xref: /sqlite-3.40.0/src/btreeInt.h (revision 60c71b02)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** For a detailed discussion of BTrees, refer to
14 **
15 **     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
16 **     "Sorting And Searching", pages 473-480. Addison-Wesley
17 **     Publishing Company, Reading, Massachusetts.
18 **
19 ** The basic idea is that each page of the file contains N database
20 ** entries and N+1 pointers to subpages.
21 **
22 **   ----------------------------------------------------------------
23 **   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
24 **   ----------------------------------------------------------------
25 **
26 ** All of the keys on the page that Ptr(0) points to have values less
27 ** than Key(0).  All of the keys on page Ptr(1) and its subpages have
28 ** values greater than Key(0) and less than Key(1).  All of the keys
29 ** on Ptr(N) and its subpages have values greater than Key(N-1).  And
30 ** so forth.
31 **
32 ** Finding a particular key requires reading O(log(M)) pages from the
33 ** disk where M is the number of entries in the tree.
34 **
35 ** In this implementation, a single file can hold one or more separate
36 ** BTrees.  Each BTree is identified by the index of its root page.  The
37 ** key and data for any entry are combined to form the "payload".  A
38 ** fixed amount of payload can be carried directly on the database
39 ** page.  If the payload is larger than the preset amount then surplus
40 ** bytes are stored on overflow pages.  The payload for an entry
41 ** and the preceding pointer are combined to form a "Cell".  Each
42 ** page has a small header which contains the Ptr(N) pointer and other
43 ** information such as the size of key and data.
44 **
45 ** FORMAT DETAILS
46 **
47 ** The file is divided into pages.  The first page is called page 1,
48 ** the second is page 2, and so forth.  A page number of zero indicates
49 ** "no such page".  The page size can be any power of 2 between 512 and 65536.
50 ** Each page can be either a btree page, a freelist page, an overflow
51 ** page, or a pointer-map page.
52 **
53 ** The first page is always a btree page.  The first 100 bytes of the first
54 ** page contain a special header (the "file header") that describes the file.
55 ** The format of the file header is as follows:
56 **
57 **   OFFSET   SIZE    DESCRIPTION
58 **      0      16     Header string: "SQLite format 3\000"
59 **     16       2     Page size in bytes.  (1 means 65536)
60 **     18       1     File format write version
61 **     19       1     File format read version
62 **     20       1     Bytes of unused space at the end of each page
63 **     21       1     Max embedded payload fraction (must be 64)
64 **     22       1     Min embedded payload fraction (must be 32)
65 **     23       1     Min leaf payload fraction (must be 32)
66 **     24       4     File change counter
67 **     28       4     Reserved for future use
68 **     32       4     First freelist page
69 **     36       4     Number of freelist pages in the file
70 **     40      60     15 4-byte meta values passed to higher layers
71 **
72 **     40       4     Schema cookie
73 **     44       4     File format of schema layer
74 **     48       4     Size of page cache
75 **     52       4     Largest root-page (auto/incr_vacuum)
76 **     56       4     1=UTF-8 2=UTF16le 3=UTF16be
77 **     60       4     User version
78 **     64       4     Incremental vacuum mode
79 **     68       4     Application-ID
80 **     72      20     unused
81 **     92       4     The version-valid-for number
82 **     96       4     SQLITE_VERSION_NUMBER
83 **
84 ** All of the integer values are big-endian (most significant byte first).
85 **
86 ** The file change counter is incremented when the database is changed
87 ** This counter allows other processes to know when the file has changed
88 ** and thus when they need to flush their cache.
89 **
90 ** The max embedded payload fraction is the amount of the total usable
91 ** space in a page that can be consumed by a single cell for standard
92 ** B-tree (non-LEAFDATA) tables.  A value of 255 means 100%.  The default
93 ** is to limit the maximum cell size so that at least 4 cells will fit
94 ** on one page.  Thus the default max embedded payload fraction is 64.
95 **
96 ** If the payload for a cell is larger than the max payload, then extra
97 ** payload is spilled to overflow pages.  Once an overflow page is allocated,
98 ** as many bytes as possible are moved into the overflow pages without letting
99 ** the cell size drop below the min embedded payload fraction.
