xref: /sqlite-3.40.0/src/btree.c (revision fb8ca7de)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifdef SQLITE_DEBUG
116 /*
117 ** Return and reset the seek counter for a Btree object.
118 */
119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120   u64 n =  pBt->nSeek;
121   pBt->nSeek = 0;
122   return n;
123 }
124 #endif
125 
126 /*
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129 **
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
134 */
135 #ifdef SQLITE_DEBUG
136 int corruptPageError(int lineno, MemPage *p){
137   char *zMsg;
138   sqlite3BeginBenignMalloc();
139   zMsg = sqlite3_mprintf("database corruption page %d of %s",
140       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141   );
142   sqlite3EndBenignMalloc();
143   if( zMsg ){
144     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145   }
146   sqlite3_free(zMsg);
147   return SQLITE_CORRUPT_BKPT;
148 }
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150 #else
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152 #endif
153 
154 #ifndef SQLITE_OMIT_SHARED_CACHE
155 
156 #ifdef SQLITE_DEBUG
157 /*
158 **** This function is only used as part of an assert() statement. ***
159 **
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot.   Return 1 if it does and 0 if not.
162 **
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
165 **
166 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167 **
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
174 **
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
177 ** acceptable.
178 */
179 static int hasSharedCacheTableLock(
180   Btree *pBtree,         /* Handle that must hold lock */
181   Pgno iRoot,            /* Root page of b-tree */
182   int isIndex,           /* True if iRoot is the root of an index b-tree */
183   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
184 ){
185   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186   Pgno iTab = 0;
187   BtLock *pLock;
188 
189   /* If this database is not shareable, or if the client is reading
190   ** and has the read-uncommitted flag set, then no lock is required.
191   ** Return true immediately.
192   */
193   if( (pBtree->sharable==0)
194    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
195   ){
196     return 1;
197   }
198 
199   /* If the client is reading  or writing an index and the schema is
200   ** not loaded, then it is too difficult to actually check to see if
201   ** the correct locks are held.  So do not bother - just return true.
202   ** This case does not come up very often anyhow.
203   */
204   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
205     return 1;
206   }
207 
208   /* Figure out the root-page that the lock should be held on. For table
209   ** b-trees, this is just the root page of the b-tree being read or
210   ** written. For index b-trees, it is the root page of the associated
211   ** table.  */
212   if( isIndex ){
213     HashElem *p;
214     int bSeen = 0;
215     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216       Index *pIdx = (Index *)sqliteHashData(p);
217       if( pIdx->tnum==(int)iRoot ){
218         if( bSeen ){
219           /* Two or more indexes share the same root page.  There must
220           ** be imposter tables.  So just return true.  The assert is not
221           ** useful in that case. */
222           return 1;
223         }
224         iTab = pIdx->pTable->tnum;
225         bSeen = 1;
226       }
227     }
228   }else{
229     iTab = iRoot;
230   }
231 
232   /* Search for the required lock. Either a write-lock on root-page iTab, a
233   ** write-lock on the schema table, or (if the client is reading) a
234   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
235   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236     if( pLock->pBtree==pBtree
237      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238      && pLock->eLock>=eLockType
239     ){
240       return 1;
241     }
242   }
243 
244   /* Failed to find the required lock. */
245   return 0;
246 }
247 #endif /* SQLITE_DEBUG */
248 
249 #ifdef SQLITE_DEBUG
250 /*
251 **** This function may be used as part of assert() statements only. ****
252 **
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
256 **
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table.  Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
262 **
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
265 **
266 **    assert( !hasReadConflicts(pBtree, iRoot) );
267 */
268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269   BtCursor *p;
270   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271     if( p->pgnoRoot==iRoot
272      && p->pBtree!=pBtree
273      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
274     ){
275       return 1;
276     }
277   }
278   return 0;
279 }
280 #endif    /* #ifdef SQLITE_DEBUG */
281 
282 /*
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
287 */
288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
289   BtShared *pBt = p->pBt;
290   BtLock *pIter;
291 
292   assert( sqlite3BtreeHoldsMutex(p) );
293   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294   assert( p->db!=0 );
295   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
296 
297   /* If requesting a write-lock, then the Btree must have an open write
298   ** transaction on this file. And, obviously, for this to be so there
299   ** must be an open write transaction on the file itself.
300   */
301   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303 
304   /* This routine is a no-op if the shared-cache is not enabled */
305   if( !p->sharable ){
306     return SQLITE_OK;
307   }
308 
309   /* If some other connection is holding an exclusive lock, the
310   ** requested lock may not be obtained.
311   */
312   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
313     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314     return SQLITE_LOCKED_SHAREDCACHE;
315   }
316 
317   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318     /* The condition (pIter->eLock!=eLock) in the following if(...)
319     ** statement is a simplification of:
320     **
321     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322     **
323     ** since we know that if eLock==WRITE_LOCK, then no other connection
324     ** may hold a WRITE_LOCK on any table in this file (since there can
325     ** only be a single writer).
326     */
327     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331       if( eLock==WRITE_LOCK ){
332         assert( p==pBt->pWriter );
333         pBt->btsFlags |= BTS_PENDING;
334       }
335       return SQLITE_LOCKED_SHAREDCACHE;
336     }
337   }
338   return SQLITE_OK;
339 }
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
341 
342 #ifndef SQLITE_OMIT_SHARED_CACHE
343 /*
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
346 ** WRITE_LOCK.
347 **
348 ** This function assumes the following:
349 **
350 **   (a) The specified Btree object p is connected to a sharable
351 **       database (one with the BtShared.sharable flag set), and
352 **
353 **   (b) No other Btree objects hold a lock that conflicts
354 **       with the requested lock (i.e. querySharedCacheTableLock() has
355 **       already been called and returned SQLITE_OK).
356 **
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
359 */
360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
361   BtShared *pBt = p->pBt;
362   BtLock *pLock = 0;
363   BtLock *pIter;
364 
365   assert( sqlite3BtreeHoldsMutex(p) );
366   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367   assert( p->db!=0 );
368 
369   /* A connection with the read-uncommitted flag set will never try to
370   ** obtain a read-lock using this function. The only read-lock obtained
371   ** by a connection in read-uncommitted mode is on the sqlite_schema
372   ** table, and that lock is obtained in BtreeBeginTrans().  */
373   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
374 
375   /* This function should only be called on a sharable b-tree after it
376   ** has been determined that no other b-tree holds a conflicting lock.  */
377   assert( p->sharable );
378   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
379 
380   /* First search the list for an existing lock on this table. */
381   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382     if( pIter->iTable==iTable && pIter->pBtree==p ){
383       pLock = pIter;
384       break;
385     }
386   }
387 
388   /* If the above search did not find a BtLock struct associating Btree p
389   ** with table iTable, allocate one and link it into the list.
390   */
391   if( !pLock ){
392     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
393     if( !pLock ){
394       return SQLITE_NOMEM_BKPT;
395     }
396     pLock->iTable = iTable;
397     pLock->pBtree = p;
398     pLock->pNext = pBt->pLock;
399     pBt->pLock = pLock;
400   }
401 
402   /* Set the BtLock.eLock variable to the maximum of the current lock
403   ** and the requested lock. This means if a write-lock was already held
404   ** and a read-lock requested, we don't incorrectly downgrade the lock.
405   */
406   assert( WRITE_LOCK>READ_LOCK );
407   if( eLock>pLock->eLock ){
408     pLock->eLock = eLock;
409   }
410 
411   return SQLITE_OK;
412 }
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
414 
415 #ifndef SQLITE_OMIT_SHARED_CACHE
416 /*
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
419 **
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
423 */
424 static void clearAllSharedCacheTableLocks(Btree *p){
425   BtShared *pBt = p->pBt;
426   BtLock **ppIter = &pBt->pLock;
427 
428   assert( sqlite3BtreeHoldsMutex(p) );
429   assert( p->sharable || 0==*ppIter );
430   assert( p->inTrans>0 );
431 
432   while( *ppIter ){
433     BtLock *pLock = *ppIter;
434     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
435     assert( pLock->pBtree->inTrans>=pLock->eLock );
436     if( pLock->pBtree==p ){
437       *ppIter = pLock->pNext;
438       assert( pLock->iTable!=1 || pLock==&p->lock );
439       if( pLock->iTable!=1 ){
440         sqlite3_free(pLock);
441       }
442     }else{
443       ppIter = &pLock->pNext;
444     }
445   }
446 
447   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
448   if( pBt->pWriter==p ){
449     pBt->pWriter = 0;
450     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
451   }else if( pBt->nTransaction==2 ){
452     /* This function is called when Btree p is concluding its
453     ** transaction. If there currently exists a writer, and p is not
454     ** that writer, then the number of locks held by connections other
455     ** than the writer must be about to drop to zero. In this case
456     ** set the BTS_PENDING flag to 0.
457     **
458     ** If there is not currently a writer, then BTS_PENDING must
459     ** be zero already. So this next line is harmless in that case.
460     */
461     pBt->btsFlags &= ~BTS_PENDING;
462   }
463 }
464 
465 /*
466 ** This function changes all write-locks held by Btree p into read-locks.
467 */
468 static void downgradeAllSharedCacheTableLocks(Btree *p){
469   BtShared *pBt = p->pBt;
470   if( pBt->pWriter==p ){
471     BtLock *pLock;
472     pBt->pWriter = 0;
473     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
474     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476       pLock->eLock = READ_LOCK;
477     }
478   }
479 }
480 
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
482 
483 static void releasePage(MemPage *pPage);         /* Forward reference */
484 static void releasePageOne(MemPage *pPage);      /* Forward reference */
485 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
486 
487 /*
488 ***** This routine is used inside of assert() only ****
489 **
490 ** Verify that the cursor holds the mutex on its BtShared
491 */
492 #ifdef SQLITE_DEBUG
493 static int cursorHoldsMutex(BtCursor *p){
494   return sqlite3_mutex_held(p->pBt->mutex);
495 }
496 
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed.  This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
504 */
505 static int cursorOwnsBtShared(BtCursor *p){
506   assert( cursorHoldsMutex(p) );
507   return (p->pBtree->db==p->pBt->db);
508 }
509 #endif
510 
511 /*
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
514 */
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
516 
517 /*
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
520 */
521 static void invalidateAllOverflowCache(BtShared *pBt){
522   BtCursor *p;
523   assert( sqlite3_mutex_held(pBt->mutex) );
524   for(p=pBt->pCursor; p; p=p->pNext){
525     invalidateOverflowCache(p);
526   }
527 }
528 
529 #ifndef SQLITE_OMIT_INCRBLOB
530 /*
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
534 **
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
538 **
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
542 */
543 static void invalidateIncrblobCursors(
544   Btree *pBtree,          /* The database file to check */
545   Pgno pgnoRoot,          /* The table that might be changing */
546   i64 iRow,               /* The rowid that might be changing */
547   int isClearTable        /* True if all rows are being deleted */
548 ){
549   BtCursor *p;
550   assert( pBtree->hasIncrblobCur );
551   assert( sqlite3BtreeHoldsMutex(pBtree) );
552   pBtree->hasIncrblobCur = 0;
553   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554     if( (p->curFlags & BTCF_Incrblob)!=0 ){
555       pBtree->hasIncrblobCur = 1;
556       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
557         p->eState = CURSOR_INVALID;
558       }
559     }
560   }
561 }
562 
563 #else
564   /* Stub function when INCRBLOB is omitted */
565   #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
567 
568 /*
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
571 ** page.
572 **
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
576 **
577 **   1) When all data is deleted from a page and the page becomes
578 **      a free-list leaf page, the page is not written to the database
579 **      (as free-list leaf pages contain no meaningful data). Sometimes
580 **      such a page is not even journalled (as it will not be modified,
581 **      why bother journalling it?).
582 **
583 **   2) When a free-list leaf page is reused, its content is not read
584 **      from the database or written to the journal file (why should it
585 **      be, if it is not at all meaningful?).
586 **
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
595 **
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
602 */
603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604   int rc = SQLITE_OK;
605   if( !pBt->pHasContent ){
606     assert( pgno<=pBt->nPage );
607     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
608     if( !pBt->pHasContent ){
609       rc = SQLITE_NOMEM_BKPT;
610     }
611   }
612   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614   }
615   return rc;
616 }
617 
618 /*
619 ** Query the BtShared.pHasContent vector.
620 **
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
624 */
625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626   Bitvec *p = pBt->pHasContent;
627   return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
628 }
629 
630 /*
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
633 */
634 static void btreeClearHasContent(BtShared *pBt){
635   sqlite3BitvecDestroy(pBt->pHasContent);
636   pBt->pHasContent = 0;
637 }
638 
639 /*
640 ** Release all of the apPage[] pages for a cursor.
641 */
642 static void btreeReleaseAllCursorPages(BtCursor *pCur){
643   int i;
644   if( pCur->iPage>=0 ){
645     for(i=0; i<pCur->iPage; i++){
646       releasePageNotNull(pCur->apPage[i]);
647     }
648     releasePageNotNull(pCur->pPage);
649     pCur->iPage = -1;
650   }
651 }
652 
653 /*
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658 ** code otherwise.
659 **
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
664 ** the key.
665 */
666 static int saveCursorKey(BtCursor *pCur){
667   int rc = SQLITE_OK;
668   assert( CURSOR_VALID==pCur->eState );
669   assert( 0==pCur->pKey );
670   assert( cursorHoldsMutex(pCur) );
671 
672   if( pCur->curIntKey ){
673     /* Only the rowid is required for a table btree */
674     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675   }else{
676     /* For an index btree, save the complete key content. It is possible
677     ** that the current key is corrupt. In that case, it is possible that
678     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679     ** up to the size of 1 varint plus 1 8-byte value when the cursor
680     ** position is restored. Hence the 17 bytes of padding allocated
681     ** below. */
682     void *pKey;
683     pCur->nKey = sqlite3BtreePayloadSize(pCur);
684     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
685     if( pKey ){
686       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
687       if( rc==SQLITE_OK ){
688         memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
689         pCur->pKey = pKey;
690       }else{
691         sqlite3_free(pKey);
692       }
693     }else{
694       rc = SQLITE_NOMEM_BKPT;
695     }
696   }
697   assert( !pCur->curIntKey || !pCur->pKey );
698   return rc;
699 }
700 
701 /*
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
704 **
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
707 */
708 static int saveCursorPosition(BtCursor *pCur){
709   int rc;
710 
711   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
712   assert( 0==pCur->pKey );
713   assert( cursorHoldsMutex(pCur) );
714 
715   if( pCur->curFlags & BTCF_Pinned ){
716     return SQLITE_CONSTRAINT_PINNED;
717   }
718   if( pCur->eState==CURSOR_SKIPNEXT ){
719     pCur->eState = CURSOR_VALID;
720   }else{
721     pCur->skipNext = 0;
722   }
723 
724   rc = saveCursorKey(pCur);
725   if( rc==SQLITE_OK ){
726     btreeReleaseAllCursorPages(pCur);
727     pCur->eState = CURSOR_REQUIRESEEK;
728   }
729 
730   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
731   return rc;
732 }
733 
734 /* Forward reference */
735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736 
737 /*
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot.  "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified.  This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
744 **
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
747 ** routine enforces that rule.  This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
749 **
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
753 **
754 ** Implementation note:  This routine merely checks to see if any cursors
755 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
757 */
758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759   BtCursor *p;
760   assert( sqlite3_mutex_held(pBt->mutex) );
761   assert( pExcept==0 || pExcept->pBt==pBt );
762   for(p=pBt->pCursor; p; p=p->pNext){
763     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764   }
765   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767   return SQLITE_OK;
768 }
769 
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
774 */
775 static int SQLITE_NOINLINE saveCursorsOnList(
776   BtCursor *p,         /* The first cursor that needs saving */
777   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
778   BtCursor *pExcept    /* Do not save this cursor */
779 ){
780   do{
781     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
782       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
783         int rc = saveCursorPosition(p);
784         if( SQLITE_OK!=rc ){
785           return rc;
786         }
787       }else{
788         testcase( p->iPage>=0 );
789         btreeReleaseAllCursorPages(p);
790       }
791     }
792     p = p->pNext;
793   }while( p );
794   return SQLITE_OK;
795 }
796 
797 /*
798 ** Clear the current cursor position.
799 */
800 void sqlite3BtreeClearCursor(BtCursor *pCur){
801   assert( cursorHoldsMutex(pCur) );
802   sqlite3_free(pCur->pKey);
803   pCur->pKey = 0;
804   pCur->eState = CURSOR_INVALID;
805 }
806 
807 /*
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
810 ** record and then call BtreeMovetoUnpacked() to do the work.
811 */
812 static int btreeMoveto(
813   BtCursor *pCur,     /* Cursor open on the btree to be searched */
814   const void *pKey,   /* Packed key if the btree is an index */
815   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
816   int bias,           /* Bias search to the high end */
817   int *pRes           /* Write search results here */
818 ){
819   int rc;                    /* Status code */
820   UnpackedRecord *pIdxKey;   /* Unpacked index key */
821 
822   if( pKey ){
823     KeyInfo *pKeyInfo = pCur->pKeyInfo;
824     assert( nKey==(i64)(int)nKey );
825     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
826     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
827     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
829       rc = SQLITE_CORRUPT_BKPT;
830     }else{
831       rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
832     }
833     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
834   }else{
835     pIdxKey = 0;
836     rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
837   }
838   return rc;
839 }
840 
841 /*
842 ** Restore the cursor to the position it was in (or as close to as possible)
843 ** when saveCursorPosition() was called. Note that this call deletes the
844 ** saved position info stored by saveCursorPosition(), so there can be
845 ** at most one effective restoreCursorPosition() call after each
846 ** saveCursorPosition().
847 */
848 static int btreeRestoreCursorPosition(BtCursor *pCur){
849   int rc;
850   int skipNext = 0;
851   assert( cursorOwnsBtShared(pCur) );
852   assert( pCur->eState>=CURSOR_REQUIRESEEK );
853   if( pCur->eState==CURSOR_FAULT ){
854     return pCur->skipNext;
855   }
856   pCur->eState = CURSOR_INVALID;
857   if( sqlite3FaultSim(410) ){
858     rc = SQLITE_IOERR;
859   }else{
860     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
861   }
862   if( rc==SQLITE_OK ){
863     sqlite3_free(pCur->pKey);
864     pCur->pKey = 0;
865     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
866     if( skipNext ) pCur->skipNext = skipNext;
867     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868       pCur->eState = CURSOR_SKIPNEXT;
869     }
870   }
871   return rc;
872 }
873 
874 #define restoreCursorPosition(p) \
875   (p->eState>=CURSOR_REQUIRESEEK ? \
876          btreeRestoreCursorPosition(p) : \
877          SQLITE_OK)
878 
879 /*
880 ** Determine whether or not a cursor has moved from the position where
881 ** it was last placed, or has been invalidated for any other reason.
882 ** Cursors can move when the row they are pointing at is deleted out
883 ** from under them, for example.  Cursor might also move if a btree
884 ** is rebalanced.
885 **
886 ** Calling this routine with a NULL cursor pointer returns false.
887 **
888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889 ** back to where it ought to be if this routine returns true.
890 */
891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
892   assert( EIGHT_BYTE_ALIGNMENT(pCur)
893        || pCur==sqlite3BtreeFakeValidCursor() );
894   assert( offsetof(BtCursor, eState)==0 );
895   assert( sizeof(pCur->eState)==1 );
896   return CURSOR_VALID != *(u8*)pCur;
897 }
898 
899 /*
900 ** Return a pointer to a fake BtCursor object that will always answer
901 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
902 ** cursor returned must not be used with any other Btree interface.
903 */
904 BtCursor *sqlite3BtreeFakeValidCursor(void){
905   static u8 fakeCursor = CURSOR_VALID;
906   assert( offsetof(BtCursor, eState)==0 );
907   return (BtCursor*)&fakeCursor;
908 }
909 
910 /*
911 ** This routine restores a cursor back to its original position after it
912 ** has been moved by some outside activity (such as a btree rebalance or
913 ** a row having been deleted out from under the cursor).
914 **
915 ** On success, the *pDifferentRow parameter is false if the cursor is left
916 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
917 ** was pointing to has been deleted, forcing the cursor to point to some
918 ** nearby row.
919 **
920 ** This routine should only be called for a cursor that just returned
921 ** TRUE from sqlite3BtreeCursorHasMoved().
922 */
923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
924   int rc;
925 
926   assert( pCur!=0 );
927   assert( pCur->eState!=CURSOR_VALID );
928   rc = restoreCursorPosition(pCur);
929   if( rc ){
930     *pDifferentRow = 1;
931     return rc;
932   }
933   if( pCur->eState!=CURSOR_VALID ){
934     *pDifferentRow = 1;
935   }else{
936     *pDifferentRow = 0;
937   }
938   return SQLITE_OK;
939 }
940 
941 #ifdef SQLITE_ENABLE_CURSOR_HINTS
942 /*
943 ** Provide hints to the cursor.  The particular hint given (and the type
944 ** and number of the varargs parameters) is determined by the eHintType
945 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
946 */
947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
948   /* Used only by system that substitute their own storage engine */
949 }
950 #endif
951 
952 /*
953 ** Provide flag hints to the cursor.
954 */
955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957   pCur->hints = x;
958 }
959 
960 
961 #ifndef SQLITE_OMIT_AUTOVACUUM
962 /*
963 ** Given a page number of a regular database page, return the page
964 ** number for the pointer-map page that contains the entry for the
965 ** input page number.
966 **
967 ** Return 0 (not a valid page) for pgno==1 since there is
968 ** no pointer map associated with page 1.  The integrity_check logic
969 ** requires that ptrmapPageno(*,1)!=1.
970 */
971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
972   int nPagesPerMapPage;
973   Pgno iPtrMap, ret;
974   assert( sqlite3_mutex_held(pBt->mutex) );
975   if( pgno<2 ) return 0;
976   nPagesPerMapPage = (pBt->usableSize/5)+1;
977   iPtrMap = (pgno-2)/nPagesPerMapPage;
978   ret = (iPtrMap*nPagesPerMapPage) + 2;
979   if( ret==PENDING_BYTE_PAGE(pBt) ){
980     ret++;
981   }
982   return ret;
983 }
984 
985 /*
986 ** Write an entry into the pointer map.
987 **
988 ** This routine updates the pointer map entry for page number 'key'
989 ** so that it maps to type 'eType' and parent page number 'pgno'.
990 **
991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992 ** a no-op.  If an error occurs, the appropriate error code is written
993 ** into *pRC.
994 */
995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
996   DbPage *pDbPage;  /* The pointer map page */
997   u8 *pPtrmap;      /* The pointer map data */
998   Pgno iPtrmap;     /* The pointer map page number */
999   int offset;       /* Offset in pointer map page */
1000   int rc;           /* Return code from subfunctions */
1001 
1002   if( *pRC ) return;
1003 
1004   assert( sqlite3_mutex_held(pBt->mutex) );
1005   /* The super-journal page number must never be used as a pointer map page */
1006   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1007 
1008   assert( pBt->autoVacuum );
1009   if( key==0 ){
1010     *pRC = SQLITE_CORRUPT_BKPT;
1011     return;
1012   }
1013   iPtrmap = PTRMAP_PAGENO(pBt, key);
1014   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1015   if( rc!=SQLITE_OK ){
1016     *pRC = rc;
1017     return;
1018   }
1019   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020     /* The first byte of the extra data is the MemPage.isInit byte.
1021     ** If that byte is set, it means this page is also being used
1022     ** as a btree page. */
1023     *pRC = SQLITE_CORRUPT_BKPT;
1024     goto ptrmap_exit;
1025   }
1026   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1027   if( offset<0 ){
1028     *pRC = SQLITE_CORRUPT_BKPT;
1029     goto ptrmap_exit;
1030   }
1031   assert( offset <= (int)pBt->usableSize-5 );
1032   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1033 
1034   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1036     *pRC= rc = sqlite3PagerWrite(pDbPage);
1037     if( rc==SQLITE_OK ){
1038       pPtrmap[offset] = eType;
1039       put4byte(&pPtrmap[offset+1], parent);
1040     }
1041   }
1042 
1043 ptrmap_exit:
1044   sqlite3PagerUnref(pDbPage);
1045 }
1046 
1047 /*
1048 ** Read an entry from the pointer map.
1049 **
1050 ** This routine retrieves the pointer map entry for page 'key', writing
1051 ** the type and parent page number to *pEType and *pPgno respectively.
1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1053 */
1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1055   DbPage *pDbPage;   /* The pointer map page */
1056   int iPtrmap;       /* Pointer map page index */
1057   u8 *pPtrmap;       /* Pointer map page data */
1058   int offset;        /* Offset of entry in pointer map */
1059   int rc;
1060 
1061   assert( sqlite3_mutex_held(pBt->mutex) );
1062 
1063   iPtrmap = PTRMAP_PAGENO(pBt, key);
1064   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1065   if( rc!=0 ){
1066     return rc;
1067   }
1068   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1069 
1070   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1071   if( offset<0 ){
1072     sqlite3PagerUnref(pDbPage);
1073     return SQLITE_CORRUPT_BKPT;
1074   }
1075   assert( offset <= (int)pBt->usableSize-5 );
1076   assert( pEType!=0 );
1077   *pEType = pPtrmap[offset];
1078   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1079 
1080   sqlite3PagerUnref(pDbPage);
1081   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1082   return SQLITE_OK;
1083 }
1084 
1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1086   #define ptrmapPut(w,x,y,z,rc)
1087   #define ptrmapGet(w,x,y,z) SQLITE_OK
1088   #define ptrmapPutOvflPtr(x, y, z, rc)
1089 #endif
1090 
1091 /*
1092 ** Given a btree page and a cell index (0 means the first cell on
1093 ** the page, 1 means the second cell, and so forth) return a pointer
1094 ** to the cell content.
1095 **
1096 ** findCellPastPtr() does the same except it skips past the initial
1097 ** 4-byte child pointer found on interior pages, if there is one.
1098 **
1099 ** This routine works only for pages that do not contain overflow cells.
1100 */
1101 #define findCell(P,I) \
1102   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1103 #define findCellPastPtr(P,I) \
1104   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1105 
1106 
1107 /*
1108 ** This is common tail processing for btreeParseCellPtr() and
1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1111 ** structure.
1112 */
1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114   MemPage *pPage,         /* Page containing the cell */
1115   u8 *pCell,              /* Pointer to the cell text. */
1116   CellInfo *pInfo         /* Fill in this structure */
1117 ){
1118   /* If the payload will not fit completely on the local page, we have
1119   ** to decide how much to store locally and how much to spill onto
1120   ** overflow pages.  The strategy is to minimize the amount of unused
1121   ** space on overflow pages while keeping the amount of local storage
1122   ** in between minLocal and maxLocal.
1123   **
1124   ** Warning:  changing the way overflow payload is distributed in any
1125   ** way will result in an incompatible file format.
1126   */
1127   int minLocal;  /* Minimum amount of payload held locally */
1128   int maxLocal;  /* Maximum amount of payload held locally */
1129   int surplus;   /* Overflow payload available for local storage */
1130 
1131   minLocal = pPage->minLocal;
1132   maxLocal = pPage->maxLocal;
1133   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134   testcase( surplus==maxLocal );
1135   testcase( surplus==maxLocal+1 );
1136   if( surplus <= maxLocal ){
1137     pInfo->nLocal = (u16)surplus;
1138   }else{
1139     pInfo->nLocal = (u16)minLocal;
1140   }
1141   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1142 }
1143 
1144 /*
1145 ** Given a record with nPayload bytes of payload stored within btree
1146 ** page pPage, return the number of bytes of payload stored locally.
1147 */
1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
1149   int maxLocal;  /* Maximum amount of payload held locally */
1150   maxLocal = pPage->maxLocal;
1151   if( nPayload<=maxLocal ){
1152     return nPayload;
1153   }else{
1154     int minLocal;  /* Minimum amount of payload held locally */
1155     int surplus;   /* Overflow payload available for local storage */
1156     minLocal = pPage->minLocal;
1157     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158     return ( surplus <= maxLocal ) ? surplus : minLocal;
1159   }
1160 }
1161 
1162 /*
1163 ** The following routines are implementations of the MemPage.xParseCell()
1164 ** method.
1165 **
1166 ** Parse a cell content block and fill in the CellInfo structure.
1167 **
1168 ** btreeParseCellPtr()        =>   table btree leaf nodes
1169 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1170 ** btreeParseCellPtrIndex()   =>   index btree nodes
1171 **
1172 ** There is also a wrapper function btreeParseCell() that works for
1173 ** all MemPage types and that references the cell by index rather than
1174 ** by pointer.
1175 */
1176 static void btreeParseCellPtrNoPayload(
1177   MemPage *pPage,         /* Page containing the cell */
1178   u8 *pCell,              /* Pointer to the cell text. */
1179   CellInfo *pInfo         /* Fill in this structure */
1180 ){
1181   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182   assert( pPage->leaf==0 );
1183   assert( pPage->childPtrSize==4 );
1184 #ifndef SQLITE_DEBUG
1185   UNUSED_PARAMETER(pPage);
1186 #endif
1187   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188   pInfo->nPayload = 0;
1189   pInfo->nLocal = 0;
1190   pInfo->pPayload = 0;
1191   return;
1192 }
1193 static void btreeParseCellPtr(
1194   MemPage *pPage,         /* Page containing the cell */
1195   u8 *pCell,              /* Pointer to the cell text. */
1196   CellInfo *pInfo         /* Fill in this structure */
1197 ){
1198   u8 *pIter;              /* For scanning through pCell */
1199   u32 nPayload;           /* Number of bytes of cell payload */
1200   u64 iKey;               /* Extracted Key value */
1201 
1202   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1203   assert( pPage->leaf==0 || pPage->leaf==1 );
1204   assert( pPage->intKeyLeaf );
1205   assert( pPage->childPtrSize==0 );
1206   pIter = pCell;
1207 
1208   /* The next block of code is equivalent to:
1209   **
1210   **     pIter += getVarint32(pIter, nPayload);
1211   **
1212   ** The code is inlined to avoid a function call.
1213   */
1214   nPayload = *pIter;
1215   if( nPayload>=0x80 ){
1216     u8 *pEnd = &pIter[8];
1217     nPayload &= 0x7f;
1218     do{
1219       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220     }while( (*pIter)>=0x80 && pIter<pEnd );
1221   }
1222   pIter++;
1223 
1224   /* The next block of code is equivalent to:
1225   **
1226   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1227   **
1228   ** The code is inlined to avoid a function call.
1229   */
1230   iKey = *pIter;
1231   if( iKey>=0x80 ){
1232     u8 *pEnd = &pIter[7];
1233     iKey &= 0x7f;
1234     while(1){
1235       iKey = (iKey<<7) | (*++pIter & 0x7f);
1236       if( (*pIter)<0x80 ) break;
1237       if( pIter>=pEnd ){
1238         iKey = (iKey<<8) | *++pIter;
1239         break;
1240       }
1241     }
1242   }
1243   pIter++;
1244 
1245   pInfo->nKey = *(i64*)&iKey;
1246   pInfo->nPayload = nPayload;
1247   pInfo->pPayload = pIter;
1248   testcase( nPayload==pPage->maxLocal );
1249   testcase( nPayload==pPage->maxLocal+1 );
1250   if( nPayload<=pPage->maxLocal ){
1251     /* This is the (easy) common case where the entire payload fits
1252     ** on the local page.  No overflow is required.
1253     */
1254     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1255     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1256     pInfo->nLocal = (u16)nPayload;
1257   }else{
1258     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1259   }
1260 }
1261 static void btreeParseCellPtrIndex(
1262   MemPage *pPage,         /* Page containing the cell */
1263   u8 *pCell,              /* Pointer to the cell text. */
1264   CellInfo *pInfo         /* Fill in this structure */
1265 ){
1266   u8 *pIter;              /* For scanning through pCell */
1267   u32 nPayload;           /* Number of bytes of cell payload */
1268 
1269   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1270   assert( pPage->leaf==0 || pPage->leaf==1 );
1271   assert( pPage->intKeyLeaf==0 );
1272   pIter = pCell + pPage->childPtrSize;
1273   nPayload = *pIter;
1274   if( nPayload>=0x80 ){
1275     u8 *pEnd = &pIter[8];
1276     nPayload &= 0x7f;
1277     do{
1278       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1279     }while( *(pIter)>=0x80 && pIter<pEnd );
1280   }
1281   pIter++;
1282   pInfo->nKey = nPayload;
1283   pInfo->nPayload = nPayload;
1284   pInfo->pPayload = pIter;
1285   testcase( nPayload==pPage->maxLocal );
1286   testcase( nPayload==pPage->maxLocal+1 );
1287   if( nPayload<=pPage->maxLocal ){
1288     /* This is the (easy) common case where the entire payload fits
1289     ** on the local page.  No overflow is required.
1290     */
1291     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1292     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1293     pInfo->nLocal = (u16)nPayload;
1294   }else{
1295     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1296   }
1297 }
1298 static void btreeParseCell(
1299   MemPage *pPage,         /* Page containing the cell */
1300   int iCell,              /* The cell index.  First cell is 0 */
1301   CellInfo *pInfo         /* Fill in this structure */
1302 ){
1303   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1304 }
1305 
1306 /*
1307 ** The following routines are implementations of the MemPage.xCellSize
1308 ** method.
1309 **
1310 ** Compute the total number of bytes that a Cell needs in the cell
1311 ** data area of the btree-page.  The return number includes the cell
1312 ** data header and the local payload, but not any overflow page or
1313 ** the space used by the cell pointer.
1314 **
1315 ** cellSizePtrNoPayload()    =>   table internal nodes
1316 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1317 */
1318 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1319   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1320   u8 *pEnd;                                /* End mark for a varint */
1321   u32 nSize;                               /* Size value to return */
1322 
1323 #ifdef SQLITE_DEBUG
1324   /* The value returned by this function should always be the same as
1325   ** the (CellInfo.nSize) value found by doing a full parse of the
1326   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1327   ** this function verifies that this invariant is not violated. */
1328   CellInfo debuginfo;
1329   pPage->xParseCell(pPage, pCell, &debuginfo);
1330 #endif
1331 
1332   nSize = *pIter;
1333   if( nSize>=0x80 ){
1334     pEnd = &pIter[8];
1335     nSize &= 0x7f;
1336     do{
1337       nSize = (nSize<<7) | (*++pIter & 0x7f);
1338     }while( *(pIter)>=0x80 && pIter<pEnd );
1339   }
1340   pIter++;
1341   if( pPage->intKey ){
1342     /* pIter now points at the 64-bit integer key value, a variable length
1343     ** integer. The following block moves pIter to point at the first byte
1344     ** past the end of the key value. */
1345     pEnd = &pIter[9];
1346     while( (*pIter++)&0x80 && pIter<pEnd );
1347   }
1348   testcase( nSize==pPage->maxLocal );
1349   testcase( nSize==pPage->maxLocal+1 );
1350   if( nSize<=pPage->maxLocal ){
1351     nSize += (u32)(pIter - pCell);
1352     if( nSize<4 ) nSize = 4;
1353   }else{
1354     int minLocal = pPage->minLocal;
1355     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1356     testcase( nSize==pPage->maxLocal );
1357     testcase( nSize==pPage->maxLocal+1 );
1358     if( nSize>pPage->maxLocal ){
1359       nSize = minLocal;
1360     }
1361     nSize += 4 + (u16)(pIter - pCell);
1362   }
1363   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1364   return (u16)nSize;
1365 }
1366 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1367   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1368   u8 *pEnd;              /* End mark for a varint */
1369 
1370 #ifdef SQLITE_DEBUG
1371   /* The value returned by this function should always be the same as
1372   ** the (CellInfo.nSize) value found by doing a full parse of the
1373   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1374   ** this function verifies that this invariant is not violated. */
1375   CellInfo debuginfo;
1376   pPage->xParseCell(pPage, pCell, &debuginfo);
1377 #else
1378   UNUSED_PARAMETER(pPage);
1379 #endif
1380 
1381   assert( pPage->childPtrSize==4 );
1382   pEnd = pIter + 9;
1383   while( (*pIter++)&0x80 && pIter<pEnd );
1384   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1385   return (u16)(pIter - pCell);
1386 }
1387 
1388 
1389 #ifdef SQLITE_DEBUG
1390 /* This variation on cellSizePtr() is used inside of assert() statements
1391 ** only. */
1392 static u16 cellSize(MemPage *pPage, int iCell){
1393   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1394 }
1395 #endif
1396 
1397 #ifndef SQLITE_OMIT_AUTOVACUUM
1398 /*
1399 ** The cell pCell is currently part of page pSrc but will ultimately be part
1400 ** of pPage.  (pSrc and pPager are often the same.)  If pCell contains a
1401 ** pointer to an overflow page, insert an entry into the pointer-map for
1402 ** the overflow page that will be valid after pCell has been moved to pPage.
1403 */
1404 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1405   CellInfo info;
1406   if( *pRC ) return;
1407   assert( pCell!=0 );
1408   pPage->xParseCell(pPage, pCell, &info);
1409   if( info.nLocal<info.nPayload ){
1410     Pgno ovfl;
1411     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1412       testcase( pSrc!=pPage );
1413       *pRC = SQLITE_CORRUPT_BKPT;
1414       return;
1415     }
1416     ovfl = get4byte(&pCell[info.nSize-4]);
1417     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1418   }
1419 }
1420 #endif
1421 
1422 
1423 /*
1424 ** Defragment the page given. This routine reorganizes cells within the
1425 ** page so that there are no free-blocks on the free-block list.
1426 **
1427 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1428 ** present in the page after this routine returns.
1429 **
1430 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1431 ** b-tree page so that there are no freeblocks or fragment bytes, all
1432 ** unused bytes are contained in the unallocated space region, and all
1433 ** cells are packed tightly at the end of the page.
1434 */
1435 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1436   int i;                     /* Loop counter */
1437   int pc;                    /* Address of the i-th cell */
1438   int hdr;                   /* Offset to the page header */
1439   int size;                  /* Size of a cell */
1440   int usableSize;            /* Number of usable bytes on a page */
1441   int cellOffset;            /* Offset to the cell pointer array */
1442   int cbrk;                  /* Offset to the cell content area */
1443   int nCell;                 /* Number of cells on the page */
1444   unsigned char *data;       /* The page data */
1445   unsigned char *temp;       /* Temp area for cell content */
1446   unsigned char *src;        /* Source of content */
1447   int iCellFirst;            /* First allowable cell index */
1448   int iCellLast;             /* Last possible cell index */
1449   int iCellStart;            /* First cell offset in input */
1450 
1451   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1452   assert( pPage->pBt!=0 );
1453   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1454   assert( pPage->nOverflow==0 );
1455   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1456   temp = 0;
1457   src = data = pPage->aData;
1458   hdr = pPage->hdrOffset;
1459   cellOffset = pPage->cellOffset;
1460   nCell = pPage->nCell;
1461   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1462   iCellFirst = cellOffset + 2*nCell;
1463   usableSize = pPage->pBt->usableSize;
1464 
1465   /* This block handles pages with two or fewer free blocks and nMaxFrag
1466   ** or fewer fragmented bytes. In this case it is faster to move the
1467   ** two (or one) blocks of cells using memmove() and add the required
1468   ** offsets to each pointer in the cell-pointer array than it is to
1469   ** reconstruct the entire page.  */
1470   if( (int)data[hdr+7]<=nMaxFrag ){
1471     int iFree = get2byte(&data[hdr+1]);
1472     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1473     if( iFree ){
1474       int iFree2 = get2byte(&data[iFree]);
1475       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1476       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1477         u8 *pEnd = &data[cellOffset + nCell*2];
1478         u8 *pAddr;
1479         int sz2 = 0;
1480         int sz = get2byte(&data[iFree+2]);
1481         int top = get2byte(&data[hdr+5]);
1482         if( top>=iFree ){
1483           return SQLITE_CORRUPT_PAGE(pPage);
1484         }
1485         if( iFree2 ){
1486           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1487           sz2 = get2byte(&data[iFree2+2]);
1488           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1489           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1490           sz += sz2;
1491         }else if( iFree+sz>usableSize ){
1492           return SQLITE_CORRUPT_PAGE(pPage);
1493         }
1494 
1495         cbrk = top+sz;
1496         assert( cbrk+(iFree-top) <= usableSize );
1497         memmove(&data[cbrk], &data[top], iFree-top);
1498         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1499           pc = get2byte(pAddr);
1500           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1501           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1502         }
1503         goto defragment_out;
1504       }
1505     }
1506   }
1507 
1508   cbrk = usableSize;
1509   iCellLast = usableSize - 4;
1510   iCellStart = get2byte(&data[hdr+5]);
1511   for(i=0; i<nCell; i++){
1512     u8 *pAddr;     /* The i-th cell pointer */
1513     pAddr = &data[cellOffset + i*2];
1514     pc = get2byte(pAddr);
1515     testcase( pc==iCellFirst );
1516     testcase( pc==iCellLast );
1517     /* These conditions have already been verified in btreeInitPage()
1518     ** if PRAGMA cell_size_check=ON.
1519     */
1520     if( pc<iCellStart || pc>iCellLast ){
1521       return SQLITE_CORRUPT_PAGE(pPage);
1522     }
1523     assert( pc>=iCellStart && pc<=iCellLast );
1524     size = pPage->xCellSize(pPage, &src[pc]);
1525     cbrk -= size;
1526     if( cbrk<iCellStart || pc+size>usableSize ){
1527       return SQLITE_CORRUPT_PAGE(pPage);
1528     }
1529     assert( cbrk+size<=usableSize && cbrk>=iCellStart );
1530     testcase( cbrk+size==usableSize );
1531     testcase( pc+size==usableSize );
1532     put2byte(pAddr, cbrk);
1533     if( temp==0 ){
1534       if( cbrk==pc ) continue;
1535       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1536       memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
1537       src = temp;
1538     }
1539     memcpy(&data[cbrk], &src[pc], size);
1540   }
1541   data[hdr+7] = 0;
1542 
1543  defragment_out:
1544   assert( pPage->nFree>=0 );
1545   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1546     return SQLITE_CORRUPT_PAGE(pPage);
1547   }
1548   assert( cbrk>=iCellFirst );
1549   put2byte(&data[hdr+5], cbrk);
1550   data[hdr+1] = 0;
1551   data[hdr+2] = 0;
1552   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1553   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1554   return SQLITE_OK;
1555 }
1556 
1557 /*
1558 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1559 ** size. If one can be found, return a pointer to the space and remove it
1560 ** from the free-list.
1561 **
1562 ** If no suitable space can be found on the free-list, return NULL.
1563 **
1564 ** This function may detect corruption within pPg.  If corruption is
1565 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1566 **
1567 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1568 ** will be ignored if adding the extra space to the fragmentation count
1569 ** causes the fragmentation count to exceed 60.
1570 */
1571 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1572   const int hdr = pPg->hdrOffset;            /* Offset to page header */
1573   u8 * const aData = pPg->aData;             /* Page data */
1574   int iAddr = hdr + 1;                       /* Address of ptr to pc */
1575   int pc = get2byte(&aData[iAddr]);          /* Address of a free slot */
1576   int x;                                     /* Excess size of the slot */
1577   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */
1578   int size;                                  /* Size of the free slot */
1579 
1580   assert( pc>0 );
1581   while( pc<=maxPC ){
1582     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1583     ** freeblock form a big-endian integer which is the size of the freeblock
1584     ** in bytes, including the 4-byte header. */
1585     size = get2byte(&aData[pc+2]);
1586     if( (x = size - nByte)>=0 ){
1587       testcase( x==4 );
1588       testcase( x==3 );
1589       if( x<4 ){
1590         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1591         ** number of bytes in fragments may not exceed 60. */
1592         if( aData[hdr+7]>57 ) return 0;
1593 
1594         /* Remove the slot from the free-list. Update the number of
1595         ** fragmented bytes within the page. */
1596         memcpy(&aData[iAddr], &aData[pc], 2);
1597         aData[hdr+7] += (u8)x;
1598       }else if( x+pc > maxPC ){
1599         /* This slot extends off the end of the usable part of the page */
1600         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1601         return 0;
1602       }else{
1603         /* The slot remains on the free-list. Reduce its size to account
1604         ** for the portion used by the new allocation. */
1605         put2byte(&aData[pc+2], x);
1606       }
1607       return &aData[pc + x];
1608     }
1609     iAddr = pc;
1610     pc = get2byte(&aData[pc]);
1611     if( pc<=iAddr+size ){
1612       if( pc ){
1613         /* The next slot in the chain is not past the end of the current slot */
1614         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1615       }
1616       return 0;
1617     }
1618   }
1619   if( pc>maxPC+nByte-4 ){
1620     /* The free slot chain extends off the end of the page */
1621     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1622   }
1623   return 0;
1624 }
1625 
1626 /*
1627 ** Allocate nByte bytes of space from within the B-Tree page passed
1628 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1629 ** of the first byte of allocated space. Return either SQLITE_OK or
1630 ** an error code (usually SQLITE_CORRUPT).
1631 **
1632 ** The caller guarantees that there is sufficient space to make the
1633 ** allocation.  This routine might need to defragment in order to bring
1634 ** all the space together, however.  This routine will avoid using
1635 ** the first two bytes past the cell pointer area since presumably this
1636 ** allocation is being made in order to insert a new cell, so we will
1637 ** also end up needing a new cell pointer.
