1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #ifndef SQLITE_OMIT_SHARED_CACHE 28 /* 29 ** The TableLock structure is only used by the sqlite3TableLock() and 30 ** codeTableLocks() functions. 31 */ 32 struct TableLock { 33 int iDb; /* The database containing the table to be locked */ 34 int iTab; /* The root page of the table to be locked */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */ 36 const char *zLockName; /* Name of the table */ 37 }; 38 39 /* 40 ** Record the fact that we want to lock a table at run-time. 41 ** 42 ** The table to be locked has root page iTab and is found in database iDb. 43 ** A read or a write lock can be taken depending on isWritelock. 44 ** 45 ** This routine just records the fact that the lock is desired. The 46 ** code to make the lock occur is generated by a later call to 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 48 */ 49 void sqlite3TableLock( 50 Parse *pParse, /* Parsing context */ 51 int iDb, /* Index of the database containing the table to lock */ 52 int iTab, /* Root page number of the table to be locked */ 53 u8 isWriteLock, /* True for a write lock */ 54 const char *zName /* Name of the table to be locked */ 55 ){ 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); 57 int i; 58 int nBytes; 59 TableLock *p; 60 assert( iDb>=0 ); 61 62 if( iDb==1 ) return; 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; 64 for(i=0; i<pToplevel->nTableLock; i++){ 65 p = &pToplevel->aTableLock[i]; 66 if( p->iDb==iDb && p->iTab==iTab ){ 67 p->isWriteLock = (p->isWriteLock || isWriteLock); 68 return; 69 } 70 } 71 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 73 pToplevel->aTableLock = 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 75 if( pToplevel->aTableLock ){ 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 77 p->iDb = iDb; 78 p->iTab = iTab; 79 p->isWriteLock = isWriteLock; 80 p->zLockName = zName; 81 }else{ 82 pToplevel->nTableLock = 0; 83 sqlite3OomFault(pToplevel->db); 84 } 85 } 86 87 /* 88 ** Code an OP_TableLock instruction for each table locked by the 89 ** statement (configured by calls to sqlite3TableLock()). 90 */ 91 static void codeTableLocks(Parse *pParse){ 92 int i; 93 Vdbe *pVdbe; 94 95 pVdbe = sqlite3GetVdbe(pParse); 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 97 98 for(i=0; i<pParse->nTableLock; i++){ 99 TableLock *p = &pParse->aTableLock[i]; 100 int p1 = p->iDb; 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 102 p->zLockName, P4_STATIC); 103 } 104 } 105 #else 106 #define codeTableLocks(x) 107 #endif 108 109 /* 110 ** Return TRUE if the given yDbMask object is empty - if it contains no 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 113 */ 114 #if SQLITE_MAX_ATTACHED>30 115 int sqlite3DbMaskAllZero(yDbMask m){ 116 int i; 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; 118 return 1; 119 } 120 #endif 121 122 /* 123 ** This routine is called after a single SQL statement has been 124 ** parsed and a VDBE program to execute that statement has been 125 ** prepared. This routine puts the finishing touches on the 126 ** VDBE program and resets the pParse structure for the next 127 ** parse. 128 ** 129 ** Note that if an error occurred, it might be the case that 130 ** no VDBE code was generated. 131 */ 132 void sqlite3FinishCoding(Parse *pParse){ 133 sqlite3 *db; 134 Vdbe *v; 135 136 assert( pParse->pToplevel==0 ); 137 db = pParse->db; 138 if( pParse->nested ) return; 139 if( db->mallocFailed || pParse->nErr ){ 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; 141 return; 142 } 143 144 /* Begin by generating some termination code at the end of the 145 ** vdbe program 146 */ 147 v = sqlite3GetVdbe(pParse); 148 assert( !pParse->isMultiWrite 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 150 if( v ){ 151 sqlite3VdbeAddOp0(v, OP_Halt); 152 153 #if SQLITE_USER_AUTHENTICATION 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ 155 sqlite3UserAuthInit(db); 156 if( db->auth.authLevel<UAUTH_User ){ 157 sqlite3ErrorMsg(pParse, "user not authenticated"); 158 pParse->rc = SQLITE_AUTH_USER; 159 return; 160 } 161 } 162 #endif 163 164 /* The cookie mask contains one bit for each database file open. 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 166 ** set for each database that is used. Generate code to start a 167 ** transaction on each used database and to verify the schema cookie 168 ** on each used database. 169 */ 170 if( db->mallocFailed==0 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 172 ){ 173 int iDb, i; 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 175 sqlite3VdbeJumpHere(v, 0); 176 for(iDb=0; iDb<db->nDb; iDb++){ 177 Schema *pSchema; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 179 sqlite3VdbeUsesBtree(v, iDb); 180 pSchema = db->aDb[iDb].pSchema; 181 sqlite3VdbeAddOp4Int(v, 182 OP_Transaction, /* Opcode */ 183 iDb, /* P1 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 185 pSchema->schema_cookie, /* P3 */ 186 pSchema->iGeneration /* P4 */ 187 ); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 189 VdbeComment((v, 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 191 } 192 #ifndef SQLITE_OMIT_VIRTUALTABLE 193 for(i=0; i<pParse->nVtabLock; i++){ 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 196 } 197 pParse->nVtabLock = 0; 198 #endif 199 200 /* Once all the cookies have been verified and transactions opened, 201 ** obtain the required table-locks. This is a no-op unless the 202 ** shared-cache feature is enabled. 203 */ 204 codeTableLocks(pParse); 205 206 /* Initialize any AUTOINCREMENT data structures required. 207 */ 208 sqlite3AutoincrementBegin(pParse); 209 210 /* Code constant expressions that where factored out of inner loops */ 211 if( pParse->pConstExpr ){ 212 ExprList *pEL = pParse->pConstExpr; 213 pParse->okConstFactor = 0; 214 for(i=0; i<pEL->nExpr; i++){ 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); 216 } 217 } 218 219 /* Finally, jump back to the beginning of the executable code. */ 220 sqlite3VdbeGoto(v, 1); 221 } 222 } 223 224 225 /* Get the VDBE program ready for execution 226 */ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ 228 /* A minimum of one cursor is required if autoincrement is used 229 * See ticket [a696379c1f08866] */ 230 assert( pParse->pAinc==0 || pParse->nTab>0 ); 231 sqlite3VdbeMakeReady(v, pParse); 232 pParse->rc = SQLITE_DONE; 233 }else{ 234 pParse->rc = SQLITE_ERROR; 235 } 236 } 237 238 /* 239 ** Run the parser and code generator recursively in order to generate 240 ** code for the SQL statement given onto the end of the pParse context 241 ** currently under construction. When the parser is run recursively 242 ** this way, the final OP_Halt is not appended and other initialization 243 ** and finalization steps are omitted because those are handling by the 244 ** outermost parser. 245 ** 246 ** Not everything is nestable. This facility is designed to permit 247 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 248 ** care if you decide to try to use this routine for some other purposes. 249 */ 250 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 251 va_list ap; 252 char *zSql; 253 char *zErrMsg = 0; 254 sqlite3 *db = pParse->db; 255 char saveBuf[PARSE_TAIL_SZ]; 256 257 if( pParse->nErr ) return; 258 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 259 va_start(ap, zFormat); 260 zSql = sqlite3VMPrintf(db, zFormat, ap); 261 va_end(ap); 262 if( zSql==0 ){ 263 /* This can result either from an OOM or because the formatted string 264 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set 265 ** an error */ 266 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; 267 pParse->nErr++; 268 return; 269 } 270 pParse->nested++; 271 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); 272 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 273 sqlite3RunParser(pParse, zSql, &zErrMsg); 274 sqlite3DbFree(db, zErrMsg); 275 sqlite3DbFree(db, zSql); 276 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); 277 pParse->nested--; 278 } 279 280 #if SQLITE_USER_AUTHENTICATION 281 /* 282 ** Return TRUE if zTable is the name of the system table that stores the 283 ** list of users and their access credentials. 284 */ 285 int sqlite3UserAuthTable(const char *zTable){ 286 return sqlite3_stricmp(zTable, "sqlite_user")==0; 287 } 288 #endif 289 290 /* 291 ** Locate the in-memory structure that describes a particular database 292 ** table given the name of that table and (optionally) the name of the 293 ** database containing the table. Return NULL if not found. 294 ** 295 ** If zDatabase is 0, all databases are searched for the table and the 296 ** first matching table is returned. (No checking for duplicate table 297 ** names is done.) The search order is TEMP first, then MAIN, then any 298 ** auxiliary databases added using the ATTACH command. 299 ** 300 ** See also sqlite3LocateTable(). 301 */ 302 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 303 Table *p = 0; 304 int i; 305 306 /* All mutexes are required for schema access. Make sure we hold them. */ 307 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 308 #if SQLITE_USER_AUTHENTICATION 309 /* Only the admin user is allowed to know that the sqlite_user table 310 ** exists */ 311 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 312 return 0; 313 } 314 #endif 315 while(1){ 316 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 317 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 318 if( zDatabase==0 319 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 320 || (j==0 && sqlite3StrICmp(zDatabase, "main")==0) 321 ){ 322 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 323 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 324 if( p ) return p; 325 } 326 } 327 /* Not found. If the name we were looking for was temp.sqlite_master 328 ** then change the name to sqlite_temp_master and try again. */ 329 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; 330 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; 331 zName = TEMP_MASTER_NAME; 332 } 333 return 0; 334 } 335 336 /* 337 ** Locate the in-memory structure that describes a particular database 338 ** table given the name of that table and (optionally) the name of the 339 ** database containing the table. Return NULL if not found. Also leave an 340 ** error message in pParse->zErrMsg. 341 ** 342 ** The difference between this routine and sqlite3FindTable() is that this 343 ** routine leaves an error message in pParse->zErrMsg where 344 ** sqlite3FindTable() does not. 345 */ 346 Table *sqlite3LocateTable( 347 Parse *pParse, /* context in which to report errors */ 348 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ 349 const char *zName, /* Name of the table we are looking for */ 350 const char *zDbase /* Name of the database. Might be NULL */ 351 ){ 352 Table *p; 353 sqlite3 *db = pParse->db; 354 355 /* Read the database schema. If an error occurs, leave an error message 356 ** and code in pParse and return NULL. */ 357 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 358 && SQLITE_OK!=sqlite3ReadSchema(pParse) 359 ){ 360 return 0; 361 } 362 363 p = sqlite3FindTable(db, zName, zDbase); 364 if( p==0 ){ 365 #ifndef SQLITE_OMIT_VIRTUALTABLE 366 /* If zName is the not the name of a table in the schema created using 367 ** CREATE, then check to see if it is the name of an virtual table that 368 ** can be an eponymous virtual table. */ 369 if( pParse->disableVtab==0 ){ 370 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); 371 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ 372 pMod = sqlite3PragmaVtabRegister(db, zName); 373 } 374 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 375 return pMod->pEpoTab; 376 } 377 } 378 #endif 379 if( flags & LOCATE_NOERR ) return 0; 380 pParse->checkSchema = 1; 381 }else if( IsVirtual(p) && pParse->disableVtab ){ 382 p = 0; 383 } 384 385 if( p==0 ){ 386 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; 387 if( zDbase ){ 388 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 389 }else{ 390 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 391 } 392 } 393 394 return p; 395 } 396 397 /* 398 ** Locate the table identified by *p. 399 ** 400 ** This is a wrapper around sqlite3LocateTable(). The difference between 401 ** sqlite3LocateTable() and this function is that this function restricts 402 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 403 ** non-NULL if it is part of a view or trigger program definition. See 404 ** sqlite3FixSrcList() for details. 405 */ 406 Table *sqlite3LocateTableItem( 407 Parse *pParse, 408 u32 flags, 409 struct SrcList_item *p 410 ){ 411 const char *zDb; 412 assert( p->pSchema==0 || p->zDatabase==0 ); 413 if( p->pSchema ){ 414 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 415 zDb = pParse->db->aDb[iDb].zDbSName; 416 }else{ 417 zDb = p->zDatabase; 418 } 419 return sqlite3LocateTable(pParse, flags, p->zName, zDb); 420 } 421 422 /* 423 ** Locate the in-memory structure that describes 424 ** a particular index given the name of that index 425 ** and the name of the database that contains the index. 426 ** Return NULL if not found. 427 ** 428 ** If zDatabase is 0, all databases are searched for the 429 ** table and the first matching index is returned. (No checking 430 ** for duplicate index names is done.) The search order is 431 ** TEMP first, then MAIN, then any auxiliary databases added 432 ** using the ATTACH command. 433 */ 434 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 435 Index *p = 0; 436 int i; 437 /* All mutexes are required for schema access. Make sure we hold them. */ 438 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 439 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 440 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 441 Schema *pSchema = db->aDb[j].pSchema; 442 assert( pSchema ); 443 if( zDb 444 && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) 445 && (j!=0 || sqlite3StrICmp(zDb, "main")) 446 ){ 447 continue; 448 } 449 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 450 p = sqlite3HashFind(&pSchema->idxHash, zName); 451 if( p ) break; 452 } 453 return p; 454 } 455 456 /* 457 ** Reclaim the memory used by an index 458 */ 459 void sqlite3FreeIndex(sqlite3 *db, Index *p){ 460 #ifndef SQLITE_OMIT_ANALYZE 461 sqlite3DeleteIndexSamples(db, p); 462 #endif 463 sqlite3ExprDelete(db, p->pPartIdxWhere); 464 sqlite3ExprListDelete(db, p->aColExpr); 465 sqlite3DbFree(db, p->zColAff); 466 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); 467 #ifdef SQLITE_ENABLE_STAT4 468 sqlite3_free(p->aiRowEst); 469 #endif 470 sqlite3DbFree(db, p); 471 } 472 473 /* 474 ** For the index called zIdxName which is found in the database iDb, 475 ** unlike that index from its Table then remove the index from 476 ** the index hash table and free all memory structures associated 477 ** with the index. 478 */ 479 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 480 Index *pIndex; 481 Hash *pHash; 482 483 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 484 pHash = &db->aDb[iDb].pSchema->idxHash; 485 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); 486 if( ALWAYS(pIndex) ){ 487 if( pIndex->pTable->pIndex==pIndex ){ 488 pIndex->pTable->pIndex = pIndex->pNext; 489 }else{ 490 Index *p; 491 /* Justification of ALWAYS(); The index must be on the list of 492 ** indices. */ 493 p = pIndex->pTable->pIndex; 494 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 495 if( ALWAYS(p && p->pNext==pIndex) ){ 496 p->pNext = pIndex->pNext; 497 } 498 } 499 sqlite3FreeIndex(db, pIndex); 500 } 501 db->mDbFlags |= DBFLAG_SchemaChange; 502 } 503 504 /* 505 ** Look through the list of open database files in db->aDb[] and if 506 ** any have been closed, remove them from the list. Reallocate the 507 ** db->aDb[] structure to a smaller size, if possible. 508 ** 509 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 510 ** are never candidates for being collapsed. 511 */ 512 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 513 int i, j; 514 for(i=j=2; i<db->nDb; i++){ 515 struct Db *pDb = &db->aDb[i]; 516 if( pDb->pBt==0 ){ 517 sqlite3DbFree(db, pDb->zDbSName); 518 pDb->zDbSName = 0; 519 continue; 520 } 521 if( j<i ){ 522 db->aDb[j] = db->aDb[i]; 523 } 524 j++; 525 } 526 db->nDb = j; 527 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 528 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 529 sqlite3DbFree(db, db->aDb); 530 db->aDb = db->aDbStatic; 531 } 532 } 533 534 /* 535 ** Reset the schema for the database at index iDb. Also reset the 536 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. 537 ** Deferred resets may be run by calling with iDb<0. 538 */ 539 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ 540 int i; 541 assert( iDb<db->nDb ); 542 543 if( iDb>=0 ){ 544 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 545 DbSetProperty(db, iDb, DB_ResetWanted); 546 DbSetProperty(db, 1, DB_ResetWanted); 547 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 548 } 549 550 if( db->nSchemaLock==0 ){ 551 for(i=0; i<db->nDb; i++){ 552 if( DbHasProperty(db, i, DB_ResetWanted) ){ 553 sqlite3SchemaClear(db->aDb[i].pSchema); 554 } 555 } 556 } 557 } 558 559 /* 560 ** Erase all schema information from all attached databases (including 561 ** "main" and "temp") for a single database connection. 562 */ 563 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ 564 int i; 565 sqlite3BtreeEnterAll(db); 566 for(i=0; i<db->nDb; i++){ 567 Db *pDb = &db->aDb[i]; 568 if( pDb->pSchema ){ 569 if( db->nSchemaLock==0 ){ 570 sqlite3SchemaClear(pDb->pSchema); 571 }else{ 572 DbSetProperty(db, i, DB_ResetWanted); 573 } 574 } 575 } 576 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); 577 sqlite3VtabUnlockList(db); 578 sqlite3BtreeLeaveAll(db); 579 if( db->nSchemaLock==0 ){ 580 sqlite3CollapseDatabaseArray(db); 581 } 582 } 583 584 /* 585 ** This routine is called when a commit occurs. 586 */ 587 void sqlite3CommitInternalChanges(sqlite3 *db){ 588 db->mDbFlags &= ~DBFLAG_SchemaChange; 589 } 590 591 /* 592 ** Delete memory allocated for the column names of a table or view (the 593 ** Table.aCol[] array). 594 */ 595 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 596 int i; 597 Column *pCol; 598 assert( pTable!=0 ); 599 if( (pCol = pTable->aCol)!=0 ){ 600 for(i=0; i<pTable->nCol; i++, pCol++){ 601 sqlite3DbFree(db, pCol->zName); 602 sqlite3ExprDelete(db, pCol->pDflt); 603 sqlite3DbFree(db, pCol->zColl); 604 } 605 sqlite3DbFree(db, pTable->aCol); 606 } 607 } 608 609 /* 610 ** Remove the memory data structures associated with the given 611 ** Table. No changes are made to disk by this routine. 612 ** 613 ** This routine just deletes the data structure. It does not unlink 614 ** the table data structure from the hash table. But it does destroy 615 ** memory structures of the indices and foreign keys associated with 616 ** the table. 617 ** 618 ** The db parameter is optional. It is needed if the Table object 619 ** contains lookaside memory. (Table objects in the schema do not use 620 ** lookaside memory, but some ephemeral Table objects do.) Or the 621 ** db parameter can be used with db->pnBytesFreed to measure the memory 622 ** used by the Table object. 623 */ 624 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ 625 Index *pIndex, *pNext; 626 627 #ifdef SQLITE_DEBUG 628 /* Record the number of outstanding lookaside allocations in schema Tables 629 ** prior to doing any free() operations. Since schema Tables do not use 630 ** lookaside, this number should not change. 631 ** 632 ** If malloc has already failed, it may be that it failed while allocating 633 ** a Table object that was going to be marked ephemeral. So do not check 634 ** that no lookaside memory is used in this case either. */ 635 int nLookaside = 0; 636 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ 637 nLookaside = sqlite3LookasideUsed(db, 0); 638 } 639 #endif 640 641 /* Delete all indices associated with this table. */ 642 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 643 pNext = pIndex->pNext; 644 assert( pIndex->pSchema==pTable->pSchema 645 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); 646 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ 647 char *zName = pIndex->zName; 648 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 649 &pIndex->pSchema->idxHash, zName, 0 650 ); 651 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 652 assert( pOld==pIndex || pOld==0 ); 653 } 654 sqlite3FreeIndex(db, pIndex); 655 } 656 657 /* Delete any foreign keys attached to this table. */ 658 sqlite3FkDelete(db, pTable); 659 660 /* Delete the Table structure itself. 661 */ 662 sqlite3DeleteColumnNames(db, pTable); 663 sqlite3DbFree(db, pTable->zName); 664 sqlite3DbFree(db, pTable->zColAff); 665 sqlite3SelectDelete(db, pTable->pSelect); 666 sqlite3ExprListDelete(db, pTable->pCheck); 667 #ifndef SQLITE_OMIT_VIRTUALTABLE 668 sqlite3VtabClear(db, pTable); 669 #endif 670 sqlite3DbFree(db, pTable); 671 672 /* Verify that no lookaside memory was used by schema tables */ 673 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); 674 } 675 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 676 /* Do not delete the table until the reference count reaches zero. */ 677 if( !pTable ) return; 678 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; 679 deleteTable(db, pTable); 680 } 681 682 683 /* 684 ** Unlink the given table from the hash tables and the delete the 685 ** table structure with all its indices and foreign keys. 686 */ 687 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 688 Table *p; 689 Db *pDb; 690 691 assert( db!