xref: /sqlite-3.40.0/src/btree.c (revision fb32c44e)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 /*
116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118 **
119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122 ** with the page number and filename associated with the (MemPage*).
123 */
124 #ifdef SQLITE_DEBUG
125 int corruptPageError(int lineno, MemPage *p){
126   char *zMsg;
127   sqlite3BeginBenignMalloc();
128   zMsg = sqlite3_mprintf("database corruption page %d of %s",
129       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130   );
131   sqlite3EndBenignMalloc();
132   if( zMsg ){
133     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134   }
135   sqlite3_free(zMsg);
136   return SQLITE_CORRUPT_BKPT;
137 }
138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139 #else
140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141 #endif
142 
143 #ifndef SQLITE_OMIT_SHARED_CACHE
144 
145 #ifdef SQLITE_DEBUG
146 /*
147 **** This function is only used as part of an assert() statement. ***
148 **
149 ** Check to see if pBtree holds the required locks to read or write to the
150 ** table with root page iRoot.   Return 1 if it does and 0 if not.
151 **
152 ** For example, when writing to a table with root-page iRoot via
153 ** Btree connection pBtree:
154 **
155 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156 **
157 ** When writing to an index that resides in a sharable database, the
158 ** caller should have first obtained a lock specifying the root page of
159 ** the corresponding table. This makes things a bit more complicated,
160 ** as this module treats each table as a separate structure. To determine
161 ** the table corresponding to the index being written, this
162 ** function has to search through the database schema.
163 **
164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
165 ** hold a write-lock on the schema table (root page 1). This is also
166 ** acceptable.
167 */
168 static int hasSharedCacheTableLock(
169   Btree *pBtree,         /* Handle that must hold lock */
170   Pgno iRoot,            /* Root page of b-tree */
171   int isIndex,           /* True if iRoot is the root of an index b-tree */
172   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
173 ){
174   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175   Pgno iTab = 0;
176   BtLock *pLock;
177 
178   /* If this database is not shareable, or if the client is reading
179   ** and has the read-uncommitted flag set, then no lock is required.
180   ** Return true immediately.
181   */
182   if( (pBtree->sharable==0)
183    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
184   ){
185     return 1;
186   }
187 
188   /* If the client is reading  or writing an index and the schema is
189   ** not loaded, then it is too difficult to actually check to see if
190   ** the correct locks are held.  So do not bother - just return true.
191   ** This case does not come up very often anyhow.
192   */
193   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
194     return 1;
195   }
196 
197   /* Figure out the root-page that the lock should be held on. For table
198   ** b-trees, this is just the root page of the b-tree being read or
199   ** written. For index b-trees, it is the root page of the associated
200   ** table.  */
201   if( isIndex ){
202     HashElem *p;
203     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204       Index *pIdx = (Index *)sqliteHashData(p);
205       if( pIdx->tnum==(int)iRoot ){
206         if( iTab ){
207           /* Two or more indexes share the same root page.  There must
208           ** be imposter tables.  So just return true.  The assert is not
209           ** useful in that case. */
210           return 1;
211         }
212         iTab = pIdx->pTable->tnum;
213       }
214     }
215   }else{
216     iTab = iRoot;
217   }
218 
219   /* Search for the required lock. Either a write-lock on root-page iTab, a
220   ** write-lock on the schema table, or (if the client is reading) a
221   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
222   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223     if( pLock->pBtree==pBtree
224      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225      && pLock->eLock>=eLockType
226     ){
227       return 1;
228     }
229   }
230 
231   /* Failed to find the required lock. */
232   return 0;
233 }
234 #endif /* SQLITE_DEBUG */
235 
236 #ifdef SQLITE_DEBUG
237 /*
238 **** This function may be used as part of assert() statements only. ****
239 **
240 ** Return true if it would be illegal for pBtree to write into the
241 ** table or index rooted at iRoot because other shared connections are
242 ** simultaneously reading that same table or index.
243 **
244 ** It is illegal for pBtree to write if some other Btree object that
245 ** shares the same BtShared object is currently reading or writing
246 ** the iRoot table.  Except, if the other Btree object has the
247 ** read-uncommitted flag set, then it is OK for the other object to
248 ** have a read cursor.
249 **
250 ** For example, before writing to any part of the table or index
251 ** rooted at page iRoot, one should call:
252 **
253 **    assert( !hasReadConflicts(pBtree, iRoot) );
254 */
255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256   BtCursor *p;
257   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258     if( p->pgnoRoot==iRoot
259      && p->pBtree!=pBtree
260      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
261     ){
262       return 1;
263     }
264   }
265   return 0;
266 }
267 #endif    /* #ifdef SQLITE_DEBUG */
268 
269 /*
270 ** Query to see if Btree handle p may obtain a lock of type eLock
271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
272 ** SQLITE_OK if the lock may be obtained (by calling
273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
274 */
275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
276   BtShared *pBt = p->pBt;
277   BtLock *pIter;
278 
279   assert( sqlite3BtreeHoldsMutex(p) );
280   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281   assert( p->db!=0 );
282   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
283 
284   /* If requesting a write-lock, then the Btree must have an open write
285   ** transaction on this file. And, obviously, for this to be so there
286   ** must be an open write transaction on the file itself.
287   */
288   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290 
291   /* This routine is a no-op if the shared-cache is not enabled */
292   if( !p->sharable ){
293     return SQLITE_OK;
294   }
295 
296   /* If some other connection is holding an exclusive lock, the
297   ** requested lock may not be obtained.
298   */
299   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
300     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301     return SQLITE_LOCKED_SHAREDCACHE;
302   }
303 
304   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305     /* The condition (pIter->eLock!=eLock) in the following if(...)
306     ** statement is a simplification of:
307     **
308     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309     **
310     ** since we know that if eLock==WRITE_LOCK, then no other connection
311     ** may hold a WRITE_LOCK on any table in this file (since there can
312     ** only be a single writer).
313     */
314     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318       if( eLock==WRITE_LOCK ){
319         assert( p==pBt->pWriter );
320         pBt->btsFlags |= BTS_PENDING;
321       }
322       return SQLITE_LOCKED_SHAREDCACHE;
323     }
324   }
325   return SQLITE_OK;
326 }
327 #endif /* !SQLITE_OMIT_SHARED_CACHE */
328 
329 #ifndef SQLITE_OMIT_SHARED_CACHE
330 /*
331 ** Add a lock on the table with root-page iTable to the shared-btree used
332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
333 ** WRITE_LOCK.
334 **
335 ** This function assumes the following:
336 **
337 **   (a) The specified Btree object p is connected to a sharable
338 **       database (one with the BtShared.sharable flag set), and
339 **
340 **   (b) No other Btree objects hold a lock that conflicts
341 **       with the requested lock (i.e. querySharedCacheTableLock() has
342 **       already been called and returned SQLITE_OK).
343 **
344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345 ** is returned if a malloc attempt fails.
346 */
347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
348   BtShared *pBt = p->pBt;
349   BtLock *pLock = 0;
350   BtLock *pIter;
351 
352   assert( sqlite3BtreeHoldsMutex(p) );
353   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354   assert( p->db!=0 );
355 
356   /* A connection with the read-uncommitted flag set will never try to
357   ** obtain a read-lock using this function. The only read-lock obtained
358   ** by a connection in read-uncommitted mode is on the sqlite_master
359   ** table, and that lock is obtained in BtreeBeginTrans().  */
360   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
361 
362   /* This function should only be called on a sharable b-tree after it
363   ** has been determined that no other b-tree holds a conflicting lock.  */
364   assert( p->sharable );
365   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
366 
367   /* First search the list for an existing lock on this table. */
368   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369     if( pIter->iTable==iTable && pIter->pBtree==p ){
370       pLock = pIter;
371       break;
372     }
373   }
374 
375   /* If the above search did not find a BtLock struct associating Btree p
376   ** with table iTable, allocate one and link it into the list.
377   */
378   if( !pLock ){
379     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
380     if( !pLock ){
381       return SQLITE_NOMEM_BKPT;
382     }
383     pLock->iTable = iTable;
384     pLock->pBtree = p;
385     pLock->pNext = pBt->pLock;
386     pBt->pLock = pLock;
387   }
388 
389   /* Set the BtLock.eLock variable to the maximum of the current lock
390   ** and the requested lock. This means if a write-lock was already held
391   ** and a read-lock requested, we don't incorrectly downgrade the lock.
392   */
393   assert( WRITE_LOCK>READ_LOCK );
394   if( eLock>pLock->eLock ){
395     pLock->eLock = eLock;
396   }
397 
398   return SQLITE_OK;
399 }
400 #endif /* !SQLITE_OMIT_SHARED_CACHE */
401 
402 #ifndef SQLITE_OMIT_SHARED_CACHE
403 /*
404 ** Release all the table locks (locks obtained via calls to
405 ** the setSharedCacheTableLock() procedure) held by Btree object p.
406 **
407 ** This function assumes that Btree p has an open read or write
408 ** transaction. If it does not, then the BTS_PENDING flag
409 ** may be incorrectly cleared.
410 */
411 static void clearAllSharedCacheTableLocks(Btree *p){
412   BtShared *pBt = p->pBt;
413   BtLock **ppIter = &pBt->pLock;
414 
415   assert( sqlite3BtreeHoldsMutex(p) );
416   assert( p->sharable || 0==*ppIter );
417   assert( p->inTrans>0 );
418 
419   while( *ppIter ){
420     BtLock *pLock = *ppIter;
421     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
422     assert( pLock->pBtree->inTrans>=pLock->eLock );
423     if( pLock->pBtree==p ){
424       *ppIter = pLock->pNext;
425       assert( pLock->iTable!=1 || pLock==&p->lock );
426       if( pLock->iTable!=1 ){
427         sqlite3_free(pLock);
428       }
429     }else{
430       ppIter = &pLock->pNext;
431     }
432   }
433 
434   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
435   if( pBt->pWriter==p ){
436     pBt->pWriter = 0;
437     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
438   }else if( pBt->nTransaction==2 ){
439     /* This function is called when Btree p is concluding its
440     ** transaction. If there currently exists a writer, and p is not
441     ** that writer, then the number of locks held by connections other
442     ** than the writer must be about to drop to zero. In this case
443     ** set the BTS_PENDING flag to 0.
444     **
445     ** If there is not currently a writer, then BTS_PENDING must
446     ** be zero already. So this next line is harmless in that case.
447     */
448     pBt->btsFlags &= ~BTS_PENDING;
449   }
450 }
451 
452 /*
453 ** This function changes all write-locks held by Btree p into read-locks.
454 */
455 static void downgradeAllSharedCacheTableLocks(Btree *p){
456   BtShared *pBt = p->pBt;
457   if( pBt->pWriter==p ){
458     BtLock *pLock;
459     pBt->pWriter = 0;
460     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
461     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463       pLock->eLock = READ_LOCK;
464     }
465   }
466 }
467 
468 #endif /* SQLITE_OMIT_SHARED_CACHE */
469 
470 static void releasePage(MemPage *pPage);         /* Forward reference */
471 static void releasePageOne(MemPage *pPage);      /* Forward reference */
472 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
473 
474 /*
475 ***** This routine is used inside of assert() only ****
476 **
477 ** Verify that the cursor holds the mutex on its BtShared
478 */
479 #ifdef SQLITE_DEBUG
480 static int cursorHoldsMutex(BtCursor *p){
481   return sqlite3_mutex_held(p->pBt->mutex);
482 }
483 
484 /* Verify that the cursor and the BtShared agree about what is the current
485 ** database connetion. This is important in shared-cache mode. If the database
486 ** connection pointers get out-of-sync, it is possible for routines like
487 ** btreeInitPage() to reference an stale connection pointer that references a
488 ** a connection that has already closed.  This routine is used inside assert()
489 ** statements only and for the purpose of double-checking that the btree code
490 ** does keep the database connection pointers up-to-date.
491 */
492 static int cursorOwnsBtShared(BtCursor *p){
493   assert( cursorHoldsMutex(p) );
494   return (p->pBtree->db==p->pBt->db);
495 }
496 #endif
497 
498 /*
499 ** Invalidate the overflow cache of the cursor passed as the first argument.
500 ** on the shared btree structure pBt.
501 */
502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
503 
504 /*
505 ** Invalidate the overflow page-list cache for all cursors opened
506 ** on the shared btree structure pBt.
507 */
508 static void invalidateAllOverflowCache(BtShared *pBt){
509   BtCursor *p;
510   assert( sqlite3_mutex_held(pBt->mutex) );
511   for(p=pBt->pCursor; p; p=p->pNext){
512     invalidateOverflowCache(p);
513   }
514 }
515 
516 #ifndef SQLITE_OMIT_INCRBLOB
517 /*
518 ** This function is called before modifying the contents of a table
519 ** to invalidate any incrblob cursors that are open on the
520 ** row or one of the rows being modified.
521 **
522 ** If argument isClearTable is true, then the entire contents of the
523 ** table is about to be deleted. In this case invalidate all incrblob
524 ** cursors open on any row within the table with root-page pgnoRoot.
525 **
526 ** Otherwise, if argument isClearTable is false, then the row with
527 ** rowid iRow is being replaced or deleted. In this case invalidate
528 ** only those incrblob cursors open on that specific row.
529 */
530 static void invalidateIncrblobCursors(
531   Btree *pBtree,          /* The database file to check */
532   Pgno pgnoRoot,          /* The table that might be changing */
533   i64 iRow,               /* The rowid that might be changing */
534   int isClearTable        /* True if all rows are being deleted */
535 ){
536   BtCursor *p;
537   if( pBtree->hasIncrblobCur==0 ) return;
538   assert( sqlite3BtreeHoldsMutex(pBtree) );
539   pBtree->hasIncrblobCur = 0;
540   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541     if( (p->curFlags & BTCF_Incrblob)!=0 ){
542       pBtree->hasIncrblobCur = 1;
543       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
544         p->eState = CURSOR_INVALID;
545       }
546     }
547   }
548 }
549 
550 #else
551   /* Stub function when INCRBLOB is omitted */
552   #define invalidateIncrblobCursors(w,x,y,z)
553 #endif /* SQLITE_OMIT_INCRBLOB */
554 
555 /*
556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557 ** when a page that previously contained data becomes a free-list leaf
558 ** page.
559 **
560 ** The BtShared.pHasContent bitvec exists to work around an obscure
561 ** bug caused by the interaction of two useful IO optimizations surrounding
562 ** free-list leaf pages:
563 **
564 **   1) When all data is deleted from a page and the page becomes
565 **      a free-list leaf page, the page is not written to the database
566 **      (as free-list leaf pages contain no meaningful data). Sometimes
567 **      such a page is not even journalled (as it will not be modified,
568 **      why bother journalling it?).
569 **
570 **   2) When a free-list leaf page is reused, its content is not read
571 **      from the database or written to the journal file (why should it
572 **      be, if it is not at all meaningful?).
573 **
574 ** By themselves, these optimizations work fine and provide a handy
575 ** performance boost to bulk delete or insert operations. However, if
576 ** a page is moved to the free-list and then reused within the same
577 ** transaction, a problem comes up. If the page is not journalled when
578 ** it is moved to the free-list and it is also not journalled when it
579 ** is extracted from the free-list and reused, then the original data
580 ** may be lost. In the event of a rollback, it may not be possible
581 ** to restore the database to its original configuration.
582 **
583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584 ** moved to become a free-list leaf page, the corresponding bit is
585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
586 ** optimization 2 above is omitted if the corresponding bit is already
587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
588 ** at the end of every transaction.
589 */
590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591   int rc = SQLITE_OK;
592   if( !pBt->pHasContent ){
593     assert( pgno<=pBt->nPage );
594     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
595     if( !pBt->pHasContent ){
596       rc = SQLITE_NOMEM_BKPT;
597     }
598   }
599   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601   }
602   return rc;
603 }
604 
605 /*
606 ** Query the BtShared.pHasContent vector.
607 **
608 ** This function is called when a free-list leaf page is removed from the
609 ** free-list for reuse. It returns false if it is safe to retrieve the
610 ** page from the pager layer with the 'no-content' flag set. True otherwise.
611 */
612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613   Bitvec *p = pBt->pHasContent;
614   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615 }
616 
617 /*
618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619 ** invoked at the conclusion of each write-transaction.
620 */
621 static void btreeClearHasContent(BtShared *pBt){
622   sqlite3BitvecDestroy(pBt->pHasContent);
623   pBt->pHasContent = 0;
624 }
625 
626 /*
627 ** Release all of the apPage[] pages for a cursor.
628 */
629 static void btreeReleaseAllCursorPages(BtCursor *pCur){
630   int i;
631   if( pCur->iPage>=0 ){
632     for(i=0; i<pCur->iPage; i++){
633       releasePageNotNull(pCur->apPage[i]);
634     }
635     releasePageNotNull(pCur->pPage);
636     pCur->iPage = -1;
637   }
638 }
639 
640 /*
641 ** The cursor passed as the only argument must point to a valid entry
642 ** when this function is called (i.e. have eState==CURSOR_VALID). This
643 ** function saves the current cursor key in variables pCur->nKey and
644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645 ** code otherwise.
646 **
647 ** If the cursor is open on an intkey table, then the integer key
648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650 ** set to point to a malloced buffer pCur->nKey bytes in size containing
651 ** the key.
652 */
653 static int saveCursorKey(BtCursor *pCur){
654   int rc = SQLITE_OK;
655   assert( CURSOR_VALID==pCur->eState );
656   assert( 0==pCur->pKey );
657   assert( cursorHoldsMutex(pCur) );
658 
659   if( pCur->curIntKey ){
660     /* Only the rowid is required for a table btree */
661     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662   }else{
663     /* For an index btree, save the complete key content */
664     void *pKey;
665     pCur->nKey = sqlite3BtreePayloadSize(pCur);
666     pKey = sqlite3Malloc( pCur->nKey );
667     if( pKey ){
668       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
669       if( rc==SQLITE_OK ){
670         pCur->pKey = pKey;
671       }else{
672         sqlite3_free(pKey);
673       }
674     }else{
675       rc = SQLITE_NOMEM_BKPT;
676     }
677   }
678   assert( !pCur->curIntKey || !pCur->pKey );
679   return rc;
680 }
681 
682 /*
683 ** Save the current cursor position in the variables BtCursor.nKey
684 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
685 **
686 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
687 ** prior to calling this routine.
688 */
689 static int saveCursorPosition(BtCursor *pCur){
690   int rc;
691 
692   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
693   assert( 0==pCur->pKey );
694   assert( cursorHoldsMutex(pCur) );
695 
696   if( pCur->eState==CURSOR_SKIPNEXT ){
697     pCur->eState = CURSOR_VALID;
698   }else{
699     pCur->skipNext = 0;
700   }
701 
702   rc = saveCursorKey(pCur);
703   if( rc==SQLITE_OK ){
704     btreeReleaseAllCursorPages(pCur);
705     pCur->eState = CURSOR_REQUIRESEEK;
706   }
707 
708   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
709   return rc;
710 }
711 
712 /* Forward reference */
713 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
714 
715 /*
716 ** Save the positions of all cursors (except pExcept) that are open on
717 ** the table with root-page iRoot.  "Saving the cursor position" means that
718 ** the location in the btree is remembered in such a way that it can be
719 ** moved back to the same spot after the btree has been modified.  This
720 ** routine is called just before cursor pExcept is used to modify the
721 ** table, for example in BtreeDelete() or BtreeInsert().
722 **
723 ** If there are two or more cursors on the same btree, then all such
724 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
725 ** routine enforces that rule.  This routine only needs to be called in
726 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
727 **
728 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
729 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
730 ** pointless call to this routine.
731 **
732 ** Implementation note:  This routine merely checks to see if any cursors
733 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
734 ** event that cursors are in need to being saved.
735 */
736 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
737   BtCursor *p;
738   assert( sqlite3_mutex_held(pBt->mutex) );
739   assert( pExcept==0 || pExcept->pBt==pBt );
740   for(p=pBt->pCursor; p; p=p->pNext){
741     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
742   }
743   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
744   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
745   return SQLITE_OK;
746 }
747 
748 /* This helper routine to saveAllCursors does the actual work of saving
749 ** the cursors if and when a cursor is found that actually requires saving.
750 ** The common case is that no cursors need to be saved, so this routine is
751 ** broken out from its caller to avoid unnecessary stack pointer movement.
752 */
753 static int SQLITE_NOINLINE saveCursorsOnList(
754   BtCursor *p,         /* The first cursor that needs saving */
755   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
756   BtCursor *pExcept    /* Do not save this cursor */
757 ){
758   do{
759     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
760       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
761         int rc = saveCursorPosition(p);
762         if( SQLITE_OK!=rc ){
763           return rc;
764         }
765       }else{
766         testcase( p->iPage>=0 );
767         btreeReleaseAllCursorPages(p);
768       }
769     }
770     p = p->pNext;
771   }while( p );
772   return SQLITE_OK;
773 }
774 
775 /*
776 ** Clear the current cursor position.
777 */
778 void sqlite3BtreeClearCursor(BtCursor *pCur){
779   assert( cursorHoldsMutex(pCur) );
780   sqlite3_free(pCur->pKey);
781   pCur->pKey = 0;
782   pCur->eState = CURSOR_INVALID;
783 }
784 
785 /*
786 ** In this version of BtreeMoveto, pKey is a packed index record
787 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
788 ** record and then call BtreeMovetoUnpacked() to do the work.
789 */
790 static int btreeMoveto(
791   BtCursor *pCur,     /* Cursor open on the btree to be searched */
792   const void *pKey,   /* Packed key if the btree is an index */
793   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
794   int bias,           /* Bias search to the high end */
795   int *pRes           /* Write search results here */
796 ){
797   int rc;                    /* Status code */
798   UnpackedRecord *pIdxKey;   /* Unpacked index key */
799 
800   if( pKey ){
801     assert( nKey==(i64)(int)nKey );
802     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
803     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
804     sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
805     if( pIdxKey->nField==0 ){
806       rc = SQLITE_CORRUPT_BKPT;
807       goto moveto_done;
808     }
809   }else{
810     pIdxKey = 0;
811   }
812   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
813 moveto_done:
814   if( pIdxKey ){
815     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
816   }
817   return rc;
818 }
819 
820 /*
821 ** Restore the cursor to the position it was in (or as close to as possible)
822 ** when saveCursorPosition() was called. Note that this call deletes the
823 ** saved position info stored by saveCursorPosition(), so there can be
824 ** at most one effective restoreCursorPosition() call after each
825 ** saveCursorPosition().
826 */
827 static int btreeRestoreCursorPosition(BtCursor *pCur){
828   int rc;
829   int skipNext;
830   assert( cursorOwnsBtShared(pCur) );
831   assert( pCur->eState>=CURSOR_REQUIRESEEK );
832   if( pCur->eState==CURSOR_FAULT ){
833     return pCur->skipNext;
834   }
835   pCur->eState = CURSOR_INVALID;
836   rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
837   if( rc==SQLITE_OK ){
838     sqlite3_free(pCur->pKey);
839     pCur->pKey = 0;
840     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
841     pCur->skipNext |= skipNext;
842     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
843       pCur->eState = CURSOR_SKIPNEXT;
844     }
845   }
846   return rc;
847 }
848 
849 #define restoreCursorPosition(p) \
850   (p->eState>=CURSOR_REQUIRESEEK ? \
851          btreeRestoreCursorPosition(p) : \
852          SQLITE_OK)
853 
854 /*
855 ** Determine whether or not a cursor has moved from the position where
856 ** it was last placed, or has been invalidated for any other reason.
857 ** Cursors can move when the row they are pointing at is deleted out
858 ** from under them, for example.  Cursor might also move if a btree
859 ** is rebalanced.
860 **
861 ** Calling this routine with a NULL cursor pointer returns false.
862 **
863 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
864 ** back to where it ought to be if this routine returns true.
865 */
866 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
867   return pCur->eState!=CURSOR_VALID;
868 }
869 
870 /*
871 ** Return a pointer to a fake BtCursor object that will always answer
872 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
873 ** cursor returned must not be used with any other Btree interface.
874 */
875 BtCursor *sqlite3BtreeFakeValidCursor(void){
876   static u8 fakeCursor = CURSOR_VALID;
877   assert( offsetof(BtCursor, eState)==0 );
878   return (BtCursor*)&fakeCursor;
879 }
880 
881 /*
882 ** This routine restores a cursor back to its original position after it
883 ** has been moved by some outside activity (such as a btree rebalance or
884 ** a row having been deleted out from under the cursor).
885 **
886 ** On success, the *pDifferentRow parameter is false if the cursor is left
887 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
888 ** was pointing to has been deleted, forcing the cursor to point to some
889 ** nearby row.
890 **
891 ** This routine should only be called for a cursor that just returned
892 ** TRUE from sqlite3BtreeCursorHasMoved().
893 */
894 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
895   int rc;
896 
897   assert( pCur!=0 );
898   assert( pCur->eState!=CURSOR_VALID );
899   rc = restoreCursorPosition(pCur);
900   if( rc ){
901     *pDifferentRow = 1;
902     return rc;
903   }
904   if( pCur->eState!=CURSOR_VALID ){
905     *pDifferentRow = 1;
906   }else{
907     assert( pCur->skipNext==0 );
908     *pDifferentRow = 0;
909   }
910   return SQLITE_OK;
911 }
912 
913 #ifdef SQLITE_ENABLE_CURSOR_HINTS
914 /*
915 ** Provide hints to the cursor.  The particular hint given (and the type
916 ** and number of the varargs parameters) is determined by the eHintType
917 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
918 */
919 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
920   /* Used only by system that substitute their own storage engine */
921 }
922 #endif
923 
924 /*
925 ** Provide flag hints to the cursor.
926 */
927 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
928   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
929   pCur->hints = x;
930 }
931 
932 
933 #ifndef SQLITE_OMIT_AUTOVACUUM
934 /*
935 ** Given a page number of a regular database page, return the page
936 ** number for the pointer-map page that contains the entry for the
937 ** input page number.
938 **
939 ** Return 0 (not a valid page) for pgno==1 since there is
940 ** no pointer map associated with page 1.  The integrity_check logic
941 ** requires that ptrmapPageno(*,1)!=1.
942 */
943 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
944   int nPagesPerMapPage;
945   Pgno iPtrMap, ret;
946   assert( sqlite3_mutex_held(pBt->mutex) );
947   if( pgno<2 ) return 0;
948   nPagesPerMapPage = (pBt->usableSize/5)+1;
949   iPtrMap = (pgno-2)/nPagesPerMapPage;
950   ret = (iPtrMap*nPagesPerMapPage) + 2;
951   if( ret==PENDING_BYTE_PAGE(pBt) ){
952     ret++;
953   }
954   return ret;
955 }
956 
957 /*
958 ** Write an entry into the pointer map.
959 **
960 ** This routine updates the pointer map entry for page number 'key'
961 ** so that it maps to type 'eType' and parent page number 'pgno'.
962 **
963 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
964 ** a no-op.  If an error occurs, the appropriate error code is written
965 ** into *pRC.
966 */
967 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
968   DbPage *pDbPage;  /* The pointer map page */
969   u8 *pPtrmap;      /* The pointer map data */
970   Pgno iPtrmap;     /* The pointer map page number */
971   int offset;       /* Offset in pointer map page */
972   int rc;           /* Return code from subfunctions */
973 
974   if( *pRC ) return;
975 
976   assert( sqlite3_mutex_held(pBt->mutex) );
977   /* The master-journal page number must never be used as a pointer map page */
978   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
979 
980   assert( pBt->autoVacuum );
981   if( key==0 ){
982     *pRC = SQLITE_CORRUPT_BKPT;
983     return;
984   }
985   iPtrmap = PTRMAP_PAGENO(pBt, key);
986   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
987   if( rc!=SQLITE_OK ){
988     *pRC = rc;
989     return;
990   }
991   offset = PTRMAP_PTROFFSET(iPtrmap, key);
992   if( offset<0 ){
993     *pRC = SQLITE_CORRUPT_BKPT;
994     goto ptrmap_exit;
995   }
996   assert( offset <= (int)pBt->usableSize-5 );
997   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
998 
999   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1000     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1001     *pRC= rc = sqlite3PagerWrite(pDbPage);
1002     if( rc==SQLITE_OK ){
1003       pPtrmap[offset] = eType;
1004       put4byte(&pPtrmap[offset+1], parent);
1005     }
1006   }
1007 
1008 ptrmap_exit:
1009   sqlite3PagerUnref(pDbPage);
1010 }
1011 
1012 /*
1013 ** Read an entry from the pointer map.
1014 **
1015 ** This routine retrieves the pointer map entry for page 'key', writing
1016 ** the type and parent page number to *pEType and *pPgno respectively.
1017 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1018 */
1019 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1020   DbPage *pDbPage;   /* The pointer map page */
1021   int iPtrmap;       /* Pointer map page index */
1022   u8 *pPtrmap;       /* Pointer map page data */
1023   int offset;        /* Offset of entry in pointer map */
1024   int rc;
1025 
1026   assert( sqlite3_mutex_held(pBt->mutex) );
1027 
1028   iPtrmap = PTRMAP_PAGENO(pBt, key);
1029   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1030   if( rc!=0 ){
1031     return rc;
1032   }
1033   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1034 
1035   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1036   if( offset<0 ){
1037     sqlite3PagerUnref(pDbPage);
1038     return SQLITE_CORRUPT_BKPT;
1039   }
1040   assert( offset <= (int)pBt->usableSize-5 );
1041   assert( pEType!=0 );
1042   *pEType = pPtrmap[offset];
1043   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1044 
1045   sqlite3PagerUnref(pDbPage);
1046   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1047   return SQLITE_OK;
1048 }
1049 
1050 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1051   #define ptrmapPut(w,x,y,z,rc)
1052   #define ptrmapGet(w,x,y,z) SQLITE_OK
1053   #define ptrmapPutOvflPtr(x, y, rc)
1054 #endif
1055 
1056 /*
1057 ** Given a btree page and a cell index (0 means the first cell on
1058 ** the page, 1 means the second cell, and so forth) return a pointer
1059 ** to the cell content.
1060 **
1061 ** findCellPastPtr() does the same except it skips past the initial
1062 ** 4-byte child pointer found on interior pages, if there is one.
1063 **
1064 ** This routine works only for pages that do not contain overflow cells.
1065 */
1066 #define findCell(P,I) \
1067   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1068 #define findCellPastPtr(P,I) \
1069   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1070 
1071 
1072 /*
1073 ** This is common tail processing for btreeParseCellPtr() and
1074 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1075 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1076 ** structure.
1077 */
1078 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1079   MemPage *pPage,         /* Page containing the cell */
1080   u8 *pCell,              /* Pointer to the cell text. */
1081   CellInfo *pInfo         /* Fill in this structure */
1082 ){
1083   /* If the payload will not fit completely on the local page, we have
1084   ** to decide how much to store locally and how much to spill onto
1085   ** overflow pages.  The strategy is to minimize the amount of unused
1086   ** space on overflow pages while keeping the amount of local storage
1087   ** in between minLocal and maxLocal.
1088   **
1089   ** Warning:  changing the way overflow payload is distributed in any
1090   ** way will result in an incompatible file format.
1091   */
1092   int minLocal;  /* Minimum amount of payload held locally */
1093   int maxLocal;  /* Maximum amount of payload held locally */
1094   int surplus;   /* Overflow payload available for local storage */
1095 
1096   minLocal = pPage->minLocal;
1097   maxLocal = pPage->maxLocal;
1098   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1099   testcase( surplus==maxLocal );
1100   testcase( surplus==maxLocal+1 );
1101   if( surplus <= maxLocal ){
1102     pInfo->nLocal = (u16)surplus;
1103   }else{
1104     pInfo->nLocal = (u16)minLocal;
1105   }
1106   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1107 }
1108 
1109 /*
1110 ** The following routines are implementations of the MemPage.xParseCell()
1111 ** method.
1112 **
1113 ** Parse a cell content block and fill in the CellInfo structure.
1114 **
1115 ** btreeParseCellPtr()        =>   table btree leaf nodes
1116 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1117 ** btreeParseCellPtrIndex()   =>   index btree nodes
1118 **
1119 ** There is also a wrapper function btreeParseCell() that works for
1120 ** all MemPage types and that references the cell by index rather than
1121 ** by pointer.
1122 */
1123 static void btreeParseCellPtrNoPayload(
1124   MemPage *pPage,         /* Page containing the cell */
1125   u8 *pCell,              /* Pointer to the cell text. */
1126   CellInfo *pInfo         /* Fill in this structure */
1127 ){
1128   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1129   assert( pPage->leaf==0 );
1130   assert( pPage->childPtrSize==4 );
1131 #ifndef SQLITE_DEBUG
1132   UNUSED_PARAMETER(pPage);
1133 #endif
1134   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1135   pInfo->nPayload = 0;
1136   pInfo->nLocal = 0;
1137   pInfo->pPayload = 0;
1138   return;
1139 }
1140 static void btreeParseCellPtr(
1141   MemPage *pPage,         /* Page containing the cell */
1142   u8 *pCell,              /* Pointer to the cell text. */
1143   CellInfo *pInfo         /* Fill in this structure */
1144 ){
1145   u8 *pIter;              /* For scanning through pCell */
1146   u32 nPayload;           /* Number of bytes of cell payload */
1147   u64 iKey;               /* Extracted Key value */
1148 
1149   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1150   assert( pPage->leaf==0 || pPage->leaf==1 );
1151   assert( pPage->intKeyLeaf );
1152   assert( pPage->childPtrSize==0 );
1153   pIter = pCell;
1154 
1155   /* The next block of code is equivalent to:
1156   **
1157   **     pIter += getVarint32(pIter, nPayload);
1158   **
1159   ** The code is inlined to avoid a function call.
1160   */
1161   nPayload = *pIter;
1162   if( nPayload>=0x80 ){
1163     u8 *pEnd = &pIter[8];
1164     nPayload &= 0x7f;
1165     do{
1166       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1167     }while( (*pIter)>=0x80 && pIter<pEnd );
1168   }
1169   pIter++;
1170 
1171   /* The next block of code is equivalent to:
1172   **
1173   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1174   **
1175   ** The code is inlined to avoid a function call.
1176   */
1177   iKey = *pIter;
1178   if( iKey>=0x80 ){
1179     u8 *pEnd = &pIter[7];
1180     iKey &= 0x7f;
1181     while(1){
1182       iKey = (iKey<<7) | (*++pIter & 0x7f);
1183       if( (*pIter)<0x80 ) break;
1184       if( pIter>=pEnd ){
1185         iKey = (iKey<<8) | *++pIter;
1186         break;
1187       }
1188     }
1189   }
1190   pIter++;
1191 
1192   pInfo->nKey = *(i64*)&iKey;
1193   pInfo->nPayload = nPayload;
1194   pInfo->pPayload = pIter;
1195   testcase( nPayload==pPage->maxLocal );
1196   testcase( nPayload==pPage->maxLocal+1 );
1197   if( nPayload<=pPage->maxLocal ){
1198     /* This is the (easy) common case where the entire payload fits
1199     ** on the local page.  No overflow is required.
1200     */
1201     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1202     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1203     pInfo->nLocal = (u16)nPayload;
1204   }else{
1205     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1206   }
1207 }
1208 static void btreeParseCellPtrIndex(
1209   MemPage *pPage,         /* Page containing the cell */
1210   u8 *pCell,              /* Pointer to the cell text. */
1211   CellInfo *pInfo         /* Fill in this structure */
1212 ){
1213   u8 *pIter;              /* For scanning through pCell */
1214   u32 nPayload;           /* Number of bytes of cell payload */
1215 
1216   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1217   assert( pPage->leaf==0 || pPage->leaf==1 );
1218   assert( pPage->intKeyLeaf==0 );
1219   pIter = pCell + pPage->childPtrSize;
1220   nPayload = *pIter;
1221   if( nPayload>=0x80 ){
1222     u8 *pEnd = &pIter[8];
1223     nPayload &= 0x7f;
1224     do{
1225       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1226     }while( *(pIter)>=0x80 && pIter<pEnd );
1227   }
1228   pIter++;
1229   pInfo->nKey = nPayload;
1230   pInfo->nPayload = nPayload;
1231   pInfo->pPayload = pIter;
1232   testcase( nPayload==pPage->maxLocal );
1233   testcase( nPayload==pPage->maxLocal+1 );
1234   if( nPayload<=pPage->maxLocal ){
1235     /* This is the (easy) common case where the entire payload fits
1236     ** on the local page.  No overflow is required.
1237     */
1238     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1239     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1240     pInfo->nLocal = (u16)nPayload;
1241   }else{
1242     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1243   }
1244 }
1245 static void btreeParseCell(
1246   MemPage *pPage,         /* Page containing the cell */
1247   int iCell,              /* The cell index.  First cell is 0 */
1248   CellInfo *pInfo         /* Fill in this structure */
1249 ){
1250   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1251 }
1252 
1253 /*
1254 ** The following routines are implementations of the MemPage.xCellSize
1255 ** method.
1256 **
1257 ** Compute the total number of bytes that a Cell needs in the cell
1258 ** data area of the btree-page.  The return number includes the cell
1259 ** data header and the local payload, but not any overflow page or
1260 ** the space used by the cell pointer.
1261 **
1262 ** cellSizePtrNoPayload()    =>   table internal nodes
1263 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1264 */
1265 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1266   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1267   u8 *pEnd;                                /* End mark for a varint */
1268   u32 nSize;                               /* Size value to return */
1269 
1270 #ifdef SQLITE_DEBUG
1271   /* The value returned by this function should always be the same as
1272   ** the (CellInfo.nSize) value found by doing a full parse of the
1273   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1274   ** this function verifies that this invariant is not violated. */
1275   CellInfo debuginfo;
1276   pPage->xParseCell(pPage, pCell, &debuginfo);
1277 #endif
1278 
1279   nSize = *pIter;
1280   if( nSize>=0x80 ){
1281     pEnd = &pIter[8];
1282     nSize &= 0x7f;
1283     do{
1284       nSize = (nSize<<7) | (*++pIter & 0x7f);
1285     }while( *(pIter)>=0x80 && pIter<pEnd );
1286   }
1287   pIter++;
1288   if( pPage->intKey ){
1289     /* pIter now points at the 64-bit integer key value, a variable length
1290     ** integer. The following block moves pIter to point at the first byte
1291     ** past the end of the key value. */
1292     pEnd = &pIter[9];
1293     while( (*pIter++)&0x80 && pIter<pEnd );
1294   }
1295   testcase( nSize==pPage->maxLocal );
1296   testcase( nSize==pPage->maxLocal+1 );
1297   if( nSize<=pPage->maxLocal ){
1298     nSize += (u32)(pIter - pCell);
1299     if( nSize<4 ) nSize = 4;
1300   }else{
1301     int minLocal = pPage->minLocal;
1302     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1303     testcase( nSize==pPage->maxLocal );
1304     testcase( nSize==pPage->maxLocal+1 );
1305     if( nSize>pPage->maxLocal ){
1306       nSize = minLocal;
1307     }
1308     nSize += 4 + (u16)(pIter - pCell);
1309   }
1310   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1311   return (u16)nSize;
1312 }
1313 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1314   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1315   u8 *pEnd;              /* End mark for a varint */
1316 
1317 #ifdef SQLITE_DEBUG
1318   /* The value returned by this function should always be the same as
1319   ** the (CellInfo.nSize) value found by doing a full parse of the
1320   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1321   ** this function verifies that this invariant is not violated. */
1322   CellInfo debuginfo;
1323   pPage->xParseCell(pPage, pCell, &debuginfo);
1324 #else
1325   UNUSED_PARAMETER(pPage);
1326 #endif
1327 
1328   assert( pPage->childPtrSize==4 );
1329   pEnd = pIter + 9;
1330   while( (*pIter++)&0x80 && pIter<pEnd );
1331   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1332   return (u16)(pIter - pCell);
1333 }
1334 
1335 
1336 #ifdef SQLITE_DEBUG
1337 /* This variation on cellSizePtr() is used inside of assert() statements
1338 ** only. */
1339 static u16 cellSize(MemPage *pPage, int iCell){
1340   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1341 }
1342 #endif
1343 
1344 #ifndef SQLITE_OMIT_AUTOVACUUM
1345 /*
1346 ** If the cell pCell, part of page pPage contains a pointer
1347 ** to an overflow page, insert an entry into the pointer-map
1348 ** for the overflow page.
1349 */
1350 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1351   CellInfo info;
1352   if( *pRC ) return;
1353   assert( pCell!=0 );
1354   pPage->xParseCell(pPage, pCell, &info);
1355   if( info.nLocal<info.nPayload ){
1356     Pgno ovfl = get4byte(&pCell[info.nSize-4]);
1357     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1358   }
1359 }
1360 #endif
1361 
1362 
1363 /*
1364 ** Defragment the page given. This routine reorganizes cells within the
1365 ** page so that there are no free-blocks on the free-block list.
1366 **
1367 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1368 ** present in the page after this routine returns.
1369 **
1370 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1371 ** b-tree page so that there are no freeblocks or fragment bytes, all
1372 ** unused bytes are contained in the unallocated space region, and all
1373 ** cells are packed tightly at the end of the page.
