xref: /sqlite-3.40.0/src/btree.c (revision e99cb2da)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 /*
116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118 **
119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122 ** with the page number and filename associated with the (MemPage*).
123 */
124 #ifdef SQLITE_DEBUG
125 int corruptPageError(int lineno, MemPage *p){
126   char *zMsg;
127   sqlite3BeginBenignMalloc();
128   zMsg = sqlite3_mprintf("database corruption page %d of %s",
129       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130   );
131   sqlite3EndBenignMalloc();
132   if( zMsg ){
133     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134   }
135   sqlite3_free(zMsg);
136   return SQLITE_CORRUPT_BKPT;
137 }
138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139 #else
140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141 #endif
142 
143 #ifndef SQLITE_OMIT_SHARED_CACHE
144 
145 #ifdef SQLITE_DEBUG
146 /*
147 **** This function is only used as part of an assert() statement. ***
148 **
149 ** Check to see if pBtree holds the required locks to read or write to the
150 ** table with root page iRoot.   Return 1 if it does and 0 if not.
151 **
152 ** For example, when writing to a table with root-page iRoot via
153 ** Btree connection pBtree:
154 **
155 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156 **
157 ** When writing to an index that resides in a sharable database, the
158 ** caller should have first obtained a lock specifying the root page of
159 ** the corresponding table. This makes things a bit more complicated,
160 ** as this module treats each table as a separate structure. To determine
161 ** the table corresponding to the index being written, this
162 ** function has to search through the database schema.
163 **
164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
165 ** hold a write-lock on the schema table (root page 1). This is also
166 ** acceptable.
167 */
168 static int hasSharedCacheTableLock(
169   Btree *pBtree,         /* Handle that must hold lock */
170   Pgno iRoot,            /* Root page of b-tree */
171   int isIndex,           /* True if iRoot is the root of an index b-tree */
172   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
173 ){
174   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175   Pgno iTab = 0;
176   BtLock *pLock;
177 
178   /* If this database is not shareable, or if the client is reading
179   ** and has the read-uncommitted flag set, then no lock is required.
180   ** Return true immediately.
181   */
182   if( (pBtree->sharable==0)
183    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
184   ){
185     return 1;
186   }
187 
188   /* If the client is reading  or writing an index and the schema is
189   ** not loaded, then it is too difficult to actually check to see if
190   ** the correct locks are held.  So do not bother - just return true.
191   ** This case does not come up very often anyhow.
192   */
193   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
194     return 1;
195   }
196 
197   /* Figure out the root-page that the lock should be held on. For table
198   ** b-trees, this is just the root page of the b-tree being read or
199   ** written. For index b-trees, it is the root page of the associated
200   ** table.  */
201   if( isIndex ){
202     HashElem *p;
203     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204       Index *pIdx = (Index *)sqliteHashData(p);
205       if( pIdx->tnum==(int)iRoot ){
206         if( iTab ){
207           /* Two or more indexes share the same root page.  There must
208           ** be imposter tables.  So just return true.  The assert is not
209           ** useful in that case. */
210           return 1;
211         }
212         iTab = pIdx->pTable->tnum;
213       }
214     }
215   }else{
216     iTab = iRoot;
217   }
218 
219   /* Search for the required lock. Either a write-lock on root-page iTab, a
220   ** write-lock on the schema table, or (if the client is reading) a
221   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
222   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223     if( pLock->pBtree==pBtree
224      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225      && pLock->eLock>=eLockType
226     ){
227       return 1;
228     }
229   }
230 
231   /* Failed to find the required lock. */
232   return 0;
233 }
234 #endif /* SQLITE_DEBUG */
235 
236 #ifdef SQLITE_DEBUG
237 /*
238 **** This function may be used as part of assert() statements only. ****
239 **
240 ** Return true if it would be illegal for pBtree to write into the
241 ** table or index rooted at iRoot because other shared connections are
242 ** simultaneously reading that same table or index.
243 **
244 ** It is illegal for pBtree to write if some other Btree object that
245 ** shares the same BtShared object is currently reading or writing
246 ** the iRoot table.  Except, if the other Btree object has the
247 ** read-uncommitted flag set, then it is OK for the other object to
248 ** have a read cursor.
249 **
250 ** For example, before writing to any part of the table or index
251 ** rooted at page iRoot, one should call:
252 **
253 **    assert( !hasReadConflicts(pBtree, iRoot) );
254 */
255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256   BtCursor *p;
257   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258     if( p->pgnoRoot==iRoot
259      && p->pBtree!=pBtree
260      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
261     ){
262       return 1;
263     }
264   }
265   return 0;
266 }
267 #endif    /* #ifdef SQLITE_DEBUG */
268 
269 /*
270 ** Query to see if Btree handle p may obtain a lock of type eLock
271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
272 ** SQLITE_OK if the lock may be obtained (by calling
273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
274 */
275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
276   BtShared *pBt = p->pBt;
277   BtLock *pIter;
278 
279   assert( sqlite3BtreeHoldsMutex(p) );
280   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281   assert( p->db!=0 );
282   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
283 
284   /* If requesting a write-lock, then the Btree must have an open write
285   ** transaction on this file. And, obviously, for this to be so there
286   ** must be an open write transaction on the file itself.
287   */
288   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290 
291   /* This routine is a no-op if the shared-cache is not enabled */
292   if( !p->sharable ){
293     return SQLITE_OK;
294   }
295 
296   /* If some other connection is holding an exclusive lock, the
297   ** requested lock may not be obtained.
298   */
299   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
300     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301     return SQLITE_LOCKED_SHAREDCACHE;
302   }
303 
304   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305     /* The condition (pIter->eLock!=eLock) in the following if(...)
306     ** statement is a simplification of:
307     **
308     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309     **
310     ** since we know that if eLock==WRITE_LOCK, then no other connection
311     ** may hold a WRITE_LOCK on any table in this file (since there can
312     ** only be a single writer).
313     */
314     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318       if( eLock==WRITE_LOCK ){
319         assert( p==pBt->pWriter );
320         pBt->btsFlags |= BTS_PENDING;
321       }
322       return SQLITE_LOCKED_SHAREDCACHE;
323     }
324   }
325   return SQLITE_OK;
326 }
327 #endif /* !SQLITE_OMIT_SHARED_CACHE */
328 
329 #ifndef SQLITE_OMIT_SHARED_CACHE
330 /*
331 ** Add a lock on the table with root-page iTable to the shared-btree used
332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
333 ** WRITE_LOCK.
334 **
335 ** This function assumes the following:
336 **
337 **   (a) The specified Btree object p is connected to a sharable
338 **       database (one with the BtShared.sharable flag set), and
339 **
340 **   (b) No other Btree objects hold a lock that conflicts
341 **       with the requested lock (i.e. querySharedCacheTableLock() has
342 **       already been called and returned SQLITE_OK).
343 **
344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345 ** is returned if a malloc attempt fails.
346 */
347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
348   BtShared *pBt = p->pBt;
349   BtLock *pLock = 0;
350   BtLock *pIter;
351 
352   assert( sqlite3BtreeHoldsMutex(p) );
353   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354   assert( p->db!=0 );
355 
356   /* A connection with the read-uncommitted flag set will never try to
357   ** obtain a read-lock using this function. The only read-lock obtained
358   ** by a connection in read-uncommitted mode is on the sqlite_master
359   ** table, and that lock is obtained in BtreeBeginTrans().  */
360   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
361 
362   /* This function should only be called on a sharable b-tree after it
363   ** has been determined that no other b-tree holds a conflicting lock.  */
364   assert( p->sharable );
365   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
366 
367   /* First search the list for an existing lock on this table. */
368   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369     if( pIter->iTable==iTable && pIter->pBtree==p ){
370       pLock = pIter;
371       break;
372     }
373   }
374 
375   /* If the above search did not find a BtLock struct associating Btree p
376   ** with table iTable, allocate one and link it into the list.
377   */
378   if( !pLock ){
379     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
380     if( !pLock ){
381       return SQLITE_NOMEM_BKPT;
382     }
383     pLock->iTable = iTable;
384     pLock->pBtree = p;
385     pLock->pNext = pBt->pLock;
386     pBt->pLock = pLock;
387   }
388 
389   /* Set the BtLock.eLock variable to the maximum of the current lock
390   ** and the requested lock. This means if a write-lock was already held
391   ** and a read-lock requested, we don't incorrectly downgrade the lock.
392   */
393   assert( WRITE_LOCK>READ_LOCK );
394   if( eLock>pLock->eLock ){
395     pLock->eLock = eLock;
396   }
397 
398   return SQLITE_OK;
399 }
400 #endif /* !SQLITE_OMIT_SHARED_CACHE */
401 
402 #ifndef SQLITE_OMIT_SHARED_CACHE
403 /*
404 ** Release all the table locks (locks obtained via calls to
405 ** the setSharedCacheTableLock() procedure) held by Btree object p.
406 **
407 ** This function assumes that Btree p has an open read or write
408 ** transaction. If it does not, then the BTS_PENDING flag
409 ** may be incorrectly cleared.
410 */
411 static void clearAllSharedCacheTableLocks(Btree *p){
412   BtShared *pBt = p->pBt;
413   BtLock **ppIter = &pBt->pLock;
414 
415   assert( sqlite3BtreeHoldsMutex(p) );
416   assert( p->sharable || 0==*ppIter );
417   assert( p->inTrans>0 );
418 
419   while( *ppIter ){
420     BtLock *pLock = *ppIter;
421     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
422     assert( pLock->pBtree->inTrans>=pLock->eLock );
423     if( pLock->pBtree==p ){
424       *ppIter = pLock->pNext;
425       assert( pLock->iTable!=1 || pLock==&p->lock );
426       if( pLock->iTable!=1 ){
427         sqlite3_free(pLock);
428       }
429     }else{
430       ppIter = &pLock->pNext;
431     }
432   }
433 
434   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
435   if( pBt->pWriter==p ){
436     pBt->pWriter = 0;
437     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
438   }else if( pBt->nTransaction==2 ){
439     /* This function is called when Btree p is concluding its
440     ** transaction. If there currently exists a writer, and p is not
441     ** that writer, then the number of locks held by connections other
442     ** than the writer must be about to drop to zero. In this case
443     ** set the BTS_PENDING flag to 0.
444     **
445     ** If there is not currently a writer, then BTS_PENDING must
446     ** be zero already. So this next line is harmless in that case.
447     */
448     pBt->btsFlags &= ~BTS_PENDING;
449   }
450 }
451 
452 /*
453 ** This function changes all write-locks held by Btree p into read-locks.
454 */
455 static void downgradeAllSharedCacheTableLocks(Btree *p){
456   BtShared *pBt = p->pBt;
457   if( pBt->pWriter==p ){
458     BtLock *pLock;
459     pBt->pWriter = 0;
460     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
461     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463       pLock->eLock = READ_LOCK;
464     }
465   }
466 }
467 
468 #endif /* SQLITE_OMIT_SHARED_CACHE */
469 
470 static void releasePage(MemPage *pPage);         /* Forward reference */
471 static void releasePageOne(MemPage *pPage);      /* Forward reference */
472 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
473 
474 /*
475 ***** This routine is used inside of assert() only ****
476 **
477 ** Verify that the cursor holds the mutex on its BtShared
478 */
479 #ifdef SQLITE_DEBUG
480 static int cursorHoldsMutex(BtCursor *p){
481   return sqlite3_mutex_held(p->pBt->mutex);
482 }
483 
484 /* Verify that the cursor and the BtShared agree about what is the current
485 ** database connetion. This is important in shared-cache mode. If the database
486 ** connection pointers get out-of-sync, it is possible for routines like
487 ** btreeInitPage() to reference an stale connection pointer that references a
488 ** a connection that has already closed.  This routine is used inside assert()
489 ** statements only and for the purpose of double-checking that the btree code
490 ** does keep the database connection pointers up-to-date.
491 */
492 static int cursorOwnsBtShared(BtCursor *p){
493   assert( cursorHoldsMutex(p) );
494   return (p->pBtree->db==p->pBt->db);
495 }
496 #endif
497 
498 /*
499 ** Invalidate the overflow cache of the cursor passed as the first argument.
500 ** on the shared btree structure pBt.
501 */
502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
503 
504 /*
505 ** Invalidate the overflow page-list cache for all cursors opened
506 ** on the shared btree structure pBt.
507 */
508 static void invalidateAllOverflowCache(BtShared *pBt){
509   BtCursor *p;
510   assert( sqlite3_mutex_held(pBt->mutex) );
511   for(p=pBt->pCursor; p; p=p->pNext){
512     invalidateOverflowCache(p);
513   }
514 }
515 
516 #ifndef SQLITE_OMIT_INCRBLOB
517 /*
518 ** This function is called before modifying the contents of a table
519 ** to invalidate any incrblob cursors that are open on the
520 ** row or one of the rows being modified.
521 **
522 ** If argument isClearTable is true, then the entire contents of the
523 ** table is about to be deleted. In this case invalidate all incrblob
524 ** cursors open on any row within the table with root-page pgnoRoot.
525 **
526 ** Otherwise, if argument isClearTable is false, then the row with
527 ** rowid iRow is being replaced or deleted. In this case invalidate
528 ** only those incrblob cursors open on that specific row.
529 */
530 static void invalidateIncrblobCursors(
531   Btree *pBtree,          /* The database file to check */
532   Pgno pgnoRoot,          /* The table that might be changing */
533   i64 iRow,               /* The rowid that might be changing */
534   int isClearTable        /* True if all rows are being deleted */
535 ){
536   BtCursor *p;
537   if( pBtree->hasIncrblobCur==0 ) return;
538   assert( sqlite3BtreeHoldsMutex(pBtree) );
539   pBtree->hasIncrblobCur = 0;
540   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541     if( (p->curFlags & BTCF_Incrblob)!=0 ){
542       pBtree->hasIncrblobCur = 1;
543       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
544         p->eState = CURSOR_INVALID;
545       }
546     }
547   }
548 }
549 
550 #else
551   /* Stub function when INCRBLOB is omitted */
552   #define invalidateIncrblobCursors(w,x,y,z)
553 #endif /* SQLITE_OMIT_INCRBLOB */
554 
555 /*
556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557 ** when a page that previously contained data becomes a free-list leaf
558 ** page.
559 **
560 ** The BtShared.pHasContent bitvec exists to work around an obscure
561 ** bug caused by the interaction of two useful IO optimizations surrounding
562 ** free-list leaf pages:
563 **
564 **   1) When all data is deleted from a page and the page becomes
565 **      a free-list leaf page, the page is not written to the database
566 **      (as free-list leaf pages contain no meaningful data). Sometimes
567 **      such a page is not even journalled (as it will not be modified,
568 **      why bother journalling it?).
569 **
570 **   2) When a free-list leaf page is reused, its content is not read
571 **      from the database or written to the journal file (why should it
572 **      be, if it is not at all meaningful?).
573 **
574 ** By themselves, these optimizations work fine and provide a handy
575 ** performance boost to bulk delete or insert operations. However, if
576 ** a page is moved to the free-list and then reused within the same
577 ** transaction, a problem comes up. If the page is not journalled when
578 ** it is moved to the free-list and it is also not journalled when it
579 ** is extracted from the free-list and reused, then the original data
580 ** may be lost. In the event of a rollback, it may not be possible
581 ** to restore the database to its original configuration.
582 **
583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584 ** moved to become a free-list leaf page, the corresponding bit is
585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
586 ** optimization 2 above is omitted if the corresponding bit is already
587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
588 ** at the end of every transaction.
589 */
590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591   int rc = SQLITE_OK;
592   if( !pBt->pHasContent ){
593     assert( pgno<=pBt->nPage );
594     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
595     if( !pBt->pHasContent ){
596       rc = SQLITE_NOMEM_BKPT;
597     }
598   }
599   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601   }
602   return rc;
603 }
604 
605 /*
606 ** Query the BtShared.pHasContent vector.
607 **
608 ** This function is called when a free-list leaf page is removed from the
609 ** free-list for reuse. It returns false if it is safe to retrieve the
610 ** page from the pager layer with the 'no-content' flag set. True otherwise.
611 */
612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613   Bitvec *p = pBt->pHasContent;
614   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615 }
616 
617 /*
618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619 ** invoked at the conclusion of each write-transaction.
620 */
621 static void btreeClearHasContent(BtShared *pBt){
622   sqlite3BitvecDestroy(pBt->pHasContent);
623   pBt->pHasContent = 0;
624 }
625 
626 /*
627 ** Release all of the apPage[] pages for a cursor.
628 */
629 static void btreeReleaseAllCursorPages(BtCursor *pCur){
630   int i;
631   if( pCur->iPage>=0 ){
632     for(i=0; i<pCur->iPage; i++){
633       releasePageNotNull(pCur->apPage[i]);
634     }
635     releasePageNotNull(pCur->pPage);
636     pCur->iPage = -1;
637   }
638 }
639 
640 /*
641 ** The cursor passed as the only argument must point to a valid entry
642 ** when this function is called (i.e. have eState==CURSOR_VALID). This
643 ** function saves the current cursor key in variables pCur->nKey and
644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645 ** code otherwise.
646 **
647 ** If the cursor is open on an intkey table, then the integer key
648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650 ** set to point to a malloced buffer pCur->nKey bytes in size containing
651 ** the key.
652 */
653 static int saveCursorKey(BtCursor *pCur){
654   int rc = SQLITE_OK;
655   assert( CURSOR_VALID==pCur->eState );
656   assert( 0==pCur->pKey );
657   assert( cursorHoldsMutex(pCur) );
658 
659   if( pCur->curIntKey ){
660     /* Only the rowid is required for a table btree */
661     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662   }else{
663     /* For an index btree, save the complete key content. It is possible
664     ** that the current key is corrupt. In that case, it is possible that
665     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666     ** up to the size of 1 varint plus 1 8-byte value when the cursor
667     ** position is restored. Hence the 17 bytes of padding allocated
668     ** below. */
669     void *pKey;
670     pCur->nKey = sqlite3BtreePayloadSize(pCur);
671     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
672     if( pKey ){
673       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
674       if( rc==SQLITE_OK ){
675         memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
676         pCur->pKey = pKey;
677       }else{
678         sqlite3_free(pKey);
679       }
680     }else{
681       rc = SQLITE_NOMEM_BKPT;
682     }
683   }
684   assert( !pCur->curIntKey || !pCur->pKey );
685   return rc;
686 }
687 
688 /*
689 ** Save the current cursor position in the variables BtCursor.nKey
690 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
691 **
692 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693 ** prior to calling this routine.
694 */
695 static int saveCursorPosition(BtCursor *pCur){
696   int rc;
697 
698   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
699   assert( 0==pCur->pKey );
700   assert( cursorHoldsMutex(pCur) );
701 
702   if( pCur->eState==CURSOR_SKIPNEXT ){
703     pCur->eState = CURSOR_VALID;
704   }else{
705     pCur->skipNext = 0;
706   }
707 
708   rc = saveCursorKey(pCur);
709   if( rc==SQLITE_OK ){
710     btreeReleaseAllCursorPages(pCur);
711     pCur->eState = CURSOR_REQUIRESEEK;
712   }
713 
714   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
715   return rc;
716 }
717 
718 /* Forward reference */
719 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
720 
721 /*
722 ** Save the positions of all cursors (except pExcept) that are open on
723 ** the table with root-page iRoot.  "Saving the cursor position" means that
724 ** the location in the btree is remembered in such a way that it can be
725 ** moved back to the same spot after the btree has been modified.  This
726 ** routine is called just before cursor pExcept is used to modify the
727 ** table, for example in BtreeDelete() or BtreeInsert().
728 **
729 ** If there are two or more cursors on the same btree, then all such
730 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
731 ** routine enforces that rule.  This routine only needs to be called in
732 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
733 **
734 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
735 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
736 ** pointless call to this routine.
737 **
738 ** Implementation note:  This routine merely checks to see if any cursors
739 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
740 ** event that cursors are in need to being saved.
741 */
742 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
743   BtCursor *p;
744   assert( sqlite3_mutex_held(pBt->mutex) );
745   assert( pExcept==0 || pExcept->pBt==pBt );
746   for(p=pBt->pCursor; p; p=p->pNext){
747     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
748   }
749   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
750   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
751   return SQLITE_OK;
752 }
753 
754 /* This helper routine to saveAllCursors does the actual work of saving
755 ** the cursors if and when a cursor is found that actually requires saving.
756 ** The common case is that no cursors need to be saved, so this routine is
757 ** broken out from its caller to avoid unnecessary stack pointer movement.
758 */
759 static int SQLITE_NOINLINE saveCursorsOnList(
760   BtCursor *p,         /* The first cursor that needs saving */
761   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
762   BtCursor *pExcept    /* Do not save this cursor */
763 ){
764   do{
765     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
766       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
767         int rc = saveCursorPosition(p);
768         if( SQLITE_OK!=rc ){
769           return rc;
770         }
771       }else{
772         testcase( p->iPage>=0 );
773         btreeReleaseAllCursorPages(p);
774       }
775     }
776     p = p->pNext;
777   }while( p );
778   return SQLITE_OK;
779 }
780 
781 /*
782 ** Clear the current cursor position.
783 */
784 void sqlite3BtreeClearCursor(BtCursor *pCur){
785   assert( cursorHoldsMutex(pCur) );
786   sqlite3_free(pCur->pKey);
787   pCur->pKey = 0;
788   pCur->eState = CURSOR_INVALID;
789 }
790 
791 /*
792 ** In this version of BtreeMoveto, pKey is a packed index record
793 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
794 ** record and then call BtreeMovetoUnpacked() to do the work.
795 */
796 static int btreeMoveto(
797   BtCursor *pCur,     /* Cursor open on the btree to be searched */
798   const void *pKey,   /* Packed key if the btree is an index */
799   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
800   int bias,           /* Bias search to the high end */
801   int *pRes           /* Write search results here */
802 ){
803   int rc;                    /* Status code */
804   UnpackedRecord *pIdxKey;   /* Unpacked index key */
805 
806   if( pKey ){
807     KeyInfo *pKeyInfo = pCur->pKeyInfo;
808     assert( nKey==(i64)(int)nKey );
809     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
810     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
811     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
812     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
813       rc = SQLITE_CORRUPT_BKPT;
814       goto moveto_done;
815     }
816   }else{
817     pIdxKey = 0;
818   }
819   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
820 moveto_done:
821   if( pIdxKey ){
822     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
823   }
824   return rc;
825 }
826 
827 /*
828 ** Restore the cursor to the position it was in (or as close to as possible)
829 ** when saveCursorPosition() was called. Note that this call deletes the
830 ** saved position info stored by saveCursorPosition(), so there can be
831 ** at most one effective restoreCursorPosition() call after each
832 ** saveCursorPosition().
833 */
834 static int btreeRestoreCursorPosition(BtCursor *pCur){
835   int rc;
836   int skipNext = 0;
837   assert( cursorOwnsBtShared(pCur) );
838   assert( pCur->eState>=CURSOR_REQUIRESEEK );
839   if( pCur->eState==CURSOR_FAULT ){
840     return pCur->skipNext;
841   }
842   pCur->eState = CURSOR_INVALID;
843   if( sqlite3FaultSim(410) ){
844     rc = SQLITE_IOERR;
845   }else{
846     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
847   }
848   if( rc==SQLITE_OK ){
849     sqlite3_free(pCur->pKey);
850     pCur->pKey = 0;
851     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
852     if( skipNext ) pCur->skipNext = skipNext;
853     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
854       pCur->eState = CURSOR_SKIPNEXT;
855     }
856   }
857   return rc;
858 }
859 
860 #define restoreCursorPosition(p) \
861   (p->eState>=CURSOR_REQUIRESEEK ? \
862          btreeRestoreCursorPosition(p) : \
863          SQLITE_OK)
864 
865 /*
866 ** Determine whether or not a cursor has moved from the position where
867 ** it was last placed, or has been invalidated for any other reason.
868 ** Cursors can move when the row they are pointing at is deleted out
869 ** from under them, for example.  Cursor might also move if a btree
870 ** is rebalanced.
871 **
872 ** Calling this routine with a NULL cursor pointer returns false.
873 **
874 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
875 ** back to where it ought to be if this routine returns true.
876 */
877 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
878   assert( EIGHT_BYTE_ALIGNMENT(pCur)
879        || pCur==sqlite3BtreeFakeValidCursor() );
880   assert( offsetof(BtCursor, eState)==0 );
881   assert( sizeof(pCur->eState)==1 );
882   return CURSOR_VALID != *(u8*)pCur;
883 }
884 
885 /*
886 ** Return a pointer to a fake BtCursor object that will always answer
887 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
888 ** cursor returned must not be used with any other Btree interface.
889 */
890 BtCursor *sqlite3BtreeFakeValidCursor(void){
891   static u8 fakeCursor = CURSOR_VALID;
892   assert( offsetof(BtCursor, eState)==0 );
893   return (BtCursor*)&fakeCursor;
894 }
895 
896 /*
897 ** This routine restores a cursor back to its original position after it
898 ** has been moved by some outside activity (such as a btree rebalance or
899 ** a row having been deleted out from under the cursor).
900 **
901 ** On success, the *pDifferentRow parameter is false if the cursor is left
902 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
903 ** was pointing to has been deleted, forcing the cursor to point to some
904 ** nearby row.
905 **
906 ** This routine should only be called for a cursor that just returned
907 ** TRUE from sqlite3BtreeCursorHasMoved().
908 */
909 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
910   int rc;
911 
912   assert( pCur!=0 );
913   assert( pCur->eState!=CURSOR_VALID );
914   rc = restoreCursorPosition(pCur);
915   if( rc ){
916     *pDifferentRow = 1;
917     return rc;
918   }
919   if( pCur->eState!=CURSOR_VALID ){
920     *pDifferentRow = 1;
921   }else{
922     *pDifferentRow = 0;
923   }
924   return SQLITE_OK;
925 }
926 
927 #ifdef SQLITE_ENABLE_CURSOR_HINTS
928 /*
929 ** Provide hints to the cursor.  The particular hint given (and the type
930 ** and number of the varargs parameters) is determined by the eHintType
931 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
932 */
933 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
934   /* Used only by system that substitute their own storage engine */
935 }
936 #endif
937 
938 /*
939 ** Provide flag hints to the cursor.
940 */
941 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
942   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
943   pCur->hints = x;
944 }
945 
946 
947 #ifndef SQLITE_OMIT_AUTOVACUUM
948 /*
949 ** Given a page number of a regular database page, return the page
950 ** number for the pointer-map page that contains the entry for the
951 ** input page number.
952 **
953 ** Return 0 (not a valid page) for pgno==1 since there is
954 ** no pointer map associated with page 1.  The integrity_check logic
955 ** requires that ptrmapPageno(*,1)!=1.
956 */
957 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
958   int nPagesPerMapPage;
959   Pgno iPtrMap, ret;
960   assert( sqlite3_mutex_held(pBt->mutex) );
961   if( pgno<2 ) return 0;
962   nPagesPerMapPage = (pBt->usableSize/5)+1;
963   iPtrMap = (pgno-2)/nPagesPerMapPage;
964   ret = (iPtrMap*nPagesPerMapPage) + 2;
965   if( ret==PENDING_BYTE_PAGE(pBt) ){
966     ret++;
967   }
968   return ret;
969 }
970 
971 /*
972 ** Write an entry into the pointer map.
973 **
974 ** This routine updates the pointer map entry for page number 'key'
975 ** so that it maps to type 'eType' and parent page number 'pgno'.
976 **
977 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
978 ** a no-op.  If an error occurs, the appropriate error code is written
979 ** into *pRC.
980 */
981 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
982   DbPage *pDbPage;  /* The pointer map page */
983   u8 *pPtrmap;      /* The pointer map data */
984   Pgno iPtrmap;     /* The pointer map page number */
985   int offset;       /* Offset in pointer map page */
986   int rc;           /* Return code from subfunctions */
987 
988   if( *pRC ) return;
989 
990   assert( sqlite3_mutex_held(pBt->mutex) );
991   /* The master-journal page number must never be used as a pointer map page */
992   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
993 
994   assert( pBt->autoVacuum );
995   if( key==0 ){
996     *pRC = SQLITE_CORRUPT_BKPT;
997     return;
998   }
999   iPtrmap = PTRMAP_PAGENO(pBt, key);
1000   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1001   if( rc!=SQLITE_OK ){
1002     *pRC = rc;
1003     return;
1004   }
1005   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1006     /* The first byte of the extra data is the MemPage.isInit byte.
1007     ** If that byte is set, it means this page is also being used
1008     ** as a btree page. */
1009     *pRC = SQLITE_CORRUPT_BKPT;
1010     goto ptrmap_exit;
1011   }
1012   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1013   if( offset<0 ){
1014     *pRC = SQLITE_CORRUPT_BKPT;
1015     goto ptrmap_exit;
1016   }
1017   assert( offset <= (int)pBt->usableSize-5 );
1018   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1019 
1020   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1021     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1022     *pRC= rc = sqlite3PagerWrite(pDbPage);
1023     if( rc==SQLITE_OK ){
1024       pPtrmap[offset] = eType;
1025       put4byte(&pPtrmap[offset+1], parent);
1026     }
1027   }
1028 
1029 ptrmap_exit:
1030   sqlite3PagerUnref(pDbPage);
1031 }
1032 
1033 /*
1034 ** Read an entry from the pointer map.
1035 **
1036 ** This routine retrieves the pointer map entry for page 'key', writing
1037 ** the type and parent page number to *pEType and *pPgno respectively.
1038 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1039 */
1040 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1041   DbPage *pDbPage;   /* The pointer map page */
1042   int iPtrmap;       /* Pointer map page index */
1043   u8 *pPtrmap;       /* Pointer map page data */
1044   int offset;        /* Offset of entry in pointer map */
1045   int rc;
1046 
1047   assert( sqlite3_mutex_held(pBt->mutex) );
1048 
1049   iPtrmap = PTRMAP_PAGENO(pBt, key);
1050   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1051   if( rc!=0 ){
1052     return rc;
1053   }
1054   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1055 
1056   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1057   if( offset<0 ){
1058     sqlite3PagerUnref(pDbPage);
1059     return SQLITE_CORRUPT_BKPT;
1060   }
1061   assert( offset <= (int)pBt->usableSize-5 );
1062   assert( pEType!=0 );
1063   *pEType = pPtrmap[offset];
1064   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1065 
1066   sqlite3PagerUnref(pDbPage);
1067   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1068   return SQLITE_OK;
1069 }
1070 
1071 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1072   #define ptrmapPut(w,x,y,z,rc)
1073   #define ptrmapGet(w,x,y,z) SQLITE_OK
1074   #define ptrmapPutOvflPtr(x, y, z, rc)
1075 #endif
1076 
1077 /*
1078 ** Given a btree page and a cell index (0 means the first cell on
1079 ** the page, 1 means the second cell, and so forth) return a pointer
1080 ** to the cell content.
1081 **
1082 ** findCellPastPtr() does the same except it skips past the initial
1083 ** 4-byte child pointer found on interior pages, if there is one.
1084 **
1085 ** This routine works only for pages that do not contain overflow cells.
1086 */
1087 #define findCell(P,I) \
1088   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1089 #define findCellPastPtr(P,I) \
1090   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1091 
1092 
1093 /*
1094 ** This is common tail processing for btreeParseCellPtr() and
1095 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1096 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1097 ** structure.
1098 */
1099 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1100   MemPage *pPage,         /* Page containing the cell */
1101   u8 *pCell,              /* Pointer to the cell text. */
1102   CellInfo *pInfo         /* Fill in this structure */
1103 ){
1104   /* If the payload will not fit completely on the local page, we have
1105   ** to decide how much to store locally and how much to spill onto
1106   ** overflow pages.  The strategy is to minimize the amount of unused
1107   ** space on overflow pages while keeping the amount of local storage
1108   ** in between minLocal and maxLocal.
1109   **
1110   ** Warning:  changing the way overflow payload is distributed in any
1111   ** way will result in an incompatible file format.
1112   */
1113   int minLocal;  /* Minimum amount of payload held locally */
1114   int maxLocal;  /* Maximum amount of payload held locally */
1115   int surplus;   /* Overflow payload available for local storage */
1116 
1117   minLocal = pPage->minLocal;
1118   maxLocal = pPage->maxLocal;
1119   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1120   testcase( surplus==maxLocal );
1121   testcase( surplus==maxLocal+1 );
1122   if( surplus <= maxLocal ){
1123     pInfo->nLocal = (u16)surplus;
1124   }else{
1125     pInfo->nLocal = (u16)minLocal;
1126   }
1127   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1128 }
1129 
1130 /*
1131 ** The following routines are implementations of the MemPage.xParseCell()
1132 ** method.
1133 **
1134 ** Parse a cell content block and fill in the CellInfo structure.
1135 **
1136 ** btreeParseCellPtr()        =>   table btree leaf nodes
1137 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1138 ** btreeParseCellPtrIndex()   =>   index btree nodes
1139 **
1140 ** There is also a wrapper function btreeParseCell() that works for
1141 ** all MemPage types and that references the cell by index rather than
1142 ** by pointer.
1143 */
1144 static void btreeParseCellPtrNoPayload(
1145   MemPage *pPage,         /* Page containing the cell */
1146   u8 *pCell,              /* Pointer to the cell text. */
1147   CellInfo *pInfo         /* Fill in this structure */
1148 ){
1149   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1150   assert( pPage->leaf==0 );
1151   assert( pPage->childPtrSize==4 );
1152 #ifndef SQLITE_DEBUG
1153   UNUSED_PARAMETER(pPage);
1154 #endif
1155   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1156   pInfo->nPayload = 0;
1157   pInfo->nLocal = 0;
1158   pInfo->pPayload = 0;
1159   return;
1160 }
1161 static void btreeParseCellPtr(
1162   MemPage *pPage,         /* Page containing the cell */
1163   u8 *pCell,              /* Pointer to the cell text. */
1164   CellInfo *pInfo         /* Fill in this structure */
1165 ){
1166   u8 *pIter;              /* For scanning through pCell */
1167   u32 nPayload;           /* Number of bytes of cell payload */
1168   u64 iKey;               /* Extracted Key value */
1169 
1170   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1171   assert( pPage->leaf==0 || pPage->leaf==1 );
1172   assert( pPage->intKeyLeaf );
1173   assert( pPage->childPtrSize==0 );
1174   pIter = pCell;
1175 
1176   /* The next block of code is equivalent to:
1177   **
1178   **     pIter += getVarint32(pIter, nPayload);
1179   **
1180   ** The code is inlined to avoid a function call.