100 **
101 ** The min leaf payload fraction is like the min embedded payload fraction
102 ** except that it applies to leaf nodes in a LEAFDATA tree.  The maximum
103 ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
104 ** not specified in the header.
105 **
106 ** Each btree pages is divided into three sections:  The header, the
107 ** cell pointer array, and the cell content area.  Page 1 also has a 100-byte
108 ** file header that occurs before the page header.
109 **
110 **      |----------------|
111 **      | file header    |   100 bytes.  Page 1 only.
112 **      |----------------|
113 **      | page header    |   8 bytes for leaves.  12 bytes for interior nodes
114 **      |----------------|
115 **      | cell pointer   |   |  2 bytes per cell.  Sorted order.
116 **      | array          |   |  Grows downward
117 **      |                |   v
118 **      |----------------|
119 **      | unallocated    |
120 **      | space          |
121 **      |----------------|   ^  Grows upwards
122 **      | cell content   |   |  Arbitrary order interspersed with freeblocks.
123 **      | area           |   |  and free space fragments.
124 **      |----------------|
125 **
126 ** The page headers looks like this:
127 **
128 **   OFFSET   SIZE     DESCRIPTION
129 **      0       1      Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
130 **      1       2      byte offset to the first freeblock
131 **      3       2      number of cells on this page
132 **      5       2      first byte of the cell content area
133 **      7       1      number of fragmented free bytes
134 **      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
135 **
136 ** The flags define the format of this btree page.  The leaf flag means that
137 ** this page has no children.  The zerodata flag means that this page carries
138 ** only keys and no data.  The intkey flag means that the key is an integer
139 ** which is stored in the key size entry of the cell header rather than in
140 ** the payload area.
141 **
142 ** The cell pointer array begins on the first byte after the page header.
143 ** The cell pointer array contains zero or more 2-byte numbers which are
144 ** offsets from the beginning of the page to the cell content in the cell
145 ** content area.  The cell pointers occur in sorted order.  The system strives
146 ** to keep free space after the last cell pointer so that new cells can
147 ** be easily added without having to defragment the page.
148 **
149 ** Cell content is stored at the very end of the page and grows toward the
150 ** beginning of the page.
151 **
152 ** Unused space within the cell content area is collected into a linked list of
153 ** freeblocks.  Each freeblock is at least 4 bytes in size.  The byte offset
154 ** to the first freeblock is given in the header.  Freeblocks occur in
155 ** increasing order.  Because a freeblock must be at least 4 bytes in size,
156 ** any group of 3 or fewer unused bytes in the cell content area cannot
157 ** exist on the freeblock chain.  A group of 3 or fewer free bytes is called
158 ** a fragment.  The total number of bytes in all fragments is recorded.
159 ** in the page header at offset 7.
160 **
161 **    SIZE    DESCRIPTION
162 **      2     Byte offset of the next freeblock
163 **      2     Bytes in this freeblock
164 **
165 ** Cells are of variable length.  Cells are stored in the cell content area at
166 ** the end of the page.  Pointers to the cells are in the cell pointer array
167 ** that immediately follows the page header.  Cells is not necessarily
168 ** contiguous or in order, but cell pointers are contiguous and in order.
169 **
170 ** Cell content makes use of variable length integers.  A variable
171 ** length integer is 1 to 9 bytes where the lower 7 bits of each
172 ** byte are used.  The integer consists of all bytes that have bit 8 set and
173 ** the first byte with bit 8 clear.  The most significant byte of the integer
174 ** appears first.  A variable-length integer may not be more than 9 bytes long.
175 ** As a special case, all 8 bytes of the 9th byte are used as data.  This
176 ** allows a 64-bit integer to be encoded in 9 bytes.
177 **
178 **    0x00                      becomes  0x00000000
179 **    0x7f                      becomes  0x0000007f
180 **    0x81 0x00                 becomes  0x00000080
181 **    0x82 0x00                 becomes  0x00000100
182 **    0x80 0x7f                 becomes  0x0000007f
183 **    0x8a 0x91 0xd1 0xac 0x78  becomes  0x12345678
184 **    0x81 0x81 0x81 0x81 0x01  becomes  0x10204081
185 **
186 ** Variable length integers are used for rowids and to hold the number of
187 ** bytes of key and data in a btree cell.
