xref: /sqlite-3.40.0/src/btreeInt.h (revision 5665b3ea)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** $Id: btreeInt.h,v 1.5 2007/06/15 12:06:59 drh Exp $
13 **
14 ** This file implements a external (disk-based) database using BTrees.
15 ** For a detailed discussion of BTrees, refer to
16 **
17 **     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18 **     "Sorting And Searching", pages 473-480. Addison-Wesley
19 **     Publishing Company, Reading, Massachusetts.
20 **
21 ** The basic idea is that each page of the file contains N database
22 ** entries and N+1 pointers to subpages.
23 **
24 **   ----------------------------------------------------------------
25 **   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
26 **   ----------------------------------------------------------------
27 **
28 ** All of the keys on the page that Ptr(0) points to have values less
29 ** than Key(0).  All of the keys on page Ptr(1) and its subpages have
30 ** values greater than Key(0) and less than Key(1).  All of the keys
31 ** on Ptr(N) and its subpages have values greater than Key(N-1).  And
32 ** so forth.
33 **
34 ** Finding a particular key requires reading O(log(M)) pages from the
35 ** disk where M is the number of entries in the tree.
36 **
37 ** In this implementation, a single file can hold one or more separate
38 ** BTrees.  Each BTree is identified by the index of its root page.  The
39 ** key and data for any entry are combined to form the "payload".  A
40 ** fixed amount of payload can be carried directly on the database
41 ** page.  If the payload is larger than the preset amount then surplus
42 ** bytes are stored on overflow pages.  The payload for an entry
43 ** and the preceding pointer are combined to form a "Cell".  Each
44 ** page has a small header which contains the Ptr(N) pointer and other
45 ** information such as the size of key and data.
46 **
47 ** FORMAT DETAILS
48 **
49 ** The file is divided into pages.  The first page is called page 1,
50 ** the second is page 2, and so forth.  A page number of zero indicates
51 ** "no such page".  The page size can be anything between 512 and 65536.
52 ** Each page can be either a btree page, a freelist page or an overflow
53 ** page.
54 **
55 ** The first page is always a btree page.  The first 100 bytes of the first
56 ** page contain a special header (the "file header") that describes the file.
57 ** The format of the file header is as follows:
58 **
59 **   OFFSET   SIZE    DESCRIPTION
60 **      0      16     Header string: "SQLite format 3\000"
61 **     16       2     Page size in bytes.
62 **     18       1     File format write version
63 **     19       1     File format read version
64 **     20       1     Bytes of unused space at the end of each page
65 **     21       1     Max embedded payload fraction
66 **     22       1     Min embedded payload fraction
67 **     23       1     Min leaf payload fraction
68 **     24       4     File change counter
69 **     28       4     Reserved for future use
70 **     32       4     First freelist page
71 **     36       4     Number of freelist pages in the file
72 **     40      60     15 4-byte meta values passed to higher layers
73 **
74 ** All of the integer values are big-endian (most significant byte first).
75 **
76 ** The file change counter is incremented when the database is changed
77 ** This counter allows other processes to know when the file has changed
78 ** and thus when they need to flush their cache.
79 **
80 ** The max embedded payload fraction is the amount of the total usable
81 ** space in a page that can be consumed by a single cell for standard
82 ** B-tree (non-LEAFDATA) tables.  A value of 255 means 100%.  The default
83 ** is to limit the maximum cell size so that at least 4 cells will fit
84 ** on one page.  Thus the default max embedded payload fraction is 64.
85 **
86 ** If the payload for a cell is larger than the max payload, then extra
87 ** payload is spilled to overflow pages.  Once an overflow page is allocated,
88 ** as many bytes as possible are moved into the overflow pages without letting
89 ** the cell size drop below the min embedded payload fraction.
90 **
91 ** The min leaf payload fraction is like the min embedded payload fraction
92 ** except that it applies to leaf nodes in a LEAFDATA tree.  The maximum
93 ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
94 ** not specified in the header.
95 **
96 ** Each btree pages is divided into three sections:  The header, the
97 ** cell pointer array, and the cell content area.  Page 1 also has a 100-byte
98 ** file header that occurs before the page header.