1181   */
1182   nPayload = *pIter;
1183   if( nPayload>=0x80 ){
1184     u8 *pEnd = &pIter[8];
1185     nPayload &= 0x7f;
1186     do{
1187       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1188     }while( (*pIter)>=0x80 && pIter<pEnd );
1189   }
1190   pIter++;
1191 
1192   /* The next block of code is equivalent to:
1193   **
1194   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1195   **
1196   ** The code is inlined to avoid a function call.
1197   */
1198   iKey = *pIter;
1199   if( iKey>=0x80 ){
1200     u8 *pEnd = &pIter[7];
1201     iKey &= 0x7f;
1202     while(1){
1203       iKey = (iKey<<7) | (*++pIter & 0x7f);
1204       if( (*pIter)<0x80 ) break;
1205       if( pIter>=pEnd ){
1206         iKey = (iKey<<8) | *++pIter;
1207         break;
1208       }
1209     }
1210   }
1211   pIter++;
1212 
1213   pInfo->nKey = *(i64*)&iKey;
1214   pInfo->nPayload = nPayload;
1215   pInfo->pPayload = pIter;
1216   testcase( nPayload==pPage->maxLocal );
1217   testcase( nPayload==pPage->maxLocal+1 );
1218   if( nPayload<=pPage->maxLocal ){
1219     /* This is the (easy) common case where the entire payload fits
1220     ** on the local page.  No overflow is required.
1221     */
1222     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1223     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1224     pInfo->nLocal = (u16)nPayload;
1225   }else{
1226     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1227   }
1228 }
1229 static void btreeParseCellPtrIndex(
1230   MemPage *pPage,         /* Page containing the cell */
1231   u8 *pCell,              /* Pointer to the cell text. */
1232   CellInfo *pInfo         /* Fill in this structure */
1233 ){
1234   u8 *pIter;              /* For scanning through pCell */
1235   u32 nPayload;           /* Number of bytes of cell payload */
1236 
1237   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1238   assert( pPage->leaf==0 || pPage->leaf==1 );
1239   assert( pPage->intKeyLeaf==0 );
1240   pIter = pCell + pPage->childPtrSize;
1241   nPayload = *pIter;
1242   if( nPayload>=0x80 ){
1243     u8 *pEnd = &pIter[8];
1244     nPayload &= 0x7f;
1245     do{
1246       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1247     }while( *(pIter)>=0x80 && pIter<pEnd );
1248   }
1249   pIter++;
1250   pInfo->nKey = nPayload;
1251   pInfo->nPayload = nPayload;
1252   pInfo->pPayload = pIter;
1253   testcase( nPayload==pPage->maxLocal );
1254   testcase( nPayload==pPage->maxLocal+1 );
1255   if( nPayload<=pPage->maxLocal ){
1256     /* This is the (easy) common case where the entire payload fits
1257     ** on the local page.  No overflow is required.
1258     */
1259     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1260     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1261     pInfo->nLocal = (u16)nPayload;
1262   }else{
1263     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1264   }
1265 }
1266 static void btreeParseCell(
1267   MemPage *pPage,         /* Page containing the cell */
1268   int iCell,              /* The cell index.  First cell is 0 */
1269   CellInfo *pInfo         /* Fill in this structure */
1270 ){
1271   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1272 }
1273 
1274 /*
1275 ** The following routines are implementations of the MemPage.xCellSize
1276 ** method.
1277 **
1278 ** Compute the total number of bytes that a Cell needs in the cell
1279 ** data area of the btree-page.  The return number includes the cell
1280 ** data header and the local payload, but not any overflow page or
1281 ** the space used by the cell pointer.
1282 **
1283 ** cellSizePtrNoPayload()    =>   table internal nodes
1284 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1285 */
1286 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1287   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1288   u8 *pEnd;                                /* End mark for a varint */
1289   u32 nSize;                               /* Size value to return */
1290 
1291 #ifdef SQLITE_DEBUG
1292   /* The value returned by this function should always be the same as
1293   ** the (CellInfo.nSize) value found by doing a full parse of the
1294   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1295   ** this function verifies that this invariant is not violated. */
1296   CellInfo debuginfo;
1297   pPage->xParseCell(pPage, pCell, &debuginfo);
1298 #endif
1299 
1300   nSize = *pIter;
1301   if( nSize>=0x80 ){
1302     pEnd = &pIter[8];
1303     nSize &= 0x7f;
1304     do{
1305       nSize = (nSize<<7) | (*++pIter & 0x7f);
1306     }while( *(pIter)>=0x80 && pIter<pEnd );
1307   }
1308   pIter++;
1309   if( pPage->intKey ){
1310     /* pIter now points at the 64-bit integer key value, a variable length
1311     ** integer. The following block moves pIter to point at the first byte
1312     ** past the end of the key value. */
1313     pEnd = &pIter[9];
1314     while( (*pIter++)&0x80 && pIter<pEnd );
1315   }
1316   testcase( nSize==pPage->maxLocal );
1317   testcase( nSize==pPage->maxLocal+1 );
1318   if( nSize<=pPage->maxLocal ){
1319     nSize += (u32)(pIter - pCell);
1320     if( nSize<4 ) nSize = 4;
1321   }else{
1322     int minLocal = pPage->minLocal;
1323     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1324     testcase( nSize==pPage->maxLocal );
1325     testcase( nSize==pPage->maxLocal+1 );
1326     if( nSize>pPage->maxLocal ){
1327       nSize = minLocal;
1328     }
1329     nSize += 4 + (u16)(pIter - pCell);
1330   }
1331   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1332   return (u16)nSize;
1333 }
1334 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1335   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1336   u8 *pEnd;              /* End mark for a varint */
1337 
1338 #ifdef SQLITE_DEBUG
1339   /* The value returned by this function should always be the same as
1340   ** the (CellInfo.nSize) value found by doing a full parse of the
1341   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342   ** this function verifies that this invariant is not violated. */
1343   CellInfo debuginfo;
1344   pPage->xParseCell(pPage, pCell, &debuginfo);
1345 #else
1346   UNUSED_PARAMETER(pPage);
1347 #endif
1348 
1349   assert( pPage->childPtrSize==4 );
1350   pEnd = pIter + 9;
1351   while( (*pIter++)&0x80 && pIter<pEnd );
1352   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1353   return (u16)(pIter - pCell);
1354 }
1355 
1356 
1357 #ifdef SQLITE_DEBUG
1358 /* This variation on cellSizePtr() is used inside of assert() statements
1359 ** only. */
1360 static u16 cellSize(MemPage *pPage, int iCell){
1361   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1362 }
1363 #endif
1364 
1365 #ifndef SQLITE_OMIT_AUTOVACUUM
1366 /*
1367 ** The cell pCell is currently part of page pSrc but will ultimately be part
1368 ** of pPage.  (pSrc and pPager are often the same.)  If pCell contains a
1369 ** pointer to an overflow page, insert an entry into the pointer-map for
1370 ** the overflow page that will be valid after pCell has been moved to pPage.
1371 */
1372 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1373   CellInfo info;
1374   if( *pRC ) return;
1375   assert( pCell!=0 );
1376   pPage->xParseCell(pPage, pCell, &info);
1377   if( info.nLocal<info.nPayload ){
1378     Pgno ovfl;
1379     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1380       testcase( pSrc!=pPage );
1381       *pRC = SQLITE_CORRUPT_BKPT;
1382       return;
1383     }
1384     ovfl = get4byte(&pCell[info.nSize-4]);
1385     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1386   }
1387 }
1388 #endif
1389 
1390 
1391 /*
1392 ** Defragment the page given. This routine reorganizes cells within the
1393 ** page so that there are no free-blocks on the free-block list.
1394 **
1395 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1396 ** present in the page after this routine returns.
1397 **
1398 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1399 ** b-tree page so that there are no freeblocks or fragment bytes, all
1400 ** unused bytes are contained in the unallocated space region, and all
1401 ** cells are packed tightly at the end of the page.
1402 */
1403 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1404   int i;                     /* Loop counter */
1405   int pc;                    /* Address of the i-th cell */
1406   int hdr;                   /* Offset to the page header */
1407   int size;                  /* Size of a cell */
1408   int usableSize;            /* Number of usable bytes on a page */
1409   int cellOffset;            /* Offset to the cell pointer array */
1410   int cbrk;                  /* Offset to the cell content area */
1411   int nCell;                 /* Number of cells on the page */
1412   unsigned char *data;       /* The page data */
1413   unsigned char *temp;       /* Temp area for cell content */
1414   unsigned char *src;        /* Source of content */
1415   int iCellFirst;            /* First allowable cell index */
1416   int iCellLast;             /* Last possible cell index */
1417 
1418   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1419   assert( pPage->pBt!=0 );
1420   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1421   assert( pPage->nOverflow==0 );
1422   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1423   temp = 0;
1424   src = data = pPage->aData;
1425   hdr = pPage->hdrOffset;
1426   cellOffset = pPage->cellOffset;
1427   nCell = pPage->nCell;
1428   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1429   iCellFirst = cellOffset + 2*nCell;
1430   usableSize = pPage->pBt->usableSize;
1431 
1432   /* This block handles pages with two or fewer free blocks and nMaxFrag
1433   ** or fewer fragmented bytes. In this case it is faster to move the
1434   ** two (or one) blocks of cells using memmove() and add the required
1435   ** offsets to each pointer in the cell-pointer array than it is to
1436   ** reconstruct the entire page.  */
1437   if( (int)data[hdr+7]<=nMaxFrag ){
1438     int iFree = get2byte(&data[hdr+1]);
1439     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1440     if( iFree ){
1441       int iFree2 = get2byte(&data[iFree]);
1442       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1443       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1444         u8 *pEnd = &data[cellOffset + nCell*2];
1445         u8 *pAddr;
1446         int sz2 = 0;
1447         int sz = get2byte(&data[iFree+2]);
1448         int top = get2byte(&data[hdr+5]);
1449         if( top>=iFree ){
1450           return SQLITE_CORRUPT_PAGE(pPage);
1451         }
1452         if( iFree2 ){
1453           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1454           sz2 = get2byte(&data[iFree2+2]);
1455           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1456           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1457           sz += sz2;
1458         }else if( iFree+sz>usableSize ){
1459           return SQLITE_CORRUPT_PAGE(pPage);
1460         }
1461 
1462         cbrk = top+sz;
1463         assert( cbrk+(iFree-top) <= usableSize );
1464         memmove(&data[cbrk], &data[top], iFree-top);
1465         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1466           pc = get2byte(pAddr);
1467           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1468           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1469         }
1470         goto defragment_out;
1471       }
1472     }
1473   }
1474 
1475   cbrk = usableSize;
1476   iCellLast = usableSize - 4;
1477   for(i=0; i<nCell; i++){
1478     u8 *pAddr;     /* The i-th cell pointer */
1479     pAddr = &data[cellOffset + i*2];
1480     pc = get2byte(pAddr);
1481     testcase( pc==iCellFirst );
1482     testcase( pc==iCellLast );
1483     /* These conditions have already been verified in btreeInitPage()
1484     ** if PRAGMA cell_size_check=ON.
1485     */
1486     if( pc<iCellFirst || pc>iCellLast ){
1487       return SQLITE_CORRUPT_PAGE(pPage);
1488     }
1489     assert( pc>=iCellFirst && pc<=iCellLast );
1490     size = pPage->xCellSize(pPage, &src[pc]);
1491     cbrk -= size;
1492     if( cbrk<iCellFirst || pc+size>usableSize ){
1493       return SQLITE_CORRUPT_PAGE(pPage);
1494     }
1495     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1496     testcase( cbrk+size==usableSize );
1497     testcase( pc+size==usableSize );
1498     put2byte(pAddr, cbrk);
1499     if( temp==0 ){
1500       int x;
1501       if( cbrk==pc ) continue;
1502       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1503       x = get2byte(&data[hdr+5]);
1504       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1505       src = temp;
1506     }
1507     memcpy(&data[cbrk], &src[pc], size);
1508   }
1509   data[hdr+7] = 0;
1510 
1511  defragment_out:
1512   assert( pPage->nFree>=0 );
1513   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1514     return SQLITE_CORRUPT_PAGE(pPage);
1515   }
1516   assert( cbrk>=iCellFirst );
1517   put2byte(&data[hdr+5], cbrk);
1518   data[hdr+1] = 0;
1519   data[hdr+2] = 0;
1520   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1521   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1522   return SQLITE_OK;
1523 }
1524 
1525 /*
1526 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1527 ** size. If one can be found, return a pointer to the space and remove it
1528 ** from the free-list.
1529 **
1530 ** If no suitable space can be found on the free-list, return NULL.
1531 **
1532 ** This function may detect corruption within pPg.  If corruption is
1533 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1534 **
1535 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1536 ** will be ignored if adding the extra space to the fragmentation count
1537 ** causes the fragmentation count to exceed 60.
1538 */
1539 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1540   const int hdr = pPg->hdrOffset;            /* Offset to page header */
1541   u8 * const aData = pPg->aData;             /* Page data */
1542   int iAddr = hdr + 1;                       /* Address of ptr to pc */
1543   int pc = get2byte(&aData[iAddr]);          /* Address of a free slot */
1544   int x;                                     /* Excess size of the slot */
1545   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */
1546   int size;                                  /* Size of the free slot */
1547 
1548   assert( pc>0 );
1549   while( pc<=maxPC ){
1550     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1551     ** freeblock form a big-endian integer which is the size of the freeblock
1552     ** in bytes, including the 4-byte header. */
1553     size = get2byte(&aData[pc+2]);
1554     if( (x = size - nByte)>=0 ){
1555       testcase( x==4 );
1556       testcase( x==3 );
1557       if( x<4 ){
1558         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1559         ** number of bytes in fragments may not exceed 60. */
1560         if( aData[hdr+7]>57 ) return 0;
1561 
1562         /* Remove the slot from the free-list. Update the number of
1563         ** fragmented bytes within the page. */
1564         memcpy(&aData[iAddr], &aData[pc], 2);
1565         aData[hdr+7] += (u8)x;
1566       }else if( x+pc > maxPC ){
1567         /* This slot extends off the end of the usable part of the page */
1568         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1569         return 0;
1570       }else{
1571         /* The slot remains on the free-list. Reduce its size to account
1572         ** for the portion used by the new allocation. */
1573         put2byte(&aData[pc+2], x);
1574       }
1575       return &aData[pc + x];
1576     }
1577     iAddr = pc;
1578     pc = get2byte(&aData[pc]);
1579     if( pc<=iAddr+size ){
1580       if( pc ){
1581         /* The next slot in the chain is not past the end of the current slot */
1582         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1583       }
1584       return 0;
1585     }
1586   }
1587   if( pc>maxPC+nByte-4 ){
1588     /* The free slot chain extends off the end of the page */
1589     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1590   }
1591   return 0;
1592 }
1593 
1594 /*
1595 ** Allocate nByte bytes of space from within the B-Tree page passed
1596 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1597 ** of the first byte of allocated space. Return either SQLITE_OK or
1598 ** an error code (usually SQLITE_CORRUPT).
1599 **
1600 ** The caller guarantees that there is sufficient space to make the
1601 ** allocation.  This routine might need to defragment in order to bring
1602 ** all the space together, however.  This routine will avoid using
1603 ** the first two bytes past the cell pointer area since presumably this
1604 ** allocation is being made in order to insert a new cell, so we will
1605 ** also end up needing a new cell pointer.
1606 */
1607 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1608   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1609   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1610   int top;                             /* First byte of cell content area */
1611   int rc = SQLITE_OK;                  /* Integer return code */
1612   int gap;        /* First byte of gap between cell pointers and cell content */
1613 
1614   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1615   assert( pPage->pBt );
1616   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1617   assert( nByte>=0 );  /* Minimum cell size is 4 */
1618   assert( pPage->nFree>=nByte );
1619   assert( pPage->nOverflow==0 );
1620   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1621 
1622   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1623   gap = pPage->cellOffset + 2*pPage->nCell;
1624   assert( gap<=65536 );
1625   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1626   ** and the reserved space is zero (the usual value for reserved space)
1627   ** then the cell content offset of an empty page wants to be 65536.
1628   ** However, that integer is too large to be stored in a 2-byte unsigned
1629   ** integer, so a value of 0 is used in its place. */
1630   top = get2byte(&data[hdr+5]);
1631   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1632   if( gap>top ){
1633     if( top==0 && pPage->pBt->usableSize==65536 ){
1634       top = 65536;
1635     }else{
1636       return SQLITE_CORRUPT_PAGE(pPage);
1637     }
1638   }
1639 
1640   /* If there is enough space between gap and top for one more cell pointer,
1641   ** and if the freelist is not empty, then search the
1642   ** freelist looking for a slot big enough to satisfy the request.
1643   */
1644   testcase( gap+2==top );
1645   testcase( gap+1==top );
1646   testcase( gap==top );
1647   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1648     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1649     if( pSpace ){
1650       assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1651       if( (*pIdx = (int)(pSpace-data))<=gap ){
1652         return SQLITE_CORRUPT_PAGE(pPage);
1653       }else{
1654         return SQLITE_OK;
1655       }
1656     }else if( rc ){
1657       return rc;
1658     }
1659   }
1660 
1661   /* The request could not be fulfilled using a freelist slot.  Check
1662   ** to see if defragmentation is necessary.
1663   */
1664   testcase( gap+2+nByte==top );
1665   if( gap+2+nByte>top ){
1666     assert( pPage->nCell>0 || CORRUPT_DB );
1667     assert( pPage->nFree>=0 );
1668     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1669     if( rc ) return rc;
1670     top = get2byteNotZero(&data[hdr+5]);
1671     assert( gap+2+nByte<=top );
1672   }
1673 
1674 
1675   /* Allocate memory from the gap in between the cell pointer array
1676   ** and the cell content area.  The btreeComputeFreeSpace() call has already
1677   ** validated the freelist.  Given that the freelist is valid, there
1678   ** is no way that the allocation can extend off the end of the page.
1679   ** The assert() below verifies the previous sentence.
1680   */
1681   top -= nByte;
1682   put2byte(&data[hdr+5], top);
1683   assert( top+nByte <= (int)pPage->pBt->usableSize );
1684   *pIdx = top;
1685   return SQLITE_OK;
1686 }
1687 
1688 /*
1689 ** Return a section of the pPage->aData to the freelist.
1690 ** The first byte of the new free block is pPage->aData[iStart]
1691 ** and the size of the block is iSize bytes.
1692 **
1693 ** Adjacent freeblocks are coalesced.
1694 **
1695 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1696 ** that routine will not detect overlap between cells or freeblocks.  Nor
1697 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1698 ** at the end of the page.  So do additional corruption checks inside this
1699 ** routine and return SQLITE_CORRUPT if any problems are found.
1700 */
1701 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1702   u16 iPtr;                             /* Address of ptr to next freeblock */
1703   u16 iFreeBlk;                         /* Address of the next freeblock */
1704   u8 hdr;                               /* Page header size.  0 or 100 */
1705   u8 nFrag = 0;                         /* Reduction in fragmentation */
1706   u16 iOrigSize = iSize;                /* Original value of iSize */
1707   u16 x;                                /* Offset to cell content area */
1708   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1709   unsigned char *data = pPage->aData;   /* Page content */
1710 
1711   assert( pPage->pBt!=0 );
1712   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1713   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1714   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1715   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1716   assert( iSize>=4 );   /* Minimum cell size is 4 */
1717   assert( iStart<=pPage->pBt->usableSize-4 );
1718 
1719   /* The list of freeblocks must be in ascending order.  Find the
1720   ** spot on the list where iStart should be inserted.
1721   */
1722   hdr = pPage->hdrOffset;
1723   iPtr = hdr + 1;
1724   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1725     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1726   }else{
1727     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1728       if( iFreeBlk<iPtr+4 ){
1729         if( iFreeBlk==0 ) break;
1730         return SQLITE_CORRUPT_PAGE(pPage);
1731       }
1732       iPtr = iFreeBlk;
1733     }
1734     if( iFreeBlk>pPage->pBt->usableSize-4 ){
1735       return SQLITE_CORRUPT_PAGE(pPage);
1736     }
1737     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1738 
1739     /* At this point:
1740     **    iFreeBlk:   First freeblock after iStart, or zero if none
1741     **    iPtr:       The address of a pointer to iFreeBlk
1742     **
1743     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1744     */
1745     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1746       nFrag = iFreeBlk - iEnd;
1747       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1748       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1749       if( iEnd > pPage->pBt->usableSize ){
1750         return SQLITE_CORRUPT_PAGE(pPage);
1751       }
1752       iSize = iEnd - iStart;
1753       iFreeBlk = get2byte(&data[iFreeBlk]);
1754     }
1755 
1756     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1757     ** pointer in the page header) then check to see if iStart should be
1758     ** coalesced onto the end of iPtr.
1759     */
1760     if( iPtr>hdr+1 ){
1761       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1762       if( iPtrEnd+3>=iStart ){
1763         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1764         nFrag += iStart - iPtrEnd;
1765         iSize = iEnd - iPtr;
1766         iStart = iPtr;
1767       }
1768     }
1769     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1770     data[hdr+7] -= nFrag;
1771   }
1772   x = get2byte(&data[hdr+5]);
1773   if( iStart<=x ){
1774     /* The new freeblock is at the beginning of the cell content area,
1775     ** so just extend the cell content area rather than create another
1776     ** freelist entry */
1777     if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1778     put2byte(&data[hdr+1], iFreeBlk);
1779     put2byte(&data[hdr+5], iEnd);
1780   }else{
1781     /* Insert the new freeblock into the freelist */
1782     put2byte(&data[iPtr], iStart);
1783   }
1784   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1785     /* Overwrite deleted information with zeros when the secure_delete
1786     ** option is enabled */
1787     memset(&data[iStart], 0, iSize);
1788   }
1789   put2byte(&data[iStart], iFreeBlk);
1790   put2byte(&data[iStart+2], iSize);
1791   pPage->nFree += iOrigSize;
1792   return SQLITE_OK;
1793 }
1794 
1795 /*
1796 ** Decode the flags byte (the first byte of the header) for a page
1797 ** and initialize fields of the MemPage structure accordingly.
1798 **
1799 ** Only the following combinations are supported.  Anything different
1800 ** indicates a corrupt database files:
1801 **
1802 **         PTF_ZERODATA
1803 **         PTF_ZERODATA | PTF_LEAF
1804 **         PTF_LEAFDATA | PTF_INTKEY
1805 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1806 */
1807 static int decodeFlags(MemPage *pPage, int flagByte){
1808   BtShared *pBt;     /* A copy of pPage->pBt */
1809 
1810   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1811   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1812   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1813   flagByte &= ~PTF_LEAF;
1814   pPage->childPtrSize = 4-4*pPage->leaf;
1815   pPage->xCellSize = cellSizePtr;
1816   pBt = pPage->pBt;
1817   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1818     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1819     ** interior table b-tree page. */
1820     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1821     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1822     ** leaf table b-tree page. */
1823     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1824     pPage->intKey = 1;
1825     if( pPage->leaf ){
1826       pPage->intKeyLeaf = 1;
1827       pPage->xParseCell = btreeParseCellPtr;
1828     }else{
1829       pPage->intKeyLeaf = 0;
1830       pPage->xCellSize = cellSizePtrNoPayload;
1831       pPage->xParseCell = btreeParseCellPtrNoPayload;
1832     }
1833     pPage->maxLocal = pBt->maxLeaf;
1834     pPage->minLocal = pBt->minLeaf;
1835   }else if( flagByte==PTF_ZERODATA ){
1836     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1837     ** interior index b-tree page. */
1838     assert( (PTF_ZERODATA)==2 );
1839     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1840     ** leaf index b-tree page. */
1841     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1842     pPage->intKey = 0;
1843     pPage->intKeyLeaf = 0;
1844     pPage->xParseCell = btreeParseCellPtrIndex;
1845     pPage->maxLocal = pBt->maxLocal;
1846     pPage->minLocal = pBt->minLocal;
1847   }else{
1848     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1849     ** an error. */
1850     return SQLITE_CORRUPT_PAGE(pPage);
1851   }
1852   pPage->max1bytePayload = pBt->max1bytePayload;
1853   return SQLITE_OK;
1854 }
1855 
1856 /*
1857 ** Compute the amount of freespace on the page.  In other words, fill
1858 ** in the pPage->nFree field.
1859 */
1860 static int btreeComputeFreeSpace(MemPage *pPage){
1861   int pc;            /* Address of a freeblock within pPage->aData[] */
1862   u8 hdr;            /* Offset to beginning of page header */
1863   u8 *data;          /* Equal to pPage->aData */
1864   int usableSize;    /* Amount of usable space on each page */
1865   int nFree;         /* Number of unused bytes on the page */
1866   int top;           /* First byte of the cell content area */
1867   int iCellFirst;    /* First allowable cell or freeblock offset */
1868   int iCellLast;     /* Last possible cell or freeblock offset */
1869 
1870   assert( pPage->pBt!=0 );
1871   assert( pPage->pBt->db!=0 );
1872   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1873   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1874   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1875   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1876   assert( pPage->isInit==1 );
1877   assert( pPage->nFree<0 );
1878 
1879   usableSize = pPage->pBt->usableSize;
1880   hdr = pPage->hdrOffset;
1881   data = pPage->aData;
1882   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1883   ** the start of the cell content area. A zero value for this integer is
1884   ** interpreted as 65536. */
1885   top = get2byteNotZero(&data[hdr+5]);
1886   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1887   iCellLast = usableSize - 4;
1888 
1889   /* Compute the total free space on the page
1890   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1891   ** start of the first freeblock on the page, or is zero if there are no
1892   ** freeblocks. */
1893   pc = get2byte(&data[hdr+1]);
1894   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1895   if( pc>0 ){
1896     u32 next, size;
1897     if( pc<iCellFirst ){
1898       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1899       ** always be at least one cell before the first freeblock.
1900       */
1901       return SQLITE_CORRUPT_PAGE(pPage);
1902     }
1903     while( 1 ){
1904       if( pc>iCellLast ){
1905         /* Freeblock off the end of the page */
1906         return SQLITE_CORRUPT_PAGE(pPage);
1907       }
1908       next = get2byte(&data[pc]);
1909       size = get2byte(&data[pc+2]);
1910       nFree = nFree + size;
1911       if( next<=pc+size+3 ) break;
1912       pc = next;
1913     }
1914     if( next>0 ){
1915       /* Freeblock not in ascending order */
1916       return SQLITE_CORRUPT_PAGE(pPage);
1917     }
1918     if( pc+size>(unsigned int)usableSize ){
1919       /* Last freeblock extends past page end */
1920       return SQLITE_CORRUPT_PAGE(pPage);
1921     }
1922   }
1923 
1924   /* At this point, nFree contains the sum of the offset to the start
1925   ** of the cell-content area plus the number of free bytes within
1926   ** the cell-content area. If this is greater than the usable-size
1927   ** of the page, then the page must be corrupted. This check also
1928   ** serves to verify that the offset to the start of the cell-content
1929   ** area, according to the page header, lies within the page.
1930   */
1931   if( nFree>usableSize || nFree<iCellFirst ){
1932     return SQLITE_CORRUPT_PAGE(pPage);
1933   }
1934   pPage->nFree = (u16)(nFree - iCellFirst);
1935   return SQLITE_OK;
1936 }
1937 
1938 /*
1939 ** Do additional sanity check after btreeInitPage() if
1940 ** PRAGMA cell_size_check=ON
1941 */
1942 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1943   int iCellFirst;    /* First allowable cell or freeblock offset */
1944   int iCellLast;     /* Last possible cell or freeblock offset */
1945   int i;             /* Index into the cell pointer array */
1946   int sz;            /* Size of a cell */
1947   int pc;            /* Address of a freeblock within pPage->aData[] */
1948   u8 *data;          /* Equal to pPage->aData */
1949   int usableSize;    /* Maximum usable space on the page */
1950   int cellOffset;    /* Start of cell content area */
1951 
1952   iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1953   usableSize = pPage->pBt->usableSize;
1954   iCellLast = usableSize - 4;
1955   data = pPage->aData;
1956   cellOffset = pPage->cellOffset;
1957   if( !pPage->leaf ) iCellLast--;
1958   for(i=0; i<pPage->nCell; i++){
1959     pc = get2byteAligned(&data[cellOffset+i*2]);
1960     testcase( pc==iCellFirst );
1961     testcase( pc==iCellLast );
1962     if( pc<iCellFirst || pc>iCellLast ){
1963       return SQLITE_CORRUPT_PAGE(pPage);
1964     }
1965     sz = pPage->xCellSize(pPage, &data[pc]);
1966     testcase( pc+sz==usableSize );
1967     if( pc+sz>usableSize ){
1968       return SQLITE_CORRUPT_PAGE(pPage);
1969     }
1970   }
1971   return SQLITE_OK;
1972 }
1973 
1974 /*
1975 ** Initialize the auxiliary information for a disk block.
1976 **
1977 ** Return SQLITE_OK on success.  If we see that the page does
1978 ** not contain a well-formed database page, then return
1979 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1980 ** guarantee that the page is well-formed.  It only shows that
1981 ** we failed to detect any corruption.
1982 */
1983 static int btreeInitPage(MemPage *pPage){
1984   u8 *data;          /* Equal to pPage->aData */
1985   BtShared *pBt;        /* The main btree structure */
1986 
1987   assert( pPage->pBt!=0 );
1988   assert( pPage->pBt->db!=0 );
1989   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1990   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1991   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1992   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1993   assert( pPage->isInit==0 );
1994 
1995   pBt = pPage->pBt;
1996   data = pPage->aData + pPage->hdrOffset;
1997   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1998   ** the b-tree page type. */
1999   if( decodeFlags(pPage, data[0]) ){
2000     return SQLITE_CORRUPT_PAGE(pPage);
2001   }
2002   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2003   pPage->maskPage = (u16)(pBt->pageSize - 1);
2004   pPage->nOverflow = 0;
2005   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2006   pPage->aCellIdx = data + pPage->childPtrSize + 8;
2007   pPage->aDataEnd = pPage->aData + pBt->usableSize;
2008   pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2009   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2010   ** number of cells on the page. */
2011   pPage->nCell = get2byte(&data[3]);
2012   if( pPage->nCell>MX_CELL(pBt) ){
2013     /* To many cells for a single page.  The page must be corrupt */
2014     return SQLITE_CORRUPT_PAGE(pPage);
2015   }
2016   testcase( pPage->nCell==MX_CELL(pBt) );
2017   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2018   ** possible for a root page of a table that contains no rows) then the
2019   ** offset to the cell content area will equal the page size minus the
2020   ** bytes of reserved space. */
2021   assert( pPage->nCell>0
2022        || get2byteNotZero(&data[5])==(int)pBt->usableSize
2023        || CORRUPT_DB );
2024   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */
2025   pPage->isInit = 1;
2026   if( pBt->db->flags & SQLITE_CellSizeCk ){
2027     return btreeCellSizeCheck(pPage);
2028   }
2029   return SQLITE_OK;
2030 }
2031 
2032 /*
2033 ** Set up a raw page so that it looks like a database page holding
2034 ** no entries.
2035 */
2036 static void zeroPage(MemPage *pPage, int flags){
2037   unsigned char *data = pPage->aData;
2038   BtShared *pBt = pPage->pBt;
2039   u8 hdr = pPage->hdrOffset;
2040   u16 first;
2041 
2042   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
2043   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2044   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2045   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2046   assert( sqlite3_mutex_held(pBt->mutex) );
2047   if( pBt->btsFlags & BTS_FAST_SECURE ){
2048     memset(&data[hdr], 0, pBt->usableSize - hdr);
2049   }
2050   data[hdr] = (char)flags;
2051   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2052   memset(&data[hdr+1], 0, 4);
2053   data[hdr+7] = 0;
2054   put2byte(&data[hdr+5], pBt->usableSize);
2055   pPage->nFree = (u16)(pBt->usableSize - first);
2056   decodeFlags(pPage, flags);
2057   pPage->cellOffset = first;
2058   pPage->aDataEnd = &data[pBt->usableSize];
2059   pPage->aCellIdx = &data[first];
2060   pPage->aDataOfst = &data[pPage->childPtrSize];
2061   pPage->nOverflow = 0;
2062   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2063   pPage->maskPage = (u16)(pBt->pageSize - 1);
2064   pPage->nCell = 0;
2065   pPage->isInit = 1;
2066 }
2067 
2068 
2069 /*
2070 ** Convert a DbPage obtained from the pager into a MemPage used by
2071 ** the btree layer.
2072 */
2073 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2074   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2075   if( pgno!=pPage->pgno ){
2076     pPage->aData = sqlite3PagerGetData(pDbPage);
2077     pPage->pDbPage = pDbPage;
2078     pPage->pBt = pBt;
2079     pPage->pgno = pgno;
2080     pPage->hdrOffset = pgno==1 ? 100 : 0;
2081   }
2082   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2083   return pPage;
2084 }
2085 
2086 /*
2087 ** Get a page from the pager.  Initialize the MemPage.pBt and
2088 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2089 **
2090 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2091 ** about the content of the page at this time.  So do not go to the disk
2092 ** to fetch the content.  Just fill in the content with zeros for now.
2093 ** If in the future we call sqlite3PagerWrite() on this page, that
2094 ** means we have started to be concerned about content and the disk
2095 ** read should occur at that point.
2096 */
2097 static int btreeGetPage(
2098   BtShared *pBt,       /* The btree */
2099   Pgno pgno,           /* Number of the page to fetch */
2100   MemPage **ppPage,    /* Return the page in this parameter */
2101   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2102 ){
2103   int rc;
2104   DbPage *pDbPage;
2105 
2106   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2107   assert( sqlite3_mutex_held(pBt->mutex) );
2108   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2109   if( rc ) return rc;
2110   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2111   return SQLITE_OK;
2112 }
2113 
2114 /*
2115 ** Retrieve a page from the pager cache. If the requested page is not
2116 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2117 ** MemPage.aData elements if needed.
2118 */
2119 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2120   DbPage *pDbPage;
2121   assert( sqlite3_mutex_held(pBt->mutex) );
2122   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2123   if( pDbPage ){
2124     return btreePageFromDbPage(pDbPage, pgno, pBt);
2125   }
2126   return 0;
2127 }
2128 
2129 /*
2130 ** Return the size of the database file in pages. If there is any kind of
2131 ** error, return ((unsigned int)-1).