188 **
189 ** The content of a cell looks like this:
190 **
191 **    SIZE    DESCRIPTION
192 **      4     Page number of the left child. Omitted if leaf flag is set.
193 **     var    Number of bytes of data. Omitted if the zerodata flag is set.
194 **     var    Number of bytes of key. Or the key itself if intkey flag is set.
195 **      *     Payload
196 **      4     First page of the overflow chain.  Omitted if no overflow
197 **
198 ** Overflow pages form a linked list.  Each page except the last is completely
199 ** filled with data (pagesize - 4 bytes).  The last page can have as little
200 ** as 1 byte of data.
201 **
202 **    SIZE    DESCRIPTION
203 **      4     Page number of next overflow page
204 **      *     Data
205 **
206 ** Freelist pages come in two subtypes: trunk pages and leaf pages.  The
207 ** file header points to the first in a linked list of trunk page.  Each trunk
208 ** page points to multiple leaf pages.  The content of a leaf page is
209 ** unspecified.  A trunk page looks like this:
210 **
211 **    SIZE    DESCRIPTION
212 **      4     Page number of next trunk page
213 **      4     Number of leaf pointers on this page
214 **      *     zero or more pages numbers of leaves
215 */
216 #include "sqliteInt.h"
217 
218 
219 /* The following value is the maximum cell size assuming a maximum page
220 ** size give above.
221 */
222 #define MX_CELL_SIZE(pBt)  ((int)(pBt->pageSize-8))
223 
224 /* The maximum number of cells on a single page of the database.  This
225 ** assumes a minimum cell size of 6 bytes  (4 bytes for the cell itself
226 ** plus 2 bytes for the index to the cell in the page header).  Such
227 ** small cells will be rare, but they are possible.
228 */
229 #define MX_CELL(pBt) ((pBt->pageSize-8)/6)
230 
231 /* Forward declarations */
232 typedef struct MemPage MemPage;
233 typedef struct BtLock BtLock;
234 typedef struct CellInfo CellInfo;
235 
236 /*
237 ** This is a magic string that appears at the beginning of every
238 ** SQLite database in order to identify the file as a real database.
239 **
240 ** You can change this value at compile-time by specifying a
241 ** -DSQLITE_FILE_HEADER="..." on the compiler command-line.  The
242 ** header must be exactly 16 bytes including the zero-terminator so
243 ** the string itself should be 15 characters long.  If you change
244 ** the header, then your custom library will not be able to read
245 ** databases generated by the standard tools and the standard tools
246 ** will not be able to read databases created by your custom library.
247 */
248 #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
249 #  define SQLITE_FILE_HEADER "SQLite format 3"
250 #endif
251 
252 /*
253 ** Page type flags.  An ORed combination of these flags appear as the
254 ** first byte of on-disk image of every BTree page.
255 */
256 #define PTF_INTKEY    0x01
257 #define PTF_ZERODATA  0x02
258 #define PTF_LEAFDATA  0x04
259 #define PTF_LEAF      0x08
260 
261 /*
262 ** An instance of this object stores information about each a single database
263 ** page that has been loaded into memory.  The information in this object
264 ** is derived from the raw on-disk page content.
265 **
266 ** As each database page is loaded into memory, the pager allocats an
267 ** instance of this object and zeros the first 8 bytes.  (This is the
268 ** "extra" information associated with each page of the pager.)
269 **
270 ** Access to all fields of this structure is controlled by the mutex
271 ** stored in MemPage.pBt->mutex.