=0 ); 692 assert( iDb>=0 && iDb<db->nDb ); 693 assert( zTabName ); 694 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 695 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 696 pDb = &db->aDb[iDb]; 697 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); 698 sqlite3DeleteTable(db, p); 699 db->mDbFlags |= DBFLAG_SchemaChange; 700 } 701 702 /* 703 ** Given a token, return a string that consists of the text of that 704 ** token. Space to hold the returned string 705 ** is obtained from sqliteMalloc() and must be freed by the calling 706 ** function. 707 ** 708 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 709 ** surround the body of the token are removed. 710 ** 711 ** Tokens are often just pointers into the original SQL text and so 712 ** are not \000 terminated and are not persistent. The returned string 713 ** is \000 terminated and is persistent. 714 */ 715 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 716 char *zName; 717 if( pName ){ 718 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 719 sqlite3Dequote(zName); 720 }else{ 721 zName = 0; 722 } 723 return zName; 724 } 725 726 /* 727 ** Open the sqlite_master table stored in database number iDb for 728 ** writing. The table is opened using cursor 0. 729 */ 730 void sqlite3OpenMasterTable(Parse *p, int iDb){ 731 Vdbe *v = sqlite3GetVdbe(p); 732 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); 733 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 734 if( p->nTab==0 ){ 735 p->nTab = 1; 736 } 737 } 738 739 /* 740 ** Parameter zName points to a nul-terminated buffer containing the name 741 ** of a database ("main", "temp" or the name of an attached db). This 742 ** function returns the index of the named database in db->aDb[], or 743 ** -1 if the named db cannot be found. 744 */ 745 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 746 int i = -1; /* Database number */ 747 if( zName ){ 748 Db *pDb; 749 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 750 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; 751 /* "main" is always an acceptable alias for the primary database 752 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ 753 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; 754 } 755 } 756 return i; 757 } 758 759 /* 760 ** The token *pName contains the name of a database (either "main" or 761 ** "temp" or the name of an attached db). This routine returns the 762 ** index of the named database in db->aDb[], or -1 if the named db 763 ** does not exist. 764 */ 765 int sqlite3FindDb(sqlite3 *db, Token *pName){ 766 int i; /* Database number */ 767 char *zName; /* Name we are searching for */ 768 zName = sqlite3NameFromToken(db, pName); 769 i = sqlite3FindDbName(db, zName); 770 sqlite3DbFree(db, zName); 771 return i; 772 } 773 774 /* The table or view or trigger name is passed to this routine via tokens 775 ** pName1 and pName2. If the table name was fully qualified, for example: 776 ** 777 ** CREATE TABLE xxx.yyy (...); 778 ** 779 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 780 ** the table name is not fully qualified, i.e.: 781 ** 782 ** CREATE TABLE yyy(...); 783 ** 784 ** Then pName1 is set to "yyy" and pName2 is "". 785 ** 786 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 787 ** pName2) that stores the unqualified table name. The index of the 788 ** database "xxx" is returned. 789 */ 790 int sqlite3TwoPartName( 791 Parse *pParse, /* Parsing and code generating context */ 792 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 793 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 794 Token **pUnqual /* Write the unqualified object name here */ 795 ){ 796 int iDb; /* Database holding the object */ 797 sqlite3 *db = pParse->db; 798 799 assert( pName2!=0 ); 800 if( pName2->n>0 ){ 801 if( db->init.busy ) { 802 sqlite3ErrorMsg(pParse, "corrupt database"); 803 return -1; 804 } 805 *pUnqual = pName2; 806 iDb = sqlite3FindDb(db, pName1); 807 if( iDb<0 ){ 808 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 809 return -1; 810 } 811 }else{ 812 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT 813 || (db->mDbFlags & DBFLAG_Vacuum)!=0); 814 iDb = db->init.iDb; 815 *pUnqual = pName1; 816 } 817 return iDb; 818 } 819 820 /* 821 ** True if PRAGMA writable_schema is ON 822 */ 823 int sqlite3WritableSchema(sqlite3 *db){ 824 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); 825 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 826 SQLITE_WriteSchema ); 827 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 828 SQLITE_Defensive ); 829 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== 830 (SQLITE_WriteSchema|SQLITE_Defensive) ); 831 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; 832 } 833 834 /* 835 ** This routine is used to check if the UTF-8 string zName is a legal 836 ** unqualified name for a new schema object (table, index, view or 837 ** trigger). All names are legal except those that begin with the string 838 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 839 ** is reserved for internal use. 840 ** 841 ** When parsing the sqlite_master table, this routine also checks to 842 ** make sure the "type", "name", and "tbl_name" columns are consistent 843 ** with the SQL. 844 */ 845 int sqlite3CheckObjectName( 846 Parse *pParse, /* Parsing context */ 847 const char *zName, /* Name of the object to check */ 848 const char *zType, /* Type of this object */ 849 const char *zTblName /* Parent table name for triggers and indexes */ 850 ){ 851 sqlite3 *db = pParse->db; 852 if( sqlite3WritableSchema(db) || db->init.imposterTable ){ 853 /* Skip these error checks for writable_schema=ON */ 854 return SQLITE_OK; 855 } 856 if( db->init.busy ){ 857 if( sqlite3_stricmp(zType, db->init.azInit[0]) 858 || sqlite3_stricmp(zName, db->init.azInit[1]) 859 || sqlite3_stricmp(zTblName, db->init.azInit[2]) 860 ){ 861 if( sqlite3Config.bExtraSchemaChecks ){ 862 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ 863 return SQLITE_ERROR; 864 } 865 } 866 }else{ 867 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) 868 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) 869 ){ 870 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", 871 zName); 872 return SQLITE_ERROR; 873 } 874 875 } 876 return SQLITE_OK; 877 } 878 879 /* 880 ** Return the PRIMARY KEY index of a table 881 */ 882 Index *sqlite3PrimaryKeyIndex(Table *pTab){ 883 Index *p; 884 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} 885 return p; 886 } 887 888 /* 889 ** Convert an table column number into a index column number. That is, 890 ** for the column iCol in the table (as defined by the CREATE TABLE statement) 891 ** find the (first) offset of that column in index pIdx. Or return -1 892 ** if column iCol is not used in index pIdx. 893 */ 894 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ 895 int i; 896 for(i=0; i<pIdx->nColumn; i++){ 897 if( iCol==pIdx->aiColumn[i] ) return i; 898 } 899 return -1; 900 } 901 902 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 903 /* Convert a storage column number into a table column number. 904 ** 905 ** The storage column number (0,1,2,....) is the index of the value 906 ** as it appears in the record on disk. The true column number 907 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. 908 ** 909 ** The storage column number is less than the table column number if 910 ** and only there are VIRTUAL columns to the left. 911 ** 912 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. 913 */ 914 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ 915 if( pTab->tabFlags & TF_HasVirtual ){ 916 int i; 917 for(i=0; i<=iCol; i++){ 918 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; 919 } 920 } 921 return iCol; 922 } 923 #endif 924 925 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 926 /* Convert a table column number into a storage column number. 927 ** 928 ** The storage column number (0,1,2,....) is the index of the value 929 ** as it appears in the record on disk. Or, if the input column is 930 ** the N-th virtual column (zero-based) then the storage number is 931 ** the number of non-virtual columns in the table plus N. 932 ** 933 ** The true column number is the index (0,1,2,...) of the column in 934 ** the CREATE TABLE statement. 935 ** 936 ** If the input column is a VIRTUAL column, then it should not appear 937 ** in storage. But the value sometimes is cached in registers that 938 ** follow the range of registers used to construct storage. This 939 ** avoids computing the same VIRTUAL column multiple times, and provides 940 ** values for use by OP_Param opcodes in triggers. Hence, if the 941 ** input column is a VIRTUAL table, put it after all the other columns. 942 ** 943 ** In the following, N means "normal column", S means STORED, and 944 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: 945 ** 946 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); 947 ** -- 0 1 2 3 4 5 6 7 8 948 ** 949 ** Then the mapping from this function is as follows: 950 ** 951 ** INPUTS: 0 1 2 3 4 5 6 7 8 952 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 953 ** 954 ** So, in other words, this routine shifts all the virtual columns to 955 ** the end. 956 ** 957 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and 958 ** this routine is a no-op macro. If the pTab does not have any virtual 959 ** columns, then this routine is no-op that always return iCol. If iCol 960 ** is negative (indicating the ROWID column) then this routine return iCol. 961 */ 962 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ 963 int i; 964 i16 n; 965 assert( iCol<pTab->nCol ); 966 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; 967 for(i=0, n=0; i<iCol; i++){ 968 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; 969 } 970 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ 971 /* iCol is a virtual column itself */ 972 return pTab->nNVCol + i - n; 973 }else{ 974 /* iCol is a normal or stored column */ 975 return n; 976 } 977 } 978 #endif 979 980 /* 981 ** Begin constructing a new table representation in memory. This is 982 ** the first of several action routines that get called in response 983 ** to a CREATE TABLE statement. In particular, this routine is called 984 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 985 ** flag is true if the table should be stored in the auxiliary database 986 ** file instead of in the main database file. This is normally the case 987 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 988 ** CREATE and TABLE. 989 ** 990 ** The new table record is initialized and put in pParse->pNewTable. 991 ** As more of the CREATE TABLE statement is parsed, additional action 992 ** routines will be called to add more information to this record. 993 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 994 ** is called to complete the construction of the new table record. 995 */ 996 void sqlite3StartTable( 997 Parse *pParse, /* Parser context */ 998 Token *pName1, /* First part of the name of the table or view */ 999 Token *pName2, /* Second part of the name of the table or view */ 1000 int isTemp, /* True if this is a TEMP table */ 1001 int isView, /* True if this is a VIEW */ 1002 int isVirtual, /* True if this is a VIRTUAL table */ 1003 int noErr /* Do nothing if table already exists */ 1004 ){ 1005 Table *pTable; 1006 char *zName = 0; /* The name of the new table */ 1007 sqlite3 *db = pParse->db; 1008 Vdbe *v; 1009 int iDb; /* Database number to create the table in */ 1010 Token *pName; /* Unqualified name of the table to create */ 1011 1012 if( db->init.busy && db->init.newTnum==1 ){ 1013 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ 1014 iDb = db->init.iDb; 1015 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); 1016 pName = pName1; 1017 }else{ 1018 /* The common case */ 1019 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1020 if( iDb<0 ) return; 1021 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 1022 /* If creating a temp table, the name may not be qualified. Unless 1023 ** the database name is "temp" anyway. */ 1024 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 1025 return; 1026 } 1027 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 1028 zName = sqlite3NameFromToken(db, pName); 1029 if( IN_RENAME_OBJECT ){ 1030 sqlite3RenameTokenMap(pParse, (void*)zName, pName); 1031 } 1032 } 1033 pParse->sNameToken = *pName; 1034 if( zName==0 ) return; 1035 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ 1036 goto begin_table_error; 1037 } 1038 if( db->init.iDb==1 ) isTemp = 1; 1039 #ifndef SQLITE_OMIT_AUTHORIZATION 1040 assert( isTemp==0 || isTemp==1 ); 1041 assert( isView==0 || isView==1 ); 1042 { 1043 static const u8 aCode[] = { 1044 SQLITE_CREATE_TABLE, 1045 SQLITE_CREATE_TEMP_TABLE, 1046 SQLITE_CREATE_VIEW, 1047 SQLITE_CREATE_TEMP_VIEW 1048 }; 1049 char *zDb = db->aDb[iDb].zDbSName; 1050 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 1051 goto begin_table_error; 1052 } 1053 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], 1054 zName, 0, zDb) ){ 1055 goto begin_table_error; 1056 } 1057 } 1058 #endif 1059 1060 /* Make sure the new table name does not collide with an existing 1061 ** index or table name in the same database. Issue an error message if 1062 ** it does. The exception is if the statement being parsed was passed 1063 ** to an sqlite3_declare_vtab() call. In that case only the column names 1064 ** and types will be used, so there is no need to test for namespace 1065 ** collisions. 1066 */ 1067 if( !IN_SPECIAL_PARSE ){ 1068 char *zDb = db->aDb[iDb].zDbSName; 1069 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1070 goto begin_table_error; 1071 } 1072 pTable = sqlite3FindTable(db, zName, zDb); 1073 if( pTable ){ 1074 if( !noErr ){ 1075 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 1076 }else{ 1077 assert( !db->init.busy || CORRUPT_DB ); 1078 sqlite3CodeVerifySchema(pParse, iDb); 1079 } 1080 goto begin_table_error; 1081 } 1082 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 1083 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 1084 goto begin_table_error; 1085 } 1086 } 1087 1088 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 1089 if( pTable==0 ){ 1090 assert( db->mallocFailed ); 1091 pParse->rc = SQLITE_NOMEM_BKPT; 1092 pParse->nErr++; 1093 goto begin_table_error; 1094 } 1095 pTable->zName = zName; 1096 pTable->iPKey = -1; 1097 pTable->pSchema = db->aDb[iDb].pSchema; 1098 pTable->nTabRef = 1; 1099 #ifdef SQLITE_DEFAULT_ROWEST 1100 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); 1101 #else 1102 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1103 #endif 1104 assert( pParse->pNewTable==0 ); 1105 pParse->pNewTable = pTable; 1106 1107 /* If this is the magic sqlite_sequence table used by autoincrement, 1108 ** then record a pointer to this table in the main database structure 1109 ** so that INSERT can find the table easily. 1110 */ 1111 #ifndef SQLITE_OMIT_AUTOINCREMENT 1112 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 1113 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1114 pTable->pSchema->pSeqTab = pTable; 1115 } 1116 #endif 1117 1118 /* Begin generating the code that will insert the table record into 1119 ** the SQLITE_MASTER table. Note in particular that we must go ahead 1120 ** and allocate the record number for the table entry now. Before any 1121 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 1122 ** indices to be created and the table record must come before the 1123 ** indices. Hence, the record number for the table must be allocated 1124 ** now. 1125 */ 1126 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 1127 int addr1; 1128 int fileFormat; 1129 int reg1, reg2, reg3; 1130 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ 1131 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; 1132 sqlite3BeginWriteOperation(pParse, 1, iDb); 1133 1134 #ifndef SQLITE_OMIT_VIRTUALTABLE 1135 if( isVirtual ){ 1136 sqlite3VdbeAddOp0(v, OP_VBegin); 1137 } 1138 #endif 1139 1140 /* If the file format and encoding in the database have not been set, 1141 ** set them now. 1142 */ 1143 reg1 = pParse->regRowid = ++pParse->nMem; 1144 reg2 = pParse->regRoot = ++pParse->nMem; 1145 reg3 = ++pParse->nMem; 1146 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 1147 sqlite3VdbeUsesBtree(v, iDb); 1148 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 1149 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1150 1 : SQLITE_MAX_FILE_FORMAT; 1151 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); 1152 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); 1153 sqlite3VdbeJumpHere(v, addr1); 1154 1155 /* This just creates a place-holder record in the sqlite_master table. 1156 ** The record created does not contain anything yet. It will be replaced 1157 ** by the real entry in code generated at sqlite3EndTable(). 1158 ** 1159 ** The rowid for the new entry is left in register pParse->regRowid. 1160 ** The root page number of the new table is left in reg pParse->regRoot. 1161 ** The rowid and root page number values are needed by the code that 1162 ** sqlite3EndTable will generate. 1163 */ 1164 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1165 if( isView || isVirtual ){ 1166 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 1167 }else 1168 #endif 1169 { 1170 pParse->addrCrTab = 1171 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); 1172 } 1173 sqlite3OpenMasterTable(pParse, iDb); 1174 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 1175 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); 1176 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 1177 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1178 sqlite3VdbeAddOp0(v, OP_Close); 1179 } 1180 1181 /* Normal (non-error) return. */ 1182 return; 1183 1184 /* If an error occurs, we jump here */ 1185 begin_table_error: 1186 sqlite3DbFree(db, zName); 1187 return; 1188 } 1189 1190 /* Set properties of a table column based on the (magical) 1191 ** name of the column. 1192 */ 1193 #if SQLITE_ENABLE_HIDDEN_COLUMNS 1194 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ 1195 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ 1196 pCol->colFlags |= COLFLAG_HIDDEN; 1197 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ 1198 pTab->tabFlags |= TF_OOOHidden; 1199 } 1200 } 1201 #endif 1202 1203 1204 /* 1205 ** Add a new column to the table currently being constructed. 1206 ** 1207 ** The parser calls this routine once for each column declaration 1208 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1209 ** first to get things going. Then this routine is called for each 1210 ** column. 1211 */ 1212 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ 1213 Table *p; 1214 int i; 1215 char *z; 1216 char *zType; 1217 Column *pCol; 1218 sqlite3 *db = pParse->db; 1219 if( (p = pParse->pNewTable)==0 ) return; 1220 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1221 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1222 return; 1223 } 1224 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); 1225 if( z==0 ) return; 1226 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName); 1227 memcpy(z, pName->z, pName->n); 1228 z[pName->n] = 0; 1229 sqlite3Dequote(z); 1230 for(i=0; i<p->nCol; i++){ 1231 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1232 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1233 sqlite3DbFree(db, z); 1234 return; 1235 } 1236 } 1237 if( (p->nCol & 0x7)==0 ){ 1238 Column *aNew; 1239 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1240 if( aNew==0 ){ 1241 sqlite3DbFree(db, z); 1242 return; 1243 } 1244 p->aCol = aNew; 1245 } 1246 pCol = &p->aCol[p->nCol]; 1247 memset(pCol, 0, sizeof(p->aCol[0])); 1248 pCol->zName = z; 1249 sqlite3ColumnPropertiesFromName(p, pCol); 1250 1251 if( pType->n==0 ){ 1252 /* If there is no type specified, columns have the default affinity 1253 ** 'BLOB' with a default size of 4 bytes. */ 1254 pCol->affinity = SQLITE_AFF_BLOB; 1255 pCol->szEst = 1; 1256 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1257 if( 4>=sqlite3GlobalConfig.szSorterRef ){ 1258 pCol->colFlags |= COLFLAG_SORTERREF; 1259 } 1260 #endif 1261 }else{ 1262 zType = z + sqlite3Strlen30(z) + 1; 1263 memcpy(zType, pType->z, pType->n); 1264 zType[pType->n] = 0; 1265 sqlite3Dequote(zType); 1266 pCol->affinity = sqlite3AffinityType(zType, pCol); 1267 pCol->colFlags |= COLFLAG_HASTYPE; 1268 } 1269 p->nCol++; 1270 p->nNVCol++; 1271 pParse->constraintName.n = 0; 1272 } 1273 1274 /* 1275 ** This routine is called by the parser while in the middle of 1276 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1277 ** been seen on a column. This routine sets the notNull flag on 1278 ** the column currently under construction. 1279 */ 1280 void sqlite3AddNotNull(Parse *pParse, int onError){ 1281 Table *p; 1282 Column *pCol; 1283 p = pParse->pNewTable; 1284 if( p==0 || NEVER(p->nCol<1) ) return; 1285 pCol = &p->aCol[p->nCol-1]; 1286 pCol->notNull = (u8)onError; 1287 p->tabFlags |= TF_HasNotNull; 1288 1289 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created 1290 ** on this column. */ 1291 if( pCol->colFlags & COLFLAG_UNIQUE ){ 1292 Index *pIdx; 1293 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1294 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); 1295 if( pIdx->aiColumn[0]==p->nCol-1 ){ 1296 pIdx->uniqNotNull = 1; 1297 } 1298 } 1299 } 1300 } 1301 1302 /* 1303 ** Scan the column type name zType (length nType) and return the 1304 ** associated affinity type. 1305 ** 1306 ** This routine does a case-independent search of zType for the 1307 ** substrings in the following table. If one of the substrings is 1308 ** found, the corresponding affinity is returned. If zType contains 1309 ** more than one of the substrings, entries toward the top of 1310 ** the table take priority. For example, if zType is 'BLOBINT', 1311 ** SQLITE_AFF_INTEGER is returned. 