2132 */
2133 static Pgno btreePagecount(BtShared *pBt){
2134   return pBt->nPage;
2135 }
2136 u32 sqlite3BtreeLastPage(Btree *p){
2137   assert( sqlite3BtreeHoldsMutex(p) );
2138   assert( ((p->pBt->nPage)&0x80000000)==0 );
2139   return btreePagecount(p->pBt);
2140 }
2141 
2142 /*
2143 ** Get a page from the pager and initialize it.
2144 **
2145 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2146 ** call.  Do additional sanity checking on the page in this case.
2147 ** And if the fetch fails, this routine must decrement pCur->iPage.
2148 **
2149 ** The page is fetched as read-write unless pCur is not NULL and is
2150 ** a read-only cursor.
2151 **
2152 ** If an error occurs, then *ppPage is undefined. It
2153 ** may remain unchanged, or it may be set to an invalid value.
2154 */
2155 static int getAndInitPage(
2156   BtShared *pBt,                  /* The database file */
2157   Pgno pgno,                      /* Number of the page to get */
2158   MemPage **ppPage,               /* Write the page pointer here */
2159   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2160   int bReadOnly                   /* True for a read-only page */
2161 ){
2162   int rc;
2163   DbPage *pDbPage;
2164   assert( sqlite3_mutex_held(pBt->mutex) );
2165   assert( pCur==0 || ppPage==&pCur->pPage );
2166   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2167   assert( pCur==0 || pCur->iPage>0 );
2168 
2169   if( pgno>btreePagecount(pBt) ){
2170     rc = SQLITE_CORRUPT_BKPT;
2171     goto getAndInitPage_error1;
2172   }
2173   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2174   if( rc ){
2175     goto getAndInitPage_error1;
2176   }
2177   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2178   if( (*ppPage)->isInit==0 ){
2179     btreePageFromDbPage(pDbPage, pgno, pBt);
2180     rc = btreeInitPage(*ppPage);
2181     if( rc!=SQLITE_OK ){
2182       goto getAndInitPage_error2;
2183     }
2184   }
2185   assert( (*ppPage)->pgno==pgno );
2186   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2187 
2188   /* If obtaining a child page for a cursor, we must verify that the page is
2189   ** compatible with the root page. */
2190   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2191     rc = SQLITE_CORRUPT_PGNO(pgno);
2192     goto getAndInitPage_error2;
2193   }
2194   return SQLITE_OK;
2195 
2196 getAndInitPage_error2:
2197   releasePage(*ppPage);
2198 getAndInitPage_error1:
2199   if( pCur ){
2200     pCur->iPage--;
2201     pCur->pPage = pCur->apPage[pCur->iPage];
2202   }
2203   testcase( pgno==0 );
2204   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2205   return rc;
2206 }
2207 
2208 /*
2209 ** Release a MemPage.  This should be called once for each prior
2210 ** call to btreeGetPage.
2211 **
2212 ** Page1 is a special case and must be released using releasePageOne().
2213 */
2214 static void releasePageNotNull(MemPage *pPage){
2215   assert( pPage->aData );
2216   assert( pPage->pBt );
2217   assert( pPage->pDbPage!=0 );
2218   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2219   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2220   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2221   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2222 }
2223 static void releasePage(MemPage *pPage){
2224   if( pPage ) releasePageNotNull(pPage);
2225 }
2226 static void releasePageOne(MemPage *pPage){
2227   assert( pPage!=0 );
2228   assert( pPage->aData );
2229   assert( pPage->pBt );
2230   assert( pPage->pDbPage!=0 );
2231   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2232   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2233   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2234   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2235 }
2236 
2237 /*
2238 ** Get an unused page.
2239 **
2240 ** This works just like btreeGetPage() with the addition:
2241 **
2242 **   *  If the page is already in use for some other purpose, immediately
2243 **      release it and return an SQLITE_CURRUPT error.
2244 **   *  Make sure the isInit flag is clear
2245 */
2246 static int btreeGetUnusedPage(
2247   BtShared *pBt,       /* The btree */
2248   Pgno pgno,           /* Number of the page to fetch */
2249   MemPage **ppPage,    /* Return the page in this parameter */
2250   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2251 ){
2252   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2253   if( rc==SQLITE_OK ){
2254     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2255       releasePage(*ppPage);
2256       *ppPage = 0;
2257       return SQLITE_CORRUPT_BKPT;
2258     }
2259     (*ppPage)->isInit = 0;
2260   }else{
2261     *ppPage = 0;
2262   }
2263   return rc;
2264 }
2265 
2266 
2267 /*
2268 ** During a rollback, when the pager reloads information into the cache
2269 ** so that the cache is restored to its original state at the start of
2270 ** the transaction, for each page restored this routine is called.
2271 **
2272 ** This routine needs to reset the extra data section at the end of the
2273 ** page to agree with the restored data.
2274 */
2275 static void pageReinit(DbPage *pData){
2276   MemPage *pPage;
2277   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2278   assert( sqlite3PagerPageRefcount(pData)>0 );
2279   if( pPage->isInit ){
2280     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2281     pPage->isInit = 0;
2282     if( sqlite3PagerPageRefcount(pData)>1 ){
2283       /* pPage might not be a btree page;  it might be an overflow page
2284       ** or ptrmap page or a free page.  In those cases, the following
2285       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2286       ** But no harm is done by this.  And it is very important that
2287       ** btreeInitPage() be called on every btree page so we make
2288       ** the call for every page that comes in for re-initing. */
2289       btreeInitPage(pPage);
2290     }
2291   }
2292 }
2293 
2294 /*
2295 ** Invoke the busy handler for a btree.
2296 */
2297 static int btreeInvokeBusyHandler(void *pArg){
2298   BtShared *pBt = (BtShared*)pArg;
2299   assert( pBt->db );
2300   assert( sqlite3_mutex_held(pBt->db->mutex) );
2301   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2302                                   sqlite3PagerFile(pBt->pPager));
2303 }
2304 
2305 /*
2306 ** Open a database file.
2307 **
2308 ** zFilename is the name of the database file.  If zFilename is NULL
2309 ** then an ephemeral database is created.  The ephemeral database might
2310 ** be exclusively in memory, or it might use a disk-based memory cache.
2311 ** Either way, the ephemeral database will be automatically deleted
2312 ** when sqlite3BtreeClose() is called.
2313 **
2314 ** If zFilename is ":memory:" then an in-memory database is created
2315 ** that is automatically destroyed when it is closed.
2316 **
2317 ** The "flags" parameter is a bitmask that might contain bits like
2318 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2319 **
2320 ** If the database is already opened in the same database connection
2321 ** and we are in shared cache mode, then the open will fail with an
2322 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2323 ** objects in the same database connection since doing so will lead
2324 ** to problems with locking.
2325 */
2326 int sqlite3BtreeOpen(
2327   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2328   const char *zFilename,  /* Name of the file containing the BTree database */
2329   sqlite3 *db,            /* Associated database handle */
2330   Btree **ppBtree,        /* Pointer to new Btree object written here */
2331   int flags,              /* Options */
2332   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2333 ){
2334   BtShared *pBt = 0;             /* Shared part of btree structure */
2335   Btree *p;                      /* Handle to return */
2336   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2337   int rc = SQLITE_OK;            /* Result code from this function */
2338   u8 nReserve;                   /* Byte of unused space on each page */
2339   unsigned char zDbHeader[100];  /* Database header content */
2340 
2341   /* True if opening an ephemeral, temporary database */
2342   const int isTempDb = zFilename==0 || zFilename[0]==0;
2343 
2344   /* Set the variable isMemdb to true for an in-memory database, or
2345   ** false for a file-based database.
2346   */
2347 #ifdef SQLITE_OMIT_MEMORYDB
2348   const int isMemdb = 0;
2349 #else
2350   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2351                        || (isTempDb && sqlite3TempInMemory(db))
2352                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2353 #endif
2354 
2355   assert( db!=0 );
2356   assert( pVfs!=0 );
2357   assert( sqlite3_mutex_held(db->mutex) );
2358   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2359 
2360   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2361   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2362 
2363   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2364   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2365 
2366   if( isMemdb ){
2367     flags |= BTREE_MEMORY;
2368   }
2369   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2370     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2371   }
2372   p = sqlite3MallocZero(sizeof(Btree));
2373   if( !p ){
2374     return SQLITE_NOMEM_BKPT;
2375   }
2376   p->inTrans = TRANS_NONE;
2377   p->db = db;
2378 #ifndef SQLITE_OMIT_SHARED_CACHE
2379   p->lock.pBtree = p;
2380   p->lock.iTable = 1;
2381 #endif
2382 
2383 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2384   /*
2385   ** If this Btree is a candidate for shared cache, try to find an
2386   ** existing BtShared object that we can share with
2387   */
2388   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2389     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2390       int nFilename = sqlite3Strlen30(zFilename)+1;
2391       int nFullPathname = pVfs->mxPathname+1;
2392       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2393       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2394 
2395       p->sharable = 1;
2396       if( !zFullPathname ){
2397         sqlite3_free(p);
2398         return SQLITE_NOMEM_BKPT;
2399       }
2400       if( isMemdb ){
2401         memcpy(zFullPathname, zFilename, nFilename);
2402       }else{
2403         rc = sqlite3OsFullPathname(pVfs, zFilename,
2404                                    nFullPathname, zFullPathname);
2405         if( rc ){
2406           if( rc==SQLITE_OK_SYMLINK ){
2407             rc = SQLITE_OK;
2408           }else{
2409             sqlite3_free(zFullPathname);
2410             sqlite3_free(p);
2411             return rc;
2412           }
2413         }
2414       }
2415 #if SQLITE_THREADSAFE
2416       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2417       sqlite3_mutex_enter(mutexOpen);
2418       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2419       sqlite3_mutex_enter(mutexShared);
2420 #endif
2421       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2422         assert( pBt->nRef>0 );
2423         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2424                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2425           int iDb;
2426           for(iDb=db->nDb-1; iDb>=0; iDb--){
2427             Btree *pExisting = db->aDb[iDb].pBt;
2428             if( pExisting && pExisting->pBt==pBt ){
2429               sqlite3_mutex_leave(mutexShared);
2430               sqlite3_mutex_leave(mutexOpen);
2431               sqlite3_free(zFullPathname);
2432               sqlite3_free(p);
2433               return SQLITE_CONSTRAINT;
2434             }
2435           }
2436           p->pBt = pBt;
2437           pBt->nRef++;
2438           break;
2439         }
2440       }
2441       sqlite3_mutex_leave(mutexShared);
2442       sqlite3_free(zFullPathname);
2443     }
2444 #ifdef SQLITE_DEBUG
2445     else{
2446       /* In debug mode, we mark all persistent databases as sharable
2447       ** even when they are not.  This exercises the locking code and
2448       ** gives more opportunity for asserts(sqlite3_mutex_held())
2449       ** statements to find locking problems.
2450       */
2451       p->sharable = 1;
2452     }
2453 #endif
2454   }
2455 #endif
2456   if( pBt==0 ){
2457     /*
2458     ** The following asserts make sure that structures used by the btree are
2459     ** the right size.  This is to guard against size changes that result
2460     ** when compiling on a different architecture.
2461     */
2462     assert( sizeof(i64)==8 );
2463     assert( sizeof(u64)==8 );
2464     assert( sizeof(u32)==4 );
2465     assert( sizeof(u16)==2 );
2466     assert( sizeof(Pgno)==4 );
2467 
2468     pBt = sqlite3MallocZero( sizeof(*pBt) );
2469     if( pBt==0 ){
2470       rc = SQLITE_NOMEM_BKPT;
2471       goto btree_open_out;
2472     }
2473     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2474                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2475     if( rc==SQLITE_OK ){
2476       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2477       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2478     }
2479     if( rc!=SQLITE_OK ){
2480       goto btree_open_out;
2481     }
2482     pBt->openFlags = (u8)flags;
2483     pBt->db = db;
2484     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2485     p->pBt = pBt;
2486 
2487     pBt->pCursor = 0;
2488     pBt->pPage1 = 0;
2489     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2490 #if defined(SQLITE_SECURE_DELETE)
2491     pBt->btsFlags |= BTS_SECURE_DELETE;
2492 #elif defined(SQLITE_FAST_SECURE_DELETE)
2493     pBt->btsFlags |= BTS_OVERWRITE;
2494 #endif
2495     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2496     ** determined by the 2-byte integer located at an offset of 16 bytes from
2497     ** the beginning of the database file. */
2498     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2499     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2500          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2501       pBt->pageSize = 0;
2502 #ifndef SQLITE_OMIT_AUTOVACUUM
2503       /* If the magic name ":memory:" will create an in-memory database, then
2504       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2505       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2506       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2507       ** regular file-name. In this case the auto-vacuum applies as per normal.
2508       */
2509       if( zFilename && !isMemdb ){
2510         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2511         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2512       }
2513 #endif
2514       nReserve = 0;
2515     }else{
2516       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2517       ** determined by the one-byte unsigned integer found at an offset of 20
2518       ** into the database file header. */
2519       nReserve = zDbHeader[20];
2520       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2521 #ifndef SQLITE_OMIT_AUTOVACUUM
2522       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2523       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2524 #endif
2525     }
2526     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2527     if( rc ) goto btree_open_out;
2528     pBt->usableSize = pBt->pageSize - nReserve;
2529     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2530 
2531 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2532     /* Add the new BtShared object to the linked list sharable BtShareds.
2533     */
2534     pBt->nRef = 1;
2535     if( p->sharable ){
2536       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2537       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2538       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2539         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2540         if( pBt->mutex==0 ){
2541           rc = SQLITE_NOMEM_BKPT;
2542           goto btree_open_out;
2543         }
2544       }
2545       sqlite3_mutex_enter(mutexShared);
2546       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2547       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2548       sqlite3_mutex_leave(mutexShared);
2549     }
2550 #endif
2551   }
2552 
2553 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2554   /* If the new Btree uses a sharable pBtShared, then link the new
2555   ** Btree into the list of all sharable Btrees for the same connection.
2556   ** The list is kept in ascending order by pBt address.
2557   */
2558   if( p->sharable ){
2559     int i;
2560     Btree *pSib;
2561     for(i=0; i<db->nDb; i++){
2562       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2563         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2564         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2565           p->pNext = pSib;
2566           p->pPrev = 0;
2567           pSib->pPrev = p;
2568         }else{
2569           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2570             pSib = pSib->pNext;
2571           }
2572           p->pNext = pSib->pNext;
2573           p->pPrev = pSib;
2574           if( p->pNext ){
2575             p->pNext->pPrev = p;
2576           }
2577           pSib->pNext = p;
2578         }
2579         break;
2580       }
2581     }
2582   }
2583 #endif
2584   *ppBtree = p;
2585 
2586 btree_open_out:
2587   if( rc!=SQLITE_OK ){
2588     if( pBt && pBt->pPager ){
2589       sqlite3PagerClose(pBt->pPager, 0);
2590     }
2591     sqlite3_free(pBt);
2592     sqlite3_free(p);
2593     *ppBtree = 0;
2594   }else{
2595     sqlite3_file *pFile;
2596 
2597     /* If the B-Tree was successfully opened, set the pager-cache size to the
2598     ** default value. Except, when opening on an existing shared pager-cache,
2599     ** do not change the pager-cache size.
2600     */
2601     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2602       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2603     }
2604 
2605     pFile = sqlite3PagerFile(pBt->pPager);
2606     if( pFile->pMethods ){
2607       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2608     }
2609   }
2610   if( mutexOpen ){
2611     assert( sqlite3_mutex_held(mutexOpen) );
2612     sqlite3_mutex_leave(mutexOpen);
2613   }
2614   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2615   return rc;
2616 }
2617 
2618 /*
2619 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2620 ** remove the BtShared structure from the sharing list.  Return
2621 ** true if the BtShared.nRef counter reaches zero and return
2622 ** false if it is still positive.
2623 */
2624 static int removeFromSharingList(BtShared *pBt){
2625 #ifndef SQLITE_OMIT_SHARED_CACHE
2626   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2627   BtShared *pList;
2628   int removed = 0;
2629 
2630   assert( sqlite3_mutex_notheld(pBt->mutex) );
2631   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2632   sqlite3_mutex_enter(pMaster);
2633   pBt->nRef--;
2634   if( pBt->nRef<=0 ){
2635     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2636       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2637     }else{
2638       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2639       while( ALWAYS(pList) && pList->pNext!=pBt ){
2640         pList=pList->pNext;
2641       }
2642       if( ALWAYS(pList) ){
2643         pList->pNext = pBt->pNext;
2644       }
2645     }
2646     if( SQLITE_THREADSAFE ){
2647       sqlite3_mutex_free(pBt->mutex);
2648     }
2649     removed = 1;
2650   }
2651   sqlite3_mutex_leave(pMaster);
2652   return removed;
2653 #else
2654   return 1;
2655 #endif
2656 }
2657 
2658 /*
2659 ** Make sure pBt->pTmpSpace points to an allocation of
2660 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2661 ** pointer.
2662 */
2663 static void allocateTempSpace(BtShared *pBt){
2664   if( !pBt->pTmpSpace ){
2665     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2666 
2667     /* One of the uses of pBt->pTmpSpace is to format cells before
2668     ** inserting them into a leaf page (function fillInCell()). If
2669     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2670     ** by the various routines that manipulate binary cells. Which
2671     ** can mean that fillInCell() only initializes the first 2 or 3
2672     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2673     ** it into a database page. This is not actually a problem, but it
2674     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2675     ** data is passed to system call write(). So to avoid this error,
2676     ** zero the first 4 bytes of temp space here.
2677     **
2678     ** Also:  Provide four bytes of initialized space before the
2679     ** beginning of pTmpSpace as an area available to prepend the
2680     ** left-child pointer to the beginning of a cell.
2681     */
2682     if( pBt->pTmpSpace ){
2683       memset(pBt->pTmpSpace, 0, 8);
2684       pBt->pTmpSpace += 4;
2685     }
2686   }
2687 }
2688 
2689 /*
2690 ** Free the pBt->pTmpSpace allocation
2691 */
2692 static void freeTempSpace(BtShared *pBt){
2693   if( pBt->pTmpSpace ){
2694     pBt->pTmpSpace -= 4;
2695     sqlite3PageFree(pBt->pTmpSpace);
2696     pBt->pTmpSpace = 0;
2697   }
2698 }
2699 
2700 /*
2701 ** Close an open database and invalidate all cursors.
2702 */
2703 int sqlite3BtreeClose(Btree *p){
2704   BtShared *pBt = p->pBt;
2705   BtCursor *pCur;
2706 
2707   /* Close all cursors opened via this handle.  */
2708   assert( sqlite3_mutex_held(p->db->mutex) );
2709   sqlite3BtreeEnter(p);
2710   pCur = pBt->pCursor;
2711   while( pCur ){
2712     BtCursor *pTmp = pCur;
2713     pCur = pCur->pNext;
2714     if( pTmp->pBtree==p ){
2715       sqlite3BtreeCloseCursor(pTmp);
2716     }
2717   }
2718 
2719   /* Rollback any active transaction and free the handle structure.
2720   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2721   ** this handle.
2722   */
2723   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2724   sqlite3BtreeLeave(p);
2725 
2726   /* If there are still other outstanding references to the shared-btree
2727   ** structure, return now. The remainder of this procedure cleans
2728   ** up the shared-btree.
2729   */
2730   assert( p->wantToLock==0 && p->locked==0 );
2731   if( !p->sharable || removeFromSharingList(pBt) ){
2732     /* The pBt is no longer on the sharing list, so we can access
2733     ** it without having to hold the mutex.
2734     **
2735     ** Clean out and delete the BtShared object.
2736     */
2737     assert( !pBt->pCursor );
2738     sqlite3PagerClose(pBt->pPager, p->db);
2739     if( pBt->xFreeSchema && pBt->pSchema ){
2740       pBt->xFreeSchema(pBt->pSchema);
2741     }
2742     sqlite3DbFree(0, pBt->pSchema);
2743     freeTempSpace(pBt);
2744     sqlite3_free(pBt);
2745   }
2746 
2747 #ifndef SQLITE_OMIT_SHARED_CACHE
2748   assert( p->wantToLock==0 );
2749   assert( p->locked==0 );
2750   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2751   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2752 #endif
2753 
2754   sqlite3_free(p);
2755   return SQLITE_OK;
2756 }
2757 
2758 /*
2759 ** Change the "soft" limit on the number of pages in the cache.
2760 ** Unused and unmodified pages will be recycled when the number of
2761 ** pages in the cache exceeds this soft limit.  But the size of the
2762 ** cache is allowed to grow larger than this limit if it contains
2763 ** dirty pages or pages still in active use.
2764 */
2765 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2766   BtShared *pBt = p->pBt;
2767   assert( sqlite3_mutex_held(p->db->mutex) );
2768   sqlite3BtreeEnter(p);
2769   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2770   sqlite3BtreeLeave(p);
2771   return SQLITE_OK;
2772 }
2773 
2774 /*
2775 ** Change the "spill" limit on the number of pages in the cache.
2776 ** If the number of pages exceeds this limit during a write transaction,
2777 ** the pager might attempt to "spill" pages to the journal early in
2778 ** order to free up memory.
2779 **
2780 ** The value returned is the current spill size.  If zero is passed
2781 ** as an argument, no changes are made to the spill size setting, so
2782 ** using mxPage of 0 is a way to query the current spill size.
2783 */
2784 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2785   BtShared *pBt = p->pBt;
2786   int res;
2787   assert( sqlite3_mutex_held(p->db->mutex) );
2788   sqlite3BtreeEnter(p);
2789   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2790   sqlite3BtreeLeave(p);
2791   return res;
2792 }
2793 
2794 #if SQLITE_MAX_MMAP_SIZE>0
2795 /*
2796 ** Change the limit on the amount of the database file that may be
2797 ** memory mapped.
2798 */
2799 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2800   BtShared *pBt = p->pBt;
2801   assert( sqlite3_mutex_held(p->db->mutex) );
2802   sqlite3BtreeEnter(p);
2803   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2804   sqlite3BtreeLeave(p);
2805   return SQLITE_OK;
2806 }
2807 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2808 
2809 /*
2810 ** Change the way data is synced to disk in order to increase or decrease
2811 ** how well the database resists damage due to OS crashes and power
2812 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2813 ** there is a high probability of damage)  Level 2 is the default.  There
2814 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2815 ** probability of damage to near zero but with a write performance reduction.
2816 */
2817 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2818 int sqlite3BtreeSetPagerFlags(
2819   Btree *p,              /* The btree to set the safety level on */
2820   unsigned pgFlags       /* Various PAGER_* flags */
2821 ){
2822   BtShared *pBt = p->pBt;
2823   assert( sqlite3_mutex_held(p->db->mutex) );
2824   sqlite3BtreeEnter(p);
2825   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2826   sqlite3BtreeLeave(p);
2827   return SQLITE_OK;
2828 }
2829 #endif
2830 
2831 /*
2832 ** Change the default pages size and the number of reserved bytes per page.
2833 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2834 ** without changing anything.
2835 **
2836 ** The page size must be a power of 2 between 512 and 65536.  If the page
2837 ** size supplied does not meet this constraint then the page size is not
2838 ** changed.
2839 **
2840 ** Page sizes are constrained to be a power of two so that the region
2841 ** of the database file used for locking (beginning at PENDING_BYTE,
2842 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2843 ** at the beginning of a page.
2844 **
2845 ** If parameter nReserve is less than zero, then the number of reserved
2846 ** bytes per page is left unchanged.
2847 **
2848 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2849 ** and autovacuum mode can no longer be changed.
2850 */
2851 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2852   int rc = SQLITE_OK;
2853   BtShared *pBt = p->pBt;
2854   assert( nReserve>=-1 && nReserve<=255 );
2855   sqlite3BtreeEnter(p);
2856 #if SQLITE_HAS_CODEC
2857   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2858 #endif
2859   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2860     sqlite3BtreeLeave(p);
2861     return SQLITE_READONLY;
2862   }
2863   if( nReserve<0 ){
2864     nReserve = pBt->pageSize - pBt->usableSize;
2865   }
2866   assert( nReserve>=0 && nReserve<=255 );
2867   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2868         ((pageSize-1)&pageSize)==0 ){
2869     assert( (pageSize & 7)==0 );
2870     assert( !pBt->pCursor );
2871     pBt->pageSize = (u32)pageSize;
2872     freeTempSpace(pBt);
2873   }
2874   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2875   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2876   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2877   sqlite3BtreeLeave(p);
2878   return rc;
2879 }
2880 
2881 /*
2882 ** Return the currently defined page size
2883 */
2884 int sqlite3BtreeGetPageSize(Btree *p){
2885   return p->pBt->pageSize;
2886 }
2887 
2888 /*
2889 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2890 ** may only be called if it is guaranteed that the b-tree mutex is already
2891 ** held.
2892 **
2893 ** This is useful in one special case in the backup API code where it is
2894 ** known that the shared b-tree mutex is held, but the mutex on the
2895 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2896 ** were to be called, it might collide with some other operation on the
2897 ** database handle that owns *p, causing undefined behavior.
2898 */
2899 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2900   int n;
2901   assert( sqlite3_mutex_held(p->pBt->mutex) );
2902   n = p->pBt->pageSize - p->pBt->usableSize;
2903   return n;
2904 }
2905 
2906 /*
2907 ** Return the number of bytes of space at the end of every page that
2908 ** are intentually left unused.  This is the "reserved" space that is
2909 ** sometimes used by extensions.
2910 **
2911 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2912 ** greater of the current reserved space and the maximum requested
2913 ** reserve space.
2914 */
2915 int sqlite3BtreeGetOptimalReserve(Btree *p){
2916   int n;
2917   sqlite3BtreeEnter(p);
2918   n = sqlite3BtreeGetReserveNoMutex(p);
2919 #ifdef SQLITE_HAS_CODEC
2920   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2921 #endif
2922   sqlite3BtreeLeave(p);
2923   return n;
2924 }
2925 
2926 
2927 /*
2928 ** Set the maximum page count for a database if mxPage is positive.
2929 ** No changes are made if mxPage is 0 or negative.
2930 ** Regardless of the value of mxPage, return the maximum page count.
2931 */
2932 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2933   int n;
2934   sqlite3BtreeEnter(p);
2935   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2936   sqlite3BtreeLeave(p);
2937   return n;
2938 }
2939 
2940 /*
2941 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2942 **
2943 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2944 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2945 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2946 **    newFlag==(-1)    No changes
2947 **
2948 ** This routine acts as a query if newFlag is less than zero
2949 **
2950 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2951 ** freelist leaf pages are not written back to the database.  Thus in-page
2952 ** deleted content is cleared, but freelist deleted content is not.
2953 **
2954 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2955 ** that freelist leaf pages are written back into the database, increasing
2956 ** the amount of disk I/O.
2957 */
2958 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2959   int b;
2960   if( p==0 ) return 0;
2961   sqlite3BtreeEnter(p);
2962   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2963   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2964   if( newFlag>=0 ){
2965     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2966     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2967   }
2968   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
2969   sqlite3BtreeLeave(p);
2970   return b;
2971 }
2972 
2973 /*
2974 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2975 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2976 ** is disabled. The default value for the auto-vacuum property is
2977 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2978 */
2979 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2980 #ifdef SQLITE_OMIT_AUTOVACUUM
2981   return SQLITE_READONLY;
2982 #else
2983   BtShared *pBt = p->pBt;
2984   int rc = SQLITE_OK;
2985   u8 av = (u8)autoVacuum;
2986 
2987   sqlite3BtreeEnter(p);
2988   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2989     rc = SQLITE_READONLY;
2990   }else{
2991     pBt->autoVacuum = av ?1:0;
2992     pBt->incrVacuum = av==2 ?1:0;
2993   }
2994   sqlite3BtreeLeave(p);
2995   return rc;
2996 #endif
2997 }
2998 
2999 /*
3000 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3001 ** enabled 1 is returned. Otherwise 0.
3002 */
3003 int sqlite3BtreeGetAutoVacuum(Btree *p){
3004 #ifdef SQLITE_OMIT_AUTOVACUUM
3005   return BTREE_AUTOVACUUM_NONE;
3006 #else
3007   int rc;
3008   sqlite3BtreeEnter(p);
3009   rc = (
3010     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3011     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3012     BTREE_AUTOVACUUM_INCR
3013   );
3014   sqlite3BtreeLeave(p);
3015   return rc;
3016 #endif
3017 }
3018 
3019 /*
3020 ** If the user has not set the safety-level for this database connection
3021 ** using "PRAGMA synchronous", and if the safety-level is not already
3022 ** set to the value passed to this function as the second parameter,
3023 ** set it so.
3024 */
3025 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3026     && !defined(SQLITE_OMIT_WAL)
3027 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3028   sqlite3 *db;
3029   Db *pDb;
3030   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3031     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3032     if( pDb->bSyncSet==0
3033      && pDb->safety_level!=safety_level
3034      && pDb!=&db->aDb[1]
3035     ){
3036       pDb->safety_level = safety_level;
3037       sqlite3PagerSetFlags(pBt->pPager,
3038           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3039     }
3040   }
3041 }
3042 #else
3043 # define setDefaultSyncFlag(pBt,safety_level)
3044 #endif
3045 
3046 /* Forward declaration */
3047 static int newDatabase(BtShared*);
3048 
3049 
3050 /*
3051 ** Get a reference to pPage1 of the database file.  This will
3052 ** also acquire a readlock on that file.
3053 **
3054 ** SQLITE_OK is returned on success.  If the file is not a
3055 ** well-formed database file, then SQLITE_CORRUPT is returned.
3056 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3057 ** is returned if we run out of memory.
3058 */
3059 static int lockBtree(BtShared *pBt){
3060   int rc;              /* Result code from subfunctions */
3061   MemPage *pPage1;     /* Page 1 of the database file */
3062   u32 nPage;           /* Number of pages in the database */
3063   u32 nPageFile = 0;   /* Number of pages in the database file */
3064   u32 nPageHeader;     /* Number of pages in the database according to hdr */
3065 
3066   assert( sqlite3_mutex_held(pBt->mutex) );
3067   assert( pBt->pPage1==0 );
3068   rc = sqlite3PagerSharedLock(pBt->pPager);
3069   if( rc!=SQLITE_OK ) return rc;
3070   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3071   if( rc!=SQLITE_OK ) return rc;
3072 
3073   /* Do some checking to help insure the file we opened really is
3074   ** a valid database file.
3075   */
3076   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3077   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3078   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3079     nPage = nPageFile;
3080   }
3081   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3082     nPage = 0;
3083   }
3084   if( nPage>0 ){
3085     u32 pageSize;
3086     u32 usableSize;
3087     u8 *page1 = pPage1->aData;
3088     rc = SQLITE_NOTADB;
3089     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3090     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3091     ** 61 74 20 33 00. */
3092     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3093       goto page1_init_failed;
3094     }
3095 
3096 #ifdef SQLITE_OMIT_WAL
3097     if( page1[18]>1 ){
3098       pBt->btsFlags |= BTS_READ_ONLY;
3099     }
3100     if( page1[19]>1 ){
3101       goto page1_init_failed;
3102     }
3103 #else
3104     if( page1[18]>2 ){
3105       pBt->btsFlags |= BTS_READ_ONLY;
3106     }
3107     if( page1[19]>2 ){
3108       goto page1_init_failed;
3109     }
3110 
3111     /* If the write version is set to 2, this database should be accessed
3112     ** in WAL mode. If the log is not already open, open it now. Then
3113     ** return SQLITE_OK and return without populating BtShared.pPage1.
3114     ** The caller detects this and calls this function again. This is
3115     ** required as the version of page 1 currently in the page1 buffer
3116     ** may not be the latest version - there may be a newer one in the log
3117     ** file.
3118     */
3119     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3120       int isOpen = 0;
3121       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3122       if( rc!=SQLITE_OK ){
3123         goto page1_init_failed;
3124       }else{
3125         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3126         if( isOpen==0 ){
3127           releasePageOne(pPage1);
3128           return SQLITE_OK;
3129         }
3130       }
3131       rc = SQLITE_NOTADB;
3132     }else{
3133       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3134     }
3135 #endif
3136 
3137     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3138     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3139     **
3140     ** The original design allowed these amounts to vary, but as of
3141     ** version 3.6.0, we require them to be fixed.
3142     */
3143     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3144       goto page1_init_failed;
3145     }
3146     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3147     ** determined by the 2-byte integer located at an offset of 16 bytes from
3148     ** the beginning of the database file. */
3149     pageSize = (page1[16]<<8) | (page1[17]<<16);
3150     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3151     ** between 512 and 65536 inclusive. */
3152     if( ((pageSize-1)&pageSize)!=0
3153      || pageSize>SQLITE_MAX_PAGE_SIZE
3154      || pageSize<=256
3155     ){
3156       goto page1_init_failed;
3157     }
3158     pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3159     assert( (pageSize & 7)==0 );
3160     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3161     ** integer at offset 20 is the number of bytes of space at the end of
3162     ** each page to reserve for extensions.
3163     **
3164     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3165     ** determined by the one-byte unsigned integer found at an offset of 20
3166     ** into the database file header. */
3167     usableSize = pageSize - page1[20];
3168     if( (u32)pageSize!=pBt->pageSize ){
3169       /* After reading the first page of the database assuming a page size
3170       ** of BtShared.pageSize, we have discovered that the page-size is
3171       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3172       ** zero and return SQLITE_OK. The caller will call this function
3173       ** again with the correct page-size.
3174       */
3175       releasePageOne(pPage1);
3176       pBt->usableSize = usableSize;
3177       pBt->pageSize = pageSize;
3178       freeTempSpace(pBt);
3179       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3180                                    pageSize-usableSize);
3181       return rc;
3182     }
3183     if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
3184       rc = SQLITE_CORRUPT_BKPT;
3185       goto page1_init_failed;
3186     }
3187     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3188     ** be less than 480. In other words, if the page size is 512, then the
3189     ** reserved space size cannot exceed 32. */
3190     if( usableSize<480 ){
3191       goto page1_init_failed;
3192     }
3193     pBt->pageSize = pageSize;
3194     pBt->usableSize = usableSize;
3195 #ifndef SQLITE_OMIT_AUTOVACUUM
3196     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3197     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3198 #endif
3199   }
3200 
3201   /* maxLocal is the maximum amount of payload to store locally for
3202   ** a cell.  Make sure it is small enough so that at least minFanout
3203   ** cells can will fit on one page.  We assume a 10-byte page header.
3204   ** Besides the payload, the cell must store:
3205   **     2-byte pointer to the cell
3206   **     4-byte child pointer
3207   **     9-byte nKey value
3208   **     4-byte nData value
3209   **     4-byte overflow page pointer
3210   ** So a cell consists of a 2-byte pointer, a header which is as much as
3211   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3212   ** page pointer.