272 */
273 struct MemPage {
274   u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
275   u8 bBusy;            /* Prevent endless loops on corrupt database files */
276   u8 intKey;           /* True if table b-trees.  False for index b-trees */
277   u8 intKeyLeaf;       /* True if the leaf of an intKey table */
278   Pgno pgno;           /* Page number for this page */
279   /* Only the first 8 bytes (above) are zeroed by pager.c when a new page
280   ** is allocated. All fields that follow must be initialized before use */
281   u8 leaf;             /* True if a leaf page */
282   u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
283   u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
284   u8 max1bytePayload;  /* min(maxLocal,127) */
285   u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
286   u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
287   u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
288   u16 cellOffset;      /* Index in aData of first cell pointer */
289   int nFree;           /* Number of free bytes on the page. -1 for unknown */
290   u16 nCell;           /* Number of cells on this page, local and ovfl */
291   u16 maskPage;        /* Mask for page offset */
292   u16 aiOvfl[4];       /* Insert the i-th overflow cell before the aiOvfl-th
293                        ** non-overflow cell */
294   u8 *apOvfl[4];       /* Pointers to the body of overflow cells */
295   BtShared *pBt;       /* Pointer to BtShared that this page is part of */
296   u8 *aData;           /* Pointer to disk image of the page data */
297   u8 *aDataEnd;        /* One byte past the end of usable data */
298   u8 *aCellIdx;        /* The cell index area */
299   u8 *aDataOfst;       /* Same as aData for leaves.  aData+4 for interior */
300   DbPage *pDbPage;     /* Pager page handle */
301   u16 (*xCellSize)(MemPage*,u8*);             /* cellSizePtr method */
302   void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */
303 };
304 
305 /*
306 ** A linked list of the following structures is stored at BtShared.pLock.
307 ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
308 ** is opened on the table with root page BtShared.iTable. Locks are removed
309 ** from this list when a transaction is committed or rolled back, or when
310 ** a btree handle is closed.
311 */
312 struct BtLock {
313   Btree *pBtree;        /* Btree handle holding this lock */
314   Pgno iTable;          /* Root page of table */
315   u8 eLock;             /* READ_LOCK or WRITE_LOCK */
316   BtLock *pNext;        /* Next in BtShared.pLock list */
317 };
318 
319 /* Candidate values for BtLock.eLock */
320 #define READ_LOCK     1
321 #define WRITE_LOCK    2
322 
323 /* A Btree handle
324 **
325 ** A database connection contains a pointer to an instance of
326 ** this object for every database file that it has open.  This structure
327 ** is opaque to the database connection.  The database connection cannot
328 ** see the internals of this structure and only deals with pointers to
329 ** this structure.
330 **
331 ** For some database files, the same underlying database cache might be
332 ** shared between multiple connections.  In that case, each connection
333 ** has it own instance of this object.  But each instance of this object
334 ** points to the same BtShared object.  The database cache and the
335 ** schema associated with the database file are all contained within
336 ** the BtShared object.
337 **
338 ** All fields in this structure are accessed under sqlite3.mutex.
339 ** The pBt pointer itself may not be changed while there exists cursors
340 ** in the referenced BtShared that point back to this Btree since those
341 ** cursors have to go through this Btree to find their BtShared and
342 ** they often do so without holding sqlite3.mutex.
343 */
344 struct Btree {
345   sqlite3 *db;       /* The database connection holding this btree */
346   BtShared *pBt;     /* Sharable content of this btree */
347   u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
348   u8 sharable;       /* True if we can share pBt with another db */
349   u8 locked;         /* True if db currently has pBt locked */
350   u8 hasIncrblobCur; /* True if there are one or more Incrblob cursors */
351   int wantToLock;    /* Number of nested calls to sqlite3BtreeEnter() */
352   int nBackup;       /* Number of backup operations reading this btree */
353   u32 iDataVersion;  /* Combines with pBt->pPager->iDataVersion */
354   Btree *pNext;      /* List of other sharable Btrees from the same db */
355   Btree *pPrev;      /* Back pointer of the same list */
356 #ifdef SQLITE_DEBUG
357   u64 nSeek;         /* Calls to sqlite3BtreeMovetoUnpacked() */
358 #endif
359 #ifndef SQLITE_OMIT_SHARED_CACHE
360   BtLock lock;       /* Object used to lock page 1 */
361 #endif
362 };
363 
364 /*
365 ** Btree.inTrans may take one of the following values.
366 **
367 ** If the shared-data extension is enabled, there may be multiple users
368 ** of the Btree structure. At most one of these may open a write transaction,
369 ** but any number may have active read transactions.
