached databases (including 538 ** "main" and "temp") for a single database connection. 539 */ 540 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 541 int i; 542 sqlite3BtreeEnterAll(db); 543 for(i=0; i<db->nDb; i++){ 544 Db *pDb = &db->aDb[i]; 545 if( pDb->pSchema ){ 546 sqlite3SchemaClear(pDb->pSchema); 547 } 548 } 549 db->flags &= ~SQLITE_InternChanges; 550 sqlite3VtabUnlockList(db); 551 sqlite3BtreeLeaveAll(db); 552 sqlite3CollapseDatabaseArray(db); 553 } 554 555 /* 556 ** This routine is called when a commit occurs. 557 */ 558 void sqlite3CommitInternalChanges(sqlite3 *db){ 559 db->flags &= ~SQLITE_InternChanges; 560 } 561 562 /* 563 ** Delete memory allocated for the column names of a table or view (the 564 ** Table.aCol[] array). 565 */ 566 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 567 int i; 568 Column *pCol; 569 assert( pTable!=0 ); 570 if( (pCol = pTable->aCol)!=0 ){ 571 for(i=0; i<pTable->nCol; i++, pCol++){ 572 sqlite3DbFree(db, pCol->zName); 573 sqlite3ExprDelete(db, pCol->pDflt); 574 sqlite3DbFree(db, pCol->zColl); 575 } 576 sqlite3DbFree(db, pTable->aCol); 577 } 578 } 579 580 /* 581 ** Remove the memory data structures associated with the given 582 ** Table. No changes are made to disk by this routine. 583 ** 584 ** This routine just deletes the data structure. It does not unlink 585 ** the table data structure from the hash table. But it does destroy 586 ** memory structures of the indices and foreign keys associated with 587 ** the table. 588 ** 589 ** The db parameter is optional. It is needed if the Table object 590 ** contains lookaside memory. (Table objects in the schema do not use 591 ** lookaside memory, but some ephemeral Table objects do.) Or the 592 ** db parameter can be used with db->pnBytesFreed to measure the memory 593 ** used by the Table object. 594 */ 595 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 596 Index *pIndex, *pNext; 597 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 598 599 assert( !pTable || pTable->nRef>0 ); 600 601 /* Do not delete the table until the reference count reaches zero. */ 602 if( !pTable ) return; 603 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 604 605 /* Record the number of outstanding lookaside allocations in schema Tables 606 ** prior to doing any free() operations. Since schema Tables do not use 607 ** lookaside, this number should not change. */ 608 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 609 db->lookaside.nOut : 0 ); 610 611 /* Delete all indices associated with this table. */ 612 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 613 pNext = pIndex->pNext; 614 assert( pIndex->pSchema==pTable->pSchema ); 615 if( !db || db->pnBytesFreed==0 ){ 616 char *zName = pIndex->zName; 617 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 618 &pIndex->pSchema->idxHash, zName, 0 619 ); 620 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 621 assert( pOld==pIndex || pOld==0 ); 622 } 623 freeIndex(db, pIndex); 624 } 625 626 /* Delete any foreign keys attached to this table. */ 627 sqlite3FkDelete(db, pTable); 628 629 /* Delete the Table structure itself. 630 */ 631 sqlite3DeleteColumnNames(db, pTable); 632 sqlite3DbFree(db, pTable->zName); 633 sqlite3DbFree(db, pTable->zColAff); 634 sqlite3SelectDelete(db, pTable->pSelect); 635 sqlite3ExprListDelete(db, pTable->pCheck); 636 #ifndef SQLITE_OMIT_VIRTUALTABLE 637 sqlite3VtabClear(db, pTable); 638 #endif 639 sqlite3DbFree(db, pTable); 640 641 /* Verify that no lookaside memory was used by schema tables */ 642 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 643 } 644 645 /* 646 ** Unlink the given table from the hash tables and the delete the 647 ** table structure with all its indices and foreign keys. 648 */ 649 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 650 Table *p; 651 Db *pDb; 652 653 assert( db!=0 ); 654 assert( iDb>=0 && iDb<db->nDb ); 655 assert( zTabName ); 656 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 657 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 658 pDb = &db->aDb[iDb]; 659 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 660 sqlite3DeleteTable(db, p); 661 db->flags |= SQLITE_InternChanges; 662 } 663 664 /* 665 ** Given a token, return a string that consists of the text of that 666 ** token. Space to hold the returned string 667 ** is obtained from sqliteMalloc() and must be freed by the calling 668 ** function. 669 ** 670 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 671 ** surround the body of the token are removed. 672 ** 673 ** Tokens are often just pointers into the original SQL text and so 674 ** are not \000 terminated and are not persistent. The returned string 675 ** is \000 terminated and is persistent. 676 */ 677 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 678 char *zName; 679 if( pName ){ 680 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 681 sqlite3Dequote(zName); 682 }else{ 683 zName = 0; 684 } 685 return zName; 686 } 687 688 /* 689 ** Open the sqlite_master table stored in database number iDb for 690 ** writing. The table is opened using cursor 0. 691 */ 692 void sqlite3OpenMasterTable(Parse *p, int iDb){ 693 Vdbe *v = sqlite3GetVdbe(p); 694 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 695 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 696 if( p->nTab==0 ){ 697 p->nTab = 1; 698 } 699 } 700 701 /* 702 ** Parameter zName points to a nul-terminated buffer containing the name 703 ** of a database ("main", "temp" or the name of an attached db). This 704 ** function returns the index of the named database in db->aDb[], or 705 ** -1 if the named db cannot be found. 706 */ 707 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 708 int i = -1; /* Database number */ 709 if( zName ){ 710 Db *pDb; 711 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 712 if( 0==sqlite3StrICmp(pDb->zName, zName) ) break; 713 } 714 } 715 return i; 716 } 717 718 /* 719 ** The token *pName contains the name of a database (either "main" or 720 ** "temp" or the name of an attached db). This routine returns the 721 ** index of the named database in db->aDb[], or -1 if the named db 722 ** does not exist. 723 */ 724 int sqlite3FindDb(sqlite3 *db, Token *pName){ 725 int i; /* Database number */ 726 char *zName; /* Name we are searching for */ 727 zName = sqlite3NameFromToken(db, pName); 728 i = sqlite3FindDbName(db, zName); 729 sqlite3DbFree(db, zName); 730 return i; 731 } 732 733 /* The table or view or trigger name is passed to this routine via tokens 734 ** pName1 and pName2. If the table name was fully qualified, for example: 735 ** 736 ** CREATE TABLE xxx.yyy (...); 737 ** 738 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 739 ** the table name is not fully qualified, i.e.: 740 ** 741 ** CREATE TABLE yyy(...); 742 ** 743 ** Then pName1 is set to "yyy" and pName2 is "". 744 ** 745 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 746 ** pName2) that stores the unqualified table name. The index of the 747 ** database "xxx" is returned. 748 */ 749 int sqlite3TwoPartName( 750 Parse *pParse, /* Parsing and code generating context */ 751 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 752 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 753 Token **pUnqual /* Write the unqualified object name here */ 754 ){ 755 int iDb; /* Database holding the object */ 756 sqlite3 *db = pParse->db; 757 758 assert( pName2!=0 ); 759 if( pName2->n>0 ){ 760 if( db->init.busy ) { 761 sqlite3ErrorMsg(pParse, "corrupt database"); 762 return -1; 763 } 764 *pUnqual = pName2; 765 iDb = sqlite3FindDb(db, pName1); 766 if( iDb<0 ){ 767 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 768 return -1; 769 } 770 }else{ 771 assert( db->init.iDb==0 || db->init.busy ); 772 iDb = db->init.iDb; 773 *pUnqual = pName1; 774 } 775 return iDb; 776 } 777 778 /* 779 ** This routine is used to check if the UTF-8 string zName is a legal 780 ** unqualified name for a new schema object (table, index, view or 781 ** trigger). All names are legal except those that begin with the string 782 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 783 ** is reserved for internal use. 784 */ 785 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 786 if( !pParse->db->init.busy && pParse->nested==0 787 && (pParse->db->flags & SQLITE_WriteSchema)==0 788 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 789 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 790 return SQLITE_ERROR; 791 } 792 return SQLITE_OK; 793 } 794 795 /* 796 ** Return the PRIMARY KEY index of a table 797 */ 798 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 799 Index *p; 800 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 801 return p; 802 } 803 804 /* 805 ** Return the column of index pIdx that corresponds to table 806 ** column iCol. Return -1 if not found. 807 */ 808 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ 809 int i; 810 for(i=0; i<pIdx->nColumn; i++){ 811 if( iCol==pIdx->aiColumn[i] ) return i; 812 } 813 return -1; 814 } 815 816 /* 817 ** Begin constructing a new table representation in memory. This is 818 ** the first of several action routines that get called in response 819 ** to a CREATE TABLE statement. In particular, this routine is called 820 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 821 ** flag is true if the table should be stored in the auxiliary database 822 ** file instead of in the main database file. This is normally the case 823 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 824 ** CREATE and TABLE. 825 ** 826 ** The new table record is initialized and put in pParse->pNewTable. 827 ** As more of the CREATE TABLE statement is parsed, additional action 828 ** routines will be called to add more information to this record. 829 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 830 ** is called to complete the construction of the new table record. 831 */ 832 void sqlite3StartTable( 833 Parse *pParse, /* Parser context */ 834 Token *pName1, /* First part of the name of the table or view */ 835 Token *pName2, /* Second part of the name of the table or view */ 836 int isTemp, /* True if this is a TEMP table */ 837 int isView, /* True if this is a VIEW */ 838 int isVirtual, /* True if this is a VIRTUAL table */ 839 int noErr /* Do nothing if table already exists */ 840 ){ 841 Table *pTable; 842 char *zName = 0; /* The name of the new table */ 843 sqlite3 *db = pParse->db; 844 Vdbe *v; 845 int iDb; /* Database number to create the table in */ 846 Token *pName; /* Unqualified name of the table to create */ 847 848 if( db->init.busy && db->init.newTnum==1 ){ 849 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 850 iDb = db->init.iDb; 851 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 852 pName = pName1; 853 }else{ 854 /* The common case */ 855 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 856 if( iDb<0 ) return; 857 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 858 /* If creating a temp table, the name may not be qualified. Unless 859 ** the database name is "temp" anyway. */ 860 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 861 return; 862 } 863 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 864 zName = sqlite3NameFromToken(db, pName); 865 } 866 pParse->sNameToken = *pName; 867 if( zName==0 ) return; 868 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 869 goto begin_table_error; 870 } 871 if( db->init.iDb==1 ) isTemp = 1; 872 #ifndef SQLITE_OMIT_AUTHORIZATION 873 assert( isTemp==0 || isTemp==1 ); 874 assert( isView==0 || isView==1 ); 875 { 876 static const u8 aCode[] = { 877 SQLITE_CREATE_TABLE, 878 SQLITE_CREATE_TEMP_TABLE, 879 SQLITE_CREATE_VIEW, 880 SQLITE_CREATE_TEMP_VIEW 881 }; 882 char *zDb = db->aDb[iDb].zName; 883 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 884 goto begin_table_error; 885 } 886 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 887 zName, 0, zDb) ){ 888 goto begin_table_error; 889 } 890 } 891 #endif 892 893 /* Make sure the new table name does not collide with an existing 894 ** index or table name in the same database. Issue an error message if 895 ** it does. The exception is if the statement being parsed was passed 896 ** to an sqlite3_declare_vtab() call. In that case only the column names 897 ** and types will be used, so there is no need to test for namespace 898 ** collisions. 899 */ 900 if( !IN_DECLARE_VTAB ){ 901 char *zDb = db->aDb[iDb].zName; 902 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 903 goto begin_table_error; 904 } 905 pTable = sqlite3FindTable(db, zName, zDb); 906 if( pTable ){ 907 if( !noErr ){ 908 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 909 }else{ 910 assert( !db->init.busy || CORRUPT_DB ); 911 sqlite3CodeVerifySchema(pParse, iDb); 912 } 913 goto begin_table_error; 914 } 915 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 916 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 917 goto begin_table_error; 918 } 919 } 920 921 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 922 if( pTable==0 ){ 923 assert( db->mallocFailed ); 924 pParse->rc = SQLITE_NOMEM_BKPT; 925 pParse->nErr++; 926 goto begin_table_error; 927 } 928 pTable->zName = zName; 929 pTable->iPKey = -1; 930 pTable->pSchema = db->aDb[iDb].pSchema; 931 pTable->nRef = 1; 932 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 933 assert( pParse->pNewTable==0 ); 934 pParse->pNewTable = pTable; 935 936 /* If this is the magic sqlite_sequence table used by autoincrement, 937 ** then record a pointer to this table in the main database structure 938 ** so that INSERT can find the table easily. 939 */ 940 #ifndef SQLITE_OMIT_AUTOINCREMENT 941 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 942 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 943 pTable->pSchema->pSeqTab = pTable; 944 } 945 #endif 946 947 /* Begin generating the code that will insert the table record into 948 ** the SQLITE_MASTER table. Note in particular that we must go ahead 949 ** and allocate the record number for the table entry now. Before any 950 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 951 ** indices to be created and the table record must come before the 952 ** indices. Hence, the record number for the table must be allocated 953 ** now. 954 */ 955 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 956 int addr1; 957 int fileFormat; 958 int reg1, reg2, reg3; 959 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 960 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 961 sqlite3BeginWriteOperation(pParse, 1, iDb); 962 963 #ifndef SQLITE_OMIT_VIRTUALTABLE 964 if( isVirtual ){ 965 sqlite3VdbeAddOp0(v, OP_VBegin); 966 } 967 #endif 968 969 /* If the file format and encoding in the database have not been set, 970 ** set them now. 971 */ 972 reg1 = pParse->regRowid = ++pParse->nMem; 973 reg2 = pParse->regRoot = ++pParse->nMem; 974 reg3 = ++pParse->nMem; 975 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 976 sqlite3VdbeUsesBtree(v, iDb); 977 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 978 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 979 1 : SQLITE_MAX_FILE_FORMAT; 980 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 981 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 982 sqlite3VdbeJumpHere(v, addr1); 983 984 /* This just creates a place-holder record in the sqlite_master table. 985 ** The record created does not contain anything yet. It will be replaced 986 ** by the real entry in code generated at sqlite3EndTable(). 987 ** 988 ** The rowid for the new entry is left in register pParse->regRowid. 989 ** The root page number of the new table is left in reg pParse->regRoot. 990 ** The rowid and root page number values are needed by the code that 991 ** sqlite3EndTable will generate. 992 */ 993 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 994 if( isView || isVirtual ){ 995 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 996 }else 997 #endif 998 { 999 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 1000 } 1001 sqlite3OpenMasterTable(pParse, iDb); 1002 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1003 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1004 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1005 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1006 sqlite3VdbeAddOp0(v, OP_Close); 1007 } 1008 1009 /* Normal (non-error) return. */ 1010 return; 1011 1012 /* If an error occurs, we jump here */ 1013 begin_table_error: 1014 sqlite3DbFree(db, zName); 1015 return; 1016 } 1017 1018 /* Set properties of a table column based on the (magical) 1019 ** name of the column. 