3213   */
3214   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3215   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3216   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3217   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3218   if( pBt->maxLocal>127 ){
3219     pBt->max1bytePayload = 127;
3220   }else{
3221     pBt->max1bytePayload = (u8)pBt->maxLocal;
3222   }
3223   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3224   pBt->pPage1 = pPage1;
3225   pBt->nPage = nPage;
3226   return SQLITE_OK;
3227 
3228 page1_init_failed:
3229   releasePageOne(pPage1);
3230   pBt->pPage1 = 0;
3231   return rc;
3232 }
3233 
3234 #ifndef NDEBUG
3235 /*
3236 ** Return the number of cursors open on pBt. This is for use
3237 ** in assert() expressions, so it is only compiled if NDEBUG is not
3238 ** defined.
3239 **
3240 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3241 ** false then all cursors are counted.
3242 **
3243 ** For the purposes of this routine, a cursor is any cursor that
3244 ** is capable of reading or writing to the database.  Cursors that
3245 ** have been tripped into the CURSOR_FAULT state are not counted.
3246 */
3247 static int countValidCursors(BtShared *pBt, int wrOnly){
3248   BtCursor *pCur;
3249   int r = 0;
3250   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3251     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3252      && pCur->eState!=CURSOR_FAULT ) r++;
3253   }
3254   return r;
3255 }
3256 #endif
3257 
3258 /*
3259 ** If there are no outstanding cursors and we are not in the middle
3260 ** of a transaction but there is a read lock on the database, then
3261 ** this routine unrefs the first page of the database file which
3262 ** has the effect of releasing the read lock.
3263 **
3264 ** If there is a transaction in progress, this routine is a no-op.
3265 */
3266 static void unlockBtreeIfUnused(BtShared *pBt){
3267   assert( sqlite3_mutex_held(pBt->mutex) );
3268   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3269   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3270     MemPage *pPage1 = pBt->pPage1;
3271     assert( pPage1->aData );
3272     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3273     pBt->pPage1 = 0;
3274     releasePageOne(pPage1);
3275   }
3276 }
3277 
3278 /*
3279 ** If pBt points to an empty file then convert that empty file
3280 ** into a new empty database by initializing the first page of
3281 ** the database.
3282 */
3283 static int newDatabase(BtShared *pBt){
3284   MemPage *pP1;
3285   unsigned char *data;
3286   int rc;
3287 
3288   assert( sqlite3_mutex_held(pBt->mutex) );
3289   if( pBt->nPage>0 ){
3290     return SQLITE_OK;
3291   }
3292   pP1 = pBt->pPage1;
3293   assert( pP1!=0 );
3294   data = pP1->aData;
3295   rc = sqlite3PagerWrite(pP1->pDbPage);
3296   if( rc ) return rc;
3297   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3298   assert( sizeof(zMagicHeader)==16 );
3299   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3300   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3301   data[18] = 1;
3302   data[19] = 1;
3303   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3304   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3305   data[21] = 64;
3306   data[22] = 32;
3307   data[23] = 32;
3308   memset(&data[24], 0, 100-24);
3309   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3310   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3311 #ifndef SQLITE_OMIT_AUTOVACUUM
3312   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3313   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3314   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3315   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3316 #endif
3317   pBt->nPage = 1;
3318   data[31] = 1;
3319   return SQLITE_OK;
3320 }
3321 
3322 /*
3323 ** Initialize the first page of the database file (creating a database
3324 ** consisting of a single page and no schema objects). Return SQLITE_OK
3325 ** if successful, or an SQLite error code otherwise.
3326 */
3327 int sqlite3BtreeNewDb(Btree *p){
3328   int rc;
3329   sqlite3BtreeEnter(p);
3330   p->pBt->nPage = 0;
3331   rc = newDatabase(p->pBt);
3332   sqlite3BtreeLeave(p);
3333   return rc;
3334 }
3335 
3336 /*
3337 ** Attempt to start a new transaction. A write-transaction
3338 ** is started if the second argument is nonzero, otherwise a read-
3339 ** transaction.  If the second argument is 2 or more and exclusive
3340 ** transaction is started, meaning that no other process is allowed
3341 ** to access the database.  A preexisting transaction may not be
3342 ** upgraded to exclusive by calling this routine a second time - the
3343 ** exclusivity flag only works for a new transaction.
3344 **
3345 ** A write-transaction must be started before attempting any
3346 ** changes to the database.  None of the following routines
3347 ** will work unless a transaction is started first:
3348 **
3349 **      sqlite3BtreeCreateTable()
3350 **      sqlite3BtreeCreateIndex()
3351 **      sqlite3BtreeClearTable()
3352 **      sqlite3BtreeDropTable()
3353 **      sqlite3BtreeInsert()
3354 **      sqlite3BtreeDelete()
3355 **      sqlite3BtreeUpdateMeta()
3356 **
3357 ** If an initial attempt to acquire the lock fails because of lock contention
3358 ** and the database was previously unlocked, then invoke the busy handler
3359 ** if there is one.  But if there was previously a read-lock, do not
3360 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3361 ** returned when there is already a read-lock in order to avoid a deadlock.
3362 **
3363 ** Suppose there are two processes A and B.  A has a read lock and B has
3364 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3365 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3366 ** One or the other of the two processes must give way or there can be
3367 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3368 ** when A already has a read lock, we encourage A to give up and let B
3369 ** proceed.
3370 */
3371 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3372   BtShared *pBt = p->pBt;
3373   int rc = SQLITE_OK;
3374 
3375   sqlite3BtreeEnter(p);
3376   btreeIntegrity(p);
3377 
3378   /* If the btree is already in a write-transaction, or it
3379   ** is already in a read-transaction and a read-transaction
3380   ** is requested, this is a no-op.
3381   */
3382   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3383     goto trans_begun;
3384   }
3385   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3386 
3387   if( (p->db->flags & SQLITE_ResetDatabase)
3388    && sqlite3PagerIsreadonly(pBt->pPager)==0
3389   ){
3390     pBt->btsFlags &= ~BTS_READ_ONLY;
3391   }
3392 
3393   /* Write transactions are not possible on a read-only database */
3394   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3395     rc = SQLITE_READONLY;
3396     goto trans_begun;
3397   }
3398 
3399 #ifndef SQLITE_OMIT_SHARED_CACHE
3400   {
3401     sqlite3 *pBlock = 0;
3402     /* If another database handle has already opened a write transaction
3403     ** on this shared-btree structure and a second write transaction is
3404     ** requested, return SQLITE_LOCKED.
3405     */
3406     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3407      || (pBt->btsFlags & BTS_PENDING)!=0
3408     ){
3409       pBlock = pBt->pWriter->db;
3410     }else if( wrflag>1 ){
3411       BtLock *pIter;
3412       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3413         if( pIter->pBtree!=p ){
3414           pBlock = pIter->pBtree->db;
3415           break;
3416         }
3417       }
3418     }
3419     if( pBlock ){
3420       sqlite3ConnectionBlocked(p->db, pBlock);
3421       rc = SQLITE_LOCKED_SHAREDCACHE;
3422       goto trans_begun;
3423     }
3424   }
3425 #endif
3426 
3427   /* Any read-only or read-write transaction implies a read-lock on
3428   ** page 1. So if some other shared-cache client already has a write-lock
3429   ** on page 1, the transaction cannot be opened. */
3430   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3431   if( SQLITE_OK!=rc ) goto trans_begun;
3432 
3433   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3434   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3435   do {
3436     /* Call lockBtree() until either pBt->pPage1 is populated or
3437     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3438     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3439     ** reading page 1 it discovers that the page-size of the database
3440     ** file is not pBt->pageSize. In this case lockBtree() will update
3441     ** pBt->pageSize to the page-size of the file on disk.
3442     */
3443     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3444 
3445     if( rc==SQLITE_OK && wrflag ){
3446       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3447         rc = SQLITE_READONLY;
3448       }else{
3449         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3450         if( rc==SQLITE_OK ){
3451           rc = newDatabase(pBt);
3452         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3453           /* if there was no transaction opened when this function was
3454           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3455           ** code to SQLITE_BUSY. */
3456           rc = SQLITE_BUSY;
3457         }
3458       }
3459     }
3460 
3461     if( rc!=SQLITE_OK ){
3462       unlockBtreeIfUnused(pBt);
3463     }
3464   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3465           btreeInvokeBusyHandler(pBt) );
3466   sqlite3PagerResetLockTimeout(pBt->pPager);
3467 
3468   if( rc==SQLITE_OK ){
3469     if( p->inTrans==TRANS_NONE ){
3470       pBt->nTransaction++;
3471 #ifndef SQLITE_OMIT_SHARED_CACHE
3472       if( p->sharable ){
3473         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3474         p->lock.eLock = READ_LOCK;
3475         p->lock.pNext = pBt->pLock;
3476         pBt->pLock = &p->lock;
3477       }
3478 #endif
3479     }
3480     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3481     if( p->inTrans>pBt->inTransaction ){
3482       pBt->inTransaction = p->inTrans;
3483     }
3484     if( wrflag ){
3485       MemPage *pPage1 = pBt->pPage1;
3486 #ifndef SQLITE_OMIT_SHARED_CACHE
3487       assert( !pBt->pWriter );
3488       pBt->pWriter = p;
3489       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3490       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3491 #endif
3492 
3493       /* If the db-size header field is incorrect (as it may be if an old
3494       ** client has been writing the database file), update it now. Doing
3495       ** this sooner rather than later means the database size can safely
3496       ** re-read the database size from page 1 if a savepoint or transaction
3497       ** rollback occurs within the transaction.
3498       */
3499       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3500         rc = sqlite3PagerWrite(pPage1->pDbPage);
3501         if( rc==SQLITE_OK ){
3502           put4byte(&pPage1->aData[28], pBt->nPage);
3503         }
3504       }
3505     }
3506   }
3507 
3508 trans_begun:
3509   if( rc==SQLITE_OK ){
3510     if( pSchemaVersion ){
3511       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3512     }
3513     if( wrflag ){
3514       /* This call makes sure that the pager has the correct number of
3515       ** open savepoints. If the second parameter is greater than 0 and
3516       ** the sub-journal is not already open, then it will be opened here.
3517       */
3518       rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3519     }
3520   }
3521 
3522   btreeIntegrity(p);
3523   sqlite3BtreeLeave(p);
3524   return rc;
3525 }
3526 
3527 #ifndef SQLITE_OMIT_AUTOVACUUM
3528 
3529 /*
3530 ** Set the pointer-map entries for all children of page pPage. Also, if
3531 ** pPage contains cells that point to overflow pages, set the pointer
3532 ** map entries for the overflow pages as well.
3533 */
3534 static int setChildPtrmaps(MemPage *pPage){
3535   int i;                             /* Counter variable */
3536   int nCell;                         /* Number of cells in page pPage */
3537   int rc;                            /* Return code */
3538   BtShared *pBt = pPage->pBt;
3539   Pgno pgno = pPage->pgno;
3540 
3541   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3542   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3543   if( rc!=SQLITE_OK ) return rc;
3544   nCell = pPage->nCell;
3545 
3546   for(i=0; i<nCell; i++){
3547     u8 *pCell = findCell(pPage, i);
3548 
3549     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3550 
3551     if( !pPage->leaf ){
3552       Pgno childPgno = get4byte(pCell);
3553       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3554     }
3555   }
3556 
3557   if( !pPage->leaf ){
3558     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3559     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3560   }
3561 
3562   return rc;
3563 }
3564 
3565 /*
3566 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3567 ** that it points to iTo. Parameter eType describes the type of pointer to
3568 ** be modified, as  follows:
3569 **
3570 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3571 **                   page of pPage.
3572 **
3573 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3574 **                   page pointed to by one of the cells on pPage.
3575 **
3576 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3577 **                   overflow page in the list.
3578 */
3579 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3580   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3581   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3582   if( eType==PTRMAP_OVERFLOW2 ){
3583     /* The pointer is always the first 4 bytes of the page in this case.  */
3584     if( get4byte(pPage->aData)!=iFrom ){
3585       return SQLITE_CORRUPT_PAGE(pPage);
3586     }
3587     put4byte(pPage->aData, iTo);
3588   }else{
3589     int i;
3590     int nCell;
3591     int rc;
3592 
3593     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3594     if( rc ) return rc;
3595     nCell = pPage->nCell;
3596 
3597     for(i=0; i<nCell; i++){
3598       u8 *pCell = findCell(pPage, i);
3599       if( eType==PTRMAP_OVERFLOW1 ){
3600         CellInfo info;
3601         pPage->xParseCell(pPage, pCell, &info);
3602         if( info.nLocal<info.nPayload ){
3603           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3604             return SQLITE_CORRUPT_PAGE(pPage);
3605           }
3606           if( iFrom==get4byte(pCell+info.nSize-4) ){
3607             put4byte(pCell+info.nSize-4, iTo);
3608             break;
3609           }
3610         }
3611       }else{
3612         if( get4byte(pCell)==iFrom ){
3613           put4byte(pCell, iTo);
3614           break;
3615         }
3616       }
3617     }
3618 
3619     if( i==nCell ){
3620       if( eType!=PTRMAP_BTREE ||
3621           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3622         return SQLITE_CORRUPT_PAGE(pPage);
3623       }
3624       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3625     }
3626   }
3627   return SQLITE_OK;
3628 }
3629 
3630 
3631 /*
3632 ** Move the open database page pDbPage to location iFreePage in the
3633 ** database. The pDbPage reference remains valid.
3634 **
3635 ** The isCommit flag indicates that there is no need to remember that
3636 ** the journal needs to be sync()ed before database page pDbPage->pgno
3637 ** can be written to. The caller has already promised not to write to that
3638 ** page.
3639 */
3640 static int relocatePage(
3641   BtShared *pBt,           /* Btree */
3642   MemPage *pDbPage,        /* Open page to move */
3643   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3644   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3645   Pgno iFreePage,          /* The location to move pDbPage to */
3646   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3647 ){
3648   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3649   Pgno iDbPage = pDbPage->pgno;
3650   Pager *pPager = pBt->pPager;
3651   int rc;
3652 
3653   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3654       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3655   assert( sqlite3_mutex_held(pBt->mutex) );
3656   assert( pDbPage->pBt==pBt );
3657   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3658 
3659   /* Move page iDbPage from its current location to page number iFreePage */
3660   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3661       iDbPage, iFreePage, iPtrPage, eType));
3662   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3663   if( rc!=SQLITE_OK ){
3664     return rc;
3665   }
3666   pDbPage->pgno = iFreePage;
3667 
3668   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3669   ** that point to overflow pages. The pointer map entries for all these
3670   ** pages need to be changed.
3671   **
3672   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3673   ** pointer to a subsequent overflow page. If this is the case, then
3674   ** the pointer map needs to be updated for the subsequent overflow page.
3675   */
3676   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3677     rc = setChildPtrmaps(pDbPage);
3678     if( rc!=SQLITE_OK ){
3679       return rc;
3680     }
3681   }else{
3682     Pgno nextOvfl = get4byte(pDbPage->aData);
3683     if( nextOvfl!=0 ){
3684       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3685       if( rc!=SQLITE_OK ){
3686         return rc;
3687       }
3688     }
3689   }
3690 
3691   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3692   ** that it points at iFreePage. Also fix the pointer map entry for
3693   ** iPtrPage.
3694   */
3695   if( eType!=PTRMAP_ROOTPAGE ){
3696     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3697     if( rc!=SQLITE_OK ){
3698       return rc;
3699     }
3700     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3701     if( rc!=SQLITE_OK ){
3702       releasePage(pPtrPage);
3703       return rc;
3704     }
3705     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3706     releasePage(pPtrPage);
3707     if( rc==SQLITE_OK ){
3708       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3709     }
3710   }
3711   return rc;
3712 }
3713 
3714 /* Forward declaration required by incrVacuumStep(). */
3715 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3716 
3717 /*
3718 ** Perform a single step of an incremental-vacuum. If successful, return
3719 ** SQLITE_OK. If there is no work to do (and therefore no point in
3720 ** calling this function again), return SQLITE_DONE. Or, if an error
3721 ** occurs, return some other error code.
3722 **
3723 ** More specifically, this function attempts to re-organize the database so
3724 ** that the last page of the file currently in use is no longer in use.
3725 **
3726 ** Parameter nFin is the number of pages that this database would contain
3727 ** were this function called until it returns SQLITE_DONE.
3728 **
3729 ** If the bCommit parameter is non-zero, this function assumes that the
3730 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3731 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3732 ** operation, or false for an incremental vacuum.
3733 */
3734 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3735   Pgno nFreeList;           /* Number of pages still on the free-list */
3736   int rc;
3737 
3738   assert( sqlite3_mutex_held(pBt->mutex) );
3739   assert( iLastPg>nFin );
3740 
3741   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3742     u8 eType;
3743     Pgno iPtrPage;
3744 
3745     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3746     if( nFreeList==0 ){
3747       return SQLITE_DONE;
3748     }
3749 
3750     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3751     if( rc!=SQLITE_OK ){
3752       return rc;
3753     }
3754     if( eType==PTRMAP_ROOTPAGE ){
3755       return SQLITE_CORRUPT_BKPT;
3756     }
3757 
3758     if( eType==PTRMAP_FREEPAGE ){
3759       if( bCommit==0 ){
3760         /* Remove the page from the files free-list. This is not required
3761         ** if bCommit is non-zero. In that case, the free-list will be
3762         ** truncated to zero after this function returns, so it doesn't
3763         ** matter if it still contains some garbage entries.
3764         */
3765         Pgno iFreePg;
3766         MemPage *pFreePg;
3767         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3768         if( rc!=SQLITE_OK ){
3769           return rc;
3770         }
3771         assert( iFreePg==iLastPg );
3772         releasePage(pFreePg);
3773       }
3774     } else {
3775       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3776       MemPage *pLastPg;
3777       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3778       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3779 
3780       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3781       if( rc!=SQLITE_OK ){
3782         return rc;
3783       }
3784 
3785       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3786       ** is swapped with the first free page pulled off the free list.
3787       **
3788       ** On the other hand, if bCommit is greater than zero, then keep
3789       ** looping until a free-page located within the first nFin pages
3790       ** of the file is found.
3791       */
3792       if( bCommit==0 ){
3793         eMode = BTALLOC_LE;
3794         iNear = nFin;
3795       }
3796       do {
3797         MemPage *pFreePg;
3798         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3799         if( rc!=SQLITE_OK ){
3800           releasePage(pLastPg);
3801           return rc;
3802         }
3803         releasePage(pFreePg);
3804       }while( bCommit && iFreePg>nFin );
3805       assert( iFreePg<iLastPg );
3806 
3807       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3808       releasePage(pLastPg);
3809       if( rc!=SQLITE_OK ){
3810         return rc;
3811       }
3812     }
3813   }
3814 
3815   if( bCommit==0 ){
3816     do {
3817       iLastPg--;
3818     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3819     pBt->bDoTruncate = 1;
3820     pBt->nPage = iLastPg;
3821   }
3822   return SQLITE_OK;
3823 }
3824 
3825 /*
3826 ** The database opened by the first argument is an auto-vacuum database
3827 ** nOrig pages in size containing nFree free pages. Return the expected
3828 ** size of the database in pages following an auto-vacuum operation.
3829 */
3830 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3831   int nEntry;                     /* Number of entries on one ptrmap page */
3832   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3833   Pgno nFin;                      /* Return value */
3834 
3835   nEntry = pBt->usableSize/5;
3836   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3837   nFin = nOrig - nFree - nPtrmap;
3838   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3839     nFin--;
3840   }
3841   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3842     nFin--;
3843   }
3844 
3845   return nFin;
3846 }
3847 
3848 /*
3849 ** A write-transaction must be opened before calling this function.
3850 ** It performs a single unit of work towards an incremental vacuum.
3851 **
3852 ** If the incremental vacuum is finished after this function has run,
3853 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3854 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3855 */
3856 int sqlite3BtreeIncrVacuum(Btree *p){
3857   int rc;
3858   BtShared *pBt = p->pBt;
3859 
3860   sqlite3BtreeEnter(p);
3861   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3862   if( !pBt->autoVacuum ){
3863     rc = SQLITE_DONE;
3864   }else{
3865     Pgno nOrig = btreePagecount(pBt);
3866     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3867     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3868 
3869     if( nOrig<nFin ){
3870       rc = SQLITE_CORRUPT_BKPT;
3871     }else if( nFree>0 ){
3872       rc = saveAllCursors(pBt, 0, 0);
3873       if( rc==SQLITE_OK ){
3874         invalidateAllOverflowCache(pBt);
3875         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3876       }
3877       if( rc==SQLITE_OK ){
3878         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3879         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3880       }
3881     }else{
3882       rc = SQLITE_DONE;
3883     }
3884   }
3885   sqlite3BtreeLeave(p);
3886   return rc;
3887 }
3888 
3889 /*
3890 ** This routine is called prior to sqlite3PagerCommit when a transaction
3891 ** is committed for an auto-vacuum database.
3892 **
3893 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3894 ** the database file should be truncated to during the commit process.
3895 ** i.e. the database has been reorganized so that only the first *pnTrunc
3896 ** pages are in use.
3897 */
3898 static int autoVacuumCommit(BtShared *pBt){
3899   int rc = SQLITE_OK;
3900   Pager *pPager = pBt->pPager;
3901   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3902 
3903   assert( sqlite3_mutex_held(pBt->mutex) );
3904   invalidateAllOverflowCache(pBt);
3905   assert(pBt->autoVacuum);
3906   if( !pBt->incrVacuum ){
3907     Pgno nFin;         /* Number of pages in database after autovacuuming */
3908     Pgno nFree;        /* Number of pages on the freelist initially */
3909     Pgno iFree;        /* The next page to be freed */
3910     Pgno nOrig;        /* Database size before freeing */
3911 
3912     nOrig = btreePagecount(pBt);
3913     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3914       /* It is not possible to create a database for which the final page
3915       ** is either a pointer-map page or the pending-byte page. If one
3916       ** is encountered, this indicates corruption.
3917       */
3918       return SQLITE_CORRUPT_BKPT;
3919     }
3920 
3921     nFree = get4byte(&pBt->pPage1->aData[36]);
3922     nFin = finalDbSize(pBt, nOrig, nFree);
3923     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3924     if( nFin<nOrig ){
3925       rc = saveAllCursors(pBt, 0, 0);
3926     }
3927     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3928       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3929     }
3930     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3931       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3932       put4byte(&pBt->pPage1->aData[32], 0);
3933       put4byte(&pBt->pPage1->aData[36], 0);
3934       put4byte(&pBt->pPage1->aData[28], nFin);
3935       pBt->bDoTruncate = 1;
3936       pBt->nPage = nFin;
3937     }
3938     if( rc!=SQLITE_OK ){
3939       sqlite3PagerRollback(pPager);
3940     }
3941   }
3942 
3943   assert( nRef>=sqlite3PagerRefcount(pPager) );
3944   return rc;
3945 }
3946 
3947 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3948 # define setChildPtrmaps(x) SQLITE_OK
3949 #endif
3950 
3951 /*
3952 ** This routine does the first phase of a two-phase commit.  This routine
3953 ** causes a rollback journal to be created (if it does not already exist)
3954 ** and populated with enough information so that if a power loss occurs
3955 ** the database can be restored to its original state by playing back
3956 ** the journal.  Then the contents of the journal are flushed out to
3957 ** the disk.  After the journal is safely on oxide, the changes to the
3958 ** database are written into the database file and flushed to oxide.
3959 ** At the end of this call, the rollback journal still exists on the
3960 ** disk and we are still holding all locks, so the transaction has not
3961 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3962 ** commit process.
3963 **
3964 ** This call is a no-op if no write-transaction is currently active on pBt.
3965 **
3966 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3967 ** the name of a master journal file that should be written into the
3968 ** individual journal file, or is NULL, indicating no master journal file
3969 ** (single database transaction).
3970 **
3971 ** When this is called, the master journal should already have been
3972 ** created, populated with this journal pointer and synced to disk.
3973 **
3974 ** Once this is routine has returned, the only thing required to commit
3975 ** the write-transaction for this database file is to delete the journal.
3976 */
3977 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3978   int rc = SQLITE_OK;
3979   if( p->inTrans==TRANS_WRITE ){
3980     BtShared *pBt = p->pBt;
3981     sqlite3BtreeEnter(p);
3982 #ifndef SQLITE_OMIT_AUTOVACUUM
3983     if( pBt->autoVacuum ){
3984       rc = autoVacuumCommit(pBt);
3985       if( rc!=SQLITE_OK ){
3986         sqlite3BtreeLeave(p);
3987         return rc;
3988       }
3989     }
3990     if( pBt->bDoTruncate ){
3991       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3992     }
3993 #endif
3994     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3995     sqlite3BtreeLeave(p);
3996   }
3997   return rc;
3998 }
3999 
4000 /*
4001 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4002 ** at the conclusion of a transaction.
4003 */
4004 static void btreeEndTransaction(Btree *p){
4005   BtShared *pBt = p->pBt;
4006   sqlite3 *db = p->db;
4007   assert( sqlite3BtreeHoldsMutex(p) );
4008 
4009 #ifndef SQLITE_OMIT_AUTOVACUUM
4010   pBt->bDoTruncate = 0;
4011 #endif
4012   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4013     /* If there are other active statements that belong to this database
4014     ** handle, downgrade to a read-only transaction. The other statements
4015     ** may still be reading from the database.  */
4016     downgradeAllSharedCacheTableLocks(p);
4017     p->inTrans = TRANS_READ;
4018   }else{
4019     /* If the handle had any kind of transaction open, decrement the
4020     ** transaction count of the shared btree. If the transaction count
4021     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4022     ** call below will unlock the pager.  */
4023     if( p->inTrans!=TRANS_NONE ){
4024       clearAllSharedCacheTableLocks(p);
4025       pBt->nTransaction--;
4026       if( 0==pBt->nTransaction ){
4027         pBt->inTransaction = TRANS_NONE;
4028       }
4029     }
4030 
4031     /* Set the current transaction state to TRANS_NONE and unlock the
4032     ** pager if this call closed the only read or write transaction.  */
4033     p->inTrans = TRANS_NONE;
4034     unlockBtreeIfUnused(pBt);
4035   }
4036 
4037   btreeIntegrity(p);
4038 }
4039 
4040 /*
4041 ** Commit the transaction currently in progress.
4042 **
4043 ** This routine implements the second phase of a 2-phase commit.  The
4044 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4045 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
4046 ** routine did all the work of writing information out to disk and flushing the
4047 ** contents so that they are written onto the disk platter.  All this
4048 ** routine has to do is delete or truncate or zero the header in the
4049 ** the rollback journal (which causes the transaction to commit) and
4050 ** drop locks.
4051 **
4052 ** Normally, if an error occurs while the pager layer is attempting to
4053 ** finalize the underlying journal file, this function returns an error and
4054 ** the upper layer will attempt a rollback. However, if the second argument
4055 ** is non-zero then this b-tree transaction is part of a multi-file
4056 ** transaction. In this case, the transaction has already been committed
4057 ** (by deleting a master journal file) and the caller will ignore this
4058 ** functions return code. So, even if an error occurs in the pager layer,
4059 ** reset the b-tree objects internal state to indicate that the write
4060 ** transaction has been closed. This is quite safe, as the pager will have
4061 ** transitioned to the error state.
4062 **
4063 ** This will release the write lock on the database file.  If there
4064 ** are no active cursors, it also releases the read lock.
4065 */
4066 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4067 
4068   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4069   sqlite3BtreeEnter(p);
4070   btreeIntegrity(p);
4071 
4072   /* If the handle has a write-transaction open, commit the shared-btrees
4073   ** transaction and set the shared state to TRANS_READ.
4074   */
4075   if( p->inTrans==TRANS_WRITE ){
4076     int rc;
4077     BtShared *pBt = p->pBt;
4078     assert( pBt->inTransaction==TRANS_WRITE );
4079     assert( pBt->nTransaction>0 );
4080     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4081     if( rc!=SQLITE_OK && bCleanup==0 ){
4082       sqlite3BtreeLeave(p);
4083       return rc;
4084     }
4085     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4086     pBt->inTransaction = TRANS_READ;
4087     btreeClearHasContent(pBt);
4088   }
4089 
4090   btreeEndTransaction(p);
4091   sqlite3BtreeLeave(p);
4092   return SQLITE_OK;
4093 }
4094 
4095 /*
4096 ** Do both phases of a commit.
4097 */
4098 int sqlite3BtreeCommit(Btree *p){
4099   int rc;
4100   sqlite3BtreeEnter(p);
4101   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4102   if( rc==SQLITE_OK ){
4103     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4104   }
4105   sqlite3BtreeLeave(p);
4106   return rc;
4107 }
4108 
4109 /*
4110 ** This routine sets the state to CURSOR_FAULT and the error
4111 ** code to errCode for every cursor on any BtShared that pBtree
4112 ** references.  Or if the writeOnly flag is set to 1, then only
4113 ** trip write cursors and leave read cursors unchanged.
4114 **
4115 ** Every cursor is a candidate to be tripped, including cursors
4116 ** that belong to other database connections that happen to be
4117 ** sharing the cache with pBtree.
4118 **
4119 ** This routine gets called when a rollback occurs. If the writeOnly
4120 ** flag is true, then only write-cursors need be tripped - read-only
4121 ** cursors save their current positions so that they may continue
4122 ** following the rollback. Or, if writeOnly is false, all cursors are
4123 ** tripped. In general, writeOnly is false if the transaction being
4124 ** rolled back modified the database schema. In this case b-tree root
4125 ** pages may be moved or deleted from the database altogether, making
4126 ** it unsafe for read cursors to continue.
4127 **
4128 ** If the writeOnly flag is true and an error is encountered while
4129 ** saving the current position of a read-only cursor, all cursors,
4130 ** including all read-cursors are tripped.
4131 **
4132 ** SQLITE_OK is returned if successful, or if an error occurs while
4133 ** saving a cursor position, an SQLite error code.
4134 */
4135 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4136   BtCursor *p;
4137   int rc = SQLITE_OK;
4138 
4139   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4140   if( pBtree ){
4141     sqlite3BtreeEnter(pBtree);
4142     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4143       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4144         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4145           rc = saveCursorPosition(p);
4146           if( rc!=SQLITE_OK ){
4147             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4148             break;
4149           }
4150         }
4151       }else{
4152         sqlite3BtreeClearCursor(p);
4153         p->eState = CURSOR_FAULT;
4154         p->skipNext = errCode;
4155       }
4156       btreeReleaseAllCursorPages(p);
4157     }
4158     sqlite3BtreeLeave(pBtree);
4159   }
4160   return rc;
4161 }
4162 
4163 /*
4164 ** Set the pBt->nPage field correctly, according to the current
4165 ** state of the database.  Assume pBt->pPage1 is valid.
4166 */
4167 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4168   int nPage = get4byte(&pPage1->aData[28]);
4169   testcase( nPage==0 );
4170   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4171   testcase( pBt->nPage!=nPage );
4172   pBt->nPage = nPage;
4173 }
4174 
4175 /*
4176 ** Rollback the transaction in progress.
4177 **
4178 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4179 ** Only write cursors are tripped if writeOnly is true but all cursors are
4180 ** tripped if writeOnly is false.  Any attempt to use
4181 ** a tripped cursor will result in an error.
4182 **
4183 ** This will release the write lock on the database file.  If there
4184 ** are no active cursors, it also releases the read lock.
4185 */
4186 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4187   int rc;
4188   BtShared *pBt = p->pBt;
4189   MemPage *pPage1;
4190 
4191   assert( writeOnly==1 || writeOnly==0 );
4192   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4193   sqlite3BtreeEnter(p);
4194   if( tripCode==SQLITE_OK ){
4195     rc = tripCode = saveAllCursors(pBt, 0, 0);
4196     if( rc ) writeOnly = 0;
4197   }else{
4198     rc = SQLITE_OK;
4199   }
4200   if( tripCode ){
4201     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4202     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4203     if( rc2!=SQLITE_OK ) rc = rc2;
4204   }
4205   btreeIntegrity(p);
4206 
4207   if( p->inTrans==TRANS_WRITE ){
4208     int rc2;
4209 
4210     assert( TRANS_WRITE==pBt->inTransaction );
4211     rc2 = sqlite3PagerRollback(pBt->pPager);
4212     if( rc2!=SQLITE_OK ){
4213       rc = rc2;
4214     }
4215 
4216     /* The rollback may have destroyed the pPage1->aData value.  So
4217     ** call btreeGetPage() on page 1 again to make
4218     ** sure pPage1->aData is set correctly. */
4219     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4220       btreeSetNPage(pBt, pPage1);
4221       releasePageOne(pPage1);
4222     }
4223     assert( countValidCursors(pBt, 1)==0 );
4224     pBt->inTransaction = TRANS_READ;
4225     btreeClearHasContent(pBt);
4226   }
4227 
4228   btreeEndTransaction(p);
4229   sqlite3BtreeLeave(p);
4230   return rc;
4231 }
4232 
4233 /*
4234 ** Start a statement subtransaction. The subtransaction can be rolled
4235 ** back independently of the main transaction. You must start a transaction
4236 ** before starting a subtransaction. The subtransaction is ended automatically
4237 ** if the main transaction commits or rolls back.
4238 **
4239 ** Statement subtransactions are used around individual SQL statements
4240 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4241 ** error occurs within the statement, the effect of that one statement
4242 ** can be rolled back without having to rollback the entire transaction.
4243 **
4244 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4245 ** value passed as the second parameter is the total number of savepoints,
4246 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4247 ** are no active savepoints and no other statement-transactions open,
4248 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4249 ** using the sqlite3BtreeSavepoint() function.
4250 */
4251 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4252   int rc;
4253   BtShared *pBt = p->pBt;
4254   sqlite3BtreeEnter(p);
4255   assert( p->inTrans==TRANS_WRITE );
4256   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4257   assert( iStatement>0 );
4258   assert( iStatement>p->db->nSavepoint );
4259   assert( pBt->inTransaction==TRANS_WRITE );
4260   /* At the pager level, a statement transaction is a savepoint with
4261   ** an index greater than all savepoints created explicitly using
4262   ** SQL statements. It is illegal to open, release or rollback any
4263   ** such savepoints while the statement transaction savepoint is active.
4264   */
4265   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4266   sqlite3BtreeLeave(p);
4267   return rc;
4268 }
4269 
4270 /*
4271 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4272 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4273 ** savepoint identified by parameter iSavepoint, depending on the value
4274 ** of op.
