xref: /sqlite-3.40.0/src/btreeInt.h (revision 5368f29a)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** $Id: btreeInt.h,v 1.52 2009/07/15 17:25:46 drh Exp $
13 **
14 ** This file implements a external (disk-based) database using BTrees.
15 ** For a detailed discussion of BTrees, refer to
16 **
17 **     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18 **     "Sorting And Searching", pages 473-480. Addison-Wesley
19 **     Publishing Company, Reading, Massachusetts.
20 **
21 ** The basic idea is that each page of the file contains N database
22 ** entries and N+1 pointers to subpages.
23 **
24 **   ----------------------------------------------------------------
25 **   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
26 **   ----------------------------------------------------------------
27 **
28 ** All of the keys on the page that Ptr(0) points to have values less
29 ** than Key(0).  All of the keys on page Ptr(1) and its subpages have
30 ** values greater than Key(0) and less than Key(1).  All of the keys
31 ** on Ptr(N) and its subpages have values greater than Key(N-1).  And
32 ** so forth.
33 **
34 ** Finding a particular key requires reading O(log(M)) pages from the
35 ** disk where M is the number of entries in the tree.
36 **
37 ** In this implementation, a single file can hold one or more separate
38 ** BTrees.  Each BTree is identified by the index of its root page.  The
39 ** key and data for any entry are combined to form the "payload".  A
40 ** fixed amount of payload can be carried directly on the database
41 ** page.  If the payload is larger than the preset amount then surplus
42 ** bytes are stored on overflow pages.  The payload for an entry
43 ** and the preceding pointer are combined to form a "Cell".  Each
44 ** page has a small header which contains the Ptr(N) pointer and other
45 ** information such as the size of key and data.
46 **
47 ** FORMAT DETAILS
48 **
49 ** The file is divided into pages.  The first page is called page 1,
50 ** the second is page 2, and so forth.  A page number of zero indicates
51 ** "no such page".  The page size can be anything between 512 and 65536.
52 ** Each page can be either a btree page, a freelist page or an overflow
53 ** page.
54 **
55 ** The first page is always a btree page.  The first 100 bytes of the first
56 ** page contain a special header (the "file header") that describes the file.
57 ** The format of the file header is as follows:
58 **
59 **   OFFSET   SIZE    DESCRIPTION
60 **      0      16     Header string: "SQLite format 3\000"
61 **     16       2     Page size in bytes.
62 **     18       1     File format write version
63 **     19       1     File format read version
64 **     20       1     Bytes of unused space at the end of each page
65 **     21       1     Max embedded payload fraction
66 **     22       1     Min embedded payload fraction
67 **     23       1     Min leaf payload fraction
68 **     24       4     File change counter
69 **     28       4     Reserved for future use
70 **     32       4     First freelist page
71 **     36       4     Number of freelist pages in the file
72 **     40      60     15 4-byte meta values passed to higher layers
73 **
74 **     40       4     Schema cookie
75 **     44       4     File format of schema layer
76 **     48       4     Size of page cache
77 **     52       4     Largest root-page (auto/incr_vacuum)
78 **     56       4     1=UTF-8 2=UTF16le 3=UTF16be
79 **     60       4     User version
80 **     64       4     Incremental vacuum mode
81 **     68       4     unused
82 **     72       4     unused
83 **     76       4     unused
84 **
85 ** All of the integer values are big-endian (most significant byte first).
86 **
87 ** The file change counter is incremented when the database is changed
88 ** This counter allows other processes to know when the file has changed
89 ** and thus when they need to flush their cache.
90 **
91 ** The max embedded payload fraction is the amount of the total usable
92 ** space in a page that can be consumed by a single cell for standard
93 ** B-tree (non-LEAFDATA) tables.  A value of 255 means 100%.  The default
94 ** is to limit the maximum cell size so that at least 4 cells will fit
95 ** on one page.  Thus the default max embedded payload fraction is 64.