1638 */
1639 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1640   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1641   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1642   int top;                             /* First byte of cell content area */
1643   int rc = SQLITE_OK;                  /* Integer return code */
1644   int gap;        /* First byte of gap between cell pointers and cell content */
1645 
1646   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1647   assert( pPage->pBt );
1648   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1649   assert( nByte>=0 );  /* Minimum cell size is 4 */
1650   assert( pPage->nFree>=nByte );
1651   assert( pPage->nOverflow==0 );
1652   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1653 
1654   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1655   gap = pPage->cellOffset + 2*pPage->nCell;
1656   assert( gap<=65536 );
1657   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1658   ** and the reserved space is zero (the usual value for reserved space)
1659   ** then the cell content offset of an empty page wants to be 65536.
1660   ** However, that integer is too large to be stored in a 2-byte unsigned
1661   ** integer, so a value of 0 is used in its place. */
1662   top = get2byte(&data[hdr+5]);
1663   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1664   if( gap>top ){
1665     if( top==0 && pPage->pBt->usableSize==65536 ){
1666       top = 65536;
1667     }else{
1668       return SQLITE_CORRUPT_PAGE(pPage);
1669     }
1670   }
1671 
1672   /* If there is enough space between gap and top for one more cell pointer,
1673   ** and if the freelist is not empty, then search the
1674   ** freelist looking for a slot big enough to satisfy the request.
1675   */
1676   testcase( gap+2==top );
1677   testcase( gap+1==top );
1678   testcase( gap==top );
1679   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1680     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1681     if( pSpace ){
1682       int g2;
1683       assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1684       *pIdx = g2 = (int)(pSpace-data);
1685       if( g2<=gap ){
1686         return SQLITE_CORRUPT_PAGE(pPage);
1687       }else{
1688         return SQLITE_OK;
1689       }
1690     }else if( rc ){
1691       return rc;
1692     }
1693   }
1694 
1695   /* The request could not be fulfilled using a freelist slot.  Check
1696   ** to see if defragmentation is necessary.
1697   */
1698   testcase( gap+2+nByte==top );
1699   if( gap+2+nByte>top ){
1700     assert( pPage->nCell>0 || CORRUPT_DB );
1701     assert( pPage->nFree>=0 );
1702     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1703     if( rc ) return rc;
1704     top = get2byteNotZero(&data[hdr+5]);
1705     assert( gap+2+nByte<=top );
1706   }
1707 
1708 
1709   /* Allocate memory from the gap in between the cell pointer array
1710   ** and the cell content area.  The btreeComputeFreeSpace() call has already
1711   ** validated the freelist.  Given that the freelist is valid, there
1712   ** is no way that the allocation can extend off the end of the page.
1713   ** The assert() below verifies the previous sentence.
1714   */
1715   top -= nByte;
1716   put2byte(&data[hdr+5], top);
1717   assert( top+nByte <= (int)pPage->pBt->usableSize );
1718   *pIdx = top;
1719   return SQLITE_OK;
1720 }
1721 
1722 /*
1723 ** Return a section of the pPage->aData to the freelist.
1724 ** The first byte of the new free block is pPage->aData[iStart]
1725 ** and the size of the block is iSize bytes.
1726 **
1727 ** Adjacent freeblocks are coalesced.
1728 **
1729 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1730 ** that routine will not detect overlap between cells or freeblocks.  Nor
1731 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1732 ** at the end of the page.  So do additional corruption checks inside this
1733 ** routine and return SQLITE_CORRUPT if any problems are found.
1734 */
1735 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1736   u16 iPtr;                             /* Address of ptr to next freeblock */
1737   u16 iFreeBlk;                         /* Address of the next freeblock */
1738   u8 hdr;                               /* Page header size.  0 or 100 */
1739   u8 nFrag = 0;                         /* Reduction in fragmentation */
1740   u16 iOrigSize = iSize;                /* Original value of iSize */
1741   u16 x;                                /* Offset to cell content area */
1742   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1743   unsigned char *data = pPage->aData;   /* Page content */
1744 
1745   assert( pPage->pBt!=0 );
1746   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1747   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1748   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1749   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1750   assert( iSize>=4 );   /* Minimum cell size is 4 */
1751   assert( iStart<=pPage->pBt->usableSize-4 );
1752 
1753   /* The list of freeblocks must be in ascending order.  Find the
1754   ** spot on the list where iStart should be inserted.
1755   */
1756   hdr = pPage->hdrOffset;
1757   iPtr = hdr + 1;
1758   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1759     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1760   }else{
1761     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1762       if( iFreeBlk<iPtr+4 ){
1763         if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
1764         return SQLITE_CORRUPT_PAGE(pPage);
1765       }
1766       iPtr = iFreeBlk;
1767     }
1768     if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
1769       return SQLITE_CORRUPT_PAGE(pPage);
1770     }
1771     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1772 
1773     /* At this point:
1774     **    iFreeBlk:   First freeblock after iStart, or zero if none
1775     **    iPtr:       The address of a pointer to iFreeBlk
1776     **
1777     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1778     */
1779     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1780       nFrag = iFreeBlk - iEnd;
1781       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1782       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1783       if( iEnd > pPage->pBt->usableSize ){
1784         return SQLITE_CORRUPT_PAGE(pPage);
1785       }
1786       iSize = iEnd - iStart;
1787       iFreeBlk = get2byte(&data[iFreeBlk]);
1788     }
1789 
1790     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1791     ** pointer in the page header) then check to see if iStart should be
1792     ** coalesced onto the end of iPtr.
1793     */
1794     if( iPtr>hdr+1 ){
1795       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1796       if( iPtrEnd+3>=iStart ){
1797         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1798         nFrag += iStart - iPtrEnd;
1799         iSize = iEnd - iPtr;
1800         iStart = iPtr;
1801       }
1802     }
1803     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1804     data[hdr+7] -= nFrag;
1805   }
1806   x = get2byte(&data[hdr+5]);
1807   if( iStart<=x ){
1808     /* The new freeblock is at the beginning of the cell content area,
1809     ** so just extend the cell content area rather than create another
1810     ** freelist entry */
1811     if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
1812     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1813     put2byte(&data[hdr+1], iFreeBlk);
1814     put2byte(&data[hdr+5], iEnd);
1815   }else{
1816     /* Insert the new freeblock into the freelist */
1817     put2byte(&data[iPtr], iStart);
1818   }
1819   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1820     /* Overwrite deleted information with zeros when the secure_delete
1821     ** option is enabled */
1822     memset(&data[iStart], 0, iSize);
1823   }
1824   put2byte(&data[iStart], iFreeBlk);
1825   put2byte(&data[iStart+2], iSize);
1826   pPage->nFree += iOrigSize;
1827   return SQLITE_OK;
1828 }
1829 
1830 /*
1831 ** Decode the flags byte (the first byte of the header) for a page
1832 ** and initialize fields of the MemPage structure accordingly.
1833 **
1834 ** Only the following combinations are supported.  Anything different
1835 ** indicates a corrupt database files:
1836 **
1837 **         PTF_ZERODATA
1838 **         PTF_ZERODATA | PTF_LEAF
1839 **         PTF_LEAFDATA | PTF_INTKEY
1840 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1841 */
1842 static int decodeFlags(MemPage *pPage, int flagByte){
1843   BtShared *pBt;     /* A copy of pPage->pBt */
1844 
1845   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1846   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1847   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1848   flagByte &= ~PTF_LEAF;
1849   pPage->childPtrSize = 4-4*pPage->leaf;
1850   pPage->xCellSize = cellSizePtr;
1851   pBt = pPage->pBt;
1852   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1853     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1854     ** interior table b-tree page. */
1855     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1856     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1857     ** leaf table b-tree page. */
1858     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1859     pPage->intKey = 1;
1860     if( pPage->leaf ){
1861       pPage->intKeyLeaf = 1;
1862       pPage->xParseCell = btreeParseCellPtr;
1863     }else{
1864       pPage->intKeyLeaf = 0;
1865       pPage->xCellSize = cellSizePtrNoPayload;
1866       pPage->xParseCell = btreeParseCellPtrNoPayload;
1867     }
1868     pPage->maxLocal = pBt->maxLeaf;
1869     pPage->minLocal = pBt->minLeaf;
1870   }else if( flagByte==PTF_ZERODATA ){
1871     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1872     ** interior index b-tree page. */
1873     assert( (PTF_ZERODATA)==2 );
1874     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1875     ** leaf index b-tree page. */
1876     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1877     pPage->intKey = 0;
1878     pPage->intKeyLeaf = 0;
1879     pPage->xParseCell = btreeParseCellPtrIndex;
1880     pPage->maxLocal = pBt->maxLocal;
1881     pPage->minLocal = pBt->minLocal;
1882   }else{
1883     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1884     ** an error. */
1885     return SQLITE_CORRUPT_PAGE(pPage);
1886   }
1887   pPage->max1bytePayload = pBt->max1bytePayload;
1888   return SQLITE_OK;
1889 }
1890 
1891 /*
1892 ** Compute the amount of freespace on the page.  In other words, fill
1893 ** in the pPage->nFree field.
1894 */
1895 static int btreeComputeFreeSpace(MemPage *pPage){
1896   int pc;            /* Address of a freeblock within pPage->aData[] */
1897   u8 hdr;            /* Offset to beginning of page header */
1898   u8 *data;          /* Equal to pPage->aData */
1899   int usableSize;    /* Amount of usable space on each page */
1900   int nFree;         /* Number of unused bytes on the page */
1901   int top;           /* First byte of the cell content area */
1902   int iCellFirst;    /* First allowable cell or freeblock offset */
1903   int iCellLast;     /* Last possible cell or freeblock offset */
1904 
1905   assert( pPage->pBt!=0 );
1906   assert( pPage->pBt->db!=0 );
1907   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1908   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1909   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1910   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1911   assert( pPage->isInit==1 );
1912   assert( pPage->nFree<0 );
1913 
1914   usableSize = pPage->pBt->usableSize;
1915   hdr = pPage->hdrOffset;
1916   data = pPage->aData;
1917   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1918   ** the start of the cell content area. A zero value for this integer is
1919   ** interpreted as 65536. */
1920   top = get2byteNotZero(&data[hdr+5]);
1921   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1922   iCellLast = usableSize - 4;
1923 
1924   /* Compute the total free space on the page
1925   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1926   ** start of the first freeblock on the page, or is zero if there are no
1927   ** freeblocks. */
1928   pc = get2byte(&data[hdr+1]);
1929   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1930   if( pc>0 ){
1931     u32 next, size;
1932     if( pc<top ){
1933       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1934       ** always be at least one cell before the first freeblock.
1935       */
1936       return SQLITE_CORRUPT_PAGE(pPage);
1937     }
1938     while( 1 ){
1939       if( pc>iCellLast ){
1940         /* Freeblock off the end of the page */
1941         return SQLITE_CORRUPT_PAGE(pPage);
1942       }
1943       next = get2byte(&data[pc]);
1944       size = get2byte(&data[pc+2]);
1945       nFree = nFree + size;
1946       if( next<=pc+size+3 ) break;
1947       pc = next;
1948     }
1949     if( next>0 ){
1950       /* Freeblock not in ascending order */
1951       return SQLITE_CORRUPT_PAGE(pPage);
1952     }
1953     if( pc+size>(unsigned int)usableSize ){
1954       /* Last freeblock extends past page end */
1955       return SQLITE_CORRUPT_PAGE(pPage);
1956     }
1957   }
1958 
1959   /* At this point, nFree contains the sum of the offset to the start
1960   ** of the cell-content area plus the number of free bytes within
1961   ** the cell-content area. If this is greater than the usable-size
1962   ** of the page, then the page must be corrupted. This check also
1963   ** serves to verify that the offset to the start of the cell-content
1964   ** area, according to the page header, lies within the page.
1965   */
1966   if( nFree>usableSize || nFree<iCellFirst ){
1967     return SQLITE_CORRUPT_PAGE(pPage);
1968   }
1969   pPage->nFree = (u16)(nFree - iCellFirst);
1970   return SQLITE_OK;
1971 }
1972 
1973 /*
1974 ** Do additional sanity check after btreeInitPage() if
1975 ** PRAGMA cell_size_check=ON
1976 */
1977 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1978   int iCellFirst;    /* First allowable cell or freeblock offset */
1979   int iCellLast;     /* Last possible cell or freeblock offset */
1980   int i;             /* Index into the cell pointer array */
1981   int sz;            /* Size of a cell */
1982   int pc;            /* Address of a freeblock within pPage->aData[] */
1983   u8 *data;          /* Equal to pPage->aData */
1984   int usableSize;    /* Maximum usable space on the page */
1985   int cellOffset;    /* Start of cell content area */
1986 
1987   iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1988   usableSize = pPage->pBt->usableSize;
1989   iCellLast = usableSize - 4;
1990   data = pPage->aData;
1991   cellOffset = pPage->cellOffset;
1992   if( !pPage->leaf ) iCellLast--;
1993   for(i=0; i<pPage->nCell; i++){
1994     pc = get2byteAligned(&data[cellOffset+i*2]);
1995     testcase( pc==iCellFirst );
1996     testcase( pc==iCellLast );
1997     if( pc<iCellFirst || pc>iCellLast ){
1998       return SQLITE_CORRUPT_PAGE(pPage);
1999     }
2000     sz = pPage->xCellSize(pPage, &data[pc]);
2001     testcase( pc+sz==usableSize );
2002     if( pc+sz>usableSize ){
2003       return SQLITE_CORRUPT_PAGE(pPage);
2004     }
2005   }
2006   return SQLITE_OK;
2007 }
2008 
2009 /*
2010 ** Initialize the auxiliary information for a disk block.
2011 **
2012 ** Return SQLITE_OK on success.  If we see that the page does
2013 ** not contain a well-formed database page, then return
2014 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
2015 ** guarantee that the page is well-formed.  It only shows that
2016 ** we failed to detect any corruption.
2017 */
2018 static int btreeInitPage(MemPage *pPage){
2019   u8 *data;          /* Equal to pPage->aData */
2020   BtShared *pBt;        /* The main btree structure */
2021 
2022   assert( pPage->pBt!=0 );
2023   assert( pPage->pBt->db!=0 );
2024   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2025   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2026   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2027   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2028   assert( pPage->isInit==0 );
2029 
2030   pBt = pPage->pBt;
2031   data = pPage->aData + pPage->hdrOffset;
2032   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2033   ** the b-tree page type. */
2034   if( decodeFlags(pPage, data[0]) ){
2035     return SQLITE_CORRUPT_PAGE(pPage);
2036   }
2037   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2038   pPage->maskPage = (u16)(pBt->pageSize - 1);
2039   pPage->nOverflow = 0;
2040   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2041   pPage->aCellIdx = data + pPage->childPtrSize + 8;
2042   pPage->aDataEnd = pPage->aData + pBt->usableSize;
2043   pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2044   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2045   ** number of cells on the page. */
2046   pPage->nCell = get2byte(&data[3]);
2047   if( pPage->nCell>MX_CELL(pBt) ){
2048     /* To many cells for a single page.  The page must be corrupt */
2049     return SQLITE_CORRUPT_PAGE(pPage);
2050   }
2051   testcase( pPage->nCell==MX_CELL(pBt) );
2052   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2053   ** possible for a root page of a table that contains no rows) then the
2054   ** offset to the cell content area will equal the page size minus the
2055   ** bytes of reserved space. */
2056   assert( pPage->nCell>0
2057        || get2byteNotZero(&data[5])==(int)pBt->usableSize
2058        || CORRUPT_DB );
2059   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */
2060   pPage->isInit = 1;
2061   if( pBt->db->flags & SQLITE_CellSizeCk ){
2062     return btreeCellSizeCheck(pPage);
2063   }
2064   return SQLITE_OK;
2065 }
2066 
2067 /*
2068 ** Set up a raw page so that it looks like a database page holding
2069 ** no entries.
2070 */
2071 static void zeroPage(MemPage *pPage, int flags){
2072   unsigned char *data = pPage->aData;
2073   BtShared *pBt = pPage->pBt;
2074   u8 hdr = pPage->hdrOffset;
2075   u16 first;
2076 
2077   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
2078   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2079   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2080   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2081   assert( sqlite3_mutex_held(pBt->mutex) );
2082   if( pBt->btsFlags & BTS_FAST_SECURE ){
2083     memset(&data[hdr], 0, pBt->usableSize - hdr);
2084   }
2085   data[hdr] = (char)flags;
2086   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2087   memset(&data[hdr+1], 0, 4);
2088   data[hdr+7] = 0;
2089   put2byte(&data[hdr+5], pBt->usableSize);
2090   pPage->nFree = (u16)(pBt->usableSize - first);
2091   decodeFlags(pPage, flags);
2092   pPage->cellOffset = first;
2093   pPage->aDataEnd = &data[pBt->usableSize];
2094   pPage->aCellIdx = &data[first];
2095   pPage->aDataOfst = &data[pPage->childPtrSize];
2096   pPage->nOverflow = 0;
2097   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2098   pPage->maskPage = (u16)(pBt->pageSize - 1);
2099   pPage->nCell = 0;
2100   pPage->isInit = 1;
2101 }
2102 
2103 
2104 /*
2105 ** Convert a DbPage obtained from the pager into a MemPage used by
2106 ** the btree layer.
2107 */
2108 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2109   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2110   if( pgno!=pPage->pgno ){
2111     pPage->aData = sqlite3PagerGetData(pDbPage);
2112     pPage->pDbPage = pDbPage;
2113     pPage->pBt = pBt;
2114     pPage->pgno = pgno;
2115     pPage->hdrOffset = pgno==1 ? 100 : 0;
2116   }
2117   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2118   return pPage;
2119 }
2120 
2121 /*
2122 ** Get a page from the pager.  Initialize the MemPage.pBt and
2123 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2124 **
2125 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2126 ** about the content of the page at this time.  So do not go to the disk
2127 ** to fetch the content.  Just fill in the content with zeros for now.
2128 ** If in the future we call sqlite3PagerWrite() on this page, that
2129 ** means we have started to be concerned about content and the disk
2130 ** read should occur at that point.
2131 */
2132 static int btreeGetPage(
2133   BtShared *pBt,       /* The btree */
2134   Pgno pgno,           /* Number of the page to fetch */
2135   MemPage **ppPage,    /* Return the page in this parameter */
2136   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2137 ){
2138   int rc;
2139   DbPage *pDbPage;
2140 
2141   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2142   assert( sqlite3_mutex_held(pBt->mutex) );
2143   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2144   if( rc ) return rc;
2145   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2146   return SQLITE_OK;
2147 }
2148 
2149 /*
2150 ** Retrieve a page from the pager cache. If the requested page is not
2151 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2152 ** MemPage.aData elements if needed.
2153 */
2154 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2155   DbPage *pDbPage;
2156   assert( sqlite3_mutex_held(pBt->mutex) );
2157   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2158   if( pDbPage ){
2159     return btreePageFromDbPage(pDbPage, pgno, pBt);
2160   }
2161   return 0;
2162 }
2163 
2164 /*
2165 ** Return the size of the database file in pages. If there is any kind of
2166 ** error, return ((unsigned int)-1).
2167 */
2168 static Pgno btreePagecount(BtShared *pBt){
2169   return pBt->nPage;
2170 }
2171 Pgno sqlite3BtreeLastPage(Btree *p){
2172   assert( sqlite3BtreeHoldsMutex(p) );
2173   return btreePagecount(p->pBt);
2174 }
2175 
2176 /*
2177 ** Get a page from the pager and initialize it.
2178 **
2179 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2180 ** call.  Do additional sanity checking on the page in this case.
2181 ** And if the fetch fails, this routine must decrement pCur->iPage.
2182 **
2183 ** The page is fetched as read-write unless pCur is not NULL and is
2184 ** a read-only cursor.
2185 **
2186 ** If an error occurs, then *ppPage is undefined. It
2187 ** may remain unchanged, or it may be set to an invalid value.
2188 */
2189 static int getAndInitPage(
2190   BtShared *pBt,                  /* The database file */
2191   Pgno pgno,                      /* Number of the page to get */
2192   MemPage **ppPage,               /* Write the page pointer here */
2193   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2194   int bReadOnly                   /* True for a read-only page */
2195 ){
2196   int rc;
2197   DbPage *pDbPage;
2198   assert( sqlite3_mutex_held(pBt->mutex) );
2199   assert( pCur==0 || ppPage==&pCur->pPage );
2200   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2201   assert( pCur==0 || pCur->iPage>0 );
2202 
2203   if( pgno>btreePagecount(pBt) ){
2204     rc = SQLITE_CORRUPT_BKPT;
2205     goto getAndInitPage_error1;
2206   }
2207   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2208   if( rc ){
2209     goto getAndInitPage_error1;
2210   }
2211   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2212   if( (*ppPage)->isInit==0 ){
2213     btreePageFromDbPage(pDbPage, pgno, pBt);
2214     rc = btreeInitPage(*ppPage);
2215     if( rc!=SQLITE_OK ){
2216       goto getAndInitPage_error2;
2217     }
2218   }
2219   assert( (*ppPage)->pgno==pgno );
2220   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2221 
2222   /* If obtaining a child page for a cursor, we must verify that the page is
2223   ** compatible with the root page. */
2224   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2225     rc = SQLITE_CORRUPT_PGNO(pgno);
2226     goto getAndInitPage_error2;
2227   }
2228   return SQLITE_OK;
2229 
2230 getAndInitPage_error2:
2231   releasePage(*ppPage);
2232 getAndInitPage_error1:
2233   if( pCur ){
2234     pCur->iPage--;
2235     pCur->pPage = pCur->apPage[pCur->iPage];
2236   }
2237   testcase( pgno==0 );
2238   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2239   return rc;
2240 }
2241 
2242 /*
2243 ** Release a MemPage.  This should be called once for each prior
2244 ** call to btreeGetPage.
2245 **
2246 ** Page1 is a special case and must be released using releasePageOne().
2247 */
2248 static void releasePageNotNull(MemPage *pPage){
2249   assert( pPage->aData );
2250   assert( pPage->pBt );
2251   assert( pPage->pDbPage!=0 );
2252   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2253   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2254   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2255   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2256 }
2257 static void releasePage(MemPage *pPage){
2258   if( pPage ) releasePageNotNull(pPage);
2259 }
2260 static void releasePageOne(MemPage *pPage){
2261   assert( pPage!=0 );
2262   assert( pPage->aData );
2263   assert( pPage->pBt );
2264   assert( pPage->pDbPage!=0 );
2265   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2266   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2267   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2268   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2269 }
2270 
2271 /*
2272 ** Get an unused page.
2273 **
2274 ** This works just like btreeGetPage() with the addition:
2275 **
2276 **   *  If the page is already in use for some other purpose, immediately
2277 **      release it and return an SQLITE_CURRUPT error.
2278 **   *  Make sure the isInit flag is clear
2279 */
2280 static int btreeGetUnusedPage(
2281   BtShared *pBt,       /* The btree */
2282   Pgno pgno,           /* Number of the page to fetch */
2283   MemPage **ppPage,    /* Return the page in this parameter */
2284   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2285 ){
2286   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2287   if( rc==SQLITE_OK ){
2288     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2289       releasePage(*ppPage);
2290       *ppPage = 0;
2291       return SQLITE_CORRUPT_BKPT;
2292     }
2293     (*ppPage)->isInit = 0;
2294   }else{
2295     *ppPage = 0;
2296   }
2297   return rc;
2298 }
2299 
2300 
2301 /*
2302 ** During a rollback, when the pager reloads information into the cache
2303 ** so that the cache is restored to its original state at the start of
2304 ** the transaction, for each page restored this routine is called.
2305 **
2306 ** This routine needs to reset the extra data section at the end of the
2307 ** page to agree with the restored data.
2308 */
2309 static void pageReinit(DbPage *pData){
2310   MemPage *pPage;
2311   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2312   assert( sqlite3PagerPageRefcount(pData)>0 );
2313   if( pPage->isInit ){
2314     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2315     pPage->isInit = 0;
2316     if( sqlite3PagerPageRefcount(pData)>1 ){
2317       /* pPage might not be a btree page;  it might be an overflow page
2318       ** or ptrmap page or a free page.  In those cases, the following
2319       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2320       ** But no harm is done by this.  And it is very important that
2321       ** btreeInitPage() be called on every btree page so we make
2322       ** the call for every page that comes in for re-initing. */
2323       btreeInitPage(pPage);
2324     }
2325   }
2326 }
2327 
2328 /*
2329 ** Invoke the busy handler for a btree.
2330 */
2331 static int btreeInvokeBusyHandler(void *pArg){
2332   BtShared *pBt = (BtShared*)pArg;
2333   assert( pBt->db );
2334   assert( sqlite3_mutex_held(pBt->db->mutex) );
2335   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2336 }
2337 
2338 /*
2339 ** Open a database file.
2340 **
2341 ** zFilename is the name of the database file.  If zFilename is NULL
2342 ** then an ephemeral database is created.  The ephemeral database might
2343 ** be exclusively in memory, or it might use a disk-based memory cache.
2344 ** Either way, the ephemeral database will be automatically deleted
2345 ** when sqlite3BtreeClose() is called.
2346 **
2347 ** If zFilename is ":memory:" then an in-memory database is created
2348 ** that is automatically destroyed when it is closed.
2349 **
2350 ** The "flags" parameter is a bitmask that might contain bits like
2351 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2352 **
2353 ** If the database is already opened in the same database connection
2354 ** and we are in shared cache mode, then the open will fail with an
2355 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2356 ** objects in the same database connection since doing so will lead
2357 ** to problems with locking.
2358 */
2359 int sqlite3BtreeOpen(
2360   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2361   const char *zFilename,  /* Name of the file containing the BTree database */
2362   sqlite3 *db,            /* Associated database handle */
2363   Btree **ppBtree,        /* Pointer to new Btree object written here */
2364   int flags,              /* Options */
2365   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2366 ){
2367   BtShared *pBt = 0;             /* Shared part of btree structure */
2368   Btree *p;                      /* Handle to return */
2369   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2370   int rc = SQLITE_OK;            /* Result code from this function */
2371   u8 nReserve;                   /* Byte of unused space on each page */
2372   unsigned char zDbHeader[100];  /* Database header content */
2373 
2374   /* True if opening an ephemeral, temporary database */
2375   const int isTempDb = zFilename==0 || zFilename[0]==0;
2376 
2377   /* Set the variable isMemdb to true for an in-memory database, or
2378   ** false for a file-based database.
2379   */
2380 #ifdef SQLITE_OMIT_MEMORYDB
2381   const int isMemdb = 0;
2382 #else
2383   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2384                        || (isTempDb && sqlite3TempInMemory(db))
2385                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2386 #endif
2387 
2388   assert( db!=0 );
2389   assert( pVfs!=0 );
2390   assert( sqlite3_mutex_held(db->mutex) );
2391   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2392 
2393   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2394   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2395 
2396   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2397   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2398 
2399   if( isMemdb ){
2400     flags |= BTREE_MEMORY;
2401   }
2402   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2403     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2404   }
2405   p = sqlite3MallocZero(sizeof(Btree));
2406   if( !p ){
2407     return SQLITE_NOMEM_BKPT;
2408   }
2409   p->inTrans = TRANS_NONE;
2410   p->db = db;
2411 #ifndef SQLITE_OMIT_SHARED_CACHE
2412   p->lock.pBtree = p;
2413   p->lock.iTable = 1;
2414 #endif
2415 
2416 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2417   /*
2418   ** If this Btree is a candidate for shared cache, try to find an
2419   ** existing BtShared object that we can share with
2420   */
2421   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2422     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2423       int nFilename = sqlite3Strlen30(zFilename)+1;
2424       int nFullPathname = pVfs->mxPathname+1;
2425       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2426       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2427 
2428       p->sharable = 1;
2429       if( !zFullPathname ){
2430         sqlite3_free(p);
2431         return SQLITE_NOMEM_BKPT;
2432       }
2433       if( isMemdb ){
2434         memcpy(zFullPathname, zFilename, nFilename);
2435       }else{
2436         rc = sqlite3OsFullPathname(pVfs, zFilename,
2437                                    nFullPathname, zFullPathname);
2438         if( rc ){
2439           if( rc==SQLITE_OK_SYMLINK ){
2440             rc = SQLITE_OK;
2441           }else{
2442             sqlite3_free(zFullPathname);
2443             sqlite3_free(p);
2444             return rc;
2445           }
2446         }
2447       }
2448 #if SQLITE_THREADSAFE
2449       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2450       sqlite3_mutex_enter(mutexOpen);
2451       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
2452       sqlite3_mutex_enter(mutexShared);
2453 #endif
2454       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2455         assert( pBt->nRef>0 );
2456         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2457                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2458           int iDb;
2459           for(iDb=db->nDb-1; iDb>=0; iDb--){
2460             Btree *pExisting = db->aDb[iDb].pBt;
2461             if( pExisting && pExisting->pBt==pBt ){
2462               sqlite3_mutex_leave(mutexShared);
2463               sqlite3_mutex_leave(mutexOpen);
2464               sqlite3_free(zFullPathname);
2465               sqlite3_free(p);
2466               return SQLITE_CONSTRAINT;
2467             }
2468           }
2469           p->pBt = pBt;
2470           pBt->nRef++;
2471           break;
2472         }
2473       }
2474       sqlite3_mutex_leave(mutexShared);
2475       sqlite3_free(zFullPathname);
2476     }
2477 #ifdef SQLITE_DEBUG
2478     else{
2479       /* In debug mode, we mark all persistent databases as sharable
2480       ** even when they are not.  This exercises the locking code and
2481       ** gives more opportunity for asserts(sqlite3_mutex_held())
2482       ** statements to find locking problems.
2483       */
2484       p->sharable = 1;
2485     }
2486 #endif
2487   }
2488 #endif
2489   if( pBt==0 ){
2490     /*
2491     ** The following asserts make sure that structures used by the btree are
2492     ** the right size.  This is to guard against size changes that result
2493     ** when compiling on a different architecture.
2494     */
2495     assert( sizeof(i64)==8 );
2496     assert( sizeof(u64)==8 );
2497     assert( sizeof(u32)==4 );
2498     assert( sizeof(u16)==2 );
2499     assert( sizeof(Pgno)==4 );
2500 
2501     pBt = sqlite3MallocZero( sizeof(*pBt) );
2502     if( pBt==0 ){
2503       rc = SQLITE_NOMEM_BKPT;
2504       goto btree_open_out;
2505     }
2506     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2507                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2508     if( rc==SQLITE_OK ){
2509       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2510       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2511     }
2512     if( rc!=SQLITE_OK ){
2513       goto btree_open_out;
2514     }
2515     pBt->openFlags = (u8)flags;
2516     pBt->db = db;
2517     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2518     p->pBt = pBt;
2519 
2520     pBt->pCursor = 0;
2521     pBt->pPage1 = 0;
2522     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2523 #if defined(SQLITE_SECURE_DELETE)
2524     pBt->btsFlags |= BTS_SECURE_DELETE;
2525 #elif defined(SQLITE_FAST_SECURE_DELETE)
2526     pBt->btsFlags |= BTS_OVERWRITE;
2527 #endif
2528     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2529     ** determined by the 2-byte integer located at an offset of 16 bytes from
2530     ** the beginning of the database file. */
2531     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2532     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2533          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2534       pBt->pageSize = 0;
2535 #ifndef SQLITE_OMIT_AUTOVACUUM
2536       /* If the magic name ":memory:" will create an in-memory database, then
2537       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2538       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2539       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2540       ** regular file-name. In this case the auto-vacuum applies as per normal.
2541       */
2542       if( zFilename && !isMemdb ){
2543         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2544         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2545       }
2546 #endif
2547       nReserve = 0;
2548     }else{
2549       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2550       ** determined by the one-byte unsigned integer found at an offset of 20
2551       ** into the database file header. */
2552       nReserve = zDbHeader[20];
2553       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2554 #ifndef SQLITE_OMIT_AUTOVACUUM
2555       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2556       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2557 #endif
2558     }
2559     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2560     if( rc ) goto btree_open_out;
2561     pBt->usableSize = pBt->pageSize - nReserve;
2562     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2563 
2564 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2565     /* Add the new BtShared object to the linked list sharable BtShareds.
2566     */
2567     pBt->nRef = 1;
2568     if( p->sharable ){
2569       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2570       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
2571       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2572         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2573         if( pBt->mutex==0 ){
2574           rc = SQLITE_NOMEM_BKPT;
2575           goto btree_open_out;
2576         }
2577       }
2578       sqlite3_mutex_enter(mutexShared);
2579       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2580       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2581       sqlite3_mutex_leave(mutexShared);
2582     }
2583 #endif
2584   }
2585 
2586 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2587   /* If the new Btree uses a sharable pBtShared, then link the new
2588   ** Btree into the list of all sharable Btrees for the same connection.
2589   ** The list is kept in ascending order by pBt address.
2590   */
2591   if( p->sharable ){
2592     int i;
2593     Btree *pSib;
2594     for(i=0; i<db->nDb; i++){
2595       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2596         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2597         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2598           p->pNext = pSib;
2599           p->pPrev = 0;
2600           pSib->pPrev = p;
2601         }else{
2602           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2603             pSib = pSib->pNext;
2604           }
2605           p->pNext = pSib->pNext;
2606           p->pPrev = pSib;
2607           if( p->pNext ){
2608             p->pNext->pPrev = p;
2609           }
2610           pSib->pNext = p;
2611         }
2612         break;
2613       }
2614     }
2615   }
2616 #endif
2617   *ppBtree = p;
2618 
2619 btree_open_out:
2620   if( rc!=SQLITE_OK ){
2621     if( pBt && pBt->pPager ){
2622       sqlite3PagerClose(pBt->pPager, 0);
2623     }
2624     sqlite3_free(pBt);
2625     sqlite3_free(p);
2626     *ppBtree = 0;
2627   }else{
2628     sqlite3_file *pFile;
2629 
2630     /* If the B-Tree was successfully opened, set the pager-cache size to the
2631     ** default value. Except, when opening on an existing shared pager-cache,
2632     ** do not change the pager-cache size.
2633     */
2634     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2635       sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
2636     }
2637 
2638     pFile = sqlite3PagerFile(pBt->pPager);
2639     if( pFile->pMethods ){
2640       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2641     }
2642   }
2643   if( mutexOpen ){
2644     assert( sqlite3_mutex_held(mutexOpen) );
2645     sqlite3_mutex_leave(mutexOpen);
2646   }
2647   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2648   return rc;
2649 }
2650 
2651 /*
2652 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2653 ** remove the BtShared structure from the sharing list.  Return
2654 ** true if the BtShared.nRef counter reaches zero and return
2655 ** false if it is still positive.
2656 */
2657 static int removeFromSharingList(BtShared *pBt){
2658 #ifndef SQLITE_OMIT_SHARED_CACHE
2659   MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
2660   BtShared *pList;
2661   int removed = 0;
2662 
2663   assert( sqlite3_mutex_notheld(pBt->mutex) );
2664   MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2665   sqlite3_mutex_enter(pMainMtx);
2666   pBt->nRef--;
2667   if( pBt->nRef<=0 ){
2668     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2669       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2670     }else{
2671       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2672       while( ALWAYS(pList) && pList->pNext!=pBt ){
2673         pList=pList->pNext;
2674       }
2675       if( ALWAYS(pList) ){
2676         pList->pNext = pBt->pNext;
2677       }
2678     }
2679     if( SQLITE_THREADSAFE ){
2680       sqlite3_mutex_free(pBt->mutex);
2681     }
2682     removed = 1;
2683   }
2684   sqlite3_mutex_leave(pMainMtx);
2685   return removed;
2686 #else
2687   return 1;
2688 #endif
2689 }
2690 
2691 /*
2692 ** Make sure pBt->pTmpSpace points to an allocation of
2693 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2694 ** pointer.
2695 */
2696 static void allocateTempSpace(BtShared *pBt){
2697   if( !pBt->pTmpSpace ){
2698     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2699 
2700     /* One of the uses of pBt->pTmpSpace is to format cells before
2701     ** inserting them into a leaf page (function fillInCell()). If
2702     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2703     ** by the various routines that manipulate binary cells. Which
2704     ** can mean that fillInCell() only initializes the first 2 or 3
2705     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2706     ** it into a database page. This is not actually a problem, but it
2707     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2708     ** data is passed to system call write(). So to avoid this error,
2709     ** zero the first 4 bytes of temp space here.
2710     **
2711     ** Also:  Provide four bytes of initialized space before the
2712     ** beginning of pTmpSpace as an area available to prepend the
2713     ** left-child pointer to the beginning of a cell.
2714     */
2715     if( pBt->pTmpSpace ){
2716       memset(pBt->pTmpSpace, 0, 8);
2717       pBt->pTmpSpace += 4;
2718     }
2719   }
2720 }
2721 
2722 /*
2723 ** Free the pBt->pTmpSpace allocation
2724 */
2725 static void freeTempSpace(BtShared *pBt){
2726   if( pBt->pTmpSpace ){
2727     pBt->pTmpSpace -= 4;
2728     sqlite3PageFree(pBt->pTmpSpace);
2729     pBt->pTmpSpace = 0;
2730   }
2731 }
2732 
2733 /*
2734 ** Close an open database and invalidate all cursors.
2735 */
2736 int sqlite3BtreeClose(Btree *p){
2737   BtShared *pBt = p->pBt;
2738 
2739   /* Close all cursors opened via this handle.  */
2740   assert( sqlite3_mutex_held(p->db->mutex) );
2741   sqlite3BtreeEnter(p);
2742 
2743   /* Verify that no other cursors have this Btree open */
2744 #ifdef SQLITE_DEBUG
2745   {
2746     BtCursor *pCur = pBt->pCursor;
2747     while( pCur ){
2748       BtCursor *pTmp = pCur;
2749       pCur = pCur->pNext;
2750       assert( pTmp->pBtree!=p );
2751 
2752     }
2753   }
2754 #endif
2755 
2756   /* Rollback any active transaction and free the handle structure.
2757   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2758   ** this handle.
2759   */
2760   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2761   sqlite3BtreeLeave(p);
2762 
2763   /* If there are still other outstanding references to the shared-btree
2764   ** structure, return now. The remainder of this procedure cleans
2765   ** up the shared-btree.
2766   */
2767   assert( p->wantToLock==0 && p->locked==0 );
2768   if( !p->sharable || removeFromSharingList(pBt) ){
2769     /* The pBt is no longer on the sharing list, so we can access
2770     ** it without having to hold the mutex.
2771     **
2772     ** Clean out and delete the BtShared object.
2773     */
2774     assert( !pBt->pCursor );
2775     sqlite3PagerClose(pBt->pPager, p->db);
2776     if( pBt->xFreeSchema && pBt->pSchema ){
2777       pBt->xFreeSchema(pBt->pSchema);
2778     }
2779     sqlite3DbFree(0, pBt->pSchema);
2780     freeTempSpace(pBt);
2781     sqlite3_free(pBt);
2782   }
2783 
2784 #ifndef SQLITE_OMIT_SHARED_CACHE
2785   assert( p->wantToLock==0 );
2786   assert( p->locked==0 );
2787   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2788   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2789 #endif
2790 
2791   sqlite3_free(p);
2792   return SQLITE_OK;
2793 }
2794 
2795 /*
2796 ** Change the "soft" limit on the number of pages in the cache.
2797 ** Unused and unmodified pages will be recycled when the number of
2798 ** pages in the cache exceeds this soft limit.  But the size of the
2799 ** cache is allowed to grow larger than this limit if it contains
2800 ** dirty pages or pages still in active use.
2801 */
2802 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2803   BtShared *pBt = p->pBt;
2804   assert( sqlite3_mutex_held(p->db->mutex) );
2805   sqlite3BtreeEnter(p);
2806   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2807   sqlite3BtreeLeave(p);
2808   return SQLITE_OK;
2809 }
2810 
2811 /*
2812 ** Change the "spill" limit on the number of pages in the cache.
2813 ** If the number of pages exceeds this limit during a write transaction,
2814 ** the pager might attempt to "spill" pages to the journal early in
2815 ** order to free up memory.
2816 **
2817 ** The value returned is the current spill size.  If zero is passed
2818 ** as an argument, no changes are made to the spill size setting, so
2819 ** using mxPage of 0 is a way to query the current spill size.
2820 */
2821 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2822   BtShared *pBt = p->pBt;
2823   int res;
2824   assert( sqlite3_mutex_held(p->db->mutex) );
2825   sqlite3BtreeEnter(p);
2826   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2827   sqlite3BtreeLeave(p);
2828   return res;
2829 }
2830 
2831 #if SQLITE_MAX_MMAP_SIZE>0
2832 /*
2833 ** Change the limit on the amount of the database file that may be
2834 ** memory mapped.
2835 */
2836 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2837   BtShared *pBt = p->pBt;
2838   assert( sqlite3_mutex_held(p->db->mutex) );
2839   sqlite3BtreeEnter(p);
2840   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2841   sqlite3BtreeLeave(p);
2842   return SQLITE_OK;
2843 }
2844 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2845 
2846 /*
2847 ** Change the way data is synced to disk in order to increase or decrease
2848 ** how well the database resists damage due to OS crashes and power
2849 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2850 ** there is a high probability of damage)  Level 2 is the default.  There
2851 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2852 ** probability of damage to near zero but with a write performance reduction.
2853 */
2854 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2855 int sqlite3BtreeSetPagerFlags(
2856   Btree *p,              /* The btree to set the safety level on */
2857   unsigned pgFlags       /* Various PAGER_* flags */
2858 ){
2859   BtShared *pBt = p->pBt;
2860   assert( sqlite3_mutex_held(p->db->mutex) );
2861   sqlite3BtreeEnter(p);
2862   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2863   sqlite3BtreeLeave(p);
2864   return SQLITE_OK;
2865 }
2866 #endif
2867 
2868 /*
2869 ** Change the default pages size and the number of reserved bytes per page.
2870 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2871 ** without changing anything.
2872 **
2873 ** The page size must be a power of 2 between 512 and 65536.  If the page
2874 ** size supplied does not meet this constraint then the page size is not
2875 ** changed.
2876 **
2877 ** Page sizes are constrained to be a power of two so that the region
2878 ** of the database file used for locking (beginning at PENDING_BYTE,
2879 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2880 ** at the beginning of a page.
2881 **
2882 ** If parameter nReserve is less than zero, then the number of reserved
2883 ** bytes per page is left unchanged.
2884 **
2885 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2886 ** and autovacuum mode can no longer be changed.
2887 */
2888 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2889   int rc = SQLITE_OK;
2890   int x;
2891   BtShared *pBt = p->pBt;
2892   assert( nReserve>=0 && nReserve<=255 );
2893   sqlite3BtreeEnter(p);
2894   pBt->nReserveWanted = nReserve;
2895   x = pBt->pageSize - pBt->usableSize;
2896   if( nReserve<x ) nReserve = x;
2897   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2898     sqlite3BtreeLeave(p);
2899     return SQLITE_READONLY;
2900   }
2901   assert( nReserve>=0 && nReserve<=255 );
2902   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2903         ((pageSize-1)&pageSize)==0 ){
2904     assert( (pageSize & 7)==0 );
2905     assert( !pBt->pCursor );
2906     if( nReserve>32 && pageSize==512 ) pageSize = 1024;
2907     pBt->pageSize = (u32)pageSize;
2908     freeTempSpace(pBt);
2909   }
2910   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2911   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2912   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2913   sqlite3BtreeLeave(p);
2914   return rc;
2915 }
2916 
2917 /*
2918 ** Return the currently defined page size
2919 */
2920 int sqlite3BtreeGetPageSize(Btree *p){
2921   return p->pBt->pageSize;
2922 }
2923 
2924 /*
2925 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2926 ** may only be called if it is guaranteed that the b-tree mutex is already
2927 ** held.
2928 **
2929 ** This is useful in one special case in the backup API code where it is
2930 ** known that the shared b-tree mutex is held, but the mutex on the
2931 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2932 ** were to be called, it might collide with some other operation on the
2933 ** database handle that owns *p, causing undefined behavior.
2934 */
2935 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2936   int n;
2937   assert( sqlite3_mutex_held(p->pBt->mutex) );
2938   n = p->pBt->pageSize - p->pBt->usableSize;
2939   return n;
2940 }
2941 
2942 /*
2943 ** Return the number of bytes of space at the end of every page that
2944 ** are intentually left unused.  This is the "reserved" space that is
2945 ** sometimes used by extensions.
2946 **
2947 ** The value returned is the larger of the current reserve size and
2948 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2949 ** The amount of reserve can only grow - never shrink.
2950 */
2951 int sqlite3BtreeGetRequestedReserve(Btree *p){
2952   int n1, n2;
2953   sqlite3BtreeEnter(p);
2954   n1 = (int)p->pBt->nReserveWanted;
2955   n2 = sqlite3BtreeGetReserveNoMutex(p);
2956   sqlite3BtreeLeave(p);
2957   return n1>n2 ? n1 : n2;
2958 }
2959 
2960 
2961 /*
2962 ** Set the maximum page count for a database if mxPage is positive.
2963 ** No changes are made if mxPage is 0 or negative.
2964 ** Regardless of the value of mxPage, return the maximum page count.