1374 */
1375 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1376   int i;                     /* Loop counter */
1377   int pc;                    /* Address of the i-th cell */
1378   int hdr;                   /* Offset to the page header */
1379   int size;                  /* Size of a cell */
1380   int usableSize;            /* Number of usable bytes on a page */
1381   int cellOffset;            /* Offset to the cell pointer array */
1382   int cbrk;                  /* Offset to the cell content area */
1383   int nCell;                 /* Number of cells on the page */
1384   unsigned char *data;       /* The page data */
1385   unsigned char *temp;       /* Temp area for cell content */
1386   unsigned char *src;        /* Source of content */
1387   int iCellFirst;            /* First allowable cell index */
1388   int iCellLast;             /* Last possible cell index */
1389 
1390   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1391   assert( pPage->pBt!=0 );
1392   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1393   assert( pPage->nOverflow==0 );
1394   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1395   temp = 0;
1396   src = data = pPage->aData;
1397   hdr = pPage->hdrOffset;
1398   cellOffset = pPage->cellOffset;
1399   nCell = pPage->nCell;
1400   assert( nCell==get2byte(&data[hdr+3]) );
1401   iCellFirst = cellOffset + 2*nCell;
1402   usableSize = pPage->pBt->usableSize;
1403 
1404   /* This block handles pages with two or fewer free blocks and nMaxFrag
1405   ** or fewer fragmented bytes. In this case it is faster to move the
1406   ** two (or one) blocks of cells using memmove() and add the required
1407   ** offsets to each pointer in the cell-pointer array than it is to
1408   ** reconstruct the entire page.  */
1409   if( (int)data[hdr+7]<=nMaxFrag ){
1410     int iFree = get2byte(&data[hdr+1]);
1411     if( iFree ){
1412       int iFree2 = get2byte(&data[iFree]);
1413 
1414       /* pageFindSlot() has already verified that free blocks are sorted
1415       ** in order of offset within the page, and that no block extends
1416       ** past the end of the page. Provided the two free slots do not
1417       ** overlap, this guarantees that the memmove() calls below will not
1418       ** overwrite the usableSize byte buffer, even if the database page
1419       ** is corrupt.  */
1420       assert( iFree2==0 || iFree2>iFree );
1421       assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1422       assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1423 
1424       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1425         u8 *pEnd = &data[cellOffset + nCell*2];
1426         u8 *pAddr;
1427         int sz2 = 0;
1428         int sz = get2byte(&data[iFree+2]);
1429         int top = get2byte(&data[hdr+5]);
1430         if( top>=iFree ){
1431           return SQLITE_CORRUPT_PAGE(pPage);
1432         }
1433         if( iFree2 ){
1434           assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
1435           sz2 = get2byte(&data[iFree2+2]);
1436           assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
1437           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1438           sz += sz2;
1439         }
1440         cbrk = top+sz;
1441         assert( cbrk+(iFree-top) <= usableSize );
1442         memmove(&data[cbrk], &data[top], iFree-top);
1443         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1444           pc = get2byte(pAddr);
1445           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1446           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1447         }
1448         goto defragment_out;
1449       }
1450     }
1451   }
1452 
1453   cbrk = usableSize;
1454   iCellLast = usableSize - 4;
1455   for(i=0; i<nCell; i++){
1456     u8 *pAddr;     /* The i-th cell pointer */
1457     pAddr = &data[cellOffset + i*2];
1458     pc = get2byte(pAddr);
1459     testcase( pc==iCellFirst );
1460     testcase( pc==iCellLast );
1461     /* These conditions have already been verified in btreeInitPage()
1462     ** if PRAGMA cell_size_check=ON.
1463     */
1464     if( pc<iCellFirst || pc>iCellLast ){
1465       return SQLITE_CORRUPT_PAGE(pPage);
1466     }
1467     assert( pc>=iCellFirst && pc<=iCellLast );
1468     size = pPage->xCellSize(pPage, &src[pc]);
1469     cbrk -= size;
1470     if( cbrk<iCellFirst || pc+size>usableSize ){
1471       return SQLITE_CORRUPT_PAGE(pPage);
1472     }
1473     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1474     testcase( cbrk+size==usableSize );
1475     testcase( pc+size==usableSize );
1476     put2byte(pAddr, cbrk);
1477     if( temp==0 ){
1478       int x;
1479       if( cbrk==pc ) continue;
1480       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1481       x = get2byte(&data[hdr+5]);
1482       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1483       src = temp;
1484     }
1485     memcpy(&data[cbrk], &src[pc], size);
1486   }
1487   data[hdr+7] = 0;
1488 
1489  defragment_out:
1490   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1491     return SQLITE_CORRUPT_PAGE(pPage);
1492   }
1493   assert( cbrk>=iCellFirst );
1494   put2byte(&data[hdr+5], cbrk);
1495   data[hdr+1] = 0;
1496   data[hdr+2] = 0;
1497   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1498   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1499   return SQLITE_OK;
1500 }
1501 
1502 /*
1503 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1504 ** size. If one can be found, return a pointer to the space and remove it
1505 ** from the free-list.
1506 **
1507 ** If no suitable space can be found on the free-list, return NULL.
1508 **
1509 ** This function may detect corruption within pPg.  If corruption is
1510 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1511 **
1512 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1513 ** will be ignored if adding the extra space to the fragmentation count
1514 ** causes the fragmentation count to exceed 60.
1515 */
1516 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1517   const int hdr = pPg->hdrOffset;
1518   u8 * const aData = pPg->aData;
1519   int iAddr = hdr + 1;
1520   int pc = get2byte(&aData[iAddr]);
1521   int x;
1522   int usableSize = pPg->pBt->usableSize;
1523   int size;            /* Size of the free slot */
1524 
1525   assert( pc>0 );
1526   while( pc<=usableSize-4 ){
1527     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1528     ** freeblock form a big-endian integer which is the size of the freeblock
1529     ** in bytes, including the 4-byte header. */
1530     size = get2byte(&aData[pc+2]);
1531     if( (x = size - nByte)>=0 ){
1532       testcase( x==4 );
1533       testcase( x==3 );
1534       if( size+pc > usableSize ){
1535         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1536         return 0;
1537       }else if( x<4 ){
1538         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1539         ** number of bytes in fragments may not exceed 60. */
1540         if( aData[hdr+7]>57 ) return 0;
1541 
1542         /* Remove the slot from the free-list. Update the number of
1543         ** fragmented bytes within the page. */
1544         memcpy(&aData[iAddr], &aData[pc], 2);
1545         aData[hdr+7] += (u8)x;
1546       }else{
1547         /* The slot remains on the free-list. Reduce its size to account
1548          ** for the portion used by the new allocation. */
1549         put2byte(&aData[pc+2], x);
1550       }
1551       return &aData[pc + x];
1552     }
1553     iAddr = pc;
1554     pc = get2byte(&aData[pc]);
1555     if( pc<iAddr+size ) break;
1556   }
1557   if( pc ){
1558     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1559   }
1560 
1561   return 0;
1562 }
1563 
1564 /*
1565 ** Allocate nByte bytes of space from within the B-Tree page passed
1566 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1567 ** of the first byte of allocated space. Return either SQLITE_OK or
1568 ** an error code (usually SQLITE_CORRUPT).
1569 **
1570 ** The caller guarantees that there is sufficient space to make the
1571 ** allocation.  This routine might need to defragment in order to bring
1572 ** all the space together, however.  This routine will avoid using
1573 ** the first two bytes past the cell pointer area since presumably this
1574 ** allocation is being made in order to insert a new cell, so we will
1575 ** also end up needing a new cell pointer.
1576 */
1577 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1578   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1579   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1580   int top;                             /* First byte of cell content area */
1581   int rc = SQLITE_OK;                  /* Integer return code */
1582   int gap;        /* First byte of gap between cell pointers and cell content */
1583 
1584   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1585   assert( pPage->pBt );
1586   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1587   assert( nByte>=0 );  /* Minimum cell size is 4 */
1588   assert( pPage->nFree>=nByte );
1589   assert( pPage->nOverflow==0 );
1590   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1591 
1592   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1593   gap = pPage->cellOffset + 2*pPage->nCell;
1594   assert( gap<=65536 );
1595   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1596   ** and the reserved space is zero (the usual value for reserved space)
1597   ** then the cell content offset of an empty page wants to be 65536.
1598   ** However, that integer is too large to be stored in a 2-byte unsigned
1599   ** integer, so a value of 0 is used in its place. */
1600   top = get2byte(&data[hdr+5]);
1601   assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1602   if( gap>top ){
1603     if( top==0 && pPage->pBt->usableSize==65536 ){
1604       top = 65536;
1605     }else{
1606       return SQLITE_CORRUPT_PAGE(pPage);
1607     }
1608   }
1609 
1610   /* If there is enough space between gap and top for one more cell pointer
1611   ** array entry offset, and if the freelist is not empty, then search the
1612   ** freelist looking for a free slot big enough to satisfy the request.
1613   */
1614   testcase( gap+2==top );
1615   testcase( gap+1==top );
1616   testcase( gap==top );
1617   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1618     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1619     if( pSpace ){
1620       assert( pSpace>=data && (pSpace - data)<65536 );
1621       *pIdx = (int)(pSpace - data);
1622       return SQLITE_OK;
1623     }else if( rc ){
1624       return rc;
1625     }
1626   }
1627 
1628   /* The request could not be fulfilled using a freelist slot.  Check
1629   ** to see if defragmentation is necessary.
1630   */
1631   testcase( gap+2+nByte==top );
1632   if( gap+2+nByte>top ){
1633     assert( pPage->nCell>0 || CORRUPT_DB );
1634     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1635     if( rc ) return rc;
1636     top = get2byteNotZero(&data[hdr+5]);
1637     assert( gap+2+nByte<=top );
1638   }
1639 
1640 
1641   /* Allocate memory from the gap in between the cell pointer array
1642   ** and the cell content area.  The btreeInitPage() call has already
1643   ** validated the freelist.  Given that the freelist is valid, there
1644   ** is no way that the allocation can extend off the end of the page.
1645   ** The assert() below verifies the previous sentence.
1646   */
1647   top -= nByte;
1648   put2byte(&data[hdr+5], top);
1649   assert( top+nByte <= (int)pPage->pBt->usableSize );
1650   *pIdx = top;
1651   return SQLITE_OK;
1652 }
1653 
1654 /*
1655 ** Return a section of the pPage->aData to the freelist.
1656 ** The first byte of the new free block is pPage->aData[iStart]
1657 ** and the size of the block is iSize bytes.
1658 **
1659 ** Adjacent freeblocks are coalesced.
1660 **
1661 ** Note that even though the freeblock list was checked by btreeInitPage(),
1662 ** that routine will not detect overlap between cells or freeblocks.  Nor
1663 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1664 ** at the end of the page.  So do additional corruption checks inside this
1665 ** routine and return SQLITE_CORRUPT if any problems are found.
1666 */
1667 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1668   u16 iPtr;                             /* Address of ptr to next freeblock */
1669   u16 iFreeBlk;                         /* Address of the next freeblock */
1670   u8 hdr;                               /* Page header size.  0 or 100 */
1671   u8 nFrag = 0;                         /* Reduction in fragmentation */
1672   u16 iOrigSize = iSize;                /* Original value of iSize */
1673   u16 x;                                /* Offset to cell content area */
1674   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1675   unsigned char *data = pPage->aData;   /* Page content */
1676 
1677   assert( pPage->pBt!=0 );
1678   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1679   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1680   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1681   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1682   assert( iSize>=4 );   /* Minimum cell size is 4 */
1683   assert( iStart<=pPage->pBt->usableSize-4 );
1684 
1685   /* The list of freeblocks must be in ascending order.  Find the
1686   ** spot on the list where iStart should be inserted.
1687   */
1688   hdr = pPage->hdrOffset;
1689   iPtr = hdr + 1;
1690   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1691     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1692   }else{
1693     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1694       if( iFreeBlk<iPtr+4 ){
1695         if( iFreeBlk==0 ) break;
1696         return SQLITE_CORRUPT_PAGE(pPage);
1697       }
1698       iPtr = iFreeBlk;
1699     }
1700     if( iFreeBlk>pPage->pBt->usableSize-4 ){
1701       return SQLITE_CORRUPT_PAGE(pPage);
1702     }
1703     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1704 
1705     /* At this point:
1706     **    iFreeBlk:   First freeblock after iStart, or zero if none
1707     **    iPtr:       The address of a pointer to iFreeBlk
1708     **
1709     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1710     */
1711     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1712       nFrag = iFreeBlk - iEnd;
1713       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1714       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1715       if( iEnd > pPage->pBt->usableSize ){
1716         return SQLITE_CORRUPT_PAGE(pPage);
1717       }
1718       iSize = iEnd - iStart;
1719       iFreeBlk = get2byte(&data[iFreeBlk]);
1720     }
1721 
1722     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1723     ** pointer in the page header) then check to see if iStart should be
1724     ** coalesced onto the end of iPtr.
1725     */
1726     if( iPtr>hdr+1 ){
1727       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1728       if( iPtrEnd+3>=iStart ){
1729         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1730         nFrag += iStart - iPtrEnd;
1731         iSize = iEnd - iPtr;
1732         iStart = iPtr;
1733       }
1734     }
1735     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1736     data[hdr+7] -= nFrag;
1737   }
1738   x = get2byte(&data[hdr+5]);
1739   if( iStart<=x ){
1740     /* The new freeblock is at the beginning of the cell content area,
1741     ** so just extend the cell content area rather than create another
1742     ** freelist entry */
1743     if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1744     put2byte(&data[hdr+1], iFreeBlk);
1745     put2byte(&data[hdr+5], iEnd);
1746   }else{
1747     /* Insert the new freeblock into the freelist */
1748     put2byte(&data[iPtr], iStart);
1749   }
1750   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1751     /* Overwrite deleted information with zeros when the secure_delete
1752     ** option is enabled */
1753     memset(&data[iStart], 0, iSize);
1754   }
1755   put2byte(&data[iStart], iFreeBlk);
1756   put2byte(&data[iStart+2], iSize);
1757   pPage->nFree += iOrigSize;
1758   return SQLITE_OK;
1759 }
1760 
1761 /*
1762 ** Decode the flags byte (the first byte of the header) for a page
1763 ** and initialize fields of the MemPage structure accordingly.
1764 **
1765 ** Only the following combinations are supported.  Anything different
1766 ** indicates a corrupt database files:
1767 **
1768 **         PTF_ZERODATA
1769 **         PTF_ZERODATA | PTF_LEAF
1770 **         PTF_LEAFDATA | PTF_INTKEY
1771 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1772 */
1773 static int decodeFlags(MemPage *pPage, int flagByte){
1774   BtShared *pBt;     /* A copy of pPage->pBt */
1775 
1776   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1777   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1778   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1779   flagByte &= ~PTF_LEAF;
1780   pPage->childPtrSize = 4-4*pPage->leaf;
1781   pPage->xCellSize = cellSizePtr;
1782   pBt = pPage->pBt;
1783   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1784     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1785     ** interior table b-tree page. */
1786     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1787     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1788     ** leaf table b-tree page. */
1789     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1790     pPage->intKey = 1;
1791     if( pPage->leaf ){
1792       pPage->intKeyLeaf = 1;
1793       pPage->xParseCell = btreeParseCellPtr;
1794     }else{
1795       pPage->intKeyLeaf = 0;
1796       pPage->xCellSize = cellSizePtrNoPayload;
1797       pPage->xParseCell = btreeParseCellPtrNoPayload;
1798     }
1799     pPage->maxLocal = pBt->maxLeaf;
1800     pPage->minLocal = pBt->minLeaf;
1801   }else if( flagByte==PTF_ZERODATA ){
1802     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1803     ** interior index b-tree page. */
1804     assert( (PTF_ZERODATA)==2 );
1805     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1806     ** leaf index b-tree page. */
1807     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1808     pPage->intKey = 0;
1809     pPage->intKeyLeaf = 0;
1810     pPage->xParseCell = btreeParseCellPtrIndex;
1811     pPage->maxLocal = pBt->maxLocal;
1812     pPage->minLocal = pBt->minLocal;
1813   }else{
1814     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1815     ** an error. */
1816     return SQLITE_CORRUPT_PAGE(pPage);
1817   }
1818   pPage->max1bytePayload = pBt->max1bytePayload;
1819   return SQLITE_OK;
1820 }
1821 
1822 /*
1823 ** Initialize the auxiliary information for a disk block.
1824 **
1825 ** Return SQLITE_OK on success.  If we see that the page does
1826 ** not contain a well-formed database page, then return
1827 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1828 ** guarantee that the page is well-formed.  It only shows that
1829 ** we failed to detect any corruption.
1830 */
1831 static int btreeInitPage(MemPage *pPage){
1832   int pc;            /* Address of a freeblock within pPage->aData[] */
1833   u8 hdr;            /* Offset to beginning of page header */
1834   u8 *data;          /* Equal to pPage->aData */
1835   BtShared *pBt;        /* The main btree structure */
1836   int usableSize;    /* Amount of usable space on each page */
1837   u16 cellOffset;    /* Offset from start of page to first cell pointer */
1838   int nFree;         /* Number of unused bytes on the page */
1839   int top;           /* First byte of the cell content area */
1840   int iCellFirst;    /* First allowable cell or freeblock offset */
1841   int iCellLast;     /* Last possible cell or freeblock offset */
1842 
1843   assert( pPage->pBt!=0 );
1844   assert( pPage->pBt->db!=0 );
1845   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1846   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1847   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1848   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1849   assert( pPage->isInit==0 );
1850 
1851   pBt = pPage->pBt;
1852   hdr = pPage->hdrOffset;
1853   data = pPage->aData;
1854   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1855   ** the b-tree page type. */
1856   if( decodeFlags(pPage, data[hdr]) ){
1857     return SQLITE_CORRUPT_PAGE(pPage);
1858   }
1859   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1860   pPage->maskPage = (u16)(pBt->pageSize - 1);
1861   pPage->nOverflow = 0;
1862   usableSize = pBt->usableSize;
1863   pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1864   pPage->aDataEnd = &data[usableSize];
1865   pPage->aCellIdx = &data[cellOffset];
1866   pPage->aDataOfst = &data[pPage->childPtrSize];
1867   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1868   ** the start of the cell content area. A zero value for this integer is
1869   ** interpreted as 65536. */
1870   top = get2byteNotZero(&data[hdr+5]);
1871   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1872   ** number of cells on the page. */
1873   pPage->nCell = get2byte(&data[hdr+3]);
1874   if( pPage->nCell>MX_CELL(pBt) ){
1875     /* To many cells for a single page.  The page must be corrupt */
1876     return SQLITE_CORRUPT_PAGE(pPage);
1877   }
1878   testcase( pPage->nCell==MX_CELL(pBt) );
1879   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1880   ** possible for a root page of a table that contains no rows) then the
1881   ** offset to the cell content area will equal the page size minus the
1882   ** bytes of reserved space. */
1883   assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1884 
1885   /* A malformed database page might cause us to read past the end
1886   ** of page when parsing a cell.
1887   **
1888   ** The following block of code checks early to see if a cell extends
1889   ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1890   ** returned if it does.
1891   */
1892   iCellFirst = cellOffset + 2*pPage->nCell;
1893   iCellLast = usableSize - 4;
1894   if( pBt->db->flags & SQLITE_CellSizeCk ){
1895     int i;            /* Index into the cell pointer array */
1896     int sz;           /* Size of a cell */
1897 
1898     if( !pPage->leaf ) iCellLast--;
1899     for(i=0; i<pPage->nCell; i++){
1900       pc = get2byteAligned(&data[cellOffset+i*2]);
1901       testcase( pc==iCellFirst );
1902       testcase( pc==iCellLast );
1903       if( pc<iCellFirst || pc>iCellLast ){
1904         return SQLITE_CORRUPT_PAGE(pPage);
1905       }
1906       sz = pPage->xCellSize(pPage, &data[pc]);
1907       testcase( pc+sz==usableSize );
1908       if( pc+sz>usableSize ){
1909         return SQLITE_CORRUPT_PAGE(pPage);
1910       }
1911     }
1912     if( !pPage->leaf ) iCellLast++;
1913   }
1914 
1915   /* Compute the total free space on the page
1916   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1917   ** start of the first freeblock on the page, or is zero if there are no
1918   ** freeblocks. */
1919   pc = get2byte(&data[hdr+1]);
1920   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1921   if( pc>0 ){
1922     u32 next, size;
1923     if( pc<iCellFirst ){
1924       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1925       ** always be at least one cell before the first freeblock.
1926       */
1927       return SQLITE_CORRUPT_PAGE(pPage);
1928     }
1929     while( 1 ){
1930       if( pc>iCellLast ){
1931         /* Freeblock off the end of the page */
1932         return SQLITE_CORRUPT_PAGE(pPage);
1933       }
1934       next = get2byte(&data[pc]);
1935       size = get2byte(&data[pc+2]);
1936       nFree = nFree + size;
1937       if( next<=pc+size+3 ) break;
1938       pc = next;
1939     }
1940     if( next>0 ){
1941       /* Freeblock not in ascending order */
1942       return SQLITE_CORRUPT_PAGE(pPage);
1943     }
1944     if( pc+size>(unsigned int)usableSize ){
1945       /* Last freeblock extends past page end */
1946       return SQLITE_CORRUPT_PAGE(pPage);
1947     }
1948   }
1949 
1950   /* At this point, nFree contains the sum of the offset to the start
1951   ** of the cell-content area plus the number of free bytes within
1952   ** the cell-content area. If this is greater than the usable-size
1953   ** of the page, then the page must be corrupted. This check also
1954   ** serves to verify that the offset to the start of the cell-content
1955   ** area, according to the page header, lies within the page.
1956   */
1957   if( nFree>usableSize ){
1958     return SQLITE_CORRUPT_PAGE(pPage);
1959   }
1960   pPage->nFree = (u16)(nFree - iCellFirst);
1961   pPage->isInit = 1;
1962   return SQLITE_OK;
1963 }
1964 
1965 /*
1966 ** Set up a raw page so that it looks like a database page holding
1967 ** no entries.
1968 */
1969 static void zeroPage(MemPage *pPage, int flags){
1970   unsigned char *data = pPage->aData;
1971   BtShared *pBt = pPage->pBt;
1972   u8 hdr = pPage->hdrOffset;
1973   u16 first;
1974 
1975   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1976   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1977   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1978   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1979   assert( sqlite3_mutex_held(pBt->mutex) );
1980   if( pBt->btsFlags & BTS_FAST_SECURE ){
1981     memset(&data[hdr], 0, pBt->usableSize - hdr);
1982   }
1983   data[hdr] = (char)flags;
1984   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1985   memset(&data[hdr+1], 0, 4);
1986   data[hdr+7] = 0;
1987   put2byte(&data[hdr+5], pBt->usableSize);
1988   pPage->nFree = (u16)(pBt->usableSize - first);
1989   decodeFlags(pPage, flags);
1990   pPage->cellOffset = first;
1991   pPage->aDataEnd = &data[pBt->usableSize];
1992   pPage->aCellIdx = &data[first];
1993   pPage->aDataOfst = &data[pPage->childPtrSize];
1994   pPage->nOverflow = 0;
1995   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1996   pPage->maskPage = (u16)(pBt->pageSize - 1);
1997   pPage->nCell = 0;
1998   pPage->isInit = 1;
1999 }
2000 
2001 
2002 /*
2003 ** Convert a DbPage obtained from the pager into a MemPage used by
2004 ** the btree layer.
2005 */
2006 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2007   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2008   if( pgno!=pPage->pgno ){
2009     pPage->aData = sqlite3PagerGetData(pDbPage);
2010     pPage->pDbPage = pDbPage;
2011     pPage->pBt = pBt;
2012     pPage->pgno = pgno;
2013     pPage->hdrOffset = pgno==1 ? 100 : 0;
2014   }
2015   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2016   return pPage;
2017 }
2018 
2019 /*
2020 ** Get a page from the pager.  Initialize the MemPage.pBt and
2021 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2022 **
2023 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2024 ** about the content of the page at this time.  So do not go to the disk
2025 ** to fetch the content.  Just fill in the content with zeros for now.
2026 ** If in the future we call sqlite3PagerWrite() on this page, that
2027 ** means we have started to be concerned about content and the disk
2028 ** read should occur at that point.
2029 */
2030 static int btreeGetPage(
2031   BtShared *pBt,       /* The btree */
2032   Pgno pgno,           /* Number of the page to fetch */
2033   MemPage **ppPage,    /* Return the page in this parameter */
2034   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2035 ){
2036   int rc;
2037   DbPage *pDbPage;
2038 
2039   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2040   assert( sqlite3_mutex_held(pBt->mutex) );
2041   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2042   if( rc ) return rc;
2043   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2044   return SQLITE_OK;
2045 }
2046 
2047 /*
2048 ** Retrieve a page from the pager cache. If the requested page is not
2049 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2050 ** MemPage.aData elements if needed.
2051 */
2052 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2053   DbPage *pDbPage;
2054   assert( sqlite3_mutex_held(pBt->mutex) );
2055   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2056   if( pDbPage ){
2057     return btreePageFromDbPage(pDbPage, pgno, pBt);
2058   }
2059   return 0;
2060 }
2061 
2062 /*
2063 ** Return the size of the database file in pages. If there is any kind of
2064 ** error, return ((unsigned int)-1).
2065 */
2066 static Pgno btreePagecount(BtShared *pBt){
2067   return pBt->nPage;
2068 }
2069 u32 sqlite3BtreeLastPage(Btree *p){
2070   assert( sqlite3BtreeHoldsMutex(p) );
2071   assert( ((p->pBt->nPage)&0x80000000)==0 );
2072   return btreePagecount(p->pBt);
2073 }
2074 
2075 /*
2076 ** Get a page from the pager and initialize it.
2077 **
2078 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2079 ** call.  Do additional sanity checking on the page in this case.
2080 ** And if the fetch fails, this routine must decrement pCur->iPage.
2081 **
2082 ** The page is fetched as read-write unless pCur is not NULL and is
2083 ** a read-only cursor.
2084 **
2085 ** If an error occurs, then *ppPage is undefined. It
2086 ** may remain unchanged, or it may be set to an invalid value.
2087 */
2088 static int getAndInitPage(
2089   BtShared *pBt,                  /* The database file */
2090   Pgno pgno,                      /* Number of the page to get */
2091   MemPage **ppPage,               /* Write the page pointer here */
2092   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2093   int bReadOnly                   /* True for a read-only page */
2094 ){
2095   int rc;
2096   DbPage *pDbPage;
2097   assert( sqlite3_mutex_held(pBt->mutex) );
2098   assert( pCur==0 || ppPage==&pCur->pPage );
2099   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2100   assert( pCur==0 || pCur->iPage>0 );
2101 
2102   if( pgno>btreePagecount(pBt) ){
2103     rc = SQLITE_CORRUPT_BKPT;
2104     goto getAndInitPage_error;
2105   }
2106   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2107   if( rc ){
2108     goto getAndInitPage_error;
2109   }
2110   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2111   if( (*ppPage)->isInit==0 ){
2112     btreePageFromDbPage(pDbPage, pgno, pBt);
2113     rc = btreeInitPage(*ppPage);
2114     if( rc!=SQLITE_OK ){
2115       releasePage(*ppPage);
2116       goto getAndInitPage_error;
2117     }
2118   }
2119   assert( (*ppPage)->pgno==pgno );
2120   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2121 
2122   /* If obtaining a child page for a cursor, we must verify that the page is
2123   ** compatible with the root page. */
2124   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2125     rc = SQLITE_CORRUPT_PGNO(pgno);
2126     releasePage(*ppPage);
2127     goto getAndInitPage_error;
2128   }
2129   return SQLITE_OK;
2130 
2131 getAndInitPage_error:
2132   if( pCur ){
2133     pCur->iPage--;
2134     pCur->pPage = pCur->apPage[pCur->iPage];
2135   }
2136   testcase( pgno==0 );
2137   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2138   return rc;
2139 }
2140 
2141 /*
2142 ** Release a MemPage.  This should be called once for each prior
2143 ** call to btreeGetPage.
2144 **
2145 ** Page1 is a special case and must be released using releasePageOne().
2146 */
2147 static void releasePageNotNull(MemPage *pPage){
2148   assert( pPage->aData );
2149   assert( pPage->pBt );
2150   assert( pPage->pDbPage!=0 );
2151   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2152   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2153   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2154   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2155 }
2156 static void releasePage(MemPage *pPage){
2157   if( pPage ) releasePageNotNull(pPage);
2158 }
2159 static void releasePageOne(MemPage *pPage){
2160   assert( pPage!=0 );
2161   assert( pPage->aData );
2162   assert( pPage->pBt );
2163   assert( pPage->pDbPage!=0 );
2164   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2165   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2166   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2167   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2168 }
2169 
2170 /*
2171 ** Get an unused page.
2172 **
2173 ** This works just like btreeGetPage() with the addition:
2174 **
2175 **   *  If the page is already in use for some other purpose, immediately
2176 **      release it and return an SQLITE_CURRUPT error.
2177 **   *  Make sure the isInit flag is clear
2178 */
2179 static int btreeGetUnusedPage(
2180   BtShared *pBt,       /* The btree */
2181   Pgno pgno,           /* Number of the page to fetch */
2182   MemPage **ppPage,    /* Return the page in this parameter */
2183   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2184 ){
2185   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2186   if( rc==SQLITE_OK ){
2187     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2188       releasePage(*ppPage);
2189       *ppPage = 0;
2190       return SQLITE_CORRUPT_BKPT;
2191     }
2192     (*ppPage)->isInit = 0;
2193   }else{
2194     *ppPage = 0;
2195   }
2196   return rc;
2197 }
2198 
2199 
2200 /*
2201 ** During a rollback, when the pager reloads information into the cache
2202 ** so that the cache is restored to its original state at the start of
2203 ** the transaction, for each page restored this routine is called.
2204 **
2205 ** This routine needs to reset the extra data section at the end of the
2206 ** page to agree with the restored data.
2207 */
2208 static void pageReinit(DbPage *pData){
2209   MemPage *pPage;
2210   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2211   assert( sqlite3PagerPageRefcount(pData)>0 );
2212   if( pPage->isInit ){
2213     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2214     pPage->isInit = 0;
2215     if( sqlite3PagerPageRefcount(pData)>1 ){
2216       /* pPage might not be a btree page;  it might be an overflow page
2217       ** or ptrmap page or a free page.  In those cases, the following
2218       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2219       ** But no harm is done by this.  And it is very important that
2220       ** btreeInitPage() be called on every btree page so we make
2221       ** the call for every page that comes in for re-initing. */
2222       btreeInitPage(pPage);
2223     }
2224   }
2225 }
2226 
2227 /*
2228 ** Invoke the busy handler for a btree.
2229 */
2230 static int btreeInvokeBusyHandler(void *pArg){
2231   BtShared *pBt = (BtShared*)pArg;
2232   assert( pBt->db );
2233   assert( sqlite3_mutex_held(pBt->db->mutex) );
2234   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2235                                   sqlite3PagerFile(pBt->pPager));
2236 }
2237 
2238 /*
2239 ** Open a database file.
2240 **
2241 ** zFilename is the name of the database file.  If zFilename is NULL
2242 ** then an ephemeral database is created.  The ephemeral database might
2243 ** be exclusively in memory, or it might use a disk-based memory cache.
2244 ** Either way, the ephemeral database will be automatically deleted
2245 ** when sqlite3BtreeClose() is called.
2246 **
2247 ** If zFilename is ":memory:" then an in-memory database is created
2248 ** that is automatically destroyed when it is closed.
2249 **
2250 ** The "flags" parameter is a bitmask that might contain bits like
2251 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2252 **
2253 ** If the database is already opened in the same database connection
2254 ** and we are in shared cache mode, then the open will fail with an
2255 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2256 ** objects in the same database connection since doing so will lead
2257 ** to problems with locking.
2258 */
2259 int sqlite3BtreeOpen(
2260   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2261   const char *zFilename,  /* Name of the file containing the BTree database */
2262   sqlite3 *db,            /* Associated database handle */
2263   Btree **ppBtree,        /* Pointer to new Btree object written here */
2264   int flags,              /* Options */
2265   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2266 ){
2267   BtShared *pBt = 0;             /* Shared part of btree structure */
2268   Btree *p;                      /* Handle to return */
2269   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2270   int rc = SQLITE_OK;            /* Result code from this function */
2271   u8 nReserve;                   /* Byte of unused space on each page */
2272   unsigned char zDbHeader[100];  /* Database header content */
2273 
2274   /* True if opening an ephemeral, temporary database */
2275   const int isTempDb = zFilename==0 || zFilename[0]==0;
2276 
2277   /* Set the variable isMemdb to true for an in-memory database, or
2278   ** false for a file-based database.
2279   */
2280 #ifdef SQLITE_OMIT_MEMORYDB
2281   const int isMemdb = 0;
2282 #else
2283   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2284                        || (isTempDb && sqlite3TempInMemory(db))
2285                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2286 #endif
2287 
2288   assert( db!=0 );
2289   assert( pVfs!=0 );
2290   assert( sqlite3_mutex_held(db->mutex) );
2291   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2292 
2293   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2294   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2295 
2296   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2297   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2298 
2299   if( isMemdb ){
2300     flags |= BTREE_MEMORY;
2301   }
2302   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2303     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2304   }
2305   p = sqlite3MallocZero(sizeof(Btree));
2306   if( !p ){
2307     return SQLITE_NOMEM_BKPT;
2308   }
2309   p->inTrans = TRANS_NONE;
2310   p->db = db;
2311 #ifndef SQLITE_OMIT_SHARED_CACHE
2312   p->lock.pBtree = p;
2313   p->lock.iTable = 1;
2314 #endif
2315 
2316 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2317   /*
2318   ** If this Btree is a candidate for shared cache, try to find an
2319   ** existing BtShared object that we can share with
2320   */
2321   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2322     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2323       int nFilename = sqlite3Strlen30(zFilename)+1;
2324       int nFullPathname = pVfs->mxPathname+1;
2325       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2326       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2327 
2328       p->sharable = 1;
2329       if( !zFullPathname ){
2330         sqlite3_free(p);
2331         return SQLITE_NOMEM_BKPT;
2332       }
2333       if( isMemdb ){
2334         memcpy(zFullPathname, zFilename, nFilename);
2335       }else{
2336         rc = sqlite3OsFullPathname(pVfs, zFilename,
2337                                    nFullPathname, zFullPathname);
2338         if( rc ){
2339           sqlite3_free(zFullPathname);
2340           sqlite3_free(p);
2341           return rc;
2342         }
2343       }
2344 #if SQLITE_THREADSAFE
2345       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2346       sqlite3_mutex_enter(mutexOpen);
2347       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2348       sqlite3_mutex_enter(mutexShared);
2349 #endif
2350       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2351         assert( pBt->nRef>0 );
2352         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2353                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2354           int iDb;
2355           for(iDb=db->nDb-1; iDb>=0; iDb--){
2356             Btree *pExisting = db->aDb[iDb].pBt;
2357             if( pExisting && pExisting->pBt==pBt ){
2358               sqlite3_mutex_leave(mutexShared);
2359               sqlite3_mutex_leave(mutexOpen);
2360               sqlite3_free(zFullPathname);
2361               sqlite3_free(p);
2362               return SQLITE_CONSTRAINT;
2363             }
2364           }
2365           p->pBt = pBt;
2366           pBt->nRef++;
2367           break;
2368         }
2369       }
2370       sqlite3_mutex_leave(mutexShared);
2371       sqlite3_free(zFullPathname);
2372     }
2373 #ifdef SQLITE_DEBUG
2374     else{
2375       /* In debug mode, we mark all persistent databases as sharable
2376       ** even when they are not.  This exercises the locking code and
2377       ** gives more opportunity for asserts(sqlite3_mutex_held())
2378       ** statements to find locking problems.
2379       */
2380       p->sharable = 1;
2381     }
2382 #endif
2383   }
2384 #endif
2385   if( pBt==0 ){
2386     /*
2387     ** The following asserts make sure that structures used by the btree are
2388     ** the right size.  This is to guard against size changes that result
2389     ** when compiling on a different architecture.
2390     */
2391     assert( sizeof(i64)==8 );
2392     assert( sizeof(u64)==8 );
2393     assert( sizeof(u32)==4 );
2394     assert( sizeof(u16)==2 );
2395     assert( sizeof(Pgno)==4 );
2396 
2397     pBt = sqlite3MallocZero( sizeof(*pBt) );
2398     if( pBt==0 ){
2399       rc = SQLITE_NOMEM_BKPT;
2400       goto btree_open_out;
2401     }
2402     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2403                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2404     if( rc==SQLITE_OK ){
2405       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2406       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2407     }
2408     if( rc!=SQLITE_OK ){
2409       goto btree_open_out;
2410     }
2411     pBt->openFlags = (u8)flags;
2412     pBt->db = db;
2413     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2414     p->pBt = pBt;
2415 
2416     pBt->pCursor = 0;
2417     pBt->pPage1 = 0;
2418     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2419 #if defined(SQLITE_SECURE_DELETE)
2420     pBt->btsFlags |= BTS_SECURE_DELETE;
2421 #elif defined(SQLITE_FAST_SECURE_DELETE)
2422     pBt->btsFlags |= BTS_OVERWRITE;
2423 #endif
2424     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2425     ** determined by the 2-byte integer located at an offset of 16 bytes from
2426     ** the beginning of the database file. */
2427     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2428     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2429          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2430       pBt->pageSize = 0;
2431 #ifndef SQLITE_OMIT_AUTOVACUUM
2432       /* If the magic name ":memory:" will create an in-memory database, then
2433       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2434       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2435       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2436       ** regular file-name. In this case the auto-vacuum applies as per normal.
2437       */
2438       if( zFilename && !isMemdb ){
2439         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2440         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2441       }
2442 #endif
2443       nReserve = 0;
2444     }else{
2445       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2446       ** determined by the one-byte unsigned integer found at an offset of 20
2447       ** into the database file header. */
2448       nReserve = zDbHeader[20];
2449       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2450 #ifndef SQLITE_OMIT_AUTOVACUUM
2451       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2452       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2453 #endif
2454     }
2455     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2456     if( rc ) goto btree_open_out;
2457     pBt->usableSize = pBt->pageSize - nReserve;
2458     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2459 
2460 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2461     /* Add the new BtShared object to the linked list sharable BtShareds.
2462     */
2463     pBt->nRef = 1;
2464     if( p->sharable ){
2465       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2466       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2467       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2468         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2469         if( pBt->mutex==0 ){
2470           rc = SQLITE_NOMEM_BKPT;
2471           goto btree_open_out;
2472         }
2473       }
2474       sqlite3_mutex_enter(mutexShared);
2475       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2476       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2477       sqlite3_mutex_leave(mutexShared);
2478     }
2479 #endif
2480   }
2481 
2482 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2483   /* If the new Btree uses a sharable pBtShared, then link the new
2484   ** Btree into the list of all sharable Btrees for the same connection.
2485   ** The list is kept in ascending order by pBt address.
2486   */
2487   if( p->sharable ){
2488     int i;
2489     Btree *pSib;
2490     for(i=0; i<db->nDb; i++){
2491       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2492         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2493         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2494           p->pNext = pSib;
2495           p->pPrev = 0;
2496           pSib->pPrev = p;
2497         }else{
2498           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2499             pSib = pSib->pNext;
2500           }
2501           p->pNext = pSib->pNext;
2502           p->pPrev = pSib;
2503           if( p->pNext ){
2504             p->pNext->pPrev = p;
2505           }
2506           pSib->pNext = p;
2507         }
2508         break;
2509       }
2510     }
2511   }
2512 #endif
2513   *ppBtree = p;
2514 
2515 btree_open_out:
2516   if( rc!=SQLITE_OK ){
2517     if( pBt && pBt->pPager ){
2518       sqlite3PagerClose(pBt->pPager, 0);
2519     }
2520     sqlite3_free(pBt);
2521     sqlite3_free(p);
2522     *ppBtree = 0;
2523   }else{
2524     sqlite3_file *pFile;
2525 
2526     /* If the B-Tree was successfully opened, set the pager-cache size to the
2527     ** default value. Except, when opening on an existing shared pager-cache,
2528     ** do not change the pager-cache size.
2529     */
2530     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2531       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2532     }
2533 
2534     pFile = sqlite3PagerFile(pBt->pPager);
2535     if( pFile->pMethods ){
2536       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2537     }
2538   }
2539   if( mutexOpen ){
2540     assert( sqlite3_mutex_held(mutexOpen) );
2541     sqlite3_mutex_leave(mutexOpen);
2542   }
2543   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2544   return rc;
2545 }
2546 
2547 /*
2548 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2549 ** remove the BtShared structure from the sharing list.  Return
2550 ** true if the BtShared.nRef counter reaches zero and return
2551 ** false if it is still positive.
2552 */
2553 static int removeFromSharingList(BtShared *pBt){
2554 #ifndef SQLITE_OMIT_SHARED_CACHE
2555   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2556   BtShared *pList;
2557   int removed = 0;
2558 
2559   assert( sqlite3_mutex_notheld(pBt->mutex) );
2560   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2561   sqlite3_mutex_enter(pMaster);
2562   pBt->nRef--;
2563   if( pBt->nRef<=0 ){
2564     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2565       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2566     }else{
2567       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2568       while( ALWAYS(pList) && pList->pNext!=pBt ){
2569         pList=pList->pNext;
2570       }
2571       if( ALWAYS(pList) ){
2572         pList->pNext = pBt->pNext;
2573       }
2574     }
2575     if( SQLITE_THREADSAFE ){
2576       sqlite3_mutex_free(pBt->mutex);
2577     }
2578     removed = 1;
2579   }
2580   sqlite3_mutex_leave(pMaster);
2581   return removed;
2582 #else
2583   return 1;
2584 #endif
2585 }
2586 
2587 /*
2588 ** Make sure pBt->pTmpSpace points to an allocation of
2589 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2590 ** pointer.
2591 */
2592 static void allocateTempSpace(BtShared *pBt){
2593   if( !pBt->pTmpSpace ){
2594     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2595 
2596     /* One of the uses of pBt->pTmpSpace is to format cells before
2597     ** inserting them into a leaf page (function fillInCell()). If
2598     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2599     ** by the various routines that manipulate binary cells. Which
2600     ** can mean that fillInCell() only initializes the first 2 or 3
2601     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2602     ** it into a database page. This is not actually a problem, but it
2603     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2604     ** data is passed to system call write(). So to avoid this error,
2605     ** zero the first 4 bytes of temp space here.
2606     **
2607     ** Also:  Provide four bytes of initialized space before the
2608     ** beginning of pTmpSpace as an area available to prepend the
2609     ** left-child pointer to the beginning of a cell.