96 **
97 ** If the payload for a cell is larger than the max payload, then extra
98 ** payload is spilled to overflow pages.  Once an overflow page is allocated,
99 ** as many bytes as possible are moved into the overflow pages without letting
100 ** the cell size drop below the min embedded payload fraction.
101 **
102 ** The min leaf payload fraction is like the min embedded payload fraction
103 ** except that it applies to leaf nodes in a LEAFDATA tree.  The maximum
104 ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
105 ** not specified in the header.
106 **
107 ** Each btree pages is divided into three sections:  The header, the
108 ** cell pointer array, and the cell content area.  Page 1 also has a 100-byte
109 ** file header that occurs before the page header.
110 **
111 **      |----------------|
112 **      | file header    |   100 bytes.  Page 1 only.
113 **      |----------------|
114 **      | page header    |   8 bytes for leaves.  12 bytes for interior nodes
115 **      |----------------|
116 **      | cell pointer   |   |  2 bytes per cell.  Sorted order.
117 **      | array          |   |  Grows downward
118 **      |                |   v
119 **      |----------------|
120 **      | unallocated    |
121 **      | space          |
122 **      |----------------|   ^  Grows upwards
123 **      | cell content   |   |  Arbitrary order interspersed with freeblocks.
124 **      | area           |   |  and free space fragments.
125 **      |----------------|
126 **
127 ** The page headers looks like this:
128 **
129 **   OFFSET   SIZE     DESCRIPTION
130 **      0       1      Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
131 **      1       2      byte offset to the first freeblock
132 **      3       2      number of cells on this page
133 **      5       2      first byte of the cell content area
134 **      7       1      number of fragmented free bytes
135 **      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
136 **
137 ** The flags define the format of this btree page.  The leaf flag means that
138 ** this page has no children.  The zerodata flag means that this page carries
139 ** only keys and no data.  The intkey flag means that the key is a integer
140 ** which is stored in the key size entry of the cell header rather than in
141 ** the payload area.
142 **
143 ** The cell pointer array begins on the first byte after the page header.
144 ** The cell pointer array contains zero or more 2-byte numbers which are
145 ** offsets from the beginning of the page to the cell content in the cell
146 ** content area.  The cell pointers occur in sorted order.  The system strives
147 ** to keep free space after the last cell pointer so that new cells can
148 ** be easily added without having to defragment the page.
149 **
150 ** Cell content is stored at the very end of the page and grows toward the
151 ** beginning of the page.
152 **
153 ** Unused space within the cell content area is collected into a linked list of
154 ** freeblocks.  Each freeblock is at least 4 bytes in size.  The byte offset
155 ** to the first freeblock is given in the header.  Freeblocks occur in
156 ** increasing order.  Because a freeblock must be at least 4 bytes in size,
157 ** any group of 3 or fewer unused bytes in the cell content area cannot
158 ** exist on the freeblock chain.  A group of 3 or fewer free bytes is called
159 ** a fragment.  The total number of bytes in all fragments is recorded.
160 ** in the page header at offset 7.
161 **
162 **    SIZE    DESCRIPTION
163 **      2     Byte offset of the next freeblock
164 **      2     Bytes in this freeblock
165 **
166 ** Cells are of variable length.  Cells are stored in the cell content area at
167 ** the end of the page.  Pointers to the cells are in the cell pointer array
168 ** that immediately follows the page header.  Cells is not necessarily
169 ** contiguous or in order, but cell pointers are contiguous and in order.
170 **
171 ** Cell content makes use of variable length integers.  A variable
172 ** length integer is 1 to 9 bytes where the lower 7 bits of each
173 ** byte are used.  The integer consists of all bytes that have bit 8 set and
174 ** the first byte with bit 8 clear.  The most significant byte of the integer
175 ** appears first.  A variable-length integer may not be more than 9 bytes long.
176 ** As a special case, all 8 bytes of the 9th byte are used as data.  This
177 ** allows a 64-bit integer to be encoded in 9 bytes.