2965 */
2966 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
2967   Pgno n;
2968   sqlite3BtreeEnter(p);
2969   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2970   sqlite3BtreeLeave(p);
2971   return n;
2972 }
2973 
2974 /*
2975 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2976 **
2977 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2978 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2979 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2980 **    newFlag==(-1)    No changes
2981 **
2982 ** This routine acts as a query if newFlag is less than zero
2983 **
2984 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2985 ** freelist leaf pages are not written back to the database.  Thus in-page
2986 ** deleted content is cleared, but freelist deleted content is not.
2987 **
2988 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2989 ** that freelist leaf pages are written back into the database, increasing
2990 ** the amount of disk I/O.
2991 */
2992 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2993   int b;
2994   if( p==0 ) return 0;
2995   sqlite3BtreeEnter(p);
2996   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2997   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2998   if( newFlag>=0 ){
2999     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3000     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3001   }
3002   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
3003   sqlite3BtreeLeave(p);
3004   return b;
3005 }
3006 
3007 /*
3008 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3009 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3010 ** is disabled. The default value for the auto-vacuum property is
3011 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3012 */
3013 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
3014 #ifdef SQLITE_OMIT_AUTOVACUUM
3015   return SQLITE_READONLY;
3016 #else
3017   BtShared *pBt = p->pBt;
3018   int rc = SQLITE_OK;
3019   u8 av = (u8)autoVacuum;
3020 
3021   sqlite3BtreeEnter(p);
3022   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
3023     rc = SQLITE_READONLY;
3024   }else{
3025     pBt->autoVacuum = av ?1:0;
3026     pBt->incrVacuum = av==2 ?1:0;
3027   }
3028   sqlite3BtreeLeave(p);
3029   return rc;
3030 #endif
3031 }
3032 
3033 /*
3034 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3035 ** enabled 1 is returned. Otherwise 0.
3036 */
3037 int sqlite3BtreeGetAutoVacuum(Btree *p){
3038 #ifdef SQLITE_OMIT_AUTOVACUUM
3039   return BTREE_AUTOVACUUM_NONE;
3040 #else
3041   int rc;
3042   sqlite3BtreeEnter(p);
3043   rc = (
3044     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3045     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3046     BTREE_AUTOVACUUM_INCR
3047   );
3048   sqlite3BtreeLeave(p);
3049   return rc;
3050 #endif
3051 }
3052 
3053 /*
3054 ** If the user has not set the safety-level for this database connection
3055 ** using "PRAGMA synchronous", and if the safety-level is not already
3056 ** set to the value passed to this function as the second parameter,
3057 ** set it so.
3058 */
3059 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3060     && !defined(SQLITE_OMIT_WAL)
3061 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3062   sqlite3 *db;
3063   Db *pDb;
3064   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3065     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3066     if( pDb->bSyncSet==0
3067      && pDb->safety_level!=safety_level
3068      && pDb!=&db->aDb[1]
3069     ){
3070       pDb->safety_level = safety_level;
3071       sqlite3PagerSetFlags(pBt->pPager,
3072           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3073     }
3074   }
3075 }
3076 #else
3077 # define setDefaultSyncFlag(pBt,safety_level)
3078 #endif
3079 
3080 /* Forward declaration */
3081 static int newDatabase(BtShared*);
3082 
3083 
3084 /*
3085 ** Get a reference to pPage1 of the database file.  This will
3086 ** also acquire a readlock on that file.
3087 **
3088 ** SQLITE_OK is returned on success.  If the file is not a
3089 ** well-formed database file, then SQLITE_CORRUPT is returned.
3090 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3091 ** is returned if we run out of memory.
3092 */
3093 static int lockBtree(BtShared *pBt){
3094   int rc;              /* Result code from subfunctions */
3095   MemPage *pPage1;     /* Page 1 of the database file */
3096   u32 nPage;           /* Number of pages in the database */
3097   u32 nPageFile = 0;   /* Number of pages in the database file */
3098   u32 nPageHeader;     /* Number of pages in the database according to hdr */
3099 
3100   assert( sqlite3_mutex_held(pBt->mutex) );
3101   assert( pBt->pPage1==0 );
3102   rc = sqlite3PagerSharedLock(pBt->pPager);
3103   if( rc!=SQLITE_OK ) return rc;
3104   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3105   if( rc!=SQLITE_OK ) return rc;
3106 
3107   /* Do some checking to help insure the file we opened really is
3108   ** a valid database file.
3109   */
3110   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3111   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3112   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3113     nPage = nPageFile;
3114   }
3115   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3116     nPage = 0;
3117   }
3118   if( nPage>0 ){
3119     u32 pageSize;
3120     u32 usableSize;
3121     u8 *page1 = pPage1->aData;
3122     rc = SQLITE_NOTADB;
3123     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3124     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3125     ** 61 74 20 33 00. */
3126     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3127       goto page1_init_failed;
3128     }
3129 
3130 #ifdef SQLITE_OMIT_WAL
3131     if( page1[18]>1 ){
3132       pBt->btsFlags |= BTS_READ_ONLY;
3133     }
3134     if( page1[19]>1 ){
3135       goto page1_init_failed;
3136     }
3137 #else
3138     if( page1[18]>2 ){
3139       pBt->btsFlags |= BTS_READ_ONLY;
3140     }
3141     if( page1[19]>2 ){
3142       goto page1_init_failed;
3143     }
3144 
3145     /* If the read version is set to 2, this database should be accessed
3146     ** in WAL mode. If the log is not already open, open it now. Then
3147     ** return SQLITE_OK and return without populating BtShared.pPage1.
3148     ** The caller detects this and calls this function again. This is
3149     ** required as the version of page 1 currently in the page1 buffer
3150     ** may not be the latest version - there may be a newer one in the log
3151     ** file.
3152     */
3153     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3154       int isOpen = 0;
3155       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3156       if( rc!=SQLITE_OK ){
3157         goto page1_init_failed;
3158       }else{
3159         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3160         if( isOpen==0 ){
3161           releasePageOne(pPage1);
3162           return SQLITE_OK;
3163         }
3164       }
3165       rc = SQLITE_NOTADB;
3166     }else{
3167       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3168     }
3169 #endif
3170 
3171     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3172     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3173     **
3174     ** The original design allowed these amounts to vary, but as of
3175     ** version 3.6.0, we require them to be fixed.
3176     */
3177     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3178       goto page1_init_failed;
3179     }
3180     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3181     ** determined by the 2-byte integer located at an offset of 16 bytes from
3182     ** the beginning of the database file. */
3183     pageSize = (page1[16]<<8) | (page1[17]<<16);
3184     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3185     ** between 512 and 65536 inclusive. */
3186     if( ((pageSize-1)&pageSize)!=0
3187      || pageSize>SQLITE_MAX_PAGE_SIZE
3188      || pageSize<=256
3189     ){
3190       goto page1_init_failed;
3191     }
3192     pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3193     assert( (pageSize & 7)==0 );
3194     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3195     ** integer at offset 20 is the number of bytes of space at the end of
3196     ** each page to reserve for extensions.
3197     **
3198     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3199     ** determined by the one-byte unsigned integer found at an offset of 20
3200     ** into the database file header. */
3201     usableSize = pageSize - page1[20];
3202     if( (u32)pageSize!=pBt->pageSize ){
3203       /* After reading the first page of the database assuming a page size
3204       ** of BtShared.pageSize, we have discovered that the page-size is
3205       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3206       ** zero and return SQLITE_OK. The caller will call this function
3207       ** again with the correct page-size.
3208       */
3209       releasePageOne(pPage1);
3210       pBt->usableSize = usableSize;
3211       pBt->pageSize = pageSize;
3212       freeTempSpace(pBt);
3213       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3214                                    pageSize-usableSize);
3215       return rc;
3216     }
3217     if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
3218       rc = SQLITE_CORRUPT_BKPT;
3219       goto page1_init_failed;
3220     }
3221     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3222     ** be less than 480. In other words, if the page size is 512, then the
3223     ** reserved space size cannot exceed 32. */
3224     if( usableSize<480 ){
3225       goto page1_init_failed;
3226     }
3227     pBt->pageSize = pageSize;
3228     pBt->usableSize = usableSize;
3229 #ifndef SQLITE_OMIT_AUTOVACUUM
3230     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3231     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3232 #endif
3233   }
3234 
3235   /* maxLocal is the maximum amount of payload to store locally for
3236   ** a cell.  Make sure it is small enough so that at least minFanout
3237   ** cells can will fit on one page.  We assume a 10-byte page header.
3238   ** Besides the payload, the cell must store:
3239   **     2-byte pointer to the cell
3240   **     4-byte child pointer
3241   **     9-byte nKey value
3242   **     4-byte nData value
3243   **     4-byte overflow page pointer
3244   ** So a cell consists of a 2-byte pointer, a header which is as much as
3245   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3246   ** page pointer.
3247   */
3248   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3249   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3250   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3251   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3252   if( pBt->maxLocal>127 ){
3253     pBt->max1bytePayload = 127;
3254   }else{
3255     pBt->max1bytePayload = (u8)pBt->maxLocal;
3256   }
3257   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3258   pBt->pPage1 = pPage1;
3259   pBt->nPage = nPage;
3260   return SQLITE_OK;
3261 
3262 page1_init_failed:
3263   releasePageOne(pPage1);
3264   pBt->pPage1 = 0;
3265   return rc;
3266 }
3267 
3268 #ifndef NDEBUG
3269 /*
3270 ** Return the number of cursors open on pBt. This is for use
3271 ** in assert() expressions, so it is only compiled if NDEBUG is not
3272 ** defined.
3273 **
3274 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3275 ** false then all cursors are counted.
3276 **
3277 ** For the purposes of this routine, a cursor is any cursor that
3278 ** is capable of reading or writing to the database.  Cursors that
3279 ** have been tripped into the CURSOR_FAULT state are not counted.
3280 */
3281 static int countValidCursors(BtShared *pBt, int wrOnly){
3282   BtCursor *pCur;
3283   int r = 0;
3284   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3285     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3286      && pCur->eState!=CURSOR_FAULT ) r++;
3287   }
3288   return r;
3289 }
3290 #endif
3291 
3292 /*
3293 ** If there are no outstanding cursors and we are not in the middle
3294 ** of a transaction but there is a read lock on the database, then
3295 ** this routine unrefs the first page of the database file which
3296 ** has the effect of releasing the read lock.
3297 **
3298 ** If there is a transaction in progress, this routine is a no-op.
3299 */
3300 static void unlockBtreeIfUnused(BtShared *pBt){
3301   assert( sqlite3_mutex_held(pBt->mutex) );
3302   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3303   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3304     MemPage *pPage1 = pBt->pPage1;
3305     assert( pPage1->aData );
3306     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3307     pBt->pPage1 = 0;
3308     releasePageOne(pPage1);
3309   }
3310 }
3311 
3312 /*
3313 ** If pBt points to an empty file then convert that empty file
3314 ** into a new empty database by initializing the first page of
3315 ** the database.
3316 */
3317 static int newDatabase(BtShared *pBt){
3318   MemPage *pP1;
3319   unsigned char *data;
3320   int rc;
3321 
3322   assert( sqlite3_mutex_held(pBt->mutex) );
3323   if( pBt->nPage>0 ){
3324     return SQLITE_OK;
3325   }
3326   pP1 = pBt->pPage1;
3327   assert( pP1!=0 );
3328   data = pP1->aData;
3329   rc = sqlite3PagerWrite(pP1->pDbPage);
3330   if( rc ) return rc;
3331   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3332   assert( sizeof(zMagicHeader)==16 );
3333   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3334   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3335   data[18] = 1;
3336   data[19] = 1;
3337   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3338   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3339   data[21] = 64;
3340   data[22] = 32;
3341   data[23] = 32;
3342   memset(&data[24], 0, 100-24);
3343   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3344   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3345 #ifndef SQLITE_OMIT_AUTOVACUUM
3346   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3347   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3348   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3349   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3350 #endif
3351   pBt->nPage = 1;
3352   data[31] = 1;
3353   return SQLITE_OK;
3354 }
3355 
3356 /*
3357 ** Initialize the first page of the database file (creating a database
3358 ** consisting of a single page and no schema objects). Return SQLITE_OK
3359 ** if successful, or an SQLite error code otherwise.
3360 */
3361 int sqlite3BtreeNewDb(Btree *p){
3362   int rc;
3363   sqlite3BtreeEnter(p);
3364   p->pBt->nPage = 0;
3365   rc = newDatabase(p->pBt);
3366   sqlite3BtreeLeave(p);
3367   return rc;
3368 }
3369 
3370 /*
3371 ** Attempt to start a new transaction. A write-transaction
3372 ** is started if the second argument is nonzero, otherwise a read-
3373 ** transaction.  If the second argument is 2 or more and exclusive
3374 ** transaction is started, meaning that no other process is allowed
3375 ** to access the database.  A preexisting transaction may not be
3376 ** upgraded to exclusive by calling this routine a second time - the
3377 ** exclusivity flag only works for a new transaction.
3378 **
3379 ** A write-transaction must be started before attempting any
3380 ** changes to the database.  None of the following routines
3381 ** will work unless a transaction is started first:
3382 **
3383 **      sqlite3BtreeCreateTable()
3384 **      sqlite3BtreeCreateIndex()
3385 **      sqlite3BtreeClearTable()
3386 **      sqlite3BtreeDropTable()
3387 **      sqlite3BtreeInsert()
3388 **      sqlite3BtreeDelete()
3389 **      sqlite3BtreeUpdateMeta()
3390 **
3391 ** If an initial attempt to acquire the lock fails because of lock contention
3392 ** and the database was previously unlocked, then invoke the busy handler
3393 ** if there is one.  But if there was previously a read-lock, do not
3394 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3395 ** returned when there is already a read-lock in order to avoid a deadlock.
3396 **
3397 ** Suppose there are two processes A and B.  A has a read lock and B has
3398 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3399 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3400 ** One or the other of the two processes must give way or there can be
3401 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3402 ** when A already has a read lock, we encourage A to give up and let B
3403 ** proceed.
3404 */
3405 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3406   BtShared *pBt = p->pBt;
3407   Pager *pPager = pBt->pPager;
3408   int rc = SQLITE_OK;
3409 
3410   sqlite3BtreeEnter(p);
3411   btreeIntegrity(p);
3412 
3413   /* If the btree is already in a write-transaction, or it
3414   ** is already in a read-transaction and a read-transaction
3415   ** is requested, this is a no-op.
3416   */
3417   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3418     goto trans_begun;
3419   }
3420   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3421 
3422   if( (p->db->flags & SQLITE_ResetDatabase)
3423    && sqlite3PagerIsreadonly(pPager)==0
3424   ){
3425     pBt->btsFlags &= ~BTS_READ_ONLY;
3426   }
3427 
3428   /* Write transactions are not possible on a read-only database */
3429   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3430     rc = SQLITE_READONLY;
3431     goto trans_begun;
3432   }
3433 
3434 #ifndef SQLITE_OMIT_SHARED_CACHE
3435   {
3436     sqlite3 *pBlock = 0;
3437     /* If another database handle has already opened a write transaction
3438     ** on this shared-btree structure and a second write transaction is
3439     ** requested, return SQLITE_LOCKED.
3440     */
3441     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3442      || (pBt->btsFlags & BTS_PENDING)!=0
3443     ){
3444       pBlock = pBt->pWriter->db;
3445     }else if( wrflag>1 ){
3446       BtLock *pIter;
3447       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3448         if( pIter->pBtree!=p ){
3449           pBlock = pIter->pBtree->db;
3450           break;
3451         }
3452       }
3453     }
3454     if( pBlock ){
3455       sqlite3ConnectionBlocked(p->db, pBlock);
3456       rc = SQLITE_LOCKED_SHAREDCACHE;
3457       goto trans_begun;
3458     }
3459   }
3460 #endif
3461 
3462   /* Any read-only or read-write transaction implies a read-lock on
3463   ** page 1. So if some other shared-cache client already has a write-lock
3464   ** on page 1, the transaction cannot be opened. */
3465   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
3466   if( SQLITE_OK!=rc ) goto trans_begun;
3467 
3468   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3469   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3470   do {
3471     sqlite3PagerWalDb(pPager, p->db);
3472 
3473 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3474     /* If transitioning from no transaction directly to a write transaction,
3475     ** block for the WRITER lock first if possible. */
3476     if( pBt->pPage1==0 && wrflag ){
3477       assert( pBt->inTransaction==TRANS_NONE );
3478       rc = sqlite3PagerWalWriteLock(pPager, 1);
3479       if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
3480     }
3481 #endif
3482 
3483     /* Call lockBtree() until either pBt->pPage1 is populated or
3484     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3485     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3486     ** reading page 1 it discovers that the page-size of the database
3487     ** file is not pBt->pageSize. In this case lockBtree() will update
3488     ** pBt->pageSize to the page-size of the file on disk.
3489     */
3490     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3491 
3492     if( rc==SQLITE_OK && wrflag ){
3493       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3494         rc = SQLITE_READONLY;
3495       }else{
3496         rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
3497         if( rc==SQLITE_OK ){
3498           rc = newDatabase(pBt);
3499         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3500           /* if there was no transaction opened when this function was
3501           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3502           ** code to SQLITE_BUSY. */
3503           rc = SQLITE_BUSY;
3504         }
3505       }
3506     }
3507 
3508     if( rc!=SQLITE_OK ){
3509       (void)sqlite3PagerWalWriteLock(pPager, 0);
3510       unlockBtreeIfUnused(pBt);
3511     }
3512   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3513           btreeInvokeBusyHandler(pBt) );
3514   sqlite3PagerWalDb(pPager, 0);
3515 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3516   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3517 #endif
3518 
3519   if( rc==SQLITE_OK ){
3520     if( p->inTrans==TRANS_NONE ){
3521       pBt->nTransaction++;
3522 #ifndef SQLITE_OMIT_SHARED_CACHE
3523       if( p->sharable ){
3524         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3525         p->lock.eLock = READ_LOCK;
3526         p->lock.pNext = pBt->pLock;
3527         pBt->pLock = &p->lock;
3528       }
3529 #endif
3530     }
3531     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3532     if( p->inTrans>pBt->inTransaction ){
3533       pBt->inTransaction = p->inTrans;
3534     }
3535     if( wrflag ){
3536       MemPage *pPage1 = pBt->pPage1;
3537 #ifndef SQLITE_OMIT_SHARED_CACHE
3538       assert( !pBt->pWriter );
3539       pBt->pWriter = p;
3540       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3541       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3542 #endif
3543 
3544       /* If the db-size header field is incorrect (as it may be if an old
3545       ** client has been writing the database file), update it now. Doing
3546       ** this sooner rather than later means the database size can safely
3547       ** re-read the database size from page 1 if a savepoint or transaction
3548       ** rollback occurs within the transaction.
3549       */
3550       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3551         rc = sqlite3PagerWrite(pPage1->pDbPage);
3552         if( rc==SQLITE_OK ){
3553           put4byte(&pPage1->aData[28], pBt->nPage);
3554         }
3555       }
3556     }
3557   }
3558 
3559 trans_begun:
3560   if( rc==SQLITE_OK ){
3561     if( pSchemaVersion ){
3562       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3563     }
3564     if( wrflag ){
3565       /* This call makes sure that the pager has the correct number of
3566       ** open savepoints. If the second parameter is greater than 0 and
3567       ** the sub-journal is not already open, then it will be opened here.
3568       */
3569       rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
3570     }
3571   }
3572 
3573   btreeIntegrity(p);
3574   sqlite3BtreeLeave(p);
3575   return rc;
3576 }
3577 
3578 #ifndef SQLITE_OMIT_AUTOVACUUM
3579 
3580 /*
3581 ** Set the pointer-map entries for all children of page pPage. Also, if
3582 ** pPage contains cells that point to overflow pages, set the pointer
3583 ** map entries for the overflow pages as well.
3584 */
3585 static int setChildPtrmaps(MemPage *pPage){
3586   int i;                             /* Counter variable */
3587   int nCell;                         /* Number of cells in page pPage */
3588   int rc;                            /* Return code */
3589   BtShared *pBt = pPage->pBt;
3590   Pgno pgno = pPage->pgno;
3591 
3592   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3593   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3594   if( rc!=SQLITE_OK ) return rc;
3595   nCell = pPage->nCell;
3596 
3597   for(i=0; i<nCell; i++){
3598     u8 *pCell = findCell(pPage, i);
3599 
3600     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3601 
3602     if( !pPage->leaf ){
3603       Pgno childPgno = get4byte(pCell);
3604       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3605     }
3606   }
3607 
3608   if( !pPage->leaf ){
3609     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3610     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3611   }
3612 
3613   return rc;
3614 }
3615 
3616 /*
3617 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3618 ** that it points to iTo. Parameter eType describes the type of pointer to
3619 ** be modified, as  follows:
3620 **
3621 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3622 **                   page of pPage.
3623 **
3624 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3625 **                   page pointed to by one of the cells on pPage.
3626 **
3627 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3628 **                   overflow page in the list.
3629 */
3630 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3631   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3632   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3633   if( eType==PTRMAP_OVERFLOW2 ){
3634     /* The pointer is always the first 4 bytes of the page in this case.  */
3635     if( get4byte(pPage->aData)!=iFrom ){
3636       return SQLITE_CORRUPT_PAGE(pPage);
3637     }
3638     put4byte(pPage->aData, iTo);
3639   }else{
3640     int i;
3641     int nCell;
3642     int rc;
3643 
3644     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3645     if( rc ) return rc;
3646     nCell = pPage->nCell;
3647 
3648     for(i=0; i<nCell; i++){
3649       u8 *pCell = findCell(pPage, i);
3650       if( eType==PTRMAP_OVERFLOW1 ){
3651         CellInfo info;
3652         pPage->xParseCell(pPage, pCell, &info);
3653         if( info.nLocal<info.nPayload ){
3654           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3655             return SQLITE_CORRUPT_PAGE(pPage);
3656           }
3657           if( iFrom==get4byte(pCell+info.nSize-4) ){
3658             put4byte(pCell+info.nSize-4, iTo);
3659             break;
3660           }
3661         }
3662       }else{
3663         if( get4byte(pCell)==iFrom ){
3664           put4byte(pCell, iTo);
3665           break;
3666         }
3667       }
3668     }
3669 
3670     if( i==nCell ){
3671       if( eType!=PTRMAP_BTREE ||
3672           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3673         return SQLITE_CORRUPT_PAGE(pPage);
3674       }
3675       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3676     }
3677   }
3678   return SQLITE_OK;
3679 }
3680 
3681 
3682 /*
3683 ** Move the open database page pDbPage to location iFreePage in the
3684 ** database. The pDbPage reference remains valid.
3685 **
3686 ** The isCommit flag indicates that there is no need to remember that
3687 ** the journal needs to be sync()ed before database page pDbPage->pgno
3688 ** can be written to. The caller has already promised not to write to that
3689 ** page.
3690 */
3691 static int relocatePage(
3692   BtShared *pBt,           /* Btree */
3693   MemPage *pDbPage,        /* Open page to move */
3694   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3695   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3696   Pgno iFreePage,          /* The location to move pDbPage to */
3697   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3698 ){
3699   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3700   Pgno iDbPage = pDbPage->pgno;
3701   Pager *pPager = pBt->pPager;
3702   int rc;
3703 
3704   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3705       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3706   assert( sqlite3_mutex_held(pBt->mutex) );
3707   assert( pDbPage->pBt==pBt );
3708   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3709 
3710   /* Move page iDbPage from its current location to page number iFreePage */
3711   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3712       iDbPage, iFreePage, iPtrPage, eType));
3713   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3714   if( rc!=SQLITE_OK ){
3715     return rc;
3716   }
3717   pDbPage->pgno = iFreePage;
3718 
3719   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3720   ** that point to overflow pages. The pointer map entries for all these
3721   ** pages need to be changed.
3722   **
3723   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3724   ** pointer to a subsequent overflow page. If this is the case, then
3725   ** the pointer map needs to be updated for the subsequent overflow page.
3726   */
3727   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3728     rc = setChildPtrmaps(pDbPage);
3729     if( rc!=SQLITE_OK ){
3730       return rc;
3731     }
3732   }else{
3733     Pgno nextOvfl = get4byte(pDbPage->aData);
3734     if( nextOvfl!=0 ){
3735       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3736       if( rc!=SQLITE_OK ){
3737         return rc;
3738       }
3739     }
3740   }
3741 
3742   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3743   ** that it points at iFreePage. Also fix the pointer map entry for
3744   ** iPtrPage.
3745   */
3746   if( eType!=PTRMAP_ROOTPAGE ){
3747     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3748     if( rc!=SQLITE_OK ){
3749       return rc;
3750     }
3751     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3752     if( rc!=SQLITE_OK ){
3753       releasePage(pPtrPage);
3754       return rc;
3755     }
3756     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3757     releasePage(pPtrPage);
3758     if( rc==SQLITE_OK ){
3759       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3760     }
3761   }
3762   return rc;
3763 }
3764 
3765 /* Forward declaration required by incrVacuumStep(). */
3766 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3767 
3768 /*
3769 ** Perform a single step of an incremental-vacuum. If successful, return
3770 ** SQLITE_OK. If there is no work to do (and therefore no point in
3771 ** calling this function again), return SQLITE_DONE. Or, if an error
3772 ** occurs, return some other error code.
3773 **
3774 ** More specifically, this function attempts to re-organize the database so
3775 ** that the last page of the file currently in use is no longer in use.
3776 **
3777 ** Parameter nFin is the number of pages that this database would contain
3778 ** were this function called until it returns SQLITE_DONE.
3779 **
3780 ** If the bCommit parameter is non-zero, this function assumes that the
3781 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3782 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3783 ** operation, or false for an incremental vacuum.
3784 */
3785 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3786   Pgno nFreeList;           /* Number of pages still on the free-list */
3787   int rc;
3788 
3789   assert( sqlite3_mutex_held(pBt->mutex) );
3790   assert( iLastPg>nFin );
3791 
3792   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3793     u8 eType;
3794     Pgno iPtrPage;
3795 
3796     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3797     if( nFreeList==0 ){
3798       return SQLITE_DONE;
3799     }
3800 
3801     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3802     if( rc!=SQLITE_OK ){
3803       return rc;
3804     }
3805     if( eType==PTRMAP_ROOTPAGE ){
3806       return SQLITE_CORRUPT_BKPT;
3807     }
3808 
3809     if( eType==PTRMAP_FREEPAGE ){
3810       if( bCommit==0 ){
3811         /* Remove the page from the files free-list. This is not required
3812         ** if bCommit is non-zero. In that case, the free-list will be
3813         ** truncated to zero after this function returns, so it doesn't
3814         ** matter if it still contains some garbage entries.
3815         */
3816         Pgno iFreePg;
3817         MemPage *pFreePg;
3818         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3819         if( rc!=SQLITE_OK ){
3820           return rc;
3821         }
3822         assert( iFreePg==iLastPg );
3823         releasePage(pFreePg);
3824       }
3825     } else {
3826       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3827       MemPage *pLastPg;
3828       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3829       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3830 
3831       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3832       if( rc!=SQLITE_OK ){
3833         return rc;
3834       }
3835 
3836       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3837       ** is swapped with the first free page pulled off the free list.
3838       **
3839       ** On the other hand, if bCommit is greater than zero, then keep
3840       ** looping until a free-page located within the first nFin pages
3841       ** of the file is found.
3842       */
3843       if( bCommit==0 ){
3844         eMode = BTALLOC_LE;
3845         iNear = nFin;
3846       }
3847       do {
3848         MemPage *pFreePg;
3849         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3850         if( rc!=SQLITE_OK ){
3851           releasePage(pLastPg);
3852           return rc;
3853         }
3854         releasePage(pFreePg);
3855       }while( bCommit && iFreePg>nFin );
3856       assert( iFreePg<iLastPg );
3857 
3858       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3859       releasePage(pLastPg);
3860       if( rc!=SQLITE_OK ){
3861         return rc;
3862       }
3863     }
3864   }
3865 
3866   if( bCommit==0 ){
3867     do {
3868       iLastPg--;
3869     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3870     pBt->bDoTruncate = 1;
3871     pBt->nPage = iLastPg;
3872   }
3873   return SQLITE_OK;
3874 }
3875 
3876 /*
3877 ** The database opened by the first argument is an auto-vacuum database
3878 ** nOrig pages in size containing nFree free pages. Return the expected
3879 ** size of the database in pages following an auto-vacuum operation.
3880 */
3881 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3882   int nEntry;                     /* Number of entries on one ptrmap page */
3883   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3884   Pgno nFin;                      /* Return value */
3885 
3886   nEntry = pBt->usableSize/5;
3887   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3888   nFin = nOrig - nFree - nPtrmap;
3889   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3890     nFin--;
3891   }
3892   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3893     nFin--;
3894   }
3895 
3896   return nFin;
3897 }
3898 
3899 /*
3900 ** A write-transaction must be opened before calling this function.
3901 ** It performs a single unit of work towards an incremental vacuum.
3902 **
3903 ** If the incremental vacuum is finished after this function has run,
3904 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3905 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3906 */
3907 int sqlite3BtreeIncrVacuum(Btree *p){
3908   int rc;
3909   BtShared *pBt = p->pBt;
3910 
3911   sqlite3BtreeEnter(p);
3912   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3913   if( !pBt->autoVacuum ){
3914     rc = SQLITE_DONE;
3915   }else{
3916     Pgno nOrig = btreePagecount(pBt);
3917     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3918     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3919 
3920     if( nOrig<nFin || nFree>=nOrig ){
3921       rc = SQLITE_CORRUPT_BKPT;
3922     }else if( nFree>0 ){
3923       rc = saveAllCursors(pBt, 0, 0);
3924       if( rc==SQLITE_OK ){
3925         invalidateAllOverflowCache(pBt);
3926         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3927       }
3928       if( rc==SQLITE_OK ){
3929         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3930         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3931       }
3932     }else{
3933       rc = SQLITE_DONE;
3934     }
3935   }
3936   sqlite3BtreeLeave(p);
3937   return rc;
3938 }
3939 
3940 /*
3941 ** This routine is called prior to sqlite3PagerCommit when a transaction
3942 ** is committed for an auto-vacuum database.
3943 **
3944 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3945 ** the database file should be truncated to during the commit process.
3946 ** i.e. the database has been reorganized so that only the first *pnTrunc
3947 ** pages are in use.
3948 */
3949 static int autoVacuumCommit(BtShared *pBt){
3950   int rc = SQLITE_OK;
3951   Pager *pPager = pBt->pPager;
3952   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3953 
3954   assert( sqlite3_mutex_held(pBt->mutex) );
3955   invalidateAllOverflowCache(pBt);
3956   assert(pBt->autoVacuum);
3957   if( !pBt->incrVacuum ){
3958     Pgno nFin;         /* Number of pages in database after autovacuuming */
3959     Pgno nFree;        /* Number of pages on the freelist initially */
3960     Pgno iFree;        /* The next page to be freed */
3961     Pgno nOrig;        /* Database size before freeing */
3962 
3963     nOrig = btreePagecount(pBt);
3964     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3965       /* It is not possible to create a database for which the final page
3966       ** is either a pointer-map page or the pending-byte page. If one
3967       ** is encountered, this indicates corruption.
3968       */
3969       return SQLITE_CORRUPT_BKPT;
3970     }
3971 
3972     nFree = get4byte(&pBt->pPage1->aData[36]);
3973     nFin = finalDbSize(pBt, nOrig, nFree);
3974     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3975     if( nFin<nOrig ){
3976       rc = saveAllCursors(pBt, 0, 0);
3977     }
3978     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3979       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3980     }
3981     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3982       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3983       put4byte(&pBt->pPage1->aData[32], 0);
3984       put4byte(&pBt->pPage1->aData[36], 0);
3985       put4byte(&pBt->pPage1->aData[28], nFin);
3986       pBt->bDoTruncate = 1;
3987       pBt->nPage = nFin;
3988     }
3989     if( rc!=SQLITE_OK ){
3990       sqlite3PagerRollback(pPager);
3991     }
3992   }
3993 
3994   assert( nRef>=sqlite3PagerRefcount(pPager) );
3995   return rc;
3996 }
3997 
3998 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3999 # define setChildPtrmaps(x) SQLITE_OK
4000 #endif
4001 
4002 /*
4003 ** This routine does the first phase of a two-phase commit.  This routine
4004 ** causes a rollback journal to be created (if it does not already exist)
4005 ** and populated with enough information so that if a power loss occurs
4006 ** the database can be restored to its original state by playing back
4007 ** the journal.  Then the contents of the journal are flushed out to
4008 ** the disk.  After the journal is safely on oxide, the changes to the
4009 ** database are written into the database file and flushed to oxide.
4010 ** At the end of this call, the rollback journal still exists on the
4011 ** disk and we are still holding all locks, so the transaction has not
4012 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4013 ** commit process.
4014 **
4015 ** This call is a no-op if no write-transaction is currently active on pBt.
4016 **
4017 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4018 ** the name of a super-journal file that should be written into the
4019 ** individual journal file, or is NULL, indicating no super-journal file
4020 ** (single database transaction).
4021 **
4022 ** When this is called, the super-journal should already have been
4023 ** created, populated with this journal pointer and synced to disk.
4024 **
4025 ** Once this is routine has returned, the only thing required to commit
4026 ** the write-transaction for this database file is to delete the journal.
4027 */
4028 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
4029   int rc = SQLITE_OK;
4030   if( p->inTrans==TRANS_WRITE ){
4031     BtShared *pBt = p->pBt;
4032     sqlite3BtreeEnter(p);
4033 #ifndef SQLITE_OMIT_AUTOVACUUM
4034     if( pBt->autoVacuum ){
4035       rc = autoVacuumCommit(pBt);
4036       if( rc!=SQLITE_OK ){
4037         sqlite3BtreeLeave(p);
4038         return rc;
4039       }
4040     }
4041     if( pBt->bDoTruncate ){
4042       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4043     }
4044 #endif
4045     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
4046     sqlite3BtreeLeave(p);
4047   }
4048   return rc;
4049 }
4050 
4051 /*
4052 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4053 ** at the conclusion of a transaction.
4054 */
4055 static void btreeEndTransaction(Btree *p){
4056   BtShared *pBt = p->pBt;
4057   sqlite3 *db = p->db;
4058   assert( sqlite3BtreeHoldsMutex(p) );
4059 
4060 #ifndef SQLITE_OMIT_AUTOVACUUM
4061   pBt->bDoTruncate = 0;
4062 #endif
4063   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4064     /* If there are other active statements that belong to this database
4065     ** handle, downgrade to a read-only transaction. The other statements
4066     ** may still be reading from the database.  */
4067     downgradeAllSharedCacheTableLocks(p);
4068     p->inTrans = TRANS_READ;
4069   }else{
4070     /* If the handle had any kind of transaction open, decrement the
4071     ** transaction count of the shared btree. If the transaction count
4072     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4073     ** call below will unlock the pager.  */
4074     if( p->inTrans!=TRANS_NONE ){
4075       clearAllSharedCacheTableLocks(p);
4076       pBt->nTransaction--;
4077       if( 0==pBt->nTransaction ){
4078         pBt->inTransaction = TRANS_NONE;
4079       }
4080     }
4081 
4082     /* Set the current transaction state to TRANS_NONE and unlock the
4083     ** pager if this call closed the only read or write transaction.  */
4084     p->inTrans = TRANS_NONE;
4085     unlockBtreeIfUnused(pBt);
4086   }
4087 
4088   btreeIntegrity(p);
4089 }
4090 
4091 /*
4092 ** Commit the transaction currently in progress.
4093 **
4094 ** This routine implements the second phase of a 2-phase commit.  The
4095 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4096 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
4097 ** routine did all the work of writing information out to disk and flushing the
4098 ** contents so that they are written onto the disk platter.  All this
4099 ** routine has to do is delete or truncate or zero the header in the
4100 ** the rollback journal (which causes the transaction to commit) and
4101 ** drop locks.
4102 **
4103 ** Normally, if an error occurs while the pager layer is attempting to
4104 ** finalize the underlying journal file, this function returns an error and
4105 ** the upper layer will attempt a rollback. However, if the second argument
4106 ** is non-zero then this b-tree transaction is part of a multi-file
4107 ** transaction. In this case, the transaction has already been committed
4108 ** (by deleting a super-journal file) and the caller will ignore this
4109 ** functions return code. So, even if an error occurs in the pager layer,
4110 ** reset the b-tree objects internal state to indicate that the write
4111 ** transaction has been closed. This is quite safe, as the pager will have
4112 ** transitioned to the error state.
4113 **
4114 ** This will release the write lock on the database file.  If there
4115 ** are no active cursors, it also releases the read lock.
4116 */
4117 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4118 
4119   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4120   sqlite3BtreeEnter(p);
4121   btreeIntegrity(p);
4122 
4123   /* If the handle has a write-transaction open, commit the shared-btrees
4124   ** transaction and set the shared state to TRANS_READ.
4125   */
4126   if( p->inTrans==TRANS_WRITE ){
4127     int rc;
4128     BtShared *pBt = p->pBt;
4129     assert( pBt->inTransaction==TRANS_WRITE );
4130     assert( pBt->nTransaction>0 );
4131     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4132     if( rc!=SQLITE_OK && bCleanup==0 ){
4133       sqlite3BtreeLeave(p);
4134       return rc;
4135     }
4136     p->iBDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4137     pBt->inTransaction = TRANS_READ;
4138     btreeClearHasContent(pBt);
4139   }
4140 
4141   btreeEndTransaction(p);
4142   sqlite3BtreeLeave(p);
4143   return SQLITE_OK;
4144 }
4145 
4146 /*
4147 ** Do both phases of a commit.
4148 */
4149 int sqlite3BtreeCommit(Btree *p){
4150   int rc;
4151   sqlite3BtreeEnter(p);
4152   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4153   if( rc==SQLITE_OK ){
4154     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4155   }
4156   sqlite3BtreeLeave(p);
4157   return rc;
4158 }
4159 
4160 /*
4161 ** This routine sets the state to CURSOR_FAULT and the error
4162 ** code to errCode for every cursor on any BtShared that pBtree
4163 ** references.  Or if the writeOnly flag is set to 1, then only
4164 ** trip write cursors and leave read cursors unchanged.
4165 **
4166 ** Every cursor is a candidate to be tripped, including cursors
4167 ** that belong to other database connections that happen to be
4168 ** sharing the cache with pBtree.
4169 **
4170 ** This routine gets called when a rollback occurs. If the writeOnly
4171 ** flag is true, then only write-cursors need be tripped - read-only
4172 ** cursors save their current positions so that they may continue
4173 ** following the rollback. Or, if writeOnly is false, all cursors are
4174 ** tripped. In general, writeOnly is false if the transaction being
4175 ** rolled back modified the database schema. In this case b-tree root
4176 ** pages may be moved or deleted from the database altogether, making
4177 ** it unsafe for read cursors to continue.
4178 **
4179 ** If the writeOnly flag is true and an error is encountered while
4180 ** saving the current position of a read-only cursor, all cursors,
4181 ** including all read-cursors are tripped.
4182 **
4183 ** SQLITE_OK is returned if successful, or if an error occurs while
4184 ** saving a cursor position, an SQLite error code.
4185 */
4186 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4187   BtCursor *p;
4188   int rc = SQLITE_OK;
4189 
4190   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4191   if( pBtree ){
4192     sqlite3BtreeEnter(pBtree);
4193     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4194       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4195         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4196           rc = saveCursorPosition(p);
4197           if( rc!=SQLITE_OK ){
4198             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4199             break;
4200           }
4201         }
4202       }else{
4203         sqlite3BtreeClearCursor(p);
4204         p->eState = CURSOR_FAULT;
4205         p->skipNext = errCode;
4206       }
4207       btreeReleaseAllCursorPages(p);
4208     }
4209     sqlite3BtreeLeave(pBtree);
4210   }
4211   return rc;
4212 }
4213 
4214 /*
4215 ** Set the pBt->nPage field correctly, according to the current
4216 ** state of the database.  Assume pBt->pPage1 is valid.
4217 */
4218 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4219   int nPage = get4byte(&pPage1->aData[28]);
4220   testcase( nPage==0 );
4221   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4222   testcase( pBt->nPage!=nPage );
4223   pBt->nPage = nPage;
4224 }
4225 
4226 /*
4227 ** Rollback the transaction in progress.
4228 **
4229 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4230 ** Only write cursors are tripped if writeOnly is true but all cursors are
4231 ** tripped if writeOnly is false.  Any attempt to use
4232 ** a tripped cursor will result in an error.
4233 **
4234 ** This will release the write lock on the database file.  If there
4235 ** are no active cursors, it also releases the read lock.
4236 */
4237 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4238   int rc;
4239   BtShared *pBt = p->pBt;
4240   MemPage *pPage1;
4241 
4242   assert( writeOnly==1 || writeOnly==0 );
4243   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4244   sqlite3BtreeEnter(p);
4245   if( tripCode==SQLITE_OK ){
4246     rc = tripCode = saveAllCursors(pBt, 0, 0);
4247     if( rc ) writeOnly = 0;
4248   }else{
4249     rc = SQLITE_OK;
4250   }
4251   if( tripCode ){
4252     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4253     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4254     if( rc2!=SQLITE_OK ) rc = rc2;
4255   }
4256   btreeIntegrity(p);
4257 
4258   if( p->inTrans==TRANS_WRITE ){
4259     int rc2;
4260 
4261     assert( TRANS_WRITE==pBt->inTransaction );
4262     rc2 = sqlite3PagerRollback(pBt->pPager);
4263     if( rc2!=SQLITE_OK ){
4264       rc = rc2;
4265     }
4266 
4267     /* The rollback may have destroyed the pPage1->aData value.  So
4268     ** call btreeGetPage() on page 1 again to make
4269     ** sure pPage1->aData is set correctly. */
4270     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4271       btreeSetNPage(pBt, pPage1);
4272       releasePageOne(pPage1);
4273     }
4274     assert( countValidCursors(pBt, 1)==0 );
4275     pBt->inTransaction = TRANS_READ;
4276     btreeClearHasContent(pBt);
4277   }
4278 
4279   btreeEndTransaction(p);
4280   sqlite3BtreeLeave(p);
4281   return rc;
4282 }
4283 
4284 /*
4285 ** Start a statement subtransaction. The subtransaction can be rolled
4286 ** back independently of the main transaction. You must start a transaction
4287 ** before starting a subtransaction. The subtransaction is ended automatically
4288 ** if the main transaction commits or rolls back.
4289 **
4290 ** Statement subtransactions are used around individual SQL statements
4291 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4292 ** error occurs within the statement, the effect of that one statement
4293 ** can be rolled back without having to rollback the entire transaction.
4294 **
4295 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4296 ** value passed as the second parameter is the total number of savepoints,
4297 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4298 ** are no active savepoints and no other statement-transactions open,
4299 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4300 ** using the sqlite3BtreeSavepoint() function.
4301 */
4302 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4303   int rc;
4304   BtShared *pBt = p->pBt;
4305   sqlite3BtreeEnter(p);
4306   assert( p->inTrans==TRANS_WRITE );
4307   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4308   assert( iStatement>0 );
4309   assert( iStatement>p->db->nSavepoint );
4310   assert( pBt->inTransaction==TRANS_WRITE );
4311   /* At the pager level, a statement transaction is a savepoint with
4312   ** an index greater than all savepoints created explicitly using
4313   ** SQL statements. It is illegal to open, release or rollback any
4314   ** such savepoints while the statement transaction savepoint is active.
4315   */
4316   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4317   sqlite3BtreeLeave(p);
4318   return rc;
4319 }
4320 
4321 /*
4322 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4323 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4324 ** savepoint identified by parameter iSavepoint, depending on the value
4325 ** of op.
4326 **
4327 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4328 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4329 ** contents of the entire transaction are rolled back. This is different
4330 ** from a normal transaction rollback, as no locks are released and the
4331 ** transaction remains open.
4332 */
4333 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4334   int rc = SQLITE_OK;
4335   if( p && p->inTrans==TRANS_WRITE ){
4336     BtShared *pBt = p->pBt;
4337     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4338     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4339     sqlite3BtreeEnter(p);
4340     if( op==SAVEPOINT_ROLLBACK ){
4341       rc = saveAllCursors(pBt, 0, 0);
4342     }
4343     if( rc==SQLITE_OK ){
4344       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4345     }
4346     if( rc==SQLITE_OK ){
4347       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4348         pBt->nPage = 0;
4349       }
4350       rc = newDatabase(pBt);
4351       btreeSetNPage(pBt, pBt->pPage1);
4352 
4353       /* pBt->nPage might be zero if the database was corrupt when
4354       ** the transaction was started. Otherwise, it must be at least 1.  */
4355       assert( CORRUPT_DB || pBt->nPage>0 );
4356     }
4357     sqlite3BtreeLeave(p);
4358   }
4359   return rc;
4360 }
4361 
4362 /*
4363 ** Create a new cursor for the BTree whose root is on the page
4364 ** iTable. If a read-only cursor is requested, it is assumed that
4365 ** the caller already has at least a read-only transaction open
4366 ** on the database already. If a write-cursor is requested, then
4367 ** the caller is assumed to have an open write transaction.