1312 ** 1313 ** Substring | Affinity 1314 ** -------------------------------- 1315 ** 'INT' | SQLITE_AFF_INTEGER 1316 ** 'CHAR' | SQLITE_AFF_TEXT 1317 ** 'CLOB' | SQLITE_AFF_TEXT 1318 ** 'TEXT' | SQLITE_AFF_TEXT 1319 ** 'BLOB' | SQLITE_AFF_BLOB 1320 ** 'REAL' | SQLITE_AFF_REAL 1321 ** 'FLOA' | SQLITE_AFF_REAL 1322 ** 'DOUB' | SQLITE_AFF_REAL 1323 ** 1324 ** If none of the substrings in the above table are found, 1325 ** SQLITE_AFF_NUMERIC is returned. 1326 */ 1327 char sqlite3AffinityType(const char *zIn, Column *pCol){ 1328 u32 h = 0; 1329 char aff = SQLITE_AFF_NUMERIC; 1330 const char *zChar = 0; 1331 1332 assert( zIn!=0 ); 1333 while( zIn[0] ){ 1334 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1335 zIn++; 1336 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1337 aff = SQLITE_AFF_TEXT; 1338 zChar = zIn; 1339 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1340 aff = SQLITE_AFF_TEXT; 1341 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1342 aff = SQLITE_AFF_TEXT; 1343 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1344 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1345 aff = SQLITE_AFF_BLOB; 1346 if( zIn[0]=='(' ) zChar = zIn; 1347 #ifndef SQLITE_OMIT_FLOATING_POINT 1348 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1349 && aff==SQLITE_AFF_NUMERIC ){ 1350 aff = SQLITE_AFF_REAL; 1351 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1352 && aff==SQLITE_AFF_NUMERIC ){ 1353 aff = SQLITE_AFF_REAL; 1354 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1355 && aff==SQLITE_AFF_NUMERIC ){ 1356 aff = SQLITE_AFF_REAL; 1357 #endif 1358 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1359 aff = SQLITE_AFF_INTEGER; 1360 break; 1361 } 1362 } 1363 1364 /* If pCol is not NULL, store an estimate of the field size. The 1365 ** estimate is scaled so that the size of an integer is 1. */ 1366 if( pCol ){ 1367 int v = 0; /* default size is approx 4 bytes */ 1368 if( aff<SQLITE_AFF_NUMERIC ){ 1369 if( zChar ){ 1370 while( zChar[0] ){ 1371 if( sqlite3Isdigit(zChar[0]) ){ 1372 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ 1373 sqlite3GetInt32(zChar, &v); 1374 break; 1375 } 1376 zChar++; 1377 } 1378 }else{ 1379 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1380 } 1381 } 1382 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1383 if( v>=sqlite3GlobalConfig.szSorterRef ){ 1384 pCol->colFlags |= COLFLAG_SORTERREF; 1385 } 1386 #endif 1387 v = v/4 + 1; 1388 if( v>255 ) v = 255; 1389 pCol->szEst = v; 1390 } 1391 return aff; 1392 } 1393 1394 /* 1395 ** The expression is the default value for the most recently added column 1396 ** of the table currently under construction. 1397 ** 1398 ** Default value expressions must be constant. Raise an exception if this 1399 ** is not the case. 1400 ** 1401 ** This routine is called by the parser while in the middle of 1402 ** parsing a CREATE TABLE statement. 1403 */ 1404 void sqlite3AddDefaultValue( 1405 Parse *pParse, /* Parsing context */ 1406 Expr *pExpr, /* The parsed expression of the default value */ 1407 const char *zStart, /* Start of the default value text */ 1408 const char *zEnd /* First character past end of defaut value text */ 1409 ){ 1410 Table *p; 1411 Column *pCol; 1412 sqlite3 *db = pParse->db; 1413 p = pParse->pNewTable; 1414 if( p!=0 ){ 1415 int isInit = db->init.busy && db->init.iDb!=1; 1416 pCol = &(p->aCol[p->nCol-1]); 1417 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ 1418 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1419 pCol->zName); 1420 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1421 }else if( pCol->colFlags & COLFLAG_GENERATED ){ 1422 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1423 testcase( pCol->colFlags & COLFLAG_STORED ); 1424 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); 1425 #endif 1426 }else{ 1427 /* A copy of pExpr is used instead of the original, as pExpr contains 1428 ** tokens that point to volatile memory. 1429 */ 1430 Expr x; 1431 sqlite3ExprDelete(db, pCol->pDflt); 1432 memset(&x, 0, sizeof(x)); 1433 x.op = TK_SPAN; 1434 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); 1435 x.pLeft = pExpr; 1436 x.flags = EP_Skip; 1437 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); 1438 sqlite3DbFree(db, x.u.zToken); 1439 } 1440 } 1441 if( IN_RENAME_OBJECT ){ 1442 sqlite3RenameExprUnmap(pParse, pExpr); 1443 } 1444 sqlite3ExprDelete(db, pExpr); 1445 } 1446 1447 /* 1448 ** Backwards Compatibility Hack: 1449 ** 1450 ** Historical versions of SQLite accepted strings as column names in 1451 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1452 ** 1453 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) 1454 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); 1455 ** 1456 ** This is goofy. But to preserve backwards compatibility we continue to 1457 ** accept it. This routine does the necessary conversion. It converts 1458 ** the expression given in its argument from a TK_STRING into a TK_ID 1459 ** if the expression is just a TK_STRING with an optional COLLATE clause. 1460 ** If the expression is anything other than TK_STRING, the expression is 1461 ** unchanged. 1462 */ 1463 static void sqlite3StringToId(Expr *p){ 1464 if( p->op==TK_STRING ){ 1465 p->op = TK_ID; 1466 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ 1467 p->pLeft->op = TK_ID; 1468 } 1469 } 1470 1471 /* 1472 ** Tag the given column as being part of the PRIMARY KEY 1473 */ 1474 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ 1475 pCol->colFlags |= COLFLAG_PRIMKEY; 1476 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1477 if( pCol->colFlags & COLFLAG_GENERATED ){ 1478 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1479 testcase( pCol->colFlags & COLFLAG_STORED ); 1480 sqlite3ErrorMsg(pParse, 1481 "generated columns cannot be part of the PRIMARY KEY"); 1482 } 1483 #endif 1484 } 1485 1486 /* 1487 ** Designate the PRIMARY KEY for the table. pList is a list of names 1488 ** of columns that form the primary key. If pList is NULL, then the 1489 ** most recently added column of the table is the primary key. 1490 ** 1491 ** A table can have at most one primary key. If the table already has 1492 ** a primary key (and this is the second primary key) then create an 1493 ** error. 1494 ** 1495 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1496 ** then we will try to use that column as the rowid. Set the Table.iPKey 1497 ** field of the table under construction to be the index of the 1498 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1499 ** no INTEGER PRIMARY KEY. 1500 ** 1501 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1502 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1503 */ 1504 void sqlite3AddPrimaryKey( 1505 Parse *pParse, /* Parsing context */ 1506 ExprList *pList, /* List of field names to be indexed */ 1507 int onError, /* What to do with a uniqueness conflict */ 1508 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1509 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1510 ){ 1511 Table *pTab = pParse->pNewTable; 1512 Column *pCol = 0; 1513 int iCol = -1, i; 1514 int nTerm; 1515 if( pTab==0 ) goto primary_key_exit; 1516 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1517 sqlite3ErrorMsg(pParse, 1518 "table \"%s\" has more than one primary key", pTab->zName); 1519 goto primary_key_exit; 1520 } 1521 pTab->tabFlags |= TF_HasPrimaryKey; 1522 if( pList==0 ){ 1523 iCol = pTab->nCol - 1; 1524 pCol = &pTab->aCol[iCol]; 1525 makeColumnPartOfPrimaryKey(pParse, pCol); 1526 nTerm = 1; 1527 }else{ 1528 nTerm = pList->nExpr; 1529 for(i=0; i<nTerm; i++){ 1530 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1531 assert( pCExpr!=0 ); 1532 sqlite3StringToId(pCExpr); 1533 if( pCExpr->op==TK_ID ){ 1534 const char *zCName = pCExpr->u.zToken; 1535 for(iCol=0; iCol<pTab->nCol; iCol++){ 1536 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1537 pCol = &pTab->aCol[iCol]; 1538 makeColumnPartOfPrimaryKey(pParse, pCol); 1539 break; 1540 } 1541 } 1542 } 1543 } 1544 } 1545 if( nTerm==1 1546 && pCol 1547 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 1548 && sortOrder!=SQLITE_SO_DESC 1549 ){ 1550 if( IN_RENAME_OBJECT && pList ){ 1551 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); 1552 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); 1553 } 1554 pTab->iPKey = iCol; 1555 pTab->keyConf = (u8)onError; 1556 assert( autoInc==0 || autoInc==1 ); 1557 pTab->tabFlags |= autoInc*TF_Autoincrement; 1558 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags; 1559 (void)sqlite3HasExplicitNulls(pParse, pList); 1560 }else if( autoInc ){ 1561 #ifndef SQLITE_OMIT_AUTOINCREMENT 1562 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1563 "INTEGER PRIMARY KEY"); 1564 #endif 1565 }else{ 1566 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1567 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); 1568 pList = 0; 1569 } 1570 1571 primary_key_exit: 1572 sqlite3ExprListDelete(pParse->db, pList); 1573 return; 1574 } 1575 1576 /* 1577 ** Add a new CHECK constraint to the table currently under construction. 1578 */ 1579 void sqlite3AddCheckConstraint( 1580 Parse *pParse, /* Parsing context */ 1581 Expr *pCheckExpr /* The check expression */ 1582 ){ 1583 #ifndef SQLITE_OMIT_CHECK 1584 Table *pTab = pParse->pNewTable; 1585 sqlite3 *db = pParse->db; 1586 if( pTab && !IN_DECLARE_VTAB 1587 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) 1588 ){ 1589 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); 1590 if( pParse->constraintName.n ){ 1591 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); 1592 } 1593 }else 1594 #endif 1595 { 1596 sqlite3ExprDelete(pParse->db, pCheckExpr); 1597 } 1598 } 1599 1600 /* 1601 ** Set the collation function of the most recently parsed table column 1602 ** to the CollSeq given. 1603 */ 1604 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1605 Table *p; 1606 int i; 1607 char *zColl; /* Dequoted name of collation sequence */ 1608 sqlite3 *db; 1609 1610 if( (p = pParse->pNewTable)==0 ) return; 1611 i = p->nCol-1; 1612 db = pParse->db; 1613 zColl = sqlite3NameFromToken(db, pToken); 1614 if( !zColl ) return; 1615 1616 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1617 Index *pIdx; 1618 sqlite3DbFree(db, p->aCol[i].zColl); 1619 p->aCol[i].zColl = zColl; 1620 1621 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1622 ** then an index may have been created on this column before the 1623 ** collation type was added. Correct this if it is the case. 1624 */ 1625 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1626 assert( pIdx->nKeyCol==1 ); 1627 if( pIdx->aiColumn[0]==i ){ 1628 pIdx->azColl[0] = p->aCol[i].zColl; 1629 } 1630 } 1631 }else{ 1632 sqlite3DbFree(db, zColl); 1633 } 1634 } 1635 1636 /* Change the most recently parsed column to be a GENERATED ALWAYS AS 1637 ** column. 1638 */ 1639 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ 1640 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1641 u8 eType = COLFLAG_VIRTUAL; 1642 Table *pTab = pParse->pNewTable; 1643 Column *pCol; 1644 if( pTab==0 ){ 1645 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ 1646 goto generated_done; 1647 } 1648 pCol = &(pTab->aCol[pTab->nCol-1]); 1649 if( IN_DECLARE_VTAB ){ 1650 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); 1651 goto generated_done; 1652 } 1653 if( pCol->pDflt ) goto generated_error; 1654 if( pType ){ 1655 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ 1656 /* no-op */ 1657 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ 1658 eType = COLFLAG_STORED; 1659 }else{ 1660 goto generated_error; 1661 } 1662 } 1663 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; 1664 pCol->colFlags |= eType; 1665 assert( TF_HasVirtual==COLFLAG_VIRTUAL ); 1666 assert( TF_HasStored==COLFLAG_STORED ); 1667 pTab->tabFlags |= eType; 1668 if( pCol->colFlags & COLFLAG_PRIMKEY ){ 1669 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ 1670 } 1671 pCol->pDflt = pExpr; 1672 pExpr = 0; 1673 goto generated_done; 1674 1675 generated_error: 1676 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", 1677 pCol->zName); 1678 generated_done: 1679 sqlite3ExprDelete(pParse->db, pExpr); 1680 #else 1681 /* Throw and error for the GENERATED ALWAYS AS clause if the 1682 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ 1683 sqlite3ErrorMsg(pParse, "generated columns not supported"); 1684 sqlite3ExprDelete(pParse->db, pExpr); 1685 #endif 1686 } 1687 1688 /* 1689 ** Generate code that will increment the schema cookie. 1690 ** 1691 ** The schema cookie is used to determine when the schema for the 1692 ** database changes. After each schema change, the cookie value 1693 ** changes. When a process first reads the schema it records the 1694 ** cookie. Thereafter, whenever it goes to access the database, 1695 ** it checks the cookie to make sure the schema has not changed 1696 ** since it was last read. 1697 ** 1698 ** This plan is not completely bullet-proof. It is possible for 1699 ** the schema to change multiple times and for the cookie to be 1700 ** set back to prior value. But schema changes are infrequent 1701 ** and the probability of hitting the same cookie value is only 1702 ** 1 chance in 2^32. So we're safe enough. 1703 ** 1704 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments 1705 ** the schema-version whenever the schema changes. 1706 */ 1707 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1708 sqlite3 *db = pParse->db; 1709 Vdbe *v = pParse->pVdbe; 1710 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1711 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, 1712 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); 1713 } 1714 1715 /* 1716 ** Measure the number of characters needed to output the given 1717 ** identifier. The number returned includes any quotes used 1718 ** but does not include the null terminator. 1719 ** 1720 ** The estimate is conservative. It might be larger that what is 1721 ** really needed. 1722 */ 1723 static int identLength(const char *z){ 1724 int n; 1725 for(n=0; *z; n++, z++){ 1726 if( *z=='"' ){ n++; } 1727 } 1728 return n + 2; 1729 } 1730 1731 /* 1732 ** The first parameter is a pointer to an output buffer. The second 1733 ** parameter is a pointer to an integer that contains the offset at 1734 ** which to write into the output buffer. This function copies the 1735 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1736 ** to the specified offset in the buffer and updates *pIdx to refer 1737 ** to the first byte after the last byte written before returning. 1738 ** 1739 ** If the string zSignedIdent consists entirely of alpha-numeric 1740 ** characters, does not begin with a digit and is not an SQL keyword, 1741 ** then it is copied to the output buffer exactly as it is. Otherwise, 1742 ** it is quoted using double-quotes. 1743 */ 1744 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1745 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1746 int i, j, needQuote; 1747 i = *pIdx; 1748 1749 for(j=0; zIdent[j]; j++){ 1750 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1751 } 1752 needQuote = sqlite3Isdigit(zIdent[0]) 1753 || sqlite3KeywordCode(zIdent, j)!=TK_ID 1754 || zIdent[j]!=0 1755 || j==0; 1756 1757 if( needQuote ) z[i++] = '"'; 1758 for(j=0; zIdent[j]; j++){ 1759 z[i++] = zIdent[j]; 1760 if( zIdent[j]=='"' ) z[i++] = '"'; 1761 } 1762 if( needQuote ) z[i++] = '"'; 1763 z[i] = 0; 1764 *pIdx = i; 1765 } 1766 1767 /* 1768 ** Generate a CREATE TABLE statement appropriate for the given 1769 ** table. Memory to hold the text of the statement is obtained 1770 ** from sqliteMalloc() and must be freed by the calling function. 1771 */ 1772 static char *createTableStmt(sqlite3 *db, Table *p){ 1773 int i, k, n; 1774 char *zStmt; 1775 char *zSep, *zSep2, *zEnd; 1776 Column *pCol; 1777 n = 0; 1778 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1779 n += identLength(pCol->zName) + 5; 1780 } 1781 n += identLength(p->zName); 1782 if( n<50 ){ 1783 zSep = ""; 1784 zSep2 = ","; 1785 zEnd = ")"; 1786 }else{ 1787 zSep = "\n "; 1788 zSep2 = ",\n "; 1789 zEnd = "\n)"; 1790 } 1791 n += 35 + 6*p->nCol; 1792 zStmt = sqlite3DbMallocRaw(0, n); 1793 if( zStmt==0 ){ 1794 sqlite3OomFault(db); 1795 return 0; 1796 } 1797 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1798 k = sqlite3Strlen30(zStmt); 1799 identPut(zStmt, &k, p->zName); 1800 zStmt[k++] = '('; 1801 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1802 static const char * const azType[] = { 1803 /* SQLITE_AFF_BLOB */ "", 1804 /* SQLITE_AFF_TEXT */ " TEXT", 1805 /* SQLITE_AFF_NUMERIC */ " NUM", 1806 /* SQLITE_AFF_INTEGER */ " INT", 1807 /* SQLITE_AFF_REAL */ " REAL" 1808 }; 1809 int len; 1810 const char *zType; 1811 1812 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1813 k += sqlite3Strlen30(&zStmt[k]); 1814 zSep = zSep2; 1815 identPut(zStmt, &k, pCol->zName); 1816 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); 1817 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); 1818 testcase( pCol->affinity==SQLITE_AFF_BLOB ); 1819 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1820 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1821 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1822 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1823 1824 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; 1825 len = sqlite3Strlen30(zType); 1826 assert( pCol->affinity==SQLITE_AFF_BLOB 1827 || pCol->affinity==sqlite3AffinityType(zType, 0) ); 1828 memcpy(&zStmt[k], zType, len); 1829 k += len; 1830 assert( k<=n ); 1831 } 1832 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1833 return zStmt; 1834 } 1835 1836 /* 1837 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1838 ** on success and SQLITE_NOMEM on an OOM error. 1839 */ 1840 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1841 char *zExtra; 1842 int nByte; 1843 if( pIdx->nColumn>=N ) return SQLITE_OK; 1844 assert( pIdx->isResized==0 ); 1845 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1846 zExtra = sqlite3DbMallocZero(db, nByte); 1847 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; 1848 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1849 pIdx->azColl = (const char**)zExtra; 1850 zExtra += sizeof(char*)*N; 1851 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1852 pIdx->aiColumn = (i16*)zExtra; 1853 zExtra += sizeof(i16)*N; 1854 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1855 pIdx->aSortOrder = (u8*)zExtra; 1856 pIdx->nColumn = N; 1857 pIdx->isResized = 1; 1858 return SQLITE_OK; 1859 } 1860 1861 /* 1862 ** Estimate the total row width for a table. 1863 */ 1864 static void estimateTableWidth(Table *pTab){ 1865 unsigned wTable = 0; 1866 const Column *pTabCol; 1867 int i; 1868 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ 1869 wTable += pTabCol->szEst; 1870 } 1871 if( pTab->iPKey<0 ) wTable++; 1872 pTab->szTabRow = sqlite3LogEst(wTable*4); 1873 } 1874 1875 /* 1876 ** Estimate the average size of a row for an index. 1877 */ 1878 static void estimateIndexWidth(Index *pIdx){ 1879 unsigned wIndex = 0; 1880 int i; 1881 const Column *aCol = pIdx->pTable->aCol; 1882 for(i=0; i<pIdx->nColumn; i++){ 1883 i16 x = pIdx->aiColumn[i]; 1884 assert( x<pIdx->pTable->nCol ); 1885 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; 1886 } 1887 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); 1888 } 1889 1890 /* Return true if column number x is any of the first nCol entries of aiCol[]. 1891 ** This is used to determine if the column number x appears in any of the 1892 ** first nCol entries of an index. 1893 */ 1894 static int hasColumn(const i16 *aiCol, int nCol, int x){ 1895 while( nCol-- > 0 ){ 1896 assert( aiCol[0]>=0 ); 1897 if( x==*(aiCol++) ){ 1898 return 1; 1899 } 1900 } 1901 return 0; 1902 } 1903 1904 /* 1905 ** Return true if any of the first nKey entries of index pIdx exactly 1906 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID 1907 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may 1908 ** or may not be the same index as pPk. 1909 ** 1910 ** The first nKey entries of pIdx are guaranteed to be ordinary columns, 1911 ** not a rowid or expression. 1912 ** 1913 ** This routine differs from hasColumn() in that both the column and the 1914 ** collating sequence must match for this routine, but for hasColumn() only 1915 ** the column name must match. 1916 */ 1917 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ 1918 int i, j; 1919 assert( nKey<=pIdx->nColumn ); 1920 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) ); 1921 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); 1922 assert( pPk->pTable->tabFlags & TF_WithoutRowid ); 1923 assert( pPk->pTable==pIdx->pTable ); 1924 testcase( pPk==pIdx ); 1925 j = pPk->aiColumn[iCol]; 1926 assert( j!=XN_ROWID && j!=XN_EXPR ); 1927 for(i=0; i<nKey; i++){ 1928 assert( pIdx->aiColumn[i]>=0 || j>=0 ); 1929 if( pIdx->aiColumn[i]==j 1930 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 1931 ){ 1932 return 1; 1933 } 1934 } 1935 return 0; 1936 } 1937 1938 /* Recompute the colNotIdxed field of the Index. 1939 ** 1940 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed 1941 ** columns that are within the first 63 columns of the table. The 1942 ** high-order bit of colNotIdxed is always 1. All unindexed columns 1943 ** of the table have a 1. 