1020 */ 1021 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1022 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1023 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1024 pCol->colFlags |= COLFLAG_HIDDEN; 1025 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1026 pTab->tabFlags |= TF_OOOHidden; 1027 } 1028 } 1029 #endif 1030 1031 1032 /* 1033 ** Add a new column to the table currently being constructed. 1034 ** 1035 ** The parser calls this routine once for each column declaration 1036 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1037 ** first to get things going. Then this routine is called for each 1038 ** column. 1039 */ 1040 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1041 Table *p; 1042 int i; 1043 char *z; 1044 char *zType; 1045 Column *pCol; 1046 sqlite3 *db = pParse->db; 1047 if( (p = pParse->pNewTable)==0 ) return; 1048 #if SQLITE_MAX_COLUMN 1049 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1050 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1051 return; 1052 } 1053 #endif 1054 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1055 if( z==0 ) return; 1056 memcpy(z, pName->z, pName->n); 1057 z[pName->n] = 0; 1058 sqlite3Dequote(z); 1059 for(i=0; i<p->nCol; i++){ 1060 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1061 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1062 sqlite3DbFree(db, z); 1063 return; 1064 } 1065 } 1066 if( (p->nCol & 0x7)==0 ){ 1067 Column *aNew; 1068 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1069 if( aNew==0 ){ 1070 sqlite3DbFree(db, z); 1071 return; 1072 } 1073 p->aCol = aNew; 1074 } 1075 pCol = &p->aCol[p->nCol]; 1076 memset(pCol, 0, sizeof(p->aCol[0])); 1077 pCol->zName = z; 1078 sqlite3ColumnPropertiesFromName(p, pCol); 1079 1080 if( pType->n==0 ){ 1081 /* If there is no type specified, columns have the default affinity 1082 ** 'BLOB'. */ 1083 pCol->affinity = SQLITE_AFF_BLOB; 1084 pCol->szEst = 1; 1085 }else{ 1086 zType = z + sqlite3Strlen30(z) + 1; 1087 memcpy(zType, pType->z, pType->n); 1088 zType[pType->n] = 0; 1089 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst); 1090 pCol->colFlags |= COLFLAG_HASTYPE; 1091 } 1092 p->nCol++; 1093 pParse->constraintName.n = 0; 1094 } 1095 1096 /* 1097 ** This routine is called by the parser while in the middle of 1098 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1099 ** been seen on a column. This routine sets the notNull flag on 1100 ** the column currently under construction. 1101 */ 1102 void sqlite3AddNotNull(Parse *pParse, int onError){ 1103 Table *p; 1104 p = pParse->pNewTable; 1105 if( p==0 || NEVER(p->nCol<1) ) return; 1106 p->aCol[p->nCol-1].notNull = (u8)onError; 1107 } 1108 1109 /* 1110 ** Scan the column type name zType (length nType) and return the 1111 ** associated affinity type. 1112 ** 1113 ** This routine does a case-independent search of zType for the 1114 ** substrings in the following table. If one of the substrings is 1115 ** found, the corresponding affinity is returned. If zType contains 1116 ** more than one of the substrings, entries toward the top of 1117 ** the table take priority. For example, if zType is 'BLOBINT', 1118 ** SQLITE_AFF_INTEGER is returned. 1119 ** 1120 ** Substring | Affinity 1121 ** -------------------------------- 1122 ** 'INT' | SQLITE_AFF_INTEGER 1123 ** 'CHAR' | SQLITE_AFF_TEXT 1124 ** 'CLOB' | SQLITE_AFF_TEXT 1125 ** 'TEXT' | SQLITE_AFF_TEXT 1126 ** 'BLOB' | SQLITE_AFF_BLOB 1127 ** 'REAL' | SQLITE_AFF_REAL 1128 ** 'FLOA' | SQLITE_AFF_REAL 1129 ** 'DOUB' | SQLITE_AFF_REAL 1130 ** 1131 ** If none of the substrings in the above table are found, 1132 ** SQLITE_AFF_NUMERIC is returned. 1133 */ 1134 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1135 u32 h = 0; 1136 char aff = SQLITE_AFF_NUMERIC; 1137 const char *zChar = 0; 1138 1139 assert( zIn!=0 ); 1140 while( zIn[0] ){ 1141 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1142 zIn++; 1143 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1144 aff = SQLITE_AFF_TEXT; 1145 zChar = zIn; 1146 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1147 aff = SQLITE_AFF_TEXT; 1148 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1149 aff = SQLITE_AFF_TEXT; 1150 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1151 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1152 aff = SQLITE_AFF_BLOB; 1153 if( zIn[0]=='(' ) zChar = zIn; 1154 #ifndef SQLITE_OMIT_FLOATING_POINT 1155 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1156 && aff==SQLITE_AFF_NUMERIC ){ 1157 aff = SQLITE_AFF_REAL; 1158 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1159 && aff==SQLITE_AFF_NUMERIC ){ 1160 aff = SQLITE_AFF_REAL; 1161 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1162 && aff==SQLITE_AFF_NUMERIC ){ 1163 aff = SQLITE_AFF_REAL; 1164 #endif 1165 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1166 aff = SQLITE_AFF_INTEGER; 1167 break; 1168 } 1169 } 1170 1171 /* If pszEst is not NULL, store an estimate of the field size. The 1172 ** estimate is scaled so that the size of an integer is 1. */ 1173 if( pszEst ){ 1174 *pszEst = 1; /* default size is approx 4 bytes */ 1175 if( aff<SQLITE_AFF_NUMERIC ){ 1176 if( zChar ){ 1177 while( zChar[0] ){ 1178 if( sqlite3Isdigit(zChar[0]) ){ 1179 int v = 0; 1180 sqlite3GetInt32(zChar, &v); 1181 v = v/4 + 1; 1182 if( v>255 ) v = 255; 1183 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1184 break; 1185 } 1186 zChar++; 1187 } 1188 }else{ 1189 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1190 } 1191 } 1192 } 1193 return aff; 1194 } 1195 1196 /* 1197 ** The expression is the default value for the most recently added column 1198 ** of the table currently under construction. 1199 ** 1200 ** Default value expressions must be constant. Raise an exception if this 1201 ** is not the case. 1202 ** 1203 ** This routine is called by the parser while in the middle of 1204 ** parsing a CREATE TABLE statement. 1205 */ 1206 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1207 Table *p; 1208 Column *pCol; 1209 sqlite3 *db = pParse->db; 1210 p = pParse->pNewTable; 1211 if( p!=0 ){ 1212 pCol = &(p->aCol[p->nCol-1]); 1213 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1214 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1215 pCol->zName); 1216 }else{ 1217 /* A copy of pExpr is used instead of the original, as pExpr contains 1218 ** tokens that point to volatile memory. The 'span' of the expression 1219 ** is required by pragma table_info. 1220 */ 1221 Expr x; 1222 sqlite3ExprDelete(db, pCol->pDflt); 1223 memset(&x, 0, sizeof(x)); 1224 x.op = TK_SPAN; 1225 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1226 (int)(pSpan->zEnd - pSpan->zStart)); 1227 x.pLeft = pSpan->pExpr; 1228 x.flags = EP_Skip; 1229 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1230 sqlite3DbFree(db, x.u.zToken); 1231 } 1232 } 1233 sqlite3ExprDelete(db, pSpan->pExpr); 1234 } 1235 1236 /* 1237 ** Backwards Compatibility Hack: 1238 ** 1239 ** Historical versions of SQLite accepted strings as column names in 1240 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1241 ** 1242 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1243 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1244 ** 1245 ** This is goofy. But to preserve backwards compatibility we continue to 1246 ** accept it. This routine does the necessary conversion. It converts 1247 ** the expression given in its argument from a TK_STRING into a TK_ID 1248 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1249 ** If the epxression is anything other than TK_STRING, the expression is 1250 ** unchanged. 1251 */ 1252 static void sqlite3StringToId(Expr *p){ 1253 if( p->op==TK_STRING ){ 1254 p->op = TK_ID; 1255 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1256 p->pLeft->op = TK_ID; 1257 } 1258 } 1259 1260 /* 1261 ** Designate the PRIMARY KEY for the table. pList is a list of names 1262 ** of columns that form the primary key. If pList is NULL, then the 1263 ** most recently added column of the table is the primary key. 1264 ** 1265 ** A table can have at most one primary key. If the table already has 1266 ** a primary key (and this is the second primary key) then create an 1267 ** error. 1268 ** 1269 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1270 ** then we will try to use that column as the rowid. Set the Table.iPKey 1271 ** field of the table under construction to be the index of the 1272 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1273 ** no INTEGER PRIMARY KEY. 1274 ** 1275 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1276 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1277 */ 1278 void sqlite3AddPrimaryKey( 1279 Parse *pParse, /* Parsing context */ 1280 ExprList *pList, /* List of field names to be indexed */ 1281 int onError, /* What to do with a uniqueness conflict */ 1282 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1283 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1284 ){ 1285 Table *pTab = pParse->pNewTable; 1286 Column *pCol = 0; 1287 int iCol = -1, i; 1288 int nTerm; 1289 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1290 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1291 sqlite3ErrorMsg(pParse, 1292 "table \"%s\" has more than one primary key", pTab->zName); 1293 goto primary_key_exit; 1294 } 1295 pTab->tabFlags |= TF_HasPrimaryKey; 1296 if( pList==0 ){ 1297 iCol = pTab->nCol - 1; 1298 pCol = &pTab->aCol[iCol]; 1299 pCol->colFlags |= COLFLAG_PRIMKEY; 1300 nTerm = 1; 1301 }else{ 1302 nTerm = pList->nExpr; 1303 for(i=0; i<nTerm; i++){ 1304 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1305 assert( pCExpr!=0 ); 1306 sqlite3StringToId(pCExpr); 1307 if( pCExpr->op==TK_ID ){ 1308 const char *zCName = pCExpr->u.zToken; 1309 for(iCol=0; iCol<pTab->nCol; iCol++){ 1310 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1311 pCol = &pTab->aCol[iCol]; 1312 pCol->colFlags |= COLFLAG_PRIMKEY; 1313 break; 1314 } 1315 } 1316 } 1317 } 1318 } 1319 if( nTerm==1 1320 && pCol 1321 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1322 && sortOrder!=SQLITE_SO_DESC 1323 ){ 1324 pTab->iPKey = iCol; 1325 pTab->keyConf = (u8)onError; 1326 assert( autoInc==0 || autoInc==1 ); 1327 pTab->tabFlags |= autoInc*TF_Autoincrement; 1328 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1329 }else if( autoInc ){ 1330 #ifndef SQLITE_OMIT_AUTOINCREMENT 1331 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1332 "INTEGER PRIMARY KEY"); 1333 #endif 1334 }else{ 1335 Index *p; 1336 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1337 0, sortOrder, 0); 1338 if( p ){ 1339 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1340 } 1341 pList = 0; 1342 } 1343 1344 primary_key_exit: 1345 sqlite3ExprListDelete(pParse->db, pList); 1346 return; 1347 } 1348 1349 /* 1350 ** Add a new CHECK constraint to the table currently under construction. 1351 */ 1352 void sqlite3AddCheckConstraint( 1353 Parse *pParse, /* Parsing context */ 1354 Expr *pCheckExpr /* The check expression */ 1355 ){ 1356 #ifndef SQLITE_OMIT_CHECK 1357 Table *pTab = pParse->pNewTable; 1358 sqlite3 *db = pParse->db; 1359 if( pTab && !IN_DECLARE_VTAB 1360 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1361 ){ 1362 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1363 if( pParse->constraintName.n ){ 1364 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1365 } 1366 }else 1367 #endif 1368 { 1369 sqlite3ExprDelete(pParse->db, pCheckExpr); 1370 } 1371 } 1372 1373 /* 1374 ** Set the collation function of the most recently parsed table column 1375 ** to the CollSeq given. 1376 */ 1377 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1378 Table *p; 1379 int i; 1380 char *zColl; /* Dequoted name of collation sequence */ 1381 sqlite3 *db; 1382 1383 if( (p = pParse->pNewTable)==0 ) return; 1384 i = p->nCol-1; 1385 db = pParse->db; 1386 zColl = sqlite3NameFromToken(db, pToken); 1387 if( !zColl ) return; 1388 1389 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1390 Index *pIdx; 1391 sqlite3DbFree(db, p->aCol[i].zColl); 1392 p->aCol[i].zColl = zColl; 1393 1394 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1395 ** then an index may have been created on this column before the 1396 ** collation type was added. Correct this if it is the case. 1397 */ 1398 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1399 assert( pIdx->nKeyCol==1 ); 1400 if( pIdx->aiColumn[0]==i ){ 1401 pIdx->azColl[0] = p->aCol[i].zColl; 1402 } 1403 } 1404 }else{ 1405 sqlite3DbFree(db, zColl); 1406 } 1407 } 1408 1409 /* 1410 ** This function returns the collation sequence for database native text 1411 ** encoding identified by the string zName, length nName. 1412 ** 1413 ** If the requested collation sequence is not available, or not available 1414 ** in the database native encoding, the collation factory is invoked to 1415 ** request it. If the collation factory does not supply such a sequence, 1416 ** and the sequence is available in another text encoding, then that is 1417 ** returned instead. 1418 ** 1419 ** If no versions of the requested collations sequence are available, or 1420 ** another error occurs, NULL is returned and an error message written into 1421 ** pParse. 1422 ** 1423 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1424 ** invokes the collation factory if the named collation cannot be found 1425 ** and generates an error message. 1426 ** 1427 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1428 */ 1429 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1430 sqlite3 *db = pParse->db; 1431 u8 enc = ENC(db); 1432 u8 initbusy = db->init.busy; 1433 CollSeq *pColl; 1434 1435 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1436 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1437 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); 1438 } 1439 1440 return pColl; 1441 } 1442 1443 1444 /* 1445 ** Generate code that will increment the schema cookie. 1446 ** 1447 ** The schema cookie is used to determine when the schema for the 1448 ** database changes. After each schema change, the cookie value 1449 ** changes. When a process first reads the schema it records the 1450 ** cookie. Thereafter, whenever it goes to access the database, 1451 ** it checks the cookie to make sure the schema has not changed 1452 ** since it was last read. 1453 ** 1454 ** This plan is not completely bullet-proof. It is possible for 1455 ** the schema to change multiple times and for the cookie to be 1456 ** set back to prior value. But schema changes are infrequent 1457 ** and the probability of hitting the same cookie value is only 1458 ** 1 chance in 2^32. So we're safe enough. 1459 */ 1460 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1461 sqlite3 *db = pParse->db; 1462 Vdbe *v = pParse->pVdbe; 1463 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1464 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1465 db->aDb[iDb].pSchema->schema_cookie+1); 1466 } 1467 1468 /* 1469 ** Measure the number of characters needed to output the given 1470 ** identifier. The number returned includes any quotes used 1471 ** but does not include the null terminator. 1472 ** 1473 ** The estimate is conservative. It might be larger that what is 1474 ** really needed. 1475 */ 1476 static int identLength(const char *z){ 1477 int n; 1478 for(n=0; *z; n++, z++){ 1479 if( *z=='"' ){ n++; } 1480 } 1481 return n + 2; 1482 } 1483 1484 /* 1485 ** The first parameter is a pointer to an output buffer. The second 1486 ** parameter is a pointer to an integer that contains the offset at 1487 ** which to write into the output buffer. This function copies the 1488 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1489 ** to the specified offset in the buffer and updates *pIdx to refer 1490 ** to the first byte after the last byte written before returning. 1491 ** 1492 ** If the string zSignedIdent consists entirely of alpha-numeric 1493 ** characters, does not begin with a digit and is not an SQL keyword, 1494 ** then it is copied to the output buffer exactly as it is. Otherwise, 1495 ** it is quoted using double-quotes. 1496 */ 1497 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1498 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1499 int i, j, needQuote; 1500 i = *pIdx; 1501 1502 for(j=0; zIdent[j]; j++){ 1503 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1504 } 1505 needQuote = sqlite3Isdigit(zIdent[0]) 1506 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1507 || zIdent[j]!=0 1508 || j==0; 1509 1510 if( needQuote ) z[i++] = '"'; 1511 for(j=0; zIdent[j]; j++){ 1512 z[i++] = zIdent[j]; 1513 if( zIdent[j]=='"' ) z[i++] = '"'; 1514 } 1515 if( needQuote ) z[i++] = '"'; 1516 z[i] = 0; 1517 *pIdx = i; 1518 } 1519 1520 /* 1521 ** Generate a CREATE TABLE statement appropriate for the given 1522 ** table. Memory to hold the text of the statement is obtained 1523 ** from sqliteMalloc() and must be freed by the calling function. 