2610     */
2611     if( pBt->pTmpSpace ){
2612       memset(pBt->pTmpSpace, 0, 8);
2613       pBt->pTmpSpace += 4;
2614     }
2615   }
2616 }
2617 
2618 /*
2619 ** Free the pBt->pTmpSpace allocation
2620 */
2621 static void freeTempSpace(BtShared *pBt){
2622   if( pBt->pTmpSpace ){
2623     pBt->pTmpSpace -= 4;
2624     sqlite3PageFree(pBt->pTmpSpace);
2625     pBt->pTmpSpace = 0;
2626   }
2627 }
2628 
2629 /*
2630 ** Close an open database and invalidate all cursors.
2631 */
2632 int sqlite3BtreeClose(Btree *p){
2633   BtShared *pBt = p->pBt;
2634   BtCursor *pCur;
2635 
2636   /* Close all cursors opened via this handle.  */
2637   assert( sqlite3_mutex_held(p->db->mutex) );
2638   sqlite3BtreeEnter(p);
2639   pCur = pBt->pCursor;
2640   while( pCur ){
2641     BtCursor *pTmp = pCur;
2642     pCur = pCur->pNext;
2643     if( pTmp->pBtree==p ){
2644       sqlite3BtreeCloseCursor(pTmp);
2645     }
2646   }
2647 
2648   /* Rollback any active transaction and free the handle structure.
2649   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2650   ** this handle.
2651   */
2652   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2653   sqlite3BtreeLeave(p);
2654 
2655   /* If there are still other outstanding references to the shared-btree
2656   ** structure, return now. The remainder of this procedure cleans
2657   ** up the shared-btree.
2658   */
2659   assert( p->wantToLock==0 && p->locked==0 );
2660   if( !p->sharable || removeFromSharingList(pBt) ){
2661     /* The pBt is no longer on the sharing list, so we can access
2662     ** it without having to hold the mutex.
2663     **
2664     ** Clean out and delete the BtShared object.
2665     */
2666     assert( !pBt->pCursor );
2667     sqlite3PagerClose(pBt->pPager, p->db);
2668     if( pBt->xFreeSchema && pBt->pSchema ){
2669       pBt->xFreeSchema(pBt->pSchema);
2670     }
2671     sqlite3DbFree(0, pBt->pSchema);
2672     freeTempSpace(pBt);
2673     sqlite3_free(pBt);
2674   }
2675 
2676 #ifndef SQLITE_OMIT_SHARED_CACHE
2677   assert( p->wantToLock==0 );
2678   assert( p->locked==0 );
2679   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2680   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2681 #endif
2682 
2683   sqlite3_free(p);
2684   return SQLITE_OK;
2685 }
2686 
2687 /*
2688 ** Change the "soft" limit on the number of pages in the cache.
2689 ** Unused and unmodified pages will be recycled when the number of
2690 ** pages in the cache exceeds this soft limit.  But the size of the
2691 ** cache is allowed to grow larger than this limit if it contains
2692 ** dirty pages or pages still in active use.
2693 */
2694 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2695   BtShared *pBt = p->pBt;
2696   assert( sqlite3_mutex_held(p->db->mutex) );
2697   sqlite3BtreeEnter(p);
2698   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2699   sqlite3BtreeLeave(p);
2700   return SQLITE_OK;
2701 }
2702 
2703 /*
2704 ** Change the "spill" limit on the number of pages in the cache.
2705 ** If the number of pages exceeds this limit during a write transaction,
2706 ** the pager might attempt to "spill" pages to the journal early in
2707 ** order to free up memory.
2708 **
2709 ** The value returned is the current spill size.  If zero is passed
2710 ** as an argument, no changes are made to the spill size setting, so
2711 ** using mxPage of 0 is a way to query the current spill size.
2712 */
2713 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2714   BtShared *pBt = p->pBt;
2715   int res;
2716   assert( sqlite3_mutex_held(p->db->mutex) );
2717   sqlite3BtreeEnter(p);
2718   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2719   sqlite3BtreeLeave(p);
2720   return res;
2721 }
2722 
2723 #if SQLITE_MAX_MMAP_SIZE>0
2724 /*
2725 ** Change the limit on the amount of the database file that may be
2726 ** memory mapped.
2727 */
2728 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2729   BtShared *pBt = p->pBt;
2730   assert( sqlite3_mutex_held(p->db->mutex) );
2731   sqlite3BtreeEnter(p);
2732   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2733   sqlite3BtreeLeave(p);
2734   return SQLITE_OK;
2735 }
2736 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2737 
2738 /*
2739 ** Change the way data is synced to disk in order to increase or decrease
2740 ** how well the database resists damage due to OS crashes and power
2741 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2742 ** there is a high probability of damage)  Level 2 is the default.  There
2743 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2744 ** probability of damage to near zero but with a write performance reduction.
2745 */
2746 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2747 int sqlite3BtreeSetPagerFlags(
2748   Btree *p,              /* The btree to set the safety level on */
2749   unsigned pgFlags       /* Various PAGER_* flags */
2750 ){
2751   BtShared *pBt = p->pBt;
2752   assert( sqlite3_mutex_held(p->db->mutex) );
2753   sqlite3BtreeEnter(p);
2754   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2755   sqlite3BtreeLeave(p);
2756   return SQLITE_OK;
2757 }
2758 #endif
2759 
2760 /*
2761 ** Change the default pages size and the number of reserved bytes per page.
2762 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2763 ** without changing anything.
2764 **
2765 ** The page size must be a power of 2 between 512 and 65536.  If the page
2766 ** size supplied does not meet this constraint then the page size is not
2767 ** changed.
2768 **
2769 ** Page sizes are constrained to be a power of two so that the region
2770 ** of the database file used for locking (beginning at PENDING_BYTE,
2771 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2772 ** at the beginning of a page.
2773 **
2774 ** If parameter nReserve is less than zero, then the number of reserved
2775 ** bytes per page is left unchanged.
2776 **
2777 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2778 ** and autovacuum mode can no longer be changed.
2779 */
2780 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2781   int rc = SQLITE_OK;
2782   BtShared *pBt = p->pBt;
2783   assert( nReserve>=-1 && nReserve<=255 );
2784   sqlite3BtreeEnter(p);
2785 #if SQLITE_HAS_CODEC
2786   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2787 #endif
2788   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2789     sqlite3BtreeLeave(p);
2790     return SQLITE_READONLY;
2791   }
2792   if( nReserve<0 ){
2793     nReserve = pBt->pageSize - pBt->usableSize;
2794   }
2795   assert( nReserve>=0 && nReserve<=255 );
2796   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2797         ((pageSize-1)&pageSize)==0 ){
2798     assert( (pageSize & 7)==0 );
2799     assert( !pBt->pCursor );
2800     pBt->pageSize = (u32)pageSize;
2801     freeTempSpace(pBt);
2802   }
2803   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2804   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2805   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2806   sqlite3BtreeLeave(p);
2807   return rc;
2808 }
2809 
2810 /*
2811 ** Return the currently defined page size
2812 */
2813 int sqlite3BtreeGetPageSize(Btree *p){
2814   return p->pBt->pageSize;
2815 }
2816 
2817 /*
2818 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2819 ** may only be called if it is guaranteed that the b-tree mutex is already
2820 ** held.
2821 **
2822 ** This is useful in one special case in the backup API code where it is
2823 ** known that the shared b-tree mutex is held, but the mutex on the
2824 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2825 ** were to be called, it might collide with some other operation on the
2826 ** database handle that owns *p, causing undefined behavior.
2827 */
2828 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2829   int n;
2830   assert( sqlite3_mutex_held(p->pBt->mutex) );
2831   n = p->pBt->pageSize - p->pBt->usableSize;
2832   return n;
2833 }
2834 
2835 /*
2836 ** Return the number of bytes of space at the end of every page that
2837 ** are intentually left unused.  This is the "reserved" space that is
2838 ** sometimes used by extensions.
2839 **
2840 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2841 ** greater of the current reserved space and the maximum requested
2842 ** reserve space.
2843 */
2844 int sqlite3BtreeGetOptimalReserve(Btree *p){
2845   int n;
2846   sqlite3BtreeEnter(p);
2847   n = sqlite3BtreeGetReserveNoMutex(p);
2848 #ifdef SQLITE_HAS_CODEC
2849   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2850 #endif
2851   sqlite3BtreeLeave(p);
2852   return n;
2853 }
2854 
2855 
2856 /*
2857 ** Set the maximum page count for a database if mxPage is positive.
2858 ** No changes are made if mxPage is 0 or negative.
2859 ** Regardless of the value of mxPage, return the maximum page count.
2860 */
2861 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2862   int n;
2863   sqlite3BtreeEnter(p);
2864   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2865   sqlite3BtreeLeave(p);
2866   return n;
2867 }
2868 
2869 /*
2870 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2871 **
2872 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2873 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2874 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2875 **    newFlag==(-1)    No changes
2876 **
2877 ** This routine acts as a query if newFlag is less than zero
2878 **
2879 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2880 ** freelist leaf pages are not written back to the database.  Thus in-page
2881 ** deleted content is cleared, but freelist deleted content is not.
2882 **
2883 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2884 ** that freelist leaf pages are written back into the database, increasing
2885 ** the amount of disk I/O.
2886 */
2887 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2888   int b;
2889   if( p==0 ) return 0;
2890   sqlite3BtreeEnter(p);
2891   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2892   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2893   if( newFlag>=0 ){
2894     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2895     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2896   }
2897   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
2898   sqlite3BtreeLeave(p);
2899   return b;
2900 }
2901 
2902 /*
2903 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2904 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2905 ** is disabled. The default value for the auto-vacuum property is
2906 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2907 */
2908 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2909 #ifdef SQLITE_OMIT_AUTOVACUUM
2910   return SQLITE_READONLY;
2911 #else
2912   BtShared *pBt = p->pBt;
2913   int rc = SQLITE_OK;
2914   u8 av = (u8)autoVacuum;
2915 
2916   sqlite3BtreeEnter(p);
2917   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2918     rc = SQLITE_READONLY;
2919   }else{
2920     pBt->autoVacuum = av ?1:0;
2921     pBt->incrVacuum = av==2 ?1:0;
2922   }
2923   sqlite3BtreeLeave(p);
2924   return rc;
2925 #endif
2926 }
2927 
2928 /*
2929 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2930 ** enabled 1 is returned. Otherwise 0.
2931 */
2932 int sqlite3BtreeGetAutoVacuum(Btree *p){
2933 #ifdef SQLITE_OMIT_AUTOVACUUM
2934   return BTREE_AUTOVACUUM_NONE;
2935 #else
2936   int rc;
2937   sqlite3BtreeEnter(p);
2938   rc = (
2939     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2940     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2941     BTREE_AUTOVACUUM_INCR
2942   );
2943   sqlite3BtreeLeave(p);
2944   return rc;
2945 #endif
2946 }
2947 
2948 /*
2949 ** If the user has not set the safety-level for this database connection
2950 ** using "PRAGMA synchronous", and if the safety-level is not already
2951 ** set to the value passed to this function as the second parameter,
2952 ** set it so.
2953 */
2954 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
2955     && !defined(SQLITE_OMIT_WAL)
2956 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2957   sqlite3 *db;
2958   Db *pDb;
2959   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2960     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2961     if( pDb->bSyncSet==0
2962      && pDb->safety_level!=safety_level
2963      && pDb!=&db->aDb[1]
2964     ){
2965       pDb->safety_level = safety_level;
2966       sqlite3PagerSetFlags(pBt->pPager,
2967           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2968     }
2969   }
2970 }
2971 #else
2972 # define setDefaultSyncFlag(pBt,safety_level)
2973 #endif
2974 
2975 /*
2976 ** Get a reference to pPage1 of the database file.  This will
2977 ** also acquire a readlock on that file.
2978 **
2979 ** SQLITE_OK is returned on success.  If the file is not a
2980 ** well-formed database file, then SQLITE_CORRUPT is returned.
2981 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
2982 ** is returned if we run out of memory.
2983 */
2984 static int lockBtree(BtShared *pBt){
2985   int rc;              /* Result code from subfunctions */
2986   MemPage *pPage1;     /* Page 1 of the database file */
2987   int nPage;           /* Number of pages in the database */
2988   int nPageFile = 0;   /* Number of pages in the database file */
2989   int nPageHeader;     /* Number of pages in the database according to hdr */
2990 
2991   assert( sqlite3_mutex_held(pBt->mutex) );
2992   assert( pBt->pPage1==0 );
2993   rc = sqlite3PagerSharedLock(pBt->pPager);
2994   if( rc!=SQLITE_OK ) return rc;
2995   rc = btreeGetPage(pBt, 1, &pPage1, 0);
2996   if( rc!=SQLITE_OK ) return rc;
2997 
2998   /* Do some checking to help insure the file we opened really is
2999   ** a valid database file.
3000   */
3001   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3002   sqlite3PagerPagecount(pBt->pPager, &nPageFile);
3003   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3004     nPage = nPageFile;
3005   }
3006   if( nPage>0 ){
3007     u32 pageSize;
3008     u32 usableSize;
3009     u8 *page1 = pPage1->aData;
3010     rc = SQLITE_NOTADB;
3011     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3012     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3013     ** 61 74 20 33 00. */
3014     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3015       goto page1_init_failed;
3016     }
3017 
3018 #ifdef SQLITE_OMIT_WAL
3019     if( page1[18]>1 ){
3020       pBt->btsFlags |= BTS_READ_ONLY;
3021     }
3022     if( page1[19]>1 ){
3023       goto page1_init_failed;
3024     }
3025 #else
3026     if( page1[18]>2 ){
3027       pBt->btsFlags |= BTS_READ_ONLY;
3028     }
3029     if( page1[19]>2 ){
3030       goto page1_init_failed;
3031     }
3032 
3033     /* If the write version is set to 2, this database should be accessed
3034     ** in WAL mode. If the log is not already open, open it now. Then
3035     ** return SQLITE_OK and return without populating BtShared.pPage1.
3036     ** The caller detects this and calls this function again. This is
3037     ** required as the version of page 1 currently in the page1 buffer
3038     ** may not be the latest version - there may be a newer one in the log
3039     ** file.
3040     */
3041     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3042       int isOpen = 0;
3043       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3044       if( rc!=SQLITE_OK ){
3045         goto page1_init_failed;
3046       }else{
3047         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3048         if( isOpen==0 ){
3049           releasePageOne(pPage1);
3050           return SQLITE_OK;
3051         }
3052       }
3053       rc = SQLITE_NOTADB;
3054     }else{
3055       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3056     }
3057 #endif
3058 
3059     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3060     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3061     **
3062     ** The original design allowed these amounts to vary, but as of
3063     ** version 3.6.0, we require them to be fixed.
3064     */
3065     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3066       goto page1_init_failed;
3067     }
3068     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3069     ** determined by the 2-byte integer located at an offset of 16 bytes from
3070     ** the beginning of the database file. */
3071     pageSize = (page1[16]<<8) | (page1[17]<<16);
3072     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3073     ** between 512 and 65536 inclusive. */
3074     if( ((pageSize-1)&pageSize)!=0
3075      || pageSize>SQLITE_MAX_PAGE_SIZE
3076      || pageSize<=256
3077     ){
3078       goto page1_init_failed;
3079     }
3080     assert( (pageSize & 7)==0 );
3081     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3082     ** integer at offset 20 is the number of bytes of space at the end of
3083     ** each page to reserve for extensions.
3084     **
3085     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3086     ** determined by the one-byte unsigned integer found at an offset of 20
3087     ** into the database file header. */
3088     usableSize = pageSize - page1[20];
3089     if( (u32)pageSize!=pBt->pageSize ){
3090       /* After reading the first page of the database assuming a page size
3091       ** of BtShared.pageSize, we have discovered that the page-size is
3092       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3093       ** zero and return SQLITE_OK. The caller will call this function
3094       ** again with the correct page-size.
3095       */
3096       releasePageOne(pPage1);
3097       pBt->usableSize = usableSize;
3098       pBt->pageSize = pageSize;
3099       freeTempSpace(pBt);
3100       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3101                                    pageSize-usableSize);
3102       return rc;
3103     }
3104     if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
3105       rc = SQLITE_CORRUPT_BKPT;
3106       goto page1_init_failed;
3107     }
3108     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3109     ** be less than 480. In other words, if the page size is 512, then the
3110     ** reserved space size cannot exceed 32. */
3111     if( usableSize<480 ){
3112       goto page1_init_failed;
3113     }
3114     pBt->pageSize = pageSize;
3115     pBt->usableSize = usableSize;
3116 #ifndef SQLITE_OMIT_AUTOVACUUM
3117     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3118     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3119 #endif
3120   }
3121 
3122   /* maxLocal is the maximum amount of payload to store locally for
3123   ** a cell.  Make sure it is small enough so that at least minFanout
3124   ** cells can will fit on one page.  We assume a 10-byte page header.
3125   ** Besides the payload, the cell must store:
3126   **     2-byte pointer to the cell
3127   **     4-byte child pointer
3128   **     9-byte nKey value
3129   **     4-byte nData value
3130   **     4-byte overflow page pointer
3131   ** So a cell consists of a 2-byte pointer, a header which is as much as
3132   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3133   ** page pointer.
3134   */
3135   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3136   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3137   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3138   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3139   if( pBt->maxLocal>127 ){
3140     pBt->max1bytePayload = 127;
3141   }else{
3142     pBt->max1bytePayload = (u8)pBt->maxLocal;
3143   }
3144   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3145   pBt->pPage1 = pPage1;
3146   pBt->nPage = nPage;
3147   return SQLITE_OK;
3148 
3149 page1_init_failed:
3150   releasePageOne(pPage1);
3151   pBt->pPage1 = 0;
3152   return rc;
3153 }
3154 
3155 #ifndef NDEBUG
3156 /*
3157 ** Return the number of cursors open on pBt. This is for use
3158 ** in assert() expressions, so it is only compiled if NDEBUG is not
3159 ** defined.
3160 **
3161 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3162 ** false then all cursors are counted.
3163 **
3164 ** For the purposes of this routine, a cursor is any cursor that
3165 ** is capable of reading or writing to the database.  Cursors that
3166 ** have been tripped into the CURSOR_FAULT state are not counted.
3167 */
3168 static int countValidCursors(BtShared *pBt, int wrOnly){
3169   BtCursor *pCur;
3170   int r = 0;
3171   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3172     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3173      && pCur->eState!=CURSOR_FAULT ) r++;
3174   }
3175   return r;
3176 }
3177 #endif
3178 
3179 /*
3180 ** If there are no outstanding cursors and we are not in the middle
3181 ** of a transaction but there is a read lock on the database, then
3182 ** this routine unrefs the first page of the database file which
3183 ** has the effect of releasing the read lock.
3184 **
3185 ** If there is a transaction in progress, this routine is a no-op.
3186 */
3187 static void unlockBtreeIfUnused(BtShared *pBt){
3188   assert( sqlite3_mutex_held(pBt->mutex) );
3189   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3190   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3191     MemPage *pPage1 = pBt->pPage1;
3192     assert( pPage1->aData );
3193     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3194     pBt->pPage1 = 0;
3195     releasePageOne(pPage1);
3196   }
3197 }
3198 
3199 /*
3200 ** If pBt points to an empty file then convert that empty file
3201 ** into a new empty database by initializing the first page of
3202 ** the database.
3203 */
3204 static int newDatabase(BtShared *pBt){
3205   MemPage *pP1;
3206   unsigned char *data;
3207   int rc;
3208 
3209   assert( sqlite3_mutex_held(pBt->mutex) );
3210   if( pBt->nPage>0 ){
3211     return SQLITE_OK;
3212   }
3213   pP1 = pBt->pPage1;
3214   assert( pP1!=0 );
3215   data = pP1->aData;
3216   rc = sqlite3PagerWrite(pP1->pDbPage);
3217   if( rc ) return rc;
3218   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3219   assert( sizeof(zMagicHeader)==16 );
3220   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3221   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3222   data[18] = 1;
3223   data[19] = 1;
3224   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3225   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3226   data[21] = 64;
3227   data[22] = 32;
3228   data[23] = 32;
3229   memset(&data[24], 0, 100-24);
3230   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3231   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3232 #ifndef SQLITE_OMIT_AUTOVACUUM
3233   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3234   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3235   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3236   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3237 #endif
3238   pBt->nPage = 1;
3239   data[31] = 1;
3240   return SQLITE_OK;
3241 }
3242 
3243 /*
3244 ** Initialize the first page of the database file (creating a database
3245 ** consisting of a single page and no schema objects). Return SQLITE_OK
3246 ** if successful, or an SQLite error code otherwise.
3247 */
3248 int sqlite3BtreeNewDb(Btree *p){
3249   int rc;
3250   sqlite3BtreeEnter(p);
3251   p->pBt->nPage = 0;
3252   rc = newDatabase(p->pBt);
3253   sqlite3BtreeLeave(p);
3254   return rc;
3255 }
3256 
3257 /*
3258 ** Attempt to start a new transaction. A write-transaction
3259 ** is started if the second argument is nonzero, otherwise a read-
3260 ** transaction.  If the second argument is 2 or more and exclusive
3261 ** transaction is started, meaning that no other process is allowed
3262 ** to access the database.  A preexisting transaction may not be
3263 ** upgraded to exclusive by calling this routine a second time - the
3264 ** exclusivity flag only works for a new transaction.
3265 **
3266 ** A write-transaction must be started before attempting any
3267 ** changes to the database.  None of the following routines
3268 ** will work unless a transaction is started first:
3269 **
3270 **      sqlite3BtreeCreateTable()
3271 **      sqlite3BtreeCreateIndex()
3272 **      sqlite3BtreeClearTable()
3273 **      sqlite3BtreeDropTable()
3274 **      sqlite3BtreeInsert()
3275 **      sqlite3BtreeDelete()
3276 **      sqlite3BtreeUpdateMeta()
3277 **
3278 ** If an initial attempt to acquire the lock fails because of lock contention
3279 ** and the database was previously unlocked, then invoke the busy handler
3280 ** if there is one.  But if there was previously a read-lock, do not
3281 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3282 ** returned when there is already a read-lock in order to avoid a deadlock.
3283 **
3284 ** Suppose there are two processes A and B.  A has a read lock and B has
3285 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3286 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3287 ** One or the other of the two processes must give way or there can be
3288 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3289 ** when A already has a read lock, we encourage A to give up and let B
3290 ** proceed.
3291 */
3292 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3293   BtShared *pBt = p->pBt;
3294   int rc = SQLITE_OK;
3295 
3296   sqlite3BtreeEnter(p);
3297   btreeIntegrity(p);
3298 
3299   /* If the btree is already in a write-transaction, or it
3300   ** is already in a read-transaction and a read-transaction
3301   ** is requested, this is a no-op.
3302   */
3303   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3304     goto trans_begun;
3305   }
3306   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3307 
3308   /* Write transactions are not possible on a read-only database */
3309   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3310     rc = SQLITE_READONLY;
3311     goto trans_begun;
3312   }
3313 
3314 #ifndef SQLITE_OMIT_SHARED_CACHE
3315   {
3316     sqlite3 *pBlock = 0;
3317     /* If another database handle has already opened a write transaction
3318     ** on this shared-btree structure and a second write transaction is
3319     ** requested, return SQLITE_LOCKED.
3320     */
3321     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3322      || (pBt->btsFlags & BTS_PENDING)!=0
3323     ){
3324       pBlock = pBt->pWriter->db;
3325     }else if( wrflag>1 ){
3326       BtLock *pIter;
3327       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3328         if( pIter->pBtree!=p ){
3329           pBlock = pIter->pBtree->db;
3330           break;
3331         }
3332       }
3333     }
3334     if( pBlock ){
3335       sqlite3ConnectionBlocked(p->db, pBlock);
3336       rc = SQLITE_LOCKED_SHAREDCACHE;
3337       goto trans_begun;
3338     }
3339   }
3340 #endif
3341 
3342   /* Any read-only or read-write transaction implies a read-lock on
3343   ** page 1. So if some other shared-cache client already has a write-lock
3344   ** on page 1, the transaction cannot be opened. */
3345   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3346   if( SQLITE_OK!=rc ) goto trans_begun;
3347 
3348   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3349   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3350   do {
3351     /* Call lockBtree() until either pBt->pPage1 is populated or
3352     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3353     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3354     ** reading page 1 it discovers that the page-size of the database
3355     ** file is not pBt->pageSize. In this case lockBtree() will update
3356     ** pBt->pageSize to the page-size of the file on disk.
3357     */
3358     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3359 
3360     if( rc==SQLITE_OK && wrflag ){
3361       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3362         rc = SQLITE_READONLY;
3363       }else{
3364         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3365         if( rc==SQLITE_OK ){
3366           rc = newDatabase(pBt);
3367         }
3368       }
3369     }
3370 
3371     if( rc!=SQLITE_OK ){
3372       unlockBtreeIfUnused(pBt);
3373     }
3374   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3375           btreeInvokeBusyHandler(pBt) );
3376   sqlite3PagerResetLockTimeout(pBt->pPager);
3377 
3378   if( rc==SQLITE_OK ){
3379     if( p->inTrans==TRANS_NONE ){
3380       pBt->nTransaction++;
3381 #ifndef SQLITE_OMIT_SHARED_CACHE
3382       if( p->sharable ){
3383         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3384         p->lock.eLock = READ_LOCK;
3385         p->lock.pNext = pBt->pLock;
3386         pBt->pLock = &p->lock;
3387       }
3388 #endif
3389     }
3390     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3391     if( p->inTrans>pBt->inTransaction ){
3392       pBt->inTransaction = p->inTrans;
3393     }
3394     if( wrflag ){
3395       MemPage *pPage1 = pBt->pPage1;
3396 #ifndef SQLITE_OMIT_SHARED_CACHE
3397       assert( !pBt->pWriter );
3398       pBt->pWriter = p;
3399       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3400       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3401 #endif
3402 
3403       /* If the db-size header field is incorrect (as it may be if an old
3404       ** client has been writing the database file), update it now. Doing
3405       ** this sooner rather than later means the database size can safely
3406       ** re-read the database size from page 1 if a savepoint or transaction
3407       ** rollback occurs within the transaction.
3408       */
3409       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3410         rc = sqlite3PagerWrite(pPage1->pDbPage);
3411         if( rc==SQLITE_OK ){
3412           put4byte(&pPage1->aData[28], pBt->nPage);
3413         }
3414       }
3415     }
3416   }
3417 
3418 
3419 trans_begun:
3420   if( rc==SQLITE_OK && wrflag ){
3421     /* This call makes sure that the pager has the correct number of
3422     ** open savepoints. If the second parameter is greater than 0 and
3423     ** the sub-journal is not already open, then it will be opened here.
3424     */
3425     rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3426   }
3427 
3428   btreeIntegrity(p);
3429   sqlite3BtreeLeave(p);
3430   return rc;
3431 }
3432 
3433 #ifndef SQLITE_OMIT_AUTOVACUUM
3434 
3435 /*
3436 ** Set the pointer-map entries for all children of page pPage. Also, if
3437 ** pPage contains cells that point to overflow pages, set the pointer
3438 ** map entries for the overflow pages as well.
3439 */
3440 static int setChildPtrmaps(MemPage *pPage){
3441   int i;                             /* Counter variable */
3442   int nCell;                         /* Number of cells in page pPage */
3443   int rc;                            /* Return code */
3444   BtShared *pBt = pPage->pBt;
3445   Pgno pgno = pPage->pgno;
3446 
3447   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3448   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3449   if( rc!=SQLITE_OK ) return rc;
3450   nCell = pPage->nCell;
3451 
3452   for(i=0; i<nCell; i++){
3453     u8 *pCell = findCell(pPage, i);
3454 
3455     ptrmapPutOvflPtr(pPage, pCell, &rc);
3456 
3457     if( !pPage->leaf ){
3458       Pgno childPgno = get4byte(pCell);
3459       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3460     }
3461   }
3462 
3463   if( !pPage->leaf ){
3464     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3465     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3466   }
3467 
3468   return rc;
3469 }
3470 
3471 /*
3472 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3473 ** that it points to iTo. Parameter eType describes the type of pointer to
3474 ** be modified, as  follows:
3475 **
3476 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3477 **                   page of pPage.
3478 **
3479 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3480 **                   page pointed to by one of the cells on pPage.
3481 **
3482 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3483 **                   overflow page in the list.
3484 */
3485 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3486   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3487   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3488   if( eType==PTRMAP_OVERFLOW2 ){
3489     /* The pointer is always the first 4 bytes of the page in this case.  */
3490     if( get4byte(pPage->aData)!=iFrom ){
3491       return SQLITE_CORRUPT_PAGE(pPage);
3492     }
3493     put4byte(pPage->aData, iTo);
3494   }else{
3495     int i;
3496     int nCell;
3497     int rc;
3498 
3499     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3500     if( rc ) return rc;
3501     nCell = pPage->nCell;
3502 
3503     for(i=0; i<nCell; i++){
3504       u8 *pCell = findCell(pPage, i);
3505       if( eType==PTRMAP_OVERFLOW1 ){
3506         CellInfo info;
3507         pPage->xParseCell(pPage, pCell, &info);
3508         if( info.nLocal<info.nPayload ){
3509           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3510             return SQLITE_CORRUPT_PAGE(pPage);
3511           }
3512           if( iFrom==get4byte(pCell+info.nSize-4) ){
3513             put4byte(pCell+info.nSize-4, iTo);
3514             break;
3515           }
3516         }
3517       }else{
3518         if( get4byte(pCell)==iFrom ){
3519           put4byte(pCell, iTo);
3520           break;
3521         }
3522       }
3523     }
3524 
3525     if( i==nCell ){
3526       if( eType!=PTRMAP_BTREE ||
3527           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3528         return SQLITE_CORRUPT_PAGE(pPage);
3529       }
3530       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3531     }
3532   }
3533   return SQLITE_OK;
3534 }
3535 
3536 
3537 /*
3538 ** Move the open database page pDbPage to location iFreePage in the
3539 ** database. The pDbPage reference remains valid.
3540 **
3541 ** The isCommit flag indicates that there is no need to remember that
3542 ** the journal needs to be sync()ed before database page pDbPage->pgno
3543 ** can be written to. The caller has already promised not to write to that
3544 ** page.
3545 */
3546 static int relocatePage(
3547   BtShared *pBt,           /* Btree */
3548   MemPage *pDbPage,        /* Open page to move */
3549   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3550   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3551   Pgno iFreePage,          /* The location to move pDbPage to */
3552   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3553 ){
3554   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3555   Pgno iDbPage = pDbPage->pgno;
3556   Pager *pPager = pBt->pPager;
3557   int rc;
3558 
3559   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3560       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3561   assert( sqlite3_mutex_held(pBt->mutex) );
3562   assert( pDbPage->pBt==pBt );
3563 
3564   /* Move page iDbPage from its current location to page number iFreePage */
3565   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3566       iDbPage, iFreePage, iPtrPage, eType));
3567   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3568   if( rc!=SQLITE_OK ){
3569     return rc;
3570   }
3571   pDbPage->pgno = iFreePage;
3572 
3573   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3574   ** that point to overflow pages. The pointer map entries for all these
3575   ** pages need to be changed.
3576   **
3577   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3578   ** pointer to a subsequent overflow page. If this is the case, then
3579   ** the pointer map needs to be updated for the subsequent overflow page.
3580   */
3581   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3582     rc = setChildPtrmaps(pDbPage);
3583     if( rc!=SQLITE_OK ){
3584       return rc;
3585     }
3586   }else{
3587     Pgno nextOvfl = get4byte(pDbPage->aData);
3588     if( nextOvfl!=0 ){
3589       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3590       if( rc!=SQLITE_OK ){
3591         return rc;
3592       }
3593     }
3594   }
3595 
3596   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3597   ** that it points at iFreePage. Also fix the pointer map entry for
3598   ** iPtrPage.
3599   */
3600   if( eType!=PTRMAP_ROOTPAGE ){
3601     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3602     if( rc!=SQLITE_OK ){
3603       return rc;
3604     }
3605     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3606     if( rc!=SQLITE_OK ){
3607       releasePage(pPtrPage);
3608       return rc;
3609     }
3610     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3611     releasePage(pPtrPage);
3612     if( rc==SQLITE_OK ){
3613       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3614     }
3615   }
3616   return rc;
3617 }
3618 
3619 /* Forward declaration required by incrVacuumStep(). */
3620 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3621 
3622 /*
3623 ** Perform a single step of an incremental-vacuum. If successful, return
3624 ** SQLITE_OK. If there is no work to do (and therefore no point in
3625 ** calling this function again), return SQLITE_DONE. Or, if an error
3626 ** occurs, return some other error code.
3627 **
3628 ** More specifically, this function attempts to re-organize the database so
3629 ** that the last page of the file currently in use is no longer in use.
3630 **
3631 ** Parameter nFin is the number of pages that this database would contain
3632 ** were this function called until it returns SQLITE_DONE.
3633 **
3634 ** If the bCommit parameter is non-zero, this function assumes that the
3635 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3636 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3637 ** operation, or false for an incremental vacuum.
3638 */
3639 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3640   Pgno nFreeList;           /* Number of pages still on the free-list */
3641   int rc;
3642 
3643   assert( sqlite3_mutex_held(pBt->mutex) );
3644   assert( iLastPg>nFin );
3645 
3646   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3647     u8 eType;
3648     Pgno iPtrPage;
3649 
3650     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3651     if( nFreeList==0 ){
3652       return SQLITE_DONE;
3653     }
3654 
3655     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3656     if( rc!=SQLITE_OK ){
3657       return rc;
3658     }
3659     if( eType==PTRMAP_ROOTPAGE ){
3660       return SQLITE_CORRUPT_BKPT;
3661     }
3662 
3663     if( eType==PTRMAP_FREEPAGE ){
3664       if( bCommit==0 ){
3665         /* Remove the page from the files free-list. This is not required
3666         ** if bCommit is non-zero. In that case, the free-list will be
3667         ** truncated to zero after this function returns, so it doesn't
3668         ** matter if it still contains some garbage entries.
3669         */
3670         Pgno iFreePg;
3671         MemPage *pFreePg;
3672         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3673         if( rc!=SQLITE_OK ){
3674           return rc;
3675         }
3676         assert( iFreePg==iLastPg );
3677         releasePage(pFreePg);
3678       }
3679     } else {
3680       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3681       MemPage *pLastPg;
3682       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3683       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3684 
3685       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3686       if( rc!=SQLITE_OK ){
3687         return rc;
3688       }
3689 
3690       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3691       ** is swapped with the first free page pulled off the free list.
3692       **
3693       ** On the other hand, if bCommit is greater than zero, then keep
3694       ** looping until a free-page located within the first nFin pages
3695       ** of the file is found.
3696       */
3697       if( bCommit==0 ){
3698         eMode = BTALLOC_LE;
3699         iNear = nFin;
3700       }
3701       do {
3702         MemPage *pFreePg;
3703         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3704         if( rc!=SQLITE_OK ){
3705           releasePage(pLastPg);
3706           return rc;
3707         }
3708         releasePage(pFreePg);
3709       }while( bCommit && iFreePg>nFin );
3710       assert( iFreePg<iLastPg );
3711 
3712       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3713       releasePage(pLastPg);
3714       if( rc!=SQLITE_OK ){
3715         return rc;
3716       }
3717     }
3718   }
3719 
3720   if( bCommit==0 ){
3721     do {
3722       iLastPg--;
3723     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3724     pBt->bDoTruncate = 1;
3725     pBt->nPage = iLastPg;
3726   }
3727   return SQLITE_OK;
3728 }
3729 
3730 /*
3731 ** The database opened by the first argument is an auto-vacuum database
3732 ** nOrig pages in size containing nFree free pages. Return the expected
3733 ** size of the database in pages following an auto-vacuum operation.
3734 */
3735 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3736   int nEntry;                     /* Number of entries on one ptrmap page */
3737   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3738   Pgno nFin;                      /* Return value */
3739 
3740   nEntry = pBt->usableSize/5;
3741   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3742   nFin = nOrig - nFree - nPtrmap;
3743   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3744     nFin--;
3745   }
3746   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3747     nFin--;
3748   }
3749 
3750   return nFin;
3751 }
3752 
3753 /*
3754 ** A write-transaction must be opened before calling this function.
3755 ** It performs a single unit of work towards an incremental vacuum.
3756 **
3757 ** If the incremental vacuum is finished after this function has run,
3758 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3759 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3760 */
3761 int sqlite3BtreeIncrVacuum(Btree *p){
3762   int rc;
3763   BtShared *pBt = p->pBt;
3764 
3765   sqlite3BtreeEnter(p);
3766   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3767   if( !pBt->autoVacuum ){
3768     rc = SQLITE_DONE;
3769   }else{
3770     Pgno nOrig = btreePagecount(pBt);
3771     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3772     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3773 
3774     if( nOrig<nFin ){
3775       rc = SQLITE_CORRUPT_BKPT;
3776     }else if( nFree>0 ){
3777       rc = saveAllCursors(pBt, 0, 0);
3778       if( rc==SQLITE_OK ){
3779         invalidateAllOverflowCache(pBt);
3780         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3781       }
3782       if( rc==SQLITE_OK ){
3783         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3784         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3785       }
3786     }else{
3787       rc = SQLITE_DONE;
3788     }
3789   }
3790   sqlite3BtreeLeave(p);
3791   return rc;
3792 }
3793 
3794 /*
3795 ** This routine is called prior to sqlite3PagerCommit when a transaction
3796 ** is committed for an auto-vacuum database.
3797 **
3798 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3799 ** the database file should be truncated to during the commit process.
3800 ** i.e. the database has been reorganized so that only the first *pnTrunc
3801 ** pages are in use.
3802 */
3803 static int autoVacuumCommit(BtShared *pBt){
3804   int rc = SQLITE_OK;
3805   Pager *pPager = pBt->pPager;
3806   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3807 
3808   assert( sqlite3_mutex_held(pBt->mutex) );
3809   invalidateAllOverflowCache(pBt);
3810   assert(pBt->autoVacuum);
3811   if( !pBt->incrVacuum ){
3812     Pgno nFin;         /* Number of pages in database after autovacuuming */
3813     Pgno nFree;        /* Number of pages on the freelist initially */
3814     Pgno iFree;        /* The next page to be freed */
3815     Pgno nOrig;        /* Database size before freeing */
3816 
3817     nOrig = btreePagecount(pBt);
3818     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3819       /* It is not possible to create a database for which the final page
3820       ** is either a pointer-map page or the pending-byte page. If one
3821       ** is encountered, this indicates corruption.
3822       */
3823       return SQLITE_CORRUPT_BKPT;
3824     }
3825 
3826     nFree = get4byte(&pBt->pPage1->aData[36]);
3827     nFin = finalDbSize(pBt, nOrig, nFree);
3828     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3829     if( nFin<nOrig ){
3830       rc = saveAllCursors(pBt, 0, 0);
3831     }
3832     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3833       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3834     }
3835     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3836       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3837       put4byte(&pBt->pPage1->aData[32], 0);
3838       put4byte(&pBt->pPage1->aData[36], 0);
3839       put4byte(&pBt->pPage1->aData[28], nFin);
3840       pBt->bDoTruncate = 1;
3841       pBt->nPage = nFin;
3842     }
3843     if( rc!=SQLITE_OK ){
3844       sqlite3PagerRollback(pPager);
3845     }
3846   }
3847 
3848   assert( nRef>=sqlite3PagerRefcount(pPager) );
3849   return rc;
3850 }
3851 
3852 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3853 # define setChildPtrmaps(x) SQLITE_OK
3854 #endif
3855 
3856 /*
3857 ** This routine does the first phase of a two-phase commit.  This routine
3858 ** causes a rollback journal to be created (if it does not already exist)
3859 ** and populated with enough information so that if a power loss occurs
3860 ** the database can be restored to its original state by playing back
3861 ** the journal.  Then the contents of the journal are flushed out to
3862 ** the disk.  After the journal is safely on oxide, the changes to the
3863 ** database are written into the database file and flushed to oxide.
3864 ** At the end of this call, the rollback journal still exists on the
3865 ** disk and we are still holding all locks, so the transaction has not
3866 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3867 ** commit process.
3868 **
3869 ** This call is a no-op if no write-transaction is currently active on pBt.
3870 **
3871 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3872 ** the name of a master journal file that should be written into the
3873 ** individual journal file, or is NULL, indicating no master journal file
3874 ** (single database transaction).
3875 **
3876 ** When this is called, the master journal should already have been
3877 ** created, populated with this journal pointer and synced to disk.
3878 **
3879 ** Once this is routine has returned, the only thing required to commit
3880 ** the write-transaction for this database file is to delete the journal.
3881 */
3882 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3883   int rc = SQLITE_OK;
3884   if( p->inTrans==TRANS_WRITE ){
3885     BtShared *pBt = p->pBt;
3886     sqlite3BtreeEnter(p);
3887 #ifndef SQLITE_OMIT_AUTOVACUUM
3888     if( pBt->autoVacuum ){
3889       rc = autoVacuumCommit(pBt);
3890       if( rc!=SQLITE_OK ){
3891         sqlite3BtreeLeave(p);
3892         return rc;
3893       }
3894     }
3895     if( pBt->bDoTruncate ){
3896       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3897     }
3898 #endif
3899     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3900     sqlite3BtreeLeave(p);
3901   }
3902   return rc;
3903 }
3904 
3905 /*
3906 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3907 ** at the conclusion of a transaction.
3908 */
3909 static void btreeEndTransaction(Btree *p){
3910   BtShared *pBt = p->pBt;
3911   sqlite3 *db = p->db;
3912   assert( sqlite3BtreeHoldsMutex(p) );
3913 
3914 #ifndef SQLITE_OMIT_AUTOVACUUM
3915   pBt->bDoTruncate = 0;
3916 #endif
3917   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3918     /* If there are other active statements that belong to this database
3919     ** handle, downgrade to a read-only transaction. The other statements
3920     ** may still be reading from the database.  */
3921     downgradeAllSharedCacheTableLocks(p);
3922     p->inTrans = TRANS_READ;
3923   }else{
3924     /* If the handle had any kind of transaction open, decrement the
3925     ** transaction count of the shared btree. If the transaction count
3926     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3927     ** call below will unlock the pager.  */
3928     if( p->inTrans!=TRANS_NONE ){
3929       clearAllSharedCacheTableLocks(p);
3930       pBt->nTransaction--;
3931       if( 0==pBt->nTransaction ){
3932         pBt->inTransaction = TRANS_NONE;
3933       }
3934     }
3935 
3936     /* Set the current transaction state to TRANS_NONE and unlock the
3937     ** pager if this call closed the only read or write transaction.  */
3938     p->inTrans = TRANS_NONE;
3939     unlockBtreeIfUnused(pBt);
3940   }
3941 
3942   btreeIntegrity(p);
3943 }
3944 
3945 /*
3946 ** Commit the transaction currently in progress.
