1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifndef SQLITE_OMIT_SHARED_CACHE 116 117 #ifdef SQLITE_DEBUG 118 /* 119 **** This function is only used as part of an assert() statement. *** 120 ** 121 ** Check to see if pBtree holds the required locks to read or write to the 122 ** table with root page iRoot. Return 1 if it does and 0 if not. 123 ** 124 ** For example, when writing to a table with root-page iRoot via 125 ** Btree connection pBtree: 126 ** 127 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 128 ** 129 ** When writing to an index that resides in a sharable database, the 130 ** caller should have first obtained a lock specifying the root page of 131 ** the corresponding table. This makes things a bit more complicated, 132 ** as this module treats each table as a separate structure. To determine 133 ** the table corresponding to the index being written, this 134 ** function has to search through the database schema. 135 ** 136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 137 ** hold a write-lock on the schema table (root page 1). This is also 138 ** acceptable. 139 */ 140 static int hasSharedCacheTableLock( 141 Btree *pBtree, /* Handle that must hold lock */ 142 Pgno iRoot, /* Root page of b-tree */ 143 int isIndex, /* True if iRoot is the root of an index b-tree */ 144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 145 ){ 146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 147 Pgno iTab = 0; 148 BtLock *pLock; 149 150 /* If this database is not shareable, or if the client is reading 151 ** and has the read-uncommitted flag set, then no lock is required. 152 ** Return true immediately. 153 */ 154 if( (pBtree->sharable==0) 155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted)) 156 ){ 157 return 1; 158 } 159 160 /* If the client is reading or writing an index and the schema is 161 ** not loaded, then it is too difficult to actually check to see if 162 ** the correct locks are held. So do not bother - just return true. 163 ** This case does not come up very often anyhow. 164 */ 165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 166 return 1; 167 } 168 169 /* Figure out the root-page that the lock should be held on. For table 170 ** b-trees, this is just the root page of the b-tree being read or 171 ** written. For index b-trees, it is the root page of the associated 172 ** table. */ 173 if( isIndex ){ 174 HashElem *p; 175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 176 Index *pIdx = (Index *)sqliteHashData(p); 177 if( pIdx->tnum==(int)iRoot ){ 178 if( iTab ){ 179 /* Two or more indexes share the same root page. There must 180 ** be imposter tables. So just return true. The assert is not 181 ** useful in that case. */ 182 return 1; 183 } 184 iTab = pIdx->pTable->tnum; 185 } 186 } 187 }else{ 188 iTab = iRoot; 189 } 190 191 /* Search for the required lock. Either a write-lock on root-page iTab, a 192 ** write-lock on the schema table, or (if the client is reading) a 193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 195 if( pLock->pBtree==pBtree 196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 197 && pLock->eLock>=eLockType 198 ){ 199 return 1; 200 } 201 } 202 203 /* Failed to find the required lock. */ 204 return 0; 205 } 206 #endif /* SQLITE_DEBUG */ 207 208 #ifdef SQLITE_DEBUG 209 /* 210 **** This function may be used as part of assert() statements only. **** 211 ** 212 ** Return true if it would be illegal for pBtree to write into the 213 ** table or index rooted at iRoot because other shared connections are 214 ** simultaneously reading that same table or index. 215 ** 216 ** It is illegal for pBtree to write if some other Btree object that 217 ** shares the same BtShared object is currently reading or writing 218 ** the iRoot table. Except, if the other Btree object has the 219 ** read-uncommitted flag set, then it is OK for the other object to 220 ** have a read cursor. 221 ** 222 ** For example, before writing to any part of the table or index 223 ** rooted at page iRoot, one should call: 224 ** 225 ** assert( !hasReadConflicts(pBtree, iRoot) ); 226 */ 227 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 228 BtCursor *p; 229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 230 if( p->pgnoRoot==iRoot 231 && p->pBtree!=pBtree 232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted) 233 ){ 234 return 1; 235 } 236 } 237 return 0; 238 } 239 #endif /* #ifdef SQLITE_DEBUG */ 240 241 /* 242 ** Query to see if Btree handle p may obtain a lock of type eLock 243 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 244 ** SQLITE_OK if the lock may be obtained (by calling 245 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 246 */ 247 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 248 BtShared *pBt = p->pBt; 249 BtLock *pIter; 250 251 assert( sqlite3BtreeHoldsMutex(p) ); 252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 253 assert( p->db!=0 ); 254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 ); 255 256 /* If requesting a write-lock, then the Btree must have an open write 257 ** transaction on this file. And, obviously, for this to be so there 258 ** must be an open write transaction on the file itself. 259 */ 260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 262 263 /* This routine is a no-op if the shared-cache is not enabled */ 264 if( !p->sharable ){ 265 return SQLITE_OK; 266 } 267 268 /* If some other connection is holding an exclusive lock, the 269 ** requested lock may not be obtained. 270 */ 271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 273 return SQLITE_LOCKED_SHAREDCACHE; 274 } 275 276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 277 /* The condition (pIter->eLock!=eLock) in the following if(...) 278 ** statement is a simplification of: 279 ** 280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 281 ** 282 ** since we know that if eLock==WRITE_LOCK, then no other connection 283 ** may hold a WRITE_LOCK on any table in this file (since there can 284 ** only be a single writer). 285 */ 286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 290 if( eLock==WRITE_LOCK ){ 291 assert( p==pBt->pWriter ); 292 pBt->btsFlags |= BTS_PENDING; 293 } 294 return SQLITE_LOCKED_SHAREDCACHE; 295 } 296 } 297 return SQLITE_OK; 298 } 299 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 300 301 #ifndef SQLITE_OMIT_SHARED_CACHE 302 /* 303 ** Add a lock on the table with root-page iTable to the shared-btree used 304 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 305 ** WRITE_LOCK. 306 ** 307 ** This function assumes the following: 308 ** 309 ** (a) The specified Btree object p is connected to a sharable 310 ** database (one with the BtShared.sharable flag set), and 311 ** 312 ** (b) No other Btree objects hold a lock that conflicts 313 ** with the requested lock (i.e. querySharedCacheTableLock() has 314 ** already been called and returned SQLITE_OK). 315 ** 316 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 317 ** is returned if a malloc attempt fails. 318 */ 319 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 320 BtShared *pBt = p->pBt; 321 BtLock *pLock = 0; 322 BtLock *pIter; 323 324 assert( sqlite3BtreeHoldsMutex(p) ); 325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 326 assert( p->db!=0 ); 327 328 /* A connection with the read-uncommitted flag set will never try to 329 ** obtain a read-lock using this function. The only read-lock obtained 330 ** by a connection in read-uncommitted mode is on the sqlite_master 331 ** table, and that lock is obtained in BtreeBeginTrans(). */ 332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK ); 333 334 /* This function should only be called on a sharable b-tree after it 335 ** has been determined that no other b-tree holds a conflicting lock. */ 336 assert( p->sharable ); 337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 338 339 /* First search the list for an existing lock on this table. */ 340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 341 if( pIter->iTable==iTable && pIter->pBtree==p ){ 342 pLock = pIter; 343 break; 344 } 345 } 346 347 /* If the above search did not find a BtLock struct associating Btree p 348 ** with table iTable, allocate one and link it into the list. 349 */ 350 if( !pLock ){ 351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 352 if( !pLock ){ 353 return SQLITE_NOMEM; 354 } 355 pLock->iTable = iTable; 356 pLock->pBtree = p; 357 pLock->pNext = pBt->pLock; 358 pBt->pLock = pLock; 359 } 360 361 /* Set the BtLock.eLock variable to the maximum of the current lock 362 ** and the requested lock. This means if a write-lock was already held 363 ** and a read-lock requested, we don't incorrectly downgrade the lock. 364 */ 365 assert( WRITE_LOCK>READ_LOCK ); 366 if( eLock>pLock->eLock ){ 367 pLock->eLock = eLock; 368 } 369 370 return SQLITE_OK; 371 } 372 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 373 374 #ifndef SQLITE_OMIT_SHARED_CACHE 375 /* 376 ** Release all the table locks (locks obtained via calls to 377 ** the setSharedCacheTableLock() procedure) held by Btree object p. 378 ** 379 ** This function assumes that Btree p has an open read or write 380 ** transaction. If it does not, then the BTS_PENDING flag 381 ** may be incorrectly cleared. 382 */ 383 static void clearAllSharedCacheTableLocks(Btree *p){ 384 BtShared *pBt = p->pBt; 385 BtLock **ppIter = &pBt->pLock; 386 387 assert( sqlite3BtreeHoldsMutex(p) ); 388 assert( p->sharable || 0==*ppIter ); 389 assert( p->inTrans>0 ); 390 391 while( *ppIter ){ 392 BtLock *pLock = *ppIter; 393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 394 assert( pLock->pBtree->inTrans>=pLock->eLock ); 395 if( pLock->pBtree==p ){ 396 *ppIter = pLock->pNext; 397 assert( pLock->iTable!=1 || pLock==&p->lock ); 398 if( pLock->iTable!=1 ){ 399 sqlite3_free(pLock); 400 } 401 }else{ 402 ppIter = &pLock->pNext; 403 } 404 } 405 406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 407 if( pBt->pWriter==p ){ 408 pBt->pWriter = 0; 409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 410 }else if( pBt->nTransaction==2 ){ 411 /* This function is called when Btree p is concluding its 412 ** transaction. If there currently exists a writer, and p is not 413 ** that writer, then the number of locks held by connections other 414 ** than the writer must be about to drop to zero. In this case 415 ** set the BTS_PENDING flag to 0. 416 ** 417 ** If there is not currently a writer, then BTS_PENDING must 418 ** be zero already. So this next line is harmless in that case. 419 */ 420 pBt->btsFlags &= ~BTS_PENDING; 421 } 422 } 423 424 /* 425 ** This function changes all write-locks held by Btree p into read-locks. 426 */ 427 static void downgradeAllSharedCacheTableLocks(Btree *p){ 428 BtShared *pBt = p->pBt; 429 if( pBt->pWriter==p ){ 430 BtLock *pLock; 431 pBt->pWriter = 0; 432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 435 pLock->eLock = READ_LOCK; 436 } 437 } 438 } 439 440 #endif /* SQLITE_OMIT_SHARED_CACHE */ 441 442 static void releasePage(MemPage *pPage); /* Forward reference */ 443 444 /* 445 ***** This routine is used inside of assert() only **** 446 ** 447 ** Verify that the cursor holds the mutex on its BtShared 448 */ 449 #ifdef SQLITE_DEBUG 450 static int cursorHoldsMutex(BtCursor *p){ 451 return sqlite3_mutex_held(p->pBt->mutex); 452 } 453 #endif 454 455 /* 456 ** Invalidate the overflow cache of the cursor passed as the first argument. 457 ** on the shared btree structure pBt. 458 */ 459 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 460 461 /* 462 ** Invalidate the overflow page-list cache for all cursors opened 463 ** on the shared btree structure pBt. 464 */ 465 static void invalidateAllOverflowCache(BtShared *pBt){ 466 BtCursor *p; 467 assert( sqlite3_mutex_held(pBt->mutex) ); 468 for(p=pBt->pCursor; p; p=p->pNext){ 469 invalidateOverflowCache(p); 470 } 471 } 472 473 #ifndef SQLITE_OMIT_INCRBLOB 474 /* 475 ** This function is called before modifying the contents of a table 476 ** to invalidate any incrblob cursors that are open on the 477 ** row or one of the rows being modified. 478 ** 479 ** If argument isClearTable is true, then the entire contents of the 480 ** table is about to be deleted. In this case invalidate all incrblob 481 ** cursors open on any row within the table with root-page pgnoRoot. 482 ** 483 ** Otherwise, if argument isClearTable is false, then the row with 484 ** rowid iRow is being replaced or deleted. In this case invalidate 485 ** only those incrblob cursors open on that specific row. 486 */ 487 static void invalidateIncrblobCursors( 488 Btree *pBtree, /* The database file to check */ 489 i64 iRow, /* The rowid that might be changing */ 490 int isClearTable /* True if all rows are being deleted */ 491 ){ 492 BtCursor *p; 493 BtShared *pBt = pBtree->pBt; 494 assert( sqlite3BtreeHoldsMutex(pBtree) ); 495 for(p=pBt->pCursor; p; p=p->pNext){ 496 if( (p->curFlags & BTCF_Incrblob)!=0 497 && (isClearTable || p->info.nKey==iRow) 498 ){ 499 p->eState = CURSOR_INVALID; 500 } 501 } 502 } 503 504 #else 505 /* Stub function when INCRBLOB is omitted */ 506 #define invalidateIncrblobCursors(x,y,z) 507 #endif /* SQLITE_OMIT_INCRBLOB */ 508 509 /* 510 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 511 ** when a page that previously contained data becomes a free-list leaf 512 ** page. 513 ** 514 ** The BtShared.pHasContent bitvec exists to work around an obscure 515 ** bug caused by the interaction of two useful IO optimizations surrounding 516 ** free-list leaf pages: 517 ** 518 ** 1) When all data is deleted from a page and the page becomes 519 ** a free-list leaf page, the page is not written to the database 520 ** (as free-list leaf pages contain no meaningful data). Sometimes 521 ** such a page is not even journalled (as it will not be modified, 522 ** why bother journalling it?). 523 ** 524 ** 2) When a free-list leaf page is reused, its content is not read 525 ** from the database or written to the journal file (why should it 526 ** be, if it is not at all meaningful?). 527 ** 528 ** By themselves, these optimizations work fine and provide a handy 529 ** performance boost to bulk delete or insert operations. However, if 530 ** a page is moved to the free-list and then reused within the same 531 ** transaction, a problem comes up. If the page is not journalled when 532 ** it is moved to the free-list and it is also not journalled when it 533 ** is extracted from the free-list and reused, then the original data 534 ** may be lost. In the event of a rollback, it may not be possible 535 ** to restore the database to its original configuration. 536 ** 537 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 538 ** moved to become a free-list leaf page, the corresponding bit is 539 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 540 ** optimization 2 above is omitted if the corresponding bit is already 541 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 542 ** at the end of every transaction. 543 */ 544 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 545 int rc = SQLITE_OK; 546 if( !pBt->pHasContent ){ 547 assert( pgno<=pBt->nPage ); 548 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 549 if( !pBt->pHasContent ){ 550 rc = SQLITE_NOMEM; 551 } 552 } 553 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 554 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 555 } 556 return rc; 557 } 558 559 /* 560 ** Query the BtShared.pHasContent vector. 561 ** 562 ** This function is called when a free-list leaf page is removed from the 563 ** free-list for reuse. It returns false if it is safe to retrieve the 564 ** page from the pager layer with the 'no-content' flag set. True otherwise. 565 */ 566 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 567 Bitvec *p = pBt->pHasContent; 568 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); 569 } 570 571 /* 572 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 573 ** invoked at the conclusion of each write-transaction. 574 */ 575 static void btreeClearHasContent(BtShared *pBt){ 576 sqlite3BitvecDestroy(pBt->pHasContent); 577 pBt->pHasContent = 0; 578 } 579 580 /* 581 ** Release all of the apPage[] pages for a cursor. 582 */ 583 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 584 int i; 585 for(i=0; i<=pCur->iPage; i++){ 586 releasePage(pCur->apPage[i]); 587 pCur->apPage[i] = 0; 588 } 589 pCur->iPage = -1; 590 } 591 592 593 /* 594 ** Save the current cursor position in the variables BtCursor.nKey 595 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 596 ** 597 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 598 ** prior to calling this routine. 599 */ 600 static int saveCursorPosition(BtCursor *pCur){ 601 int rc; 602 603 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 604 assert( 0==pCur->pKey ); 605 assert( cursorHoldsMutex(pCur) ); 606 607 if( pCur->eState==CURSOR_SKIPNEXT ){ 608 pCur->eState = CURSOR_VALID; 609 }else{ 610 pCur->skipNext = 0; 611 } 612 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); 613 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */ 614 615 /* If this is an intKey table, then the above call to BtreeKeySize() 616 ** stores the integer key in pCur->nKey. In this case this value is 617 ** all that is required. Otherwise, if pCur is not open on an intKey 618 ** table, then malloc space for and store the pCur->nKey bytes of key 619 ** data. 620 */ 621 if( 0==pCur->apPage[0]->intKey ){ 622 void *pKey = sqlite3Malloc( pCur->nKey ); 623 if( pKey ){ 624 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey); 625 if( rc==SQLITE_OK ){ 626 pCur->pKey = pKey; 627 }else{ 628 sqlite3_free(pKey); 629 } 630 }else{ 631 rc = SQLITE_NOMEM; 632 } 633 } 634 assert( !pCur->apPage[0]->intKey || !pCur->pKey ); 635 636 if( rc==SQLITE_OK ){ 637 btreeReleaseAllCursorPages(pCur); 638 pCur->eState = CURSOR_REQUIRESEEK; 639 } 640 641 invalidateOverflowCache(pCur); 642 return rc; 643 } 644 645 /* Forward reference */ 646 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 647 648 /* 649 ** Save the positions of all cursors (except pExcept) that are open on 650 ** the table with root-page iRoot. "Saving the cursor position" means that 651 ** the location in the btree is remembered in such a way that it can be 652 ** moved back to the same spot after the btree has been modified. This 653 ** routine is called just before cursor pExcept is used to modify the 654 ** table, for example in BtreeDelete() or BtreeInsert(). 655 ** 656 ** Implementation note: This routine merely checks to see if any cursors 657 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 658 ** event that cursors are in need to being saved. 659 */ 660 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 661 BtCursor *p; 662 assert( sqlite3_mutex_held(pBt->mutex) ); 663 assert( pExcept==0 || pExcept->pBt==pBt ); 664 for(p=pBt->pCursor; p; p=p->pNext){ 665 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 666 } 667 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK; 668 } 669 670 /* This helper routine to saveAllCursors does the actual work of saving 671 ** the cursors if and when a cursor is found that actually requires saving. 672 ** The common case is that no cursors need to be saved, so this routine is 673 ** broken out from its caller to avoid unnecessary stack pointer movement. 674 */ 675 static int SQLITE_NOINLINE saveCursorsOnList( 676 BtCursor *p, /* The first cursor that needs saving */ 677 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 678 BtCursor *pExcept /* Do not save this cursor */ 679 ){ 680 do{ 681 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 682 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 683 int rc = saveCursorPosition(p); 684 if( SQLITE_OK!=rc ){ 685 return rc; 686 } 687 }else{ 688 testcase( p->iPage>0 ); 689 btreeReleaseAllCursorPages(p); 690 } 691 } 692 p = p->pNext; 693 }while( p ); 694 return SQLITE_OK; 695 } 696 697 /* 698 ** Clear the current cursor position. 699 */ 700 void sqlite3BtreeClearCursor(BtCursor *pCur){ 701 assert( cursorHoldsMutex(pCur) ); 702 sqlite3_free(pCur->pKey); 703 pCur->pKey = 0; 704 pCur->eState = CURSOR_INVALID; 705 } 706 707 /* 708 ** In this version of BtreeMoveto, pKey is a packed index record 709 ** such as is generated by the OP_MakeRecord opcode. Unpack the 710 ** record and then call BtreeMovetoUnpacked() to do the work. 711 */ 712 static int btreeMoveto( 713 BtCursor *pCur, /* Cursor open on the btree to be searched */ 714 const void *pKey, /* Packed key if the btree is an index */ 715 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 716 int bias, /* Bias search to the high end */ 717 int *pRes /* Write search results here */ 718 ){ 719 int rc; /* Status code */ 720 UnpackedRecord *pIdxKey; /* Unpacked index key */ 721 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */ 722 char *pFree = 0; 723 724 if( pKey ){ 725 assert( nKey==(i64)(int)nKey ); 726 pIdxKey = sqlite3VdbeAllocUnpackedRecord( 727 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree 728 ); 729 if( pIdxKey==0 ) return SQLITE_NOMEM; 730 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); 731 if( pIdxKey->nField==0 ){ 732 sqlite3DbFree(pCur->pKeyInfo->db, pFree); 733 return SQLITE_CORRUPT_BKPT; 734 } 735 }else{ 736 pIdxKey = 0; 737 } 738 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); 739 if( pFree ){ 740 sqlite3DbFree(pCur->pKeyInfo->db, pFree); 741 } 742 return rc; 743 } 744 745 /* 746 ** Restore the cursor to the position it was in (or as close to as possible) 747 ** when saveCursorPosition() was called. Note that this call deletes the 748 ** saved position info stored by saveCursorPosition(), so there can be 749 ** at most one effective restoreCursorPosition() call after each 750 ** saveCursorPosition(). 751 */ 752 static int btreeRestoreCursorPosition(BtCursor *pCur){ 753 int rc; 754 int skipNext; 755 assert( cursorHoldsMutex(pCur) ); 756 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 757 if( pCur->eState==CURSOR_FAULT ){ 758 return pCur->skipNext; 759 } 760 pCur->eState = CURSOR_INVALID; 761 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 762 if( rc==SQLITE_OK ){ 763 sqlite3_free(pCur->pKey); 764 pCur->pKey = 0; 765 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 766 pCur->skipNext |= skipNext; 767 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 768 pCur->eState = CURSOR_SKIPNEXT; 769 } 770 } 771 return rc; 772 } 773 774 #define restoreCursorPosition(p) \ 775 (p->eState>=CURSOR_REQUIRESEEK ? \ 776 btreeRestoreCursorPosition(p) : \ 777 SQLITE_OK) 778 779 /* 780 ** Determine whether or not a cursor has moved from the position where 781 ** it was last placed, or has been invalidated for any other reason. 782 ** Cursors can move when the row they are pointing at is deleted out 783 ** from under them, for example. Cursor might also move if a btree 784 ** is rebalanced. 785 ** 786 ** Calling this routine with a NULL cursor pointer returns false. 787 ** 788 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 789 ** back to where it ought to be if this routine returns true. 790 */ 791 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 792 return pCur->eState!=CURSOR_VALID; 793 } 794 795 /* 796 ** This routine restores a cursor back to its original position after it 797 ** has been moved by some outside activity (such as a btree rebalance or 798 ** a row having been deleted out from under the cursor). 799 ** 800 ** On success, the *pDifferentRow parameter is false if the cursor is left 801 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 802 ** was pointing to has been deleted, forcing the cursor to point to some 803 ** nearby row. 804 ** 805 ** This routine should only be called for a cursor that just returned 806 ** TRUE from sqlite3BtreeCursorHasMoved(). 807 */ 808 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 809 int rc; 810 811 assert( pCur!=0 ); 812 assert( pCur->eState!=CURSOR_VALID ); 813 rc = restoreCursorPosition(pCur); 814 if( rc ){ 815 *pDifferentRow = 1; 816 return rc; 817 } 818 if( pCur->eState!=CURSOR_VALID ){ 819 *pDifferentRow = 1; 820 }else{ 821 assert( pCur->skipNext==0 ); 822 *pDifferentRow = 0; 823 } 824 return SQLITE_OK; 825 } 826 827 #ifndef SQLITE_OMIT_AUTOVACUUM 828 /* 829 ** Given a page number of a regular database page, return the page 830 ** number for the pointer-map page that contains the entry for the 831 ** input page number. 832 ** 833 ** Return 0 (not a valid page) for pgno==1 since there is 834 ** no pointer map associated with page 1. The integrity_check logic 835 ** requires that ptrmapPageno(*,1)!=1. 836 */ 837 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 838 int nPagesPerMapPage; 839 Pgno iPtrMap, ret; 840 assert( sqlite3_mutex_held(pBt->mutex) ); 841 if( pgno<2 ) return 0; 842 nPagesPerMapPage = (pBt->usableSize/5)+1; 843 iPtrMap = (pgno-2)/nPagesPerMapPage; 844 ret = (iPtrMap*nPagesPerMapPage) + 2; 845 if( ret==PENDING_BYTE_PAGE(pBt) ){ 846 ret++; 847 } 848 return ret; 849 } 850 851 /* 852 ** Write an entry into the pointer map. 853 ** 854 ** This routine updates the pointer map entry for page number 'key' 855 ** so that it maps to type 'eType' and parent page number 'pgno'. 856 ** 857 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 858 ** a no-op. If an error occurs, the appropriate error code is written 859 ** into *pRC. 860 */ 861 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 862 DbPage *pDbPage; /* The pointer map page */ 863 u8 *pPtrmap; /* The pointer map data */ 864 Pgno iPtrmap; /* The pointer map page number */ 865 int offset; /* Offset in pointer map page */ 866 int rc; /* Return code from subfunctions */ 867 868 if( *pRC ) return; 869 870 assert( sqlite3_mutex_held(pBt->mutex) ); 871 /* The master-journal page number must never be used as a pointer map page */ 872 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 873 874 assert( pBt->autoVacuum ); 875 if( key==0 ){ 876 *pRC = SQLITE_CORRUPT_BKPT; 877 return; 878 } 879 iPtrmap = PTRMAP_PAGENO(pBt, key); 880 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); 881 if( rc!=SQLITE_OK ){ 882 *pRC = rc; 883 return; 884 } 885 offset = PTRMAP_PTROFFSET(iPtrmap, key); 886 if( offset<0 ){ 887 *pRC = SQLITE_CORRUPT_BKPT; 888 goto ptrmap_exit; 889 } 890 assert( offset <= (int)pBt->usableSize-5 ); 891 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 892 893 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 894 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 895 *pRC= rc = sqlite3PagerWrite(pDbPage); 896 if( rc==SQLITE_OK ){ 897 pPtrmap[offset] = eType; 898 put4byte(&pPtrmap[offset+1], parent); 899 } 900 } 901 902 ptrmap_exit: 903 sqlite3PagerUnref(pDbPage); 904 } 905 906 /* 907 ** Read an entry from the pointer map. 908 ** 909 ** This routine retrieves the pointer map entry for page 'key', writing 910 ** the type and parent page number to *pEType and *pPgno respectively. 911 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 912 */ 913 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 914 DbPage *pDbPage; /* The pointer map page */ 915 int iPtrmap; /* Pointer map page index */ 916 u8 *pPtrmap; /* Pointer map page data */ 917 int offset; /* Offset of entry in pointer map */ 918 int rc; 919 920 assert( sqlite3_mutex_held(pBt->mutex) ); 921 922 iPtrmap = PTRMAP_PAGENO(pBt, key); 923 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); 924 if( rc!=0 ){ 925 return rc; 926 } 927 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 928 929 offset = PTRMAP_PTROFFSET(iPtrmap, key); 930 if( offset<0 ){ 931 sqlite3PagerUnref(pDbPage); 932 return SQLITE_CORRUPT_BKPT; 933 } 934 assert( offset <= (int)pBt->usableSize-5 ); 935 assert( pEType!=0 ); 936 *pEType = pPtrmap[offset]; 937 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 938 939 sqlite3PagerUnref(pDbPage); 940 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; 941 return SQLITE_OK; 942 } 943 944 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 945 #define ptrmapPut(w,x,y,z,rc) 946 #define ptrmapGet(w,x,y,z) SQLITE_OK 947 #define ptrmapPutOvflPtr(x, y, rc) 948 #endif 949 950 /* 951 ** Given a btree page and a cell index (0 means the first cell on 952 ** the page, 1 means the second cell, and so forth) return a pointer 953 ** to the cell content. 954 ** 955 ** This routine works only for pages that do not contain overflow cells. 956 */ 957 #define findCell(P,I) \ 958 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)]))) 959 #define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I))))) 960 961 962 /* 963 ** This a more complex version of findCell() that works for 964 ** pages that do contain overflow cells. 965 */ 966 static u8 *findOverflowCell(MemPage *pPage, int iCell){ 967 int i; 968 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 969 for(i=pPage->nOverflow-1; i>=0; i--){ 970 int k; 971 k = pPage->aiOvfl[i]; 972 if( k<=iCell ){ 973 if( k==iCell ){ 974 return pPage->apOvfl[i]; 975 } 976 iCell--; 977 } 978 } 979 return findCell(pPage, iCell); 980 } 981 982 /* 983 ** Parse a cell content block and fill in the CellInfo structure. There 984 ** are two versions of this function. btreeParseCell() takes a 985 ** cell index as the second argument and btreeParseCellPtr() 986 ** takes a pointer to the body of the cell as its second argument. 987 */ 988 static void btreeParseCellPtr( 989 MemPage *pPage, /* Page containing the cell */ 990 u8 *pCell, /* Pointer to the cell text. */ 991 CellInfo *pInfo /* Fill in this structure */ 992 ){ 993 u8 *pIter; /* For scanning through pCell */ 994 u32 nPayload; /* Number of bytes of cell payload */ 995 996 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 997 assert( pPage->leaf==0 || pPage->leaf==1 ); 998 if( pPage->intKeyLeaf ){ 999 assert( pPage->childPtrSize==0 ); 1000 pIter = pCell + getVarint32(pCell, nPayload); 1001 pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1002 }else if( pPage->noPayload ){ 1003 assert( pPage->childPtrSize==4 ); 1004 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1005 pInfo->nPayload = 0; 1006 pInfo->nLocal = 0; 1007 pInfo->iOverflow = 0; 1008 pInfo->pPayload = 0; 1009 return; 1010 }else{ 1011 pIter = pCell + pPage->childPtrSize; 1012 pIter += getVarint32(pIter, nPayload); 1013 pInfo->nKey = nPayload; 1014 } 1015 pInfo->nPayload = nPayload; 1016 pInfo->pPayload = pIter; 1017 testcase( nPayload==pPage->maxLocal ); 1018 testcase( nPayload==pPage->maxLocal+1 ); 1019 if( nPayload<=pPage->maxLocal ){ 1020 /* This is the (easy) common case where the entire payload fits 1021 ** on the local page. No overflow is required. 1022 */ 1023 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1024 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1025 pInfo->nLocal = (u16)nPayload; 1026 pInfo->iOverflow = 0; 1027 }else{ 1028 /* If the payload will not fit completely on the local page, we have 1029 ** to decide how much to store locally and how much to spill onto 1030 ** overflow pages. The strategy is to minimize the amount of unused 1031 ** space on overflow pages while keeping the amount of local storage 1032 ** in between minLocal and maxLocal. 1033 ** 1034 ** Warning: changing the way overflow payload is distributed in any 1035 ** way will result in an incompatible file format. 1036 */ 1037 int minLocal; /* Minimum amount of payload held locally */ 1038 int maxLocal; /* Maximum amount of payload held locally */ 1039 int surplus; /* Overflow payload available for local storage */ 1040 1041 minLocal = pPage->minLocal; 1042 maxLocal = pPage->maxLocal; 1043 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); 1044 testcase( surplus==maxLocal ); 1045 testcase( surplus==maxLocal+1 ); 1046 if( surplus <= maxLocal ){ 1047 pInfo->nLocal = (u16)surplus; 1048 }else{ 1049 pInfo->nLocal = (u16)minLocal; 1050 } 1051 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell); 1052 pInfo->nSize = pInfo->iOverflow + 4; 1053 } 1054 } 1055 static void btreeParseCell( 1056 MemPage *pPage, /* Page containing the cell */ 1057 int iCell, /* The cell index. First cell is 0 */ 1058 CellInfo *pInfo /* Fill in this structure */ 1059 ){ 1060 btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo); 1061 } 1062 1063 /* 1064 ** Compute the total number of bytes that a Cell needs in the cell 1065 ** data area of the btree-page. The return number includes the cell 1066 ** data header and the local payload, but not any overflow page or 1067 ** the space used by the cell pointer. 1068 */ 1069 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1070 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1071 u8 *pEnd; /* End mark for a varint */ 1072 u32 nSize; /* Size value to return */ 1073 1074 #ifdef SQLITE_DEBUG 1075 /* The value returned by this function should always be the same as 1076 ** the (CellInfo.nSize) value found by doing a full parse of the 1077 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1078 ** this function verifies that this invariant is not violated. */ 1079 CellInfo debuginfo; 1080 btreeParseCellPtr(pPage, pCell, &debuginfo); 1081 #endif 1082 1083 if( pPage->noPayload ){ 1084 pEnd = &pIter[9]; 1085 while( (*pIter++)&0x80 && pIter<pEnd ); 1086 assert( pPage->childPtrSize==4 ); 1087 return (u16)(pIter - pCell); 1088 } 1089 nSize = *pIter; 1090 if( nSize>=0x80 ){ 1091 pEnd = &pIter[9]; 1092 nSize &= 0x7f; 1093 do{ 1094 nSize = (nSize<<7) | (*++pIter & 0x7f); 1095 }while( *(pIter)>=0x80 && pIter<pEnd ); 1096 } 1097 pIter++; 1098 if( pPage->intKey ){ 1099 /* pIter now points at the 64-bit integer key value, a variable length 1100 ** integer. The following block moves pIter to point at the first byte 1101 ** past the end of the key value. */ 1102 pEnd = &pIter[9]; 1103 while( (*pIter++)&0x80 && pIter<pEnd ); 1104 } 1105 testcase( nSize==pPage->maxLocal ); 1106 testcase( nSize==pPage->maxLocal+1 ); 1107 if( nSize<=pPage->maxLocal ){ 1108 nSize += (u32)(pIter - pCell); 1109 if( nSize<4 ) nSize = 4; 1110 }else{ 1111 int minLocal = pPage->minLocal; 1112 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1113 testcase( nSize==pPage->maxLocal ); 1114 testcase( nSize==pPage->maxLocal+1 ); 1115 if( nSize>pPage->maxLocal ){ 1116 nSize = minLocal; 1117 } 1118 nSize += 4 + (u16)(pIter - pCell); 1119 } 1120 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1121 return (u16)nSize; 1122 } 1123 1124 #ifdef SQLITE_DEBUG 1125 /* This variation on cellSizePtr() is used inside of assert() statements 1126 ** only. */ 1127 static u16 cellSize(MemPage *pPage, int iCell){ 1128 return cellSizePtr(pPage, findCell(pPage, iCell)); 1129 } 1130 #endif 1131 1132 #ifndef SQLITE_OMIT_AUTOVACUUM 1133 /* 1134 ** If the cell pCell, part of page pPage contains a pointer 1135 ** to an overflow page, insert an entry into the pointer-map 1136 ** for the overflow page. 1137 */ 1138 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ 1139 CellInfo info; 1140 if( *pRC ) return; 1141 assert( pCell!=0 ); 1142 btreeParseCellPtr(pPage, pCell, &info); 1143 if( info.iOverflow ){ 1144 Pgno ovfl = get4byte(&pCell[info.iOverflow]); 1145 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1146 } 1147 } 1148 #endif 1149 1150 1151 /* 1152 ** Defragment the page given. All Cells are moved to the 1153 ** end of the page and all free space is collected into one 1154 ** big FreeBlk that occurs in between the header and cell 1155 ** pointer array and the cell content area. 1156 ** 1157 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1158 ** b-tree page so that there are no freeblocks or fragment bytes, all 1159 ** unused bytes are contained in the unallocated space region, and all 1160 ** cells are packed tightly at the end of the page. 1161 */ 1162 static int defragmentPage(MemPage *pPage){ 1163 int i; /* Loop counter */ 1164 int pc; /* Address of the i-th cell */ 1165 int hdr; /* Offset to the page header */ 1166 int size; /* Size of a cell */ 1167 int usableSize; /* Number of usable bytes on a page */ 1168 int cellOffset; /* Offset to the cell pointer array */ 1169 int cbrk; /* Offset to the cell content area */ 1170 int nCell; /* Number of cells on the page */ 1171 unsigned char *data; /* The page data */ 1172 unsigned char *temp; /* Temp area for cell content */ 1173 unsigned char *src; /* Source of content */ 1174 int iCellFirst; /* First allowable cell index */ 1175 int iCellLast; /* Last possible cell index */ 1176 1177 1178 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1179 assert( pPage->pBt!=0 ); 1180 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1181 assert( pPage->nOverflow==0 ); 1182 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1183 temp = 0; 1184 src = data = pPage->aData; 1185 hdr = pPage->hdrOffset; 1186 cellOffset = pPage->cellOffset; 1187 nCell = pPage->nCell; 1188 assert( nCell==get2byte(&data[hdr+3]) ); 1189 usableSize = pPage->pBt->usableSize; 1190 cbrk = usableSize; 1191 iCellFirst = cellOffset + 2*nCell; 1192 iCellLast = usableSize - 4; 1193 for(i=0; i<nCell; i++){ 1194 u8 *pAddr; /* The i-th cell pointer */ 1195 pAddr = &data[cellOffset + i*2]; 1196 pc = get2byte(pAddr); 1197 testcase( pc==iCellFirst ); 1198 testcase( pc==iCellLast ); 1199 #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) 1200 /* These conditions have already been verified in btreeInitPage() 1201 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined 1202 */ 1203 if( pc<iCellFirst || pc>iCellLast ){ 1204 return SQLITE_CORRUPT_BKPT; 1205 } 1206 #endif 1207 assert( pc>=iCellFirst && pc<=iCellLast ); 1208 size = cellSizePtr(pPage, &src[pc]); 1209 cbrk -= size; 1210 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) 1211 if( cbrk<iCellFirst ){ 1212 return SQLITE_CORRUPT_BKPT; 1213 } 1214 #else 1215 if( cbrk<iCellFirst || pc+size>usableSize ){ 1216 return SQLITE_CORRUPT_BKPT; 1217 } 1218 #endif 1219 assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); 1220 testcase( cbrk+size==usableSize ); 1221 testcase( pc+size==usableSize ); 1222 put2byte(pAddr, cbrk); 1223 if( temp==0 ){ 1224 int x; 1225 if( cbrk==pc ) continue; 1226 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1227 x = get2byte(&data[hdr+5]); 1228 memcpy(&temp[x], &data[x], (cbrk+size) - x); 1229 src = temp; 1230 } 1231 memcpy(&data[cbrk], &src[pc], size); 1232 } 1233 assert( cbrk>=iCellFirst ); 1234 put2byte(&data[hdr+5], cbrk); 1235 data[hdr+1] = 0; 1236 data[hdr+2] = 0; 1237 data[hdr+7] = 0; 1238 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1239 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1240 if( cbrk-iCellFirst!=pPage->nFree ){ 1241 return SQLITE_CORRUPT_BKPT; 1242 } 1243 return SQLITE_OK; 1244 } 1245 1246 /* 1247 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1248 ** size. If one can be found, return a pointer to the space and remove it 1249 ** from the free-list. 1250 ** 1251 ** If no suitable space can be found on the free-list, return NULL. 1252 ** 1253 ** This function may detect corruption within pPg. If corruption is 1254 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1255 ** 1256 ** If a slot of at least nByte bytes is found but cannot be used because 1257 ** there are already at least 60 fragmented bytes on the page, return NULL. 1258 ** In this case, if pbDefrag parameter is not NULL, set *pbDefrag to true. 1259 */ 1260 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc, int *pbDefrag){ 1261 const int hdr = pPg->hdrOffset; 1262 u8 * const aData = pPg->aData; 1263 int iAddr; 1264 int pc; 1265 int usableSize = pPg->pBt->usableSize; 1266 1267 for(iAddr=hdr+1; (pc = get2byte(&aData[iAddr]))>0; iAddr=pc){ 1268 int size; /* Size of the free slot */ 1269 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 1270 ** increasing offset. */ 1271 if( pc>usableSize-4 || pc<iAddr+4 ){ 1272 *pRc = SQLITE_CORRUPT_BKPT; 1273 return 0; 1274 } 1275 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1276 ** freeblock form a big-endian integer which is the size of the freeblock 1277 ** in bytes, including the 4-byte header. */ 1278 size = get2byte(&aData[pc+2]); 1279 if( size>=nByte ){ 1280 int x = size - nByte; 1281 testcase( x==4 ); 1282 testcase( x==3 ); 1283 if( x<4 ){ 1284 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1285 ** number of bytes in fragments may not exceed 60. */ 1286 if( aData[hdr+7]>=60 ){ 1287 if( pbDefrag ) *pbDefrag = 1; 1288 return 0; 1289 } 1290 /* Remove the slot from the free-list. Update the number of 1291 ** fragmented bytes within the page. */ 1292 memcpy(&aData[iAddr], &aData[pc], 2); 1293 aData[hdr+7] += (u8)x; 1294 }else if( size+pc > usableSize ){ 1295 *pRc = SQLITE_CORRUPT_BKPT; 1296 return 0; 1297 }else{ 1298 /* The slot remains on the free-list. Reduce its size to account 1299 ** for the portion used by the new allocation. */ 1300 put2byte(&aData[pc+2], x); 1301 } 1302 return &aData[pc + x]; 1303 } 1304 } 1305 1306 return 0; 1307 } 1308 1309 /* 1310 ** Allocate nByte bytes of space from within the B-Tree page passed 1311 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1312 ** of the first byte of allocated space. Return either SQLITE_OK or 1313 ** an error code (usually SQLITE_CORRUPT). 