1944 ** 1945 ** 2019-10-24: For the purpose of this computation, virtual columns are 1946 ** not considered to be covered by the index, even if they are in the 1947 ** index, because we do not trust the logic in whereIndexExprTrans() to be 1948 ** able to find all instances of a reference to the indexed table column 1949 ** and convert them into references to the index. Hence we always want 1950 ** the actual table at hand in order to recompute the virtual column, if 1951 ** necessary. 1952 ** 1953 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask 1954 ** to determine if the index is covering index. 1955 */ 1956 static void recomputeColumnsNotIndexed(Index *pIdx){ 1957 Bitmask m = 0; 1958 int j; 1959 Table *pTab = pIdx->pTable; 1960 for(j=pIdx->nColumn-1; j>=0; j--){ 1961 int x = pIdx->aiColumn[j]; 1962 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ 1963 testcase( x==BMS-1 ); 1964 testcase( x==BMS-2 ); 1965 if( x<BMS-1 ) m |= MASKBIT(x); 1966 } 1967 } 1968 pIdx->colNotIdxed = ~m; 1969 assert( (pIdx->colNotIdxed>>63)==1 ); 1970 } 1971 1972 /* 1973 ** This routine runs at the end of parsing a CREATE TABLE statement that 1974 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1975 ** internal schema data structures and the generated VDBE code so that they 1976 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1977 ** Changes include: 1978 ** 1979 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. 1980 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY 1981 ** into BTREE_BLOBKEY. 1982 ** (3) Bypass the creation of the sqlite_master table entry 1983 ** for the PRIMARY KEY as the primary key index is now 1984 ** identified by the sqlite_master table entry of the table itself. 1985 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the 1986 ** schema to the rootpage from the main table. 1987 ** (5) Add all table columns to the PRIMARY KEY Index object 1988 ** so that the PRIMARY KEY is a covering index. The surplus 1989 ** columns are part of KeyInfo.nAllField and are not used for 1990 ** sorting or lookup or uniqueness checks. 1991 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1992 ** indices with the PRIMARY KEY columns. 1993 ** 1994 ** For virtual tables, only (1) is performed. 1995 */ 1996 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1997 Index *pIdx; 1998 Index *pPk; 1999 int nPk; 2000 int nExtra; 2001 int i, j; 2002 sqlite3 *db = pParse->db; 2003 Vdbe *v = pParse->pVdbe; 2004 2005 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) 2006 */ 2007 if( !db->init.imposterTable ){ 2008 for(i=0; i<pTab->nCol; i++){ 2009 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ 2010 pTab->aCol[i].notNull = OE_Abort; 2011 } 2012 } 2013 pTab->tabFlags |= TF_HasNotNull; 2014 } 2015 2016 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY 2017 ** into BTREE_BLOBKEY. 2018 */ 2019 if( pParse->addrCrTab ){ 2020 assert( v ); 2021 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); 2022 } 2023 2024 /* Locate the PRIMARY KEY index. Or, if this table was originally 2025 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 2026 */ 2027 if( pTab->iPKey>=0 ){ 2028 ExprList *pList; 2029 Token ipkToken; 2030 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); 2031 pList = sqlite3ExprListAppend(pParse, 0, 2032 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 2033 if( pList==0 ) return; 2034 if( IN_RENAME_OBJECT ){ 2035 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); 2036 } 2037 pList->a[0].sortFlags = pParse->iPkSortOrder; 2038 assert( pParse->pNewTable==pTab ); 2039 pTab->iPKey = -1; 2040 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, 2041 SQLITE_IDXTYPE_PRIMARYKEY); 2042 if( db->mallocFailed || pParse->nErr ) return; 2043 pPk = sqlite3PrimaryKeyIndex(pTab); 2044 assert( pPk->nKeyCol==1 ); 2045 }else{ 2046 pPk = sqlite3PrimaryKeyIndex(pTab); 2047 assert( pPk!=0 ); 2048 2049 /* 2050 ** Remove all redundant columns from the PRIMARY KEY. For example, change 2051 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 2052 ** code assumes the PRIMARY KEY contains no repeated columns. 2053 */ 2054 for(i=j=1; i<pPk->nKeyCol; i++){ 2055 if( isDupColumn(pPk, j, pPk, i) ){ 2056 pPk->nColumn--; 2057 }else{ 2058 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); 2059 pPk->azColl[j] = pPk->azColl[i]; 2060 pPk->aSortOrder[j] = pPk->aSortOrder[i]; 2061 pPk->aiColumn[j++] = pPk->aiColumn[i]; 2062 } 2063 } 2064 pPk->nKeyCol = j; 2065 } 2066 assert( pPk!=0 ); 2067 pPk->isCovering = 1; 2068 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; 2069 nPk = pPk->nColumn = pPk->nKeyCol; 2070 2071 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 2072 ** table entry. This is only required if currently generating VDBE 2073 ** code for a CREATE TABLE (not when parsing one as part of reading 2074 ** a database schema). */ 2075 if( v && pPk->tnum>0 ){ 2076 assert( db->init.busy==0 ); 2077 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 2078 } 2079 2080 /* The root page of the PRIMARY KEY is the table root page */ 2081 pPk->tnum = pTab->tnum; 2082 2083 /* Update the in-memory representation of all UNIQUE indices by converting 2084 ** the final rowid column into one or more columns of the PRIMARY KEY. 2085 */ 2086 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2087 int n; 2088 if( IsPrimaryKeyIndex(pIdx) ) continue; 2089 for(i=n=0; i<nPk; i++){ 2090 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2091 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2092 n++; 2093 } 2094 } 2095 if( n==0 ){ 2096 /* This index is a superset of the primary key */ 2097 pIdx->nColumn = pIdx->nKeyCol; 2098 continue; 2099 } 2100 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; 2101 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ 2102 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){ 2103 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); 2104 pIdx->aiColumn[j] = pPk->aiColumn[i]; 2105 pIdx->azColl[j] = pPk->azColl[i]; 2106 if( pPk->aSortOrder[i] ){ 2107 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ 2108 pIdx->bAscKeyBug = 1; 2109 } 2110 j++; 2111 } 2112 } 2113 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); 2114 assert( pIdx->nColumn>=j ); 2115 } 2116 2117 /* Add all table columns to the PRIMARY KEY index 2118 */ 2119 nExtra = 0; 2120 for(i=0; i<pTab->nCol; i++){ 2121 if( !hasColumn(pPk->aiColumn, nPk, i) 2122 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; 2123 } 2124 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; 2125 for(i=0, j=nPk; i<pTab->nCol; i++){ 2126 if( !hasColumn(pPk->aiColumn, j, i) 2127 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 2128 ){ 2129 assert( j<pPk->nColumn ); 2130 pPk->aiColumn[j] = i; 2131 pPk->azColl[j] = sqlite3StrBINARY; 2132 j++; 2133 } 2134 } 2135 assert( pPk->nColumn==j ); 2136 assert( pTab->nNVCol<=j ); 2137 recomputeColumnsNotIndexed(pPk); 2138 } 2139 2140 #ifndef SQLITE_OMIT_VIRTUALTABLE 2141 /* 2142 ** Return true if zName is a shadow table name in the current database 2143 ** connection. 2144 ** 2145 ** zName is temporarily modified while this routine is running, but is 2146 ** restored to its original value prior to this routine returning. 2147 */ 2148 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ 2149 char *zTail; /* Pointer to the last "_" in zName */ 2150 Table *pTab; /* Table that zName is a shadow of */ 2151 Module *pMod; /* Module for the virtual table */ 2152 2153 zTail = strrchr(zName, '_'); 2154 if( zTail==0 ) return 0; 2155 *zTail = 0; 2156 pTab = sqlite3FindTable(db, zName, 0); 2157 *zTail = '_'; 2158 if( pTab==0 ) return 0; 2159 if( !IsVirtual(pTab) ) return 0; 2160 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); 2161 if( pMod==0 ) return 0; 2162 if( pMod->pModule->iVersion<3 ) return 0; 2163 if( pMod->pModule->xShadowName==0 ) return 0; 2164 return pMod->pModule->xShadowName(zTail+1); 2165 } 2166 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ 2167 2168 #ifdef SQLITE_DEBUG 2169 /* 2170 ** Mark all nodes of an expression as EP_Immutable, indicating that 2171 ** they should not be changed. Expressions attached to a table or 2172 ** index definition are tagged this way to help ensure that we do 2173 ** not pass them into code generator routines by mistake. 2174 */ 2175 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ 2176 ExprSetVVAProperty(pExpr, EP_Immutable); 2177 return WRC_Continue; 2178 } 2179 static void markExprListImmutable(ExprList *pList){ 2180 if( pList ){ 2181 Walker w; 2182 memset(&w, 0, sizeof(w)); 2183 w.xExprCallback = markImmutableExprStep; 2184 w.xSelectCallback = sqlite3SelectWalkNoop; 2185 w.xSelectCallback2 = 0; 2186 sqlite3WalkExprList(&w, pList); 2187 } 2188 } 2189 #else 2190 #define markExprListImmutable(X) /* no-op */ 2191 #endif /* SQLITE_DEBUG */ 2192 2193 2194 /* 2195 ** This routine is called to report the final ")" that terminates 2196 ** a CREATE TABLE statement. 2197 ** 2198 ** The table structure that other action routines have been building 2199 ** is added to the internal hash tables, assuming no errors have 2200 ** occurred. 2201 ** 2202 ** An entry for the table is made in the master table on disk, unless 2203 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 2204 ** it means we are reading the sqlite_master table because we just 2205 ** connected to the database or because the sqlite_master table has 2206 ** recently changed, so the entry for this table already exists in 2207 ** the sqlite_master table. We do not want to create it again. 2208 ** 2209 ** If the pSelect argument is not NULL, it means that this routine 2210 ** was called to create a table generated from a 2211 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 2212 ** the new table will match the result set of the SELECT. 2213 */ 2214 void sqlite3EndTable( 2215 Parse *pParse, /* Parse context */ 2216 Token *pCons, /* The ',' token after the last column defn. */ 2217 Token *pEnd, /* The ')' before options in the CREATE TABLE */ 2218 u8 tabOpts, /* Extra table options. Usually 0. */ 2219 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 2220 ){ 2221 Table *p; /* The new table */ 2222 sqlite3 *db = pParse->db; /* The database connection */ 2223 int iDb; /* Database in which the table lives */ 2224 Index *pIdx; /* An implied index of the table */ 2225 2226 if( pEnd==0 && pSelect==0 ){ 2227 return; 2228 } 2229 assert( !db->mallocFailed ); 2230 p = pParse->pNewTable; 2231 if( p==0 ) return; 2232 2233 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ 2234 p->tabFlags |= TF_Shadow; 2235 } 2236 2237 /* If the db->init.busy is 1 it means we are reading the SQL off the 2238 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 2239 ** So do not write to the disk again. Extract the root page number 2240 ** for the table from the db->init.newTnum field. (The page number 2241 ** should have been put there by the sqliteOpenCb routine.) 2242 ** 2243 ** If the root page number is 1, that means this is the sqlite_master 2244 ** table itself. So mark it read-only. 2245 */ 2246 if( db->init.busy ){ 2247 if( pSelect ){ 2248 sqlite3ErrorMsg(pParse, ""); 2249 return; 2250 } 2251 p->tnum = db->init.newTnum; 2252 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; 2253 } 2254 2255 assert( (p->tabFlags & TF_HasPrimaryKey)==0 2256 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); 2257 assert( (p->tabFlags & TF_HasPrimaryKey)!=0 2258 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); 2259 2260 /* Special processing for WITHOUT ROWID Tables */ 2261 if( tabOpts & TF_WithoutRowid ){ 2262 if( (p->tabFlags & TF_Autoincrement) ){ 2263 sqlite3ErrorMsg(pParse, 2264 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 2265 return; 2266 } 2267 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 2268 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); 2269 return; 2270 } 2271 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; 2272 convertToWithoutRowidTable(pParse, p); 2273 } 2274 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2275 2276 #ifndef SQLITE_OMIT_CHECK 2277 /* Resolve names in all CHECK constraint expressions. 2278 */ 2279 if( p->pCheck ){ 2280 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); 2281 if( pParse->nErr ){ 2282 /* If errors are seen, delete the CHECK constraints now, else they might 2283 ** actually be used if PRAGMA writable_schema=ON is set. */ 2284 sqlite3ExprListDelete(db, p->pCheck); 2285 p->pCheck = 0; 2286 }else{ 2287 markExprListImmutable(p->pCheck); 2288 } 2289 } 2290 #endif /* !defined(SQLITE_OMIT_CHECK) */ 2291 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2292 if( p->tabFlags & TF_HasGenerated ){ 2293 int ii, nNG = 0; 2294 testcase( p->tabFlags & TF_HasVirtual ); 2295 testcase( p->tabFlags & TF_HasStored ); 2296 for(ii=0; ii<p->nCol; ii++){ 2297 u32 colFlags = p->aCol[ii].colFlags; 2298 if( (colFlags & COLFLAG_GENERATED)!=0 ){ 2299 Expr *pX = p->aCol[ii].pDflt; 2300 testcase( colFlags & COLFLAG_VIRTUAL ); 2301 testcase( colFlags & COLFLAG_STORED ); 2302 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ 2303 /* If there are errors in resolving the expression, change the 2304 ** expression to a NULL. This prevents code generators that operate 2305 ** on the expression from inserting extra parts into the expression 2306 ** tree that have been allocated from lookaside memory, which is 2307 ** illegal in a schema and will lead to errors or heap corruption 2308 ** when the database connection closes. */ 2309 sqlite3ExprDelete(db, pX); 2310 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 2311 } 2312 }else{ 2313 nNG++; 2314 } 2315 } 2316 if( nNG==0 ){ 2317 sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); 2318 return; 2319 } 2320 } 2321 #endif 2322 2323 /* Estimate the average row size for the table and for all implied indices */ 2324 estimateTableWidth(p); 2325 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 2326 estimateIndexWidth(pIdx); 2327 } 2328 2329 /* If not initializing, then create a record for the new table 2330 ** in the SQLITE_MASTER table of the database. 2331 ** 2332 ** If this is a TEMPORARY table, write the entry into the auxiliary 2333 ** file instead of into the main database file. 2334 */ 2335 if( !db->init.busy ){ 2336 int n; 2337 Vdbe *v; 2338 char *zType; /* "view" or "table" */ 2339 char *zType2; /* "VIEW" or "TABLE" */ 2340 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 2341 2342 v = sqlite3GetVdbe(pParse); 2343 if( NEVER(v==0) ) return; 2344 2345 sqlite3VdbeAddOp1(v, OP_Close, 0); 2346 2347 /* 2348 ** Initialize zType for the new view or table. 2349 */ 2350 if( p->pSelect==0 ){ 2351 /* A regular table */ 2352 zType = "table"; 2353 zType2 = "TABLE"; 2354 #ifndef SQLITE_OMIT_VIEW 2355 }else{ 2356 /* A view */ 2357 zType = "view"; 2358 zType2 = "VIEW"; 2359 #endif 2360 } 2361 2362 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 2363 ** statement to populate the new table. The root-page number for the 2364 ** new table is in register pParse->regRoot. 2365 ** 2366 ** Once the SELECT has been coded by sqlite3Select(), it is in a 2367 ** suitable state to query for the column names and types to be used 2368 ** by the new table. 2369 ** 2370 ** A shared-cache write-lock is not required to write to the new table, 2371 ** as a schema-lock must have already been obtained to create it. Since 2372 ** a schema-lock excludes all other database users, the write-lock would 2373 ** be redundant. 2374 */ 2375 if( pSelect ){ 2376 SelectDest dest; /* Where the SELECT should store results */ 2377 int regYield; /* Register holding co-routine entry-point */ 2378 int addrTop; /* Top of the co-routine */ 2379 int regRec; /* A record to be insert into the new table */ 2380 int regRowid; /* Rowid of the next row to insert */ 2381 int addrInsLoop; /* Top of the loop for inserting rows */ 2382 Table *pSelTab; /* A table that describes the SELECT results */ 2383 2384 regYield = ++pParse->nMem; 2385 regRec = ++pParse->nMem; 2386 regRowid = ++pParse->nMem; 2387 assert(pParse->nTab==1); 2388 sqlite3MayAbort(pParse); 2389 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 2390 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 2391 pParse->nTab = 2; 2392 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 2393 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 2394 if( pParse->nErr ) return; 2395 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); 2396 if( pSelTab==0 ) return; 2397 assert( p->aCol==0 ); 2398 p->nCol = p->nNVCol = pSelTab->nCol; 2399 p->aCol = pSelTab->aCol; 2400 pSelTab->nCol = 0; 2401 pSelTab->aCol = 0; 2402 sqlite3DeleteTable(db, pSelTab); 2403 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 2404 sqlite3Select(pParse, pSelect, &dest); 2405 if( pParse->nErr ) return; 2406 sqlite3VdbeEndCoroutine(v, regYield); 2407 sqlite3VdbeJumpHere(v, addrTop - 1); 2408 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 2409 VdbeCoverage(v); 2410 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); 2411 sqlite3TableAffinity(v, p, 0); 2412 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); 2413 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); 2414 sqlite3VdbeGoto(v, addrInsLoop); 2415 sqlite3VdbeJumpHere(v, addrInsLoop); 2416 sqlite3VdbeAddOp1(v, OP_Close, 1); 2417 } 2418 2419 /* Compute the complete text of the CREATE statement */ 2420 if( pSelect ){ 2421 zStmt = createTableStmt(db, p); 2422 }else{ 2423 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; 2424 n = (int)(pEnd2->z - pParse->sNameToken.z); 2425 if( pEnd2->z[0]!=';' ) n += pEnd2->n; 2426 zStmt = sqlite3MPrintf(db, 2427 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 2428 ); 2429 } 2430 2431 /* A slot for the record has already been allocated in the 2432 ** SQLITE_MASTER table. We just need to update that slot with all 2433 ** the information we've collected. 2434 */ 2435 sqlite3NestedParse(pParse, 2436 "UPDATE %Q.%s " 2437 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2438 "WHERE rowid=#%d", 2439 db->aDb[iDb].zDbSName, MASTER_NAME, 2440 zType, 2441 p->zName, 2442 p->zName, 2443 pParse->regRoot, 2444 zStmt, 2445 pParse->regRowid 2446 ); 2447 sqlite3DbFree(db, zStmt); 2448 sqlite3ChangeCookie(pParse, iDb); 2449 2450 #ifndef SQLITE_OMIT_AUTOINCREMENT 2451 /* Check to see if we need to create an sqlite_sequence table for 2452 ** keeping track of autoincrement keys. 2453 */ 2454 if( (p->tabFlags & TF_Autoincrement)!=0 ){ 2455 Db *pDb = &db->aDb[iDb]; 2456 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2457 if( pDb->pSchema->pSeqTab==0 ){ 2458 sqlite3NestedParse(pParse, 2459 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2460 pDb->zDbSName 2461 ); 2462 } 2463 } 2464 #endif 2465 2466 /* Reparse everything to update our internal data structures */ 2467 sqlite3VdbeAddParseSchemaOp(v, iDb, 2468 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2469 } 2470 2471 /* Add the table to the in-memory representation of the database. 2472 */ 2473 if( db->init.busy ){ 2474 Table *pOld; 2475 Schema *pSchema = p->pSchema; 2476 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2477 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2478 if( pOld ){ 2479 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2480 sqlite3OomFault(db); 2481 return; 2482 } 2483 pParse->pNewTable = 0; 2484 db->mDbFlags |= DBFLAG_SchemaChange; 2485 2486 #ifndef SQLITE_OMIT_ALTERTABLE 2487 if( !p->pSelect ){ 2488 const char *zName = (const char *)pParse->sNameToken.z; 2489 int nName; 2490 assert( !pSelect && pCons && pEnd ); 2491 if( pCons->z==0 ){ 2492 pCons = pEnd; 2493 } 2494 nName = (int)((const char *)pCons->z - zName); 2495 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 2496 } 2497 #endif 2498 } 2499 } 2500 2501 #ifndef SQLITE_OMIT_VIEW 2502 /* 2503 ** The parser calls this routine in order to create a new VIEW 2504 */ 2505 void sqlite3CreateView( 2506 Parse *pParse, /* The parsing context */ 2507 Token *pBegin, /* The CREATE token that begins the statement */ 2508 Token *pName1, /* The token that holds the name of the view */ 2509 Token *pName2, /* The token that holds the name of the view */ 2510 ExprList *pCNames, /* Optional list of view column names */ 2511 Select *pSelect, /* A SELECT statement that will become the new view */ 2512 int isTemp, /* TRUE for a TEMPORARY view */ 2513 int noErr /* Suppress error messages if VIEW already exists */ 2514 ){ 2515 Table *p; 2516 int n; 2517 const char *z; 2518 Token sEnd; 2519 DbFixer sFix; 2520 Token *pName = 0; 2521 int iDb; 2522 sqlite3 *db = pParse->db; 2523 2524 if( pParse->nVar>0 ){ 2525 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 2526 goto create_view_fail; 2527 } 2528 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 2529 p = pParse->pNewTable; 2530 if( p==0 || pParse->nErr ) goto create_view_fail; 2531 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2532 iDb = sqlite3SchemaToIndex(db, p->pSchema); 2533 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); 2534 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; 2535 2536 /* Make a copy of the entire SELECT statement that defines the view. 2537 ** This will force all the Expr.token.z values to be dynamically 2538 ** allocated rather than point to the input string - which means that 2539 ** they will persist after the current sqlite3_exec() call returns. 2540 */ 2541 pSelect->selFlags |= SF_View; 2542 if( IN_RENAME_OBJECT ){ 2543 p->pSelect = pSelect; 2544 pSelect = 0; 2545 }else{ 2546 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 2547 } 2548 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); 2549 if( db->mallocFailed ) goto create_view_fail; 2550 2551 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 2552 ** the end. 2553 */ 2554 sEnd = pParse->sLastToken; 2555 assert( sEnd.z[0]!=0 || sEnd.n==0 ); 2556 if( sEnd.z[0]!