99 **
100 **      |----------------|
101 **      | file header    |   100 bytes.  Page 1 only.
102 **      |----------------|
103 **      | page header    |   8 bytes for leaves.  12 bytes for interior nodes
104 **      |----------------|
105 **      | cell pointer   |   |  2 bytes per cell.  Sorted order.
106 **      | array          |   |  Grows downward
107 **      |                |   v
108 **      |----------------|
109 **      | unallocated    |
110 **      | space          |
111 **      |----------------|   ^  Grows upwards
112 **      | cell content   |   |  Arbitrary order interspersed with freeblocks.
113 **      | area           |   |  and free space fragments.
114 **      |----------------|
115 **
116 ** The page headers looks like this:
117 **
118 **   OFFSET   SIZE     DESCRIPTION
119 **      0       1      Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
120 **      1       2      byte offset to the first freeblock
121 **      3       2      number of cells on this page
122 **      5       2      first byte of the cell content area
123 **      7       1      number of fragmented free bytes
124 **      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
125 **
126 ** The flags define the format of this btree page.  The leaf flag means that
127 ** this page has no children.  The zerodata flag means that this page carries
128 ** only keys and no data.  The intkey flag means that the key is a integer
129 ** which is stored in the key size entry of the cell header rather than in
130 ** the payload area.
131 **
132 ** The cell pointer array begins on the first byte after the page header.
133 ** The cell pointer array contains zero or more 2-byte numbers which are
134 ** offsets from the beginning of the page to the cell content in the cell
135 ** content area.  The cell pointers occur in sorted order.  The system strives
136 ** to keep free space after the last cell pointer so that new cells can
137 ** be easily added without having to defragment the page.
138 **
139 ** Cell content is stored at the very end of the page and grows toward the
140 ** beginning of the page.
141 **
142 ** Unused space within the cell content area is collected into a linked list of
143 ** freeblocks.  Each freeblock is at least 4 bytes in size.  The byte offset
144 ** to the first freeblock is given in the header.  Freeblocks occur in
145 ** increasing order.  Because a freeblock must be at least 4 bytes in size,
146 ** any group of 3 or fewer unused bytes in the cell content area cannot
147 ** exist on the freeblock chain.  A group of 3 or fewer free bytes is called
148 ** a fragment.  The total number of bytes in all fragments is recorded.
149 ** in the page header at offset 7.
150 **
151 **    SIZE    DESCRIPTION
152 **      2     Byte offset of the next freeblock
153 **      2     Bytes in this freeblock
154 **
155 ** Cells are of variable length.  Cells are stored in the cell content area at
156 ** the end of the page.  Pointers to the cells are in the cell pointer array
157 ** that immediately follows the page header.  Cells is not necessarily
158 ** contiguous or in order, but cell pointers are contiguous and in order.
159 **
160 ** Cell content makes use of variable length integers.  A variable
161 ** length integer is 1 to 9 bytes where the lower 7 bits of each
162 ** byte are used.  The integer consists of all bytes that have bit 8 set and
163 ** the first byte with bit 8 clear.  The most significant byte of the integer
164 ** appears first.  A variable-length integer may not be more than 9 bytes long.
165 ** As a special case, all 8 bytes of the 9th byte are used as data.  This
166 ** allows a 64-bit integer to be encoded in 9 bytes.
167 **
168 **    0x00                      becomes  0x00000000
169 **    0x7f                      becomes  0x0000007f
170 **    0x81 0x00                 becomes  0x00000080
171 **    0x82 0x00                 becomes  0x00000100
172 **    0x80 0x7f                 becomes  0x0000007f
173 **    0x8a 0x91 0xd1 0xac 0x78  becomes  0x12345678
174 **    0x81 0x81 0x81 0x81 0x01  becomes  0x10204081
175 **
176 ** Variable length integers are used for rowids and to hold the number of
177 ** bytes of key and data in a btree cell.
178 **
179 ** The content of a cell looks like this:
180 **
181 **    SIZE    DESCRIPTION
182 **      4     Page number of the left child. Omitted if leaf flag is set.
183 **     var    Number of bytes of data. Omitted if the zerodata flag is set.