1524 */ 1525 static char *createTableStmt(sqlite3 *db, Table *p){ 1526 int i, k, n; 1527 char *zStmt; 1528 char *zSep, *zSep2, *zEnd; 1529 Column *pCol; 1530 n = 0; 1531 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1532 n += identLength(pCol->zName) + 5; 1533 } 1534 n += identLength(p->zName); 1535 if( n<50 ){ 1536 zSep = ""; 1537 zSep2 = ","; 1538 zEnd = ")"; 1539 }else{ 1540 zSep = "\n "; 1541 zSep2 = ",\n "; 1542 zEnd = "\n)"; 1543 } 1544 n += 35 + 6*p->nCol; 1545 zStmt = sqlite3DbMallocRaw(0, n); 1546 if( zStmt==0 ){ 1547 sqlite3OomFault(db); 1548 return 0; 1549 } 1550 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1551 k = sqlite3Strlen30(zStmt); 1552 identPut(zStmt, &k, p->zName); 1553 zStmt[k++] = '('; 1554 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1555 static const char * const azType[] = { 1556 /* SQLITE_AFF_BLOB */ "", 1557 /* SQLITE_AFF_TEXT */ " TEXT", 1558 /* SQLITE_AFF_NUMERIC */ " NUM", 1559 /* SQLITE_AFF_INTEGER */ " INT", 1560 /* SQLITE_AFF_REAL */ " REAL" 1561 }; 1562 int len; 1563 const char *zType; 1564 1565 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1566 k += sqlite3Strlen30(&zStmt[k]); 1567 zSep = zSep2; 1568 identPut(zStmt, &k, pCol->zName); 1569 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1570 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1571 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1572 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1573 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1574 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1575 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1576 1577 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1578 len = sqlite3Strlen30(zType); 1579 assert( pCol->affinity==SQLITE_AFF_BLOB 1580 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1581 memcpy(&zStmt[k], zType, len); 1582 k += len; 1583 assert( k<=n ); 1584 } 1585 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1586 return zStmt; 1587 } 1588 1589 /* 1590 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1591 ** on success and SQLITE_NOMEM on an OOM error. 1592 */ 1593 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1594 char *zExtra; 1595 int nByte; 1596 if( pIdx->nColumn>=N ) return SQLITE_OK; 1597 assert( pIdx->isResized==0 ); 1598 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1599 zExtra = sqlite3DbMallocZero(db, nByte); 1600 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1601 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1602 pIdx->azColl = (const char**)zExtra; 1603 zExtra += sizeof(char*)*N; 1604 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1605 pIdx->aiColumn = (i16*)zExtra; 1606 zExtra += sizeof(i16)*N; 1607 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1608 pIdx->aSortOrder = (u8*)zExtra; 1609 pIdx->nColumn = N; 1610 pIdx->isResized = 1; 1611 return SQLITE_OK; 1612 } 1613 1614 /* 1615 ** Estimate the total row width for a table. 1616 */ 1617 static void estimateTableWidth(Table *pTab){ 1618 unsigned wTable = 0; 1619 const Column *pTabCol; 1620 int i; 1621 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1622 wTable += pTabCol->szEst; 1623 } 1624 if( pTab->iPKey<0 ) wTable++; 1625 pTab->szTabRow = sqlite3LogEst(wTable*4); 1626 } 1627 1628 /* 1629 ** Estimate the average size of a row for an index. 1630 */ 1631 static void estimateIndexWidth(Index *pIdx){ 1632 unsigned wIndex = 0; 1633 int i; 1634 const Column *aCol = pIdx->pTable->aCol; 1635 for(i=0; i<pIdx->nColumn; i++){ 1636 i16 x = pIdx->aiColumn[i]; 1637 assert( x<pIdx->pTable->nCol ); 1638 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1639 } 1640 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1641 } 1642 1643 /* Return true if value x is found any of the first nCol entries of aiCol[] 1644 */ 1645 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1646 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; 1647 return 0; 1648 } 1649 1650 /* 1651 ** This routine runs at the end of parsing a CREATE TABLE statement that 1652 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1653 ** internal schema data structures and the generated VDBE code so that they 1654 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1655 ** Changes include: 1656 ** 1657 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1658 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1659 ** data storage is a covering index btree. 1660 ** (2) Bypass the creation of the sqlite_master table entry 1661 ** for the PRIMARY KEY as the primary key index is now 1662 ** identified by the sqlite_master table entry of the table itself. 1663 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1664 ** schema to the rootpage from the main table. 1665 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1666 ** (5) Add all table columns to the PRIMARY KEY Index object 1667 ** so that the PRIMARY KEY is a covering index. The surplus 1668 ** columns are part of KeyInfo.nXField and are not used for 1669 ** sorting or lookup or uniqueness checks. 1670 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1671 ** indices with the PRIMARY KEY columns. 1672 */ 1673 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1674 Index *pIdx; 1675 Index *pPk; 1676 int nPk; 1677 int i, j; 1678 sqlite3 *db = pParse->db; 1679 Vdbe *v = pParse->pVdbe; 1680 1681 /* Convert the OP_CreateTable opcode that would normally create the 1682 ** root-page for the table into an OP_CreateIndex opcode. The index 1683 ** created will become the PRIMARY KEY index. 1684 */ 1685 if( pParse->addrCrTab ){ 1686 assert( v ); 1687 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1688 } 1689 1690 /* Locate the PRIMARY KEY index. Or, if this table was originally 1691 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1692 */ 1693 if( pTab->iPKey>=0 ){ 1694 ExprList *pList; 1695 Token ipkToken; 1696 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 1697 pList = sqlite3ExprListAppend(pParse, 0, 1698 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1699 if( pList==0 ) return; 1700 pList->a[0].sortOrder = pParse->iPkSortOrder; 1701 assert( pParse->pNewTable==pTab ); 1702 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1703 if( pPk==0 ) return; 1704 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1705 pTab->iPKey = -1; 1706 }else{ 1707 pPk = sqlite3PrimaryKeyIndex(pTab); 1708 1709 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1710 ** table entry. This is only required if currently generating VDBE 1711 ** code for a CREATE TABLE (not when parsing one as part of reading 1712 ** a database schema). */ 1713 if( v ){ 1714 assert( db->init.busy==0 ); 1715 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1716 } 1717 1718 /* 1719 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1720 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1721 ** code assumes the PRIMARY KEY contains no repeated columns. 1722 */ 1723 for(i=j=1; i<pPk->nKeyCol; i++){ 1724 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1725 pPk->nColumn--; 1726 }else{ 1727 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1728 } 1729 } 1730 pPk->nKeyCol = j; 1731 } 1732 pPk->isCovering = 1; 1733 assert( pPk!=0 ); 1734 nPk = pPk->nKeyCol; 1735 1736 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except, 1737 ** do not enforce this for imposter tables.) */ 1738 if( !db->init.imposterTable ){ 1739 for(i=0; i<nPk; i++){ 1740 pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort; 1741 } 1742 pPk->uniqNotNull = 1; 1743 } 1744 1745 /* The root page of the PRIMARY KEY is the table root page */ 1746 pPk->tnum = pTab->tnum; 1747 1748 /* Update the in-memory representation of all UNIQUE indices by converting 1749 ** the final rowid column into one or more columns of the PRIMARY KEY. 1750 */ 1751 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1752 int n; 1753 if( IsPrimaryKeyIndex(pIdx) ) continue; 1754 for(i=n=0; i<nPk; i++){ 1755 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; 1756 } 1757 if( n==0 ){ 1758 /* This index is a superset of the primary key */ 1759 pIdx->nColumn = pIdx->nKeyCol; 1760 continue; 1761 } 1762 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 1763 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 1764 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ 1765 pIdx->aiColumn[j] = pPk->aiColumn[i]; 1766 pIdx->azColl[j] = pPk->azColl[i]; 1767 j++; 1768 } 1769 } 1770 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 1771 assert( pIdx->nColumn>=j ); 1772 } 1773 1774 /* Add all table columns to the PRIMARY KEY index 1775 */ 1776 if( nPk<pTab->nCol ){ 1777 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; 1778 for(i=0, j=nPk; i<pTab->nCol; i++){ 1779 if( !hasColumn(pPk->aiColumn, j, i) ){ 1780 assert( j<pPk->nColumn ); 1781 pPk->aiColumn[j] = i; 1782 pPk->azColl[j] = sqlite3StrBINARY; 1783 j++; 1784 } 1785 } 1786 assert( pPk->nColumn==j ); 1787 assert( pTab->nCol==j ); 1788 }else{ 1789 pPk->nColumn = pTab->nCol; 1790 } 1791 } 1792 1793 /* 1794 ** This routine is called to report the final ")" that terminates 1795 ** a CREATE TABLE statement. 1796 ** 1797 ** The table structure that other action routines have been building 1798 ** is added to the internal hash tables, assuming no errors have 1799 ** occurred. 1800 ** 1801 ** An entry for the table is made in the master table on disk, unless 1802 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1803 ** it means we are reading the sqlite_master table because we just 1804 ** connected to the database or because the sqlite_master table has 1805 ** recently changed, so the entry for this table already exists in 1806 ** the sqlite_master table. We do not want to create it again. 1807 ** 1808 ** If the pSelect argument is not NULL, it means that this routine 1809 ** was called to create a table generated from a 1810 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1811 ** the new table will match the result set of the SELECT. 1812 */ 1813 void sqlite3EndTable( 1814 Parse *pParse, /* Parse context */ 1815 Token *pCons, /* The ',' token after the last column defn. */ 1816 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 1817 u8 tabOpts, /* Extra table options. Usually 0. */ 1818 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1819 ){ 1820 Table *p; /* The new table */ 1821 sqlite3 *db = pParse->db; /* The database connection */ 1822 int iDb; /* Database in which the table lives */ 1823 Index *pIdx; /* An implied index of the table */ 1824 1825 if( pEnd==0 && pSelect==0 ){ 1826 return; 1827 } 1828 assert( !db->mallocFailed ); 1829 p = pParse->pNewTable; 1830 if( p==0 ) return; 1831 1832 assert( !db->init.busy || !pSelect ); 1833 1834 /* If the db->init.busy is 1 it means we are reading the SQL off the 1835 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1836 ** So do not write to the disk again. Extract the root page number 1837 ** for the table from the db->init.newTnum field. (The page number 1838 ** should have been put there by the sqliteOpenCb routine.) 1839 ** 1840 ** If the root page number is 1, that means this is the sqlite_master 1841 ** table itself. So mark it read-only. 1842 */ 1843 if( db->init.busy ){ 1844 p->tnum = db->init.newTnum; 1845 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 1846 } 1847 1848 /* Special processing for WITHOUT ROWID Tables */ 1849 if( tabOpts & TF_WithoutRowid ){ 1850 if( (p->tabFlags & TF_Autoincrement) ){ 1851 sqlite3ErrorMsg(pParse, 1852 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1853 return; 1854 } 1855 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1856 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 1857 }else{ 1858 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 1859 convertToWithoutRowidTable(pParse, p); 1860 } 1861 } 1862 1863 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1864 1865 #ifndef SQLITE_OMIT_CHECK 1866 /* Resolve names in all CHECK constraint expressions. 1867 */ 1868 if( p->pCheck ){ 1869 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 1870 } 1871 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1872 1873 /* Estimate the average row size for the table and for all implied indices */ 1874 estimateTableWidth(p); 1875 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1876 estimateIndexWidth(pIdx); 1877 } 1878 1879 /* If not initializing, then create a record for the new table 1880 ** in the SQLITE_MASTER table of the database. 1881 ** 1882 ** If this is a TEMPORARY table, write the entry into the auxiliary 1883 ** file instead of into the main database file. 1884 */ 1885 if( !db->init.busy ){ 1886 int n; 1887 Vdbe *v; 1888 char *zType; /* "view" or "table" */ 1889 char *zType2; /* "VIEW" or "TABLE" */ 1890 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1891 1892 v = sqlite3GetVdbe(pParse); 1893 if( NEVER(v==0) ) return; 1894 1895 sqlite3VdbeAddOp1(v, OP_Close, 0); 1896 1897 /* 1898 ** Initialize zType for the new view or table. 1899 */ 1900 if( p->pSelect==0 ){ 1901 /* A regular table */ 1902 zType = "table"; 1903 zType2 = "TABLE"; 1904 #ifndef SQLITE_OMIT_VIEW 1905 }else{ 1906 /* A view */ 1907 zType = "view"; 1908 zType2 = "VIEW"; 1909 #endif 1910 } 1911 1912 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1913 ** statement to populate the new table. The root-page number for the 1914 ** new table is in register pParse->regRoot. 1915 ** 1916 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1917 ** suitable state to query for the column names and types to be used 1918 ** by the new table. 1919 ** 1920 ** A shared-cache write-lock is not required to write to the new table, 1921 ** as a schema-lock must have already been obtained to create it. Since 1922 ** a schema-lock excludes all other database users, the write-lock would 1923 ** be redundant. 1924 */ 1925 if( pSelect ){ 1926 SelectDest dest; /* Where the SELECT should store results */ 1927 int regYield; /* Register holding co-routine entry-point */ 1928 int addrTop; /* Top of the co-routine */ 1929 int regRec; /* A record to be insert into the new table */ 1930 int regRowid; /* Rowid of the next row to insert */ 1931 int addrInsLoop; /* Top of the loop for inserting rows */ 1932 Table *pSelTab; /* A table that describes the SELECT results */ 1933 1934 regYield = ++pParse->nMem; 1935 regRec = ++pParse->nMem; 1936 regRowid = ++pParse->nMem; 1937 assert(pParse->nTab==1); 1938 sqlite3MayAbort(pParse); 1939 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1940 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1941 pParse->nTab = 2; 1942 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1943 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1944 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1945 sqlite3Select(pParse, pSelect, &dest); 1946 sqlite3VdbeEndCoroutine(v, regYield); 1947 sqlite3VdbeJumpHere(v, addrTop - 1); 1948 if( pParse->nErr ) return; 1949 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1950 if( pSelTab==0 ) return; 1951 assert( p->aCol==0 ); 1952 p->nCol = pSelTab->nCol; 1953 p->aCol = pSelTab->aCol; 1954 pSelTab->nCol = 0; 1955 pSelTab->aCol = 0; 1956 sqlite3DeleteTable(db, pSelTab); 1957 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1958 VdbeCoverage(v); 1959 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 1960 sqlite3TableAffinity(v, p, 0); 1961 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 1962 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 1963 sqlite3VdbeGoto(v, addrInsLoop); 1964 sqlite3VdbeJumpHere(v, addrInsLoop); 1965 sqlite3VdbeAddOp1(v, OP_Close, 1); 1966 } 1967 1968 /* Compute the complete text of the CREATE statement */ 1969 if( pSelect ){ 1970 zStmt = createTableStmt(db, p); 1971 }else{ 1972 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 1973 n = (int)(pEnd2->z - pParse->sNameToken.z); 1974 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 1975 zStmt = sqlite3MPrintf(db, 1976 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1977 ); 1978 } 1979 1980 /* A slot for the record has already been allocated in the 1981 ** SQLITE_MASTER table. We just need to update that slot with all 1982 ** the information we've collected. 1983 */ 1984 sqlite3NestedParse(pParse, 1985 "UPDATE %Q.