178 **
179 **    0x00                      becomes  0x00000000
180 **    0x7f                      becomes  0x0000007f
181 **    0x81 0x00                 becomes  0x00000080
182 **    0x82 0x00                 becomes  0x00000100
183 **    0x80 0x7f                 becomes  0x0000007f
184 **    0x8a 0x91 0xd1 0xac 0x78  becomes  0x12345678
185 **    0x81 0x81 0x81 0x81 0x01  becomes  0x10204081
186 **
187 ** Variable length integers are used for rowids and to hold the number of
188 ** bytes of key and data in a btree cell.
189 **
190 ** The content of a cell looks like this:
191 **
192 **    SIZE    DESCRIPTION
193 **      4     Page number of the left child. Omitted if leaf flag is set.
194 **     var    Number of bytes of data. Omitted if the zerodata flag is set.
195 **     var    Number of bytes of key. Or the key itself if intkey flag is set.
196 **      *     Payload
197 **      4     First page of the overflow chain.  Omitted if no overflow
198 **
199 ** Overflow pages form a linked list.  Each page except the last is completely
200 ** filled with data (pagesize - 4 bytes).  The last page can have as little
201 ** as 1 byte of data.
202 **
203 **    SIZE    DESCRIPTION
204 **      4     Page number of next overflow page
205 **      *     Data
206 **
207 ** Freelist pages come in two subtypes: trunk pages and leaf pages.  The
208 ** file header points to the first in a linked list of trunk page.  Each trunk
209 ** page points to multiple leaf pages.  The content of a leaf page is
210 ** unspecified.  A trunk page looks like this:
211 **
212 **    SIZE    DESCRIPTION
213 **      4     Page number of next trunk page
214 **      4     Number of leaf pointers on this page
215 **      *     zero or more pages numbers of leaves
216 */
217 #include "sqliteInt.h"
218 
219 
220 /* The following value is the maximum cell size assuming a maximum page
221 ** size give above.
222 */
223 #define MX_CELL_SIZE(pBt)  (pBt->pageSize-8)
224 
225 /* The maximum number of cells on a single page of the database.  This
226 ** assumes a minimum cell size of 6 bytes  (4 bytes for the cell itself
227 ** plus 2 bytes for the index to the cell in the page header).  Such
228 ** small cells will be rare, but they are possible.
229 */
230 #define MX_CELL(pBt) ((pBt->pageSize-8)/6)
231 
232 /* Forward declarations */
233 typedef struct MemPage MemPage;
234 typedef struct BtLock BtLock;
235 
236 /*
237 ** This is a magic string that appears at the beginning of every
238 ** SQLite database in order to identify the file as a real database.
239 **
240 ** You can change this value at compile-time by specifying a
241 ** -DSQLITE_FILE_HEADER="..." on the compiler command-line.  The
242 ** header must be exactly 16 bytes including the zero-terminator so
243 ** the string itself should be 15 characters long.  If you change
244 ** the header, then your custom library will not be able to read
245 ** databases generated by the standard tools and the standard tools
246 ** will not be able to read databases created by your custom library.
247 */
248 #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
249 #  define SQLITE_FILE_HEADER "SQLite format 3"
250 #endif
251 
252 /*
253 ** Page type flags.  An ORed combination of these flags appear as the
254 ** first byte of on-disk image of every BTree page.
255 */
256 #define PTF_INTKEY    0x01
257 #define PTF_ZERODATA  0x02
258 #define PTF_LEAFDATA  0x04
259 #define PTF_LEAF      0x08
260 
261 /*
262 ** As each page of the file is loaded into memory, an instance of the following
263 ** structure is appended and initialized to zero.  This structure stores
264 ** information about the page that is decoded from the raw file page.
265 **
266 ** The pParent field points back to the parent page.  This allows us to
267 ** walk up the BTree from any leaf to the root.  Care must be taken to
268 ** unref() the parent page pointer when this page is no longer referenced.