184 **     var    Number of bytes of key. Or the key itself if intkey flag is set.
185 **      *     Payload
186 **      4     First page of the overflow chain.  Omitted if no overflow
187 **
188 ** Overflow pages form a linked list.  Each page except the last is completely
189 ** filled with data (pagesize - 4 bytes).  The last page can have as little
190 ** as 1 byte of data.
191 **
192 **    SIZE    DESCRIPTION
193 **      4     Page number of next overflow page
194 **      *     Data
195 **
196 ** Freelist pages come in two subtypes: trunk pages and leaf pages.  The
197 ** file header points to the first in a linked list of trunk page.  Each trunk
198 ** page points to multiple leaf pages.  The content of a leaf page is
199 ** unspecified.  A trunk page looks like this:
200 **
201 **    SIZE    DESCRIPTION
202 **      4     Page number of next trunk page
203 **      4     Number of leaf pointers on this page
204 **      *     zero or more pages numbers of leaves
205 */
206 #include "sqliteInt.h"
207 #include "pager.h"
208 #include "btree.h"
209 #include "os.h"
210 #include <assert.h>
211 
212 /* Round up a number to the next larger multiple of 8.  This is used
213 ** to force 8-byte alignment on 64-bit architectures.
214 */
215 #define ROUND8(x)   ((x+7)&~7)
216 
217 
218 /* The following value is the maximum cell size assuming a maximum page
219 ** size give above.
220 */
221 #define MX_CELL_SIZE(pBt)  (pBt->pageSize-8)
222 
223 /* The maximum number of cells on a single page of the database.  This
224 ** assumes a minimum cell size of 3 bytes.  Such small cells will be
225 ** exceedingly rare, but they are possible.
226 */
227 #define MX_CELL(pBt) ((pBt->pageSize-8)/3)
228 
229 /* Forward declarations */
230 typedef struct MemPage MemPage;
231 typedef struct BtLock BtLock;
232 
233 /*
234 ** This is a magic string that appears at the beginning of every
235 ** SQLite database in order to identify the file as a real database.
236 **
237 ** You can change this value at compile-time by specifying a
238 ** -DSQLITE_FILE_HEADER="..." on the compiler command-line.  The
239 ** header must be exactly 16 bytes including the zero-terminator so
240 ** the string itself should be 15 characters long.  If you change
241 ** the header, then your custom library will not be able to read
242 ** databases generated by the standard tools and the standard tools
243 ** will not be able to read databases created by your custom library.
244 */
245 #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
246 #  define SQLITE_FILE_HEADER "SQLite format 3"
247 #endif
248 
249 /*
250 ** Page type flags.  An ORed combination of these flags appear as the
251 ** first byte of every BTree page.
252 */
253 #define PTF_INTKEY    0x01
254 #define PTF_ZERODATA  0x02
255 #define PTF_LEAFDATA  0x04
256 #define PTF_LEAF      0x08
257 
258 /*
259 ** As each page of the file is loaded into memory, an instance of the following
260 ** structure is appended and initialized to zero.  This structure stores
261 ** information about the page that is decoded from the raw file page.
262 **
263 ** The pParent field points back to the parent page.  This allows us to
264 ** walk up the BTree from any leaf to the root.  Care must be taken to
265 ** unref() the parent page pointer when this page is no longer referenced.
266 ** The pageDestructor() routine handles that chore.
267 */
268 struct MemPage {
269   u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
270   u8 idxShift;         /* True if Cell indices have changed */
271   u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
272   u8 intKey;           /* True if intkey flag is set */
273   u8 leaf;             /* True if leaf flag is set */
274   u8 zeroData;         /* True if table stores keys only */
275   u8 leafData;         /* True if tables stores data on leaves only */
276   u8 hasData;          /* True if this page stores data */
277   u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
278   u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
279   u16 maxLocal;        /* Copy of Btree.maxLocal or Btree.maxLeaf */
280   u16 minLocal;        /* Copy of Btree.minLocal or Btree.minLeaf */
281   u16 cellOffset;      /* Index in aData of first cell pointer */
282   u16 idxParent;       /* Index in parent of this node */
283   u16 nFree;           /* Number of free bytes on the page */
284   u16 nCell;           /* Number of cells on this page, local and ovfl */
285   struct _OvflCell {   /* Cells that will not fit on aData[] */
286     u8 *pCell;          /* Pointers to the body of the overflow cell */
287     u16 idx;            /* Insert this cell before idx-th non-overflow cell */
288   } aOvfl[5];
289   BtShared *pBt;       /* Pointer back to BTree structure */
290   u8 *aData;           /* Pointer back to the start of the page */
291   DbPage *pDbPage;     /* Pager page handle */
292   Pgno pgno;           /* Page number for this page */
293   MemPage *pParent;    /* The parent of this page.  NULL for root */
294 };
295 
296 /*
297 ** The in-memory image of a disk page has the auxiliary information appended
298 ** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
299 ** that extra information.