3947 **
3948 ** This routine implements the second phase of a 2-phase commit.  The
3949 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3950 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
3951 ** routine did all the work of writing information out to disk and flushing the
3952 ** contents so that they are written onto the disk platter.  All this
3953 ** routine has to do is delete or truncate or zero the header in the
3954 ** the rollback journal (which causes the transaction to commit) and
3955 ** drop locks.
3956 **
3957 ** Normally, if an error occurs while the pager layer is attempting to
3958 ** finalize the underlying journal file, this function returns an error and
3959 ** the upper layer will attempt a rollback. However, if the second argument
3960 ** is non-zero then this b-tree transaction is part of a multi-file
3961 ** transaction. In this case, the transaction has already been committed
3962 ** (by deleting a master journal file) and the caller will ignore this
3963 ** functions return code. So, even if an error occurs in the pager layer,
3964 ** reset the b-tree objects internal state to indicate that the write
3965 ** transaction has been closed. This is quite safe, as the pager will have
3966 ** transitioned to the error state.
3967 **
3968 ** This will release the write lock on the database file.  If there
3969 ** are no active cursors, it also releases the read lock.
3970 */
3971 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3972 
3973   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3974   sqlite3BtreeEnter(p);
3975   btreeIntegrity(p);
3976 
3977   /* If the handle has a write-transaction open, commit the shared-btrees
3978   ** transaction and set the shared state to TRANS_READ.
3979   */
3980   if( p->inTrans==TRANS_WRITE ){
3981     int rc;
3982     BtShared *pBt = p->pBt;
3983     assert( pBt->inTransaction==TRANS_WRITE );
3984     assert( pBt->nTransaction>0 );
3985     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3986     if( rc!=SQLITE_OK && bCleanup==0 ){
3987       sqlite3BtreeLeave(p);
3988       return rc;
3989     }
3990     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
3991     pBt->inTransaction = TRANS_READ;
3992     btreeClearHasContent(pBt);
3993   }
3994 
3995   btreeEndTransaction(p);
3996   sqlite3BtreeLeave(p);
3997   return SQLITE_OK;
3998 }
3999 
4000 /*
4001 ** Do both phases of a commit.
4002 */
4003 int sqlite3BtreeCommit(Btree *p){
4004   int rc;
4005   sqlite3BtreeEnter(p);
4006   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4007   if( rc==SQLITE_OK ){
4008     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4009   }
4010   sqlite3BtreeLeave(p);
4011   return rc;
4012 }
4013 
4014 /*
4015 ** This routine sets the state to CURSOR_FAULT and the error
4016 ** code to errCode for every cursor on any BtShared that pBtree
4017 ** references.  Or if the writeOnly flag is set to 1, then only
4018 ** trip write cursors and leave read cursors unchanged.
4019 **
4020 ** Every cursor is a candidate to be tripped, including cursors
4021 ** that belong to other database connections that happen to be
4022 ** sharing the cache with pBtree.
4023 **
4024 ** This routine gets called when a rollback occurs. If the writeOnly
4025 ** flag is true, then only write-cursors need be tripped - read-only
4026 ** cursors save their current positions so that they may continue
4027 ** following the rollback. Or, if writeOnly is false, all cursors are
4028 ** tripped. In general, writeOnly is false if the transaction being
4029 ** rolled back modified the database schema. In this case b-tree root
4030 ** pages may be moved or deleted from the database altogether, making
4031 ** it unsafe for read cursors to continue.
4032 **
4033 ** If the writeOnly flag is true and an error is encountered while
4034 ** saving the current position of a read-only cursor, all cursors,
4035 ** including all read-cursors are tripped.
4036 **
4037 ** SQLITE_OK is returned if successful, or if an error occurs while
4038 ** saving a cursor position, an SQLite error code.
4039 */
4040 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4041   BtCursor *p;
4042   int rc = SQLITE_OK;
4043 
4044   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4045   if( pBtree ){
4046     sqlite3BtreeEnter(pBtree);
4047     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4048       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4049         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4050           rc = saveCursorPosition(p);
4051           if( rc!=SQLITE_OK ){
4052             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4053             break;
4054           }
4055         }
4056       }else{
4057         sqlite3BtreeClearCursor(p);
4058         p->eState = CURSOR_FAULT;
4059         p->skipNext = errCode;
4060       }
4061       btreeReleaseAllCursorPages(p);
4062     }
4063     sqlite3BtreeLeave(pBtree);
4064   }
4065   return rc;
4066 }
4067 
4068 /*
4069 ** Rollback the transaction in progress.
4070 **
4071 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4072 ** Only write cursors are tripped if writeOnly is true but all cursors are
4073 ** tripped if writeOnly is false.  Any attempt to use
4074 ** a tripped cursor will result in an error.
4075 **
4076 ** This will release the write lock on the database file.  If there
4077 ** are no active cursors, it also releases the read lock.
4078 */
4079 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4080   int rc;
4081   BtShared *pBt = p->pBt;
4082   MemPage *pPage1;
4083 
4084   assert( writeOnly==1 || writeOnly==0 );
4085   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4086   sqlite3BtreeEnter(p);
4087   if( tripCode==SQLITE_OK ){
4088     rc = tripCode = saveAllCursors(pBt, 0, 0);
4089     if( rc ) writeOnly = 0;
4090   }else{
4091     rc = SQLITE_OK;
4092   }
4093   if( tripCode ){
4094     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4095     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4096     if( rc2!=SQLITE_OK ) rc = rc2;
4097   }
4098   btreeIntegrity(p);
4099 
4100   if( p->inTrans==TRANS_WRITE ){
4101     int rc2;
4102 
4103     assert( TRANS_WRITE==pBt->inTransaction );
4104     rc2 = sqlite3PagerRollback(pBt->pPager);
4105     if( rc2!=SQLITE_OK ){
4106       rc = rc2;
4107     }
4108 
4109     /* The rollback may have destroyed the pPage1->aData value.  So
4110     ** call btreeGetPage() on page 1 again to make
4111     ** sure pPage1->aData is set correctly. */
4112     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4113       int nPage = get4byte(28+(u8*)pPage1->aData);
4114       testcase( nPage==0 );
4115       if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4116       testcase( pBt->nPage!=nPage );
4117       pBt->nPage = nPage;
4118       releasePageOne(pPage1);
4119     }
4120     assert( countValidCursors(pBt, 1)==0 );
4121     pBt->inTransaction = TRANS_READ;
4122     btreeClearHasContent(pBt);
4123   }
4124 
4125   btreeEndTransaction(p);
4126   sqlite3BtreeLeave(p);
4127   return rc;
4128 }
4129 
4130 /*
4131 ** Start a statement subtransaction. The subtransaction can be rolled
4132 ** back independently of the main transaction. You must start a transaction
4133 ** before starting a subtransaction. The subtransaction is ended automatically
4134 ** if the main transaction commits or rolls back.
4135 **
4136 ** Statement subtransactions are used around individual SQL statements
4137 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4138 ** error occurs within the statement, the effect of that one statement
4139 ** can be rolled back without having to rollback the entire transaction.
4140 **
4141 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4142 ** value passed as the second parameter is the total number of savepoints,
4143 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4144 ** are no active savepoints and no other statement-transactions open,
4145 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4146 ** using the sqlite3BtreeSavepoint() function.
4147 */
4148 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4149   int rc;
4150   BtShared *pBt = p->pBt;
4151   sqlite3BtreeEnter(p);
4152   assert( p->inTrans==TRANS_WRITE );
4153   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4154   assert( iStatement>0 );
4155   assert( iStatement>p->db->nSavepoint );
4156   assert( pBt->inTransaction==TRANS_WRITE );
4157   /* At the pager level, a statement transaction is a savepoint with
4158   ** an index greater than all savepoints created explicitly using
4159   ** SQL statements. It is illegal to open, release or rollback any
4160   ** such savepoints while the statement transaction savepoint is active.
4161   */
4162   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4163   sqlite3BtreeLeave(p);
4164   return rc;
4165 }
4166 
4167 /*
4168 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4169 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4170 ** savepoint identified by parameter iSavepoint, depending on the value
4171 ** of op.
4172 **
4173 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4174 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4175 ** contents of the entire transaction are rolled back. This is different
4176 ** from a normal transaction rollback, as no locks are released and the
4177 ** transaction remains open.
4178 */
4179 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4180   int rc = SQLITE_OK;
4181   if( p && p->inTrans==TRANS_WRITE ){
4182     BtShared *pBt = p->pBt;
4183     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4184     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4185     sqlite3BtreeEnter(p);
4186     if( op==SAVEPOINT_ROLLBACK ){
4187       rc = saveAllCursors(pBt, 0, 0);
4188     }
4189     if( rc==SQLITE_OK ){
4190       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4191     }
4192     if( rc==SQLITE_OK ){
4193       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4194         pBt->nPage = 0;
4195       }
4196       rc = newDatabase(pBt);
4197       pBt->nPage = get4byte(28 + pBt->pPage1->aData);
4198 
4199       /* The database size was written into the offset 28 of the header
4200       ** when the transaction started, so we know that the value at offset
4201       ** 28 is nonzero. */
4202       assert( pBt->nPage>0 );
4203     }
4204     sqlite3BtreeLeave(p);
4205   }
4206   return rc;
4207 }
4208 
4209 /*
4210 ** Create a new cursor for the BTree whose root is on the page
4211 ** iTable. If a read-only cursor is requested, it is assumed that
4212 ** the caller already has at least a read-only transaction open
4213 ** on the database already. If a write-cursor is requested, then
4214 ** the caller is assumed to have an open write transaction.
4215 **
4216 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4217 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4218 ** can be used for reading or for writing if other conditions for writing
4219 ** are also met.  These are the conditions that must be met in order
4220 ** for writing to be allowed:
4221 **
4222 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4223 **
4224 ** 2:  Other database connections that share the same pager cache
4225 **     but which are not in the READ_UNCOMMITTED state may not have
4226 **     cursors open with wrFlag==0 on the same table.  Otherwise
4227 **     the changes made by this write cursor would be visible to
4228 **     the read cursors in the other database connection.
4229 **
4230 ** 3:  The database must be writable (not on read-only media)
4231 **
4232 ** 4:  There must be an active transaction.
4233 **
4234 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4235 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4236 ** this cursor will only be used to seek to and delete entries of an index
4237 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4238 ** this implementation.  But in a hypothetical alternative storage engine
4239 ** in which index entries are automatically deleted when corresponding table
4240 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4241 ** operations on this cursor can be no-ops and all READ operations can
4242 ** return a null row (2-bytes: 0x01 0x00).
4243 **
4244 ** No checking is done to make sure that page iTable really is the
4245 ** root page of a b-tree.  If it is not, then the cursor acquired
4246 ** will not work correctly.
4247 **
4248 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4249 ** on pCur to initialize the memory space prior to invoking this routine.
4250 */
4251 static int btreeCursor(
4252   Btree *p,                              /* The btree */
4253   int iTable,                            /* Root page of table to open */
4254   int wrFlag,                            /* 1 to write. 0 read-only */
4255   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4256   BtCursor *pCur                         /* Space for new cursor */
4257 ){
4258   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4259   BtCursor *pX;                          /* Looping over other all cursors */
4260 
4261   assert( sqlite3BtreeHoldsMutex(p) );
4262   assert( wrFlag==0
4263        || wrFlag==BTREE_WRCSR
4264        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4265   );
4266 
4267   /* The following assert statements verify that if this is a sharable
4268   ** b-tree database, the connection is holding the required table locks,
4269   ** and that no other connection has any open cursor that conflicts with
4270   ** this lock.  */
4271   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4272   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4273 
4274   /* Assert that the caller has opened the required transaction. */
4275   assert( p->inTrans>TRANS_NONE );
4276   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4277   assert( pBt->pPage1 && pBt->pPage1->aData );
4278   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4279 
4280   if( wrFlag ){
4281     allocateTempSpace(pBt);
4282     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4283   }
4284   if( iTable==1 && btreePagecount(pBt)==0 ){
4285     assert( wrFlag==0 );
4286     iTable = 0;
4287   }
4288 
4289   /* Now that no other errors can occur, finish filling in the BtCursor
4290   ** variables and link the cursor into the BtShared list.  */
4291   pCur->pgnoRoot = (Pgno)iTable;
4292   pCur->iPage = -1;
4293   pCur->pKeyInfo = pKeyInfo;
4294   pCur->pBtree = p;
4295   pCur->pBt = pBt;
4296   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4297   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4298   /* If there are two or more cursors on the same btree, then all such
4299   ** cursors *must* have the BTCF_Multiple flag set. */
4300   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4301     if( pX->pgnoRoot==(Pgno)iTable ){
4302       pX->curFlags |= BTCF_Multiple;
4303       pCur->curFlags |= BTCF_Multiple;
4304     }
4305   }
4306   pCur->pNext = pBt->pCursor;
4307   pBt->pCursor = pCur;
4308   pCur->eState = CURSOR_INVALID;
4309   return SQLITE_OK;
4310 }
4311 int sqlite3BtreeCursor(
4312   Btree *p,                                   /* The btree */
4313   int iTable,                                 /* Root page of table to open */
4314   int wrFlag,                                 /* 1 to write. 0 read-only */
4315   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4316   BtCursor *pCur                              /* Write new cursor here */
4317 ){
4318   int rc;
4319   if( iTable<1 ){
4320     rc = SQLITE_CORRUPT_BKPT;
4321   }else{
4322     sqlite3BtreeEnter(p);
4323     rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4324     sqlite3BtreeLeave(p);
4325   }
4326   return rc;
4327 }
4328 
4329 /*
4330 ** Return the size of a BtCursor object in bytes.
4331 **
4332 ** This interfaces is needed so that users of cursors can preallocate
4333 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4334 ** to users so they cannot do the sizeof() themselves - they must call
4335 ** this routine.
4336 */
4337 int sqlite3BtreeCursorSize(void){
4338   return ROUND8(sizeof(BtCursor));
4339 }
4340 
4341 /*
4342 ** Initialize memory that will be converted into a BtCursor object.
4343 **
4344 ** The simple approach here would be to memset() the entire object
4345 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4346 ** do not need to be zeroed and they are large, so we can save a lot
4347 ** of run-time by skipping the initialization of those elements.
4348 */
4349 void sqlite3BtreeCursorZero(BtCursor *p){
4350   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4351 }
4352 
4353 /*
4354 ** Close a cursor.  The read lock on the database file is released
4355 ** when the last cursor is closed.
4356 */
4357 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4358   Btree *pBtree = pCur->pBtree;
4359   if( pBtree ){
4360     BtShared *pBt = pCur->pBt;
4361     sqlite3BtreeEnter(pBtree);
4362     assert( pBt->pCursor!=0 );
4363     if( pBt->pCursor==pCur ){
4364       pBt->pCursor = pCur->pNext;
4365     }else{
4366       BtCursor *pPrev = pBt->pCursor;
4367       do{
4368         if( pPrev->pNext==pCur ){
4369           pPrev->pNext = pCur->pNext;
4370           break;
4371         }
4372         pPrev = pPrev->pNext;
4373       }while( ALWAYS(pPrev) );
4374     }
4375     btreeReleaseAllCursorPages(pCur);
4376     unlockBtreeIfUnused(pBt);
4377     sqlite3_free(pCur->aOverflow);
4378     sqlite3_free(pCur->pKey);
4379     sqlite3BtreeLeave(pBtree);
4380   }
4381   return SQLITE_OK;
4382 }
4383 
4384 /*
4385 ** Make sure the BtCursor* given in the argument has a valid
4386 ** BtCursor.info structure.  If it is not already valid, call
4387 ** btreeParseCell() to fill it in.
4388 **
4389 ** BtCursor.info is a cache of the information in the current cell.
4390 ** Using this cache reduces the number of calls to btreeParseCell().
4391 */
4392 #ifndef NDEBUG
4393   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4394     if( a->nKey!=b->nKey ) return 0;
4395     if( a->pPayload!=b->pPayload ) return 0;
4396     if( a->nPayload!=b->nPayload ) return 0;
4397     if( a->nLocal!=b->nLocal ) return 0;
4398     if( a->nSize!=b->nSize ) return 0;
4399     return 1;
4400   }
4401   static void assertCellInfo(BtCursor *pCur){
4402     CellInfo info;
4403     memset(&info, 0, sizeof(info));
4404     btreeParseCell(pCur->pPage, pCur->ix, &info);
4405     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4406   }
4407 #else
4408   #define assertCellInfo(x)
4409 #endif
4410 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4411   if( pCur->info.nSize==0 ){
4412     pCur->curFlags |= BTCF_ValidNKey;
4413     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4414   }else{
4415     assertCellInfo(pCur);
4416   }
4417 }
4418 
4419 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4420 /*
4421 ** Return true if the given BtCursor is valid.  A valid cursor is one
4422 ** that is currently pointing to a row in a (non-empty) table.
4423 ** This is a verification routine is used only within assert() statements.
4424 */
4425 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4426   return pCur && pCur->eState==CURSOR_VALID;
4427 }
4428 #endif /* NDEBUG */
4429 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4430   assert( pCur!=0 );
4431   return pCur->eState==CURSOR_VALID;
4432 }
4433 
4434 /*
4435 ** Return the value of the integer key or "rowid" for a table btree.
4436 ** This routine is only valid for a cursor that is pointing into a
4437 ** ordinary table btree.  If the cursor points to an index btree or
4438 ** is invalid, the result of this routine is undefined.
4439 */
4440 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4441   assert( cursorHoldsMutex(pCur) );
4442   assert( pCur->eState==CURSOR_VALID );
4443   assert( pCur->curIntKey );
4444   getCellInfo(pCur);
4445   return pCur->info.nKey;
4446 }
4447 
4448 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4449 /*
4450 ** Return the offset into the database file for the start of the
4451 ** payload to which the cursor is pointing.
4452 */
4453 i64 sqlite3BtreeOffset(BtCursor *pCur){
4454   assert( cursorHoldsMutex(pCur) );
4455   assert( pCur->eState==CURSOR_VALID );
4456   getCellInfo(pCur);
4457   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4458          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4459 }
4460 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4461 
4462 /*
4463 ** Return the number of bytes of payload for the entry that pCur is
4464 ** currently pointing to.  For table btrees, this will be the amount
4465 ** of data.  For index btrees, this will be the size of the key.
4466 **
4467 ** The caller must guarantee that the cursor is pointing to a non-NULL
4468 ** valid entry.  In other words, the calling procedure must guarantee
4469 ** that the cursor has Cursor.eState==CURSOR_VALID.
4470 */
4471 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4472   assert( cursorHoldsMutex(pCur) );
4473   assert( pCur->eState==CURSOR_VALID );
4474   getCellInfo(pCur);
4475   return pCur->info.nPayload;
4476 }
4477 
4478 /*
4479 ** Given the page number of an overflow page in the database (parameter
4480 ** ovfl), this function finds the page number of the next page in the
4481 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4482 ** pointer-map data instead of reading the content of page ovfl to do so.
4483 **
4484 ** If an error occurs an SQLite error code is returned. Otherwise:
4485 **
4486 ** The page number of the next overflow page in the linked list is
4487 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4488 ** list, *pPgnoNext is set to zero.
4489 **
4490 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4491 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4492 ** reference. It is the responsibility of the caller to call releasePage()
4493 ** on *ppPage to free the reference. In no reference was obtained (because
4494 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4495 ** *ppPage is set to zero.
4496 */
4497 static int getOverflowPage(
4498   BtShared *pBt,               /* The database file */
4499   Pgno ovfl,                   /* Current overflow page number */
4500   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4501   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4502 ){
4503   Pgno next = 0;
4504   MemPage *pPage = 0;
4505   int rc = SQLITE_OK;
4506 
4507   assert( sqlite3_mutex_held(pBt->mutex) );
4508   assert(pPgnoNext);
4509 
4510 #ifndef SQLITE_OMIT_AUTOVACUUM
4511   /* Try to find the next page in the overflow list using the
4512   ** autovacuum pointer-map pages. Guess that the next page in
4513   ** the overflow list is page number (ovfl+1). If that guess turns
4514   ** out to be wrong, fall back to loading the data of page
4515   ** number ovfl to determine the next page number.
4516   */
4517   if( pBt->autoVacuum ){
4518     Pgno pgno;
4519     Pgno iGuess = ovfl+1;
4520     u8 eType;
4521 
4522     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4523       iGuess++;
4524     }
4525 
4526     if( iGuess<=btreePagecount(pBt) ){
4527       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4528       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4529         next = iGuess;
4530         rc = SQLITE_DONE;
4531       }
4532     }
4533   }
4534 #endif
4535 
4536   assert( next==0 || rc==SQLITE_DONE );
4537   if( rc==SQLITE_OK ){
4538     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4539     assert( rc==SQLITE_OK || pPage==0 );
4540     if( rc==SQLITE_OK ){
4541       next = get4byte(pPage->aData);
4542     }
4543   }
4544 
4545   *pPgnoNext = next;
4546   if( ppPage ){
4547     *ppPage = pPage;
4548   }else{
4549     releasePage(pPage);
4550   }
4551   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4552 }
4553 
4554 /*
4555 ** Copy data from a buffer to a page, or from a page to a buffer.
4556 **
4557 ** pPayload is a pointer to data stored on database page pDbPage.
4558 ** If argument eOp is false, then nByte bytes of data are copied
4559 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4560 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4561 ** of data are copied from the buffer pBuf to pPayload.
4562 **
4563 ** SQLITE_OK is returned on success, otherwise an error code.
4564 */
4565 static int copyPayload(
4566   void *pPayload,           /* Pointer to page data */
4567   void *pBuf,               /* Pointer to buffer */
4568   int nByte,                /* Number of bytes to copy */
4569   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4570   DbPage *pDbPage           /* Page containing pPayload */
4571 ){
4572   if( eOp ){
4573     /* Copy data from buffer to page (a write operation) */
4574     int rc = sqlite3PagerWrite(pDbPage);
4575     if( rc!=SQLITE_OK ){
4576       return rc;
4577     }
4578     memcpy(pPayload, pBuf, nByte);
4579   }else{
4580     /* Copy data from page to buffer (a read operation) */
4581     memcpy(pBuf, pPayload, nByte);
4582   }
4583   return SQLITE_OK;
4584 }
4585 
4586 /*
4587 ** This function is used to read or overwrite payload information
4588 ** for the entry that the pCur cursor is pointing to. The eOp
4589 ** argument is interpreted as follows:
4590 **
4591 **   0: The operation is a read. Populate the overflow cache.
4592 **   1: The operation is a write. Populate the overflow cache.
4593 **
4594 ** A total of "amt" bytes are read or written beginning at "offset".
4595 ** Data is read to or from the buffer pBuf.
4596 **
4597 ** The content being read or written might appear on the main page
4598 ** or be scattered out on multiple overflow pages.
4599 **
4600 ** If the current cursor entry uses one or more overflow pages
4601 ** this function may allocate space for and lazily populate
4602 ** the overflow page-list cache array (BtCursor.aOverflow).
4603 ** Subsequent calls use this cache to make seeking to the supplied offset
4604 ** more efficient.
4605 **
4606 ** Once an overflow page-list cache has been allocated, it must be
4607 ** invalidated if some other cursor writes to the same table, or if
4608 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4609 ** mode, the following events may invalidate an overflow page-list cache.
4610 **
4611 **   * An incremental vacuum,
4612 **   * A commit in auto_vacuum="full" mode,
4613 **   * Creating a table (may require moving an overflow page).
4614 */
4615 static int accessPayload(
4616   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4617   u32 offset,          /* Begin reading this far into payload */
4618   u32 amt,             /* Read this many bytes */
4619   unsigned char *pBuf, /* Write the bytes into this buffer */
4620   int eOp              /* zero to read. non-zero to write. */
4621 ){
4622   unsigned char *aPayload;
4623   int rc = SQLITE_OK;
4624   int iIdx = 0;
4625   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4626   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4627 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4628   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4629 #endif
4630 
4631   assert( pPage );
4632   assert( eOp==0 || eOp==1 );
4633   assert( pCur->eState==CURSOR_VALID );
4634   assert( pCur->ix<pPage->nCell );
4635   assert( cursorHoldsMutex(pCur) );
4636 
4637   getCellInfo(pCur);
4638   aPayload = pCur->info.pPayload;
4639   assert( offset+amt <= pCur->info.nPayload );
4640 
4641   assert( aPayload > pPage->aData );
4642   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4643     /* Trying to read or write past the end of the data is an error.  The
4644     ** conditional above is really:
4645     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4646     ** but is recast into its current form to avoid integer overflow problems
4647     */
4648     return SQLITE_CORRUPT_PAGE(pPage);
4649   }
4650 
4651   /* Check if data must be read/written to/from the btree page itself. */
4652   if( offset<pCur->info.nLocal ){
4653     int a = amt;
4654     if( a+offset>pCur->info.nLocal ){
4655       a = pCur->info.nLocal - offset;
4656     }
4657     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4658     offset = 0;
4659     pBuf += a;
4660     amt -= a;
4661   }else{
4662     offset -= pCur->info.nLocal;
4663   }
4664 
4665 
4666   if( rc==SQLITE_OK && amt>0 ){
4667     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4668     Pgno nextPage;
4669 
4670     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4671 
4672     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4673     **
4674     ** The aOverflow[] array is sized at one entry for each overflow page
4675     ** in the overflow chain. The page number of the first overflow page is
4676     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4677     ** means "not yet known" (the cache is lazily populated).
4678     */
4679     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4680       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4681       if( pCur->aOverflow==0
4682        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4683       ){
4684         Pgno *aNew = (Pgno*)sqlite3Realloc(
4685             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4686         );
4687         if( aNew==0 ){
4688           return SQLITE_NOMEM_BKPT;
4689         }else{
4690           pCur->aOverflow = aNew;
4691         }
4692       }
4693       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4694       pCur->curFlags |= BTCF_ValidOvfl;
4695     }else{
4696       /* If the overflow page-list cache has been allocated and the
4697       ** entry for the first required overflow page is valid, skip
4698       ** directly to it.
4699       */
4700       if( pCur->aOverflow[offset/ovflSize] ){
4701         iIdx = (offset/ovflSize);
4702         nextPage = pCur->aOverflow[iIdx];
4703         offset = (offset%ovflSize);
4704       }
4705     }
4706 
4707     assert( rc==SQLITE_OK && amt>0 );
4708     while( nextPage ){
4709       /* If required, populate the overflow page-list cache. */
4710       assert( pCur->aOverflow[iIdx]==0
4711               || pCur->aOverflow[iIdx]==nextPage
4712               || CORRUPT_DB );
4713       pCur->aOverflow[iIdx] = nextPage;
4714 
4715       if( offset>=ovflSize ){
4716         /* The only reason to read this page is to obtain the page
4717         ** number for the next page in the overflow chain. The page
4718         ** data is not required. So first try to lookup the overflow
4719         ** page-list cache, if any, then fall back to the getOverflowPage()
4720         ** function.
4721         */
4722         assert( pCur->curFlags & BTCF_ValidOvfl );
4723         assert( pCur->pBtree->db==pBt->db );
4724         if( pCur->aOverflow[iIdx+1] ){
4725           nextPage = pCur->aOverflow[iIdx+1];
4726         }else{
4727           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4728         }
4729         offset -= ovflSize;
4730       }else{
4731         /* Need to read this page properly. It contains some of the
4732         ** range of data that is being read (eOp==0) or written (eOp!=0).
4733         */
4734 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4735         sqlite3_file *fd;      /* File from which to do direct overflow read */
4736 #endif
4737         int a = amt;
4738         if( a + offset > ovflSize ){
4739           a = ovflSize - offset;
4740         }
4741 
4742 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4743         /* If all the following are true:
4744         **
4745         **   1) this is a read operation, and
4746         **   2) data is required from the start of this overflow page, and
4747         **   3) there is no open write-transaction, and
4748         **   4) the database is file-backed, and
4749         **   5) the page is not in the WAL file
4750         **   6) at least 4 bytes have already been read into the output buffer
4751         **
4752         ** then data can be read directly from the database file into the
4753         ** output buffer, bypassing the page-cache altogether. This speeds
4754         ** up loading large records that span many overflow pages.
4755         */
4756         if( eOp==0                                             /* (1) */
4757          && offset==0                                          /* (2) */
4758          && pBt->inTransaction==TRANS_READ                     /* (3) */
4759          && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (4) */
4760          && 0==sqlite3PagerUseWal(pBt->pPager, nextPage)       /* (5) */
4761          && &pBuf[-4]>=pBufStart                               /* (6) */
4762         ){
4763           u8 aSave[4];
4764           u8 *aWrite = &pBuf[-4];
4765           assert( aWrite>=pBufStart );                         /* due to (6) */
4766           memcpy(aSave, aWrite, 4);
4767           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4768           nextPage = get4byte(aWrite);
4769           memcpy(aWrite, aSave, 4);
4770         }else
4771 #endif
4772 
4773         {
4774           DbPage *pDbPage;
4775           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4776               (eOp==0 ? PAGER_GET_READONLY : 0)
4777           );
4778           if( rc==SQLITE_OK ){
4779             aPayload = sqlite3PagerGetData(pDbPage);
4780             nextPage = get4byte(aPayload);
4781             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4782             sqlite3PagerUnref(pDbPage);
4783             offset = 0;
4784           }
4785         }
4786         amt -= a;
4787         if( amt==0 ) return rc;
4788         pBuf += a;
4789       }
4790       if( rc ) break;
4791       iIdx++;
4792     }
4793   }
4794 
4795   if( rc==SQLITE_OK && amt>0 ){
4796     /* Overflow chain ends prematurely */
4797     return SQLITE_CORRUPT_PAGE(pPage);
4798   }
4799   return rc;
4800 }
4801 
4802 /*
4803 ** Read part of the payload for the row at which that cursor pCur is currently
4804 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
4805 ** begins at "offset".
4806 **
4807 ** pCur can be pointing to either a table or an index b-tree.
4808 ** If pointing to a table btree, then the content section is read.  If
4809 ** pCur is pointing to an index b-tree then the key section is read.
4810 **
4811 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4812 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
4813 ** cursor might be invalid or might need to be restored before being read.
4814 **
4815 ** Return SQLITE_OK on success or an error code if anything goes
4816 ** wrong.  An error is returned if "offset+amt" is larger than
4817 ** the available payload.
4818 */
4819 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4820   assert( cursorHoldsMutex(pCur) );
4821   assert( pCur->eState==CURSOR_VALID );
4822   assert( pCur->iPage>=0 && pCur->pPage );
4823   assert( pCur->ix<pCur->pPage->nCell );
4824   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4825 }
4826 
4827 /*
4828 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4829 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
4830 ** interface.
4831 */
4832 #ifndef SQLITE_OMIT_INCRBLOB
4833 static SQLITE_NOINLINE int accessPayloadChecked(
4834   BtCursor *pCur,
4835   u32 offset,
4836   u32 amt,
4837   void *pBuf
4838 ){
4839   int rc;
4840   if ( pCur->eState==CURSOR_INVALID ){
4841     return SQLITE_ABORT;
4842   }
4843   assert( cursorOwnsBtShared(pCur) );
4844   rc = btreeRestoreCursorPosition(pCur);
4845   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4846 }
4847 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4848   if( pCur->eState==CURSOR_VALID ){
4849     assert( cursorOwnsBtShared(pCur) );
4850     return accessPayload(pCur, offset, amt, pBuf, 0);
4851   }else{
4852     return accessPayloadChecked(pCur, offset, amt, pBuf);
4853   }
4854 }
4855 #endif /* SQLITE_OMIT_INCRBLOB */
4856 
4857 /*
4858 ** Return a pointer to payload information from the entry that the
4859 ** pCur cursor is pointing to.  The pointer is to the beginning of
4860 ** the key if index btrees (pPage->intKey==0) and is the data for
4861 ** table btrees (pPage->intKey==1). The number of bytes of available
4862 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4863 ** returned will not be a valid pointer.
4864 **
4865 ** This routine is an optimization.  It is common for the entire key
4866 ** and data to fit on the local page and for there to be no overflow
4867 ** pages.  When that is so, this routine can be used to access the
4868 ** key and data without making a copy.  If the key and/or data spills
4869 ** onto overflow pages, then accessPayload() must be used to reassemble
4870 ** the key/data and copy it into a preallocated buffer.
4871 **
4872 ** The pointer returned by this routine looks directly into the cached
4873 ** page of the database.  The data might change or move the next time
4874 ** any btree routine is called.
4875 */
4876 static const void *fetchPayload(
4877   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4878   u32 *pAmt            /* Write the number of available bytes here */
4879 ){
4880   int amt;
4881   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
4882   assert( pCur->eState==CURSOR_VALID );
4883   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4884   assert( cursorOwnsBtShared(pCur) );
4885   assert( pCur->ix<pCur->pPage->nCell );
4886   assert( pCur->info.nSize>0 );
4887   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4888   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
4889   amt = pCur->info.nLocal;
4890   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4891     /* There is too little space on the page for the expected amount
4892     ** of local content. Database must be corrupt. */
4893     assert( CORRUPT_DB );
4894     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4895   }
4896   *pAmt = (u32)amt;
4897   return (void*)pCur->info.pPayload;
4898 }
4899 
4900 
4901 /*
4902 ** For the entry that cursor pCur is point to, return as
4903 ** many bytes of the key or data as are available on the local
4904 ** b-tree page.  Write the number of available bytes into *pAmt.
4905 **
4906 ** The pointer returned is ephemeral.  The key/data may move
4907 ** or be destroyed on the next call to any Btree routine,
4908 ** including calls from other threads against the same cache.
4909 ** Hence, a mutex on the BtShared should be held prior to calling
4910 ** this routine.
4911 **
4912 ** These routines is used to get quick access to key and data
4913 ** in the common case where no overflow pages are used.
4914 */
4915 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
4916   return fetchPayload(pCur, pAmt);
4917 }
4918 
4919 
4920 /*
4921 ** Move the cursor down to a new child page.  The newPgno argument is the
4922 ** page number of the child page to move to.
4923 **
4924 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4925 ** the new child page does not match the flags field of the parent (i.e.
4926 ** if an intkey page appears to be the parent of a non-intkey page, or
4927 ** vice-versa).
4928 */
4929 static int moveToChild(BtCursor *pCur, u32 newPgno){
4930   BtShared *pBt = pCur->pBt;
4931 
4932   assert( cursorOwnsBtShared(pCur) );
4933   assert( pCur->eState==CURSOR_VALID );
4934   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4935   assert( pCur->iPage>=0 );
4936   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4937     return SQLITE_CORRUPT_BKPT;
4938   }
4939   pCur->info.nSize = 0;
4940   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4941   pCur->aiIdx[pCur->iPage] = pCur->ix;
4942   pCur->apPage[pCur->iPage] = pCur->pPage;
4943   pCur->ix = 0;
4944   pCur->iPage++;
4945   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
4946 }
4947 
4948 #ifdef SQLITE_DEBUG
4949 /*
4950 ** Page pParent is an internal (non-leaf) tree page. This function
4951 ** asserts that page number iChild is the left-child if the iIdx'th
4952 ** cell in page pParent. Or, if iIdx is equal to the total number of
4953 ** cells in pParent, that page number iChild is the right-child of
4954 ** the page.
4955 */
4956 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4957   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
4958                             ** in a corrupt database */
4959   assert( iIdx<=pParent->nCell );
4960   if( iIdx==pParent->nCell ){
4961     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4962   }else{
4963     assert( get4byte(findCell(pParent, iIdx))==iChild );
4964   }
4965 }
4966 #else
4967 #  define assertParentIndex(x,y,z)
4968 #endif
4969 
4970 /*
4971 ** Move the cursor up to the parent page.
4972 **
4973 ** pCur->idx is set to the cell index that contains the pointer
4974 ** to the page we are coming from.  If we are coming from the
4975 ** right-most child page then pCur->idx is set to one more than
4976 ** the largest cell index.
4977 */
4978 static void moveToParent(BtCursor *pCur){
4979   MemPage *pLeaf;
4980   assert( cursorOwnsBtShared(pCur) );
4981   assert( pCur->eState==CURSOR_VALID );
4982   assert( pCur->iPage>0 );
4983   assert( pCur->pPage );
4984   assertParentIndex(
4985     pCur->apPage[pCur->iPage-1],
4986     pCur->aiIdx[pCur->iPage-1],
4987     pCur->pPage->pgno
4988   );
4989   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4990   pCur->info.nSize = 0;
4991   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4992   pCur->ix = pCur->aiIdx[pCur->iPage-1];
4993   pLeaf = pCur->pPage;
4994   pCur->pPage = pCur->apPage[--pCur->iPage];
4995   releasePageNotNull(pLeaf);
4996 }
4997 
4998 /*
4999 ** Move the cursor to point to the root page of its b-tree structure.
5000 **
5001 ** If the table has a virtual root page, then the cursor is moved to point
5002 ** to the virtual root page instead of the actual root page. A table has a
5003 ** virtual root page when the actual root page contains no cells and a
5004 ** single child page. This can only happen with the table rooted at page 1.
5005 **
5006 ** If the b-tree structure is empty, the cursor state is set to
5007 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5008 ** the cursor is set to point to the first cell located on the root
5009 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5010 **
5011 ** If this function returns successfully, it may be assumed that the
5012 ** page-header flags indicate that the [virtual] root-page is the expected
5013 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5014 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5015 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5016 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5017 ** b-tree).
5018 */
5019 static int moveToRoot(BtCursor *pCur){
5020   MemPage *pRoot;
5021   int rc = SQLITE_OK;
5022 
5023   assert( cursorOwnsBtShared(pCur) );
5024   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5025   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5026   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5027   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5028   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5029 
5030   if( pCur->iPage>=0 ){
5031     if( pCur->iPage ){
5032       releasePageNotNull(pCur->pPage);
5033       while( --pCur->iPage ){
5034         releasePageNotNull(pCur->apPage[pCur->iPage]);
5035       }
5036       pCur->pPage = pCur->apPage[0];
5037       goto skip_init;
5038     }
5039   }else if( pCur->pgnoRoot==0 ){
5040     pCur->eState = CURSOR_INVALID;
5041     return SQLITE_EMPTY;
5042   }else{
5043     assert( pCur->iPage==(-1) );
5044     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5045       if( pCur->eState==CURSOR_FAULT ){
5046         assert( pCur->skipNext!=SQLITE_OK );
5047         return pCur->skipNext;
5048       }
5049       sqlite3BtreeClearCursor(pCur);
5050     }
5051     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5052                         0, pCur->curPagerFlags);
5053     if( rc!=SQLITE_OK ){
5054       pCur->eState = CURSOR_INVALID;
5055       return rc;
5056     }
5057     pCur->iPage = 0;
5058     pCur->curIntKey = pCur->pPage->intKey;
5059   }
5060   pRoot = pCur->pPage;
5061   assert( pRoot->pgno==pCur->pgnoRoot );
5062 
5063   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5064   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5065   ** NULL, the caller expects a table b-tree. If this is not the case,
5066   ** return an SQLITE_CORRUPT error.
5067   **
5068   ** Earlier versions of SQLite assumed that this test could not fail
5069   ** if the root page was already loaded when this function was called (i.e.
5070   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5071   ** in such a way that page pRoot is linked into a second b-tree table
5072   ** (or the freelist).  */
5073   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5074   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5075     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5076   }
5077 
5078 skip_init:
5079   pCur->ix = 0;
5080   pCur->info.nSize = 0;
5081   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5082 
5083   pRoot = pCur->pPage;
5084   if( pRoot->nCell>0 ){
5085     pCur->eState = CURSOR_VALID;
5086   }else if( !pRoot->leaf ){
5087     Pgno subpage;
5088     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5089     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5090     pCur->eState = CURSOR_VALID;
5091     rc = moveToChild(pCur, subpage);
5092   }else{
5093     pCur->eState = CURSOR_INVALID;
5094     rc = SQLITE_EMPTY;
5095   }
5096   return rc;
5097 }
5098 
5099 /*
5100 ** Move the cursor down to the left-most leaf entry beneath the
5101 ** entry to which it is currently pointing.
5102 **
5103 ** The left-most leaf is the one with the smallest key - the first
5104 ** in ascending order.
5105 */
5106 static int moveToLeftmost(BtCursor *pCur){
5107   Pgno pgno;
5108   int rc = SQLITE_OK;
5109   MemPage *pPage;
5110 
5111   assert( cursorOwnsBtShared(pCur) );
5112   assert( pCur->eState==CURSOR_VALID );
5113   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5114     assert( pCur->ix<pPage->nCell );
5115     pgno = get4byte(findCell(pPage, pCur->ix));
5116     rc = moveToChild(pCur, pgno);
5117   }
5118   return rc;
5119 }
5120 
5121 /*
5122 ** Move the cursor down to the right-most leaf entry beneath the
5123 ** page to which it is currently pointing.  Notice the difference
5124 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5125 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5126 ** finds the right-most entry beneath the *page*.
5127 **
5128 ** The right-most entry is the one with the largest key - the last
5129 ** key in ascending order.
5130 */
5131 static int moveToRightmost(BtCursor *pCur){
5132   Pgno pgno;
5133   int rc = SQLITE_OK;
5134   MemPage *pPage = 0;
5135 
5136   assert( cursorOwnsBtShared(pCur) );
5137   assert( pCur->eState==CURSOR_VALID );
5138   while( !(pPage = pCur->pPage)->leaf ){
5139     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5140     pCur->ix = pPage->nCell;
5141     rc = moveToChild(pCur, pgno);
5142     if( rc ) return rc;
5143   }
5144   pCur->ix = pPage->nCell-1;
5145   assert( pCur->info.nSize==0 );
5146   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5147   return SQLITE_OK;
5148 }
5149 
5150 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5151 ** on success.  Set *pRes to 0 if the cursor actually points to something
5152 ** or set *pRes to 1 if the table is empty.