%s " 1986 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1987 "WHERE rowid=#%d", 1988 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1989 zType, 1990 p->zName, 1991 p->zName, 1992 pParse->regRoot, 1993 zStmt, 1994 pParse->regRowid 1995 ); 1996 sqlite3DbFree(db, zStmt); 1997 sqlite3ChangeCookie(pParse, iDb); 1998 1999 #ifndef SQLITE_OMIT_AUTOINCREMENT 2000 /* Check to see if we need to create an sqlite_sequence table for 2001 ** keeping track of autoincrement keys. 2002 */ 2003 if( p->tabFlags & TF_Autoincrement ){ 2004 Db *pDb = &db->aDb[iDb]; 2005 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2006 if( pDb->pSchema->pSeqTab==0 ){ 2007 sqlite3NestedParse(pParse, 2008 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2009 pDb->zName 2010 ); 2011 } 2012 } 2013 #endif 2014 2015 /* Reparse everything to update our internal data structures */ 2016 sqlite3VdbeAddParseSchemaOp(v, iDb, 2017 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2018 } 2019 2020 2021 /* Add the table to the in-memory representation of the database. 2022 */ 2023 if( db->init.busy ){ 2024 Table *pOld; 2025 Schema *pSchema = p->pSchema; 2026 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2027 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2028 if( pOld ){ 2029 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2030 sqlite3OomFault(db); 2031 return; 2032 } 2033 pParse->pNewTable = 0; 2034 db->flags |= SQLITE_InternChanges; 2035 2036 #ifndef SQLITE_OMIT_ALTERTABLE 2037 if( !p->pSelect ){ 2038 const char *zName = (const char *)pParse->sNameToken.z; 2039 int nName; 2040 assert( !pSelect && pCons && pEnd ); 2041 if( pCons->z==0 ){ 2042 pCons = pEnd; 2043 } 2044 nName = (int)((const char *)pCons->z - zName); 2045 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2046 } 2047 #endif 2048 } 2049 } 2050 2051 #ifndef SQLITE_OMIT_VIEW 2052 /* 2053 ** The parser calls this routine in order to create a new VIEW 2054 */ 2055 void sqlite3CreateView( 2056 Parse *pParse, /* The parsing context */ 2057 Token *pBegin, /* The CREATE token that begins the statement */ 2058 Token *pName1, /* The token that holds the name of the view */ 2059 Token *pName2, /* The token that holds the name of the view */ 2060 ExprList *pCNames, /* Optional list of view column names */ 2061 Select *pSelect, /* A SELECT statement that will become the new view */ 2062 int isTemp, /* TRUE for a TEMPORARY view */ 2063 int noErr /* Suppress error messages if VIEW already exists */ 2064 ){ 2065 Table *p; 2066 int n; 2067 const char *z; 2068 Token sEnd; 2069 DbFixer sFix; 2070 Token *pName = 0; 2071 int iDb; 2072 sqlite3 *db = pParse->db; 2073 2074 if( pParse->nVar>0 ){ 2075 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2076 goto create_view_fail; 2077 } 2078 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2079 p = pParse->pNewTable; 2080 if( p==0 || pParse->nErr ) goto create_view_fail; 2081 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2082 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2083 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2084 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2085 2086 /* Make a copy of the entire SELECT statement that defines the view. 2087 ** This will force all the Expr.token.z values to be dynamically 2088 ** allocated rather than point to the input string - which means that 2089 ** they will persist after the current sqlite3_exec() call returns. 2090 */ 2091 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2092 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2093 if( db->mallocFailed ) goto create_view_fail; 2094 2095 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2096 ** the end. 2097 */ 2098 sEnd = pParse->sLastToken; 2099 assert( sEnd.z[0]!=0 ); 2100 if( sEnd.z[0]!=';' ){ 2101 sEnd.z += sEnd.n; 2102 } 2103 sEnd.n = 0; 2104 n = (int)(sEnd.z - pBegin->z); 2105 assert( n>0 ); 2106 z = pBegin->z; 2107 while( sqlite3Isspace(z[n-1]) ){ n--; } 2108 sEnd.z = &z[n-1]; 2109 sEnd.n = 1; 2110 2111 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2112 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2113 2114 create_view_fail: 2115 sqlite3SelectDelete(db, pSelect); 2116 sqlite3ExprListDelete(db, pCNames); 2117 return; 2118 } 2119 #endif /* SQLITE_OMIT_VIEW */ 2120 2121 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2122 /* 2123 ** The Table structure pTable is really a VIEW. Fill in the names of 2124 ** the columns of the view in the pTable structure. Return the number 2125 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2126 */ 2127 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2128 Table *pSelTab; /* A fake table from which we get the result set */ 2129 Select *pSel; /* Copy of the SELECT that implements the view */ 2130 int nErr = 0; /* Number of errors encountered */ 2131 int n; /* Temporarily holds the number of cursors assigned */ 2132 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2133 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2134 2135 assert( pTable ); 2136 2137 #ifndef SQLITE_OMIT_VIRTUALTABLE 2138 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2139 return SQLITE_ERROR; 2140 } 2141 if( IsVirtual(pTable) ) return 0; 2142 #endif 2143 2144 #ifndef SQLITE_OMIT_VIEW 2145 /* A positive nCol means the columns names for this view are 2146 ** already known. 2147 */ 2148 if( pTable->nCol>0 ) return 0; 2149 2150 /* A negative nCol is a special marker meaning that we are currently 2151 ** trying to compute the column names. If we enter this routine with 2152 ** a negative nCol, it means two or more views form a loop, like this: 2153 ** 2154 ** CREATE VIEW one AS SELECT * FROM two; 2155 ** CREATE VIEW two AS SELECT * FROM one; 2156 ** 2157 ** Actually, the error above is now caught prior to reaching this point. 2158 ** But the following test is still important as it does come up 2159 ** in the following: 2160 ** 2161 ** CREATE TABLE main.ex1(a); 2162 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2163 ** SELECT * FROM temp.ex1; 2164 */ 2165 if( pTable->nCol<0 ){ 2166 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2167 return 1; 2168 } 2169 assert( pTable->nCol>=0 ); 2170 2171 /* If we get this far, it means we need to compute the table names. 2172 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2173 ** "*" elements in the results set of the view and will assign cursors 2174 ** to the elements of the FROM clause. But we do not want these changes 2175 ** to be permanent. So the computation is done on a copy of the SELECT 2176 ** statement that defines the view. 2177 */ 2178 assert( pTable->pSelect ); 2179 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2180 if( pSel ){ 2181 n = pParse->nTab; 2182 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2183 pTable->nCol = -1; 2184 db->lookaside.bDisable++; 2185 #ifndef SQLITE_OMIT_AUTHORIZATION 2186 xAuth = db->xAuth; 2187 db->xAuth = 0; 2188 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2189 db->xAuth = xAuth; 2190 #else 2191 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2192 #endif 2193 pParse->nTab = n; 2194 if( pTable->pCheck ){ 2195 /* CREATE VIEW name(arglist) AS ... 2196 ** The names of the columns in the table are taken from 2197 ** arglist which is stored in pTable->pCheck. The pCheck field 2198 ** normally holds CHECK constraints on an ordinary table, but for 2199 ** a VIEW it holds the list of column names. 2200 */ 2201 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2202 &pTable->nCol, &pTable->aCol); 2203 if( db->mallocFailed==0 2204 && pParse->nErr==0 2205 && pTable->nCol==pSel->pEList->nExpr 2206 ){ 2207 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); 2208 } 2209 }else if( pSelTab ){ 2210 /* CREATE VIEW name AS... without an argument list. Construct 2211 ** the column names from the SELECT statement that defines the view. 2212 */ 2213 assert( pTable->aCol==0 ); 2214 pTable->nCol = pSelTab->nCol; 2215 pTable->aCol = pSelTab->aCol; 2216 pSelTab->nCol = 0; 2217 pSelTab->aCol = 0; 2218 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2219 }else{ 2220 pTable->nCol = 0; 2221 nErr++; 2222 } 2223 if( pSelTab ) sqlite3DeleteTable(db, pSelTab); 2224 sqlite3SelectDelete(db, pSel); 2225 db->lookaside.bDisable--; 2226 } else { 2227 nErr++; 2228 } 2229 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2230 #endif /* SQLITE_OMIT_VIEW */ 2231 return nErr; 2232 } 2233 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2234 2235 #ifndef SQLITE_OMIT_VIEW 2236 /* 2237 ** Clear the column names from every VIEW in database idx. 2238 */ 2239 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2240 HashElem *i; 2241 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2242 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2243 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2244 Table *pTab = sqliteHashData(i); 2245 if( pTab->pSelect ){ 2246 sqlite3DeleteColumnNames(db, pTab); 2247 pTab->aCol = 0; 2248 pTab->nCol = 0; 2249 } 2250 } 2251 DbClearProperty(db, idx, DB_UnresetViews); 2252 } 2253 #else 2254 # define sqliteViewResetAll(A,B) 2255 #endif /* SQLITE_OMIT_VIEW */ 2256 2257 /* 2258 ** This function is called by the VDBE to adjust the internal schema 2259 ** used by SQLite when the btree layer moves a table root page. The 2260 ** root-page of a table or index in database iDb has changed from iFrom 2261 ** to iTo. 2262 ** 2263 ** Ticket #1728: The symbol table might still contain information 2264 ** on tables and/or indices that are the process of being deleted. 2265 ** If you are unlucky, one of those deleted indices or tables might 2266 ** have the same rootpage number as the real table or index that is 2267 ** being moved. So we cannot stop searching after the first match 2268 ** because the first match might be for one of the deleted indices 2269 ** or tables and not the table/index that is actually being moved. 2270 ** We must continue looping until all tables and indices with 2271 ** rootpage==iFrom have been converted to have a rootpage of iTo 2272 ** in order to be certain that we got the right one. 2273 */ 2274 #ifndef SQLITE_OMIT_AUTOVACUUM 2275 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2276 HashElem *pElem; 2277 Hash *pHash; 2278 Db *pDb; 2279 2280 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2281 pDb = &db->aDb[iDb]; 2282 pHash = &pDb->pSchema->tblHash; 2283 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2284 Table *pTab = sqliteHashData(pElem); 2285 if( pTab->tnum==iFrom ){ 2286 pTab->tnum = iTo; 2287 } 2288 } 2289 pHash = &pDb->pSchema->idxHash; 2290 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2291 Index *pIdx = sqliteHashData(pElem); 2292 if( pIdx->tnum==iFrom ){ 2293 pIdx->tnum = iTo; 2294 } 2295 } 2296 } 2297 #endif 2298 2299 /* 2300 ** Write code to erase the table with root-page iTable from database iDb. 2301 ** Also write code to modify the sqlite_master table and internal schema 2302 ** if a root-page of another table is moved by the btree-layer whilst 2303 ** erasing iTable (this can happen with an auto-vacuum database). 2304 */ 2305 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2306 Vdbe *v = sqlite3GetVdbe(pParse); 2307 int r1 = sqlite3GetTempReg(pParse); 2308 assert( iTable>1 ); 2309 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2310 sqlite3MayAbort(pParse); 2311 #ifndef SQLITE_OMIT_AUTOVACUUM 2312 /* OP_Destroy stores an in integer r1. If this integer 2313 ** is non-zero, then it is the root page number of a table moved to 2314 ** location iTable. The following code modifies the sqlite_master table to 2315 ** reflect this. 2316 ** 2317 ** The "#NNN" in the SQL is a special constant that means whatever value 2318 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2319 ** token for additional information. 2320 */ 2321 sqlite3NestedParse(pParse, 2322 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2323 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2324 #endif 2325 sqlite3ReleaseTempReg(pParse, r1); 2326 } 2327 2328 /* 2329 ** Write VDBE code to erase table pTab and all associated indices on disk. 2330 ** Code to update the sqlite_master tables and internal schema definitions 2331 ** in case a root-page belonging to another table is moved by the btree layer 2332 ** is also added (this can happen with an auto-vacuum database). 2333 */ 2334 static void destroyTable(Parse *pParse, Table *pTab){ 2335 #ifdef SQLITE_OMIT_AUTOVACUUM 2336 Index *pIdx; 2337 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2338 destroyRootPage(pParse, pTab->tnum, iDb); 2339 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2340 destroyRootPage(pParse, pIdx->tnum, iDb); 2341 } 2342 #else 2343 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2344 ** is not defined), then it is important to call OP_Destroy on the 2345 ** table and index root-pages in order, starting with the numerically 2346 ** largest root-page number. This guarantees that none of the root-pages 2347 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2348 ** following were coded: 2349 ** 2350 ** OP_Destroy 4 0 2351 ** ... 2352 ** OP_Destroy 5 0 2353 ** 2354 ** and root page 5 happened to be the largest root-page number in the 2355 ** database, then root page 5 would be moved to page 4 by the 2356 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2357 ** a free-list page. 2358 */ 2359 int iTab = pTab->tnum; 2360 int iDestroyed = 0; 2361 2362 while( 1 ){ 2363 Index *pIdx; 2364 int iLargest = 0; 2365 2366 if( iDestroyed==0 || iTab<iDestroyed ){ 2367 iLargest = iTab; 2368 } 2369 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2370 int iIdx = pIdx->tnum; 2371 assert( pIdx->pSchema==pTab->pSchema ); 2372 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2373 iLargest = iIdx; 2374 } 2375 } 2376 if( iLargest==0 ){ 2377 return; 2378 }else{ 2379 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2380 assert( iDb>=0 && iDb<pParse->db->nDb ); 2381 destroyRootPage(pParse, iLargest, iDb); 2382 iDestroyed = iLargest; 2383 } 2384 } 2385 #endif 2386 } 2387 2388 /* 2389 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2390 ** after a DROP INDEX or DROP TABLE command. 2391 */ 2392 static void sqlite3ClearStatTables( 2393 Parse *pParse, /* The parsing context */ 2394 int iDb, /* The database number */ 2395 const char *zType, /* "idx" or "tbl" */ 2396 const char *zName /* Name of index or table */ 2397 ){ 2398 int i; 2399 const char *zDbName = pParse->db->aDb[iDb].zName; 2400 for(i=1; i<=4; i++){ 2401 char zTab[24]; 2402 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2403 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2404 sqlite3NestedParse(pParse, 2405 "DELETE FROM %Q.%s WHERE %s=%Q", 2406 zDbName, zTab, zType, zName 2407 ); 2408 } 2409 } 2410 } 2411 2412 /* 2413 ** Generate code to drop a table. 2414 */ 2415 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2416 Vdbe *v; 2417 sqlite3 *db = pParse->db; 2418 Trigger *pTrigger; 2419 Db *pDb = &db->aDb[iDb]; 2420 2421 v = sqlite3GetVdbe(pParse); 2422 assert( v!=0 ); 2423 sqlite3BeginWriteOperation(pParse, 1, iDb); 2424 2425 #ifndef SQLITE_OMIT_VIRTUALTABLE 2426 if( IsVirtual(pTab) ){ 2427 sqlite3VdbeAddOp0(v, OP_VBegin); 2428 } 2429 #endif 2430 2431 /* Drop all triggers associated with the table being dropped. Code 2432 ** is generated to remove entries from sqlite_master and/or 2433 ** sqlite_temp_master if required. 2434 */ 2435 pTrigger = sqlite3TriggerList(pParse, pTab); 2436 while( pTrigger ){ 2437 assert( pTrigger->pSchema==pTab->pSchema || 2438 pTrigger->pSchema==db->aDb[1].pSchema ); 2439 sqlite3DropTriggerPtr(pParse, pTrigger); 2440 pTrigger = pTrigger->pNext; 2441 } 2442 2443 #ifndef SQLITE_OMIT_AUTOINCREMENT 2444 /* Remove any entries of the sqlite_sequence table associated with 2445 ** the table being dropped. This is done before the table is dropped 2446 ** at the btree level, in case the sqlite_sequence table needs to 2447 ** move as a result of the drop (can happen in auto-vacuum mode). 2448 */ 2449 if( pTab->tabFlags & TF_Autoincrement ){ 2450 sqlite3NestedParse(pParse, 2451 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2452 pDb->zName, pTab->zName 2453 ); 2454 } 2455 #endif 2456 2457 /* Drop all SQLITE_MASTER table and index entries that refer to the 2458 ** table. The program name loops through the master table and deletes 2459 ** every row that refers to a table of the same name as the one being 2460 ** dropped. Triggers are handled separately because a trigger can be 2461 ** created in the temp database that refers to a table in another 2462 ** database. 2463 */ 2464 sqlite3NestedParse(pParse, 2465 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2466 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2467 if( !isView && !IsVirtual(pTab) ){ 2468 destroyTable(pParse, pTab); 2469 } 2470 2471 /* Remove the table entry from SQLite's internal schema and modify 2472 ** the schema cookie. 