300 */
301 #define EXTRA_SIZE sizeof(MemPage)
302 
303 /* Btree handle */
304 struct Btree {
305   sqlite3 *pSqlite;
306   BtShared *pBt;
307   u8 inTrans;            /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
308 };
309 
310 /*
311 ** Btree.inTrans may take one of the following values.
312 **
313 ** If the shared-data extension is enabled, there may be multiple users
314 ** of the Btree structure. At most one of these may open a write transaction,
315 ** but any number may have active read transactions. Variable Btree.pDb
316 ** points to the handle that owns any current write-transaction.
317 */
318 #define TRANS_NONE  0
319 #define TRANS_READ  1
320 #define TRANS_WRITE 2
321 
322 /*
323 ** Everything we need to know about an open database
324 */
325 struct BtShared {
326   Pager *pPager;        /* The page cache */
327   BtCursor *pCursor;    /* A list of all open cursors */
328   MemPage *pPage1;      /* First page of the database */
329   u8 inStmt;            /* True if we are in a statement subtransaction */
330   u8 readOnly;          /* True if the underlying file is readonly */
331   u8 maxEmbedFrac;      /* Maximum payload as % of total page size */
332   u8 minEmbedFrac;      /* Minimum payload as % of total page size */
333   u8 minLeafFrac;       /* Minimum leaf payload as % of total page size */
334   u8 pageSizeFixed;     /* True if the page size can no longer be changed */
335 #ifndef SQLITE_OMIT_AUTOVACUUM
336   u8 autoVacuum;        /* True if auto-vacuum is enabled */
337   u8 incrVacuum;        /* True if incr-vacuum is enabled */
338   Pgno nTrunc;          /* Non-zero if the db will be truncated (incr vacuum) */
339 #endif
340   u16 pageSize;         /* Total number of bytes on a page */
341   u16 usableSize;       /* Number of usable bytes on each page */
342   int maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
343   int minLocal;         /* Minimum local payload in non-LEAFDATA tables */
344   int maxLeaf;          /* Maximum local payload in a LEAFDATA table */
345   int minLeaf;          /* Minimum local payload in a LEAFDATA table */
346   BusyHandler *pBusyHandler;   /* Callback for when there is lock contention */
347   u8 inTransaction;     /* Transaction state */
348   int nRef;             /* Number of references to this structure */
349   int nTransaction;     /* Number of open transactions (read + write) */
350   void *pSchema;        /* Pointer to space allocated by sqlite3BtreeSchema() */
351   void (*xFreeSchema)(void*);  /* Destructor for BtShared.pSchema */
352 #ifndef SQLITE_OMIT_SHARED_CACHE
353   BtLock *pLock;        /* List of locks held on this shared-btree struct */
354   BtShared *pNext;      /* Next in ThreadData.pBtree linked list */
355 #endif
356 };
357 
358 /*
359 ** An instance of the following structure is used to hold information
360 ** about a cell.  The parseCellPtr() function fills in this structure
361 ** based on information extract from the raw disk page.
362 */
363 typedef struct CellInfo CellInfo;
364 struct CellInfo {
365   u8 *pCell;     /* Pointer to the start of cell content */
366   i64 nKey;      /* The key for INTKEY tables, or number of bytes in key */
367   u32 nData;     /* Number of bytes of data */
368   u32 nPayload;  /* Total amount of payload */
369   u16 nHeader;   /* Size of the cell content header in bytes */
370   u16 nLocal;    /* Amount of payload held locally */
371   u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
372   u16 nSize;     /* Size of the cell content on the main b-tree page */
373 };
374 
375 /*
376 ** A cursor is a pointer to a particular entry in the BTree.