5153 */
5154 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5155   int rc;
5156 
5157   assert( cursorOwnsBtShared(pCur) );
5158   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5159   rc = moveToRoot(pCur);
5160   if( rc==SQLITE_OK ){
5161     assert( pCur->pPage->nCell>0 );
5162     *pRes = 0;
5163     rc = moveToLeftmost(pCur);
5164   }else if( rc==SQLITE_EMPTY ){
5165     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5166     *pRes = 1;
5167     rc = SQLITE_OK;
5168   }
5169   return rc;
5170 }
5171 
5172 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5173 ** on success.  Set *pRes to 0 if the cursor actually points to something
5174 ** or set *pRes to 1 if the table is empty.
5175 */
5176 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5177   int rc;
5178 
5179   assert( cursorOwnsBtShared(pCur) );
5180   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5181 
5182   /* If the cursor already points to the last entry, this is a no-op. */
5183   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5184 #ifdef SQLITE_DEBUG
5185     /* This block serves to assert() that the cursor really does point
5186     ** to the last entry in the b-tree. */
5187     int ii;
5188     for(ii=0; ii<pCur->iPage; ii++){
5189       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5190     }
5191     assert( pCur->ix==pCur->pPage->nCell-1 );
5192     assert( pCur->pPage->leaf );
5193 #endif
5194     return SQLITE_OK;
5195   }
5196 
5197   rc = moveToRoot(pCur);
5198   if( rc==SQLITE_OK ){
5199     assert( pCur->eState==CURSOR_VALID );
5200     *pRes = 0;
5201     rc = moveToRightmost(pCur);
5202     if( rc==SQLITE_OK ){
5203       pCur->curFlags |= BTCF_AtLast;
5204     }else{
5205       pCur->curFlags &= ~BTCF_AtLast;
5206     }
5207   }else if( rc==SQLITE_EMPTY ){
5208     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5209     *pRes = 1;
5210     rc = SQLITE_OK;
5211   }
5212   return rc;
5213 }
5214 
5215 /* Move the cursor so that it points to an entry near the key
5216 ** specified by pIdxKey or intKey.   Return a success code.
5217 **
5218 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5219 ** must be NULL.  For index tables, pIdxKey is used and intKey
5220 ** is ignored.
5221 **
5222 ** If an exact match is not found, then the cursor is always
5223 ** left pointing at a leaf page which would hold the entry if it
5224 ** were present.  The cursor might point to an entry that comes
5225 ** before or after the key.
5226 **
5227 ** An integer is written into *pRes which is the result of
5228 ** comparing the key with the entry to which the cursor is
5229 ** pointing.  The meaning of the integer written into
5230 ** *pRes is as follows:
5231 **
5232 **     *pRes<0      The cursor is left pointing at an entry that
5233 **                  is smaller than intKey/pIdxKey or if the table is empty
5234 **                  and the cursor is therefore left point to nothing.
5235 **
5236 **     *pRes==0     The cursor is left pointing at an entry that
5237 **                  exactly matches intKey/pIdxKey.
5238 **
5239 **     *pRes>0      The cursor is left pointing at an entry that
5240 **                  is larger than intKey/pIdxKey.
5241 **
5242 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5243 ** exists an entry in the table that exactly matches pIdxKey.
5244 */
5245 int sqlite3BtreeMovetoUnpacked(
5246   BtCursor *pCur,          /* The cursor to be moved */
5247   UnpackedRecord *pIdxKey, /* Unpacked index key */
5248   i64 intKey,              /* The table key */
5249   int biasRight,           /* If true, bias the search to the high end */
5250   int *pRes                /* Write search results here */
5251 ){
5252   int rc;
5253   RecordCompare xRecordCompare;
5254 
5255   assert( cursorOwnsBtShared(pCur) );
5256   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5257   assert( pRes );
5258   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5259   assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5260 
5261   /* If the cursor is already positioned at the point we are trying
5262   ** to move to, then just return without doing any work */
5263   if( pIdxKey==0
5264    && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5265   ){
5266     if( pCur->info.nKey==intKey ){
5267       *pRes = 0;
5268       return SQLITE_OK;
5269     }
5270     if( pCur->info.nKey<intKey ){
5271       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5272         *pRes = -1;
5273         return SQLITE_OK;
5274       }
5275       /* If the requested key is one more than the previous key, then
5276       ** try to get there using sqlite3BtreeNext() rather than a full
5277       ** binary search.  This is an optimization only.  The correct answer
5278       ** is still obtained without this case, only a little more slowely */
5279       if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5280         *pRes = 0;
5281         rc = sqlite3BtreeNext(pCur, 0);
5282         if( rc==SQLITE_OK ){
5283           getCellInfo(pCur);
5284           if( pCur->info.nKey==intKey ){
5285             return SQLITE_OK;
5286           }
5287         }else if( rc==SQLITE_DONE ){
5288           rc = SQLITE_OK;
5289         }else{
5290           return rc;
5291         }
5292       }
5293     }
5294   }
5295 
5296   if( pIdxKey ){
5297     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5298     pIdxKey->errCode = 0;
5299     assert( pIdxKey->default_rc==1
5300          || pIdxKey->default_rc==0
5301          || pIdxKey->default_rc==-1
5302     );
5303   }else{
5304     xRecordCompare = 0; /* All keys are integers */
5305   }
5306 
5307   rc = moveToRoot(pCur);
5308   if( rc ){
5309     if( rc==SQLITE_EMPTY ){
5310       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5311       *pRes = -1;
5312       return SQLITE_OK;
5313     }
5314     return rc;
5315   }
5316   assert( pCur->pPage );
5317   assert( pCur->pPage->isInit );
5318   assert( pCur->eState==CURSOR_VALID );
5319   assert( pCur->pPage->nCell > 0 );
5320   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5321   assert( pCur->curIntKey || pIdxKey );
5322   for(;;){
5323     int lwr, upr, idx, c;
5324     Pgno chldPg;
5325     MemPage *pPage = pCur->pPage;
5326     u8 *pCell;                          /* Pointer to current cell in pPage */
5327 
5328     /* pPage->nCell must be greater than zero. If this is the root-page
5329     ** the cursor would have been INVALID above and this for(;;) loop
5330     ** not run. If this is not the root-page, then the moveToChild() routine
5331     ** would have already detected db corruption. Similarly, pPage must
5332     ** be the right kind (index or table) of b-tree page. Otherwise
5333     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5334     assert( pPage->nCell>0 );
5335     assert( pPage->intKey==(pIdxKey==0) );
5336     lwr = 0;
5337     upr = pPage->nCell-1;
5338     assert( biasRight==0 || biasRight==1 );
5339     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5340     pCur->ix = (u16)idx;
5341     if( xRecordCompare==0 ){
5342       for(;;){
5343         i64 nCellKey;
5344         pCell = findCellPastPtr(pPage, idx);
5345         if( pPage->intKeyLeaf ){
5346           while( 0x80 <= *(pCell++) ){
5347             if( pCell>=pPage->aDataEnd ){
5348               return SQLITE_CORRUPT_PAGE(pPage);
5349             }
5350           }
5351         }
5352         getVarint(pCell, (u64*)&nCellKey);
5353         if( nCellKey<intKey ){
5354           lwr = idx+1;
5355           if( lwr>upr ){ c = -1; break; }
5356         }else if( nCellKey>intKey ){
5357           upr = idx-1;
5358           if( lwr>upr ){ c = +1; break; }
5359         }else{
5360           assert( nCellKey==intKey );
5361           pCur->ix = (u16)idx;
5362           if( !pPage->leaf ){
5363             lwr = idx;
5364             goto moveto_next_layer;
5365           }else{
5366             pCur->curFlags |= BTCF_ValidNKey;
5367             pCur->info.nKey = nCellKey;
5368             pCur->info.nSize = 0;
5369             *pRes = 0;
5370             return SQLITE_OK;
5371           }
5372         }
5373         assert( lwr+upr>=0 );
5374         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5375       }
5376     }else{
5377       for(;;){
5378         int nCell;  /* Size of the pCell cell in bytes */
5379         pCell = findCellPastPtr(pPage, idx);
5380 
5381         /* The maximum supported page-size is 65536 bytes. This means that
5382         ** the maximum number of record bytes stored on an index B-Tree
5383         ** page is less than 16384 bytes and may be stored as a 2-byte
5384         ** varint. This information is used to attempt to avoid parsing
5385         ** the entire cell by checking for the cases where the record is
5386         ** stored entirely within the b-tree page by inspecting the first
5387         ** 2 bytes of the cell.
5388         */
5389         nCell = pCell[0];
5390         if( nCell<=pPage->max1bytePayload ){
5391           /* This branch runs if the record-size field of the cell is a
5392           ** single byte varint and the record fits entirely on the main
5393           ** b-tree page.  */
5394           testcase( pCell+nCell+1==pPage->aDataEnd );
5395           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5396         }else if( !(pCell[1] & 0x80)
5397           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5398         ){
5399           /* The record-size field is a 2 byte varint and the record
5400           ** fits entirely on the main b-tree page.  */
5401           testcase( pCell+nCell+2==pPage->aDataEnd );
5402           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5403         }else{
5404           /* The record flows over onto one or more overflow pages. In
5405           ** this case the whole cell needs to be parsed, a buffer allocated
5406           ** and accessPayload() used to retrieve the record into the
5407           ** buffer before VdbeRecordCompare() can be called.
5408           **
5409           ** If the record is corrupt, the xRecordCompare routine may read
5410           ** up to two varints past the end of the buffer. An extra 18
5411           ** bytes of padding is allocated at the end of the buffer in
5412           ** case this happens.  */
5413           void *pCellKey;
5414           u8 * const pCellBody = pCell - pPage->childPtrSize;
5415           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5416           nCell = (int)pCur->info.nKey;
5417           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5418           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5419           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5420           testcase( nCell==2 );  /* Minimum legal index key size */
5421           if( nCell<2 ){
5422             rc = SQLITE_CORRUPT_PAGE(pPage);
5423             goto moveto_finish;
5424           }
5425           pCellKey = sqlite3Malloc( nCell+18 );
5426           if( pCellKey==0 ){
5427             rc = SQLITE_NOMEM_BKPT;
5428             goto moveto_finish;
5429           }
5430           pCur->ix = (u16)idx;
5431           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5432           pCur->curFlags &= ~BTCF_ValidOvfl;
5433           if( rc ){
5434             sqlite3_free(pCellKey);
5435             goto moveto_finish;
5436           }
5437           c = xRecordCompare(nCell, pCellKey, pIdxKey);
5438           sqlite3_free(pCellKey);
5439         }
5440         assert(
5441             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5442          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5443         );
5444         if( c<0 ){
5445           lwr = idx+1;
5446         }else if( c>0 ){
5447           upr = idx-1;
5448         }else{
5449           assert( c==0 );
5450           *pRes = 0;
5451           rc = SQLITE_OK;
5452           pCur->ix = (u16)idx;
5453           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5454           goto moveto_finish;
5455         }
5456         if( lwr>upr ) break;
5457         assert( lwr+upr>=0 );
5458         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5459       }
5460     }
5461     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5462     assert( pPage->isInit );
5463     if( pPage->leaf ){
5464       assert( pCur->ix<pCur->pPage->nCell );
5465       pCur->ix = (u16)idx;
5466       *pRes = c;
5467       rc = SQLITE_OK;
5468       goto moveto_finish;
5469     }
5470 moveto_next_layer:
5471     if( lwr>=pPage->nCell ){
5472       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5473     }else{
5474       chldPg = get4byte(findCell(pPage, lwr));
5475     }
5476     pCur->ix = (u16)lwr;
5477     rc = moveToChild(pCur, chldPg);
5478     if( rc ) break;
5479   }
5480 moveto_finish:
5481   pCur->info.nSize = 0;
5482   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5483   return rc;
5484 }
5485 
5486 
5487 /*
5488 ** Return TRUE if the cursor is not pointing at an entry of the table.
5489 **
5490 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5491 ** past the last entry in the table or sqlite3BtreePrev() moves past
5492 ** the first entry.  TRUE is also returned if the table is empty.
5493 */
5494 int sqlite3BtreeEof(BtCursor *pCur){
5495   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5496   ** have been deleted? This API will need to change to return an error code
5497   ** as well as the boolean result value.
5498   */
5499   return (CURSOR_VALID!=pCur->eState);
5500 }
5501 
5502 /*
5503 ** Return an estimate for the number of rows in the table that pCur is
5504 ** pointing to.  Return a negative number if no estimate is currently
5505 ** available.
5506 */
5507 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5508   i64 n;
5509   u8 i;
5510 
5511   assert( cursorOwnsBtShared(pCur) );
5512   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5513 
5514   /* Currently this interface is only called by the OP_IfSmaller
5515   ** opcode, and it that case the cursor will always be valid and
5516   ** will always point to a leaf node. */
5517   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5518   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5519 
5520   n = pCur->pPage->nCell;
5521   for(i=0; i<pCur->iPage; i++){
5522     n *= pCur->apPage[i]->nCell;
5523   }
5524   return n;
5525 }
5526 
5527 /*
5528 ** Advance the cursor to the next entry in the database.
5529 ** Return value:
5530 **
5531 **    SQLITE_OK        success
5532 **    SQLITE_DONE      cursor is already pointing at the last element
5533 **    otherwise        some kind of error occurred
5534 **
5535 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5536 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5537 ** to the next cell on the current page.  The (slower) btreeNext() helper
5538 ** routine is called when it is necessary to move to a different page or
5539 ** to restore the cursor.
5540 **
5541 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5542 ** cursor corresponds to an SQL index and this routine could have been
5543 ** skipped if the SQL index had been a unique index.  The F argument
5544 ** is a hint to the implement.  SQLite btree implementation does not use
5545 ** this hint, but COMDB2 does.
5546 */
5547 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5548   int rc;
5549   int idx;
5550   MemPage *pPage;
5551 
5552   assert( cursorOwnsBtShared(pCur) );
5553   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5554   if( pCur->eState!=CURSOR_VALID ){
5555     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5556     rc = restoreCursorPosition(pCur);
5557     if( rc!=SQLITE_OK ){
5558       return rc;
5559     }
5560     if( CURSOR_INVALID==pCur->eState ){
5561       return SQLITE_DONE;
5562     }
5563     if( pCur->skipNext ){
5564       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5565       pCur->eState = CURSOR_VALID;
5566       if( pCur->skipNext>0 ){
5567         pCur->skipNext = 0;
5568         return SQLITE_OK;
5569       }
5570       pCur->skipNext = 0;
5571     }
5572   }
5573 
5574   pPage = pCur->pPage;
5575   idx = ++pCur->ix;
5576   assert( pPage->isInit );
5577 
5578   /* If the database file is corrupt, it is possible for the value of idx
5579   ** to be invalid here. This can only occur if a second cursor modifies
5580   ** the page while cursor pCur is holding a reference to it. Which can
5581   ** only happen if the database is corrupt in such a way as to link the
5582   ** page into more than one b-tree structure. */
5583   testcase( idx>pPage->nCell );
5584 
5585   if( idx>=pPage->nCell ){
5586     if( !pPage->leaf ){
5587       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5588       if( rc ) return rc;
5589       return moveToLeftmost(pCur);
5590     }
5591     do{
5592       if( pCur->iPage==0 ){
5593         pCur->eState = CURSOR_INVALID;
5594         return SQLITE_DONE;
5595       }
5596       moveToParent(pCur);
5597       pPage = pCur->pPage;
5598     }while( pCur->ix>=pPage->nCell );
5599     if( pPage->intKey ){
5600       return sqlite3BtreeNext(pCur, 0);
5601     }else{
5602       return SQLITE_OK;
5603     }
5604   }
5605   if( pPage->leaf ){
5606     return SQLITE_OK;
5607   }else{
5608     return moveToLeftmost(pCur);
5609   }
5610 }
5611 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5612   MemPage *pPage;
5613   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5614   assert( cursorOwnsBtShared(pCur) );
5615   assert( flags==0 || flags==1 );
5616   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5617   pCur->info.nSize = 0;
5618   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5619   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5620   pPage = pCur->pPage;
5621   if( (++pCur->ix)>=pPage->nCell ){
5622     pCur->ix--;
5623     return btreeNext(pCur);
5624   }
5625   if( pPage->leaf ){
5626     return SQLITE_OK;
5627   }else{
5628     return moveToLeftmost(pCur);
5629   }
5630 }
5631 
5632 /*
5633 ** Step the cursor to the back to the previous entry in the database.
5634 ** Return values:
5635 **
5636 **     SQLITE_OK     success
5637 **     SQLITE_DONE   the cursor is already on the first element of the table
5638 **     otherwise     some kind of error occurred
5639 **
5640 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5641 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5642 ** to the previous cell on the current page.  The (slower) btreePrevious()
5643 ** helper routine is called when it is necessary to move to a different page
5644 ** or to restore the cursor.
5645 **
5646 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5647 ** the cursor corresponds to an SQL index and this routine could have been
5648 ** skipped if the SQL index had been a unique index.  The F argument is a
5649 ** hint to the implement.  The native SQLite btree implementation does not
5650 ** use this hint, but COMDB2 does.
5651 */
5652 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5653   int rc;
5654   MemPage *pPage;
5655 
5656   assert( cursorOwnsBtShared(pCur) );
5657   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5658   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5659   assert( pCur->info.nSize==0 );
5660   if( pCur->eState!=CURSOR_VALID ){
5661     rc = restoreCursorPosition(pCur);
5662     if( rc!=SQLITE_OK ){
5663       return rc;
5664     }
5665     if( CURSOR_INVALID==pCur->eState ){
5666       return SQLITE_DONE;
5667     }
5668     if( pCur->skipNext ){
5669       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5670       pCur->eState = CURSOR_VALID;
5671       if( pCur->skipNext<0 ){
5672         pCur->skipNext = 0;
5673         return SQLITE_OK;
5674       }
5675       pCur->skipNext = 0;
5676     }
5677   }
5678 
5679   pPage = pCur->pPage;
5680   assert( pPage->isInit );
5681   if( !pPage->leaf ){
5682     int idx = pCur->ix;
5683     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5684     if( rc ) return rc;
5685     rc = moveToRightmost(pCur);
5686   }else{
5687     while( pCur->ix==0 ){
5688       if( pCur->iPage==0 ){
5689         pCur->eState = CURSOR_INVALID;
5690         return SQLITE_DONE;
5691       }
5692       moveToParent(pCur);
5693     }
5694     assert( pCur->info.nSize==0 );
5695     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5696 
5697     pCur->ix--;
5698     pPage = pCur->pPage;
5699     if( pPage->intKey && !pPage->leaf ){
5700       rc = sqlite3BtreePrevious(pCur, 0);
5701     }else{
5702       rc = SQLITE_OK;
5703     }
5704   }
5705   return rc;
5706 }
5707 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5708   assert( cursorOwnsBtShared(pCur) );
5709   assert( flags==0 || flags==1 );
5710   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5711   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5712   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5713   pCur->info.nSize = 0;
5714   if( pCur->eState!=CURSOR_VALID
5715    || pCur->ix==0
5716    || pCur->pPage->leaf==0
5717   ){
5718     return btreePrevious(pCur);
5719   }
5720   pCur->ix--;
5721   return SQLITE_OK;
5722 }
5723 
5724 /*
5725 ** Allocate a new page from the database file.
5726 **
5727 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5728 ** has already been called on the new page.)  The new page has also
5729 ** been referenced and the calling routine is responsible for calling
5730 ** sqlite3PagerUnref() on the new page when it is done.
5731 **
5732 ** SQLITE_OK is returned on success.  Any other return value indicates
5733 ** an error.  *ppPage is set to NULL in the event of an error.
5734 **
5735 ** If the "nearby" parameter is not 0, then an effort is made to
5736 ** locate a page close to the page number "nearby".  This can be used in an
5737 ** attempt to keep related pages close to each other in the database file,
5738 ** which in turn can make database access faster.
5739 **
5740 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5741 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5742 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5743 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5744 ** are no restrictions on which page is returned.
5745 */
5746 static int allocateBtreePage(
5747   BtShared *pBt,         /* The btree */
5748   MemPage **ppPage,      /* Store pointer to the allocated page here */
5749   Pgno *pPgno,           /* Store the page number here */
5750   Pgno nearby,           /* Search for a page near this one */
5751   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5752 ){
5753   MemPage *pPage1;
5754   int rc;
5755   u32 n;     /* Number of pages on the freelist */
5756   u32 k;     /* Number of leaves on the trunk of the freelist */
5757   MemPage *pTrunk = 0;
5758   MemPage *pPrevTrunk = 0;
5759   Pgno mxPage;     /* Total size of the database file */
5760 
5761   assert( sqlite3_mutex_held(pBt->mutex) );
5762   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5763   pPage1 = pBt->pPage1;
5764   mxPage = btreePagecount(pBt);
5765   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5766   ** stores stores the total number of pages on the freelist. */
5767   n = get4byte(&pPage1->aData[36]);
5768   testcase( n==mxPage-1 );
5769   if( n>=mxPage ){
5770     return SQLITE_CORRUPT_BKPT;
5771   }
5772   if( n>0 ){
5773     /* There are pages on the freelist.  Reuse one of those pages. */
5774     Pgno iTrunk;
5775     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5776     u32 nSearch = 0;   /* Count of the number of search attempts */
5777 
5778     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5779     ** shows that the page 'nearby' is somewhere on the free-list, then
5780     ** the entire-list will be searched for that page.
5781     */
5782 #ifndef SQLITE_OMIT_AUTOVACUUM
5783     if( eMode==BTALLOC_EXACT ){
5784       if( nearby<=mxPage ){
5785         u8 eType;
5786         assert( nearby>0 );
5787         assert( pBt->autoVacuum );
5788         rc = ptrmapGet(pBt, nearby, &eType, 0);
5789         if( rc ) return rc;
5790         if( eType==PTRMAP_FREEPAGE ){
5791           searchList = 1;
5792         }
5793       }
5794     }else if( eMode==BTALLOC_LE ){
5795       searchList = 1;
5796     }
5797 #endif
5798 
5799     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5800     ** first free-list trunk page. iPrevTrunk is initially 1.
5801     */
5802     rc = sqlite3PagerWrite(pPage1->pDbPage);
5803     if( rc ) return rc;
5804     put4byte(&pPage1->aData[36], n-1);
5805 
5806     /* The code within this loop is run only once if the 'searchList' variable
5807     ** is not true. Otherwise, it runs once for each trunk-page on the
5808     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5809     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5810     */
5811     do {
5812       pPrevTrunk = pTrunk;
5813       if( pPrevTrunk ){
5814         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5815         ** is the page number of the next freelist trunk page in the list or
5816         ** zero if this is the last freelist trunk page. */
5817         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5818       }else{
5819         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5820         ** stores the page number of the first page of the freelist, or zero if
5821         ** the freelist is empty. */
5822         iTrunk = get4byte(&pPage1->aData[32]);
5823       }
5824       testcase( iTrunk==mxPage );
5825       if( iTrunk>mxPage || nSearch++ > n ){
5826         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
5827       }else{
5828         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5829       }
5830       if( rc ){
5831         pTrunk = 0;
5832         goto end_allocate_page;
5833       }
5834       assert( pTrunk!=0 );
5835       assert( pTrunk->aData!=0 );
5836       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5837       ** is the number of leaf page pointers to follow. */
5838       k = get4byte(&pTrunk->aData[4]);
5839       if( k==0 && !searchList ){
5840         /* The trunk has no leaves and the list is not being searched.
5841         ** So extract the trunk page itself and use it as the newly
5842         ** allocated page */
5843         assert( pPrevTrunk==0 );
5844         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5845         if( rc ){
5846           goto end_allocate_page;
5847         }
5848         *pPgno = iTrunk;
5849         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5850         *ppPage = pTrunk;
5851         pTrunk = 0;
5852         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5853       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5854         /* Value of k is out of range.  Database corruption */
5855         rc = SQLITE_CORRUPT_PGNO(iTrunk);
5856         goto end_allocate_page;
5857 #ifndef SQLITE_OMIT_AUTOVACUUM
5858       }else if( searchList
5859             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5860       ){
5861         /* The list is being searched and this trunk page is the page
5862         ** to allocate, regardless of whether it has leaves.
5863         */
5864         *pPgno = iTrunk;
5865         *ppPage = pTrunk;
5866         searchList = 0;
5867         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5868         if( rc ){
5869           goto end_allocate_page;
5870         }
5871         if( k==0 ){
5872           if( !pPrevTrunk ){
5873             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5874           }else{
5875             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5876             if( rc!=SQLITE_OK ){
5877               goto end_allocate_page;
5878             }
5879             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5880           }
5881         }else{
5882           /* The trunk page is required by the caller but it contains
5883           ** pointers to free-list leaves. The first leaf becomes a trunk
5884           ** page in this case.
5885           */
5886           MemPage *pNewTrunk;
5887           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5888           if( iNewTrunk>mxPage ){
5889             rc = SQLITE_CORRUPT_PGNO(iTrunk);
5890             goto end_allocate_page;
5891           }
5892           testcase( iNewTrunk==mxPage );
5893           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
5894           if( rc!=SQLITE_OK ){
5895             goto end_allocate_page;
5896           }
5897           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5898           if( rc!=SQLITE_OK ){
5899             releasePage(pNewTrunk);
5900             goto end_allocate_page;
5901           }
5902           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5903           put4byte(&pNewTrunk->aData[4], k-1);
5904           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5905           releasePage(pNewTrunk);
5906           if( !pPrevTrunk ){
5907             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5908             put4byte(&pPage1->aData[32], iNewTrunk);
5909           }else{
5910             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5911             if( rc ){
5912               goto end_allocate_page;
5913             }
5914             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5915           }
5916         }
5917         pTrunk = 0;
5918         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5919 #endif
5920       }else if( k>0 ){
5921         /* Extract a leaf from the trunk */
5922         u32 closest;
5923         Pgno iPage;
5924         unsigned char *aData = pTrunk->aData;
5925         if( nearby>0 ){
5926           u32 i;
5927           closest = 0;
5928           if( eMode==BTALLOC_LE ){
5929             for(i=0; i<k; i++){
5930               iPage = get4byte(&aData[8+i*4]);
5931               if( iPage<=nearby ){
5932                 closest = i;
5933                 break;
5934               }
5935             }
5936           }else{
5937             int dist;
5938             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5939             for(i=1; i<k; i++){
5940               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5941               if( d2<dist ){
5942                 closest = i;
5943                 dist = d2;
5944               }
5945             }
5946           }
5947         }else{
5948           closest = 0;
5949         }
5950 
5951         iPage = get4byte(&aData[8+closest*4]);
5952         testcase( iPage==mxPage );
5953         if( iPage>mxPage ){
5954           rc = SQLITE_CORRUPT_PGNO(iTrunk);
5955           goto end_allocate_page;
5956         }
5957         testcase( iPage==mxPage );
5958         if( !searchList
5959          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5960         ){
5961           int noContent;
5962           *pPgno = iPage;
5963           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5964                  ": %d more free pages\n",
5965                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
5966           rc = sqlite3PagerWrite(pTrunk->pDbPage);
5967           if( rc ) goto end_allocate_page;
5968           if( closest<k-1 ){
5969             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5970           }
5971           put4byte(&aData[4], k-1);
5972           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
5973           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
5974           if( rc==SQLITE_OK ){
5975             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5976             if( rc!=SQLITE_OK ){
5977               releasePage(*ppPage);
5978               *ppPage = 0;
5979             }
5980           }
5981           searchList = 0;
5982         }
5983       }
5984       releasePage(pPrevTrunk);
5985       pPrevTrunk = 0;
5986     }while( searchList );
5987   }else{
5988     /* There are no pages on the freelist, so append a new page to the
5989     ** database image.
5990     **
5991     ** Normally, new pages allocated by this block can be requested from the
5992     ** pager layer with the 'no-content' flag set. This prevents the pager
5993     ** from trying to read the pages content from disk. However, if the
5994     ** current transaction has already run one or more incremental-vacuum
5995     ** steps, then the page we are about to allocate may contain content
5996     ** that is required in the event of a rollback. In this case, do
5997     ** not set the no-content flag. This causes the pager to load and journal
5998     ** the current page content before overwriting it.
5999     **
6000     ** Note that the pager will not actually attempt to load or journal
6001     ** content for any page that really does lie past the end of the database
6002     ** file on disk. So the effects of disabling the no-content optimization
6003     ** here are confined to those pages that lie between the end of the
6004     ** database image and the end of the database file.
6005     */
6006     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6007 
6008     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6009     if( rc ) return rc;
6010     pBt->nPage++;
6011     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6012 
6013 #ifndef SQLITE_OMIT_AUTOVACUUM
6014     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6015       /* If *pPgno refers to a pointer-map page, allocate two new pages
6016       ** at the end of the file instead of one. The first allocated page
6017       ** becomes a new pointer-map page, the second is used by the caller.
6018       */
6019       MemPage *pPg = 0;
6020       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6021       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6022       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6023       if( rc==SQLITE_OK ){
6024         rc = sqlite3PagerWrite(pPg->pDbPage);
6025         releasePage(pPg);
6026       }
6027       if( rc ) return rc;
6028       pBt->nPage++;
6029       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6030     }
6031 #endif
6032     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6033     *pPgno = pBt->nPage;
6034 
6035     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6036     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6037     if( rc ) return rc;
6038     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6039     if( rc!=SQLITE_OK ){
6040       releasePage(*ppPage);
6041       *ppPage = 0;
6042     }
6043     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6044   }
6045 
6046   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6047 
6048 end_allocate_page:
6049   releasePage(pTrunk);
6050   releasePage(pPrevTrunk);
6051   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6052   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6053   return rc;
6054 }
6055 
6056 /*
6057 ** This function is used to add page iPage to the database file free-list.
6058 ** It is assumed that the page is not already a part of the free-list.
6059 **
6060 ** The value passed as the second argument to this function is optional.
6061 ** If the caller happens to have a pointer to the MemPage object
6062 ** corresponding to page iPage handy, it may pass it as the second value.
6063 ** Otherwise, it may pass NULL.
6064 **
6065 ** If a pointer to a MemPage object is passed as the second argument,
6066 ** its reference count is not altered by this function.
6067 */
6068 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6069   MemPage *pTrunk = 0;                /* Free-list trunk page */
6070   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6071   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6072   MemPage *pPage;                     /* Page being freed. May be NULL. */
6073   int rc;                             /* Return Code */
6074   int nFree;                          /* Initial number of pages on free-list */
6075 
6076   assert( sqlite3_mutex_held(pBt->mutex) );
6077   assert( CORRUPT_DB || iPage>1 );
6078   assert( !pMemPage || pMemPage->pgno==iPage );
6079 
6080   if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
6081   if( pMemPage ){
6082     pPage = pMemPage;
6083     sqlite3PagerRef(pPage->pDbPage);
6084   }else{
6085     pPage = btreePageLookup(pBt, iPage);
6086   }
6087 
6088   /* Increment the free page count on pPage1 */
6089   rc = sqlite3PagerWrite(pPage1->pDbPage);
6090   if( rc ) goto freepage_out;
6091   nFree = get4byte(&pPage1->aData[36]);
6092   put4byte(&pPage1->aData[36], nFree+1);
6093 
6094   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6095     /* If the secure_delete option is enabled, then
6096     ** always fully overwrite deleted information with zeros.
6097     */
6098     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6099      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6100     ){
6101       goto freepage_out;
6102     }
6103     memset(pPage->aData, 0, pPage->pBt->pageSize);
6104   }
6105 
6106   /* If the database supports auto-vacuum, write an entry in the pointer-map
6107   ** to indicate that the page is free.
6108   */
6109   if( ISAUTOVACUUM ){
6110     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6111     if( rc ) goto freepage_out;
6112   }
6113 
6114   /* Now manipulate the actual database free-list structure. There are two
6115   ** possibilities. If the free-list is currently empty, or if the first
6116   ** trunk page in the free-list is full, then this page will become a
6117   ** new free-list trunk page. Otherwise, it will become a leaf of the
6118   ** first trunk page in the current free-list. This block tests if it
6119   ** is possible to add the page as a new free-list leaf.
6120   */
6121   if( nFree!=0 ){
6122     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6123 
6124     iTrunk = get4byte(&pPage1->aData[32]);
6125     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6126     if( rc!=SQLITE_OK ){
6127       goto freepage_out;
6128     }
6129 
6130     nLeaf = get4byte(&pTrunk->aData[4]);
6131     assert( pBt->usableSize>32 );
6132     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6133       rc = SQLITE_CORRUPT_BKPT;
6134       goto freepage_out;
6135     }
6136     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6137       /* In this case there is room on the trunk page to insert the page
6138       ** being freed as a new leaf.
6139       **
6140       ** Note that the trunk page is not really full until it contains
6141       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6142       ** coded.  But due to a coding error in versions of SQLite prior to
6143       ** 3.6.0, databases with freelist trunk pages holding more than
6144       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6145       ** to maintain backwards compatibility with older versions of SQLite,
6146       ** we will continue to restrict the number of entries to usableSize/4 - 8
6147       ** for now.  At some point in the future (once everyone has upgraded
6148       ** to 3.6.0 or later) we should consider fixing the conditional above
6149       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6150       **
6151       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6152       ** avoid using the last six entries in the freelist trunk page array in
6153       ** order that database files created by newer versions of SQLite can be
6154       ** read by older versions of SQLite.
6155       */
6156       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6157       if( rc==SQLITE_OK ){
6158         put4byte(&pTrunk->aData[4], nLeaf+1);
6159         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6160         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6161           sqlite3PagerDontWrite(pPage->pDbPage);
6162         }
6163         rc = btreeSetHasContent(pBt, iPage);
6164       }
6165       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6166       goto freepage_out;
6167     }
6168   }
6169 
6170   /* If control flows to this point, then it was not possible to add the
6171   ** the page being freed as a leaf page of the first trunk in the free-list.
6172   ** Possibly because the free-list is empty, or possibly because the
6173   ** first trunk in the free-list is full. Either way, the page being freed
6174   ** will become the new first trunk page in the free-list.
6175   */
6176   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6177     goto freepage_out;
6178   }
6179   rc = sqlite3PagerWrite(pPage->pDbPage);
6180   if( rc!=SQLITE_OK ){
6181     goto freepage_out;
6182   }
6183   put4byte(pPage->aData, iTrunk);
6184   put4byte(&pPage->aData[4], 0);
6185   put4byte(&pPage1->aData[32], iPage);
6186   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6187 
6188 freepage_out:
6189   if( pPage ){
6190     pPage->isInit = 0;
6191   }
6192   releasePage(pPage);
6193   releasePage(pTrunk);
6194   return rc;
6195 }
6196 static void freePage(MemPage *pPage, int *pRC){
6197   if( (*pRC)==SQLITE_OK ){
6198     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6199   }
6200 }
6201 
6202 /*
6203 ** Free any overflow pages associated with the given Cell.  Store
6204 ** size information about the cell in pInfo.
6205 */
6206 static int clearCell(
6207   MemPage *pPage,          /* The page that contains the Cell */
6208   unsigned char *pCell,    /* First byte of the Cell */
6209   CellInfo *pInfo          /* Size information about the cell */
6210 ){
6211   BtShared *pBt;
6212   Pgno ovflPgno;
6213   int rc;
6214   int nOvfl;
6215   u32 ovflPageSize;
6216 
6217   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6218   pPage->xParseCell(pPage, pCell, pInfo);
6219   if( pInfo->nLocal==pInfo->nPayload ){
6220     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
6221   }
6222   if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
6223     /* Cell extends past end of page */
6224     return SQLITE_CORRUPT_PAGE(pPage);
6225   }
6226   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6227   pBt = pPage->pBt;
6228   assert( pBt->usableSize > 4 );
6229   ovflPageSize = pBt->usableSize - 4;
6230   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6231   assert( nOvfl>0 ||
6232     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6233   );
6234   while( nOvfl-- ){
6235     Pgno iNext = 0;
6236     MemPage *pOvfl = 0;
6237     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6238       /* 0 is not a legal page number and page 1 cannot be an
6239       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6240       ** file the database must be corrupt. */
6241       return SQLITE_CORRUPT_BKPT;
6242     }
6243     if( nOvfl ){
6244       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6245       if( rc ) return rc;
6246     }
6247 
6248     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6249      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6250     ){
6251       /* There is no reason any cursor should have an outstanding reference
6252       ** to an overflow page belonging to a cell that is being deleted/updated.
6253       ** So if there exists more than one reference to this page, then it
6254       ** must not really be an overflow page and the database must be corrupt.
6255       ** It is helpful to detect this before calling freePage2(), as
6256       ** freePage2() may zero the page contents if secure-delete mode is
6257       ** enabled. If this 'overflow' page happens to be a page that the
6258       ** caller is iterating through or using in some other way, this
6259       ** can be problematic.
6260       */
6261       rc = SQLITE_CORRUPT_BKPT;
6262     }else{
6263       rc = freePage2(pBt, pOvfl, ovflPgno);
6264     }
6265 
6266     if( pOvfl ){
6267       sqlite3PagerUnref(pOvfl->pDbPage);
6268     }
6269     if( rc ) return rc;
6270     ovflPgno = iNext;
6271   }
6272   return SQLITE_OK;
6273 }
6274 
6275 /*
6276 ** Create the byte sequence used to represent a cell on page pPage
6277 ** and write that byte sequence into pCell[].  Overflow pages are
6278 ** allocated and filled in as necessary.  The calling procedure
6279 ** is responsible for making sure sufficient space has been allocated
6280 ** for pCell[].
6281 **
6282 ** Note that pCell does not necessary need to point to the pPage->aData
6283 ** area.  pCell might point to some temporary storage.  The cell will
6284 ** be constructed in this temporary area then copied into pPage->aData
6285 ** later.
6286 */
6287 static int fillInCell(
6288   MemPage *pPage,                /* The page that contains the cell */
6289   unsigned char *pCell,          /* Complete text of the cell */
6290   const BtreePayload *pX,        /* Payload with which to construct the cell */
6291   int *pnSize                    /* Write cell size here */
6292 ){
6293   int nPayload;
6294   const u8 *pSrc;
6295   int nSrc, n, rc, mn;
6296   int spaceLeft;
6297   MemPage *pToRelease;
6298   unsigned char *pPrior;
6299   unsigned char *pPayload;
6300   BtShared *pBt;
6301   Pgno pgnoOvfl;
6302   int nHeader;
6303 
6304   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6305 
6306   /* pPage is not necessarily writeable since pCell might be auxiliary
6307   ** buffer space that is separate from the pPage buffer area */
6308   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6309             || sqlite3PagerIswriteable(pPage->pDbPage) );
6310 
6311   /* Fill in the header. */
6312   nHeader = pPage->childPtrSize;
6313   if( pPage->intKey ){
6314     nPayload = pX->nData + pX->nZero;
6315     pSrc = pX->pData;
6316     nSrc = pX->nData;
6317     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6318     nHeader += putVarint32(&pCell[nHeader], nPayload);
6319     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6320   }else{
6321     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6322     nSrc = nPayload = (int)pX->nKey;
6323     pSrc = pX->pKey;
6324     nHeader += putVarint32(&pCell[nHeader], nPayload);
6325   }
6326 
6327   /* Fill in the payload */
6328   pPayload = &pCell[nHeader];
6329   if( nPayload<=pPage->maxLocal ){
6330     /* This is the common case where everything fits on the btree page
6331     ** and no overflow pages are required. */
6332     n = nHeader + nPayload;
6333     testcase( n==3 );
6334     testcase( n==4 );
6335     if( n<4 ) n = 4;
6336     *pnSize = n;
6337     assert( nSrc<=nPayload );
6338     testcase( nSrc<nPayload );
6339     memcpy(pPayload, pSrc, nSrc);
6340     memset(pPayload+nSrc, 0, nPayload-nSrc);
6341     return SQLITE_OK;
6342   }
6343 
6344   /* If we reach this point, it means that some of the content will need
6345   ** to spill onto overflow pages.
6346   */
6347   mn = pPage->minLocal;
6348   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6349   testcase( n==pPage->maxLocal );
6350   testcase( n==pPage->maxLocal+1 );
6351   if( n > pPage->maxLocal ) n = mn;
6352   spaceLeft = n;
6353   *pnSize = n + nHeader + 4;
6354   pPrior = &pCell[nHeader+n];
6355   pToRelease = 0;
6356   pgnoOvfl = 0;
6357   pBt = pPage->pBt;
6358 
6359   /* At this point variables should be set as follows:
6360   **
6361   **   nPayload           Total payload size in bytes
6362   **   pPayload           Begin writing payload here
6363   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6364   **                      that means content must spill into overflow pages.
6365   **   *pnSize            Size of the local cell (not counting overflow pages)
6366   **   pPrior             Where to write the pgno of the first overflow page
6367   **
6368   ** Use a call to btreeParseCellPtr() to verify that the values above
6369   ** were computed correctly.