=';' ){ 2557 sEnd.z += sEnd.n; 2558 } 2559 sEnd.n = 0; 2560 n = (int)(sEnd.z - pBegin->z); 2561 assert( n>0 ); 2562 z = pBegin->z; 2563 while( sqlite3Isspace(z[n-1]) ){ n--; } 2564 sEnd.z = &z[n-1]; 2565 sEnd.n = 1; 2566 2567 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 2568 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); 2569 2570 create_view_fail: 2571 sqlite3SelectDelete(db, pSelect); 2572 if( IN_RENAME_OBJECT ){ 2573 sqlite3RenameExprlistUnmap(pParse, pCNames); 2574 } 2575 sqlite3ExprListDelete(db, pCNames); 2576 return; 2577 } 2578 #endif /* SQLITE_OMIT_VIEW */ 2579 2580 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2581 /* 2582 ** The Table structure pTable is really a VIEW. Fill in the names of 2583 ** the columns of the view in the pTable structure. Return the number 2584 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2585 */ 2586 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2587 Table *pSelTab; /* A fake table from which we get the result set */ 2588 Select *pSel; /* Copy of the SELECT that implements the view */ 2589 int nErr = 0; /* Number of errors encountered */ 2590 int n; /* Temporarily holds the number of cursors assigned */ 2591 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2592 #ifndef SQLITE_OMIT_VIRTUALTABLE 2593 int rc; 2594 #endif 2595 #ifndef SQLITE_OMIT_AUTHORIZATION 2596 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2597 #endif 2598 2599 assert( pTable ); 2600 2601 #ifndef SQLITE_OMIT_VIRTUALTABLE 2602 db->nSchemaLock++; 2603 rc = sqlite3VtabCallConnect(pParse, pTable); 2604 db->nSchemaLock--; 2605 if( rc ){ 2606 return 1; 2607 } 2608 if( IsVirtual(pTable) ) return 0; 2609 #endif 2610 2611 #ifndef SQLITE_OMIT_VIEW 2612 /* A positive nCol means the columns names for this view are 2613 ** already known. 2614 */ 2615 if( pTable->nCol>0 ) return 0; 2616 2617 /* A negative nCol is a special marker meaning that we are currently 2618 ** trying to compute the column names. If we enter this routine with 2619 ** a negative nCol, it means two or more views form a loop, like this: 2620 ** 2621 ** CREATE VIEW one AS SELECT * FROM two; 2622 ** CREATE VIEW two AS SELECT * FROM one; 2623 ** 2624 ** Actually, the error above is now caught prior to reaching this point. 2625 ** But the following test is still important as it does come up 2626 ** in the following: 2627 ** 2628 ** CREATE TABLE main.ex1(a); 2629 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 2630 ** SELECT * FROM temp.ex1; 2631 */ 2632 if( pTable->nCol<0 ){ 2633 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 2634 return 1; 2635 } 2636 assert( pTable->nCol>=0 ); 2637 2638 /* If we get this far, it means we need to compute the table names. 2639 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2640 ** "*" elements in the results set of the view and will assign cursors 2641 ** to the elements of the FROM clause. But we do not want these changes 2642 ** to be permanent. So the computation is done on a copy of the SELECT 2643 ** statement that defines the view. 2644 */ 2645 assert( pTable->pSelect ); 2646 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 2647 if( pSel ){ 2648 #ifndef SQLITE_OMIT_ALTERTABLE 2649 u8 eParseMode = pParse->eParseMode; 2650 pParse->eParseMode = PARSE_MODE_NORMAL; 2651 #endif 2652 n = pParse->nTab; 2653 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 2654 pTable->nCol = -1; 2655 DisableLookaside; 2656 #ifndef SQLITE_OMIT_AUTHORIZATION 2657 xAuth = db->xAuth; 2658 db->xAuth = 0; 2659 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2660 db->xAuth = xAuth; 2661 #else 2662 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); 2663 #endif 2664 pParse->nTab = n; 2665 if( pSelTab==0 ){ 2666 pTable->nCol = 0; 2667 nErr++; 2668 }else if( pTable->pCheck ){ 2669 /* CREATE VIEW name(arglist) AS ... 2670 ** The names of the columns in the table are taken from 2671 ** arglist which is stored in pTable->pCheck. The pCheck field 2672 ** normally holds CHECK constraints on an ordinary table, but for 2673 ** a VIEW it holds the list of column names. 2674 */ 2675 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2676 &pTable->nCol, &pTable->aCol); 2677 if( db->mallocFailed==0 2678 && pParse->nErr==0 2679 && pTable->nCol==pSel->pEList->nExpr 2680 ){ 2681 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, 2682 SQLITE_AFF_NONE); 2683 } 2684 }else{ 2685 /* CREATE VIEW name AS... without an argument list. Construct 2686 ** the column names from the SELECT statement that defines the view. 2687 */ 2688 assert( pTable->aCol==0 ); 2689 pTable->nCol = pSelTab->nCol; 2690 pTable->aCol = pSelTab->aCol; 2691 pSelTab->nCol = 0; 2692 pSelTab->aCol = 0; 2693 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2694 } 2695 pTable->nNVCol = pTable->nCol; 2696 sqlite3DeleteTable(db, pSelTab); 2697 sqlite3SelectDelete(db, pSel); 2698 EnableLookaside; 2699 #ifndef SQLITE_OMIT_ALTERTABLE 2700 pParse->eParseMode = eParseMode; 2701 #endif 2702 } else { 2703 nErr++; 2704 } 2705 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2706 if( db->mallocFailed ){ 2707 sqlite3DeleteColumnNames(db, pTable); 2708 pTable->aCol = 0; 2709 pTable->nCol = 0; 2710 } 2711 #endif /* SQLITE_OMIT_VIEW */ 2712 return nErr; 2713 } 2714 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2715 2716 #ifndef SQLITE_OMIT_VIEW 2717 /* 2718 ** Clear the column names from every VIEW in database idx. 2719 */ 2720 static void sqliteViewResetAll(sqlite3 *db, int idx){ 2721 HashElem *i; 2722 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 2723 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 2724 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 2725 Table *pTab = sqliteHashData(i); 2726 if( pTab->pSelect ){ 2727 sqlite3DeleteColumnNames(db, pTab); 2728 pTab->aCol = 0; 2729 pTab->nCol = 0; 2730 } 2731 } 2732 DbClearProperty(db, idx, DB_UnresetViews); 2733 } 2734 #else 2735 # define sqliteViewResetAll(A,B) 2736 #endif /* SQLITE_OMIT_VIEW */ 2737 2738 /* 2739 ** This function is called by the VDBE to adjust the internal schema 2740 ** used by SQLite when the btree layer moves a table root page. The 2741 ** root-page of a table or index in database iDb has changed from iFrom 2742 ** to iTo. 2743 ** 2744 ** Ticket #1728: The symbol table might still contain information 2745 ** on tables and/or indices that are the process of being deleted. 2746 ** If you are unlucky, one of those deleted indices or tables might 2747 ** have the same rootpage number as the real table or index that is 2748 ** being moved. So we cannot stop searching after the first match 2749 ** because the first match might be for one of the deleted indices 2750 ** or tables and not the table/index that is actually being moved. 2751 ** We must continue looping until all tables and indices with 2752 ** rootpage==iFrom have been converted to have a rootpage of iTo 2753 ** in order to be certain that we got the right one. 2754 */ 2755 #ifndef SQLITE_OMIT_AUTOVACUUM 2756 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 2757 HashElem *pElem; 2758 Hash *pHash; 2759 Db *pDb; 2760 2761 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2762 pDb = &db->aDb[iDb]; 2763 pHash = &pDb->pSchema->tblHash; 2764 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2765 Table *pTab = sqliteHashData(pElem); 2766 if( pTab->tnum==iFrom ){ 2767 pTab->tnum = iTo; 2768 } 2769 } 2770 pHash = &pDb->pSchema->idxHash; 2771 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 2772 Index *pIdx = sqliteHashData(pElem); 2773 if( pIdx->tnum==iFrom ){ 2774 pIdx->tnum = iTo; 2775 } 2776 } 2777 } 2778 #endif 2779 2780 /* 2781 ** Write code to erase the table with root-page iTable from database iDb. 2782 ** Also write code to modify the sqlite_master table and internal schema 2783 ** if a root-page of another table is moved by the btree-layer whilst 2784 ** erasing iTable (this can happen with an auto-vacuum database). 2785 */ 2786 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2787 Vdbe *v = sqlite3GetVdbe(pParse); 2788 int r1 = sqlite3GetTempReg(pParse); 2789 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); 2790 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2791 sqlite3MayAbort(pParse); 2792 #ifndef SQLITE_OMIT_AUTOVACUUM 2793 /* OP_Destroy stores an in integer r1. If this integer 2794 ** is non-zero, then it is the root page number of a table moved to 2795 ** location iTable. The following code modifies the sqlite_master table to 2796 ** reflect this. 2797 ** 2798 ** The "#NNN" in the SQL is a special constant that means whatever value 2799 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2800 ** token for additional information. 2801 */ 2802 sqlite3NestedParse(pParse, 2803 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2804 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); 2805 #endif 2806 sqlite3ReleaseTempReg(pParse, r1); 2807 } 2808 2809 /* 2810 ** Write VDBE code to erase table pTab and all associated indices on disk. 2811 ** Code to update the sqlite_master tables and internal schema definitions 2812 ** in case a root-page belonging to another table is moved by the btree layer 2813 ** is also added (this can happen with an auto-vacuum database). 2814 */ 2815 static void destroyTable(Parse *pParse, Table *pTab){ 2816 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 2817 ** is not defined), then it is important to call OP_Destroy on the 2818 ** table and index root-pages in order, starting with the numerically 2819 ** largest root-page number. This guarantees that none of the root-pages 2820 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 2821 ** following were coded: 2822 ** 2823 ** OP_Destroy 4 0 2824 ** ... 2825 ** OP_Destroy 5 0 2826 ** 2827 ** and root page 5 happened to be the largest root-page number in the 2828 ** database, then root page 5 would be moved to page 4 by the 2829 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 2830 ** a free-list page. 2831 */ 2832 int iTab = pTab->tnum; 2833 int iDestroyed = 0; 2834 2835 while( 1 ){ 2836 Index *pIdx; 2837 int iLargest = 0; 2838 2839 if( iDestroyed==0 || iTab<iDestroyed ){ 2840 iLargest = iTab; 2841 } 2842 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2843 int iIdx = pIdx->tnum; 2844 assert( pIdx->pSchema==pTab->pSchema ); 2845 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 2846 iLargest = iIdx; 2847 } 2848 } 2849 if( iLargest==0 ){ 2850 return; 2851 }else{ 2852 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2853 assert( iDb>=0 && iDb<pParse->db->nDb ); 2854 destroyRootPage(pParse, iLargest, iDb); 2855 iDestroyed = iLargest; 2856 } 2857 } 2858 } 2859 2860 /* 2861 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2862 ** after a DROP INDEX or DROP TABLE command. 2863 */ 2864 static void sqlite3ClearStatTables( 2865 Parse *pParse, /* The parsing context */ 2866 int iDb, /* The database number */ 2867 const char *zType, /* "idx" or "tbl" */ 2868 const char *zName /* Name of index or table */ 2869 ){ 2870 int i; 2871 const char *zDbName = pParse->db->aDb[iDb].zDbSName; 2872 for(i=1; i<=4; i++){ 2873 char zTab[24]; 2874 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2875 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2876 sqlite3NestedParse(pParse, 2877 "DELETE FROM %Q.%s WHERE %s=%Q", 2878 zDbName, zTab, zType, zName 2879 ); 2880 } 2881 } 2882 } 2883 2884 /* 2885 ** Generate code to drop a table. 2886 */ 2887 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ 2888 Vdbe *v; 2889 sqlite3 *db = pParse->db; 2890 Trigger *pTrigger; 2891 Db *pDb = &db->aDb[iDb]; 2892 2893 v = sqlite3GetVdbe(pParse); 2894 assert( v!=0 ); 2895 sqlite3BeginWriteOperation(pParse, 1, iDb); 2896 2897 #ifndef SQLITE_OMIT_VIRTUALTABLE 2898 if( IsVirtual(pTab) ){ 2899 sqlite3VdbeAddOp0(v, OP_VBegin); 2900 } 2901 #endif 2902 2903 /* Drop all triggers associated with the table being dropped. Code 2904 ** is generated to remove entries from sqlite_master and/or 2905 ** sqlite_temp_master if required. 2906 */ 2907 pTrigger = sqlite3TriggerList(pParse, pTab); 2908 while( pTrigger ){ 2909 assert( pTrigger->pSchema==pTab->pSchema || 2910 pTrigger->pSchema==db->aDb[1].pSchema ); 2911 sqlite3DropTriggerPtr(pParse, pTrigger); 2912 pTrigger = pTrigger->pNext; 2913 } 2914 2915 #ifndef SQLITE_OMIT_AUTOINCREMENT 2916 /* Remove any entries of the sqlite_sequence table associated with 2917 ** the table being dropped. This is done before the table is dropped 2918 ** at the btree level, in case the sqlite_sequence table needs to 2919 ** move as a result of the drop (can happen in auto-vacuum mode). 2920 */ 2921 if( pTab->tabFlags & TF_Autoincrement ){ 2922 sqlite3NestedParse(pParse, 2923 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2924 pDb->zDbSName, pTab->zName 2925 ); 2926 } 2927 #endif 2928 2929 /* Drop all SQLITE_MASTER table and index entries that refer to the 2930 ** table. The program name loops through the master table and deletes 2931 ** every row that refers to a table of the same name as the one being 2932 ** dropped. Triggers are handled separately because a trigger can be 2933 ** created in the temp database that refers to a table in another 2934 ** database. 2935 */ 2936 sqlite3NestedParse(pParse, 2937 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2938 pDb->zDbSName, MASTER_NAME, pTab->zName); 2939 if( !isView && !IsVirtual(pTab) ){ 2940 destroyTable(pParse, pTab); 2941 } 2942 2943 /* Remove the table entry from SQLite's internal schema and modify 2944 ** the schema cookie. 2945 */ 2946 if( IsVirtual(pTab) ){ 2947 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2948 sqlite3MayAbort(pParse); 2949 } 2950 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2951 sqlite3ChangeCookie(pParse, iDb); 2952 sqliteViewResetAll(db, iDb); 2953 } 2954 2955 /* 2956 ** Return TRUE if shadow tables should be read-only in the current 2957 ** context. 2958 */ 2959 int sqlite3ReadOnlyShadowTables(sqlite3 *db){ 2960 #ifndef SQLITE_OMIT_VIRTUALTABLE 2961 if( (db->flags & SQLITE_Defensive)!=0 2962 && db->pVtabCtx==0 2963 && db->nVdbeExec==0 2964 ){ 2965 return 1; 2966 } 2967 #endif 2968 return 0; 2969 } 2970 2971 /* 2972 ** Return true if it is not allowed to drop the given table 2973 */ 2974 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ 2975 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 2976 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; 2977 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; 2978 return 1; 2979 } 2980 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ 2981 return 1; 2982 } 2983 return 0; 2984 } 2985 2986 /* 2987 ** This routine is called to do the work of a DROP TABLE statement. 2988 ** pName is the name of the table to be dropped. 2989 */ 2990 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 2991 Table *pTab; 2992 Vdbe *v; 2993 sqlite3 *db = pParse->db; 2994 int iDb; 2995 2996 if( db->mallocFailed ){ 2997 goto exit_drop_table; 2998 } 2999 assert( pParse->nErr==0 ); 3000 assert( pName->nSrc==1 ); 3001 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 3002 if( noErr ) db->suppressErr++; 3003 assert( isView==0 || isView==LOCATE_VIEW ); 3004 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 3005 if( noErr ) db->suppressErr--; 3006 3007 if( pTab==0 ){ 3008 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 3009 goto exit_drop_table; 3010 } 3011 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3012 assert( iDb>=0 && iDb<db->nDb ); 3013 3014 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 3015 ** it is initialized. 3016 */ 3017 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 3018 goto exit_drop_table; 3019 } 3020 #ifndef SQLITE_OMIT_AUTHORIZATION 3021 { 3022 int code; 3023 const char *zTab = SCHEMA_TABLE(iDb); 3024 const char *zDb = db->aDb[iDb].zDbSName; 3025 const char *zArg2 = 0; 3026 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 3027 goto exit_drop_table; 3028 } 3029 if( isView ){ 3030 if( !OMIT_TEMPDB && iDb==1 ){ 3031 code = SQLITE_DROP_TEMP_VIEW; 3032 }else{ 3033 code = SQLITE_DROP_VIEW; 3034 } 3035 #ifndef SQLITE_OMIT_VIRTUALTABLE 3036 }else if( IsVirtual(pTab) ){ 3037 code = SQLITE_DROP_VTABLE; 3038 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 3039 #endif 3040 }else{ 3041 if( !OMIT_TEMPDB && iDb==1 ){ 3042 code = SQLITE_DROP_TEMP_TABLE; 3043 }else{ 3044 code = SQLITE_DROP_TABLE; 3045 } 3046 } 3047 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 3048 goto exit_drop_table; 3049 } 3050 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 3051 goto exit_drop_table; 3052 } 3053 } 3054 #endif 3055 if( tableMayNotBeDropped(db, pTab) ){ 3056 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 3057 goto exit_drop_table; 3058 } 3059 3060 #ifndef SQLITE_OMIT_VIEW 3061 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 3062 ** on a table. 3063 */ 3064 if( isView && pTab->pSelect==0 ){ 3065 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 3066 goto exit_drop_table; 3067 } 3068 if( !isView && pTab->pSelect ){ 3069 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 3070 goto exit_drop_table; 3071 } 3072 #endif 3073 3074 /* Generate code to remove the table from the master table 3075 ** on disk. 3076 */ 3077 v = sqlite3GetVdbe(pParse); 3078 if( v ){ 3079 sqlite3BeginWriteOperation(pParse, 1, iDb); 3080 if( !isView ){ 3081 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); 3082 sqlite3FkDropTable(pParse, pName, pTab); 3083 } 3084 sqlite3CodeDropTable(pParse, pTab, iDb, isView); 3085 } 3086 3087 exit_drop_table: 3088 sqlite3SrcListDelete(db, pName); 3089 } 3090 3091 /* 3092 ** This routine is called to create a new foreign key on the table 3093 ** currently under construction. pFromCol determines which columns 3094 ** in the current table point to the foreign key. If pFromCol==0 then 3095 ** connect the key to the last column inserted. pTo is the name of 3096 ** the table referred to (a.k.a the "parent" table). pToCol is a list 3097 ** of tables in the parent pTo table. flags contains all 3098 ** information about the conflict resolution algorithms specified 3099 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 3100 ** 3101 ** An FKey structure is created and added to the table currently 3102 ** under construction in the pParse->pNewTable field. 3103 ** 3104 ** The foreign key is set for IMMEDIATE processing. A subsequent call 3105 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 3106 */ 3107 void sqlite3CreateForeignKey( 3108 Parse *pParse, /* Parsing context */ 3109 ExprList *pFromCol, /* Columns in this table that point to other table */ 3110 Token *pTo, /* Name of the other table */ 3111 ExprList *pToCol, /* Columns in the other table */ 3112 int flags /* Conflict resolution algorithms. */ 3113 ){ 3114 sqlite3 *db = pParse->db; 3115 #ifndef SQLITE_OMIT_FOREIGN_KEY 3116 FKey *pFKey = 0; 3117 FKey *pNextTo; 3118 Table *p = pParse->pNewTable; 3119 int nByte; 3120 int i; 3121 int nCol; 3122 char *z; 3123 3124 assert( pTo!=0 ); 3125 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 3126 if( pFromCol==0 ){ 3127 int iCol = p->nCol-1; 3128 if( NEVER(iCol<0) ) goto fk_end; 3129 if( pToCol && pToCol->nExpr!=1 ){ 3130 sqlite3ErrorMsg(pParse, "foreign key on %s" 3131 " should reference only one column of table %T", 3132 p->aCol[iCol].zName, pTo); 3133 goto fk_end; 3134 } 3135 nCol = 1; 3136 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 3137 sqlite3ErrorMsg(pParse, 3138 "number of columns in foreign key does not match the number of " 3139 "columns in the referenced table"); 3140 goto fk_end; 3141 }else{ 3142 nCol = pFromCol->nExpr; 3143 } 3144 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 3145 if( pToCol ){ 3146 for(i=0; i<pToCol->nExpr; i++){ 3147 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; 3148 } 3149 } 3150 pFKey = sqlite3DbMallocZero(db, nByte ); 3151 if( pFKey==0 ){ 3152 goto fk_end; 3153 } 3154 pFKey->pFrom = p; 3155 pFKey->pNextFrom = p->pFKey; 3156 z = (char*)&pFKey->aCol[nCol]; 3157 pFKey->zTo = z; 3158 if( IN_RENAME_OBJECT ){ 3159 sqlite3RenameTokenMap(pParse, (void*)z, pTo); 3160 } 3161 memcpy(z, pTo->z, pTo->n); 3162 z[pTo->n] = 0; 3163 sqlite3Dequote(z); 3164 z += pTo->n+1; 3165 pFKey->nCol = nCol; 3166 if( pFromCol==0 ){ 3167 pFKey->aCol[0].iFrom = p->nCol-1; 3168 }else{ 3169 for(i=0; i<nCol; i++){ 3170 int j; 3171 for(j=0; j<p->nCol; j++){ 3172 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){ 3173 pFKey->aCol[i].iFrom = j; 3174 break; 3175 } 3176 } 3177 if( j>=p->nCol ){ 3178 sqlite3ErrorMsg(pParse, 3179 "unknown column \"%s\" in foreign key definition", 3180 pFromCol->a[i].zEName); 3181 goto fk_end; 3182 } 3183 if( IN_RENAME_OBJECT ){ 3184 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); 3185 } 3186 } 3187 } 3188 if( pToCol ){ 3189 for(i=0; i<nCol; i++){ 3190 int n = sqlite3Strlen30(pToCol->a[i].zEName); 3191 pFKey->aCol[i].zCol = z; 3192 if( IN_RENAME_OBJECT ){ 3193 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); 3194 } 3195 memcpy(z, pToCol->a[i].zEName, n); 3196 z[n] = 0; 3197 z += n+1; 3198 } 3199 } 3200 pFKey->isDeferred = 0; 3201 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 3202 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 3203 3204 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 3205 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 3206 pFKey->zTo, (void *)pFKey 3207 ); 3208 if( pNextTo==pFKey ){ 3209 sqlite3OomFault(db); 3210 goto fk_end; 3211 } 3212 if( pNextTo ){ 3213 assert( pNextTo->pPrevTo==0 ); 3214 pFKey->pNextTo = pNextTo; 3215 pNextTo->pPrevTo = pFKey; 3216 } 3217 3218 /* Link the foreign key to the table as the last step. 3219 */ 3220 p->pFKey = pFKey; 3221 pFKey = 0; 3222 3223 fk_end: 3224 sqlite3DbFree(db, pFKey); 3225 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 3226 sqlite3ExprListDelete(db, pFromCol); 3227 sqlite3ExprListDelete(db, pToCol); 3228 } 3229 3230 /* 3231 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 3232 ** clause is seen as part of a foreign key definition. The isDeferred 3233 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 3234 ** The behavior of the most recently created foreign key is adjusted 3235 ** accordingly. 