370 **
371 ** These values must match SQLITE_TXN_NONE, SQLITE_TXN_READ, and
372 ** SQLITE_TXN_WRITE
373 */
374 #define TRANS_NONE  0
375 #define TRANS_READ  1
376 #define TRANS_WRITE 2
377 
378 #if TRANS_NONE!=SQLITE_TXN_NONE
379 # error wrong numeric code for no-transaction
380 #endif
381 #if TRANS_READ!=SQLITE_TXN_READ
382 # error wrong numeric code for read-transaction
383 #endif
384 #if TRANS_WRITE!=SQLITE_TXN_WRITE
385 # error wrong numeric code for write-transaction
386 #endif
387 
388 
389 /*
390 ** An instance of this object represents a single database file.
391 **
392 ** A single database file can be in use at the same time by two
393 ** or more database connections.  When two or more connections are
394 ** sharing the same database file, each connection has it own
395 ** private Btree object for the file and each of those Btrees points
396 ** to this one BtShared object.  BtShared.nRef is the number of
397 ** connections currently sharing this database file.
398 **
399 ** Fields in this structure are accessed under the BtShared.mutex
400 ** mutex, except for nRef and pNext which are accessed under the
401 ** global SQLITE_MUTEX_STATIC_MAIN mutex.  The pPager field
402 ** may not be modified once it is initially set as long as nRef>0.
403 ** The pSchema field may be set once under BtShared.mutex and
404 ** thereafter is unchanged as long as nRef>0.
405 **
406 ** isPending:
407 **
408 **   If a BtShared client fails to obtain a write-lock on a database
409 **   table (because there exists one or more read-locks on the table),
410 **   the shared-cache enters 'pending-lock' state and isPending is
411 **   set to true.
412 **
413 **   The shared-cache leaves the 'pending lock' state when either of
414 **   the following occur:
415 **
416 **     1) The current writer (BtShared.pWriter) concludes its transaction, OR
417 **     2) The number of locks held by other connections drops to zero.
418 **
419 **   while in the 'pending-lock' state, no connection may start a new
420 **   transaction.
421 **
422 **   This feature is included to help prevent writer-starvation.
423 */
424 struct BtShared {
425   Pager *pPager;        /* The page cache */
426   sqlite3 *db;          /* Database connection currently using this Btree */
427   BtCursor *pCursor;    /* A list of all open cursors */
428   MemPage *pPage1;      /* First page of the database */
429   u8 openFlags;         /* Flags to sqlite3BtreeOpen() */
430 #ifndef SQLITE_OMIT_AUTOVACUUM
431   u8 autoVacuum;        /* True if auto-vacuum is enabled */
432   u8 incrVacuum;        /* True if incr-vacuum is enabled */
433   u8 bDoTruncate;       /* True to truncate db on commit */
434 #endif
435   u8 inTransaction;     /* Transaction state */
436   u8 max1bytePayload;   /* Maximum first byte of cell for a 1-byte payload */
437   u8 nReserveWanted;    /* Desired number of extra bytes per page */
438   u16 btsFlags;         /* Boolean parameters.  See BTS_* macros below */
439   u16 maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
440   u16 minLocal;         /* Minimum local payload in non-LEAFDATA tables */
441   u16 maxLeaf;          /* Maximum local payload in a LEAFDATA table */
442   u16 minLeaf;          /* Minimum local payload in a LEAFDATA table */
443   u32 pageSize;         /* Total number of bytes on a page */
444   u32 usableSize;       /* Number of usable bytes on each page */
445   int nTransaction;     /* Number of open transactions (read + write) */
446   u32 nPage;            /* Number of pages in the database */
447   void *pSchema;        /* Pointer to space allocated by sqlite3BtreeSchema() */
448   void (*xFreeSchema)(void*);  /* Destructor for BtShared.pSchema */
449   sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */
450   Bitvec *pHasContent;  /* Set of pages moved to free-list this transaction */
451 #ifndef SQLITE_OMIT_SHARED_CACHE
452   int nRef;             /* Number of references to this structure */
453   BtShared *pNext;      /* Next on a list of sharable BtShared structs */
454   BtLock *pLock;        /* List of locks held on this shared-btree struct */
455   Btree *pWriter;       /* Btree with currently open write transaction */
456 #endif
457   u8 *pTmpSpace;        /* Temp space sufficient to hold a single cell */
458 };
459 
460 /*
461 ** Allowed values for BtShared.btsFlags
462 */
463 #define BTS_READ_ONLY        0x0001   /* Underlying file is readonly */
464 #define BTS_PAGESIZE_FIXED   0x0002   /* Page size can no longer be changed */
465 #define BTS_SECURE_DELETE    0x0004   /* PRAGMA secure_delete is enabled */
466 #define BTS_OVERWRITE        0x0008   /* Overwrite deleted content with zeros */
467 #define BTS_FAST_SECURE      0x000c   /* Combination of the previous two */
468 #define BTS_INITIALLY_EMPTY  0x0010   /* Database was empty at trans start */
469 #define BTS_NO_WAL           0x0020   /* Do not open write-ahead-log files */
470 #define BTS_EXCLUSIVE        0x0040   /* pWriter has an exclusive lock */
471 #define BTS_PENDING          0x0080   /* Waiting for read-locks to clear */
472 
473 /*
474 ** An instance of the following structure is used to hold information
475 ** about a cell.  The parseCellPtr() function fills in this structure
476 ** based on information extract from the raw disk page.