6370   */
6371 #ifdef SQLITE_DEBUG
6372   {
6373     CellInfo info;
6374     pPage->xParseCell(pPage, pCell, &info);
6375     assert( nHeader==(int)(info.pPayload - pCell) );
6376     assert( info.nKey==pX->nKey );
6377     assert( *pnSize == info.nSize );
6378     assert( spaceLeft == info.nLocal );
6379   }
6380 #endif
6381 
6382   /* Write the payload into the local Cell and any extra into overflow pages */
6383   while( 1 ){
6384     n = nPayload;
6385     if( n>spaceLeft ) n = spaceLeft;
6386 
6387     /* If pToRelease is not zero than pPayload points into the data area
6388     ** of pToRelease.  Make sure pToRelease is still writeable. */
6389     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6390 
6391     /* If pPayload is part of the data area of pPage, then make sure pPage
6392     ** is still writeable */
6393     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6394             || sqlite3PagerIswriteable(pPage->pDbPage) );
6395 
6396     if( nSrc>=n ){
6397       memcpy(pPayload, pSrc, n);
6398     }else if( nSrc>0 ){
6399       n = nSrc;
6400       memcpy(pPayload, pSrc, n);
6401     }else{
6402       memset(pPayload, 0, n);
6403     }
6404     nPayload -= n;
6405     if( nPayload<=0 ) break;
6406     pPayload += n;
6407     pSrc += n;
6408     nSrc -= n;
6409     spaceLeft -= n;
6410     if( spaceLeft==0 ){
6411       MemPage *pOvfl = 0;
6412 #ifndef SQLITE_OMIT_AUTOVACUUM
6413       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6414       if( pBt->autoVacuum ){
6415         do{
6416           pgnoOvfl++;
6417         } while(
6418           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6419         );
6420       }
6421 #endif
6422       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6423 #ifndef SQLITE_OMIT_AUTOVACUUM
6424       /* If the database supports auto-vacuum, and the second or subsequent
6425       ** overflow page is being allocated, add an entry to the pointer-map
6426       ** for that page now.
6427       **
6428       ** If this is the first overflow page, then write a partial entry
6429       ** to the pointer-map. If we write nothing to this pointer-map slot,
6430       ** then the optimistic overflow chain processing in clearCell()
6431       ** may misinterpret the uninitialized values and delete the
6432       ** wrong pages from the database.
6433       */
6434       if( pBt->autoVacuum && rc==SQLITE_OK ){
6435         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6436         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6437         if( rc ){
6438           releasePage(pOvfl);
6439         }
6440       }
6441 #endif
6442       if( rc ){
6443         releasePage(pToRelease);
6444         return rc;
6445       }
6446 
6447       /* If pToRelease is not zero than pPrior points into the data area
6448       ** of pToRelease.  Make sure pToRelease is still writeable. */
6449       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6450 
6451       /* If pPrior is part of the data area of pPage, then make sure pPage
6452       ** is still writeable */
6453       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6454             || sqlite3PagerIswriteable(pPage->pDbPage) );
6455 
6456       put4byte(pPrior, pgnoOvfl);
6457       releasePage(pToRelease);
6458       pToRelease = pOvfl;
6459       pPrior = pOvfl->aData;
6460       put4byte(pPrior, 0);
6461       pPayload = &pOvfl->aData[4];
6462       spaceLeft = pBt->usableSize - 4;
6463     }
6464   }
6465   releasePage(pToRelease);
6466   return SQLITE_OK;
6467 }
6468 
6469 /*
6470 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6471 ** The cell content is not freed or deallocated.  It is assumed that
6472 ** the cell content has been copied someplace else.  This routine just
6473 ** removes the reference to the cell from pPage.
6474 **
6475 ** "sz" must be the number of bytes in the cell.
6476 */
6477 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6478   u32 pc;         /* Offset to cell content of cell being deleted */
6479   u8 *data;       /* pPage->aData */
6480   u8 *ptr;        /* Used to move bytes around within data[] */
6481   int rc;         /* The return code */
6482   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6483 
6484   if( *pRC ) return;
6485   assert( idx>=0 && idx<pPage->nCell );
6486   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6487   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6488   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6489   data = pPage->aData;
6490   ptr = &pPage->aCellIdx[2*idx];
6491   pc = get2byte(ptr);
6492   hdr = pPage->hdrOffset;
6493   testcase( pc==get2byte(&data[hdr+5]) );
6494   testcase( pc+sz==pPage->pBt->usableSize );
6495   if( pc+sz > pPage->pBt->usableSize ){
6496     *pRC = SQLITE_CORRUPT_BKPT;
6497     return;
6498   }
6499   rc = freeSpace(pPage, pc, sz);
6500   if( rc ){
6501     *pRC = rc;
6502     return;
6503   }
6504   pPage->nCell--;
6505   if( pPage->nCell==0 ){
6506     memset(&data[hdr+1], 0, 4);
6507     data[hdr+7] = 0;
6508     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6509     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6510                        - pPage->childPtrSize - 8;
6511   }else{
6512     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6513     put2byte(&data[hdr+3], pPage->nCell);
6514     pPage->nFree += 2;
6515   }
6516 }
6517 
6518 /*
6519 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6520 ** content of the cell.
6521 **
6522 ** If the cell content will fit on the page, then put it there.  If it
6523 ** will not fit, then make a copy of the cell content into pTemp if
6524 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6525 ** in pPage->apOvfl[] and make it point to the cell content (either
6526 ** in pTemp or the original pCell) and also record its index.
6527 ** Allocating a new entry in pPage->aCell[] implies that
6528 ** pPage->nOverflow is incremented.
6529 **
6530 ** *pRC must be SQLITE_OK when this routine is called.
6531 */
6532 static void insertCell(
6533   MemPage *pPage,   /* Page into which we are copying */
6534   int i,            /* New cell becomes the i-th cell of the page */
6535   u8 *pCell,        /* Content of the new cell */
6536   int sz,           /* Bytes of content in pCell */
6537   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6538   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6539   int *pRC          /* Read and write return code from here */
6540 ){
6541   int idx = 0;      /* Where to write new cell content in data[] */
6542   int j;            /* Loop counter */
6543   u8 *data;         /* The content of the whole page */
6544   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6545 
6546   assert( *pRC==SQLITE_OK );
6547   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6548   assert( MX_CELL(pPage->pBt)<=10921 );
6549   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6550   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6551   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6552   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6553   /* The cell should normally be sized correctly.  However, when moving a
6554   ** malformed cell from a leaf page to an interior page, if the cell size
6555   ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6556   ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
6557   ** the term after the || in the following assert(). */
6558   assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
6559   if( pPage->nOverflow || sz+2>pPage->nFree ){
6560     if( pTemp ){
6561       memcpy(pTemp, pCell, sz);
6562       pCell = pTemp;
6563     }
6564     if( iChild ){
6565       put4byte(pCell, iChild);
6566     }
6567     j = pPage->nOverflow++;
6568     /* Comparison against ArraySize-1 since we hold back one extra slot
6569     ** as a contingency.  In other words, never need more than 3 overflow
6570     ** slots but 4 are allocated, just to be safe. */
6571     assert( j < ArraySize(pPage->apOvfl)-1 );
6572     pPage->apOvfl[j] = pCell;
6573     pPage->aiOvfl[j] = (u16)i;
6574 
6575     /* When multiple overflows occur, they are always sequential and in
6576     ** sorted order.  This invariants arise because multiple overflows can
6577     ** only occur when inserting divider cells into the parent page during
6578     ** balancing, and the dividers are adjacent and sorted.
6579     */
6580     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6581     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6582   }else{
6583     int rc = sqlite3PagerWrite(pPage->pDbPage);
6584     if( rc!=SQLITE_OK ){
6585       *pRC = rc;
6586       return;
6587     }
6588     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6589     data = pPage->aData;
6590     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6591     rc = allocateSpace(pPage, sz, &idx);
6592     if( rc ){ *pRC = rc; return; }
6593     /* The allocateSpace() routine guarantees the following properties
6594     ** if it returns successfully */
6595     assert( idx >= 0 );
6596     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6597     assert( idx+sz <= (int)pPage->pBt->usableSize );
6598     pPage->nFree -= (u16)(2 + sz);
6599     memcpy(&data[idx], pCell, sz);
6600     if( iChild ){
6601       put4byte(&data[idx], iChild);
6602     }
6603     pIns = pPage->aCellIdx + i*2;
6604     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6605     put2byte(pIns, idx);
6606     pPage->nCell++;
6607     /* increment the cell count */
6608     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6609     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
6610 #ifndef SQLITE_OMIT_AUTOVACUUM
6611     if( pPage->pBt->autoVacuum ){
6612       /* The cell may contain a pointer to an overflow page. If so, write
6613       ** the entry for the overflow page into the pointer map.
6614       */
6615       ptrmapPutOvflPtr(pPage, pCell, pRC);
6616     }
6617 #endif
6618   }
6619 }
6620 
6621 /*
6622 ** A CellArray object contains a cache of pointers and sizes for a
6623 ** consecutive sequence of cells that might be held on multiple pages.
6624 */
6625 typedef struct CellArray CellArray;
6626 struct CellArray {
6627   int nCell;              /* Number of cells in apCell[] */
6628   MemPage *pRef;          /* Reference page */
6629   u8 **apCell;            /* All cells begin balanced */
6630   u16 *szCell;            /* Local size of all cells in apCell[] */
6631 };
6632 
6633 /*
6634 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6635 ** computed.
6636 */
6637 static void populateCellCache(CellArray *p, int idx, int N){
6638   assert( idx>=0 && idx+N<=p->nCell );
6639   while( N>0 ){
6640     assert( p->apCell[idx]!=0 );
6641     if( p->szCell[idx]==0 ){
6642       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6643     }else{
6644       assert( CORRUPT_DB ||
6645               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6646     }
6647     idx++;
6648     N--;
6649   }
6650 }
6651 
6652 /*
6653 ** Return the size of the Nth element of the cell array
6654 */
6655 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6656   assert( N>=0 && N<p->nCell );
6657   assert( p->szCell[N]==0 );
6658   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6659   return p->szCell[N];
6660 }
6661 static u16 cachedCellSize(CellArray *p, int N){
6662   assert( N>=0 && N<p->nCell );
6663   if( p->szCell[N] ) return p->szCell[N];
6664   return computeCellSize(p, N);
6665 }
6666 
6667 /*
6668 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6669 ** szCell[] array contains the size in bytes of each cell. This function
6670 ** replaces the current contents of page pPg with the contents of the cell
6671 ** array.
6672 **
6673 ** Some of the cells in apCell[] may currently be stored in pPg. This
6674 ** function works around problems caused by this by making a copy of any
6675 ** such cells before overwriting the page data.
6676 **
6677 ** The MemPage.nFree field is invalidated by this function. It is the
6678 ** responsibility of the caller to set it correctly.
6679 */
6680 static int rebuildPage(
6681   MemPage *pPg,                   /* Edit this page */
6682   int nCell,                      /* Final number of cells on page */
6683   u8 **apCell,                    /* Array of cells */
6684   u16 *szCell                     /* Array of cell sizes */
6685 ){
6686   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6687   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6688   const int usableSize = pPg->pBt->usableSize;
6689   u8 * const pEnd = &aData[usableSize];
6690   int i;
6691   u8 *pCellptr = pPg->aCellIdx;
6692   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6693   u8 *pData;
6694 
6695   i = get2byte(&aData[hdr+5]);
6696   memcpy(&pTmp[i], &aData[i], usableSize - i);
6697 
6698   pData = pEnd;
6699   for(i=0; i<nCell; i++){
6700     u8 *pCell = apCell[i];
6701     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6702       pCell = &pTmp[pCell - aData];
6703     }
6704     pData -= szCell[i];
6705     put2byte(pCellptr, (pData - aData));
6706     pCellptr += 2;
6707     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6708     memcpy(pData, pCell, szCell[i]);
6709     assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6710     testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
6711   }
6712 
6713   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6714   pPg->nCell = nCell;
6715   pPg->nOverflow = 0;
6716 
6717   put2byte(&aData[hdr+1], 0);
6718   put2byte(&aData[hdr+3], pPg->nCell);
6719   put2byte(&aData[hdr+5], pData - aData);
6720   aData[hdr+7] = 0x00;
6721   return SQLITE_OK;
6722 }
6723 
6724 /*
6725 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6726 ** contains the size in bytes of each such cell. This function attempts to
6727 ** add the cells stored in the array to page pPg. If it cannot (because
6728 ** the page needs to be defragmented before the cells will fit), non-zero
6729 ** is returned. Otherwise, if the cells are added successfully, zero is
6730 ** returned.
6731 **
6732 ** Argument pCellptr points to the first entry in the cell-pointer array
6733 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6734 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6735 ** cell in the array. It is the responsibility of the caller to ensure
6736 ** that it is safe to overwrite this part of the cell-pointer array.
6737 **
6738 ** When this function is called, *ppData points to the start of the
6739 ** content area on page pPg. If the size of the content area is extended,
6740 ** *ppData is updated to point to the new start of the content area
6741 ** before returning.
6742 **
6743 ** Finally, argument pBegin points to the byte immediately following the
6744 ** end of the space required by this page for the cell-pointer area (for
6745 ** all cells - not just those inserted by the current call). If the content
6746 ** area must be extended to before this point in order to accomodate all
6747 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6748 */
6749 static int pageInsertArray(
6750   MemPage *pPg,                   /* Page to add cells to */
6751   u8 *pBegin,                     /* End of cell-pointer array */
6752   u8 **ppData,                    /* IN/OUT: Page content -area pointer */
6753   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6754   int iFirst,                     /* Index of first cell to add */
6755   int nCell,                      /* Number of cells to add to pPg */
6756   CellArray *pCArray              /* Array of cells */
6757 ){
6758   int i;
6759   u8 *aData = pPg->aData;
6760   u8 *pData = *ppData;
6761   int iEnd = iFirst + nCell;
6762   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
6763   for(i=iFirst; i<iEnd; i++){
6764     int sz, rc;
6765     u8 *pSlot;
6766     sz = cachedCellSize(pCArray, i);
6767     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6768       if( (pData - pBegin)<sz ) return 1;
6769       pData -= sz;
6770       pSlot = pData;
6771     }
6772     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6773     ** database.  But they might for a corrupt database.  Hence use memmove()
6774     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6775     assert( (pSlot+sz)<=pCArray->apCell[i]
6776          || pSlot>=(pCArray->apCell[i]+sz)
6777          || CORRUPT_DB );
6778     memmove(pSlot, pCArray->apCell[i], sz);
6779     put2byte(pCellptr, (pSlot - aData));
6780     pCellptr += 2;
6781   }
6782   *ppData = pData;
6783   return 0;
6784 }
6785 
6786 /*
6787 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6788 ** contains the size in bytes of each such cell. This function adds the
6789 ** space associated with each cell in the array that is currently stored
6790 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6791 ** fields of the page are not updated.
6792 **
6793 ** This function returns the total number of cells added to the free-list.
6794 */
6795 static int pageFreeArray(
6796   MemPage *pPg,                   /* Page to edit */
6797   int iFirst,                     /* First cell to delete */
6798   int nCell,                      /* Cells to delete */
6799   CellArray *pCArray              /* Array of cells */
6800 ){
6801   u8 * const aData = pPg->aData;
6802   u8 * const pEnd = &aData[pPg->pBt->usableSize];
6803   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
6804   int nRet = 0;
6805   int i;
6806   int iEnd = iFirst + nCell;
6807   u8 *pFree = 0;
6808   int szFree = 0;
6809 
6810   for(i=iFirst; i<iEnd; i++){
6811     u8 *pCell = pCArray->apCell[i];
6812     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
6813       int sz;
6814       /* No need to use cachedCellSize() here.  The sizes of all cells that
6815       ** are to be freed have already been computing while deciding which
6816       ** cells need freeing */
6817       sz = pCArray->szCell[i];  assert( sz>0 );
6818       if( pFree!=(pCell + sz) ){
6819         if( pFree ){
6820           assert( pFree>aData && (pFree - aData)<65536 );
6821           freeSpace(pPg, (u16)(pFree - aData), szFree);
6822         }
6823         pFree = pCell;
6824         szFree = sz;
6825         if( pFree+sz>pEnd ) return 0;
6826       }else{
6827         pFree = pCell;
6828         szFree += sz;
6829       }
6830       nRet++;
6831     }
6832   }
6833   if( pFree ){
6834     assert( pFree>aData && (pFree - aData)<65536 );
6835     freeSpace(pPg, (u16)(pFree - aData), szFree);
6836   }
6837   return nRet;
6838 }
6839 
6840 /*
6841 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6842 ** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
6843 ** with apCell[iOld].  After balancing, this page should hold nNew cells
6844 ** starting at apCell[iNew].
6845 **
6846 ** This routine makes the necessary adjustments to pPg so that it contains
6847 ** the correct cells after being balanced.
6848 **
6849 ** The pPg->nFree field is invalid when this function returns. It is the
6850 ** responsibility of the caller to set it correctly.
6851 */
6852 static int editPage(
6853   MemPage *pPg,                   /* Edit this page */
6854   int iOld,                       /* Index of first cell currently on page */
6855   int iNew,                       /* Index of new first cell on page */
6856   int nNew,                       /* Final number of cells on page */
6857   CellArray *pCArray              /* Array of cells and sizes */
6858 ){
6859   u8 * const aData = pPg->aData;
6860   const int hdr = pPg->hdrOffset;
6861   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6862   int nCell = pPg->nCell;       /* Cells stored on pPg */
6863   u8 *pData;
6864   u8 *pCellptr;
6865   int i;
6866   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6867   int iNewEnd = iNew + nNew;
6868 
6869 #ifdef SQLITE_DEBUG
6870   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6871   memcpy(pTmp, aData, pPg->pBt->usableSize);
6872 #endif
6873 
6874   /* Remove cells from the start and end of the page */
6875   if( iOld<iNew ){
6876     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
6877     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6878     nCell -= nShift;
6879   }
6880   if( iNewEnd < iOldEnd ){
6881     nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
6882   }
6883 
6884   pData = &aData[get2byteNotZero(&aData[hdr+5])];
6885   if( pData<pBegin ) goto editpage_fail;
6886 
6887   /* Add cells to the start of the page */
6888   if( iNew<iOld ){
6889     int nAdd = MIN(nNew,iOld-iNew);
6890     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
6891     pCellptr = pPg->aCellIdx;
6892     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6893     if( pageInsertArray(
6894           pPg, pBegin, &pData, pCellptr,
6895           iNew, nAdd, pCArray
6896     ) ) goto editpage_fail;
6897     nCell += nAdd;
6898   }
6899 
6900   /* Add any overflow cells */
6901   for(i=0; i<pPg->nOverflow; i++){
6902     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6903     if( iCell>=0 && iCell<nNew ){
6904       pCellptr = &pPg->aCellIdx[iCell * 2];
6905       memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6906       nCell++;
6907       if( pageInsertArray(
6908             pPg, pBegin, &pData, pCellptr,
6909             iCell+iNew, 1, pCArray
6910       ) ) goto editpage_fail;
6911     }
6912   }
6913 
6914   /* Append cells to the end of the page */
6915   pCellptr = &pPg->aCellIdx[nCell*2];
6916   if( pageInsertArray(
6917         pPg, pBegin, &pData, pCellptr,
6918         iNew+nCell, nNew-nCell, pCArray
6919   ) ) goto editpage_fail;
6920 
6921   pPg->nCell = nNew;
6922   pPg->nOverflow = 0;
6923 
6924   put2byte(&aData[hdr+3], pPg->nCell);
6925   put2byte(&aData[hdr+5], pData - aData);
6926 
6927 #ifdef SQLITE_DEBUG
6928   for(i=0; i<nNew && !CORRUPT_DB; i++){
6929     u8 *pCell = pCArray->apCell[i+iNew];
6930     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
6931     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
6932       pCell = &pTmp[pCell - aData];
6933     }
6934     assert( 0==memcmp(pCell, &aData[iOff],
6935             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
6936   }
6937 #endif
6938 
6939   return SQLITE_OK;
6940  editpage_fail:
6941   /* Unable to edit this page. Rebuild it from scratch instead. */
6942   populateCellCache(pCArray, iNew, nNew);
6943   return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
6944 }
6945 
6946 /*
6947 ** The following parameters determine how many adjacent pages get involved
6948 ** in a balancing operation.  NN is the number of neighbors on either side
6949 ** of the page that participate in the balancing operation.  NB is the
6950 ** total number of pages that participate, including the target page and
6951 ** NN neighbors on either side.
6952 **
6953 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6954 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6955 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6956 ** The value of NN appears to give the best results overall.
6957 */
6958 #define NN 1             /* Number of neighbors on either side of pPage */
6959 #define NB (NN*2+1)      /* Total pages involved in the balance */
6960 
6961 
6962 #ifndef SQLITE_OMIT_QUICKBALANCE
6963 /*
6964 ** This version of balance() handles the common special case where
6965 ** a new entry is being inserted on the extreme right-end of the
6966 ** tree, in other words, when the new entry will become the largest
6967 ** entry in the tree.
6968 **
6969 ** Instead of trying to balance the 3 right-most leaf pages, just add
6970 ** a new page to the right-hand side and put the one new entry in
6971 ** that page.  This leaves the right side of the tree somewhat
6972 ** unbalanced.  But odds are that we will be inserting new entries
6973 ** at the end soon afterwards so the nearly empty page will quickly
6974 ** fill up.  On average.
6975 **
6976 ** pPage is the leaf page which is the right-most page in the tree.
6977 ** pParent is its parent.  pPage must have a single overflow entry
6978 ** which is also the right-most entry on the page.
6979 **
6980 ** The pSpace buffer is used to store a temporary copy of the divider
6981 ** cell that will be inserted into pParent. Such a cell consists of a 4
6982 ** byte page number followed by a variable length integer. In other
6983 ** words, at most 13 bytes. Hence the pSpace buffer must be at
6984 ** least 13 bytes in size.
6985 */
6986 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6987   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
6988   MemPage *pNew;                       /* Newly allocated page */
6989   int rc;                              /* Return Code */
6990   Pgno pgnoNew;                        /* Page number of pNew */
6991 
6992   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6993   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6994   assert( pPage->nOverflow==1 );
6995 
6996   /* This error condition is now caught prior to reaching this function */
6997   if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
6998 
6999   /* Allocate a new page. This page will become the right-sibling of
7000   ** pPage. Make the parent page writable, so that the new divider cell
7001   ** may be inserted. If both these operations are successful, proceed.
7002   */
7003   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7004 
7005   if( rc==SQLITE_OK ){
7006 
7007     u8 *pOut = &pSpace[4];
7008     u8 *pCell = pPage->apOvfl[0];
7009     u16 szCell = pPage->xCellSize(pPage, pCell);
7010     u8 *pStop;
7011 
7012     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7013     assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7014     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7015     rc = rebuildPage(pNew, 1, &pCell, &szCell);
7016     if( NEVER(rc) ) return rc;
7017     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7018 
7019     /* If this is an auto-vacuum database, update the pointer map
7020     ** with entries for the new page, and any pointer from the
7021     ** cell on the page to an overflow page. If either of these
7022     ** operations fails, the return code is set, but the contents
7023     ** of the parent page are still manipulated by thh code below.
7024     ** That is Ok, at this point the parent page is guaranteed to
7025     ** be marked as dirty. Returning an error code will cause a
7026     ** rollback, undoing any changes made to the parent page.
7027     */
7028     if( ISAUTOVACUUM ){
7029       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7030       if( szCell>pNew->minLocal ){
7031         ptrmapPutOvflPtr(pNew, pCell, &rc);
7032       }
7033     }
7034 
7035     /* Create a divider cell to insert into pParent. The divider cell
7036     ** consists of a 4-byte page number (the page number of pPage) and
7037     ** a variable length key value (which must be the same value as the
7038     ** largest key on pPage).
7039     **
7040     ** To find the largest key value on pPage, first find the right-most
7041     ** cell on pPage. The first two fields of this cell are the
7042     ** record-length (a variable length integer at most 32-bits in size)
7043     ** and the key value (a variable length integer, may have any value).
7044     ** The first of the while(...) loops below skips over the record-length
7045     ** field. The second while(...) loop copies the key value from the
7046     ** cell on pPage into the pSpace buffer.
7047     */
7048     pCell = findCell(pPage, pPage->nCell-1);
7049     pStop = &pCell[9];
7050     while( (*(pCell++)&0x80) && pCell<pStop );
7051     pStop = &pCell[9];
7052     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7053 
7054     /* Insert the new divider cell into pParent. */
7055     if( rc==SQLITE_OK ){
7056       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7057                    0, pPage->pgno, &rc);
7058     }
7059 
7060     /* Set the right-child pointer of pParent to point to the new page. */
7061     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7062 
7063     /* Release the reference to the new page. */
7064     releasePage(pNew);
7065   }
7066 
7067   return rc;
7068 }
7069 #endif /* SQLITE_OMIT_QUICKBALANCE */
7070 
7071 #if 0
7072 /*
7073 ** This function does not contribute anything to the operation of SQLite.
7074 ** it is sometimes activated temporarily while debugging code responsible
7075 ** for setting pointer-map entries.
7076 */
7077 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7078   int i, j;
7079   for(i=0; i<nPage; i++){
7080     Pgno n;
7081     u8 e;
7082     MemPage *pPage = apPage[i];
7083     BtShared *pBt = pPage->pBt;
7084     assert( pPage->isInit );
7085 
7086     for(j=0; j<pPage->nCell; j++){
7087       CellInfo info;
7088       u8 *z;
7089 
7090       z = findCell(pPage, j);
7091       pPage->xParseCell(pPage, z, &info);
7092       if( info.nLocal<info.nPayload ){
7093         Pgno ovfl = get4byte(&z[info.nSize-4]);
7094         ptrmapGet(pBt, ovfl, &e, &n);
7095         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7096       }
7097       if( !pPage->leaf ){
7098         Pgno child = get4byte(z);
7099         ptrmapGet(pBt, child, &e, &n);
7100         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7101       }
7102     }
7103     if( !pPage->leaf ){
7104       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7105       ptrmapGet(pBt, child, &e, &n);
7106       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7107     }
7108   }
7109   return 1;
7110 }
7111 #endif
7112 
7113 /*
7114 ** This function is used to copy the contents of the b-tree node stored
7115 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7116 ** the pointer-map entries for each child page are updated so that the
7117 ** parent page stored in the pointer map is page pTo. If pFrom contained
7118 ** any cells with overflow page pointers, then the corresponding pointer
7119 ** map entries are also updated so that the parent page is page pTo.
7120 **
7121 ** If pFrom is currently carrying any overflow cells (entries in the
7122 ** MemPage.apOvfl[] array), they are not copied to pTo.
7123 **
7124 ** Before returning, page pTo is reinitialized using btreeInitPage().
7125 **
7126 ** The performance of this function is not critical. It is only used by
7127 ** the balance_shallower() and balance_deeper() procedures, neither of
7128 ** which are called often under normal circumstances.
7129 */
7130 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7131   if( (*pRC)==SQLITE_OK ){
7132     BtShared * const pBt = pFrom->pBt;
7133     u8 * const aFrom = pFrom->aData;
7134     u8 * const aTo = pTo->aData;
7135     int const iFromHdr = pFrom->hdrOffset;
7136     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7137     int rc;
7138     int iData;
7139 
7140 
7141     assert( pFrom->isInit );
7142     assert( pFrom->nFree>=iToHdr );
7143     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7144 
7145     /* Copy the b-tree node content from page pFrom to page pTo. */
7146     iData = get2byte(&aFrom[iFromHdr+5]);
7147     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7148     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7149 
7150     /* Reinitialize page pTo so that the contents of the MemPage structure
7151     ** match the new data. The initialization of pTo can actually fail under
7152     ** fairly obscure circumstances, even though it is a copy of initialized
7153     ** page pFrom.
7154     */
7155     pTo->isInit = 0;
7156     rc = btreeInitPage(pTo);
7157     if( rc!=SQLITE_OK ){
7158       *pRC = rc;
7159       return;
7160     }
7161 
7162     /* If this is an auto-vacuum database, update the pointer-map entries
7163     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7164     */
7165     if( ISAUTOVACUUM ){
7166       *pRC = setChildPtrmaps(pTo);
7167     }
7168   }
7169 }
7170 
7171 /*
7172 ** This routine redistributes cells on the iParentIdx'th child of pParent
7173 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7174 ** same amount of free space. Usually a single sibling on either side of the
7175 ** page are used in the balancing, though both siblings might come from one
7176 ** side if the page is the first or last child of its parent. If the page
7177 ** has fewer than 2 siblings (something which can only happen if the page
7178 ** is a root page or a child of a root page) then all available siblings
7179 ** participate in the balancing.
7180 **
7181 ** The number of siblings of the page might be increased or decreased by
7182 ** one or two in an effort to keep pages nearly full but not over full.
7183 **
7184 ** Note that when this routine is called, some of the cells on the page
7185 ** might not actually be stored in MemPage.aData[]. This can happen
7186 ** if the page is overfull. This routine ensures that all cells allocated
7187 ** to the page and its siblings fit into MemPage.aData[] before returning.
7188 **
7189 ** In the course of balancing the page and its siblings, cells may be
7190 ** inserted into or removed from the parent page (pParent). Doing so
7191 ** may cause the parent page to become overfull or underfull. If this
7192 ** happens, it is the responsibility of the caller to invoke the correct
7193 ** balancing routine to fix this problem (see the balance() routine).
7194 **
7195 ** If this routine fails for any reason, it might leave the database
7196 ** in a corrupted state. So if this routine fails, the database should
7197 ** be rolled back.
7198 **
7199 ** The third argument to this function, aOvflSpace, is a pointer to a
7200 ** buffer big enough to hold one page. If while inserting cells into the parent
7201 ** page (pParent) the parent page becomes overfull, this buffer is
7202 ** used to store the parent's overflow cells. Because this function inserts
7203 ** a maximum of four divider cells into the parent page, and the maximum
7204 ** size of a cell stored within an internal node is always less than 1/4
7205 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7206 ** enough for all overflow cells.
7207 **
7208 ** If aOvflSpace is set to a null pointer, this function returns
7209 ** SQLITE_NOMEM.
7210 */
7211 static int balance_nonroot(
7212   MemPage *pParent,               /* Parent page of siblings being balanced */
7213   int iParentIdx,                 /* Index of "the page" in pParent */
7214   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7215   int isRoot,                     /* True if pParent is a root-page */
7216   int bBulk                       /* True if this call is part of a bulk load */
7217 ){
7218   BtShared *pBt;               /* The whole database */
7219   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7220   int nNew = 0;                /* Number of pages in apNew[] */
7221   int nOld;                    /* Number of pages in apOld[] */
7222   int i, j, k;                 /* Loop counters */
7223   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7224   int rc = SQLITE_OK;          /* The return code */
7225   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7226   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7227   int usableSpace;             /* Bytes in pPage beyond the header */
7228   int pageFlags;               /* Value of pPage->aData[0] */
7229   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7230   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7231   int szScratch;               /* Size of scratch memory requested */
7232   MemPage *apOld[NB];          /* pPage and up to two siblings */
7233   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7234   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7235   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7236   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7237   int cntOld[NB+2];            /* Old index in b.apCell[] */
7238   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7239   u8 *aSpace1;                 /* Space for copies of dividers cells */
7240   Pgno pgno;                   /* Temp var to store a page number in */
7241   u8 abDone[NB+2];             /* True after i'th new page is populated */
7242   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7243   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7244   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7245   CellArray b;                  /* Parsed information on cells being balanced */
7246 
7247   memset(abDone, 0, sizeof(abDone));
7248   b.nCell = 0;
7249   b.apCell = 0;
7250   pBt = pParent->pBt;
7251   assert( sqlite3_mutex_held(pBt->mutex) );
7252   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7253 
7254 #if 0
7255   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
7256 #endif
7257 
7258   /* At this point pParent may have at most one overflow cell. And if
7259   ** this overflow cell is present, it must be the cell with
7260   ** index iParentIdx. This scenario comes about when this function
7261   ** is called (indirectly) from sqlite3BtreeDelete().
7262   */
7263   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7264   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7265 
7266   if( !aOvflSpace ){
7267     return SQLITE_NOMEM_BKPT;
7268   }
7269 
7270   /* Find the sibling pages to balance. Also locate the cells in pParent
7271   ** that divide the siblings. An attempt is made to find NN siblings on
7272   ** either side of pPage. More siblings are taken from one side, however,
7273   ** if there are fewer than NN siblings on the other side. If pParent
7274   ** has NB or fewer children then all children of pParent are taken.
7275   **
7276   ** This loop also drops the divider cells from the parent page. This
7277   ** way, the remainder of the function does not have to deal with any
7278   ** overflow cells in the parent page, since if any existed they will
7279   ** have already been removed.
7280   */
7281   i = pParent->nOverflow + pParent->nCell;
7282   if( i<2 ){
7283     nxDiv = 0;
7284   }else{
7285     assert( bBulk==0 || bBulk==1 );
7286     if( iParentIdx==0 ){
7287       nxDiv = 0;
7288     }else if( iParentIdx==i ){
7289       nxDiv = i-2+bBulk;
7290     }else{
7291       nxDiv = iParentIdx-1;
7292     }
7293     i = 2-bBulk;
7294   }
7295   nOld = i+1;
7296   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7297     pRight = &pParent->aData[pParent->hdrOffset+8];
7298   }else{
7299     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7300   }
7301   pgno = get4byte(pRight);
7302   while( 1 ){
7303     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7304     if( rc ){
7305       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7306       goto balance_cleanup;
7307     }
7308     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
7309     if( (i--)==0 ) break;
7310 
7311     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7312       apDiv[i] = pParent->apOvfl[0];
7313       pgno = get4byte(apDiv[i]);
7314       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7315       pParent->nOverflow = 0;
7316     }else{
7317       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7318       pgno = get4byte(apDiv[i]);
7319       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7320 
7321       /* Drop the cell from the parent page. apDiv[i] still points to
7322       ** the cell within the parent, even though it has been dropped.
7323       ** This is safe because dropping a cell only overwrites the first
7324       ** four bytes of it, and this function does not need the first
7325       ** four bytes of the divider cell. So the pointer is safe to use
7326       ** later on.
7327       **
7328       ** But not if we are in secure-delete mode. In secure-delete mode,
7329       ** the dropCell() routine will overwrite the entire cell with zeroes.
7330       ** In this case, temporarily copy the cell into the aOvflSpace[]
7331       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7332       ** is allocated.  */
7333       if( pBt->btsFlags & BTS_FAST_SECURE ){
7334         int iOff;
7335 
7336         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7337         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7338           rc = SQLITE_CORRUPT_BKPT;
7339           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7340           goto balance_cleanup;
7341         }else{
7342           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7343           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7344         }
7345       }
7346       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7347     }
7348   }
7349 
7350   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7351   ** alignment */
7352   nMaxCells = (nMaxCells + 3)&~3;
7353 
7354   /*
7355   ** Allocate space for memory structures
7356   */
7357   szScratch =
7358        nMaxCells*sizeof(u8*)                       /* b.apCell */
7359      + nMaxCells*sizeof(u16)                       /* b.szCell */
7360      + pBt->pageSize;                              /* aSpace1 */
7361 
7362   assert( szScratch<=6*(int)pBt->pageSize );
7363   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7364   if( b.apCell==0 ){
7365     rc = SQLITE_NOMEM_BKPT;
7366     goto balance_cleanup;
7367   }
7368   b.szCell = (u16*)&b.apCell[nMaxCells];
7369   aSpace1 = (u8*)&b.szCell[nMaxCells];
7370   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7371 
7372   /*
7373   ** Load pointers to all cells on sibling pages and the divider cells
7374   ** into the local b.apCell[] array.  Make copies of the divider cells
7375   ** into space obtained from aSpace1[]. The divider cells have already
7376   ** been removed from pParent.
7377   **
7378   ** If the siblings are on leaf pages, then the child pointers of the
7379   ** divider cells are stripped from the cells before they are copied
7380   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7381   ** child pointers.  If siblings are not leaves, then all cell in
7382   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7383   ** are alike.
7384   **
7385   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7386   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7387   */
7388   b.pRef = apOld[0];
7389   leafCorrection = b.pRef->leaf*4;
7390   leafData = b.pRef->intKeyLeaf;
7391   for(i=0; i<nOld; i++){
7392     MemPage *pOld = apOld[i];
7393     int limit = pOld->nCell;
7394     u8 *aData = pOld->aData;
7395     u16 maskPage = pOld->maskPage;
7396     u8 *piCell = aData + pOld->cellOffset;
7397     u8 *piEnd;
7398 
7399     /* Verify that all sibling pages are of the same "type" (table-leaf,
7400     ** table-interior, index-leaf, or index-interior).
7401     */
7402     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7403       rc = SQLITE_CORRUPT_BKPT;
7404       goto balance_cleanup;
7405     }
7406 
7407     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7408     ** contains overflow cells, include them in the b.apCell[] array
7409     ** in the correct spot.
7410     **
7411     ** Note that when there are multiple overflow cells, it is always the
7412     ** case that they are sequential and adjacent.  This invariant arises
7413     ** because multiple overflows can only occurs when inserting divider
7414     ** cells into a parent on a prior balance, and divider cells are always
7415     ** adjacent and are inserted in order.  There is an assert() tagged
7416     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7417     ** invariant.
7418     **
7419     ** This must be done in advance.  Once the balance starts, the cell
7420     ** offset section of the btree page will be overwritten and we will no
7421     ** long be able to find the cells if a pointer to each cell is not saved
7422     ** first.
7423     */
7424     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7425     if( pOld->nOverflow>0 ){
7426       limit = pOld->aiOvfl[0];
7427       for(j=0; j<limit; j++){
7428         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7429         piCell += 2;
7430         b.nCell++;
7431       }
7432       for(k=0; k<pOld->nOverflow; k++){
7433         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7434         b.apCell[b.nCell] = pOld->apOvfl[k];
7435         b.nCell++;
7436       }
7437     }
7438     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7439     while( piCell<piEnd ){
7440       assert( b.nCell<nMaxCells );
7441       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7442       piCell += 2;
7443       b.nCell++;
7444     }
7445 
7446     cntOld[i] = b.nCell;
7447     if( i<nOld-1 && !leafData){
7448       u16 sz = (u16)szNew[i];
7449       u8 *pTemp;
7450       assert( b.nCell<nMaxCells );
7451       b.szCell[b.nCell] = sz;
7452       pTemp = &aSpace1[iSpace1];
7453       iSpace1 += sz;
7454       assert( sz<=pBt->maxLocal+23 );
7455       assert( iSpace1 <= (int)pBt->pageSize );
7456       memcpy(pTemp, apDiv[i], sz);
7457       b.apCell[b.nCell] = pTemp+leafCorrection;
7458       assert( leafCorrection==0 || leafCorrection==4 );
7459       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7460       if( !pOld->leaf ){
7461         assert( leafCorrection==0 );
7462         assert( pOld->hdrOffset==0 );
7463         /* The right pointer of the child page pOld becomes the left
7464         ** pointer of the divider cell */
7465         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7466       }else{
7467         assert( leafCorrection==4 );
7468         while( b.szCell[b.nCell]<4 ){
7469           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7470           ** does exist, pad it with 0x00 bytes. */
7471           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7472           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7473           aSpace1[iSpace1++] = 0x00;
7474           b.szCell[b.nCell]++;
7475         }
7476       }
7477       b.nCell++;
7478     }
7479   }
7480 
7481   /*
7482   ** Figure out the number of pages needed to hold all b.nCell cells.
7483   ** Store this number in "k".  Also compute szNew[] which is the total
7484   ** size of all cells on the i-th page and cntNew[] which is the index
7485   ** in b.apCell[] of the cell that divides page i from page i+1.
7486   ** cntNew[k] should equal b.nCell.
7487   **
7488   ** Values computed by this block:
7489   **
7490   **           k: The total number of sibling pages
7491   **    szNew[i]: Spaced used on the i-th sibling page.
7492   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7493   **              the right of the i-th sibling page.
7494   ** usableSpace: Number of bytes of space available on each sibling.
7495   **
7496   */
7497   usableSpace = pBt->usableSize - 12 + leafCorrection;
7498   for(i=0; i<nOld; i++){
7499     MemPage *p = apOld[i];
7500     szNew[i] = usableSpace - p->nFree;
7501     for(j=0; j<p->nOverflow; j++){
7502       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7503     }
7504     cntNew[i] = cntOld[i];
7505   }
7506   k = nOld;
7507   for(i=0; i<k; i++){
7508     int sz;
7509     while( szNew[i]>usableSpace ){
7510       if( i+1>=k ){
7511         k = i+2;
7512         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7513         szNew[k-1] = 0;
7514         cntNew[k-1] = b.nCell;
7515       }
7516       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7517       szNew[i] -= sz;
7518       if( !leafData ){
7519         if( cntNew[i]<b.nCell ){
7520           sz = 2 + cachedCellSize(&b, cntNew[i]);
7521         }else{
7522           sz = 0;
7523         }
7524       }
7525       szNew[i+1] += sz;
7526       cntNew[i]--;
7527     }
7528     while( cntNew[i]<b.nCell ){
7529       sz = 2 + cachedCellSize(&b, cntNew[i]);
7530       if( szNew[i]+sz>usableSpace ) break;
7531       szNew[i] += sz;
7532       cntNew[i]++;
7533       if( !leafData ){
7534         if( cntNew[i]<b.nCell ){
7535           sz = 2 + cachedCellSize(&b, cntNew[i]);
7536         }else{
7537           sz = 0;
7538         }
7539       }
7540       szNew[i+1] -= sz;
7541     }
7542     if( cntNew[i]>=b.nCell ){
7543       k = i+1;
7544     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7545       rc = SQLITE_CORRUPT_BKPT;
7546       goto balance_cleanup;
7547     }
7548   }
7549 
7550   /*
7551   ** The packing computed by the previous block is biased toward the siblings
7552   ** on the left side (siblings with smaller keys). The left siblings are
7553   ** always nearly full, while the right-most sibling might be nearly empty.
7554   ** The next block of code attempts to adjust the packing of siblings to
7555   ** get a better balance.
7556   **
7557   ** This adjustment is more than an optimization.  The packing above might
7558   ** be so out of balance as to be illegal.  For example, the right-most
7559   ** sibling might be completely empty.  This adjustment is not optional.