4368 **
4369 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4370 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4371 ** can be used for reading or for writing if other conditions for writing
4372 ** are also met.  These are the conditions that must be met in order
4373 ** for writing to be allowed:
4374 **
4375 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4376 **
4377 ** 2:  Other database connections that share the same pager cache
4378 **     but which are not in the READ_UNCOMMITTED state may not have
4379 **     cursors open with wrFlag==0 on the same table.  Otherwise
4380 **     the changes made by this write cursor would be visible to
4381 **     the read cursors in the other database connection.
4382 **
4383 ** 3:  The database must be writable (not on read-only media)
4384 **
4385 ** 4:  There must be an active transaction.
4386 **
4387 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4388 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4389 ** this cursor will only be used to seek to and delete entries of an index
4390 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4391 ** this implementation.  But in a hypothetical alternative storage engine
4392 ** in which index entries are automatically deleted when corresponding table
4393 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4394 ** operations on this cursor can be no-ops and all READ operations can
4395 ** return a null row (2-bytes: 0x01 0x00).
4396 **
4397 ** No checking is done to make sure that page iTable really is the
4398 ** root page of a b-tree.  If it is not, then the cursor acquired
4399 ** will not work correctly.
4400 **
4401 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4402 ** on pCur to initialize the memory space prior to invoking this routine.
4403 */
4404 static int btreeCursor(
4405   Btree *p,                              /* The btree */
4406   Pgno iTable,                           /* Root page of table to open */
4407   int wrFlag,                            /* 1 to write. 0 read-only */
4408   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4409   BtCursor *pCur                         /* Space for new cursor */
4410 ){
4411   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4412   BtCursor *pX;                          /* Looping over other all cursors */
4413 
4414   assert( sqlite3BtreeHoldsMutex(p) );
4415   assert( wrFlag==0
4416        || wrFlag==BTREE_WRCSR
4417        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4418   );
4419 
4420   /* The following assert statements verify that if this is a sharable
4421   ** b-tree database, the connection is holding the required table locks,
4422   ** and that no other connection has any open cursor that conflicts with
4423   ** this lock.  The iTable<1 term disables the check for corrupt schemas. */
4424   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4425           || iTable<1 );
4426   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4427 
4428   /* Assert that the caller has opened the required transaction. */
4429   assert( p->inTrans>TRANS_NONE );
4430   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4431   assert( pBt->pPage1 && pBt->pPage1->aData );
4432   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4433 
4434   if( wrFlag ){
4435     allocateTempSpace(pBt);
4436     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4437   }
4438   if( iTable<=1 ){
4439     if( iTable<1 ){
4440       return SQLITE_CORRUPT_BKPT;
4441     }else if( btreePagecount(pBt)==0 ){
4442       assert( wrFlag==0 );
4443       iTable = 0;
4444     }
4445   }
4446 
4447   /* Now that no other errors can occur, finish filling in the BtCursor
4448   ** variables and link the cursor into the BtShared list.  */
4449   pCur->pgnoRoot = iTable;
4450   pCur->iPage = -1;
4451   pCur->pKeyInfo = pKeyInfo;
4452   pCur->pBtree = p;
4453   pCur->pBt = pBt;
4454   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4455   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4456   /* If there are two or more cursors on the same btree, then all such
4457   ** cursors *must* have the BTCF_Multiple flag set. */
4458   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4459     if( pX->pgnoRoot==iTable ){
4460       pX->curFlags |= BTCF_Multiple;
4461       pCur->curFlags |= BTCF_Multiple;
4462     }
4463   }
4464   pCur->pNext = pBt->pCursor;
4465   pBt->pCursor = pCur;
4466   pCur->eState = CURSOR_INVALID;
4467   return SQLITE_OK;
4468 }
4469 static int btreeCursorWithLock(
4470   Btree *p,                              /* The btree */
4471   Pgno iTable,                           /* Root page of table to open */
4472   int wrFlag,                            /* 1 to write. 0 read-only */
4473   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4474   BtCursor *pCur                         /* Space for new cursor */
4475 ){
4476   int rc;
4477   sqlite3BtreeEnter(p);
4478   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4479   sqlite3BtreeLeave(p);
4480   return rc;
4481 }
4482 int sqlite3BtreeCursor(
4483   Btree *p,                                   /* The btree */
4484   Pgno iTable,                                /* Root page of table to open */
4485   int wrFlag,                                 /* 1 to write. 0 read-only */
4486   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4487   BtCursor *pCur                              /* Write new cursor here */
4488 ){
4489   if( p->sharable ){
4490     return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4491   }else{
4492     return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4493   }
4494 }
4495 
4496 /*
4497 ** Return the size of a BtCursor object in bytes.
4498 **
4499 ** This interfaces is needed so that users of cursors can preallocate
4500 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4501 ** to users so they cannot do the sizeof() themselves - they must call
4502 ** this routine.
4503 */
4504 int sqlite3BtreeCursorSize(void){
4505   return ROUND8(sizeof(BtCursor));
4506 }
4507 
4508 /*
4509 ** Initialize memory that will be converted into a BtCursor object.
4510 **
4511 ** The simple approach here would be to memset() the entire object
4512 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4513 ** do not need to be zeroed and they are large, so we can save a lot
4514 ** of run-time by skipping the initialization of those elements.
4515 */
4516 void sqlite3BtreeCursorZero(BtCursor *p){
4517   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4518 }
4519 
4520 /*
4521 ** Close a cursor.  The read lock on the database file is released
4522 ** when the last cursor is closed.
4523 */
4524 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4525   Btree *pBtree = pCur->pBtree;
4526   if( pBtree ){
4527     BtShared *pBt = pCur->pBt;
4528     sqlite3BtreeEnter(pBtree);
4529     assert( pBt->pCursor!=0 );
4530     if( pBt->pCursor==pCur ){
4531       pBt->pCursor = pCur->pNext;
4532     }else{
4533       BtCursor *pPrev = pBt->pCursor;
4534       do{
4535         if( pPrev->pNext==pCur ){
4536           pPrev->pNext = pCur->pNext;
4537           break;
4538         }
4539         pPrev = pPrev->pNext;
4540       }while( ALWAYS(pPrev) );
4541     }
4542     btreeReleaseAllCursorPages(pCur);
4543     unlockBtreeIfUnused(pBt);
4544     sqlite3_free(pCur->aOverflow);
4545     sqlite3_free(pCur->pKey);
4546     if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4547       /* Since the BtShared is not sharable, there is no need to
4548       ** worry about the missing sqlite3BtreeLeave() call here.  */
4549       assert( pBtree->sharable==0 );
4550       sqlite3BtreeClose(pBtree);
4551     }else{
4552       sqlite3BtreeLeave(pBtree);
4553     }
4554     pCur->pBtree = 0;
4555   }
4556   return SQLITE_OK;
4557 }
4558 
4559 /*
4560 ** Make sure the BtCursor* given in the argument has a valid
4561 ** BtCursor.info structure.  If it is not already valid, call
4562 ** btreeParseCell() to fill it in.
4563 **
4564 ** BtCursor.info is a cache of the information in the current cell.
4565 ** Using this cache reduces the number of calls to btreeParseCell().
4566 */
4567 #ifndef NDEBUG
4568   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4569     if( a->nKey!=b->nKey ) return 0;
4570     if( a->pPayload!=b->pPayload ) return 0;
4571     if( a->nPayload!=b->nPayload ) return 0;
4572     if( a->nLocal!=b->nLocal ) return 0;
4573     if( a->nSize!=b->nSize ) return 0;
4574     return 1;
4575   }
4576   static void assertCellInfo(BtCursor *pCur){
4577     CellInfo info;
4578     memset(&info, 0, sizeof(info));
4579     btreeParseCell(pCur->pPage, pCur->ix, &info);
4580     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4581   }
4582 #else
4583   #define assertCellInfo(x)
4584 #endif
4585 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4586   if( pCur->info.nSize==0 ){
4587     pCur->curFlags |= BTCF_ValidNKey;
4588     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4589   }else{
4590     assertCellInfo(pCur);
4591   }
4592 }
4593 
4594 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4595 /*
4596 ** Return true if the given BtCursor is valid.  A valid cursor is one
4597 ** that is currently pointing to a row in a (non-empty) table.
4598 ** This is a verification routine is used only within assert() statements.
4599 */
4600 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4601   return pCur && pCur->eState==CURSOR_VALID;
4602 }
4603 #endif /* NDEBUG */
4604 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4605   assert( pCur!=0 );
4606   return pCur->eState==CURSOR_VALID;
4607 }
4608 
4609 /*
4610 ** Return the value of the integer key or "rowid" for a table btree.
4611 ** This routine is only valid for a cursor that is pointing into a
4612 ** ordinary table btree.  If the cursor points to an index btree or
4613 ** is invalid, the result of this routine is undefined.
4614 */
4615 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4616   assert( cursorHoldsMutex(pCur) );
4617   assert( pCur->eState==CURSOR_VALID );
4618   assert( pCur->curIntKey );
4619   getCellInfo(pCur);
4620   return pCur->info.nKey;
4621 }
4622 
4623 /*
4624 ** Pin or unpin a cursor.
4625 */
4626 void sqlite3BtreeCursorPin(BtCursor *pCur){
4627   assert( (pCur->curFlags & BTCF_Pinned)==0 );
4628   pCur->curFlags |= BTCF_Pinned;
4629 }
4630 void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4631   assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4632   pCur->curFlags &= ~BTCF_Pinned;
4633 }
4634 
4635 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4636 /*
4637 ** Return the offset into the database file for the start of the
4638 ** payload to which the cursor is pointing.
4639 */
4640 i64 sqlite3BtreeOffset(BtCursor *pCur){
4641   assert( cursorHoldsMutex(pCur) );
4642   assert( pCur->eState==CURSOR_VALID );
4643   getCellInfo(pCur);
4644   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4645          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4646 }
4647 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4648 
4649 /*
4650 ** Return the number of bytes of payload for the entry that pCur is
4651 ** currently pointing to.  For table btrees, this will be the amount
4652 ** of data.  For index btrees, this will be the size of the key.
4653 **
4654 ** The caller must guarantee that the cursor is pointing to a non-NULL
4655 ** valid entry.  In other words, the calling procedure must guarantee
4656 ** that the cursor has Cursor.eState==CURSOR_VALID.
4657 */
4658 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4659   assert( cursorHoldsMutex(pCur) );
4660   assert( pCur->eState==CURSOR_VALID );
4661   getCellInfo(pCur);
4662   return pCur->info.nPayload;
4663 }
4664 
4665 /*
4666 ** Return an upper bound on the size of any record for the table
4667 ** that the cursor is pointing into.
4668 **
4669 ** This is an optimization.  Everything will still work if this
4670 ** routine always returns 2147483647 (which is the largest record
4671 ** that SQLite can handle) or more.  But returning a smaller value might
4672 ** prevent large memory allocations when trying to interpret a
4673 ** corrupt datrabase.
4674 **
4675 ** The current implementation merely returns the size of the underlying
4676 ** database file.
4677 */
4678 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4679   assert( cursorHoldsMutex(pCur) );
4680   assert( pCur->eState==CURSOR_VALID );
4681   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4682 }
4683 
4684 /*
4685 ** Given the page number of an overflow page in the database (parameter
4686 ** ovfl), this function finds the page number of the next page in the
4687 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4688 ** pointer-map data instead of reading the content of page ovfl to do so.
4689 **
4690 ** If an error occurs an SQLite error code is returned. Otherwise:
4691 **
4692 ** The page number of the next overflow page in the linked list is
4693 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4694 ** list, *pPgnoNext is set to zero.
4695 **
4696 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4697 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4698 ** reference. It is the responsibility of the caller to call releasePage()
4699 ** on *ppPage to free the reference. In no reference was obtained (because
4700 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4701 ** *ppPage is set to zero.
4702 */
4703 static int getOverflowPage(
4704   BtShared *pBt,               /* The database file */
4705   Pgno ovfl,                   /* Current overflow page number */
4706   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4707   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4708 ){
4709   Pgno next = 0;
4710   MemPage *pPage = 0;
4711   int rc = SQLITE_OK;
4712 
4713   assert( sqlite3_mutex_held(pBt->mutex) );
4714   assert(pPgnoNext);
4715 
4716 #ifndef SQLITE_OMIT_AUTOVACUUM
4717   /* Try to find the next page in the overflow list using the
4718   ** autovacuum pointer-map pages. Guess that the next page in
4719   ** the overflow list is page number (ovfl+1). If that guess turns
4720   ** out to be wrong, fall back to loading the data of page
4721   ** number ovfl to determine the next page number.
4722   */
4723   if( pBt->autoVacuum ){
4724     Pgno pgno;
4725     Pgno iGuess = ovfl+1;
4726     u8 eType;
4727 
4728     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4729       iGuess++;
4730     }
4731 
4732     if( iGuess<=btreePagecount(pBt) ){
4733       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4734       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4735         next = iGuess;
4736         rc = SQLITE_DONE;
4737       }
4738     }
4739   }
4740 #endif
4741 
4742   assert( next==0 || rc==SQLITE_DONE );
4743   if( rc==SQLITE_OK ){
4744     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4745     assert( rc==SQLITE_OK || pPage==0 );
4746     if( rc==SQLITE_OK ){
4747       next = get4byte(pPage->aData);
4748     }
4749   }
4750 
4751   *pPgnoNext = next;
4752   if( ppPage ){
4753     *ppPage = pPage;
4754   }else{
4755     releasePage(pPage);
4756   }
4757   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4758 }
4759 
4760 /*
4761 ** Copy data from a buffer to a page, or from a page to a buffer.
4762 **
4763 ** pPayload is a pointer to data stored on database page pDbPage.
4764 ** If argument eOp is false, then nByte bytes of data are copied
4765 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4766 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4767 ** of data are copied from the buffer pBuf to pPayload.
4768 **
4769 ** SQLITE_OK is returned on success, otherwise an error code.
4770 */
4771 static int copyPayload(
4772   void *pPayload,           /* Pointer to page data */
4773   void *pBuf,               /* Pointer to buffer */
4774   int nByte,                /* Number of bytes to copy */
4775   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4776   DbPage *pDbPage           /* Page containing pPayload */
4777 ){
4778   if( eOp ){
4779     /* Copy data from buffer to page (a write operation) */
4780     int rc = sqlite3PagerWrite(pDbPage);
4781     if( rc!=SQLITE_OK ){
4782       return rc;
4783     }
4784     memcpy(pPayload, pBuf, nByte);
4785   }else{
4786     /* Copy data from page to buffer (a read operation) */
4787     memcpy(pBuf, pPayload, nByte);
4788   }
4789   return SQLITE_OK;
4790 }
4791 
4792 /*
4793 ** This function is used to read or overwrite payload information
4794 ** for the entry that the pCur cursor is pointing to. The eOp
4795 ** argument is interpreted as follows:
4796 **
4797 **   0: The operation is a read. Populate the overflow cache.
4798 **   1: The operation is a write. Populate the overflow cache.
4799 **
4800 ** A total of "amt" bytes are read or written beginning at "offset".
4801 ** Data is read to or from the buffer pBuf.
4802 **
4803 ** The content being read or written might appear on the main page
4804 ** or be scattered out on multiple overflow pages.
4805 **
4806 ** If the current cursor entry uses one or more overflow pages
4807 ** this function may allocate space for and lazily populate
4808 ** the overflow page-list cache array (BtCursor.aOverflow).
4809 ** Subsequent calls use this cache to make seeking to the supplied offset
4810 ** more efficient.
4811 **
4812 ** Once an overflow page-list cache has been allocated, it must be
4813 ** invalidated if some other cursor writes to the same table, or if
4814 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4815 ** mode, the following events may invalidate an overflow page-list cache.
4816 **
4817 **   * An incremental vacuum,
4818 **   * A commit in auto_vacuum="full" mode,
4819 **   * Creating a table (may require moving an overflow page).
4820 */
4821 static int accessPayload(
4822   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4823   u32 offset,          /* Begin reading this far into payload */
4824   u32 amt,             /* Read this many bytes */
4825   unsigned char *pBuf, /* Write the bytes into this buffer */
4826   int eOp              /* zero to read. non-zero to write. */
4827 ){
4828   unsigned char *aPayload;
4829   int rc = SQLITE_OK;
4830   int iIdx = 0;
4831   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4832   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4833 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4834   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4835 #endif
4836 
4837   assert( pPage );
4838   assert( eOp==0 || eOp==1 );
4839   assert( pCur->eState==CURSOR_VALID );
4840   assert( pCur->ix<pPage->nCell );
4841   assert( cursorHoldsMutex(pCur) );
4842 
4843   getCellInfo(pCur);
4844   aPayload = pCur->info.pPayload;
4845   assert( offset+amt <= pCur->info.nPayload );
4846 
4847   assert( aPayload > pPage->aData );
4848   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4849     /* Trying to read or write past the end of the data is an error.  The
4850     ** conditional above is really:
4851     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4852     ** but is recast into its current form to avoid integer overflow problems
4853     */
4854     return SQLITE_CORRUPT_PAGE(pPage);
4855   }
4856 
4857   /* Check if data must be read/written to/from the btree page itself. */
4858   if( offset<pCur->info.nLocal ){
4859     int a = amt;
4860     if( a+offset>pCur->info.nLocal ){
4861       a = pCur->info.nLocal - offset;
4862     }
4863     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4864     offset = 0;
4865     pBuf += a;
4866     amt -= a;
4867   }else{
4868     offset -= pCur->info.nLocal;
4869   }
4870 
4871 
4872   if( rc==SQLITE_OK && amt>0 ){
4873     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4874     Pgno nextPage;
4875 
4876     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4877 
4878     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4879     **
4880     ** The aOverflow[] array is sized at one entry for each overflow page
4881     ** in the overflow chain. The page number of the first overflow page is
4882     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4883     ** means "not yet known" (the cache is lazily populated).
4884     */
4885     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4886       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4887       if( pCur->aOverflow==0
4888        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4889       ){
4890         Pgno *aNew = (Pgno*)sqlite3Realloc(
4891             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4892         );
4893         if( aNew==0 ){
4894           return SQLITE_NOMEM_BKPT;
4895         }else{
4896           pCur->aOverflow = aNew;
4897         }
4898       }
4899       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4900       pCur->curFlags |= BTCF_ValidOvfl;
4901     }else{
4902       /* If the overflow page-list cache has been allocated and the
4903       ** entry for the first required overflow page is valid, skip
4904       ** directly to it.
4905       */
4906       if( pCur->aOverflow[offset/ovflSize] ){
4907         iIdx = (offset/ovflSize);
4908         nextPage = pCur->aOverflow[iIdx];
4909         offset = (offset%ovflSize);
4910       }
4911     }
4912 
4913     assert( rc==SQLITE_OK && amt>0 );
4914     while( nextPage ){
4915       /* If required, populate the overflow page-list cache. */
4916       if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
4917       assert( pCur->aOverflow[iIdx]==0
4918               || pCur->aOverflow[iIdx]==nextPage
4919               || CORRUPT_DB );
4920       pCur->aOverflow[iIdx] = nextPage;
4921 
4922       if( offset>=ovflSize ){
4923         /* The only reason to read this page is to obtain the page
4924         ** number for the next page in the overflow chain. The page
4925         ** data is not required. So first try to lookup the overflow
4926         ** page-list cache, if any, then fall back to the getOverflowPage()
4927         ** function.
4928         */
4929         assert( pCur->curFlags & BTCF_ValidOvfl );
4930         assert( pCur->pBtree->db==pBt->db );
4931         if( pCur->aOverflow[iIdx+1] ){
4932           nextPage = pCur->aOverflow[iIdx+1];
4933         }else{
4934           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4935         }
4936         offset -= ovflSize;
4937       }else{
4938         /* Need to read this page properly. It contains some of the
4939         ** range of data that is being read (eOp==0) or written (eOp!=0).
4940         */
4941         int a = amt;
4942         if( a + offset > ovflSize ){
4943           a = ovflSize - offset;
4944         }
4945 
4946 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4947         /* If all the following are true:
4948         **
4949         **   1) this is a read operation, and
4950         **   2) data is required from the start of this overflow page, and
4951         **   3) there are no dirty pages in the page-cache
4952         **   4) the database is file-backed, and
4953         **   5) the page is not in the WAL file
4954         **   6) at least 4 bytes have already been read into the output buffer
4955         **
4956         ** then data can be read directly from the database file into the
4957         ** output buffer, bypassing the page-cache altogether. This speeds
4958         ** up loading large records that span many overflow pages.
4959         */
4960         if( eOp==0                                             /* (1) */
4961          && offset==0                                          /* (2) */
4962          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
4963          && &pBuf[-4]>=pBufStart                               /* (6) */
4964         ){
4965           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
4966           u8 aSave[4];
4967           u8 *aWrite = &pBuf[-4];
4968           assert( aWrite>=pBufStart );                         /* due to (6) */
4969           memcpy(aSave, aWrite, 4);
4970           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4971           if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
4972           nextPage = get4byte(aWrite);
4973           memcpy(aWrite, aSave, 4);
4974         }else
4975 #endif
4976 
4977         {
4978           DbPage *pDbPage;
4979           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4980               (eOp==0 ? PAGER_GET_READONLY : 0)
4981           );
4982           if( rc==SQLITE_OK ){
4983             aPayload = sqlite3PagerGetData(pDbPage);
4984             nextPage = get4byte(aPayload);
4985             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4986             sqlite3PagerUnref(pDbPage);
4987             offset = 0;
4988           }
4989         }
4990         amt -= a;
4991         if( amt==0 ) return rc;
4992         pBuf += a;
4993       }
4994       if( rc ) break;
4995       iIdx++;
4996     }
4997   }
4998 
4999   if( rc==SQLITE_OK && amt>0 ){
5000     /* Overflow chain ends prematurely */
5001     return SQLITE_CORRUPT_PAGE(pPage);
5002   }
5003   return rc;
5004 }
5005 
5006 /*
5007 ** Read part of the payload for the row at which that cursor pCur is currently
5008 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
5009 ** begins at "offset".
5010 **
5011 ** pCur can be pointing to either a table or an index b-tree.
5012 ** If pointing to a table btree, then the content section is read.  If
5013 ** pCur is pointing to an index b-tree then the key section is read.
5014 **
5015 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5016 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
5017 ** cursor might be invalid or might need to be restored before being read.
5018 **
5019 ** Return SQLITE_OK on success or an error code if anything goes
5020 ** wrong.  An error is returned if "offset+amt" is larger than
5021 ** the available payload.
5022 */
5023 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5024   assert( cursorHoldsMutex(pCur) );
5025   assert( pCur->eState==CURSOR_VALID );
5026   assert( pCur->iPage>=0 && pCur->pPage );
5027   assert( pCur->ix<pCur->pPage->nCell );
5028   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
5029 }
5030 
5031 /*
5032 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5033 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
5034 ** interface.
5035 */
5036 #ifndef SQLITE_OMIT_INCRBLOB
5037 static SQLITE_NOINLINE int accessPayloadChecked(
5038   BtCursor *pCur,
5039   u32 offset,
5040   u32 amt,
5041   void *pBuf
5042 ){
5043   int rc;
5044   if ( pCur->eState==CURSOR_INVALID ){
5045     return SQLITE_ABORT;
5046   }
5047   assert( cursorOwnsBtShared(pCur) );
5048   rc = btreeRestoreCursorPosition(pCur);
5049   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5050 }
5051 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5052   if( pCur->eState==CURSOR_VALID ){
5053     assert( cursorOwnsBtShared(pCur) );
5054     return accessPayload(pCur, offset, amt, pBuf, 0);
5055   }else{
5056     return accessPayloadChecked(pCur, offset, amt, pBuf);
5057   }
5058 }
5059 #endif /* SQLITE_OMIT_INCRBLOB */
5060 
5061 /*
5062 ** Return a pointer to payload information from the entry that the
5063 ** pCur cursor is pointing to.  The pointer is to the beginning of
5064 ** the key if index btrees (pPage->intKey==0) and is the data for
5065 ** table btrees (pPage->intKey==1). The number of bytes of available
5066 ** key/data is written into *pAmt.  If *pAmt==0, then the value
5067 ** returned will not be a valid pointer.
5068 **
5069 ** This routine is an optimization.  It is common for the entire key
5070 ** and data to fit on the local page and for there to be no overflow
5071 ** pages.  When that is so, this routine can be used to access the
5072 ** key and data without making a copy.  If the key and/or data spills
5073 ** onto overflow pages, then accessPayload() must be used to reassemble
5074 ** the key/data and copy it into a preallocated buffer.
5075 **
5076 ** The pointer returned by this routine looks directly into the cached
5077 ** page of the database.  The data might change or move the next time
5078 ** any btree routine is called.
5079 */
5080 static const void *fetchPayload(
5081   BtCursor *pCur,      /* Cursor pointing to entry to read from */
5082   u32 *pAmt            /* Write the number of available bytes here */
5083 ){
5084   int amt;
5085   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5086   assert( pCur->eState==CURSOR_VALID );
5087   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5088   assert( cursorOwnsBtShared(pCur) );
5089   assert( pCur->ix<pCur->pPage->nCell );
5090   assert( pCur->info.nSize>0 );
5091   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5092   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5093   amt = pCur->info.nLocal;
5094   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5095     /* There is too little space on the page for the expected amount
5096     ** of local content. Database must be corrupt. */
5097     assert( CORRUPT_DB );
5098     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5099   }
5100   *pAmt = (u32)amt;
5101   return (void*)pCur->info.pPayload;
5102 }
5103 
5104 
5105 /*
5106 ** For the entry that cursor pCur is point to, return as
5107 ** many bytes of the key or data as are available on the local
5108 ** b-tree page.  Write the number of available bytes into *pAmt.
5109 **
5110 ** The pointer returned is ephemeral.  The key/data may move
5111 ** or be destroyed on the next call to any Btree routine,
5112 ** including calls from other threads against the same cache.
5113 ** Hence, a mutex on the BtShared should be held prior to calling
5114 ** this routine.
5115 **
5116 ** These routines is used to get quick access to key and data
5117 ** in the common case where no overflow pages are used.
5118 */
5119 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5120   return fetchPayload(pCur, pAmt);
5121 }
5122 
5123 
5124 /*
5125 ** Move the cursor down to a new child page.  The newPgno argument is the
5126 ** page number of the child page to move to.
5127 **
5128 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5129 ** the new child page does not match the flags field of the parent (i.e.
5130 ** if an intkey page appears to be the parent of a non-intkey page, or
5131 ** vice-versa).
5132 */
5133 static int moveToChild(BtCursor *pCur, u32 newPgno){
5134   BtShared *pBt = pCur->pBt;
5135 
5136   assert( cursorOwnsBtShared(pCur) );
5137   assert( pCur->eState==CURSOR_VALID );
5138   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5139   assert( pCur->iPage>=0 );
5140   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5141     return SQLITE_CORRUPT_BKPT;
5142   }
5143   pCur->info.nSize = 0;
5144   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5145   pCur->aiIdx[pCur->iPage] = pCur->ix;
5146   pCur->apPage[pCur->iPage] = pCur->pPage;
5147   pCur->ix = 0;
5148   pCur->iPage++;
5149   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5150 }
5151 
5152 #ifdef SQLITE_DEBUG
5153 /*
5154 ** Page pParent is an internal (non-leaf) tree page. This function
5155 ** asserts that page number iChild is the left-child if the iIdx'th
5156 ** cell in page pParent. Or, if iIdx is equal to the total number of
5157 ** cells in pParent, that page number iChild is the right-child of
5158 ** the page.
5159 */
5160 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5161   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
5162                             ** in a corrupt database */
5163   assert( iIdx<=pParent->nCell );
5164   if( iIdx==pParent->nCell ){
5165     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5166   }else{
5167     assert( get4byte(findCell(pParent, iIdx))==iChild );
5168   }
5169 }
5170 #else
5171 #  define assertParentIndex(x,y,z)
5172 #endif
5173 
5174 /*
5175 ** Move the cursor up to the parent page.
5176 **
5177 ** pCur->idx is set to the cell index that contains the pointer
5178 ** to the page we are coming from.  If we are coming from the
5179 ** right-most child page then pCur->idx is set to one more than
5180 ** the largest cell index.
5181 */
5182 static void moveToParent(BtCursor *pCur){
5183   MemPage *pLeaf;
5184   assert( cursorOwnsBtShared(pCur) );
5185   assert( pCur->eState==CURSOR_VALID );
5186   assert( pCur->iPage>0 );
5187   assert( pCur->pPage );
5188   assertParentIndex(
5189     pCur->apPage[pCur->iPage-1],
5190     pCur->aiIdx[pCur->iPage-1],
5191     pCur->pPage->pgno
5192   );
5193   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5194   pCur->info.nSize = 0;
5195   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5196   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5197   pLeaf = pCur->pPage;
5198   pCur->pPage = pCur->apPage[--pCur->iPage];
5199   releasePageNotNull(pLeaf);
5200 }
5201 
5202 /*
5203 ** Move the cursor to point to the root page of its b-tree structure.
5204 **
5205 ** If the table has a virtual root page, then the cursor is moved to point
5206 ** to the virtual root page instead of the actual root page. A table has a
5207 ** virtual root page when the actual root page contains no cells and a
5208 ** single child page. This can only happen with the table rooted at page 1.
5209 **
5210 ** If the b-tree structure is empty, the cursor state is set to
5211 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5212 ** the cursor is set to point to the first cell located on the root
5213 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5214 **
5215 ** If this function returns successfully, it may be assumed that the
5216 ** page-header flags indicate that the [virtual] root-page is the expected
5217 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5218 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5219 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5220 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5221 ** b-tree).
5222 */
5223 static int moveToRoot(BtCursor *pCur){
5224   MemPage *pRoot;
5225   int rc = SQLITE_OK;
5226 
5227   assert( cursorOwnsBtShared(pCur) );
5228   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5229   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5230   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5231   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5232   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5233 
5234   if( pCur->iPage>=0 ){
5235     if( pCur->iPage ){
5236       releasePageNotNull(pCur->pPage);
5237       while( --pCur->iPage ){
5238         releasePageNotNull(pCur->apPage[pCur->iPage]);
5239       }
5240       pCur->pPage = pCur->apPage[0];
5241       goto skip_init;
5242     }
5243   }else if( pCur->pgnoRoot==0 ){
5244     pCur->eState = CURSOR_INVALID;
5245     return SQLITE_EMPTY;
5246   }else{
5247     assert( pCur->iPage==(-1) );
5248     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5249       if( pCur->eState==CURSOR_FAULT ){
5250         assert( pCur->skipNext!=SQLITE_OK );
5251         return pCur->skipNext;
5252       }
5253       sqlite3BtreeClearCursor(pCur);
5254     }
5255     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5256                         0, pCur->curPagerFlags);
5257     if( rc!=SQLITE_OK ){
5258       pCur->eState = CURSOR_INVALID;
5259       return rc;
5260     }
5261     pCur->iPage = 0;
5262     pCur->curIntKey = pCur->pPage->intKey;
5263   }
5264   pRoot = pCur->pPage;
5265   assert( pRoot->pgno==pCur->pgnoRoot );
5266 
5267   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5268   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5269   ** NULL, the caller expects a table b-tree. If this is not the case,
5270   ** return an SQLITE_CORRUPT error.
5271   **
5272   ** Earlier versions of SQLite assumed that this test could not fail
5273   ** if the root page was already loaded when this function was called (i.e.
5274   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5275   ** in such a way that page pRoot is linked into a second b-tree table
5276   ** (or the freelist).  */
5277   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5278   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5279     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5280   }
5281 
5282 skip_init:
5283   pCur->ix = 0;
5284   pCur->info.nSize = 0;
5285   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5286 
5287   pRoot = pCur->pPage;
5288   if( pRoot->nCell>0 ){
5289     pCur->eState = CURSOR_VALID;
5290   }else if( !pRoot->leaf ){
5291     Pgno subpage;
5292     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5293     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5294     pCur->eState = CURSOR_VALID;
5295     rc = moveToChild(pCur, subpage);
5296   }else{
5297     pCur->eState = CURSOR_INVALID;
5298     rc = SQLITE_EMPTY;
5299   }
5300   return rc;
5301 }
5302 
5303 /*
5304 ** Move the cursor down to the left-most leaf entry beneath the
5305 ** entry to which it is currently pointing.
5306 **
5307 ** The left-most leaf is the one with the smallest key - the first
5308 ** in ascending order.
5309 */
5310 static int moveToLeftmost(BtCursor *pCur){
5311   Pgno pgno;
5312   int rc = SQLITE_OK;
5313   MemPage *pPage;
5314 
5315   assert( cursorOwnsBtShared(pCur) );
5316   assert( pCur->eState==CURSOR_VALID );
5317   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5318     assert( pCur->ix<pPage->nCell );
5319     pgno = get4byte(findCell(pPage, pCur->ix));
5320     rc = moveToChild(pCur, pgno);
5321   }
5322   return rc;
5323 }
5324 
5325 /*
5326 ** Move the cursor down to the right-most leaf entry beneath the
5327 ** page to which it is currently pointing.  Notice the difference
5328 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5329 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5330 ** finds the right-most entry beneath the *page*.
5331 **
5332 ** The right-most entry is the one with the largest key - the last
5333 ** key in ascending order.
5334 */
5335 static int moveToRightmost(BtCursor *pCur){
5336   Pgno pgno;
5337   int rc = SQLITE_OK;
5338   MemPage *pPage = 0;
5339 
5340   assert( cursorOwnsBtShared(pCur) );
5341   assert( pCur->eState==CURSOR_VALID );
5342   while( !(pPage = pCur->pPage)->leaf ){
5343     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5344     pCur->ix = pPage->nCell;
5345     rc = moveToChild(pCur, pgno);
5346     if( rc ) return rc;
5347   }
5348   pCur->ix = pPage->nCell-1;
5349   assert( pCur->info.nSize==0 );
5350   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5351   return SQLITE_OK;
5352 }
5353 
5354 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5355 ** on success.  Set *pRes to 0 if the cursor actually points to something
5356 ** or set *pRes to 1 if the table is empty.
5357 */
5358 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5359   int rc;
5360 
5361   assert( cursorOwnsBtShared(pCur) );
5362   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5363   rc = moveToRoot(pCur);
5364   if( rc==SQLITE_OK ){
5365     assert( pCur->pPage->nCell>0 );
5366     *pRes = 0;
5367     rc = moveToLeftmost(pCur);
5368   }else if( rc==SQLITE_EMPTY ){
5369     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5370     *pRes = 1;
5371     rc = SQLITE_OK;
5372   }
5373   return rc;
5374 }
5375 
5376 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5377 ** on success.  Set *pRes to 0 if the cursor actually points to something
5378 ** or set *pRes to 1 if the table is empty.
5379 */
5380 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5381   int rc;
5382 
5383   assert( cursorOwnsBtShared(pCur) );
5384   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5385 
5386   /* If the cursor already points to the last entry, this is a no-op. */
5387   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5388 #ifdef SQLITE_DEBUG
5389     /* This block serves to assert() that the cursor really does point
5390     ** to the last entry in the b-tree. */
5391     int ii;
5392     for(ii=0; ii<pCur->iPage; ii++){
5393       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5394     }
5395     assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5396     testcase( pCur->ix!=pCur->pPage->nCell-1 );
5397     /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5398     assert( pCur->pPage->leaf );
5399 #endif
5400     *pRes = 0;
5401     return SQLITE_OK;
5402   }
5403 
5404   rc = moveToRoot(pCur);
5405   if( rc==SQLITE_OK ){
5406     assert( pCur->eState==CURSOR_VALID );
5407     *pRes = 0;
5408     rc = moveToRightmost(pCur);
5409     if( rc==SQLITE_OK ){
5410       pCur->curFlags |= BTCF_AtLast;
5411     }else{
5412       pCur->curFlags &= ~BTCF_AtLast;
5413     }
5414   }else if( rc==SQLITE_EMPTY ){
5415     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5416     *pRes = 1;
5417     rc = SQLITE_OK;
5418   }
5419   return rc;
5420 }
5421 
5422 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5423 ** table near the key intKey.   Return a success code.
5424 **
5425 ** If an exact match is not found, then the cursor is always
5426 ** left pointing at a leaf page which would hold the entry if it
5427 ** were present.  The cursor might point to an entry that comes
5428 ** before or after the key.
5429 **
5430 ** An integer is written into *pRes which is the result of
5431 ** comparing the key with the entry to which the cursor is
5432 ** pointing.  The meaning of the integer written into
5433 ** *pRes is as follows:
5434 **
5435 **     *pRes<0      The cursor is left pointing at an entry that
5436 **                  is smaller than intKey or if the table is empty
5437 **                  and the cursor is therefore left point to nothing.
5438 **
5439 **     *pRes==0     The cursor is left pointing at an entry that
5440 **                  exactly matches intKey.
5441 **
5442 **     *pRes>0      The cursor is left pointing at an entry that
5443 **                  is larger than intKey.
5444 */
5445 int sqlite3BtreeTableMoveto(
5446   BtCursor *pCur,          /* The cursor to be moved */
5447   i64 intKey,              /* The table key */
5448   int biasRight,           /* If true, bias the search to the high end */
5449   int *pRes                /* Write search results here */
5450 ){
5451   int rc;
5452 
5453   assert( cursorOwnsBtShared(pCur) );
5454   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5455   assert( pRes );
5456   assert( pCur->pKeyInfo==0 );
5457   assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
5458 
5459   /* If the cursor is already positioned at the point we are trying
5460   ** to move to, then just return without doing any work */
5461   if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
5462     if( pCur->info.nKey==intKey ){
5463       *pRes = 0;
5464       return SQLITE_OK;
5465     }
5466     if( pCur->info.nKey<intKey ){
5467       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5468         *pRes = -1;
5469         return SQLITE_OK;
5470       }
5471       /* If the requested key is one more than the previous key, then
5472       ** try to get there using sqlite3BtreeNext() rather than a full
5473       ** binary search.  This is an optimization only.  The correct answer
5474       ** is still obtained without this case, only a little more slowely */
5475       if( pCur->info.nKey+1==intKey ){
5476         *pRes = 0;
5477         rc = sqlite3BtreeNext(pCur, 0);
5478         if( rc==SQLITE_OK ){
5479           getCellInfo(pCur);
5480           if( pCur->info.nKey==intKey ){
5481             return SQLITE_OK;
5482           }
5483         }else if( rc==SQLITE_DONE ){
5484           rc = SQLITE_OK;
5485         }else{
5486           return rc;
5487         }
5488       }
5489     }
5490   }
5491 
5492 #ifdef SQLITE_DEBUG
5493   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5494 #endif
5495 
5496   rc = moveToRoot(pCur);
5497   if( rc ){
5498     if( rc==SQLITE_EMPTY ){
5499       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5500       *pRes = -1;
5501       return SQLITE_OK;
5502     }
5503     return rc;
5504   }
5505   assert( pCur->pPage );
5506   assert( pCur->pPage->isInit );
5507   assert( pCur->eState==CURSOR_VALID );
5508   assert( pCur->pPage->nCell > 0 );
5509   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5510   assert( pCur->curIntKey );
5511 
5512   for(;;){
5513     int lwr, upr, idx, c;
5514     Pgno chldPg;
5515     MemPage *pPage = pCur->pPage;
5516     u8 *pCell;                          /* Pointer to current cell in pPage */
5517 
5518     /* pPage->nCell must be greater than zero. If this is the root-page
5519     ** the cursor would have been INVALID above and this for(;;) loop
5520     ** not run. If this is not the root-page, then the moveToChild() routine
5521     ** would have already detected db corruption. Similarly, pPage must
5522     ** be the right kind (index or table) of b-tree page. Otherwise
5523     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5524     assert( pPage->nCell>0 );
5525     assert( pPage->intKey );
5526     lwr = 0;
5527     upr = pPage->nCell-1;
5528     assert( biasRight==0 || biasRight==1 );
5529     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5530     pCur->ix = (u16)idx;
5531     for(;;){
5532       i64 nCellKey;
5533       pCell = findCellPastPtr(pPage, idx);
5534       if( pPage->intKeyLeaf ){
5535         while( 0x80 <= *(pCell++) ){
5536           if( pCell>=pPage->aDataEnd ){
5537             return SQLITE_CORRUPT_PAGE(pPage);
5538           }
5539         }
5540       }
5541       getVarint(pCell, (u64*)&nCellKey);
5542       if( nCellKey<intKey ){
5543         lwr = idx+1;
5544         if( lwr>upr ){ c = -1; break; }
5545       }else if( nCellKey>intKey ){
5546         upr = idx-1;
5547         if( lwr>upr ){ c = +1; break; }
5548       }else{
5549         assert( nCellKey==intKey );
5550         pCur->ix = (u16)idx;
5551         if( !pPage->leaf ){
5552           lwr = idx;
5553           goto moveto_table_next_layer;
5554         }else{
5555           pCur->curFlags |= BTCF_ValidNKey;
5556           pCur->info.nKey = nCellKey;
5557           pCur->info.nSize = 0;
5558           *pRes = 0;
5559           return SQLITE_OK;
5560         }
5561       }
5562       assert( lwr+upr>=0 );
5563       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5564     }
5565     assert( lwr==upr+1 || !pPage->leaf );
5566     assert( pPage->isInit );
5567     if( pPage->leaf ){
5568       assert( pCur->ix<pCur->pPage->nCell );
5569       pCur->ix = (u16)idx;
5570       *pRes = c;
5571       rc = SQLITE_OK;
5572       goto moveto_table_finish;
5573     }
5574 moveto_table_next_layer:
5575     if( lwr>=pPage->nCell ){
5576       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5577     }else{
5578       chldPg = get4byte(findCell(pPage, lwr));
5579     }
5580     pCur->ix = (u16)lwr;
5581     rc = moveToChild(pCur, chldPg);
5582     if( rc ) break;
5583   }
5584 moveto_table_finish:
5585   pCur->info.nSize = 0;
5586   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5587   return rc;
5588 }
5589 
5590 /* Move the cursor so that it points to an entry in an index table
5591 ** near the key pIdxKey.   Return a success code.
5592 **
5593 ** If an exact match is not found, then the cursor is always
5594 ** left pointing at a leaf page which would hold the entry if it
5595 ** were present.  The cursor might point to an entry that comes
5596 ** before or after the key.
5597 **
5598 ** An integer is written into *pRes which is the result of
5599 ** comparing the key with the entry to which the cursor is
5600 ** pointing.  The meaning of the integer written into
5601 ** *pRes is as follows:
5602 **
5603 **     *pRes<0      The cursor is left pointing at an entry that
5604 **                  is smaller than pIdxKey or if the table is empty
5605 **                  and the cursor is therefore left point to nothing.
5606 **
5607 **     *pRes==0     The cursor is left pointing at an entry that
5608 **                  exactly matches pIdxKey.
5609 **
5610 **     *pRes>0      The cursor is left pointing at an entry that
5611 **                  is larger than pIdxKey.
5612 **
5613 ** The pIdxKey->eqSeen field is set to 1 if there
5614 ** exists an entry in the table that exactly matches pIdxKey.
5615 */
5616 int sqlite3BtreeIndexMoveto(
5617   BtCursor *pCur,          /* The cursor to be moved */
5618   UnpackedRecord *pIdxKey, /* Unpacked index key */
5619   int *pRes                /* Write search results here */
5620 ){
5621   int rc;
5622   RecordCompare xRecordCompare;
5623 
5624   assert( cursorOwnsBtShared(pCur) );
5625   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5626   assert( pRes );
5627   assert( pCur->pKeyInfo!=0 );
5628 
5629 #ifdef SQLITE_DEBUG
5630   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5631 #endif
5632 
5633   xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5634   pIdxKey->errCode = 0;
5635   assert( pIdxKey->default_rc==1
5636        || pIdxKey->default_rc==0
5637        || pIdxKey->default_rc==-1
5638   );
5639 
5640   rc = moveToRoot(pCur);
5641   if( rc ){
5642     if( rc==SQLITE_EMPTY ){
5643       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5644       *pRes = -1;
5645       return SQLITE_OK;
5646     }
5647     return rc;
5648   }
5649   assert( pCur->pPage );
5650   assert( pCur->pPage->isInit );
5651   assert( pCur->eState==CURSOR_VALID );
5652   assert( pCur->pPage->nCell > 0 );
5653   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5654   assert( pCur->curIntKey || pIdxKey );
5655   for(;;){
5656     int lwr, upr, idx, c;
5657     Pgno chldPg;
5658     MemPage *pPage = pCur->pPage;
5659     u8 *pCell;                          /* Pointer to current cell in pPage */
5660 
5661     /* pPage->nCell must be greater than zero. If this is the root-page
5662     ** the cursor would have been INVALID above and this for(;;) loop
5663     ** not run. If this is not the root-page, then the moveToChild() routine
5664     ** would have already detected db corruption. Similarly, pPage must
5665     ** be the right kind (index or table) of b-tree page. Otherwise
5666     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5667     assert( pPage->nCell>0 );
5668     assert( pPage->intKey==(pIdxKey==0) );
5669     lwr = 0;
5670     upr = pPage->nCell-1;
5671     idx = upr>>1; /* idx = (lwr+upr)/2; */
5672     pCur->ix = (u16)idx;
5673     for(;;){
5674       int nCell;  /* Size of the pCell cell in bytes */
5675       pCell = findCellPastPtr(pPage, idx);
5676 
5677       /* The maximum supported page-size is 65536 bytes. This means that
5678       ** the maximum number of record bytes stored on an index B-Tree
5679       ** page is less than 16384 bytes and may be stored as a 2-byte
5680       ** varint. This information is used to attempt to avoid parsing
5681       ** the entire cell by checking for the cases where the record is
5682       ** stored entirely within the b-tree page by inspecting the first
5683       ** 2 bytes of the cell.