4275 **
4276 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4277 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4278 ** contents of the entire transaction are rolled back. This is different
4279 ** from a normal transaction rollback, as no locks are released and the
4280 ** transaction remains open.
4281 */
4282 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4283   int rc = SQLITE_OK;
4284   if( p && p->inTrans==TRANS_WRITE ){
4285     BtShared *pBt = p->pBt;
4286     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4287     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4288     sqlite3BtreeEnter(p);
4289     if( op==SAVEPOINT_ROLLBACK ){
4290       rc = saveAllCursors(pBt, 0, 0);
4291     }
4292     if( rc==SQLITE_OK ){
4293       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4294     }
4295     if( rc==SQLITE_OK ){
4296       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4297         pBt->nPage = 0;
4298       }
4299       rc = newDatabase(pBt);
4300       btreeSetNPage(pBt, pBt->pPage1);
4301 
4302       /* pBt->nPage might be zero if the database was corrupt when
4303       ** the transaction was started. Otherwise, it must be at least 1.  */
4304       assert( CORRUPT_DB || pBt->nPage>0 );
4305     }
4306     sqlite3BtreeLeave(p);
4307   }
4308   return rc;
4309 }
4310 
4311 /*
4312 ** Create a new cursor for the BTree whose root is on the page
4313 ** iTable. If a read-only cursor is requested, it is assumed that
4314 ** the caller already has at least a read-only transaction open
4315 ** on the database already. If a write-cursor is requested, then
4316 ** the caller is assumed to have an open write transaction.
4317 **
4318 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4319 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4320 ** can be used for reading or for writing if other conditions for writing
4321 ** are also met.  These are the conditions that must be met in order
4322 ** for writing to be allowed:
4323 **
4324 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4325 **
4326 ** 2:  Other database connections that share the same pager cache
4327 **     but which are not in the READ_UNCOMMITTED state may not have
4328 **     cursors open with wrFlag==0 on the same table.  Otherwise
4329 **     the changes made by this write cursor would be visible to
4330 **     the read cursors in the other database connection.
4331 **
4332 ** 3:  The database must be writable (not on read-only media)
4333 **
4334 ** 4:  There must be an active transaction.
4335 **
4336 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4337 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4338 ** this cursor will only be used to seek to and delete entries of an index
4339 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4340 ** this implementation.  But in a hypothetical alternative storage engine
4341 ** in which index entries are automatically deleted when corresponding table
4342 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4343 ** operations on this cursor can be no-ops and all READ operations can
4344 ** return a null row (2-bytes: 0x01 0x00).
4345 **
4346 ** No checking is done to make sure that page iTable really is the
4347 ** root page of a b-tree.  If it is not, then the cursor acquired
4348 ** will not work correctly.
4349 **
4350 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4351 ** on pCur to initialize the memory space prior to invoking this routine.
4352 */
4353 static int btreeCursor(
4354   Btree *p,                              /* The btree */
4355   int iTable,                            /* Root page of table to open */
4356   int wrFlag,                            /* 1 to write. 0 read-only */
4357   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4358   BtCursor *pCur                         /* Space for new cursor */
4359 ){
4360   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4361   BtCursor *pX;                          /* Looping over other all cursors */
4362 
4363   assert( sqlite3BtreeHoldsMutex(p) );
4364   assert( wrFlag==0
4365        || wrFlag==BTREE_WRCSR
4366        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4367   );
4368 
4369   /* The following assert statements verify that if this is a sharable
4370   ** b-tree database, the connection is holding the required table locks,
4371   ** and that no other connection has any open cursor that conflicts with
4372   ** this lock.  The iTable<1 term disables the check for corrupt schemas. */
4373   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4374           || iTable<1 );
4375   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4376 
4377   /* Assert that the caller has opened the required transaction. */
4378   assert( p->inTrans>TRANS_NONE );
4379   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4380   assert( pBt->pPage1 && pBt->pPage1->aData );
4381   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4382 
4383   if( wrFlag ){
4384     allocateTempSpace(pBt);
4385     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4386   }
4387   if( iTable<=1 ){
4388     if( iTable<1 ){
4389       return SQLITE_CORRUPT_BKPT;
4390     }else if( btreePagecount(pBt)==0 ){
4391       assert( wrFlag==0 );
4392       iTable = 0;
4393     }
4394   }
4395 
4396   /* Now that no other errors can occur, finish filling in the BtCursor
4397   ** variables and link the cursor into the BtShared list.  */
4398   pCur->pgnoRoot = (Pgno)iTable;
4399   pCur->iPage = -1;
4400   pCur->pKeyInfo = pKeyInfo;
4401   pCur->pBtree = p;
4402   pCur->pBt = pBt;
4403   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4404   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4405   /* If there are two or more cursors on the same btree, then all such
4406   ** cursors *must* have the BTCF_Multiple flag set. */
4407   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4408     if( pX->pgnoRoot==(Pgno)iTable ){
4409       pX->curFlags |= BTCF_Multiple;
4410       pCur->curFlags |= BTCF_Multiple;
4411     }
4412   }
4413   pCur->pNext = pBt->pCursor;
4414   pBt->pCursor = pCur;
4415   pCur->eState = CURSOR_INVALID;
4416   return SQLITE_OK;
4417 }
4418 static int btreeCursorWithLock(
4419   Btree *p,                              /* The btree */
4420   int iTable,                            /* Root page of table to open */
4421   int wrFlag,                            /* 1 to write. 0 read-only */
4422   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4423   BtCursor *pCur                         /* Space for new cursor */
4424 ){
4425   int rc;
4426   sqlite3BtreeEnter(p);
4427   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4428   sqlite3BtreeLeave(p);
4429   return rc;
4430 }
4431 int sqlite3BtreeCursor(
4432   Btree *p,                                   /* The btree */
4433   int iTable,                                 /* Root page of table to open */
4434   int wrFlag,                                 /* 1 to write. 0 read-only */
4435   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4436   BtCursor *pCur                              /* Write new cursor here */
4437 ){
4438   if( p->sharable ){
4439     return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4440   }else{
4441     return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4442   }
4443 }
4444 
4445 /*
4446 ** Return the size of a BtCursor object in bytes.
4447 **
4448 ** This interfaces is needed so that users of cursors can preallocate
4449 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4450 ** to users so they cannot do the sizeof() themselves - they must call
4451 ** this routine.
4452 */
4453 int sqlite3BtreeCursorSize(void){
4454   return ROUND8(sizeof(BtCursor));
4455 }
4456 
4457 /*
4458 ** Initialize memory that will be converted into a BtCursor object.
4459 **
4460 ** The simple approach here would be to memset() the entire object
4461 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4462 ** do not need to be zeroed and they are large, so we can save a lot
4463 ** of run-time by skipping the initialization of those elements.
4464 */
4465 void sqlite3BtreeCursorZero(BtCursor *p){
4466   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4467 }
4468 
4469 /*
4470 ** Close a cursor.  The read lock on the database file is released
4471 ** when the last cursor is closed.
4472 */
4473 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4474   Btree *pBtree = pCur->pBtree;
4475   if( pBtree ){
4476     BtShared *pBt = pCur->pBt;
4477     sqlite3BtreeEnter(pBtree);
4478     assert( pBt->pCursor!=0 );
4479     if( pBt->pCursor==pCur ){
4480       pBt->pCursor = pCur->pNext;
4481     }else{
4482       BtCursor *pPrev = pBt->pCursor;
4483       do{
4484         if( pPrev->pNext==pCur ){
4485           pPrev->pNext = pCur->pNext;
4486           break;
4487         }
4488         pPrev = pPrev->pNext;
4489       }while( ALWAYS(pPrev) );
4490     }
4491     btreeReleaseAllCursorPages(pCur);
4492     unlockBtreeIfUnused(pBt);
4493     sqlite3_free(pCur->aOverflow);
4494     sqlite3_free(pCur->pKey);
4495     sqlite3BtreeLeave(pBtree);
4496     pCur->pBtree = 0;
4497   }
4498   return SQLITE_OK;
4499 }
4500 
4501 /*
4502 ** Make sure the BtCursor* given in the argument has a valid
4503 ** BtCursor.info structure.  If it is not already valid, call
4504 ** btreeParseCell() to fill it in.
4505 **
4506 ** BtCursor.info is a cache of the information in the current cell.
4507 ** Using this cache reduces the number of calls to btreeParseCell().
4508 */
4509 #ifndef NDEBUG
4510   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4511     if( a->nKey!=b->nKey ) return 0;
4512     if( a->pPayload!=b->pPayload ) return 0;
4513     if( a->nPayload!=b->nPayload ) return 0;
4514     if( a->nLocal!=b->nLocal ) return 0;
4515     if( a->nSize!=b->nSize ) return 0;
4516     return 1;
4517   }
4518   static void assertCellInfo(BtCursor *pCur){
4519     CellInfo info;
4520     memset(&info, 0, sizeof(info));
4521     btreeParseCell(pCur->pPage, pCur->ix, &info);
4522     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4523   }
4524 #else
4525   #define assertCellInfo(x)
4526 #endif
4527 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4528   if( pCur->info.nSize==0 ){
4529     pCur->curFlags |= BTCF_ValidNKey;
4530     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4531   }else{
4532     assertCellInfo(pCur);
4533   }
4534 }
4535 
4536 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4537 /*
4538 ** Return true if the given BtCursor is valid.  A valid cursor is one
4539 ** that is currently pointing to a row in a (non-empty) table.
4540 ** This is a verification routine is used only within assert() statements.
4541 */
4542 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4543   return pCur && pCur->eState==CURSOR_VALID;
4544 }
4545 #endif /* NDEBUG */
4546 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4547   assert( pCur!=0 );
4548   return pCur->eState==CURSOR_VALID;
4549 }
4550 
4551 /*
4552 ** Return the value of the integer key or "rowid" for a table btree.
4553 ** This routine is only valid for a cursor that is pointing into a
4554 ** ordinary table btree.  If the cursor points to an index btree or
4555 ** is invalid, the result of this routine is undefined.
4556 */
4557 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4558   assert( cursorHoldsMutex(pCur) );
4559   assert( pCur->eState==CURSOR_VALID );
4560   assert( pCur->curIntKey );
4561   getCellInfo(pCur);
4562   return pCur->info.nKey;
4563 }
4564 
4565 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4566 /*
4567 ** Return the offset into the database file for the start of the
4568 ** payload to which the cursor is pointing.
4569 */
4570 i64 sqlite3BtreeOffset(BtCursor *pCur){
4571   assert( cursorHoldsMutex(pCur) );
4572   assert( pCur->eState==CURSOR_VALID );
4573   getCellInfo(pCur);
4574   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4575          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4576 }
4577 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4578 
4579 /*
4580 ** Return the number of bytes of payload for the entry that pCur is
4581 ** currently pointing to.  For table btrees, this will be the amount
4582 ** of data.  For index btrees, this will be the size of the key.
4583 **
4584 ** The caller must guarantee that the cursor is pointing to a non-NULL
4585 ** valid entry.  In other words, the calling procedure must guarantee
4586 ** that the cursor has Cursor.eState==CURSOR_VALID.
4587 */
4588 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4589   assert( cursorHoldsMutex(pCur) );
4590   assert( pCur->eState==CURSOR_VALID );
4591   getCellInfo(pCur);
4592   return pCur->info.nPayload;
4593 }
4594 
4595 /*
4596 ** Return an upper bound on the size of any record for the table
4597 ** that the cursor is pointing into.
4598 **
4599 ** This is an optimization.  Everything will still work if this
4600 ** routine always returns 2147483647 (which is the largest record
4601 ** that SQLite can handle) or more.  But returning a smaller value might
4602 ** prevent large memory allocations when trying to interpret a
4603 ** corrupt datrabase.
4604 **
4605 ** The current implementation merely returns the size of the underlying
4606 ** database file.
4607 */
4608 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4609   assert( cursorHoldsMutex(pCur) );
4610   assert( pCur->eState==CURSOR_VALID );
4611   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4612 }
4613 
4614 /*
4615 ** Given the page number of an overflow page in the database (parameter
4616 ** ovfl), this function finds the page number of the next page in the
4617 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4618 ** pointer-map data instead of reading the content of page ovfl to do so.
4619 **
4620 ** If an error occurs an SQLite error code is returned. Otherwise:
4621 **
4622 ** The page number of the next overflow page in the linked list is
4623 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4624 ** list, *pPgnoNext is set to zero.
4625 **
4626 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4627 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4628 ** reference. It is the responsibility of the caller to call releasePage()
4629 ** on *ppPage to free the reference. In no reference was obtained (because
4630 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4631 ** *ppPage is set to zero.
4632 */
4633 static int getOverflowPage(
4634   BtShared *pBt,               /* The database file */
4635   Pgno ovfl,                   /* Current overflow page number */
4636   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4637   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4638 ){
4639   Pgno next = 0;
4640   MemPage *pPage = 0;
4641   int rc = SQLITE_OK;
4642 
4643   assert( sqlite3_mutex_held(pBt->mutex) );
4644   assert(pPgnoNext);
4645 
4646 #ifndef SQLITE_OMIT_AUTOVACUUM
4647   /* Try to find the next page in the overflow list using the
4648   ** autovacuum pointer-map pages. Guess that the next page in
4649   ** the overflow list is page number (ovfl+1). If that guess turns
4650   ** out to be wrong, fall back to loading the data of page
4651   ** number ovfl to determine the next page number.
4652   */
4653   if( pBt->autoVacuum ){
4654     Pgno pgno;
4655     Pgno iGuess = ovfl+1;
4656     u8 eType;
4657 
4658     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4659       iGuess++;
4660     }
4661 
4662     if( iGuess<=btreePagecount(pBt) ){
4663       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4664       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4665         next = iGuess;
4666         rc = SQLITE_DONE;
4667       }
4668     }
4669   }
4670 #endif
4671 
4672   assert( next==0 || rc==SQLITE_DONE );
4673   if( rc==SQLITE_OK ){
4674     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4675     assert( rc==SQLITE_OK || pPage==0 );
4676     if( rc==SQLITE_OK ){
4677       next = get4byte(pPage->aData);
4678     }
4679   }
4680 
4681   *pPgnoNext = next;
4682   if( ppPage ){
4683     *ppPage = pPage;
4684   }else{
4685     releasePage(pPage);
4686   }
4687   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4688 }
4689 
4690 /*
4691 ** Copy data from a buffer to a page, or from a page to a buffer.
4692 **
4693 ** pPayload is a pointer to data stored on database page pDbPage.
4694 ** If argument eOp is false, then nByte bytes of data are copied
4695 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4696 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4697 ** of data are copied from the buffer pBuf to pPayload.
4698 **
4699 ** SQLITE_OK is returned on success, otherwise an error code.
4700 */
4701 static int copyPayload(
4702   void *pPayload,           /* Pointer to page data */
4703   void *pBuf,               /* Pointer to buffer */
4704   int nByte,                /* Number of bytes to copy */
4705   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4706   DbPage *pDbPage           /* Page containing pPayload */
4707 ){
4708   if( eOp ){
4709     /* Copy data from buffer to page (a write operation) */
4710     int rc = sqlite3PagerWrite(pDbPage);
4711     if( rc!=SQLITE_OK ){
4712       return rc;
4713     }
4714     memcpy(pPayload, pBuf, nByte);
4715   }else{
4716     /* Copy data from page to buffer (a read operation) */
4717     memcpy(pBuf, pPayload, nByte);
4718   }
4719   return SQLITE_OK;
4720 }
4721 
4722 /*
4723 ** This function is used to read or overwrite payload information
4724 ** for the entry that the pCur cursor is pointing to. The eOp
4725 ** argument is interpreted as follows:
4726 **
4727 **   0: The operation is a read. Populate the overflow cache.
4728 **   1: The operation is a write. Populate the overflow cache.
4729 **
4730 ** A total of "amt" bytes are read or written beginning at "offset".
4731 ** Data is read to or from the buffer pBuf.
4732 **
4733 ** The content being read or written might appear on the main page
4734 ** or be scattered out on multiple overflow pages.
4735 **
4736 ** If the current cursor entry uses one or more overflow pages
4737 ** this function may allocate space for and lazily populate
4738 ** the overflow page-list cache array (BtCursor.aOverflow).
4739 ** Subsequent calls use this cache to make seeking to the supplied offset
4740 ** more efficient.
4741 **
4742 ** Once an overflow page-list cache has been allocated, it must be
4743 ** invalidated if some other cursor writes to the same table, or if
4744 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4745 ** mode, the following events may invalidate an overflow page-list cache.
4746 **
4747 **   * An incremental vacuum,
4748 **   * A commit in auto_vacuum="full" mode,
4749 **   * Creating a table (may require moving an overflow page).
4750 */
4751 static int accessPayload(
4752   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4753   u32 offset,          /* Begin reading this far into payload */
4754   u32 amt,             /* Read this many bytes */
4755   unsigned char *pBuf, /* Write the bytes into this buffer */
4756   int eOp              /* zero to read. non-zero to write. */
4757 ){
4758   unsigned char *aPayload;
4759   int rc = SQLITE_OK;
4760   int iIdx = 0;
4761   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4762   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4763 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4764   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4765 #endif
4766 
4767   assert( pPage );
4768   assert( eOp==0 || eOp==1 );
4769   assert( pCur->eState==CURSOR_VALID );
4770   assert( pCur->ix<pPage->nCell );
4771   assert( cursorHoldsMutex(pCur) );
4772 
4773   getCellInfo(pCur);
4774   aPayload = pCur->info.pPayload;
4775   assert( offset+amt <= pCur->info.nPayload );
4776 
4777   assert( aPayload > pPage->aData );
4778   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4779     /* Trying to read or write past the end of the data is an error.  The
4780     ** conditional above is really:
4781     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4782     ** but is recast into its current form to avoid integer overflow problems
4783     */
4784     return SQLITE_CORRUPT_PAGE(pPage);
4785   }
4786 
4787   /* Check if data must be read/written to/from the btree page itself. */
4788   if( offset<pCur->info.nLocal ){
4789     int a = amt;
4790     if( a+offset>pCur->info.nLocal ){
4791       a = pCur->info.nLocal - offset;
4792     }
4793     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4794     offset = 0;
4795     pBuf += a;
4796     amt -= a;
4797   }else{
4798     offset -= pCur->info.nLocal;
4799   }
4800 
4801 
4802   if( rc==SQLITE_OK && amt>0 ){
4803     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4804     Pgno nextPage;
4805 
4806     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4807 
4808     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4809     **
4810     ** The aOverflow[] array is sized at one entry for each overflow page
4811     ** in the overflow chain. The page number of the first overflow page is
4812     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4813     ** means "not yet known" (the cache is lazily populated).
4814     */
4815     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4816       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4817       if( pCur->aOverflow==0
4818        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4819       ){
4820         Pgno *aNew = (Pgno*)sqlite3Realloc(
4821             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4822         );
4823         if( aNew==0 ){
4824           return SQLITE_NOMEM_BKPT;
4825         }else{
4826           pCur->aOverflow = aNew;
4827         }
4828       }
4829       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4830       pCur->curFlags |= BTCF_ValidOvfl;
4831     }else{
4832       /* If the overflow page-list cache has been allocated and the
4833       ** entry for the first required overflow page is valid, skip
4834       ** directly to it.
4835       */
4836       if( pCur->aOverflow[offset/ovflSize] ){
4837         iIdx = (offset/ovflSize);
4838         nextPage = pCur->aOverflow[iIdx];
4839         offset = (offset%ovflSize);
4840       }
4841     }
4842 
4843     assert( rc==SQLITE_OK && amt>0 );
4844     while( nextPage ){
4845       /* If required, populate the overflow page-list cache. */
4846       assert( pCur->aOverflow[iIdx]==0
4847               || pCur->aOverflow[iIdx]==nextPage
4848               || CORRUPT_DB );
4849       pCur->aOverflow[iIdx] = nextPage;
4850 
4851       if( offset>=ovflSize ){
4852         /* The only reason to read this page is to obtain the page
4853         ** number for the next page in the overflow chain. The page
4854         ** data is not required. So first try to lookup the overflow
4855         ** page-list cache, if any, then fall back to the getOverflowPage()
4856         ** function.
4857         */
4858         assert( pCur->curFlags & BTCF_ValidOvfl );
4859         assert( pCur->pBtree->db==pBt->db );
4860         if( pCur->aOverflow[iIdx+1] ){
4861           nextPage = pCur->aOverflow[iIdx+1];
4862         }else{
4863           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4864         }
4865         offset -= ovflSize;
4866       }else{
4867         /* Need to read this page properly. It contains some of the
4868         ** range of data that is being read (eOp==0) or written (eOp!=0).
4869         */
4870         int a = amt;
4871         if( a + offset > ovflSize ){
4872           a = ovflSize - offset;
4873         }
4874 
4875 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4876         /* If all the following are true:
4877         **
4878         **   1) this is a read operation, and
4879         **   2) data is required from the start of this overflow page, and
4880         **   3) there are no dirty pages in the page-cache
4881         **   4) the database is file-backed, and
4882         **   5) the page is not in the WAL file
4883         **   6) at least 4 bytes have already been read into the output buffer
4884         **
4885         ** then data can be read directly from the database file into the
4886         ** output buffer, bypassing the page-cache altogether. This speeds
4887         ** up loading large records that span many overflow pages.
4888         */
4889         if( eOp==0                                             /* (1) */
4890          && offset==0                                          /* (2) */
4891          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
4892          && &pBuf[-4]>=pBufStart                               /* (6) */
4893         ){
4894           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
4895           u8 aSave[4];
4896           u8 *aWrite = &pBuf[-4];
4897           assert( aWrite>=pBufStart );                         /* due to (6) */
4898           memcpy(aSave, aWrite, 4);
4899           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4900           if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
4901           nextPage = get4byte(aWrite);
4902           memcpy(aWrite, aSave, 4);
4903         }else
4904 #endif
4905 
4906         {
4907           DbPage *pDbPage;
4908           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4909               (eOp==0 ? PAGER_GET_READONLY : 0)
4910           );
4911           if( rc==SQLITE_OK ){
4912             aPayload = sqlite3PagerGetData(pDbPage);
4913             nextPage = get4byte(aPayload);
4914             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4915             sqlite3PagerUnref(pDbPage);
4916             offset = 0;
4917           }
4918         }
4919         amt -= a;
4920         if( amt==0 ) return rc;
4921         pBuf += a;
4922       }
4923       if( rc ) break;
4924       iIdx++;
4925     }
4926   }
4927 
4928   if( rc==SQLITE_OK && amt>0 ){
4929     /* Overflow chain ends prematurely */
4930     return SQLITE_CORRUPT_PAGE(pPage);
4931   }
4932   return rc;
4933 }
4934 
4935 /*
4936 ** Read part of the payload for the row at which that cursor pCur is currently
4937 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
4938 ** begins at "offset".
4939 **
4940 ** pCur can be pointing to either a table or an index b-tree.
4941 ** If pointing to a table btree, then the content section is read.  If
4942 ** pCur is pointing to an index b-tree then the key section is read.
4943 **
4944 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4945 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
4946 ** cursor might be invalid or might need to be restored before being read.
4947 **
4948 ** Return SQLITE_OK on success or an error code if anything goes
4949 ** wrong.  An error is returned if "offset+amt" is larger than
4950 ** the available payload.
4951 */
4952 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4953   assert( cursorHoldsMutex(pCur) );
4954   assert( pCur->eState==CURSOR_VALID );
4955   assert( pCur->iPage>=0 && pCur->pPage );
4956   assert( pCur->ix<pCur->pPage->nCell );
4957   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4958 }
4959 
4960 /*
4961 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4962 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
4963 ** interface.
4964 */
4965 #ifndef SQLITE_OMIT_INCRBLOB
4966 static SQLITE_NOINLINE int accessPayloadChecked(
4967   BtCursor *pCur,
4968   u32 offset,
4969   u32 amt,
4970   void *pBuf
4971 ){
4972   int rc;
4973   if ( pCur->eState==CURSOR_INVALID ){
4974     return SQLITE_ABORT;
4975   }
4976   assert( cursorOwnsBtShared(pCur) );
4977   rc = btreeRestoreCursorPosition(pCur);
4978   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4979 }
4980 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4981   if( pCur->eState==CURSOR_VALID ){
4982     assert( cursorOwnsBtShared(pCur) );
4983     return accessPayload(pCur, offset, amt, pBuf, 0);
4984   }else{
4985     return accessPayloadChecked(pCur, offset, amt, pBuf);
4986   }
4987 }
4988 #endif /* SQLITE_OMIT_INCRBLOB */
4989 
4990 /*
4991 ** Return a pointer to payload information from the entry that the
4992 ** pCur cursor is pointing to.  The pointer is to the beginning of
4993 ** the key if index btrees (pPage->intKey==0) and is the data for
4994 ** table btrees (pPage->intKey==1). The number of bytes of available
4995 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4996 ** returned will not be a valid pointer.
4997 **
4998 ** This routine is an optimization.  It is common for the entire key
4999 ** and data to fit on the local page and for there to be no overflow
5000 ** pages.  When that is so, this routine can be used to access the
5001 ** key and data without making a copy.  If the key and/or data spills
5002 ** onto overflow pages, then accessPayload() must be used to reassemble
5003 ** the key/data and copy it into a preallocated buffer.
5004 **
5005 ** The pointer returned by this routine looks directly into the cached
5006 ** page of the database.  The data might change or move the next time
5007 ** any btree routine is called.
5008 */
5009 static const void *fetchPayload(
5010   BtCursor *pCur,      /* Cursor pointing to entry to read from */
5011   u32 *pAmt            /* Write the number of available bytes here */
5012 ){
5013   int amt;
5014   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5015   assert( pCur->eState==CURSOR_VALID );
5016   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5017   assert( cursorOwnsBtShared(pCur) );
5018   assert( pCur->ix<pCur->pPage->nCell );
5019   assert( pCur->info.nSize>0 );
5020   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5021   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5022   amt = pCur->info.nLocal;
5023   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5024     /* There is too little space on the page for the expected amount
5025     ** of local content. Database must be corrupt. */
5026     assert( CORRUPT_DB );
5027     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5028   }
5029   *pAmt = (u32)amt;
5030   return (void*)pCur->info.pPayload;
5031 }
5032 
5033 
5034 /*
5035 ** For the entry that cursor pCur is point to, return as
5036 ** many bytes of the key or data as are available on the local
5037 ** b-tree page.  Write the number of available bytes into *pAmt.
5038 **
5039 ** The pointer returned is ephemeral.  The key/data may move
5040 ** or be destroyed on the next call to any Btree routine,
5041 ** including calls from other threads against the same cache.
5042 ** Hence, a mutex on the BtShared should be held prior to calling
5043 ** this routine.
5044 **
5045 ** These routines is used to get quick access to key and data
5046 ** in the common case where no overflow pages are used.
5047 */
5048 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5049   return fetchPayload(pCur, pAmt);
5050 }
5051 
5052 
5053 /*
5054 ** Move the cursor down to a new child page.  The newPgno argument is the
5055 ** page number of the child page to move to.
5056 **
5057 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5058 ** the new child page does not match the flags field of the parent (i.e.
5059 ** if an intkey page appears to be the parent of a non-intkey page, or
5060 ** vice-versa).
5061 */
5062 static int moveToChild(BtCursor *pCur, u32 newPgno){
5063   BtShared *pBt = pCur->pBt;
5064 
5065   assert( cursorOwnsBtShared(pCur) );
5066   assert( pCur->eState==CURSOR_VALID );
5067   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5068   assert( pCur->iPage>=0 );
5069   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5070     return SQLITE_CORRUPT_BKPT;
5071   }
5072   pCur->info.nSize = 0;
5073   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5074   pCur->aiIdx[pCur->iPage] = pCur->ix;
5075   pCur->apPage[pCur->iPage] = pCur->pPage;
5076   pCur->ix = 0;
5077   pCur->iPage++;
5078   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5079 }
5080 
5081 #ifdef SQLITE_DEBUG
5082 /*
5083 ** Page pParent is an internal (non-leaf) tree page. This function
5084 ** asserts that page number iChild is the left-child if the iIdx'th
5085 ** cell in page pParent. Or, if iIdx is equal to the total number of
5086 ** cells in pParent, that page number iChild is the right-child of
5087 ** the page.
5088 */
5089 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5090   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
5091                             ** in a corrupt database */
5092   assert( iIdx<=pParent->nCell );
5093   if( iIdx==pParent->nCell ){
5094     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5095   }else{
5096     assert( get4byte(findCell(pParent, iIdx))==iChild );
5097   }
5098 }
5099 #else
5100 #  define assertParentIndex(x,y,z)
5101 #endif
5102 
5103 /*
5104 ** Move the cursor up to the parent page.
5105 **
5106 ** pCur->idx is set to the cell index that contains the pointer
5107 ** to the page we are coming from.  If we are coming from the
5108 ** right-most child page then pCur->idx is set to one more than
5109 ** the largest cell index.
5110 */
5111 static void moveToParent(BtCursor *pCur){
5112   MemPage *pLeaf;
5113   assert( cursorOwnsBtShared(pCur) );
5114   assert( pCur->eState==CURSOR_VALID );
5115   assert( pCur->iPage>0 );
5116   assert( pCur->pPage );
5117   assertParentIndex(
5118     pCur->apPage[pCur->iPage-1],
5119     pCur->aiIdx[pCur->iPage-1],
5120     pCur->pPage->pgno
5121   );
5122   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5123   pCur->info.nSize = 0;
5124   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5125   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5126   pLeaf = pCur->pPage;
5127   pCur->pPage = pCur->apPage[--pCur->iPage];
5128   releasePageNotNull(pLeaf);
5129 }
5130 
5131 /*
5132 ** Move the cursor to point to the root page of its b-tree structure.
5133 **
5134 ** If the table has a virtual root page, then the cursor is moved to point
5135 ** to the virtual root page instead of the actual root page. A table has a
5136 ** virtual root page when the actual root page contains no cells and a
5137 ** single child page. This can only happen with the table rooted at page 1.
5138 **
5139 ** If the b-tree structure is empty, the cursor state is set to
5140 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5141 ** the cursor is set to point to the first cell located on the root
5142 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5143 **
5144 ** If this function returns successfully, it may be assumed that the
5145 ** page-header flags indicate that the [virtual] root-page is the expected
5146 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5147 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5148 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5149 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5150 ** b-tree).
5151 */
5152 static int moveToRoot(BtCursor *pCur){
5153   MemPage *pRoot;
5154   int rc = SQLITE_OK;
5155 
5156   assert( cursorOwnsBtShared(pCur) );
5157   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5158   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5159   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5160   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5161   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5162 
5163   if( pCur->iPage>=0 ){
5164     if( pCur->iPage ){
5165       releasePageNotNull(pCur->pPage);
5166       while( --pCur->iPage ){
5167         releasePageNotNull(pCur->apPage[pCur->iPage]);
5168       }
5169       pCur->pPage = pCur->apPage[0];
5170       goto skip_init;
5171     }
5172   }else if( pCur->pgnoRoot==0 ){
5173     pCur->eState = CURSOR_INVALID;
5174     return SQLITE_EMPTY;
5175   }else{
5176     assert( pCur->iPage==(-1) );
5177     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5178       if( pCur->eState==CURSOR_FAULT ){
5179         assert( pCur->skipNext!=SQLITE_OK );
5180         return pCur->skipNext;
5181       }
5182       sqlite3BtreeClearCursor(pCur);
5183     }
5184     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5185                         0, pCur->curPagerFlags);
5186     if( rc!=SQLITE_OK ){
5187       pCur->eState = CURSOR_INVALID;
5188       return rc;
5189     }
5190     pCur->iPage = 0;
5191     pCur->curIntKey = pCur->pPage->intKey;
5192   }
5193   pRoot = pCur->pPage;
5194   assert( pRoot->pgno==pCur->pgnoRoot );
5195 
5196   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5197   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5198   ** NULL, the caller expects a table b-tree. If this is not the case,
5199   ** return an SQLITE_CORRUPT error.
5200   **
5201   ** Earlier versions of SQLite assumed that this test could not fail
5202   ** if the root page was already loaded when this function was called (i.e.
5203   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5204   ** in such a way that page pRoot is linked into a second b-tree table
5205   ** (or the freelist).  */
5206   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5207   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5208     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5209   }
5210 
5211 skip_init:
5212   pCur->ix = 0;
5213   pCur->info.nSize = 0;
5214   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5215 
5216   pRoot = pCur->pPage;
5217   if( pRoot->nCell>0 ){
5218     pCur->eState = CURSOR_VALID;
5219   }else if( !pRoot->leaf ){
5220     Pgno subpage;
5221     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5222     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5223     pCur->eState = CURSOR_VALID;
5224     rc = moveToChild(pCur, subpage);
5225   }else{
5226     pCur->eState = CURSOR_INVALID;
5227     rc = SQLITE_EMPTY;
5228   }
5229   return rc;
5230 }
5231 
5232 /*
5233 ** Move the cursor down to the left-most leaf entry beneath the
5234 ** entry to which it is currently pointing.
5235 **
5236 ** The left-most leaf is the one with the smallest key - the first
5237 ** in ascending order.
5238 */
5239 static int moveToLeftmost(BtCursor *pCur){
5240   Pgno pgno;
5241   int rc = SQLITE_OK;
5242   MemPage *pPage;
5243 
5244   assert( cursorOwnsBtShared(pCur) );
5245   assert( pCur->eState==CURSOR_VALID );
5246   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5247     assert( pCur->ix<pPage->nCell );
5248     pgno = get4byte(findCell(pPage, pCur->ix));
5249     rc = moveToChild(pCur, pgno);
5250   }
5251   return rc;
5252 }
5253 
5254 /*
5255 ** Move the cursor down to the right-most leaf entry beneath the
5256 ** page to which it is currently pointing.  Notice the difference
5257 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5258 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5259 ** finds the right-most entry beneath the *page*.
5260 **
5261 ** The right-most entry is the one with the largest key - the last
5262 ** key in ascending order.
5263 */
5264 static int moveToRightmost(BtCursor *pCur){
5265   Pgno pgno;
5266   int rc = SQLITE_OK;
5267   MemPage *pPage = 0;
5268 
5269   assert( cursorOwnsBtShared(pCur) );
5270   assert( pCur->eState==CURSOR_VALID );
5271   while( !(pPage = pCur->pPage)->leaf ){
5272     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5273     pCur->ix = pPage->nCell;
5274     rc = moveToChild(pCur, pgno);
5275     if( rc ) return rc;
5276   }
5277   pCur->ix = pPage->nCell-1;
5278   assert( pCur->info.nSize==0 );
5279   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5280   return SQLITE_OK;
5281 }
5282 
5283 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5284 ** on success.  Set *pRes to 0 if the cursor actually points to something
5285 ** or set *pRes to 1 if the table is empty.