7560   */
7561   for(i=k-1; i>0; i--){
7562     int szRight = szNew[i];  /* Size of sibling on the right */
7563     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7564     int r;              /* Index of right-most cell in left sibling */
7565     int d;              /* Index of first cell to the left of right sibling */
7566 
7567     r = cntNew[i-1] - 1;
7568     d = r + 1 - leafData;
7569     (void)cachedCellSize(&b, d);
7570     do{
7571       assert( d<nMaxCells );
7572       assert( r<nMaxCells );
7573       (void)cachedCellSize(&b, r);
7574       if( szRight!=0
7575        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7576         break;
7577       }
7578       szRight += b.szCell[d] + 2;
7579       szLeft -= b.szCell[r] + 2;
7580       cntNew[i-1] = r;
7581       r--;
7582       d--;
7583     }while( r>=0 );
7584     szNew[i] = szRight;
7585     szNew[i-1] = szLeft;
7586     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7587       rc = SQLITE_CORRUPT_BKPT;
7588       goto balance_cleanup;
7589     }
7590   }
7591 
7592   /* Sanity check:  For a non-corrupt database file one of the follwing
7593   ** must be true:
7594   **    (1) We found one or more cells (cntNew[0])>0), or
7595   **    (2) pPage is a virtual root page.  A virtual root page is when
7596   **        the real root page is page 1 and we are the only child of
7597   **        that page.
7598   */
7599   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7600   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7601     apOld[0]->pgno, apOld[0]->nCell,
7602     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7603     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7604   ));
7605 
7606   /*
7607   ** Allocate k new pages.  Reuse old pages where possible.
7608   */
7609   pageFlags = apOld[0]->aData[0];
7610   for(i=0; i<k; i++){
7611     MemPage *pNew;
7612     if( i<nOld ){
7613       pNew = apNew[i] = apOld[i];
7614       apOld[i] = 0;
7615       rc = sqlite3PagerWrite(pNew->pDbPage);
7616       nNew++;
7617       if( rc ) goto balance_cleanup;
7618     }else{
7619       assert( i>0 );
7620       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7621       if( rc ) goto balance_cleanup;
7622       zeroPage(pNew, pageFlags);
7623       apNew[i] = pNew;
7624       nNew++;
7625       cntOld[i] = b.nCell;
7626 
7627       /* Set the pointer-map entry for the new sibling page. */
7628       if( ISAUTOVACUUM ){
7629         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7630         if( rc!=SQLITE_OK ){
7631           goto balance_cleanup;
7632         }
7633       }
7634     }
7635   }
7636 
7637   /*
7638   ** Reassign page numbers so that the new pages are in ascending order.
7639   ** This helps to keep entries in the disk file in order so that a scan
7640   ** of the table is closer to a linear scan through the file. That in turn
7641   ** helps the operating system to deliver pages from the disk more rapidly.
7642   **
7643   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7644   ** than (NB+2) (a small constant), that should not be a problem.
7645   **
7646   ** When NB==3, this one optimization makes the database about 25% faster
7647   ** for large insertions and deletions.
7648   */
7649   for(i=0; i<nNew; i++){
7650     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7651     aPgFlags[i] = apNew[i]->pDbPage->flags;
7652     for(j=0; j<i; j++){
7653       if( aPgno[j]==aPgno[i] ){
7654         /* This branch is taken if the set of sibling pages somehow contains
7655         ** duplicate entries. This can happen if the database is corrupt.
7656         ** It would be simpler to detect this as part of the loop below, but
7657         ** we do the detection here in order to avoid populating the pager
7658         ** cache with two separate objects associated with the same
7659         ** page number.  */
7660         assert( CORRUPT_DB );
7661         rc = SQLITE_CORRUPT_BKPT;
7662         goto balance_cleanup;
7663       }
7664     }
7665   }
7666   for(i=0; i<nNew; i++){
7667     int iBest = 0;                /* aPgno[] index of page number to use */
7668     for(j=1; j<nNew; j++){
7669       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7670     }
7671     pgno = aPgOrder[iBest];
7672     aPgOrder[iBest] = 0xffffffff;
7673     if( iBest!=i ){
7674       if( iBest>i ){
7675         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7676       }
7677       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7678       apNew[i]->pgno = pgno;
7679     }
7680   }
7681 
7682   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7683          "%d(%d nc=%d) %d(%d nc=%d)\n",
7684     apNew[0]->pgno, szNew[0], cntNew[0],
7685     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7686     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7687     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7688     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7689     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7690     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7691     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7692     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7693   ));
7694 
7695   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7696   put4byte(pRight, apNew[nNew-1]->pgno);
7697 
7698   /* If the sibling pages are not leaves, ensure that the right-child pointer
7699   ** of the right-most new sibling page is set to the value that was
7700   ** originally in the same field of the right-most old sibling page. */
7701   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7702     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7703     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7704   }
7705 
7706   /* Make any required updates to pointer map entries associated with
7707   ** cells stored on sibling pages following the balance operation. Pointer
7708   ** map entries associated with divider cells are set by the insertCell()
7709   ** routine. The associated pointer map entries are:
7710   **
7711   **   a) if the cell contains a reference to an overflow chain, the
7712   **      entry associated with the first page in the overflow chain, and
7713   **
7714   **   b) if the sibling pages are not leaves, the child page associated
7715   **      with the cell.
7716   **
7717   ** If the sibling pages are not leaves, then the pointer map entry
7718   ** associated with the right-child of each sibling may also need to be
7719   ** updated. This happens below, after the sibling pages have been
7720   ** populated, not here.
7721   */
7722   if( ISAUTOVACUUM ){
7723     MemPage *pNew = apNew[0];
7724     u8 *aOld = pNew->aData;
7725     int cntOldNext = pNew->nCell + pNew->nOverflow;
7726     int usableSize = pBt->usableSize;
7727     int iNew = 0;
7728     int iOld = 0;
7729 
7730     for(i=0; i<b.nCell; i++){
7731       u8 *pCell = b.apCell[i];
7732       if( i==cntOldNext ){
7733         MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7734         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7735         aOld = pOld->aData;
7736       }
7737       if( i==cntNew[iNew] ){
7738         pNew = apNew[++iNew];
7739         if( !leafData ) continue;
7740       }
7741 
7742       /* Cell pCell is destined for new sibling page pNew. Originally, it
7743       ** was either part of sibling page iOld (possibly an overflow cell),
7744       ** or else the divider cell to the left of sibling page iOld. So,
7745       ** if sibling page iOld had the same page number as pNew, and if
7746       ** pCell really was a part of sibling page iOld (not a divider or
7747       ** overflow cell), we can skip updating the pointer map entries.  */
7748       if( iOld>=nNew
7749        || pNew->pgno!=aPgno[iOld]
7750        || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
7751       ){
7752         if( !leafCorrection ){
7753           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7754         }
7755         if( cachedCellSize(&b,i)>pNew->minLocal ){
7756           ptrmapPutOvflPtr(pNew, pCell, &rc);
7757         }
7758         if( rc ) goto balance_cleanup;
7759       }
7760     }
7761   }
7762 
7763   /* Insert new divider cells into pParent. */
7764   for(i=0; i<nNew-1; i++){
7765     u8 *pCell;
7766     u8 *pTemp;
7767     int sz;
7768     MemPage *pNew = apNew[i];
7769     j = cntNew[i];
7770 
7771     assert( j<nMaxCells );
7772     assert( b.apCell[j]!=0 );
7773     pCell = b.apCell[j];
7774     sz = b.szCell[j] + leafCorrection;
7775     pTemp = &aOvflSpace[iOvflSpace];
7776     if( !pNew->leaf ){
7777       memcpy(&pNew->aData[8], pCell, 4);
7778     }else if( leafData ){
7779       /* If the tree is a leaf-data tree, and the siblings are leaves,
7780       ** then there is no divider cell in b.apCell[]. Instead, the divider
7781       ** cell consists of the integer key for the right-most cell of
7782       ** the sibling-page assembled above only.
7783       */
7784       CellInfo info;
7785       j--;
7786       pNew->xParseCell(pNew, b.apCell[j], &info);
7787       pCell = pTemp;
7788       sz = 4 + putVarint(&pCell[4], info.nKey);
7789       pTemp = 0;
7790     }else{
7791       pCell -= 4;
7792       /* Obscure case for non-leaf-data trees: If the cell at pCell was
7793       ** previously stored on a leaf node, and its reported size was 4
7794       ** bytes, then it may actually be smaller than this
7795       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7796       ** any cell). But it is important to pass the correct size to
7797       ** insertCell(), so reparse the cell now.
7798       **
7799       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7800       ** and WITHOUT ROWID tables with exactly one column which is the
7801       ** primary key.
7802       */
7803       if( b.szCell[j]==4 ){
7804         assert(leafCorrection==4);
7805         sz = pParent->xCellSize(pParent, pCell);
7806       }
7807     }
7808     iOvflSpace += sz;
7809     assert( sz<=pBt->maxLocal+23 );
7810     assert( iOvflSpace <= (int)pBt->pageSize );
7811     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7812     if( rc!=SQLITE_OK ) goto balance_cleanup;
7813     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7814   }
7815 
7816   /* Now update the actual sibling pages. The order in which they are updated
7817   ** is important, as this code needs to avoid disrupting any page from which
7818   ** cells may still to be read. In practice, this means:
7819   **
7820   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7821   **      then it is not safe to update page apNew[iPg] until after
7822   **      the left-hand sibling apNew[iPg-1] has been updated.
7823   **
7824   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7825   **      then it is not safe to update page apNew[iPg] until after
7826   **      the right-hand sibling apNew[iPg+1] has been updated.
7827   **
7828   ** If neither of the above apply, the page is safe to update.
7829   **
7830   ** The iPg value in the following loop starts at nNew-1 goes down
7831   ** to 0, then back up to nNew-1 again, thus making two passes over
7832   ** the pages.  On the initial downward pass, only condition (1) above
7833   ** needs to be tested because (2) will always be true from the previous
7834   ** step.  On the upward pass, both conditions are always true, so the
7835   ** upwards pass simply processes pages that were missed on the downward
7836   ** pass.
7837   */
7838   for(i=1-nNew; i<nNew; i++){
7839     int iPg = i<0 ? -i : i;
7840     assert( iPg>=0 && iPg<nNew );
7841     if( abDone[iPg] ) continue;         /* Skip pages already processed */
7842     if( i>=0                            /* On the upwards pass, or... */
7843      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
7844     ){
7845       int iNew;
7846       int iOld;
7847       int nNewCell;
7848 
7849       /* Verify condition (1):  If cells are moving left, update iPg
7850       ** only after iPg-1 has already been updated. */
7851       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7852 
7853       /* Verify condition (2):  If cells are moving right, update iPg
7854       ** only after iPg+1 has already been updated. */
7855       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7856 
7857       if( iPg==0 ){
7858         iNew = iOld = 0;
7859         nNewCell = cntNew[0];
7860       }else{
7861         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
7862         iNew = cntNew[iPg-1] + !leafData;
7863         nNewCell = cntNew[iPg] - iNew;
7864       }
7865 
7866       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
7867       if( rc ) goto balance_cleanup;
7868       abDone[iPg]++;
7869       apNew[iPg]->nFree = usableSpace-szNew[iPg];
7870       assert( apNew[iPg]->nOverflow==0 );
7871       assert( apNew[iPg]->nCell==nNewCell );
7872     }
7873   }
7874 
7875   /* All pages have been processed exactly once */
7876   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7877 
7878   assert( nOld>0 );
7879   assert( nNew>0 );
7880 
7881   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7882     /* The root page of the b-tree now contains no cells. The only sibling
7883     ** page is the right-child of the parent. Copy the contents of the
7884     ** child page into the parent, decreasing the overall height of the
7885     ** b-tree structure by one. This is described as the "balance-shallower"
7886     ** sub-algorithm in some documentation.
7887     **
7888     ** If this is an auto-vacuum database, the call to copyNodeContent()
7889     ** sets all pointer-map entries corresponding to database image pages
7890     ** for which the pointer is stored within the content being copied.
7891     **
7892     ** It is critical that the child page be defragmented before being
7893     ** copied into the parent, because if the parent is page 1 then it will
7894     ** by smaller than the child due to the database header, and so all the
7895     ** free space needs to be up front.
7896     */
7897     assert( nNew==1 || CORRUPT_DB );
7898     rc = defragmentPage(apNew[0], -1);
7899     testcase( rc!=SQLITE_OK );
7900     assert( apNew[0]->nFree ==
7901         (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7902       || rc!=SQLITE_OK
7903     );
7904     copyNodeContent(apNew[0], pParent, &rc);
7905     freePage(apNew[0], &rc);
7906   }else if( ISAUTOVACUUM && !leafCorrection ){
7907     /* Fix the pointer map entries associated with the right-child of each
7908     ** sibling page. All other pointer map entries have already been taken
7909     ** care of.  */
7910     for(i=0; i<nNew; i++){
7911       u32 key = get4byte(&apNew[i]->aData[8]);
7912       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
7913     }
7914   }
7915 
7916   assert( pParent->isInit );
7917   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7918           nOld, nNew, b.nCell));
7919 
7920   /* Free any old pages that were not reused as new pages.
7921   */
7922   for(i=nNew; i<nOld; i++){
7923     freePage(apOld[i], &rc);
7924   }
7925 
7926 #if 0
7927   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
7928     /* The ptrmapCheckPages() contains assert() statements that verify that
7929     ** all pointer map pages are set correctly. This is helpful while
7930     ** debugging. This is usually disabled because a corrupt database may
7931     ** cause an assert() statement to fail.  */
7932     ptrmapCheckPages(apNew, nNew);
7933     ptrmapCheckPages(&pParent, 1);
7934   }
7935 #endif
7936 
7937   /*
7938   ** Cleanup before returning.
7939   */
7940 balance_cleanup:
7941   sqlite3StackFree(0, b.apCell);
7942   for(i=0; i<nOld; i++){
7943     releasePage(apOld[i]);
7944   }
7945   for(i=0; i<nNew; i++){
7946     releasePage(apNew[i]);
7947   }
7948 
7949   return rc;
7950 }
7951 
7952 
7953 /*
7954 ** This function is called when the root page of a b-tree structure is
7955 ** overfull (has one or more overflow pages).
7956 **
7957 ** A new child page is allocated and the contents of the current root
7958 ** page, including overflow cells, are copied into the child. The root
7959 ** page is then overwritten to make it an empty page with the right-child
7960 ** pointer pointing to the new page.
7961 **
7962 ** Before returning, all pointer-map entries corresponding to pages
7963 ** that the new child-page now contains pointers to are updated. The
7964 ** entry corresponding to the new right-child pointer of the root
7965 ** page is also updated.
7966 **
7967 ** If successful, *ppChild is set to contain a reference to the child
7968 ** page and SQLITE_OK is returned. In this case the caller is required
7969 ** to call releasePage() on *ppChild exactly once. If an error occurs,
7970 ** an error code is returned and *ppChild is set to 0.
7971 */
7972 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7973   int rc;                        /* Return value from subprocedures */
7974   MemPage *pChild = 0;           /* Pointer to a new child page */
7975   Pgno pgnoChild = 0;            /* Page number of the new child page */
7976   BtShared *pBt = pRoot->pBt;    /* The BTree */
7977 
7978   assert( pRoot->nOverflow>0 );
7979   assert( sqlite3_mutex_held(pBt->mutex) );
7980 
7981   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7982   ** page that will become the new right-child of pPage. Copy the contents
7983   ** of the node stored on pRoot into the new child page.
7984   */
7985   rc = sqlite3PagerWrite(pRoot->pDbPage);
7986   if( rc==SQLITE_OK ){
7987     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
7988     copyNodeContent(pRoot, pChild, &rc);
7989     if( ISAUTOVACUUM ){
7990       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
7991     }
7992   }
7993   if( rc ){
7994     *ppChild = 0;
7995     releasePage(pChild);
7996     return rc;
7997   }
7998   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7999   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8000   assert( pChild->nCell==pRoot->nCell );
8001 
8002   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8003 
8004   /* Copy the overflow cells from pRoot to pChild */
8005   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8006          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8007   memcpy(pChild->apOvfl, pRoot->apOvfl,
8008          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8009   pChild->nOverflow = pRoot->nOverflow;
8010 
8011   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8012   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8013   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8014 
8015   *ppChild = pChild;
8016   return SQLITE_OK;
8017 }
8018 
8019 /*
8020 ** The page that pCur currently points to has just been modified in
8021 ** some way. This function figures out if this modification means the
8022 ** tree needs to be balanced, and if so calls the appropriate balancing
8023 ** routine. Balancing routines are:
8024 **
8025 **   balance_quick()
8026 **   balance_deeper()
8027 **   balance_nonroot()
8028 */
8029 static int balance(BtCursor *pCur){
8030   int rc = SQLITE_OK;
8031   const int nMin = pCur->pBt->usableSize * 2 / 3;
8032   u8 aBalanceQuickSpace[13];
8033   u8 *pFree = 0;
8034 
8035   VVA_ONLY( int balance_quick_called = 0 );
8036   VVA_ONLY( int balance_deeper_called = 0 );
8037 
8038   do {
8039     int iPage = pCur->iPage;
8040     MemPage *pPage = pCur->pPage;
8041 
8042     if( iPage==0 ){
8043       if( pPage->nOverflow ){
8044         /* The root page of the b-tree is overfull. In this case call the
8045         ** balance_deeper() function to create a new child for the root-page
8046         ** and copy the current contents of the root-page to it. The
8047         ** next iteration of the do-loop will balance the child page.
8048         */
8049         assert( balance_deeper_called==0 );
8050         VVA_ONLY( balance_deeper_called++ );
8051         rc = balance_deeper(pPage, &pCur->apPage[1]);
8052         if( rc==SQLITE_OK ){
8053           pCur->iPage = 1;
8054           pCur->ix = 0;
8055           pCur->aiIdx[0] = 0;
8056           pCur->apPage[0] = pPage;
8057           pCur->pPage = pCur->apPage[1];
8058           assert( pCur->pPage->nOverflow );
8059         }
8060       }else{
8061         break;
8062       }
8063     }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8064       break;
8065     }else{
8066       MemPage * const pParent = pCur->apPage[iPage-1];
8067       int const iIdx = pCur->aiIdx[iPage-1];
8068 
8069       rc = sqlite3PagerWrite(pParent->pDbPage);
8070       if( rc==SQLITE_OK ){
8071 #ifndef SQLITE_OMIT_QUICKBALANCE
8072         if( pPage->intKeyLeaf
8073          && pPage->nOverflow==1
8074          && pPage->aiOvfl[0]==pPage->nCell
8075          && pParent->pgno!=1
8076          && pParent->nCell==iIdx
8077         ){
8078           /* Call balance_quick() to create a new sibling of pPage on which
8079           ** to store the overflow cell. balance_quick() inserts a new cell
8080           ** into pParent, which may cause pParent overflow. If this
8081           ** happens, the next iteration of the do-loop will balance pParent
8082           ** use either balance_nonroot() or balance_deeper(). Until this
8083           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8084           ** buffer.
8085           **
8086           ** The purpose of the following assert() is to check that only a
8087           ** single call to balance_quick() is made for each call to this
8088           ** function. If this were not verified, a subtle bug involving reuse
8089           ** of the aBalanceQuickSpace[] might sneak in.
8090           */
8091           assert( balance_quick_called==0 );
8092           VVA_ONLY( balance_quick_called++ );
8093           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8094         }else
8095 #endif
8096         {
8097           /* In this case, call balance_nonroot() to redistribute cells
8098           ** between pPage and up to 2 of its sibling pages. This involves
8099           ** modifying the contents of pParent, which may cause pParent to
8100           ** become overfull or underfull. The next iteration of the do-loop
8101           ** will balance the parent page to correct this.
8102           **
8103           ** If the parent page becomes overfull, the overflow cell or cells
8104           ** are stored in the pSpace buffer allocated immediately below.
8105           ** A subsequent iteration of the do-loop will deal with this by
8106           ** calling balance_nonroot() (balance_deeper() may be called first,
8107           ** but it doesn't deal with overflow cells - just moves them to a
8108           ** different page). Once this subsequent call to balance_nonroot()
8109           ** has completed, it is safe to release the pSpace buffer used by
8110           ** the previous call, as the overflow cell data will have been
8111           ** copied either into the body of a database page or into the new
8112           ** pSpace buffer passed to the latter call to balance_nonroot().
8113           */
8114           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8115           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8116                                pCur->hints&BTREE_BULKLOAD);
8117           if( pFree ){
8118             /* If pFree is not NULL, it points to the pSpace buffer used
8119             ** by a previous call to balance_nonroot(). Its contents are
8120             ** now stored either on real database pages or within the
8121             ** new pSpace buffer, so it may be safely freed here. */
8122             sqlite3PageFree(pFree);
8123           }
8124 
8125           /* The pSpace buffer will be freed after the next call to
8126           ** balance_nonroot(), or just before this function returns, whichever
8127           ** comes first. */
8128           pFree = pSpace;
8129         }
8130       }
8131 
8132       pPage->nOverflow = 0;
8133 
8134       /* The next iteration of the do-loop balances the parent page. */
8135       releasePage(pPage);
8136       pCur->iPage--;
8137       assert( pCur->iPage>=0 );
8138       pCur->pPage = pCur->apPage[pCur->iPage];
8139     }
8140   }while( rc==SQLITE_OK );
8141 
8142   if( pFree ){
8143     sqlite3PageFree(pFree);
8144   }
8145   return rc;
8146 }
8147 
8148 
8149 /*
8150 ** Insert a new record into the BTree.  The content of the new record
8151 ** is described by the pX object.  The pCur cursor is used only to
8152 ** define what table the record should be inserted into, and is left
8153 ** pointing at a random location.
8154 **
8155 ** For a table btree (used for rowid tables), only the pX.nKey value of
8156 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8157 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8158 ** hold the content of the row.
8159 **
8160 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8161 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8162 ** pX.pData,nData,nZero fields must be zero.
8163 **
8164 ** If the seekResult parameter is non-zero, then a successful call to
8165 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8166 ** been performed.  In other words, if seekResult!=0 then the cursor
8167 ** is currently pointing to a cell that will be adjacent to the cell
8168 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8169 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8170 ** that is larger than (pKey,nKey).
8171 **
8172 ** If seekResult==0, that means pCur is pointing at some unknown location.
8173 ** In that case, this routine must seek the cursor to the correct insertion
8174 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8175 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8176 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8177 ** to decode the key.
8178 */
8179 int sqlite3BtreeInsert(
8180   BtCursor *pCur,                /* Insert data into the table of this cursor */
8181   const BtreePayload *pX,        /* Content of the row to be inserted */
8182   int flags,                     /* True if this is likely an append */
8183   int seekResult                 /* Result of prior MovetoUnpacked() call */
8184 ){
8185   int rc;
8186   int loc = seekResult;          /* -1: before desired location  +1: after */
8187   int szNew = 0;
8188   int idx;
8189   MemPage *pPage;
8190   Btree *p = pCur->pBtree;
8191   BtShared *pBt = p->pBt;
8192   unsigned char *oldCell;
8193   unsigned char *newCell = 0;
8194 
8195   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8196 
8197   if( pCur->eState==CURSOR_FAULT ){
8198     assert( pCur->skipNext!=SQLITE_OK );
8199     return pCur->skipNext;
8200   }
8201 
8202   assert( cursorOwnsBtShared(pCur) );
8203   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8204               && pBt->inTransaction==TRANS_WRITE
8205               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8206   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8207 
8208   /* Assert that the caller has been consistent. If this cursor was opened
8209   ** expecting an index b-tree, then the caller should be inserting blob
8210   ** keys with no associated data. If the cursor was opened expecting an
8211   ** intkey table, the caller should be inserting integer keys with a
8212   ** blob of associated data.  */
8213   assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8214 
8215   /* Save the positions of any other cursors open on this table.
8216   **
8217   ** In some cases, the call to btreeMoveto() below is a no-op. For
8218   ** example, when inserting data into a table with auto-generated integer
8219   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8220   ** integer key to use. It then calls this function to actually insert the
8221   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8222   ** that the cursor is already where it needs to be and returns without
8223   ** doing any work. To avoid thwarting these optimizations, it is important
8224   ** not to clear the cursor here.
8225   */
8226   if( pCur->curFlags & BTCF_Multiple ){
8227     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8228     if( rc ) return rc;
8229   }
8230 
8231   if( pCur->pKeyInfo==0 ){
8232     assert( pX->pKey==0 );
8233     /* If this is an insert into a table b-tree, invalidate any incrblob
8234     ** cursors open on the row being replaced */
8235     invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8236 
8237     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8238     ** to a row with the same key as the new entry being inserted.  */
8239     assert( (flags & BTREE_SAVEPOSITION)==0 ||
8240             ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8241 
8242     /* If the cursor is currently on the last row and we are appending a
8243     ** new row onto the end, set the "loc" to avoid an unnecessary
8244     ** btreeMoveto() call */
8245     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8246       loc = 0;
8247     }else if( loc==0 ){
8248       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8249       if( rc ) return rc;
8250     }
8251   }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8252     if( pX->nMem ){
8253       UnpackedRecord r;
8254       r.pKeyInfo = pCur->pKeyInfo;
8255       r.aMem = pX->aMem;
8256       r.nField = pX->nMem;
8257       r.default_rc = 0;
8258       r.errCode = 0;
8259       r.r1 = 0;
8260       r.r2 = 0;
8261       r.eqSeen = 0;
8262       rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8263     }else{
8264       rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8265     }
8266     if( rc ) return rc;
8267   }
8268   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8269 
8270   pPage = pCur->pPage;
8271   assert( pPage->intKey || pX->nKey>=0 );
8272   assert( pPage->leaf || !pPage->intKey );
8273 
8274   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8275           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8276           loc==0 ? "overwrite" : "new entry"));
8277   assert( pPage->isInit );
8278   newCell = pBt->pTmpSpace;
8279   assert( newCell!=0 );
8280   rc = fillInCell(pPage, newCell, pX, &szNew);
8281   if( rc ) goto end_insert;
8282   assert( szNew==pPage->xCellSize(pPage, newCell) );
8283   assert( szNew <= MX_CELL_SIZE(pBt) );
8284   idx = pCur->ix;
8285   if( loc==0 ){
8286     CellInfo info;
8287     assert( idx<pPage->nCell );
8288     rc = sqlite3PagerWrite(pPage->pDbPage);
8289     if( rc ){
8290       goto end_insert;
8291     }
8292     oldCell = findCell(pPage, idx);
8293     if( !pPage->leaf ){
8294       memcpy(newCell, oldCell, 4);
8295     }
8296     rc = clearCell(pPage, oldCell, &info);
8297     if( info.nSize==szNew && info.nLocal==info.nPayload
8298      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8299     ){
8300       /* Overwrite the old cell with the new if they are the same size.
8301       ** We could also try to do this if the old cell is smaller, then add
8302       ** the leftover space to the free list.  But experiments show that
8303       ** doing that is no faster then skipping this optimization and just
8304       ** calling dropCell() and insertCell().
8305       **
8306       ** This optimization cannot be used on an autovacuum database if the
8307       ** new entry uses overflow pages, as the insertCell() call below is
8308       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
8309       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8310       if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
8311       memcpy(oldCell, newCell, szNew);
8312       return SQLITE_OK;
8313     }
8314     dropCell(pPage, idx, info.nSize, &rc);
8315     if( rc ) goto end_insert;
8316   }else if( loc<0 && pPage->nCell>0 ){
8317     assert( pPage->leaf );
8318     idx = ++pCur->ix;
8319     pCur->curFlags &= ~BTCF_ValidNKey;
8320   }else{
8321     assert( pPage->leaf );
8322   }
8323   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8324   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8325   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8326 
8327   /* If no error has occurred and pPage has an overflow cell, call balance()
8328   ** to redistribute the cells within the tree. Since balance() may move
8329   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8330   ** variables.
8331   **
8332   ** Previous versions of SQLite called moveToRoot() to move the cursor
8333   ** back to the root page as balance() used to invalidate the contents
8334   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8335   ** set the cursor state to "invalid". This makes common insert operations
8336   ** slightly faster.
8337   **
8338   ** There is a subtle but important optimization here too. When inserting
8339   ** multiple records into an intkey b-tree using a single cursor (as can
8340   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8341   ** is advantageous to leave the cursor pointing to the last entry in
8342   ** the b-tree if possible. If the cursor is left pointing to the last
8343   ** entry in the table, and the next row inserted has an integer key
8344   ** larger than the largest existing key, it is possible to insert the
8345   ** row without seeking the cursor. This can be a big performance boost.
8346   */
8347   pCur->info.nSize = 0;
8348   if( pPage->nOverflow ){
8349     assert( rc==SQLITE_OK );
8350     pCur->curFlags &= ~(BTCF_ValidNKey);
8351     rc = balance(pCur);
8352 
8353     /* Must make sure nOverflow is reset to zero even if the balance()
8354     ** fails. Internal data structure corruption will result otherwise.
8355     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8356     ** from trying to save the current position of the cursor.  */
8357     pCur->pPage->nOverflow = 0;
8358     pCur->eState = CURSOR_INVALID;
8359     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8360       btreeReleaseAllCursorPages(pCur);
8361       if( pCur->pKeyInfo ){
8362         assert( pCur->pKey==0 );
8363         pCur->pKey = sqlite3Malloc( pX->nKey );
8364         if( pCur->pKey==0 ){
8365           rc = SQLITE_NOMEM;
8366         }else{
8367           memcpy(pCur->pKey, pX->pKey, pX->nKey);
8368         }
8369       }
8370       pCur->eState = CURSOR_REQUIRESEEK;
8371       pCur->nKey = pX->nKey;
8372     }
8373   }
8374   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8375 
8376 end_insert:
8377   return rc;
8378 }
8379 
8380 /*
8381 ** Delete the entry that the cursor is pointing to.
8382 **
8383 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8384 ** the cursor is left pointing at an arbitrary location after the delete.
8385 ** But if that bit is set, then the cursor is left in a state such that
8386 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8387 ** as it would have been on if the call to BtreeDelete() had been omitted.
8388 **
8389 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8390 ** associated with a single table entry and its indexes.  Only one of those
8391 ** deletes is considered the "primary" delete.  The primary delete occurs
8392 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
8393 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8394 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8395 ** but which might be used by alternative storage engines.
8396 */
8397 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8398   Btree *p = pCur->pBtree;
8399   BtShared *pBt = p->pBt;
8400   int rc;                              /* Return code */
8401   MemPage *pPage;                      /* Page to delete cell from */
8402   unsigned char *pCell;                /* Pointer to cell to delete */
8403   int iCellIdx;                        /* Index of cell to delete */
8404   int iCellDepth;                      /* Depth of node containing pCell */
8405   CellInfo info;                       /* Size of the cell being deleted */
8406   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8407   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
8408 
8409   assert( cursorOwnsBtShared(pCur) );
8410   assert( pBt->inTransaction==TRANS_WRITE );
8411   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8412   assert( pCur->curFlags & BTCF_WriteFlag );
8413   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8414   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8415   assert( pCur->ix<pCur->pPage->nCell );
8416   assert( pCur->eState==CURSOR_VALID );
8417   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8418 
8419   iCellDepth = pCur->iPage;
8420   iCellIdx = pCur->ix;
8421   pPage = pCur->pPage;
8422   pCell = findCell(pPage, iCellIdx);
8423 
8424   /* If the bPreserve flag is set to true, then the cursor position must
8425   ** be preserved following this delete operation. If the current delete
8426   ** will cause a b-tree rebalance, then this is done by saving the cursor
8427   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8428   ** returning.
8429   **
8430   ** Or, if the current delete will not cause a rebalance, then the cursor
8431   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8432   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8433   if( bPreserve ){
8434     if( !pPage->leaf
8435      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8436     ){
8437       /* A b-tree rebalance will be required after deleting this entry.
8438       ** Save the cursor key.  */
8439       rc = saveCursorKey(pCur);
8440       if( rc ) return rc;
8441     }else{
8442       bSkipnext = 1;
8443     }
8444   }
8445 
8446   /* If the page containing the entry to delete is not a leaf page, move
8447   ** the cursor to the largest entry in the tree that is smaller than
8448   ** the entry being deleted. This cell will replace the cell being deleted
8449   ** from the internal node. The 'previous' entry is used for this instead
8450   ** of the 'next' entry, as the previous entry is always a part of the
8451   ** sub-tree headed by the child page of the cell being deleted. This makes
8452   ** balancing the tree following the delete operation easier.  */
8453   if( !pPage->leaf ){
8454     rc = sqlite3BtreePrevious(pCur, 0);
8455     assert( rc!=SQLITE_DONE );
8456     if( rc ) return rc;
8457   }
8458 
8459   /* Save the positions of any other cursors open on this table before
8460   ** making any modifications.  */
8461   if( pCur->curFlags & BTCF_Multiple ){
8462     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8463     if( rc ) return rc;
8464   }
8465 
8466   /* If this is a delete operation to remove a row from a table b-tree,
8467   ** invalidate any incrblob cursors open on the row being deleted.  */
8468   if( pCur->pKeyInfo==0 ){
8469     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
8470   }
8471 
8472   /* Make the page containing the entry to be deleted writable. Then free any
8473   ** overflow pages associated with the entry and finally remove the cell
8474   ** itself from within the page.  */
8475   rc = sqlite3PagerWrite(pPage->pDbPage);
8476   if( rc ) return rc;
8477   rc = clearCell(pPage, pCell, &info);
8478   dropCell(pPage, iCellIdx, info.nSize, &rc);
8479   if( rc ) return rc;
8480 
8481   /* If the cell deleted was not located on a leaf page, then the cursor
8482   ** is currently pointing to the largest entry in the sub-tree headed
8483   ** by the child-page of the cell that was just deleted from an internal
8484   ** node. The cell from the leaf node needs to be moved to the internal
8485   ** node to replace the deleted cell.  */
8486   if( !pPage->leaf ){
8487     MemPage *pLeaf = pCur->pPage;
8488     int nCell;
8489     Pgno n;
8490     unsigned char *pTmp;
8491 
8492     if( iCellDepth<pCur->iPage-1 ){
8493       n = pCur->apPage[iCellDepth+1]->pgno;
8494     }else{
8495       n = pCur->pPage->pgno;
8496     }
8497     pCell = findCell(pLeaf, pLeaf->nCell-1);
8498     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8499     nCell = pLeaf->xCellSize(pLeaf, pCell);
8500     assert( MX_CELL_SIZE(pBt) >= nCell );
8501     pTmp = pBt->pTmpSpace;
8502     assert( pTmp!=0 );
8503     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8504     if( rc==SQLITE_OK ){
8505       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8506     }
8507     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8508     if( rc ) return rc;
8509   }
8510 
8511   /* Balance the tree. If the entry deleted was located on a leaf page,
8512   ** then the cursor still points to that page. In this case the first
8513   ** call to balance() repairs the tree, and the if(...) condition is
8514   ** never true.
8515   **
8516   ** Otherwise, if the entry deleted was on an internal node page, then
8517   ** pCur is pointing to the leaf page from which a cell was removed to
8518   ** replace the cell deleted from the internal node. This is slightly
8519   ** tricky as the leaf node may be underfull, and the internal node may
8520   ** be either under or overfull. In this case run the balancing algorithm
8521   ** on the leaf node first. If the balance proceeds far enough up the
8522   ** tree that we can be sure that any problem in the internal node has
8523   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8524   ** walk the cursor up the tree to the internal node and balance it as
8525   ** well.  */
8526   rc = balance(pCur);
8527   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8528     releasePageNotNull(pCur->pPage);
8529     pCur->iPage--;
8530     while( pCur->iPage>iCellDepth ){
8531       releasePage(pCur->apPage[pCur->iPage--]);
8532     }
8533     pCur->pPage = pCur->apPage[pCur->iPage];
8534     rc = balance(pCur);
8535   }
8536 
8537   if( rc==SQLITE_OK ){
8538     if( bSkipnext ){
8539       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8540       assert( pPage==pCur->pPage || CORRUPT_DB );
8541       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8542       pCur->eState = CURSOR_SKIPNEXT;
8543       if( iCellIdx>=pPage->nCell ){
8544         pCur->skipNext = -1;
8545         pCur->ix = pPage->nCell-1;
8546       }else{
8547         pCur->skipNext = 1;
8548       }
8549     }else{
8550       rc = moveToRoot(pCur);
8551       if( bPreserve ){
8552         btreeReleaseAllCursorPages(pCur);
8553         pCur->eState = CURSOR_REQUIRESEEK;
8554       }
8555       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
8556     }
8557   }
8558   return rc;
8559 }
8560 
8561 /*
8562 ** Create a new BTree table.  Write into *piTable the page
8563 ** number for the root page of the new table.
8564 **
8565 ** The type of type is determined by the flags parameter.  Only the
8566 ** following values of flags are currently in use.  Other values for
8567 ** flags might not work:
8568 **
8569 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
8570 **     BTREE_ZERODATA                  Used for SQL indices
8571 */
8572 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
8573   BtShared *pBt = p->pBt;
8574   MemPage *pRoot;
8575   Pgno pgnoRoot;
8576   int rc;
8577   int ptfFlags;          /* Page-type flage for the root page of new table */
8578 
8579   assert( sqlite3BtreeHoldsMutex(p) );
8580   assert( pBt->inTransaction==TRANS_WRITE );
8581   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8582 
8583 #ifdef SQLITE_OMIT_AUTOVACUUM
8584   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8585   if( rc ){
8586     return rc;
8587   }
8588 #else
8589   if( pBt->autoVacuum ){
8590     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
8591     MemPage *pPageMove; /* The page to move to. */
8592 
8593     /* Creating a new table may probably require moving an existing database
8594     ** to make room for the new tables root page. In case this page turns
8595     ** out to be an overflow page, delete all overflow page-map caches
8596     ** held by open cursors.
8597     */
8598     invalidateAllOverflowCache(pBt);
8599 
8600     /* Read the value of meta[3] from the database to determine where the
8601     ** root page of the new table should go. meta[3] is the largest root-page
8602     ** created so far, so the new root-page is (meta[3]+1).
8603     */
8604     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
8605     pgnoRoot++;
8606 
8607     /* The new root-page may not be allocated on a pointer-map page, or the
8608     ** PENDING_BYTE page.
8609     */
8610     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
8611         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
8612       pgnoRoot++;
8613     }
8614     assert( pgnoRoot>=3 || CORRUPT_DB );
8615     testcase( pgnoRoot<3 );
8616 
8617     /* Allocate a page. The page that currently resides at pgnoRoot will
8618     ** be moved to the allocated page (unless the allocated page happens
8619     ** to reside at pgnoRoot).
8620     */
8621     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
8622     if( rc!=SQLITE_OK ){
8623       return rc;
8624     }
8625 
8626     if( pgnoMove!=pgnoRoot ){
8627       /* pgnoRoot is the page that will be used for the root-page of
8628       ** the new table (assuming an error did not occur). But we were
8629       ** allocated pgnoMove. If required (i.e. if it was not allocated
8630       ** by extending the file), the current page at position pgnoMove
8631       ** is already journaled.
8632       */
8633       u8 eType = 0;
8634       Pgno iPtrPage = 0;
8635 
8636       /* Save the positions of any open cursors. This is required in
8637       ** case they are holding a reference to an xFetch reference
8638       ** corresponding to page pgnoRoot.  */
8639       rc = saveAllCursors(pBt, 0, 0);
8640       releasePage(pPageMove);
8641       if( rc!=SQLITE_OK ){
8642         return rc;
8643       }
8644 
8645       /* Move the page currently at pgnoRoot to pgnoMove. */
8646       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8647       if( rc!=SQLITE_OK ){
8648         return rc;
8649       }
8650       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
8651       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8652         rc = SQLITE_CORRUPT_BKPT;
8653       }
8654       if( rc!=SQLITE_OK ){
8655         releasePage(pRoot);
8656         return rc;
8657       }
8658       assert( eType!=PTRMAP_ROOTPAGE );
8659       assert( eType!=PTRMAP_FREEPAGE );
8660       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
8661       releasePage(pRoot);
8662 
8663       /* Obtain the page at pgnoRoot */
8664       if( rc!=SQLITE_OK ){
8665         return rc;
8666       }
8667       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8668       if( rc!=SQLITE_OK ){
8669         return rc;
8670       }
8671       rc = sqlite3PagerWrite(pRoot->pDbPage);
8672       if( rc!=SQLITE_OK ){
8673         releasePage(pRoot);
8674         return rc;
8675       }
8676     }else{
8677       pRoot = pPageMove;
8678     }
8679 
8680     /* Update the pointer-map and meta-data with the new root-page number. */
8681     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
8682     if( rc ){
8683       releasePage(pRoot);
8684       return rc;
8685     }
8686 
8687     /* When the new root page was allocated, page 1 was made writable in
8688     ** order either to increase the database filesize, or to decrement the
8689     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8690     */
8691     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
8692     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
8693     if( NEVER(rc) ){
8694       releasePage(pRoot);
8695       return rc;
8696     }
8697 
8698   }else{
8699     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8700     if( rc ) return rc;
8701   }
8702 #endif
8703   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8704   if( createTabFlags & BTREE_INTKEY ){
8705     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8706   }else{
8707     ptfFlags = PTF_ZERODATA | PTF_LEAF;
8708   }
8709   zeroPage(pRoot, ptfFlags);
8710   sqlite3PagerUnref(pRoot->pDbPage);
8711   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
8712   *piTable = (int)pgnoRoot;
8713   return SQLITE_OK;
8714 }
8715 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8716   int rc;
8717   sqlite3BtreeEnter(p);
8718   rc = btreeCreateTable(p, piTable, flags);
8719   sqlite3BtreeLeave(p);
8720   return rc;
8721 }
8722 
8723 /*
8724 ** Erase the given database page and all its children.  Return
8725 ** the page to the freelist.