5684       */
5685       nCell = pCell[0];
5686       if( nCell<=pPage->max1bytePayload ){
5687         /* This branch runs if the record-size field of the cell is a
5688         ** single byte varint and the record fits entirely on the main
5689         ** b-tree page.  */
5690         testcase( pCell+nCell+1==pPage->aDataEnd );
5691         c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5692       }else if( !(pCell[1] & 0x80)
5693         && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5694       ){
5695         /* The record-size field is a 2 byte varint and the record
5696         ** fits entirely on the main b-tree page.  */
5697         testcase( pCell+nCell+2==pPage->aDataEnd );
5698         c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5699       }else{
5700         /* The record flows over onto one or more overflow pages. In
5701         ** this case the whole cell needs to be parsed, a buffer allocated
5702         ** and accessPayload() used to retrieve the record into the
5703         ** buffer before VdbeRecordCompare() can be called.
5704         **
5705         ** If the record is corrupt, the xRecordCompare routine may read
5706         ** up to two varints past the end of the buffer. An extra 18
5707         ** bytes of padding is allocated at the end of the buffer in
5708         ** case this happens.  */
5709         void *pCellKey;
5710         u8 * const pCellBody = pCell - pPage->childPtrSize;
5711         const int nOverrun = 18;  /* Size of the overrun padding */
5712         pPage->xParseCell(pPage, pCellBody, &pCur->info);
5713         nCell = (int)pCur->info.nKey;
5714         testcase( nCell<0 );   /* True if key size is 2^32 or more */
5715         testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5716         testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5717         testcase( nCell==2 );  /* Minimum legal index key size */
5718         if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5719           rc = SQLITE_CORRUPT_PAGE(pPage);
5720           goto moveto_index_finish;
5721         }
5722         pCellKey = sqlite3Malloc( nCell+nOverrun );
5723         if( pCellKey==0 ){
5724           rc = SQLITE_NOMEM_BKPT;
5725           goto moveto_index_finish;
5726         }
5727         pCur->ix = (u16)idx;
5728         rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5729         memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5730         pCur->curFlags &= ~BTCF_ValidOvfl;
5731         if( rc ){
5732           sqlite3_free(pCellKey);
5733           goto moveto_index_finish;
5734         }
5735         c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5736         sqlite3_free(pCellKey);
5737       }
5738       assert(
5739           (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5740        && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5741       );
5742       if( c<0 ){
5743         lwr = idx+1;
5744       }else if( c>0 ){
5745         upr = idx-1;
5746       }else{
5747         assert( c==0 );
5748         *pRes = 0;
5749         rc = SQLITE_OK;
5750         pCur->ix = (u16)idx;
5751         if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5752         goto moveto_index_finish;
5753       }
5754       if( lwr>upr ) break;
5755       assert( lwr+upr>=0 );
5756       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5757     }
5758     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5759     assert( pPage->isInit );
5760     if( pPage->leaf ){
5761       assert( pCur->ix<pCur->pPage->nCell );
5762       pCur->ix = (u16)idx;
5763       *pRes = c;
5764       rc = SQLITE_OK;
5765       goto moveto_index_finish;
5766     }
5767     if( lwr>=pPage->nCell ){
5768       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5769     }else{
5770       chldPg = get4byte(findCell(pPage, lwr));
5771     }
5772     pCur->ix = (u16)lwr;
5773     rc = moveToChild(pCur, chldPg);
5774     if( rc ) break;
5775   }
5776 moveto_index_finish:
5777   pCur->info.nSize = 0;
5778   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5779   return rc;
5780 }
5781 
5782 
5783 /*
5784 ** Return TRUE if the cursor is not pointing at an entry of the table.
5785 **
5786 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5787 ** past the last entry in the table or sqlite3BtreePrev() moves past
5788 ** the first entry.  TRUE is also returned if the table is empty.
5789 */
5790 int sqlite3BtreeEof(BtCursor *pCur){
5791   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5792   ** have been deleted? This API will need to change to return an error code
5793   ** as well as the boolean result value.
5794   */
5795   return (CURSOR_VALID!=pCur->eState);
5796 }
5797 
5798 /*
5799 ** Return an estimate for the number of rows in the table that pCur is
5800 ** pointing to.  Return a negative number if no estimate is currently
5801 ** available.
5802 */
5803 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5804   i64 n;
5805   u8 i;
5806 
5807   assert( cursorOwnsBtShared(pCur) );
5808   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5809 
5810   /* Currently this interface is only called by the OP_IfSmaller
5811   ** opcode, and it that case the cursor will always be valid and
5812   ** will always point to a leaf node. */
5813   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5814   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5815 
5816   n = pCur->pPage->nCell;
5817   for(i=0; i<pCur->iPage; i++){
5818     n *= pCur->apPage[i]->nCell;
5819   }
5820   return n;
5821 }
5822 
5823 /*
5824 ** Advance the cursor to the next entry in the database.
5825 ** Return value:
5826 **
5827 **    SQLITE_OK        success
5828 **    SQLITE_DONE      cursor is already pointing at the last element
5829 **    otherwise        some kind of error occurred
5830 **
5831 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5832 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5833 ** to the next cell on the current page.  The (slower) btreeNext() helper
5834 ** routine is called when it is necessary to move to a different page or
5835 ** to restore the cursor.
5836 **
5837 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5838 ** cursor corresponds to an SQL index and this routine could have been
5839 ** skipped if the SQL index had been a unique index.  The F argument
5840 ** is a hint to the implement.  SQLite btree implementation does not use
5841 ** this hint, but COMDB2 does.
5842 */
5843 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5844   int rc;
5845   int idx;
5846   MemPage *pPage;
5847 
5848   assert( cursorOwnsBtShared(pCur) );
5849   if( pCur->eState!=CURSOR_VALID ){
5850     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5851     rc = restoreCursorPosition(pCur);
5852     if( rc!=SQLITE_OK ){
5853       return rc;
5854     }
5855     if( CURSOR_INVALID==pCur->eState ){
5856       return SQLITE_DONE;
5857     }
5858     if( pCur->eState==CURSOR_SKIPNEXT ){
5859       pCur->eState = CURSOR_VALID;
5860       if( pCur->skipNext>0 ) return SQLITE_OK;
5861     }
5862   }
5863 
5864   pPage = pCur->pPage;
5865   idx = ++pCur->ix;
5866   if( !pPage->isInit || sqlite3FaultSim(412) ){
5867     /* The only known way for this to happen is for there to be a
5868     ** recursive SQL function that does a DELETE operation as part of a
5869     ** SELECT which deletes content out from under an active cursor
5870     ** in a corrupt database file where the table being DELETE-ed from
5871     ** has pages in common with the table being queried.  See TH3
5872     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5873     ** example. */
5874     return SQLITE_CORRUPT_BKPT;
5875   }
5876 
5877   /* If the database file is corrupt, it is possible for the value of idx
5878   ** to be invalid here. This can only occur if a second cursor modifies
5879   ** the page while cursor pCur is holding a reference to it. Which can
5880   ** only happen if the database is corrupt in such a way as to link the
5881   ** page into more than one b-tree structure.
5882   **
5883   ** Update 2019-12-23: appears to long longer be possible after the
5884   ** addition of anotherValidCursor() condition on balance_deeper().  */
5885   harmless( idx>pPage->nCell );
5886 
5887   if( idx>=pPage->nCell ){
5888     if( !pPage->leaf ){
5889       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5890       if( rc ) return rc;
5891       return moveToLeftmost(pCur);
5892     }
5893     do{
5894       if( pCur->iPage==0 ){
5895         pCur->eState = CURSOR_INVALID;
5896         return SQLITE_DONE;
5897       }
5898       moveToParent(pCur);
5899       pPage = pCur->pPage;
5900     }while( pCur->ix>=pPage->nCell );
5901     if( pPage->intKey ){
5902       return sqlite3BtreeNext(pCur, 0);
5903     }else{
5904       return SQLITE_OK;
5905     }
5906   }
5907   if( pPage->leaf ){
5908     return SQLITE_OK;
5909   }else{
5910     return moveToLeftmost(pCur);
5911   }
5912 }
5913 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5914   MemPage *pPage;
5915   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5916   assert( cursorOwnsBtShared(pCur) );
5917   assert( flags==0 || flags==1 );
5918   pCur->info.nSize = 0;
5919   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5920   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5921   pPage = pCur->pPage;
5922   if( (++pCur->ix)>=pPage->nCell ){
5923     pCur->ix--;
5924     return btreeNext(pCur);
5925   }
5926   if( pPage->leaf ){
5927     return SQLITE_OK;
5928   }else{
5929     return moveToLeftmost(pCur);
5930   }
5931 }
5932 
5933 /*
5934 ** Step the cursor to the back to the previous entry in the database.
5935 ** Return values:
5936 **
5937 **     SQLITE_OK     success
5938 **     SQLITE_DONE   the cursor is already on the first element of the table
5939 **     otherwise     some kind of error occurred
5940 **
5941 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5942 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5943 ** to the previous cell on the current page.  The (slower) btreePrevious()
5944 ** helper routine is called when it is necessary to move to a different page
5945 ** or to restore the cursor.
5946 **
5947 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5948 ** the cursor corresponds to an SQL index and this routine could have been
5949 ** skipped if the SQL index had been a unique index.  The F argument is a
5950 ** hint to the implement.  The native SQLite btree implementation does not
5951 ** use this hint, but COMDB2 does.
5952 */
5953 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5954   int rc;
5955   MemPage *pPage;
5956 
5957   assert( cursorOwnsBtShared(pCur) );
5958   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5959   assert( pCur->info.nSize==0 );
5960   if( pCur->eState!=CURSOR_VALID ){
5961     rc = restoreCursorPosition(pCur);
5962     if( rc!=SQLITE_OK ){
5963       return rc;
5964     }
5965     if( CURSOR_INVALID==pCur->eState ){
5966       return SQLITE_DONE;
5967     }
5968     if( CURSOR_SKIPNEXT==pCur->eState ){
5969       pCur->eState = CURSOR_VALID;
5970       if( pCur->skipNext<0 ) return SQLITE_OK;
5971     }
5972   }
5973 
5974   pPage = pCur->pPage;
5975   assert( pPage->isInit );
5976   if( !pPage->leaf ){
5977     int idx = pCur->ix;
5978     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5979     if( rc ) return rc;
5980     rc = moveToRightmost(pCur);
5981   }else{
5982     while( pCur->ix==0 ){
5983       if( pCur->iPage==0 ){
5984         pCur->eState = CURSOR_INVALID;
5985         return SQLITE_DONE;
5986       }
5987       moveToParent(pCur);
5988     }
5989     assert( pCur->info.nSize==0 );
5990     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5991 
5992     pCur->ix--;
5993     pPage = pCur->pPage;
5994     if( pPage->intKey && !pPage->leaf ){
5995       rc = sqlite3BtreePrevious(pCur, 0);
5996     }else{
5997       rc = SQLITE_OK;
5998     }
5999   }
6000   return rc;
6001 }
6002 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
6003   assert( cursorOwnsBtShared(pCur) );
6004   assert( flags==0 || flags==1 );
6005   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
6006   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6007   pCur->info.nSize = 0;
6008   if( pCur->eState!=CURSOR_VALID
6009    || pCur->ix==0
6010    || pCur->pPage->leaf==0
6011   ){
6012     return btreePrevious(pCur);
6013   }
6014   pCur->ix--;
6015   return SQLITE_OK;
6016 }
6017 
6018 /*
6019 ** Allocate a new page from the database file.
6020 **
6021 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
6022 ** has already been called on the new page.)  The new page has also
6023 ** been referenced and the calling routine is responsible for calling
6024 ** sqlite3PagerUnref() on the new page when it is done.
6025 **
6026 ** SQLITE_OK is returned on success.  Any other return value indicates
6027 ** an error.  *ppPage is set to NULL in the event of an error.
6028 **
6029 ** If the "nearby" parameter is not 0, then an effort is made to
6030 ** locate a page close to the page number "nearby".  This can be used in an
6031 ** attempt to keep related pages close to each other in the database file,
6032 ** which in turn can make database access faster.
6033 **
6034 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6035 ** anywhere on the free-list, then it is guaranteed to be returned.  If
6036 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6037 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
6038 ** are no restrictions on which page is returned.
6039 */
6040 static int allocateBtreePage(
6041   BtShared *pBt,         /* The btree */
6042   MemPage **ppPage,      /* Store pointer to the allocated page here */
6043   Pgno *pPgno,           /* Store the page number here */
6044   Pgno nearby,           /* Search for a page near this one */
6045   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6046 ){
6047   MemPage *pPage1;
6048   int rc;
6049   u32 n;     /* Number of pages on the freelist */
6050   u32 k;     /* Number of leaves on the trunk of the freelist */
6051   MemPage *pTrunk = 0;
6052   MemPage *pPrevTrunk = 0;
6053   Pgno mxPage;     /* Total size of the database file */
6054 
6055   assert( sqlite3_mutex_held(pBt->mutex) );
6056   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
6057   pPage1 = pBt->pPage1;
6058   mxPage = btreePagecount(pBt);
6059   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6060   ** stores stores the total number of pages on the freelist. */
6061   n = get4byte(&pPage1->aData[36]);
6062   testcase( n==mxPage-1 );
6063   if( n>=mxPage ){
6064     return SQLITE_CORRUPT_BKPT;
6065   }
6066   if( n>0 ){
6067     /* There are pages on the freelist.  Reuse one of those pages. */
6068     Pgno iTrunk;
6069     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
6070     u32 nSearch = 0;   /* Count of the number of search attempts */
6071 
6072     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6073     ** shows that the page 'nearby' is somewhere on the free-list, then
6074     ** the entire-list will be searched for that page.
6075     */
6076 #ifndef SQLITE_OMIT_AUTOVACUUM
6077     if( eMode==BTALLOC_EXACT ){
6078       if( nearby<=mxPage ){
6079         u8 eType;
6080         assert( nearby>0 );
6081         assert( pBt->autoVacuum );
6082         rc = ptrmapGet(pBt, nearby, &eType, 0);
6083         if( rc ) return rc;
6084         if( eType==PTRMAP_FREEPAGE ){
6085           searchList = 1;
6086         }
6087       }
6088     }else if( eMode==BTALLOC_LE ){
6089       searchList = 1;
6090     }
6091 #endif
6092 
6093     /* Decrement the free-list count by 1. Set iTrunk to the index of the
6094     ** first free-list trunk page. iPrevTrunk is initially 1.
6095     */
6096     rc = sqlite3PagerWrite(pPage1->pDbPage);
6097     if( rc ) return rc;
6098     put4byte(&pPage1->aData[36], n-1);
6099 
6100     /* The code within this loop is run only once if the 'searchList' variable
6101     ** is not true. Otherwise, it runs once for each trunk-page on the
6102     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6103     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6104     */
6105     do {
6106       pPrevTrunk = pTrunk;
6107       if( pPrevTrunk ){
6108         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6109         ** is the page number of the next freelist trunk page in the list or
6110         ** zero if this is the last freelist trunk page. */
6111         iTrunk = get4byte(&pPrevTrunk->aData[0]);
6112       }else{
6113         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6114         ** stores the page number of the first page of the freelist, or zero if
6115         ** the freelist is empty. */
6116         iTrunk = get4byte(&pPage1->aData[32]);
6117       }
6118       testcase( iTrunk==mxPage );
6119       if( iTrunk>mxPage || nSearch++ > n ){
6120         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
6121       }else{
6122         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
6123       }
6124       if( rc ){
6125         pTrunk = 0;
6126         goto end_allocate_page;
6127       }
6128       assert( pTrunk!=0 );
6129       assert( pTrunk->aData!=0 );
6130       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6131       ** is the number of leaf page pointers to follow. */
6132       k = get4byte(&pTrunk->aData[4]);
6133       if( k==0 && !searchList ){
6134         /* The trunk has no leaves and the list is not being searched.
6135         ** So extract the trunk page itself and use it as the newly
6136         ** allocated page */
6137         assert( pPrevTrunk==0 );
6138         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6139         if( rc ){
6140           goto end_allocate_page;
6141         }
6142         *pPgno = iTrunk;
6143         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6144         *ppPage = pTrunk;
6145         pTrunk = 0;
6146         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6147       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
6148         /* Value of k is out of range.  Database corruption */
6149         rc = SQLITE_CORRUPT_PGNO(iTrunk);
6150         goto end_allocate_page;
6151 #ifndef SQLITE_OMIT_AUTOVACUUM
6152       }else if( searchList
6153             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6154       ){
6155         /* The list is being searched and this trunk page is the page
6156         ** to allocate, regardless of whether it has leaves.
6157         */
6158         *pPgno = iTrunk;
6159         *ppPage = pTrunk;
6160         searchList = 0;
6161         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6162         if( rc ){
6163           goto end_allocate_page;
6164         }
6165         if( k==0 ){
6166           if( !pPrevTrunk ){
6167             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6168           }else{
6169             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6170             if( rc!=SQLITE_OK ){
6171               goto end_allocate_page;
6172             }
6173             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6174           }
6175         }else{
6176           /* The trunk page is required by the caller but it contains
6177           ** pointers to free-list leaves. The first leaf becomes a trunk
6178           ** page in this case.
6179           */
6180           MemPage *pNewTrunk;
6181           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6182           if( iNewTrunk>mxPage ){
6183             rc = SQLITE_CORRUPT_PGNO(iTrunk);
6184             goto end_allocate_page;
6185           }
6186           testcase( iNewTrunk==mxPage );
6187           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6188           if( rc!=SQLITE_OK ){
6189             goto end_allocate_page;
6190           }
6191           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6192           if( rc!=SQLITE_OK ){
6193             releasePage(pNewTrunk);
6194             goto end_allocate_page;
6195           }
6196           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6197           put4byte(&pNewTrunk->aData[4], k-1);
6198           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6199           releasePage(pNewTrunk);
6200           if( !pPrevTrunk ){
6201             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6202             put4byte(&pPage1->aData[32], iNewTrunk);
6203           }else{
6204             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6205             if( rc ){
6206               goto end_allocate_page;
6207             }
6208             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6209           }
6210         }
6211         pTrunk = 0;
6212         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6213 #endif
6214       }else if( k>0 ){
6215         /* Extract a leaf from the trunk */
6216         u32 closest;
6217         Pgno iPage;
6218         unsigned char *aData = pTrunk->aData;
6219         if( nearby>0 ){
6220           u32 i;
6221           closest = 0;
6222           if( eMode==BTALLOC_LE ){
6223             for(i=0; i<k; i++){
6224               iPage = get4byte(&aData[8+i*4]);
6225               if( iPage<=nearby ){
6226                 closest = i;
6227                 break;
6228               }
6229             }
6230           }else{
6231             int dist;
6232             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6233             for(i=1; i<k; i++){
6234               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6235               if( d2<dist ){
6236                 closest = i;
6237                 dist = d2;
6238               }
6239             }
6240           }
6241         }else{
6242           closest = 0;
6243         }
6244 
6245         iPage = get4byte(&aData[8+closest*4]);
6246         testcase( iPage==mxPage );
6247         if( iPage>mxPage || iPage<2 ){
6248           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6249           goto end_allocate_page;
6250         }
6251         testcase( iPage==mxPage );
6252         if( !searchList
6253          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6254         ){
6255           int noContent;
6256           *pPgno = iPage;
6257           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6258                  ": %d more free pages\n",
6259                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6260           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6261           if( rc ) goto end_allocate_page;
6262           if( closest<k-1 ){
6263             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6264           }
6265           put4byte(&aData[4], k-1);
6266           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6267           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6268           if( rc==SQLITE_OK ){
6269             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6270             if( rc!=SQLITE_OK ){
6271               releasePage(*ppPage);
6272               *ppPage = 0;
6273             }
6274           }
6275           searchList = 0;
6276         }
6277       }
6278       releasePage(pPrevTrunk);
6279       pPrevTrunk = 0;
6280     }while( searchList );
6281   }else{
6282     /* There are no pages on the freelist, so append a new page to the
6283     ** database image.
6284     **
6285     ** Normally, new pages allocated by this block can be requested from the
6286     ** pager layer with the 'no-content' flag set. This prevents the pager
6287     ** from trying to read the pages content from disk. However, if the
6288     ** current transaction has already run one or more incremental-vacuum
6289     ** steps, then the page we are about to allocate may contain content
6290     ** that is required in the event of a rollback. In this case, do
6291     ** not set the no-content flag. This causes the pager to load and journal
6292     ** the current page content before overwriting it.
6293     **
6294     ** Note that the pager will not actually attempt to load or journal
6295     ** content for any page that really does lie past the end of the database
6296     ** file on disk. So the effects of disabling the no-content optimization
6297     ** here are confined to those pages that lie between the end of the
6298     ** database image and the end of the database file.
6299     */
6300     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6301 
6302     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6303     if( rc ) return rc;
6304     pBt->nPage++;
6305     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6306 
6307 #ifndef SQLITE_OMIT_AUTOVACUUM
6308     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6309       /* If *pPgno refers to a pointer-map page, allocate two new pages
6310       ** at the end of the file instead of one. The first allocated page
6311       ** becomes a new pointer-map page, the second is used by the caller.
6312       */
6313       MemPage *pPg = 0;
6314       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6315       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6316       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6317       if( rc==SQLITE_OK ){
6318         rc = sqlite3PagerWrite(pPg->pDbPage);
6319         releasePage(pPg);
6320       }
6321       if( rc ) return rc;
6322       pBt->nPage++;
6323       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6324     }
6325 #endif
6326     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6327     *pPgno = pBt->nPage;
6328 
6329     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6330     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6331     if( rc ) return rc;
6332     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6333     if( rc!=SQLITE_OK ){
6334       releasePage(*ppPage);
6335       *ppPage = 0;
6336     }
6337     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6338   }
6339 
6340   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6341 
6342 end_allocate_page:
6343   releasePage(pTrunk);
6344   releasePage(pPrevTrunk);
6345   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6346   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6347   return rc;
6348 }
6349 
6350 /*
6351 ** This function is used to add page iPage to the database file free-list.
6352 ** It is assumed that the page is not already a part of the free-list.
6353 **
6354 ** The value passed as the second argument to this function is optional.
6355 ** If the caller happens to have a pointer to the MemPage object
6356 ** corresponding to page iPage handy, it may pass it as the second value.
6357 ** Otherwise, it may pass NULL.
6358 **
6359 ** If a pointer to a MemPage object is passed as the second argument,
6360 ** its reference count is not altered by this function.
6361 */
6362 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6363   MemPage *pTrunk = 0;                /* Free-list trunk page */
6364   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6365   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6366   MemPage *pPage;                     /* Page being freed. May be NULL. */
6367   int rc;                             /* Return Code */
6368   u32 nFree;                          /* Initial number of pages on free-list */
6369 
6370   assert( sqlite3_mutex_held(pBt->mutex) );
6371   assert( CORRUPT_DB || iPage>1 );
6372   assert( !pMemPage || pMemPage->pgno==iPage );
6373 
6374   if( iPage<2 || iPage>pBt->nPage ){
6375     return SQLITE_CORRUPT_BKPT;
6376   }
6377   if( pMemPage ){
6378     pPage = pMemPage;
6379     sqlite3PagerRef(pPage->pDbPage);
6380   }else{
6381     pPage = btreePageLookup(pBt, iPage);
6382   }
6383 
6384   /* Increment the free page count on pPage1 */
6385   rc = sqlite3PagerWrite(pPage1->pDbPage);
6386   if( rc ) goto freepage_out;
6387   nFree = get4byte(&pPage1->aData[36]);
6388   put4byte(&pPage1->aData[36], nFree+1);
6389 
6390   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6391     /* If the secure_delete option is enabled, then
6392     ** always fully overwrite deleted information with zeros.
6393     */
6394     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6395      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6396     ){
6397       goto freepage_out;
6398     }
6399     memset(pPage->aData, 0, pPage->pBt->pageSize);
6400   }
6401 
6402   /* If the database supports auto-vacuum, write an entry in the pointer-map
6403   ** to indicate that the page is free.
6404   */
6405   if( ISAUTOVACUUM ){
6406     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6407     if( rc ) goto freepage_out;
6408   }
6409 
6410   /* Now manipulate the actual database free-list structure. There are two
6411   ** possibilities. If the free-list is currently empty, or if the first
6412   ** trunk page in the free-list is full, then this page will become a
6413   ** new free-list trunk page. Otherwise, it will become a leaf of the
6414   ** first trunk page in the current free-list. This block tests if it
6415   ** is possible to add the page as a new free-list leaf.
6416   */
6417   if( nFree!=0 ){
6418     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6419 
6420     iTrunk = get4byte(&pPage1->aData[32]);
6421     if( iTrunk>btreePagecount(pBt) ){
6422       rc = SQLITE_CORRUPT_BKPT;
6423       goto freepage_out;
6424     }
6425     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6426     if( rc!=SQLITE_OK ){
6427       goto freepage_out;
6428     }
6429 
6430     nLeaf = get4byte(&pTrunk->aData[4]);
6431     assert( pBt->usableSize>32 );
6432     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6433       rc = SQLITE_CORRUPT_BKPT;
6434       goto freepage_out;
6435     }
6436     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6437       /* In this case there is room on the trunk page to insert the page
6438       ** being freed as a new leaf.
6439       **
6440       ** Note that the trunk page is not really full until it contains
6441       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6442       ** coded.  But due to a coding error in versions of SQLite prior to
6443       ** 3.6.0, databases with freelist trunk pages holding more than
6444       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6445       ** to maintain backwards compatibility with older versions of SQLite,
6446       ** we will continue to restrict the number of entries to usableSize/4 - 8
6447       ** for now.  At some point in the future (once everyone has upgraded
6448       ** to 3.6.0 or later) we should consider fixing the conditional above
6449       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6450       **
6451       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6452       ** avoid using the last six entries in the freelist trunk page array in
6453       ** order that database files created by newer versions of SQLite can be
6454       ** read by older versions of SQLite.
6455       */
6456       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6457       if( rc==SQLITE_OK ){
6458         put4byte(&pTrunk->aData[4], nLeaf+1);
6459         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6460         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6461           sqlite3PagerDontWrite(pPage->pDbPage);
6462         }
6463         rc = btreeSetHasContent(pBt, iPage);
6464       }
6465       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6466       goto freepage_out;
6467     }
6468   }
6469 
6470   /* If control flows to this point, then it was not possible to add the
6471   ** the page being freed as a leaf page of the first trunk in the free-list.
6472   ** Possibly because the free-list is empty, or possibly because the
6473   ** first trunk in the free-list is full. Either way, the page being freed
6474   ** will become the new first trunk page in the free-list.
6475   */
6476   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6477     goto freepage_out;
6478   }
6479   rc = sqlite3PagerWrite(pPage->pDbPage);
6480   if( rc!=SQLITE_OK ){
6481     goto freepage_out;
6482   }
6483   put4byte(pPage->aData, iTrunk);
6484   put4byte(&pPage->aData[4], 0);
6485   put4byte(&pPage1->aData[32], iPage);
6486   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6487 
6488 freepage_out:
6489   if( pPage ){
6490     pPage->isInit = 0;
6491   }
6492   releasePage(pPage);
6493   releasePage(pTrunk);
6494   return rc;
6495 }
6496 static void freePage(MemPage *pPage, int *pRC){
6497   if( (*pRC)==SQLITE_OK ){
6498     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6499   }
6500 }
6501 
6502 /*
6503 ** Free the overflow pages associated with the given Cell.
6504 */
6505 static SQLITE_NOINLINE int clearCellOverflow(
6506   MemPage *pPage,          /* The page that contains the Cell */
6507   unsigned char *pCell,    /* First byte of the Cell */
6508   CellInfo *pInfo          /* Size information about the cell */
6509 ){
6510   BtShared *pBt;
6511   Pgno ovflPgno;
6512   int rc;
6513   int nOvfl;
6514   u32 ovflPageSize;
6515 
6516   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6517   assert( pInfo->nLocal!=pInfo->nPayload );
6518   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6519   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6520   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6521     /* Cell extends past end of page */
6522     return SQLITE_CORRUPT_PAGE(pPage);
6523   }
6524   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6525   pBt = pPage->pBt;
6526   assert( pBt->usableSize > 4 );
6527   ovflPageSize = pBt->usableSize - 4;
6528   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6529   assert( nOvfl>0 ||
6530     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6531   );
6532   while( nOvfl-- ){
6533     Pgno iNext = 0;
6534     MemPage *pOvfl = 0;
6535     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6536       /* 0 is not a legal page number and page 1 cannot be an
6537       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6538       ** file the database must be corrupt. */
6539       return SQLITE_CORRUPT_BKPT;
6540     }
6541     if( nOvfl ){
6542       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6543       if( rc ) return rc;
6544     }
6545 
6546     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6547      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6548     ){
6549       /* There is no reason any cursor should have an outstanding reference
6550       ** to an overflow page belonging to a cell that is being deleted/updated.
6551       ** So if there exists more than one reference to this page, then it
6552       ** must not really be an overflow page and the database must be corrupt.
6553       ** It is helpful to detect this before calling freePage2(), as
6554       ** freePage2() may zero the page contents if secure-delete mode is
6555       ** enabled. If this 'overflow' page happens to be a page that the
6556       ** caller is iterating through or using in some other way, this
6557       ** can be problematic.
6558       */
6559       rc = SQLITE_CORRUPT_BKPT;
6560     }else{
6561       rc = freePage2(pBt, pOvfl, ovflPgno);
6562     }
6563 
6564     if( pOvfl ){
6565       sqlite3PagerUnref(pOvfl->pDbPage);
6566     }
6567     if( rc ) return rc;
6568     ovflPgno = iNext;
6569   }
6570   return SQLITE_OK;
6571 }
6572 
6573 /* Call xParseCell to compute the size of a cell.  If the cell contains
6574 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6575 ** STore the result code (SQLITE_OK or some error code) in rc.
6576 **
6577 ** Implemented as macro to force inlining for performance.
6578 */
6579 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo)   \
6580   pPage->xParseCell(pPage, pCell, &sInfo);          \
6581   if( sInfo.nLocal!=sInfo.nPayload ){               \
6582     rc = clearCellOverflow(pPage, pCell, &sInfo);   \
6583   }else{                                            \
6584     rc = SQLITE_OK;                                 \
6585   }
6586 
6587 
6588 /*
6589 ** Create the byte sequence used to represent a cell on page pPage
6590 ** and write that byte sequence into pCell[].  Overflow pages are
6591 ** allocated and filled in as necessary.  The calling procedure
6592 ** is responsible for making sure sufficient space has been allocated
6593 ** for pCell[].
6594 **
6595 ** Note that pCell does not necessary need to point to the pPage->aData
6596 ** area.  pCell might point to some temporary storage.  The cell will
6597 ** be constructed in this temporary area then copied into pPage->aData
6598 ** later.
6599 */
6600 static int fillInCell(
6601   MemPage *pPage,                /* The page that contains the cell */
6602   unsigned char *pCell,          /* Complete text of the cell */
6603   const BtreePayload *pX,        /* Payload with which to construct the cell */
6604   int *pnSize                    /* Write cell size here */
6605 ){
6606   int nPayload;
6607   const u8 *pSrc;
6608   int nSrc, n, rc, mn;
6609   int spaceLeft;
6610   MemPage *pToRelease;
6611   unsigned char *pPrior;
6612   unsigned char *pPayload;
6613   BtShared *pBt;
6614   Pgno pgnoOvfl;
6615   int nHeader;
6616 
6617   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6618 
6619   /* pPage is not necessarily writeable since pCell might be auxiliary
6620   ** buffer space that is separate from the pPage buffer area */
6621   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6622             || sqlite3PagerIswriteable(pPage->pDbPage) );
6623 
6624   /* Fill in the header. */
6625   nHeader = pPage->childPtrSize;
6626   if( pPage->intKey ){
6627     nPayload = pX->nData + pX->nZero;
6628     pSrc = pX->pData;
6629     nSrc = pX->nData;
6630     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6631     nHeader += putVarint32(&pCell[nHeader], nPayload);
6632     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6633   }else{
6634     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6635     nSrc = nPayload = (int)pX->nKey;
6636     pSrc = pX->pKey;
6637     nHeader += putVarint32(&pCell[nHeader], nPayload);
6638   }
6639 
6640   /* Fill in the payload */
6641   pPayload = &pCell[nHeader];
6642   if( nPayload<=pPage->maxLocal ){
6643     /* This is the common case where everything fits on the btree page
6644     ** and no overflow pages are required. */
6645     n = nHeader + nPayload;
6646     testcase( n==3 );
6647     testcase( n==4 );
6648     if( n<4 ) n = 4;
6649     *pnSize = n;
6650     assert( nSrc<=nPayload );
6651     testcase( nSrc<nPayload );
6652     memcpy(pPayload, pSrc, nSrc);
6653     memset(pPayload+nSrc, 0, nPayload-nSrc);
6654     return SQLITE_OK;
6655   }
6656 
6657   /* If we reach this point, it means that some of the content will need
6658   ** to spill onto overflow pages.
6659   */
6660   mn = pPage->minLocal;
6661   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6662   testcase( n==pPage->maxLocal );
6663   testcase( n==pPage->maxLocal+1 );
6664   if( n > pPage->maxLocal ) n = mn;
6665   spaceLeft = n;
6666   *pnSize = n + nHeader + 4;
6667   pPrior = &pCell[nHeader+n];
6668   pToRelease = 0;
6669   pgnoOvfl = 0;
6670   pBt = pPage->pBt;
6671 
6672   /* At this point variables should be set as follows:
6673   **
6674   **   nPayload           Total payload size in bytes
6675   **   pPayload           Begin writing payload here
6676   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6677   **                      that means content must spill into overflow pages.
6678   **   *pnSize            Size of the local cell (not counting overflow pages)
6679   **   pPrior             Where to write the pgno of the first overflow page
6680   **
6681   ** Use a call to btreeParseCellPtr() to verify that the values above
6682   ** were computed correctly.
6683   */
6684 #ifdef SQLITE_DEBUG
6685   {
6686     CellInfo info;
6687     pPage->xParseCell(pPage, pCell, &info);
6688     assert( nHeader==(int)(info.pPayload - pCell) );
6689     assert( info.nKey==pX->nKey );
6690     assert( *pnSize == info.nSize );
6691     assert( spaceLeft == info.nLocal );
6692   }
6693 #endif
6694 
6695   /* Write the payload into the local Cell and any extra into overflow pages */
6696   while( 1 ){
6697     n = nPayload;
6698     if( n>spaceLeft ) n = spaceLeft;
6699 
6700     /* If pToRelease is not zero than pPayload points into the data area
6701     ** of pToRelease.  Make sure pToRelease is still writeable. */
6702     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6703 
6704     /* If pPayload is part of the data area of pPage, then make sure pPage
6705     ** is still writeable */
6706     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6707             || sqlite3PagerIswriteable(pPage->pDbPage) );
6708 
6709     if( nSrc>=n ){
6710       memcpy(pPayload, pSrc, n);
6711     }else if( nSrc>0 ){
6712       n = nSrc;
6713       memcpy(pPayload, pSrc, n);
6714     }else{
6715       memset(pPayload, 0, n);
6716     }
6717     nPayload -= n;
6718     if( nPayload<=0 ) break;
6719     pPayload += n;
6720     pSrc += n;
6721     nSrc -= n;
6722     spaceLeft -= n;
6723     if( spaceLeft==0 ){
6724       MemPage *pOvfl = 0;
6725 #ifndef SQLITE_OMIT_AUTOVACUUM
6726       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6727       if( pBt->autoVacuum ){
6728         do{
6729           pgnoOvfl++;
6730         } while(
6731           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6732         );
6733       }
6734 #endif
6735       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6736 #ifndef SQLITE_OMIT_AUTOVACUUM
6737       /* If the database supports auto-vacuum, and the second or subsequent
6738       ** overflow page is being allocated, add an entry to the pointer-map
6739       ** for that page now.
6740       **
6741       ** If this is the first overflow page, then write a partial entry
6742       ** to the pointer-map. If we write nothing to this pointer-map slot,
6743       ** then the optimistic overflow chain processing in clearCell()
6744       ** may misinterpret the uninitialized values and delete the
6745       ** wrong pages from the database.
6746       */
6747       if( pBt->autoVacuum && rc==SQLITE_OK ){
6748         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6749         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6750         if( rc ){
6751           releasePage(pOvfl);
6752         }
6753       }
6754 #endif
6755       if( rc ){
6756         releasePage(pToRelease);
6757         return rc;
6758       }
6759 
6760       /* If pToRelease is not zero than pPrior points into the data area
6761       ** of pToRelease.  Make sure pToRelease is still writeable. */
6762       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6763 
6764       /* If pPrior is part of the data area of pPage, then make sure pPage
6765       ** is still writeable */
6766       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6767             || sqlite3PagerIswriteable(pPage->pDbPage) );
6768 
6769       put4byte(pPrior, pgnoOvfl);
6770       releasePage(pToRelease);
6771       pToRelease = pOvfl;
6772       pPrior = pOvfl->aData;
6773       put4byte(pPrior, 0);
6774       pPayload = &pOvfl->aData[4];
6775       spaceLeft = pBt->usableSize - 4;
6776     }
6777   }
6778   releasePage(pToRelease);
6779   return SQLITE_OK;
6780 }
6781 
6782 /*
6783 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6784 ** The cell content is not freed or deallocated.  It is assumed that
6785 ** the cell content has been copied someplace else.  This routine just
6786 ** removes the reference to the cell from pPage.
6787 **
6788 ** "sz" must be the number of bytes in the cell.
6789 */
6790 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6791   u32 pc;         /* Offset to cell content of cell being deleted */
6792   u8 *data;       /* pPage->aData */
6793   u8 *ptr;        /* Used to move bytes around within data[] */
6794   int rc;         /* The return code */
6795   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6796 
6797   if( *pRC ) return;
6798   assert( idx>=0 && idx<pPage->nCell );
6799   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6800   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6801   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6802   assert( pPage->nFree>=0 );
6803   data = pPage->aData;
6804   ptr = &pPage->aCellIdx[2*idx];
6805   pc = get2byte(ptr);
6806   hdr = pPage->hdrOffset;
6807   testcase( pc==get2byte(&data[hdr+5]) );
6808   testcase( pc+sz==pPage->pBt->usableSize );
6809   if( pc+sz > pPage->pBt->usableSize ){
6810     *pRC = SQLITE_CORRUPT_BKPT;
6811     return;
6812   }
6813   rc = freeSpace(pPage, pc, sz);
6814   if( rc ){
6815     *pRC = rc;
6816     return;
6817   }
6818   pPage->nCell--;
6819   if( pPage->nCell==0 ){
6820     memset(&data[hdr+1], 0, 4);
6821     data[hdr+7] = 0;
6822     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6823     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6824                        - pPage->childPtrSize - 8;
6825   }else{
6826     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6827     put2byte(&data[hdr+3], pPage->nCell);
6828     pPage->nFree += 2;
6829   }
6830 }
6831 
6832 /*
6833 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6834 ** content of the cell.
6835 **
6836 ** If the cell content will fit on the page, then put it there.  If it
6837 ** will not fit, then make a copy of the cell content into pTemp if
6838 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6839 ** in pPage->apOvfl[] and make it point to the cell content (either
6840 ** in pTemp or the original pCell) and also record its index.
6841 ** Allocating a new entry in pPage->aCell[] implies that
6842 ** pPage->nOverflow is incremented.
6843 **
6844 ** *pRC must be SQLITE_OK when this routine is called.
6845 */
6846 static void insertCell(
6847   MemPage *pPage,   /* Page into which we are copying */
6848   int i,            /* New cell becomes the i-th cell of the page */
6849   u8 *pCell,        /* Content of the new cell */
6850   int sz,           /* Bytes of content in pCell */
6851   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6852   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6853   int *pRC          /* Read and write return code from here */
6854 ){
6855   int idx = 0;      /* Where to write new cell content in data[] */
6856   int j;            /* Loop counter */
6857   u8 *data;         /* The content of the whole page */
6858   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6859 
6860   assert( *pRC==SQLITE_OK );
6861   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6862   assert( MX_CELL(pPage->pBt)<=10921 );
6863   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6864   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6865   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6866   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6867   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
6868   assert( pPage->nFree>=0 );
6869   if( pPage->nOverflow || sz+2>pPage->nFree ){
6870     if( pTemp ){
6871       memcpy(pTemp, pCell, sz);
6872       pCell = pTemp;
6873     }
6874     if( iChild ){
6875       put4byte(pCell, iChild);
6876     }
6877     j = pPage->nOverflow++;
6878     /* Comparison against ArraySize-1 since we hold back one extra slot
6879     ** as a contingency.  In other words, never need more than 3 overflow
6880     ** slots but 4 are allocated, just to be safe. */
6881     assert( j < ArraySize(pPage->apOvfl)-1 );
6882     pPage->apOvfl[j] = pCell;
6883     pPage->aiOvfl[j] = (u16)i;
6884 
6885     /* When multiple overflows occur, they are always sequential and in
6886     ** sorted order.  This invariants arise because multiple overflows can
6887     ** only occur when inserting divider cells into the parent page during
6888     ** balancing, and the dividers are adjacent and sorted.
6889     */
6890     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6891     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6892   }else{
6893     int rc = sqlite3PagerWrite(pPage->pDbPage);
6894     if( rc!=SQLITE_OK ){
6895       *pRC = rc;
6896       return;
6897     }
6898     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6899     data = pPage->aData;
6900     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6901     rc = allocateSpace(pPage, sz, &idx);
6902     if( rc ){ *pRC = rc; return; }
6903     /* The allocateSpace() routine guarantees the following properties
6904     ** if it returns successfully */
6905     assert( idx >= 0 );
6906     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6907     assert( idx+sz <= (int)pPage->pBt->usableSize );
6908     pPage->nFree -= (u16)(2 + sz);
6909     if( iChild ){
6910       /* In a corrupt database where an entry in the cell index section of
6911       ** a btree page has a value of 3 or less, the pCell value might point
6912       ** as many as 4 bytes in front of the start of the aData buffer for
6913       ** the source page.  Make sure this does not cause problems by not
6914       ** reading the first 4 bytes */
6915       memcpy(&data[idx+4], pCell+4, sz-4);
6916       put4byte(&data[idx], iChild);
6917     }else{
6918       memcpy(&data[idx], pCell, sz);
6919     }
6920     pIns = pPage->aCellIdx + i*2;
6921     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6922     put2byte(pIns, idx);
6923     pPage->nCell++;
6924     /* increment the cell count */
6925     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6926     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
6927 #ifndef SQLITE_OMIT_AUTOVACUUM
6928     if( pPage->pBt->autoVacuum ){
6929       /* The cell may contain a pointer to an overflow page. If so, write
6930       ** the entry for the overflow page into the pointer map.
6931       */
6932       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
6933     }
6934 #endif
6935   }
6936 }
6937 
6938 /*
6939 ** The following parameters determine how many adjacent pages get involved
6940 ** in a balancing operation.  NN is the number of neighbors on either side
6941 ** of the page that participate in the balancing operation.  NB is the
6942 ** total number of pages that participate, including the target page and
6943 ** NN neighbors on either side.
6944 **
6945 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6946 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6947 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6948 ** The value of NN appears to give the best results overall.
6949 **
6950 ** (Later:) The description above makes it seem as if these values are
6951 ** tunable - as if you could change them and recompile and it would all work.
6952 ** But that is unlikely.  NB has been 3 since the inception of SQLite and
6953 ** we have never tested any other value.
6954 */
6955 #define NN 1             /* Number of neighbors on either side of pPage */
6956 #define NB 3             /* (NN*2+1): Total pages involved in the balance */
6957 
6958 /*
6959 ** A CellArray object contains a cache of pointers and sizes for a
6960 ** consecutive sequence of cells that might be held on multiple pages.
6961 **
6962 ** The cells in this array are the divider cell or cells from the pParent
6963 ** page plus up to three child pages.  There are a total of nCell cells.
6964 **
6965 ** pRef is a pointer to one of the pages that contributes cells.  This is
6966 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6967 ** which should be common to all pages that contribute cells to this array.
6968 **
6969 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
6970 ** cell and the size of each cell.  Some of the apCell[] pointers might refer
6971 ** to overflow cells.  In other words, some apCel[] pointers might not point
6972 ** to content area of the pages.
6973 **
6974 ** A szCell[] of zero means the size of that cell has not yet been computed.