1314 ** 1315 ** The caller guarantees that there is sufficient space to make the 1316 ** allocation. This routine might need to defragment in order to bring 1317 ** all the space together, however. This routine will avoid using 1318 ** the first two bytes past the cell pointer area since presumably this 1319 ** allocation is being made in order to insert a new cell, so we will 1320 ** also end up needing a new cell pointer. 1321 */ 1322 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1323 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1324 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1325 int top; /* First byte of cell content area */ 1326 int rc = SQLITE_OK; /* Integer return code */ 1327 int gap; /* First byte of gap between cell pointers and cell content */ 1328 1329 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1330 assert( pPage->pBt ); 1331 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1332 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1333 assert( pPage->nFree>=nByte ); 1334 assert( pPage->nOverflow==0 ); 1335 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1336 1337 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1338 gap = pPage->cellOffset + 2*pPage->nCell; 1339 assert( gap<=65536 ); 1340 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1341 ** and the reserved space is zero (the usual value for reserved space) 1342 ** then the cell content offset of an empty page wants to be 65536. 1343 ** However, that integer is too large to be stored in a 2-byte unsigned 1344 ** integer, so a value of 0 is used in its place. */ 1345 top = get2byteNotZero(&data[hdr+5]); 1346 if( gap>top ) return SQLITE_CORRUPT_BKPT; 1347 1348 /* If there is enough space between gap and top for one more cell pointer 1349 ** array entry offset, and if the freelist is not empty, then search the 1350 ** freelist looking for a free slot big enough to satisfy the request. 1351 */ 1352 testcase( gap+2==top ); 1353 testcase( gap+1==top ); 1354 testcase( gap==top ); 1355 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){ 1356 int bDefrag = 0; 1357 u8 *pSpace = pageFindSlot(pPage, nByte, &rc, &bDefrag); 1358 if( rc ) return rc; 1359 if( bDefrag ) goto defragment_page; 1360 if( pSpace ){ 1361 assert( pSpace>=data && (pSpace - data)<65536 ); 1362 *pIdx = (int)(pSpace - data); 1363 return SQLITE_OK; 1364 } 1365 } 1366 1367 /* The request could not be fulfilled using a freelist slot. Check 1368 ** to see if defragmentation is necessary. 1369 */ 1370 testcase( gap+2+nByte==top ); 1371 if( gap+2+nByte>top ){ 1372 defragment_page: 1373 assert( pPage->nCell>0 || CORRUPT_DB ); 1374 rc = defragmentPage(pPage); 1375 if( rc ) return rc; 1376 top = get2byteNotZero(&data[hdr+5]); 1377 assert( gap+nByte<=top ); 1378 } 1379 1380 1381 /* Allocate memory from the gap in between the cell pointer array 1382 ** and the cell content area. The btreeInitPage() call has already 1383 ** validated the freelist. Given that the freelist is valid, there 1384 ** is no way that the allocation can extend off the end of the page. 1385 ** The assert() below verifies the previous sentence. 1386 */ 1387 top -= nByte; 1388 put2byte(&data[hdr+5], top); 1389 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1390 *pIdx = top; 1391 return SQLITE_OK; 1392 } 1393 1394 /* 1395 ** Return a section of the pPage->aData to the freelist. 1396 ** The first byte of the new free block is pPage->aData[iStart] 1397 ** and the size of the block is iSize bytes. 1398 ** 1399 ** Adjacent freeblocks are coalesced. 1400 ** 1401 ** Note that even though the freeblock list was checked by btreeInitPage(), 1402 ** that routine will not detect overlap between cells or freeblocks. Nor 1403 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1404 ** at the end of the page. So do additional corruption checks inside this 1405 ** routine and return SQLITE_CORRUPT if any problems are found. 1406 */ 1407 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1408 u16 iPtr; /* Address of ptr to next freeblock */ 1409 u16 iFreeBlk; /* Address of the next freeblock */ 1410 u8 hdr; /* Page header size. 0 or 100 */ 1411 u8 nFrag = 0; /* Reduction in fragmentation */ 1412 u16 iOrigSize = iSize; /* Original value of iSize */ 1413 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */ 1414 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1415 unsigned char *data = pPage->aData; /* Page content */ 1416 1417 assert( pPage->pBt!=0 ); 1418 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1419 assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1420 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1421 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1422 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1423 assert( iStart<=iLast ); 1424 1425 /* Overwrite deleted information with zeros when the secure_delete 1426 ** option is enabled */ 1427 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){ 1428 memset(&data[iStart], 0, iSize); 1429 } 1430 1431 /* The list of freeblocks must be in ascending order. Find the 1432 ** spot on the list where iStart should be inserted. 1433 */ 1434 hdr = pPage->hdrOffset; 1435 iPtr = hdr + 1; 1436 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1437 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1438 }else{ 1439 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){ 1440 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT; 1441 iPtr = iFreeBlk; 1442 } 1443 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT; 1444 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1445 1446 /* At this point: 1447 ** iFreeBlk: First freeblock after iStart, or zero if none 1448 ** iPtr: The address of a pointer iFreeBlk 1449 ** 1450 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1451 */ 1452 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1453 nFrag = iFreeBlk - iEnd; 1454 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT; 1455 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1456 iSize = iEnd - iStart; 1457 iFreeBlk = get2byte(&data[iFreeBlk]); 1458 } 1459 1460 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1461 ** pointer in the page header) then check to see if iStart should be 1462 ** coalesced onto the end of iPtr. 1463 */ 1464 if( iPtr>hdr+1 ){ 1465 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1466 if( iPtrEnd+3>=iStart ){ 1467 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT; 1468 nFrag += iStart - iPtrEnd; 1469 iSize = iEnd - iPtr; 1470 iStart = iPtr; 1471 } 1472 } 1473 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT; 1474 data[hdr+7] -= nFrag; 1475 } 1476 if( iStart==get2byte(&data[hdr+5]) ){ 1477 /* The new freeblock is at the beginning of the cell content area, 1478 ** so just extend the cell content area rather than create another 1479 ** freelist entry */ 1480 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT; 1481 put2byte(&data[hdr+1], iFreeBlk); 1482 put2byte(&data[hdr+5], iEnd); 1483 }else{ 1484 /* Insert the new freeblock into the freelist */ 1485 put2byte(&data[iPtr], iStart); 1486 put2byte(&data[iStart], iFreeBlk); 1487 put2byte(&data[iStart+2], iSize); 1488 } 1489 pPage->nFree += iOrigSize; 1490 return SQLITE_OK; 1491 } 1492 1493 /* 1494 ** Decode the flags byte (the first byte of the header) for a page 1495 ** and initialize fields of the MemPage structure accordingly. 1496 ** 1497 ** Only the following combinations are supported. Anything different 1498 ** indicates a corrupt database files: 1499 ** 1500 ** PTF_ZERODATA 1501 ** PTF_ZERODATA | PTF_LEAF 1502 ** PTF_LEAFDATA | PTF_INTKEY 1503 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1504 */ 1505 static int decodeFlags(MemPage *pPage, int flagByte){ 1506 BtShared *pBt; /* A copy of pPage->pBt */ 1507 1508 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1509 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1510 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1511 flagByte &= ~PTF_LEAF; 1512 pPage->childPtrSize = 4-4*pPage->leaf; 1513 pBt = pPage->pBt; 1514 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1515 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior 1516 ** table b-tree page. */ 1517 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1518 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf 1519 ** table b-tree page. */ 1520 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1521 pPage->intKey = 1; 1522 pPage->intKeyLeaf = pPage->leaf; 1523 pPage->noPayload = !pPage->leaf; 1524 pPage->maxLocal = pBt->maxLeaf; 1525 pPage->minLocal = pBt->minLeaf; 1526 }else if( flagByte==PTF_ZERODATA ){ 1527 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior 1528 ** index b-tree page. */ 1529 assert( (PTF_ZERODATA)==2 ); 1530 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf 1531 ** index b-tree page. */ 1532 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1533 pPage->intKey = 0; 1534 pPage->intKeyLeaf = 0; 1535 pPage->noPayload = 0; 1536 pPage->maxLocal = pBt->maxLocal; 1537 pPage->minLocal = pBt->minLocal; 1538 }else{ 1539 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1540 ** an error. */ 1541 return SQLITE_CORRUPT_BKPT; 1542 } 1543 pPage->max1bytePayload = pBt->max1bytePayload; 1544 return SQLITE_OK; 1545 } 1546 1547 /* 1548 ** Initialize the auxiliary information for a disk block. 1549 ** 1550 ** Return SQLITE_OK on success. If we see that the page does 1551 ** not contain a well-formed database page, then return 1552 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 1553 ** guarantee that the page is well-formed. It only shows that 1554 ** we failed to detect any corruption. 1555 */ 1556 static int btreeInitPage(MemPage *pPage){ 1557 1558 assert( pPage->pBt!=0 ); 1559 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1560 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1561 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1562 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1563 1564 if( !pPage->isInit ){ 1565 u16 pc; /* Address of a freeblock within pPage->aData[] */ 1566 u8 hdr; /* Offset to beginning of page header */ 1567 u8 *data; /* Equal to pPage->aData */ 1568 BtShared *pBt; /* The main btree structure */ 1569 int usableSize; /* Amount of usable space on each page */ 1570 u16 cellOffset; /* Offset from start of page to first cell pointer */ 1571 int nFree; /* Number of unused bytes on the page */ 1572 int top; /* First byte of the cell content area */ 1573 int iCellFirst; /* First allowable cell or freeblock offset */ 1574 int iCellLast; /* Last possible cell or freeblock offset */ 1575 1576 pBt = pPage->pBt; 1577 1578 hdr = pPage->hdrOffset; 1579 data = pPage->aData; 1580 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 1581 ** the b-tree page type. */ 1582 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; 1583 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 1584 pPage->maskPage = (u16)(pBt->pageSize - 1); 1585 pPage->nOverflow = 0; 1586 usableSize = pBt->usableSize; 1587 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; 1588 pPage->aDataEnd = &data[usableSize]; 1589 pPage->aCellIdx = &data[cellOffset]; 1590 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1591 ** the start of the cell content area. A zero value for this integer is 1592 ** interpreted as 65536. */ 1593 top = get2byteNotZero(&data[hdr+5]); 1594 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 1595 ** number of cells on the page. */ 1596 pPage->nCell = get2byte(&data[hdr+3]); 1597 if( pPage->nCell>MX_CELL(pBt) ){ 1598 /* To many cells for a single page. The page must be corrupt */ 1599 return SQLITE_CORRUPT_BKPT; 1600 } 1601 testcase( pPage->nCell==MX_CELL(pBt) ); 1602 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 1603 ** possible for a root page of a table that contains no rows) then the 1604 ** offset to the cell content area will equal the page size minus the 1605 ** bytes of reserved space. */ 1606 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB ); 1607 1608 /* A malformed database page might cause us to read past the end 1609 ** of page when parsing a cell. 1610 ** 1611 ** The following block of code checks early to see if a cell extends 1612 ** past the end of a page boundary and causes SQLITE_CORRUPT to be 1613 ** returned if it does. 1614 */ 1615 iCellFirst = cellOffset + 2*pPage->nCell; 1616 iCellLast = usableSize - 4; 1617 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) 1618 { 1619 int i; /* Index into the cell pointer array */ 1620 int sz; /* Size of a cell */ 1621 1622 if( !pPage->leaf ) iCellLast--; 1623 for(i=0; i<pPage->nCell; i++){ 1624 pc = get2byte(&data[cellOffset+i*2]); 1625 testcase( pc==iCellFirst ); 1626 testcase( pc==iCellLast ); 1627 if( pc<iCellFirst || pc>iCellLast ){ 1628 return SQLITE_CORRUPT_BKPT; 1629 } 1630 sz = cellSizePtr(pPage, &data[pc]); 1631 testcase( pc+sz==usableSize ); 1632 if( pc+sz>usableSize ){ 1633 return SQLITE_CORRUPT_BKPT; 1634 } 1635 } 1636 if( !pPage->leaf ) iCellLast++; 1637 } 1638 #endif 1639 1640 /* Compute the total free space on the page 1641 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1642 ** start of the first freeblock on the page, or is zero if there are no 1643 ** freeblocks. */ 1644 pc = get2byte(&data[hdr+1]); 1645 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1646 while( pc>0 ){ 1647 u16 next, size; 1648 if( pc<iCellFirst || pc>iCellLast ){ 1649 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1650 ** always be at least one cell before the first freeblock. 1651 ** 1652 ** Or, the freeblock is off the end of the page 1653 */ 1654 return SQLITE_CORRUPT_BKPT; 1655 } 1656 next = get2byte(&data[pc]); 1657 size = get2byte(&data[pc+2]); 1658 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){ 1659 /* Free blocks must be in ascending order. And the last byte of 1660 ** the free-block must lie on the database page. */ 1661 return SQLITE_CORRUPT_BKPT; 1662 } 1663 nFree = nFree + size; 1664 pc = next; 1665 } 1666 1667 /* At this point, nFree contains the sum of the offset to the start 1668 ** of the cell-content area plus the number of free bytes within 1669 ** the cell-content area. If this is greater than the usable-size 1670 ** of the page, then the page must be corrupted. This check also 1671 ** serves to verify that the offset to the start of the cell-content 1672 ** area, according to the page header, lies within the page. 1673 */ 1674 if( nFree>usableSize ){ 1675 return SQLITE_CORRUPT_BKPT; 1676 } 1677 pPage->nFree = (u16)(nFree - iCellFirst); 1678 pPage->isInit = 1; 1679 } 1680 return SQLITE_OK; 1681 } 1682 1683 /* 1684 ** Set up a raw page so that it looks like a database page holding 1685 ** no entries. 1686 */ 1687 static void zeroPage(MemPage *pPage, int flags){ 1688 unsigned char *data = pPage->aData; 1689 BtShared *pBt = pPage->pBt; 1690 u8 hdr = pPage->hdrOffset; 1691 u16 first; 1692 1693 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 1694 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 1695 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 1696 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1697 assert( sqlite3_mutex_held(pBt->mutex) ); 1698 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 1699 memset(&data[hdr], 0, pBt->usableSize - hdr); 1700 } 1701 data[hdr] = (char)flags; 1702 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 1703 memset(&data[hdr+1], 0, 4); 1704 data[hdr+7] = 0; 1705 put2byte(&data[hdr+5], pBt->usableSize); 1706 pPage->nFree = (u16)(pBt->usableSize - first); 1707 decodeFlags(pPage, flags); 1708 pPage->cellOffset = first; 1709 pPage->aDataEnd = &data[pBt->usableSize]; 1710 pPage->aCellIdx = &data[first]; 1711 pPage->nOverflow = 0; 1712 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 1713 pPage->maskPage = (u16)(pBt->pageSize - 1); 1714 pPage->nCell = 0; 1715 pPage->isInit = 1; 1716 } 1717 1718 1719 /* 1720 ** Convert a DbPage obtained from the pager into a MemPage used by 1721 ** the btree layer. 1722 */ 1723 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 1724 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 1725 pPage->aData = sqlite3PagerGetData(pDbPage); 1726 pPage->pDbPage = pDbPage; 1727 pPage->pBt = pBt; 1728 pPage->pgno = pgno; 1729 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; 1730 return pPage; 1731 } 1732 1733 /* 1734 ** Get a page from the pager. Initialize the MemPage.pBt and 1735 ** MemPage.aData elements if needed. 1736 ** 1737 ** If the noContent flag is set, it means that we do not care about 1738 ** the content of the page at this time. So do not go to the disk 1739 ** to fetch the content. Just fill in the content with zeros for now. 1740 ** If in the future we call sqlite3PagerWrite() on this page, that 1741 ** means we have started to be concerned about content and the disk 1742 ** read should occur at that point. 1743 */ 1744 static int btreeGetPage( 1745 BtShared *pBt, /* The btree */ 1746 Pgno pgno, /* Number of the page to fetch */ 1747 MemPage **ppPage, /* Return the page in this parameter */ 1748 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 1749 ){ 1750 int rc; 1751 DbPage *pDbPage; 1752 1753 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 1754 assert( sqlite3_mutex_held(pBt->mutex) ); 1755 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 1756 if( rc ) return rc; 1757 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 1758 return SQLITE_OK; 1759 } 1760 1761 /* 1762 ** Retrieve a page from the pager cache. If the requested page is not 1763 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 1764 ** MemPage.aData elements if needed. 1765 */ 1766 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 1767 DbPage *pDbPage; 1768 assert( sqlite3_mutex_held(pBt->mutex) ); 1769 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 1770 if( pDbPage ){ 1771 return btreePageFromDbPage(pDbPage, pgno, pBt); 1772 } 1773 return 0; 1774 } 1775 1776 /* 1777 ** Return the size of the database file in pages. If there is any kind of 1778 ** error, return ((unsigned int)-1). 1779 */ 1780 static Pgno btreePagecount(BtShared *pBt){ 1781 return pBt->nPage; 1782 } 1783 u32 sqlite3BtreeLastPage(Btree *p){ 1784 assert( sqlite3BtreeHoldsMutex(p) ); 1785 assert( ((p->pBt->nPage)&0x8000000)==0 ); 1786 return btreePagecount(p->pBt); 1787 } 1788 1789 /* 1790 ** Get a page from the pager and initialize it. This routine is just a 1791 ** convenience wrapper around separate calls to btreeGetPage() and 1792 ** btreeInitPage(). 1793 ** 1794 ** If an error occurs, then the value *ppPage is set to is undefined. It 1795 ** may remain unchanged, or it may be set to an invalid value. 1796 */ 1797 static int getAndInitPage( 1798 BtShared *pBt, /* The database file */ 1799 Pgno pgno, /* Number of the page to get */ 1800 MemPage **ppPage, /* Write the page pointer here */ 1801 int bReadonly /* PAGER_GET_READONLY or 0 */ 1802 ){ 1803 int rc; 1804 assert( sqlite3_mutex_held(pBt->mutex) ); 1805 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 ); 1806 1807 if( pgno>btreePagecount(pBt) ){ 1808 rc = SQLITE_CORRUPT_BKPT; 1809 }else{ 1810 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly); 1811 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){ 1812 rc = btreeInitPage(*ppPage); 1813 if( rc!=SQLITE_OK ){ 1814 releasePage(*ppPage); 1815 } 1816 } 1817 } 1818 1819 testcase( pgno==0 ); 1820 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 1821 return rc; 1822 } 1823 1824 /* 1825 ** Release a MemPage. This should be called once for each prior 1826 ** call to btreeGetPage. 1827 */ 1828 static void releasePage(MemPage *pPage){ 1829 if( pPage ){ 1830 assert( pPage->aData ); 1831 assert( pPage->pBt ); 1832 assert( pPage->pDbPage!=0 ); 1833 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 1834 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 1835 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1836 sqlite3PagerUnrefNotNull(pPage->pDbPage); 1837 } 1838 } 1839 1840 /* 1841 ** During a rollback, when the pager reloads information into the cache 1842 ** so that the cache is restored to its original state at the start of 1843 ** the transaction, for each page restored this routine is called. 1844 ** 1845 ** This routine needs to reset the extra data section at the end of the 1846 ** page to agree with the restored data. 1847 */ 1848 static void pageReinit(DbPage *pData){ 1849 MemPage *pPage; 1850 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 1851 assert( sqlite3PagerPageRefcount(pData)>0 ); 1852 if( pPage->isInit ){ 1853 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1854 pPage->isInit = 0; 1855 if( sqlite3PagerPageRefcount(pData)>1 ){ 1856 /* pPage might not be a btree page; it might be an overflow page 1857 ** or ptrmap page or a free page. In those cases, the following 1858 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 1859 ** But no harm is done by this. And it is very important that 1860 ** btreeInitPage() be called on every btree page so we make 1861 ** the call for every page that comes in for re-initing. */ 1862 btreeInitPage(pPage); 1863 } 1864 } 1865 } 1866 1867 /* 1868 ** Invoke the busy handler for a btree. 1869 */ 1870 static int btreeInvokeBusyHandler(void *pArg){ 1871 BtShared *pBt = (BtShared*)pArg; 1872 assert( pBt->db ); 1873 assert( sqlite3_mutex_held(pBt->db->mutex) ); 1874 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 1875 } 1876 1877 /* 1878 ** Open a database file. 1879 ** 1880 ** zFilename is the name of the database file. If zFilename is NULL 1881 ** then an ephemeral database is created. The ephemeral database might 1882 ** be exclusively in memory, or it might use a disk-based memory cache. 1883 ** Either way, the ephemeral database will be automatically deleted 1884 ** when sqlite3BtreeClose() is called. 1885 ** 1886 ** If zFilename is ":memory:" then an in-memory database is created 1887 ** that is automatically destroyed when it is closed. 1888 ** 1889 ** The "flags" parameter is a bitmask that might contain bits like 1890 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 1891 ** 1892 ** If the database is already opened in the same database connection 1893 ** and we are in shared cache mode, then the open will fail with an 1894 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 1895 ** objects in the same database connection since doing so will lead 1896 ** to problems with locking. 1897 */ 1898 int sqlite3BtreeOpen( 1899 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 1900 const char *zFilename, /* Name of the file containing the BTree database */ 1901 sqlite3 *db, /* Associated database handle */ 1902 Btree **ppBtree, /* Pointer to new Btree object written here */ 1903 int flags, /* Options */ 1904 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 1905 ){ 1906 BtShared *pBt = 0; /* Shared part of btree structure */ 1907 Btree *p; /* Handle to return */ 1908 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 1909 int rc = SQLITE_OK; /* Result code from this function */ 1910 u8 nReserve; /* Byte of unused space on each page */ 1911 unsigned char zDbHeader[100]; /* Database header content */ 1912 1913 /* True if opening an ephemeral, temporary database */ 1914 const int isTempDb = zFilename==0 || zFilename[0]==0; 1915 1916 /* Set the variable isMemdb to true for an in-memory database, or 1917 ** false for a file-based database. 1918 */ 1919 #ifdef SQLITE_OMIT_MEMORYDB 1920 const int isMemdb = 0; 1921 #else 1922 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 1923 || (isTempDb && sqlite3TempInMemory(db)) 1924 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 1925 #endif 1926 1927 assert( db!=0 ); 1928 assert( pVfs!=0 ); 1929 assert( sqlite3_mutex_held(db->mutex) ); 1930 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 1931 1932 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 1933 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 1934 1935 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 1936 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 1937 1938 if( isMemdb ){ 1939 flags |= BTREE_MEMORY; 1940 } 1941 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 1942 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 1943 } 1944 p = sqlite3MallocZero(sizeof(Btree)); 1945 if( !p ){ 1946 return SQLITE_NOMEM; 1947 } 1948 p->inTrans = TRANS_NONE; 1949 p->db = db; 1950 #ifndef SQLITE_OMIT_SHARED_CACHE 1951 p->lock.pBtree = p; 1952 p->lock.iTable = 1; 1953 #endif 1954 1955 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 1956 /* 1957 ** If this Btree is a candidate for shared cache, try to find an 1958 ** existing BtShared object that we can share with 1959 */ 1960 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 1961 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 1962 int nFilename = sqlite3Strlen30(zFilename)+1; 1963 int nFullPathname = pVfs->mxPathname+1; 1964 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 1965 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 1966 1967 p->sharable = 1; 1968 if( !zFullPathname ){ 1969 sqlite3_free(p); 1970 return SQLITE_NOMEM; 1971 } 1972 if( isMemdb ){ 1973 memcpy(zFullPathname, zFilename, nFilename); 1974 }else{ 1975 rc = sqlite3OsFullPathname(pVfs, zFilename, 1976 nFullPathname, zFullPathname); 1977 if( rc ){ 1978 sqlite3_free(zFullPathname); 1979 sqlite3_free(p); 1980 return rc; 1981 } 1982 } 1983 #if SQLITE_THREADSAFE 1984 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 1985 sqlite3_mutex_enter(mutexOpen); 1986 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 1987 sqlite3_mutex_enter(mutexShared); 1988 #endif 1989 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 1990 assert( pBt->nRef>0 ); 1991 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 1992 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 1993 int iDb; 1994 for(iDb=db->nDb-1; iDb>=0; iDb--){ 1995 Btree *pExisting = db->aDb[iDb].pBt; 1996 if( pExisting && pExisting->pBt==pBt ){ 1997 sqlite3_mutex_leave(mutexShared); 1998 sqlite3_mutex_leave(mutexOpen); 1999 sqlite3_free(zFullPathname); 2000 sqlite3_free(p); 2001 return SQLITE_CONSTRAINT; 2002 } 2003 } 2004 p->pBt = pBt; 2005 pBt->nRef++; 2006 break; 2007 } 2008 } 2009 sqlite3_mutex_leave(mutexShared); 2010 sqlite3_free(zFullPathname); 2011 } 2012 #ifdef SQLITE_DEBUG 2013 else{ 2014 /* In debug mode, we mark all persistent databases as sharable 2015 ** even when they are not. This exercises the locking code and 2016 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2017 ** statements to find locking problems. 2018 */ 2019 p->sharable = 1; 2020 } 2021 #endif 2022 } 2023 #endif 2024 if( pBt==0 ){ 2025 /* 2026 ** The following asserts make sure that structures used by the btree are 2027 ** the right size. This is to guard against size changes that result 2028 ** when compiling on a different architecture. 2029 */ 2030 assert( sizeof(i64)==8 ); 2031 assert( sizeof(u64)==8 ); 2032 assert( sizeof(u32)==4 ); 2033 assert( sizeof(u16)==2 ); 2034 assert( sizeof(Pgno)==4 ); 2035 2036 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2037 if( pBt==0 ){ 2038 rc = SQLITE_NOMEM; 2039 goto btree_open_out; 2040 } 2041 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2042 EXTRA_SIZE, flags, vfsFlags, pageReinit); 2043 if( rc==SQLITE_OK ){ 2044 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2045 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2046 } 2047 if( rc!=SQLITE_OK ){ 2048 goto btree_open_out; 2049 } 2050 pBt->openFlags = (u8)flags; 2051 pBt->db = db; 2052 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2053 p->pBt = pBt; 2054 2055 pBt->pCursor = 0; 2056 pBt->pPage1 = 0; 2057 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2058 #ifdef SQLITE_SECURE_DELETE 2059 pBt->btsFlags |= BTS_SECURE_DELETE; 2060 #endif 2061 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2062 ** determined by the 2-byte integer located at an offset of 16 bytes from 2063 ** the beginning of the database file. */ 2064 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2065 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2066 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2067 pBt->pageSize = 0; 2068 #ifndef SQLITE_OMIT_AUTOVACUUM 2069 /* If the magic name ":memory:" will create an in-memory database, then 2070 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2071 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2072 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2073 ** regular file-name. In this case the auto-vacuum applies as per normal. 2074 */ 2075 if( zFilename && !isMemdb ){ 2076 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2077 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2078 } 2079 #endif 2080 nReserve = 0; 2081 }else{ 2082 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2083 ** determined by the one-byte unsigned integer found at an offset of 20 2084 ** into the database file header. */ 2085 nReserve = zDbHeader[20]; 2086 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2087 #ifndef SQLITE_OMIT_AUTOVACUUM 2088 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2089 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2090 #endif 2091 } 2092 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2093 if( rc ) goto btree_open_out; 2094 pBt->usableSize = pBt->pageSize - nReserve; 2095 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2096 2097 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2098 /* Add the new BtShared object to the linked list sharable BtShareds. 2099 */ 2100 if( p->sharable ){ 2101 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2102 pBt->nRef = 1; 2103 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) 2104 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2105 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2106 if( pBt->mutex==0 ){ 2107 rc = SQLITE_NOMEM; 2108 db->mallocFailed = 0; 2109 goto btree_open_out; 2110 } 2111 } 2112 sqlite3_mutex_enter(mutexShared); 2113 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2114 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2115 sqlite3_mutex_leave(mutexShared); 2116 } 2117 #endif 2118 } 2119 2120 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2121 /* If the new Btree uses a sharable pBtShared, then link the new 2122 ** Btree into the list of all sharable Btrees for the same connection. 2123 ** The list is kept in ascending order by pBt address. 2124 */ 2125 if( p->sharable ){ 2126 int i; 2127 Btree *pSib; 2128 for(i=0; i<db->nDb; i++){ 2129 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2130 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2131 if( p->pBt<pSib->pBt ){ 2132 p->pNext = pSib; 2133 p->pPrev = 0; 2134 pSib->pPrev = p; 2135 }else{ 2136 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){ 2137 pSib = pSib->pNext; 2138 } 2139 p->pNext = pSib->pNext; 2140 p->pPrev = pSib; 2141 if( p->pNext ){ 2142 p->pNext->pPrev = p; 2143 } 2144 pSib->pNext = p; 2145 } 2146 break; 2147 } 2148 } 2149 } 2150 #endif 2151 *ppBtree = p; 2152 2153 btree_open_out: 2154 if( rc!=SQLITE_OK ){ 2155 if( pBt && pBt->pPager ){ 2156 sqlite3PagerClose(pBt->pPager); 2157 } 2158 sqlite3_free(pBt); 2159 sqlite3_free(p); 2160 *ppBtree = 0; 2161 }else{ 2162 /* If the B-Tree was successfully opened, set the pager-cache size to the 2163 ** default value. Except, when opening on an existing shared pager-cache, 2164 ** do not change the pager-cache size. 2165 */ 2166 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2167 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); 2168 } 2169 } 2170 if( mutexOpen ){ 2171 assert( sqlite3_mutex_held(mutexOpen) ); 2172 sqlite3_mutex_leave(mutexOpen); 2173 } 2174 return rc; 2175 } 2176 2177 /* 2178 ** Decrement the BtShared.nRef counter. When it reaches zero, 2179 ** remove the BtShared structure from the sharing list. Return 2180 ** true if the BtShared.nRef counter reaches zero and return 2181 ** false if it is still positive. 2182 */ 2183 static int removeFromSharingList(BtShared *pBt){ 2184 #ifndef SQLITE_OMIT_SHARED_CACHE 2185 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) 2186 BtShared *pList; 2187 int removed = 0; 2188 2189 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2190 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 2191 sqlite3_mutex_enter(pMaster); 2192 pBt->nRef--; 2193 if( pBt->nRef<=0 ){ 2194 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2195 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2196 }else{ 2197 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2198 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2199 pList=pList->pNext; 2200 } 2201 if( ALWAYS(pList) ){ 2202 pList->pNext = pBt->pNext; 2203 } 2204 } 2205 if( SQLITE_THREADSAFE ){ 2206 sqlite3_mutex_free(pBt->mutex); 2207 } 2208 removed = 1; 2209 } 2210 sqlite3_mutex_leave(pMaster); 2211 return removed; 2212 #else 2213 return 1; 2214 #endif 2215 } 2216 2217 /* 2218 ** Make sure pBt->pTmpSpace points to an allocation of 2219 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2220 ** pointer. 2221 */ 2222 static void allocateTempSpace(BtShared *pBt){ 2223 if( !pBt->pTmpSpace ){ 2224 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2225 2226 /* One of the uses of pBt->pTmpSpace is to format cells before 2227 ** inserting them into a leaf page (function fillInCell()). If 2228 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2229 ** by the various routines that manipulate binary cells. Which 2230 ** can mean that fillInCell() only initializes the first 2 or 3 2231 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2232 ** it into a database page. This is not actually a problem, but it 2233 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2234 ** data is passed to system call write(). So to avoid this error, 2235 ** zero the first 4 bytes of temp space here. 2236 ** 2237 ** Also: Provide four bytes of initialized space before the 2238 ** beginning of pTmpSpace as an area available to prepend the 2239 ** left-child pointer to the beginning of a cell. 2240 */ 2241 if( pBt->pTmpSpace ){ 2242 memset(pBt->pTmpSpace, 0, 8); 2243 pBt->pTmpSpace += 4; 2244 } 2245 } 2246 } 2247 2248 /* 2249 ** Free the pBt->pTmpSpace allocation 2250 */ 2251 static void freeTempSpace(BtShared *pBt){ 2252 if( pBt->pTmpSpace ){ 2253 pBt->pTmpSpace -= 4; 2254 sqlite3PageFree(pBt->pTmpSpace); 2255 pBt->pTmpSpace = 0; 2256 } 2257 } 2258 2259 /* 2260 ** Close an open database and invalidate all cursors. 2261 */ 2262 int sqlite3BtreeClose(Btree *p){ 2263 BtShared *pBt = p->pBt; 2264 BtCursor *pCur; 2265 2266 /* Close all cursors opened via this handle. */ 2267 assert( sqlite3_mutex_held(p->db->mutex) ); 2268 sqlite3BtreeEnter(p); 2269 pCur = pBt->pCursor; 2270 while( pCur ){ 2271 BtCursor *pTmp = pCur; 2272 pCur = pCur->pNext; 2273 if( pTmp->pBtree==p ){ 2274 sqlite3BtreeCloseCursor(pTmp); 2275 } 2276 } 2277 2278 /* Rollback any active transaction and free the handle structure. 2279 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2280 ** this handle. 2281 */ 2282 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2283 sqlite3BtreeLeave(p); 2284 2285 /* If there are still other outstanding references to the shared-btree 2286 ** structure, return now. The remainder of this procedure cleans 2287 ** up the shared-btree. 2288 */ 2289 assert( p->wantToLock==0 && p->locked==0 ); 2290 if( !p->sharable || removeFromSharingList(pBt) ){ 2291 /* The pBt is no longer on the sharing list, so we can access 2292 ** it without having to hold the mutex. 2293 ** 2294 ** Clean out and delete the BtShared object. 2295 */ 2296 assert( !pBt->pCursor ); 2297 sqlite3PagerClose(pBt->pPager); 2298 if( pBt->xFreeSchema && pBt->pSchema ){ 2299 pBt->xFreeSchema(pBt->pSchema); 2300 } 2301 sqlite3DbFree(0, pBt->pSchema); 2302 freeTempSpace(pBt); 2303 sqlite3_free(pBt); 2304 } 2305 2306 #ifndef SQLITE_OMIT_SHARED_CACHE 2307 assert( p->wantToLock==0 ); 2308 assert( p->locked==0 ); 2309 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2310 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2311 #endif 2312 2313 sqlite3_free(p); 2314 return SQLITE_OK; 2315 } 2316 2317 /* 2318 ** Change the limit on the number of pages allowed in the cache. 2319 ** 2320 ** The maximum number of cache pages is set to the absolute 2321 ** value of mxPage. If mxPage is negative, the pager will 2322 ** operate asynchronously - it will not stop to do fsync()s 2323 ** to insure data is written to the disk surface before 2324 ** continuing. Transactions still work if synchronous is off, 2325 ** and the database cannot be corrupted if this program 2326 ** crashes. But if the operating system crashes or there is 2327 ** an abrupt power failure when synchronous is off, the database 2328 ** could be left in an inconsistent and unrecoverable state. 2329 ** Synchronous is on by default so database corruption is not 2330 ** normally a worry. 2331 */ 2332 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2333 BtShared *pBt = p->pBt; 2334 assert( sqlite3_mutex_held(p->db->mutex) ); 2335 sqlite3BtreeEnter(p); 2336 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2337 sqlite3BtreeLeave(p); 2338 return SQLITE_OK; 2339 } 2340 2341 #if SQLITE_MAX_MMAP_SIZE>0 2342 /* 2343 ** Change the limit on the amount of the database file that may be 2344 ** memory mapped. 2345 */ 2346 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2347 BtShared *pBt = p->pBt; 2348 assert( sqlite3_mutex_held(p->db->mutex) ); 2349 sqlite3BtreeEnter(p); 2350 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2351 sqlite3BtreeLeave(p); 2352 return SQLITE_OK; 2353 } 2354 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2355 2356 /* 2357 ** Change the way data is synced to disk in order to increase or decrease 2358 ** how well the database resists damage due to OS crashes and power 2359 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2360 ** there is a high probability of damage) Level 2 is the default. There 2361 ** is a very low but non-zero probability of damage. Level 3 reduces the 2362 ** probability of damage to near zero but with a write performance reduction. 2363 */ 2364 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2365 int sqlite3BtreeSetPagerFlags( 2366 Btree *p, /* The btree to set the safety level on */ 2367 unsigned pgFlags /* Various PAGER_* flags */ 2368 ){ 2369 BtShared *pBt = p->pBt; 2370 assert( sqlite3_mutex_held(p->db->mutex) ); 2371 sqlite3BtreeEnter(p); 2372 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2373 sqlite3BtreeLeave(p); 2374 return SQLITE_OK; 2375 } 2376 #endif 2377 2378 /* 2379 ** Return TRUE if the given btree is set to safety level 1. In other 2380 ** words, return TRUE if no sync() occurs on the disk files. 2381 */ 2382 int sqlite3BtreeSyncDisabled(Btree *p){ 2383 BtShared *pBt = p->pBt; 2384 int rc; 2385 assert( sqlite3_mutex_held(p->db->mutex) ); 2386 sqlite3BtreeEnter(p); 2387 assert( pBt && pBt->pPager ); 2388 rc = sqlite3PagerNosync(pBt->pPager); 2389 sqlite3BtreeLeave(p); 2390 return rc; 2391 } 2392 2393 /* 2394 ** Change the default pages size and the number of reserved bytes per page. 2395 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2396 ** without changing anything. 2397 ** 2398 ** The page size must be a power of 2 between 512 and 65536. If the page 2399 ** size supplied does not meet this constraint then the page size is not 2400 ** changed. 