8726 */
8727 static int clearDatabasePage(
8728   BtShared *pBt,           /* The BTree that contains the table */
8729   Pgno pgno,               /* Page number to clear */
8730   int freePageFlag,        /* Deallocate page if true */
8731   int *pnChange            /* Add number of Cells freed to this counter */
8732 ){
8733   MemPage *pPage;
8734   int rc;
8735   unsigned char *pCell;
8736   int i;
8737   int hdr;
8738   CellInfo info;
8739 
8740   assert( sqlite3_mutex_held(pBt->mutex) );
8741   if( pgno>btreePagecount(pBt) ){
8742     return SQLITE_CORRUPT_BKPT;
8743   }
8744   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
8745   if( rc ) return rc;
8746   if( pPage->bBusy ){
8747     rc = SQLITE_CORRUPT_BKPT;
8748     goto cleardatabasepage_out;
8749   }
8750   pPage->bBusy = 1;
8751   hdr = pPage->hdrOffset;
8752   for(i=0; i<pPage->nCell; i++){
8753     pCell = findCell(pPage, i);
8754     if( !pPage->leaf ){
8755       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
8756       if( rc ) goto cleardatabasepage_out;
8757     }
8758     rc = clearCell(pPage, pCell, &info);
8759     if( rc ) goto cleardatabasepage_out;
8760   }
8761   if( !pPage->leaf ){
8762     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
8763     if( rc ) goto cleardatabasepage_out;
8764   }else if( pnChange ){
8765     assert( pPage->intKey || CORRUPT_DB );
8766     testcase( !pPage->intKey );
8767     *pnChange += pPage->nCell;
8768   }
8769   if( freePageFlag ){
8770     freePage(pPage, &rc);
8771   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
8772     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
8773   }
8774 
8775 cleardatabasepage_out:
8776   pPage->bBusy = 0;
8777   releasePage(pPage);
8778   return rc;
8779 }
8780 
8781 /*
8782 ** Delete all information from a single table in the database.  iTable is
8783 ** the page number of the root of the table.  After this routine returns,
8784 ** the root page is empty, but still exists.
8785 **
8786 ** This routine will fail with SQLITE_LOCKED if there are any open
8787 ** read cursors on the table.  Open write cursors are moved to the
8788 ** root of the table.
8789 **
8790 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8791 ** integer value pointed to by pnChange is incremented by the number of
8792 ** entries in the table.
8793 */
8794 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
8795   int rc;
8796   BtShared *pBt = p->pBt;
8797   sqlite3BtreeEnter(p);
8798   assert( p->inTrans==TRANS_WRITE );
8799 
8800   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
8801 
8802   if( SQLITE_OK==rc ){
8803     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8804     ** is the root of a table b-tree - if it is not, the following call is
8805     ** a no-op).  */
8806     invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
8807     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
8808   }
8809   sqlite3BtreeLeave(p);
8810   return rc;
8811 }
8812 
8813 /*
8814 ** Delete all information from the single table that pCur is open on.
8815 **
8816 ** This routine only work for pCur on an ephemeral table.
8817 */
8818 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8819   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8820 }
8821 
8822 /*
8823 ** Erase all information in a table and add the root of the table to
8824 ** the freelist.  Except, the root of the principle table (the one on
8825 ** page 1) is never added to the freelist.
8826 **
8827 ** This routine will fail with SQLITE_LOCKED if there are any open
8828 ** cursors on the table.
8829 **
8830 ** If AUTOVACUUM is enabled and the page at iTable is not the last
8831 ** root page in the database file, then the last root page
8832 ** in the database file is moved into the slot formerly occupied by
8833 ** iTable and that last slot formerly occupied by the last root page
8834 ** is added to the freelist instead of iTable.  In this say, all
8835 ** root pages are kept at the beginning of the database file, which
8836 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
8837 ** page number that used to be the last root page in the file before
8838 ** the move.  If no page gets moved, *piMoved is set to 0.
8839 ** The last root page is recorded in meta[3] and the value of
8840 ** meta[3] is updated by this procedure.
8841 */
8842 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
8843   int rc;
8844   MemPage *pPage = 0;
8845   BtShared *pBt = p->pBt;
8846 
8847   assert( sqlite3BtreeHoldsMutex(p) );
8848   assert( p->inTrans==TRANS_WRITE );
8849   assert( iTable>=2 );
8850 
8851   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
8852   if( rc ) return rc;
8853   rc = sqlite3BtreeClearTable(p, iTable, 0);
8854   if( rc ){
8855     releasePage(pPage);
8856     return rc;
8857   }
8858 
8859   *piMoved = 0;
8860 
8861 #ifdef SQLITE_OMIT_AUTOVACUUM
8862   freePage(pPage, &rc);
8863   releasePage(pPage);
8864 #else
8865   if( pBt->autoVacuum ){
8866     Pgno maxRootPgno;
8867     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
8868 
8869     if( iTable==maxRootPgno ){
8870       /* If the table being dropped is the table with the largest root-page
8871       ** number in the database, put the root page on the free list.
8872       */
8873       freePage(pPage, &rc);
8874       releasePage(pPage);
8875       if( rc!=SQLITE_OK ){
8876         return rc;
8877       }
8878     }else{
8879       /* The table being dropped does not have the largest root-page
8880       ** number in the database. So move the page that does into the
8881       ** gap left by the deleted root-page.
8882       */
8883       MemPage *pMove;
8884       releasePage(pPage);
8885       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8886       if( rc!=SQLITE_OK ){
8887         return rc;
8888       }
8889       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8890       releasePage(pMove);
8891       if( rc!=SQLITE_OK ){
8892         return rc;
8893       }
8894       pMove = 0;
8895       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8896       freePage(pMove, &rc);
8897       releasePage(pMove);
8898       if( rc!=SQLITE_OK ){
8899         return rc;
8900       }
8901       *piMoved = maxRootPgno;
8902     }
8903 
8904     /* Set the new 'max-root-page' value in the database header. This
8905     ** is the old value less one, less one more if that happens to
8906     ** be a root-page number, less one again if that is the
8907     ** PENDING_BYTE_PAGE.
8908     */
8909     maxRootPgno--;
8910     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8911            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8912       maxRootPgno--;
8913     }
8914     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8915 
8916     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8917   }else{
8918     freePage(pPage, &rc);
8919     releasePage(pPage);
8920   }
8921 #endif
8922   return rc;
8923 }
8924 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8925   int rc;
8926   sqlite3BtreeEnter(p);
8927   rc = btreeDropTable(p, iTable, piMoved);
8928   sqlite3BtreeLeave(p);
8929   return rc;
8930 }
8931 
8932 
8933 /*
8934 ** This function may only be called if the b-tree connection already
8935 ** has a read or write transaction open on the database.
8936 **
8937 ** Read the meta-information out of a database file.  Meta[0]
8938 ** is the number of free pages currently in the database.  Meta[1]
8939 ** through meta[15] are available for use by higher layers.  Meta[0]
8940 ** is read-only, the others are read/write.
8941 **
8942 ** The schema layer numbers meta values differently.  At the schema
8943 ** layer (and the SetCookie and ReadCookie opcodes) the number of
8944 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
8945 **
8946 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
8947 ** of reading the value out of the header, it instead loads the "DataVersion"
8948 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
8949 ** database file.  It is a number computed by the pager.  But its access
8950 ** pattern is the same as header meta values, and so it is convenient to
8951 ** read it from this routine.
8952 */
8953 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
8954   BtShared *pBt = p->pBt;
8955 
8956   sqlite3BtreeEnter(p);
8957   assert( p->inTrans>TRANS_NONE );
8958   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
8959   assert( pBt->pPage1 );
8960   assert( idx>=0 && idx<=15 );
8961 
8962   if( idx==BTREE_DATA_VERSION ){
8963     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
8964   }else{
8965     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8966   }
8967 
8968   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8969   ** database, mark the database as read-only.  */
8970 #ifdef SQLITE_OMIT_AUTOVACUUM
8971   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8972     pBt->btsFlags |= BTS_READ_ONLY;
8973   }
8974 #endif
8975 
8976   sqlite3BtreeLeave(p);
8977 }
8978 
8979 /*
8980 ** Write meta-information back into the database.  Meta[0] is
8981 ** read-only and may not be written.
8982 */
8983 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8984   BtShared *pBt = p->pBt;
8985   unsigned char *pP1;
8986   int rc;
8987   assert( idx>=1 && idx<=15 );
8988   sqlite3BtreeEnter(p);
8989   assert( p->inTrans==TRANS_WRITE );
8990   assert( pBt->pPage1!=0 );
8991   pP1 = pBt->pPage1->aData;
8992   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8993   if( rc==SQLITE_OK ){
8994     put4byte(&pP1[36 + idx*4], iMeta);
8995 #ifndef SQLITE_OMIT_AUTOVACUUM
8996     if( idx==BTREE_INCR_VACUUM ){
8997       assert( pBt->autoVacuum || iMeta==0 );
8998       assert( iMeta==0 || iMeta==1 );
8999       pBt->incrVacuum = (u8)iMeta;
9000     }
9001 #endif
9002   }
9003   sqlite3BtreeLeave(p);
9004   return rc;
9005 }
9006 
9007 #ifndef SQLITE_OMIT_BTREECOUNT
9008 /*
9009 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9010 ** number of entries in the b-tree and write the result to *pnEntry.
9011 **
9012 ** SQLITE_OK is returned if the operation is successfully executed.
9013 ** Otherwise, if an error is encountered (i.e. an IO error or database
9014 ** corruption) an SQLite error code is returned.
9015 */
9016 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9017   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9018   int rc;                              /* Return code */
9019 
9020   rc = moveToRoot(pCur);
9021   if( rc==SQLITE_EMPTY ){
9022     *pnEntry = 0;
9023     return SQLITE_OK;
9024   }
9025 
9026   /* Unless an error occurs, the following loop runs one iteration for each
9027   ** page in the B-Tree structure (not including overflow pages).
9028   */
9029   while( rc==SQLITE_OK ){
9030     int iIdx;                          /* Index of child node in parent */
9031     MemPage *pPage;                    /* Current page of the b-tree */
9032 
9033     /* If this is a leaf page or the tree is not an int-key tree, then
9034     ** this page contains countable entries. Increment the entry counter
9035     ** accordingly.
9036     */
9037     pPage = pCur->pPage;
9038     if( pPage->leaf || !pPage->intKey ){
9039       nEntry += pPage->nCell;
9040     }
9041 
9042     /* pPage is a leaf node. This loop navigates the cursor so that it
9043     ** points to the first interior cell that it points to the parent of
9044     ** the next page in the tree that has not yet been visited. The
9045     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9046     ** of the page, or to the number of cells in the page if the next page
9047     ** to visit is the right-child of its parent.
9048     **
9049     ** If all pages in the tree have been visited, return SQLITE_OK to the
9050     ** caller.
9051     */
9052     if( pPage->leaf ){
9053       do {
9054         if( pCur->iPage==0 ){
9055           /* All pages of the b-tree have been visited. Return successfully. */
9056           *pnEntry = nEntry;
9057           return moveToRoot(pCur);
9058         }
9059         moveToParent(pCur);
9060       }while ( pCur->ix>=pCur->pPage->nCell );
9061 
9062       pCur->ix++;
9063       pPage = pCur->pPage;
9064     }
9065 
9066     /* Descend to the child node of the cell that the cursor currently
9067     ** points at. This is the right-child if (iIdx==pPage->nCell).
9068     */
9069     iIdx = pCur->ix;
9070     if( iIdx==pPage->nCell ){
9071       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9072     }else{
9073       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9074     }
9075   }
9076 
9077   /* An error has occurred. Return an error code. */
9078   return rc;
9079 }
9080 #endif
9081 
9082 /*
9083 ** Return the pager associated with a BTree.  This routine is used for
9084 ** testing and debugging only.
9085 */
9086 Pager *sqlite3BtreePager(Btree *p){
9087   return p->pBt->pPager;
9088 }
9089 
9090 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9091 /*
9092 ** Append a message to the error message string.
9093 */
9094 static void checkAppendMsg(
9095   IntegrityCk *pCheck,
9096   const char *zFormat,
9097   ...
9098 ){
9099   va_list ap;
9100   if( !pCheck->mxErr ) return;
9101   pCheck->mxErr--;
9102   pCheck->nErr++;
9103   va_start(ap, zFormat);
9104   if( pCheck->errMsg.nChar ){
9105     sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
9106   }
9107   if( pCheck->zPfx ){
9108     sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9109   }
9110   sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
9111   va_end(ap);
9112   if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
9113     pCheck->mallocFailed = 1;
9114   }
9115 }
9116 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9117 
9118 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9119 
9120 /*
9121 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9122 ** corresponds to page iPg is already set.
9123 */
9124 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9125   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9126   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9127 }
9128 
9129 /*
9130 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9131 */
9132 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9133   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9134   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9135 }
9136 
9137 
9138 /*
9139 ** Add 1 to the reference count for page iPage.  If this is the second
9140 ** reference to the page, add an error message to pCheck->zErrMsg.
9141 ** Return 1 if there are 2 or more references to the page and 0 if
9142 ** if this is the first reference to the page.
9143 **
9144 ** Also check that the page number is in bounds.
9145 */
9146 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9147   if( iPage==0 ) return 1;
9148   if( iPage>pCheck->nPage ){
9149     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9150     return 1;
9151   }
9152   if( getPageReferenced(pCheck, iPage) ){
9153     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9154     return 1;
9155   }
9156   setPageReferenced(pCheck, iPage);
9157   return 0;
9158 }
9159 
9160 #ifndef SQLITE_OMIT_AUTOVACUUM
9161 /*
9162 ** Check that the entry in the pointer-map for page iChild maps to
9163 ** page iParent, pointer type ptrType. If not, append an error message
9164 ** to pCheck.
9165 */
9166 static void checkPtrmap(
9167   IntegrityCk *pCheck,   /* Integrity check context */
9168   Pgno iChild,           /* Child page number */
9169   u8 eType,              /* Expected pointer map type */
9170   Pgno iParent           /* Expected pointer map parent page number */
9171 ){
9172   int rc;
9173   u8 ePtrmapType;
9174   Pgno iPtrmapParent;
9175 
9176   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9177   if( rc!=SQLITE_OK ){
9178     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9179     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9180     return;
9181   }
9182 
9183   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9184     checkAppendMsg(pCheck,
9185       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9186       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9187   }
9188 }
9189 #endif
9190 
9191 /*
9192 ** Check the integrity of the freelist or of an overflow page list.
9193 ** Verify that the number of pages on the list is N.
9194 */
9195 static void checkList(
9196   IntegrityCk *pCheck,  /* Integrity checking context */
9197   int isFreeList,       /* True for a freelist.  False for overflow page list */
9198   int iPage,            /* Page number for first page in the list */
9199   int N                 /* Expected number of pages in the list */
9200 ){
9201   int i;
9202   int expected = N;
9203   int iFirst = iPage;
9204   while( N-- > 0 && pCheck->mxErr ){
9205     DbPage *pOvflPage;
9206     unsigned char *pOvflData;
9207     if( iPage<1 ){
9208       checkAppendMsg(pCheck,
9209          "%d of %d pages missing from overflow list starting at %d",
9210           N+1, expected, iFirst);
9211       break;
9212     }
9213     if( checkRef(pCheck, iPage) ) break;
9214     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9215       checkAppendMsg(pCheck, "failed to get page %d", iPage);
9216       break;
9217     }
9218     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9219     if( isFreeList ){
9220       int n = get4byte(&pOvflData[4]);
9221 #ifndef SQLITE_OMIT_AUTOVACUUM
9222       if( pCheck->pBt->autoVacuum ){
9223         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9224       }
9225 #endif
9226       if( n>(int)pCheck->pBt->usableSize/4-2 ){
9227         checkAppendMsg(pCheck,
9228            "freelist leaf count too big on page %d", iPage);
9229         N--;
9230       }else{
9231         for(i=0; i<n; i++){
9232           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9233 #ifndef SQLITE_OMIT_AUTOVACUUM
9234           if( pCheck->pBt->autoVacuum ){
9235             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9236           }
9237 #endif
9238           checkRef(pCheck, iFreePage);
9239         }
9240         N -= n;
9241       }
9242     }
9243 #ifndef SQLITE_OMIT_AUTOVACUUM
9244     else{
9245       /* If this database supports auto-vacuum and iPage is not the last
9246       ** page in this overflow list, check that the pointer-map entry for
9247       ** the following page matches iPage.
9248       */
9249       if( pCheck->pBt->autoVacuum && N>0 ){
9250         i = get4byte(pOvflData);
9251         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9252       }
9253     }
9254 #endif
9255     iPage = get4byte(pOvflData);
9256     sqlite3PagerUnref(pOvflPage);
9257 
9258     if( isFreeList && N<(iPage!=0) ){
9259       checkAppendMsg(pCheck, "free-page count in header is too small");
9260     }
9261   }
9262 }
9263 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9264 
9265 /*
9266 ** An implementation of a min-heap.
9267 **
9268 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
9269 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
9270 ** and aHeap[N*2+1].
9271 **
9272 ** The heap property is this:  Every node is less than or equal to both
9273 ** of its daughter nodes.  A consequence of the heap property is that the
9274 ** root node aHeap[1] is always the minimum value currently in the heap.
9275 **
9276 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9277 ** the heap, preserving the heap property.  The btreeHeapPull() routine
9278 ** removes the root element from the heap (the minimum value in the heap)
9279 ** and then moves other nodes around as necessary to preserve the heap
9280 ** property.
9281 **
9282 ** This heap is used for cell overlap and coverage testing.  Each u32
9283 ** entry represents the span of a cell or freeblock on a btree page.
9284 ** The upper 16 bits are the index of the first byte of a range and the
9285 ** lower 16 bits are the index of the last byte of that range.
9286 */
9287 static void btreeHeapInsert(u32 *aHeap, u32 x){
9288   u32 j, i = ++aHeap[0];
9289   aHeap[i] = x;
9290   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9291     x = aHeap[j];
9292     aHeap[j] = aHeap[i];
9293     aHeap[i] = x;
9294     i = j;
9295   }
9296 }
9297 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9298   u32 j, i, x;
9299   if( (x = aHeap[0])==0 ) return 0;
9300   *pOut = aHeap[1];
9301   aHeap[1] = aHeap[x];
9302   aHeap[x] = 0xffffffff;
9303   aHeap[0]--;
9304   i = 1;
9305   while( (j = i*2)<=aHeap[0] ){
9306     if( aHeap[j]>aHeap[j+1] ) j++;
9307     if( aHeap[i]<aHeap[j] ) break;
9308     x = aHeap[i];
9309     aHeap[i] = aHeap[j];
9310     aHeap[j] = x;
9311     i = j;
9312   }
9313   return 1;
9314 }
9315 
9316 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9317 /*
9318 ** Do various sanity checks on a single page of a tree.  Return
9319 ** the tree depth.  Root pages return 0.  Parents of root pages
9320 ** return 1, and so forth.
9321 **
9322 ** These checks are done:
9323 **
9324 **      1.  Make sure that cells and freeblocks do not overlap
9325 **          but combine to completely cover the page.
9326 **      2.  Make sure integer cell keys are in order.
9327 **      3.  Check the integrity of overflow pages.
9328 **      4.  Recursively call checkTreePage on all children.
9329 **      5.  Verify that the depth of all children is the same.
9330 */
9331 static int checkTreePage(
9332   IntegrityCk *pCheck,  /* Context for the sanity check */
9333   int iPage,            /* Page number of the page to check */
9334   i64 *piMinKey,        /* Write minimum integer primary key here */
9335   i64 maxKey            /* Error if integer primary key greater than this */
9336 ){
9337   MemPage *pPage = 0;      /* The page being analyzed */
9338   int i;                   /* Loop counter */
9339   int rc;                  /* Result code from subroutine call */
9340   int depth = -1, d2;      /* Depth of a subtree */
9341   int pgno;                /* Page number */
9342   int nFrag;               /* Number of fragmented bytes on the page */
9343   int hdr;                 /* Offset to the page header */
9344   int cellStart;           /* Offset to the start of the cell pointer array */
9345   int nCell;               /* Number of cells */
9346   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9347   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9348                            ** False if IPK must be strictly less than maxKey */
9349   u8 *data;                /* Page content */
9350   u8 *pCell;               /* Cell content */
9351   u8 *pCellIdx;            /* Next element of the cell pointer array */
9352   BtShared *pBt;           /* The BtShared object that owns pPage */
9353   u32 pc;                  /* Address of a cell */
9354   u32 usableSize;          /* Usable size of the page */
9355   u32 contentOffset;       /* Offset to the start of the cell content area */
9356   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9357   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9358   const char *saved_zPfx = pCheck->zPfx;
9359   int saved_v1 = pCheck->v1;
9360   int saved_v2 = pCheck->v2;
9361   u8 savedIsInit = 0;
9362 
9363   /* Check that the page exists
9364   */
9365   pBt = pCheck->pBt;
9366   usableSize = pBt->usableSize;
9367   if( iPage==0 ) return 0;
9368   if( checkRef(pCheck, iPage) ) return 0;
9369   pCheck->zPfx = "Page %d: ";
9370   pCheck->v1 = iPage;
9371   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9372     checkAppendMsg(pCheck,
9373        "unable to get the page. error code=%d", rc);
9374     goto end_of_check;
9375   }
9376 
9377   /* Clear MemPage.isInit to make sure the corruption detection code in
9378   ** btreeInitPage() is executed.  */
9379   savedIsInit = pPage->isInit;
9380   pPage->isInit = 0;
9381   if( (rc = btreeInitPage(pPage))!=0 ){
9382     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9383     checkAppendMsg(pCheck,
9384                    "btreeInitPage() returns error code %d", rc);
9385     goto end_of_check;
9386   }
9387   data = pPage->aData;
9388   hdr = pPage->hdrOffset;
9389 
9390   /* Set up for cell analysis */
9391   pCheck->zPfx = "On tree page %d cell %d: ";
9392   contentOffset = get2byteNotZero(&data[hdr+5]);
9393   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9394 
9395   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9396   ** number of cells on the page. */
9397   nCell = get2byte(&data[hdr+3]);
9398   assert( pPage->nCell==nCell );
9399 
9400   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9401   ** immediately follows the b-tree page header. */
9402   cellStart = hdr + 12 - 4*pPage->leaf;
9403   assert( pPage->aCellIdx==&data[cellStart] );
9404   pCellIdx = &data[cellStart + 2*(nCell-1)];
9405 
9406   if( !pPage->leaf ){
9407     /* Analyze the right-child page of internal pages */
9408     pgno = get4byte(&data[hdr+8]);
9409 #ifndef SQLITE_OMIT_AUTOVACUUM
9410     if( pBt->autoVacuum ){
9411       pCheck->zPfx = "On page %d at right child: ";
9412       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9413     }
9414 #endif
9415     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9416     keyCanBeEqual = 0;
9417   }else{
9418     /* For leaf pages, the coverage check will occur in the same loop
9419     ** as the other cell checks, so initialize the heap.  */
9420     heap = pCheck->heap;
9421     heap[0] = 0;
9422   }
9423 
9424   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9425   ** integer offsets to the cell contents. */
9426   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9427     CellInfo info;
9428 
9429     /* Check cell size */
9430     pCheck->v2 = i;
9431     assert( pCellIdx==&data[cellStart + i*2] );
9432     pc = get2byteAligned(pCellIdx);
9433     pCellIdx -= 2;
9434     if( pc<contentOffset || pc>usableSize-4 ){
9435       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9436                              pc, contentOffset, usableSize-4);
9437       doCoverageCheck = 0;
9438       continue;
9439     }
9440     pCell = &data[pc];
9441     pPage->xParseCell(pPage, pCell, &info);
9442     if( pc+info.nSize>usableSize ){
9443       checkAppendMsg(pCheck, "Extends off end of page");
9444       doCoverageCheck = 0;
9445       continue;
9446     }
9447 
9448     /* Check for integer primary key out of range */
9449     if( pPage->intKey ){
9450       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9451         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9452       }
9453       maxKey = info.nKey;
9454       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
9455     }
9456 
9457     /* Check the content overflow list */
9458     if( info.nPayload>info.nLocal ){
9459       int nPage;       /* Number of pages on the overflow chain */
9460       Pgno pgnoOvfl;   /* First page of the overflow chain */
9461       assert( pc + info.nSize - 4 <= usableSize );
9462       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9463       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9464 #ifndef SQLITE_OMIT_AUTOVACUUM
9465       if( pBt->autoVacuum ){
9466         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9467       }
9468 #endif
9469       checkList(pCheck, 0, pgnoOvfl, nPage);
9470     }
9471 
9472     if( !pPage->leaf ){
9473       /* Check sanity of left child page for internal pages */
9474       pgno = get4byte(pCell);
9475 #ifndef SQLITE_OMIT_AUTOVACUUM
9476       if( pBt->autoVacuum ){
9477         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9478       }
9479 #endif
9480       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9481       keyCanBeEqual = 0;
9482       if( d2!=depth ){
9483         checkAppendMsg(pCheck, "Child page depth differs");
9484         depth = d2;
9485       }
9486     }else{
9487       /* Populate the coverage-checking heap for leaf pages */
9488       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9489     }
9490   }
9491   *piMinKey = maxKey;
9492 
9493   /* Check for complete coverage of the page
9494   */
9495   pCheck->zPfx = 0;
9496   if( doCoverageCheck && pCheck->mxErr>0 ){
9497     /* For leaf pages, the min-heap has already been initialized and the
9498     ** cells have already been inserted.  But for internal pages, that has
9499     ** not yet been done, so do it now */
9500     if( !pPage->leaf ){
9501       heap = pCheck->heap;
9502       heap[0] = 0;
9503       for(i=nCell-1; i>=0; i--){
9504         u32 size;
9505         pc = get2byteAligned(&data[cellStart+i*2]);
9506         size = pPage->xCellSize(pPage, &data[pc]);
9507         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9508       }
9509     }
9510     /* Add the freeblocks to the min-heap
9511     **
9512     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9513     ** is the offset of the first freeblock, or zero if there are no
9514     ** freeblocks on the page.
9515     */
9516     i = get2byte(&data[hdr+1]);
9517     while( i>0 ){
9518       int size, j;
9519       assert( (u32)i<=usableSize-4 );     /* Enforced by btreeInitPage() */
9520       size = get2byte(&data[i+2]);
9521       assert( (u32)(i+size)<=usableSize );  /* Enforced by btreeInitPage() */
9522       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9523       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9524       ** big-endian integer which is the offset in the b-tree page of the next
9525       ** freeblock in the chain, or zero if the freeblock is the last on the
9526       ** chain. */
9527       j = get2byte(&data[i]);
9528       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9529       ** increasing offset. */
9530       assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
9531       assert( (u32)j<=usableSize-4 );   /* Enforced by btreeInitPage() */
9532       i = j;
9533     }
9534     /* Analyze the min-heap looking for overlap between cells and/or
9535     ** freeblocks, and counting the number of untracked bytes in nFrag.
9536     **
9537     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
9538     ** There is an implied first entry the covers the page header, the cell
9539     ** pointer index, and the gap between the cell pointer index and the start
9540     ** of cell content.
9541     **
9542     ** The loop below pulls entries from the min-heap in order and compares
9543     ** the start_address against the previous end_address.  If there is an
9544     ** overlap, that means bytes are used multiple times.  If there is a gap,
9545     ** that gap is added to the fragmentation count.
9546     */
9547     nFrag = 0;
9548     prev = contentOffset - 1;   /* Implied first min-heap entry */
9549     while( btreeHeapPull(heap,&x) ){
9550       if( (prev&0xffff)>=(x>>16) ){
9551         checkAppendMsg(pCheck,
9552           "Multiple uses for byte %u of page %d", x>>16, iPage);
9553         break;
9554       }else{
9555         nFrag += (x>>16) - (prev&0xffff) - 1;
9556         prev = x;
9557       }
9558     }
9559     nFrag += usableSize - (prev&0xffff) - 1;
9560     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9561     ** is stored in the fifth field of the b-tree page header.
9562     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9563     ** number of fragmented free bytes within the cell content area.
9564     */
9565     if( heap[0]==0 && nFrag!=data[hdr+7] ){
9566       checkAppendMsg(pCheck,
9567           "Fragmentation of %d bytes reported as %d on page %d",
9568           nFrag, data[hdr+7], iPage);
9569     }
9570   }
9571 
9572 end_of_check:
9573   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
9574   releasePage(pPage);
9575   pCheck->zPfx = saved_zPfx;
9576   pCheck->v1 = saved_v1;
9577   pCheck->v2 = saved_v2;
9578   return depth+1;
9579 }
9580 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9581 
9582 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9583 /*
9584 ** This routine does a complete check of the given BTree file.  aRoot[] is
9585 ** an array of pages numbers were each page number is the root page of
9586 ** a table.  nRoot is the number of entries in aRoot.
9587 **
9588 ** A read-only or read-write transaction must be opened before calling
9589 ** this function.
9590 **
9591 ** Write the number of error seen in *pnErr.  Except for some memory
9592 ** allocation errors,  an error message held in memory obtained from
9593 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
9594 ** returned.  If a memory allocation error occurs, NULL is returned.
9595 */
9596 char *sqlite3BtreeIntegrityCheck(
9597   Btree *p,     /* The btree to be checked */
9598   int *aRoot,   /* An array of root pages numbers for individual trees */
9599   int nRoot,    /* Number of entries in aRoot[] */
9600   int mxErr,    /* Stop reporting errors after this many */
9601   int *pnErr    /* Write number of errors seen to this variable */
9602 ){
9603   Pgno i;
9604   IntegrityCk sCheck;
9605   BtShared *pBt = p->pBt;
9606   int savedDbFlags = pBt->db->flags;
9607   char zErr[100];
9608   VVA_ONLY( int nRef );
9609 
9610   sqlite3BtreeEnter(p);
9611   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
9612   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9613   assert( nRef>=0 );
9614   sCheck.pBt = pBt;
9615   sCheck.pPager = pBt->pPager;
9616   sCheck.nPage = btreePagecount(sCheck.pBt);
9617   sCheck.mxErr = mxErr;
9618   sCheck.nErr = 0;
9619   sCheck.mallocFailed = 0;
9620   sCheck.zPfx = 0;
9621   sCheck.v1 = 0;
9622   sCheck.v2 = 0;
9623   sCheck.aPgRef = 0;
9624   sCheck.heap = 0;
9625   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
9626   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
9627   if( sCheck.nPage==0 ){
9628     goto integrity_ck_cleanup;
9629   }
9630 
9631   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9632   if( !sCheck.aPgRef ){
9633     sCheck.mallocFailed = 1;
9634     goto integrity_ck_cleanup;
9635   }
9636   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9637   if( sCheck.heap==0 ){
9638     sCheck.mallocFailed = 1;
9639     goto integrity_ck_cleanup;
9640   }
9641 
9642   i = PENDING_BYTE_PAGE(pBt);
9643   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
9644 
9645   /* Check the integrity of the freelist
9646   */
9647   sCheck.zPfx = "Main freelist: ";
9648   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
9649             get4byte(&pBt->pPage1->aData[36]));
9650   sCheck.zPfx = 0;
9651 
9652   /* Check all the tables.
9653   */
9654   testcase( pBt->db->flags & SQLITE_CellSizeCk );
9655   pBt->db->flags &= ~SQLITE_CellSizeCk;
9656   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
9657     i64 notUsed;
9658     if( aRoot[i]==0 ) continue;
9659 #ifndef SQLITE_OMIT_AUTOVACUUM
9660     if( pBt->autoVacuum && aRoot[i]>1 ){
9661       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
9662     }
9663 #endif
9664     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
9665   }
9666   pBt->db->flags = savedDbFlags;
9667 
9668   /* Make sure every page in the file is referenced
9669   */
9670   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
9671 #ifdef SQLITE_OMIT_AUTOVACUUM
9672     if( getPageReferenced(&sCheck, i)==0 ){
9673       checkAppendMsg(&sCheck, "Page %d is never used", i);
9674     }
9675 #else
9676     /* If the database supports auto-vacuum, make sure no tables contain
9677     ** references to pointer-map pages.
9678     */
9679     if( getPageReferenced(&sCheck, i)==0 &&
9680        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
9681       checkAppendMsg(&sCheck, "Page %d is never used", i);
9682     }
9683     if( getPageReferenced(&sCheck, i)!=0 &&
9684        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
9685       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
9686     }
9687 #endif
9688   }
9689 
9690   /* Clean  up and report errors.
9691   */
9692 integrity_ck_cleanup:
9693   sqlite3PageFree(sCheck.heap);
9694   sqlite3_free(sCheck.aPgRef);
9695   if( sCheck.mallocFailed ){
9696     sqlite3StrAccumReset(&sCheck.errMsg);
9697     sCheck.nErr++;
9698   }
9699   *pnErr = sCheck.nErr;
9700   if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9701   /* Make sure this analysis did not leave any unref() pages. */
9702   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9703   sqlite3BtreeLeave(p);
9704   return sqlite3StrAccumFinish(&sCheck.errMsg);
9705 }
9706 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9707 
9708 /*
9709 ** Return the full pathname of the underlying database file.  Return
9710 ** an empty string if the database is in-memory or a TEMP database.
9711 **
9712 ** The pager filename is invariant as long as the pager is
9713 ** open so it is safe to access without the BtShared mutex.
9714 */
9715 const char *sqlite3BtreeGetFilename(Btree *p){
9716   assert( p->pBt->pPager!=0 );
9717   return sqlite3PagerFilename(p->pBt->pPager, 1);
9718 }
9719 
9720 /*
9721 ** Return the pathname of the journal file for this database. The return
9722 ** value of this routine is the same regardless of whether the journal file
9723 ** has been created or not.
9724 **
9725 ** The pager journal filename is invariant as long as the pager is
9726 ** open so it is safe to access without the BtShared mutex.
9727 */
9728 const char *sqlite3BtreeGetJournalname(Btree *p){
9729   assert( p->pBt->pPager!=0 );
9730   return sqlite3PagerJournalname(p->pBt->pPager);
9731 }
9732 
9733 /*
9734 ** Return non-zero if a transaction is active.
9735 */
9736 int sqlite3BtreeIsInTrans(Btree *p){
9737   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
9738   return (p && (p->inTrans==TRANS_WRITE));
9739 }
9740 
9741 #ifndef SQLITE_OMIT_WAL
9742 /*
9743 ** Run a checkpoint on the Btree passed as the first argument.
9744 **
9745 ** Return SQLITE_LOCKED if this or any other connection has an open
9746 ** transaction on the shared-cache the argument Btree is connected to.
9747 **
9748 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9749 */
9750 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
9751   int rc = SQLITE_OK;
9752   if( p ){
9753     BtShared *pBt = p->pBt;
9754     sqlite3BtreeEnter(p);
9755     if( pBt->inTransaction!=TRANS_NONE ){
9756       rc = SQLITE_LOCKED;
9757     }else{
9758       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
9759     }
9760     sqlite3BtreeLeave(p);
9761   }
9762   return rc;
9763 }
9764 #endif
9765 
9766 /*
9767 ** Return non-zero if a read (or write) transaction is active.
9768 */
9769 int sqlite3BtreeIsInReadTrans(Btree *p){
9770   assert( p );
9771   assert( sqlite3_mutex_held(p->db->mutex) );
9772   return p->inTrans!=TRANS_NONE;
9773 }
9774 
9775 int sqlite3BtreeIsInBackup(Btree *p){
9776   assert( p );
9777   assert( sqlite3_mutex_held(p->db->mutex) );
9778   return p->nBackup!=0;
9779 }
9780 
9781 /*
9782 ** This function returns a pointer to a blob of memory associated with
9783 ** a single shared-btree. The memory is used by client code for its own
9784 ** purposes (for example, to store a high-level schema associated with
9785 ** the shared-btree). The btree layer manages reference counting issues.
9786 **
9787 ** The first time this is called on a shared-btree, nBytes bytes of memory
9788 ** are allocated, zeroed, and returned to the caller. For each subsequent
9789 ** call the nBytes parameter is ignored and a pointer to the same blob
9790 ** of memory returned.
9791 **
9792 ** If the nBytes parameter is 0 and the blob of memory has not yet been
9793 ** allocated, a null pointer is returned. If the blob has already been
9794 ** allocated, it is returned as normal.
9795 **
9796 ** Just before the shared-btree is closed, the function passed as the
9797 ** xFree argument when the memory allocation was made is invoked on the
9798 ** blob of allocated memory. The xFree function should not call sqlite3_free()
9799 ** on the memory, the btree layer does that.
9800 */
9801 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9802   BtShared *pBt = p->pBt;
9803   sqlite3BtreeEnter(p);
9804   if( !pBt->pSchema && nBytes ){
9805     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
9806     pBt->xFreeSchema = xFree;
9807   }
9808   sqlite3BtreeLeave(p);
9809   return pBt->pSchema;
9810 }
9811 
9812 /*
9813 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9814 ** btree as the argument handle holds an exclusive lock on the
9815 ** sqlite_master table. Otherwise SQLITE_OK.
9816 */
9817 int sqlite3BtreeSchemaLocked(Btree *p){
9818   int rc;
9819   assert( sqlite3_mutex_held(p->db->mutex) );
9820   sqlite3BtreeEnter(p);
9821   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9822   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
9823   sqlite3BtreeLeave(p);
9824   return rc;
9825 }
9826 
9827 
9828 #ifndef SQLITE_OMIT_SHARED_CACHE
9829 /*
9830 ** Obtain a lock on the table whose root page is iTab.  The
9831 ** lock is a write lock if isWritelock is true or a read lock
9832 ** if it is false.
9833 */
9834 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
9835   int rc = SQLITE_OK;
9836   assert( p->inTrans!=TRANS_NONE );
9837   if( p->sharable ){
9838     u8 lockType = READ_LOCK + isWriteLock;
9839     assert( READ_LOCK+1==WRITE_LOCK );
9840     assert( isWriteLock==0 || isWriteLock==1 );
9841 
9842     sqlite3BtreeEnter(p);
9843     rc = querySharedCacheTableLock(p, iTab, lockType);
9844     if( rc==SQLITE_OK ){
9845       rc = setSharedCacheTableLock(p, iTab, lockType);
9846     }
9847     sqlite3BtreeLeave(p);
9848   }
9849   return rc;
9850 }
9851 #endif
9852 
9853 #ifndef SQLITE_OMIT_INCRBLOB
9854 /*
9855 ** Argument pCsr must be a cursor opened for writing on an
9856 ** INTKEY table currently pointing at a valid table entry.
9857 ** This function modifies the data stored as part of that entry.
9858 **
9859 ** Only the data content may only be modified, it is not possible to
9860 ** change the length of the data stored. If this function is called with
9861 ** parameters that attempt to write past the end of the existing data,
9862 ** no modifications are made and SQLITE_CORRUPT is returned.
9863 */
9864 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
9865   int rc;
9866   assert( cursorOwnsBtShared(pCsr) );
9867   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
9868   assert( pCsr->curFlags & BTCF_Incrblob );
9869 
9870   rc = restoreCursorPosition(pCsr);
9871   if( rc!=SQLITE_OK ){
9872     return rc;
9873   }
9874   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9875   if( pCsr->eState!=CURSOR_VALID ){
9876     return SQLITE_ABORT;
9877   }
9878 
9879   /* Save the positions of all other cursors open on this table. This is
9880   ** required in case any of them are holding references to an xFetch
9881   ** version of the b-tree page modified by the accessPayload call below.
9882   **
9883   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
9884   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9885   ** saveAllCursors can only return SQLITE_OK.
9886   */
9887   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9888   assert( rc==SQLITE_OK );
9889 
9890   /* Check some assumptions:
9891   **   (a) the cursor is open for writing,
9892   **   (b) there is a read/write transaction open,
9893   **   (c) the connection holds a write-lock on the table (if required),
9894   **   (d) there are no conflicting read-locks, and
9895   **   (e) the cursor points at a valid row of an intKey table.
9896   */
9897   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
9898     return SQLITE_READONLY;
9899   }
9900   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9901               && pCsr->pBt->inTransaction==TRANS_WRITE );
9902   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9903   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
9904   assert( pCsr->pPage->intKey );
9905 
9906   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
9907 }
9908 
9909 /*
9910 ** Mark this cursor as an incremental blob cursor.
9911 */
9912 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
9913   pCur->curFlags |= BTCF_Incrblob;
9914   pCur->pBtree->hasIncrblobCur = 1;
9915 }
9916 #endif
9917 
9918 /*
9919 ** Set both the "read version" (single byte at byte offset 18) and
9920 ** "write version" (single byte at byte offset 19) fields in the database
9921 ** header to iVersion.
9922 */
9923 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9924   BtShared *pBt = pBtree->pBt;
9925   int rc;                         /* Return code */
9926 
9927   assert( iVersion==1 || iVersion==2 );
9928 
9929   /* If setting the version fields to 1, do not automatically open the
9930   ** WAL connection, even if the version fields are currently set to 2.
9931   */
9932   pBt->btsFlags &= ~BTS_NO_WAL;
9933   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
9934 
9935   rc = sqlite3BtreeBeginTrans(pBtree, 0);
9936   if( rc==SQLITE_OK ){
9937     u8 *aData = pBt->pPage1->aData;
9938     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
9939       rc = sqlite3BtreeBeginTrans(pBtree, 2);
9940       if( rc==SQLITE_OK ){
9941         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9942         if( rc==SQLITE_OK ){
9943           aData[18] = (u8)iVersion;
9944           aData[19] = (u8)iVersion;
9945         }
9946       }
9947     }
9948   }
9949 
9950   pBt->btsFlags &= ~BTS_NO_WAL;
9951   return rc;
9952 }
9953 
9954 /*
9955 ** Return true if the cursor has a hint specified.  This routine is
9956 ** only used from within assert() statements
9957 */
9958 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9959   return (pCsr->hints & mask)!=0;
9960 }
9961 
9962 /*
9963 ** Return true if the given Btree is read-only.
9964 */
9965 int sqlite3BtreeIsReadonly(Btree *p){
9966   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9967 }
9968 
9969 /*
9970 ** Return the size of the header added to each page by this module.
9971 */
9972 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
9973 
9974 #if !defined(SQLITE_OMIT_SHARED_CACHE)
9975 /*
9976 ** Return true if the Btree passed as the only argument is sharable.
9977 */
9978 int sqlite3BtreeSharable(Btree *p){
9979   return p->sharable;
9980 }
9981 
9982 /*
9983 ** Return the number of connections to the BtShared object accessed by
9984 ** the Btree handle passed as the only argument. For private caches
9985 ** this is always 1. For shared caches it may be 1 or greater.
9986 */
9987 int sqlite3BtreeConnectionCount(Btree *p){
9988   testcase( p->sharable );
9989   return p->pBt->nRef;
9990 }
9991 #endif
9992