6975 **
6976 ** The cells come from as many as four different pages:
6977 **
6978 **             -----------
6979 **             | Parent  |
6980 **             -----------
6981 **            /     |     \
6982 **           /      |      \
6983 **  ---------   ---------   ---------
6984 **  |Child-1|   |Child-2|   |Child-3|
6985 **  ---------   ---------   ---------
6986 **
6987 ** The order of cells is in the array is for an index btree is:
6988 **
6989 **       1.  All cells from Child-1 in order
6990 **       2.  The first divider cell from Parent
6991 **       3.  All cells from Child-2 in order
6992 **       4.  The second divider cell from Parent
6993 **       5.  All cells from Child-3 in order
6994 **
6995 ** For a table-btree (with rowids) the items 2 and 4 are empty because
6996 ** content exists only in leaves and there are no divider cells.
6997 **
6998 ** For an index btree, the apEnd[] array holds pointer to the end of page
6999 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7000 ** respectively. The ixNx[] array holds the number of cells contained in
7001 ** each of these 5 stages, and all stages to the left.  Hence:
7002 **
7003 **    ixNx[0] = Number of cells in Child-1.
7004 **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7005 **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7006 **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7007 **    ixNx[4] = Total number of cells.
7008 **
7009 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7010 ** are used and they point to the leaf pages only, and the ixNx value are:
7011 **
7012 **    ixNx[0] = Number of cells in Child-1.
7013 **    ixNx[1] = Number of cells in Child-1 and Child-2.
7014 **    ixNx[2] = Total number of cells.
7015 **
7016 ** Sometimes when deleting, a child page can have zero cells.  In those
7017 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7018 ** entries, shift down.  The end result is that each ixNx[] entry should
7019 ** be larger than the previous
7020 */
7021 typedef struct CellArray CellArray;
7022 struct CellArray {
7023   int nCell;              /* Number of cells in apCell[] */
7024   MemPage *pRef;          /* Reference page */
7025   u8 **apCell;            /* All cells begin balanced */
7026   u16 *szCell;            /* Local size of all cells in apCell[] */
7027   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */
7028   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */
7029 };
7030 
7031 /*
7032 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7033 ** computed.
7034 */
7035 static void populateCellCache(CellArray *p, int idx, int N){
7036   assert( idx>=0 && idx+N<=p->nCell );
7037   while( N>0 ){
7038     assert( p->apCell[idx]!=0 );
7039     if( p->szCell[idx]==0 ){
7040       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7041     }else{
7042       assert( CORRUPT_DB ||
7043               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7044     }
7045     idx++;
7046     N--;
7047   }
7048 }
7049 
7050 /*
7051 ** Return the size of the Nth element of the cell array
7052 */
7053 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7054   assert( N>=0 && N<p->nCell );
7055   assert( p->szCell[N]==0 );
7056   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7057   return p->szCell[N];
7058 }
7059 static u16 cachedCellSize(CellArray *p, int N){
7060   assert( N>=0 && N<p->nCell );
7061   if( p->szCell[N] ) return p->szCell[N];
7062   return computeCellSize(p, N);
7063 }
7064 
7065 /*
7066 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7067 ** szCell[] array contains the size in bytes of each cell. This function
7068 ** replaces the current contents of page pPg with the contents of the cell
7069 ** array.
7070 **
7071 ** Some of the cells in apCell[] may currently be stored in pPg. This
7072 ** function works around problems caused by this by making a copy of any
7073 ** such cells before overwriting the page data.
7074 **
7075 ** The MemPage.nFree field is invalidated by this function. It is the
7076 ** responsibility of the caller to set it correctly.
7077 */
7078 static int rebuildPage(
7079   CellArray *pCArray,             /* Content to be added to page pPg */
7080   int iFirst,                     /* First cell in pCArray to use */
7081   int nCell,                      /* Final number of cells on page */
7082   MemPage *pPg                    /* The page to be reconstructed */
7083 ){
7084   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
7085   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
7086   const int usableSize = pPg->pBt->usableSize;
7087   u8 * const pEnd = &aData[usableSize];
7088   int i = iFirst;                 /* Which cell to copy from pCArray*/
7089   u32 j;                          /* Start of cell content area */
7090   int iEnd = i+nCell;             /* Loop terminator */
7091   u8 *pCellptr = pPg->aCellIdx;
7092   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7093   u8 *pData;
7094   int k;                          /* Current slot in pCArray->apEnd[] */
7095   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */
7096 
7097   assert( i<iEnd );
7098   j = get2byte(&aData[hdr+5]);
7099   if( NEVER(j>(u32)usableSize) ){ j = 0; }
7100   memcpy(&pTmp[j], &aData[j], usableSize - j);
7101 
7102   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7103   pSrcEnd = pCArray->apEnd[k];
7104 
7105   pData = pEnd;
7106   while( 1/*exit by break*/ ){
7107     u8 *pCell = pCArray->apCell[i];
7108     u16 sz = pCArray->szCell[i];
7109     assert( sz>0 );
7110     if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
7111       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
7112       pCell = &pTmp[pCell - aData];
7113     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7114            && (uptr)(pCell)<(uptr)pSrcEnd
7115     ){
7116       return SQLITE_CORRUPT_BKPT;
7117     }
7118 
7119     pData -= sz;
7120     put2byte(pCellptr, (pData - aData));
7121     pCellptr += 2;
7122     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
7123     memmove(pData, pCell, sz);
7124     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
7125     i++;
7126     if( i>=iEnd ) break;
7127     if( pCArray->ixNx[k]<=i ){
7128       k++;
7129       pSrcEnd = pCArray->apEnd[k];
7130     }
7131   }
7132 
7133   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7134   pPg->nCell = nCell;
7135   pPg->nOverflow = 0;
7136 
7137   put2byte(&aData[hdr+1], 0);
7138   put2byte(&aData[hdr+3], pPg->nCell);
7139   put2byte(&aData[hdr+5], pData - aData);
7140   aData[hdr+7] = 0x00;
7141   return SQLITE_OK;
7142 }
7143 
7144 /*
7145 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7146 ** This function attempts to add the cells stored in the array to page pPg.
7147 ** If it cannot (because the page needs to be defragmented before the cells
7148 ** will fit), non-zero is returned. Otherwise, if the cells are added
7149 ** successfully, zero is returned.
7150 **
7151 ** Argument pCellptr points to the first entry in the cell-pointer array
7152 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7153 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7154 ** cell in the array. It is the responsibility of the caller to ensure
7155 ** that it is safe to overwrite this part of the cell-pointer array.
7156 **
7157 ** When this function is called, *ppData points to the start of the
7158 ** content area on page pPg. If the size of the content area is extended,
7159 ** *ppData is updated to point to the new start of the content area
7160 ** before returning.
7161 **
7162 ** Finally, argument pBegin points to the byte immediately following the
7163 ** end of the space required by this page for the cell-pointer area (for
7164 ** all cells - not just those inserted by the current call). If the content
7165 ** area must be extended to before this point in order to accomodate all
7166 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7167 */
7168 static int pageInsertArray(
7169   MemPage *pPg,                   /* Page to add cells to */
7170   u8 *pBegin,                     /* End of cell-pointer array */
7171   u8 **ppData,                    /* IN/OUT: Page content-area pointer */
7172   u8 *pCellptr,                   /* Pointer to cell-pointer area */
7173   int iFirst,                     /* Index of first cell to add */
7174   int nCell,                      /* Number of cells to add to pPg */
7175   CellArray *pCArray              /* Array of cells */
7176 ){
7177   int i = iFirst;                 /* Loop counter - cell index to insert */
7178   u8 *aData = pPg->aData;         /* Complete page */
7179   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */
7180   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */
7181   int k;                          /* Current slot in pCArray->apEnd[] */
7182   u8 *pEnd;                       /* Maximum extent of cell data */
7183   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
7184   if( iEnd<=iFirst ) return 0;
7185   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7186   pEnd = pCArray->apEnd[k];
7187   while( 1 /*Exit by break*/ ){
7188     int sz, rc;
7189     u8 *pSlot;
7190     assert( pCArray->szCell[i]!=0 );
7191     sz = pCArray->szCell[i];
7192     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7193       if( (pData - pBegin)<sz ) return 1;
7194       pData -= sz;
7195       pSlot = pData;
7196     }
7197     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7198     ** database.  But they might for a corrupt database.  Hence use memmove()
7199     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7200     assert( (pSlot+sz)<=pCArray->apCell[i]
7201          || pSlot>=(pCArray->apCell[i]+sz)
7202          || CORRUPT_DB );
7203     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7204      && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7205     ){
7206       assert( CORRUPT_DB );
7207       (void)SQLITE_CORRUPT_BKPT;
7208       return 1;
7209     }
7210     memmove(pSlot, pCArray->apCell[i], sz);
7211     put2byte(pCellptr, (pSlot - aData));
7212     pCellptr += 2;
7213     i++;
7214     if( i>=iEnd ) break;
7215     if( pCArray->ixNx[k]<=i ){
7216       k++;
7217       pEnd = pCArray->apEnd[k];
7218     }
7219   }
7220   *ppData = pData;
7221   return 0;
7222 }
7223 
7224 /*
7225 ** The pCArray object contains pointers to b-tree cells and their sizes.
7226 **
7227 ** This function adds the space associated with each cell in the array
7228 ** that is currently stored within the body of pPg to the pPg free-list.
7229 ** The cell-pointers and other fields of the page are not updated.
7230 **
7231 ** This function returns the total number of cells added to the free-list.
7232 */
7233 static int pageFreeArray(
7234   MemPage *pPg,                   /* Page to edit */
7235   int iFirst,                     /* First cell to delete */
7236   int nCell,                      /* Cells to delete */
7237   CellArray *pCArray              /* Array of cells */
7238 ){
7239   u8 * const aData = pPg->aData;
7240   u8 * const pEnd = &aData[pPg->pBt->usableSize];
7241   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7242   int nRet = 0;
7243   int i;
7244   int iEnd = iFirst + nCell;
7245   u8 *pFree = 0;
7246   int szFree = 0;
7247 
7248   for(i=iFirst; i<iEnd; i++){
7249     u8 *pCell = pCArray->apCell[i];
7250     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7251       int sz;
7252       /* No need to use cachedCellSize() here.  The sizes of all cells that
7253       ** are to be freed have already been computing while deciding which
7254       ** cells need freeing */
7255       sz = pCArray->szCell[i];  assert( sz>0 );
7256       if( pFree!=(pCell + sz) ){
7257         if( pFree ){
7258           assert( pFree>aData && (pFree - aData)<65536 );
7259           freeSpace(pPg, (u16)(pFree - aData), szFree);
7260         }
7261         pFree = pCell;
7262         szFree = sz;
7263         if( pFree+sz>pEnd ){
7264           return 0;
7265         }
7266       }else{
7267         pFree = pCell;
7268         szFree += sz;
7269       }
7270       nRet++;
7271     }
7272   }
7273   if( pFree ){
7274     assert( pFree>aData && (pFree - aData)<65536 );
7275     freeSpace(pPg, (u16)(pFree - aData), szFree);
7276   }
7277   return nRet;
7278 }
7279 
7280 /*
7281 ** pCArray contains pointers to and sizes of all cells in the page being
7282 ** balanced.  The current page, pPg, has pPg->nCell cells starting with
7283 ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells
7284 ** starting at apCell[iNew].
7285 **
7286 ** This routine makes the necessary adjustments to pPg so that it contains
7287 ** the correct cells after being balanced.
7288 **
7289 ** The pPg->nFree field is invalid when this function returns. It is the
7290 ** responsibility of the caller to set it correctly.
7291 */
7292 static int editPage(
7293   MemPage *pPg,                   /* Edit this page */
7294   int iOld,                       /* Index of first cell currently on page */
7295   int iNew,                       /* Index of new first cell on page */
7296   int nNew,                       /* Final number of cells on page */
7297   CellArray *pCArray              /* Array of cells and sizes */
7298 ){
7299   u8 * const aData = pPg->aData;
7300   const int hdr = pPg->hdrOffset;
7301   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7302   int nCell = pPg->nCell;       /* Cells stored on pPg */
7303   u8 *pData;
7304   u8 *pCellptr;
7305   int i;
7306   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7307   int iNewEnd = iNew + nNew;
7308 
7309 #ifdef SQLITE_DEBUG
7310   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7311   memcpy(pTmp, aData, pPg->pBt->usableSize);
7312 #endif
7313 
7314   /* Remove cells from the start and end of the page */
7315   assert( nCell>=0 );
7316   if( iOld<iNew ){
7317     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7318     if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
7319     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7320     nCell -= nShift;
7321   }
7322   if( iNewEnd < iOldEnd ){
7323     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7324     assert( nCell>=nTail );
7325     nCell -= nTail;
7326   }
7327 
7328   pData = &aData[get2byteNotZero(&aData[hdr+5])];
7329   if( pData<pBegin ) goto editpage_fail;
7330 
7331   /* Add cells to the start of the page */
7332   if( iNew<iOld ){
7333     int nAdd = MIN(nNew,iOld-iNew);
7334     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7335     assert( nAdd>=0 );
7336     pCellptr = pPg->aCellIdx;
7337     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7338     if( pageInsertArray(
7339           pPg, pBegin, &pData, pCellptr,
7340           iNew, nAdd, pCArray
7341     ) ) goto editpage_fail;
7342     nCell += nAdd;
7343   }
7344 
7345   /* Add any overflow cells */
7346   for(i=0; i<pPg->nOverflow; i++){
7347     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7348     if( iCell>=0 && iCell<nNew ){
7349       pCellptr = &pPg->aCellIdx[iCell * 2];
7350       if( nCell>iCell ){
7351         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7352       }
7353       nCell++;
7354       cachedCellSize(pCArray, iCell+iNew);
7355       if( pageInsertArray(
7356             pPg, pBegin, &pData, pCellptr,
7357             iCell+iNew, 1, pCArray
7358       ) ) goto editpage_fail;
7359     }
7360   }
7361 
7362   /* Append cells to the end of the page */
7363   assert( nCell>=0 );
7364   pCellptr = &pPg->aCellIdx[nCell*2];
7365   if( pageInsertArray(
7366         pPg, pBegin, &pData, pCellptr,
7367         iNew+nCell, nNew-nCell, pCArray
7368   ) ) goto editpage_fail;
7369 
7370   pPg->nCell = nNew;
7371   pPg->nOverflow = 0;
7372 
7373   put2byte(&aData[hdr+3], pPg->nCell);
7374   put2byte(&aData[hdr+5], pData - aData);
7375 
7376 #ifdef SQLITE_DEBUG
7377   for(i=0; i<nNew && !CORRUPT_DB; i++){
7378     u8 *pCell = pCArray->apCell[i+iNew];
7379     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7380     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7381       pCell = &pTmp[pCell - aData];
7382     }
7383     assert( 0==memcmp(pCell, &aData[iOff],
7384             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7385   }
7386 #endif
7387 
7388   return SQLITE_OK;
7389  editpage_fail:
7390   /* Unable to edit this page. Rebuild it from scratch instead. */
7391   populateCellCache(pCArray, iNew, nNew);
7392   return rebuildPage(pCArray, iNew, nNew, pPg);
7393 }
7394 
7395 
7396 #ifndef SQLITE_OMIT_QUICKBALANCE
7397 /*
7398 ** This version of balance() handles the common special case where
7399 ** a new entry is being inserted on the extreme right-end of the
7400 ** tree, in other words, when the new entry will become the largest
7401 ** entry in the tree.
7402 **
7403 ** Instead of trying to balance the 3 right-most leaf pages, just add
7404 ** a new page to the right-hand side and put the one new entry in
7405 ** that page.  This leaves the right side of the tree somewhat
7406 ** unbalanced.  But odds are that we will be inserting new entries
7407 ** at the end soon afterwards so the nearly empty page will quickly
7408 ** fill up.  On average.
7409 **
7410 ** pPage is the leaf page which is the right-most page in the tree.
7411 ** pParent is its parent.  pPage must have a single overflow entry
7412 ** which is also the right-most entry on the page.
7413 **
7414 ** The pSpace buffer is used to store a temporary copy of the divider
7415 ** cell that will be inserted into pParent. Such a cell consists of a 4
7416 ** byte page number followed by a variable length integer. In other
7417 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7418 ** least 13 bytes in size.
7419 */
7420 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7421   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7422   MemPage *pNew;                       /* Newly allocated page */
7423   int rc;                              /* Return Code */
7424   Pgno pgnoNew;                        /* Page number of pNew */
7425 
7426   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7427   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7428   assert( pPage->nOverflow==1 );
7429 
7430   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7431   assert( pPage->nFree>=0 );
7432   assert( pParent->nFree>=0 );
7433 
7434   /* Allocate a new page. This page will become the right-sibling of
7435   ** pPage. Make the parent page writable, so that the new divider cell
7436   ** may be inserted. If both these operations are successful, proceed.
7437   */
7438   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7439 
7440   if( rc==SQLITE_OK ){
7441 
7442     u8 *pOut = &pSpace[4];
7443     u8 *pCell = pPage->apOvfl[0];
7444     u16 szCell = pPage->xCellSize(pPage, pCell);
7445     u8 *pStop;
7446     CellArray b;
7447 
7448     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7449     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7450     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7451     b.nCell = 1;
7452     b.pRef = pPage;
7453     b.apCell = &pCell;
7454     b.szCell = &szCell;
7455     b.apEnd[0] = pPage->aDataEnd;
7456     b.ixNx[0] = 2;
7457     rc = rebuildPage(&b, 0, 1, pNew);
7458     if( NEVER(rc) ){
7459       releasePage(pNew);
7460       return rc;
7461     }
7462     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7463 
7464     /* If this is an auto-vacuum database, update the pointer map
7465     ** with entries for the new page, and any pointer from the
7466     ** cell on the page to an overflow page. If either of these
7467     ** operations fails, the return code is set, but the contents
7468     ** of the parent page are still manipulated by thh code below.
7469     ** That is Ok, at this point the parent page is guaranteed to
7470     ** be marked as dirty. Returning an error code will cause a
7471     ** rollback, undoing any changes made to the parent page.
7472     */
7473     if( ISAUTOVACUUM ){
7474       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7475       if( szCell>pNew->minLocal ){
7476         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7477       }
7478     }
7479 
7480     /* Create a divider cell to insert into pParent. The divider cell
7481     ** consists of a 4-byte page number (the page number of pPage) and
7482     ** a variable length key value (which must be the same value as the
7483     ** largest key on pPage).
7484     **
7485     ** To find the largest key value on pPage, first find the right-most
7486     ** cell on pPage. The first two fields of this cell are the
7487     ** record-length (a variable length integer at most 32-bits in size)
7488     ** and the key value (a variable length integer, may have any value).
7489     ** The first of the while(...) loops below skips over the record-length
7490     ** field. The second while(...) loop copies the key value from the
7491     ** cell on pPage into the pSpace buffer.
7492     */
7493     pCell = findCell(pPage, pPage->nCell-1);
7494     pStop = &pCell[9];
7495     while( (*(pCell++)&0x80) && pCell<pStop );
7496     pStop = &pCell[9];
7497     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7498 
7499     /* Insert the new divider cell into pParent. */
7500     if( rc==SQLITE_OK ){
7501       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7502                    0, pPage->pgno, &rc);
7503     }
7504 
7505     /* Set the right-child pointer of pParent to point to the new page. */
7506     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7507 
7508     /* Release the reference to the new page. */
7509     releasePage(pNew);
7510   }
7511 
7512   return rc;
7513 }
7514 #endif /* SQLITE_OMIT_QUICKBALANCE */
7515 
7516 #if 0
7517 /*
7518 ** This function does not contribute anything to the operation of SQLite.
7519 ** it is sometimes activated temporarily while debugging code responsible
7520 ** for setting pointer-map entries.
7521 */
7522 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7523   int i, j;
7524   for(i=0; i<nPage; i++){
7525     Pgno n;
7526     u8 e;
7527     MemPage *pPage = apPage[i];
7528     BtShared *pBt = pPage->pBt;
7529     assert( pPage->isInit );
7530 
7531     for(j=0; j<pPage->nCell; j++){
7532       CellInfo info;
7533       u8 *z;
7534 
7535       z = findCell(pPage, j);
7536       pPage->xParseCell(pPage, z, &info);
7537       if( info.nLocal<info.nPayload ){
7538         Pgno ovfl = get4byte(&z[info.nSize-4]);
7539         ptrmapGet(pBt, ovfl, &e, &n);
7540         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7541       }
7542       if( !pPage->leaf ){
7543         Pgno child = get4byte(z);
7544         ptrmapGet(pBt, child, &e, &n);
7545         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7546       }
7547     }
7548     if( !pPage->leaf ){
7549       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7550       ptrmapGet(pBt, child, &e, &n);
7551       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7552     }
7553   }
7554   return 1;
7555 }
7556 #endif
7557 
7558 /*
7559 ** This function is used to copy the contents of the b-tree node stored
7560 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7561 ** the pointer-map entries for each child page are updated so that the
7562 ** parent page stored in the pointer map is page pTo. If pFrom contained
7563 ** any cells with overflow page pointers, then the corresponding pointer
7564 ** map entries are also updated so that the parent page is page pTo.
7565 **
7566 ** If pFrom is currently carrying any overflow cells (entries in the
7567 ** MemPage.apOvfl[] array), they are not copied to pTo.
7568 **
7569 ** Before returning, page pTo is reinitialized using btreeInitPage().
7570 **
7571 ** The performance of this function is not critical. It is only used by
7572 ** the balance_shallower() and balance_deeper() procedures, neither of
7573 ** which are called often under normal circumstances.
7574 */
7575 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7576   if( (*pRC)==SQLITE_OK ){
7577     BtShared * const pBt = pFrom->pBt;
7578     u8 * const aFrom = pFrom->aData;
7579     u8 * const aTo = pTo->aData;
7580     int const iFromHdr = pFrom->hdrOffset;
7581     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7582     int rc;
7583     int iData;
7584 
7585 
7586     assert( pFrom->isInit );
7587     assert( pFrom->nFree>=iToHdr );
7588     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7589 
7590     /* Copy the b-tree node content from page pFrom to page pTo. */
7591     iData = get2byte(&aFrom[iFromHdr+5]);
7592     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7593     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7594 
7595     /* Reinitialize page pTo so that the contents of the MemPage structure
7596     ** match the new data. The initialization of pTo can actually fail under
7597     ** fairly obscure circumstances, even though it is a copy of initialized
7598     ** page pFrom.
7599     */
7600     pTo->isInit = 0;
7601     rc = btreeInitPage(pTo);
7602     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7603     if( rc!=SQLITE_OK ){
7604       *pRC = rc;
7605       return;
7606     }
7607 
7608     /* If this is an auto-vacuum database, update the pointer-map entries
7609     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7610     */
7611     if( ISAUTOVACUUM ){
7612       *pRC = setChildPtrmaps(pTo);
7613     }
7614   }
7615 }
7616 
7617 /*
7618 ** This routine redistributes cells on the iParentIdx'th child of pParent
7619 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7620 ** same amount of free space. Usually a single sibling on either side of the
7621 ** page are used in the balancing, though both siblings might come from one
7622 ** side if the page is the first or last child of its parent. If the page
7623 ** has fewer than 2 siblings (something which can only happen if the page
7624 ** is a root page or a child of a root page) then all available siblings
7625 ** participate in the balancing.
7626 **
7627 ** The number of siblings of the page might be increased or decreased by
7628 ** one or two in an effort to keep pages nearly full but not over full.
7629 **
7630 ** Note that when this routine is called, some of the cells on the page
7631 ** might not actually be stored in MemPage.aData[]. This can happen
7632 ** if the page is overfull. This routine ensures that all cells allocated
7633 ** to the page and its siblings fit into MemPage.aData[] before returning.
7634 **
7635 ** In the course of balancing the page and its siblings, cells may be
7636 ** inserted into or removed from the parent page (pParent). Doing so
7637 ** may cause the parent page to become overfull or underfull. If this
7638 ** happens, it is the responsibility of the caller to invoke the correct
7639 ** balancing routine to fix this problem (see the balance() routine).
7640 **
7641 ** If this routine fails for any reason, it might leave the database
7642 ** in a corrupted state. So if this routine fails, the database should
7643 ** be rolled back.
7644 **
7645 ** The third argument to this function, aOvflSpace, is a pointer to a
7646 ** buffer big enough to hold one page. If while inserting cells into the parent
7647 ** page (pParent) the parent page becomes overfull, this buffer is
7648 ** used to store the parent's overflow cells. Because this function inserts
7649 ** a maximum of four divider cells into the parent page, and the maximum
7650 ** size of a cell stored within an internal node is always less than 1/4
7651 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7652 ** enough for all overflow cells.
7653 **
7654 ** If aOvflSpace is set to a null pointer, this function returns
7655 ** SQLITE_NOMEM.
7656 */
7657 static int balance_nonroot(
7658   MemPage *pParent,               /* Parent page of siblings being balanced */
7659   int iParentIdx,                 /* Index of "the page" in pParent */
7660   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7661   int isRoot,                     /* True if pParent is a root-page */
7662   int bBulk                       /* True if this call is part of a bulk load */
7663 ){
7664   BtShared *pBt;               /* The whole database */
7665   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7666   int nNew = 0;                /* Number of pages in apNew[] */
7667   int nOld;                    /* Number of pages in apOld[] */
7668   int i, j, k;                 /* Loop counters */
7669   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7670   int rc = SQLITE_OK;          /* The return code */
7671   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7672   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7673   int usableSpace;             /* Bytes in pPage beyond the header */
7674   int pageFlags;               /* Value of pPage->aData[0] */
7675   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7676   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7677   int szScratch;               /* Size of scratch memory requested */
7678   MemPage *apOld[NB];          /* pPage and up to two siblings */
7679   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7680   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7681   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7682   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7683   int cntOld[NB+2];            /* Old index in b.apCell[] */
7684   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7685   u8 *aSpace1;                 /* Space for copies of dividers cells */
7686   Pgno pgno;                   /* Temp var to store a page number in */
7687   u8 abDone[NB+2];             /* True after i'th new page is populated */
7688   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7689   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7690   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7691   CellArray b;                  /* Parsed information on cells being balanced */
7692 
7693   memset(abDone, 0, sizeof(abDone));
7694   b.nCell = 0;
7695   b.apCell = 0;
7696   pBt = pParent->pBt;
7697   assert( sqlite3_mutex_held(pBt->mutex) );
7698   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7699 
7700   /* At this point pParent may have at most one overflow cell. And if
7701   ** this overflow cell is present, it must be the cell with
7702   ** index iParentIdx. This scenario comes about when this function
7703   ** is called (indirectly) from sqlite3BtreeDelete().
7704   */
7705   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7706   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7707 
7708   if( !aOvflSpace ){
7709     return SQLITE_NOMEM_BKPT;
7710   }
7711   assert( pParent->nFree>=0 );
7712 
7713   /* Find the sibling pages to balance. Also locate the cells in pParent
7714   ** that divide the siblings. An attempt is made to find NN siblings on
7715   ** either side of pPage. More siblings are taken from one side, however,
7716   ** if there are fewer than NN siblings on the other side. If pParent
7717   ** has NB or fewer children then all children of pParent are taken.
7718   **
7719   ** This loop also drops the divider cells from the parent page. This
7720   ** way, the remainder of the function does not have to deal with any
7721   ** overflow cells in the parent page, since if any existed they will
7722   ** have already been removed.
7723   */
7724   i = pParent->nOverflow + pParent->nCell;
7725   if( i<2 ){
7726     nxDiv = 0;
7727   }else{
7728     assert( bBulk==0 || bBulk==1 );
7729     if( iParentIdx==0 ){
7730       nxDiv = 0;
7731     }else if( iParentIdx==i ){
7732       nxDiv = i-2+bBulk;
7733     }else{
7734       nxDiv = iParentIdx-1;
7735     }
7736     i = 2-bBulk;
7737   }
7738   nOld = i+1;
7739   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7740     pRight = &pParent->aData[pParent->hdrOffset+8];
7741   }else{
7742     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7743   }
7744   pgno = get4byte(pRight);
7745   while( 1 ){
7746     if( rc==SQLITE_OK ){
7747       rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7748     }
7749     if( rc ){
7750       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7751       goto balance_cleanup;
7752     }
7753     if( apOld[i]->nFree<0 ){
7754       rc = btreeComputeFreeSpace(apOld[i]);
7755       if( rc ){
7756         memset(apOld, 0, (i)*sizeof(MemPage*));
7757         goto balance_cleanup;
7758       }
7759     }
7760     nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
7761     if( (i--)==0 ) break;
7762 
7763     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7764       apDiv[i] = pParent->apOvfl[0];
7765       pgno = get4byte(apDiv[i]);
7766       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7767       pParent->nOverflow = 0;
7768     }else{
7769       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7770       pgno = get4byte(apDiv[i]);
7771       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7772 
7773       /* Drop the cell from the parent page. apDiv[i] still points to
7774       ** the cell within the parent, even though it has been dropped.
7775       ** This is safe because dropping a cell only overwrites the first
7776       ** four bytes of it, and this function does not need the first
7777       ** four bytes of the divider cell. So the pointer is safe to use
7778       ** later on.
7779       **
7780       ** But not if we are in secure-delete mode. In secure-delete mode,
7781       ** the dropCell() routine will overwrite the entire cell with zeroes.
7782       ** In this case, temporarily copy the cell into the aOvflSpace[]
7783       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7784       ** is allocated.  */
7785       if( pBt->btsFlags & BTS_FAST_SECURE ){
7786         int iOff;
7787 
7788         /* If the following if() condition is not true, the db is corrupted.
7789         ** The call to dropCell() below will detect this.  */
7790         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7791         if( (iOff+szNew[i])<=(int)pBt->usableSize ){
7792           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7793           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7794         }
7795       }
7796       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7797     }
7798   }
7799 
7800   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7801   ** alignment */
7802   nMaxCells = (nMaxCells + 3)&~3;
7803 
7804   /*
7805   ** Allocate space for memory structures
7806   */
7807   szScratch =
7808        nMaxCells*sizeof(u8*)                       /* b.apCell */
7809      + nMaxCells*sizeof(u16)                       /* b.szCell */
7810      + pBt->pageSize;                              /* aSpace1 */
7811 
7812   assert( szScratch<=7*(int)pBt->pageSize );
7813   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7814   if( b.apCell==0 ){
7815     rc = SQLITE_NOMEM_BKPT;
7816     goto balance_cleanup;
7817   }
7818   b.szCell = (u16*)&b.apCell[nMaxCells];
7819   aSpace1 = (u8*)&b.szCell[nMaxCells];
7820   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7821 
7822   /*
7823   ** Load pointers to all cells on sibling pages and the divider cells
7824   ** into the local b.apCell[] array.  Make copies of the divider cells
7825   ** into space obtained from aSpace1[]. The divider cells have already
7826   ** been removed from pParent.
7827   **
7828   ** If the siblings are on leaf pages, then the child pointers of the
7829   ** divider cells are stripped from the cells before they are copied
7830   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7831   ** child pointers.  If siblings are not leaves, then all cell in
7832   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7833   ** are alike.
7834   **
7835   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7836   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7837   */
7838   b.pRef = apOld[0];
7839   leafCorrection = b.pRef->leaf*4;
7840   leafData = b.pRef->intKeyLeaf;
7841   for(i=0; i<nOld; i++){
7842     MemPage *pOld = apOld[i];
7843     int limit = pOld->nCell;
7844     u8 *aData = pOld->aData;
7845     u16 maskPage = pOld->maskPage;
7846     u8 *piCell = aData + pOld->cellOffset;
7847     u8 *piEnd;
7848     VVA_ONLY( int nCellAtStart = b.nCell; )
7849 
7850     /* Verify that all sibling pages are of the same "type" (table-leaf,
7851     ** table-interior, index-leaf, or index-interior).
7852     */
7853     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7854       rc = SQLITE_CORRUPT_BKPT;
7855       goto balance_cleanup;
7856     }
7857 
7858     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7859     ** contains overflow cells, include them in the b.apCell[] array
7860     ** in the correct spot.
7861     **
7862     ** Note that when there are multiple overflow cells, it is always the
7863     ** case that they are sequential and adjacent.  This invariant arises
7864     ** because multiple overflows can only occurs when inserting divider
7865     ** cells into a parent on a prior balance, and divider cells are always
7866     ** adjacent and are inserted in order.  There is an assert() tagged
7867     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7868     ** invariant.
7869     **
7870     ** This must be done in advance.  Once the balance starts, the cell
7871     ** offset section of the btree page will be overwritten and we will no
7872     ** long be able to find the cells if a pointer to each cell is not saved
7873     ** first.
7874     */
7875     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7876     if( pOld->nOverflow>0 ){
7877       if( NEVER(limit<pOld->aiOvfl[0]) ){
7878         rc = SQLITE_CORRUPT_BKPT;
7879         goto balance_cleanup;
7880       }
7881       limit = pOld->aiOvfl[0];
7882       for(j=0; j<limit; j++){
7883         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7884         piCell += 2;
7885         b.nCell++;
7886       }
7887       for(k=0; k<pOld->nOverflow; k++){
7888         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7889         b.apCell[b.nCell] = pOld->apOvfl[k];
7890         b.nCell++;
7891       }
7892     }
7893     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7894     while( piCell<piEnd ){
7895       assert( b.nCell<nMaxCells );
7896       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7897       piCell += 2;
7898       b.nCell++;
7899     }
7900     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
7901 
7902     cntOld[i] = b.nCell;
7903     if( i<nOld-1 && !leafData){
7904       u16 sz = (u16)szNew[i];
7905       u8 *pTemp;
7906       assert( b.nCell<nMaxCells );
7907       b.szCell[b.nCell] = sz;
7908       pTemp = &aSpace1[iSpace1];
7909       iSpace1 += sz;
7910       assert( sz<=pBt->maxLocal+23 );
7911       assert( iSpace1 <= (int)pBt->pageSize );
7912       memcpy(pTemp, apDiv[i], sz);
7913       b.apCell[b.nCell] = pTemp+leafCorrection;
7914       assert( leafCorrection==0 || leafCorrection==4 );
7915       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7916       if( !pOld->leaf ){
7917         assert( leafCorrection==0 );
7918         assert( pOld->hdrOffset==0 || CORRUPT_DB );
7919         /* The right pointer of the child page pOld becomes the left
7920         ** pointer of the divider cell */
7921         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7922       }else{
7923         assert( leafCorrection==4 );
7924         while( b.szCell[b.nCell]<4 ){
7925           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7926           ** does exist, pad it with 0x00 bytes. */
7927           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7928           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7929           aSpace1[iSpace1++] = 0x00;
7930           b.szCell[b.nCell]++;
7931         }
7932       }
7933       b.nCell++;
7934     }
7935   }
7936 
7937   /*
7938   ** Figure out the number of pages needed to hold all b.nCell cells.
7939   ** Store this number in "k".  Also compute szNew[] which is the total
7940   ** size of all cells on the i-th page and cntNew[] which is the index
7941   ** in b.apCell[] of the cell that divides page i from page i+1.
7942   ** cntNew[k] should equal b.nCell.
7943   **
7944   ** Values computed by this block:
7945   **
7946   **           k: The total number of sibling pages
7947   **    szNew[i]: Spaced used on the i-th sibling page.
7948   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7949   **              the right of the i-th sibling page.
7950   ** usableSpace: Number of bytes of space available on each sibling.
7951   **
7952   */
7953   usableSpace = pBt->usableSize - 12 + leafCorrection;
7954   for(i=k=0; i<nOld; i++, k++){
7955     MemPage *p = apOld[i];
7956     b.apEnd[k] = p->aDataEnd;
7957     b.ixNx[k] = cntOld[i];
7958     if( k && b.ixNx[k]==b.ixNx[k-1] ){
7959       k--;  /* Omit b.ixNx[] entry for child pages with no cells */
7960     }
7961     if( !leafData ){
7962       k++;
7963       b.apEnd[k] = pParent->aDataEnd;
7964       b.ixNx[k] = cntOld[i]+1;
7965     }
7966     assert( p->nFree>=0 );
7967     szNew[i] = usableSpace - p->nFree;
7968     for(j=0; j<p->nOverflow; j++){
7969       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7970     }
7971     cntNew[i] = cntOld[i];
7972   }
7973   k = nOld;
7974   for(i=0; i<k; i++){
7975     int sz;
7976     while( szNew[i]>usableSpace ){
7977       if( i+1>=k ){
7978         k = i+2;
7979         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7980         szNew[k-1] = 0;
7981         cntNew[k-1] = b.nCell;
7982       }
7983       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7984       szNew[i] -= sz;
7985       if( !leafData ){
7986         if( cntNew[i]<b.nCell ){
7987           sz = 2 + cachedCellSize(&b, cntNew[i]);
7988         }else{
7989           sz = 0;
7990         }
7991       }
7992       szNew[i+1] += sz;
7993       cntNew[i]--;
7994     }
7995     while( cntNew[i]<b.nCell ){
7996       sz = 2 + cachedCellSize(&b, cntNew[i]);
7997       if( szNew[i]+sz>usableSpace ) break;
7998       szNew[i] += sz;
7999       cntNew[i]++;
8000       if( !leafData ){
8001         if( cntNew[i]<b.nCell ){
8002           sz = 2 + cachedCellSize(&b, cntNew[i]);
8003         }else{
8004           sz = 0;
8005         }
8006       }
8007       szNew[i+1] -= sz;
8008     }
8009     if( cntNew[i]>=b.nCell ){
8010       k = i+1;
8011     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
8012       rc = SQLITE_CORRUPT_BKPT;
8013       goto balance_cleanup;
8014     }
8015   }
8016 
8017   /*
8018   ** The packing computed by the previous block is biased toward the siblings
8019   ** on the left side (siblings with smaller keys). The left siblings are
8020   ** always nearly full, while the right-most sibling might be nearly empty.
8021   ** The next block of code attempts to adjust the packing of siblings to
8022   ** get a better balance.
8023   **
8024   ** This adjustment is more than an optimization.  The packing above might
8025   ** be so out of balance as to be illegal.  For example, the right-most
8026   ** sibling might be completely empty.  This adjustment is not optional.
8027   */
8028   for(i=k-1; i>0; i--){
8029     int szRight = szNew[i];  /* Size of sibling on the right */
8030     int szLeft = szNew[i-1]; /* Size of sibling on the left */
8031     int r;              /* Index of right-most cell in left sibling */
8032     int d;              /* Index of first cell to the left of right sibling */
8033 
8034     r = cntNew[i-1] - 1;
8035     d = r + 1 - leafData;
8036     (void)cachedCellSize(&b, d);
8037     do{
8038       assert( d<nMaxCells );
8039       assert( r<nMaxCells );
8040       (void)cachedCellSize(&b, r);
8041       if( szRight!=0
8042        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
8043         break;
8044       }
8045       szRight += b.szCell[d] + 2;
8046       szLeft -= b.szCell[r] + 2;
8047       cntNew[i-1] = r;
8048       r--;
8049       d--;
8050     }while( r>=0 );
8051     szNew[i] = szRight;
8052     szNew[i-1] = szLeft;
8053     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8054       rc = SQLITE_CORRUPT_BKPT;
8055       goto balance_cleanup;
8056     }
8057   }
8058 
8059   /* Sanity check:  For a non-corrupt database file one of the follwing
8060   ** must be true:
8061   **    (1) We found one or more cells (cntNew[0])>0), or
8062   **    (2) pPage is a virtual root page.  A virtual root page is when
8063   **        the real root page is page 1 and we are the only child of
8064   **        that page.
8065   */
8066   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
8067   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8068     apOld[0]->pgno, apOld[0]->nCell,
8069     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8070     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
8071   ));
8072 
8073   /*
8074   ** Allocate k new pages.  Reuse old pages where possible.
8075   */
8076   pageFlags = apOld[0]->aData[0];
8077   for(i=0; i<k; i++){
8078     MemPage *pNew;
8079     if( i<nOld ){
8080       pNew = apNew[i] = apOld[i];
8081       apOld[i] = 0;
8082       rc = sqlite3PagerWrite(pNew->pDbPage);
8083       nNew++;
8084       if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8085        && rc==SQLITE_OK
8086       ){
8087         rc = SQLITE_CORRUPT_BKPT;
8088       }
8089       if( rc ) goto balance_cleanup;
8090     }else{
8091       assert( i>0 );
8092       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
8093       if( rc ) goto balance_cleanup;
8094       zeroPage(pNew, pageFlags);
8095       apNew[i] = pNew;
8096       nNew++;
8097       cntOld[i] = b.nCell;
8098 
8099       /* Set the pointer-map entry for the new sibling page. */
8100       if( ISAUTOVACUUM ){
8101         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
8102         if( rc!=SQLITE_OK ){
8103           goto balance_cleanup;
8104         }
8105       }
8106     }
8107   }
8108 
8109   /*
8110   ** Reassign page numbers so that the new pages are in ascending order.
8111   ** This helps to keep entries in the disk file in order so that a scan
8112   ** of the table is closer to a linear scan through the file. That in turn
8113   ** helps the operating system to deliver pages from the disk more rapidly.
8114   **
8115   ** An O(n^2) insertion sort algorithm is used, but since n is never more
8116   ** than (NB+2) (a small constant), that should not be a problem.
8117   **
8118   ** When NB==3, this one optimization makes the database about 25% faster
8119   ** for large insertions and deletions.
8120   */
8121   for(i=0; i<nNew; i++){
8122     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
8123     aPgFlags[i] = apNew[i]->pDbPage->flags;
8124     for(j=0; j<i; j++){
8125       if( NEVER(aPgno[j]==aPgno[i]) ){
8126         /* This branch is taken if the set of sibling pages somehow contains
8127         ** duplicate entries. This can happen if the database is corrupt.
8128         ** It would be simpler to detect this as part of the loop below, but
8129         ** we do the detection here in order to avoid populating the pager
8130         ** cache with two separate objects associated with the same
8131         ** page number.  */
8132         assert( CORRUPT_DB );
8133         rc = SQLITE_CORRUPT_BKPT;
8134         goto balance_cleanup;
8135       }
8136     }
8137   }
8138   for(i=0; i<nNew; i++){
8139     int iBest = 0;                /* aPgno[] index of page number to use */
8140     for(j=1; j<nNew; j++){
8141       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
8142     }
8143     pgno = aPgOrder[iBest];
8144     aPgOrder[iBest] = 0xffffffff;
8145     if( iBest!=i ){
8146       if( iBest>i ){
8147         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8148       }
8149       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8150       apNew[i]->pgno = pgno;
8151     }
8152   }
8153 
8154   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8155          "%d(%d nc=%d) %d(%d nc=%d)\n",
8156     apNew[0]->pgno, szNew[0], cntNew[0],
8157     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
8158     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
8159     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
8160     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
8161     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
8162     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8163     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8164     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8165   ));
8166 
8167   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8168   assert( nNew>=1 && nNew<=ArraySize(apNew) );
8169   assert( apNew[nNew-1]!=0 );
8170   put4byte(pRight, apNew[nNew-1]->pgno);
8171 
8172   /* If the sibling pages are not leaves, ensure that the right-child pointer
8173   ** of the right-most new sibling page is set to the value that was
8174   ** originally in the same field of the right-most old sibling page. */
8175   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8176     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8177     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8178   }
8179 
8180   /* Make any required updates to pointer map entries associated with
8181   ** cells stored on sibling pages following the balance operation. Pointer
8182   ** map entries associated with divider cells are set by the insertCell()
8183   ** routine. The associated pointer map entries are:
8184   **
8185   **   a) if the cell contains a reference to an overflow chain, the
8186   **      entry associated with the first page in the overflow chain, and
8187   **
8188   **   b) if the sibling pages are not leaves, the child page associated
8189   **      with the cell.
8190   **
8191   ** If the sibling pages are not leaves, then the pointer map entry
8192   ** associated with the right-child of each sibling may also need to be
8193   ** updated. This happens below, after the sibling pages have been
8194   ** populated, not here.
8195   */
8196   if( ISAUTOVACUUM ){
8197     MemPage *pOld;
8198     MemPage *pNew = pOld = apNew[0];
8199     int cntOldNext = pNew->nCell + pNew->nOverflow;
8200     int iNew = 0;
8201     int iOld = 0;
8202 
8203     for(i=0; i<b.nCell; i++){
8204       u8 *pCell = b.apCell[i];
8205       while( i==cntOldNext ){
8206         iOld++;
8207         assert( iOld<nNew || iOld<nOld );
8208         assert( iOld>=0 && iOld<NB );
8209         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8210         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8211       }
8212       if( i==cntNew[iNew] ){
8213         pNew = apNew[++iNew];
8214         if( !leafData ) continue;
8215       }
8216 
8217       /* Cell pCell is destined for new sibling page pNew. Originally, it
8218       ** was either part of sibling page iOld (possibly an overflow cell),
8219       ** or else the divider cell to the left of sibling page iOld. So,
8220       ** if sibling page iOld had the same page number as pNew, and if
8221       ** pCell really was a part of sibling page iOld (not a divider or
8222       ** overflow cell), we can skip updating the pointer map entries.  */
8223       if( iOld>=nNew
8224        || pNew->pgno!=aPgno[iOld]
8225        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8226       ){
8227         if( !leafCorrection ){
8228           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8229         }
8230         if( cachedCellSize(&b,i)>pNew->minLocal ){
8231           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8232         }
8233         if( rc ) goto balance_cleanup;
8234       }
8235     }
8236   }
8237 
8238   /* Insert new divider cells into pParent. */
8239   for(i=0; i<nNew-1; i++){
8240     u8 *pCell;
8241     u8 *pTemp;
8242     int sz;
8243     u8 *pSrcEnd;
8244     MemPage *pNew = apNew[i];
8245     j = cntNew[i];
8246 
8247     assert( j<nMaxCells );
8248     assert( b.apCell[j]!=0 );
8249     pCell = b.apCell[j];
8250     sz = b.szCell[j] + leafCorrection;
8251     pTemp = &aOvflSpace[iOvflSpace];
8252     if( !pNew->leaf ){
8253       memcpy(&pNew->aData[8], pCell, 4);
8254     }else if( leafData ){
8255       /* If the tree is a leaf-data tree, and the siblings are leaves,
8256       ** then there is no divider cell in b.apCell[]. Instead, the divider
8257       ** cell consists of the integer key for the right-most cell of
8258       ** the sibling-page assembled above only.