2473 */ 2474 if( IsVirtual(pTab) ){ 2475 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2476 } 2477 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2478 sqlite3ChangeCookie(pParse, iDb); 2479 sqliteViewResetAll(db, iDb); 2480 } 2481 2482 /* 2483 ** This routine is called to do the work of a DROP TABLE statement. 2484 ** pName is the name of the table to be dropped. 2485 */ 2486 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2487 Table *pTab; 2488 Vdbe *v; 2489 sqlite3 *db = pParse->db; 2490 int iDb; 2491 2492 if( db->mallocFailed ){ 2493 goto exit_drop_table; 2494 } 2495 assert( pParse->nErr==0 ); 2496 assert( pName->nSrc==1 ); 2497 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2498 if( noErr ) db->suppressErr++; 2499 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2500 if( noErr ) db->suppressErr--; 2501 2502 if( pTab==0 ){ 2503 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2504 goto exit_drop_table; 2505 } 2506 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2507 assert( iDb>=0 && iDb<db->nDb ); 2508 2509 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2510 ** it is initialized. 2511 */ 2512 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2513 goto exit_drop_table; 2514 } 2515 #ifndef SQLITE_OMIT_AUTHORIZATION 2516 { 2517 int code; 2518 const char *zTab = SCHEMA_TABLE(iDb); 2519 const char *zDb = db->aDb[iDb].zName; 2520 const char *zArg2 = 0; 2521 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2522 goto exit_drop_table; 2523 } 2524 if( isView ){ 2525 if( !OMIT_TEMPDB && iDb==1 ){ 2526 code = SQLITE_DROP_TEMP_VIEW; 2527 }else{ 2528 code = SQLITE_DROP_VIEW; 2529 } 2530 #ifndef SQLITE_OMIT_VIRTUALTABLE 2531 }else if( IsVirtual(pTab) ){ 2532 code = SQLITE_DROP_VTABLE; 2533 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2534 #endif 2535 }else{ 2536 if( !OMIT_TEMPDB && iDb==1 ){ 2537 code = SQLITE_DROP_TEMP_TABLE; 2538 }else{ 2539 code = SQLITE_DROP_TABLE; 2540 } 2541 } 2542 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2543 goto exit_drop_table; 2544 } 2545 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2546 goto exit_drop_table; 2547 } 2548 } 2549 #endif 2550 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2551 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ 2552 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2553 goto exit_drop_table; 2554 } 2555 2556 #ifndef SQLITE_OMIT_VIEW 2557 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2558 ** on a table. 2559 */ 2560 if( isView && pTab->pSelect==0 ){ 2561 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2562 goto exit_drop_table; 2563 } 2564 if( !isView && pTab->pSelect ){ 2565 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2566 goto exit_drop_table; 2567 } 2568 #endif 2569 2570 /* Generate code to remove the table from the master table 2571 ** on disk. 2572 */ 2573 v = sqlite3GetVdbe(pParse); 2574 if( v ){ 2575 sqlite3BeginWriteOperation(pParse, 1, iDb); 2576 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 2577 sqlite3FkDropTable(pParse, pName, pTab); 2578 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 2579 } 2580 2581 exit_drop_table: 2582 sqlite3SrcListDelete(db, pName); 2583 } 2584 2585 /* 2586 ** This routine is called to create a new foreign key on the table 2587 ** currently under construction. pFromCol determines which columns 2588 ** in the current table point to the foreign key. If pFromCol==0 then 2589 ** connect the key to the last column inserted. pTo is the name of 2590 ** the table referred to (a.k.a the "parent" table). pToCol is a list 2591 ** of tables in the parent pTo table. flags contains all 2592 ** information about the conflict resolution algorithms specified 2593 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2594 ** 2595 ** An FKey structure is created and added to the table currently 2596 ** under construction in the pParse->pNewTable field. 2597 ** 2598 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2599 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2600 */ 2601 void sqlite3CreateForeignKey( 2602 Parse *pParse, /* Parsing context */ 2603 ExprList *pFromCol, /* Columns in this table that point to other table */ 2604 Token *pTo, /* Name of the other table */ 2605 ExprList *pToCol, /* Columns in the other table */ 2606 int flags /* Conflict resolution algorithms. */ 2607 ){ 2608 sqlite3 *db = pParse->db; 2609 #ifndef SQLITE_OMIT_FOREIGN_KEY 2610 FKey *pFKey = 0; 2611 FKey *pNextTo; 2612 Table *p = pParse->pNewTable; 2613 int nByte; 2614 int i; 2615 int nCol; 2616 char *z; 2617 2618 assert( pTo!=0 ); 2619 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2620 if( pFromCol==0 ){ 2621 int iCol = p->nCol-1; 2622 if( NEVER(iCol<0) ) goto fk_end; 2623 if( pToCol && pToCol->nExpr!=1 ){ 2624 sqlite3ErrorMsg(pParse, "foreign key on %s" 2625 " should reference only one column of table %T", 2626 p->aCol[iCol].zName, pTo); 2627 goto fk_end; 2628 } 2629 nCol = 1; 2630 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2631 sqlite3ErrorMsg(pParse, 2632 "number of columns in foreign key does not match the number of " 2633 "columns in the referenced table"); 2634 goto fk_end; 2635 }else{ 2636 nCol = pFromCol->nExpr; 2637 } 2638 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2639 if( pToCol ){ 2640 for(i=0; i<pToCol->nExpr; i++){ 2641 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2642 } 2643 } 2644 pFKey = sqlite3DbMallocZero(db, nByte ); 2645 if( pFKey==0 ){ 2646 goto fk_end; 2647 } 2648 pFKey->pFrom = p; 2649 pFKey->pNextFrom = p->pFKey; 2650 z = (char*)&pFKey->aCol[nCol]; 2651 pFKey->zTo = z; 2652 memcpy(z, pTo->z, pTo->n); 2653 z[pTo->n] = 0; 2654 sqlite3Dequote(z); 2655 z += pTo->n+1; 2656 pFKey->nCol = nCol; 2657 if( pFromCol==0 ){ 2658 pFKey->aCol[0].iFrom = p->nCol-1; 2659 }else{ 2660 for(i=0; i<nCol; i++){ 2661 int j; 2662 for(j=0; j<p->nCol; j++){ 2663 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2664 pFKey->aCol[i].iFrom = j; 2665 break; 2666 } 2667 } 2668 if( j>=p->nCol ){ 2669 sqlite3ErrorMsg(pParse, 2670 "unknown column \"%s\" in foreign key definition", 2671 pFromCol->a[i].zName); 2672 goto fk_end; 2673 } 2674 } 2675 } 2676 if( pToCol ){ 2677 for(i=0; i<nCol; i++){ 2678 int n = sqlite3Strlen30(pToCol->a[i].zName); 2679 pFKey->aCol[i].zCol = z; 2680 memcpy(z, pToCol->a[i].zName, n); 2681 z[n] = 0; 2682 z += n+1; 2683 } 2684 } 2685 pFKey->isDeferred = 0; 2686 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2687 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2688 2689 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2690 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2691 pFKey->zTo, (void *)pFKey 2692 ); 2693 if( pNextTo==pFKey ){ 2694 sqlite3OomFault(db); 2695 goto fk_end; 2696 } 2697 if( pNextTo ){ 2698 assert( pNextTo->pPrevTo==0 ); 2699 pFKey->pNextTo = pNextTo; 2700 pNextTo->pPrevTo = pFKey; 2701 } 2702 2703 /* Link the foreign key to the table as the last step. 2704 */ 2705 p->pFKey = pFKey; 2706 pFKey = 0; 2707 2708 fk_end: 2709 sqlite3DbFree(db, pFKey); 2710 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2711 sqlite3ExprListDelete(db, pFromCol); 2712 sqlite3ExprListDelete(db, pToCol); 2713 } 2714 2715 /* 2716 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2717 ** clause is seen as part of a foreign key definition. The isDeferred 2718 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2719 ** The behavior of the most recently created foreign key is adjusted 2720 ** accordingly. 2721 */ 2722 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2723 #ifndef SQLITE_OMIT_FOREIGN_KEY 2724 Table *pTab; 2725 FKey *pFKey; 2726 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2727 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2728 pFKey->isDeferred = (u8)isDeferred; 2729 #endif 2730 } 2731 2732 /* 2733 ** Generate code that will erase and refill index *pIdx. This is 2734 ** used to initialize a newly created index or to recompute the 2735 ** content of an index in response to a REINDEX command. 2736 ** 2737 ** if memRootPage is not negative, it means that the index is newly 2738 ** created. The register specified by memRootPage contains the 2739 ** root page number of the index. If memRootPage is negative, then 2740 ** the index already exists and must be cleared before being refilled and 2741 ** the root page number of the index is taken from pIndex->tnum. 2742 */ 2743 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2744 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2745 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2746 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2747 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 2748 int addr1; /* Address of top of loop */ 2749 int addr2; /* Address to jump to for next iteration */ 2750 int tnum; /* Root page of index */ 2751 int iPartIdxLabel; /* Jump to this label to skip a row */ 2752 Vdbe *v; /* Generate code into this virtual machine */ 2753 KeyInfo *pKey; /* KeyInfo for index */ 2754 int regRecord; /* Register holding assembled index record */ 2755 sqlite3 *db = pParse->db; /* The database connection */ 2756 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2757 2758 #ifndef SQLITE_OMIT_AUTHORIZATION 2759 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2760 db->aDb[iDb].zName ) ){ 2761 return; 2762 } 2763 #endif 2764 2765 /* Require a write-lock on the table to perform this operation */ 2766 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2767 2768 v = sqlite3GetVdbe(pParse); 2769 if( v==0 ) return; 2770 if( memRootPage>=0 ){ 2771 tnum = memRootPage; 2772 }else{ 2773 tnum = pIndex->tnum; 2774 } 2775 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2776 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2777 2778 /* Open the sorter cursor if we are to use one. */ 2779 iSorter = pParse->nTab++; 2780 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2781 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2782 2783 /* Open the table. Loop through all rows of the table, inserting index 2784 ** records into the sorter. */ 2785 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2786 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2787 regRecord = sqlite3GetTempReg(pParse); 2788 2789 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2790 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2791 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2792 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2793 sqlite3VdbeJumpHere(v, addr1); 2794 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2795 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2796 (char *)pKey, P4_KEYINFO); 2797 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2798 2799 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2800 if( IsUniqueIndex(pIndex) ){ 2801 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2802 sqlite3VdbeGoto(v, j2); 2803 addr2 = sqlite3VdbeCurrentAddr(v); 2804 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2805 pIndex->nKeyCol); VdbeCoverage(v); 2806 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2807 }else{ 2808 addr2 = sqlite3VdbeCurrentAddr(v); 2809 } 2810 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2811 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2812 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2813 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2814 sqlite3ReleaseTempReg(pParse, regRecord); 2815 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2816 sqlite3VdbeJumpHere(v, addr1); 2817 2818 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2819 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2820 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2821 } 2822 2823 /* 2824 ** Allocate heap space to hold an Index object with nCol columns. 2825 ** 2826 ** Increase the allocation size to provide an extra nExtra bytes 2827 ** of 8-byte aligned space after the Index object and return a 2828 ** pointer to this extra space in *ppExtra. 2829 */ 2830 Index *sqlite3AllocateIndexObject( 2831 sqlite3 *db, /* Database connection */ 2832 i16 nCol, /* Total number of columns in the index */ 2833 int nExtra, /* Number of bytes of extra space to alloc */ 2834 char **ppExtra /* Pointer to the "extra" space */ 2835 ){ 2836 Index *p; /* Allocated index object */ 2837 int nByte; /* Bytes of space for Index object + arrays */ 2838 2839 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 2840 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 2841 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 2842 sizeof(i16)*nCol + /* Index.aiColumn */ 2843 sizeof(u8)*nCol); /* Index.aSortOrder */ 2844 p = sqlite3DbMallocZero(db, nByte + nExtra); 2845 if( p ){ 2846 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 2847 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 2848 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 2849 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 2850 p->aSortOrder = (u8*)pExtra; 2851 p->nColumn = nCol; 2852 p->nKeyCol = nCol - 1; 2853 *ppExtra = ((char*)p) + nByte; 2854 } 2855 return p; 2856 } 2857 2858 /* 2859 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2860 ** and pTblList is the name of the table that is to be indexed. Both will 2861 ** be NULL for a primary key or an index that is created to satisfy a 2862 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2863 ** as the table to be indexed. pParse->pNewTable is a table that is 2864 ** currently being constructed by a CREATE TABLE statement. 2865 ** 2866 ** pList is a list of columns to be indexed. pList will be NULL if this 2867 ** is a primary key or unique-constraint on the most recent column added 2868 ** to the table currently under construction. 2869 ** 2870 ** If the index is created successfully, return a pointer to the new Index 2871 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2872 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY) 2873 */ 2874 Index *sqlite3CreateIndex( 2875 Parse *pParse, /* All information about this parse */ 2876 Token *pName1, /* First part of index name. May be NULL */ 2877 Token *pName2, /* Second part of index name. May be NULL */ 2878 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2879 ExprList *pList, /* A list of columns to be indexed */ 2880 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2881 Token *pStart, /* The CREATE token that begins this statement */ 2882 Expr *pPIWhere, /* WHERE clause for partial indices */ 2883 int sortOrder, /* Sort order of primary key when pList==NULL */ 2884 int ifNotExist /* Omit error if index already exists */ 2885 ){ 2886 Index *pRet = 0; /* Pointer to return */ 2887 Table *pTab = 0; /* Table to be indexed */ 2888 Index *pIndex = 0; /* The index to be created */ 2889 char *zName = 0; /* Name of the index */ 2890 int nName; /* Number of characters in zName */ 2891 int i, j; 2892 DbFixer sFix; /* For assigning database names to pTable */ 2893 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2894 sqlite3 *db = pParse->db; 2895 Db *pDb; /* The specific table containing the indexed database */ 2896 int iDb; /* Index of the database that is being written */ 2897 Token *pName = 0; /* Unqualified name of the index to create */ 2898 struct ExprList_item *pListItem; /* For looping over pList */ 2899 int nExtra = 0; /* Space allocated for zExtra[] */ 2900 int nExtraCol; /* Number of extra columns needed */ 2901 char *zExtra = 0; /* Extra space after the Index object */ 2902 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2903 2904 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ 2905 goto exit_create_index; 2906 } 2907 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2908 goto exit_create_index; 2909 } 2910 2911 /* 2912 ** Find the table that is to be indexed. Return early if not found. 2913 */ 2914 if( pTblName!=0 ){ 2915 2916 /* Use the two-part index name to determine the database 2917 ** to search for the table. 'Fix' the table name to this db 2918 ** before looking up the table. 2919 */ 2920 assert( pName1 && pName2 ); 2921 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2922 if( iDb<0 ) goto exit_create_index; 2923 assert( pName && pName->z ); 2924 2925 #ifndef SQLITE_OMIT_TEMPDB 2926 /* If the index name was unqualified, check if the table 2927 ** is a temp table. If so, set the database to 1. Do not do this 2928 ** if initialising a database schema. 