377 ** The entry is identified by its MemPage and the index in
378 ** MemPage.aCell[] of the entry.
379 */
380 struct BtCursor {
381   Btree *pBtree;            /* The Btree to which this cursor belongs */
382   BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
383   int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
384   void *pArg;               /* First arg to xCompare() */
385   Pgno pgnoRoot;            /* The root page of this tree */
386   MemPage *pPage;           /* Page that contains the entry */
387   int idx;                  /* Index of the entry in pPage->aCell[] */
388   CellInfo info;            /* A parse of the cell we are pointing at */
389   u8 wrFlag;                /* True if writable */
390   u8 eState;                /* One of the CURSOR_XXX constants (see below) */
391   void *pKey;      /* Saved key that was cursor's last known position */
392   i64 nKey;        /* Size of pKey, or last integer key */
393   int skip;        /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
394 #ifndef SQLITE_OMIT_INCRBLOB
395   u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
396   Pgno *aOverflow;          /* Cache of overflow page locations */
397 #endif
398 };
399 
400 /*
401 ** Potential values for BtCursor.eState.
402 **
403 ** CURSOR_VALID:
404 **   Cursor points to a valid entry. getPayload() etc. may be called.
405 **
406 ** CURSOR_INVALID:
407 **   Cursor does not point to a valid entry. This can happen (for example)
408 **   because the table is empty or because BtreeCursorFirst() has not been
409 **   called.
410 **
411 ** CURSOR_REQUIRESEEK:
412 **   The table that this cursor was opened on still exists, but has been
413 **   modified since the cursor was last used. The cursor position is saved
414 **   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
415 **   this state, restoreOrClearCursorPosition() can be called to attempt to
416 **   seek the cursor to the saved position.
417 */
418 #define CURSOR_INVALID           0
419 #define CURSOR_VALID             1
420 #define CURSOR_REQUIRESEEK       2
421 
422 /*
423 ** The TRACE macro will print high-level status information about the
424 ** btree operation when the global variable sqlite3_btree_trace is
425 ** enabled.
426 */
427 #if SQLITE_TEST
428 # define TRACE(X)   if( sqlite3_btree_trace ){ printf X; fflush(stdout); }
429 #else
430 # define TRACE(X)
431 #endif
432 
433 /*
434 ** Routines to read and write variable-length integers.  These used to
435 ** be defined locally, but now we use the varint routines in the util.c
436 ** file.
437 */
438 #define getVarint    sqlite3GetVarint
439 #define getVarint32(A,B)  ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))
440 #define putVarint    sqlite3PutVarint
441 
442 /* The database page the PENDING_BYTE occupies. This page is never used.
443 ** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
444 ** should possibly be consolidated (presumably in pager.h).
445 **
446 ** If disk I/O is omitted (meaning that the database is stored purely
447 ** in memory) then there is no pending byte.
448 */
449 #ifdef SQLITE_OMIT_DISKIO
450 # define PENDING_BYTE_PAGE(pBt)  0x7fffffff
451 #else
452 # define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
453 #endif
454 
455 /*
456 ** A linked list of the following structures is stored at BtShared.pLock.
457 ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
458 ** is opened on the table with root page BtShared.iTable. Locks are removed
459 ** from this list when a transaction is committed or rolled back, or when
460 ** a btree handle is closed.
461 */
462 struct BtLock {
463   Btree *pBtree;        /* Btree handle holding this lock */
464   Pgno iTable;          /* Root page of table */
465   u8 eLock;             /* READ_LOCK or WRITE_LOCK */
466   BtLock *pNext;        /* Next in BtShared.pLock list */
467 };
468 
469 /* Candidate values for BtLock.eLock */
470 #define READ_LOCK     1
471 #define WRITE_LOCK    2
472 
473 /*
474 ** These macros define the location of the pointer-map entry for a
475 ** database page. The first argument to each is the number of usable
476 ** bytes on each page of the database (often 1024). The second is the
477 ** page number to look up in the pointer map.