8259       */
8260       CellInfo info;
8261       j--;
8262       pNew->xParseCell(pNew, b.apCell[j], &info);
8263       pCell = pTemp;
8264       sz = 4 + putVarint(&pCell[4], info.nKey);
8265       pTemp = 0;
8266     }else{
8267       pCell -= 4;
8268       /* Obscure case for non-leaf-data trees: If the cell at pCell was
8269       ** previously stored on a leaf node, and its reported size was 4
8270       ** bytes, then it may actually be smaller than this
8271       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8272       ** any cell). But it is important to pass the correct size to
8273       ** insertCell(), so reparse the cell now.
8274       **
8275       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8276       ** and WITHOUT ROWID tables with exactly one column which is the
8277       ** primary key.
8278       */
8279       if( b.szCell[j]==4 ){
8280         assert(leafCorrection==4);
8281         sz = pParent->xCellSize(pParent, pCell);
8282       }
8283     }
8284     iOvflSpace += sz;
8285     assert( sz<=pBt->maxLocal+23 );
8286     assert( iOvflSpace <= (int)pBt->pageSize );
8287     for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
8288     pSrcEnd = b.apEnd[k];
8289     if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8290       rc = SQLITE_CORRUPT_BKPT;
8291       goto balance_cleanup;
8292     }
8293     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8294     if( rc!=SQLITE_OK ) goto balance_cleanup;
8295     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8296   }
8297 
8298   /* Now update the actual sibling pages. The order in which they are updated
8299   ** is important, as this code needs to avoid disrupting any page from which
8300   ** cells may still to be read. In practice, this means:
8301   **
8302   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8303   **      then it is not safe to update page apNew[iPg] until after
8304   **      the left-hand sibling apNew[iPg-1] has been updated.
8305   **
8306   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8307   **      then it is not safe to update page apNew[iPg] until after
8308   **      the right-hand sibling apNew[iPg+1] has been updated.
8309   **
8310   ** If neither of the above apply, the page is safe to update.
8311   **
8312   ** The iPg value in the following loop starts at nNew-1 goes down
8313   ** to 0, then back up to nNew-1 again, thus making two passes over
8314   ** the pages.  On the initial downward pass, only condition (1) above
8315   ** needs to be tested because (2) will always be true from the previous
8316   ** step.  On the upward pass, both conditions are always true, so the
8317   ** upwards pass simply processes pages that were missed on the downward
8318   ** pass.
8319   */
8320   for(i=1-nNew; i<nNew; i++){
8321     int iPg = i<0 ? -i : i;
8322     assert( iPg>=0 && iPg<nNew );
8323     if( abDone[iPg] ) continue;         /* Skip pages already processed */
8324     if( i>=0                            /* On the upwards pass, or... */
8325      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
8326     ){
8327       int iNew;
8328       int iOld;
8329       int nNewCell;
8330 
8331       /* Verify condition (1):  If cells are moving left, update iPg
8332       ** only after iPg-1 has already been updated. */
8333       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8334 
8335       /* Verify condition (2):  If cells are moving right, update iPg
8336       ** only after iPg+1 has already been updated. */
8337       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8338 
8339       if( iPg==0 ){
8340         iNew = iOld = 0;
8341         nNewCell = cntNew[0];
8342       }else{
8343         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8344         iNew = cntNew[iPg-1] + !leafData;
8345         nNewCell = cntNew[iPg] - iNew;
8346       }
8347 
8348       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8349       if( rc ) goto balance_cleanup;
8350       abDone[iPg]++;
8351       apNew[iPg]->nFree = usableSpace-szNew[iPg];
8352       assert( apNew[iPg]->nOverflow==0 );
8353       assert( apNew[iPg]->nCell==nNewCell );
8354     }
8355   }
8356 
8357   /* All pages have been processed exactly once */
8358   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8359 
8360   assert( nOld>0 );
8361   assert( nNew>0 );
8362 
8363   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8364     /* The root page of the b-tree now contains no cells. The only sibling
8365     ** page is the right-child of the parent. Copy the contents of the
8366     ** child page into the parent, decreasing the overall height of the
8367     ** b-tree structure by one. This is described as the "balance-shallower"
8368     ** sub-algorithm in some documentation.
8369     **
8370     ** If this is an auto-vacuum database, the call to copyNodeContent()
8371     ** sets all pointer-map entries corresponding to database image pages
8372     ** for which the pointer is stored within the content being copied.
8373     **
8374     ** It is critical that the child page be defragmented before being
8375     ** copied into the parent, because if the parent is page 1 then it will
8376     ** by smaller than the child due to the database header, and so all the
8377     ** free space needs to be up front.
8378     */
8379     assert( nNew==1 || CORRUPT_DB );
8380     rc = defragmentPage(apNew[0], -1);
8381     testcase( rc!=SQLITE_OK );
8382     assert( apNew[0]->nFree ==
8383         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8384           - apNew[0]->nCell*2)
8385       || rc!=SQLITE_OK
8386     );
8387     copyNodeContent(apNew[0], pParent, &rc);
8388     freePage(apNew[0], &rc);
8389   }else if( ISAUTOVACUUM && !leafCorrection ){
8390     /* Fix the pointer map entries associated with the right-child of each
8391     ** sibling page. All other pointer map entries have already been taken
8392     ** care of.  */
8393     for(i=0; i<nNew; i++){
8394       u32 key = get4byte(&apNew[i]->aData[8]);
8395       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8396     }
8397   }
8398 
8399   assert( pParent->isInit );
8400   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8401           nOld, nNew, b.nCell));
8402 
8403   /* Free any old pages that were not reused as new pages.
8404   */
8405   for(i=nNew; i<nOld; i++){
8406     freePage(apOld[i], &rc);
8407   }
8408 
8409 #if 0
8410   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8411     /* The ptrmapCheckPages() contains assert() statements that verify that
8412     ** all pointer map pages are set correctly. This is helpful while
8413     ** debugging. This is usually disabled because a corrupt database may
8414     ** cause an assert() statement to fail.  */
8415     ptrmapCheckPages(apNew, nNew);
8416     ptrmapCheckPages(&pParent, 1);
8417   }
8418 #endif
8419 
8420   /*
8421   ** Cleanup before returning.
8422   */
8423 balance_cleanup:
8424   sqlite3StackFree(0, b.apCell);
8425   for(i=0; i<nOld; i++){
8426     releasePage(apOld[i]);
8427   }
8428   for(i=0; i<nNew; i++){
8429     releasePage(apNew[i]);
8430   }
8431 
8432   return rc;
8433 }
8434 
8435 
8436 /*
8437 ** This function is called when the root page of a b-tree structure is
8438 ** overfull (has one or more overflow pages).
8439 **
8440 ** A new child page is allocated and the contents of the current root
8441 ** page, including overflow cells, are copied into the child. The root
8442 ** page is then overwritten to make it an empty page with the right-child
8443 ** pointer pointing to the new page.
8444 **
8445 ** Before returning, all pointer-map entries corresponding to pages
8446 ** that the new child-page now contains pointers to are updated. The
8447 ** entry corresponding to the new right-child pointer of the root
8448 ** page is also updated.
8449 **
8450 ** If successful, *ppChild is set to contain a reference to the child
8451 ** page and SQLITE_OK is returned. In this case the caller is required
8452 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8453 ** an error code is returned and *ppChild is set to 0.
8454 */
8455 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8456   int rc;                        /* Return value from subprocedures */
8457   MemPage *pChild = 0;           /* Pointer to a new child page */
8458   Pgno pgnoChild = 0;            /* Page number of the new child page */
8459   BtShared *pBt = pRoot->pBt;    /* The BTree */
8460 
8461   assert( pRoot->nOverflow>0 );
8462   assert( sqlite3_mutex_held(pBt->mutex) );
8463 
8464   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8465   ** page that will become the new right-child of pPage. Copy the contents
8466   ** of the node stored on pRoot into the new child page.
8467   */
8468   rc = sqlite3PagerWrite(pRoot->pDbPage);
8469   if( rc==SQLITE_OK ){
8470     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8471     copyNodeContent(pRoot, pChild, &rc);
8472     if( ISAUTOVACUUM ){
8473       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8474     }
8475   }
8476   if( rc ){
8477     *ppChild = 0;
8478     releasePage(pChild);
8479     return rc;
8480   }
8481   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8482   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8483   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8484 
8485   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8486 
8487   /* Copy the overflow cells from pRoot to pChild */
8488   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8489          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8490   memcpy(pChild->apOvfl, pRoot->apOvfl,
8491          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8492   pChild->nOverflow = pRoot->nOverflow;
8493 
8494   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8495   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8496   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8497 
8498   *ppChild = pChild;
8499   return SQLITE_OK;
8500 }
8501 
8502 /*
8503 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8504 ** on the same B-tree as pCur.
8505 **
8506 ** This can if a database is corrupt with two or more SQL tables
8507 ** pointing to the same b-tree.  If an insert occurs on one SQL table
8508 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8509 ** table linked to the same b-tree.  If the secondary insert causes a
8510 ** rebalance, that can change content out from under the cursor on the
8511 ** first SQL table, violating invariants on the first insert.
8512 */
8513 static int anotherValidCursor(BtCursor *pCur){
8514   BtCursor *pOther;
8515   for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8516     if( pOther!=pCur
8517      && pOther->eState==CURSOR_VALID
8518      && pOther->pPage==pCur->pPage
8519     ){
8520       return SQLITE_CORRUPT_BKPT;
8521     }
8522   }
8523   return SQLITE_OK;
8524 }
8525 
8526 /*
8527 ** The page that pCur currently points to has just been modified in
8528 ** some way. This function figures out if this modification means the
8529 ** tree needs to be balanced, and if so calls the appropriate balancing
8530 ** routine. Balancing routines are:
8531 **
8532 **   balance_quick()
8533 **   balance_deeper()
8534 **   balance_nonroot()
8535 */
8536 static int balance(BtCursor *pCur){
8537   int rc = SQLITE_OK;
8538   const int nMin = pCur->pBt->usableSize * 2 / 3;
8539   u8 aBalanceQuickSpace[13];
8540   u8 *pFree = 0;
8541 
8542   VVA_ONLY( int balance_quick_called = 0 );
8543   VVA_ONLY( int balance_deeper_called = 0 );
8544 
8545   do {
8546     int iPage;
8547     MemPage *pPage = pCur->pPage;
8548 
8549     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8550     if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8551       break;
8552     }else if( (iPage = pCur->iPage)==0 ){
8553       if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
8554         /* The root page of the b-tree is overfull. In this case call the
8555         ** balance_deeper() function to create a new child for the root-page
8556         ** and copy the current contents of the root-page to it. The
8557         ** next iteration of the do-loop will balance the child page.
8558         */
8559         assert( balance_deeper_called==0 );
8560         VVA_ONLY( balance_deeper_called++ );
8561         rc = balance_deeper(pPage, &pCur->apPage[1]);
8562         if( rc==SQLITE_OK ){
8563           pCur->iPage = 1;
8564           pCur->ix = 0;
8565           pCur->aiIdx[0] = 0;
8566           pCur->apPage[0] = pPage;
8567           pCur->pPage = pCur->apPage[1];
8568           assert( pCur->pPage->nOverflow );
8569         }
8570       }else{
8571         break;
8572       }
8573     }else{
8574       MemPage * const pParent = pCur->apPage[iPage-1];
8575       int const iIdx = pCur->aiIdx[iPage-1];
8576 
8577       rc = sqlite3PagerWrite(pParent->pDbPage);
8578       if( rc==SQLITE_OK && pParent->nFree<0 ){
8579         rc = btreeComputeFreeSpace(pParent);
8580       }
8581       if( rc==SQLITE_OK ){
8582 #ifndef SQLITE_OMIT_QUICKBALANCE
8583         if( pPage->intKeyLeaf
8584          && pPage->nOverflow==1
8585          && pPage->aiOvfl[0]==pPage->nCell
8586          && pParent->pgno!=1
8587          && pParent->nCell==iIdx
8588         ){
8589           /* Call balance_quick() to create a new sibling of pPage on which
8590           ** to store the overflow cell. balance_quick() inserts a new cell
8591           ** into pParent, which may cause pParent overflow. If this
8592           ** happens, the next iteration of the do-loop will balance pParent
8593           ** use either balance_nonroot() or balance_deeper(). Until this
8594           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8595           ** buffer.
8596           **
8597           ** The purpose of the following assert() is to check that only a
8598           ** single call to balance_quick() is made for each call to this
8599           ** function. If this were not verified, a subtle bug involving reuse
8600           ** of the aBalanceQuickSpace[] might sneak in.
8601           */
8602           assert( balance_quick_called==0 );
8603           VVA_ONLY( balance_quick_called++ );
8604           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8605         }else
8606 #endif
8607         {
8608           /* In this case, call balance_nonroot() to redistribute cells
8609           ** between pPage and up to 2 of its sibling pages. This involves
8610           ** modifying the contents of pParent, which may cause pParent to
8611           ** become overfull or underfull. The next iteration of the do-loop
8612           ** will balance the parent page to correct this.
8613           **
8614           ** If the parent page becomes overfull, the overflow cell or cells
8615           ** are stored in the pSpace buffer allocated immediately below.
8616           ** A subsequent iteration of the do-loop will deal with this by
8617           ** calling balance_nonroot() (balance_deeper() may be called first,
8618           ** but it doesn't deal with overflow cells - just moves them to a
8619           ** different page). Once this subsequent call to balance_nonroot()
8620           ** has completed, it is safe to release the pSpace buffer used by
8621           ** the previous call, as the overflow cell data will have been
8622           ** copied either into the body of a database page or into the new
8623           ** pSpace buffer passed to the latter call to balance_nonroot().
8624           */
8625           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8626           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8627                                pCur->hints&BTREE_BULKLOAD);
8628           if( pFree ){
8629             /* If pFree is not NULL, it points to the pSpace buffer used
8630             ** by a previous call to balance_nonroot(). Its contents are
8631             ** now stored either on real database pages or within the
8632             ** new pSpace buffer, so it may be safely freed here. */
8633             sqlite3PageFree(pFree);
8634           }
8635 
8636           /* The pSpace buffer will be freed after the next call to
8637           ** balance_nonroot(), or just before this function returns, whichever
8638           ** comes first. */
8639           pFree = pSpace;
8640         }
8641       }
8642 
8643       pPage->nOverflow = 0;
8644 
8645       /* The next iteration of the do-loop balances the parent page. */
8646       releasePage(pPage);
8647       pCur->iPage--;
8648       assert( pCur->iPage>=0 );
8649       pCur->pPage = pCur->apPage[pCur->iPage];
8650     }
8651   }while( rc==SQLITE_OK );
8652 
8653   if( pFree ){
8654     sqlite3PageFree(pFree);
8655   }
8656   return rc;
8657 }
8658 
8659 /* Overwrite content from pX into pDest.  Only do the write if the
8660 ** content is different from what is already there.
8661 */
8662 static int btreeOverwriteContent(
8663   MemPage *pPage,           /* MemPage on which writing will occur */
8664   u8 *pDest,                /* Pointer to the place to start writing */
8665   const BtreePayload *pX,   /* Source of data to write */
8666   int iOffset,              /* Offset of first byte to write */
8667   int iAmt                  /* Number of bytes to be written */
8668 ){
8669   int nData = pX->nData - iOffset;
8670   if( nData<=0 ){
8671     /* Overwritting with zeros */
8672     int i;
8673     for(i=0; i<iAmt && pDest[i]==0; i++){}
8674     if( i<iAmt ){
8675       int rc = sqlite3PagerWrite(pPage->pDbPage);
8676       if( rc ) return rc;
8677       memset(pDest + i, 0, iAmt - i);
8678     }
8679   }else{
8680     if( nData<iAmt ){
8681       /* Mixed read data and zeros at the end.  Make a recursive call
8682       ** to write the zeros then fall through to write the real data */
8683       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8684                                  iAmt-nData);
8685       if( rc ) return rc;
8686       iAmt = nData;
8687     }
8688     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8689       int rc = sqlite3PagerWrite(pPage->pDbPage);
8690       if( rc ) return rc;
8691       /* In a corrupt database, it is possible for the source and destination
8692       ** buffers to overlap.  This is harmless since the database is already
8693       ** corrupt but it does cause valgrind and ASAN warnings.  So use
8694       ** memmove(). */
8695       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8696     }
8697   }
8698   return SQLITE_OK;
8699 }
8700 
8701 /*
8702 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8703 ** contained in pX.
8704 */
8705 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8706   int iOffset;                        /* Next byte of pX->pData to write */
8707   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8708   int rc;                             /* Return code */
8709   MemPage *pPage = pCur->pPage;       /* Page being written */
8710   BtShared *pBt;                      /* Btree */
8711   Pgno ovflPgno;                      /* Next overflow page to write */
8712   u32 ovflPageSize;                   /* Size to write on overflow page */
8713 
8714   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8715    || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8716   ){
8717     return SQLITE_CORRUPT_BKPT;
8718   }
8719   /* Overwrite the local portion first */
8720   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8721                              0, pCur->info.nLocal);
8722   if( rc ) return rc;
8723   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8724 
8725   /* Now overwrite the overflow pages */
8726   iOffset = pCur->info.nLocal;
8727   assert( nTotal>=0 );
8728   assert( iOffset>=0 );
8729   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8730   pBt = pPage->pBt;
8731   ovflPageSize = pBt->usableSize - 4;
8732   do{
8733     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8734     if( rc ) return rc;
8735     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
8736       rc = SQLITE_CORRUPT_BKPT;
8737     }else{
8738       if( iOffset+ovflPageSize<(u32)nTotal ){
8739         ovflPgno = get4byte(pPage->aData);
8740       }else{
8741         ovflPageSize = nTotal - iOffset;
8742       }
8743       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8744                                  iOffset, ovflPageSize);
8745     }
8746     sqlite3PagerUnref(pPage->pDbPage);
8747     if( rc ) return rc;
8748     iOffset += ovflPageSize;
8749   }while( iOffset<nTotal );
8750   return SQLITE_OK;
8751 }
8752 
8753 
8754 /*
8755 ** Insert a new record into the BTree.  The content of the new record
8756 ** is described by the pX object.  The pCur cursor is used only to
8757 ** define what table the record should be inserted into, and is left
8758 ** pointing at a random location.
8759 **
8760 ** For a table btree (used for rowid tables), only the pX.nKey value of
8761 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8762 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8763 ** hold the content of the row.
8764 **
8765 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8766 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8767 ** pX.pData,nData,nZero fields must be zero.
8768 **
8769 ** If the seekResult parameter is non-zero, then a successful call to
8770 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8771 ** been performed.  In other words, if seekResult!=0 then the cursor
8772 ** is currently pointing to a cell that will be adjacent to the cell
8773 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8774 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8775 ** that is larger than (pKey,nKey).
8776 **
8777 ** If seekResult==0, that means pCur is pointing at some unknown location.
8778 ** In that case, this routine must seek the cursor to the correct insertion
8779 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8780 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8781 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8782 ** to decode the key.
8783 */
8784 int sqlite3BtreeInsert(
8785   BtCursor *pCur,                /* Insert data into the table of this cursor */
8786   const BtreePayload *pX,        /* Content of the row to be inserted */
8787   int flags,                     /* True if this is likely an append */
8788   int seekResult                 /* Result of prior MovetoUnpacked() call */
8789 ){
8790   int rc;
8791   int loc = seekResult;          /* -1: before desired location  +1: after */
8792   int szNew = 0;
8793   int idx;
8794   MemPage *pPage;
8795   Btree *p = pCur->pBtree;
8796   BtShared *pBt = p->pBt;
8797   unsigned char *oldCell;
8798   unsigned char *newCell = 0;
8799 
8800   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
8801   assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
8802 
8803   if( pCur->eState==CURSOR_FAULT ){
8804     assert( pCur->skipNext!=SQLITE_OK );
8805     return pCur->skipNext;
8806   }
8807 
8808   assert( cursorOwnsBtShared(pCur) );
8809   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8810               && pBt->inTransaction==TRANS_WRITE
8811               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8812   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8813 
8814   /* Assert that the caller has been consistent. If this cursor was opened
8815   ** expecting an index b-tree, then the caller should be inserting blob
8816   ** keys with no associated data. If the cursor was opened expecting an
8817   ** intkey table, the caller should be inserting integer keys with a
8818   ** blob of associated data.  */
8819   assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
8820 
8821   /* Save the positions of any other cursors open on this table.
8822   **
8823   ** In some cases, the call to btreeMoveto() below is a no-op. For
8824   ** example, when inserting data into a table with auto-generated integer
8825   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8826   ** integer key to use. It then calls this function to actually insert the
8827   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8828   ** that the cursor is already where it needs to be and returns without
8829   ** doing any work. To avoid thwarting these optimizations, it is important
8830   ** not to clear the cursor here.
8831   */
8832   if( pCur->curFlags & BTCF_Multiple ){
8833     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8834     if( rc ) return rc;
8835     if( loc && pCur->iPage<0 ){
8836       /* This can only happen if the schema is corrupt such that there is more
8837       ** than one table or index with the same root page as used by the cursor.
8838       ** Which can only happen if the SQLITE_NoSchemaError flag was set when
8839       ** the schema was loaded. This cannot be asserted though, as a user might
8840       ** set the flag, load the schema, and then unset the flag.  */
8841       return SQLITE_CORRUPT_BKPT;
8842     }
8843   }
8844 
8845   if( pCur->pKeyInfo==0 ){
8846     assert( pX->pKey==0 );
8847     /* If this is an insert into a table b-tree, invalidate any incrblob
8848     ** cursors open on the row being replaced */
8849     if( p->hasIncrblobCur ){
8850       invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8851     }
8852 
8853     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8854     ** to a row with the same key as the new entry being inserted.
8855     */
8856 #ifdef SQLITE_DEBUG
8857     if( flags & BTREE_SAVEPOSITION ){
8858       assert( pCur->curFlags & BTCF_ValidNKey );
8859       assert( pX->nKey==pCur->info.nKey );
8860       assert( loc==0 );
8861     }
8862 #endif
8863 
8864     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8865     ** that the cursor is not pointing to a row to be overwritten.
8866     ** So do a complete check.
8867     */
8868     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8869       /* The cursor is pointing to the entry that is to be
8870       ** overwritten */
8871       assert( pX->nData>=0 && pX->nZero>=0 );
8872       if( pCur->info.nSize!=0
8873        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8874       ){
8875         /* New entry is the same size as the old.  Do an overwrite */
8876         return btreeOverwriteCell(pCur, pX);
8877       }
8878       assert( loc==0 );
8879     }else if( loc==0 ){
8880       /* The cursor is *not* pointing to the cell to be overwritten, nor
8881       ** to an adjacent cell.  Move the cursor so that it is pointing either
8882       ** to the cell to be overwritten or an adjacent cell.
8883       */
8884       rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
8885                (flags & BTREE_APPEND)!=0, &loc);
8886       if( rc ) return rc;
8887     }
8888   }else{
8889     /* This is an index or a WITHOUT ROWID table */
8890 
8891     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8892     ** to a row with the same key as the new entry being inserted.
8893     */
8894     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8895 
8896     /* If the cursor is not already pointing either to the cell to be
8897     ** overwritten, or if a new cell is being inserted, if the cursor is
8898     ** not pointing to an immediately adjacent cell, then move the cursor
8899     ** so that it does.
8900     */
8901     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8902       if( pX->nMem ){
8903         UnpackedRecord r;
8904         r.pKeyInfo = pCur->pKeyInfo;
8905         r.aMem = pX->aMem;
8906         r.nField = pX->nMem;
8907         r.default_rc = 0;
8908         r.eqSeen = 0;
8909         rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
8910       }else{
8911         rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
8912                     (flags & BTREE_APPEND)!=0, &loc);
8913       }
8914       if( rc ) return rc;
8915     }
8916 
8917     /* If the cursor is currently pointing to an entry to be overwritten
8918     ** and the new content is the same as as the old, then use the
8919     ** overwrite optimization.
8920     */
8921     if( loc==0 ){
8922       getCellInfo(pCur);
8923       if( pCur->info.nKey==pX->nKey ){
8924         BtreePayload x2;
8925         x2.pData = pX->pKey;
8926         x2.nData = pX->nKey;
8927         x2.nZero = 0;
8928         return btreeOverwriteCell(pCur, &x2);
8929       }
8930     }
8931   }
8932   assert( pCur->eState==CURSOR_VALID
8933        || (pCur->eState==CURSOR_INVALID && loc)
8934        || CORRUPT_DB );
8935 
8936   pPage = pCur->pPage;
8937   assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
8938   assert( pPage->leaf || !pPage->intKey );
8939   if( pPage->nFree<0 ){
8940     if( NEVER(pCur->eState>CURSOR_INVALID) ){
8941       rc = SQLITE_CORRUPT_BKPT;
8942     }else{
8943       rc = btreeComputeFreeSpace(pPage);
8944     }
8945     if( rc ) return rc;
8946   }
8947 
8948   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8949           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8950           loc==0 ? "overwrite" : "new entry"));
8951   assert( pPage->isInit );
8952   newCell = pBt->pTmpSpace;
8953   assert( newCell!=0 );
8954   if( flags & BTREE_PREFORMAT ){
8955     rc = SQLITE_OK;
8956     szNew = pBt->nPreformatSize;
8957     if( szNew<4 ) szNew = 4;
8958     if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
8959       CellInfo info;
8960       pPage->xParseCell(pPage, newCell, &info);
8961       if( info.nPayload!=info.nLocal ){
8962         Pgno ovfl = get4byte(&newCell[szNew-4]);
8963         ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
8964       }
8965     }
8966   }else{
8967     rc = fillInCell(pPage, newCell, pX, &szNew);
8968   }
8969   if( rc ) goto end_insert;
8970   assert( szNew==pPage->xCellSize(pPage, newCell) );
8971   assert( szNew <= MX_CELL_SIZE(pBt) );
8972   idx = pCur->ix;
8973   if( loc==0 ){
8974     CellInfo info;
8975     assert( idx<pPage->nCell );
8976     rc = sqlite3PagerWrite(pPage->pDbPage);
8977     if( rc ){
8978       goto end_insert;
8979     }
8980     oldCell = findCell(pPage, idx);
8981     if( !pPage->leaf ){
8982       memcpy(newCell, oldCell, 4);
8983     }
8984     BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
8985     testcase( pCur->curFlags & BTCF_ValidOvfl );
8986     invalidateOverflowCache(pCur);
8987     if( info.nSize==szNew && info.nLocal==info.nPayload
8988      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8989     ){
8990       /* Overwrite the old cell with the new if they are the same size.
8991       ** We could also try to do this if the old cell is smaller, then add
8992       ** the leftover space to the free list.  But experiments show that
8993       ** doing that is no faster then skipping this optimization and just
8994       ** calling dropCell() and insertCell().
8995       **
8996       ** This optimization cannot be used on an autovacuum database if the
8997       ** new entry uses overflow pages, as the insertCell() call below is
8998       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
8999       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
9000       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9001         return SQLITE_CORRUPT_BKPT;
9002       }
9003       if( oldCell+szNew > pPage->aDataEnd ){
9004         return SQLITE_CORRUPT_BKPT;
9005       }
9006       memcpy(oldCell, newCell, szNew);
9007       return SQLITE_OK;
9008     }
9009     dropCell(pPage, idx, info.nSize, &rc);
9010     if( rc ) goto end_insert;
9011   }else if( loc<0 && pPage->nCell>0 ){
9012     assert( pPage->leaf );
9013     idx = ++pCur->ix;
9014     pCur->curFlags &= ~BTCF_ValidNKey;
9015   }else{
9016     assert( pPage->leaf );
9017   }
9018   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
9019   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
9020   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
9021 
9022   /* If no error has occurred and pPage has an overflow cell, call balance()
9023   ** to redistribute the cells within the tree. Since balance() may move
9024   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9025   ** variables.
9026   **
9027   ** Previous versions of SQLite called moveToRoot() to move the cursor
9028   ** back to the root page as balance() used to invalidate the contents
9029   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9030   ** set the cursor state to "invalid". This makes common insert operations
9031   ** slightly faster.
9032   **
9033   ** There is a subtle but important optimization here too. When inserting
9034   ** multiple records into an intkey b-tree using a single cursor (as can
9035   ** happen while processing an "INSERT INTO ... SELECT" statement), it
9036   ** is advantageous to leave the cursor pointing to the last entry in
9037   ** the b-tree if possible. If the cursor is left pointing to the last
9038   ** entry in the table, and the next row inserted has an integer key
9039   ** larger than the largest existing key, it is possible to insert the
9040   ** row without seeking the cursor. This can be a big performance boost.
9041   */
9042   pCur->info.nSize = 0;
9043   if( pPage->nOverflow ){
9044     assert( rc==SQLITE_OK );
9045     pCur->curFlags &= ~(BTCF_ValidNKey);
9046     rc = balance(pCur);
9047 
9048     /* Must make sure nOverflow is reset to zero even if the balance()
9049     ** fails. Internal data structure corruption will result otherwise.
9050     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9051     ** from trying to save the current position of the cursor.  */
9052     pCur->pPage->nOverflow = 0;
9053     pCur->eState = CURSOR_INVALID;
9054     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
9055       btreeReleaseAllCursorPages(pCur);
9056       if( pCur->pKeyInfo ){
9057         assert( pCur->pKey==0 );
9058         pCur->pKey = sqlite3Malloc( pX->nKey );
9059         if( pCur->pKey==0 ){
9060           rc = SQLITE_NOMEM;
9061         }else{
9062           memcpy(pCur->pKey, pX->pKey, pX->nKey);
9063         }
9064       }
9065       pCur->eState = CURSOR_REQUIRESEEK;
9066       pCur->nKey = pX->nKey;
9067     }
9068   }
9069   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
9070 
9071 end_insert:
9072   return rc;
9073 }
9074 
9075 /*
9076 ** This function is used as part of copying the current row from cursor
9077 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9078 ** parameter iKey is used as the rowid value when the record is copied
9079 ** into pDest. Otherwise, the record is copied verbatim.
9080 **
9081 ** This function does not actually write the new value to cursor pDest.
9082 ** Instead, it creates and populates any required overflow pages and
9083 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9084 ** for the destination database. The size of the cell, in bytes, is left
9085 ** in BtShared.nPreformatSize. The caller completes the insertion by
9086 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9087 **
9088 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9089 */
9090 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
9091   int rc = SQLITE_OK;
9092   BtShared *pBt = pDest->pBt;
9093   u8 *aOut = pBt->pTmpSpace;    /* Pointer to next output buffer */
9094   const u8 *aIn;                /* Pointer to next input buffer */
9095   u32 nIn;                      /* Size of input buffer aIn[] */
9096   u32 nRem;                     /* Bytes of data still to copy */
9097 
9098   getCellInfo(pSrc);
9099   aOut += putVarint32(aOut, pSrc->info.nPayload);
9100   if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
9101   nIn = pSrc->info.nLocal;
9102   aIn = pSrc->info.pPayload;
9103   if( aIn+nIn>pSrc->pPage->aDataEnd ){
9104     return SQLITE_CORRUPT_BKPT;
9105   }
9106   nRem = pSrc->info.nPayload;
9107   if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9108     memcpy(aOut, aIn, nIn);
9109     pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9110   }else{
9111     Pager *pSrcPager = pSrc->pBt->pPager;
9112     u8 *pPgnoOut = 0;
9113     Pgno ovflIn = 0;
9114     DbPage *pPageIn = 0;
9115     MemPage *pPageOut = 0;
9116     u32 nOut;                     /* Size of output buffer aOut[] */
9117 
9118     nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9119     pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9120     if( nOut<pSrc->info.nPayload ){
9121       pPgnoOut = &aOut[nOut];
9122       pBt->nPreformatSize += 4;
9123     }
9124 
9125     if( nRem>nIn ){
9126       if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9127         return SQLITE_CORRUPT_BKPT;
9128       }
9129       ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9130     }
9131 
9132     do {
9133       nRem -= nOut;
9134       do{
9135         assert( nOut>0 );
9136         if( nIn>0 ){
9137           int nCopy = MIN(nOut, nIn);
9138           memcpy(aOut, aIn, nCopy);
9139           nOut -= nCopy;
9140           nIn -= nCopy;
9141           aOut += nCopy;
9142           aIn += nCopy;
9143         }
9144         if( nOut>0 ){
9145           sqlite3PagerUnref(pPageIn);
9146           pPageIn = 0;
9147           rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9148           if( rc==SQLITE_OK ){
9149             aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9150             ovflIn = get4byte(aIn);
9151             aIn += 4;
9152             nIn = pSrc->pBt->usableSize - 4;
9153           }
9154         }
9155       }while( rc==SQLITE_OK && nOut>0 );
9156 
9157       if( rc==SQLITE_OK && nRem>0 ){
9158         Pgno pgnoNew;
9159         MemPage *pNew = 0;
9160         rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9161         put4byte(pPgnoOut, pgnoNew);
9162         if( ISAUTOVACUUM && pPageOut ){
9163           ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9164         }
9165         releasePage(pPageOut);
9166         pPageOut = pNew;
9167         if( pPageOut ){
9168           pPgnoOut = pPageOut->aData;
9169           put4byte(pPgnoOut, 0);
9170           aOut = &pPgnoOut[4];
9171           nOut = MIN(pBt->usableSize - 4, nRem);
9172         }
9173       }
9174     }while( nRem>0 && rc==SQLITE_OK );
9175 
9176     releasePage(pPageOut);
9177     sqlite3PagerUnref(pPageIn);
9178   }
9179 
9180   return rc;
9181 }
9182 
9183 /*
9184 ** Delete the entry that the cursor is pointing to.
9185 **
9186 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9187 ** the cursor is left pointing at an arbitrary location after the delete.
9188 ** But if that bit is set, then the cursor is left in a state such that
9189 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9190 ** as it would have been on if the call to BtreeDelete() had been omitted.
9191 **
9192 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9193 ** associated with a single table entry and its indexes.  Only one of those
9194 ** deletes is considered the "primary" delete.  The primary delete occurs
9195 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
9196 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9197 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9198 ** but which might be used by alternative storage engines.
9199 */
9200 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
9201   Btree *p = pCur->pBtree;
9202   BtShared *pBt = p->pBt;
9203   int rc;                              /* Return code */
9204   MemPage *pPage;                      /* Page to delete cell from */
9205   unsigned char *pCell;                /* Pointer to cell to delete */
9206   int iCellIdx;                        /* Index of cell to delete */
9207   int iCellDepth;                      /* Depth of node containing pCell */
9208   CellInfo info;                       /* Size of the cell being deleted */
9209   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
9210   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
9211 
9212   assert( cursorOwnsBtShared(pCur) );
9213   assert( pBt->inTransaction==TRANS_WRITE );
9214   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9215   assert( pCur->curFlags & BTCF_WriteFlag );
9216   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9217   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
9218   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
9219   if( pCur->eState==CURSOR_REQUIRESEEK ){
9220     rc = btreeRestoreCursorPosition(pCur);
9221     assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9222     if( rc || pCur->eState!=CURSOR_VALID ) return rc;
9223   }
9224   assert( CORRUPT_DB || pCur->eState==CURSOR_VALID );
9225 
9226   iCellDepth = pCur->iPage;
9227   iCellIdx = pCur->ix;
9228   pPage = pCur->pPage;
9229   pCell = findCell(pPage, iCellIdx);
9230   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
9231 
9232   /* If the bPreserve flag is set to true, then the cursor position must
9233   ** be preserved following this delete operation. If the current delete
9234   ** will cause a b-tree rebalance, then this is done by saving the cursor
9235   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9236   ** returning.
9237   **
9238   ** Or, if the current delete will not cause a rebalance, then the cursor
9239   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9240   ** before or after the deleted entry. In this case set bSkipnext to true.  */
9241   if( bPreserve ){
9242     if( !pPage->leaf
9243      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
9244      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
9245     ){
9246       /* A b-tree rebalance will be required after deleting this entry.
9247       ** Save the cursor key.  */
9248       rc = saveCursorKey(pCur);
9249       if( rc ) return rc;
9250     }else{
9251       bSkipnext = 1;
9252     }
9253   }
9254 
9255   /* If the page containing the entry to delete is not a leaf page, move
9256   ** the cursor to the largest entry in the tree that is smaller than
9257   ** the entry being deleted. This cell will replace the cell being deleted
9258   ** from the internal node. The 'previous' entry is used for this instead
9259   ** of the 'next' entry, as the previous entry is always a part of the
9260   ** sub-tree headed by the child page of the cell being deleted. This makes
9261   ** balancing the tree following the delete operation easier.  */
9262   if( !pPage->leaf ){
9263     rc = sqlite3BtreePrevious(pCur, 0);
9264     assert( rc!=SQLITE_DONE );
9265     if( rc ) return rc;
9266   }
9267 
9268   /* Save the positions of any other cursors open on this table before
9269   ** making any modifications.  */
9270   if( pCur->curFlags & BTCF_Multiple ){
9271     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9272     if( rc ) return rc;
9273   }
9274 
9275   /* If this is a delete operation to remove a row from a table b-tree,
9276   ** invalidate any incrblob cursors open on the row being deleted.  */
9277   if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
9278     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
9279   }
9280 
9281   /* Make the page containing the entry to be deleted writable. Then free any
9282   ** overflow pages associated with the entry and finally remove the cell
9283   ** itself from within the page.  */
9284   rc = sqlite3PagerWrite(pPage->pDbPage);
9285   if( rc ) return rc;
9286   BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9287   dropCell(pPage, iCellIdx, info.nSize, &rc);
9288   if( rc ) return rc;
9289 
9290   /* If the cell deleted was not located on a leaf page, then the cursor
9291   ** is currently pointing to the largest entry in the sub-tree headed
9292   ** by the child-page of the cell that was just deleted from an internal
9293   ** node. The cell from the leaf node needs to be moved to the internal
9294   ** node to replace the deleted cell.  */
9295   if( !pPage->leaf ){
9296     MemPage *pLeaf = pCur->pPage;
9297     int nCell;
9298     Pgno n;
9299     unsigned char *pTmp;
9300 
9301     if( pLeaf->nFree<0 ){
9302       rc = btreeComputeFreeSpace(pLeaf);
9303       if( rc ) return rc;
9304     }
9305     if( iCellDepth<pCur->iPage-1 ){
9306       n = pCur->apPage[iCellDepth+1]->pgno;
9307     }else{
9308       n = pCur->pPage->pgno;
9309     }
9310     pCell = findCell(pLeaf, pLeaf->nCell-1);
9311     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
9312     nCell = pLeaf->xCellSize(pLeaf, pCell);
9313     assert( MX_CELL_SIZE(pBt) >= nCell );
9314     pTmp = pBt->pTmpSpace;
9315     assert( pTmp!=0 );
9316     rc = sqlite3PagerWrite(pLeaf->pDbPage);
9317     if( rc==SQLITE_OK ){
9318       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9319     }
9320     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
9321     if( rc ) return rc;
9322   }
9323 
9324   /* Balance the tree. If the entry deleted was located on a leaf page,
9325   ** then the cursor still points to that page. In this case the first
9326   ** call to balance() repairs the tree, and the if(...) condition is
9327   ** never true.
9328   **
9329   ** Otherwise, if the entry deleted was on an internal node page, then
9330   ** pCur is pointing to the leaf page from which a cell was removed to
9331   ** replace the cell deleted from the internal node. This is slightly
9332   ** tricky as the leaf node may be underfull, and the internal node may
9333   ** be either under or overfull. In this case run the balancing algorithm
9334   ** on the leaf node first. If the balance proceeds far enough up the
9335   ** tree that we can be sure that any problem in the internal node has
9336   ** been corrected, so be it. Otherwise, after balancing the leaf node,
9337   ** walk the cursor up the tree to the internal node and balance it as
9338   ** well.  */
9339   rc = balance(pCur);
9340   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
9341     releasePageNotNull(pCur->pPage);
9342     pCur->iPage--;
9343     while( pCur->iPage>iCellDepth ){
9344       releasePage(pCur->apPage[pCur->iPage--]);
9345     }
9346     pCur->pPage = pCur->apPage[pCur->iPage];
9347     rc = balance(pCur);
9348   }
9349 
9350   if( rc==SQLITE_OK ){
9351     if( bSkipnext ){
9352       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
9353       assert( pPage==pCur->pPage || CORRUPT_DB );
9354       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9355       pCur->eState = CURSOR_SKIPNEXT;
9356       if( iCellIdx>=pPage->nCell ){
9357         pCur->skipNext = -1;
9358         pCur->ix = pPage->nCell-1;
9359       }else{
9360         pCur->skipNext = 1;
9361       }
9362     }else{
9363       rc = moveToRoot(pCur);
9364       if( bPreserve ){
9365         btreeReleaseAllCursorPages(pCur);
9366         pCur->eState = CURSOR_REQUIRESEEK;
9367       }
9368       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9369     }
9370   }
9371   return rc;
9372 }
9373 
9374 /*
9375 ** Create a new BTree table.  Write into *piTable the page
9376 ** number for the root page of the new table.
9377 **
9378 ** The type of type is determined by the flags parameter.  Only the
9379 ** following values of flags are currently in use.  Other values for
9380 ** flags might not work:
9381 **
9382 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
9383 **     BTREE_ZERODATA                  Used for SQL indices
9384 */
9385 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
9386   BtShared *pBt = p->pBt;
9387   MemPage *pRoot;
9388   Pgno pgnoRoot;
9389   int rc;
9390   int ptfFlags;          /* Page-type flage for the root page of new table */
9391 
9392   assert( sqlite3BtreeHoldsMutex(p) );
9393   assert( pBt->inTransaction==TRANS_WRITE );
9394   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9395 
9396 #ifdef SQLITE_OMIT_AUTOVACUUM
9397   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9398   if( rc ){
9399     return rc;
9400   }
9401 #else
9402   if( pBt->autoVacuum ){
9403     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
9404     MemPage *pPageMove; /* The page to move to. */
9405 
9406     /* Creating a new table may probably require moving an existing database
9407     ** to make room for the new tables root page. In case this page turns
9408     ** out to be an overflow page, delete all overflow page-map caches
9409     ** held by open cursors.
9410     */
9411     invalidateAllOverflowCache(pBt);
9412 
9413     /* Read the value of meta[3] from the database to determine where the
9414     ** root page of the new table should go. meta[3] is the largest root-page
9415     ** created so far, so the new root-page is (meta[3]+1).
9416     */
9417     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9418     if( pgnoRoot>btreePagecount(pBt) ){
9419       return SQLITE_CORRUPT_BKPT;
9420     }
9421     pgnoRoot++;
9422 
9423     /* The new root-page may not be allocated on a pointer-map page, or the
9424     ** PENDING_BYTE page.
9425     */
9426     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9427         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9428       pgnoRoot++;
9429     }
9430     assert( pgnoRoot>=3 );
9431 
9432     /* Allocate a page. The page that currently resides at pgnoRoot will
9433     ** be moved to the allocated page (unless the allocated page happens
9434     ** to reside at pgnoRoot).
9435     */
9436     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9437     if( rc!=SQLITE_OK ){
9438       return rc;
9439     }
9440 
9441     if( pgnoMove!=pgnoRoot ){
9442       /* pgnoRoot is the page that will be used for the root-page of
9443       ** the new table (assuming an error did not occur). But we were
9444       ** allocated pgnoMove. If required (i.e. if it was not allocated
9445       ** by extending the file), the current page at position pgnoMove
9446       ** is already journaled.