2929 */ 2930 if( !db->init.busy ){ 2931 pTab = sqlite3SrcListLookup(pParse, pTblName); 2932 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2933 iDb = 1; 2934 } 2935 } 2936 #endif 2937 2938 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 2939 if( sqlite3FixSrcList(&sFix, pTblName) ){ 2940 /* Because the parser constructs pTblName from a single identifier, 2941 ** sqlite3FixSrcList can never fail. */ 2942 assert(0); 2943 } 2944 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 2945 assert( db->mallocFailed==0 || pTab==0 ); 2946 if( pTab==0 ) goto exit_create_index; 2947 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 2948 sqlite3ErrorMsg(pParse, 2949 "cannot create a TEMP index on non-TEMP table \"%s\"", 2950 pTab->zName); 2951 goto exit_create_index; 2952 } 2953 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 2954 }else{ 2955 assert( pName==0 ); 2956 assert( pStart==0 ); 2957 pTab = pParse->pNewTable; 2958 if( !pTab ) goto exit_create_index; 2959 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2960 } 2961 pDb = &db->aDb[iDb]; 2962 2963 assert( pTab!=0 ); 2964 assert( pParse->nErr==0 ); 2965 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2966 && db->init.busy==0 2967 #if SQLITE_USER_AUTHENTICATION 2968 && sqlite3UserAuthTable(pTab->zName)==0 2969 #endif 2970 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2971 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2972 goto exit_create_index; 2973 } 2974 #ifndef SQLITE_OMIT_VIEW 2975 if( pTab->pSelect ){ 2976 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2977 goto exit_create_index; 2978 } 2979 #endif 2980 #ifndef SQLITE_OMIT_VIRTUALTABLE 2981 if( IsVirtual(pTab) ){ 2982 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2983 goto exit_create_index; 2984 } 2985 #endif 2986 2987 /* 2988 ** Find the name of the index. Make sure there is not already another 2989 ** index or table with the same name. 2990 ** 2991 ** Exception: If we are reading the names of permanent indices from the 2992 ** sqlite_master table (because some other process changed the schema) and 2993 ** one of the index names collides with the name of a temporary table or 2994 ** index, then we will continue to process this index. 2995 ** 2996 ** If pName==0 it means that we are 2997 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2998 ** own name. 2999 */ 3000 if( pName ){ 3001 zName = sqlite3NameFromToken(db, pName); 3002 if( zName==0 ) goto exit_create_index; 3003 assert( pName->z!=0 ); 3004 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3005 goto exit_create_index; 3006 } 3007 if( !db->init.busy ){ 3008 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3009 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3010 goto exit_create_index; 3011 } 3012 } 3013 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 3014 if( !ifNotExist ){ 3015 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3016 }else{ 3017 assert( !db->init.busy ); 3018 sqlite3CodeVerifySchema(pParse, iDb); 3019 } 3020 goto exit_create_index; 3021 } 3022 }else{ 3023 int n; 3024 Index *pLoop; 3025 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3026 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3027 if( zName==0 ){ 3028 goto exit_create_index; 3029 } 3030 } 3031 3032 /* Check for authorization to create an index. 3033 */ 3034 #ifndef SQLITE_OMIT_AUTHORIZATION 3035 { 3036 const char *zDb = pDb->zName; 3037 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3038 goto exit_create_index; 3039 } 3040 i = SQLITE_CREATE_INDEX; 3041 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3042 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3043 goto exit_create_index; 3044 } 3045 } 3046 #endif 3047 3048 /* If pList==0, it means this routine was called to make a primary 3049 ** key out of the last column added to the table under construction. 3050 ** So create a fake list to simulate this. 3051 */ 3052 if( pList==0 ){ 3053 Token prevCol; 3054 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); 3055 pList = sqlite3ExprListAppend(pParse, 0, 3056 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3057 if( pList==0 ) goto exit_create_index; 3058 assert( pList->nExpr==1 ); 3059 sqlite3ExprListSetSortOrder(pList, sortOrder); 3060 }else{ 3061 sqlite3ExprListCheckLength(pParse, pList, "index"); 3062 } 3063 3064 /* Figure out how many bytes of space are required to store explicitly 3065 ** specified collation sequence names. 3066 */ 3067 for(i=0; i<pList->nExpr; i++){ 3068 Expr *pExpr = pList->a[i].pExpr; 3069 assert( pExpr!=0 ); 3070 if( pExpr->op==TK_COLLATE ){ 3071 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3072 } 3073 } 3074 3075 /* 3076 ** Allocate the index structure. 3077 */ 3078 nName = sqlite3Strlen30(zName); 3079 nExtraCol = pPk ? pPk->nKeyCol : 1; 3080 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3081 nName + nExtra + 1, &zExtra); 3082 if( db->mallocFailed ){ 3083 goto exit_create_index; 3084 } 3085 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3086 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3087 pIndex->zName = zExtra; 3088 zExtra += nName + 1; 3089 memcpy(pIndex->zName, zName, nName+1); 3090 pIndex->pTable = pTab; 3091 pIndex->onError = (u8)onError; 3092 pIndex->uniqNotNull = onError!=OE_None; 3093 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3094 pIndex->pSchema = db->aDb[iDb].pSchema; 3095 pIndex->nKeyCol = pList->nExpr; 3096 if( pPIWhere ){ 3097 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3098 pIndex->pPartIdxWhere = pPIWhere; 3099 pPIWhere = 0; 3100 } 3101 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3102 3103 /* Check to see if we should honor DESC requests on index columns 3104 */ 3105 if( pDb->pSchema->file_format>=4 ){ 3106 sortOrderMask = -1; /* Honor DESC */ 3107 }else{ 3108 sortOrderMask = 0; /* Ignore DESC */ 3109 } 3110 3111 /* Analyze the list of expressions that form the terms of the index and 3112 ** report any errors. In the common case where the expression is exactly 3113 ** a table column, store that column in aiColumn[]. For general expressions, 3114 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3115 ** 3116 ** TODO: Issue a warning if two or more columns of the index are identical. 3117 ** TODO: Issue a warning if the table primary key is used as part of the 3118 ** index key. 3119 */ 3120 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 3121 Expr *pCExpr; /* The i-th index expression */ 3122 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3123 const char *zColl; /* Collation sequence name */ 3124 3125 sqlite3StringToId(pListItem->pExpr); 3126 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3127 if( pParse->nErr ) goto exit_create_index; 3128 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3129 if( pCExpr->op!=TK_COLUMN ){ 3130 if( pTab==pParse->pNewTable ){ 3131 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3132 "UNIQUE constraints"); 3133 goto exit_create_index; 3134 } 3135 if( pIndex->aColExpr==0 ){ 3136 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); 3137 pIndex->aColExpr = pCopy; 3138 if( !db->mallocFailed ){ 3139 assert( pCopy!=0 ); 3140 pListItem = &pCopy->a[i]; 3141 } 3142 } 3143 j = XN_EXPR; 3144 pIndex->aiColumn[i] = XN_EXPR; 3145 pIndex->uniqNotNull = 0; 3146 }else{ 3147 j = pCExpr->iColumn; 3148 assert( j<=0x7fff ); 3149 if( j<0 ){ 3150 j = pTab->iPKey; 3151 }else if( pTab->aCol[j].notNull==0 ){ 3152 pIndex->uniqNotNull = 0; 3153 } 3154 pIndex->aiColumn[i] = (i16)j; 3155 } 3156 zColl = 0; 3157 if( pListItem->pExpr->op==TK_COLLATE ){ 3158 int nColl; 3159 zColl = pListItem->pExpr->u.zToken; 3160 nColl = sqlite3Strlen30(zColl) + 1; 3161 assert( nExtra>=nColl ); 3162 memcpy(zExtra, zColl, nColl); 3163 zColl = zExtra; 3164 zExtra += nColl; 3165 nExtra -= nColl; 3166 }else if( j>=0 ){ 3167 zColl = pTab->aCol[j].zColl; 3168 } 3169 if( !zColl ) zColl = sqlite3StrBINARY; 3170 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3171 goto exit_create_index; 3172 } 3173 pIndex->azColl[i] = zColl; 3174 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 3175 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3176 } 3177 3178 /* Append the table key to the end of the index. For WITHOUT ROWID 3179 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3180 ** normal tables (when pPk==0) this will be the rowid. 3181 */ 3182 if( pPk ){ 3183 for(j=0; j<pPk->nKeyCol; j++){ 3184 int x = pPk->aiColumn[j]; 3185 assert( x>=0 ); 3186 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ 3187 pIndex->nColumn--; 3188 }else{ 3189 pIndex->aiColumn[i] = x; 3190 pIndex->azColl[i] = pPk->azColl[j]; 3191 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3192 i++; 3193 } 3194 } 3195 assert( i==pIndex->nColumn ); 3196 }else{ 3197 pIndex->aiColumn[i] = XN_ROWID; 3198 pIndex->azColl[i] = sqlite3StrBINARY; 3199 } 3200 sqlite3DefaultRowEst(pIndex); 3201 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3202 3203 /* If this index contains every column of its table, then mark 3204 ** it as a covering index */ 3205 assert( HasRowid(pTab) 3206 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); 3207 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3208 pIndex->isCovering = 1; 3209 for(j=0; j<pTab->nCol; j++){ 3210 if( j==pTab->iPKey ) continue; 3211 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; 3212 pIndex->isCovering = 0; 3213 break; 3214 } 3215 } 3216 3217 if( pTab==pParse->pNewTable ){ 3218 /* This routine has been called to create an automatic index as a 3219 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3220 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3221 ** i.e. one of: 3222 ** 3223 ** CREATE TABLE t(x PRIMARY KEY, y); 3224 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3225 ** 3226 ** Either way, check to see if the table already has such an index. If 3227 ** so, don't bother creating this one. This only applies to 3228 ** automatically created indices. Users can do as they wish with 3229 ** explicit indices. 3230 ** 3231 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3232 ** (and thus suppressing the second one) even if they have different 3233 ** sort orders. 3234 ** 3235 ** If there are different collating sequences or if the columns of 3236 ** the constraint occur in different orders, then the constraints are 3237 ** considered distinct and both result in separate indices. 3238 */ 3239 Index *pIdx; 3240 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3241 int k; 3242 assert( IsUniqueIndex(pIdx) ); 3243 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3244 assert( IsUniqueIndex(pIndex) ); 3245 3246 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3247 for(k=0; k<pIdx->nKeyCol; k++){ 3248 const char *z1; 3249 const char *z2; 3250 assert( pIdx->aiColumn[k]>=0 ); 3251 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3252 z1 = pIdx->azColl[k]; 3253 z2 = pIndex->azColl[k]; 3254 if( sqlite3StrICmp(z1, z2) ) break; 3255 } 3256 if( k==pIdx->nKeyCol ){ 3257 if( pIdx->onError!=pIndex->onError ){ 3258 /* This constraint creates the same index as a previous 3259 ** constraint specified somewhere in the CREATE TABLE statement. 3260 ** However the ON CONFLICT clauses are different. If both this 3261 ** constraint and the previous equivalent constraint have explicit 3262 ** ON CONFLICT clauses this is an error. Otherwise, use the 3263 ** explicitly specified behavior for the index. 3264 */ 3265 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3266 sqlite3ErrorMsg(pParse, 3267 "conflicting ON CONFLICT clauses specified", 0); 3268 } 3269 if( pIdx->onError==OE_Default ){ 3270 pIdx->onError = pIndex->onError; 3271 } 3272 } 3273 pRet = pIdx; 3274 goto exit_create_index; 3275 } 3276 } 3277 } 3278 3279 /* Link the new Index structure to its table and to the other 3280 ** in-memory database structures. 3281 */ 3282 assert( pParse->nErr==0 ); 3283 if( db->init.busy ){ 3284 Index *p; 3285 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3286 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3287 pIndex->zName, pIndex); 3288 if( p ){ 3289 assert( p==pIndex ); /* Malloc must have failed */ 3290 sqlite3OomFault(db); 3291 goto exit_create_index; 3292 } 3293 db->flags |= SQLITE_InternChanges; 3294 if( pTblName!=0 ){ 3295 pIndex->tnum = db->init.newTnum; 3296 } 3297 } 3298 3299 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3300 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3301 ** emit code to allocate the index rootpage on disk and make an entry for 3302 ** the index in the sqlite_master table and populate the index with 3303 ** content. But, do not do this if we are simply reading the sqlite_master 3304 ** table to parse the schema, or if this index is the PRIMARY KEY index 3305 ** of a WITHOUT ROWID table. 3306 ** 3307 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3308 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3309 ** has just been created, it contains no data and the index initialization 3310 ** step can be skipped. 3311 */ 3312 else if( HasRowid(pTab) || pTblName!=0 ){ 3313 Vdbe *v; 3314 char *zStmt; 3315 int iMem = ++pParse->nMem; 3316 3317 v = sqlite3GetVdbe(pParse); 3318 if( v==0 ) goto exit_create_index; 3319 3320 sqlite3BeginWriteOperation(pParse, 1, iDb); 3321 3322 /* Create the rootpage for the index using CreateIndex. But before 3323 ** doing so, code a Noop instruction and store its address in 3324 ** Index.tnum. This is required in case this index is actually a 3325 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3326 ** that case the convertToWithoutRowidTable() routine will replace 3327 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3328 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3329 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 3330 3331 /* Gather the complete text of the CREATE INDEX statement into 3332 ** the zStmt variable 3333 */ 3334 if( pStart ){ 3335 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3336 if( pName->z[n-1]==';' ) n--; 3337 /* A named index with an explicit CREATE INDEX statement */ 3338 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3339 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3340 }else{ 3341 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3342 /* zStmt = sqlite3MPrintf(""); */ 3343 zStmt = 0; 3344 } 3345 3346 /* Add an entry in sqlite_master for this index 3347 */ 3348 sqlite3NestedParse(pParse, 3349 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3350 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3351 pIndex->zName, 3352 pTab->zName, 3353 iMem, 3354 zStmt 3355 ); 3356 sqlite3DbFree(db, zStmt); 3357 3358 /* Fill the index with data and reparse the schema. Code an OP_Expire 3359 ** to invalidate all pre-compiled statements. 3360 */ 3361 if( pTblName ){ 3362 sqlite3RefillIndex(pParse, pIndex, iMem); 3363 sqlite3ChangeCookie(pParse, iDb); 3364 sqlite3VdbeAddParseSchemaOp(v, iDb, 3365 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3366 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3367 } 3368 3369 sqlite3VdbeJumpHere(v, pIndex->tnum); 3370 } 3371 3372 /* When adding an index to the list of indices for a table, make 3373 ** sure all indices labeled OE_Replace come after all those labeled 3374 ** OE_Ignore. This is necessary for the correct constraint check 3375 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3376 ** UPDATE and INSERT statements. 3377 */ 3378 if( db->init.busy || pTblName==0 ){ 3379 if( onError!=OE_Replace || pTab->pIndex==0 3380 || pTab->pIndex->onError==OE_Replace){ 3381 pIndex->pNext = pTab->pIndex; 3382 pTab->pIndex = pIndex; 3383 }else{ 3384 Index *pOther = pTab->pIndex; 3385 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3386 pOther = pOther->pNext; 3387 } 3388 pIndex->pNext = pOther->pNext; 3389 pOther->pNext = pIndex; 3390 } 3391 pRet = pIndex; 3392 pIndex = 0; 3393 } 3394 3395 /* Clean up before exiting */ 3396 exit_create_index: 3397 if( pIndex ) freeIndex(db, pIndex); 3398 sqlite3ExprDelete(db, pPIWhere); 3399 sqlite3ExprListDelete(db, pList); 3400 sqlite3SrcListDelete(db, pTblName); 3401 sqlite3DbFree(db, zName); 3402 return pRet; 3403 } 3404 3405 /* 3406 ** Fill the Index.aiRowEst[] array with default information - information 3407 ** to be used when we have not run the ANALYZE command. 3408 ** 3409 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3410 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3411 ** number of rows in the table that match any particular value of the 3412 ** first column of the index. aiRowEst[2] is an estimate of the number 3413 ** of rows that match any particular combination of the first 2 columns 3414 ** of the index. And so forth. It must always be the case that 3415 * 3416 ** aiRowEst[N]<=aiRowEst[N-1] 3417 ** aiRowEst[N]>=1 3418 ** 3419 ** Apart from that, we have little to go on besides intuition as to 3420 ** how aiRowEst[] should be initialized. The numbers generated here 3421 ** are based on typical values found in actual indices. 