2401 ** 2402 ** Page sizes are constrained to be a power of two so that the region 2403 ** of the database file used for locking (beginning at PENDING_BYTE, 2404 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2405 ** at the beginning of a page. 2406 ** 2407 ** If parameter nReserve is less than zero, then the number of reserved 2408 ** bytes per page is left unchanged. 2409 ** 2410 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2411 ** and autovacuum mode can no longer be changed. 2412 */ 2413 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2414 int rc = SQLITE_OK; 2415 BtShared *pBt = p->pBt; 2416 assert( nReserve>=-1 && nReserve<=255 ); 2417 sqlite3BtreeEnter(p); 2418 #if SQLITE_HAS_CODEC 2419 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve; 2420 #endif 2421 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2422 sqlite3BtreeLeave(p); 2423 return SQLITE_READONLY; 2424 } 2425 if( nReserve<0 ){ 2426 nReserve = pBt->pageSize - pBt->usableSize; 2427 } 2428 assert( nReserve>=0 && nReserve<=255 ); 2429 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2430 ((pageSize-1)&pageSize)==0 ){ 2431 assert( (pageSize & 7)==0 ); 2432 assert( !pBt->pPage1 && !pBt->pCursor ); 2433 pBt->pageSize = (u32)pageSize; 2434 freeTempSpace(pBt); 2435 } 2436 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2437 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2438 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2439 sqlite3BtreeLeave(p); 2440 return rc; 2441 } 2442 2443 /* 2444 ** Return the currently defined page size 2445 */ 2446 int sqlite3BtreeGetPageSize(Btree *p){ 2447 return p->pBt->pageSize; 2448 } 2449 2450 /* 2451 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2452 ** may only be called if it is guaranteed that the b-tree mutex is already 2453 ** held. 2454 ** 2455 ** This is useful in one special case in the backup API code where it is 2456 ** known that the shared b-tree mutex is held, but the mutex on the 2457 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2458 ** were to be called, it might collide with some other operation on the 2459 ** database handle that owns *p, causing undefined behavior. 2460 */ 2461 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2462 int n; 2463 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2464 n = p->pBt->pageSize - p->pBt->usableSize; 2465 return n; 2466 } 2467 2468 /* 2469 ** Return the number of bytes of space at the end of every page that 2470 ** are intentually left unused. This is the "reserved" space that is 2471 ** sometimes used by extensions. 2472 ** 2473 ** If SQLITE_HAS_MUTEX is defined then the number returned is the 2474 ** greater of the current reserved space and the maximum requested 2475 ** reserve space. 2476 */ 2477 int sqlite3BtreeGetOptimalReserve(Btree *p){ 2478 int n; 2479 sqlite3BtreeEnter(p); 2480 n = sqlite3BtreeGetReserveNoMutex(p); 2481 #ifdef SQLITE_HAS_CODEC 2482 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve; 2483 #endif 2484 sqlite3BtreeLeave(p); 2485 return n; 2486 } 2487 2488 2489 /* 2490 ** Set the maximum page count for a database if mxPage is positive. 2491 ** No changes are made if mxPage is 0 or negative. 2492 ** Regardless of the value of mxPage, return the maximum page count. 2493 */ 2494 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ 2495 int n; 2496 sqlite3BtreeEnter(p); 2497 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2498 sqlite3BtreeLeave(p); 2499 return n; 2500 } 2501 2502 /* 2503 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1, 2504 ** then make no changes. Always return the value of the BTS_SECURE_DELETE 2505 ** setting after the change. 2506 */ 2507 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 2508 int b; 2509 if( p==0 ) return 0; 2510 sqlite3BtreeEnter(p); 2511 if( newFlag>=0 ){ 2512 p->pBt->btsFlags &= ~BTS_SECURE_DELETE; 2513 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE; 2514 } 2515 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0; 2516 sqlite3BtreeLeave(p); 2517 return b; 2518 } 2519 2520 /* 2521 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 2522 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 2523 ** is disabled. The default value for the auto-vacuum property is 2524 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 2525 */ 2526 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 2527 #ifdef SQLITE_OMIT_AUTOVACUUM 2528 return SQLITE_READONLY; 2529 #else 2530 BtShared *pBt = p->pBt; 2531 int rc = SQLITE_OK; 2532 u8 av = (u8)autoVacuum; 2533 2534 sqlite3BtreeEnter(p); 2535 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 2536 rc = SQLITE_READONLY; 2537 }else{ 2538 pBt->autoVacuum = av ?1:0; 2539 pBt->incrVacuum = av==2 ?1:0; 2540 } 2541 sqlite3BtreeLeave(p); 2542 return rc; 2543 #endif 2544 } 2545 2546 /* 2547 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 2548 ** enabled 1 is returned. Otherwise 0. 2549 */ 2550 int sqlite3BtreeGetAutoVacuum(Btree *p){ 2551 #ifdef SQLITE_OMIT_AUTOVACUUM 2552 return BTREE_AUTOVACUUM_NONE; 2553 #else 2554 int rc; 2555 sqlite3BtreeEnter(p); 2556 rc = ( 2557 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 2558 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 2559 BTREE_AUTOVACUUM_INCR 2560 ); 2561 sqlite3BtreeLeave(p); 2562 return rc; 2563 #endif 2564 } 2565 2566 2567 /* 2568 ** Get a reference to pPage1 of the database file. This will 2569 ** also acquire a readlock on that file. 2570 ** 2571 ** SQLITE_OK is returned on success. If the file is not a 2572 ** well-formed database file, then SQLITE_CORRUPT is returned. 2573 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 2574 ** is returned if we run out of memory. 2575 */ 2576 static int lockBtree(BtShared *pBt){ 2577 int rc; /* Result code from subfunctions */ 2578 MemPage *pPage1; /* Page 1 of the database file */ 2579 int nPage; /* Number of pages in the database */ 2580 int nPageFile = 0; /* Number of pages in the database file */ 2581 int nPageHeader; /* Number of pages in the database according to hdr */ 2582 2583 assert( sqlite3_mutex_held(pBt->mutex) ); 2584 assert( pBt->pPage1==0 ); 2585 rc = sqlite3PagerSharedLock(pBt->pPager); 2586 if( rc!=SQLITE_OK ) return rc; 2587 rc = btreeGetPage(pBt, 1, &pPage1, 0); 2588 if( rc!=SQLITE_OK ) return rc; 2589 2590 /* Do some checking to help insure the file we opened really is 2591 ** a valid database file. 2592 */ 2593 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); 2594 sqlite3PagerPagecount(pBt->pPager, &nPageFile); 2595 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 2596 nPage = nPageFile; 2597 } 2598 if( nPage>0 ){ 2599 u32 pageSize; 2600 u32 usableSize; 2601 u8 *page1 = pPage1->aData; 2602 rc = SQLITE_NOTADB; 2603 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 2604 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 2605 ** 61 74 20 33 00. */ 2606 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 2607 goto page1_init_failed; 2608 } 2609 2610 #ifdef SQLITE_OMIT_WAL 2611 if( page1[18]>1 ){ 2612 pBt->btsFlags |= BTS_READ_ONLY; 2613 } 2614 if( page1[19]>1 ){ 2615 goto page1_init_failed; 2616 } 2617 #else 2618 if( page1[18]>2 ){ 2619 pBt->btsFlags |= BTS_READ_ONLY; 2620 } 2621 if( page1[19]>2 ){ 2622 goto page1_init_failed; 2623 } 2624 2625 /* If the write version is set to 2, this database should be accessed 2626 ** in WAL mode. If the log is not already open, open it now. Then 2627 ** return SQLITE_OK and return without populating BtShared.pPage1. 2628 ** The caller detects this and calls this function again. This is 2629 ** required as the version of page 1 currently in the page1 buffer 2630 ** may not be the latest version - there may be a newer one in the log 2631 ** file. 2632 */ 2633 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 2634 int isOpen = 0; 2635 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 2636 if( rc!=SQLITE_OK ){ 2637 goto page1_init_failed; 2638 }else if( isOpen==0 ){ 2639 releasePage(pPage1); 2640 return SQLITE_OK; 2641 } 2642 rc = SQLITE_NOTADB; 2643 } 2644 #endif 2645 2646 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 2647 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 2648 ** 2649 ** The original design allowed these amounts to vary, but as of 2650 ** version 3.6.0, we require them to be fixed. 2651 */ 2652 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 2653 goto page1_init_failed; 2654 } 2655 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2656 ** determined by the 2-byte integer located at an offset of 16 bytes from 2657 ** the beginning of the database file. */ 2658 pageSize = (page1[16]<<8) | (page1[17]<<16); 2659 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 2660 ** between 512 and 65536 inclusive. */ 2661 if( ((pageSize-1)&pageSize)!=0 2662 || pageSize>SQLITE_MAX_PAGE_SIZE 2663 || pageSize<=256 2664 ){ 2665 goto page1_init_failed; 2666 } 2667 assert( (pageSize & 7)==0 ); 2668 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 2669 ** integer at offset 20 is the number of bytes of space at the end of 2670 ** each page to reserve for extensions. 2671 ** 2672 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2673 ** determined by the one-byte unsigned integer found at an offset of 20 2674 ** into the database file header. */ 2675 usableSize = pageSize - page1[20]; 2676 if( (u32)pageSize!=pBt->pageSize ){ 2677 /* After reading the first page of the database assuming a page size 2678 ** of BtShared.pageSize, we have discovered that the page-size is 2679 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 2680 ** zero and return SQLITE_OK. The caller will call this function 2681 ** again with the correct page-size. 2682 */ 2683 releasePage(pPage1); 2684 pBt->usableSize = usableSize; 2685 pBt->pageSize = pageSize; 2686 freeTempSpace(pBt); 2687 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 2688 pageSize-usableSize); 2689 return rc; 2690 } 2691 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){ 2692 rc = SQLITE_CORRUPT_BKPT; 2693 goto page1_init_failed; 2694 } 2695 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 2696 ** be less than 480. In other words, if the page size is 512, then the 2697 ** reserved space size cannot exceed 32. */ 2698 if( usableSize<480 ){ 2699 goto page1_init_failed; 2700 } 2701 pBt->pageSize = pageSize; 2702 pBt->usableSize = usableSize; 2703 #ifndef SQLITE_OMIT_AUTOVACUUM 2704 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 2705 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 2706 #endif 2707 } 2708 2709 /* maxLocal is the maximum amount of payload to store locally for 2710 ** a cell. Make sure it is small enough so that at least minFanout 2711 ** cells can will fit on one page. We assume a 10-byte page header. 2712 ** Besides the payload, the cell must store: 2713 ** 2-byte pointer to the cell 2714 ** 4-byte child pointer 2715 ** 9-byte nKey value 2716 ** 4-byte nData value 2717 ** 4-byte overflow page pointer 2718 ** So a cell consists of a 2-byte pointer, a header which is as much as 2719 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 2720 ** page pointer. 2721 */ 2722 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 2723 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 2724 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 2725 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 2726 if( pBt->maxLocal>127 ){ 2727 pBt->max1bytePayload = 127; 2728 }else{ 2729 pBt->max1bytePayload = (u8)pBt->maxLocal; 2730 } 2731 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 2732 pBt->pPage1 = pPage1; 2733 pBt->nPage = nPage; 2734 return SQLITE_OK; 2735 2736 page1_init_failed: 2737 releasePage(pPage1); 2738 pBt->pPage1 = 0; 2739 return rc; 2740 } 2741 2742 #ifndef NDEBUG 2743 /* 2744 ** Return the number of cursors open on pBt. This is for use 2745 ** in assert() expressions, so it is only compiled if NDEBUG is not 2746 ** defined. 2747 ** 2748 ** Only write cursors are counted if wrOnly is true. If wrOnly is 2749 ** false then all cursors are counted. 2750 ** 2751 ** For the purposes of this routine, a cursor is any cursor that 2752 ** is capable of reading or writing to the database. Cursors that 2753 ** have been tripped into the CURSOR_FAULT state are not counted. 2754 */ 2755 static int countValidCursors(BtShared *pBt, int wrOnly){ 2756 BtCursor *pCur; 2757 int r = 0; 2758 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 2759 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 2760 && pCur->eState!=CURSOR_FAULT ) r++; 2761 } 2762 return r; 2763 } 2764 #endif 2765 2766 /* 2767 ** If there are no outstanding cursors and we are not in the middle 2768 ** of a transaction but there is a read lock on the database, then 2769 ** this routine unrefs the first page of the database file which 2770 ** has the effect of releasing the read lock. 2771 ** 2772 ** If there is a transaction in progress, this routine is a no-op. 2773 */ 2774 static void unlockBtreeIfUnused(BtShared *pBt){ 2775 assert( sqlite3_mutex_held(pBt->mutex) ); 2776 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 2777 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 2778 MemPage *pPage1 = pBt->pPage1; 2779 assert( pPage1->aData ); 2780 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 2781 pBt->pPage1 = 0; 2782 releasePage(pPage1); 2783 } 2784 } 2785 2786 /* 2787 ** If pBt points to an empty file then convert that empty file 2788 ** into a new empty database by initializing the first page of 2789 ** the database. 2790 */ 2791 static int newDatabase(BtShared *pBt){ 2792 MemPage *pP1; 2793 unsigned char *data; 2794 int rc; 2795 2796 assert( sqlite3_mutex_held(pBt->mutex) ); 2797 if( pBt->nPage>0 ){ 2798 return SQLITE_OK; 2799 } 2800 pP1 = pBt->pPage1; 2801 assert( pP1!=0 ); 2802 data = pP1->aData; 2803 rc = sqlite3PagerWrite(pP1->pDbPage); 2804 if( rc ) return rc; 2805 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 2806 assert( sizeof(zMagicHeader)==16 ); 2807 data[16] = (u8)((pBt->pageSize>>8)&0xff); 2808 data[17] = (u8)((pBt->pageSize>>16)&0xff); 2809 data[18] = 1; 2810 data[19] = 1; 2811 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 2812 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 2813 data[21] = 64; 2814 data[22] = 32; 2815 data[23] = 32; 2816 memset(&data[24], 0, 100-24); 2817 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 2818 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2819 #ifndef SQLITE_OMIT_AUTOVACUUM 2820 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 2821 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 2822 put4byte(&data[36 + 4*4], pBt->autoVacuum); 2823 put4byte(&data[36 + 7*4], pBt->incrVacuum); 2824 #endif 2825 pBt->nPage = 1; 2826 data[31] = 1; 2827 return SQLITE_OK; 2828 } 2829 2830 /* 2831 ** Initialize the first page of the database file (creating a database 2832 ** consisting of a single page and no schema objects). Return SQLITE_OK 2833 ** if successful, or an SQLite error code otherwise. 2834 */ 2835 int sqlite3BtreeNewDb(Btree *p){ 2836 int rc; 2837 sqlite3BtreeEnter(p); 2838 p->pBt->nPage = 0; 2839 rc = newDatabase(p->pBt); 2840 sqlite3BtreeLeave(p); 2841 return rc; 2842 } 2843 2844 /* 2845 ** Attempt to start a new transaction. A write-transaction 2846 ** is started if the second argument is nonzero, otherwise a read- 2847 ** transaction. If the second argument is 2 or more and exclusive 2848 ** transaction is started, meaning that no other process is allowed 2849 ** to access the database. A preexisting transaction may not be 2850 ** upgraded to exclusive by calling this routine a second time - the 2851 ** exclusivity flag only works for a new transaction. 2852 ** 2853 ** A write-transaction must be started before attempting any 2854 ** changes to the database. None of the following routines 2855 ** will work unless a transaction is started first: 2856 ** 2857 ** sqlite3BtreeCreateTable() 2858 ** sqlite3BtreeCreateIndex() 2859 ** sqlite3BtreeClearTable() 2860 ** sqlite3BtreeDropTable() 2861 ** sqlite3BtreeInsert() 2862 ** sqlite3BtreeDelete() 2863 ** sqlite3BtreeUpdateMeta() 2864 ** 2865 ** If an initial attempt to acquire the lock fails because of lock contention 2866 ** and the database was previously unlocked, then invoke the busy handler 2867 ** if there is one. But if there was previously a read-lock, do not 2868 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 2869 ** returned when there is already a read-lock in order to avoid a deadlock. 2870 ** 2871 ** Suppose there are two processes A and B. A has a read lock and B has 2872 ** a reserved lock. B tries to promote to exclusive but is blocked because 2873 ** of A's read lock. A tries to promote to reserved but is blocked by B. 2874 ** One or the other of the two processes must give way or there can be 2875 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 2876 ** when A already has a read lock, we encourage A to give up and let B 2877 ** proceed. 2878 */ 2879 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ 2880 sqlite3 *pBlock = 0; 2881 BtShared *pBt = p->pBt; 2882 int rc = SQLITE_OK; 2883 2884 sqlite3BtreeEnter(p); 2885 btreeIntegrity(p); 2886 2887 /* If the btree is already in a write-transaction, or it 2888 ** is already in a read-transaction and a read-transaction 2889 ** is requested, this is a no-op. 2890 */ 2891 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 2892 goto trans_begun; 2893 } 2894 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 2895 2896 /* Write transactions are not possible on a read-only database */ 2897 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 2898 rc = SQLITE_READONLY; 2899 goto trans_begun; 2900 } 2901 2902 #ifndef SQLITE_OMIT_SHARED_CACHE 2903 /* If another database handle has already opened a write transaction 2904 ** on this shared-btree structure and a second write transaction is 2905 ** requested, return SQLITE_LOCKED. 2906 */ 2907 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 2908 || (pBt->btsFlags & BTS_PENDING)!=0 2909 ){ 2910 pBlock = pBt->pWriter->db; 2911 }else if( wrflag>1 ){ 2912 BtLock *pIter; 2913 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 2914 if( pIter->pBtree!=p ){ 2915 pBlock = pIter->pBtree->db; 2916 break; 2917 } 2918 } 2919 } 2920 if( pBlock ){ 2921 sqlite3ConnectionBlocked(p->db, pBlock); 2922 rc = SQLITE_LOCKED_SHAREDCACHE; 2923 goto trans_begun; 2924 } 2925 #endif 2926 2927 /* Any read-only or read-write transaction implies a read-lock on 2928 ** page 1. So if some other shared-cache client already has a write-lock 2929 ** on page 1, the transaction cannot be opened. */ 2930 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 2931 if( SQLITE_OK!=rc ) goto trans_begun; 2932 2933 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 2934 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 2935 do { 2936 /* Call lockBtree() until either pBt->pPage1 is populated or 2937 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 2938 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 2939 ** reading page 1 it discovers that the page-size of the database 2940 ** file is not pBt->pageSize. In this case lockBtree() will update 2941 ** pBt->pageSize to the page-size of the file on disk. 2942 */ 2943 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 2944 2945 if( rc==SQLITE_OK && wrflag ){ 2946 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 2947 rc = SQLITE_READONLY; 2948 }else{ 2949 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); 2950 if( rc==SQLITE_OK ){ 2951 rc = newDatabase(pBt); 2952 } 2953 } 2954 } 2955 2956 if( rc!=SQLITE_OK ){ 2957 unlockBtreeIfUnused(pBt); 2958 } 2959 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 2960 btreeInvokeBusyHandler(pBt) ); 2961 2962 if( rc==SQLITE_OK ){ 2963 if( p->inTrans==TRANS_NONE ){ 2964 pBt->nTransaction++; 2965 #ifndef SQLITE_OMIT_SHARED_CACHE 2966 if( p->sharable ){ 2967 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 2968 p->lock.eLock = READ_LOCK; 2969 p->lock.pNext = pBt->pLock; 2970 pBt->pLock = &p->lock; 2971 } 2972 #endif 2973 } 2974 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 2975 if( p->inTrans>pBt->inTransaction ){ 2976 pBt->inTransaction = p->inTrans; 2977 } 2978 if( wrflag ){ 2979 MemPage *pPage1 = pBt->pPage1; 2980 #ifndef SQLITE_OMIT_SHARED_CACHE 2981 assert( !pBt->pWriter ); 2982 pBt->pWriter = p; 2983 pBt->btsFlags &= ~BTS_EXCLUSIVE; 2984 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 2985 #endif 2986 2987 /* If the db-size header field is incorrect (as it may be if an old 2988 ** client has been writing the database file), update it now. Doing 2989 ** this sooner rather than later means the database size can safely 2990 ** re-read the database size from page 1 if a savepoint or transaction 2991 ** rollback occurs within the transaction. 2992 */ 2993 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 2994 rc = sqlite3PagerWrite(pPage1->pDbPage); 2995 if( rc==SQLITE_OK ){ 2996 put4byte(&pPage1->aData[28], pBt->nPage); 2997 } 2998 } 2999 } 3000 } 3001 3002 3003 trans_begun: 3004 if( rc==SQLITE_OK && wrflag ){ 3005 /* This call makes sure that the pager has the correct number of 3006 ** open savepoints. If the second parameter is greater than 0 and 3007 ** the sub-journal is not already open, then it will be opened here. 3008 */ 3009 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); 3010 } 3011 3012 btreeIntegrity(p); 3013 sqlite3BtreeLeave(p); 3014 return rc; 3015 } 3016 3017 #ifndef SQLITE_OMIT_AUTOVACUUM 3018 3019 /* 3020 ** Set the pointer-map entries for all children of page pPage. Also, if 3021 ** pPage contains cells that point to overflow pages, set the pointer 3022 ** map entries for the overflow pages as well. 3023 */ 3024 static int setChildPtrmaps(MemPage *pPage){ 3025 int i; /* Counter variable */ 3026 int nCell; /* Number of cells in page pPage */ 3027 int rc; /* Return code */ 3028 BtShared *pBt = pPage->pBt; 3029 u8 isInitOrig = pPage->isInit; 3030 Pgno pgno = pPage->pgno; 3031 3032 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3033 rc = btreeInitPage(pPage); 3034 if( rc!=SQLITE_OK ){ 3035 goto set_child_ptrmaps_out; 3036 } 3037 nCell = pPage->nCell; 3038 3039 for(i=0; i<nCell; i++){ 3040 u8 *pCell = findCell(pPage, i); 3041 3042 ptrmapPutOvflPtr(pPage, pCell, &rc); 3043 3044 if( !pPage->leaf ){ 3045 Pgno childPgno = get4byte(pCell); 3046 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3047 } 3048 } 3049 3050 if( !pPage->leaf ){ 3051 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3052 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3053 } 3054 3055 set_child_ptrmaps_out: 3056 pPage->isInit = isInitOrig; 3057 return rc; 3058 } 3059 3060 /* 3061 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3062 ** that it points to iTo. Parameter eType describes the type of pointer to 3063 ** be modified, as follows: 3064 ** 3065 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3066 ** page of pPage. 3067 ** 3068 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3069 ** page pointed to by one of the cells on pPage. 3070 ** 3071 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3072 ** overflow page in the list. 3073 */ 3074 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3075 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3076 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3077 if( eType==PTRMAP_OVERFLOW2 ){ 3078 /* The pointer is always the first 4 bytes of the page in this case. */ 3079 if( get4byte(pPage->aData)!=iFrom ){ 3080 return SQLITE_CORRUPT_BKPT; 3081 } 3082 put4byte(pPage->aData, iTo); 3083 }else{ 3084 u8 isInitOrig = pPage->isInit; 3085 int i; 3086 int nCell; 3087 3088 btreeInitPage(pPage); 3089 nCell = pPage->nCell; 3090 3091 for(i=0; i<nCell; i++){ 3092 u8 *pCell = findCell(pPage, i); 3093 if( eType==PTRMAP_OVERFLOW1 ){ 3094 CellInfo info; 3095 btreeParseCellPtr(pPage, pCell, &info); 3096 if( info.iOverflow 3097 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage 3098 && iFrom==get4byte(&pCell[info.iOverflow]) 3099 ){ 3100 put4byte(&pCell[info.iOverflow], iTo); 3101 break; 3102 } 3103 }else{ 3104 if( get4byte(pCell)==iFrom ){ 3105 put4byte(pCell, iTo); 3106 break; 3107 } 3108 } 3109 } 3110 3111 if( i==nCell ){ 3112 if( eType!=PTRMAP_BTREE || 3113 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3114 return SQLITE_CORRUPT_BKPT; 3115 } 3116 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3117 } 3118 3119 pPage->isInit = isInitOrig; 3120 } 3121 return SQLITE_OK; 3122 } 3123 3124 3125 /* 3126 ** Move the open database page pDbPage to location iFreePage in the 3127 ** database. The pDbPage reference remains valid. 3128 ** 3129 ** The isCommit flag indicates that there is no need to remember that 3130 ** the journal needs to be sync()ed before database page pDbPage->pgno 3131 ** can be written to. The caller has already promised not to write to that 3132 ** page. 3133 */ 3134 static int relocatePage( 3135 BtShared *pBt, /* Btree */ 3136 MemPage *pDbPage, /* Open page to move */ 3137 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3138 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3139 Pgno iFreePage, /* The location to move pDbPage to */ 3140 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3141 ){ 3142 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3143 Pgno iDbPage = pDbPage->pgno; 3144 Pager *pPager = pBt->pPager; 3145 int rc; 3146 3147 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3148 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3149 assert( sqlite3_mutex_held(pBt->mutex) ); 3150 assert( pDbPage->pBt==pBt ); 3151 3152 /* Move page iDbPage from its current location to page number iFreePage */ 3153 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3154 iDbPage, iFreePage, iPtrPage, eType)); 3155 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3156 if( rc!=SQLITE_OK ){ 3157 return rc; 3158 } 3159 pDbPage->pgno = iFreePage; 3160 3161 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3162 ** that point to overflow pages. The pointer map entries for all these 3163 ** pages need to be changed. 3164 ** 3165 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3166 ** pointer to a subsequent overflow page. If this is the case, then 3167 ** the pointer map needs to be updated for the subsequent overflow page. 3168 */ 3169 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3170 rc = setChildPtrmaps(pDbPage); 3171 if( rc!=SQLITE_OK ){ 3172 return rc; 3173 } 3174 }else{ 3175 Pgno nextOvfl = get4byte(pDbPage->aData); 3176 if( nextOvfl!=0 ){ 3177 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3178 if( rc!=SQLITE_OK ){ 3179 return rc; 3180 } 3181 } 3182 } 3183 3184 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3185 ** that it points at iFreePage. Also fix the pointer map entry for 3186 ** iPtrPage. 3187 */ 3188 if( eType!=PTRMAP_ROOTPAGE ){ 3189 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3190 if( rc!=SQLITE_OK ){ 3191 return rc; 3192 } 3193 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3194 if( rc!=SQLITE_OK ){ 3195 releasePage(pPtrPage); 3196 return rc; 3197 } 3198 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3199 releasePage(pPtrPage); 3200 if( rc==SQLITE_OK ){ 3201 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3202 } 3203 } 3204 return rc; 3205 } 3206 3207 /* Forward declaration required by incrVacuumStep(). */ 3208 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3209 3210 /* 3211 ** Perform a single step of an incremental-vacuum. If successful, return 3212 ** SQLITE_OK. If there is no work to do (and therefore no point in 3213 ** calling this function again), return SQLITE_DONE. Or, if an error 3214 ** occurs, return some other error code. 3215 ** 3216 ** More specifically, this function attempts to re-organize the database so 3217 ** that the last page of the file currently in use is no longer in use. 3218 ** 3219 ** Parameter nFin is the number of pages that this database would contain 3220 ** were this function called until it returns SQLITE_DONE. 3221 ** 3222 ** If the bCommit parameter is non-zero, this function assumes that the 3223 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3224 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3225 ** operation, or false for an incremental vacuum. 3226 */ 3227 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3228 Pgno nFreeList; /* Number of pages still on the free-list */ 3229 int rc; 3230 3231 assert( sqlite3_mutex_held(pBt->mutex) ); 3232 assert( iLastPg>nFin ); 3233 3234 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3235 u8 eType; 3236 Pgno iPtrPage; 3237 3238 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3239 if( nFreeList==0 ){ 3240 return SQLITE_DONE; 3241 } 3242 3243 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3244 if( rc!=SQLITE_OK ){ 3245 return rc; 3246 } 3247 if( eType==PTRMAP_ROOTPAGE ){ 3248 return SQLITE_CORRUPT_BKPT; 3249 } 3250 3251 if( eType==PTRMAP_FREEPAGE ){ 3252 if( bCommit==0 ){ 3253 /* Remove the page from the files free-list. This is not required 3254 ** if bCommit is non-zero. In that case, the free-list will be 3255 ** truncated to zero after this function returns, so it doesn't 3256 ** matter if it still contains some garbage entries. 3257 */ 3258 Pgno iFreePg; 3259 MemPage *pFreePg; 3260 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3261 if( rc!=SQLITE_OK ){ 3262 return rc; 3263 } 3264 assert( iFreePg==iLastPg ); 3265 releasePage(pFreePg); 3266 } 3267 } else { 3268 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3269 MemPage *pLastPg; 3270 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3271 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3272 3273 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3274 if( rc!=SQLITE_OK ){ 3275 return rc; 3276 } 3277 3278 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3279 ** is swapped with the first free page pulled off the free list. 3280 ** 3281 ** On the other hand, if bCommit is greater than zero, then keep 3282 ** looping until a free-page located within the first nFin pages 3283 ** of the file is found. 3284 */ 3285 if( bCommit==0 ){ 3286 eMode = BTALLOC_LE; 3287 iNear = nFin; 3288 } 3289 do { 3290 MemPage *pFreePg; 3291 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3292 if( rc!=SQLITE_OK ){ 3293 releasePage(pLastPg); 3294 return rc; 3295 } 3296 releasePage(pFreePg); 3297 }while( bCommit && iFreePg>nFin ); 3298 assert( iFreePg<iLastPg ); 3299 3300 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3301 releasePage(pLastPg); 3302 if( rc!=SQLITE_OK ){ 3303 return rc; 3304 } 3305 } 3306 } 3307 3308 if( bCommit==0 ){ 3309 do { 3310 iLastPg--; 3311 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3312 pBt->bDoTruncate = 1; 3313 pBt->nPage = iLastPg; 3314 } 3315 return SQLITE_OK; 3316 } 3317 3318 /* 3319 ** The database opened by the first argument is an auto-vacuum database 3320 ** nOrig pages in size containing nFree free pages. Return the expected 3321 ** size of the database in pages following an auto-vacuum operation. 3322 */ 3323 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3324 int nEntry; /* Number of entries on one ptrmap page */ 3325 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3326 Pgno nFin; /* Return value */ 3327 3328 nEntry = pBt->usableSize/5; 3329 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3330 nFin = nOrig - nFree - nPtrmap; 3331 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3332 nFin--; 3333 } 3334 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3335 nFin--; 3336 } 3337 3338 return nFin; 3339 } 3340 3341 /* 3342 ** A write-transaction must be opened before calling this function. 3343 ** It performs a single unit of work towards an incremental vacuum. 3344 ** 3345 ** If the incremental vacuum is finished after this function has run, 3346 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3347 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3348 */ 3349 int sqlite3BtreeIncrVacuum(Btree *p){ 3350 int rc; 3351 BtShared *pBt = p->pBt; 3352 3353 sqlite3BtreeEnter(p); 3354 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3355 if( !pBt->autoVacuum ){ 3356 rc = SQLITE_DONE; 3357 }else{ 3358 Pgno nOrig = btreePagecount(pBt); 3359 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3360 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3361 3362 if( nOrig<nFin ){ 3363 rc = SQLITE_CORRUPT_BKPT; 3364 }else if( nFree>0 ){ 3365 rc = saveAllCursors(pBt, 0, 0); 3366 if( rc==SQLITE_OK ){ 3367 invalidateAllOverflowCache(pBt); 3368 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3369 } 3370 if( rc==SQLITE_OK ){ 3371 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3372 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3373 } 3374 }else{ 3375 rc = SQLITE_DONE; 3376 } 3377 } 3378 sqlite3BtreeLeave(p); 3379 return rc; 3380 } 3381 3382 /* 3383 ** This routine is called prior to sqlite3PagerCommit when a transaction 3384 ** is committed for an auto-vacuum database. 3385 ** 3386 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages 3387 ** the database file should be truncated to during the commit process. 3388 ** i.e. the database has been reorganized so that only the first *pnTrunc 3389 ** pages are in use. 3390 */ 3391 static int autoVacuumCommit(BtShared *pBt){ 3392 int rc = SQLITE_OK; 3393 Pager *pPager = pBt->pPager; 3394 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) ); 3395 3396 assert( sqlite3_mutex_held(pBt->mutex) ); 3397 invalidateAllOverflowCache(pBt); 3398 assert(pBt->autoVacuum); 3399 if( !pBt->incrVacuum ){ 3400 Pgno nFin; /* Number of pages in database after autovacuuming */ 3401 Pgno nFree; /* Number of pages on the freelist initially */ 3402 Pgno iFree; /* The next page to be freed */ 3403 Pgno nOrig; /* Database size before freeing */ 3404 3405 nOrig = btreePagecount(pBt); 3406 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3407 /* It is not possible to create a database for which the final page 3408 ** is either a pointer-map page or the pending-byte page. If one 3409 ** is encountered, this indicates corruption. 3410 */ 3411 return SQLITE_CORRUPT_BKPT; 3412 } 3413 3414 nFree = get4byte(&pBt->pPage1->aData[36]); 3415 nFin = finalDbSize(pBt, nOrig, nFree); 3416 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 3417 if( nFin<nOrig ){ 3418 rc = saveAllCursors(pBt, 0, 0); 3419 } 3420 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 3421 rc = incrVacuumStep(pBt, nFin, iFree, 1); 3422 } 3423 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 3424 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3425 put4byte(&pBt->pPage1->aData[32], 0); 3426 put4byte(&pBt->pPage1->aData[36], 0); 3427 put4byte(&pBt->pPage1->aData[28], nFin); 3428 pBt->bDoTruncate = 1; 3429 pBt->nPage = nFin; 3430 } 3431 if( rc!=SQLITE_OK ){ 3432 sqlite3PagerRollback(pPager); 3433 } 3434 } 3435 3436 assert( nRef>=sqlite3PagerRefcount(pPager) ); 3437 return rc; 3438 } 3439 3440 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 3441 # define setChildPtrmaps(x) SQLITE_OK 3442 #endif 3443 3444 /* 3445 ** This routine does the first phase of a two-phase commit. This routine 3446 ** causes a rollback journal to be created (if it does not already exist) 3447 ** and populated with enough information so that if a power loss occurs 3448 ** the database can be restored to its original state by playing back 3449 ** the journal. Then the contents of the journal are flushed out to 3450 ** the disk. After the journal is safely on oxide, the changes to the 3451 ** database are written into the database file and flushed to oxide. 3452 ** At the end of this call, the rollback journal still exists on the 3453 ** disk and we are still holding all locks, so the transaction has not 3454 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 3455 ** commit process. 3456 ** 3457 ** This call is a no-op if no write-transaction is currently active on pBt. 3458 ** 3459 ** Otherwise, sync the database file for the btree pBt. zMaster points to 3460 ** the name of a master journal file that should be written into the 3461 ** individual journal file, or is NULL, indicating no master journal file 3462 ** (single database transaction). 3463 ** 3464 ** When this is called, the master journal should already have been 3465 ** created, populated with this journal pointer and synced to disk. 3466 ** 3467 ** Once this is routine has returned, the only thing required to commit 3468 ** the write-transaction for this database file is to delete the journal. 3469 */ 3470 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ 3471 int rc = SQLITE_OK; 3472 if( p->inTrans==TRANS_WRITE ){ 3473 BtShared *pBt = p->pBt; 3474 sqlite3BtreeEnter(p); 3475 #ifndef SQLITE_OMIT_AUTOVACUUM 3476 if( pBt->autoVacuum ){ 3477 rc = autoVacuumCommit(pBt); 3478 if( rc!=SQLITE_OK ){ 3479 sqlite3BtreeLeave(p); 3480 return rc; 3481 } 3482 } 3483 if( pBt->bDoTruncate ){ 3484 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 3485 } 3486 #endif 3487 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); 3488 sqlite3BtreeLeave(p); 3489 } 3490 return rc; 3491 } 3492 3493 /* 3494 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 3495 ** at the conclusion of a transaction. 3496 */ 3497 static void btreeEndTransaction(Btree *p){ 3498 BtShared *pBt = p->pBt; 3499 sqlite3 *db = p->db; 3500 assert( sqlite3BtreeHoldsMutex(p) ); 3501 3502 #ifndef SQLITE_OMIT_AUTOVACUUM 3503 pBt->bDoTruncate = 0; 3504 #endif 3505 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 3506 /* If there are other active statements that belong to this database 3507 ** handle, downgrade to a read-only transaction. The other statements 3508 ** may still be reading from the database. */ 3509 downgradeAllSharedCacheTableLocks(p); 3510 p->inTrans = TRANS_READ; 3511 }else{ 3512 /* If the handle had any kind of transaction open, decrement the 3513 ** transaction count of the shared btree. If the transaction count 3514 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 3515 ** call below will unlock the pager. */ 3516 if( p->inTrans!=TRANS_NONE ){ 3517 clearAllSharedCacheTableLocks(p); 3518 pBt->nTransaction--; 3519 if( 0==pBt->nTransaction ){ 3520 pBt->inTransaction = TRANS_NONE; 3521 } 3522 } 3523 3524 /* Set the current transaction state to TRANS_NONE and unlock the 3525 ** pager if this call closed the only read or write transaction. */ 3526 p->inTrans = TRANS_NONE; 3527 unlockBtreeIfUnused(pBt); 3528 } 3529 3530 btreeIntegrity(p); 3531 } 3532 3533 /* 3534 ** Commit the transaction currently in progress. 3535 ** 3536 ** This routine implements the second phase of a 2-phase commit. The 3537 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 3538 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 3539 ** routine did all the work of writing information out to disk and flushing the 3540 ** contents so that they are written onto the disk platter. All this 3541 ** routine has to do is delete or truncate or zero the header in the 3542 ** the rollback journal (which causes the transaction to commit) and 3543 ** drop locks. 3544 ** 3545 ** Normally, if an error occurs while the pager layer is attempting to 3546 ** finalize the underlying journal file, this function returns an error and 3547 ** the upper layer will attempt a rollback. However, if the second argument 3548 ** is non-zero then this b-tree transaction is part of a multi-file 3549 ** transaction. In this case, the transaction has already been committed 3550 ** (by deleting a master journal file) and the caller will ignore this 3551 ** functions return code. So, even if an error occurs in the pager layer, 3552 ** reset the b-tree objects internal state to indicate that the write 3553 ** transaction has been closed. This is quite safe, as the pager will have 3554 ** transitioned to the error state. 3555 ** 3556 ** This will release the write lock on the database file. If there 3557 ** are no active cursors, it also releases the read lock. 3558 */ 3559 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 3560 3561 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 3562 sqlite3BtreeEnter(p); 3563 btreeIntegrity(p); 3564 3565 /* If the handle has a write-transaction open, commit the shared-btrees 3566 ** transaction and set the shared state to TRANS_READ. 3567 */ 3568 if( p->inTrans==TRANS_WRITE ){ 3569 int rc; 3570 BtShared *pBt = p->pBt; 3571 assert( pBt->inTransaction==TRANS_WRITE ); 3572 assert( pBt->nTransaction>0 ); 3573 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 3574 if( rc!