269 ** The pageDestructor() routine handles that chore.
270 **
271 ** Access to all fields of this structure is controlled by the mutex
272 ** stored in MemPage.pBt->mutex.
273 */
274 struct MemPage {
275   u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
276   u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
277   u8 intKey;           /* True if intkey flag is set */
278   u8 leaf;             /* True if leaf flag is set */
279   u8 hasData;          /* True if this page stores data */
280   u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
281   u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
282   u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
283   u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
284   u16 cellOffset;      /* Index in aData of first cell pointer */
285   u16 nFree;           /* Number of free bytes on the page */
286   u16 nCell;           /* Number of cells on this page, local and ovfl */
287   u16 maskPage;        /* Mask for page offset */
288   struct _OvflCell {   /* Cells that will not fit on aData[] */
289     u8 *pCell;          /* Pointers to the body of the overflow cell */
290     u16 idx;            /* Insert this cell before idx-th non-overflow cell */
291   } aOvfl[5];
292   BtShared *pBt;       /* Pointer to BtShared that this page is part of */
293   u8 *aData;           /* Pointer to disk image of the page data */
294   DbPage *pDbPage;     /* Pager page handle */
295   Pgno pgno;           /* Page number for this page */
296 };
297 
298 /*
299 ** The in-memory image of a disk page has the auxiliary information appended
300 ** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
301 ** that extra information.
302 */
303 #define EXTRA_SIZE sizeof(MemPage)
304 
305 /*
306 ** A linked list of the following structures is stored at BtShared.pLock.
307 ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
308 ** is opened on the table with root page BtShared.iTable. Locks are removed
309 ** from this list when a transaction is committed or rolled back, or when
310 ** a btree handle is closed.
311 */
312 struct BtLock {
313   Btree *pBtree;        /* Btree handle holding this lock */
314   Pgno iTable;          /* Root page of table */
315   u8 eLock;             /* READ_LOCK or WRITE_LOCK */
316   BtLock *pNext;        /* Next in BtShared.pLock list */
317 };
318 
319 /* Candidate values for BtLock.eLock */
320 #define READ_LOCK     1
321 #define WRITE_LOCK    2
322 
323 /* A Btree handle
324 **
325 ** A database connection contains a pointer to an instance of
326 ** this object for every database file that it has open.  This structure
327 ** is opaque to the database connection.  The database connection cannot
328 ** see the internals of this structure and only deals with pointers to
329 ** this structure.
330 **
331 ** For some database files, the same underlying database cache might be
332 ** shared between multiple connections.  In that case, each contection
333 ** has it own pointer to this object.  But each instance of this object
334 ** points to the same BtShared object.  The database cache and the
335 ** schema associated with the database file are all contained within
336 ** the BtShared object.
337 **
338 ** All fields in this structure are accessed under sqlite3.mutex.
339 ** The pBt pointer itself may not be changed while there exists cursors
340 ** in the referenced BtShared that point back to this Btree since those
341 ** cursors have to do go through this Btree to find their BtShared and
342 ** they often do so without holding sqlite3.mutex.
343 */
344 struct Btree {
345   sqlite3 *db;       /* The database connection holding this btree */
346   BtShared *pBt;     /* Sharable content of this btree */
347   u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
348   u8 sharable;       /* True if we can share pBt with another db */
349   u8 locked;         /* True if db currently has pBt locked */
350   int wantToLock;    /* Number of nested calls to sqlite3BtreeEnter() */
351   int nBackup;       /* Number of backup operations reading this btree */
352   Btree *pNext;      /* List of other sharable Btrees from the same db */
353   Btree *pPrev;      /* Back pointer of the same list */
354 #ifndef SQLITE_OMIT_SHARED_CACHE
355   BtLock lock;       /* Object used to lock page 1 */
356 #endif
357 };
358 
359 /*
360 ** Btree.inTrans may take one of the following values.
361 **
362 ** If the shared-data extension is enabled, there may be multiple users
363 ** of the Btree structure. At most one of these may open a write transaction,
364 ** but any number may have active read transactions.