9447       */
9448       u8 eType = 0;
9449       Pgno iPtrPage = 0;
9450 
9451       /* Save the positions of any open cursors. This is required in
9452       ** case they are holding a reference to an xFetch reference
9453       ** corresponding to page pgnoRoot.  */
9454       rc = saveAllCursors(pBt, 0, 0);
9455       releasePage(pPageMove);
9456       if( rc!=SQLITE_OK ){
9457         return rc;
9458       }
9459 
9460       /* Move the page currently at pgnoRoot to pgnoMove. */
9461       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9462       if( rc!=SQLITE_OK ){
9463         return rc;
9464       }
9465       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9466       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9467         rc = SQLITE_CORRUPT_BKPT;
9468       }
9469       if( rc!=SQLITE_OK ){
9470         releasePage(pRoot);
9471         return rc;
9472       }
9473       assert( eType!=PTRMAP_ROOTPAGE );
9474       assert( eType!=PTRMAP_FREEPAGE );
9475       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9476       releasePage(pRoot);
9477 
9478       /* Obtain the page at pgnoRoot */
9479       if( rc!=SQLITE_OK ){
9480         return rc;
9481       }
9482       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9483       if( rc!=SQLITE_OK ){
9484         return rc;
9485       }
9486       rc = sqlite3PagerWrite(pRoot->pDbPage);
9487       if( rc!=SQLITE_OK ){
9488         releasePage(pRoot);
9489         return rc;
9490       }
9491     }else{
9492       pRoot = pPageMove;
9493     }
9494 
9495     /* Update the pointer-map and meta-data with the new root-page number. */
9496     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9497     if( rc ){
9498       releasePage(pRoot);
9499       return rc;
9500     }
9501 
9502     /* When the new root page was allocated, page 1 was made writable in
9503     ** order either to increase the database filesize, or to decrement the
9504     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9505     */
9506     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9507     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9508     if( NEVER(rc) ){
9509       releasePage(pRoot);
9510       return rc;
9511     }
9512 
9513   }else{
9514     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9515     if( rc ) return rc;
9516   }
9517 #endif
9518   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9519   if( createTabFlags & BTREE_INTKEY ){
9520     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9521   }else{
9522     ptfFlags = PTF_ZERODATA | PTF_LEAF;
9523   }
9524   zeroPage(pRoot, ptfFlags);
9525   sqlite3PagerUnref(pRoot->pDbPage);
9526   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9527   *piTable = pgnoRoot;
9528   return SQLITE_OK;
9529 }
9530 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
9531   int rc;
9532   sqlite3BtreeEnter(p);
9533   rc = btreeCreateTable(p, piTable, flags);
9534   sqlite3BtreeLeave(p);
9535   return rc;
9536 }
9537 
9538 /*
9539 ** Erase the given database page and all its children.  Return
9540 ** the page to the freelist.
9541 */
9542 static int clearDatabasePage(
9543   BtShared *pBt,           /* The BTree that contains the table */
9544   Pgno pgno,               /* Page number to clear */
9545   int freePageFlag,        /* Deallocate page if true */
9546   i64 *pnChange            /* Add number of Cells freed to this counter */
9547 ){
9548   MemPage *pPage;
9549   int rc;
9550   unsigned char *pCell;
9551   int i;
9552   int hdr;
9553   CellInfo info;
9554 
9555   assert( sqlite3_mutex_held(pBt->mutex) );
9556   if( pgno>btreePagecount(pBt) ){
9557     return SQLITE_CORRUPT_BKPT;
9558   }
9559   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9560   if( rc ) return rc;
9561   if( pPage->bBusy ){
9562     rc = SQLITE_CORRUPT_BKPT;
9563     goto cleardatabasepage_out;
9564   }
9565   pPage->bBusy = 1;
9566   hdr = pPage->hdrOffset;
9567   for(i=0; i<pPage->nCell; i++){
9568     pCell = findCell(pPage, i);
9569     if( !pPage->leaf ){
9570       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9571       if( rc ) goto cleardatabasepage_out;
9572     }
9573     BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9574     if( rc ) goto cleardatabasepage_out;
9575   }
9576   if( !pPage->leaf ){
9577     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9578     if( rc ) goto cleardatabasepage_out;
9579     if( pPage->intKey ) pnChange = 0;
9580   }
9581   if( pnChange ){
9582     testcase( !pPage->intKey );
9583     *pnChange += pPage->nCell;
9584   }
9585   if( freePageFlag ){
9586     freePage(pPage, &rc);
9587   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9588     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9589   }
9590 
9591 cleardatabasepage_out:
9592   pPage->bBusy = 0;
9593   releasePage(pPage);
9594   return rc;
9595 }
9596 
9597 /*
9598 ** Delete all information from a single table in the database.  iTable is
9599 ** the page number of the root of the table.  After this routine returns,
9600 ** the root page is empty, but still exists.
9601 **
9602 ** This routine will fail with SQLITE_LOCKED if there are any open
9603 ** read cursors on the table.  Open write cursors are moved to the
9604 ** root of the table.
9605 **
9606 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9607 ** is incremented by the number of entries in the table.
9608 */
9609 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
9610   int rc;
9611   BtShared *pBt = p->pBt;
9612   sqlite3BtreeEnter(p);
9613   assert( p->inTrans==TRANS_WRITE );
9614 
9615   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9616 
9617   if( SQLITE_OK==rc ){
9618     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9619     ** is the root of a table b-tree - if it is not, the following call is
9620     ** a no-op).  */
9621     if( p->hasIncrblobCur ){
9622       invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9623     }
9624     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9625   }
9626   sqlite3BtreeLeave(p);
9627   return rc;
9628 }
9629 
9630 /*
9631 ** Delete all information from the single table that pCur is open on.
9632 **
9633 ** This routine only work for pCur on an ephemeral table.
9634 */
9635 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9636   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9637 }
9638 
9639 /*
9640 ** Erase all information in a table and add the root of the table to
9641 ** the freelist.  Except, the root of the principle table (the one on
9642 ** page 1) is never added to the freelist.
9643 **
9644 ** This routine will fail with SQLITE_LOCKED if there are any open
9645 ** cursors on the table.
9646 **
9647 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9648 ** root page in the database file, then the last root page
9649 ** in the database file is moved into the slot formerly occupied by
9650 ** iTable and that last slot formerly occupied by the last root page
9651 ** is added to the freelist instead of iTable.  In this say, all
9652 ** root pages are kept at the beginning of the database file, which
9653 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9654 ** page number that used to be the last root page in the file before
9655 ** the move.  If no page gets moved, *piMoved is set to 0.
9656 ** The last root page is recorded in meta[3] and the value of
9657 ** meta[3] is updated by this procedure.
9658 */
9659 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9660   int rc;
9661   MemPage *pPage = 0;
9662   BtShared *pBt = p->pBt;
9663 
9664   assert( sqlite3BtreeHoldsMutex(p) );
9665   assert( p->inTrans==TRANS_WRITE );
9666   assert( iTable>=2 );
9667   if( iTable>btreePagecount(pBt) ){
9668     return SQLITE_CORRUPT_BKPT;
9669   }
9670 
9671   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9672   if( rc ) return rc;
9673   rc = sqlite3BtreeClearTable(p, iTable, 0);
9674   if( rc ){
9675     releasePage(pPage);
9676     return rc;
9677   }
9678 
9679   *piMoved = 0;
9680 
9681 #ifdef SQLITE_OMIT_AUTOVACUUM
9682   freePage(pPage, &rc);
9683   releasePage(pPage);
9684 #else
9685   if( pBt->autoVacuum ){
9686     Pgno maxRootPgno;
9687     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9688 
9689     if( iTable==maxRootPgno ){
9690       /* If the table being dropped is the table with the largest root-page
9691       ** number in the database, put the root page on the free list.
9692       */
9693       freePage(pPage, &rc);
9694       releasePage(pPage);
9695       if( rc!=SQLITE_OK ){
9696         return rc;
9697       }
9698     }else{
9699       /* The table being dropped does not have the largest root-page
9700       ** number in the database. So move the page that does into the
9701       ** gap left by the deleted root-page.
9702       */
9703       MemPage *pMove;
9704       releasePage(pPage);
9705       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9706       if( rc!=SQLITE_OK ){
9707         return rc;
9708       }
9709       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9710       releasePage(pMove);
9711       if( rc!=SQLITE_OK ){
9712         return rc;
9713       }
9714       pMove = 0;
9715       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9716       freePage(pMove, &rc);
9717       releasePage(pMove);
9718       if( rc!=SQLITE_OK ){
9719         return rc;
9720       }
9721       *piMoved = maxRootPgno;
9722     }
9723 
9724     /* Set the new 'max-root-page' value in the database header. This
9725     ** is the old value less one, less one more if that happens to
9726     ** be a root-page number, less one again if that is the
9727     ** PENDING_BYTE_PAGE.
9728     */
9729     maxRootPgno--;
9730     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9731            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9732       maxRootPgno--;
9733     }
9734     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9735 
9736     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9737   }else{
9738     freePage(pPage, &rc);
9739     releasePage(pPage);
9740   }
9741 #endif
9742   return rc;
9743 }
9744 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9745   int rc;
9746   sqlite3BtreeEnter(p);
9747   rc = btreeDropTable(p, iTable, piMoved);
9748   sqlite3BtreeLeave(p);
9749   return rc;
9750 }
9751 
9752 
9753 /*
9754 ** This function may only be called if the b-tree connection already
9755 ** has a read or write transaction open on the database.
9756 **
9757 ** Read the meta-information out of a database file.  Meta[0]
9758 ** is the number of free pages currently in the database.  Meta[1]
9759 ** through meta[15] are available for use by higher layers.  Meta[0]
9760 ** is read-only, the others are read/write.
9761 **
9762 ** The schema layer numbers meta values differently.  At the schema
9763 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9764 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
9765 **
9766 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
9767 ** of reading the value out of the header, it instead loads the "DataVersion"
9768 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
9769 ** database file.  It is a number computed by the pager.  But its access
9770 ** pattern is the same as header meta values, and so it is convenient to
9771 ** read it from this routine.
9772 */
9773 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9774   BtShared *pBt = p->pBt;
9775 
9776   sqlite3BtreeEnter(p);
9777   assert( p->inTrans>TRANS_NONE );
9778   assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
9779   assert( pBt->pPage1 );
9780   assert( idx>=0 && idx<=15 );
9781 
9782   if( idx==BTREE_DATA_VERSION ){
9783     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
9784   }else{
9785     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9786   }
9787 
9788   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9789   ** database, mark the database as read-only.  */
9790 #ifdef SQLITE_OMIT_AUTOVACUUM
9791   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9792     pBt->btsFlags |= BTS_READ_ONLY;
9793   }
9794 #endif
9795 
9796   sqlite3BtreeLeave(p);
9797 }
9798 
9799 /*
9800 ** Write meta-information back into the database.  Meta[0] is
9801 ** read-only and may not be written.
9802 */
9803 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9804   BtShared *pBt = p->pBt;
9805   unsigned char *pP1;
9806   int rc;
9807   assert( idx>=1 && idx<=15 );
9808   sqlite3BtreeEnter(p);
9809   assert( p->inTrans==TRANS_WRITE );
9810   assert( pBt->pPage1!=0 );
9811   pP1 = pBt->pPage1->aData;
9812   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9813   if( rc==SQLITE_OK ){
9814     put4byte(&pP1[36 + idx*4], iMeta);
9815 #ifndef SQLITE_OMIT_AUTOVACUUM
9816     if( idx==BTREE_INCR_VACUUM ){
9817       assert( pBt->autoVacuum || iMeta==0 );
9818       assert( iMeta==0 || iMeta==1 );
9819       pBt->incrVacuum = (u8)iMeta;
9820     }
9821 #endif
9822   }
9823   sqlite3BtreeLeave(p);
9824   return rc;
9825 }
9826 
9827 /*
9828 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9829 ** number of entries in the b-tree and write the result to *pnEntry.
9830 **
9831 ** SQLITE_OK is returned if the operation is successfully executed.
9832 ** Otherwise, if an error is encountered (i.e. an IO error or database
9833 ** corruption) an SQLite error code is returned.
9834 */
9835 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
9836   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9837   int rc;                              /* Return code */
9838 
9839   rc = moveToRoot(pCur);
9840   if( rc==SQLITE_EMPTY ){
9841     *pnEntry = 0;
9842     return SQLITE_OK;
9843   }
9844 
9845   /* Unless an error occurs, the following loop runs one iteration for each
9846   ** page in the B-Tree structure (not including overflow pages).
9847   */
9848   while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
9849     int iIdx;                          /* Index of child node in parent */
9850     MemPage *pPage;                    /* Current page of the b-tree */
9851 
9852     /* If this is a leaf page or the tree is not an int-key tree, then
9853     ** this page contains countable entries. Increment the entry counter
9854     ** accordingly.
9855     */
9856     pPage = pCur->pPage;
9857     if( pPage->leaf || !pPage->intKey ){
9858       nEntry += pPage->nCell;
9859     }
9860 
9861     /* pPage is a leaf node. This loop navigates the cursor so that it
9862     ** points to the first interior cell that it points to the parent of
9863     ** the next page in the tree that has not yet been visited. The
9864     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9865     ** of the page, or to the number of cells in the page if the next page
9866     ** to visit is the right-child of its parent.
9867     **
9868     ** If all pages in the tree have been visited, return SQLITE_OK to the
9869     ** caller.
9870     */
9871     if( pPage->leaf ){
9872       do {
9873         if( pCur->iPage==0 ){
9874           /* All pages of the b-tree have been visited. Return successfully. */
9875           *pnEntry = nEntry;
9876           return moveToRoot(pCur);
9877         }
9878         moveToParent(pCur);
9879       }while ( pCur->ix>=pCur->pPage->nCell );
9880 
9881       pCur->ix++;
9882       pPage = pCur->pPage;
9883     }
9884 
9885     /* Descend to the child node of the cell that the cursor currently
9886     ** points at. This is the right-child if (iIdx==pPage->nCell).
9887     */
9888     iIdx = pCur->ix;
9889     if( iIdx==pPage->nCell ){
9890       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9891     }else{
9892       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9893     }
9894   }
9895 
9896   /* An error has occurred. Return an error code. */
9897   return rc;
9898 }
9899 
9900 /*
9901 ** Return the pager associated with a BTree.  This routine is used for
9902 ** testing and debugging only.
9903 */
9904 Pager *sqlite3BtreePager(Btree *p){
9905   return p->pBt->pPager;
9906 }
9907 
9908 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9909 /*
9910 ** Append a message to the error message string.
9911 */
9912 static void checkAppendMsg(
9913   IntegrityCk *pCheck,
9914   const char *zFormat,
9915   ...
9916 ){
9917   va_list ap;
9918   if( !pCheck->mxErr ) return;
9919   pCheck->mxErr--;
9920   pCheck->nErr++;
9921   va_start(ap, zFormat);
9922   if( pCheck->errMsg.nChar ){
9923     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9924   }
9925   if( pCheck->zPfx ){
9926     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9927   }
9928   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9929   va_end(ap);
9930   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9931     pCheck->bOomFault = 1;
9932   }
9933 }
9934 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9935 
9936 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9937 
9938 /*
9939 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9940 ** corresponds to page iPg is already set.
9941 */
9942 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9943   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9944   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9945 }
9946 
9947 /*
9948 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9949 */
9950 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9951   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9952   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9953 }
9954 
9955 
9956 /*
9957 ** Add 1 to the reference count for page iPage.  If this is the second
9958 ** reference to the page, add an error message to pCheck->zErrMsg.
9959 ** Return 1 if there are 2 or more references to the page and 0 if
9960 ** if this is the first reference to the page.
9961 **
9962 ** Also check that the page number is in bounds.
9963 */
9964 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9965   if( iPage>pCheck->nPage || iPage==0 ){
9966     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9967     return 1;
9968   }
9969   if( getPageReferenced(pCheck, iPage) ){
9970     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9971     return 1;
9972   }
9973   if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
9974   setPageReferenced(pCheck, iPage);
9975   return 0;
9976 }
9977 
9978 #ifndef SQLITE_OMIT_AUTOVACUUM
9979 /*
9980 ** Check that the entry in the pointer-map for page iChild maps to
9981 ** page iParent, pointer type ptrType. If not, append an error message
9982 ** to pCheck.
9983 */
9984 static void checkPtrmap(
9985   IntegrityCk *pCheck,   /* Integrity check context */
9986   Pgno iChild,           /* Child page number */
9987   u8 eType,              /* Expected pointer map type */
9988   Pgno iParent           /* Expected pointer map parent page number */
9989 ){
9990   int rc;
9991   u8 ePtrmapType;
9992   Pgno iPtrmapParent;
9993 
9994   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9995   if( rc!=SQLITE_OK ){
9996     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
9997     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9998     return;
9999   }
10000 
10001   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
10002     checkAppendMsg(pCheck,
10003       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10004       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10005   }
10006 }
10007 #endif
10008 
10009 /*
10010 ** Check the integrity of the freelist or of an overflow page list.
10011 ** Verify that the number of pages on the list is N.
10012 */
10013 static void checkList(
10014   IntegrityCk *pCheck,  /* Integrity checking context */
10015   int isFreeList,       /* True for a freelist.  False for overflow page list */
10016   Pgno iPage,           /* Page number for first page in the list */
10017   u32 N                 /* Expected number of pages in the list */
10018 ){
10019   int i;
10020   u32 expected = N;
10021   int nErrAtStart = pCheck->nErr;
10022   while( iPage!=0 && pCheck->mxErr ){
10023     DbPage *pOvflPage;
10024     unsigned char *pOvflData;
10025     if( checkRef(pCheck, iPage) ) break;
10026     N--;
10027     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
10028       checkAppendMsg(pCheck, "failed to get page %d", iPage);
10029       break;
10030     }
10031     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
10032     if( isFreeList ){
10033       u32 n = (u32)get4byte(&pOvflData[4]);
10034 #ifndef SQLITE_OMIT_AUTOVACUUM
10035       if( pCheck->pBt->autoVacuum ){
10036         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
10037       }
10038 #endif
10039       if( n>pCheck->pBt->usableSize/4-2 ){
10040         checkAppendMsg(pCheck,
10041            "freelist leaf count too big on page %d", iPage);
10042         N--;
10043       }else{
10044         for(i=0; i<(int)n; i++){
10045           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
10046 #ifndef SQLITE_OMIT_AUTOVACUUM
10047           if( pCheck->pBt->autoVacuum ){
10048             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
10049           }
10050 #endif
10051           checkRef(pCheck, iFreePage);
10052         }
10053         N -= n;
10054       }
10055     }
10056 #ifndef SQLITE_OMIT_AUTOVACUUM
10057     else{
10058       /* If this database supports auto-vacuum and iPage is not the last
10059       ** page in this overflow list, check that the pointer-map entry for
10060       ** the following page matches iPage.
10061       */
10062       if( pCheck->pBt->autoVacuum && N>0 ){
10063         i = get4byte(pOvflData);
10064         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
10065       }
10066     }
10067 #endif
10068     iPage = get4byte(pOvflData);
10069     sqlite3PagerUnref(pOvflPage);
10070   }
10071   if( N && nErrAtStart==pCheck->nErr ){
10072     checkAppendMsg(pCheck,
10073       "%s is %d but should be %d",
10074       isFreeList ? "size" : "overflow list length",
10075       expected-N, expected);
10076   }
10077 }
10078 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10079 
10080 /*
10081 ** An implementation of a min-heap.
10082 **
10083 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
10084 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
10085 ** and aHeap[N*2+1].
10086 **
10087 ** The heap property is this:  Every node is less than or equal to both
10088 ** of its daughter nodes.  A consequence of the heap property is that the
10089 ** root node aHeap[1] is always the minimum value currently in the heap.
10090 **
10091 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10092 ** the heap, preserving the heap property.  The btreeHeapPull() routine
10093 ** removes the root element from the heap (the minimum value in the heap)
10094 ** and then moves other nodes around as necessary to preserve the heap
10095 ** property.
10096 **
10097 ** This heap is used for cell overlap and coverage testing.  Each u32
10098 ** entry represents the span of a cell or freeblock on a btree page.
10099 ** The upper 16 bits are the index of the first byte of a range and the
10100 ** lower 16 bits are the index of the last byte of that range.
10101 */
10102 static void btreeHeapInsert(u32 *aHeap, u32 x){
10103   u32 j, i = ++aHeap[0];
10104   aHeap[i] = x;
10105   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
10106     x = aHeap[j];
10107     aHeap[j] = aHeap[i];
10108     aHeap[i] = x;
10109     i = j;
10110   }
10111 }
10112 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10113   u32 j, i, x;
10114   if( (x = aHeap[0])==0 ) return 0;
10115   *pOut = aHeap[1];
10116   aHeap[1] = aHeap[x];
10117   aHeap[x] = 0xffffffff;
10118   aHeap[0]--;
10119   i = 1;
10120   while( (j = i*2)<=aHeap[0] ){
10121     if( aHeap[j]>aHeap[j+1] ) j++;
10122     if( aHeap[i]<aHeap[j] ) break;
10123     x = aHeap[i];
10124     aHeap[i] = aHeap[j];
10125     aHeap[j] = x;
10126     i = j;
10127   }
10128   return 1;
10129 }
10130 
10131 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10132 /*
10133 ** Do various sanity checks on a single page of a tree.  Return
10134 ** the tree depth.  Root pages return 0.  Parents of root pages
10135 ** return 1, and so forth.
10136 **
10137 ** These checks are done:
10138 **
10139 **      1.  Make sure that cells and freeblocks do not overlap
10140 **          but combine to completely cover the page.
10141 **      2.  Make sure integer cell keys are in order.
10142 **      3.  Check the integrity of overflow pages.
10143 **      4.  Recursively call checkTreePage on all children.
10144 **      5.  Verify that the depth of all children is the same.
10145 */
10146 static int checkTreePage(
10147   IntegrityCk *pCheck,  /* Context for the sanity check */
10148   Pgno iPage,           /* Page number of the page to check */
10149   i64 *piMinKey,        /* Write minimum integer primary key here */
10150   i64 maxKey            /* Error if integer primary key greater than this */
10151 ){
10152   MemPage *pPage = 0;      /* The page being analyzed */
10153   int i;                   /* Loop counter */
10154   int rc;                  /* Result code from subroutine call */
10155   int depth = -1, d2;      /* Depth of a subtree */
10156   int pgno;                /* Page number */
10157   int nFrag;               /* Number of fragmented bytes on the page */
10158   int hdr;                 /* Offset to the page header */
10159   int cellStart;           /* Offset to the start of the cell pointer array */
10160   int nCell;               /* Number of cells */
10161   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10162   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
10163                            ** False if IPK must be strictly less than maxKey */
10164   u8 *data;                /* Page content */
10165   u8 *pCell;               /* Cell content */
10166   u8 *pCellIdx;            /* Next element of the cell pointer array */
10167   BtShared *pBt;           /* The BtShared object that owns pPage */
10168   u32 pc;                  /* Address of a cell */
10169   u32 usableSize;          /* Usable size of the page */
10170   u32 contentOffset;       /* Offset to the start of the cell content area */
10171   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
10172   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
10173   const char *saved_zPfx = pCheck->zPfx;
10174   int saved_v1 = pCheck->v1;
10175   int saved_v2 = pCheck->v2;
10176   u8 savedIsInit = 0;
10177 
10178   /* Check that the page exists
10179   */
10180   pBt = pCheck->pBt;
10181   usableSize = pBt->usableSize;
10182   if( iPage==0 ) return 0;
10183   if( checkRef(pCheck, iPage) ) return 0;
10184   pCheck->zPfx = "Page %u: ";
10185   pCheck->v1 = iPage;
10186   if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
10187     checkAppendMsg(pCheck,
10188        "unable to get the page. error code=%d", rc);
10189     goto end_of_check;
10190   }
10191 
10192   /* Clear MemPage.isInit to make sure the corruption detection code in
10193   ** btreeInitPage() is executed.  */
10194   savedIsInit = pPage->isInit;
10195   pPage->isInit = 0;
10196   if( (rc = btreeInitPage(pPage))!=0 ){
10197     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
10198     checkAppendMsg(pCheck,
10199                    "btreeInitPage() returns error code %d", rc);
10200     goto end_of_check;
10201   }
10202   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10203     assert( rc==SQLITE_CORRUPT );
10204     checkAppendMsg(pCheck, "free space corruption", rc);
10205     goto end_of_check;
10206   }
10207   data = pPage->aData;
10208   hdr = pPage->hdrOffset;
10209 
10210   /* Set up for cell analysis */
10211   pCheck->zPfx = "On tree page %u cell %d: ";
10212   contentOffset = get2byteNotZero(&data[hdr+5]);
10213   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
10214 
10215   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10216   ** number of cells on the page. */
10217   nCell = get2byte(&data[hdr+3]);
10218   assert( pPage->nCell==nCell );
10219 
10220   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10221   ** immediately follows the b-tree page header. */
10222   cellStart = hdr + 12 - 4*pPage->leaf;
10223   assert( pPage->aCellIdx==&data[cellStart] );
10224   pCellIdx = &data[cellStart + 2*(nCell-1)];
10225 
10226   if( !pPage->leaf ){
10227     /* Analyze the right-child page of internal pages */
10228     pgno = get4byte(&data[hdr+8]);
10229 #ifndef SQLITE_OMIT_AUTOVACUUM
10230     if( pBt->autoVacuum ){
10231       pCheck->zPfx = "On page %u at right child: ";
10232       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10233     }
10234 #endif
10235     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10236     keyCanBeEqual = 0;
10237   }else{
10238     /* For leaf pages, the coverage check will occur in the same loop
10239     ** as the other cell checks, so initialize the heap.  */
10240     heap = pCheck->heap;
10241     heap[0] = 0;
10242   }
10243 
10244   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10245   ** integer offsets to the cell contents. */
10246   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
10247     CellInfo info;
10248 
10249     /* Check cell size */
10250     pCheck->v2 = i;
10251     assert( pCellIdx==&data[cellStart + i*2] );
10252     pc = get2byteAligned(pCellIdx);
10253     pCellIdx -= 2;
10254     if( pc<contentOffset || pc>usableSize-4 ){
10255       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10256                              pc, contentOffset, usableSize-4);
10257       doCoverageCheck = 0;
10258       continue;
10259     }
10260     pCell = &data[pc];
10261     pPage->xParseCell(pPage, pCell, &info);
10262     if( pc+info.nSize>usableSize ){
10263       checkAppendMsg(pCheck, "Extends off end of page");
10264       doCoverageCheck = 0;
10265       continue;
10266     }
10267 
10268     /* Check for integer primary key out of range */
10269     if( pPage->intKey ){
10270       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10271         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10272       }
10273       maxKey = info.nKey;
10274       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
10275     }
10276 
10277     /* Check the content overflow list */
10278     if( info.nPayload>info.nLocal ){
10279       u32 nPage;       /* Number of pages on the overflow chain */
10280       Pgno pgnoOvfl;   /* First page of the overflow chain */
10281       assert( pc + info.nSize - 4 <= usableSize );
10282       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
10283       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
10284 #ifndef SQLITE_OMIT_AUTOVACUUM
10285       if( pBt->autoVacuum ){
10286         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
10287       }
10288 #endif
10289       checkList(pCheck, 0, pgnoOvfl, nPage);
10290     }
10291 
10292     if( !pPage->leaf ){
10293       /* Check sanity of left child page for internal pages */
10294       pgno = get4byte(pCell);
10295 #ifndef SQLITE_OMIT_AUTOVACUUM
10296       if( pBt->autoVacuum ){
10297         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10298       }
10299 #endif
10300       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10301       keyCanBeEqual = 0;
10302       if( d2!=depth ){
10303         checkAppendMsg(pCheck, "Child page depth differs");
10304         depth = d2;
10305       }
10306     }else{
10307       /* Populate the coverage-checking heap for leaf pages */
10308       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
10309     }
10310   }
10311   *piMinKey = maxKey;
10312 
10313   /* Check for complete coverage of the page
10314   */
10315   pCheck->zPfx = 0;
10316   if( doCoverageCheck && pCheck->mxErr>0 ){
10317     /* For leaf pages, the min-heap has already been initialized and the
10318     ** cells have already been inserted.  But for internal pages, that has
10319     ** not yet been done, so do it now */
10320     if( !pPage->leaf ){
10321       heap = pCheck->heap;
10322       heap[0] = 0;
10323       for(i=nCell-1; i>=0; i--){
10324         u32 size;
10325         pc = get2byteAligned(&data[cellStart+i*2]);
10326         size = pPage->xCellSize(pPage, &data[pc]);
10327         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
10328       }
10329     }
10330     /* Add the freeblocks to the min-heap
10331     **
10332     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10333     ** is the offset of the first freeblock, or zero if there are no
10334     ** freeblocks on the page.
10335     */
10336     i = get2byte(&data[hdr+1]);
10337     while( i>0 ){
10338       int size, j;
10339       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10340       size = get2byte(&data[i+2]);
10341       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
10342       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
10343       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10344       ** big-endian integer which is the offset in the b-tree page of the next
10345       ** freeblock in the chain, or zero if the freeblock is the last on the
10346       ** chain. */
10347       j = get2byte(&data[i]);
10348       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10349       ** increasing offset. */
10350       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */
10351       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10352       i = j;
10353     }
10354     /* Analyze the min-heap looking for overlap between cells and/or
10355     ** freeblocks, and counting the number of untracked bytes in nFrag.
10356     **
10357     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
10358     ** There is an implied first entry the covers the page header, the cell
10359     ** pointer index, and the gap between the cell pointer index and the start
10360     ** of cell content.
10361     **
10362     ** The loop below pulls entries from the min-heap in order and compares
10363     ** the start_address against the previous end_address.  If there is an
10364     ** overlap, that means bytes are used multiple times.  If there is a gap,
10365     ** that gap is added to the fragmentation count.
10366     */
10367     nFrag = 0;
10368     prev = contentOffset - 1;   /* Implied first min-heap entry */
10369     while( btreeHeapPull(heap,&x) ){
10370       if( (prev&0xffff)>=(x>>16) ){
10371         checkAppendMsg(pCheck,
10372           "Multiple uses for byte %u of page %u", x>>16, iPage);
10373         break;
10374       }else{
10375         nFrag += (x>>16) - (prev&0xffff) - 1;
10376         prev = x;
10377       }
10378     }
10379     nFrag += usableSize - (prev&0xffff) - 1;
10380     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10381     ** is stored in the fifth field of the b-tree page header.
10382     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10383     ** number of fragmented free bytes within the cell content area.
10384     */
10385     if( heap[0]==0 && nFrag!=data[hdr+7] ){
10386       checkAppendMsg(pCheck,
10387           "Fragmentation of %d bytes reported as %d on page %u",
10388           nFrag, data[hdr+7], iPage);
10389     }
10390   }
10391 
10392 end_of_check:
10393   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10394   releasePage(pPage);
10395   pCheck->zPfx = saved_zPfx;
10396   pCheck->v1 = saved_v1;
10397   pCheck->v2 = saved_v2;
10398   return depth+1;
10399 }
10400 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10401 
10402 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10403 /*
10404 ** This routine does a complete check of the given BTree file.  aRoot[] is
10405 ** an array of pages numbers were each page number is the root page of
10406 ** a table.  nRoot is the number of entries in aRoot.
10407 **
10408 ** A read-only or read-write transaction must be opened before calling
10409 ** this function.
10410 **
10411 ** Write the number of error seen in *pnErr.  Except for some memory
10412 ** allocation errors,  an error message held in memory obtained from
10413 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
10414 ** returned.  If a memory allocation error occurs, NULL is returned.
10415 **
10416 ** If the first entry in aRoot[] is 0, that indicates that the list of
10417 ** root pages is incomplete.  This is a "partial integrity-check".  This
10418 ** happens when performing an integrity check on a single table.  The
10419 ** zero is skipped, of course.  But in addition, the freelist checks
10420 ** and the checks to make sure every page is referenced are also skipped,
10421 ** since obviously it is not possible to know which pages are covered by
10422 ** the unverified btrees.  Except, if aRoot[1] is 1, then the freelist
10423 ** checks are still performed.
10424 */
10425 char *sqlite3BtreeIntegrityCheck(
10426   sqlite3 *db,  /* Database connection that is running the check */
10427   Btree *p,     /* The btree to be checked */
10428   Pgno *aRoot,  /* An array of root pages numbers for individual trees */
10429   int nRoot,    /* Number of entries in aRoot[] */
10430   int mxErr,    /* Stop reporting errors after this many */
10431   int *pnErr    /* Write number of errors seen to this variable */
10432 ){
10433   Pgno i;
10434   IntegrityCk sCheck;
10435   BtShared *pBt = p->pBt;
10436   u64 savedDbFlags = pBt->db->flags;
10437   char zErr[100];
10438   int bPartial = 0;            /* True if not checking all btrees */
10439   int bCkFreelist = 1;         /* True to scan the freelist */
10440   VVA_ONLY( int nRef );
10441   assert( nRoot>0 );
10442 
10443   /* aRoot[0]==0 means this is a partial check */
10444   if( aRoot[0]==0 ){
10445     assert( nRoot>1 );
10446     bPartial = 1;
10447     if( aRoot[1]!=1 ) bCkFreelist = 0;
10448   }
10449 
10450   sqlite3BtreeEnter(p);
10451   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10452   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10453   assert( nRef>=0 );
10454   sCheck.db = db;
10455   sCheck.pBt = pBt;
10456   sCheck.pPager = pBt->pPager;
10457   sCheck.nPage = btreePagecount(sCheck.pBt);
10458   sCheck.mxErr = mxErr;
10459   sCheck.nErr = 0;
10460   sCheck.bOomFault = 0;
10461   sCheck.zPfx = 0;
10462   sCheck.v1 = 0;
10463   sCheck.v2 = 0;
10464   sCheck.aPgRef = 0;
10465   sCheck.heap = 0;
10466   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10467   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10468   if( sCheck.nPage==0 ){
10469     goto integrity_ck_cleanup;
10470   }
10471 
10472   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10473   if( !sCheck.aPgRef ){
10474     sCheck.bOomFault = 1;
10475     goto integrity_ck_cleanup;
10476   }
10477   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10478   if( sCheck.heap==0 ){
10479     sCheck.bOomFault = 1;
10480     goto integrity_ck_cleanup;
10481   }
10482 
10483   i = PENDING_BYTE_PAGE(pBt);
10484   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10485 
10486   /* Check the integrity of the freelist
10487   */
10488   if( bCkFreelist ){
10489     sCheck.zPfx = "Main freelist: ";
10490     checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10491               get4byte(&pBt->pPage1->aData[36]));
10492     sCheck.zPfx = 0;
10493   }
10494 
10495   /* Check all the tables.
10496   */
10497 #ifndef SQLITE_OMIT_AUTOVACUUM
10498   if( !bPartial ){
10499     if( pBt->autoVacuum ){
10500       Pgno mx = 0;
10501       Pgno mxInHdr;
10502       for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10503       mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10504       if( mx!=mxInHdr ){
10505         checkAppendMsg(&sCheck,
10506           "max rootpage (%d) disagrees with header (%d)",
10507           mx, mxInHdr
10508         );
10509       }
10510     }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10511       checkAppendMsg(&sCheck,
10512         "incremental_vacuum enabled with a max rootpage of zero"
10513       );
10514     }
10515   }
10516 #endif
10517   testcase( pBt->db->flags & SQLITE_CellSizeCk );
10518   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10519   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10520     i64 notUsed;
10521     if( aRoot[i]==0 ) continue;
10522 #ifndef SQLITE_OMIT_AUTOVACUUM
10523     if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
10524       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10525     }
10526 #endif
10527     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10528   }
10529   pBt->db->flags = savedDbFlags;
10530 
10531   /* Make sure every page in the file is referenced
10532   */
10533   if( !bPartial ){
10534     for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10535 #ifdef SQLITE_OMIT_AUTOVACUUM
10536       if( getPageReferenced(&sCheck, i)==0 ){
10537         checkAppendMsg(&sCheck, "Page %d is never used", i);
10538       }
10539 #else
10540       /* If the database supports auto-vacuum, make sure no tables contain
10541       ** references to pointer-map pages.
10542       */
10543       if( getPageReferenced(&sCheck, i)==0 &&
10544          (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10545         checkAppendMsg(&sCheck, "Page %d is never used", i);
10546       }
10547       if( getPageReferenced(&sCheck, i)!=0 &&
10548          (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10549         checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10550       }
10551 #endif
10552     }
10553   }
10554 
10555   /* Clean  up and report errors.
10556   */
10557 integrity_ck_cleanup:
10558   sqlite3PageFree(sCheck.heap);
10559   sqlite3_free(sCheck.aPgRef);
10560   if( sCheck.bOomFault ){
10561     sqlite3_str_reset(&sCheck.errMsg);
10562     sCheck.nErr++;
10563   }
10564   *pnErr = sCheck.nErr;
10565   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10566   /* Make sure this analysis did not leave any unref() pages. */
10567   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10568   sqlite3BtreeLeave(p);
10569   return sqlite3StrAccumFinish(&sCheck.errMsg);
10570 }
10571 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10572 
10573 /*
10574 ** Return the full pathname of the underlying database file.  Return
10575 ** an empty string if the database is in-memory or a TEMP database.
10576 **
10577 ** The pager filename is invariant as long as the pager is
10578 ** open so it is safe to access without the BtShared mutex.
10579 */
10580 const char *sqlite3BtreeGetFilename(Btree *p){
10581   assert( p->pBt->pPager!=0 );
10582   return sqlite3PagerFilename(p->pBt->pPager, 1);
10583 }
10584 
10585 /*
10586 ** Return the pathname of the journal file for this database. The return
10587 ** value of this routine is the same regardless of whether the journal file
10588 ** has been created or not.
10589 **
10590 ** The pager journal filename is invariant as long as the pager is
10591 ** open so it is safe to access without the BtShared mutex.
10592 */
10593 const char *sqlite3BtreeGetJournalname(Btree *p){
10594   assert( p->pBt->pPager!=0 );
10595   return sqlite3PagerJournalname(p->pBt->pPager);
10596 }
10597 
10598 /*
10599 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10600 ** to describe the current transaction state of Btree p.
10601 */
10602 int sqlite3BtreeTxnState(Btree *p){
10603   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10604   return p ? p->inTrans : 0;
10605 }
10606 
10607 #ifndef SQLITE_OMIT_WAL
10608 /*
10609 ** Run a checkpoint on the Btree passed as the first argument.
10610 **
10611 ** Return SQLITE_LOCKED if this or any other connection has an open
10612 ** transaction on the shared-cache the argument Btree is connected to.
10613 **
10614 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10615 */
10616 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10617   int rc = SQLITE_OK;
10618   if( p ){
10619     BtShared *pBt = p->pBt;
10620     sqlite3BtreeEnter(p);
10621     if( pBt->inTransaction!=TRANS_NONE ){
10622       rc = SQLITE_LOCKED;
10623     }else{
10624       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10625     }
10626     sqlite3BtreeLeave(p);
10627   }
10628   return rc;
10629 }
10630 #endif
10631 
10632 /*
10633 ** Return true if there is currently a backup running on Btree p.
10634 */
10635 int sqlite3BtreeIsInBackup(Btree *p){
10636   assert( p );
10637   assert( sqlite3_mutex_held(p->db->mutex) );
10638   return p->nBackup!=0;
10639 }
10640 
10641 /*
10642 ** This function returns a pointer to a blob of memory associated with
10643 ** a single shared-btree. The memory is used by client code for its own
10644 ** purposes (for example, to store a high-level schema associated with
10645 ** the shared-btree). The btree layer manages reference counting issues.
10646 **
10647 ** The first time this is called on a shared-btree, nBytes bytes of memory
10648 ** are allocated, zeroed, and returned to the caller. For each subsequent
10649 ** call the nBytes parameter is ignored and a pointer to the same blob
10650 ** of memory returned.
10651 **
10652 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10653 ** allocated, a null pointer is returned. If the blob has already been
10654 ** allocated, it is returned as normal.
10655 **
10656 ** Just before the shared-btree is closed, the function passed as the
10657 ** xFree argument when the memory allocation was made is invoked on the
10658 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10659 ** on the memory, the btree layer does that.
10660 */
10661 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10662   BtShared *pBt = p->pBt;
10663   sqlite3BtreeEnter(p);
10664   if( !pBt->pSchema && nBytes ){
10665     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10666     pBt->xFreeSchema = xFree;
10667   }
10668   sqlite3BtreeLeave(p);
10669   return pBt->pSchema;
10670 }
10671 
10672 /*
10673 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10674 ** btree as the argument handle holds an exclusive lock on the
10675 ** sqlite_schema table. Otherwise SQLITE_OK.
10676 */
10677 int sqlite3BtreeSchemaLocked(Btree *p){
10678   int rc;
10679   assert( sqlite3_mutex_held(p->db->mutex) );
10680   sqlite3BtreeEnter(p);
10681   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
10682   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10683   sqlite3BtreeLeave(p);
10684   return rc;
10685 }
10686 
10687 
10688 #ifndef SQLITE_OMIT_SHARED_CACHE
10689 /*
10690 ** Obtain a lock on the table whose root page is iTab.  The
10691 ** lock is a write lock if isWritelock is true or a read lock
10692 ** if it is false.
10693 */
10694 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10695   int rc = SQLITE_OK;
10696   assert( p->inTrans!=TRANS_NONE );
10697   if( p->sharable ){
10698     u8 lockType = READ_LOCK + isWriteLock;
10699     assert( READ_LOCK+1==WRITE_LOCK );
10700     assert( isWriteLock==0 || isWriteLock==1 );
10701 
10702     sqlite3BtreeEnter(p);
10703     rc = querySharedCacheTableLock(p, iTab, lockType);
10704     if( rc==SQLITE_OK ){
10705       rc = setSharedCacheTableLock(p, iTab, lockType);
10706     }
10707     sqlite3BtreeLeave(p);
10708   }
10709   return rc;
10710 }
10711 #endif
10712 
10713 #ifndef SQLITE_OMIT_INCRBLOB
10714 /*
10715 ** Argument pCsr must be a cursor opened for writing on an
10716 ** INTKEY table currently pointing at a valid table entry.
10717 ** This function modifies the data stored as part of that entry.
10718 **
10719 ** Only the data content may only be modified, it is not possible to
10720 ** change the length of the data stored. If this function is called with
10721 ** parameters that attempt to write past the end of the existing data,
10722 ** no modifications are made and SQLITE_CORRUPT is returned.
10723 */
10724 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10725   int rc;
10726   assert( cursorOwnsBtShared(pCsr) );
10727   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10728   assert( pCsr->curFlags & BTCF_Incrblob );
10729 
10730   rc = restoreCursorPosition(pCsr);
10731   if( rc!=SQLITE_OK ){
10732     return rc;
10733   }
10734   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10735   if( pCsr->eState!=CURSOR_VALID ){
10736     return SQLITE_ABORT;
10737   }
10738 
10739   /* Save the positions of all other cursors open on this table. This is
10740   ** required in case any of them are holding references to an xFetch
10741   ** version of the b-tree page modified by the accessPayload call below.
10742   **
10743   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10744   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10745   ** saveAllCursors can only return SQLITE_OK.
10746   */
10747   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10748   assert( rc==SQLITE_OK );
10749 
10750   /* Check some assumptions:
10751   **   (a) the cursor is open for writing,
10752   **   (b) there is a read/write transaction open,
10753   **   (c) the connection holds a write-lock on the table (if required),
10754   **   (d) there are no conflicting read-locks, and
10755   **   (e) the cursor points at a valid row of an intKey table.
10756   */
10757   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10758     return SQLITE_READONLY;
10759   }
10760   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10761               && pCsr->pBt->inTransaction==TRANS_WRITE );
10762   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10763   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10764   assert( pCsr->pPage->intKey );
10765 
10766   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10767 }
10768 
10769 /*
10770 ** Mark this cursor as an incremental blob cursor.
10771 */
10772 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10773   pCur->curFlags |= BTCF_Incrblob;
10774   pCur->pBtree->hasIncrblobCur = 1;
10775 }
10776 #endif
10777 
10778 /*
10779 ** Set both the "read version" (single byte at byte offset 18) and
10780 ** "write version" (single byte at byte offset 19) fields in the database
10781 ** header to iVersion.
10782 */
10783 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10784   BtShared *pBt = pBtree->pBt;
10785   int rc;                         /* Return code */
10786 
10787   assert( iVersion==1 || iVersion==2 );
10788 
10789   /* If setting the version fields to 1, do not automatically open the
10790   ** WAL connection, even if the version fields are currently set to 2.
10791   */
10792   pBt->btsFlags &= ~BTS_NO_WAL;
10793   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10794 
10795   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10796   if( rc==SQLITE_OK ){
10797     u8 *aData = pBt->pPage1->aData;
10798     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10799       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10800       if( rc==SQLITE_OK ){
10801         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10802         if( rc==SQLITE_OK ){
10803           aData[18] = (u8)iVersion;
10804           aData[19] = (u8)iVersion;
10805         }
10806       }
10807     }
10808   }
10809 
10810   pBt->btsFlags &= ~BTS_NO_WAL;
10811   return rc;
10812 }
10813 
10814 /*
10815 ** Return true if the cursor has a hint specified.  This routine is
10816 ** only used from within assert() statements
10817 */
10818 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10819   return (pCsr->hints & mask)!=0;
10820 }
10821 
10822 /*
10823 ** Return true if the given Btree is read-only.
10824 */
10825 int sqlite3BtreeIsReadonly(Btree *p){
10826   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10827 }
10828 
10829 /*
10830 ** Return the size of the header added to each page by this module.
10831 */
10832 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10833 
10834 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10835 /*
10836 ** Return true if the Btree passed as the only argument is sharable.
10837 */
10838 int sqlite3BtreeSharable(Btree *p){
10839   return p->sharable;
10840 }
10841 
10842 /*
10843 ** Return the number of connections to the BtShared object accessed by
10844 ** the Btree handle passed as the only argument. For private caches
10845 ** this is always 1. For shared caches it may be 1 or greater.
10846 */
10847 int sqlite3BtreeConnectionCount(Btree *p){
10848   testcase( p->sharable );
10849   return p->pBt->nRef;
10850 }
10851 #endif
10852