=SQLITE_OK && bCleanup==0 ){ 3575 sqlite3BtreeLeave(p); 3576 return rc; 3577 } 3578 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */ 3579 pBt->inTransaction = TRANS_READ; 3580 btreeClearHasContent(pBt); 3581 } 3582 3583 btreeEndTransaction(p); 3584 sqlite3BtreeLeave(p); 3585 return SQLITE_OK; 3586 } 3587 3588 /* 3589 ** Do both phases of a commit. 3590 */ 3591 int sqlite3BtreeCommit(Btree *p){ 3592 int rc; 3593 sqlite3BtreeEnter(p); 3594 rc = sqlite3BtreeCommitPhaseOne(p, 0); 3595 if( rc==SQLITE_OK ){ 3596 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 3597 } 3598 sqlite3BtreeLeave(p); 3599 return rc; 3600 } 3601 3602 /* 3603 ** This routine sets the state to CURSOR_FAULT and the error 3604 ** code to errCode for every cursor on any BtShared that pBtree 3605 ** references. Or if the writeOnly flag is set to 1, then only 3606 ** trip write cursors and leave read cursors unchanged. 3607 ** 3608 ** Every cursor is a candidate to be tripped, including cursors 3609 ** that belong to other database connections that happen to be 3610 ** sharing the cache with pBtree. 3611 ** 3612 ** This routine gets called when a rollback occurs. If the writeOnly 3613 ** flag is true, then only write-cursors need be tripped - read-only 3614 ** cursors save their current positions so that they may continue 3615 ** following the rollback. Or, if writeOnly is false, all cursors are 3616 ** tripped. In general, writeOnly is false if the transaction being 3617 ** rolled back modified the database schema. In this case b-tree root 3618 ** pages may be moved or deleted from the database altogether, making 3619 ** it unsafe for read cursors to continue. 3620 ** 3621 ** If the writeOnly flag is true and an error is encountered while 3622 ** saving the current position of a read-only cursor, all cursors, 3623 ** including all read-cursors are tripped. 3624 ** 3625 ** SQLITE_OK is returned if successful, or if an error occurs while 3626 ** saving a cursor position, an SQLite error code. 3627 */ 3628 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 3629 BtCursor *p; 3630 int rc = SQLITE_OK; 3631 3632 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 3633 if( pBtree ){ 3634 sqlite3BtreeEnter(pBtree); 3635 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 3636 int i; 3637 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 3638 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 3639 rc = saveCursorPosition(p); 3640 if( rc!=SQLITE_OK ){ 3641 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 3642 break; 3643 } 3644 } 3645 }else{ 3646 sqlite3BtreeClearCursor(p); 3647 p->eState = CURSOR_FAULT; 3648 p->skipNext = errCode; 3649 } 3650 for(i=0; i<=p->iPage; i++){ 3651 releasePage(p->apPage[i]); 3652 p->apPage[i] = 0; 3653 } 3654 } 3655 sqlite3BtreeLeave(pBtree); 3656 } 3657 return rc; 3658 } 3659 3660 /* 3661 ** Rollback the transaction in progress. 3662 ** 3663 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 3664 ** Only write cursors are tripped if writeOnly is true but all cursors are 3665 ** tripped if writeOnly is false. Any attempt to use 3666 ** a tripped cursor will result in an error. 3667 ** 3668 ** This will release the write lock on the database file. If there 3669 ** are no active cursors, it also releases the read lock. 3670 */ 3671 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 3672 int rc; 3673 BtShared *pBt = p->pBt; 3674 MemPage *pPage1; 3675 3676 assert( writeOnly==1 || writeOnly==0 ); 3677 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 3678 sqlite3BtreeEnter(p); 3679 if( tripCode==SQLITE_OK ){ 3680 rc = tripCode = saveAllCursors(pBt, 0, 0); 3681 if( rc ) writeOnly = 0; 3682 }else{ 3683 rc = SQLITE_OK; 3684 } 3685 if( tripCode ){ 3686 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 3687 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 3688 if( rc2!=SQLITE_OK ) rc = rc2; 3689 } 3690 btreeIntegrity(p); 3691 3692 if( p->inTrans==TRANS_WRITE ){ 3693 int rc2; 3694 3695 assert( TRANS_WRITE==pBt->inTransaction ); 3696 rc2 = sqlite3PagerRollback(pBt->pPager); 3697 if( rc2!=SQLITE_OK ){ 3698 rc = rc2; 3699 } 3700 3701 /* The rollback may have destroyed the pPage1->aData value. So 3702 ** call btreeGetPage() on page 1 again to make 3703 ** sure pPage1->aData is set correctly. */ 3704 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 3705 int nPage = get4byte(28+(u8*)pPage1->aData); 3706 testcase( nPage==0 ); 3707 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 3708 testcase( pBt->nPage!=nPage ); 3709 pBt->nPage = nPage; 3710 releasePage(pPage1); 3711 } 3712 assert( countValidCursors(pBt, 1)==0 ); 3713 pBt->inTransaction = TRANS_READ; 3714 btreeClearHasContent(pBt); 3715 } 3716 3717 btreeEndTransaction(p); 3718 sqlite3BtreeLeave(p); 3719 return rc; 3720 } 3721 3722 /* 3723 ** Start a statement subtransaction. The subtransaction can be rolled 3724 ** back independently of the main transaction. You must start a transaction 3725 ** before starting a subtransaction. The subtransaction is ended automatically 3726 ** if the main transaction commits or rolls back. 3727 ** 3728 ** Statement subtransactions are used around individual SQL statements 3729 ** that are contained within a BEGIN...COMMIT block. If a constraint 3730 ** error occurs within the statement, the effect of that one statement 3731 ** can be rolled back without having to rollback the entire transaction. 3732 ** 3733 ** A statement sub-transaction is implemented as an anonymous savepoint. The 3734 ** value passed as the second parameter is the total number of savepoints, 3735 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 3736 ** are no active savepoints and no other statement-transactions open, 3737 ** iStatement is 1. This anonymous savepoint can be released or rolled back 3738 ** using the sqlite3BtreeSavepoint() function. 3739 */ 3740 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 3741 int rc; 3742 BtShared *pBt = p->pBt; 3743 sqlite3BtreeEnter(p); 3744 assert( p->inTrans==TRANS_WRITE ); 3745 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 3746 assert( iStatement>0 ); 3747 assert( iStatement>p->db->nSavepoint ); 3748 assert( pBt->inTransaction==TRANS_WRITE ); 3749 /* At the pager level, a statement transaction is a savepoint with 3750 ** an index greater than all savepoints created explicitly using 3751 ** SQL statements. It is illegal to open, release or rollback any 3752 ** such savepoints while the statement transaction savepoint is active. 3753 */ 3754 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 3755 sqlite3BtreeLeave(p); 3756 return rc; 3757 } 3758 3759 /* 3760 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 3761 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 3762 ** savepoint identified by parameter iSavepoint, depending on the value 3763 ** of op. 3764 ** 3765 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 3766 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 3767 ** contents of the entire transaction are rolled back. This is different 3768 ** from a normal transaction rollback, as no locks are released and the 3769 ** transaction remains open. 3770 */ 3771 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 3772 int rc = SQLITE_OK; 3773 if( p && p->inTrans==TRANS_WRITE ){ 3774 BtShared *pBt = p->pBt; 3775 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 3776 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 3777 sqlite3BtreeEnter(p); 3778 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 3779 if( rc==SQLITE_OK ){ 3780 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 3781 pBt->nPage = 0; 3782 } 3783 rc = newDatabase(pBt); 3784 pBt->nPage = get4byte(28 + pBt->pPage1->aData); 3785 3786 /* The database size was written into the offset 28 of the header 3787 ** when the transaction started, so we know that the value at offset 3788 ** 28 is nonzero. */ 3789 assert( pBt->nPage>0 ); 3790 } 3791 sqlite3BtreeLeave(p); 3792 } 3793 return rc; 3794 } 3795 3796 /* 3797 ** Create a new cursor for the BTree whose root is on the page 3798 ** iTable. If a read-only cursor is requested, it is assumed that 3799 ** the caller already has at least a read-only transaction open 3800 ** on the database already. If a write-cursor is requested, then 3801 ** the caller is assumed to have an open write transaction. 3802 ** 3803 ** If wrFlag==0, then the cursor can only be used for reading. 3804 ** If wrFlag==1, then the cursor can be used for reading or for 3805 ** writing if other conditions for writing are also met. These 3806 ** are the conditions that must be met in order for writing to 3807 ** be allowed: 3808 ** 3809 ** 1: The cursor must have been opened with wrFlag==1 3810 ** 3811 ** 2: Other database connections that share the same pager cache 3812 ** but which are not in the READ_UNCOMMITTED state may not have 3813 ** cursors open with wrFlag==0 on the same table. Otherwise 3814 ** the changes made by this write cursor would be visible to 3815 ** the read cursors in the other database connection. 3816 ** 3817 ** 3: The database must be writable (not on read-only media) 3818 ** 3819 ** 4: There must be an active transaction. 3820 ** 3821 ** No checking is done to make sure that page iTable really is the 3822 ** root page of a b-tree. If it is not, then the cursor acquired 3823 ** will not work correctly. 3824 ** 3825 ** It is assumed that the sqlite3BtreeCursorZero() has been called 3826 ** on pCur to initialize the memory space prior to invoking this routine. 3827 */ 3828 static int btreeCursor( 3829 Btree *p, /* The btree */ 3830 int iTable, /* Root page of table to open */ 3831 int wrFlag, /* 1 to write. 0 read-only */ 3832 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 3833 BtCursor *pCur /* Space for new cursor */ 3834 ){ 3835 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 3836 3837 assert( sqlite3BtreeHoldsMutex(p) ); 3838 assert( wrFlag==0 || wrFlag==1 ); 3839 3840 /* The following assert statements verify that if this is a sharable 3841 ** b-tree database, the connection is holding the required table locks, 3842 ** and that no other connection has any open cursor that conflicts with 3843 ** this lock. */ 3844 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) ); 3845 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 3846 3847 /* Assert that the caller has opened the required transaction. */ 3848 assert( p->inTrans>TRANS_NONE ); 3849 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 3850 assert( pBt->pPage1 && pBt->pPage1->aData ); 3851 3852 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){ 3853 return SQLITE_READONLY; 3854 } 3855 if( wrFlag ){ 3856 allocateTempSpace(pBt); 3857 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM; 3858 } 3859 if( iTable==1 && btreePagecount(pBt)==0 ){ 3860 assert( wrFlag==0 ); 3861 iTable = 0; 3862 } 3863 3864 /* Now that no other errors can occur, finish filling in the BtCursor 3865 ** variables and link the cursor into the BtShared list. */ 3866 pCur->pgnoRoot = (Pgno)iTable; 3867 pCur->iPage = -1; 3868 pCur->pKeyInfo = pKeyInfo; 3869 pCur->pBtree = p; 3870 pCur->pBt = pBt; 3871 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag ); 3872 pCur->curFlags = wrFlag; 3873 pCur->pNext = pBt->pCursor; 3874 if( pCur->pNext ){ 3875 pCur->pNext->pPrev = pCur; 3876 } 3877 pBt->pCursor = pCur; 3878 pCur->eState = CURSOR_INVALID; 3879 return SQLITE_OK; 3880 } 3881 int sqlite3BtreeCursor( 3882 Btree *p, /* The btree */ 3883 int iTable, /* Root page of table to open */ 3884 int wrFlag, /* 1 to write. 0 read-only */ 3885 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 3886 BtCursor *pCur /* Write new cursor here */ 3887 ){ 3888 int rc; 3889 sqlite3BtreeEnter(p); 3890 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 3891 sqlite3BtreeLeave(p); 3892 return rc; 3893 } 3894 3895 /* 3896 ** Return the size of a BtCursor object in bytes. 3897 ** 3898 ** This interfaces is needed so that users of cursors can preallocate 3899 ** sufficient storage to hold a cursor. The BtCursor object is opaque 3900 ** to users so they cannot do the sizeof() themselves - they must call 3901 ** this routine. 3902 */ 3903 int sqlite3BtreeCursorSize(void){ 3904 return ROUND8(sizeof(BtCursor)); 3905 } 3906 3907 /* 3908 ** Initialize memory that will be converted into a BtCursor object. 3909 ** 3910 ** The simple approach here would be to memset() the entire object 3911 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 3912 ** do not need to be zeroed and they are large, so we can save a lot 3913 ** of run-time by skipping the initialization of those elements. 3914 */ 3915 void sqlite3BtreeCursorZero(BtCursor *p){ 3916 memset(p, 0, offsetof(BtCursor, iPage)); 3917 } 3918 3919 /* 3920 ** Close a cursor. The read lock on the database file is released 3921 ** when the last cursor is closed. 3922 */ 3923 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 3924 Btree *pBtree = pCur->pBtree; 3925 if( pBtree ){ 3926 int i; 3927 BtShared *pBt = pCur->pBt; 3928 sqlite3BtreeEnter(pBtree); 3929 sqlite3BtreeClearCursor(pCur); 3930 if( pCur->pPrev ){ 3931 pCur->pPrev->pNext = pCur->pNext; 3932 }else{ 3933 pBt->pCursor = pCur->pNext; 3934 } 3935 if( pCur->pNext ){ 3936 pCur->pNext->pPrev = pCur->pPrev; 3937 } 3938 for(i=0; i<=pCur->iPage; i++){ 3939 releasePage(pCur->apPage[i]); 3940 } 3941 unlockBtreeIfUnused(pBt); 3942 sqlite3_free(pCur->aOverflow); 3943 /* sqlite3_free(pCur); */ 3944 sqlite3BtreeLeave(pBtree); 3945 } 3946 return SQLITE_OK; 3947 } 3948 3949 /* 3950 ** Make sure the BtCursor* given in the argument has a valid 3951 ** BtCursor.info structure. If it is not already valid, call 3952 ** btreeParseCell() to fill it in. 3953 ** 3954 ** BtCursor.info is a cache of the information in the current cell. 3955 ** Using this cache reduces the number of calls to btreeParseCell(). 3956 ** 3957 ** 2007-06-25: There is a bug in some versions of MSVC that cause the 3958 ** compiler to crash when getCellInfo() is implemented as a macro. 3959 ** But there is a measureable speed advantage to using the macro on gcc 3960 ** (when less compiler optimizations like -Os or -O0 are used and the 3961 ** compiler is not doing aggressive inlining.) So we use a real function 3962 ** for MSVC and a macro for everything else. Ticket #2457. 3963 */ 3964 #ifndef NDEBUG 3965 static void assertCellInfo(BtCursor *pCur){ 3966 CellInfo info; 3967 int iPage = pCur->iPage; 3968 memset(&info, 0, sizeof(info)); 3969 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); 3970 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 ); 3971 } 3972 #else 3973 #define assertCellInfo(x) 3974 #endif 3975 #ifdef _MSC_VER 3976 /* Use a real function in MSVC to work around bugs in that compiler. */ 3977 static void getCellInfo(BtCursor *pCur){ 3978 if( pCur->info.nSize==0 ){ 3979 int iPage = pCur->iPage; 3980 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); 3981 pCur->curFlags |= BTCF_ValidNKey; 3982 }else{ 3983 assertCellInfo(pCur); 3984 } 3985 } 3986 #else /* if not _MSC_VER */ 3987 /* Use a macro in all other compilers so that the function is inlined */ 3988 #define getCellInfo(pCur) \ 3989 if( pCur->info.nSize==0 ){ \ 3990 int iPage = pCur->iPage; \ 3991 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \ 3992 pCur->curFlags |= BTCF_ValidNKey; \ 3993 }else{ \ 3994 assertCellInfo(pCur); \ 3995 } 3996 #endif /* _MSC_VER */ 3997 3998 #ifndef NDEBUG /* The next routine used only within assert() statements */ 3999 /* 4000 ** Return true if the given BtCursor is valid. A valid cursor is one 4001 ** that is currently pointing to a row in a (non-empty) table. 4002 ** This is a verification routine is used only within assert() statements. 4003 */ 4004 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4005 return pCur && pCur->eState==CURSOR_VALID; 4006 } 4007 #endif /* NDEBUG */ 4008 4009 /* 4010 ** Set *pSize to the size of the buffer needed to hold the value of 4011 ** the key for the current entry. If the cursor is not pointing 4012 ** to a valid entry, *pSize is set to 0. 4013 ** 4014 ** For a table with the INTKEY flag set, this routine returns the key 4015 ** itself, not the number of bytes in the key. 4016 ** 4017 ** The caller must position the cursor prior to invoking this routine. 4018 ** 4019 ** This routine cannot fail. It always returns SQLITE_OK. 4020 */ 4021 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ 4022 assert( cursorHoldsMutex(pCur) ); 4023 assert( pCur->eState==CURSOR_VALID ); 4024 getCellInfo(pCur); 4025 *pSize = pCur->info.nKey; 4026 return SQLITE_OK; 4027 } 4028 4029 /* 4030 ** Set *pSize to the number of bytes of data in the entry the 4031 ** cursor currently points to. 4032 ** 4033 ** The caller must guarantee that the cursor is pointing to a non-NULL 4034 ** valid entry. In other words, the calling procedure must guarantee 4035 ** that the cursor has Cursor.eState==CURSOR_VALID. 4036 ** 4037 ** Failure is not possible. This function always returns SQLITE_OK. 4038 ** It might just as well be a procedure (returning void) but we continue 4039 ** to return an integer result code for historical reasons. 4040 */ 4041 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ 4042 assert( cursorHoldsMutex(pCur) ); 4043 assert( pCur->eState==CURSOR_VALID ); 4044 assert( pCur->iPage>=0 ); 4045 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 4046 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 ); 4047 getCellInfo(pCur); 4048 *pSize = pCur->info.nPayload; 4049 return SQLITE_OK; 4050 } 4051 4052 /* 4053 ** Given the page number of an overflow page in the database (parameter 4054 ** ovfl), this function finds the page number of the next page in the 4055 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4056 ** pointer-map data instead of reading the content of page ovfl to do so. 4057 ** 4058 ** If an error occurs an SQLite error code is returned. Otherwise: 4059 ** 4060 ** The page number of the next overflow page in the linked list is 4061 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4062 ** list, *pPgnoNext is set to zero. 4063 ** 4064 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4065 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4066 ** reference. It is the responsibility of the caller to call releasePage() 4067 ** on *ppPage to free the reference. In no reference was obtained (because 4068 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4069 ** *ppPage is set to zero. 4070 */ 4071 static int getOverflowPage( 4072 BtShared *pBt, /* The database file */ 4073 Pgno ovfl, /* Current overflow page number */ 4074 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4075 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4076 ){ 4077 Pgno next = 0; 4078 MemPage *pPage = 0; 4079 int rc = SQLITE_OK; 4080 4081 assert( sqlite3_mutex_held(pBt->mutex) ); 4082 assert(pPgnoNext); 4083 4084 #ifndef SQLITE_OMIT_AUTOVACUUM 4085 /* Try to find the next page in the overflow list using the 4086 ** autovacuum pointer-map pages. Guess that the next page in 4087 ** the overflow list is page number (ovfl+1). If that guess turns 4088 ** out to be wrong, fall back to loading the data of page 4089 ** number ovfl to determine the next page number. 4090 */ 4091 if( pBt->autoVacuum ){ 4092 Pgno pgno; 4093 Pgno iGuess = ovfl+1; 4094 u8 eType; 4095 4096 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4097 iGuess++; 4098 } 4099 4100 if( iGuess<=btreePagecount(pBt) ){ 4101 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4102 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4103 next = iGuess; 4104 rc = SQLITE_DONE; 4105 } 4106 } 4107 } 4108 #endif 4109 4110 assert( next==0 || rc==SQLITE_DONE ); 4111 if( rc==SQLITE_OK ){ 4112 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4113 assert( rc==SQLITE_OK || pPage==0 ); 4114 if( rc==SQLITE_OK ){ 4115 next = get4byte(pPage->aData); 4116 } 4117 } 4118 4119 *pPgnoNext = next; 4120 if( ppPage ){ 4121 *ppPage = pPage; 4122 }else{ 4123 releasePage(pPage); 4124 } 4125 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4126 } 4127 4128 /* 4129 ** Copy data from a buffer to a page, or from a page to a buffer. 4130 ** 4131 ** pPayload is a pointer to data stored on database page pDbPage. 4132 ** If argument eOp is false, then nByte bytes of data are copied 4133 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4134 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4135 ** of data are copied from the buffer pBuf to pPayload. 4136 ** 4137 ** SQLITE_OK is returned on success, otherwise an error code. 4138 */ 4139 static int copyPayload( 4140 void *pPayload, /* Pointer to page data */ 4141 void *pBuf, /* Pointer to buffer */ 4142 int nByte, /* Number of bytes to copy */ 4143 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4144 DbPage *pDbPage /* Page containing pPayload */ 4145 ){ 4146 if( eOp ){ 4147 /* Copy data from buffer to page (a write operation) */ 4148 int rc = sqlite3PagerWrite(pDbPage); 4149 if( rc!=SQLITE_OK ){ 4150 return rc; 4151 } 4152 memcpy(pPayload, pBuf, nByte); 4153 }else{ 4154 /* Copy data from page to buffer (a read operation) */ 4155 memcpy(pBuf, pPayload, nByte); 4156 } 4157 return SQLITE_OK; 4158 } 4159 4160 /* 4161 ** This function is used to read or overwrite payload information 4162 ** for the entry that the pCur cursor is pointing to. The eOp 4163 ** argument is interpreted as follows: 4164 ** 4165 ** 0: The operation is a read. Populate the overflow cache. 4166 ** 1: The operation is a write. Populate the overflow cache. 4167 ** 2: The operation is a read. Do not populate the overflow cache. 4168 ** 4169 ** A total of "amt" bytes are read or written beginning at "offset". 4170 ** Data is read to or from the buffer pBuf. 4171 ** 4172 ** The content being read or written might appear on the main page 4173 ** or be scattered out on multiple overflow pages. 4174 ** 4175 ** If the current cursor entry uses one or more overflow pages and the 4176 ** eOp argument is not 2, this function may allocate space for and lazily 4177 ** populates the overflow page-list cache array (BtCursor.aOverflow). 4178 ** Subsequent calls use this cache to make seeking to the supplied offset 4179 ** more efficient. 4180 ** 4181 ** Once an overflow page-list cache has been allocated, it may be 4182 ** invalidated if some other cursor writes to the same table, or if 4183 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4184 ** mode, the following events may invalidate an overflow page-list cache. 4185 ** 4186 ** * An incremental vacuum, 4187 ** * A commit in auto_vacuum="full" mode, 4188 ** * Creating a table (may require moving an overflow page). 4189 */ 4190 static int accessPayload( 4191 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4192 u32 offset, /* Begin reading this far into payload */ 4193 u32 amt, /* Read this many bytes */ 4194 unsigned char *pBuf, /* Write the bytes into this buffer */ 4195 int eOp /* zero to read. non-zero to write. */ 4196 ){ 4197 unsigned char *aPayload; 4198 int rc = SQLITE_OK; 4199 int iIdx = 0; 4200 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ 4201 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4202 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4203 unsigned char * const pBufStart = pBuf; 4204 int bEnd; /* True if reading to end of data */ 4205 #endif 4206 4207 assert( pPage ); 4208 assert( pCur->eState==CURSOR_VALID ); 4209 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); 4210 assert( cursorHoldsMutex(pCur) ); 4211 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */ 4212 4213 getCellInfo(pCur); 4214 aPayload = pCur->info.pPayload; 4215 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4216 bEnd = offset+amt==pCur->info.nPayload; 4217 #endif 4218 assert( offset+amt <= pCur->info.nPayload ); 4219 4220 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){ 4221 /* Trying to read or write past the end of the data is an error */ 4222 return SQLITE_CORRUPT_BKPT; 4223 } 4224 4225 /* Check if data must be read/written to/from the btree page itself. */ 4226 if( offset<pCur->info.nLocal ){ 4227 int a = amt; 4228 if( a+offset>pCur->info.nLocal ){ 4229 a = pCur->info.nLocal - offset; 4230 } 4231 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage); 4232 offset = 0; 4233 pBuf += a; 4234 amt -= a; 4235 }else{ 4236 offset -= pCur->info.nLocal; 4237 } 4238 4239 4240 if( rc==SQLITE_OK && amt>0 ){ 4241 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4242 Pgno nextPage; 4243 4244 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4245 4246 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4247 ** Except, do not allocate aOverflow[] for eOp==2. 4248 ** 4249 ** The aOverflow[] array is sized at one entry for each overflow page 4250 ** in the overflow chain. The page number of the first overflow page is 4251 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4252 ** means "not yet known" (the cache is lazily populated). 4253 */ 4254 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4255 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4256 if( nOvfl>pCur->nOvflAlloc ){ 4257 Pgno *aNew = (Pgno*)sqlite3Realloc( 4258 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4259 ); 4260 if( aNew==0 ){ 4261 rc = SQLITE_NOMEM; 4262 }else{ 4263 pCur->nOvflAlloc = nOvfl*2; 4264 pCur->aOverflow = aNew; 4265 } 4266 } 4267 if( rc==SQLITE_OK ){ 4268 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4269 pCur->curFlags |= BTCF_ValidOvfl; 4270 } 4271 } 4272 4273 /* If the overflow page-list cache has been allocated and the 4274 ** entry for the first required overflow page is valid, skip 4275 ** directly to it. 4276 */ 4277 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 4278 && pCur->aOverflow[offset/ovflSize] 4279 ){ 4280 iIdx = (offset/ovflSize); 4281 nextPage = pCur->aOverflow[iIdx]; 4282 offset = (offset%ovflSize); 4283 } 4284 4285 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ 4286 4287 /* If required, populate the overflow page-list cache. */ 4288 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){ 4289 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage); 4290 pCur->aOverflow[iIdx] = nextPage; 4291 } 4292 4293 if( offset>=ovflSize ){ 4294 /* The only reason to read this page is to obtain the page 4295 ** number for the next page in the overflow chain. The page 4296 ** data is not required. So first try to lookup the overflow 4297 ** page-list cache, if any, then fall back to the getOverflowPage() 4298 ** function. 4299 ** 4300 ** Note that the aOverflow[] array must be allocated because eOp!=2 4301 ** here. If eOp==2, then offset==0 and this branch is never taken. 4302 */ 4303 assert( eOp!=2 ); 4304 assert( pCur->curFlags & BTCF_ValidOvfl ); 4305 assert( pCur->pBtree->db==pBt->db ); 4306 if( pCur->aOverflow[iIdx+1] ){ 4307 nextPage = pCur->aOverflow[iIdx+1]; 4308 }else{ 4309 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4310 } 4311 offset -= ovflSize; 4312 }else{ 4313 /* Need to read this page properly. It contains some of the 4314 ** range of data that is being read (eOp==0) or written (eOp!=0). 4315 */ 4316 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4317 sqlite3_file *fd; 4318 #endif 4319 int a = amt; 4320 if( a + offset > ovflSize ){ 4321 a = ovflSize - offset; 4322 } 4323 4324 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4325 /* If all the following are true: 4326 ** 4327 ** 1) this is a read operation, and 4328 ** 2) data is required from the start of this overflow page, and 4329 ** 3) the database is file-backed, and 4330 ** 4) there is no open write-transaction, and 4331 ** 5) the database is not a WAL database, 4332 ** 6) all data from the page is being read. 4333 ** 7) at least 4 bytes have already been read into the output buffer 4334 ** 4335 ** then data can be read directly from the database file into the 4336 ** output buffer, bypassing the page-cache altogether. This speeds 4337 ** up loading large records that span many overflow pages. 4338 */ 4339 if( (eOp&0x01)==0 /* (1) */ 4340 && offset==0 /* (2) */ 4341 && (bEnd || a==ovflSize) /* (6) */ 4342 && pBt->inTransaction==TRANS_READ /* (4) */ 4343 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */ 4344 && pBt->pPage1->aData[19]==0x01 /* (5) */ 4345 && &pBuf[-4]>=pBufStart /* (7) */ 4346 ){ 4347 u8 aSave[4]; 4348 u8 *aWrite = &pBuf[-4]; 4349 assert( aWrite>=pBufStart ); /* hence (7) */ 4350 memcpy(aSave, aWrite, 4); 4351 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 4352 nextPage = get4byte(aWrite); 4353 memcpy(aWrite, aSave, 4); 4354 }else 4355 #endif 4356 4357 { 4358 DbPage *pDbPage; 4359 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage, 4360 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0) 4361 ); 4362 if( rc==SQLITE_OK ){ 4363 aPayload = sqlite3PagerGetData(pDbPage); 4364 nextPage = get4byte(aPayload); 4365 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage); 4366 sqlite3PagerUnref(pDbPage); 4367 offset = 0; 4368 } 4369 } 4370 amt -= a; 4371 pBuf += a; 4372 } 4373 } 4374 } 4375 4376 if( rc==SQLITE_OK && amt>0 ){ 4377 return SQLITE_CORRUPT_BKPT; 4378 } 4379 return rc; 4380 } 4381 4382 /* 4383 ** Read part of the key associated with cursor pCur. Exactly 4384 ** "amt" bytes will be transferred into pBuf[]. The transfer 4385 ** begins at "offset". 4386 ** 4387 ** The caller must ensure that pCur is pointing to a valid row 4388 ** in the table. 4389 ** 4390 ** Return SQLITE_OK on success or an error code if anything goes 4391 ** wrong. An error is returned if "offset+amt" is larger than 4392 ** the available payload. 4393 */ 4394 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4395 assert( cursorHoldsMutex(pCur) ); 4396 assert( pCur->eState==CURSOR_VALID ); 4397 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); 4398 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); 4399 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 4400 } 4401 4402 /* 4403 ** Read part of the data associated with cursor pCur. Exactly 4404 ** "amt" bytes will be transfered into pBuf[]. The transfer 4405 ** begins at "offset". 4406 ** 4407 ** Return SQLITE_OK on success or an error code if anything goes 4408 ** wrong. An error is returned if "offset+amt" is larger than 4409 ** the available payload. 4410 */ 4411 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4412 int rc; 4413 4414 #ifndef SQLITE_OMIT_INCRBLOB 4415 if ( pCur->eState==CURSOR_INVALID ){ 4416 return SQLITE_ABORT; 4417 } 4418 #endif 4419 4420 assert( cursorHoldsMutex(pCur) ); 4421 rc = restoreCursorPosition(pCur); 4422 if( rc==SQLITE_OK ){ 4423 assert( pCur->eState==CURSOR_VALID ); 4424 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); 4425 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); 4426 rc = accessPayload(pCur, offset, amt, pBuf, 0); 4427 } 4428 return rc; 4429 } 4430 4431 /* 4432 ** Return a pointer to payload information from the entry that the 4433 ** pCur cursor is pointing to. The pointer is to the beginning of 4434 ** the key if index btrees (pPage->intKey==0) and is the data for 4435 ** table btrees (pPage->intKey==1). The number of bytes of available 4436 ** key/data is written into *pAmt. If *pAmt==0, then the value 4437 ** returned will not be a valid pointer. 4438 ** 4439 ** This routine is an optimization. It is common for the entire key 4440 ** and data to fit on the local page and for there to be no overflow 4441 ** pages. When that is so, this routine can be used to access the 4442 ** key and data without making a copy. If the key and/or data spills 4443 ** onto overflow pages, then accessPayload() must be used to reassemble 4444 ** the key/data and copy it into a preallocated buffer. 4445 ** 4446 ** The pointer returned by this routine looks directly into the cached 4447 ** page of the database. The data might change or move the next time 4448 ** any btree routine is called. 4449 */ 4450 static const void *fetchPayload( 4451 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4452 u32 *pAmt /* Write the number of available bytes here */ 4453 ){ 4454 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); 4455 assert( pCur->eState==CURSOR_VALID ); 4456 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4457 assert( cursorHoldsMutex(pCur) ); 4458 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); 4459 assert( pCur->info.nSize>0 ); 4460 *pAmt = pCur->info.nLocal; 4461 return (void*)pCur->info.pPayload; 4462 } 4463 4464 4465 /* 4466 ** For the entry that cursor pCur is point to, return as 4467 ** many bytes of the key or data as are available on the local 4468 ** b-tree page. Write the number of available bytes into *pAmt. 4469 ** 4470 ** The pointer returned is ephemeral. The key/data may move 4471 ** or be destroyed on the next call to any Btree routine, 4472 ** including calls from other threads against the same cache. 4473 ** Hence, a mutex on the BtShared should be held prior to calling 4474 ** this routine. 4475 ** 4476 ** These routines is used to get quick access to key and data 4477 ** in the common case where no overflow pages are used. 4478 */ 4479 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){ 4480 return fetchPayload(pCur, pAmt); 4481 } 4482 const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){ 4483 return fetchPayload(pCur, pAmt); 4484 } 4485 4486 4487 /* 4488 ** Move the cursor down to a new child page. The newPgno argument is the 4489 ** page number of the child page to move to. 4490 ** 4491 ** This function returns SQLITE_CORRUPT if the page-header flags field of 4492 ** the new child page does not match the flags field of the parent (i.e. 4493 ** if an intkey page appears to be the parent of a non-intkey page, or 4494 ** vice-versa). 4495 */ 4496 static int moveToChild(BtCursor *pCur, u32 newPgno){ 4497 int rc; 4498 int i = pCur->iPage; 4499 MemPage *pNewPage; 4500 BtShared *pBt = pCur->pBt; 4501 4502 assert( cursorHoldsMutex(pCur) ); 4503 assert( pCur->eState==CURSOR_VALID ); 4504 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 4505 assert( pCur->iPage>=0 ); 4506 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 4507 return SQLITE_CORRUPT_BKPT; 4508 } 4509 rc = getAndInitPage(pBt, newPgno, &pNewPage, 4510 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0); 4511 if( rc ) return rc; 4512 pCur->apPage[i+1] = pNewPage; 4513 pCur->aiIdx[i+1] = 0; 4514 pCur->iPage++; 4515 4516 pCur->info.nSize = 0; 4517 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 4518 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){ 4519 return SQLITE_CORRUPT_BKPT; 4520 } 4521 return SQLITE_OK; 4522 } 4523 4524 #if SQLITE_DEBUG 4525 /* 4526 ** Page pParent is an internal (non-leaf) tree page. This function 4527 ** asserts that page number iChild is the left-child if the iIdx'th 4528 ** cell in page pParent. Or, if iIdx is equal to the total number of 4529 ** cells in pParent, that page number iChild is the right-child of 4530 ** the page. 4531 */ 4532 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 4533 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 4534 ** in a corrupt database */ 4535 assert( iIdx<=pParent->nCell ); 4536 if( iIdx==pParent->nCell ){ 4537 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 4538 }else{ 4539 assert( get4byte(findCell(pParent, iIdx))==iChild ); 4540 } 4541 } 4542 #else 4543 # define assertParentIndex(x,y,z) 4544 #endif 4545 4546 /* 4547 ** Move the cursor up to the parent page. 4548 ** 4549 ** pCur->idx is set to the cell index that contains the pointer 4550 ** to the page we are coming from. If we are coming from the 4551 ** right-most child page then pCur->idx is set to one more than 4552 ** the largest cell index. 4553 */ 4554 static void moveToParent(BtCursor *pCur){ 4555 assert( cursorHoldsMutex(pCur) ); 4556 assert( pCur->eState==CURSOR_VALID ); 4557 assert( pCur->iPage>0 ); 4558 assert( pCur->apPage[pCur->iPage] ); 4559 assertParentIndex( 4560 pCur->apPage[pCur->iPage-1], 4561 pCur->aiIdx[pCur->iPage-1], 4562 pCur->apPage[pCur->iPage]->pgno 4563 ); 4564 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 4565 4566 releasePage(pCur->apPage[pCur->iPage]); 4567 pCur->iPage--; 4568 pCur->info.nSize = 0; 4569 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 4570 } 4571 4572 /* 4573 ** Move the cursor to point to the root page of its b-tree structure. 4574 ** 4575 ** If the table has a virtual root page, then the cursor is moved to point 4576 ** to the virtual root page instead of the actual root page. A table has a 4577 ** virtual root page when the actual root page contains no cells and a 4578 ** single child page. This can only happen with the table rooted at page 1. 4579 ** 4580 ** If the b-tree structure is empty, the cursor state is set to 4581 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first 4582 ** cell located on the root (or virtual root) page and the cursor state 4583 ** is set to CURSOR_VALID. 4584 ** 4585 ** If this function returns successfully, it may be assumed that the 4586 ** page-header flags indicate that the [virtual] root-page is the expected 4587 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 4588 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 4589 ** indicating a table b-tree, or if the caller did specify a KeyInfo 4590 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 4591 ** b-tree). 4592 */ 4593 static int moveToRoot(BtCursor *pCur){ 4594 MemPage *pRoot; 4595 int rc = SQLITE_OK; 4596 4597 assert( cursorHoldsMutex(pCur) ); 4598 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 4599 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 4600 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 4601 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 4602 if( pCur->eState==CURSOR_FAULT ){ 4603 assert( pCur->skipNext!=SQLITE_OK ); 4604 return pCur->skipNext; 4605 } 4606 sqlite3BtreeClearCursor(pCur); 4607 } 4608 4609 if( pCur->iPage>=0 ){ 4610 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]); 4611 }else if( pCur->pgnoRoot==0 ){ 4612 pCur->eState = CURSOR_INVALID; 4613 return SQLITE_OK; 4614 }else{ 4615 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0], 4616 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0); 4617 if( rc!=SQLITE_OK ){ 4618 pCur->eState = CURSOR_INVALID; 4619 return rc; 4620 } 4621 pCur->iPage = 0; 4622 } 4623 pRoot = pCur->apPage[0]; 4624 assert( pRoot->pgno==pCur->pgnoRoot ); 4625 4626 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 4627 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 4628 ** NULL, the caller expects a table b-tree. If this is not the case, 4629 ** return an SQLITE_CORRUPT error. 4630 ** 4631 ** Earlier versions of SQLite assumed that this test could not fail 4632 ** if the root page was already loaded when this function was called (i.e. 4633 ** if pCur->iPage>=0). But this is not so if the database is corrupted 4634 ** in such a way that page pRoot is linked into a second b-tree table 4635 ** (or the freelist). */ 4636 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 4637 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 4638 return SQLITE_CORRUPT_BKPT; 4639 } 4640 4641 pCur->aiIdx[0] = 0; 4642 pCur->info.nSize = 0; 4643 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 4644 4645 if( pRoot->nCell>0 ){ 4646 pCur->eState = CURSOR_VALID; 4647 }else if( !pRoot->leaf ){ 4648 Pgno subpage; 4649 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 4650 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 4651 pCur->eState = CURSOR_VALID; 4652 rc = moveToChild(pCur, subpage); 4653 }else{ 4654 pCur->eState = CURSOR_INVALID; 4655 } 4656 return rc; 4657 } 4658 4659 /* 4660 ** Move the cursor down to the left-most leaf entry beneath the 4661 ** entry to which it is currently pointing. 4662 ** 4663 ** The left-most leaf is the one with the smallest key - the first 4664 ** in ascending order. 4665 */ 4666 static int moveToLeftmost(BtCursor *pCur){ 4667 Pgno pgno; 4668 int rc = SQLITE_OK; 4669 MemPage *pPage; 4670 4671 assert( cursorHoldsMutex(pCur) ); 4672 assert( pCur->eState==CURSOR_VALID ); 4673 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ 4674 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); 4675 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage])); 4676 rc = moveToChild(pCur, pgno); 4677 } 4678 return rc; 4679 } 4680 4681 /* 4682 ** Move the cursor down to the right-most leaf entry beneath the 4683 ** page to which it is currently pointing. Notice the difference 4684 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 4685 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 4686 ** finds the right-most entry beneath the *page*. 