3422 */ 3423 void sqlite3DefaultRowEst(Index *pIdx){ 3424 /* 10, 9, 8, 7, 6 */ 3425 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3426 LogEst *a = pIdx->aiRowLogEst; 3427 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3428 int i; 3429 3430 /* Set the first entry (number of rows in the index) to the estimated 3431 ** number of rows in the table. Or 10, if the estimated number of rows 3432 ** in the table is less than that. */ 3433 a[0] = pIdx->pTable->nRowLogEst; 3434 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3435 3436 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3437 ** 6 and each subsequent value (if any) is 5. */ 3438 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3439 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3440 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3441 } 3442 3443 assert( 0==sqlite3LogEst(1) ); 3444 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3445 } 3446 3447 /* 3448 ** This routine will drop an existing named index. This routine 3449 ** implements the DROP INDEX statement. 3450 */ 3451 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 3452 Index *pIndex; 3453 Vdbe *v; 3454 sqlite3 *db = pParse->db; 3455 int iDb; 3456 3457 assert( pParse->nErr==0 ); /* Never called with prior errors */ 3458 if( db->mallocFailed ){ 3459 goto exit_drop_index; 3460 } 3461 assert( pName->nSrc==1 ); 3462 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3463 goto exit_drop_index; 3464 } 3465 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 3466 if( pIndex==0 ){ 3467 if( !ifExists ){ 3468 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 3469 }else{ 3470 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3471 } 3472 pParse->checkSchema = 1; 3473 goto exit_drop_index; 3474 } 3475 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3476 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3477 "or PRIMARY KEY constraint cannot be dropped", 0); 3478 goto exit_drop_index; 3479 } 3480 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3481 #ifndef SQLITE_OMIT_AUTHORIZATION 3482 { 3483 int code = SQLITE_DROP_INDEX; 3484 Table *pTab = pIndex->pTable; 3485 const char *zDb = db->aDb[iDb].zName; 3486 const char *zTab = SCHEMA_TABLE(iDb); 3487 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3488 goto exit_drop_index; 3489 } 3490 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3491 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3492 goto exit_drop_index; 3493 } 3494 } 3495 #endif 3496 3497 /* Generate code to remove the index and from the master table */ 3498 v = sqlite3GetVdbe(pParse); 3499 if( v ){ 3500 sqlite3BeginWriteOperation(pParse, 1, iDb); 3501 sqlite3NestedParse(pParse, 3502 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3503 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3504 ); 3505 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3506 sqlite3ChangeCookie(pParse, iDb); 3507 destroyRootPage(pParse, pIndex->tnum, iDb); 3508 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3509 } 3510 3511 exit_drop_index: 3512 sqlite3SrcListDelete(db, pName); 3513 } 3514 3515 /* 3516 ** pArray is a pointer to an array of objects. Each object in the 3517 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 3518 ** to extend the array so that there is space for a new object at the end. 3519 ** 3520 ** When this function is called, *pnEntry contains the current size of 3521 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 3522 ** in total). 3523 ** 3524 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 3525 ** space allocated for the new object is zeroed, *pnEntry updated to 3526 ** reflect the new size of the array and a pointer to the new allocation 3527 ** returned. *pIdx is set to the index of the new array entry in this case. 3528 ** 3529 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 3530 ** unchanged and a copy of pArray returned. 3531 */ 3532 void *sqlite3ArrayAllocate( 3533 sqlite3 *db, /* Connection to notify of malloc failures */ 3534 void *pArray, /* Array of objects. Might be reallocated */ 3535 int szEntry, /* Size of each object in the array */ 3536 int *pnEntry, /* Number of objects currently in use */ 3537 int *pIdx /* Write the index of a new slot here */ 3538 ){ 3539 char *z; 3540 int n = *pnEntry; 3541 if( (n & (n-1))==0 ){ 3542 int sz = (n==0) ? 1 : 2*n; 3543 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 3544 if( pNew==0 ){ 3545 *pIdx = -1; 3546 return pArray; 3547 } 3548 pArray = pNew; 3549 } 3550 z = (char*)pArray; 3551 memset(&z[n * szEntry], 0, szEntry); 3552 *pIdx = n; 3553 ++*pnEntry; 3554 return pArray; 3555 } 3556 3557 /* 3558 ** Append a new element to the given IdList. Create a new IdList if 3559 ** need be. 3560 ** 3561 ** A new IdList is returned, or NULL if malloc() fails. 3562 */ 3563 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3564 int i; 3565 if( pList==0 ){ 3566 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3567 if( pList==0 ) return 0; 3568 } 3569 pList->a = sqlite3ArrayAllocate( 3570 db, 3571 pList->a, 3572 sizeof(pList->a[0]), 3573 &pList->nId, 3574 &i 3575 ); 3576 if( i<0 ){ 3577 sqlite3IdListDelete(db, pList); 3578 return 0; 3579 } 3580 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3581 return pList; 3582 } 3583 3584 /* 3585 ** Delete an IdList. 3586 */ 3587 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3588 int i; 3589 if( pList==0 ) return; 3590 for(i=0; i<pList->nId; i++){ 3591 sqlite3DbFree(db, pList->a[i].zName); 3592 } 3593 sqlite3DbFree(db, pList->a); 3594 sqlite3DbFree(db, pList); 3595 } 3596 3597 /* 3598 ** Return the index in pList of the identifier named zId. Return -1 3599 ** if not found. 3600 */ 3601 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3602 int i; 3603 if( pList==0 ) return -1; 3604 for(i=0; i<pList->nId; i++){ 3605 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3606 } 3607 return -1; 3608 } 3609 3610 /* 3611 ** Expand the space allocated for the given SrcList object by 3612 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3613 ** New slots are zeroed. 3614 ** 3615 ** For example, suppose a SrcList initially contains two entries: A,B. 3616 ** To append 3 new entries onto the end, do this: 3617 ** 3618 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3619 ** 3620 ** After the call above it would contain: A, B, nil, nil, nil. 3621 ** If the iStart argument had been 1 instead of 2, then the result 3622 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3623 ** the iStart value would be 0. The result then would 3624 ** be: nil, nil, nil, A, B. 3625 ** 3626 ** If a memory allocation fails the SrcList is unchanged. The 3627 ** db->mallocFailed flag will be set to true. 3628 */ 3629 SrcList *sqlite3SrcListEnlarge( 3630 sqlite3 *db, /* Database connection to notify of OOM errors */ 3631 SrcList *pSrc, /* The SrcList to be enlarged */ 3632 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3633 int iStart /* Index in pSrc->a[] of first new slot */ 3634 ){ 3635 int i; 3636 3637 /* Sanity checking on calling parameters */ 3638 assert( iStart>=0 ); 3639 assert( nExtra>=1 ); 3640 assert( pSrc!=0 ); 3641 assert( iStart<=pSrc->nSrc ); 3642 3643 /* Allocate additional space if needed */ 3644 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3645 SrcList *pNew; 3646 int nAlloc = pSrc->nSrc+nExtra; 3647 int nGot; 3648 pNew = sqlite3DbRealloc(db, pSrc, 3649 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3650 if( pNew==0 ){ 3651 assert( db->mallocFailed ); 3652 return pSrc; 3653 } 3654 pSrc = pNew; 3655 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3656 pSrc->nAlloc = nGot; 3657 } 3658 3659 /* Move existing slots that come after the newly inserted slots 3660 ** out of the way */ 3661 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3662 pSrc->a[i+nExtra] = pSrc->a[i]; 3663 } 3664 pSrc->nSrc += nExtra; 3665 3666 /* Zero the newly allocated slots */ 3667 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3668 for(i=iStart; i<iStart+nExtra; i++){ 3669 pSrc->a[i].iCursor = -1; 3670 } 3671 3672 /* Return a pointer to the enlarged SrcList */ 3673 return pSrc; 3674 } 3675 3676 3677 /* 3678 ** Append a new table name to the given SrcList. Create a new SrcList if 3679 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3680 ** 3681 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3682 ** SrcList might be the same as the SrcList that was input or it might be 3683 ** a new one. If an OOM error does occurs, then the prior value of pList 3684 ** that is input to this routine is automatically freed. 3685 ** 3686 ** If pDatabase is not null, it means that the table has an optional 3687 ** database name prefix. Like this: "database.table". The pDatabase 3688 ** points to the table name and the pTable points to the database name. 3689 ** The SrcList.a[].zName field is filled with the table name which might 3690 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3691 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3692 ** or with NULL if no database is specified. 3693 ** 3694 ** In other words, if call like this: 3695 ** 3696 ** sqlite3SrcListAppend(D,A,B,0); 3697 ** 3698 ** Then B is a table name and the database name is unspecified. If called 3699 ** like this: 3700 ** 3701 ** sqlite3SrcListAppend(D,A,B,C); 3702 ** 3703 ** Then C is the table name and B is the database name. If C is defined 3704 ** then so is B. In other words, we never have a case where: 3705 ** 3706 ** sqlite3SrcListAppend(D,A,0,C); 3707 ** 3708 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3709 ** before being added to the SrcList. 3710 */ 3711 SrcList *sqlite3SrcListAppend( 3712 sqlite3 *db, /* Connection to notify of malloc failures */ 3713 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3714 Token *pTable, /* Table to append */ 3715 Token *pDatabase /* Database of the table */ 3716 ){ 3717 struct SrcList_item *pItem; 3718 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3719 assert( db!=0 ); 3720 if( pList==0 ){ 3721 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); 3722 if( pList==0 ) return 0; 3723 pList->nAlloc = 1; 3724 pList->nSrc = 0; 3725 } 3726 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3727 if( db->mallocFailed ){ 3728 sqlite3SrcListDelete(db, pList); 3729 return 0; 3730 } 3731 pItem = &pList->a[pList->nSrc-1]; 3732 if( pDatabase && pDatabase->z==0 ){ 3733 pDatabase = 0; 3734 } 3735 if( pDatabase ){ 3736 Token *pTemp = pDatabase; 3737 pDatabase = pTable; 3738 pTable = pTemp; 3739 } 3740 pItem->zName = sqlite3NameFromToken(db, pTable); 3741 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3742 return pList; 3743 } 3744 3745 /* 3746 ** Assign VdbeCursor index numbers to all tables in a SrcList 3747 */ 3748 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3749 int i; 3750 struct SrcList_item *pItem; 3751 assert(pList || pParse->db->mallocFailed ); 3752 if( pList ){ 3753 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3754 if( pItem->iCursor>=0 ) break; 3755 pItem->iCursor = pParse->nTab++; 3756 if( pItem->pSelect ){ 3757 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3758 } 3759 } 3760 } 3761 } 3762 3763 /* 3764 ** Delete an entire SrcList including all its substructure. 3765 */ 3766 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3767 int i; 3768 struct SrcList_item *pItem; 3769 if( pList==0 ) return; 3770 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3771 sqlite3DbFree(db, pItem->zDatabase); 3772 sqlite3DbFree(db, pItem->zName); 3773 sqlite3DbFree(db, pItem->zAlias); 3774 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 3775 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 3776 sqlite3DeleteTable(db, pItem->pTab); 3777 sqlite3SelectDelete(db, pItem->pSelect); 3778 sqlite3ExprDelete(db, pItem->pOn); 3779 sqlite3IdListDelete(db, pItem->pUsing); 3780 } 3781 sqlite3DbFree(db, pList); 3782 } 3783 3784 /* 3785 ** This routine is called by the parser to add a new term to the 3786 ** end of a growing FROM clause. The "p" parameter is the part of 3787 ** the FROM clause that has already been constructed. "p" is NULL 3788 ** if this is the first term of the FROM clause. pTable and pDatabase 3789 ** are the name of the table and database named in the FROM clause term. 3790 ** pDatabase is NULL if the database name qualifier is missing - the 3791 ** usual case. If the term has an alias, then pAlias points to the 3792 ** alias token. If the term is a subquery, then pSubquery is the 3793 ** SELECT statement that the subquery encodes. The pTable and 3794 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3795 ** parameters are the content of the ON and USING clauses. 3796 ** 3797 ** Return a new SrcList which encodes is the FROM with the new 3798 ** term added. 3799 */ 3800 SrcList *sqlite3SrcListAppendFromTerm( 3801 Parse *pParse, /* Parsing context */ 3802 SrcList *p, /* The left part of the FROM clause already seen */ 3803 Token *pTable, /* Name of the table to add to the FROM clause */ 3804 Token *pDatabase, /* Name of the database containing pTable */ 3805 Token *pAlias, /* The right-hand side of the AS subexpression */ 3806 Select *pSubquery, /* A subquery used in place of a table name */ 3807 Expr *pOn, /* The ON clause of a join */ 3808 IdList *pUsing /* The USING clause of a join */ 3809 ){ 3810 struct SrcList_item *pItem; 3811 sqlite3 *db = pParse->db; 3812 if( !p && (pOn || pUsing) ){ 3813 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3814 (pOn ? "ON" : "USING") 3815 ); 3816 goto append_from_error; 3817 } 3818 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3819 if( p==0 || NEVER(p->nSrc==0) ){ 3820 goto append_from_error; 3821 } 3822 pItem = &p->a[p->nSrc-1]; 3823 assert( pAlias!=0 ); 3824 if( pAlias->n ){ 3825 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3826 } 3827 pItem->pSelect = pSubquery; 3828 pItem->pOn = pOn; 3829 pItem->pUsing = pUsing; 3830 return p; 3831 3832 append_from_error: 3833 assert( p==0 ); 3834 sqlite3ExprDelete(db, pOn); 3835 sqlite3IdListDelete(db, pUsing); 3836 sqlite3SelectDelete(db, pSubquery); 3837 return 0; 3838 } 3839 3840 /* 3841 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3842 ** element of the source-list passed as the second argument. 3843 */ 3844 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3845 assert( pIndexedBy!=0 ); 3846 if( p && ALWAYS(p->nSrc>0) ){ 3847 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3848 assert( pItem->fg.notIndexed==0 ); 3849 assert( pItem->fg.isIndexedBy==0 ); 3850 assert( pItem->fg.isTabFunc==0 ); 3851 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3852 /* A "NOT INDEXED" clause was supplied. See parse.y 3853 ** construct "indexed_opt" for details. */ 3854 pItem->fg.notIndexed = 1; 3855 }else{ 3856 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 3857 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); 3858 } 3859 } 3860 } 3861 3862 /* 3863 ** Add the list of function arguments to the SrcList entry for a 3864 ** table-valued-function. 3865 */ 3866 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 3867 if( p ){ 3868 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3869 assert( pItem->fg.notIndexed==0 ); 3870 assert( pItem->fg.isIndexedBy==0 ); 3871 assert( pItem->fg.isTabFunc==0 ); 3872 pItem->u1.pFuncArg = pList; 3873 pItem->fg.isTabFunc = 1; 3874 }else{ 3875 sqlite3ExprListDelete(pParse->db, pList); 3876 } 3877 } 3878 3879 /* 3880 ** When building up a FROM clause in the parser, the join operator 3881 ** is initially attached to the left operand. But the code generator 3882 ** expects the join operator to be on the right operand. This routine 3883 ** Shifts all join operators from left to right for an entire FROM 3884 ** clause. 3885 ** 3886 ** Example: Suppose the join is like this: 3887 ** 3888 ** A natural cross join B 3889 ** 3890 ** The operator is "natural cross join". The A and B operands are stored 3891 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3892 ** operator with A. This routine shifts that operator over to B. 3893 */ 3894 void sqlite3SrcListShiftJoinType(SrcList *p){ 3895 if( p ){ 3896 int i; 3897 for(i=p->nSrc-1; i>0; i--){ 3898 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3899 } 3900 p->a[0].fg.jointype = 0; 3901 } 3902 } 3903 3904 /* 3905 ** Generate VDBE code for a BEGIN statement. 3906 */ 3907 void sqlite3BeginTransaction(Parse *pParse, int type){ 3908 sqlite3 *db; 3909 Vdbe *v; 3910 int i; 3911 3912 assert( pParse!=0 ); 3913 db = pParse->db; 3914 assert( db!=0 ); 3915 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3916 return; 3917 } 3918 v = sqlite3GetVdbe(pParse); 3919 if( !v ) return; 3920 if( type!