5286 */
5287 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5288   int rc;
5289 
5290   assert( cursorOwnsBtShared(pCur) );
5291   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5292   rc = moveToRoot(pCur);
5293   if( rc==SQLITE_OK ){
5294     assert( pCur->pPage->nCell>0 );
5295     *pRes = 0;
5296     rc = moveToLeftmost(pCur);
5297   }else if( rc==SQLITE_EMPTY ){
5298     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5299     *pRes = 1;
5300     rc = SQLITE_OK;
5301   }
5302   return rc;
5303 }
5304 
5305 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5306 ** on success.  Set *pRes to 0 if the cursor actually points to something
5307 ** or set *pRes to 1 if the table is empty.
5308 */
5309 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5310   int rc;
5311 
5312   assert( cursorOwnsBtShared(pCur) );
5313   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5314 
5315   /* If the cursor already points to the last entry, this is a no-op. */
5316   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5317 #ifdef SQLITE_DEBUG
5318     /* This block serves to assert() that the cursor really does point
5319     ** to the last entry in the b-tree. */
5320     int ii;
5321     for(ii=0; ii<pCur->iPage; ii++){
5322       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5323     }
5324     assert( pCur->ix==pCur->pPage->nCell-1 );
5325     assert( pCur->pPage->leaf );
5326 #endif
5327     *pRes = 0;
5328     return SQLITE_OK;
5329   }
5330 
5331   rc = moveToRoot(pCur);
5332   if( rc==SQLITE_OK ){
5333     assert( pCur->eState==CURSOR_VALID );
5334     *pRes = 0;
5335     rc = moveToRightmost(pCur);
5336     if( rc==SQLITE_OK ){
5337       pCur->curFlags |= BTCF_AtLast;
5338     }else{
5339       pCur->curFlags &= ~BTCF_AtLast;
5340     }
5341   }else if( rc==SQLITE_EMPTY ){
5342     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5343     *pRes = 1;
5344     rc = SQLITE_OK;
5345   }
5346   return rc;
5347 }
5348 
5349 /* Move the cursor so that it points to an entry near the key
5350 ** specified by pIdxKey or intKey.   Return a success code.
5351 **
5352 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5353 ** must be NULL.  For index tables, pIdxKey is used and intKey
5354 ** is ignored.
5355 **
5356 ** If an exact match is not found, then the cursor is always
5357 ** left pointing at a leaf page which would hold the entry if it
5358 ** were present.  The cursor might point to an entry that comes
5359 ** before or after the key.
5360 **
5361 ** An integer is written into *pRes which is the result of
5362 ** comparing the key with the entry to which the cursor is
5363 ** pointing.  The meaning of the integer written into
5364 ** *pRes is as follows:
5365 **
5366 **     *pRes<0      The cursor is left pointing at an entry that
5367 **                  is smaller than intKey/pIdxKey or if the table is empty
5368 **                  and the cursor is therefore left point to nothing.
5369 **
5370 **     *pRes==0     The cursor is left pointing at an entry that
5371 **                  exactly matches intKey/pIdxKey.
5372 **
5373 **     *pRes>0      The cursor is left pointing at an entry that
5374 **                  is larger than intKey/pIdxKey.
5375 **
5376 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5377 ** exists an entry in the table that exactly matches pIdxKey.
5378 */
5379 int sqlite3BtreeMovetoUnpacked(
5380   BtCursor *pCur,          /* The cursor to be moved */
5381   UnpackedRecord *pIdxKey, /* Unpacked index key */
5382   i64 intKey,              /* The table key */
5383   int biasRight,           /* If true, bias the search to the high end */
5384   int *pRes                /* Write search results here */
5385 ){
5386   int rc;
5387   RecordCompare xRecordCompare;
5388 
5389   assert( cursorOwnsBtShared(pCur) );
5390   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5391   assert( pRes );
5392   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5393   assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5394 
5395   /* If the cursor is already positioned at the point we are trying
5396   ** to move to, then just return without doing any work */
5397   if( pIdxKey==0
5398    && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5399   ){
5400     if( pCur->info.nKey==intKey ){
5401       *pRes = 0;
5402       return SQLITE_OK;
5403     }
5404     if( pCur->info.nKey<intKey ){
5405       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5406         *pRes = -1;
5407         return SQLITE_OK;
5408       }
5409       /* If the requested key is one more than the previous key, then
5410       ** try to get there using sqlite3BtreeNext() rather than a full
5411       ** binary search.  This is an optimization only.  The correct answer
5412       ** is still obtained without this case, only a little more slowely */
5413       if( pCur->info.nKey+1==intKey ){
5414         *pRes = 0;
5415         rc = sqlite3BtreeNext(pCur, 0);
5416         if( rc==SQLITE_OK ){
5417           getCellInfo(pCur);
5418           if( pCur->info.nKey==intKey ){
5419             return SQLITE_OK;
5420           }
5421         }else if( rc==SQLITE_DONE ){
5422           rc = SQLITE_OK;
5423         }else{
5424           return rc;
5425         }
5426       }
5427     }
5428   }
5429 
5430   if( pIdxKey ){
5431     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5432     pIdxKey->errCode = 0;
5433     assert( pIdxKey->default_rc==1
5434          || pIdxKey->default_rc==0
5435          || pIdxKey->default_rc==-1
5436     );
5437   }else{
5438     xRecordCompare = 0; /* All keys are integers */
5439   }
5440 
5441   rc = moveToRoot(pCur);
5442   if( rc ){
5443     if( rc==SQLITE_EMPTY ){
5444       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5445       *pRes = -1;
5446       return SQLITE_OK;
5447     }
5448     return rc;
5449   }
5450   assert( pCur->pPage );
5451   assert( pCur->pPage->isInit );
5452   assert( pCur->eState==CURSOR_VALID );
5453   assert( pCur->pPage->nCell > 0 );
5454   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5455   assert( pCur->curIntKey || pIdxKey );
5456   for(;;){
5457     int lwr, upr, idx, c;
5458     Pgno chldPg;
5459     MemPage *pPage = pCur->pPage;
5460     u8 *pCell;                          /* Pointer to current cell in pPage */
5461 
5462     /* pPage->nCell must be greater than zero. If this is the root-page
5463     ** the cursor would have been INVALID above and this for(;;) loop
5464     ** not run. If this is not the root-page, then the moveToChild() routine
5465     ** would have already detected db corruption. Similarly, pPage must
5466     ** be the right kind (index or table) of b-tree page. Otherwise
5467     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5468     assert( pPage->nCell>0 );
5469     assert( pPage->intKey==(pIdxKey==0) );
5470     lwr = 0;
5471     upr = pPage->nCell-1;
5472     assert( biasRight==0 || biasRight==1 );
5473     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5474     pCur->ix = (u16)idx;
5475     if( xRecordCompare==0 ){
5476       for(;;){
5477         i64 nCellKey;
5478         pCell = findCellPastPtr(pPage, idx);
5479         if( pPage->intKeyLeaf ){
5480           while( 0x80 <= *(pCell++) ){
5481             if( pCell>=pPage->aDataEnd ){
5482               return SQLITE_CORRUPT_PAGE(pPage);
5483             }
5484           }
5485         }
5486         getVarint(pCell, (u64*)&nCellKey);
5487         if( nCellKey<intKey ){
5488           lwr = idx+1;
5489           if( lwr>upr ){ c = -1; break; }
5490         }else if( nCellKey>intKey ){
5491           upr = idx-1;
5492           if( lwr>upr ){ c = +1; break; }
5493         }else{
5494           assert( nCellKey==intKey );
5495           pCur->ix = (u16)idx;
5496           if( !pPage->leaf ){
5497             lwr = idx;
5498             goto moveto_next_layer;
5499           }else{
5500             pCur->curFlags |= BTCF_ValidNKey;
5501             pCur->info.nKey = nCellKey;
5502             pCur->info.nSize = 0;
5503             *pRes = 0;
5504             return SQLITE_OK;
5505           }
5506         }
5507         assert( lwr+upr>=0 );
5508         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5509       }
5510     }else{
5511       for(;;){
5512         int nCell;  /* Size of the pCell cell in bytes */
5513         pCell = findCellPastPtr(pPage, idx);
5514 
5515         /* The maximum supported page-size is 65536 bytes. This means that
5516         ** the maximum number of record bytes stored on an index B-Tree
5517         ** page is less than 16384 bytes and may be stored as a 2-byte
5518         ** varint. This information is used to attempt to avoid parsing
5519         ** the entire cell by checking for the cases where the record is
5520         ** stored entirely within the b-tree page by inspecting the first
5521         ** 2 bytes of the cell.
5522         */
5523         nCell = pCell[0];
5524         if( nCell<=pPage->max1bytePayload ){
5525           /* This branch runs if the record-size field of the cell is a
5526           ** single byte varint and the record fits entirely on the main
5527           ** b-tree page.  */
5528           testcase( pCell+nCell+1==pPage->aDataEnd );
5529           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5530         }else if( !(pCell[1] & 0x80)
5531           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5532         ){
5533           /* The record-size field is a 2 byte varint and the record
5534           ** fits entirely on the main b-tree page.  */
5535           testcase( pCell+nCell+2==pPage->aDataEnd );
5536           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5537         }else{
5538           /* The record flows over onto one or more overflow pages. In
5539           ** this case the whole cell needs to be parsed, a buffer allocated
5540           ** and accessPayload() used to retrieve the record into the
5541           ** buffer before VdbeRecordCompare() can be called.
5542           **
5543           ** If the record is corrupt, the xRecordCompare routine may read
5544           ** up to two varints past the end of the buffer. An extra 18
5545           ** bytes of padding is allocated at the end of the buffer in
5546           ** case this happens.  */
5547           void *pCellKey;
5548           u8 * const pCellBody = pCell - pPage->childPtrSize;
5549           const int nOverrun = 18;  /* Size of the overrun padding */
5550           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5551           nCell = (int)pCur->info.nKey;
5552           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5553           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5554           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5555           testcase( nCell==2 );  /* Minimum legal index key size */
5556           if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5557             rc = SQLITE_CORRUPT_PAGE(pPage);
5558             goto moveto_finish;
5559           }
5560           pCellKey = sqlite3Malloc( nCell+nOverrun );
5561           if( pCellKey==0 ){
5562             rc = SQLITE_NOMEM_BKPT;
5563             goto moveto_finish;
5564           }
5565           pCur->ix = (u16)idx;
5566           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5567           memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5568           pCur->curFlags &= ~BTCF_ValidOvfl;
5569           if( rc ){
5570             sqlite3_free(pCellKey);
5571             goto moveto_finish;
5572           }
5573           c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5574           sqlite3_free(pCellKey);
5575         }
5576         assert(
5577             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5578          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5579         );
5580         if( c<0 ){
5581           lwr = idx+1;
5582         }else if( c>0 ){
5583           upr = idx-1;
5584         }else{
5585           assert( c==0 );
5586           *pRes = 0;
5587           rc = SQLITE_OK;
5588           pCur->ix = (u16)idx;
5589           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5590           goto moveto_finish;
5591         }
5592         if( lwr>upr ) break;
5593         assert( lwr+upr>=0 );
5594         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5595       }
5596     }
5597     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5598     assert( pPage->isInit );
5599     if( pPage->leaf ){
5600       assert( pCur->ix<pCur->pPage->nCell );
5601       pCur->ix = (u16)idx;
5602       *pRes = c;
5603       rc = SQLITE_OK;
5604       goto moveto_finish;
5605     }
5606 moveto_next_layer:
5607     if( lwr>=pPage->nCell ){
5608       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5609     }else{
5610       chldPg = get4byte(findCell(pPage, lwr));
5611     }
5612     pCur->ix = (u16)lwr;
5613     rc = moveToChild(pCur, chldPg);
5614     if( rc ) break;
5615   }
5616 moveto_finish:
5617   pCur->info.nSize = 0;
5618   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5619   return rc;
5620 }
5621 
5622 
5623 /*
5624 ** Return TRUE if the cursor is not pointing at an entry of the table.
5625 **
5626 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5627 ** past the last entry in the table or sqlite3BtreePrev() moves past
5628 ** the first entry.  TRUE is also returned if the table is empty.
5629 */
5630 int sqlite3BtreeEof(BtCursor *pCur){
5631   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5632   ** have been deleted? This API will need to change to return an error code
5633   ** as well as the boolean result value.
5634   */
5635   return (CURSOR_VALID!=pCur->eState);
5636 }
5637 
5638 /*
5639 ** Return an estimate for the number of rows in the table that pCur is
5640 ** pointing to.  Return a negative number if no estimate is currently
5641 ** available.
5642 */
5643 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5644   i64 n;
5645   u8 i;
5646 
5647   assert( cursorOwnsBtShared(pCur) );
5648   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5649 
5650   /* Currently this interface is only called by the OP_IfSmaller
5651   ** opcode, and it that case the cursor will always be valid and
5652   ** will always point to a leaf node. */
5653   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5654   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5655 
5656   n = pCur->pPage->nCell;
5657   for(i=0; i<pCur->iPage; i++){
5658     n *= pCur->apPage[i]->nCell;
5659   }
5660   return n;
5661 }
5662 
5663 /*
5664 ** Advance the cursor to the next entry in the database.
5665 ** Return value:
5666 **
5667 **    SQLITE_OK        success
5668 **    SQLITE_DONE      cursor is already pointing at the last element
5669 **    otherwise        some kind of error occurred
5670 **
5671 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5672 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5673 ** to the next cell on the current page.  The (slower) btreeNext() helper
5674 ** routine is called when it is necessary to move to a different page or
5675 ** to restore the cursor.
5676 **
5677 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5678 ** cursor corresponds to an SQL index and this routine could have been
5679 ** skipped if the SQL index had been a unique index.  The F argument
5680 ** is a hint to the implement.  SQLite btree implementation does not use
5681 ** this hint, but COMDB2 does.
5682 */
5683 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5684   int rc;
5685   int idx;
5686   MemPage *pPage;
5687 
5688   assert( cursorOwnsBtShared(pCur) );
5689   if( pCur->eState!=CURSOR_VALID ){
5690     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5691     rc = restoreCursorPosition(pCur);
5692     if( rc!=SQLITE_OK ){
5693       return rc;
5694     }
5695     if( CURSOR_INVALID==pCur->eState ){
5696       return SQLITE_DONE;
5697     }
5698     if( pCur->eState==CURSOR_SKIPNEXT ){
5699       pCur->eState = CURSOR_VALID;
5700       if( pCur->skipNext>0 ) return SQLITE_OK;
5701     }
5702   }
5703 
5704   pPage = pCur->pPage;
5705   idx = ++pCur->ix;
5706   if( !pPage->isInit ){
5707     /* The only known way for this to happen is for there to be a
5708     ** recursive SQL function that does a DELETE operation as part of a
5709     ** SELECT which deletes content out from under an active cursor
5710     ** in a corrupt database file where the table being DELETE-ed from
5711     ** has pages in common with the table being queried.  See TH3
5712     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5713     ** example. */
5714     return SQLITE_CORRUPT_BKPT;
5715   }
5716 
5717   /* If the database file is corrupt, it is possible for the value of idx
5718   ** to be invalid here. This can only occur if a second cursor modifies
5719   ** the page while cursor pCur is holding a reference to it. Which can
5720   ** only happen if the database is corrupt in such a way as to link the
5721   ** page into more than one b-tree structure. */
5722   testcase( idx>pPage->nCell );
5723 
5724   if( idx>=pPage->nCell ){
5725     if( !pPage->leaf ){
5726       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5727       if( rc ) return rc;
5728       return moveToLeftmost(pCur);
5729     }
5730     do{
5731       if( pCur->iPage==0 ){
5732         pCur->eState = CURSOR_INVALID;
5733         return SQLITE_DONE;
5734       }
5735       moveToParent(pCur);
5736       pPage = pCur->pPage;
5737     }while( pCur->ix>=pPage->nCell );
5738     if( pPage->intKey ){
5739       return sqlite3BtreeNext(pCur, 0);
5740     }else{
5741       return SQLITE_OK;
5742     }
5743   }
5744   if( pPage->leaf ){
5745     return SQLITE_OK;
5746   }else{
5747     return moveToLeftmost(pCur);
5748   }
5749 }
5750 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5751   MemPage *pPage;
5752   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5753   assert( cursorOwnsBtShared(pCur) );
5754   assert( flags==0 || flags==1 );
5755   pCur->info.nSize = 0;
5756   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5757   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5758   pPage = pCur->pPage;
5759   if( (++pCur->ix)>=pPage->nCell ){
5760     pCur->ix--;
5761     return btreeNext(pCur);
5762   }
5763   if( pPage->leaf ){
5764     return SQLITE_OK;
5765   }else{
5766     return moveToLeftmost(pCur);
5767   }
5768 }
5769 
5770 /*
5771 ** Step the cursor to the back to the previous entry in the database.
5772 ** Return values:
5773 **
5774 **     SQLITE_OK     success
5775 **     SQLITE_DONE   the cursor is already on the first element of the table
5776 **     otherwise     some kind of error occurred
5777 **
5778 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5779 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5780 ** to the previous cell on the current page.  The (slower) btreePrevious()
5781 ** helper routine is called when it is necessary to move to a different page
5782 ** or to restore the cursor.
5783 **
5784 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5785 ** the cursor corresponds to an SQL index and this routine could have been
5786 ** skipped if the SQL index had been a unique index.  The F argument is a
5787 ** hint to the implement.  The native SQLite btree implementation does not
5788 ** use this hint, but COMDB2 does.
5789 */
5790 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5791   int rc;
5792   MemPage *pPage;
5793 
5794   assert( cursorOwnsBtShared(pCur) );
5795   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5796   assert( pCur->info.nSize==0 );
5797   if( pCur->eState!=CURSOR_VALID ){
5798     rc = restoreCursorPosition(pCur);
5799     if( rc!=SQLITE_OK ){
5800       return rc;
5801     }
5802     if( CURSOR_INVALID==pCur->eState ){
5803       return SQLITE_DONE;
5804     }
5805     if( CURSOR_SKIPNEXT==pCur->eState ){
5806       pCur->eState = CURSOR_VALID;
5807       if( pCur->skipNext<0 ) return SQLITE_OK;
5808     }
5809   }
5810 
5811   pPage = pCur->pPage;
5812   assert( pPage->isInit );
5813   if( !pPage->leaf ){
5814     int idx = pCur->ix;
5815     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5816     if( rc ) return rc;
5817     rc = moveToRightmost(pCur);
5818   }else{
5819     while( pCur->ix==0 ){
5820       if( pCur->iPage==0 ){
5821         pCur->eState = CURSOR_INVALID;
5822         return SQLITE_DONE;
5823       }
5824       moveToParent(pCur);
5825     }
5826     assert( pCur->info.nSize==0 );
5827     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5828 
5829     pCur->ix--;
5830     pPage = pCur->pPage;
5831     if( pPage->intKey && !pPage->leaf ){
5832       rc = sqlite3BtreePrevious(pCur, 0);
5833     }else{
5834       rc = SQLITE_OK;
5835     }
5836   }
5837   return rc;
5838 }
5839 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5840   assert( cursorOwnsBtShared(pCur) );
5841   assert( flags==0 || flags==1 );
5842   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5843   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5844   pCur->info.nSize = 0;
5845   if( pCur->eState!=CURSOR_VALID
5846    || pCur->ix==0
5847    || pCur->pPage->leaf==0
5848   ){
5849     return btreePrevious(pCur);
5850   }
5851   pCur->ix--;
5852   return SQLITE_OK;
5853 }
5854 
5855 /*
5856 ** Allocate a new page from the database file.
5857 **
5858 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5859 ** has already been called on the new page.)  The new page has also
5860 ** been referenced and the calling routine is responsible for calling
5861 ** sqlite3PagerUnref() on the new page when it is done.
5862 **
5863 ** SQLITE_OK is returned on success.  Any other return value indicates
5864 ** an error.  *ppPage is set to NULL in the event of an error.
5865 **
5866 ** If the "nearby" parameter is not 0, then an effort is made to
5867 ** locate a page close to the page number "nearby".  This can be used in an
5868 ** attempt to keep related pages close to each other in the database file,
5869 ** which in turn can make database access faster.
5870 **
5871 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5872 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5873 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5874 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5875 ** are no restrictions on which page is returned.
5876 */
5877 static int allocateBtreePage(
5878   BtShared *pBt,         /* The btree */
5879   MemPage **ppPage,      /* Store pointer to the allocated page here */
5880   Pgno *pPgno,           /* Store the page number here */
5881   Pgno nearby,           /* Search for a page near this one */
5882   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5883 ){
5884   MemPage *pPage1;
5885   int rc;
5886   u32 n;     /* Number of pages on the freelist */
5887   u32 k;     /* Number of leaves on the trunk of the freelist */
5888   MemPage *pTrunk = 0;
5889   MemPage *pPrevTrunk = 0;
5890   Pgno mxPage;     /* Total size of the database file */
5891 
5892   assert( sqlite3_mutex_held(pBt->mutex) );
5893   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5894   pPage1 = pBt->pPage1;
5895   mxPage = btreePagecount(pBt);
5896   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5897   ** stores stores the total number of pages on the freelist. */
5898   n = get4byte(&pPage1->aData[36]);
5899   testcase( n==mxPage-1 );
5900   if( n>=mxPage ){
5901     return SQLITE_CORRUPT_BKPT;
5902   }
5903   if( n>0 ){
5904     /* There are pages on the freelist.  Reuse one of those pages. */
5905     Pgno iTrunk;
5906     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5907     u32 nSearch = 0;   /* Count of the number of search attempts */
5908 
5909     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5910     ** shows that the page 'nearby' is somewhere on the free-list, then
5911     ** the entire-list will be searched for that page.
5912     */
5913 #ifndef SQLITE_OMIT_AUTOVACUUM
5914     if( eMode==BTALLOC_EXACT ){
5915       if( nearby<=mxPage ){
5916         u8 eType;
5917         assert( nearby>0 );
5918         assert( pBt->autoVacuum );
5919         rc = ptrmapGet(pBt, nearby, &eType, 0);
5920         if( rc ) return rc;
5921         if( eType==PTRMAP_FREEPAGE ){
5922           searchList = 1;
5923         }
5924       }
5925     }else if( eMode==BTALLOC_LE ){
5926       searchList = 1;
5927     }
5928 #endif
5929 
5930     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5931     ** first free-list trunk page. iPrevTrunk is initially 1.
5932     */
5933     rc = sqlite3PagerWrite(pPage1->pDbPage);
5934     if( rc ) return rc;
5935     put4byte(&pPage1->aData[36], n-1);
5936 
5937     /* The code within this loop is run only once if the 'searchList' variable
5938     ** is not true. Otherwise, it runs once for each trunk-page on the
5939     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5940     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5941     */
5942     do {
5943       pPrevTrunk = pTrunk;
5944       if( pPrevTrunk ){
5945         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5946         ** is the page number of the next freelist trunk page in the list or
5947         ** zero if this is the last freelist trunk page. */
5948         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5949       }else{
5950         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5951         ** stores the page number of the first page of the freelist, or zero if
5952         ** the freelist is empty. */
5953         iTrunk = get4byte(&pPage1->aData[32]);
5954       }
5955       testcase( iTrunk==mxPage );
5956       if( iTrunk>mxPage || nSearch++ > n ){
5957         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
5958       }else{
5959         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5960       }
5961       if( rc ){
5962         pTrunk = 0;
5963         goto end_allocate_page;
5964       }
5965       assert( pTrunk!=0 );
5966       assert( pTrunk->aData!=0 );
5967       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5968       ** is the number of leaf page pointers to follow. */
5969       k = get4byte(&pTrunk->aData[4]);
5970       if( k==0 && !searchList ){
5971         /* The trunk has no leaves and the list is not being searched.
5972         ** So extract the trunk page itself and use it as the newly
5973         ** allocated page */
5974         assert( pPrevTrunk==0 );
5975         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5976         if( rc ){
5977           goto end_allocate_page;
5978         }
5979         *pPgno = iTrunk;
5980         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5981         *ppPage = pTrunk;
5982         pTrunk = 0;
5983         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5984       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5985         /* Value of k is out of range.  Database corruption */
5986         rc = SQLITE_CORRUPT_PGNO(iTrunk);
5987         goto end_allocate_page;
5988 #ifndef SQLITE_OMIT_AUTOVACUUM
5989       }else if( searchList
5990             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5991       ){
5992         /* The list is being searched and this trunk page is the page
5993         ** to allocate, regardless of whether it has leaves.
5994         */
5995         *pPgno = iTrunk;
5996         *ppPage = pTrunk;
5997         searchList = 0;
5998         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5999         if( rc ){
6000           goto end_allocate_page;
6001         }
6002         if( k==0 ){
6003           if( !pPrevTrunk ){
6004             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6005           }else{
6006             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6007             if( rc!=SQLITE_OK ){
6008               goto end_allocate_page;
6009             }
6010             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6011           }
6012         }else{
6013           /* The trunk page is required by the caller but it contains
6014           ** pointers to free-list leaves. The first leaf becomes a trunk
6015           ** page in this case.
6016           */
6017           MemPage *pNewTrunk;
6018           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6019           if( iNewTrunk>mxPage ){
6020             rc = SQLITE_CORRUPT_PGNO(iTrunk);
6021             goto end_allocate_page;
6022           }
6023           testcase( iNewTrunk==mxPage );
6024           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6025           if( rc!=SQLITE_OK ){
6026             goto end_allocate_page;
6027           }
6028           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6029           if( rc!=SQLITE_OK ){
6030             releasePage(pNewTrunk);
6031             goto end_allocate_page;
6032           }
6033           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6034           put4byte(&pNewTrunk->aData[4], k-1);
6035           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6036           releasePage(pNewTrunk);
6037           if( !pPrevTrunk ){
6038             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6039             put4byte(&pPage1->aData[32], iNewTrunk);
6040           }else{
6041             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6042             if( rc ){
6043               goto end_allocate_page;
6044             }
6045             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6046           }
6047         }
6048         pTrunk = 0;
6049         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6050 #endif
6051       }else if( k>0 ){
6052         /* Extract a leaf from the trunk */
6053         u32 closest;
6054         Pgno iPage;
6055         unsigned char *aData = pTrunk->aData;
6056         if( nearby>0 ){
6057           u32 i;
6058           closest = 0;
6059           if( eMode==BTALLOC_LE ){
6060             for(i=0; i<k; i++){
6061               iPage = get4byte(&aData[8+i*4]);
6062               if( iPage<=nearby ){
6063                 closest = i;
6064                 break;
6065               }
6066             }
6067           }else{
6068             int dist;
6069             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6070             for(i=1; i<k; i++){
6071               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6072               if( d2<dist ){
6073                 closest = i;
6074                 dist = d2;
6075               }
6076             }
6077           }
6078         }else{
6079           closest = 0;
6080         }
6081 
6082         iPage = get4byte(&aData[8+closest*4]);
6083         testcase( iPage==mxPage );
6084         if( iPage>mxPage ){
6085           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6086           goto end_allocate_page;
6087         }
6088         testcase( iPage==mxPage );
6089         if( !searchList
6090          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6091         ){
6092           int noContent;
6093           *pPgno = iPage;
6094           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6095                  ": %d more free pages\n",
6096                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6097           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6098           if( rc ) goto end_allocate_page;
6099           if( closest<k-1 ){
6100             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6101           }
6102           put4byte(&aData[4], k-1);
6103           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6104           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6105           if( rc==SQLITE_OK ){
6106             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6107             if( rc!=SQLITE_OK ){
6108               releasePage(*ppPage);
6109               *ppPage = 0;
6110             }
6111           }
6112           searchList = 0;
6113         }
6114       }
6115       releasePage(pPrevTrunk);
6116       pPrevTrunk = 0;
6117     }while( searchList );
6118   }else{
6119     /* There are no pages on the freelist, so append a new page to the
6120     ** database image.
6121     **
6122     ** Normally, new pages allocated by this block can be requested from the
6123     ** pager layer with the 'no-content' flag set. This prevents the pager
6124     ** from trying to read the pages content from disk. However, if the
6125     ** current transaction has already run one or more incremental-vacuum
6126     ** steps, then the page we are about to allocate may contain content
6127     ** that is required in the event of a rollback. In this case, do
6128     ** not set the no-content flag. This causes the pager to load and journal
6129     ** the current page content before overwriting it.
6130     **
6131     ** Note that the pager will not actually attempt to load or journal
6132     ** content for any page that really does lie past the end of the database
6133     ** file on disk. So the effects of disabling the no-content optimization
6134     ** here are confined to those pages that lie between the end of the
6135     ** database image and the end of the database file.
6136     */
6137     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6138 
6139     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6140     if( rc ) return rc;
6141     pBt->nPage++;
6142     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6143 
6144 #ifndef SQLITE_OMIT_AUTOVACUUM
6145     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6146       /* If *pPgno refers to a pointer-map page, allocate two new pages
6147       ** at the end of the file instead of one. The first allocated page
6148       ** becomes a new pointer-map page, the second is used by the caller.
6149       */
6150       MemPage *pPg = 0;
6151       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6152       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6153       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6154       if( rc==SQLITE_OK ){
6155         rc = sqlite3PagerWrite(pPg->pDbPage);
6156         releasePage(pPg);
6157       }
6158       if( rc ) return rc;
6159       pBt->nPage++;
6160       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6161     }
6162 #endif
6163     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6164     *pPgno = pBt->nPage;
6165 
6166     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6167     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6168     if( rc ) return rc;
6169     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6170     if( rc!=SQLITE_OK ){
6171       releasePage(*ppPage);
6172       *ppPage = 0;
6173     }
6174     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6175   }
6176 
6177   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6178 
6179 end_allocate_page:
6180   releasePage(pTrunk);
6181   releasePage(pPrevTrunk);
6182   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6183   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6184   return rc;
6185 }
6186 
6187 /*
6188 ** This function is used to add page iPage to the database file free-list.
6189 ** It is assumed that the page is not already a part of the free-list.
6190 **
6191 ** The value passed as the second argument to this function is optional.
6192 ** If the caller happens to have a pointer to the MemPage object
6193 ** corresponding to page iPage handy, it may pass it as the second value.
6194 ** Otherwise, it may pass NULL.
6195 **
6196 ** If a pointer to a MemPage object is passed as the second argument,
6197 ** its reference count is not altered by this function.
6198 */
6199 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6200   MemPage *pTrunk = 0;                /* Free-list trunk page */
6201   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6202   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6203   MemPage *pPage;                     /* Page being freed. May be NULL. */
6204   int rc;                             /* Return Code */
6205   u32 nFree;                          /* Initial number of pages on free-list */
6206 
6207   assert( sqlite3_mutex_held(pBt->mutex) );
6208   assert( CORRUPT_DB || iPage>1 );
6209   assert( !pMemPage || pMemPage->pgno==iPage );
6210 
6211   if( iPage<2 || iPage>pBt->nPage ){
6212     return SQLITE_CORRUPT_BKPT;
6213   }
6214   if( pMemPage ){
6215     pPage = pMemPage;
6216     sqlite3PagerRef(pPage->pDbPage);
6217   }else{
6218     pPage = btreePageLookup(pBt, iPage);
6219   }
6220 
6221   /* Increment the free page count on pPage1 */
6222   rc = sqlite3PagerWrite(pPage1->pDbPage);
6223   if( rc ) goto freepage_out;
6224   nFree = get4byte(&pPage1->aData[36]);
6225   put4byte(&pPage1->aData[36], nFree+1);
6226 
6227   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6228     /* If the secure_delete option is enabled, then
6229     ** always fully overwrite deleted information with zeros.
6230     */
6231     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6232      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6233     ){
6234       goto freepage_out;
6235     }
6236     memset(pPage->aData, 0, pPage->pBt->pageSize);
6237   }
6238 
6239   /* If the database supports auto-vacuum, write an entry in the pointer-map
6240   ** to indicate that the page is free.
6241   */
6242   if( ISAUTOVACUUM ){
6243     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6244     if( rc ) goto freepage_out;
6245   }
6246 
6247   /* Now manipulate the actual database free-list structure. There are two
6248   ** possibilities. If the free-list is currently empty, or if the first
6249   ** trunk page in the free-list is full, then this page will become a
6250   ** new free-list trunk page. Otherwise, it will become a leaf of the
6251   ** first trunk page in the current free-list. This block tests if it
6252   ** is possible to add the page as a new free-list leaf.
6253   */
6254   if( nFree!=0 ){
6255     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6256 
6257     iTrunk = get4byte(&pPage1->aData[32]);
6258     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6259     if( rc!=SQLITE_OK ){
6260       goto freepage_out;
6261     }
6262 
6263     nLeaf = get4byte(&pTrunk->aData[4]);
6264     assert( pBt->usableSize>32 );
6265     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6266       rc = SQLITE_CORRUPT_BKPT;
6267       goto freepage_out;
6268     }
6269     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6270       /* In this case there is room on the trunk page to insert the page
6271       ** being freed as a new leaf.
6272       **
6273       ** Note that the trunk page is not really full until it contains
6274       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6275       ** coded.  But due to a coding error in versions of SQLite prior to
6276       ** 3.6.0, databases with freelist trunk pages holding more than
6277       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6278       ** to maintain backwards compatibility with older versions of SQLite,
6279       ** we will continue to restrict the number of entries to usableSize/4 - 8
6280       ** for now.  At some point in the future (once everyone has upgraded
6281       ** to 3.6.0 or later) we should consider fixing the conditional above
6282       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6283       **
6284       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6285       ** avoid using the last six entries in the freelist trunk page array in
6286       ** order that database files created by newer versions of SQLite can be
6287       ** read by older versions of SQLite.
6288       */
6289       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6290       if( rc==SQLITE_OK ){
6291         put4byte(&pTrunk->aData[4], nLeaf+1);
6292         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6293         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6294           sqlite3PagerDontWrite(pPage->pDbPage);
6295         }
6296         rc = btreeSetHasContent(pBt, iPage);
6297       }
6298       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6299       goto freepage_out;
6300     }
6301   }
6302 
6303   /* If control flows to this point, then it was not possible to add the
6304   ** the page being freed as a leaf page of the first trunk in the free-list.
6305   ** Possibly because the free-list is empty, or possibly because the
6306   ** first trunk in the free-list is full. Either way, the page being freed
6307   ** will become the new first trunk page in the free-list.