4687 ** 4688 ** The right-most entry is the one with the largest key - the last 4689 ** key in ascending order. 4690 */ 4691 static int moveToRightmost(BtCursor *pCur){ 4692 Pgno pgno; 4693 int rc = SQLITE_OK; 4694 MemPage *pPage = 0; 4695 4696 assert( cursorHoldsMutex(pCur) ); 4697 assert( pCur->eState==CURSOR_VALID ); 4698 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){ 4699 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 4700 pCur->aiIdx[pCur->iPage] = pPage->nCell; 4701 rc = moveToChild(pCur, pgno); 4702 if( rc ) return rc; 4703 } 4704 pCur->aiIdx[pCur->iPage] = pPage->nCell-1; 4705 assert( pCur->info.nSize==0 ); 4706 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 4707 return SQLITE_OK; 4708 } 4709 4710 /* Move the cursor to the first entry in the table. Return SQLITE_OK 4711 ** on success. Set *pRes to 0 if the cursor actually points to something 4712 ** or set *pRes to 1 if the table is empty. 4713 */ 4714 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 4715 int rc; 4716 4717 assert( cursorHoldsMutex(pCur) ); 4718 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4719 rc = moveToRoot(pCur); 4720 if( rc==SQLITE_OK ){ 4721 if( pCur->eState==CURSOR_INVALID ){ 4722 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); 4723 *pRes = 1; 4724 }else{ 4725 assert( pCur->apPage[pCur->iPage]->nCell>0 ); 4726 *pRes = 0; 4727 rc = moveToLeftmost(pCur); 4728 } 4729 } 4730 return rc; 4731 } 4732 4733 /* Move the cursor to the last entry in the table. Return SQLITE_OK 4734 ** on success. Set *pRes to 0 if the cursor actually points to something 4735 ** or set *pRes to 1 if the table is empty. 4736 */ 4737 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 4738 int rc; 4739 4740 assert( cursorHoldsMutex(pCur) ); 4741 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4742 4743 /* If the cursor already points to the last entry, this is a no-op. */ 4744 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 4745 #ifdef SQLITE_DEBUG 4746 /* This block serves to assert() that the cursor really does point 4747 ** to the last entry in the b-tree. */ 4748 int ii; 4749 for(ii=0; ii<pCur->iPage; ii++){ 4750 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 4751 } 4752 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 ); 4753 assert( pCur->apPage[pCur->iPage]->leaf ); 4754 #endif 4755 return SQLITE_OK; 4756 } 4757 4758 rc = moveToRoot(pCur); 4759 if( rc==SQLITE_OK ){ 4760 if( CURSOR_INVALID==pCur->eState ){ 4761 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); 4762 *pRes = 1; 4763 }else{ 4764 assert( pCur->eState==CURSOR_VALID ); 4765 *pRes = 0; 4766 rc = moveToRightmost(pCur); 4767 if( rc==SQLITE_OK ){ 4768 pCur->curFlags |= BTCF_AtLast; 4769 }else{ 4770 pCur->curFlags &= ~BTCF_AtLast; 4771 } 4772 4773 } 4774 } 4775 return rc; 4776 } 4777 4778 /* Move the cursor so that it points to an entry near the key 4779 ** specified by pIdxKey or intKey. Return a success code. 4780 ** 4781 ** For INTKEY tables, the intKey parameter is used. pIdxKey 4782 ** must be NULL. For index tables, pIdxKey is used and intKey 4783 ** is ignored. 4784 ** 4785 ** If an exact match is not found, then the cursor is always 4786 ** left pointing at a leaf page which would hold the entry if it 4787 ** were present. The cursor might point to an entry that comes 4788 ** before or after the key. 4789 ** 4790 ** An integer is written into *pRes which is the result of 4791 ** comparing the key with the entry to which the cursor is 4792 ** pointing. The meaning of the integer written into 4793 ** *pRes is as follows: 4794 ** 4795 ** *pRes<0 The cursor is left pointing at an entry that 4796 ** is smaller than intKey/pIdxKey or if the table is empty 4797 ** and the cursor is therefore left point to nothing. 4798 ** 4799 ** *pRes==0 The cursor is left pointing at an entry that 4800 ** exactly matches intKey/pIdxKey. 4801 ** 4802 ** *pRes>0 The cursor is left pointing at an entry that 4803 ** is larger than intKey/pIdxKey. 4804 ** 4805 */ 4806 int sqlite3BtreeMovetoUnpacked( 4807 BtCursor *pCur, /* The cursor to be moved */ 4808 UnpackedRecord *pIdxKey, /* Unpacked index key */ 4809 i64 intKey, /* The table key */ 4810 int biasRight, /* If true, bias the search to the high end */ 4811 int *pRes /* Write search results here */ 4812 ){ 4813 int rc; 4814 RecordCompare xRecordCompare; 4815 4816 assert( cursorHoldsMutex(pCur) ); 4817 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4818 assert( pRes ); 4819 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); 4820 4821 /* If the cursor is already positioned at the point we are trying 4822 ** to move to, then just return without doing any work */ 4823 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 4824 && pCur->apPage[0]->intKey 4825 ){ 4826 if( pCur->info.nKey==intKey ){ 4827 *pRes = 0; 4828 return SQLITE_OK; 4829 } 4830 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){ 4831 *pRes = -1; 4832 return SQLITE_OK; 4833 } 4834 } 4835 4836 if( pIdxKey ){ 4837 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 4838 pIdxKey->errCode = 0; 4839 assert( pIdxKey->default_rc==1 4840 || pIdxKey->default_rc==0 4841 || pIdxKey->default_rc==-1 4842 ); 4843 }else{ 4844 xRecordCompare = 0; /* All keys are integers */ 4845 } 4846 4847 rc = moveToRoot(pCur); 4848 if( rc ){ 4849 return rc; 4850 } 4851 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); 4852 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); 4853 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); 4854 if( pCur->eState==CURSOR_INVALID ){ 4855 *pRes = -1; 4856 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); 4857 return SQLITE_OK; 4858 } 4859 assert( pCur->apPage[0]->intKey || pIdxKey ); 4860 for(;;){ 4861 int lwr, upr, idx, c; 4862 Pgno chldPg; 4863 MemPage *pPage = pCur->apPage[pCur->iPage]; 4864 u8 *pCell; /* Pointer to current cell in pPage */ 4865 4866 /* pPage->nCell must be greater than zero. If this is the root-page 4867 ** the cursor would have been INVALID above and this for(;;) loop 4868 ** not run. If this is not the root-page, then the moveToChild() routine 4869 ** would have already detected db corruption. Similarly, pPage must 4870 ** be the right kind (index or table) of b-tree page. Otherwise 4871 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 4872 assert( pPage->nCell>0 ); 4873 assert( pPage->intKey==(pIdxKey==0) ); 4874 lwr = 0; 4875 upr = pPage->nCell-1; 4876 assert( biasRight==0 || biasRight==1 ); 4877 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 4878 pCur->aiIdx[pCur->iPage] = (u16)idx; 4879 if( xRecordCompare==0 ){ 4880 for(;;){ 4881 i64 nCellKey; 4882 pCell = findCell(pPage, idx) + pPage->childPtrSize; 4883 if( pPage->intKeyLeaf ){ 4884 while( 0x80 <= *(pCell++) ){ 4885 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; 4886 } 4887 } 4888 getVarint(pCell, (u64*)&nCellKey); 4889 if( nCellKey<intKey ){ 4890 lwr = idx+1; 4891 if( lwr>upr ){ c = -1; break; } 4892 }else if( nCellKey>intKey ){ 4893 upr = idx-1; 4894 if( lwr>upr ){ c = +1; break; } 4895 }else{ 4896 assert( nCellKey==intKey ); 4897 pCur->curFlags |= BTCF_ValidNKey; 4898 pCur->info.nKey = nCellKey; 4899 pCur->aiIdx[pCur->iPage] = (u16)idx; 4900 if( !pPage->leaf ){ 4901 lwr = idx; 4902 goto moveto_next_layer; 4903 }else{ 4904 *pRes = 0; 4905 rc = SQLITE_OK; 4906 goto moveto_finish; 4907 } 4908 } 4909 assert( lwr+upr>=0 ); 4910 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 4911 } 4912 }else{ 4913 for(;;){ 4914 int nCell; 4915 pCell = findCell(pPage, idx) + pPage->childPtrSize; 4916 4917 /* The maximum supported page-size is 65536 bytes. This means that 4918 ** the maximum number of record bytes stored on an index B-Tree 4919 ** page is less than 16384 bytes and may be stored as a 2-byte 4920 ** varint. This information is used to attempt to avoid parsing 4921 ** the entire cell by checking for the cases where the record is 4922 ** stored entirely within the b-tree page by inspecting the first 4923 ** 2 bytes of the cell. 4924 */ 4925 nCell = pCell[0]; 4926 if( nCell<=pPage->max1bytePayload ){ 4927 /* This branch runs if the record-size field of the cell is a 4928 ** single byte varint and the record fits entirely on the main 4929 ** b-tree page. */ 4930 testcase( pCell+nCell+1==pPage->aDataEnd ); 4931 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 4932 }else if( !(pCell[1] & 0x80) 4933 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 4934 ){ 4935 /* The record-size field is a 2 byte varint and the record 4936 ** fits entirely on the main b-tree page. */ 4937 testcase( pCell+nCell+2==pPage->aDataEnd ); 4938 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 4939 }else{ 4940 /* The record flows over onto one or more overflow pages. In 4941 ** this case the whole cell needs to be parsed, a buffer allocated 4942 ** and accessPayload() used to retrieve the record into the 4943 ** buffer before VdbeRecordCompare() can be called. */ 4944 void *pCellKey; 4945 u8 * const pCellBody = pCell - pPage->childPtrSize; 4946 btreeParseCellPtr(pPage, pCellBody, &pCur->info); 4947 nCell = (int)pCur->info.nKey; 4948 pCellKey = sqlite3Malloc( nCell ); 4949 if( pCellKey==0 ){ 4950 rc = SQLITE_NOMEM; 4951 goto moveto_finish; 4952 } 4953 pCur->aiIdx[pCur->iPage] = (u16)idx; 4954 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2); 4955 if( rc ){ 4956 sqlite3_free(pCellKey); 4957 goto moveto_finish; 4958 } 4959 c = xRecordCompare(nCell, pCellKey, pIdxKey); 4960 sqlite3_free(pCellKey); 4961 } 4962 assert( 4963 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 4964 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 4965 ); 4966 if( c<0 ){ 4967 lwr = idx+1; 4968 }else if( c>0 ){ 4969 upr = idx-1; 4970 }else{ 4971 assert( c==0 ); 4972 *pRes = 0; 4973 rc = SQLITE_OK; 4974 pCur->aiIdx[pCur->iPage] = (u16)idx; 4975 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT; 4976 goto moveto_finish; 4977 } 4978 if( lwr>upr ) break; 4979 assert( lwr+upr>=0 ); 4980 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 4981 } 4982 } 4983 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 4984 assert( pPage->isInit ); 4985 if( pPage->leaf ){ 4986 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); 4987 pCur->aiIdx[pCur->iPage] = (u16)idx; 4988 *pRes = c; 4989 rc = SQLITE_OK; 4990 goto moveto_finish; 4991 } 4992 moveto_next_layer: 4993 if( lwr>=pPage->nCell ){ 4994 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 4995 }else{ 4996 chldPg = get4byte(findCell(pPage, lwr)); 4997 } 4998 pCur->aiIdx[pCur->iPage] = (u16)lwr; 4999 rc = moveToChild(pCur, chldPg); 5000 if( rc ) break; 5001 } 5002 moveto_finish: 5003 pCur->info.nSize = 0; 5004 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5005 return rc; 5006 } 5007 5008 5009 /* 5010 ** Return TRUE if the cursor is not pointing at an entry of the table. 5011 ** 5012 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5013 ** past the last entry in the table or sqlite3BtreePrev() moves past 5014 ** the first entry. TRUE is also returned if the table is empty. 5015 */ 5016 int sqlite3BtreeEof(BtCursor *pCur){ 5017 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5018 ** have been deleted? This API will need to change to return an error code 5019 ** as well as the boolean result value. 5020 */ 5021 return (CURSOR_VALID!=pCur->eState); 5022 } 5023 5024 /* 5025 ** Advance the cursor to the next entry in the database. If 5026 ** successful then set *pRes=0. If the cursor 5027 ** was already pointing to the last entry in the database before 5028 ** this routine was called, then set *pRes=1. 5029 ** 5030 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5031 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5032 ** to the next cell on the current page. The (slower) btreeNext() helper 5033 ** routine is called when it is necessary to move to a different page or 5034 ** to restore the cursor. 5035 ** 5036 ** The calling function will set *pRes to 0 or 1. The initial *pRes value 5037 ** will be 1 if the cursor being stepped corresponds to an SQL index and 5038 ** if this routine could have been skipped if that SQL index had been 5039 ** a unique index. Otherwise the caller will have set *pRes to zero. 5040 ** Zero is the common case. The btree implementation is free to use the 5041 ** initial *pRes value as a hint to improve performance, but the current 5042 ** SQLite btree implementation does not. (Note that the comdb2 btree 5043 ** implementation does use this hint, however.) 5044 */ 5045 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){ 5046 int rc; 5047 int idx; 5048 MemPage *pPage; 5049 5050 assert( cursorHoldsMutex(pCur) ); 5051 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5052 assert( *pRes==0 ); 5053 if( pCur->eState!=CURSOR_VALID ){ 5054 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5055 rc = restoreCursorPosition(pCur); 5056 if( rc!=SQLITE_OK ){ 5057 return rc; 5058 } 5059 if( CURSOR_INVALID==pCur->eState ){ 5060 *pRes = 1; 5061 return SQLITE_OK; 5062 } 5063 if( pCur->skipNext ){ 5064 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); 5065 pCur->eState = CURSOR_VALID; 5066 if( pCur->skipNext>0 ){ 5067 pCur->skipNext = 0; 5068 return SQLITE_OK; 5069 } 5070 pCur->skipNext = 0; 5071 } 5072 } 5073 5074 pPage = pCur->apPage[pCur->iPage]; 5075 idx = ++pCur->aiIdx[pCur->iPage]; 5076 assert( pPage->isInit ); 5077 5078 /* If the database file is corrupt, it is possible for the value of idx 5079 ** to be invalid here. This can only occur if a second cursor modifies 5080 ** the page while cursor pCur is holding a reference to it. Which can 5081 ** only happen if the database is corrupt in such a way as to link the 5082 ** page into more than one b-tree structure. */ 5083 testcase( idx>pPage->nCell ); 5084 5085 if( idx>=pPage->nCell ){ 5086 if( !pPage->leaf ){ 5087 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5088 if( rc ) return rc; 5089 return moveToLeftmost(pCur); 5090 } 5091 do{ 5092 if( pCur->iPage==0 ){ 5093 *pRes = 1; 5094 pCur->eState = CURSOR_INVALID; 5095 return SQLITE_OK; 5096 } 5097 moveToParent(pCur); 5098 pPage = pCur->apPage[pCur->iPage]; 5099 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); 5100 if( pPage->intKey ){ 5101 return sqlite3BtreeNext(pCur, pRes); 5102 }else{ 5103 return SQLITE_OK; 5104 } 5105 } 5106 if( pPage->leaf ){ 5107 return SQLITE_OK; 5108 }else{ 5109 return moveToLeftmost(pCur); 5110 } 5111 } 5112 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ 5113 MemPage *pPage; 5114 assert( cursorHoldsMutex(pCur) ); 5115 assert( pRes!=0 ); 5116 assert( *pRes==0 || *pRes==1 ); 5117 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5118 pCur->info.nSize = 0; 5119 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5120 *pRes = 0; 5121 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes); 5122 pPage = pCur->apPage[pCur->iPage]; 5123 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){ 5124 pCur->aiIdx[pCur->iPage]--; 5125 return btreeNext(pCur, pRes); 5126 } 5127 if( pPage->leaf ){ 5128 return SQLITE_OK; 5129 }else{ 5130 return moveToLeftmost(pCur); 5131 } 5132 } 5133 5134 /* 5135 ** Step the cursor to the back to the previous entry in the database. If 5136 ** successful then set *pRes=0. If the cursor 5137 ** was already pointing to the first entry in the database before 5138 ** this routine was called, then set *pRes=1. 5139 ** 5140 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5141 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5142 ** to the previous cell on the current page. The (slower) btreePrevious() 5143 ** helper routine is called when it is necessary to move to a different page 5144 ** or to restore the cursor. 5145 ** 5146 ** The calling function will set *pRes to 0 or 1. The initial *pRes value 5147 ** will be 1 if the cursor being stepped corresponds to an SQL index and 5148 ** if this routine could have been skipped if that SQL index had been 5149 ** a unique index. Otherwise the caller will have set *pRes to zero. 5150 ** Zero is the common case. The btree implementation is free to use the 5151 ** initial *pRes value as a hint to improve performance, but the current 5152 ** SQLite btree implementation does not. (Note that the comdb2 btree 5153 ** implementation does use this hint, however.) 5154 */ 5155 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){ 5156 int rc; 5157 MemPage *pPage; 5158 5159 assert( cursorHoldsMutex(pCur) ); 5160 assert( pRes!=0 ); 5161 assert( *pRes==0 ); 5162 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5163 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5164 assert( pCur->info.nSize==0 ); 5165 if( pCur->eState!=CURSOR_VALID ){ 5166 rc = restoreCursorPosition(pCur); 5167 if( rc!=SQLITE_OK ){ 5168 return rc; 5169 } 5170 if( CURSOR_INVALID==pCur->eState ){ 5171 *pRes = 1; 5172 return SQLITE_OK; 5173 } 5174 if( pCur->skipNext ){ 5175 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); 5176 pCur->eState = CURSOR_VALID; 5177 if( pCur->skipNext<0 ){ 5178 pCur->skipNext = 0; 5179 return SQLITE_OK; 5180 } 5181 pCur->skipNext = 0; 5182 } 5183 } 5184 5185 pPage = pCur->apPage[pCur->iPage]; 5186 assert( pPage->isInit ); 5187 if( !pPage->leaf ){ 5188 int idx = pCur->aiIdx[pCur->iPage]; 5189 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 5190 if( rc ) return rc; 5191 rc = moveToRightmost(pCur); 5192 }else{ 5193 while( pCur->aiIdx[pCur->iPage]==0 ){ 5194 if( pCur->iPage==0 ){ 5195 pCur->eState = CURSOR_INVALID; 5196 *pRes = 1; 5197 return SQLITE_OK; 5198 } 5199 moveToParent(pCur); 5200 } 5201 assert( pCur->info.nSize==0 ); 5202 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 ); 5203 5204 pCur->aiIdx[pCur->iPage]--; 5205 pPage = pCur->apPage[pCur->iPage]; 5206 if( pPage->intKey && !pPage->leaf ){ 5207 rc = sqlite3BtreePrevious(pCur, pRes); 5208 }else{ 5209 rc = SQLITE_OK; 5210 } 5211 } 5212 return rc; 5213 } 5214 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ 5215 assert( cursorHoldsMutex(pCur) ); 5216 assert( pRes!=0 ); 5217 assert( *pRes==0 || *pRes==1 ); 5218 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5219 *pRes = 0; 5220 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 5221 pCur->info.nSize = 0; 5222 if( pCur->eState!=CURSOR_VALID 5223 || pCur->aiIdx[pCur->iPage]==0 5224 || pCur->apPage[pCur->iPage]->leaf==0 5225 ){ 5226 return btreePrevious(pCur, pRes); 5227 } 5228 pCur->aiIdx[pCur->iPage]--; 5229 return SQLITE_OK; 5230 } 5231 5232 /* 5233 ** Allocate a new page from the database file. 5234 ** 5235 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 5236 ** has already been called on the new page.) The new page has also 5237 ** been referenced and the calling routine is responsible for calling 5238 ** sqlite3PagerUnref() on the new page when it is done. 5239 ** 5240 ** SQLITE_OK is returned on success. Any other return value indicates 5241 ** an error. *ppPage and *pPgno are undefined in the event of an error. 5242 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned. 5243 ** 5244 ** If the "nearby" parameter is not 0, then an effort is made to 5245 ** locate a page close to the page number "nearby". This can be used in an 5246 ** attempt to keep related pages close to each other in the database file, 5247 ** which in turn can make database access faster. 5248 ** 5249 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 5250 ** anywhere on the free-list, then it is guaranteed to be returned. If 5251 ** eMode is BTALLOC_LT then the page returned will be less than or equal 5252 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 5253 ** are no restrictions on which page is returned. 5254 */ 5255 static int allocateBtreePage( 5256 BtShared *pBt, /* The btree */ 5257 MemPage **ppPage, /* Store pointer to the allocated page here */ 5258 Pgno *pPgno, /* Store the page number here */ 5259 Pgno nearby, /* Search for a page near this one */ 5260 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 5261 ){ 5262 MemPage *pPage1; 5263 int rc; 5264 u32 n; /* Number of pages on the freelist */ 5265 u32 k; /* Number of leaves on the trunk of the freelist */ 5266 MemPage *pTrunk = 0; 5267 MemPage *pPrevTrunk = 0; 5268 Pgno mxPage; /* Total size of the database file */ 5269 5270 assert( sqlite3_mutex_held(pBt->mutex) ); 5271 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 5272 pPage1 = pBt->pPage1; 5273 mxPage = btreePagecount(pBt); 5274 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 5275 ** stores stores the total number of pages on the freelist. */ 5276 n = get4byte(&pPage1->aData[36]); 5277 testcase( n==mxPage-1 ); 5278 if( n>=mxPage ){ 5279 return SQLITE_CORRUPT_BKPT; 5280 } 5281 if( n>0 ){ 5282 /* There are pages on the freelist. Reuse one of those pages. */ 5283 Pgno iTrunk; 5284 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 5285 5286 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 5287 ** shows that the page 'nearby' is somewhere on the free-list, then 5288 ** the entire-list will be searched for that page. 5289 */ 5290 #ifndef SQLITE_OMIT_AUTOVACUUM 5291 if( eMode==BTALLOC_EXACT ){ 5292 if( nearby<=mxPage ){ 5293 u8 eType; 5294 assert( nearby>0 ); 5295 assert( pBt->autoVacuum ); 5296 rc = ptrmapGet(pBt, nearby, &eType, 0); 5297 if( rc ) return rc; 5298 if( eType==PTRMAP_FREEPAGE ){ 5299 searchList = 1; 5300 } 5301 } 5302 }else if( eMode==BTALLOC_LE ){ 5303 searchList = 1; 5304 } 5305 #endif 5306 5307 /* Decrement the free-list count by 1. Set iTrunk to the index of the 5308 ** first free-list trunk page. iPrevTrunk is initially 1. 5309 */ 5310 rc = sqlite3PagerWrite(pPage1->pDbPage); 5311 if( rc ) return rc; 5312 put4byte(&pPage1->aData[36], n-1); 5313 5314 /* The code within this loop is run only once if the 'searchList' variable 5315 ** is not true. Otherwise, it runs once for each trunk-page on the 5316 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 5317 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 5318 */ 5319 do { 5320 pPrevTrunk = pTrunk; 5321 if( pPrevTrunk ){ 5322 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 5323 ** is the page number of the next freelist trunk page in the list or 5324 ** zero if this is the last freelist trunk page. */ 5325 iTrunk = get4byte(&pPrevTrunk->aData[0]); 5326 }else{ 5327 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 5328 ** stores the page number of the first page of the freelist, or zero if 5329 ** the freelist is empty. */ 5330 iTrunk = get4byte(&pPage1->aData[32]); 5331 } 5332 testcase( iTrunk==mxPage ); 5333 if( iTrunk>mxPage ){ 5334 rc = SQLITE_CORRUPT_BKPT; 5335 }else{ 5336 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 5337 } 5338 if( rc ){ 5339 pTrunk = 0; 5340 goto end_allocate_page; 5341 } 5342 assert( pTrunk!=0 ); 5343 assert( pTrunk->aData!=0 ); 5344 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 5345 ** is the number of leaf page pointers to follow. */ 5346 k = get4byte(&pTrunk->aData[4]); 5347 if( k==0 && !searchList ){ 5348 /* The trunk has no leaves and the list is not being searched. 5349 ** So extract the trunk page itself and use it as the newly 5350 ** allocated page */ 5351 assert( pPrevTrunk==0 ); 5352 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5353 if( rc ){ 5354 goto end_allocate_page; 5355 } 5356 *pPgno = iTrunk; 5357 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5358 *ppPage = pTrunk; 5359 pTrunk = 0; 5360 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5361 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 5362 /* Value of k is out of range. Database corruption */ 5363 rc = SQLITE_CORRUPT_BKPT; 5364 goto end_allocate_page; 5365 #ifndef SQLITE_OMIT_AUTOVACUUM 5366 }else if( searchList 5367 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 5368 ){ 5369 /* The list is being searched and this trunk page is the page 5370 ** to allocate, regardless of whether it has leaves. 5371 */ 5372 *pPgno = iTrunk; 5373 *ppPage = pTrunk; 5374 searchList = 0; 5375 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5376 if( rc ){ 5377 goto end_allocate_page; 5378 } 5379 if( k==0 ){ 5380 if( !pPrevTrunk ){ 5381 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5382 }else{ 5383 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 5384 if( rc!=SQLITE_OK ){ 5385 goto end_allocate_page; 5386 } 5387 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 5388 } 5389 }else{ 5390 /* The trunk page is required by the caller but it contains 5391 ** pointers to free-list leaves. The first leaf becomes a trunk 5392 ** page in this case. 5393 */ 5394 MemPage *pNewTrunk; 5395 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 5396 if( iNewTrunk>mxPage ){ 5397 rc = SQLITE_CORRUPT_BKPT; 5398 goto end_allocate_page; 5399 } 5400 testcase( iNewTrunk==mxPage ); 5401 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0); 5402 if( rc!=SQLITE_OK ){ 5403 goto end_allocate_page; 5404 } 5405 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 5406 if( rc!=SQLITE_OK ){ 5407 releasePage(pNewTrunk); 5408 goto end_allocate_page; 5409 } 5410 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 5411 put4byte(&pNewTrunk->aData[4], k-1); 5412 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 5413 releasePage(pNewTrunk); 5414 if( !pPrevTrunk ){ 5415 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 5416 put4byte(&pPage1->aData[32], iNewTrunk); 5417 }else{ 5418 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 5419 if( rc ){ 5420 goto end_allocate_page; 5421 } 5422 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 5423 } 5424 } 5425 pTrunk = 0; 5426 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5427 #endif 5428 }else if( k>0 ){ 5429 /* Extract a leaf from the trunk */ 5430 u32 closest; 5431 Pgno iPage; 5432 unsigned char *aData = pTrunk->aData; 5433 if( nearby>0 ){ 5434 u32 i; 5435 closest = 0; 5436 if( eMode==BTALLOC_LE ){ 5437 for(i=0; i<k; i++){ 5438 iPage = get4byte(&aData[8+i*4]); 5439 if( iPage<=nearby ){ 5440 closest = i; 5441 break; 5442 } 5443 } 5444 }else{ 5445 int dist; 5446 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 5447 for(i=1; i<k; i++){ 5448 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 5449 if( d2<dist ){ 5450 closest = i; 5451 dist = d2; 5452 } 5453 } 5454 } 5455 }else{ 5456 closest = 0; 5457 } 5458 5459 iPage = get4byte(&aData[8+closest*4]); 5460 testcase( iPage==mxPage ); 5461 if( iPage>mxPage ){ 5462 rc = SQLITE_CORRUPT_BKPT; 5463 goto end_allocate_page; 5464 } 5465 testcase( iPage==mxPage ); 5466 if( !searchList 5467 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 5468 ){ 5469 int noContent; 5470 *pPgno = iPage; 5471 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 5472 ": %d more free pages\n", 5473 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 5474 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5475 if( rc ) goto end_allocate_page; 5476 if( closest<k-1 ){ 5477 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 5478 } 5479 put4byte(&aData[4], k-1); 5480 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 5481 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent); 5482 if( rc==SQLITE_OK ){ 5483 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 5484 if( rc!=SQLITE_OK ){ 5485 releasePage(*ppPage); 5486 } 5487 } 5488 searchList = 0; 5489 } 5490 } 5491 releasePage(pPrevTrunk); 5492 pPrevTrunk = 0; 5493 }while( searchList ); 5494 }else{ 5495 /* There are no pages on the freelist, so append a new page to the 5496 ** database image. 5497 ** 5498 ** Normally, new pages allocated by this block can be requested from the 5499 ** pager layer with the 'no-content' flag set. This prevents the pager 5500 ** from trying to read the pages content from disk. However, if the 5501 ** current transaction has already run one or more incremental-vacuum 5502 ** steps, then the page we are about to allocate may contain content 5503 ** that is required in the event of a rollback. In this case, do 5504 ** not set the no-content flag. This causes the pager to load and journal 5505 ** the current page content before overwriting it. 5506 ** 5507 ** Note that the pager will not actually attempt to load or journal 5508 ** content for any page that really does lie past the end of the database 5509 ** file on disk. So the effects of disabling the no-content optimization 5510 ** here are confined to those pages that lie between the end of the 5511 ** database image and the end of the database file. 5512 */ 5513 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 5514 5515 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 5516 if( rc ) return rc; 5517 pBt->nPage++; 5518 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 5519 5520 #ifndef SQLITE_OMIT_AUTOVACUUM 5521 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 5522 /* If *pPgno refers to a pointer-map page, allocate two new pages 5523 ** at the end of the file instead of one. The first allocated page 5524 ** becomes a new pointer-map page, the second is used by the caller. 5525 */ 5526 MemPage *pPg = 0; 5527 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 5528 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 5529 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent); 5530 if( rc==SQLITE_OK ){ 5531 rc = sqlite3PagerWrite(pPg->pDbPage); 5532 releasePage(pPg); 5533 } 5534 if( rc ) return rc; 5535 pBt->nPage++; 5536 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 5537 } 5538 #endif 5539 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 5540 *pPgno = pBt->nPage; 5541 5542 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 5543 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent); 5544 if( rc ) return rc; 5545 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 5546 if( rc!=SQLITE_OK ){ 5547 releasePage(*ppPage); 5548 } 5549 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 5550 } 5551 5552 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 5553 5554 end_allocate_page: 5555 releasePage(pTrunk); 5556 releasePage(pPrevTrunk); 5557 if( rc==SQLITE_OK ){ 5558 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 5559 releasePage(*ppPage); 5560 *ppPage = 0; 5561 return SQLITE_CORRUPT_BKPT; 5562 } 5563 (*ppPage)->isInit = 0; 5564 }else{ 5565 *ppPage = 0; 5566 } 5567 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) ); 5568 return rc; 5569 } 5570 5571 /* 5572 ** This function is used to add page iPage to the database file free-list. 5573 ** It is assumed that the page is not already a part of the free-list. 5574 ** 5575 ** The value passed as the second argument to this function is optional. 5576 ** If the caller happens to have a pointer to the MemPage object 5577 ** corresponding to page iPage handy, it may pass it as the second value. 5578 ** Otherwise, it may pass NULL. 5579 ** 5580 ** If a pointer to a MemPage object is passed as the second argument, 5581 ** its reference count is not altered by this function. 5582 */ 5583 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 5584 MemPage *pTrunk = 0; /* Free-list trunk page */ 5585 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 5586 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 5587 MemPage *pPage; /* Page being freed. May be NULL. */ 5588 int rc; /* Return Code */ 5589 int nFree; /* Initial number of pages on free-list */ 5590 5591 assert( sqlite3_mutex_held(pBt->mutex) ); 5592 assert( iPage>1 ); 5593 assert( !pMemPage || pMemPage->pgno==iPage ); 5594 5595 if( pMemPage ){ 5596 pPage = pMemPage; 5597 sqlite3PagerRef(pPage->pDbPage); 5598 }else{ 5599 pPage = btreePageLookup(pBt, iPage); 5600 } 5601 5602 /* Increment the free page count on pPage1 */ 5603 rc = sqlite3PagerWrite(pPage1->pDbPage); 5604 if( rc ) goto freepage_out; 5605 nFree = get4byte(&pPage1->aData[36]); 5606 put4byte(&pPage1->aData[36], nFree+1); 5607 5608 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 5609 /* If the secure_delete option is enabled, then 5610 ** always fully overwrite deleted information with zeros. 5611 */ 5612 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 5613 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 5614 ){ 5615 goto freepage_out; 5616 } 5617 memset(pPage->aData, 0, pPage->pBt->pageSize); 5618 } 5619 5620 /* If the database supports auto-vacuum, write an entry in the pointer-map 5621 ** to indicate that the page is free. 5622 */ 5623 if( ISAUTOVACUUM ){ 5624 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 5625 if( rc ) goto freepage_out; 5626 } 5627 5628 /* Now manipulate the actual database free-list structure. There are two 5629 ** possibilities. If the free-list is currently empty, or if the first 5630 ** trunk page in the free-list is full, then this page will become a 5631 ** new free-list trunk page. Otherwise, it will become a leaf of the 5632 ** first trunk page in the current free-list. This block tests if it 5633 ** is possible to add the page as a new free-list leaf. 5634 */ 5635 if( nFree!=0 ){ 5636 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 5637 5638 iTrunk = get4byte(&pPage1->aData[32]); 5639 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 5640 if( rc!=SQLITE_OK ){ 5641 goto freepage_out; 5642 } 5643 5644 nLeaf = get4byte(&pTrunk->aData[4]); 5645 assert( pBt->usableSize>32 ); 5646 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 5647 rc = SQLITE_CORRUPT_BKPT; 5648 goto freepage_out; 5649 } 5650 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 5651 /* In this case there is room on the trunk page to insert the page 5652 ** being freed as a new leaf. 5653 ** 5654 ** Note that the trunk page is not really full until it contains 5655 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 5656 ** coded. But due to a coding error in versions of SQLite prior to 5657 ** 3.6.0, databases with freelist trunk pages holding more than 5658 ** usableSize/4 - 8 entries will be reported as corrupt. In order 5659 ** to maintain backwards compatibility with older versions of SQLite, 5660 ** we will continue to restrict the number of entries to usableSize/4 - 8 5661 ** for now. At some point in the future (once everyone has upgraded 5662 ** to 3.6.0 or later) we should consider fixing the conditional above 5663 ** to read "usableSize/4-2" instead of "usableSize/4-8". 5664 ** 5665 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 5666 ** avoid using the last six entries in the freelist trunk page array in 5667 ** order that database files created by newer versions of SQLite can be 5668 ** read by older versions of SQLite. 5669 */ 5670 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5671 if( rc==SQLITE_OK ){ 5672 put4byte(&pTrunk->aData[4], nLeaf+1); 5673 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 5674 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 5675 sqlite3PagerDontWrite(pPage->pDbPage); 5676 } 5677 rc = btreeSetHasContent(pBt, iPage); 5678 } 5679 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 5680 goto freepage_out; 5681 } 5682 } 5683 5684 /* If control flows to this point, then it was not possible to add the 5685 ** the page being freed as a leaf page of the first trunk in the free-list. 5686 ** Possibly because the free-list is empty, or possibly because the 5687 ** first trunk in the free-list is full. Either way, the page being freed 5688 ** will become the new first trunk page in the free-list. 5689 */ 5690 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 5691 goto freepage_out; 5692 } 5693 rc = sqlite3PagerWrite(pPage->pDbPage); 5694 if( rc!=SQLITE_OK ){ 5695 goto freepage_out; 5696 } 5697 put4byte(pPage->aData, iTrunk); 5698 put4byte(&pPage->aData[4], 0); 5699 put4byte(&pPage1->aData[32], iPage); 5700 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 5701 5702 freepage_out: 5703 if( pPage ){ 5704 pPage->isInit = 0; 5705 } 5706 releasePage(pPage); 5707 releasePage(pTrunk); 5708 return rc; 5709 } 5710 static void freePage(MemPage *pPage, int *pRC){ 5711 if( (*pRC)==SQLITE_OK ){ 5712 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 5713 } 5714 } 5715 5716 /* 5717 ** Free any overflow pages associated with the given Cell. Write the 5718 ** local Cell size (the number of bytes on the original page, omitting 5719 ** overflow) into *pnSize. 5720 */ 5721 static int clearCell( 5722 MemPage *pPage, /* The page that contains the Cell */ 5723 unsigned char *pCell, /* First byte of the Cell */ 5724 u16 *pnSize /* Write the size of the Cell here */ 5725 ){ 5726 BtShared *pBt = pPage->pBt; 5727 CellInfo info; 5728 Pgno ovflPgno; 5729 int rc; 5730 int nOvfl; 5731 u32 ovflPageSize; 5732 5733 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 5734 btreeParseCellPtr(pPage, pCell, &info); 5735 *pnSize = info.nSize; 5736 if( info.iOverflow==0 ){ 5737 return SQLITE_OK; /* No overflow pages. Return without doing anything */ 5738 } 5739 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){ 5740 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */ 5741 } 5742 ovflPgno = get4byte(&pCell[info.iOverflow]); 5743 assert( pBt->usableSize > 4 ); 5744 ovflPageSize = pBt->usableSize - 4; 5745 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; 5746 assert( ovflPgno==0 || nOvfl>0 ); 5747 while( nOvfl-- ){ 5748 Pgno iNext = 0; 5749 MemPage *pOvfl = 0; 5750 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 5751 /* 0 is not a legal page number and page 1 cannot be an 5752 ** overflow page. Therefore if ovflPgno<2 or past the end of the 5753 ** file the database must be corrupt. */ 5754 return SQLITE_CORRUPT_BKPT; 5755 } 5756 if( nOvfl ){ 5757 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 5758 if( rc ) return rc; 5759 } 5760 5761 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 5762 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 5763 ){ 5764 /* There is no reason any cursor should have an outstanding reference 5765 ** to an overflow page belonging to a cell that is being deleted/updated. 5766 ** So if there exists more than one reference to this page, then it 5767 ** must not really be an overflow page and the database must be corrupt. 5768 ** It is helpful to detect this before calling freePage2(), as 5769 ** freePage2() may zero the page contents if secure-delete mode is 5770 ** enabled. If this 'overflow' page happens to be a page that the 5771 ** caller is iterating through or using in some other way, this 5772 ** can be problematic. 5773 */ 5774 rc = SQLITE_CORRUPT_BKPT; 5775 }else{ 5776 rc = freePage2(pBt, pOvfl, ovflPgno); 5777 } 5778 5779 if( pOvfl ){ 5780 sqlite3PagerUnref(pOvfl->pDbPage); 5781 } 5782 if( rc ) return rc; 5783 ovflPgno = iNext; 5784 } 5785 return SQLITE_OK; 5786 } 5787 5788 /* 5789 ** Create the byte sequence used to represent a cell on page pPage 5790 ** and write that byte sequence into pCell[]. Overflow pages are 5791 ** allocated and filled in as necessary. The calling procedure 5792 ** is responsible for making sure sufficient space has been allocated 5793 ** for pCell[]. 5794 ** 5795 ** Note that pCell does not necessary need to point to the pPage->aData 5796 ** area. pCell might point to some temporary storage. The cell will 5797 ** be constructed in this temporary area then copied into pPage->aData 5798 ** later. 