=TK_DEFERRED ){ 3921 for(i=0; i<db->nDb; i++){ 3922 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3923 sqlite3VdbeUsesBtree(v, i); 3924 } 3925 } 3926 sqlite3VdbeAddOp0(v, OP_AutoCommit); 3927 } 3928 3929 /* 3930 ** Generate VDBE code for a COMMIT statement. 3931 */ 3932 void sqlite3CommitTransaction(Parse *pParse){ 3933 Vdbe *v; 3934 3935 assert( pParse!=0 ); 3936 assert( pParse->db!=0 ); 3937 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3938 return; 3939 } 3940 v = sqlite3GetVdbe(pParse); 3941 if( v ){ 3942 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1); 3943 } 3944 } 3945 3946 /* 3947 ** Generate VDBE code for a ROLLBACK statement. 3948 */ 3949 void sqlite3RollbackTransaction(Parse *pParse){ 3950 Vdbe *v; 3951 3952 assert( pParse!=0 ); 3953 assert( pParse->db!=0 ); 3954 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3955 return; 3956 } 3957 v = sqlite3GetVdbe(pParse); 3958 if( v ){ 3959 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3960 } 3961 } 3962 3963 /* 3964 ** This function is called by the parser when it parses a command to create, 3965 ** release or rollback an SQL savepoint. 3966 */ 3967 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3968 char *zName = sqlite3NameFromToken(pParse->db, pName); 3969 if( zName ){ 3970 Vdbe *v = sqlite3GetVdbe(pParse); 3971 #ifndef SQLITE_OMIT_AUTHORIZATION 3972 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3973 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3974 #endif 3975 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3976 sqlite3DbFree(pParse->db, zName); 3977 return; 3978 } 3979 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3980 } 3981 } 3982 3983 /* 3984 ** Make sure the TEMP database is open and available for use. Return 3985 ** the number of errors. Leave any error messages in the pParse structure. 3986 */ 3987 int sqlite3OpenTempDatabase(Parse *pParse){ 3988 sqlite3 *db = pParse->db; 3989 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3990 int rc; 3991 Btree *pBt; 3992 static const int flags = 3993 SQLITE_OPEN_READWRITE | 3994 SQLITE_OPEN_CREATE | 3995 SQLITE_OPEN_EXCLUSIVE | 3996 SQLITE_OPEN_DELETEONCLOSE | 3997 SQLITE_OPEN_TEMP_DB; 3998 3999 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4000 if( rc!=SQLITE_OK ){ 4001 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4002 "file for storing temporary tables"); 4003 pParse->rc = rc; 4004 return 1; 4005 } 4006 db->aDb[1].pBt = pBt; 4007 assert( db->aDb[1].pSchema ); 4008 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4009 sqlite3OomFault(db); 4010 return 1; 4011 } 4012 } 4013 return 0; 4014 } 4015 4016 /* 4017 ** Record the fact that the schema cookie will need to be verified 4018 ** for database iDb. The code to actually verify the schema cookie 4019 ** will occur at the end of the top-level VDBE and will be generated 4020 ** later, by sqlite3FinishCoding(). 4021 */ 4022 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4023 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4024 sqlite3 *db = pToplevel->db; 4025 4026 assert( iDb>=0 && iDb<db->nDb ); 4027 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 4028 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4029 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4030 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4031 DbMaskSet(pToplevel->cookieMask, iDb); 4032 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 4033 if( !OMIT_TEMPDB && iDb==1 ){ 4034 sqlite3OpenTempDatabase(pToplevel); 4035 } 4036 } 4037 } 4038 4039 /* 4040 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4041 ** attached database. Otherwise, invoke it for the database named zDb only. 4042 */ 4043 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4044 sqlite3 *db = pParse->db; 4045 int i; 4046 for(i=0; i<db->nDb; i++){ 4047 Db *pDb = &db->aDb[i]; 4048 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 4049 sqlite3CodeVerifySchema(pParse, i); 4050 } 4051 } 4052 } 4053 4054 /* 4055 ** Generate VDBE code that prepares for doing an operation that 4056 ** might change the database. 4057 ** 4058 ** This routine starts a new transaction if we are not already within 4059 ** a transaction. If we are already within a transaction, then a checkpoint 4060 ** is set if the setStatement parameter is true. A checkpoint should 4061 ** be set for operations that might fail (due to a constraint) part of 4062 ** the way through and which will need to undo some writes without having to 4063 ** rollback the whole transaction. For operations where all constraints 4064 ** can be checked before any changes are made to the database, it is never 4065 ** necessary to undo a write and the checkpoint should not be set. 4066 */ 4067 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4068 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4069 sqlite3CodeVerifySchema(pParse, iDb); 4070 DbMaskSet(pToplevel->writeMask, iDb); 4071 pToplevel->isMultiWrite |= setStatement; 4072 } 4073 4074 /* 4075 ** Indicate that the statement currently under construction might write 4076 ** more than one entry (example: deleting one row then inserting another, 4077 ** inserting multiple rows in a table, or inserting a row and index entries.) 4078 ** If an abort occurs after some of these writes have completed, then it will 4079 ** be necessary to undo the completed writes. 4080 */ 4081 void sqlite3MultiWrite(Parse *pParse){ 4082 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4083 pToplevel->isMultiWrite = 1; 4084 } 4085 4086 /* 4087 ** The code generator calls this routine if is discovers that it is 4088 ** possible to abort a statement prior to completion. In order to 4089 ** perform this abort without corrupting the database, we need to make 4090 ** sure that the statement is protected by a statement transaction. 4091 ** 4092 ** Technically, we only need to set the mayAbort flag if the 4093 ** isMultiWrite flag was previously set. There is a time dependency 4094 ** such that the abort must occur after the multiwrite. This makes 4095 ** some statements involving the REPLACE conflict resolution algorithm 4096 ** go a little faster. But taking advantage of this time dependency 4097 ** makes it more difficult to prove that the code is correct (in 4098 ** particular, it prevents us from writing an effective 4099 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4100 ** to take the safe route and skip the optimization. 4101 */ 4102 void sqlite3MayAbort(Parse *pParse){ 4103 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4104 pToplevel->mayAbort = 1; 4105 } 4106 4107 /* 4108 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4109 ** error. The onError parameter determines which (if any) of the statement 4110 ** and/or current transaction is rolled back. 4111 */ 4112 void sqlite3HaltConstraint( 4113 Parse *pParse, /* Parsing context */ 4114 int errCode, /* extended error code */ 4115 int onError, /* Constraint type */ 4116 char *p4, /* Error message */ 4117 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4118 u8 p5Errmsg /* P5_ErrMsg type */ 4119 ){ 4120 Vdbe *v = sqlite3GetVdbe(pParse); 4121 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4122 if( onError==OE_Abort ){ 4123 sqlite3MayAbort(pParse); 4124 } 4125 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4126 sqlite3VdbeChangeP5(v, p5Errmsg); 4127 } 4128 4129 /* 4130 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4131 */ 4132 void sqlite3UniqueConstraint( 4133 Parse *pParse, /* Parsing context */ 4134 int onError, /* Constraint type */ 4135 Index *pIdx /* The index that triggers the constraint */ 4136 ){ 4137 char *zErr; 4138 int j; 4139 StrAccum errMsg; 4140 Table *pTab = pIdx->pTable; 4141 4142 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4143 if( pIdx->aColExpr ){ 4144 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); 4145 }else{ 4146 for(j=0; j<pIdx->nKeyCol; j++){ 4147 char *zCol; 4148 assert( pIdx->aiColumn[j]>=0 ); 4149 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4150 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4151 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol); 4152 } 4153 } 4154 zErr = sqlite3StrAccumFinish(&errMsg); 4155 sqlite3HaltConstraint(pParse, 4156 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4157 : SQLITE_CONSTRAINT_UNIQUE, 4158 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4159 } 4160 4161 4162 /* 4163 ** Code an OP_Halt due to non-unique rowid. 4164 */ 4165 void sqlite3RowidConstraint( 4166 Parse *pParse, /* Parsing context */ 4167 int onError, /* Conflict resolution algorithm */ 4168 Table *pTab /* The table with the non-unique rowid */ 4169 ){ 4170 char *zMsg; 4171 int rc; 4172 if( pTab->iPKey>=0 ){ 4173 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4174 pTab->aCol[pTab->iPKey].zName); 4175 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4176 }else{ 4177 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4178 rc = SQLITE_CONSTRAINT_ROWID; 4179 } 4180 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4181 P5_ConstraintUnique); 4182 } 4183 4184 /* 4185 ** Check to see if pIndex uses the collating sequence pColl. Return 4186 ** true if it does and false if it does not. 4187 */ 4188 #ifndef SQLITE_OMIT_REINDEX 4189 static int collationMatch(const char *zColl, Index *pIndex){ 4190 int i; 4191 assert( zColl!=0 ); 4192 for(i=0; i<pIndex->nColumn; i++){ 4193 const char *z = pIndex->azColl[i]; 4194 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4195 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4196 return 1; 4197 } 4198 } 4199 return 0; 4200 } 4201 #endif 4202 4203 /* 4204 ** Recompute all indices of pTab that use the collating sequence pColl. 4205 ** If pColl==0 then recompute all indices of pTab. 4206 */ 4207 #ifndef SQLITE_OMIT_REINDEX 4208 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4209 Index *pIndex; /* An index associated with pTab */ 4210 4211 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4212 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4213 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4214 sqlite3BeginWriteOperation(pParse, 0, iDb); 4215 sqlite3RefillIndex(pParse, pIndex, -1); 4216 } 4217 } 4218 } 4219 #endif 4220 4221 /* 4222 ** Recompute all indices of all tables in all databases where the 4223 ** indices use the collating sequence pColl. If pColl==0 then recompute 4224 ** all indices everywhere. 4225 */ 4226 #ifndef SQLITE_OMIT_REINDEX 4227 static void reindexDatabases(Parse *pParse, char const *zColl){ 4228 Db *pDb; /* A single database */ 4229 int iDb; /* The database index number */ 4230 sqlite3 *db = pParse->db; /* The database connection */ 4231 HashElem *k; /* For looping over tables in pDb */ 4232 Table *pTab; /* A table in the database */ 4233 4234 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4235 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4236 assert( pDb!=0 ); 4237 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4238 pTab = (Table*)sqliteHashData(k); 4239 reindexTable(pParse, pTab, zColl); 4240 } 4241 } 4242 } 4243 #endif 4244 4245 /* 4246 ** Generate code for the REINDEX command. 4247 ** 4248 ** REINDEX -- 1 4249 ** REINDEX <collation> -- 2 4250 ** REINDEX ?<database>.?<tablename> -- 3 4251 ** REINDEX ?<database>.?<indexname> -- 4 4252 ** 4253 ** Form 1 causes all indices in all attached databases to be rebuilt. 4254 ** Form 2 rebuilds all indices in all databases that use the named 4255 ** collating function. Forms 3 and 4 rebuild the named index or all 4256 ** indices associated with the named table. 4257 */ 4258 #ifndef SQLITE_OMIT_REINDEX 4259 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4260 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4261 char *z; /* Name of a table or index */ 4262 const char *zDb; /* Name of the database */ 4263 Table *pTab; /* A table in the database */ 4264 Index *pIndex; /* An index associated with pTab */ 4265 int iDb; /* The database index number */ 4266 sqlite3 *db = pParse->db; /* The database connection */ 4267 Token *pObjName; /* Name of the table or index to be reindexed */ 4268 4269 /* Read the database schema. If an error occurs, leave an error message 4270 ** and code in pParse and return NULL. */ 4271 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4272 return; 4273 } 4274 4275 if( pName1==0 ){ 4276 reindexDatabases(pParse, 0); 4277 return; 4278 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4279 char *zColl; 4280 assert( pName1->z ); 4281 zColl = sqlite3NameFromToken(pParse->db, pName1); 4282 if( !zColl ) return; 4283 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4284 if( pColl ){ 4285 reindexDatabases(pParse, zColl); 4286 sqlite3DbFree(db, zColl); 4287 return; 4288 } 4289 sqlite3DbFree(db, zColl); 4290 } 4291 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4292 if( iDb<0 ) return; 4293 z = sqlite3NameFromToken(db, pObjName); 4294 if( z==0 ) return; 4295 zDb = db->aDb[iDb].zName; 4296 pTab = sqlite3FindTable(db, z, zDb); 4297 if( pTab ){ 4298 reindexTable(pParse, pTab, 0); 4299 sqlite3DbFree(db, z); 4300 return; 4301 } 4302 pIndex = sqlite3FindIndex(db, z, zDb); 4303 sqlite3DbFree(db, z); 4304 if( pIndex ){ 4305 sqlite3BeginWriteOperation(pParse, 0, iDb); 4306 sqlite3RefillIndex(pParse, pIndex, -1); 4307 return; 4308 } 4309 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4310 } 4311 #endif 4312 4313 /* 4314 ** Return a KeyInfo structure that is appropriate for the given Index. 4315 ** 4316 ** The KeyInfo structure for an index is cached in the Index object. 4317 ** So there might be multiple references to the returned pointer. The 4318 ** caller should not try to modify the KeyInfo object. 4319 ** 4320 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4321 ** when it has finished using it. 4322 */ 4323 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4324 int i; 4325 int nCol = pIdx->nColumn; 4326 int nKey = pIdx->nKeyCol; 4327 KeyInfo *pKey; 4328 if( pParse->nErr ) return 0; 4329 if( pIdx->uniqNotNull ){ 4330 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4331 }else{ 4332 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4333 } 4334 if( pKey ){ 4335 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4336 for(i=0; i<nCol; i++){ 4337 const char *zColl = pIdx->azColl[i]; 4338 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4339 sqlite3LocateCollSeq(pParse, zColl); 4340 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 4341 } 4342 if( pParse->nErr ){ 4343 sqlite3KeyInfoUnref(pKey); 4344 pKey = 0; 4345 } 4346 } 4347 return pKey; 4348 } 4349 4350 #ifndef SQLITE_OMIT_CTE 4351 /* 4352 ** This routine is invoked once per CTE by the parser while parsing a 4353 ** WITH clause. 4354 */ 4355 With *sqlite3WithAdd( 4356 Parse *pParse, /* Parsing context */ 4357 With *pWith, /* Existing WITH clause, or NULL */ 4358 Token *pName, /* Name of the common-table */ 4359 ExprList *pArglist, /* Optional column name list for the table */ 4360 Select *pQuery /* Query used to initialize the table */ 4361 ){ 4362 sqlite3 *db = pParse->db; 4363 With *pNew; 4364 char *zName; 4365 4366 /* Check that the CTE name is unique within this WITH clause. If 4367 ** not, store an error in the Parse structure. */ 4368 zName = sqlite3NameFromToken(pParse->db, pName); 4369 if( zName && pWith ){ 4370 int i; 4371 for(i=0; i<pWith->nCte; i++){ 4372 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 4373 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 4374 } 4375 } 4376 } 4377 4378 if( pWith ){ 4379 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4380 pNew = sqlite3DbRealloc(db, pWith, nByte); 4381 }else{ 4382 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4383 } 4384 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 4385 4386 if( db->mallocFailed ){ 4387 sqlite3ExprListDelete(db, pArglist); 4388 sqlite3SelectDelete(db, pQuery); 4389 sqlite3DbFree(db, zName); 4390 pNew = pWith; 4391 }else{ 4392 pNew->a[pNew->nCte].pSelect = pQuery; 4393 pNew->a[pNew->nCte].pCols = pArglist; 4394 pNew->a[pNew->nCte].zName = zName; 4395 pNew->a[pNew->nCte].zCteErr = 0; 4396 pNew->nCte++; 4397 } 4398 4399 return pNew; 4400 } 4401 4402 /* 4403 ** Free the contents of the With object passed as the second argument. 4404 */ 4405 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 4406 if( pWith ){ 4407 int i; 4408 for(i=0; i<pWith->nCte; i++){ 4409 struct Cte *pCte = &pWith->a[i]; 4410 sqlite3ExprListDelete(db, pCte->pCols); 4411 sqlite3SelectDelete(db, pCte->pSelect); 4412 sqlite3DbFree(db, pCte->zName); 4413 } 4414 sqlite3DbFree(db, pWith); 4415 } 4416 } 4417 #endif /* !defined(SQLITE_OMIT_CTE) */ 4418