365 */
366 #define TRANS_NONE  0
367 #define TRANS_READ  1
368 #define TRANS_WRITE 2
369 
370 /*
371 ** An instance of this object represents a single database file.
372 **
373 ** A single database file can be in use as the same time by two
374 ** or more database connections.  When two or more connections are
375 ** sharing the same database file, each connection has it own
376 ** private Btree object for the file and each of those Btrees points
377 ** to this one BtShared object.  BtShared.nRef is the number of
378 ** connections currently sharing this database file.
379 **
380 ** Fields in this structure are accessed under the BtShared.mutex
381 ** mutex, except for nRef and pNext which are accessed under the
382 ** global SQLITE_MUTEX_STATIC_MASTER mutex.  The pPager field
383 ** may not be modified once it is initially set as long as nRef>0.
384 ** The pSchema field may be set once under BtShared.mutex and
385 ** thereafter is unchanged as long as nRef>0.
386 **
387 ** isPending:
388 **
389 **   If a BtShared client fails to obtain a write-lock on a database
390 **   table (because there exists one or more read-locks on the table),
391 **   the shared-cache enters 'pending-lock' state and isPending is
392 **   set to true.
393 **
394 **   The shared-cache leaves the 'pending lock' state when either of
395 **   the following occur:
396 **
397 **     1) The current writer (BtShared.pWriter) concludes its transaction, OR
398 **     2) The number of locks held by other connections drops to zero.
399 **
400 **   while in the 'pending-lock' state, no connection may start a new
401 **   transaction.
402 **
403 **   This feature is included to help prevent writer-starvation.
404 */
405 struct BtShared {
406   Pager *pPager;        /* The page cache */
407   sqlite3 *db;          /* Database connection currently using this Btree */
408   BtCursor *pCursor;    /* A list of all open cursors */
409   MemPage *pPage1;      /* First page of the database */
410   u8 readOnly;          /* True if the underlying file is readonly */
411   u8 pageSizeFixed;     /* True if the page size can no longer be changed */
412 #ifndef SQLITE_OMIT_AUTOVACUUM
413   u8 autoVacuum;        /* True if auto-vacuum is enabled */
414   u8 incrVacuum;        /* True if incr-vacuum is enabled */
415 #endif
416   u16 pageSize;         /* Total number of bytes on a page */
417   u16 usableSize;       /* Number of usable bytes on each page */
418   u16 maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
419   u16 minLocal;         /* Minimum local payload in non-LEAFDATA tables */
420   u16 maxLeaf;          /* Maximum local payload in a LEAFDATA table */
421   u16 minLeaf;          /* Minimum local payload in a LEAFDATA table */
422   u8 inTransaction;     /* Transaction state */
423   int nTransaction;     /* Number of open transactions (read + write) */
424   void *pSchema;        /* Pointer to space allocated by sqlite3BtreeSchema() */
425   void (*xFreeSchema)(void*);  /* Destructor for BtShared.pSchema */
426   sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
427   Bitvec *pHasContent;  /* Set of pages moved to free-list this transaction */
428 #ifndef SQLITE_OMIT_SHARED_CACHE
429   int nRef;             /* Number of references to this structure */
430   BtShared *pNext;      /* Next on a list of sharable BtShared structs */
431   BtLock *pLock;        /* List of locks held on this shared-btree struct */
432   Btree *pWriter;       /* Btree with currently open write transaction */
433   u8 isExclusive;       /* True if pWriter has an EXCLUSIVE lock on the db */
434   u8 isPending;         /* If waiting for read-locks to clear */
435 #endif
436   u8 *pTmpSpace;        /* BtShared.pageSize bytes of space for tmp use */
437 };
438 
439 /*
440 ** An instance of the following structure is used to hold information
441 ** about a cell.  The parseCellPtr() function fills in this structure
442 ** based on information extract from the raw disk page.