5799 */ 5800 static int fillInCell( 5801 MemPage *pPage, /* The page that contains the cell */ 5802 unsigned char *pCell, /* Complete text of the cell */ 5803 const void *pKey, i64 nKey, /* The key */ 5804 const void *pData,int nData, /* The data */ 5805 int nZero, /* Extra zero bytes to append to pData */ 5806 int *pnSize /* Write cell size here */ 5807 ){ 5808 int nPayload; 5809 const u8 *pSrc; 5810 int nSrc, n, rc; 5811 int spaceLeft; 5812 MemPage *pOvfl = 0; 5813 MemPage *pToRelease = 0; 5814 unsigned char *pPrior; 5815 unsigned char *pPayload; 5816 BtShared *pBt = pPage->pBt; 5817 Pgno pgnoOvfl = 0; 5818 int nHeader; 5819 5820 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 5821 5822 /* pPage is not necessarily writeable since pCell might be auxiliary 5823 ** buffer space that is separate from the pPage buffer area */ 5824 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize] 5825 || sqlite3PagerIswriteable(pPage->pDbPage) ); 5826 5827 /* Fill in the header. */ 5828 nHeader = pPage->childPtrSize; 5829 nPayload = nData + nZero; 5830 if( pPage->intKeyLeaf ){ 5831 nHeader += putVarint32(&pCell[nHeader], nPayload); 5832 }else{ 5833 assert( nData==0 ); 5834 assert( nZero==0 ); 5835 } 5836 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); 5837 5838 /* Fill in the payload size */ 5839 if( pPage->intKey ){ 5840 pSrc = pData; 5841 nSrc = nData; 5842 nData = 0; 5843 }else{ 5844 if( NEVER(nKey>0x7fffffff || pKey==0) ){ 5845 return SQLITE_CORRUPT_BKPT; 5846 } 5847 nPayload = (int)nKey; 5848 pSrc = pKey; 5849 nSrc = (int)nKey; 5850 } 5851 if( nPayload<=pPage->maxLocal ){ 5852 n = nHeader + nPayload; 5853 testcase( n==3 ); 5854 testcase( n==4 ); 5855 if( n<4 ) n = 4; 5856 *pnSize = n; 5857 spaceLeft = nPayload; 5858 pPrior = pCell; 5859 }else{ 5860 int mn = pPage->minLocal; 5861 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 5862 testcase( n==pPage->maxLocal ); 5863 testcase( n==pPage->maxLocal+1 ); 5864 if( n > pPage->maxLocal ) n = mn; 5865 spaceLeft = n; 5866 *pnSize = n + nHeader + 4; 5867 pPrior = &pCell[nHeader+n]; 5868 } 5869 pPayload = &pCell[nHeader]; 5870 5871 /* At this point variables should be set as follows: 5872 ** 5873 ** nPayload Total payload size in bytes 5874 ** pPayload Begin writing payload here 5875 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 5876 ** that means content must spill into overflow pages. 5877 ** *pnSize Size of the local cell (not counting overflow pages) 5878 ** pPrior Where to write the pgno of the first overflow page 5879 ** 5880 ** Use a call to btreeParseCellPtr() to verify that the values above 5881 ** were computed correctly. 5882 */ 5883 #if SQLITE_DEBUG 5884 { 5885 CellInfo info; 5886 btreeParseCellPtr(pPage, pCell, &info); 5887 assert( nHeader=(int)(info.pPayload - pCell) ); 5888 assert( info.nKey==nKey ); 5889 assert( *pnSize == info.nSize ); 5890 assert( spaceLeft == info.nLocal ); 5891 assert( pPrior == &pCell[info.iOverflow] ); 5892 } 5893 #endif 5894 5895 /* Write the payload into the local Cell and any extra into overflow pages */ 5896 while( nPayload>0 ){ 5897 if( spaceLeft==0 ){ 5898 #ifndef SQLITE_OMIT_AUTOVACUUM 5899 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 5900 if( pBt->autoVacuum ){ 5901 do{ 5902 pgnoOvfl++; 5903 } while( 5904 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 5905 ); 5906 } 5907 #endif 5908 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 5909 #ifndef SQLITE_OMIT_AUTOVACUUM 5910 /* If the database supports auto-vacuum, and the second or subsequent 5911 ** overflow page is being allocated, add an entry to the pointer-map 5912 ** for that page now. 5913 ** 5914 ** If this is the first overflow page, then write a partial entry 5915 ** to the pointer-map. If we write nothing to this pointer-map slot, 5916 ** then the optimistic overflow chain processing in clearCell() 5917 ** may misinterpret the uninitialized values and delete the 5918 ** wrong pages from the database. 5919 */ 5920 if( pBt->autoVacuum && rc==SQLITE_OK ){ 5921 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 5922 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 5923 if( rc ){ 5924 releasePage(pOvfl); 5925 } 5926 } 5927 #endif 5928 if( rc ){ 5929 releasePage(pToRelease); 5930 return rc; 5931 } 5932 5933 /* If pToRelease is not zero than pPrior points into the data area 5934 ** of pToRelease. Make sure pToRelease is still writeable. */ 5935 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 5936 5937 /* If pPrior is part of the data area of pPage, then make sure pPage 5938 ** is still writeable */ 5939 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 5940 || sqlite3PagerIswriteable(pPage->pDbPage) ); 5941 5942 put4byte(pPrior, pgnoOvfl); 5943 releasePage(pToRelease); 5944 pToRelease = pOvfl; 5945 pPrior = pOvfl->aData; 5946 put4byte(pPrior, 0); 5947 pPayload = &pOvfl->aData[4]; 5948 spaceLeft = pBt->usableSize - 4; 5949 } 5950 n = nPayload; 5951 if( n>spaceLeft ) n = spaceLeft; 5952 5953 /* If pToRelease is not zero than pPayload points into the data area 5954 ** of pToRelease. Make sure pToRelease is still writeable. */ 5955 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 5956 5957 /* If pPayload is part of the data area of pPage, then make sure pPage 5958 ** is still writeable */ 5959 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 5960 || sqlite3PagerIswriteable(pPage->pDbPage) ); 5961 5962 if( nSrc>0 ){ 5963 if( n>nSrc ) n = nSrc; 5964 assert( pSrc ); 5965 memcpy(pPayload, pSrc, n); 5966 }else{ 5967 memset(pPayload, 0, n); 5968 } 5969 nPayload -= n; 5970 pPayload += n; 5971 pSrc += n; 5972 nSrc -= n; 5973 spaceLeft -= n; 5974 if( nSrc==0 ){ 5975 nSrc = nData; 5976 pSrc = pData; 5977 } 5978 } 5979 releasePage(pToRelease); 5980 return SQLITE_OK; 5981 } 5982 5983 /* 5984 ** Remove the i-th cell from pPage. This routine effects pPage only. 5985 ** The cell content is not freed or deallocated. It is assumed that 5986 ** the cell content has been copied someplace else. This routine just 5987 ** removes the reference to the cell from pPage. 5988 ** 5989 ** "sz" must be the number of bytes in the cell. 5990 */ 5991 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 5992 u32 pc; /* Offset to cell content of cell being deleted */ 5993 u8 *data; /* pPage->aData */ 5994 u8 *ptr; /* Used to move bytes around within data[] */ 5995 int rc; /* The return code */ 5996 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 5997 5998 if( *pRC ) return; 5999 6000 assert( idx>=0 && idx<pPage->nCell ); 6001 assert( sz==cellSize(pPage, idx) ); 6002 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6003 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6004 data = pPage->aData; 6005 ptr = &pPage->aCellIdx[2*idx]; 6006 pc = get2byte(ptr); 6007 hdr = pPage->hdrOffset; 6008 testcase( pc==get2byte(&data[hdr+5]) ); 6009 testcase( pc+sz==pPage->pBt->usableSize ); 6010 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ 6011 *pRC = SQLITE_CORRUPT_BKPT; 6012 return; 6013 } 6014 rc = freeSpace(pPage, pc, sz); 6015 if( rc ){ 6016 *pRC = rc; 6017 return; 6018 } 6019 pPage->nCell--; 6020 if( pPage->nCell==0 ){ 6021 memset(&data[hdr+1], 0, 4); 6022 data[hdr+7] = 0; 6023 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6024 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6025 - pPage->childPtrSize - 8; 6026 }else{ 6027 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6028 put2byte(&data[hdr+3], pPage->nCell); 6029 pPage->nFree += 2; 6030 } 6031 } 6032 6033 /* 6034 ** Insert a new cell on pPage at cell index "i". pCell points to the 6035 ** content of the cell. 6036 ** 6037 ** If the cell content will fit on the page, then put it there. If it 6038 ** will not fit, then make a copy of the cell content into pTemp if 6039 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6040 ** in pPage->apOvfl[] and make it point to the cell content (either 6041 ** in pTemp or the original pCell) and also record its index. 6042 ** Allocating a new entry in pPage->aCell[] implies that 6043 ** pPage->nOverflow is incremented. 6044 */ 6045 static void insertCell( 6046 MemPage *pPage, /* Page into which we are copying */ 6047 int i, /* New cell becomes the i-th cell of the page */ 6048 u8 *pCell, /* Content of the new cell */ 6049 int sz, /* Bytes of content in pCell */ 6050 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6051 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6052 int *pRC /* Read and write return code from here */ 6053 ){ 6054 int idx = 0; /* Where to write new cell content in data[] */ 6055 int j; /* Loop counter */ 6056 int end; /* First byte past the last cell pointer in data[] */ 6057 int ins; /* Index in data[] where new cell pointer is inserted */ 6058 int cellOffset; /* Address of first cell pointer in data[] */ 6059 u8 *data; /* The content of the whole page */ 6060 6061 if( *pRC ) return; 6062 6063 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6064 assert( MX_CELL(pPage->pBt)<=10921 ); 6065 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6066 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6067 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6068 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6069 /* The cell should normally be sized correctly. However, when moving a 6070 ** malformed cell from a leaf page to an interior page, if the cell size 6071 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size 6072 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence 6073 ** the term after the || in the following assert(). */ 6074 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) ); 6075 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6076 if( pTemp ){ 6077 memcpy(pTemp, pCell, sz); 6078 pCell = pTemp; 6079 } 6080 if( iChild ){ 6081 put4byte(pCell, iChild); 6082 } 6083 j = pPage->nOverflow++; 6084 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) ); 6085 pPage->apOvfl[j] = pCell; 6086 pPage->aiOvfl[j] = (u16)i; 6087 }else{ 6088 int rc = sqlite3PagerWrite(pPage->pDbPage); 6089 if( rc!=SQLITE_OK ){ 6090 *pRC = rc; 6091 return; 6092 } 6093 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6094 data = pPage->aData; 6095 cellOffset = pPage->cellOffset; 6096 end = cellOffset + 2*pPage->nCell; 6097 ins = cellOffset + 2*i; 6098 rc = allocateSpace(pPage, sz, &idx); 6099 if( rc ){ *pRC = rc; return; } 6100 /* The allocateSpace() routine guarantees the following two properties 6101 ** if it returns success */ 6102 assert( idx >= end+2 ); 6103 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6104 pPage->nCell++; 6105 pPage->nFree -= (u16)(2 + sz); 6106 memcpy(&data[idx], pCell, sz); 6107 if( iChild ){ 6108 put4byte(&data[idx], iChild); 6109 } 6110 memmove(&data[ins+2], &data[ins], end-ins); 6111 put2byte(&data[ins], idx); 6112 put2byte(&data[pPage->hdrOffset+3], pPage->nCell); 6113 #ifndef SQLITE_OMIT_AUTOVACUUM 6114 if( pPage->pBt->autoVacuum ){ 6115 /* The cell may contain a pointer to an overflow page. If so, write 6116 ** the entry for the overflow page into the pointer map. 6117 */ 6118 ptrmapPutOvflPtr(pPage, pCell, pRC); 6119 } 6120 #endif 6121 } 6122 } 6123 6124 /* 6125 ** Array apCell[] contains pointers to nCell b-tree page cells. The 6126 ** szCell[] array contains the size in bytes of each cell. This function 6127 ** replaces the current contents of page pPg with the contents of the cell 6128 ** array. 6129 ** 6130 ** Some of the cells in apCell[] may currently be stored in pPg. This 6131 ** function works around problems caused by this by making a copy of any 6132 ** such cells before overwriting the page data. 6133 ** 6134 ** The MemPage.nFree field is invalidated by this function. It is the 6135 ** responsibility of the caller to set it correctly. 6136 */ 6137 static void rebuildPage( 6138 MemPage *pPg, /* Edit this page */ 6139 int nCell, /* Final number of cells on page */ 6140 u8 **apCell, /* Array of cells */ 6141 u16 *szCell /* Array of cell sizes */ 6142 ){ 6143 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 6144 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 6145 const int usableSize = pPg->pBt->usableSize; 6146 u8 * const pEnd = &aData[usableSize]; 6147 int i; 6148 u8 *pCellptr = pPg->aCellIdx; 6149 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6150 u8 *pData; 6151 6152 i = get2byte(&aData[hdr+5]); 6153 memcpy(&pTmp[i], &aData[i], usableSize - i); 6154 6155 pData = pEnd; 6156 for(i=0; i<nCell; i++){ 6157 u8 *pCell = apCell[i]; 6158 if( pCell>aData && pCell<pEnd ){ 6159 pCell = &pTmp[pCell - aData]; 6160 } 6161 pData -= szCell[i]; 6162 memcpy(pData, pCell, szCell[i]); 6163 put2byte(pCellptr, (pData - aData)); 6164 pCellptr += 2; 6165 assert( szCell[i]==cellSizePtr(pPg, pCell) ); 6166 } 6167 6168 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 6169 pPg->nCell = nCell; 6170 pPg->nOverflow = 0; 6171 6172 put2byte(&aData[hdr+1], 0); 6173 put2byte(&aData[hdr+3], pPg->nCell); 6174 put2byte(&aData[hdr+5], pData - aData); 6175 aData[hdr+7] = 0x00; 6176 } 6177 6178 /* 6179 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 6180 ** contains the size in bytes of each such cell. This function attempts to 6181 ** add the cells stored in the array to page pPg. If it cannot (because 6182 ** the page needs to be defragmented before the cells will fit), non-zero 6183 ** is returned. Otherwise, if the cells are added successfully, zero is 6184 ** returned. 6185 ** 6186 ** Argument pCellptr points to the first entry in the cell-pointer array 6187 ** (part of page pPg) to populate. After cell apCell[0] is written to the 6188 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 6189 ** cell in the array. It is the responsibility of the caller to ensure 6190 ** that it is safe to overwrite this part of the cell-pointer array. 6191 ** 6192 ** When this function is called, *ppData points to the start of the 6193 ** content area on page pPg. If the size of the content area is extended, 6194 ** *ppData is updated to point to the new start of the content area 6195 ** before returning. 6196 ** 6197 ** Finally, argument pBegin points to the byte immediately following the 6198 ** end of the space required by this page for the cell-pointer area (for 6199 ** all cells - not just those inserted by the current call). If the content 6200 ** area must be extended to before this point in order to accomodate all 6201 ** cells in apCell[], then the cells do not fit and non-zero is returned. 6202 */ 6203 static int pageInsertArray( 6204 MemPage *pPg, /* Page to add cells to */ 6205 u8 *pBegin, /* End of cell-pointer array */ 6206 u8 **ppData, /* IN/OUT: Page content -area pointer */ 6207 u8 *pCellptr, /* Pointer to cell-pointer area */ 6208 int nCell, /* Number of cells to add to pPg */ 6209 u8 **apCell, /* Array of cells */ 6210 u16 *szCell /* Array of cell sizes */ 6211 ){ 6212 int i; 6213 u8 *aData = pPg->aData; 6214 u8 *pData = *ppData; 6215 const int bFreelist = aData[1] || aData[2]; 6216 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 6217 for(i=0; i<nCell; i++){ 6218 int sz = szCell[i]; 6219 int rc; 6220 u8 *pSlot; 6221 if( bFreelist==0 || (pSlot = pageFindSlot(pPg, sz, &rc, 0))==0 ){ 6222 pData -= sz; 6223 if( pData<pBegin ) return 1; 6224 pSlot = pData; 6225 } 6226 memcpy(pSlot, apCell[i], sz); 6227 put2byte(pCellptr, (pSlot - aData)); 6228 pCellptr += 2; 6229 } 6230 *ppData = pData; 6231 return 0; 6232 } 6233 6234 /* 6235 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 6236 ** contains the size in bytes of each such cell. This function adds the 6237 ** space associated with each cell in the array that is currently stored 6238 ** within the body of pPg to the pPg free-list. The cell-pointers and other 6239 ** fields of the page are not updated. 6240 ** 6241 ** This function returns the total number of cells added to the free-list. 6242 */ 6243 static int pageFreeArray( 6244 MemPage *pPg, /* Page to edit */ 6245 int nCell, /* Cells to delete */ 6246 u8 **apCell, /* Array of cells */ 6247 u16 *szCell /* Array of cell sizes */ 6248 ){ 6249 u8 * const aData = pPg->aData; 6250 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 6251 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 6252 int nRet = 0; 6253 int i; 6254 u8 *pFree = 0; 6255 int szFree = 0; 6256 6257 for(i=0; i<nCell; i++){ 6258 u8 *pCell = apCell[i]; 6259 if( pCell>=pStart && pCell<pEnd ){ 6260 int sz = szCell[i]; 6261 if( pFree!=(pCell + sz) ){ 6262 if( pFree ){ 6263 assert( pFree>aData && (pFree - aData)<65536 ); 6264 freeSpace(pPg, (u16)(pFree - aData), szFree); 6265 } 6266 pFree = pCell; 6267 szFree = sz; 6268 if( pFree+sz>pEnd ) return 0; 6269 }else{ 6270 pFree = pCell; 6271 szFree += sz; 6272 } 6273 nRet++; 6274 } 6275 } 6276 if( pFree ){ 6277 assert( pFree>aData && (pFree - aData)<65536 ); 6278 freeSpace(pPg, (u16)(pFree - aData), szFree); 6279 } 6280 return nRet; 6281 } 6282 6283 /* 6284 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the 6285 ** pages being balanced. The current page, pPg, has pPg->nCell cells starting 6286 ** with apCell[iOld]. After balancing, this page should hold nNew cells 6287 ** starting at apCell[iNew]. 6288 ** 6289 ** This routine makes the necessary adjustments to pPg so that it contains 6290 ** the correct cells after being balanced. 6291 ** 6292 ** The pPg->nFree field is invalid when this function returns. It is the 6293 ** responsibility of the caller to set it correctly. 6294 */ 6295 static void editPage( 6296 MemPage *pPg, /* Edit this page */ 6297 int iOld, /* Index of first cell currently on page */ 6298 int iNew, /* Index of new first cell on page */ 6299 int nNew, /* Final number of cells on page */ 6300 u8 **apCell, /* Array of cells */ 6301 u16 *szCell /* Array of cell sizes */ 6302 ){ 6303 u8 * const aData = pPg->aData; 6304 const int hdr = pPg->hdrOffset; 6305 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 6306 int nCell = pPg->nCell; /* Cells stored on pPg */ 6307 u8 *pData; 6308 u8 *pCellptr; 6309 int i; 6310 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 6311 int iNewEnd = iNew + nNew; 6312 6313 #ifdef SQLITE_DEBUG 6314 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6315 memcpy(pTmp, aData, pPg->pBt->usableSize); 6316 #endif 6317 6318 /* Remove cells from the start and end of the page */ 6319 if( iOld<iNew ){ 6320 int nShift = pageFreeArray( 6321 pPg, iNew-iOld, &apCell[iOld], &szCell[iOld] 6322 ); 6323 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 6324 nCell -= nShift; 6325 } 6326 if( iNewEnd < iOldEnd ){ 6327 nCell -= pageFreeArray( 6328 pPg, iOldEnd-iNewEnd, &apCell[iNewEnd], &szCell[iNewEnd] 6329 ); 6330 } 6331 6332 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 6333 if( pData<pBegin ) goto editpage_fail; 6334 6335 /* Add cells to the start of the page */ 6336 if( iNew<iOld ){ 6337 int nAdd = MIN(nNew,iOld-iNew); 6338 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 6339 pCellptr = pPg->aCellIdx; 6340 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 6341 if( pageInsertArray( 6342 pPg, pBegin, &pData, pCellptr, 6343 nAdd, &apCell[iNew], &szCell[iNew] 6344 ) ) goto editpage_fail; 6345 nCell += nAdd; 6346 } 6347 6348 /* Add any overflow cells */ 6349 for(i=0; i<pPg->nOverflow; i++){ 6350 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 6351 if( iCell>=0 && iCell<nNew ){ 6352 pCellptr = &pPg->aCellIdx[iCell * 2]; 6353 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 6354 nCell++; 6355 if( pageInsertArray( 6356 pPg, pBegin, &pData, pCellptr, 6357 1, &apCell[iCell + iNew], &szCell[iCell + iNew] 6358 ) ) goto editpage_fail; 6359 } 6360 } 6361 6362 /* Append cells to the end of the page */ 6363 pCellptr = &pPg->aCellIdx[nCell*2]; 6364 if( pageInsertArray( 6365 pPg, pBegin, &pData, pCellptr, 6366 nNew-nCell, &apCell[iNew+nCell], &szCell[iNew+nCell] 6367 ) ) goto editpage_fail; 6368 6369 pPg->nCell = nNew; 6370 pPg->nOverflow = 0; 6371 6372 put2byte(&aData[hdr+3], pPg->nCell); 6373 put2byte(&aData[hdr+5], pData - aData); 6374 6375 #ifdef SQLITE_DEBUG 6376 for(i=0; i<nNew && !CORRUPT_DB; i++){ 6377 u8 *pCell = apCell[i+iNew]; 6378 int iOff = get2byte(&pPg->aCellIdx[i*2]); 6379 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){ 6380 pCell = &pTmp[pCell - aData]; 6381 } 6382 assert( 0==memcmp(pCell, &aData[iOff], szCell[i+iNew]) ); 6383 } 6384 #endif 6385 6386 return; 6387 editpage_fail: 6388 /* Unable to edit this page. Rebuild it from scratch instead. */ 6389 rebuildPage(pPg, nNew, &apCell[iNew], &szCell[iNew]); 6390 } 6391 6392 /* 6393 ** The following parameters determine how many adjacent pages get involved 6394 ** in a balancing operation. NN is the number of neighbors on either side 6395 ** of the page that participate in the balancing operation. NB is the 6396 ** total number of pages that participate, including the target page and 6397 ** NN neighbors on either side. 6398 ** 6399 ** The minimum value of NN is 1 (of course). Increasing NN above 1 6400 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 6401 ** in exchange for a larger degradation in INSERT and UPDATE performance. 6402 ** The value of NN appears to give the best results overall. 6403 */ 6404 #define NN 1 /* Number of neighbors on either side of pPage */ 6405 #define NB (NN*2+1) /* Total pages involved in the balance */ 6406 6407 6408 #ifndef SQLITE_OMIT_QUICKBALANCE 6409 /* 6410 ** This version of balance() handles the common special case where 6411 ** a new entry is being inserted on the extreme right-end of the 6412 ** tree, in other words, when the new entry will become the largest 6413 ** entry in the tree. 6414 ** 6415 ** Instead of trying to balance the 3 right-most leaf pages, just add 6416 ** a new page to the right-hand side and put the one new entry in 6417 ** that page. This leaves the right side of the tree somewhat 6418 ** unbalanced. But odds are that we will be inserting new entries 6419 ** at the end soon afterwards so the nearly empty page will quickly 6420 ** fill up. On average. 6421 ** 6422 ** pPage is the leaf page which is the right-most page in the tree. 6423 ** pParent is its parent. pPage must have a single overflow entry 6424 ** which is also the right-most entry on the page. 6425 ** 6426 ** The pSpace buffer is used to store a temporary copy of the divider 6427 ** cell that will be inserted into pParent. Such a cell consists of a 4 6428 ** byte page number followed by a variable length integer. In other 6429 ** words, at most 13 bytes. Hence the pSpace buffer must be at 6430 ** least 13 bytes in size. 6431 */ 6432 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 6433 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 6434 MemPage *pNew; /* Newly allocated page */ 6435 int rc; /* Return Code */ 6436 Pgno pgnoNew; /* Page number of pNew */ 6437 6438 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6439 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 6440 assert( pPage->nOverflow==1 ); 6441 6442 /* This error condition is now caught prior to reaching this function */ 6443 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT; 6444 6445 /* Allocate a new page. This page will become the right-sibling of 6446 ** pPage. Make the parent page writable, so that the new divider cell 6447 ** may be inserted. If both these operations are successful, proceed. 6448 */ 6449 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 6450 6451 if( rc==SQLITE_OK ){ 6452 6453 u8 *pOut = &pSpace[4]; 6454 u8 *pCell = pPage->apOvfl[0]; 6455 u16 szCell = cellSizePtr(pPage, pCell); 6456 u8 *pStop; 6457 6458 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 6459 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 6460 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 6461 rebuildPage(pNew, 1, &pCell, &szCell); 6462 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 6463 6464 /* If this is an auto-vacuum database, update the pointer map 6465 ** with entries for the new page, and any pointer from the 6466 ** cell on the page to an overflow page. If either of these 6467 ** operations fails, the return code is set, but the contents 6468 ** of the parent page are still manipulated by thh code below. 6469 ** That is Ok, at this point the parent page is guaranteed to 6470 ** be marked as dirty. Returning an error code will cause a 6471 ** rollback, undoing any changes made to the parent page. 6472 */ 6473 if( ISAUTOVACUUM ){ 6474 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 6475 if( szCell>pNew->minLocal ){ 6476 ptrmapPutOvflPtr(pNew, pCell, &rc); 6477 } 6478 } 6479 6480 /* Create a divider cell to insert into pParent. The divider cell 6481 ** consists of a 4-byte page number (the page number of pPage) and 6482 ** a variable length key value (which must be the same value as the 6483 ** largest key on pPage). 6484 ** 6485 ** To find the largest key value on pPage, first find the right-most 6486 ** cell on pPage. The first two fields of this cell are the 6487 ** record-length (a variable length integer at most 32-bits in size) 6488 ** and the key value (a variable length integer, may have any value). 6489 ** The first of the while(...) loops below skips over the record-length 6490 ** field. The second while(...) loop copies the key value from the 6491 ** cell on pPage into the pSpace buffer. 6492 */ 6493 pCell = findCell(pPage, pPage->nCell-1); 6494 pStop = &pCell[9]; 6495 while( (*(pCell++)&0x80) && pCell<pStop ); 6496 pStop = &pCell[9]; 6497 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 6498 6499 /* Insert the new divider cell into pParent. */ 6500 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 6501 0, pPage->pgno, &rc); 6502 6503 /* Set the right-child pointer of pParent to point to the new page. */ 6504 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 6505 6506 /* Release the reference to the new page. */ 6507 releasePage(pNew); 6508 } 6509 6510 return rc; 6511 } 6512 #endif /* SQLITE_OMIT_QUICKBALANCE */ 6513 6514 #if 0 6515 /* 6516 ** This function does not contribute anything to the operation of SQLite. 6517 ** it is sometimes activated temporarily while debugging code responsible 6518 ** for setting pointer-map entries. 6519 */ 6520 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 6521 int i, j; 6522 for(i=0; i<nPage; i++){ 6523 Pgno n; 6524 u8 e; 6525 MemPage *pPage = apPage[i]; 6526 BtShared *pBt = pPage->pBt; 6527 assert( pPage->isInit ); 6528 6529 for(j=0; j<pPage->nCell; j++){ 6530 CellInfo info; 6531 u8 *z; 6532 6533 z = findCell(pPage, j); 6534 btreeParseCellPtr(pPage, z, &info); 6535 if( info.iOverflow ){ 6536 Pgno ovfl = get4byte(&z[info.iOverflow]); 6537 ptrmapGet(pBt, ovfl, &e, &n); 6538 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 6539 } 6540 if( !pPage->leaf ){ 6541 Pgno child = get4byte(z); 6542 ptrmapGet(pBt, child, &e, &n); 6543 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 6544 } 6545 } 6546 if( !pPage->leaf ){ 6547 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 6548 ptrmapGet(pBt, child, &e, &n); 6549 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 6550 } 6551 } 6552 return 1; 6553 } 6554 #endif 6555 6556 /* 6557 ** This function is used to copy the contents of the b-tree node stored 6558 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 6559 ** the pointer-map entries for each child page are updated so that the 6560 ** parent page stored in the pointer map is page pTo. If pFrom contained 6561 ** any cells with overflow page pointers, then the corresponding pointer 6562 ** map entries are also updated so that the parent page is page pTo. 6563 ** 6564 ** If pFrom is currently carrying any overflow cells (entries in the 6565 ** MemPage.apOvfl[] array), they are not copied to pTo. 6566 ** 6567 ** Before returning, page pTo is reinitialized using btreeInitPage(). 6568 ** 6569 ** The performance of this function is not critical. It is only used by 6570 ** the balance_shallower() and balance_deeper() procedures, neither of 6571 ** which are called often under normal circumstances. 6572 */ 6573 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 6574 if( (*pRC)==SQLITE_OK ){ 6575 BtShared * const pBt = pFrom->pBt; 6576 u8 * const aFrom = pFrom->aData; 6577 u8 * const aTo = pTo->aData; 6578 int const iFromHdr = pFrom->hdrOffset; 6579 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 6580 int rc; 6581 int iData; 6582 6583 6584 assert( pFrom->isInit ); 6585 assert( pFrom->nFree>=iToHdr ); 6586 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 6587 6588 /* Copy the b-tree node content from page pFrom to page pTo. */ 6589 iData = get2byte(&aFrom[iFromHdr+5]); 6590 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 6591 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 6592 6593 /* Reinitialize page pTo so that the contents of the MemPage structure 6594 ** match the new data. The initialization of pTo can actually fail under 6595 ** fairly obscure circumstances, even though it is a copy of initialized 6596 ** page pFrom. 6597 */ 6598 pTo->isInit = 0; 6599 rc = btreeInitPage(pTo); 6600 if( rc!=SQLITE_OK ){ 6601 *pRC = rc; 6602 return; 6603 } 6604 6605 /* If this is an auto-vacuum database, update the pointer-map entries 6606 ** for any b-tree or overflow pages that pTo now contains the pointers to. 6607 */ 6608 if( ISAUTOVACUUM ){ 6609 *pRC = setChildPtrmaps(pTo); 6610 } 6611 } 6612 } 6613 6614 /* 6615 ** This routine redistributes cells on the iParentIdx'th child of pParent 6616 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 6617 ** same amount of free space. Usually a single sibling on either side of the 6618 ** page are used in the balancing, though both siblings might come from one 6619 ** side if the page is the first or last child of its parent. If the page 6620 ** has fewer than 2 siblings (something which can only happen if the page 6621 ** is a root page or a child of a root page) then all available siblings 6622 ** participate in the balancing. 6623 ** 6624 ** The number of siblings of the page might be increased or decreased by 6625 ** one or two in an effort to keep pages nearly full but not over full. 6626 ** 6627 ** Note that when this routine is called, some of the cells on the page 6628 ** might not actually be stored in MemPage.aData[]. This can happen 6629 ** if the page is overfull. This routine ensures that all cells allocated 6630 ** to the page and its siblings fit into MemPage.aData[] before returning. 6631 ** 6632 ** In the course of balancing the page and its siblings, cells may be 6633 ** inserted into or removed from the parent page (pParent). Doing so 6634 ** may cause the parent page to become overfull or underfull. If this 6635 ** happens, it is the responsibility of the caller to invoke the correct 6636 ** balancing routine to fix this problem (see the balance() routine). 6637 ** 6638 ** If this routine fails for any reason, it might leave the database 6639 ** in a corrupted state. So if this routine fails, the database should 6640 ** be rolled back. 6641 ** 6642 ** The third argument to this function, aOvflSpace, is a pointer to a 6643 ** buffer big enough to hold one page. If while inserting cells into the parent 6644 ** page (pParent) the parent page becomes overfull, this buffer is 6645 ** used to store the parent's overflow cells. Because this function inserts 6646 ** a maximum of four divider cells into the parent page, and the maximum 6647 ** size of a cell stored within an internal node is always less than 1/4 6648 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 6649 ** enough for all overflow cells. 6650 ** 6651 ** If aOvflSpace is set to a null pointer, this function returns 6652 ** SQLITE_NOMEM. 6653 */ 6654 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM) 6655 #pragma optimize("", off) 6656 #endif 6657 static int balance_nonroot( 6658 MemPage *pParent, /* Parent page of siblings being balanced */ 6659 int iParentIdx, /* Index of "the page" in pParent */ 6660 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 6661 int isRoot, /* True if pParent is a root-page */ 6662 int bBulk /* True if this call is part of a bulk load */ 6663 ){ 6664 BtShared *pBt; /* The whole database */ 6665 int nCell = 0; /* Number of cells in apCell[] */ 6666 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 6667 int nNew = 0; /* Number of pages in apNew[] */ 6668 int nOld; /* Number of pages in apOld[] */ 6669 int i, j, k; /* Loop counters */ 6670 int nxDiv; /* Next divider slot in pParent->aCell[] */ 6671 int rc = SQLITE_OK; /* The return code */ 6672 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 6673 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 6674 int usableSpace; /* Bytes in pPage beyond the header */ 6675 int pageFlags; /* Value of pPage->aData[0] */ 6676 int subtotal; /* Subtotal of bytes in cells on one page */ 6677 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 6678 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 6679 int szScratch; /* Size of scratch memory requested */ 6680 MemPage *apOld[NB]; /* pPage and up to two siblings */ 6681 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 6682 u8 *pRight; /* Location in parent of right-sibling pointer */ 6683 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 6684 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ 6685 int cntOld[NB+2]; /* Old index in aCell[] after i-th page */ 6686 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 6687 u8 **apCell = 0; /* All cells begin balanced */ 6688 u16 *szCell; /* Local size of all cells in apCell[] */ 6689 u8 *aSpace1; /* Space for copies of dividers cells */ 6690 Pgno pgno; /* Temp var to store a page number in */ 6691 u8 abDone[NB+2]; /* True after i'th new page is populated */ 6692 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 6693 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 6694 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 6695 6696 memset(abDone, 0, sizeof(abDone)); 6697 pBt = pParent->pBt; 6698 assert( sqlite3_mutex_held(pBt->mutex) ); 6699 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 6700 6701 #if 0 6702 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); 6703 #endif 6704 6705 /* At this point pParent may have at most one overflow cell. And if 6706 ** this overflow cell is present, it must be the cell with 6707 ** index iParentIdx. This scenario comes about when this function 6708 ** is called (indirectly) from sqlite3BtreeDelete(). 6709 */ 6710 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 6711 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 6712 6713 if( !aOvflSpace ){ 6714 return SQLITE_NOMEM; 6715 } 6716 6717 /* Find the sibling pages to balance. Also locate the cells in pParent 6718 ** that divide the siblings. An attempt is made to find NN siblings on 6719 ** either side of pPage. More siblings are taken from one side, however, 6720 ** if there are fewer than NN siblings on the other side. If pParent 6721 ** has NB or fewer children then all children of pParent are taken. 6722 ** 6723 ** This loop also drops the divider cells from the parent page. This 6724 ** way, the remainder of the function does not have to deal with any 6725 ** overflow cells in the parent page, since if any existed they will 6726 ** have already been removed. 6727 */ 6728 i = pParent->nOverflow + pParent->nCell; 6729 if( i<2 ){ 6730 nxDiv = 0; 6731 }else{ 6732 assert( bBulk==0 || bBulk==1 ); 6733 if( iParentIdx==0 ){ 6734 nxDiv = 0; 6735 }else if( iParentIdx==i ){ 6736 nxDiv = i-2+bBulk; 6737 }else{ 6738 assert( bBulk==0 ); 6739 nxDiv = iParentIdx-1; 6740 } 6741 i = 2-bBulk; 6742 } 6743 nOld = i+1; 6744 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 6745 pRight = &pParent->aData[pParent->hdrOffset+8]; 6746 }else{ 6747 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 6748 } 6749 pgno = get4byte(pRight); 6750 while( 1 ){ 6751 rc = getAndInitPage(pBt, pgno, &apOld[i], 0); 6752 if( rc ){ 6753 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 6754 goto balance_cleanup; 6755 } 6756 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; 6757 if( (i--)==0 ) break; 6758 6759 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){ 6760 apDiv[i] = pParent->apOvfl[0]; 6761 pgno = get4byte(apDiv[i]); 6762 szNew[i] = cellSizePtr(pParent, apDiv[i]); 6763 pParent->nOverflow = 0; 6764 }else{ 6765 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 6766 pgno = get4byte(apDiv[i]); 6767 szNew[i] = cellSizePtr(pParent, apDiv[i]); 6768 6769 /* Drop the cell from the parent page. apDiv[i] still points to 6770 ** the cell within the parent, even though it has been dropped. 6771 ** This is safe because dropping a cell only overwrites the first 6772 ** four bytes of it, and this function does not need the first 6773 ** four bytes of the divider cell. So the pointer is safe to use 6774 ** later on. 6775 ** 6776 ** But not if we are in secure-delete mode. In secure-delete mode, 6777 ** the dropCell() routine will overwrite the entire cell with zeroes. 6778 ** In this case, temporarily copy the cell into the aOvflSpace[] 6779 ** buffer. It will be copied out again as soon as the aSpace[] buffer 6780 ** is allocated. */ 6781 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6782 int iOff; 6783 6784 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 6785 if( (iOff+szNew[i])>(int)pBt->usableSize ){ 6786 rc = SQLITE_CORRUPT_BKPT; 6787 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 6788 goto balance_cleanup; 6789 }else{ 6790 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 6791 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 6792 } 6793 } 6794 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 6795 } 6796 } 6797 6798 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 6799 ** alignment */ 6800 nMaxCells = (nMaxCells + 3)&~3; 6801 6802 /* 6803 ** Allocate space for memory structures 6804 */ 6805 szScratch = 6806 nMaxCells*sizeof(u8*) /* apCell */ 6807 + nMaxCells*sizeof(u16) /* szCell */ 6808 + pBt->pageSize; /* aSpace1 */ 6809 6810 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer 6811 ** that is more than 6 times the database page size. */ 6812 assert( szScratch<=6*(int)pBt->pageSize ); 6813 apCell = sqlite3ScratchMalloc( szScratch ); 6814 if( apCell==0 ){ 6815 rc = SQLITE_NOMEM; 6816 goto balance_cleanup; 6817 } 6818 szCell = (u16*)&apCell[nMaxCells]; 6819 aSpace1 = (u8*)&szCell[nMaxCells]; 6820 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 6821 6822 /* 6823 ** Load pointers to all cells on sibling pages and the divider cells 6824 ** into the local apCell[] array. Make copies of the divider cells 6825 ** into space obtained from aSpace1[]. The divider cells have already 6826 ** been removed from pParent. 6827 ** 6828 ** If the siblings are on leaf pages, then the child pointers of the 6829 ** divider cells are stripped from the cells before they are copied 6830 ** into aSpace1[]. In this way, all cells in apCell[] are without 6831 ** child pointers. If siblings are not leaves, then all cell in 6832 ** apCell[] include child pointers. Either way, all cells in apCell[] 6833 ** are alike. 6834 ** 6835 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 6836 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 6837 */ 6838 leafCorrection = apOld[0]->leaf*4; 6839 leafData = apOld[0]->intKeyLeaf; 6840 for(i=0; i<nOld; i++){ 6841 int limit; 6842 MemPage *pOld = apOld[i]; 6843 6844 limit = pOld->nCell+pOld->nOverflow; 6845 if( pOld->nOverflow>0 ){ 6846 for(j=0; j<limit; j++){ 6847 assert( nCell<nMaxCells ); 6848 apCell[nCell] = findOverflowCell(pOld, j); 6849 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); 6850 nCell++; 6851 } 6852 }else{ 6853 u8 *aData = pOld->aData; 6854 u16 maskPage = pOld->maskPage; 6855 u16 cellOffset = pOld->cellOffset; 6856 for(j=0; j<limit; j++){ 6857 assert( nCell<nMaxCells ); 6858 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j); 6859 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); 6860 nCell++; 6861 } 6862 } 6863 cntOld[i] = nCell; 6864 if( i<nOld-1 && !leafData){ 6865 u16 sz = (u16)szNew[i]; 6866 u8 *pTemp; 6867 assert( nCell<nMaxCells ); 6868 szCell[nCell] = sz; 6869 pTemp = &aSpace1[iSpace1]; 6870 iSpace1 += sz; 6871 assert( sz<=pBt->maxLocal+23 ); 6872 assert( iSpace1 <= (int)pBt->pageSize ); 6873 memcpy(pTemp, apDiv[i], sz); 6874 apCell[nCell] = pTemp+leafCorrection; 6875 assert( leafCorrection==0 || leafCorrection==4 ); 6876 szCell[nCell] = szCell[nCell] - leafCorrection; 6877 if( !pOld->leaf ){ 6878 assert( leafCorrection==0 ); 6879 assert( pOld->hdrOffset==0 ); 6880 /* The right pointer of the child page pOld becomes the left 6881 ** pointer of the divider cell */ 6882 memcpy(apCell[nCell], &pOld->aData[8], 4); 6883 }else{ 6884 assert( leafCorrection==4 ); 6885 if( szCell[nCell]<4 ){ 6886 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 6887 ** does exist, pad it with 0x00 bytes. */ 6888 assert( szCell[nCell]==3 ); 6889 assert( apCell[nCell]==&aSpace1[iSpace1-3] ); 6890 aSpace1[iSpace1++] = 0x00; 6891 szCell[nCell] = 4; 6892 } 6893 } 6894 nCell++; 6895 } 6896 } 6897 6898 /* 6899 ** Figure out the number of pages needed to hold all nCell cells. 