6308   */
6309   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6310     goto freepage_out;
6311   }
6312   rc = sqlite3PagerWrite(pPage->pDbPage);
6313   if( rc!=SQLITE_OK ){
6314     goto freepage_out;
6315   }
6316   put4byte(pPage->aData, iTrunk);
6317   put4byte(&pPage->aData[4], 0);
6318   put4byte(&pPage1->aData[32], iPage);
6319   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6320 
6321 freepage_out:
6322   if( pPage ){
6323     pPage->isInit = 0;
6324   }
6325   releasePage(pPage);
6326   releasePage(pTrunk);
6327   return rc;
6328 }
6329 static void freePage(MemPage *pPage, int *pRC){
6330   if( (*pRC)==SQLITE_OK ){
6331     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6332   }
6333 }
6334 
6335 /*
6336 ** Free any overflow pages associated with the given Cell.  Store
6337 ** size information about the cell in pInfo.
6338 */
6339 static int clearCell(
6340   MemPage *pPage,          /* The page that contains the Cell */
6341   unsigned char *pCell,    /* First byte of the Cell */
6342   CellInfo *pInfo          /* Size information about the cell */
6343 ){
6344   BtShared *pBt;
6345   Pgno ovflPgno;
6346   int rc;
6347   int nOvfl;
6348   u32 ovflPageSize;
6349 
6350   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6351   pPage->xParseCell(pPage, pCell, pInfo);
6352   if( pInfo->nLocal==pInfo->nPayload ){
6353     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
6354   }
6355   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6356   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6357   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6358     /* Cell extends past end of page */
6359     return SQLITE_CORRUPT_PAGE(pPage);
6360   }
6361   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6362   pBt = pPage->pBt;
6363   assert( pBt->usableSize > 4 );
6364   ovflPageSize = pBt->usableSize - 4;
6365   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6366   assert( nOvfl>0 ||
6367     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6368   );
6369   while( nOvfl-- ){
6370     Pgno iNext = 0;
6371     MemPage *pOvfl = 0;
6372     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6373       /* 0 is not a legal page number and page 1 cannot be an
6374       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6375       ** file the database must be corrupt. */
6376       return SQLITE_CORRUPT_BKPT;
6377     }
6378     if( nOvfl ){
6379       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6380       if( rc ) return rc;
6381     }
6382 
6383     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6384      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6385     ){
6386       /* There is no reason any cursor should have an outstanding reference
6387       ** to an overflow page belonging to a cell that is being deleted/updated.
6388       ** So if there exists more than one reference to this page, then it
6389       ** must not really be an overflow page and the database must be corrupt.
6390       ** It is helpful to detect this before calling freePage2(), as
6391       ** freePage2() may zero the page contents if secure-delete mode is
6392       ** enabled. If this 'overflow' page happens to be a page that the
6393       ** caller is iterating through or using in some other way, this
6394       ** can be problematic.
6395       */
6396       rc = SQLITE_CORRUPT_BKPT;
6397     }else{
6398       rc = freePage2(pBt, pOvfl, ovflPgno);
6399     }
6400 
6401     if( pOvfl ){
6402       sqlite3PagerUnref(pOvfl->pDbPage);
6403     }
6404     if( rc ) return rc;
6405     ovflPgno = iNext;
6406   }
6407   return SQLITE_OK;
6408 }
6409 
6410 /*
6411 ** Create the byte sequence used to represent a cell on page pPage
6412 ** and write that byte sequence into pCell[].  Overflow pages are
6413 ** allocated and filled in as necessary.  The calling procedure
6414 ** is responsible for making sure sufficient space has been allocated
6415 ** for pCell[].
6416 **
6417 ** Note that pCell does not necessary need to point to the pPage->aData
6418 ** area.  pCell might point to some temporary storage.  The cell will
6419 ** be constructed in this temporary area then copied into pPage->aData
6420 ** later.
6421 */
6422 static int fillInCell(
6423   MemPage *pPage,                /* The page that contains the cell */
6424   unsigned char *pCell,          /* Complete text of the cell */
6425   const BtreePayload *pX,        /* Payload with which to construct the cell */
6426   int *pnSize                    /* Write cell size here */
6427 ){
6428   int nPayload;
6429   const u8 *pSrc;
6430   int nSrc, n, rc, mn;
6431   int spaceLeft;
6432   MemPage *pToRelease;
6433   unsigned char *pPrior;
6434   unsigned char *pPayload;
6435   BtShared *pBt;
6436   Pgno pgnoOvfl;
6437   int nHeader;
6438 
6439   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6440 
6441   /* pPage is not necessarily writeable since pCell might be auxiliary
6442   ** buffer space that is separate from the pPage buffer area */
6443   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6444             || sqlite3PagerIswriteable(pPage->pDbPage) );
6445 
6446   /* Fill in the header. */
6447   nHeader = pPage->childPtrSize;
6448   if( pPage->intKey ){
6449     nPayload = pX->nData + pX->nZero;
6450     pSrc = pX->pData;
6451     nSrc = pX->nData;
6452     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6453     nHeader += putVarint32(&pCell[nHeader], nPayload);
6454     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6455   }else{
6456     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6457     nSrc = nPayload = (int)pX->nKey;
6458     pSrc = pX->pKey;
6459     nHeader += putVarint32(&pCell[nHeader], nPayload);
6460   }
6461 
6462   /* Fill in the payload */
6463   pPayload = &pCell[nHeader];
6464   if( nPayload<=pPage->maxLocal ){
6465     /* This is the common case where everything fits on the btree page
6466     ** and no overflow pages are required. */
6467     n = nHeader + nPayload;
6468     testcase( n==3 );
6469     testcase( n==4 );
6470     if( n<4 ) n = 4;
6471     *pnSize = n;
6472     assert( nSrc<=nPayload );
6473     testcase( nSrc<nPayload );
6474     memcpy(pPayload, pSrc, nSrc);
6475     memset(pPayload+nSrc, 0, nPayload-nSrc);
6476     return SQLITE_OK;
6477   }
6478 
6479   /* If we reach this point, it means that some of the content will need
6480   ** to spill onto overflow pages.
6481   */
6482   mn = pPage->minLocal;
6483   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6484   testcase( n==pPage->maxLocal );
6485   testcase( n==pPage->maxLocal+1 );
6486   if( n > pPage->maxLocal ) n = mn;
6487   spaceLeft = n;
6488   *pnSize = n + nHeader + 4;
6489   pPrior = &pCell[nHeader+n];
6490   pToRelease = 0;
6491   pgnoOvfl = 0;
6492   pBt = pPage->pBt;
6493 
6494   /* At this point variables should be set as follows:
6495   **
6496   **   nPayload           Total payload size in bytes
6497   **   pPayload           Begin writing payload here
6498   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6499   **                      that means content must spill into overflow pages.
6500   **   *pnSize            Size of the local cell (not counting overflow pages)
6501   **   pPrior             Where to write the pgno of the first overflow page
6502   **
6503   ** Use a call to btreeParseCellPtr() to verify that the values above
6504   ** were computed correctly.
6505   */
6506 #ifdef SQLITE_DEBUG
6507   {
6508     CellInfo info;
6509     pPage->xParseCell(pPage, pCell, &info);
6510     assert( nHeader==(int)(info.pPayload - pCell) );
6511     assert( info.nKey==pX->nKey );
6512     assert( *pnSize == info.nSize );
6513     assert( spaceLeft == info.nLocal );
6514   }
6515 #endif
6516 
6517   /* Write the payload into the local Cell and any extra into overflow pages */
6518   while( 1 ){
6519     n = nPayload;
6520     if( n>spaceLeft ) n = spaceLeft;
6521 
6522     /* If pToRelease is not zero than pPayload points into the data area
6523     ** of pToRelease.  Make sure pToRelease is still writeable. */
6524     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6525 
6526     /* If pPayload is part of the data area of pPage, then make sure pPage
6527     ** is still writeable */
6528     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6529             || sqlite3PagerIswriteable(pPage->pDbPage) );
6530 
6531     if( nSrc>=n ){
6532       memcpy(pPayload, pSrc, n);
6533     }else if( nSrc>0 ){
6534       n = nSrc;
6535       memcpy(pPayload, pSrc, n);
6536     }else{
6537       memset(pPayload, 0, n);
6538     }
6539     nPayload -= n;
6540     if( nPayload<=0 ) break;
6541     pPayload += n;
6542     pSrc += n;
6543     nSrc -= n;
6544     spaceLeft -= n;
6545     if( spaceLeft==0 ){
6546       MemPage *pOvfl = 0;
6547 #ifndef SQLITE_OMIT_AUTOVACUUM
6548       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6549       if( pBt->autoVacuum ){
6550         do{
6551           pgnoOvfl++;
6552         } while(
6553           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6554         );
6555       }
6556 #endif
6557       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6558 #ifndef SQLITE_OMIT_AUTOVACUUM
6559       /* If the database supports auto-vacuum, and the second or subsequent
6560       ** overflow page is being allocated, add an entry to the pointer-map
6561       ** for that page now.
6562       **
6563       ** If this is the first overflow page, then write a partial entry
6564       ** to the pointer-map. If we write nothing to this pointer-map slot,
6565       ** then the optimistic overflow chain processing in clearCell()
6566       ** may misinterpret the uninitialized values and delete the
6567       ** wrong pages from the database.
6568       */
6569       if( pBt->autoVacuum && rc==SQLITE_OK ){
6570         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6571         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6572         if( rc ){
6573           releasePage(pOvfl);
6574         }
6575       }
6576 #endif
6577       if( rc ){
6578         releasePage(pToRelease);
6579         return rc;
6580       }
6581 
6582       /* If pToRelease is not zero than pPrior points into the data area
6583       ** of pToRelease.  Make sure pToRelease is still writeable. */
6584       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6585 
6586       /* If pPrior is part of the data area of pPage, then make sure pPage
6587       ** is still writeable */
6588       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6589             || sqlite3PagerIswriteable(pPage->pDbPage) );
6590 
6591       put4byte(pPrior, pgnoOvfl);
6592       releasePage(pToRelease);
6593       pToRelease = pOvfl;
6594       pPrior = pOvfl->aData;
6595       put4byte(pPrior, 0);
6596       pPayload = &pOvfl->aData[4];
6597       spaceLeft = pBt->usableSize - 4;
6598     }
6599   }
6600   releasePage(pToRelease);
6601   return SQLITE_OK;
6602 }
6603 
6604 /*
6605 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6606 ** The cell content is not freed or deallocated.  It is assumed that
6607 ** the cell content has been copied someplace else.  This routine just
6608 ** removes the reference to the cell from pPage.
6609 **
6610 ** "sz" must be the number of bytes in the cell.
6611 */
6612 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6613   u32 pc;         /* Offset to cell content of cell being deleted */
6614   u8 *data;       /* pPage->aData */
6615   u8 *ptr;        /* Used to move bytes around within data[] */
6616   int rc;         /* The return code */
6617   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6618 
6619   if( *pRC ) return;
6620   assert( idx>=0 && idx<pPage->nCell );
6621   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6622   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6623   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6624   assert( pPage->nFree>=0 );
6625   data = pPage->aData;
6626   ptr = &pPage->aCellIdx[2*idx];
6627   pc = get2byte(ptr);
6628   hdr = pPage->hdrOffset;
6629   testcase( pc==get2byte(&data[hdr+5]) );
6630   testcase( pc+sz==pPage->pBt->usableSize );
6631   if( pc+sz > pPage->pBt->usableSize ){
6632     *pRC = SQLITE_CORRUPT_BKPT;
6633     return;
6634   }
6635   rc = freeSpace(pPage, pc, sz);
6636   if( rc ){
6637     *pRC = rc;
6638     return;
6639   }
6640   pPage->nCell--;
6641   if( pPage->nCell==0 ){
6642     memset(&data[hdr+1], 0, 4);
6643     data[hdr+7] = 0;
6644     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6645     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6646                        - pPage->childPtrSize - 8;
6647   }else{
6648     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6649     put2byte(&data[hdr+3], pPage->nCell);
6650     pPage->nFree += 2;
6651   }
6652 }
6653 
6654 /*
6655 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6656 ** content of the cell.
6657 **
6658 ** If the cell content will fit on the page, then put it there.  If it
6659 ** will not fit, then make a copy of the cell content into pTemp if
6660 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6661 ** in pPage->apOvfl[] and make it point to the cell content (either
6662 ** in pTemp or the original pCell) and also record its index.
6663 ** Allocating a new entry in pPage->aCell[] implies that
6664 ** pPage->nOverflow is incremented.
6665 **
6666 ** *pRC must be SQLITE_OK when this routine is called.
6667 */
6668 static void insertCell(
6669   MemPage *pPage,   /* Page into which we are copying */
6670   int i,            /* New cell becomes the i-th cell of the page */
6671   u8 *pCell,        /* Content of the new cell */
6672   int sz,           /* Bytes of content in pCell */
6673   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6674   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6675   int *pRC          /* Read and write return code from here */
6676 ){
6677   int idx = 0;      /* Where to write new cell content in data[] */
6678   int j;            /* Loop counter */
6679   u8 *data;         /* The content of the whole page */
6680   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6681 
6682   assert( *pRC==SQLITE_OK );
6683   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6684   assert( MX_CELL(pPage->pBt)<=10921 );
6685   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6686   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6687   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6688   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6689   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
6690   assert( pPage->nFree>=0 );
6691   if( pPage->nOverflow || sz+2>pPage->nFree ){
6692     if( pTemp ){
6693       memcpy(pTemp, pCell, sz);
6694       pCell = pTemp;
6695     }
6696     if( iChild ){
6697       put4byte(pCell, iChild);
6698     }
6699     j = pPage->nOverflow++;
6700     /* Comparison against ArraySize-1 since we hold back one extra slot
6701     ** as a contingency.  In other words, never need more than 3 overflow
6702     ** slots but 4 are allocated, just to be safe. */
6703     assert( j < ArraySize(pPage->apOvfl)-1 );
6704     pPage->apOvfl[j] = pCell;
6705     pPage->aiOvfl[j] = (u16)i;
6706 
6707     /* When multiple overflows occur, they are always sequential and in
6708     ** sorted order.  This invariants arise because multiple overflows can
6709     ** only occur when inserting divider cells into the parent page during
6710     ** balancing, and the dividers are adjacent and sorted.
6711     */
6712     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6713     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6714   }else{
6715     int rc = sqlite3PagerWrite(pPage->pDbPage);
6716     if( rc!=SQLITE_OK ){
6717       *pRC = rc;
6718       return;
6719     }
6720     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6721     data = pPage->aData;
6722     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6723     rc = allocateSpace(pPage, sz, &idx);
6724     if( rc ){ *pRC = rc; return; }
6725     /* The allocateSpace() routine guarantees the following properties
6726     ** if it returns successfully */
6727     assert( idx >= 0 );
6728     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6729     assert( idx+sz <= (int)pPage->pBt->usableSize );
6730     pPage->nFree -= (u16)(2 + sz);
6731     if( iChild ){
6732       /* In a corrupt database where an entry in the cell index section of
6733       ** a btree page has a value of 3 or less, the pCell value might point
6734       ** as many as 4 bytes in front of the start of the aData buffer for
6735       ** the source page.  Make sure this does not cause problems by not
6736       ** reading the first 4 bytes */
6737       memcpy(&data[idx+4], pCell+4, sz-4);
6738       put4byte(&data[idx], iChild);
6739     }else{
6740       memcpy(&data[idx], pCell, sz);
6741     }
6742     pIns = pPage->aCellIdx + i*2;
6743     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6744     put2byte(pIns, idx);
6745     pPage->nCell++;
6746     /* increment the cell count */
6747     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6748     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
6749 #ifndef SQLITE_OMIT_AUTOVACUUM
6750     if( pPage->pBt->autoVacuum ){
6751       /* The cell may contain a pointer to an overflow page. If so, write
6752       ** the entry for the overflow page into the pointer map.
6753       */
6754       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
6755     }
6756 #endif
6757   }
6758 }
6759 
6760 /*
6761 ** The following parameters determine how many adjacent pages get involved
6762 ** in a balancing operation.  NN is the number of neighbors on either side
6763 ** of the page that participate in the balancing operation.  NB is the
6764 ** total number of pages that participate, including the target page and
6765 ** NN neighbors on either side.
6766 **
6767 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6768 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6769 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6770 ** The value of NN appears to give the best results overall.
6771 **
6772 ** (Later:) The description above makes it seem as if these values are
6773 ** tunable - as if you could change them and recompile and it would all work.
6774 ** But that is unlikely.  NB has been 3 since the inception of SQLite and
6775 ** we have never tested any other value.
6776 */
6777 #define NN 1             /* Number of neighbors on either side of pPage */
6778 #define NB 3             /* (NN*2+1): Total pages involved in the balance */
6779 
6780 /*
6781 ** A CellArray object contains a cache of pointers and sizes for a
6782 ** consecutive sequence of cells that might be held on multiple pages.
6783 **
6784 ** The cells in this array are the divider cell or cells from the pParent
6785 ** page plus up to three child pages.  There are a total of nCell cells.
6786 **
6787 ** pRef is a pointer to one of the pages that contributes cells.  This is
6788 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6789 ** which should be common to all pages that contribute cells to this array.
6790 **
6791 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
6792 ** cell and the size of each cell.  Some of the apCell[] pointers might refer
6793 ** to overflow cells.  In other words, some apCel[] pointers might not point
6794 ** to content area of the pages.
6795 **
6796 ** A szCell[] of zero means the size of that cell has not yet been computed.
6797 **
6798 ** The cells come from as many as four different pages:
6799 **
6800 **             -----------
6801 **             | Parent  |
6802 **             -----------
6803 **            /     |     \
6804 **           /      |      \
6805 **  ---------   ---------   ---------
6806 **  |Child-1|   |Child-2|   |Child-3|
6807 **  ---------   ---------   ---------
6808 **
6809 ** The order of cells is in the array is for an index btree is:
6810 **
6811 **       1.  All cells from Child-1 in order
6812 **       2.  The first divider cell from Parent
6813 **       3.  All cells from Child-2 in order
6814 **       4.  The second divider cell from Parent
6815 **       5.  All cells from Child-3 in order
6816 **
6817 ** For a table-btree (with rowids) the items 2 and 4 are empty because
6818 ** content exists only in leaves and there are no divider cells.
6819 **
6820 ** For an index btree, the apEnd[] array holds pointer to the end of page
6821 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6822 ** respectively. The ixNx[] array holds the number of cells contained in
6823 ** each of these 5 stages, and all stages to the left.  Hence:
6824 **
6825 **    ixNx[0] = Number of cells in Child-1.
6826 **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6827 **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6828 **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6829 **    ixNx[4] = Total number of cells.
6830 **
6831 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6832 ** are used and they point to the leaf pages only, and the ixNx value are:
6833 **
6834 **    ixNx[0] = Number of cells in Child-1.
6835 **    ixNx[1] = Number of cells in Child-1 and Child-2.
6836 **    ixNx[2] = Total number of cells.
6837 **
6838 ** Sometimes when deleting, a child page can have zero cells.  In those
6839 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6840 ** entries, shift down.  The end result is that each ixNx[] entry should
6841 ** be larger than the previous
6842 */
6843 typedef struct CellArray CellArray;
6844 struct CellArray {
6845   int nCell;              /* Number of cells in apCell[] */
6846   MemPage *pRef;          /* Reference page */
6847   u8 **apCell;            /* All cells begin balanced */
6848   u16 *szCell;            /* Local size of all cells in apCell[] */
6849   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */
6850   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */
6851 };
6852 
6853 /*
6854 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6855 ** computed.
6856 */
6857 static void populateCellCache(CellArray *p, int idx, int N){
6858   assert( idx>=0 && idx+N<=p->nCell );
6859   while( N>0 ){
6860     assert( p->apCell[idx]!=0 );
6861     if( p->szCell[idx]==0 ){
6862       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6863     }else{
6864       assert( CORRUPT_DB ||
6865               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6866     }
6867     idx++;
6868     N--;
6869   }
6870 }
6871 
6872 /*
6873 ** Return the size of the Nth element of the cell array
6874 */
6875 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6876   assert( N>=0 && N<p->nCell );
6877   assert( p->szCell[N]==0 );
6878   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6879   return p->szCell[N];
6880 }
6881 static u16 cachedCellSize(CellArray *p, int N){
6882   assert( N>=0 && N<p->nCell );
6883   if( p->szCell[N] ) return p->szCell[N];
6884   return computeCellSize(p, N);
6885 }
6886 
6887 /*
6888 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6889 ** szCell[] array contains the size in bytes of each cell. This function
6890 ** replaces the current contents of page pPg with the contents of the cell
6891 ** array.
6892 **
6893 ** Some of the cells in apCell[] may currently be stored in pPg. This
6894 ** function works around problems caused by this by making a copy of any
6895 ** such cells before overwriting the page data.
6896 **
6897 ** The MemPage.nFree field is invalidated by this function. It is the
6898 ** responsibility of the caller to set it correctly.
6899 */
6900 static int rebuildPage(
6901   CellArray *pCArray,             /* Content to be added to page pPg */
6902   int iFirst,                     /* First cell in pCArray to use */
6903   int nCell,                      /* Final number of cells on page */
6904   MemPage *pPg                    /* The page to be reconstructed */
6905 ){
6906   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6907   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6908   const int usableSize = pPg->pBt->usableSize;
6909   u8 * const pEnd = &aData[usableSize];
6910   int i = iFirst;                 /* Which cell to copy from pCArray*/
6911   u32 j;                          /* Start of cell content area */
6912   int iEnd = i+nCell;             /* Loop terminator */
6913   u8 *pCellptr = pPg->aCellIdx;
6914   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6915   u8 *pData;
6916   int k;                          /* Current slot in pCArray->apEnd[] */
6917   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */
6918 
6919   assert( i<iEnd );
6920   j = get2byte(&aData[hdr+5]);
6921   if( j>(u32)usableSize ){ j = 0; }
6922   memcpy(&pTmp[j], &aData[j], usableSize - j);
6923 
6924   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6925   pSrcEnd = pCArray->apEnd[k];
6926 
6927   pData = pEnd;
6928   while( 1/*exit by break*/ ){
6929     u8 *pCell = pCArray->apCell[i];
6930     u16 sz = pCArray->szCell[i];
6931     assert( sz>0 );
6932     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6933       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
6934       pCell = &pTmp[pCell - aData];
6935     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6936            && (uptr)(pCell)<(uptr)pSrcEnd
6937     ){
6938       return SQLITE_CORRUPT_BKPT;
6939     }
6940 
6941     pData -= sz;
6942     put2byte(pCellptr, (pData - aData));
6943     pCellptr += 2;
6944     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6945     memcpy(pData, pCell, sz);
6946     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6947     testcase( sz!=pPg->xCellSize(pPg,pCell) );
6948     i++;
6949     if( i>=iEnd ) break;
6950     if( pCArray->ixNx[k]<=i ){
6951       k++;
6952       pSrcEnd = pCArray->apEnd[k];
6953     }
6954   }
6955 
6956   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6957   pPg->nCell = nCell;
6958   pPg->nOverflow = 0;
6959 
6960   put2byte(&aData[hdr+1], 0);
6961   put2byte(&aData[hdr+3], pPg->nCell);
6962   put2byte(&aData[hdr+5], pData - aData);
6963   aData[hdr+7] = 0x00;
6964   return SQLITE_OK;
6965 }
6966 
6967 /*
6968 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
6969 ** This function attempts to add the cells stored in the array to page pPg.
6970 ** If it cannot (because the page needs to be defragmented before the cells
6971 ** will fit), non-zero is returned. Otherwise, if the cells are added
6972 ** successfully, zero is returned.
6973 **
6974 ** Argument pCellptr points to the first entry in the cell-pointer array
6975 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6976 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6977 ** cell in the array. It is the responsibility of the caller to ensure
6978 ** that it is safe to overwrite this part of the cell-pointer array.
6979 **
6980 ** When this function is called, *ppData points to the start of the
6981 ** content area on page pPg. If the size of the content area is extended,
6982 ** *ppData is updated to point to the new start of the content area
6983 ** before returning.
6984 **
6985 ** Finally, argument pBegin points to the byte immediately following the
6986 ** end of the space required by this page for the cell-pointer area (for
6987 ** all cells - not just those inserted by the current call). If the content
6988 ** area must be extended to before this point in order to accomodate all
6989 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6990 */
6991 static int pageInsertArray(
6992   MemPage *pPg,                   /* Page to add cells to */
6993   u8 *pBegin,                     /* End of cell-pointer array */
6994   u8 **ppData,                    /* IN/OUT: Page content-area pointer */
6995   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6996   int iFirst,                     /* Index of first cell to add */
6997   int nCell,                      /* Number of cells to add to pPg */
6998   CellArray *pCArray              /* Array of cells */
6999 ){
7000   int i = iFirst;                 /* Loop counter - cell index to insert */
7001   u8 *aData = pPg->aData;         /* Complete page */
7002   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */
7003   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */
7004   int k;                          /* Current slot in pCArray->apEnd[] */
7005   u8 *pEnd;                       /* Maximum extent of cell data */
7006   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
7007   if( iEnd<=iFirst ) return 0;
7008   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7009   pEnd = pCArray->apEnd[k];
7010   while( 1 /*Exit by break*/ ){
7011     int sz, rc;
7012     u8 *pSlot;
7013     assert( pCArray->szCell[i]!=0 );
7014     sz = pCArray->szCell[i];
7015     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7016       if( (pData - pBegin)<sz ) return 1;
7017       pData -= sz;
7018       pSlot = pData;
7019     }
7020     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7021     ** database.  But they might for a corrupt database.  Hence use memmove()
7022     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7023     assert( (pSlot+sz)<=pCArray->apCell[i]
7024          || pSlot>=(pCArray->apCell[i]+sz)
7025          || CORRUPT_DB );
7026     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7027      && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7028     ){
7029       assert( CORRUPT_DB );
7030       (void)SQLITE_CORRUPT_BKPT;
7031       return 1;
7032     }
7033     memmove(pSlot, pCArray->apCell[i], sz);
7034     put2byte(pCellptr, (pSlot - aData));
7035     pCellptr += 2;
7036     i++;
7037     if( i>=iEnd ) break;
7038     if( pCArray->ixNx[k]<=i ){
7039       k++;
7040       pEnd = pCArray->apEnd[k];
7041     }
7042   }
7043   *ppData = pData;
7044   return 0;
7045 }
7046 
7047 /*
7048 ** The pCArray object contains pointers to b-tree cells and their sizes.
7049 **
7050 ** This function adds the space associated with each cell in the array
7051 ** that is currently stored within the body of pPg to the pPg free-list.
7052 ** The cell-pointers and other fields of the page are not updated.
7053 **
7054 ** This function returns the total number of cells added to the free-list.
7055 */
7056 static int pageFreeArray(
7057   MemPage *pPg,                   /* Page to edit */
7058   int iFirst,                     /* First cell to delete */
7059   int nCell,                      /* Cells to delete */
7060   CellArray *pCArray              /* Array of cells */
7061 ){
7062   u8 * const aData = pPg->aData;
7063   u8 * const pEnd = &aData[pPg->pBt->usableSize];
7064   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7065   int nRet = 0;
7066   int i;
7067   int iEnd = iFirst + nCell;
7068   u8 *pFree = 0;
7069   int szFree = 0;
7070 
7071   for(i=iFirst; i<iEnd; i++){
7072     u8 *pCell = pCArray->apCell[i];
7073     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7074       int sz;
7075       /* No need to use cachedCellSize() here.  The sizes of all cells that
7076       ** are to be freed have already been computing while deciding which
7077       ** cells need freeing */
7078       sz = pCArray->szCell[i];  assert( sz>0 );
7079       if( pFree!=(pCell + sz) ){
7080         if( pFree ){
7081           assert( pFree>aData && (pFree - aData)<65536 );
7082           freeSpace(pPg, (u16)(pFree - aData), szFree);
7083         }
7084         pFree = pCell;
7085         szFree = sz;
7086         if( pFree+sz>pEnd ) return 0;
7087       }else{
7088         pFree = pCell;
7089         szFree += sz;
7090       }
7091       nRet++;
7092     }
7093   }
7094   if( pFree ){
7095     assert( pFree>aData && (pFree - aData)<65536 );
7096     freeSpace(pPg, (u16)(pFree - aData), szFree);
7097   }
7098   return nRet;
7099 }
7100 
7101 /*
7102 ** pCArray contains pointers to and sizes of all cells in the page being
7103 ** balanced.  The current page, pPg, has pPg->nCell cells starting with
7104 ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells
7105 ** starting at apCell[iNew].
7106 **
7107 ** This routine makes the necessary adjustments to pPg so that it contains
7108 ** the correct cells after being balanced.
7109 **
7110 ** The pPg->nFree field is invalid when this function returns. It is the
7111 ** responsibility of the caller to set it correctly.
7112 */
7113 static int editPage(
7114   MemPage *pPg,                   /* Edit this page */
7115   int iOld,                       /* Index of first cell currently on page */
7116   int iNew,                       /* Index of new first cell on page */
7117   int nNew,                       /* Final number of cells on page */
7118   CellArray *pCArray              /* Array of cells and sizes */
7119 ){
7120   u8 * const aData = pPg->aData;
7121   const int hdr = pPg->hdrOffset;
7122   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7123   int nCell = pPg->nCell;       /* Cells stored on pPg */
7124   u8 *pData;
7125   u8 *pCellptr;
7126   int i;
7127   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7128   int iNewEnd = iNew + nNew;
7129 
7130 #ifdef SQLITE_DEBUG
7131   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7132   memcpy(pTmp, aData, pPg->pBt->usableSize);
7133 #endif
7134 
7135   /* Remove cells from the start and end of the page */
7136   assert( nCell>=0 );
7137   if( iOld<iNew ){
7138     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7139     if( nShift>nCell ) return SQLITE_CORRUPT_BKPT;
7140     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7141     nCell -= nShift;
7142   }
7143   if( iNewEnd < iOldEnd ){
7144     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7145     assert( nCell>=nTail );
7146     nCell -= nTail;
7147   }
7148 
7149   pData = &aData[get2byteNotZero(&aData[hdr+5])];
7150   if( pData<pBegin ) goto editpage_fail;
7151 
7152   /* Add cells to the start of the page */
7153   if( iNew<iOld ){
7154     int nAdd = MIN(nNew,iOld-iNew);
7155     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7156     assert( nAdd>=0 );
7157     pCellptr = pPg->aCellIdx;
7158     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7159     if( pageInsertArray(
7160           pPg, pBegin, &pData, pCellptr,
7161           iNew, nAdd, pCArray
7162     ) ) goto editpage_fail;
7163     nCell += nAdd;
7164   }
7165 
7166   /* Add any overflow cells */
7167   for(i=0; i<pPg->nOverflow; i++){
7168     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7169     if( iCell>=0 && iCell<nNew ){
7170       pCellptr = &pPg->aCellIdx[iCell * 2];
7171       if( nCell>iCell ){
7172         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7173       }
7174       nCell++;
7175       cachedCellSize(pCArray, iCell+iNew);
7176       if( pageInsertArray(
7177             pPg, pBegin, &pData, pCellptr,
7178             iCell+iNew, 1, pCArray
7179       ) ) goto editpage_fail;
7180     }
7181   }
7182 
7183   /* Append cells to the end of the page */
7184   assert( nCell>=0 );
7185   pCellptr = &pPg->aCellIdx[nCell*2];
7186   if( pageInsertArray(
7187         pPg, pBegin, &pData, pCellptr,
7188         iNew+nCell, nNew-nCell, pCArray
7189   ) ) goto editpage_fail;
7190 
7191   pPg->nCell = nNew;
7192   pPg->nOverflow = 0;
7193 
7194   put2byte(&aData[hdr+3], pPg->nCell);
7195   put2byte(&aData[hdr+5], pData - aData);
7196 
7197 #ifdef SQLITE_DEBUG
7198   for(i=0; i<nNew && !CORRUPT_DB; i++){
7199     u8 *pCell = pCArray->apCell[i+iNew];
7200     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7201     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7202       pCell = &pTmp[pCell - aData];
7203     }
7204     assert( 0==memcmp(pCell, &aData[iOff],
7205             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7206   }
7207 #endif
7208 
7209   return SQLITE_OK;
7210  editpage_fail:
7211   /* Unable to edit this page. Rebuild it from scratch instead. */
7212   populateCellCache(pCArray, iNew, nNew);
7213   return rebuildPage(pCArray, iNew, nNew, pPg);
7214 }
7215 
7216 
7217 #ifndef SQLITE_OMIT_QUICKBALANCE
7218 /*
7219 ** This version of balance() handles the common special case where
7220 ** a new entry is being inserted on the extreme right-end of the
7221 ** tree, in other words, when the new entry will become the largest
7222 ** entry in the tree.
7223 **
7224 ** Instead of trying to balance the 3 right-most leaf pages, just add
7225 ** a new page to the right-hand side and put the one new entry in
7226 ** that page.  This leaves the right side of the tree somewhat
7227 ** unbalanced.  But odds are that we will be inserting new entries
7228 ** at the end soon afterwards so the nearly empty page will quickly
7229 ** fill up.  On average.
7230 **
7231 ** pPage is the leaf page which is the right-most page in the tree.
7232 ** pParent is its parent.  pPage must have a single overflow entry
7233 ** which is also the right-most entry on the page.
7234 **
7235 ** The pSpace buffer is used to store a temporary copy of the divider
7236 ** cell that will be inserted into pParent. Such a cell consists of a 4
7237 ** byte page number followed by a variable length integer. In other
7238 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7239 ** least 13 bytes in size.
7240 */
7241 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7242   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7243   MemPage *pNew;                       /* Newly allocated page */
7244   int rc;                              /* Return Code */
7245   Pgno pgnoNew;                        /* Page number of pNew */
7246 
7247   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7248   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7249   assert( pPage->nOverflow==1 );
7250 
7251   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7252   assert( pPage->nFree>=0 );
7253   assert( pParent->nFree>=0 );
7254 
7255   /* Allocate a new page. This page will become the right-sibling of
7256   ** pPage. Make the parent page writable, so that the new divider cell
7257   ** may be inserted. If both these operations are successful, proceed.