477 */
478 struct CellInfo {
479   i64 nKey;      /* The key for INTKEY tables, or nPayload otherwise */
480   u8 *pPayload;  /* Pointer to the start of payload */
481   u32 nPayload;  /* Bytes of payload */
482   u16 nLocal;    /* Amount of payload held locally, not on overflow */
483   u16 nSize;     /* Size of the cell content on the main b-tree page */
484 };
485 
486 /*
487 ** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
488 ** this will be declared corrupt. This value is calculated based on a
489 ** maximum database size of 2^31 pages a minimum fanout of 2 for a
490 ** root-node and 3 for all other internal nodes.
491 **
492 ** If a tree that appears to be taller than this is encountered, it is
493 ** assumed that the database is corrupt.
494 */
495 #define BTCURSOR_MAX_DEPTH 20
496 
497 /*
498 ** A cursor is a pointer to a particular entry within a particular
499 ** b-tree within a database file.
500 **
501 ** The entry is identified by its MemPage and the index in
502 ** MemPage.aCell[] of the entry.
503 **
504 ** A single database file can be shared by two more database connections,
505 ** but cursors cannot be shared.  Each cursor is associated with a
506 ** particular database connection identified BtCursor.pBtree.db.
507 **
508 ** Fields in this structure are accessed under the BtShared.mutex
509 ** found at self->pBt->mutex.
510 **
511 ** skipNext meaning:
512 ** The meaning of skipNext depends on the value of eState:
513 **
514 **   eState            Meaning of skipNext
515 **   VALID             skipNext is meaningless and is ignored
516 **   INVALID           skipNext is meaningless and is ignored
517 **   SKIPNEXT          sqlite3BtreeNext() is a no-op if skipNext>0 and
518 **                     sqlite3BtreePrevious() is no-op if skipNext<0.
519 **   REQUIRESEEK       restoreCursorPosition() restores the cursor to
520 **                     eState=SKIPNEXT if skipNext!=0
521 **   FAULT             skipNext holds the cursor fault error code.
522 */
523 struct BtCursor {
524   u8 eState;                /* One of the CURSOR_XXX constants (see below) */
525   u8 curFlags;              /* zero or more BTCF_* flags defined below */
526   u8 curPagerFlags;         /* Flags to send to sqlite3PagerGet() */
527   u8 hints;                 /* As configured by CursorSetHints() */
528   int skipNext;    /* Prev() is noop if negative. Next() is noop if positive.