3236 */ 3237 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 3238 #ifndef SQLITE_OMIT_FOREIGN_KEY 3239 Table *pTab; 3240 FKey *pFKey; 3241 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 3242 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 3243 pFKey->isDeferred = (u8)isDeferred; 3244 #endif 3245 } 3246 3247 /* 3248 ** Generate code that will erase and refill index *pIdx. This is 3249 ** used to initialize a newly created index or to recompute the 3250 ** content of an index in response to a REINDEX command. 3251 ** 3252 ** if memRootPage is not negative, it means that the index is newly 3253 ** created. The register specified by memRootPage contains the 3254 ** root page number of the index. If memRootPage is negative, then 3255 ** the index already exists and must be cleared before being refilled and 3256 ** the root page number of the index is taken from pIndex->tnum. 3257 */ 3258 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 3259 Table *pTab = pIndex->pTable; /* The table that is indexed */ 3260 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 3261 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 3262 int iSorter; /* Cursor opened by OpenSorter (if in use) */ 3263 int addr1; /* Address of top of loop */ 3264 int addr2; /* Address to jump to for next iteration */ 3265 int tnum; /* Root page of index */ 3266 int iPartIdxLabel; /* Jump to this label to skip a row */ 3267 Vdbe *v; /* Generate code into this virtual machine */ 3268 KeyInfo *pKey; /* KeyInfo for index */ 3269 int regRecord; /* Register holding assembled index record */ 3270 sqlite3 *db = pParse->db; /* The database connection */ 3271 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3272 3273 #ifndef SQLITE_OMIT_AUTHORIZATION 3274 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 3275 db->aDb[iDb].zDbSName ) ){ 3276 return; 3277 } 3278 #endif 3279 3280 /* Require a write-lock on the table to perform this operation */ 3281 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 3282 3283 v = sqlite3GetVdbe(pParse); 3284 if( v==0 ) return; 3285 if( memRootPage>=0 ){ 3286 tnum = memRootPage; 3287 }else{ 3288 tnum = pIndex->tnum; 3289 } 3290 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 3291 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 3292 3293 /* Open the sorter cursor if we are to use one. */ 3294 iSorter = pParse->nTab++; 3295 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 3296 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 3297 3298 /* Open the table. Loop through all rows of the table, inserting index 3299 ** records into the sorter. */ 3300 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 3301 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 3302 regRecord = sqlite3GetTempReg(pParse); 3303 sqlite3MultiWrite(pParse); 3304 3305 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 3306 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 3307 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 3308 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 3309 sqlite3VdbeJumpHere(v, addr1); 3310 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 3311 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 3312 (char *)pKey, P4_KEYINFO); 3313 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 3314 3315 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 3316 if( IsUniqueIndex(pIndex) ){ 3317 int j2 = sqlite3VdbeGoto(v, 1); 3318 addr2 = sqlite3VdbeCurrentAddr(v); 3319 sqlite3VdbeVerifyAbortable(v, OE_Abort); 3320 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 3321 pIndex->nKeyCol); VdbeCoverage(v); 3322 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 3323 sqlite3VdbeJumpHere(v, j2); 3324 }else{ 3325 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not 3326 ** abort. The exception is if one of the indexed expressions contains a 3327 ** user function that throws an exception when it is evaluated. But the 3328 ** overhead of adding a statement journal to a CREATE INDEX statement is 3329 ** very small (since most of the pages written do not contain content that 3330 ** needs to be restored if the statement aborts), so we call 3331 ** sqlite3MayAbort() for all CREATE INDEX statements. */ 3332 sqlite3MayAbort(pParse); 3333 addr2 = sqlite3VdbeCurrentAddr(v); 3334 } 3335 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 3336 if( !pIndex->bAscKeyBug ){ 3337 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much 3338 ** faster by avoiding unnecessary seeks. But the optimization does 3339 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables 3340 ** with DESC primary keys, since those indexes have there keys in 3341 ** a different order from the main table. 3342 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf 3343 */ 3344 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); 3345 } 3346 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 3347 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3348 sqlite3ReleaseTempReg(pParse, regRecord); 3349 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 3350 sqlite3VdbeJumpHere(v, addr1); 3351 3352 sqlite3VdbeAddOp1(v, OP_Close, iTab); 3353 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 3354 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 3355 } 3356 3357 /* 3358 ** Allocate heap space to hold an Index object with nCol columns. 3359 ** 3360 ** Increase the allocation size to provide an extra nExtra bytes 3361 ** of 8-byte aligned space after the Index object and return a 3362 ** pointer to this extra space in *ppExtra. 3363 */ 3364 Index *sqlite3AllocateIndexObject( 3365 sqlite3 *db, /* Database connection */ 3366 i16 nCol, /* Total number of columns in the index */ 3367 int nExtra, /* Number of bytes of extra space to alloc */ 3368 char **ppExtra /* Pointer to the "extra" space */ 3369 ){ 3370 Index *p; /* Allocated index object */ 3371 int nByte; /* Bytes of space for Index object + arrays */ 3372 3373 nByte = ROUND8(sizeof(Index)) + /* Index structure */ 3374 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ 3375 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ 3376 sizeof(i16)*nCol + /* Index.aiColumn */ 3377 sizeof(u8)*nCol); /* Index.aSortOrder */ 3378 p = sqlite3DbMallocZero(db, nByte + nExtra); 3379 if( p ){ 3380 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); 3381 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); 3382 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); 3383 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; 3384 p->aSortOrder = (u8*)pExtra; 3385 p->nColumn = nCol; 3386 p->nKeyCol = nCol - 1; 3387 *ppExtra = ((char*)p) + nByte; 3388 } 3389 return p; 3390 } 3391 3392 /* 3393 ** If expression list pList contains an expression that was parsed with 3394 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in 3395 ** pParse and return non-zero. Otherwise, return zero. 3396 */ 3397 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ 3398 if( pList ){ 3399 int i; 3400 for(i=0; i<pList->nExpr; i++){ 3401 if( pList->a[i].bNulls ){ 3402 u8 sf = pList->a[i].sortFlags; 3403 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", 3404 (sf==0 || sf==3) ? "FIRST" : "LAST" 3405 ); 3406 return 1; 3407 } 3408 } 3409 } 3410 return 0; 3411 } 3412 3413 /* 3414 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 3415 ** and pTblList is the name of the table that is to be indexed. Both will 3416 ** be NULL for a primary key or an index that is created to satisfy a 3417 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 3418 ** as the table to be indexed. pParse->pNewTable is a table that is 3419 ** currently being constructed by a CREATE TABLE statement. 3420 ** 3421 ** pList is a list of columns to be indexed. pList will be NULL if this 3422 ** is a primary key or unique-constraint on the most recent column added 3423 ** to the table currently under construction. 3424 */ 3425 void sqlite3CreateIndex( 3426 Parse *pParse, /* All information about this parse */ 3427 Token *pName1, /* First part of index name. May be NULL */ 3428 Token *pName2, /* Second part of index name. May be NULL */ 3429 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 3430 ExprList *pList, /* A list of columns to be indexed */ 3431 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 3432 Token *pStart, /* The CREATE token that begins this statement */ 3433 Expr *pPIWhere, /* WHERE clause for partial indices */ 3434 int sortOrder, /* Sort order of primary key when pList==NULL */ 3435 int ifNotExist, /* Omit error if index already exists */ 3436 u8 idxType /* The index type */ 3437 ){ 3438 Table *pTab = 0; /* Table to be indexed */ 3439 Index *pIndex = 0; /* The index to be created */ 3440 char *zName = 0; /* Name of the index */ 3441 int nName; /* Number of characters in zName */ 3442 int i, j; 3443 DbFixer sFix; /* For assigning database names to pTable */ 3444 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 3445 sqlite3 *db = pParse->db; 3446 Db *pDb; /* The specific table containing the indexed database */ 3447 int iDb; /* Index of the database that is being written */ 3448 Token *pName = 0; /* Unqualified name of the index to create */ 3449 struct ExprList_item *pListItem; /* For looping over pList */ 3450 int nExtra = 0; /* Space allocated for zExtra[] */ 3451 int nExtraCol; /* Number of extra columns needed */ 3452 char *zExtra = 0; /* Extra space after the Index object */ 3453 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 3454 3455 if( db->mallocFailed || pParse->nErr>0 ){ 3456 goto exit_create_index; 3457 } 3458 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ 3459 goto exit_create_index; 3460 } 3461 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3462 goto exit_create_index; 3463 } 3464 if( sqlite3HasExplicitNulls(pParse, pList) ){ 3465 goto exit_create_index; 3466 } 3467 3468 /* 3469 ** Find the table that is to be indexed. Return early if not found. 3470 */ 3471 if( pTblName!=0 ){ 3472 3473 /* Use the two-part index name to determine the database 3474 ** to search for the table. 'Fix' the table name to this db 3475 ** before looking up the table. 3476 */ 3477 assert( pName1 && pName2 ); 3478 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 3479 if( iDb<0 ) goto exit_create_index; 3480 assert( pName && pName->z ); 3481 3482 #ifndef SQLITE_OMIT_TEMPDB 3483 /* If the index name was unqualified, check if the table 3484 ** is a temp table. If so, set the database to 1. Do not do this 3485 ** if initialising a database schema. 3486 */ 3487 if( !db->init.busy ){ 3488 pTab = sqlite3SrcListLookup(pParse, pTblName); 3489 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 3490 iDb = 1; 3491 } 3492 } 3493 #endif 3494 3495 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); 3496 if( sqlite3FixSrcList(&sFix, pTblName) ){ 3497 /* Because the parser constructs pTblName from a single identifier, 3498 ** sqlite3FixSrcList can never fail. */ 3499 assert(0); 3500 } 3501 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); 3502 assert( db->mallocFailed==0 || pTab==0 ); 3503 if( pTab==0 ) goto exit_create_index; 3504 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ 3505 sqlite3ErrorMsg(pParse, 3506 "cannot create a TEMP index on non-TEMP table \"%s\"", 3507 pTab->zName); 3508 goto exit_create_index; 3509 } 3510 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); 3511 }else{ 3512 assert( pName==0 ); 3513 assert( pStart==0 ); 3514 pTab = pParse->pNewTable; 3515 if( !pTab ) goto exit_create_index; 3516 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 3517 } 3518 pDb = &db->aDb[iDb]; 3519 3520 assert( pTab!=0 ); 3521 assert( pParse->nErr==0 ); 3522 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 3523 && db->init.busy==0 3524 && pTblName!=0 3525 #if SQLITE_USER_AUTHENTICATION 3526 && sqlite3UserAuthTable(pTab->zName)==0 3527 #endif 3528 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX 3529 && sqlite3StrICmp(&pTab->zName[7],"master")!=0 3530 #endif 3531 ){ 3532 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 3533 goto exit_create_index; 3534 } 3535 #ifndef SQLITE_OMIT_VIEW 3536 if( pTab->pSelect ){ 3537 sqlite3ErrorMsg(pParse, "views may not be indexed"); 3538 goto exit_create_index; 3539 } 3540 #endif 3541 #ifndef SQLITE_OMIT_VIRTUALTABLE 3542 if( IsVirtual(pTab) ){ 3543 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 3544 goto exit_create_index; 3545 } 3546 #endif 3547 3548 /* 3549 ** Find the name of the index. Make sure there is not already another 3550 ** index or table with the same name. 3551 ** 3552 ** Exception: If we are reading the names of permanent indices from the 3553 ** sqlite_master table (because some other process changed the schema) and 3554 ** one of the index names collides with the name of a temporary table or 3555 ** index, then we will continue to process this index. 3556 ** 3557 ** If pName==0 it means that we are 3558 ** dealing with a primary key or UNIQUE constraint. We have to invent our 3559 ** own name. 3560 */ 3561 if( pName ){ 3562 zName = sqlite3NameFromToken(db, pName); 3563 if( zName==0 ) goto exit_create_index; 3564 assert( pName->z!=0 ); 3565 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ 3566 goto exit_create_index; 3567 } 3568 if( !IN_RENAME_OBJECT ){ 3569 if( !db->init.busy ){ 3570 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3571 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3572 goto exit_create_index; 3573 } 3574 } 3575 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ 3576 if( !ifNotExist ){ 3577 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3578 }else{ 3579 assert( !db->init.busy ); 3580 sqlite3CodeVerifySchema(pParse, iDb); 3581 } 3582 goto exit_create_index; 3583 } 3584 } 3585 }else{ 3586 int n; 3587 Index *pLoop; 3588 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3589 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3590 if( zName==0 ){ 3591 goto exit_create_index; 3592 } 3593 3594 /* Automatic index names generated from within sqlite3_declare_vtab() 3595 ** must have names that are distinct from normal automatic index names. 3596 ** The following statement converts "sqlite3_autoindex..." into 3597 ** "sqlite3_butoindex..." in order to make the names distinct. 3598 ** The "vtab_err.test" test demonstrates the need of this statement. */ 3599 if( IN_SPECIAL_PARSE ) zName[7]++; 3600 } 3601 3602 /* Check for authorization to create an index. 3603 */ 3604 #ifndef SQLITE_OMIT_AUTHORIZATION 3605 if( !IN_RENAME_OBJECT ){ 3606 const char *zDb = pDb->zDbSName; 3607 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3608 goto exit_create_index; 3609 } 3610 i = SQLITE_CREATE_INDEX; 3611 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3612 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3613 goto exit_create_index; 3614 } 3615 } 3616 #endif 3617 3618 /* If pList==0, it means this routine was called to make a primary 3619 ** key out of the last column added to the table under construction. 3620 ** So create a fake list to simulate this. 3621 */ 3622 if( pList==0 ){ 3623 Token prevCol; 3624 Column *pCol = &pTab->aCol[pTab->nCol-1]; 3625 pCol->colFlags |= COLFLAG_UNIQUE; 3626 sqlite3TokenInit(&prevCol, pCol->zName); 3627 pList = sqlite3ExprListAppend(pParse, 0, 3628 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3629 if( pList==0 ) goto exit_create_index; 3630 assert( pList->nExpr==1 ); 3631 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); 3632 }else{ 3633 sqlite3ExprListCheckLength(pParse, pList, "index"); 3634 if( pParse->nErr ) goto exit_create_index; 3635 } 3636 3637 /* Figure out how many bytes of space are required to store explicitly 3638 ** specified collation sequence names. 3639 */ 3640 for(i=0; i<pList->nExpr; i++){ 3641 Expr *pExpr = pList->a[i].pExpr; 3642 assert( pExpr!=0 ); 3643 if( pExpr->op==TK_COLLATE ){ 3644 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); 3645 } 3646 } 3647 3648 /* 3649 ** Allocate the index structure. 3650 */ 3651 nName = sqlite3Strlen30(zName); 3652 nExtraCol = pPk ? pPk->nKeyCol : 1; 3653 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); 3654 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, 3655 nName + nExtra + 1, &zExtra); 3656 if( db->mallocFailed ){ 3657 goto exit_create_index; 3658 } 3659 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3660 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3661 pIndex->zName = zExtra; 3662 zExtra += nName + 1; 3663 memcpy(pIndex->zName, zName, nName+1); 3664 pIndex->pTable = pTab; 3665 pIndex->onError = (u8)onError; 3666 pIndex->uniqNotNull = onError!=OE_None; 3667 pIndex->idxType = idxType; 3668 pIndex->pSchema = db->aDb[iDb].pSchema; 3669 pIndex->nKeyCol = pList->nExpr; 3670 if( pPIWhere ){ 3671 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3672 pIndex->pPartIdxWhere = pPIWhere; 3673 pPIWhere = 0; 3674 } 3675 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3676 3677 /* Check to see if we should honor DESC requests on index columns 3678 */ 3679 if( pDb->pSchema->file_format>=4 ){ 3680 sortOrderMask = -1; /* Honor DESC */ 3681 }else{ 3682 sortOrderMask = 0; /* Ignore DESC */ 3683 } 3684 3685 /* Analyze the list of expressions that form the terms of the index and 3686 ** report any errors. In the common case where the expression is exactly 3687 ** a table column, store that column in aiColumn[]. For general expressions, 3688 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. 3689 ** 3690 ** TODO: Issue a warning if two or more columns of the index are identical. 3691 ** TODO: Issue a warning if the table primary key is used as part of the 3692 ** index key. 3693 */ 3694 pListItem = pList->a; 3695 if( IN_RENAME_OBJECT ){ 3696 pIndex->aColExpr = pList; 3697 pList = 0; 3698 } 3699 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){ 3700 Expr *pCExpr; /* The i-th index expression */ 3701 int requestedSortOrder; /* ASC or DESC on the i-th expression */ 3702 const char *zColl; /* Collation sequence name */ 3703 3704 sqlite3StringToId(pListItem->pExpr); 3705 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); 3706 if( pParse->nErr ) goto exit_create_index; 3707 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); 3708 if( pCExpr->op!=TK_COLUMN ){ 3709 if( pTab==pParse->pNewTable ){ 3710 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " 3711 "UNIQUE constraints"); 3712 goto exit_create_index; 3713 } 3714 if( pIndex->aColExpr==0 ){ 3715 pIndex->aColExpr = pList; 3716 pList = 0; 3717 } 3718 j = XN_EXPR; 3719 pIndex->aiColumn[i] = XN_EXPR; 3720 pIndex->uniqNotNull = 0; 3721 }else{ 3722 j = pCExpr->iColumn; 3723 assert( j<=0x7fff ); 3724 if( j<0 ){ 3725 j = pTab->iPKey; 3726 }else{ 3727 if( pTab->aCol[j].notNull==0 ){ 3728 pIndex->uniqNotNull = 0; 3729 } 3730 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ 3731 pIndex->bHasVCol = 1; 3732 } 3733 } 3734 pIndex->aiColumn[i] = (i16)j; 3735 } 3736 zColl = 0; 3737 if( pListItem->pExpr->op==TK_COLLATE ){ 3738 int nColl; 3739 zColl = pListItem->pExpr->u.zToken; 3740 nColl = sqlite3Strlen30(zColl) + 1; 3741 assert( nExtra>=nColl ); 3742 memcpy(zExtra, zColl, nColl); 3743 zColl = zExtra; 3744 zExtra += nColl; 3745 nExtra -= nColl; 3746 }else if( j>=0 ){ 3747 zColl = pTab->aCol[j].zColl; 3748 } 3749 if( !zColl ) zColl = sqlite3StrBINARY; 3750 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 3751 goto exit_create_index; 3752 } 3753 pIndex->azColl[i] = zColl; 3754 requestedSortOrder = pListItem->sortFlags & sortOrderMask; 3755 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 3756 } 3757 3758 /* Append the table key to the end of the index. For WITHOUT ROWID 3759 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For 3760 ** normal tables (when pPk==0) this will be the rowid. 3761 */ 3762 if( pPk ){ 3763 for(j=0; j<pPk->nKeyCol; j++){ 3764 int x = pPk->aiColumn[j]; 3765 assert( x>=0 ); 3766 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ 3767 pIndex->nColumn--; 3768 }else{ 3769 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); 3770 pIndex->aiColumn[i] = x; 3771 pIndex->azColl[i] = pPk->azColl[j]; 3772 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; 3773 i++; 3774 } 3775 } 3776 assert( i==pIndex->nColumn ); 3777 }else{ 3778 pIndex->aiColumn[i] = XN_ROWID; 3779 pIndex->azColl[i] = sqlite3StrBINARY; 3780 } 3781 sqlite3DefaultRowEst(pIndex); 3782 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3783 3784 /* If this index contains every column of its table, then mark 3785 ** it as a covering index */ 3786 assert( HasRowid(pTab) 3787 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); 3788 recomputeColumnsNotIndexed(pIndex); 3789 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ 3790 pIndex->isCovering = 1; 3791 for(j=0; j<pTab->nCol; j++){ 3792 if( j==pTab->iPKey ) continue; 3793 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; 3794 pIndex->isCovering = 0; 3795 break; 3796 } 3797 } 3798 3799 if( pTab==pParse->pNewTable ){ 3800 /* This routine has been called to create an automatic index as a 3801 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3802 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3803 ** i.e. one of: 3804 ** 3805 ** CREATE TABLE t(x PRIMARY KEY, y); 3806 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3807 ** 3808 ** Either way, check to see if the table already has such an index. If 3809 ** so, don't bother creating this one. This only applies to 3810 ** automatically created indices. Users can do as they wish with 3811 ** explicit indices. 