478 **
479 ** PTRMAP_PAGENO returns the database page number of the pointer-map
480 ** page that stores the required pointer. PTRMAP_PTROFFSET returns
481 ** the offset of the requested map entry.
482 **
483 ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
484 ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
485 ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
486 ** this test.
487 */
488 #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
489 #define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
490 #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
491 
492 /*
493 ** The pointer map is a lookup table that identifies the parent page for
494 ** each child page in the database file.  The parent page is the page that
495 ** contains a pointer to the child.  Every page in the database contains
496 ** 0 or 1 parent pages.  (In this context 'database page' refers
497 ** to any page that is not part of the pointer map itself.)  Each pointer map
498 ** entry consists of a single byte 'type' and a 4 byte parent page number.
499 ** The PTRMAP_XXX identifiers below are the valid types.
500 **
501 ** The purpose of the pointer map is to facility moving pages from one
502 ** position in the file to another as part of autovacuum.  When a page
503 ** is moved, the pointer in its parent must be updated to point to the
504 ** new location.  The pointer map is used to locate the parent page quickly.
505 **
506 ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
507 **                  used in this case.
508 **
509 ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
510 **                  is not used in this case.
511 **
512 ** PTRMAP_OVERFLOW1: The database page is the first page in a list of
513 **                   overflow pages. The page number identifies the page that
514 **                   contains the cell with a pointer to this overflow page.
515 **
516 ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
517 **                   overflow pages. The page-number identifies the previous
518 **                   page in the overflow page list.
519 **
520 ** PTRMAP_BTREE: The database page is a non-root btree page. The page number
521 **               identifies the parent page in the btree.
522 */
523 #define PTRMAP_ROOTPAGE 1
524 #define PTRMAP_FREEPAGE 2
525 #define PTRMAP_OVERFLOW1 3
526 #define PTRMAP_OVERFLOW2 4
527 #define PTRMAP_BTREE 5
528 
529 /* A bunch of assert() statements to check the transaction state variables
530 ** of handle p (type Btree*) are internally consistent.
531 */
532 #define btreeIntegrity(p) \
533   assert( p->inTrans!=TRANS_NONE || p->pBt->nTransaction<p->pBt->nRef ); \
534   assert( p->pBt->nTransaction<=p->pBt->nRef ); \
535   assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
536   assert( p->pBt->inTransaction>=p->inTrans );
537 
538 
539 /*
540 ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
541 ** if the database supports auto-vacuum or not. Because it is used
542 ** within an expression that is an argument to another macro
543 ** (sqliteMallocRaw), it is not possible to use conditional compilation.
544 ** So, this macro is defined instead.
545 */
546 #ifndef SQLITE_OMIT_AUTOVACUUM
547 #define ISAUTOVACUUM (pBt->autoVacuum)
548 #else
549 #define ISAUTOVACUUM 0
550 #endif
551 
552 
553 /*
554 ** This structure is passed around through all the sanity checking routines
555 ** in order to keep track of some global state information.
556 */
557 typedef struct IntegrityCk IntegrityCk;
558 struct IntegrityCk {
559   BtShared *pBt;    /* The tree being checked out */
560   Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
561   int nPage;        /* Number of pages in the database */
562   int *anRef;       /* Number of times each page is referenced */
563   int mxErr;        /* Stop accumulating errors when this reaches zero */
564   char *zErrMsg;    /* An error message.  NULL if no errors seen. */
565   int nErr;         /* Number of messages written to zErrMsg so far */
566 };
567 
568 /*
569 ** Read or write a two- and four-byte big-endian integer values.
570 */
571 #define get2byte(x)   ((x)[0]<<8 | (x)[1])
572 #define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
573 #define get4byte sqlite3Get4byte
574 #define put4byte sqlite3Put4byte
575 
576 /*
577 ** Internal routines that should be accessed by the btree layer only.
578 */
579 int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
580 int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
581 void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
582 void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
583 u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);
584 int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);
585 void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
586 void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
587 int sqlite3BtreeIsRootPage(MemPage *pPage);
588 void sqlite3BtreeMoveToParent(BtCursor *pCur);
589