6900 ** Store this number in "k". Also compute szNew[] which is the total 6901 ** size of all cells on the i-th page and cntNew[] which is the index 6902 ** in apCell[] of the cell that divides page i from page i+1. 6903 ** cntNew[k] should equal nCell. 6904 ** 6905 ** Values computed by this block: 6906 ** 6907 ** k: The total number of sibling pages 6908 ** szNew[i]: Spaced used on the i-th sibling page. 6909 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to 6910 ** the right of the i-th sibling page. 6911 ** usableSpace: Number of bytes of space available on each sibling. 6912 ** 6913 */ 6914 usableSpace = pBt->usableSize - 12 + leafCorrection; 6915 for(subtotal=k=i=0; i<nCell; i++){ 6916 assert( i<nMaxCells ); 6917 subtotal += szCell[i] + 2; 6918 if( subtotal > usableSpace ){ 6919 szNew[k] = subtotal - szCell[i] - 2; 6920 cntNew[k] = i; 6921 if( leafData ){ i--; } 6922 subtotal = 0; 6923 k++; 6924 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 6925 } 6926 } 6927 szNew[k] = subtotal; 6928 cntNew[k] = nCell; 6929 k++; 6930 6931 /* 6932 ** The packing computed by the previous block is biased toward the siblings 6933 ** on the left side (siblings with smaller keys). The left siblings are 6934 ** always nearly full, while the right-most sibling might be nearly empty. 6935 ** The next block of code attempts to adjust the packing of siblings to 6936 ** get a better balance. 6937 ** 6938 ** This adjustment is more than an optimization. The packing above might 6939 ** be so out of balance as to be illegal. For example, the right-most 6940 ** sibling might be completely empty. This adjustment is not optional. 6941 */ 6942 for(i=k-1; i>0; i--){ 6943 int szRight = szNew[i]; /* Size of sibling on the right */ 6944 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 6945 int r; /* Index of right-most cell in left sibling */ 6946 int d; /* Index of first cell to the left of right sibling */ 6947 6948 r = cntNew[i-1] - 1; 6949 d = r + 1 - leafData; 6950 assert( d<nMaxCells ); 6951 assert( r<nMaxCells ); 6952 while( szRight==0 6953 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2)) 6954 ){ 6955 szRight += szCell[d] + 2; 6956 szLeft -= szCell[r] + 2; 6957 cntNew[i-1]--; 6958 r = cntNew[i-1] - 1; 6959 d = r + 1 - leafData; 6960 } 6961 szNew[i] = szRight; 6962 szNew[i-1] = szLeft; 6963 } 6964 6965 /* Sanity check: For a non-corrupt database file one of the follwing 6966 ** must be true: 6967 ** (1) We found one or more cells (cntNew[0])>0), or 6968 ** (2) pPage is a virtual root page. A virtual root page is when 6969 ** the real root page is page 1 and we are the only child of 6970 ** that page. 6971 */ 6972 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 6973 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 6974 apOld[0]->pgno, apOld[0]->nCell, 6975 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 6976 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 6977 )); 6978 6979 /* 6980 ** Allocate k new pages. Reuse old pages where possible. 6981 */ 6982 if( apOld[0]->pgno<=1 ){ 6983 rc = SQLITE_CORRUPT_BKPT; 6984 goto balance_cleanup; 6985 } 6986 pageFlags = apOld[0]->aData[0]; 6987 for(i=0; i<k; i++){ 6988 MemPage *pNew; 6989 if( i<nOld ){ 6990 pNew = apNew[i] = apOld[i]; 6991 apOld[i] = 0; 6992 rc = sqlite3PagerWrite(pNew->pDbPage); 6993 nNew++; 6994 if( rc ) goto balance_cleanup; 6995 }else{ 6996 assert( i>0 ); 6997 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 6998 if( rc ) goto balance_cleanup; 6999 zeroPage(pNew, pageFlags); 7000 apNew[i] = pNew; 7001 nNew++; 7002 cntOld[i] = nCell; 7003 7004 /* Set the pointer-map entry for the new sibling page. */ 7005 if( ISAUTOVACUUM ){ 7006 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 7007 if( rc!=SQLITE_OK ){ 7008 goto balance_cleanup; 7009 } 7010 } 7011 } 7012 } 7013 7014 /* 7015 ** Reassign page numbers so that the new pages are in ascending order. 7016 ** This helps to keep entries in the disk file in order so that a scan 7017 ** of the table is closer to a linear scan through the file. That in turn 7018 ** helps the operating system to deliver pages from the disk more rapidly. 7019 ** 7020 ** An O(n^2) insertion sort algorithm is used, but since n is never more 7021 ** than (NB+2) (a small constant), that should not be a problem. 7022 ** 7023 ** When NB==3, this one optimization makes the database about 25% faster 7024 ** for large insertions and deletions. 7025 */ 7026 for(i=0; i<nNew; i++){ 7027 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 7028 aPgFlags[i] = apNew[i]->pDbPage->flags; 7029 for(j=0; j<i; j++){ 7030 if( aPgno[j]==aPgno[i] ){ 7031 /* This branch is taken if the set of sibling pages somehow contains 7032 ** duplicate entries. This can happen if the database is corrupt. 7033 ** It would be simpler to detect this as part of the loop below, but 7034 ** we do the detection here in order to avoid populating the pager 7035 ** cache with two separate objects associated with the same 7036 ** page number. */ 7037 assert( CORRUPT_DB ); 7038 rc = SQLITE_CORRUPT_BKPT; 7039 goto balance_cleanup; 7040 } 7041 } 7042 } 7043 for(i=0; i<nNew; i++){ 7044 int iBest = 0; /* aPgno[] index of page number to use */ 7045 for(j=1; j<nNew; j++){ 7046 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 7047 } 7048 pgno = aPgOrder[iBest]; 7049 aPgOrder[iBest] = 0xffffffff; 7050 if( iBest!=i ){ 7051 if( iBest>i ){ 7052 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 7053 } 7054 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 7055 apNew[i]->pgno = pgno; 7056 } 7057 } 7058 7059 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 7060 "%d(%d nc=%d) %d(%d nc=%d)\n", 7061 apNew[0]->pgno, szNew[0], cntNew[0], 7062 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 7063 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 7064 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 7065 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 7066 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 7067 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 7068 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 7069 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 7070 )); 7071 7072 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7073 put4byte(pRight, apNew[nNew-1]->pgno); 7074 7075 /* If the sibling pages are not leaves, ensure that the right-child pointer 7076 ** of the right-most new sibling page is set to the value that was 7077 ** originally in the same field of the right-most old sibling page. */ 7078 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 7079 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 7080 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 7081 } 7082 7083 /* Make any required updates to pointer map entries associated with 7084 ** cells stored on sibling pages following the balance operation. Pointer 7085 ** map entries associated with divider cells are set by the insertCell() 7086 ** routine. The associated pointer map entries are: 7087 ** 7088 ** a) if the cell contains a reference to an overflow chain, the 7089 ** entry associated with the first page in the overflow chain, and 7090 ** 7091 ** b) if the sibling pages are not leaves, the child page associated 7092 ** with the cell. 7093 ** 7094 ** If the sibling pages are not leaves, then the pointer map entry 7095 ** associated with the right-child of each sibling may also need to be 7096 ** updated. This happens below, after the sibling pages have been 7097 ** populated, not here. 7098 */ 7099 if( ISAUTOVACUUM ){ 7100 MemPage *pNew = apNew[0]; 7101 u8 *aOld = pNew->aData; 7102 int cntOldNext = pNew->nCell + pNew->nOverflow; 7103 int usableSize = pBt->usableSize; 7104 int iNew = 0; 7105 int iOld = 0; 7106 7107 for(i=0; i<nCell; i++){ 7108 u8 *pCell = apCell[i]; 7109 if( i==cntOldNext ){ 7110 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld]; 7111 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 7112 aOld = pOld->aData; 7113 } 7114 if( i==cntNew[iNew] ){ 7115 pNew = apNew[++iNew]; 7116 if( !leafData ) continue; 7117 } 7118 7119 /* Cell pCell is destined for new sibling page pNew. Originally, it 7120 ** was either part of sibling page iOld (possibly an overflow cell), 7121 ** or else the divider cell to the left of sibling page iOld. So, 7122 ** if sibling page iOld had the same page number as pNew, and if 7123 ** pCell really was a part of sibling page iOld (not a divider or 7124 ** overflow cell), we can skip updating the pointer map entries. */ 7125 if( iOld>=nNew 7126 || pNew->pgno!=aPgno[iOld] 7127 || pCell<aOld 7128 || pCell>=&aOld[usableSize] 7129 ){ 7130 if( !leafCorrection ){ 7131 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 7132 } 7133 if( szCell[i]>pNew->minLocal ){ 7134 ptrmapPutOvflPtr(pNew, pCell, &rc); 7135 } 7136 } 7137 } 7138 } 7139 7140 /* Insert new divider cells into pParent. */ 7141 for(i=0; i<nNew-1; i++){ 7142 u8 *pCell; 7143 u8 *pTemp; 7144 int sz; 7145 MemPage *pNew = apNew[i]; 7146 j = cntNew[i]; 7147 7148 assert( j<nMaxCells ); 7149 pCell = apCell[j]; 7150 sz = szCell[j] + leafCorrection; 7151 pTemp = &aOvflSpace[iOvflSpace]; 7152 if( !pNew->leaf ){ 7153 memcpy(&pNew->aData[8], pCell, 4); 7154 }else if( leafData ){ 7155 /* If the tree is a leaf-data tree, and the siblings are leaves, 7156 ** then there is no divider cell in apCell[]. Instead, the divider 7157 ** cell consists of the integer key for the right-most cell of 7158 ** the sibling-page assembled above only. 7159 */ 7160 CellInfo info; 7161 j--; 7162 btreeParseCellPtr(pNew, apCell[j], &info); 7163 pCell = pTemp; 7164 sz = 4 + putVarint(&pCell[4], info.nKey); 7165 pTemp = 0; 7166 }else{ 7167 pCell -= 4; 7168 /* Obscure case for non-leaf-data trees: If the cell at pCell was 7169 ** previously stored on a leaf node, and its reported size was 4 7170 ** bytes, then it may actually be smaller than this 7171 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 7172 ** any cell). But it is important to pass the correct size to 7173 ** insertCell(), so reparse the cell now. 7174 ** 7175 ** Note that this can never happen in an SQLite data file, as all 7176 ** cells are at least 4 bytes. It only happens in b-trees used 7177 ** to evaluate "IN (SELECT ...)" and similar clauses. 7178 */ 7179 if( szCell[j]==4 ){ 7180 assert(leafCorrection==4); 7181 sz = cellSizePtr(pParent, pCell); 7182 } 7183 } 7184 iOvflSpace += sz; 7185 assert( sz<=pBt->maxLocal+23 ); 7186 assert( iOvflSpace <= (int)pBt->pageSize ); 7187 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 7188 if( rc!=SQLITE_OK ) goto balance_cleanup; 7189 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7190 } 7191 7192 /* Now update the actual sibling pages. The order in which they are updated 7193 ** is important, as this code needs to avoid disrupting any page from which 7194 ** cells may still to be read. In practice, this means: 7195 ** 7196 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 7197 ** then it is not safe to update page apNew[iPg] until after 7198 ** the left-hand sibling apNew[iPg-1] has been updated. 7199 ** 7200 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 7201 ** then it is not safe to update page apNew[iPg] until after 7202 ** the right-hand sibling apNew[iPg+1] has been updated. 7203 ** 7204 ** If neither of the above apply, the page is safe to update. 7205 ** 7206 ** The iPg value in the following loop starts at nNew-1 goes down 7207 ** to 0, then back up to nNew-1 again, thus making two passes over 7208 ** the pages. On the initial downward pass, only condition (1) above 7209 ** needs to be tested because (2) will always be true from the previous 7210 ** step. On the upward pass, both conditions are always true, so the 7211 ** upwards pass simply processes pages that were missed on the downward 7212 ** pass. 7213 */ 7214 for(i=1-nNew; i<nNew; i++){ 7215 int iPg = i<0 ? -i : i; 7216 assert( iPg>=0 && iPg<nNew ); 7217 if( abDone[iPg] ) continue; /* Skip pages already processed */ 7218 if( i>=0 /* On the upwards pass, or... */ 7219 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 7220 ){ 7221 int iNew; 7222 int iOld; 7223 int nNewCell; 7224 7225 /* Verify condition (1): If cells are moving left, update iPg 7226 ** only after iPg-1 has already been updated. */ 7227 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 7228 7229 /* Verify condition (2): If cells are moving right, update iPg 7230 ** only after iPg+1 has already been updated. */ 7231 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 7232 7233 if( iPg==0 ){ 7234 iNew = iOld = 0; 7235 nNewCell = cntNew[0]; 7236 }else{ 7237 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : nCell; 7238 iNew = cntNew[iPg-1] + !leafData; 7239 nNewCell = cntNew[iPg] - iNew; 7240 } 7241 7242 editPage(apNew[iPg], iOld, iNew, nNewCell, apCell, szCell); 7243 abDone[iPg]++; 7244 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 7245 assert( apNew[iPg]->nOverflow==0 ); 7246 assert( apNew[iPg]->nCell==nNewCell ); 7247 } 7248 } 7249 7250 /* All pages have been processed exactly once */ 7251 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 7252 7253 assert( nOld>0 ); 7254 assert( nNew>0 ); 7255 7256 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 7257 /* The root page of the b-tree now contains no cells. The only sibling 7258 ** page is the right-child of the parent. Copy the contents of the 7259 ** child page into the parent, decreasing the overall height of the 7260 ** b-tree structure by one. This is described as the "balance-shallower" 7261 ** sub-algorithm in some documentation. 7262 ** 7263 ** If this is an auto-vacuum database, the call to copyNodeContent() 7264 ** sets all pointer-map entries corresponding to database image pages 7265 ** for which the pointer is stored within the content being copied. 7266 ** 7267 ** It is critical that the child page be defragmented before being 7268 ** copied into the parent, because if the parent is page 1 then it will 7269 ** by smaller than the child due to the database header, and so all the 7270 ** free space needs to be up front. 7271 */ 7272 assert( nNew==1 ); 7273 rc = defragmentPage(apNew[0]); 7274 testcase( rc!=SQLITE_OK ); 7275 assert( apNew[0]->nFree == 7276 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) 7277 || rc!=SQLITE_OK 7278 ); 7279 copyNodeContent(apNew[0], pParent, &rc); 7280 freePage(apNew[0], &rc); 7281 }else if( ISAUTOVACUUM && !leafCorrection ){ 7282 /* Fix the pointer map entries associated with the right-child of each 7283 ** sibling page. All other pointer map entries have already been taken 7284 ** care of. */ 7285 for(i=0; i<nNew; i++){ 7286 u32 key = get4byte(&apNew[i]->aData[8]); 7287 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 7288 } 7289 } 7290 7291 assert( pParent->isInit ); 7292 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 7293 nOld, nNew, nCell)); 7294 7295 /* Free any old pages that were not reused as new pages. 7296 */ 7297 for(i=nNew; i<nOld; i++){ 7298 freePage(apOld[i], &rc); 7299 } 7300 7301 #if 0 7302 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 7303 /* The ptrmapCheckPages() contains assert() statements that verify that 7304 ** all pointer map pages are set correctly. This is helpful while 7305 ** debugging. This is usually disabled because a corrupt database may 7306 ** cause an assert() statement to fail. */ 7307 ptrmapCheckPages(apNew, nNew); 7308 ptrmapCheckPages(&pParent, 1); 7309 } 7310 #endif 7311 7312 /* 7313 ** Cleanup before returning. 7314 */ 7315 balance_cleanup: 7316 sqlite3ScratchFree(apCell); 7317 for(i=0; i<nOld; i++){ 7318 releasePage(apOld[i]); 7319 } 7320 for(i=0; i<nNew; i++){ 7321 releasePage(apNew[i]); 7322 } 7323 7324 return rc; 7325 } 7326 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM) 7327 #pragma optimize("", on) 7328 #endif 7329 7330 7331 /* 7332 ** This function is called when the root page of a b-tree structure is 7333 ** overfull (has one or more overflow pages). 7334 ** 7335 ** A new child page is allocated and the contents of the current root 7336 ** page, including overflow cells, are copied into the child. The root 7337 ** page is then overwritten to make it an empty page with the right-child 7338 ** pointer pointing to the new page. 7339 ** 7340 ** Before returning, all pointer-map entries corresponding to pages 7341 ** that the new child-page now contains pointers to are updated. The 7342 ** entry corresponding to the new right-child pointer of the root 7343 ** page is also updated. 7344 ** 7345 ** If successful, *ppChild is set to contain a reference to the child 7346 ** page and SQLITE_OK is returned. In this case the caller is required 7347 ** to call releasePage() on *ppChild exactly once. If an error occurs, 7348 ** an error code is returned and *ppChild is set to 0. 7349 */ 7350 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 7351 int rc; /* Return value from subprocedures */ 7352 MemPage *pChild = 0; /* Pointer to a new child page */ 7353 Pgno pgnoChild = 0; /* Page number of the new child page */ 7354 BtShared *pBt = pRoot->pBt; /* The BTree */ 7355 7356 assert( pRoot->nOverflow>0 ); 7357 assert( sqlite3_mutex_held(pBt->mutex) ); 7358 7359 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 7360 ** page that will become the new right-child of pPage. Copy the contents 7361 ** of the node stored on pRoot into the new child page. 7362 */ 7363 rc = sqlite3PagerWrite(pRoot->pDbPage); 7364 if( rc==SQLITE_OK ){ 7365 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 7366 copyNodeContent(pRoot, pChild, &rc); 7367 if( ISAUTOVACUUM ){ 7368 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 7369 } 7370 } 7371 if( rc ){ 7372 *ppChild = 0; 7373 releasePage(pChild); 7374 return rc; 7375 } 7376 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 7377 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 7378 assert( pChild->nCell==pRoot->nCell ); 7379 7380 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 7381 7382 /* Copy the overflow cells from pRoot to pChild */ 7383 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 7384 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 7385 memcpy(pChild->apOvfl, pRoot->apOvfl, 7386 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 7387 pChild->nOverflow = pRoot->nOverflow; 7388 7389 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 7390 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 7391 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 7392 7393 *ppChild = pChild; 7394 return SQLITE_OK; 7395 } 7396 7397 /* 7398 ** The page that pCur currently points to has just been modified in 7399 ** some way. This function figures out if this modification means the 7400 ** tree needs to be balanced, and if so calls the appropriate balancing 7401 ** routine. Balancing routines are: 7402 ** 7403 ** balance_quick() 7404 ** balance_deeper() 7405 ** balance_nonroot() 7406 */ 7407 static int balance(BtCursor *pCur){ 7408 int rc = SQLITE_OK; 7409 const int nMin = pCur->pBt->usableSize * 2 / 3; 7410 u8 aBalanceQuickSpace[13]; 7411 u8 *pFree = 0; 7412 7413 TESTONLY( int balance_quick_called = 0 ); 7414 TESTONLY( int balance_deeper_called = 0 ); 7415 7416 do { 7417 int iPage = pCur->iPage; 7418 MemPage *pPage = pCur->apPage[iPage]; 7419 7420 if( iPage==0 ){ 7421 if( pPage->nOverflow ){ 7422 /* The root page of the b-tree is overfull. In this case call the 7423 ** balance_deeper() function to create a new child for the root-page 7424 ** and copy the current contents of the root-page to it. The 7425 ** next iteration of the do-loop will balance the child page. 7426 */ 7427 assert( (balance_deeper_called++)==0 ); 7428 rc = balance_deeper(pPage, &pCur->apPage[1]); 7429 if( rc==SQLITE_OK ){ 7430 pCur->iPage = 1; 7431 pCur->aiIdx[0] = 0; 7432 pCur->aiIdx[1] = 0; 7433 assert( pCur->apPage[1]->nOverflow ); 7434 } 7435 }else{ 7436 break; 7437 } 7438 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 7439 break; 7440 }else{ 7441 MemPage * const pParent = pCur->apPage[iPage-1]; 7442 int const iIdx = pCur->aiIdx[iPage-1]; 7443 7444 rc = sqlite3PagerWrite(pParent->pDbPage); 7445 if( rc==SQLITE_OK ){ 7446 #ifndef SQLITE_OMIT_QUICKBALANCE 7447 if( pPage->intKeyLeaf 7448 && pPage->nOverflow==1 7449 && pPage->aiOvfl[0]==pPage->nCell 7450 && pParent->pgno!=1 7451 && pParent->nCell==iIdx 7452 ){ 7453 /* Call balance_quick() to create a new sibling of pPage on which 7454 ** to store the overflow cell. balance_quick() inserts a new cell 7455 ** into pParent, which may cause pParent overflow. If this 7456 ** happens, the next iteration of the do-loop will balance pParent 7457 ** use either balance_nonroot() or balance_deeper(). Until this 7458 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 7459 ** buffer. 7460 ** 7461 ** The purpose of the following assert() is to check that only a 7462 ** single call to balance_quick() is made for each call to this 7463 ** function. If this were not verified, a subtle bug involving reuse 7464 ** of the aBalanceQuickSpace[] might sneak in. 7465 */ 7466 assert( (balance_quick_called++)==0 ); 7467 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 7468 }else 7469 #endif 7470 { 7471 /* In this case, call balance_nonroot() to redistribute cells 7472 ** between pPage and up to 2 of its sibling pages. This involves 7473 ** modifying the contents of pParent, which may cause pParent to 7474 ** become overfull or underfull. The next iteration of the do-loop 7475 ** will balance the parent page to correct this. 7476 ** 7477 ** If the parent page becomes overfull, the overflow cell or cells 7478 ** are stored in the pSpace buffer allocated immediately below. 7479 ** A subsequent iteration of the do-loop will deal with this by 7480 ** calling balance_nonroot() (balance_deeper() may be called first, 7481 ** but it doesn't deal with overflow cells - just moves them to a 7482 ** different page). Once this subsequent call to balance_nonroot() 7483 ** has completed, it is safe to release the pSpace buffer used by 7484 ** the previous call, as the overflow cell data will have been 7485 ** copied either into the body of a database page or into the new 7486 ** pSpace buffer passed to the latter call to balance_nonroot(). 7487 */ 7488 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 7489 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 7490 pCur->hints&BTREE_BULKLOAD); 7491 if( pFree ){ 7492 /* If pFree is not NULL, it points to the pSpace buffer used 7493 ** by a previous call to balance_nonroot(). Its contents are 7494 ** now stored either on real database pages or within the 7495 ** new pSpace buffer, so it may be safely freed here. */ 7496 sqlite3PageFree(pFree); 7497 } 7498 7499 /* The pSpace buffer will be freed after the next call to 7500 ** balance_nonroot(), or just before this function returns, whichever 7501 ** comes first. */ 7502 pFree = pSpace; 7503 } 7504 } 7505 7506 pPage->nOverflow = 0; 7507 7508 /* The next iteration of the do-loop balances the parent page. */ 7509 releasePage(pPage); 7510 pCur->iPage--; 7511 assert( pCur->iPage>=0 ); 7512 } 7513 }while( rc==SQLITE_OK ); 7514 7515 if( pFree ){ 7516 sqlite3PageFree(pFree); 7517 } 7518 return rc; 7519 } 7520 7521 7522 /* 7523 ** Insert a new record into the BTree. The key is given by (pKey,nKey) 7524 ** and the data is given by (pData,nData). The cursor is used only to 7525 ** define what table the record should be inserted into. The cursor 7526 ** is left pointing at a random location. 7527 ** 7528 ** For an INTKEY table, only the nKey value of the key is used. pKey is 7529 ** ignored. For a ZERODATA table, the pData and nData are both ignored. 7530 ** 7531 ** If the seekResult parameter is non-zero, then a successful call to 7532 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already 7533 ** been performed. seekResult is the search result returned (a negative 7534 ** number if pCur points at an entry that is smaller than (pKey, nKey), or 7535 ** a positive value if pCur points at an entry that is larger than 7536 ** (pKey, nKey)). 7537 ** 7538 ** If the seekResult parameter is non-zero, then the caller guarantees that 7539 ** cursor pCur is pointing at the existing copy of a row that is to be 7540 ** overwritten. If the seekResult parameter is 0, then cursor pCur may 7541 ** point to any entry or to no entry at all and so this function has to seek 7542 ** the cursor before the new key can be inserted. 7543 */ 7544 int sqlite3BtreeInsert( 7545 BtCursor *pCur, /* Insert data into the table of this cursor */ 7546 const void *pKey, i64 nKey, /* The key of the new record */ 7547 const void *pData, int nData, /* The data of the new record */ 7548 int nZero, /* Number of extra 0 bytes to append to data */ 7549 int appendBias, /* True if this is likely an append */ 7550 int seekResult /* Result of prior MovetoUnpacked() call */ 7551 ){ 7552 int rc; 7553 int loc = seekResult; /* -1: before desired location +1: after */ 7554 int szNew = 0; 7555 int idx; 7556 MemPage *pPage; 7557 Btree *p = pCur->pBtree; 7558 BtShared *pBt = p->pBt; 7559 unsigned char *oldCell; 7560 unsigned char *newCell = 0; 7561 7562 if( pCur->eState==CURSOR_FAULT ){ 7563 assert( pCur->skipNext!=SQLITE_OK ); 7564 return pCur->skipNext; 7565 } 7566 7567 assert( cursorHoldsMutex(pCur) ); 7568 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 7569 && pBt->inTransaction==TRANS_WRITE 7570 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 7571 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 7572 7573 /* Assert that the caller has been consistent. If this cursor was opened 7574 ** expecting an index b-tree, then the caller should be inserting blob 7575 ** keys with no associated data. If the cursor was opened expecting an 7576 ** intkey table, the caller should be inserting integer keys with a 7577 ** blob of associated data. */ 7578 assert( (pKey==0)==(pCur->pKeyInfo==0) ); 7579 7580 /* Save the positions of any other cursors open on this table. 7581 ** 7582 ** In some cases, the call to btreeMoveto() below is a no-op. For 7583 ** example, when inserting data into a table with auto-generated integer 7584 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 7585 ** integer key to use. It then calls this function to actually insert the 7586 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 7587 ** that the cursor is already where it needs to be and returns without 7588 ** doing any work. To avoid thwarting these optimizations, it is important 7589 ** not to clear the cursor here. 7590 */ 7591 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 7592 if( rc ) return rc; 7593 7594 if( pCur->pKeyInfo==0 ){ 7595 /* If this is an insert into a table b-tree, invalidate any incrblob 7596 ** cursors open on the row being replaced */ 7597 invalidateIncrblobCursors(p, nKey, 0); 7598 7599 /* If the cursor is currently on the last row and we are appending a 7600 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto() 7601 ** call */ 7602 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 7603 && pCur->info.nKey==nKey-1 ){ 7604 loc = -1; 7605 } 7606 } 7607 7608 if( !loc ){ 7609 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); 7610 if( rc ) return rc; 7611 } 7612 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); 7613 7614 pPage = pCur->apPage[pCur->iPage]; 7615 assert( pPage->intKey || nKey>=0 ); 7616 assert( pPage->leaf || !pPage->intKey ); 7617 7618 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 7619 pCur->pgnoRoot, nKey, nData, pPage->pgno, 7620 loc==0 ? "overwrite" : "new entry")); 7621 assert( pPage->isInit ); 7622 newCell = pBt->pTmpSpace; 7623 assert( newCell!=0 ); 7624 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); 7625 if( rc ) goto end_insert; 7626 assert( szNew==cellSizePtr(pPage, newCell) ); 7627 assert( szNew <= MX_CELL_SIZE(pBt) ); 7628 idx = pCur->aiIdx[pCur->iPage]; 7629 if( loc==0 ){ 7630 u16 szOld; 7631 assert( idx<pPage->nCell ); 7632 rc = sqlite3PagerWrite(pPage->pDbPage); 7633 if( rc ){ 7634 goto end_insert; 7635 } 7636 oldCell = findCell(pPage, idx); 7637 if( !pPage->leaf ){ 7638 memcpy(newCell, oldCell, 4); 7639 } 7640 rc = clearCell(pPage, oldCell, &szOld); 7641 dropCell(pPage, idx, szOld, &rc); 7642 if( rc ) goto end_insert; 7643 }else if( loc<0 && pPage->nCell>0 ){ 7644 assert( pPage->leaf ); 7645 idx = ++pCur->aiIdx[pCur->iPage]; 7646 }else{ 7647 assert( pPage->leaf ); 7648 } 7649 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 7650 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 7651 7652 /* If no error has occurred and pPage has an overflow cell, call balance() 7653 ** to redistribute the cells within the tree. Since balance() may move 7654 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 7655 ** variables. 7656 ** 7657 ** Previous versions of SQLite called moveToRoot() to move the cursor 7658 ** back to the root page as balance() used to invalidate the contents 7659 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 7660 ** set the cursor state to "invalid". This makes common insert operations 7661 ** slightly faster. 7662 ** 7663 ** There is a subtle but important optimization here too. When inserting 7664 ** multiple records into an intkey b-tree using a single cursor (as can 7665 ** happen while processing an "INSERT INTO ... SELECT" statement), it 7666 ** is advantageous to leave the cursor pointing to the last entry in 7667 ** the b-tree if possible. If the cursor is left pointing to the last 7668 ** entry in the table, and the next row inserted has an integer key 7669 ** larger than the largest existing key, it is possible to insert the 7670 ** row without seeking the cursor. This can be a big performance boost. 7671 */ 7672 pCur->info.nSize = 0; 7673 if( rc==SQLITE_OK && pPage->nOverflow ){ 7674 pCur->curFlags &= ~(BTCF_ValidNKey); 7675 rc = balance(pCur); 7676 7677 /* Must make sure nOverflow is reset to zero even if the balance() 7678 ** fails. Internal data structure corruption will result otherwise. 7679 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 7680 ** from trying to save the current position of the cursor. */ 7681 pCur->apPage[pCur->iPage]->nOverflow = 0; 7682 pCur->eState = CURSOR_INVALID; 7683 } 7684 assert( pCur->apPage[pCur->iPage]->nOverflow==0 ); 7685 7686 end_insert: 7687 return rc; 7688 } 7689 7690 /* 7691 ** Delete the entry that the cursor is pointing to. The cursor 7692 ** is left pointing at an arbitrary location. 7693 */ 7694 int sqlite3BtreeDelete(BtCursor *pCur){ 7695 Btree *p = pCur->pBtree; 7696 BtShared *pBt = p->pBt; 7697 int rc; /* Return code */ 7698 MemPage *pPage; /* Page to delete cell from */ 7699 unsigned char *pCell; /* Pointer to cell to delete */ 7700 int iCellIdx; /* Index of cell to delete */ 7701 int iCellDepth; /* Depth of node containing pCell */ 7702 u16 szCell; /* Size of the cell being deleted */ 7703 7704 assert( cursorHoldsMutex(pCur) ); 7705 assert( pBt->inTransaction==TRANS_WRITE ); 7706 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 7707 assert( pCur->curFlags & BTCF_WriteFlag ); 7708 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 7709 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 7710 7711 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell) 7712 || NEVER(pCur->eState!=CURSOR_VALID) 7713 ){ 7714 return SQLITE_ERROR; /* Something has gone awry. */ 7715 } 7716 7717 iCellDepth = pCur->iPage; 7718 iCellIdx = pCur->aiIdx[iCellDepth]; 7719 pPage = pCur->apPage[iCellDepth]; 7720 pCell = findCell(pPage, iCellIdx); 7721 7722 /* If the page containing the entry to delete is not a leaf page, move 7723 ** the cursor to the largest entry in the tree that is smaller than 7724 ** the entry being deleted. This cell will replace the cell being deleted 7725 ** from the internal node. The 'previous' entry is used for this instead 7726 ** of the 'next' entry, as the previous entry is always a part of the 7727 ** sub-tree headed by the child page of the cell being deleted. This makes 7728 ** balancing the tree following the delete operation easier. */ 7729 if( !pPage->leaf ){ 7730 int notUsed = 0; 7731 rc = sqlite3BtreePrevious(pCur, ¬Used); 7732 if( rc ) return rc; 7733 } 7734 7735 /* Save the positions of any other cursors open on this table before 7736 ** making any modifications. Make the page containing the entry to be 7737 ** deleted writable. Then free any overflow pages associated with the 7738 ** entry and finally remove the cell itself from within the page. 7739 */ 7740 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 7741 if( rc ) return rc; 7742 7743 /* If this is a delete operation to remove a row from a table b-tree, 7744 ** invalidate any incrblob cursors open on the row being deleted. */ 7745 if( pCur->pKeyInfo==0 ){ 7746 invalidateIncrblobCursors(p, pCur->info.nKey, 0); 7747 } 7748 7749 rc = sqlite3PagerWrite(pPage->pDbPage); 7750 if( rc ) return rc; 7751 rc = clearCell(pPage, pCell, &szCell); 7752 dropCell(pPage, iCellIdx, szCell, &rc); 7753 if( rc ) return rc; 7754 7755 /* If the cell deleted was not located on a leaf page, then the cursor 7756 ** is currently pointing to the largest entry in the sub-tree headed 7757 ** by the child-page of the cell that was just deleted from an internal 7758 ** node. The cell from the leaf node needs to be moved to the internal 7759 ** node to replace the deleted cell. */ 7760 if( !pPage->leaf ){ 7761 MemPage *pLeaf = pCur->apPage[pCur->iPage]; 7762 int nCell; 7763 Pgno n = pCur->apPage[iCellDepth+1]->pgno; 7764 unsigned char *pTmp; 7765 7766 pCell = findCell(pLeaf, pLeaf->nCell-1); 7767 nCell = cellSizePtr(pLeaf, pCell); 7768 assert( MX_CELL_SIZE(pBt) >= nCell ); 7769 pTmp = pBt->pTmpSpace; 7770 assert( pTmp!=0 ); 7771 rc = sqlite3PagerWrite(pLeaf->pDbPage); 7772 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 7773 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 7774 if( rc ) return rc; 7775 } 7776 7777 /* Balance the tree. If the entry deleted was located on a leaf page, 7778 ** then the cursor still points to that page. In this case the first 7779 ** call to balance() repairs the tree, and the if(...) condition is 7780 ** never true. 7781 ** 7782 ** Otherwise, if the entry deleted was on an internal node page, then 7783 ** pCur is pointing to the leaf page from which a cell was removed to 7784 ** replace the cell deleted from the internal node. This is slightly 7785 ** tricky as the leaf node may be underfull, and the internal node may 7786 ** be either under or overfull. In this case run the balancing algorithm 7787 ** on the leaf node first. If the balance proceeds far enough up the 7788 ** tree that we can be sure that any problem in the internal node has 7789 ** been corrected, so be it. Otherwise, after balancing the leaf node, 7790 ** walk the cursor up the tree to the internal node and balance it as 7791 ** well. */ 7792 rc = balance(pCur); 7793 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 7794 while( pCur->iPage>iCellDepth ){ 7795 releasePage(pCur->apPage[pCur->iPage--]); 7796 } 7797 rc = balance(pCur); 7798 } 7799 7800 if( rc==SQLITE_OK ){ 7801 moveToRoot(pCur); 7802 } 7803 return rc; 7804 } 7805 7806 /* 7807 ** Create a new BTree table. Write into *piTable the page 7808 ** number for the root page of the new table. 7809 ** 7810 ** The type of type is determined by the flags parameter. Only the 7811 ** following values of flags are currently in use. Other values for 7812 ** flags might not work: 7813 ** 7814 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 7815 ** BTREE_ZERODATA Used for SQL indices 7816 */ 7817 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ 7818 BtShared *pBt = p->pBt; 7819 MemPage *pRoot; 7820 Pgno pgnoRoot; 7821 int rc; 7822 int ptfFlags; /* Page-type flage for the root page of new table */ 7823 7824 assert( sqlite3BtreeHoldsMutex(p) ); 7825 assert( pBt->inTransaction==TRANS_WRITE ); 7826 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 7827 7828 #ifdef SQLITE_OMIT_AUTOVACUUM 7829 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 7830 if( rc ){ 7831 return rc; 7832 } 7833 #else 7834 if( pBt->autoVacuum ){ 7835 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 7836 MemPage *pPageMove; /* The page to move to. */ 7837 7838 /* Creating a new table may probably require moving an existing database 7839 ** to make room for the new tables root page. In case this page turns 7840 ** out to be an overflow page, delete all overflow page-map caches 7841 ** held by open cursors. 7842 */ 7843 invalidateAllOverflowCache(pBt); 7844 7845 /* Read the value of meta[3] from the database to determine where the 7846 ** root page of the new table should go. meta[3] is the largest root-page 7847 ** created so far, so the new root-page is (meta[3]+1). 7848 */ 7849 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 7850 pgnoRoot++; 7851 7852 /* The new root-page may not be allocated on a pointer-map page, or the 7853 ** PENDING_BYTE page. 7854 */ 7855 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 7856 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 7857 pgnoRoot++; 7858 } 7859 assert( pgnoRoot>=3 ); 7860 7861 /* Allocate a page. The page that currently resides at pgnoRoot will 7862 ** be moved to the allocated page (unless the allocated page happens 7863 ** to reside at pgnoRoot). 7864 */ 7865 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 7866 if( rc!=SQLITE_OK ){ 7867 return rc; 7868 } 7869 7870 if( pgnoMove!=pgnoRoot ){ 7871 /* pgnoRoot is the page that will be used for the root-page of 7872 ** the new table (assuming an error did not occur). But we were 7873 ** allocated pgnoMove. If required (i.e. if it was not allocated 7874 ** by extending the file), the current page at position pgnoMove 7875 ** is already journaled. 7876 */ 7877 u8 eType = 0; 7878 Pgno iPtrPage = 0; 7879 7880 /* Save the positions of any open cursors. This is required in 7881 ** case they are holding a reference to an xFetch reference 7882 ** corresponding to page pgnoRoot. */ 7883 rc = saveAllCursors(pBt, 0, 0); 7884 releasePage(pPageMove); 7885 if( rc!=SQLITE_OK ){ 7886 return rc; 7887 } 7888 7889 /* Move the page currently at pgnoRoot to pgnoMove. */ 7890 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 7891 if( rc!=SQLITE_OK ){ 7892 return rc; 7893 } 7894 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 7895 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 7896 rc = SQLITE_CORRUPT_BKPT; 7897 } 7898 if( rc!=SQLITE_OK ){ 7899 releasePage(pRoot); 7900 return rc; 7901 } 7902 assert( eType!=PTRMAP_ROOTPAGE ); 7903 assert( eType!=PTRMAP_FREEPAGE ); 7904 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 7905 releasePage(pRoot); 7906 7907 /* Obtain the page at pgnoRoot */ 7908 if( rc!=SQLITE_OK ){ 7909 return rc; 7910 } 7911 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 7912 if( rc!=SQLITE_OK ){ 7913 return rc; 7914 } 7915 rc = sqlite3PagerWrite(pRoot->pDbPage); 7916 if( rc!=SQLITE_OK ){ 7917 releasePage(pRoot); 7918 return rc; 7919 } 7920 }else{ 7921 pRoot = pPageMove; 7922 } 7923 7924 /* Update the pointer-map and meta-data with the new root-page number. */ 7925 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 7926 if( rc ){ 7927 releasePage(pRoot); 7928 return rc; 7929 } 7930 7931 /* When the new root page was allocated, page 1 was made writable in 7932 ** order either to increase the database filesize, or to decrement the 7933 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 7934 */ 7935 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 7936 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 7937 if( NEVER(rc) ){ 7938 releasePage(pRoot); 7939 return rc; 7940 } 7941 7942 }else{ 7943 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 7944 if( rc ) return rc; 7945 } 7946 #endif 7947 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 7948 if( createTabFlags & BTREE_INTKEY ){ 7949 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 7950 }else{ 7951 ptfFlags = PTF_ZERODATA | PTF_LEAF; 7952 } 7953 zeroPage(pRoot, ptfFlags); 7954 sqlite3PagerUnref(pRoot->pDbPage); 7955 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 7956 *piTable = (int)pgnoRoot; 7957 return SQLITE_OK; 7958 } 7959 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ 7960 int rc; 7961 sqlite3BtreeEnter(p); 7962 rc = btreeCreateTable(p, piTable, flags); 7963 sqlite3BtreeLeave(p); 7964 return rc; 7965 } 7966 7967 /* 7968 ** Erase the given database page and all its children. Return 7969 ** the page to the freelist. 