443 */
444 typedef struct CellInfo CellInfo;
445 struct CellInfo {
446   u8 *pCell;     /* Pointer to the start of cell content */
447   i64 nKey;      /* The key for INTKEY tables, or number of bytes in key */
448   u32 nData;     /* Number of bytes of data */
449   u32 nPayload;  /* Total amount of payload */
450   u16 nHeader;   /* Size of the cell content header in bytes */
451   u16 nLocal;    /* Amount of payload held locally */
452   u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
453   u16 nSize;     /* Size of the cell content on the main b-tree page */
454 };
455 
456 /*
457 ** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
458 ** this will be declared corrupt. This value is calculated based on a
459 ** maximum database size of 2^31 pages a minimum fanout of 2 for a
460 ** root-node and 3 for all other internal nodes.
461 **
462 ** If a tree that appears to be taller than this is encountered, it is
463 ** assumed that the database is corrupt.
464 */
465 #define BTCURSOR_MAX_DEPTH 20
466 
467 /*
468 ** A cursor is a pointer to a particular entry within a particular
469 ** b-tree within a database file.
470 **
471 ** The entry is identified by its MemPage and the index in
472 ** MemPage.aCell[] of the entry.
473 **
474 ** When a single database file can shared by two more database connections,
475 ** but cursors cannot be shared.  Each cursor is associated with a
476 ** particular database connection identified BtCursor.pBtree.db.
477 **
478 ** Fields in this structure are accessed under the BtShared.mutex
479 ** found at self->pBt->mutex.
480 */
481 struct BtCursor {
482   Btree *pBtree;            /* The Btree to which this cursor belongs */
483   BtShared *pBt;            /* The BtShared this cursor points to */
484   BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
485   struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
486   Pgno pgnoRoot;            /* The root page of this tree */
487   sqlite3_int64 cachedRowid; /* Next rowid cache.  0 means not valid */
488   CellInfo info;            /* A parse of the cell we are pointing at */
489   u8 wrFlag;                /* True if writable */
490   u8 atLast;                /* Cursor pointing to the last entry */
491   u8 validNKey;             /* True if info.nKey is valid */
492   u8 eState;                /* One of the CURSOR_XXX constants (see below) */
493   void *pKey;      /* Saved key that was cursor's last known position */
494   i64 nKey;        /* Size of pKey, or last integer key */
495   int skipNext;    /* Prev() is noop if negative. Next() is noop if positive */
496 #ifndef SQLITE_OMIT_INCRBLOB
497   u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
498   Pgno *aOverflow;          /* Cache of overflow page locations */
499 #endif
500   i16 iPage;                            /* Index of current page in apPage */
501   MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
502   u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
503 };
504 
505 /*
506 ** Potential values for BtCursor.eState.
507 **
508 ** CURSOR_VALID:
509 **   Cursor points to a valid entry. getPayload() etc. may be called.
510 **
511 ** CURSOR_INVALID:
512 **   Cursor does not point to a valid entry. This can happen (for example)
513 **   because the table is empty or because BtreeCursorFirst() has not been
514 **   called.
515 **
516 ** CURSOR_REQUIRESEEK:
517 **   The table that this cursor was opened on still exists, but has been
518 **   modified since the cursor was last used. The cursor position is saved
519 **   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
520 **   this state, restoreCursorPosition() can be called to attempt to
521 **   seek the cursor to the saved position.
522 **
523 ** CURSOR_FAULT:
524 **   A unrecoverable error (an I/O error or a malloc failure) has occurred
525 **   on a different connection that shares the BtShared cache with this
526 **   cursor.  The error has left the cache in an inconsistent state.
527 **   Do nothing else with this cursor.  Any attempt to use the cursor
528 **   should return the error code stored in BtCursor.skip
529 */
530 #define CURSOR_INVALID           0
531 #define CURSOR_VALID             1
532 #define CURSOR_REQUIRESEEK       2
533 #define CURSOR_FAULT             3
534 
535 /*
536 ** The database page the PENDING_BYTE occupies. This page is never used.