3812 ** 3813 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 3814 ** (and thus suppressing the second one) even if they have different 3815 ** sort orders. 3816 ** 3817 ** If there are different collating sequences or if the columns of 3818 ** the constraint occur in different orders, then the constraints are 3819 ** considered distinct and both result in separate indices. 3820 */ 3821 Index *pIdx; 3822 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3823 int k; 3824 assert( IsUniqueIndex(pIdx) ); 3825 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); 3826 assert( IsUniqueIndex(pIndex) ); 3827 3828 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3829 for(k=0; k<pIdx->nKeyCol; k++){ 3830 const char *z1; 3831 const char *z2; 3832 assert( pIdx->aiColumn[k]>=0 ); 3833 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3834 z1 = pIdx->azColl[k]; 3835 z2 = pIndex->azColl[k]; 3836 if( sqlite3StrICmp(z1, z2) ) break; 3837 } 3838 if( k==pIdx->nKeyCol ){ 3839 if( pIdx->onError!=pIndex->onError ){ 3840 /* This constraint creates the same index as a previous 3841 ** constraint specified somewhere in the CREATE TABLE statement. 3842 ** However the ON CONFLICT clauses are different. If both this 3843 ** constraint and the previous equivalent constraint have explicit 3844 ** ON CONFLICT clauses this is an error. Otherwise, use the 3845 ** explicitly specified behavior for the index. 3846 */ 3847 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3848 sqlite3ErrorMsg(pParse, 3849 "conflicting ON CONFLICT clauses specified", 0); 3850 } 3851 if( pIdx->onError==OE_Default ){ 3852 pIdx->onError = pIndex->onError; 3853 } 3854 } 3855 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; 3856 if( IN_RENAME_OBJECT ){ 3857 pIndex->pNext = pParse->pNewIndex; 3858 pParse->pNewIndex = pIndex; 3859 pIndex = 0; 3860 } 3861 goto exit_create_index; 3862 } 3863 } 3864 } 3865 3866 if( !IN_RENAME_OBJECT ){ 3867 3868 /* Link the new Index structure to its table and to the other 3869 ** in-memory database structures. 3870 */ 3871 assert( pParse->nErr==0 ); 3872 if( db->init.busy ){ 3873 Index *p; 3874 assert( !IN_SPECIAL_PARSE ); 3875 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3876 if( pTblName!=0 ){ 3877 pIndex->tnum = db->init.newTnum; 3878 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ 3879 sqlite3ErrorMsg(pParse, "invalid rootpage"); 3880 pParse->rc = SQLITE_CORRUPT_BKPT; 3881 goto exit_create_index; 3882 } 3883 } 3884 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3885 pIndex->zName, pIndex); 3886 if( p ){ 3887 assert( p==pIndex ); /* Malloc must have failed */ 3888 sqlite3OomFault(db); 3889 goto exit_create_index; 3890 } 3891 db->mDbFlags |= DBFLAG_SchemaChange; 3892 } 3893 3894 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3895 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3896 ** emit code to allocate the index rootpage on disk and make an entry for 3897 ** the index in the sqlite_master table and populate the index with 3898 ** content. But, do not do this if we are simply reading the sqlite_master 3899 ** table to parse the schema, or if this index is the PRIMARY KEY index 3900 ** of a WITHOUT ROWID table. 3901 ** 3902 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY 3903 ** or UNIQUE index in a CREATE TABLE statement. Since the table 3904 ** has just been created, it contains no data and the index initialization 3905 ** step can be skipped. 3906 */ 3907 else if( HasRowid(pTab) || pTblName!=0 ){ 3908 Vdbe *v; 3909 char *zStmt; 3910 int iMem = ++pParse->nMem; 3911 3912 v = sqlite3GetVdbe(pParse); 3913 if( v==0 ) goto exit_create_index; 3914 3915 sqlite3BeginWriteOperation(pParse, 1, iDb); 3916 3917 /* Create the rootpage for the index using CreateIndex. But before 3918 ** doing so, code a Noop instruction and store its address in 3919 ** Index.tnum. This is required in case this index is actually a 3920 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In 3921 ** that case the convertToWithoutRowidTable() routine will replace 3922 ** the Noop with a Goto to jump over the VDBE code generated below. */ 3923 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); 3924 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); 3925 3926 /* Gather the complete text of the CREATE INDEX statement into 3927 ** the zStmt variable 3928 */ 3929 assert( pName!=0 || pStart==0 ); 3930 if( pStart ){ 3931 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; 3932 if( pName->z[n-1]==';' ) n--; 3933 /* A named index with an explicit CREATE INDEX statement */ 3934 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 3935 onError==OE_None ? "" : " UNIQUE", n, pName->z); 3936 }else{ 3937 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3938 /* zStmt = sqlite3MPrintf(""); */ 3939 zStmt = 0; 3940 } 3941 3942 /* Add an entry in sqlite_master for this index 3943 */ 3944 sqlite3NestedParse(pParse, 3945 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3946 db->aDb[iDb].zDbSName, MASTER_NAME, 3947 pIndex->zName, 3948 pTab->zName, 3949 iMem, 3950 zStmt 3951 ); 3952 sqlite3DbFree(db, zStmt); 3953 3954 /* Fill the index with data and reparse the schema. Code an OP_Expire 3955 ** to invalidate all pre-compiled statements. 3956 */ 3957 if( pTblName ){ 3958 sqlite3RefillIndex(pParse, pIndex, iMem); 3959 sqlite3ChangeCookie(pParse, iDb); 3960 sqlite3VdbeAddParseSchemaOp(v, iDb, 3961 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3962 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); 3963 } 3964 3965 sqlite3VdbeJumpHere(v, pIndex->tnum); 3966 } 3967 } 3968 if( db->init.busy || pTblName==0 ){ 3969 pIndex->pNext = pTab->pIndex; 3970 pTab->pIndex = pIndex; 3971 pIndex = 0; 3972 } 3973 else if( IN_RENAME_OBJECT ){ 3974 assert( pParse->pNewIndex==0 ); 3975 pParse->pNewIndex = pIndex; 3976 pIndex = 0; 3977 } 3978 3979 /* Clean up before exiting */ 3980 exit_create_index: 3981 if( pIndex ) sqlite3FreeIndex(db, pIndex); 3982 if( pTab ){ /* Ensure all REPLACE indexes are at the end of the list */ 3983 Index **ppFrom = &pTab->pIndex; 3984 Index *pThis; 3985 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ 3986 Index *pNext; 3987 if( pThis->onError!=OE_Replace ) continue; 3988 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ 3989 *ppFrom = pNext; 3990 pThis->pNext = pNext->pNext; 3991 pNext->pNext = pThis; 3992 ppFrom = &pNext->pNext; 3993 } 3994 break; 3995 } 3996 } 3997 sqlite3ExprDelete(db, pPIWhere); 3998 sqlite3ExprListDelete(db, pList); 3999 sqlite3SrcListDelete(db, pTblName); 4000 sqlite3DbFree(db, zName); 4001 } 4002 4003 /* 4004 ** Fill the Index.aiRowEst[] array with default information - information 4005 ** to be used when we have not run the ANALYZE command. 4006 ** 4007 ** aiRowEst[0] is supposed to contain the number of elements in the index. 4008 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 4009 ** number of rows in the table that match any particular value of the 4010 ** first column of the index. aiRowEst[2] is an estimate of the number 4011 ** of rows that match any particular combination of the first 2 columns 4012 ** of the index. And so forth. It must always be the case that 4013 * 4014 ** aiRowEst[N]<=aiRowEst[N-1] 4015 ** aiRowEst[N]>=1 4016 ** 4017 ** Apart from that, we have little to go on besides intuition as to 4018 ** how aiRowEst[] should be initialized. The numbers generated here 4019 ** are based on typical values found in actual indices. 4020 */ 4021 void sqlite3DefaultRowEst(Index *pIdx){ 4022 /* 10, 9, 8, 7, 6 */ 4023 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 4024 LogEst *a = pIdx->aiRowLogEst; 4025 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 4026 int i; 4027 4028 /* Indexes with default row estimates should not have stat1 data */ 4029 assert( !pIdx->hasStat1 ); 4030 4031 /* Set the first entry (number of rows in the index) to the estimated 4032 ** number of rows in the table, or half the number of rows in the table 4033 ** for a partial index. But do not let the estimate drop below 10. */ 4034 a[0] = pIdx->pTable->nRowLogEst; 4035 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); 4036 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 4037 4038 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 4039 ** 6 and each subsequent value (if any) is 5. */ 4040 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 4041 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 4042 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 4043 } 4044 4045 assert( 0==sqlite3LogEst(1) ); 4046 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 4047 } 4048 4049 /* 4050 ** This routine will drop an existing named index. This routine 4051 ** implements the DROP INDEX statement. 4052 */ 4053 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 4054 Index *pIndex; 4055 Vdbe *v; 4056 sqlite3 *db = pParse->db; 4057 int iDb; 4058 4059 assert( pParse->nErr==0 ); /* Never called with prior errors */ 4060 if( db->mallocFailed ){ 4061 goto exit_drop_index; 4062 } 4063 assert( pName->nSrc==1 ); 4064 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4065 goto exit_drop_index; 4066 } 4067 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 4068 if( pIndex==0 ){ 4069 if( !ifExists ){ 4070 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 4071 }else{ 4072 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 4073 } 4074 pParse->checkSchema = 1; 4075 goto exit_drop_index; 4076 } 4077 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 4078 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 4079 "or PRIMARY KEY constraint cannot be dropped", 0); 4080 goto exit_drop_index; 4081 } 4082 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 4083 #ifndef SQLITE_OMIT_AUTHORIZATION 4084 { 4085 int code = SQLITE_DROP_INDEX; 4086 Table *pTab = pIndex->pTable; 4087 const char *zDb = db->aDb[iDb].zDbSName; 4088 const char *zTab = SCHEMA_TABLE(iDb); 4089 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 4090 goto exit_drop_index; 4091 } 4092 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 4093 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 4094 goto exit_drop_index; 4095 } 4096 } 4097 #endif 4098 4099 /* Generate code to remove the index and from the master table */ 4100 v = sqlite3GetVdbe(pParse); 4101 if( v ){ 4102 sqlite3BeginWriteOperation(pParse, 1, iDb); 4103 sqlite3NestedParse(pParse, 4104 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 4105 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName 4106 ); 4107 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 4108 sqlite3ChangeCookie(pParse, iDb); 4109 destroyRootPage(pParse, pIndex->tnum, iDb); 4110 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 4111 } 4112 4113 exit_drop_index: 4114 sqlite3SrcListDelete(db, pName); 4115 } 4116 4117 /* 4118 ** pArray is a pointer to an array of objects. Each object in the 4119 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() 4120 ** to extend the array so that there is space for a new object at the end. 4121 ** 4122 ** When this function is called, *pnEntry contains the current size of 4123 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes 4124 ** in total). 4125 ** 4126 ** If the realloc() is successful (i.e. if no OOM condition occurs), the 4127 ** space allocated for the new object is zeroed, *pnEntry updated to 4128 ** reflect the new size of the array and a pointer to the new allocation 4129 ** returned. *pIdx is set to the index of the new array entry in this case. 4130 ** 4131 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains 4132 ** unchanged and a copy of pArray returned. 4133 */ 4134 void *sqlite3ArrayAllocate( 4135 sqlite3 *db, /* Connection to notify of malloc failures */ 4136 void *pArray, /* Array of objects. Might be reallocated */ 4137 int szEntry, /* Size of each object in the array */ 4138 int *pnEntry, /* Number of objects currently in use */ 4139 int *pIdx /* Write the index of a new slot here */ 4140 ){ 4141 char *z; 4142 sqlite3_int64 n = *pIdx = *pnEntry; 4143 if( (n & (n-1))==0 ){ 4144 sqlite3_int64 sz = (n==0) ? 1 : 2*n; 4145 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); 4146 if( pNew==0 ){ 4147 *pIdx = -1; 4148 return pArray; 4149 } 4150 pArray = pNew; 4151 } 4152 z = (char*)pArray; 4153 memset(&z[n * szEntry], 0, szEntry); 4154 ++*pnEntry; 4155 return pArray; 4156 } 4157 4158 /* 4159 ** Append a new element to the given IdList. Create a new IdList if 4160 ** need be. 4161 ** 4162 ** A new IdList is returned, or NULL if malloc() fails. 4163 */ 4164 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ 4165 sqlite3 *db = pParse->db; 4166 int i; 4167 if( pList==0 ){ 4168 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 4169 if( pList==0 ) return 0; 4170 } 4171 pList->a = sqlite3ArrayAllocate( 4172 db, 4173 pList->a, 4174 sizeof(pList->a[0]), 4175 &pList->nId, 4176 &i 4177 ); 4178 if( i<0 ){ 4179 sqlite3IdListDelete(db, pList); 4180 return 0; 4181 } 4182 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 4183 if( IN_RENAME_OBJECT && pList->a[i].zName ){ 4184 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); 4185 } 4186 return pList; 4187 } 4188 4189 /* 4190 ** Delete an IdList. 4191 */ 4192 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 4193 int i; 4194 if( pList==0 ) return; 4195 for(i=0; i<pList->nId; i++){ 4196 sqlite3DbFree(db, pList->a[i].zName); 4197 } 4198 sqlite3DbFree(db, pList->a); 4199 sqlite3DbFreeNN(db, pList); 4200 } 4201 4202 /* 4203 ** Return the index in pList of the identifier named zId. Return -1 4204 ** if not found. 4205 */ 4206 int sqlite3IdListIndex(IdList *pList, const char *zName){ 4207 int i; 4208 if( pList==0 ) return -1; 4209 for(i=0; i<pList->nId; i++){ 4210 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 4211 } 4212 return -1; 4213 } 4214 4215 /* 4216 ** Maximum size of a SrcList object. 4217 ** The SrcList object is used to represent the FROM clause of a 4218 ** SELECT statement, and the query planner cannot deal with more 4219 ** than 64 tables in a join. So any value larger than 64 here 4220 ** is sufficient for most uses. Smaller values, like say 10, are 4221 ** appropriate for small and memory-limited applications. 4222 */ 4223 #ifndef SQLITE_MAX_SRCLIST 4224 # define SQLITE_MAX_SRCLIST 200 4225 #endif 4226 4227 /* 4228 ** Expand the space allocated for the given SrcList object by 4229 ** creating nExtra new slots beginning at iStart. iStart is zero based. 4230 ** New slots are zeroed. 4231 ** 4232 ** For example, suppose a SrcList initially contains two entries: A,B. 4233 ** To append 3 new entries onto the end, do this: 4234 ** 4235 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 4236 ** 4237 ** After the call above it would contain: A, B, nil, nil, nil. 4238 ** If the iStart argument had been 1 instead of 2, then the result 4239 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 4240 ** the iStart value would be 0. The result then would 4241 ** be: nil, nil, nil, A, B. 4242 ** 4243 ** If a memory allocation fails or the SrcList becomes too large, leave 4244 ** the original SrcList unchanged, return NULL, and leave an error message 4245 ** in pParse. 4246 */ 4247 SrcList *sqlite3SrcListEnlarge( 4248 Parse *pParse, /* Parsing context into which errors are reported */ 4249 SrcList *pSrc, /* The SrcList to be enlarged */ 4250 int nExtra, /* Number of new slots to add to pSrc->a[] */ 4251 int iStart /* Index in pSrc->a[] of first new slot */ 4252 ){ 4253 int i; 4254 4255 /* Sanity checking on calling parameters */ 4256 assert( iStart>=0 ); 4257 assert( nExtra>=1 ); 4258 assert( pSrc!=0 ); 4259 assert( iStart<=pSrc->nSrc ); 4260 4261 /* Allocate additional space if needed */ 4262 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 4263 SrcList *pNew; 4264 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; 4265 sqlite3 *db = pParse->db; 4266 4267 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ 4268 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", 4269 SQLITE_MAX_SRCLIST); 4270 return 0; 4271 } 4272 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; 4273 pNew = sqlite3DbRealloc(db, pSrc, 4274 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 4275 if( pNew==0 ){ 4276 assert( db->mallocFailed ); 4277 return 0; 4278 } 4279 pSrc = pNew; 4280 pSrc->nAlloc = nAlloc; 4281 } 4282 4283 /* Move existing slots that come after the newly inserted slots 4284 ** out of the way */ 4285 for(i=pSrc->nSrc-1; i>=iStart; i--){ 4286 pSrc->a[i+nExtra] = pSrc->a[i]; 4287 } 4288 pSrc->nSrc += nExtra; 4289 4290 /* Zero the newly allocated slots */ 4291 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 4292 for(i=iStart; i<iStart+nExtra; i++){ 4293 pSrc->a[i].iCursor = -1; 4294 } 4295 4296 /* Return a pointer to the enlarged SrcList */ 4297 return pSrc; 4298 } 4299 4300 4301 /* 4302 ** Append a new table name to the given SrcList. Create a new SrcList if 4303 ** need be. A new entry is created in the SrcList even if pTable is NULL. 4304 ** 4305 ** A SrcList is returned, or NULL if there is an OOM error or if the 4306 ** SrcList grows to large. The returned 4307 ** SrcList might be the same as the SrcList that was input or it might be 4308 ** a new one. If an OOM error does occurs, then the prior value of pList 4309 ** that is input to this routine is automatically freed. 4310 ** 4311 ** If pDatabase is not null, it means that the table has an optional 4312 ** database name prefix. Like this: "database.table". The pDatabase 4313 ** points to the table name and the pTable points to the database name. 4314 ** The SrcList.a[].zName field is filled with the table name which might 4315 ** come from pTable (if pDatabase is NULL) or from pDatabase. 4316 ** SrcList.a[].zDatabase is filled with the database name from pTable, 4317 ** or with NULL if no database is specified. 4318 ** 4319 ** In other words, if call like this: 4320 ** 4321 ** sqlite3SrcListAppend(D,A,B,0); 4322 ** 4323 ** Then B is a table name and the database name is unspecified. If called 4324 ** like this: 4325 ** 4326 ** sqlite3SrcListAppend(D,A,B,C); 4327 ** 4328 ** Then C is the table name and B is the database name. If C is defined 4329 ** then so is B. In other words, we never have a case where: 4330 ** 4331 ** sqlite3SrcListAppend(D,A,0,C); 4332 ** 4333 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 4334 ** before being added to the SrcList. 4335 */ 4336 SrcList *sqlite3SrcListAppend( 4337 Parse *pParse, /* Parsing context, in which errors are reported */ 4338 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 4339 Token *pTable, /* Table to append */ 4340 Token *pDatabase /* Database of the table */ 4341 ){ 4342 struct SrcList_item *pItem; 4343 sqlite3 *db; 4344 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 4345 assert( pParse!=0 ); 4346 assert( pParse->db!=0 ); 4347 db = pParse->db; 4348 if( pList==0 ){ 4349 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); 4350 if( pList==0 ) return 0; 4351 pList->nAlloc = 1; 4352 pList->nSrc = 1; 4353 memset(&pList->a[0], 0, sizeof(pList->a[0])); 4354 pList->a[0].iCursor = -1; 4355 }else{ 4356 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); 4357 if( pNew==0 ){ 4358 sqlite3SrcListDelete(db, pList); 4359 return 0; 4360 }else{ 4361 pList = pNew; 4362 } 4363 } 4364 pItem = &pList->a[pList->nSrc-1]; 4365 if( pDatabase && pDatabase->z==0 ){ 4366 pDatabase = 0; 4367 } 4368 if( pDatabase ){ 4369 pItem->zName = sqlite3NameFromToken(db, pDatabase); 4370 pItem->zDatabase = sqlite3NameFromToken(db, pTable); 4371 }else{ 4372 pItem->zName = sqlite3NameFromToken(db, pTable); 4373 pItem->zDatabase = 0; 4374 } 4375 return pList; 4376 } 4377 4378 /* 4379 ** Assign VdbeCursor index numbers to all tables in a SrcList 4380 */ 4381 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 4382 int i; 4383 struct SrcList_item *pItem; 4384 assert(pList || pParse->db->mallocFailed ); 4385 if( pList ){ 4386 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 4387 if( pItem->iCursor>=0 ) break; 4388 pItem->iCursor = pParse->nTab++; 4389 if( pItem->pSelect ){ 4390 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 4391 } 4392 } 4393 } 4394 } 4395 4396 /* 4397 ** Delete an entire SrcList including all its substructure. 4398 */ 4399 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 4400 int i; 4401 struct SrcList_item *pItem; 4402 if( pList==0 ) return; 4403 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 4404 sqlite3DbFree(db, pItem->zDatabase); 4405 sqlite3DbFree(db, pItem->zName); 4406 sqlite3DbFree(db, pItem->zAlias); 4407 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); 4408 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); 4409 sqlite3DeleteTable(db, pItem->pTab); 4410 sqlite3SelectDelete(db, pItem->pSelect); 4411 sqlite3ExprDelete(db, pItem->pOn); 4412 sqlite3IdListDelete(db, pItem->pUsing); 4413 } 4414 sqlite3DbFreeNN(db, pList); 4415 } 4416 4417 /* 4418 ** This routine is called by the parser to add a new term to the 4419 ** end of a growing FROM clause. The "p" parameter is the part of 4420 ** the FROM clause that has already been constructed. "p" is NULL 4421 ** if this is the first term of the FROM clause. pTable and pDatabase 4422 ** are the name of the table and database named in the FROM clause term. 4423 ** pDatabase is NULL if the database name qualifier is missing - the 4424 ** usual case. If the term has an alias, then pAlias points to the 4425 ** alias token. If the term is a subquery, then pSubquery is the 4426 ** SELECT statement that the subquery encodes. The pTable and 4427 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 4428 ** parameters are the content of the ON and USING clauses. 