7970 */ 7971 static int clearDatabasePage( 7972 BtShared *pBt, /* The BTree that contains the table */ 7973 Pgno pgno, /* Page number to clear */ 7974 int freePageFlag, /* Deallocate page if true */ 7975 int *pnChange /* Add number of Cells freed to this counter */ 7976 ){ 7977 MemPage *pPage; 7978 int rc; 7979 unsigned char *pCell; 7980 int i; 7981 int hdr; 7982 u16 szCell; 7983 u8 hasChildren; 7984 7985 assert( sqlite3_mutex_held(pBt->mutex) ); 7986 if( pgno>btreePagecount(pBt) ){ 7987 return SQLITE_CORRUPT_BKPT; 7988 } 7989 7990 rc = getAndInitPage(pBt, pgno, &pPage, 0); 7991 if( rc ) return rc; 7992 hasChildren = !pPage->leaf; 7993 pPage->leaf = 1; /* Block looping if the database is corrupt */ 7994 hdr = pPage->hdrOffset; 7995 for(i=0; i<pPage->nCell; i++){ 7996 pCell = findCell(pPage, i); 7997 if( hasChildren ){ 7998 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 7999 if( rc ) goto cleardatabasepage_out; 8000 } 8001 rc = clearCell(pPage, pCell, &szCell); 8002 if( rc ) goto cleardatabasepage_out; 8003 } 8004 if( hasChildren ){ 8005 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 8006 if( rc ) goto cleardatabasepage_out; 8007 }else if( pnChange ){ 8008 assert( pPage->intKey ); 8009 *pnChange += pPage->nCell; 8010 } 8011 if( freePageFlag ){ 8012 freePage(pPage, &rc); 8013 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 8014 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 8015 } 8016 8017 cleardatabasepage_out: 8018 releasePage(pPage); 8019 return rc; 8020 } 8021 8022 /* 8023 ** Delete all information from a single table in the database. iTable is 8024 ** the page number of the root of the table. After this routine returns, 8025 ** the root page is empty, but still exists. 8026 ** 8027 ** This routine will fail with SQLITE_LOCKED if there are any open 8028 ** read cursors on the table. Open write cursors are moved to the 8029 ** root of the table. 8030 ** 8031 ** If pnChange is not NULL, then table iTable must be an intkey table. The 8032 ** integer value pointed to by pnChange is incremented by the number of 8033 ** entries in the table. 8034 */ 8035 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ 8036 int rc; 8037 BtShared *pBt = p->pBt; 8038 sqlite3BtreeEnter(p); 8039 assert( p->inTrans==TRANS_WRITE ); 8040 8041 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 8042 8043 if( SQLITE_OK==rc ){ 8044 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 8045 ** is the root of a table b-tree - if it is not, the following call is 8046 ** a no-op). */ 8047 invalidateIncrblobCursors(p, 0, 1); 8048 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 8049 } 8050 sqlite3BtreeLeave(p); 8051 return rc; 8052 } 8053 8054 /* 8055 ** Delete all information from the single table that pCur is open on. 8056 ** 8057 ** This routine only work for pCur on an ephemeral table. 8058 */ 8059 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 8060 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 8061 } 8062 8063 /* 8064 ** Erase all information in a table and add the root of the table to 8065 ** the freelist. Except, the root of the principle table (the one on 8066 ** page 1) is never added to the freelist. 8067 ** 8068 ** This routine will fail with SQLITE_LOCKED if there are any open 8069 ** cursors on the table. 8070 ** 8071 ** If AUTOVACUUM is enabled and the page at iTable is not the last 8072 ** root page in the database file, then the last root page 8073 ** in the database file is moved into the slot formerly occupied by 8074 ** iTable and that last slot formerly occupied by the last root page 8075 ** is added to the freelist instead of iTable. In this say, all 8076 ** root pages are kept at the beginning of the database file, which 8077 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 8078 ** page number that used to be the last root page in the file before 8079 ** the move. If no page gets moved, *piMoved is set to 0. 8080 ** The last root page is recorded in meta[3] and the value of 8081 ** meta[3] is updated by this procedure. 8082 */ 8083 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 8084 int rc; 8085 MemPage *pPage = 0; 8086 BtShared *pBt = p->pBt; 8087 8088 assert( sqlite3BtreeHoldsMutex(p) ); 8089 assert( p->inTrans==TRANS_WRITE ); 8090 8091 /* It is illegal to drop a table if any cursors are open on the 8092 ** database. This is because in auto-vacuum mode the backend may 8093 ** need to move another root-page to fill a gap left by the deleted 8094 ** root page. If an open cursor was using this page a problem would 8095 ** occur. 8096 ** 8097 ** This error is caught long before control reaches this point. 8098 */ 8099 if( NEVER(pBt->pCursor) ){ 8100 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db); 8101 return SQLITE_LOCKED_SHAREDCACHE; 8102 } 8103 8104 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 8105 if( rc ) return rc; 8106 rc = sqlite3BtreeClearTable(p, iTable, 0); 8107 if( rc ){ 8108 releasePage(pPage); 8109 return rc; 8110 } 8111 8112 *piMoved = 0; 8113 8114 if( iTable>1 ){ 8115 #ifdef SQLITE_OMIT_AUTOVACUUM 8116 freePage(pPage, &rc); 8117 releasePage(pPage); 8118 #else 8119 if( pBt->autoVacuum ){ 8120 Pgno maxRootPgno; 8121 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 8122 8123 if( iTable==maxRootPgno ){ 8124 /* If the table being dropped is the table with the largest root-page 8125 ** number in the database, put the root page on the free list. 8126 */ 8127 freePage(pPage, &rc); 8128 releasePage(pPage); 8129 if( rc!=SQLITE_OK ){ 8130 return rc; 8131 } 8132 }else{ 8133 /* The table being dropped does not have the largest root-page 8134 ** number in the database. So move the page that does into the 8135 ** gap left by the deleted root-page. 8136 */ 8137 MemPage *pMove; 8138 releasePage(pPage); 8139 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 8140 if( rc!=SQLITE_OK ){ 8141 return rc; 8142 } 8143 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 8144 releasePage(pMove); 8145 if( rc!=SQLITE_OK ){ 8146 return rc; 8147 } 8148 pMove = 0; 8149 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 8150 freePage(pMove, &rc); 8151 releasePage(pMove); 8152 if( rc!=SQLITE_OK ){ 8153 return rc; 8154 } 8155 *piMoved = maxRootPgno; 8156 } 8157 8158 /* Set the new 'max-root-page' value in the database header. This 8159 ** is the old value less one, less one more if that happens to 8160 ** be a root-page number, less one again if that is the 8161 ** PENDING_BYTE_PAGE. 8162 */ 8163 maxRootPgno--; 8164 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 8165 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 8166 maxRootPgno--; 8167 } 8168 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 8169 8170 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 8171 }else{ 8172 freePage(pPage, &rc); 8173 releasePage(pPage); 8174 } 8175 #endif 8176 }else{ 8177 /* If sqlite3BtreeDropTable was called on page 1. 8178 ** This really never should happen except in a corrupt 8179 ** database. 8180 */ 8181 zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); 8182 releasePage(pPage); 8183 } 8184 return rc; 8185 } 8186 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 8187 int rc; 8188 sqlite3BtreeEnter(p); 8189 rc = btreeDropTable(p, iTable, piMoved); 8190 sqlite3BtreeLeave(p); 8191 return rc; 8192 } 8193 8194 8195 /* 8196 ** This function may only be called if the b-tree connection already 8197 ** has a read or write transaction open on the database. 8198 ** 8199 ** Read the meta-information out of a database file. Meta[0] 8200 ** is the number of free pages currently in the database. Meta[1] 8201 ** through meta[15] are available for use by higher layers. Meta[0] 8202 ** is read-only, the others are read/write. 8203 ** 8204 ** The schema layer numbers meta values differently. At the schema 8205 ** layer (and the SetCookie and ReadCookie opcodes) the number of 8206 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 8207 ** 8208 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 8209 ** of reading the value out of the header, it instead loads the "DataVersion" 8210 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 8211 ** database file. It is a number computed by the pager. But its access 8212 ** pattern is the same as header meta values, and so it is convenient to 8213 ** read it from this routine. 8214 */ 8215 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 8216 BtShared *pBt = p->pBt; 8217 8218 sqlite3BtreeEnter(p); 8219 assert( p->inTrans>TRANS_NONE ); 8220 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); 8221 assert( pBt->pPage1 ); 8222 assert( idx>=0 && idx<=15 ); 8223 8224 if( idx==BTREE_DATA_VERSION ){ 8225 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion; 8226 }else{ 8227 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 8228 } 8229 8230 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 8231 ** database, mark the database as read-only. */ 8232 #ifdef SQLITE_OMIT_AUTOVACUUM 8233 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 8234 pBt->btsFlags |= BTS_READ_ONLY; 8235 } 8236 #endif 8237 8238 sqlite3BtreeLeave(p); 8239 } 8240 8241 /* 8242 ** Write meta-information back into the database. Meta[0] is 8243 ** read-only and may not be written. 8244 */ 8245 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 8246 BtShared *pBt = p->pBt; 8247 unsigned char *pP1; 8248 int rc; 8249 assert( idx>=1 && idx<=15 ); 8250 sqlite3BtreeEnter(p); 8251 assert( p->inTrans==TRANS_WRITE ); 8252 assert( pBt->pPage1!=0 ); 8253 pP1 = pBt->pPage1->aData; 8254 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 8255 if( rc==SQLITE_OK ){ 8256 put4byte(&pP1[36 + idx*4], iMeta); 8257 #ifndef SQLITE_OMIT_AUTOVACUUM 8258 if( idx==BTREE_INCR_VACUUM ){ 8259 assert( pBt->autoVacuum || iMeta==0 ); 8260 assert( iMeta==0 || iMeta==1 ); 8261 pBt->incrVacuum = (u8)iMeta; 8262 } 8263 #endif 8264 } 8265 sqlite3BtreeLeave(p); 8266 return rc; 8267 } 8268 8269 #ifndef SQLITE_OMIT_BTREECOUNT 8270 /* 8271 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 8272 ** number of entries in the b-tree and write the result to *pnEntry. 8273 ** 8274 ** SQLITE_OK is returned if the operation is successfully executed. 8275 ** Otherwise, if an error is encountered (i.e. an IO error or database 8276 ** corruption) an SQLite error code is returned. 8277 */ 8278 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ 8279 i64 nEntry = 0; /* Value to return in *pnEntry */ 8280 int rc; /* Return code */ 8281 8282 if( pCur->pgnoRoot==0 ){ 8283 *pnEntry = 0; 8284 return SQLITE_OK; 8285 } 8286 rc = moveToRoot(pCur); 8287 8288 /* Unless an error occurs, the following loop runs one iteration for each 8289 ** page in the B-Tree structure (not including overflow pages). 8290 */ 8291 while( rc==SQLITE_OK ){ 8292 int iIdx; /* Index of child node in parent */ 8293 MemPage *pPage; /* Current page of the b-tree */ 8294 8295 /* If this is a leaf page or the tree is not an int-key tree, then 8296 ** this page contains countable entries. Increment the entry counter 8297 ** accordingly. 8298 */ 8299 pPage = pCur->apPage[pCur->iPage]; 8300 if( pPage->leaf || !pPage->intKey ){ 8301 nEntry += pPage->nCell; 8302 } 8303 8304 /* pPage is a leaf node. This loop navigates the cursor so that it 8305 ** points to the first interior cell that it points to the parent of 8306 ** the next page in the tree that has not yet been visited. The 8307 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 8308 ** of the page, or to the number of cells in the page if the next page 8309 ** to visit is the right-child of its parent. 8310 ** 8311 ** If all pages in the tree have been visited, return SQLITE_OK to the 8312 ** caller. 8313 */ 8314 if( pPage->leaf ){ 8315 do { 8316 if( pCur->iPage==0 ){ 8317 /* All pages of the b-tree have been visited. Return successfully. */ 8318 *pnEntry = nEntry; 8319 return moveToRoot(pCur); 8320 } 8321 moveToParent(pCur); 8322 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell ); 8323 8324 pCur->aiIdx[pCur->iPage]++; 8325 pPage = pCur->apPage[pCur->iPage]; 8326 } 8327 8328 /* Descend to the child node of the cell that the cursor currently 8329 ** points at. This is the right-child if (iIdx==pPage->nCell). 8330 */ 8331 iIdx = pCur->aiIdx[pCur->iPage]; 8332 if( iIdx==pPage->nCell ){ 8333 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 8334 }else{ 8335 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 8336 } 8337 } 8338 8339 /* An error has occurred. Return an error code. */ 8340 return rc; 8341 } 8342 #endif 8343 8344 /* 8345 ** Return the pager associated with a BTree. This routine is used for 8346 ** testing and debugging only. 8347 */ 8348 Pager *sqlite3BtreePager(Btree *p){ 8349 return p->pBt->pPager; 8350 } 8351 8352 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 8353 /* 8354 ** Append a message to the error message string. 8355 */ 8356 static void checkAppendMsg( 8357 IntegrityCk *pCheck, 8358 const char *zFormat, 8359 ... 8360 ){ 8361 va_list ap; 8362 char zBuf[200]; 8363 if( !pCheck->mxErr ) return; 8364 pCheck->mxErr--; 8365 pCheck->nErr++; 8366 va_start(ap, zFormat); 8367 if( pCheck->errMsg.nChar ){ 8368 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1); 8369 } 8370 if( pCheck->zPfx ){ 8371 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2); 8372 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf); 8373 } 8374 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap); 8375 va_end(ap); 8376 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){ 8377 pCheck->mallocFailed = 1; 8378 } 8379 } 8380 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 8381 8382 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 8383 8384 /* 8385 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 8386 ** corresponds to page iPg is already set. 8387 */ 8388 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 8389 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 8390 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 8391 } 8392 8393 /* 8394 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 8395 */ 8396 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 8397 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 8398 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 8399 } 8400 8401 8402 /* 8403 ** Add 1 to the reference count for page iPage. If this is the second 8404 ** reference to the page, add an error message to pCheck->zErrMsg. 8405 ** Return 1 if there are 2 or more references to the page and 0 if 8406 ** if this is the first reference to the page. 8407 ** 8408 ** Also check that the page number is in bounds. 8409 */ 8410 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 8411 if( iPage==0 ) return 1; 8412 if( iPage>pCheck->nPage ){ 8413 checkAppendMsg(pCheck, "invalid page number %d", iPage); 8414 return 1; 8415 } 8416 if( getPageReferenced(pCheck, iPage) ){ 8417 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 8418 return 1; 8419 } 8420 setPageReferenced(pCheck, iPage); 8421 return 0; 8422 } 8423 8424 #ifndef SQLITE_OMIT_AUTOVACUUM 8425 /* 8426 ** Check that the entry in the pointer-map for page iChild maps to 8427 ** page iParent, pointer type ptrType. If not, append an error message 8428 ** to pCheck. 8429 */ 8430 static void checkPtrmap( 8431 IntegrityCk *pCheck, /* Integrity check context */ 8432 Pgno iChild, /* Child page number */ 8433 u8 eType, /* Expected pointer map type */ 8434 Pgno iParent /* Expected pointer map parent page number */ 8435 ){ 8436 int rc; 8437 u8 ePtrmapType; 8438 Pgno iPtrmapParent; 8439 8440 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 8441 if( rc!=SQLITE_OK ){ 8442 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; 8443 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 8444 return; 8445 } 8446 8447 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 8448 checkAppendMsg(pCheck, 8449 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 8450 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 8451 } 8452 } 8453 #endif 8454 8455 /* 8456 ** Check the integrity of the freelist or of an overflow page list. 8457 ** Verify that the number of pages on the list is N. 8458 */ 8459 static void checkList( 8460 IntegrityCk *pCheck, /* Integrity checking context */ 8461 int isFreeList, /* True for a freelist. False for overflow page list */ 8462 int iPage, /* Page number for first page in the list */ 8463 int N /* Expected number of pages in the list */ 8464 ){ 8465 int i; 8466 int expected = N; 8467 int iFirst = iPage; 8468 while( N-- > 0 && pCheck->mxErr ){ 8469 DbPage *pOvflPage; 8470 unsigned char *pOvflData; 8471 if( iPage<1 ){ 8472 checkAppendMsg(pCheck, 8473 "%d of %d pages missing from overflow list starting at %d", 8474 N+1, expected, iFirst); 8475 break; 8476 } 8477 if( checkRef(pCheck, iPage) ) break; 8478 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){ 8479 checkAppendMsg(pCheck, "failed to get page %d", iPage); 8480 break; 8481 } 8482 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 8483 if( isFreeList ){ 8484 int n = get4byte(&pOvflData[4]); 8485 #ifndef SQLITE_OMIT_AUTOVACUUM 8486 if( pCheck->pBt->autoVacuum ){ 8487 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 8488 } 8489 #endif 8490 if( n>(int)pCheck->pBt->usableSize/4-2 ){ 8491 checkAppendMsg(pCheck, 8492 "freelist leaf count too big on page %d", iPage); 8493 N--; 8494 }else{ 8495 for(i=0; i<n; i++){ 8496 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 8497 #ifndef SQLITE_OMIT_AUTOVACUUM 8498 if( pCheck->pBt->autoVacuum ){ 8499 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 8500 } 8501 #endif 8502 checkRef(pCheck, iFreePage); 8503 } 8504 N -= n; 8505 } 8506 } 8507 #ifndef SQLITE_OMIT_AUTOVACUUM 8508 else{ 8509 /* If this database supports auto-vacuum and iPage is not the last 8510 ** page in this overflow list, check that the pointer-map entry for 8511 ** the following page matches iPage. 8512 */ 8513 if( pCheck->pBt->autoVacuum && N>0 ){ 8514 i = get4byte(pOvflData); 8515 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 8516 } 8517 } 8518 #endif 8519 iPage = get4byte(pOvflData); 8520 sqlite3PagerUnref(pOvflPage); 8521 } 8522 } 8523 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 8524 8525 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 8526 /* 8527 ** Do various sanity checks on a single page of a tree. Return 8528 ** the tree depth. Root pages return 0. Parents of root pages 8529 ** return 1, and so forth. 8530 ** 8531 ** These checks are done: 8532 ** 8533 ** 1. Make sure that cells and freeblocks do not overlap 8534 ** but combine to completely cover the page. 8535 ** NO 2. Make sure cell keys are in order. 8536 ** NO 3. Make sure no key is less than or equal to zLowerBound. 8537 ** NO 4. Make sure no key is greater than or equal to zUpperBound. 8538 ** 5. Check the integrity of overflow pages. 8539 ** 6. Recursively call checkTreePage on all children. 8540 ** 7. Verify that the depth of all children is the same. 8541 ** 8. Make sure this page is at least 33% full or else it is 8542 ** the root of the tree. 8543 */ 8544 static int checkTreePage( 8545 IntegrityCk *pCheck, /* Context for the sanity check */ 8546 int iPage, /* Page number of the page to check */ 8547 i64 *pnParentMinKey, 8548 i64 *pnParentMaxKey 8549 ){ 8550 MemPage *pPage; 8551 int i, rc, depth, d2, pgno, cnt; 8552 int hdr, cellStart; 8553 int nCell; 8554 u8 *data; 8555 BtShared *pBt; 8556 int usableSize; 8557 char *hit = 0; 8558 i64 nMinKey = 0; 8559 i64 nMaxKey = 0; 8560 const char *saved_zPfx = pCheck->zPfx; 8561 int saved_v1 = pCheck->v1; 8562 int saved_v2 = pCheck->v2; 8563 8564 /* Check that the page exists 8565 */ 8566 pBt = pCheck->pBt; 8567 usableSize = pBt->usableSize; 8568 if( iPage==0 ) return 0; 8569 if( checkRef(pCheck, iPage) ) return 0; 8570 pCheck->zPfx = "Page %d: "; 8571 pCheck->v1 = iPage; 8572 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ 8573 checkAppendMsg(pCheck, 8574 "unable to get the page. error code=%d", rc); 8575 depth = -1; 8576 goto end_of_check; 8577 } 8578 8579 /* Clear MemPage.isInit to make sure the corruption detection code in 8580 ** btreeInitPage() is executed. */ 8581 pPage->isInit = 0; 8582 if( (rc = btreeInitPage(pPage))!=0 ){ 8583 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 8584 checkAppendMsg(pCheck, 8585 "btreeInitPage() returns error code %d", rc); 8586 releasePage(pPage); 8587 depth = -1; 8588 goto end_of_check; 8589 } 8590 8591 /* Check out all the cells. 8592 */ 8593 depth = 0; 8594 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){ 8595 u8 *pCell; 8596 u32 sz; 8597 CellInfo info; 8598 8599 /* Check payload overflow pages 8600 */ 8601 pCheck->zPfx = "On tree page %d cell %d: "; 8602 pCheck->v1 = iPage; 8603 pCheck->v2 = i; 8604 pCell = findCell(pPage,i); 8605 btreeParseCellPtr(pPage, pCell, &info); 8606 sz = info.nPayload; 8607 /* For intKey pages, check that the keys are in order. 8608 */ 8609 if( pPage->intKey ){ 8610 if( i==0 ){ 8611 nMinKey = nMaxKey = info.nKey; 8612 }else if( info.nKey <= nMaxKey ){ 8613 checkAppendMsg(pCheck, 8614 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey); 8615 } 8616 nMaxKey = info.nKey; 8617 } 8618 if( (sz>info.nLocal) 8619 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize]) 8620 ){ 8621 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); 8622 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); 8623 #ifndef SQLITE_OMIT_AUTOVACUUM 8624 if( pBt->autoVacuum ){ 8625 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 8626 } 8627 #endif 8628 checkList(pCheck, 0, pgnoOvfl, nPage); 8629 } 8630 8631 /* Check sanity of left child page. 8632 */ 8633 if( !pPage->leaf ){ 8634 pgno = get4byte(pCell); 8635 #ifndef SQLITE_OMIT_AUTOVACUUM 8636 if( pBt->autoVacuum ){ 8637 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 8638 } 8639 #endif 8640 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey); 8641 if( i>0 && d2!=depth ){ 8642 checkAppendMsg(pCheck, "Child page depth differs"); 8643 } 8644 depth = d2; 8645 } 8646 } 8647 8648 if( !pPage->leaf ){ 8649 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 8650 pCheck->zPfx = "On page %d at right child: "; 8651 pCheck->v1 = iPage; 8652 #ifndef SQLITE_OMIT_AUTOVACUUM 8653 if( pBt->autoVacuum ){ 8654 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 8655 } 8656 #endif 8657 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey); 8658 } 8659 8660 /* For intKey leaf pages, check that the min/max keys are in order 8661 ** with any left/parent/right pages. 8662 */ 8663 pCheck->zPfx = "Page %d: "; 8664 pCheck->v1 = iPage; 8665 if( pPage->leaf && pPage->intKey ){ 8666 /* if we are a left child page */ 8667 if( pnParentMinKey ){ 8668 /* if we are the left most child page */ 8669 if( !pnParentMaxKey ){ 8670 if( nMaxKey > *pnParentMinKey ){ 8671 checkAppendMsg(pCheck, 8672 "Rowid %lld out of order (max larger than parent min of %lld)", 8673 nMaxKey, *pnParentMinKey); 8674 } 8675 }else{ 8676 if( nMinKey <= *pnParentMinKey ){ 8677 checkAppendMsg(pCheck, 8678 "Rowid %lld out of order (min less than parent min of %lld)", 8679 nMinKey, *pnParentMinKey); 8680 } 8681 if( nMaxKey > *pnParentMaxKey ){ 8682 checkAppendMsg(pCheck, 8683 "Rowid %lld out of order (max larger than parent max of %lld)", 8684 nMaxKey, *pnParentMaxKey); 8685 } 8686 *pnParentMinKey = nMaxKey; 8687 } 8688 /* else if we're a right child page */ 8689 } else if( pnParentMaxKey ){ 8690 if( nMinKey <= *pnParentMaxKey ){ 8691 checkAppendMsg(pCheck, 8692 "Rowid %lld out of order (min less than parent max of %lld)", 8693 nMinKey, *pnParentMaxKey); 8694 } 8695 } 8696 } 8697 8698 /* Check for complete coverage of the page 8699 */ 8700 data = pPage->aData; 8701 hdr = pPage->hdrOffset; 8702 hit = sqlite3PageMalloc( pBt->pageSize ); 8703 pCheck->zPfx = 0; 8704 if( hit==0 ){ 8705 pCheck->mallocFailed = 1; 8706 }else{ 8707 int contentOffset = get2byteNotZero(&data[hdr+5]); 8708 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 8709 memset(hit+contentOffset, 0, usableSize-contentOffset); 8710 memset(hit, 1, contentOffset); 8711 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 8712 ** number of cells on the page. */ 8713 nCell = get2byte(&data[hdr+3]); 8714 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 8715 ** immediately follows the b-tree page header. */ 8716 cellStart = hdr + 12 - 4*pPage->leaf; 8717 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 8718 ** integer offsets to the cell contents. */ 8719 for(i=0; i<nCell; i++){ 8720 int pc = get2byte(&data[cellStart+i*2]); 8721 u32 size = 65536; 8722 int j; 8723 if( pc<=usableSize-4 ){ 8724 size = cellSizePtr(pPage, &data[pc]); 8725 } 8726 if( (int)(pc+size-1)>=usableSize ){ 8727 pCheck->zPfx = 0; 8728 checkAppendMsg(pCheck, 8729 "Corruption detected in cell %d on page %d",i,iPage); 8730 }else{ 8731 for(j=pc+size-1; j>=pc; j--) hit[j]++; 8732 } 8733 } 8734 /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 8735 ** is the offset of the first freeblock, or zero if there are no 8736 ** freeblocks on the page. */ 8737 i = get2byte(&data[hdr+1]); 8738 while( i>0 ){ 8739 int size, j; 8740 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */ 8741 size = get2byte(&data[i+2]); 8742 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */ 8743 for(j=i+size-1; j>=i; j--) hit[j]++; 8744 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 8745 ** big-endian integer which is the offset in the b-tree page of the next 8746 ** freeblock in the chain, or zero if the freeblock is the last on the 8747 ** chain. */ 8748 j = get2byte(&data[i]); 8749 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 8750 ** increasing offset. */ 8751 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ 8752 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */ 8753 i = j; 8754 } 8755 for(i=cnt=0; i<usableSize; i++){ 8756 if( hit[i]==0 ){ 8757 cnt++; 8758 }else if( hit[i]>1 ){ 8759 checkAppendMsg(pCheck, 8760 "Multiple uses for byte %d of page %d", i, iPage); 8761 break; 8762 } 8763 } 8764 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 8765 ** is stored in the fifth field of the b-tree page header. 8766 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 8767 ** number of fragmented free bytes within the cell content area. 8768 */ 8769 if( cnt!=data[hdr+7] ){ 8770 checkAppendMsg(pCheck, 8771 "Fragmentation of %d bytes reported as %d on page %d", 8772 cnt, data[hdr+7], iPage); 8773 } 8774 } 8775 sqlite3PageFree(hit); 8776 releasePage(pPage); 8777 8778 end_of_check: 8779 pCheck->zPfx = saved_zPfx; 8780 pCheck->v1 = saved_v1; 8781 pCheck->v2 = saved_v2; 8782 return depth+1; 8783 } 8784 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 8785 8786 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 8787 /* 8788 ** This routine does a complete check of the given BTree file. aRoot[] is 8789 ** an array of pages numbers were each page number is the root page of 8790 ** a table. nRoot is the number of entries in aRoot. 8791 ** 8792 ** A read-only or read-write transaction must be opened before calling 8793 ** this function. 8794 ** 8795 ** Write the number of error seen in *pnErr. Except for some memory 8796 ** allocation errors, an error message held in memory obtained from 8797 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 8798 ** returned. If a memory allocation error occurs, NULL is returned. 8799 */ 8800 char *sqlite3BtreeIntegrityCheck( 8801 Btree *p, /* The btree to be checked */ 8802 int *aRoot, /* An array of root pages numbers for individual trees */ 8803 int nRoot, /* Number of entries in aRoot[] */ 8804 int mxErr, /* Stop reporting errors after this many */ 8805 int *pnErr /* Write number of errors seen to this variable */ 8806 ){ 8807 Pgno i; 8808 int nRef; 8809 IntegrityCk sCheck; 8810 BtShared *pBt = p->pBt; 8811 char zErr[100]; 8812 8813 sqlite3BtreeEnter(p); 8814 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 8815 nRef = sqlite3PagerRefcount(pBt->pPager); 8816 sCheck.pBt = pBt; 8817 sCheck.pPager = pBt->pPager; 8818 sCheck.nPage = btreePagecount(sCheck.pBt); 8819 sCheck.mxErr = mxErr; 8820 sCheck.nErr = 0; 8821 sCheck.mallocFailed = 0; 8822 sCheck.zPfx = 0; 8823 sCheck.v1 = 0; 8824 sCheck.v2 = 0; 8825 *pnErr = 0; 8826 if( sCheck.nPage==0 ){ 8827 sqlite3BtreeLeave(p); 8828 return 0; 8829 } 8830 8831 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 8832 if( !sCheck.aPgRef ){ 8833 *pnErr = 1; 8834 sqlite3BtreeLeave(p); 8835 return 0; 8836 } 8837 i = PENDING_BYTE_PAGE(pBt); 8838 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 8839 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 8840 sCheck.errMsg.useMalloc = 2; 8841 8842 /* Check the integrity of the freelist 8843 */ 8844 sCheck.zPfx = "Main freelist: "; 8845 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 8846 get4byte(&pBt->pPage1->aData[36])); 8847 sCheck.zPfx = 0; 8848 8849 /* Check all the tables. 8850 */ 8851 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 8852 if( aRoot[i]==0 ) continue; 8853 #ifndef SQLITE_OMIT_AUTOVACUUM 8854 if( pBt->autoVacuum && aRoot[i]>1 ){ 8855 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 8856 } 8857 #endif 8858 sCheck.zPfx = "List of tree roots: "; 8859 checkTreePage(&sCheck, aRoot[i], NULL, NULL); 8860 sCheck.zPfx = 0; 8861 } 8862 8863 /* Make sure every page in the file is referenced 8864 */ 8865 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 8866 #ifdef SQLITE_OMIT_AUTOVACUUM 8867 if( getPageReferenced(&sCheck, i)==0 ){ 8868 checkAppendMsg(&sCheck, "Page %d is never used", i); 8869 } 8870 #else 8871 /* If the database supports auto-vacuum, make sure no tables contain 8872 ** references to pointer-map pages. 8873 */ 8874 if( getPageReferenced(&sCheck, i)==0 && 8875 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 8876 checkAppendMsg(&sCheck, "Page %d is never used", i); 8877 } 8878 if( getPageReferenced(&sCheck, i)!=0 && 8879 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 8880 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 8881 } 8882 #endif 8883 } 8884 8885 /* Make sure this analysis did not leave any unref() pages. 8886 ** This is an internal consistency check; an integrity check 8887 ** of the integrity check. 8888 */ 8889 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){ 8890 checkAppendMsg(&sCheck, 8891 "Outstanding page count goes from %d to %d during this analysis", 8892 nRef, sqlite3PagerRefcount(pBt->pPager) 8893 ); 8894 } 8895 8896 /* Clean up and report errors. 8897 */ 8898 sqlite3BtreeLeave(p); 8899 sqlite3_free(sCheck.aPgRef); 8900 if( sCheck.mallocFailed ){ 8901 sqlite3StrAccumReset(&sCheck.errMsg); 8902 *pnErr = sCheck.nErr+1; 8903 return 0; 8904 } 8905 *pnErr = sCheck.nErr; 8906 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); 8907 return sqlite3StrAccumFinish(&sCheck.errMsg); 8908 } 8909 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 8910 8911 /* 8912 ** Return the full pathname of the underlying database file. Return 8913 ** an empty string if the database is in-memory or a TEMP database. 8914 ** 8915 ** The pager filename is invariant as long as the pager is 8916 ** open so it is safe to access without the BtShared mutex. 8917 */ 8918 const char *sqlite3BtreeGetFilename(Btree *p){ 8919 assert( p->pBt->pPager!=0 ); 8920 return sqlite3PagerFilename(p->pBt->pPager, 1); 8921 } 8922 8923 /* 8924 ** Return the pathname of the journal file for this database. The return 8925 ** value of this routine is the same regardless of whether the journal file 8926 ** has been created or not. 8927 ** 8928 ** The pager journal filename is invariant as long as the pager is 8929 ** open so it is safe to access without the BtShared mutex. 8930 */ 8931 const char *sqlite3BtreeGetJournalname(Btree *p){ 8932 assert( p->pBt->pPager!=0 ); 8933 return sqlite3PagerJournalname(p->pBt->pPager); 8934 } 8935 8936 /* 8937 ** Return non-zero if a transaction is active. 8938 */ 8939 int sqlite3BtreeIsInTrans(Btree *p){ 8940 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 8941 return (p && (p->inTrans==TRANS_WRITE)); 8942 } 8943 8944 #ifndef SQLITE_OMIT_WAL 8945 /* 8946 ** Run a checkpoint on the Btree passed as the first argument. 8947 ** 8948 ** Return SQLITE_LOCKED if this or any other connection has an open 8949 ** transaction on the shared-cache the argument Btree is connected to. 8950 ** 8951 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 8952 */ 8953 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 8954 int rc = SQLITE_OK; 8955 if( p ){ 8956 BtShared *pBt = p->pBt; 8957 sqlite3BtreeEnter(p); 8958 if( pBt->inTransaction!=TRANS_NONE ){ 8959 rc = SQLITE_LOCKED; 8960 }else{ 8961 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt); 8962 } 8963 sqlite3BtreeLeave(p); 8964 } 8965 return rc; 8966 } 8967 #endif 8968 8969 /* 8970 ** Return non-zero if a read (or write) transaction is active. 8971 */ 8972 int sqlite3BtreeIsInReadTrans(Btree *p){ 8973 assert( p ); 8974 assert( sqlite3_mutex_held(p->db->mutex) ); 8975 return p->inTrans!=TRANS_NONE; 8976 } 8977 8978 int sqlite3BtreeIsInBackup(Btree *p){ 8979 assert( p ); 8980 assert( sqlite3_mutex_held(p->db->mutex) ); 8981 return p->nBackup!=0; 8982 } 8983 8984 /* 8985 ** This function returns a pointer to a blob of memory associated with 8986 ** a single shared-btree. The memory is used by client code for its own 8987 ** purposes (for example, to store a high-level schema associated with 8988 ** the shared-btree). The btree layer manages reference counting issues. 8989 ** 8990 ** The first time this is called on a shared-btree, nBytes bytes of memory 8991 ** are allocated, zeroed, and returned to the caller. For each subsequent 8992 ** call the nBytes parameter is ignored and a pointer to the same blob 8993 ** of memory returned. 8994 ** 8995 ** If the nBytes parameter is 0 and the blob of memory has not yet been 8996 ** allocated, a null pointer is returned. If the blob has already been 8997 ** allocated, it is returned as normal. 8998 ** 8999 ** Just before the shared-btree is closed, the function passed as the 9000 ** xFree argument when the memory allocation was made is invoked on the 9001 ** blob of allocated memory. The xFree function should not call sqlite3_free() 9002 ** on the memory, the btree layer does that. 9003 */ 9004 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 9005 BtShared *pBt = p->pBt; 9006 sqlite3BtreeEnter(p); 9007 if( !pBt->pSchema && nBytes ){ 9008 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 9009 pBt->xFreeSchema = xFree; 9010 } 9011 sqlite3BtreeLeave(p); 9012 return pBt->pSchema; 9013 } 9014 9015 /* 9016 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 9017 ** btree as the argument handle holds an exclusive lock on the 9018 ** sqlite_master table. Otherwise SQLITE_OK. 9019 */ 9020 int sqlite3BtreeSchemaLocked(Btree *p){ 9021 int rc; 9022 assert( sqlite3_mutex_held(p->db->mutex) ); 9023 sqlite3BtreeEnter(p); 9024 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 9025 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 9026 sqlite3BtreeLeave(p); 9027 return rc; 9028 } 9029 9030 9031 #ifndef SQLITE_OMIT_SHARED_CACHE 9032 /* 9033 ** Obtain a lock on the table whose root page is iTab. The 9034 ** lock is a write lock if isWritelock is true or a read lock 9035 ** if it is false. 9036 */ 9037 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 9038 int rc = SQLITE_OK; 9039 assert( p->inTrans!=TRANS_NONE ); 9040 if( p->sharable ){ 9041 u8 lockType = READ_LOCK + isWriteLock; 9042 assert( READ_LOCK+1==WRITE_LOCK ); 9043 assert( isWriteLock==0 || isWriteLock==1 ); 9044 9045 sqlite3BtreeEnter(p); 9046 rc = querySharedCacheTableLock(p, iTab, lockType); 9047 if( rc==SQLITE_OK ){ 9048 rc = setSharedCacheTableLock(p, iTab, lockType); 9049 } 9050 sqlite3BtreeLeave(p); 9051 } 9052 return rc; 9053 } 9054 #endif 9055 9056 #ifndef SQLITE_OMIT_INCRBLOB 9057 /* 9058 ** Argument pCsr must be a cursor opened for writing on an 9059 ** INTKEY table currently pointing at a valid table entry. 9060 ** This function modifies the data stored as part of that entry. 9061 ** 9062 ** Only the data content may only be modified, it is not possible to 9063 ** change the length of the data stored. If this function is called with 9064 ** parameters that attempt to write past the end of the existing data, 9065 ** no modifications are made and SQLITE_CORRUPT is returned. 9066 */ 9067 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 9068 int rc; 9069 assert( cursorHoldsMutex(pCsr) ); 9070 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 9071 assert( pCsr->curFlags & BTCF_Incrblob ); 9072 9073 rc = restoreCursorPosition(pCsr); 9074 if( rc!=SQLITE_OK ){ 9075 return rc; 9076 } 9077 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 9078 if( pCsr->eState!=CURSOR_VALID ){ 9079 return SQLITE_ABORT; 9080 } 9081 9082 /* Save the positions of all other cursors open on this table. This is 9083 ** required in case any of them are holding references to an xFetch 9084 ** version of the b-tree page modified by the accessPayload call below. 9085 ** 9086 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 9087 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 9088 ** saveAllCursors can only return SQLITE_OK. 9089 */ 9090 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 9091 assert( rc==SQLITE_OK ); 9092 9093 /* Check some assumptions: 9094 ** (a) the cursor is open for writing, 9095 ** (b) there is a read/write transaction open, 9096 ** (c) the connection holds a write-lock on the table (if required), 9097 ** (d) there are no conflicting read-locks, and 9098 ** (e) the cursor points at a valid row of an intKey table. 9099 */ 9100 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 9101 return SQLITE_READONLY; 9102 } 9103 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 9104 && pCsr->pBt->inTransaction==TRANS_WRITE ); 9105 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 9106 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 9107 assert( pCsr->apPage[pCsr->iPage]->intKey ); 9108 9109 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 9110 } 9111 9112 /* 9113 ** Mark this cursor as an incremental blob cursor. 9114 */ 9115 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 9116 pCur->curFlags |= BTCF_Incrblob; 9117 } 9118 #endif 9119 9120 /* 9121 ** Set both the "read version" (single byte at byte offset 18) and 9122 ** "write version" (single byte at byte offset 19) fields in the database 9123 ** header to iVersion. 9124 */ 9125 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 9126 BtShared *pBt = pBtree->pBt; 9127 int rc; /* Return code */ 9128 9129 assert( iVersion==1 || iVersion==2 ); 9130 9131 /* If setting the version fields to 1, do not automatically open the 9132 ** WAL connection, even if the version fields are currently set to 2. 9133 */ 9134 pBt->btsFlags &= ~BTS_NO_WAL; 9135 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 9136 9137 rc = sqlite3BtreeBeginTrans(pBtree, 0); 9138 if( rc==SQLITE_OK ){ 9139 u8 *aData = pBt->pPage1->aData; 9140 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 9141 rc = sqlite3BtreeBeginTrans(pBtree, 2); 9142 if( rc==SQLITE_OK ){ 9143 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9144 if( rc==SQLITE_OK ){ 9145 aData[18] = (u8)iVersion; 9146 aData[19] = (u8)iVersion; 9147 } 9148 } 9149 } 9150 } 9151 9152 pBt->btsFlags &= ~BTS_NO_WAL; 9153 return rc; 9154 } 9155 9156 /* 9157 ** set the mask of hint flags for cursor pCsr. 9158 */ 9159 void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){ 9160 assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 ); 9161 pCsr->hints = mask; 9162 } 9163 9164 #ifdef SQLITE_DEBUG 9165 /* 9166 ** Return true if the cursor has a hint specified. This routine is 9167 ** only used from within assert() statements 9168 */ 9169 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 9170 return (pCsr->hints & mask)!=0; 9171 } 9172 #endif 9173 9174 /* 9175 ** Return true if the given Btree is read-only. 9176 */ 9177 int sqlite3BtreeIsReadonly(Btree *p){ 9178 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 9179 } 9180 9181 /* 9182 ** Return the size of the header added to each page by this module. 9183 */ 9184 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 9185