529                    ** Error code if eState==CURSOR_FAULT */
530   Btree *pBtree;            /* The Btree to which this cursor belongs */
531   Pgno *aOverflow;          /* Cache of overflow page locations */
532   void *pKey;               /* Saved key that was cursor last known position */
533   /* All fields above are zeroed when the cursor is allocated.  See
534   ** sqlite3BtreeCursorZero().  Fields that follow must be manually
535   ** initialized. */
536 #define BTCURSOR_FIRST_UNINIT pBt   /* Name of first uninitialized field */
537   BtShared *pBt;            /* The BtShared this cursor points to */
538   BtCursor *pNext;          /* Forms a linked list of all cursors */
539   CellInfo info;            /* A parse of the cell we are pointing at */
540   i64 nKey;                 /* Size of pKey, or last integer key */
541   Pgno pgnoRoot;            /* The root page of this tree */
542   i8 iPage;                 /* Index of current page in apPage */
543   u8 curIntKey;             /* Value of apPage[0]->intKey */
544   u16 ix;                   /* Current index for apPage[iPage] */
545   u16 aiIdx[BTCURSOR_MAX_DEPTH-1];     /* Current index in apPage[i] */
546   struct KeyInfo *pKeyInfo;            /* Arg passed to comparison function */
547   MemPage *pPage;                        /* Current page */
548   MemPage *apPage[BTCURSOR_MAX_DEPTH-1]; /* Stack of parents of current page */
549 };
550 
551 /*
552 ** Legal values for BtCursor.curFlags
553 */
554 #define BTCF_WriteFlag    0x01   /* True if a write cursor */
555 #define BTCF_ValidNKey    0x02   /* True if info.nKey is valid */
556 #define BTCF_ValidOvfl    0x04   /* True if aOverflow is valid */
557 #define BTCF_AtLast       0x08   /* Cursor is pointing ot the last entry */
558 #define BTCF_Incrblob     0x10   /* True if an incremental I/O handle */
559 #define BTCF_Multiple     0x20   /* Maybe another cursor on the same btree */
560 #define BTCF_Pinned       0x40   /* Cursor is busy and cannot be moved */
561 
562 /*
563 ** Potential values for BtCursor.eState.
564 **
565 ** CURSOR_INVALID:
566 **   Cursor does not point to a valid entry. This can happen (for example)
567 **   because the table is empty or because BtreeCursorFirst() has not been
568 **   called.
569 **
570 ** CURSOR_VALID:
571 **   Cursor points to a valid entry. getPayload() etc. may be called.
572 **
573 ** CURSOR_SKIPNEXT:
574 **   Cursor is valid except that the Cursor.skipNext field is non-zero
575 **   indicating that the next sqlite3BtreeNext() or sqlite3BtreePrevious()
576 **   operation should be a no-op.
577 **
578 ** CURSOR_REQUIRESEEK:
579 **   The table that this cursor was opened on still exists, but has been
580 **   modified since the cursor was last used. The cursor position is saved
581 **   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
582 **   this state, restoreCursorPosition() can be called to attempt to
583 **   seek the cursor to the saved position.
584 **
585 ** CURSOR_FAULT:
586 **   An unrecoverable error (an I/O error or a malloc failure) has occurred
587 **   on a different connection that shares the BtShared cache with this
588 **   cursor.  The error has left the cache in an inconsistent state.
589 **   Do nothing else with this cursor.  Any attempt to use the cursor
590 **   should return the error code stored in BtCursor.skipNext
591 */
592 #define CURSOR_VALID             0
593 #define CURSOR_INVALID           1
594 #define CURSOR_SKIPNEXT          2
595 #define CURSOR_REQUIRESEEK       3
596 #define CURSOR_FAULT             4
597 
598 /*
599 ** The database page the PENDING_BYTE occupies. This page is never used.
600 */
601 # define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)
602 
603 /*
604 ** These macros define the location of the pointer-map entry for a
605 ** database page. The first argument to each is the number of usable
606 ** bytes on each page of the database (often 1024). The second is the
607 ** page number to look up in the pointer map.
608 **
609 ** PTRMAP_PAGENO returns the database page number of the pointer-map
610 ** page that stores the required pointer. PTRMAP_PTROFFSET returns
611 ** the offset of the requested map entry.
612 **
613 ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
614 ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
615 ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
616 ** this test.
617 */
618 #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
619 #define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
620 #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
621 
622 /*
623 ** The pointer map is a lookup table that identifies the parent page for
624 ** each child page in the database file.  The parent page is the page that
625 ** contains a pointer to the child.  Every page in the database contains
626 ** 0 or 1 parent pages.  (In this context 'database page' refers
627 ** to any page that is not part of the pointer map itself.)  Each pointer map
628 ** entry consists of a single byte 'type' and a 4 byte parent page number.