537 */
538 # define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)
539 
540 /*
541 ** These macros define the location of the pointer-map entry for a
542 ** database page. The first argument to each is the number of usable
543 ** bytes on each page of the database (often 1024). The second is the
544 ** page number to look up in the pointer map.
545 **
546 ** PTRMAP_PAGENO returns the database page number of the pointer-map
547 ** page that stores the required pointer. PTRMAP_PTROFFSET returns
548 ** the offset of the requested map entry.
549 **
550 ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
551 ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
552 ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
553 ** this test.
554 */
555 #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
556 #define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
557 #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
558 
559 /*
560 ** The pointer map is a lookup table that identifies the parent page for
561 ** each child page in the database file.  The parent page is the page that
562 ** contains a pointer to the child.  Every page in the database contains
563 ** 0 or 1 parent pages.  (In this context 'database page' refers
564 ** to any page that is not part of the pointer map itself.)  Each pointer map
565 ** entry consists of a single byte 'type' and a 4 byte parent page number.
566 ** The PTRMAP_XXX identifiers below are the valid types.
567 **
568 ** The purpose of the pointer map is to facility moving pages from one
569 ** position in the file to another as part of autovacuum.  When a page
570 ** is moved, the pointer in its parent must be updated to point to the
571 ** new location.  The pointer map is used to locate the parent page quickly.
572 **
573 ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
574 **                  used in this case.
575 **
576 ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
577 **                  is not used in this case.
578 **
579 ** PTRMAP_OVERFLOW1: The database page is the first page in a list of
580 **                   overflow pages. The page number identifies the page that
581 **                   contains the cell with a pointer to this overflow page.
582 **
583 ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
584 **                   overflow pages. The page-number identifies the previous
585 **                   page in the overflow page list.
586 **
587 ** PTRMAP_BTREE: The database page is a non-root btree page. The page number
588 **               identifies the parent page in the btree.
589 */
590 #define PTRMAP_ROOTPAGE 1
591 #define PTRMAP_FREEPAGE 2
592 #define PTRMAP_OVERFLOW1 3
593 #define PTRMAP_OVERFLOW2 4
594 #define PTRMAP_BTREE 5
595 
596 /* A bunch of assert() statements to check the transaction state variables
597 ** of handle p (type Btree*) are internally consistent.
598 */
599 #define btreeIntegrity(p) \
600   assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
601   assert( p->pBt->inTransaction>=p->inTrans );
602 
603 
604 /*
605 ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
606 ** if the database supports auto-vacuum or not. Because it is used
607 ** within an expression that is an argument to another macro
608 ** (sqliteMallocRaw), it is not possible to use conditional compilation.
609 ** So, this macro is defined instead.
610 */
611 #ifndef SQLITE_OMIT_AUTOVACUUM
612 #define ISAUTOVACUUM (pBt->autoVacuum)
613 #else
614 #define ISAUTOVACUUM 0
615 #endif
616 
617 
618 /*
619 ** This structure is passed around through all the sanity checking routines
620 ** in order to keep track of some global state information.
621 */
622 typedef struct IntegrityCk IntegrityCk;
623 struct IntegrityCk {
624   BtShared *pBt;    /* The tree being checked out */
625   Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
626   Pgno nPage;       /* Number of pages in the database */
627   int *anRef;       /* Number of times each page is referenced */
628   int mxErr;        /* Stop accumulating errors when this reaches zero */
629   int nErr;         /* Number of messages written to zErrMsg so far */
630   int mallocFailed; /* A memory allocation error has occurred */
631   StrAccum errMsg;  /* Accumulate the error message text here */
632 };
633 
634 /*
635 ** Read or write a two- and four-byte big-endian integer values.
636 */
637 #define get2byte(x)   ((x)[0]<<8 | (x)[1])
638 #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
639 #define get4byte sqlite3Get4byte
640 #define put4byte sqlite3Put4byte
641