4429 ** 4430 ** Return a new SrcList which encodes is the FROM with the new 4431 ** term added. 4432 */ 4433 SrcList *sqlite3SrcListAppendFromTerm( 4434 Parse *pParse, /* Parsing context */ 4435 SrcList *p, /* The left part of the FROM clause already seen */ 4436 Token *pTable, /* Name of the table to add to the FROM clause */ 4437 Token *pDatabase, /* Name of the database containing pTable */ 4438 Token *pAlias, /* The right-hand side of the AS subexpression */ 4439 Select *pSubquery, /* A subquery used in place of a table name */ 4440 Expr *pOn, /* The ON clause of a join */ 4441 IdList *pUsing /* The USING clause of a join */ 4442 ){ 4443 struct SrcList_item *pItem; 4444 sqlite3 *db = pParse->db; 4445 if( !p && (pOn || pUsing) ){ 4446 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 4447 (pOn ? "ON" : "USING") 4448 ); 4449 goto append_from_error; 4450 } 4451 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); 4452 if( p==0 ){ 4453 goto append_from_error; 4454 } 4455 assert( p->nSrc>0 ); 4456 pItem = &p->a[p->nSrc-1]; 4457 assert( (pTable==0)==(pDatabase==0) ); 4458 assert( pItem->zName==0 || pDatabase!=0 ); 4459 if( IN_RENAME_OBJECT && pItem->zName ){ 4460 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; 4461 sqlite3RenameTokenMap(pParse, pItem->zName, pToken); 4462 } 4463 assert( pAlias!=0 ); 4464 if( pAlias->n ){ 4465 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 4466 } 4467 pItem->pSelect = pSubquery; 4468 pItem->pOn = pOn; 4469 pItem->pUsing = pUsing; 4470 return p; 4471 4472 append_from_error: 4473 assert( p==0 ); 4474 sqlite3ExprDelete(db, pOn); 4475 sqlite3IdListDelete(db, pUsing); 4476 sqlite3SelectDelete(db, pSubquery); 4477 return 0; 4478 } 4479 4480 /* 4481 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 4482 ** element of the source-list passed as the second argument. 4483 */ 4484 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 4485 assert( pIndexedBy!=0 ); 4486 if( p && pIndexedBy->n>0 ){ 4487 struct SrcList_item *pItem; 4488 assert( p->nSrc>0 ); 4489 pItem = &p->a[p->nSrc-1]; 4490 assert( pItem->fg.notIndexed==0 ); 4491 assert( pItem->fg.isIndexedBy==0 ); 4492 assert( pItem->fg.isTabFunc==0 ); 4493 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 4494 /* A "NOT INDEXED" clause was supplied. See parse.y 4495 ** construct "indexed_opt" for details. */ 4496 pItem->fg.notIndexed = 1; 4497 }else{ 4498 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); 4499 pItem->fg.isIndexedBy = 1; 4500 } 4501 } 4502 } 4503 4504 /* 4505 ** Add the list of function arguments to the SrcList entry for a 4506 ** table-valued-function. 4507 */ 4508 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ 4509 if( p ){ 4510 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 4511 assert( pItem->fg.notIndexed==0 ); 4512 assert( pItem->fg.isIndexedBy==0 ); 4513 assert( pItem->fg.isTabFunc==0 ); 4514 pItem->u1.pFuncArg = pList; 4515 pItem->fg.isTabFunc = 1; 4516 }else{ 4517 sqlite3ExprListDelete(pParse->db, pList); 4518 } 4519 } 4520 4521 /* 4522 ** When building up a FROM clause in the parser, the join operator 4523 ** is initially attached to the left operand. But the code generator 4524 ** expects the join operator to be on the right operand. This routine 4525 ** Shifts all join operators from left to right for an entire FROM 4526 ** clause. 4527 ** 4528 ** Example: Suppose the join is like this: 4529 ** 4530 ** A natural cross join B 4531 ** 4532 ** The operator is "natural cross join". The A and B operands are stored 4533 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 4534 ** operator with A. This routine shifts that operator over to B. 4535 */ 4536 void sqlite3SrcListShiftJoinType(SrcList *p){ 4537 if( p ){ 4538 int i; 4539 for(i=p->nSrc-1; i>0; i--){ 4540 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 4541 } 4542 p->a[0].fg.jointype = 0; 4543 } 4544 } 4545 4546 /* 4547 ** Generate VDBE code for a BEGIN statement. 4548 */ 4549 void sqlite3BeginTransaction(Parse *pParse, int type){ 4550 sqlite3 *db; 4551 Vdbe *v; 4552 int i; 4553 4554 assert( pParse!=0 ); 4555 db = pParse->db; 4556 assert( db!=0 ); 4557 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 4558 return; 4559 } 4560 v = sqlite3GetVdbe(pParse); 4561 if( !v ) return; 4562 if( type!=TK_DEFERRED ){ 4563 for(i=0; i<db->nDb; i++){ 4564 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 4565 sqlite3VdbeUsesBtree(v, i); 4566 } 4567 } 4568 sqlite3VdbeAddOp0(v, OP_AutoCommit); 4569 } 4570 4571 /* 4572 ** Generate VDBE code for a COMMIT or ROLLBACK statement. 4573 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise 4574 ** code is generated for a COMMIT. 4575 */ 4576 void sqlite3EndTransaction(Parse *pParse, int eType){ 4577 Vdbe *v; 4578 int isRollback; 4579 4580 assert( pParse!=0 ); 4581 assert( pParse->db!=0 ); 4582 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); 4583 isRollback = eType==TK_ROLLBACK; 4584 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, 4585 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ 4586 return; 4587 } 4588 v = sqlite3GetVdbe(pParse); 4589 if( v ){ 4590 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); 4591 } 4592 } 4593 4594 /* 4595 ** This function is called by the parser when it parses a command to create, 4596 ** release or rollback an SQL savepoint. 4597 */ 4598 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 4599 char *zName = sqlite3NameFromToken(pParse->db, pName); 4600 if( zName ){ 4601 Vdbe *v = sqlite3GetVdbe(pParse); 4602 #ifndef SQLITE_OMIT_AUTHORIZATION 4603 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 4604 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 4605 #endif 4606 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 4607 sqlite3DbFree(pParse->db, zName); 4608 return; 4609 } 4610 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 4611 } 4612 } 4613 4614 /* 4615 ** Make sure the TEMP database is open and available for use. Return 4616 ** the number of errors. Leave any error messages in the pParse structure. 4617 */ 4618 int sqlite3OpenTempDatabase(Parse *pParse){ 4619 sqlite3 *db = pParse->db; 4620 if( db->aDb[1].pBt==0 && !pParse->explain ){ 4621 int rc; 4622 Btree *pBt; 4623 static const int flags = 4624 SQLITE_OPEN_READWRITE | 4625 SQLITE_OPEN_CREATE | 4626 SQLITE_OPEN_EXCLUSIVE | 4627 SQLITE_OPEN_DELETEONCLOSE | 4628 SQLITE_OPEN_TEMP_DB; 4629 4630 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4631 if( rc!=SQLITE_OK ){ 4632 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4633 "file for storing temporary tables"); 4634 pParse->rc = rc; 4635 return 1; 4636 } 4637 db->aDb[1].pBt = pBt; 4638 assert( db->aDb[1].pSchema ); 4639 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4640 sqlite3OomFault(db); 4641 return 1; 4642 } 4643 } 4644 return 0; 4645 } 4646 4647 /* 4648 ** Record the fact that the schema cookie will need to be verified 4649 ** for database iDb. The code to actually verify the schema cookie 4650 ** will occur at the end of the top-level VDBE and will be generated 4651 ** later, by sqlite3FinishCoding(). 4652 */ 4653 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4654 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4655 4656 assert( iDb>=0 && iDb<pParse->db->nDb ); 4657 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); 4658 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4659 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); 4660 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4661 DbMaskSet(pToplevel->cookieMask, iDb); 4662 if( !OMIT_TEMPDB && iDb==1 ){ 4663 sqlite3OpenTempDatabase(pToplevel); 4664 } 4665 } 4666 } 4667 4668 /* 4669 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4670 ** attached database. Otherwise, invoke it for the database named zDb only. 4671 */ 4672 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4673 sqlite3 *db = pParse->db; 4674 int i; 4675 for(i=0; i<db->nDb; i++){ 4676 Db *pDb = &db->aDb[i]; 4677 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ 4678 sqlite3CodeVerifySchema(pParse, i); 4679 } 4680 } 4681 } 4682 4683 /* 4684 ** Generate VDBE code that prepares for doing an operation that 4685 ** might change the database. 4686 ** 4687 ** This routine starts a new transaction if we are not already within 4688 ** a transaction. If we are already within a transaction, then a checkpoint 4689 ** is set if the setStatement parameter is true. A checkpoint should 4690 ** be set for operations that might fail (due to a constraint) part of 4691 ** the way through and which will need to undo some writes without having to 4692 ** rollback the whole transaction. For operations where all constraints 4693 ** can be checked before any changes are made to the database, it is never 4694 ** necessary to undo a write and the checkpoint should not be set. 4695 */ 4696 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 4697 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4698 sqlite3CodeVerifySchema(pParse, iDb); 4699 DbMaskSet(pToplevel->writeMask, iDb); 4700 pToplevel->isMultiWrite |= setStatement; 4701 } 4702 4703 /* 4704 ** Indicate that the statement currently under construction might write 4705 ** more than one entry (example: deleting one row then inserting another, 4706 ** inserting multiple rows in a table, or inserting a row and index entries.) 4707 ** If an abort occurs after some of these writes have completed, then it will 4708 ** be necessary to undo the completed writes. 4709 */ 4710 void sqlite3MultiWrite(Parse *pParse){ 4711 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4712 pToplevel->isMultiWrite = 1; 4713 } 4714 4715 /* 4716 ** The code generator calls this routine if is discovers that it is 4717 ** possible to abort a statement prior to completion. In order to 4718 ** perform this abort without corrupting the database, we need to make 4719 ** sure that the statement is protected by a statement transaction. 4720 ** 4721 ** Technically, we only need to set the mayAbort flag if the 4722 ** isMultiWrite flag was previously set. There is a time dependency 4723 ** such that the abort must occur after the multiwrite. This makes 4724 ** some statements involving the REPLACE conflict resolution algorithm 4725 ** go a little faster. But taking advantage of this time dependency 4726 ** makes it more difficult to prove that the code is correct (in 4727 ** particular, it prevents us from writing an effective 4728 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 4729 ** to take the safe route and skip the optimization. 4730 */ 4731 void sqlite3MayAbort(Parse *pParse){ 4732 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4733 pToplevel->mayAbort = 1; 4734 } 4735 4736 /* 4737 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 4738 ** error. The onError parameter determines which (if any) of the statement 4739 ** and/or current transaction is rolled back. 4740 */ 4741 void sqlite3HaltConstraint( 4742 Parse *pParse, /* Parsing context */ 4743 int errCode, /* extended error code */ 4744 int onError, /* Constraint type */ 4745 char *p4, /* Error message */ 4746 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4747 u8 p5Errmsg /* P5_ErrMsg type */ 4748 ){ 4749 Vdbe *v = sqlite3GetVdbe(pParse); 4750 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4751 if( onError==OE_Abort ){ 4752 sqlite3MayAbort(pParse); 4753 } 4754 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4755 sqlite3VdbeChangeP5(v, p5Errmsg); 4756 } 4757 4758 /* 4759 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4760 */ 4761 void sqlite3UniqueConstraint( 4762 Parse *pParse, /* Parsing context */ 4763 int onError, /* Constraint type */ 4764 Index *pIdx /* The index that triggers the constraint */ 4765 ){ 4766 char *zErr; 4767 int j; 4768 StrAccum errMsg; 4769 Table *pTab = pIdx->pTable; 4770 4771 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 4772 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); 4773 if( pIdx->aColExpr ){ 4774 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); 4775 }else{ 4776 for(j=0; j<pIdx->nKeyCol; j++){ 4777 char *zCol; 4778 assert( pIdx->aiColumn[j]>=0 ); 4779 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4780 if( j ) sqlite3_str_append(&errMsg, ", ", 2); 4781 sqlite3_str_appendall(&errMsg, pTab->zName); 4782 sqlite3_str_append(&errMsg, ".", 1); 4783 sqlite3_str_appendall(&errMsg, zCol); 4784 } 4785 } 4786 zErr = sqlite3StrAccumFinish(&errMsg); 4787 sqlite3HaltConstraint(pParse, 4788 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4789 : SQLITE_CONSTRAINT_UNIQUE, 4790 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4791 } 4792 4793 4794 /* 4795 ** Code an OP_Halt due to non-unique rowid. 4796 */ 4797 void sqlite3RowidConstraint( 4798 Parse *pParse, /* Parsing context */ 4799 int onError, /* Conflict resolution algorithm */ 4800 Table *pTab /* The table with the non-unique rowid */ 4801 ){ 4802 char *zMsg; 4803 int rc; 4804 if( pTab->iPKey>=0 ){ 4805 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, 4806 pTab->aCol[pTab->iPKey].zName); 4807 rc = SQLITE_CONSTRAINT_PRIMARYKEY; 4808 }else{ 4809 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); 4810 rc = SQLITE_CONSTRAINT_ROWID; 4811 } 4812 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, 4813 P5_ConstraintUnique); 4814 } 4815 4816 /* 4817 ** Check to see if pIndex uses the collating sequence pColl. Return 4818 ** true if it does and false if it does not. 4819 */ 4820 #ifndef SQLITE_OMIT_REINDEX 4821 static int collationMatch(const char *zColl, Index *pIndex){ 4822 int i; 4823 assert( zColl!=0 ); 4824 for(i=0; i<pIndex->nColumn; i++){ 4825 const char *z = pIndex->azColl[i]; 4826 assert( z!=0 || pIndex->aiColumn[i]<0 ); 4827 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ 4828 return 1; 4829 } 4830 } 4831 return 0; 4832 } 4833 #endif 4834 4835 /* 4836 ** Recompute all indices of pTab that use the collating sequence pColl. 4837 ** If pColl==0 then recompute all indices of pTab. 4838 */ 4839 #ifndef SQLITE_OMIT_REINDEX 4840 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 4841 if( !IsVirtual(pTab) ){ 4842 Index *pIndex; /* An index associated with pTab */ 4843 4844 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 4845 if( zColl==0 || collationMatch(zColl, pIndex) ){ 4846 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4847 sqlite3BeginWriteOperation(pParse, 0, iDb); 4848 sqlite3RefillIndex(pParse, pIndex, -1); 4849 } 4850 } 4851 } 4852 } 4853 #endif 4854 4855 /* 4856 ** Recompute all indices of all tables in all databases where the 4857 ** indices use the collating sequence pColl. If pColl==0 then recompute 4858 ** all indices everywhere. 4859 */ 4860 #ifndef SQLITE_OMIT_REINDEX 4861 static void reindexDatabases(Parse *pParse, char const *zColl){ 4862 Db *pDb; /* A single database */ 4863 int iDb; /* The database index number */ 4864 sqlite3 *db = pParse->db; /* The database connection */ 4865 HashElem *k; /* For looping over tables in pDb */ 4866 Table *pTab; /* A table in the database */ 4867 4868 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 4869 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 4870 assert( pDb!=0 ); 4871 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 4872 pTab = (Table*)sqliteHashData(k); 4873 reindexTable(pParse, pTab, zColl); 4874 } 4875 } 4876 } 4877 #endif 4878 4879 /* 4880 ** Generate code for the REINDEX command. 4881 ** 4882 ** REINDEX -- 1 4883 ** REINDEX <collation> -- 2 4884 ** REINDEX ?<database>.?<tablename> -- 3 4885 ** REINDEX ?<database>.?<indexname> -- 4 4886 ** 4887 ** Form 1 causes all indices in all attached databases to be rebuilt. 4888 ** Form 2 rebuilds all indices in all databases that use the named 4889 ** collating function. Forms 3 and 4 rebuild the named index or all 4890 ** indices associated with the named table. 4891 */ 4892 #ifndef SQLITE_OMIT_REINDEX 4893 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 4894 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 4895 char *z; /* Name of a table or index */ 4896 const char *zDb; /* Name of the database */ 4897 Table *pTab; /* A table in the database */ 4898 Index *pIndex; /* An index associated with pTab */ 4899 int iDb; /* The database index number */ 4900 sqlite3 *db = pParse->db; /* The database connection */ 4901 Token *pObjName; /* Name of the table or index to be reindexed */ 4902 4903 /* Read the database schema. If an error occurs, leave an error message 4904 ** and code in pParse and return NULL. */ 4905 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 4906 return; 4907 } 4908 4909 if( pName1==0 ){ 4910 reindexDatabases(pParse, 0); 4911 return; 4912 }else if( NEVER(pName2==0) || pName2->z==0 ){ 4913 char *zColl; 4914 assert( pName1->z ); 4915 zColl = sqlite3NameFromToken(pParse->db, pName1); 4916 if( !zColl ) return; 4917 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 4918 if( pColl ){ 4919 reindexDatabases(pParse, zColl); 4920 sqlite3DbFree(db, zColl); 4921 return; 4922 } 4923 sqlite3DbFree(db, zColl); 4924 } 4925 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4926 if( iDb<0 ) return; 4927 z = sqlite3NameFromToken(db, pObjName); 4928 if( z==0 ) return; 4929 zDb = db->aDb[iDb].zDbSName; 4930 pTab = sqlite3FindTable(db, z, zDb); 4931 if( pTab ){ 4932 reindexTable(pParse, pTab, 0); 4933 sqlite3DbFree(db, z); 4934 return; 4935 } 4936 pIndex = sqlite3FindIndex(db, z, zDb); 4937 sqlite3DbFree(db, z); 4938 if( pIndex ){ 4939 sqlite3BeginWriteOperation(pParse, 0, iDb); 4940 sqlite3RefillIndex(pParse, pIndex, -1); 4941 return; 4942 } 4943 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4944 } 4945 #endif 4946 4947 /* 4948 ** Return a KeyInfo structure that is appropriate for the given Index. 4949 ** 4950 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4951 ** when it has finished using it. 4952 */ 4953 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4954 int i; 4955 int nCol = pIdx->nColumn; 4956 int nKey = pIdx->nKeyCol; 4957 KeyInfo *pKey; 4958 if( pParse->nErr ) return 0; 4959 if( pIdx->uniqNotNull ){ 4960 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); 4961 }else{ 4962 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); 4963 } 4964 if( pKey ){ 4965 assert( sqlite3KeyInfoIsWriteable(pKey) ); 4966 for(i=0; i<nCol; i++){ 4967 const char *zColl = pIdx->azColl[i]; 4968 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : 4969 sqlite3LocateCollSeq(pParse, zColl); 4970 pKey->aSortFlags[i] = pIdx->aSortOrder[i]; 4971 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); 4972 } 4973 if( pParse->nErr ){ 4974 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); 4975 if( pIdx->bNoQuery==0 ){ 4976 /* Deactivate the index because it contains an unknown collating 4977 ** sequence. The only way to reactive the index is to reload the 4978 ** schema. Adding the missing collating sequence later does not 4979 ** reactive the index. The application had the chance to register 4980 ** the missing index using the collation-needed callback. For 4981 ** simplicity, SQLite will not give the application a second chance. 4982 */ 4983 pIdx->bNoQuery = 1; 4984 pParse->rc = SQLITE_ERROR_RETRY; 4985 } 4986 sqlite3KeyInfoUnref(pKey); 4987 pKey = 0; 4988 } 4989 } 4990 return pKey; 4991 } 4992 4993 #ifndef SQLITE_OMIT_CTE 4994 /* 4995 ** This routine is invoked once per CTE by the parser while parsing a 4996 ** WITH clause. 4997 */ 4998 With *sqlite3WithAdd( 4999 Parse *pParse, /* Parsing context */ 5000 With *pWith, /* Existing WITH clause, or NULL */ 5001 Token *pName, /* Name of the common-table */ 5002 ExprList *pArglist, /* Optional column name list for the table */ 5003 Select *pQuery /* Query used to initialize the table */ 5004 ){ 5005 sqlite3 *db = pParse->db; 5006 With *pNew; 5007 char *zName; 5008 5009 /* Check that the CTE name is unique within this WITH clause. If 5010 ** not, store an error in the Parse structure. */ 5011 zName = sqlite3NameFromToken(pParse->db, pName); 5012 if( zName && pWith ){ 5013 int i; 5014 for(i=0; i<pWith->nCte; i++){ 5015 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ 5016 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); 5017 } 5018 } 5019 } 5020 5021 if( pWith ){ 5022 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 5023 pNew = sqlite3DbRealloc(db, pWith, nByte); 5024 }else{ 5025 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 5026 } 5027 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); 5028 5029 if( db->mallocFailed ){ 5030 sqlite3ExprListDelete(db, pArglist); 5031 sqlite3SelectDelete(db, pQuery); 5032 sqlite3DbFree(db, zName); 5033 pNew = pWith; 5034 }else{ 5035 pNew->a[pNew->nCte].pSelect = pQuery; 5036 pNew->a[pNew->nCte].pCols = pArglist; 5037 pNew->a[pNew->nCte].zName = zName; 5038 pNew->a[pNew->nCte].zCteErr = 0; 5039 pNew->nCte++; 5040 } 5041 5042 return pNew; 5043 } 5044 5045 /* 5046 ** Free the contents of the With object passed as the second argument. 5047 */ 5048 void sqlite3WithDelete(sqlite3 *db, With *pWith){ 5049 if( pWith ){ 5050 int i; 5051 for(i=0; i<pWith->nCte; i++){ 5052 struct Cte *pCte = &pWith->a[i]; 5053 sqlite3ExprListDelete(db, pCte->pCols); 5054 sqlite3SelectDelete(db, pCte->pSelect); 5055 sqlite3DbFree(db, pCte->zName); 5056 } 5057 sqlite3DbFree(db, pWith); 5058 } 5059 } 5060 #endif /* !defined(SQLITE_OMIT_CTE) */ 5061