629 ** The PTRMAP_XXX identifiers below are the valid types.
630 **
631 ** The purpose of the pointer map is to facility moving pages from one
632 ** position in the file to another as part of autovacuum.  When a page
633 ** is moved, the pointer in its parent must be updated to point to the
634 ** new location.  The pointer map is used to locate the parent page quickly.
635 **
636 ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
637 **                  used in this case.
638 **
639 ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
640 **                  is not used in this case.
641 **
642 ** PTRMAP_OVERFLOW1: The database page is the first page in a list of
643 **                   overflow pages. The page number identifies the page that
644 **                   contains the cell with a pointer to this overflow page.
645 **
646 ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
647 **                   overflow pages. The page-number identifies the previous
648 **                   page in the overflow page list.
649 **
650 ** PTRMAP_BTREE: The database page is a non-root btree page. The page number
651 **               identifies the parent page in the btree.
652 */
653 #define PTRMAP_ROOTPAGE 1
654 #define PTRMAP_FREEPAGE 2
655 #define PTRMAP_OVERFLOW1 3
656 #define PTRMAP_OVERFLOW2 4
657 #define PTRMAP_BTREE 5
658 
659 /* A bunch of assert() statements to check the transaction state variables
660 ** of handle p (type Btree*) are internally consistent.
661 */
662 #define btreeIntegrity(p) \
663   assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
664   assert( p->pBt->inTransaction>=p->inTrans );
665 
666 
667 /*
668 ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
669 ** if the database supports auto-vacuum or not. Because it is used
670 ** within an expression that is an argument to another macro
671 ** (sqliteMallocRaw), it is not possible to use conditional compilation.
672 ** So, this macro is defined instead.
673 */
674 #ifndef SQLITE_OMIT_AUTOVACUUM
675 #define ISAUTOVACUUM (pBt->autoVacuum)
676 #else
677 #define ISAUTOVACUUM 0
678 #endif
679 
680 
681 /*
682 ** This structure is passed around through all the sanity checking routines
683 ** in order to keep track of some global state information.
684 **
685 ** The aRef[] array is allocated so that there is 1 bit for each page in
686 ** the database. As the integrity-check proceeds, for each page used in
687 ** the database the corresponding bit is set. This allows integrity-check to
688 ** detect pages that are used twice and orphaned pages (both of which
689 ** indicate corruption).
690 */
691 typedef struct IntegrityCk IntegrityCk;
692 struct IntegrityCk {
693   BtShared *pBt;    /* The tree being checked out */
694   Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
695   u8 *aPgRef;       /* 1 bit per page in the db (see above) */
696   Pgno nPage;       /* Number of pages in the database */
697   int mxErr;        /* Stop accumulating errors when this reaches zero */
698   int nErr;         /* Number of messages written to zErrMsg so far */
699   int bOomFault;    /* A memory allocation error has occurred */
700   const char *zPfx; /* Error message prefix */
701   Pgno v1;          /* Value for first %u substitution in zPfx */
702   int v2;           /* Value for second %d substitution in zPfx */
703   StrAccum errMsg;  /* Accumulate the error message text here */
704   u32 *heap;        /* Min-heap used for analyzing cell coverage */
705   sqlite3 *db;      /* Database connection running the check */
706 };
707 
708 /*
709 ** Routines to read or write a two- and four-byte big-endian integer values.
710 */
711 #define get2byte(x)   ((x)[0]<<8 | (x)[1])
712 #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
713 #define get4byte sqlite3Get4byte
714 #define put4byte sqlite3Put4byte
715 
716 /*
717 ** get2byteAligned(), unlike get2byte(), requires that its argument point to a
718 ** two-byte aligned address.  get2bytea() is only used for accessing the
719 ** cell addresses in a btree header.
720 */
721 #if SQLITE_BYTEORDER==4321
722 # define get2byteAligned(x)  (*(u16*)(x))
723 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000
724 # define get2byteAligned(x)  __builtin_bswap16(*(u16*)(x))
725 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
726 # define get2byteAligned(x)  _byteswap_ushort(*(u16*)(x))
727 #else
728 # define get2byteAligned(x)  ((x)[0]<<8 | (x)[1])
729 #endif
730