7258   */
7259   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7260 
7261   if( rc==SQLITE_OK ){
7262 
7263     u8 *pOut = &pSpace[4];
7264     u8 *pCell = pPage->apOvfl[0];
7265     u16 szCell = pPage->xCellSize(pPage, pCell);
7266     u8 *pStop;
7267     CellArray b;
7268 
7269     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7270     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7271     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7272     b.nCell = 1;
7273     b.pRef = pPage;
7274     b.apCell = &pCell;
7275     b.szCell = &szCell;
7276     b.apEnd[0] = pPage->aDataEnd;
7277     b.ixNx[0] = 2;
7278     rc = rebuildPage(&b, 0, 1, pNew);
7279     if( NEVER(rc) ){
7280       releasePage(pNew);
7281       return rc;
7282     }
7283     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7284 
7285     /* If this is an auto-vacuum database, update the pointer map
7286     ** with entries for the new page, and any pointer from the
7287     ** cell on the page to an overflow page. If either of these
7288     ** operations fails, the return code is set, but the contents
7289     ** of the parent page are still manipulated by thh code below.
7290     ** That is Ok, at this point the parent page is guaranteed to
7291     ** be marked as dirty. Returning an error code will cause a
7292     ** rollback, undoing any changes made to the parent page.
7293     */
7294     if( ISAUTOVACUUM ){
7295       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7296       if( szCell>pNew->minLocal ){
7297         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7298       }
7299     }
7300 
7301     /* Create a divider cell to insert into pParent. The divider cell
7302     ** consists of a 4-byte page number (the page number of pPage) and
7303     ** a variable length key value (which must be the same value as the
7304     ** largest key on pPage).
7305     **
7306     ** To find the largest key value on pPage, first find the right-most
7307     ** cell on pPage. The first two fields of this cell are the
7308     ** record-length (a variable length integer at most 32-bits in size)
7309     ** and the key value (a variable length integer, may have any value).
7310     ** The first of the while(...) loops below skips over the record-length
7311     ** field. The second while(...) loop copies the key value from the
7312     ** cell on pPage into the pSpace buffer.
7313     */
7314     pCell = findCell(pPage, pPage->nCell-1);
7315     pStop = &pCell[9];
7316     while( (*(pCell++)&0x80) && pCell<pStop );
7317     pStop = &pCell[9];
7318     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7319 
7320     /* Insert the new divider cell into pParent. */
7321     if( rc==SQLITE_OK ){
7322       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7323                    0, pPage->pgno, &rc);
7324     }
7325 
7326     /* Set the right-child pointer of pParent to point to the new page. */
7327     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7328 
7329     /* Release the reference to the new page. */
7330     releasePage(pNew);
7331   }
7332 
7333   return rc;
7334 }
7335 #endif /* SQLITE_OMIT_QUICKBALANCE */
7336 
7337 #if 0
7338 /*
7339 ** This function does not contribute anything to the operation of SQLite.
7340 ** it is sometimes activated temporarily while debugging code responsible
7341 ** for setting pointer-map entries.
7342 */
7343 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7344   int i, j;
7345   for(i=0; i<nPage; i++){
7346     Pgno n;
7347     u8 e;
7348     MemPage *pPage = apPage[i];
7349     BtShared *pBt = pPage->pBt;
7350     assert( pPage->isInit );
7351 
7352     for(j=0; j<pPage->nCell; j++){
7353       CellInfo info;
7354       u8 *z;
7355 
7356       z = findCell(pPage, j);
7357       pPage->xParseCell(pPage, z, &info);
7358       if( info.nLocal<info.nPayload ){
7359         Pgno ovfl = get4byte(&z[info.nSize-4]);
7360         ptrmapGet(pBt, ovfl, &e, &n);
7361         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7362       }
7363       if( !pPage->leaf ){
7364         Pgno child = get4byte(z);
7365         ptrmapGet(pBt, child, &e, &n);
7366         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7367       }
7368     }
7369     if( !pPage->leaf ){
7370       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7371       ptrmapGet(pBt, child, &e, &n);
7372       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7373     }
7374   }
7375   return 1;
7376 }
7377 #endif
7378 
7379 /*
7380 ** This function is used to copy the contents of the b-tree node stored
7381 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7382 ** the pointer-map entries for each child page are updated so that the
7383 ** parent page stored in the pointer map is page pTo. If pFrom contained
7384 ** any cells with overflow page pointers, then the corresponding pointer
7385 ** map entries are also updated so that the parent page is page pTo.
7386 **
7387 ** If pFrom is currently carrying any overflow cells (entries in the
7388 ** MemPage.apOvfl[] array), they are not copied to pTo.
7389 **
7390 ** Before returning, page pTo is reinitialized using btreeInitPage().
7391 **
7392 ** The performance of this function is not critical. It is only used by
7393 ** the balance_shallower() and balance_deeper() procedures, neither of
7394 ** which are called often under normal circumstances.
7395 */
7396 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7397   if( (*pRC)==SQLITE_OK ){
7398     BtShared * const pBt = pFrom->pBt;
7399     u8 * const aFrom = pFrom->aData;
7400     u8 * const aTo = pTo->aData;
7401     int const iFromHdr = pFrom->hdrOffset;
7402     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7403     int rc;
7404     int iData;
7405 
7406 
7407     assert( pFrom->isInit );
7408     assert( pFrom->nFree>=iToHdr );
7409     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7410 
7411     /* Copy the b-tree node content from page pFrom to page pTo. */
7412     iData = get2byte(&aFrom[iFromHdr+5]);
7413     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7414     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7415 
7416     /* Reinitialize page pTo so that the contents of the MemPage structure
7417     ** match the new data. The initialization of pTo can actually fail under
7418     ** fairly obscure circumstances, even though it is a copy of initialized
7419     ** page pFrom.
7420     */
7421     pTo->isInit = 0;
7422     rc = btreeInitPage(pTo);
7423     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7424     if( rc!=SQLITE_OK ){
7425       *pRC = rc;
7426       return;
7427     }
7428 
7429     /* If this is an auto-vacuum database, update the pointer-map entries
7430     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7431     */
7432     if( ISAUTOVACUUM ){
7433       *pRC = setChildPtrmaps(pTo);
7434     }
7435   }
7436 }
7437 
7438 /*
7439 ** This routine redistributes cells on the iParentIdx'th child of pParent
7440 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7441 ** same amount of free space. Usually a single sibling on either side of the
7442 ** page are used in the balancing, though both siblings might come from one
7443 ** side if the page is the first or last child of its parent. If the page
7444 ** has fewer than 2 siblings (something which can only happen if the page
7445 ** is a root page or a child of a root page) then all available siblings
7446 ** participate in the balancing.
7447 **
7448 ** The number of siblings of the page might be increased or decreased by
7449 ** one or two in an effort to keep pages nearly full but not over full.
7450 **
7451 ** Note that when this routine is called, some of the cells on the page
7452 ** might not actually be stored in MemPage.aData[]. This can happen
7453 ** if the page is overfull. This routine ensures that all cells allocated
7454 ** to the page and its siblings fit into MemPage.aData[] before returning.
7455 **
7456 ** In the course of balancing the page and its siblings, cells may be
7457 ** inserted into or removed from the parent page (pParent). Doing so
7458 ** may cause the parent page to become overfull or underfull. If this
7459 ** happens, it is the responsibility of the caller to invoke the correct
7460 ** balancing routine to fix this problem (see the balance() routine).
7461 **
7462 ** If this routine fails for any reason, it might leave the database
7463 ** in a corrupted state. So if this routine fails, the database should
7464 ** be rolled back.
7465 **
7466 ** The third argument to this function, aOvflSpace, is a pointer to a
7467 ** buffer big enough to hold one page. If while inserting cells into the parent
7468 ** page (pParent) the parent page becomes overfull, this buffer is
7469 ** used to store the parent's overflow cells. Because this function inserts
7470 ** a maximum of four divider cells into the parent page, and the maximum
7471 ** size of a cell stored within an internal node is always less than 1/4
7472 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7473 ** enough for all overflow cells.
7474 **
7475 ** If aOvflSpace is set to a null pointer, this function returns
7476 ** SQLITE_NOMEM.
7477 */
7478 static int balance_nonroot(
7479   MemPage *pParent,               /* Parent page of siblings being balanced */
7480   int iParentIdx,                 /* Index of "the page" in pParent */
7481   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7482   int isRoot,                     /* True if pParent is a root-page */
7483   int bBulk                       /* True if this call is part of a bulk load */
7484 ){
7485   BtShared *pBt;               /* The whole database */
7486   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7487   int nNew = 0;                /* Number of pages in apNew[] */
7488   int nOld;                    /* Number of pages in apOld[] */
7489   int i, j, k;                 /* Loop counters */
7490   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7491   int rc = SQLITE_OK;          /* The return code */
7492   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7493   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7494   int usableSpace;             /* Bytes in pPage beyond the header */
7495   int pageFlags;               /* Value of pPage->aData[0] */
7496   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7497   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7498   int szScratch;               /* Size of scratch memory requested */
7499   MemPage *apOld[NB];          /* pPage and up to two siblings */
7500   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7501   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7502   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7503   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7504   int cntOld[NB+2];            /* Old index in b.apCell[] */
7505   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7506   u8 *aSpace1;                 /* Space for copies of dividers cells */
7507   Pgno pgno;                   /* Temp var to store a page number in */
7508   u8 abDone[NB+2];             /* True after i'th new page is populated */
7509   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7510   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7511   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7512   CellArray b;                  /* Parsed information on cells being balanced */
7513 
7514   memset(abDone, 0, sizeof(abDone));
7515   b.nCell = 0;
7516   b.apCell = 0;
7517   pBt = pParent->pBt;
7518   assert( sqlite3_mutex_held(pBt->mutex) );
7519   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7520 
7521   /* At this point pParent may have at most one overflow cell. And if
7522   ** this overflow cell is present, it must be the cell with
7523   ** index iParentIdx. This scenario comes about when this function
7524   ** is called (indirectly) from sqlite3BtreeDelete().
7525   */
7526   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7527   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7528 
7529   if( !aOvflSpace ){
7530     return SQLITE_NOMEM_BKPT;
7531   }
7532   assert( pParent->nFree>=0 );
7533 
7534   /* Find the sibling pages to balance. Also locate the cells in pParent
7535   ** that divide the siblings. An attempt is made to find NN siblings on
7536   ** either side of pPage. More siblings are taken from one side, however,
7537   ** if there are fewer than NN siblings on the other side. If pParent
7538   ** has NB or fewer children then all children of pParent are taken.
7539   **
7540   ** This loop also drops the divider cells from the parent page. This
7541   ** way, the remainder of the function does not have to deal with any
7542   ** overflow cells in the parent page, since if any existed they will
7543   ** have already been removed.
7544   */
7545   i = pParent->nOverflow + pParent->nCell;
7546   if( i<2 ){
7547     nxDiv = 0;
7548   }else{
7549     assert( bBulk==0 || bBulk==1 );
7550     if( iParentIdx==0 ){
7551       nxDiv = 0;
7552     }else if( iParentIdx==i ){
7553       nxDiv = i-2+bBulk;
7554     }else{
7555       nxDiv = iParentIdx-1;
7556     }
7557     i = 2-bBulk;
7558   }
7559   nOld = i+1;
7560   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7561     pRight = &pParent->aData[pParent->hdrOffset+8];
7562   }else{
7563     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7564   }
7565   pgno = get4byte(pRight);
7566   while( 1 ){
7567     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7568     if( rc ){
7569       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7570       goto balance_cleanup;
7571     }
7572     if( apOld[i]->nFree<0 ){
7573       rc = btreeComputeFreeSpace(apOld[i]);
7574       if( rc ){
7575         memset(apOld, 0, (i)*sizeof(MemPage*));
7576         goto balance_cleanup;
7577       }
7578     }
7579     if( (i--)==0 ) break;
7580 
7581     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7582       apDiv[i] = pParent->apOvfl[0];
7583       pgno = get4byte(apDiv[i]);
7584       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7585       pParent->nOverflow = 0;
7586     }else{
7587       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7588       pgno = get4byte(apDiv[i]);
7589       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7590 
7591       /* Drop the cell from the parent page. apDiv[i] still points to
7592       ** the cell within the parent, even though it has been dropped.
7593       ** This is safe because dropping a cell only overwrites the first
7594       ** four bytes of it, and this function does not need the first
7595       ** four bytes of the divider cell. So the pointer is safe to use
7596       ** later on.
7597       **
7598       ** But not if we are in secure-delete mode. In secure-delete mode,
7599       ** the dropCell() routine will overwrite the entire cell with zeroes.
7600       ** In this case, temporarily copy the cell into the aOvflSpace[]
7601       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7602       ** is allocated.  */
7603       if( pBt->btsFlags & BTS_FAST_SECURE ){
7604         int iOff;
7605 
7606         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7607         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7608           rc = SQLITE_CORRUPT_BKPT;
7609           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7610           goto balance_cleanup;
7611         }else{
7612           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7613           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7614         }
7615       }
7616       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7617     }
7618   }
7619 
7620   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7621   ** alignment */
7622   nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
7623   nMaxCells = (nMaxCells + 3)&~3;
7624 
7625   /*
7626   ** Allocate space for memory structures
7627   */
7628   szScratch =
7629        nMaxCells*sizeof(u8*)                       /* b.apCell */
7630      + nMaxCells*sizeof(u16)                       /* b.szCell */
7631      + pBt->pageSize;                              /* aSpace1 */
7632 
7633   assert( szScratch<=7*(int)pBt->pageSize );
7634   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7635   if( b.apCell==0 ){
7636     rc = SQLITE_NOMEM_BKPT;
7637     goto balance_cleanup;
7638   }
7639   b.szCell = (u16*)&b.apCell[nMaxCells];
7640   aSpace1 = (u8*)&b.szCell[nMaxCells];
7641   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7642 
7643   /*
7644   ** Load pointers to all cells on sibling pages and the divider cells
7645   ** into the local b.apCell[] array.  Make copies of the divider cells
7646   ** into space obtained from aSpace1[]. The divider cells have already
7647   ** been removed from pParent.
7648   **
7649   ** If the siblings are on leaf pages, then the child pointers of the
7650   ** divider cells are stripped from the cells before they are copied
7651   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7652   ** child pointers.  If siblings are not leaves, then all cell in
7653   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7654   ** are alike.
7655   **
7656   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7657   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7658   */
7659   b.pRef = apOld[0];
7660   leafCorrection = b.pRef->leaf*4;
7661   leafData = b.pRef->intKeyLeaf;
7662   for(i=0; i<nOld; i++){
7663     MemPage *pOld = apOld[i];
7664     int limit = pOld->nCell;
7665     u8 *aData = pOld->aData;
7666     u16 maskPage = pOld->maskPage;
7667     u8 *piCell = aData + pOld->cellOffset;
7668     u8 *piEnd;
7669     VVA_ONLY( int nCellAtStart = b.nCell; )
7670 
7671     /* Verify that all sibling pages are of the same "type" (table-leaf,
7672     ** table-interior, index-leaf, or index-interior).
7673     */
7674     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7675       rc = SQLITE_CORRUPT_BKPT;
7676       goto balance_cleanup;
7677     }
7678 
7679     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7680     ** contains overflow cells, include them in the b.apCell[] array
7681     ** in the correct spot.
7682     **
7683     ** Note that when there are multiple overflow cells, it is always the
7684     ** case that they are sequential and adjacent.  This invariant arises
7685     ** because multiple overflows can only occurs when inserting divider
7686     ** cells into a parent on a prior balance, and divider cells are always
7687     ** adjacent and are inserted in order.  There is an assert() tagged
7688     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7689     ** invariant.
7690     **
7691     ** This must be done in advance.  Once the balance starts, the cell
7692     ** offset section of the btree page will be overwritten and we will no
7693     ** long be able to find the cells if a pointer to each cell is not saved
7694     ** first.
7695     */
7696     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7697     if( pOld->nOverflow>0 ){
7698       if( NEVER(limit<pOld->aiOvfl[0]) ){
7699         rc = SQLITE_CORRUPT_BKPT;
7700         goto balance_cleanup;
7701       }
7702       limit = pOld->aiOvfl[0];
7703       for(j=0; j<limit; j++){
7704         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7705         piCell += 2;
7706         b.nCell++;
7707       }
7708       for(k=0; k<pOld->nOverflow; k++){
7709         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7710         b.apCell[b.nCell] = pOld->apOvfl[k];
7711         b.nCell++;
7712       }
7713     }
7714     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7715     while( piCell<piEnd ){
7716       assert( b.nCell<nMaxCells );
7717       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7718       piCell += 2;
7719       b.nCell++;
7720     }
7721     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
7722 
7723     cntOld[i] = b.nCell;
7724     if( i<nOld-1 && !leafData){
7725       u16 sz = (u16)szNew[i];
7726       u8 *pTemp;
7727       assert( b.nCell<nMaxCells );
7728       b.szCell[b.nCell] = sz;
7729       pTemp = &aSpace1[iSpace1];
7730       iSpace1 += sz;
7731       assert( sz<=pBt->maxLocal+23 );
7732       assert( iSpace1 <= (int)pBt->pageSize );
7733       memcpy(pTemp, apDiv[i], sz);
7734       b.apCell[b.nCell] = pTemp+leafCorrection;
7735       assert( leafCorrection==0 || leafCorrection==4 );
7736       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7737       if( !pOld->leaf ){
7738         assert( leafCorrection==0 );
7739         assert( pOld->hdrOffset==0 );
7740         /* The right pointer of the child page pOld becomes the left
7741         ** pointer of the divider cell */
7742         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7743       }else{
7744         assert( leafCorrection==4 );
7745         while( b.szCell[b.nCell]<4 ){
7746           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7747           ** does exist, pad it with 0x00 bytes. */
7748           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7749           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7750           aSpace1[iSpace1++] = 0x00;
7751           b.szCell[b.nCell]++;
7752         }
7753       }
7754       b.nCell++;
7755     }
7756   }
7757 
7758   /*
7759   ** Figure out the number of pages needed to hold all b.nCell cells.
7760   ** Store this number in "k".  Also compute szNew[] which is the total
7761   ** size of all cells on the i-th page and cntNew[] which is the index
7762   ** in b.apCell[] of the cell that divides page i from page i+1.
7763   ** cntNew[k] should equal b.nCell.
7764   **
7765   ** Values computed by this block:
7766   **
7767   **           k: The total number of sibling pages
7768   **    szNew[i]: Spaced used on the i-th sibling page.
7769   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7770   **              the right of the i-th sibling page.
7771   ** usableSpace: Number of bytes of space available on each sibling.
7772   **
7773   */
7774   usableSpace = pBt->usableSize - 12 + leafCorrection;
7775   for(i=k=0; i<nOld; i++, k++){
7776     MemPage *p = apOld[i];
7777     b.apEnd[k] = p->aDataEnd;
7778     b.ixNx[k] = cntOld[i];
7779     if( k && b.ixNx[k]==b.ixNx[k-1] ){
7780       k--;  /* Omit b.ixNx[] entry for child pages with no cells */
7781     }
7782     if( !leafData ){
7783       k++;
7784       b.apEnd[k] = pParent->aDataEnd;
7785       b.ixNx[k] = cntOld[i]+1;
7786     }
7787     assert( p->nFree>=0 );
7788     szNew[i] = usableSpace - p->nFree;
7789     for(j=0; j<p->nOverflow; j++){
7790       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7791     }
7792     cntNew[i] = cntOld[i];
7793   }
7794   k = nOld;
7795   for(i=0; i<k; i++){
7796     int sz;
7797     while( szNew[i]>usableSpace ){
7798       if( i+1>=k ){
7799         k = i+2;
7800         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7801         szNew[k-1] = 0;
7802         cntNew[k-1] = b.nCell;
7803       }
7804       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7805       szNew[i] -= sz;
7806       if( !leafData ){
7807         if( cntNew[i]<b.nCell ){
7808           sz = 2 + cachedCellSize(&b, cntNew[i]);
7809         }else{
7810           sz = 0;
7811         }
7812       }
7813       szNew[i+1] += sz;
7814       cntNew[i]--;
7815     }
7816     while( cntNew[i]<b.nCell ){
7817       sz = 2 + cachedCellSize(&b, cntNew[i]);
7818       if( szNew[i]+sz>usableSpace ) break;
7819       szNew[i] += sz;
7820       cntNew[i]++;
7821       if( !leafData ){
7822         if( cntNew[i]<b.nCell ){
7823           sz = 2 + cachedCellSize(&b, cntNew[i]);
7824         }else{
7825           sz = 0;
7826         }
7827       }
7828       szNew[i+1] -= sz;
7829     }
7830     if( cntNew[i]>=b.nCell ){
7831       k = i+1;
7832     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7833       rc = SQLITE_CORRUPT_BKPT;
7834       goto balance_cleanup;
7835     }
7836   }
7837 
7838   /*
7839   ** The packing computed by the previous block is biased toward the siblings
7840   ** on the left side (siblings with smaller keys). The left siblings are
7841   ** always nearly full, while the right-most sibling might be nearly empty.
7842   ** The next block of code attempts to adjust the packing of siblings to
7843   ** get a better balance.
7844   **
7845   ** This adjustment is more than an optimization.  The packing above might
7846   ** be so out of balance as to be illegal.  For example, the right-most
7847   ** sibling might be completely empty.  This adjustment is not optional.
7848   */
7849   for(i=k-1; i>0; i--){
7850     int szRight = szNew[i];  /* Size of sibling on the right */
7851     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7852     int r;              /* Index of right-most cell in left sibling */
7853     int d;              /* Index of first cell to the left of right sibling */
7854 
7855     r = cntNew[i-1] - 1;
7856     d = r + 1 - leafData;
7857     (void)cachedCellSize(&b, d);
7858     do{
7859       assert( d<nMaxCells );
7860       assert( r<nMaxCells );
7861       (void)cachedCellSize(&b, r);
7862       if( szRight!=0
7863        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7864         break;
7865       }
7866       szRight += b.szCell[d] + 2;
7867       szLeft -= b.szCell[r] + 2;
7868       cntNew[i-1] = r;
7869       r--;
7870       d--;
7871     }while( r>=0 );
7872     szNew[i] = szRight;
7873     szNew[i-1] = szLeft;
7874     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7875       rc = SQLITE_CORRUPT_BKPT;
7876       goto balance_cleanup;
7877     }
7878   }
7879 
7880   /* Sanity check:  For a non-corrupt database file one of the follwing
7881   ** must be true:
7882   **    (1) We found one or more cells (cntNew[0])>0), or
7883   **    (2) pPage is a virtual root page.  A virtual root page is when
7884   **        the real root page is page 1 and we are the only child of
7885   **        that page.
7886   */
7887   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7888   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7889     apOld[0]->pgno, apOld[0]->nCell,
7890     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7891     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7892   ));
7893 
7894   /*
7895   ** Allocate k new pages.  Reuse old pages where possible.
7896   */
7897   pageFlags = apOld[0]->aData[0];
7898   for(i=0; i<k; i++){
7899     MemPage *pNew;
7900     if( i<nOld ){
7901       pNew = apNew[i] = apOld[i];
7902       apOld[i] = 0;
7903       rc = sqlite3PagerWrite(pNew->pDbPage);
7904       nNew++;
7905       if( rc ) goto balance_cleanup;
7906     }else{
7907       assert( i>0 );
7908       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7909       if( rc ) goto balance_cleanup;
7910       zeroPage(pNew, pageFlags);
7911       apNew[i] = pNew;
7912       nNew++;
7913       cntOld[i] = b.nCell;
7914 
7915       /* Set the pointer-map entry for the new sibling page. */
7916       if( ISAUTOVACUUM ){
7917         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7918         if( rc!=SQLITE_OK ){
7919           goto balance_cleanup;
7920         }
7921       }
7922     }
7923   }
7924 
7925   /*
7926   ** Reassign page numbers so that the new pages are in ascending order.
7927   ** This helps to keep entries in the disk file in order so that a scan
7928   ** of the table is closer to a linear scan through the file. That in turn
7929   ** helps the operating system to deliver pages from the disk more rapidly.
7930   **
7931   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7932   ** than (NB+2) (a small constant), that should not be a problem.
7933   **
7934   ** When NB==3, this one optimization makes the database about 25% faster
7935   ** for large insertions and deletions.
7936   */
7937   for(i=0; i<nNew; i++){
7938     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7939     aPgFlags[i] = apNew[i]->pDbPage->flags;
7940     for(j=0; j<i; j++){
7941       if( aPgno[j]==aPgno[i] ){
7942         /* This branch is taken if the set of sibling pages somehow contains
7943         ** duplicate entries. This can happen if the database is corrupt.
7944         ** It would be simpler to detect this as part of the loop below, but
7945         ** we do the detection here in order to avoid populating the pager
7946         ** cache with two separate objects associated with the same
7947         ** page number.  */
7948         assert( CORRUPT_DB );
7949         rc = SQLITE_CORRUPT_BKPT;
7950         goto balance_cleanup;
7951       }
7952     }
7953   }
7954   for(i=0; i<nNew; i++){
7955     int iBest = 0;                /* aPgno[] index of page number to use */
7956     for(j=1; j<nNew; j++){
7957       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7958     }
7959     pgno = aPgOrder[iBest];
7960     aPgOrder[iBest] = 0xffffffff;
7961     if( iBest!=i ){
7962       if( iBest>i ){
7963         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7964       }
7965       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7966       apNew[i]->pgno = pgno;
7967     }
7968   }
7969 
7970   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7971          "%d(%d nc=%d) %d(%d nc=%d)\n",
7972     apNew[0]->pgno, szNew[0], cntNew[0],
7973     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7974     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7975     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7976     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7977     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7978     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7979     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7980     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7981   ));
7982 
7983   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7984   assert( nNew>=1 && nNew<=ArraySize(apNew) );
7985   assert( apNew[nNew-1]!=0 );
7986   put4byte(pRight, apNew[nNew-1]->pgno);
7987 
7988   /* If the sibling pages are not leaves, ensure that the right-child pointer
7989   ** of the right-most new sibling page is set to the value that was
7990   ** originally in the same field of the right-most old sibling page. */
7991   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7992     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7993     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7994   }
7995 
7996   /* Make any required updates to pointer map entries associated with
7997   ** cells stored on sibling pages following the balance operation. Pointer
7998   ** map entries associated with divider cells are set by the insertCell()
7999   ** routine. The associated pointer map entries are:
8000   **
8001   **   a) if the cell contains a reference to an overflow chain, the
8002   **      entry associated with the first page in the overflow chain, and
8003   **
8004   **   b) if the sibling pages are not leaves, the child page associated
8005   **      with the cell.
8006   **
8007   ** If the sibling pages are not leaves, then the pointer map entry
8008   ** associated with the right-child of each sibling may also need to be
8009   ** updated. This happens below, after the sibling pages have been
8010   ** populated, not here.
8011   */
8012   if( ISAUTOVACUUM ){
8013     MemPage *pOld;
8014     MemPage *pNew = pOld = apNew[0];
8015     int cntOldNext = pNew->nCell + pNew->nOverflow;
8016     int iNew = 0;
8017     int iOld = 0;
8018 
8019     for(i=0; i<b.nCell; i++){
8020       u8 *pCell = b.apCell[i];
8021       while( i==cntOldNext ){
8022         iOld++;
8023         assert( iOld<nNew || iOld<nOld );
8024         assert( iOld>=0 && iOld<NB );
8025         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8026         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8027       }
8028       if( i==cntNew[iNew] ){
8029         pNew = apNew[++iNew];
8030         if( !leafData ) continue;
8031       }
8032 
8033       /* Cell pCell is destined for new sibling page pNew. Originally, it
8034       ** was either part of sibling page iOld (possibly an overflow cell),
8035       ** or else the divider cell to the left of sibling page iOld. So,
8036       ** if sibling page iOld had the same page number as pNew, and if
8037       ** pCell really was a part of sibling page iOld (not a divider or
8038       ** overflow cell), we can skip updating the pointer map entries.  */
8039       if( iOld>=nNew
8040        || pNew->pgno!=aPgno[iOld]
8041        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8042       ){
8043         if( !leafCorrection ){
8044           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8045         }
8046         if( cachedCellSize(&b,i)>pNew->minLocal ){
8047           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8048         }
8049         if( rc ) goto balance_cleanup;
8050       }
8051     }
8052   }
8053 
8054   /* Insert new divider cells into pParent. */
8055   for(i=0; i<nNew-1; i++){
8056     u8 *pCell;
8057     u8 *pTemp;
8058     int sz;
8059     MemPage *pNew = apNew[i];
8060     j = cntNew[i];
8061 
8062     assert( j<nMaxCells );
8063     assert( b.apCell[j]!=0 );
8064     pCell = b.apCell[j];
8065     sz = b.szCell[j] + leafCorrection;
8066     pTemp = &aOvflSpace[iOvflSpace];
8067     if( !pNew->leaf ){
8068       memcpy(&pNew->aData[8], pCell, 4);
8069     }else if( leafData ){
8070       /* If the tree is a leaf-data tree, and the siblings are leaves,
8071       ** then there is no divider cell in b.apCell[]. Instead, the divider
8072       ** cell consists of the integer key for the right-most cell of
8073       ** the sibling-page assembled above only.
8074       */
8075       CellInfo info;
8076       j--;
8077       pNew->xParseCell(pNew, b.apCell[j], &info);
8078       pCell = pTemp;
8079       sz = 4 + putVarint(&pCell[4], info.nKey);
8080       pTemp = 0;
8081     }else{
8082       pCell -= 4;
8083       /* Obscure case for non-leaf-data trees: If the cell at pCell was
8084       ** previously stored on a leaf node, and its reported size was 4
8085       ** bytes, then it may actually be smaller than this
8086       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8087       ** any cell). But it is important to pass the correct size to
8088       ** insertCell(), so reparse the cell now.
8089       **
8090       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8091       ** and WITHOUT ROWID tables with exactly one column which is the
8092       ** primary key.
8093       */
8094       if( b.szCell[j]==4 ){
8095         assert(leafCorrection==4);
8096         sz = pParent->xCellSize(pParent, pCell);
8097       }
8098     }
8099     iOvflSpace += sz;
8100     assert( sz<=pBt->maxLocal+23 );
8101     assert( iOvflSpace <= (int)pBt->pageSize );
8102     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8103     if( rc!=SQLITE_OK ) goto balance_cleanup;
8104     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8105   }
8106 
8107   /* Now update the actual sibling pages. The order in which they are updated
8108   ** is important, as this code needs to avoid disrupting any page from which
8109   ** cells may still to be read. In practice, this means:
8110   **
8111   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8112   **      then it is not safe to update page apNew[iPg] until after
8113   **      the left-hand sibling apNew[iPg-1] has been updated.
8114   **
8115   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8116   **      then it is not safe to update page apNew[iPg] until after
8117   **      the right-hand sibling apNew[iPg+1] has been updated.
8118   **
8119   ** If neither of the above apply, the page is safe to update.
8120   **
8121   ** The iPg value in the following loop starts at nNew-1 goes down
8122   ** to 0, then back up to nNew-1 again, thus making two passes over
8123   ** the pages.  On the initial downward pass, only condition (1) above
8124   ** needs to be tested because (2) will always be true from the previous
8125   ** step.  On the upward pass, both conditions are always true, so the
8126   ** upwards pass simply processes pages that were missed on the downward
8127   ** pass.
8128   */
8129   for(i=1-nNew; i<nNew; i++){
8130     int iPg = i<0 ? -i : i;
8131     assert( iPg>=0 && iPg<nNew );
8132     if( abDone[iPg] ) continue;         /* Skip pages already processed */
8133     if( i>=0                            /* On the upwards pass, or... */
8134      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
8135     ){
8136       int iNew;
8137       int iOld;
8138       int nNewCell;
8139 
8140       /* Verify condition (1):  If cells are moving left, update iPg
8141       ** only after iPg-1 has already been updated. */
8142       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8143 
8144       /* Verify condition (2):  If cells are moving right, update iPg
8145       ** only after iPg+1 has already been updated. */
8146       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8147 
8148       if( iPg==0 ){
8149         iNew = iOld = 0;
8150         nNewCell = cntNew[0];
8151       }else{
8152         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8153         iNew = cntNew[iPg-1] + !leafData;
8154         nNewCell = cntNew[iPg] - iNew;
8155       }
8156 
8157       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8158       if( rc ) goto balance_cleanup;
8159       abDone[iPg]++;
8160       apNew[iPg]->nFree = usableSpace-szNew[iPg];
8161       assert( apNew[iPg]->nOverflow==0 );
8162       assert( apNew[iPg]->nCell==nNewCell );
8163     }
8164   }
8165 
8166   /* All pages have been processed exactly once */
8167   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8168 
8169   assert( nOld>0 );
8170   assert( nNew>0 );
8171 
8172   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8173     /* The root page of the b-tree now contains no cells. The only sibling
8174     ** page is the right-child of the parent. Copy the contents of the
8175     ** child page into the parent, decreasing the overall height of the
8176     ** b-tree structure by one. This is described as the "balance-shallower"
8177     ** sub-algorithm in some documentation.
8178     **
8179     ** If this is an auto-vacuum database, the call to copyNodeContent()
8180     ** sets all pointer-map entries corresponding to database image pages
8181     ** for which the pointer is stored within the content being copied.
8182     **
8183     ** It is critical that the child page be defragmented before being
8184     ** copied into the parent, because if the parent is page 1 then it will
8185     ** by smaller than the child due to the database header, and so all the
8186     ** free space needs to be up front.
8187     */
8188     assert( nNew==1 || CORRUPT_DB );
8189     rc = defragmentPage(apNew[0], -1);
8190     testcase( rc!=SQLITE_OK );
8191     assert( apNew[0]->nFree ==
8192         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8193           - apNew[0]->nCell*2)
8194       || rc!=SQLITE_OK
8195     );
8196     copyNodeContent(apNew[0], pParent, &rc);
8197     freePage(apNew[0], &rc);
8198   }else if( ISAUTOVACUUM && !leafCorrection ){
8199     /* Fix the pointer map entries associated with the right-child of each
8200     ** sibling page. All other pointer map entries have already been taken
8201     ** care of.  */
8202     for(i=0; i<nNew; i++){
8203       u32 key = get4byte(&apNew[i]->aData[8]);
8204       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8205     }
8206   }
8207 
8208   assert( pParent->isInit );
8209   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8210           nOld, nNew, b.nCell));
8211 
8212   /* Free any old pages that were not reused as new pages.
8213   */
8214   for(i=nNew; i<nOld; i++){
8215     freePage(apOld[i], &rc);
8216   }
8217 
8218 #if 0
8219   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8220     /* The ptrmapCheckPages() contains assert() statements that verify that
8221     ** all pointer map pages are set correctly. This is helpful while
8222     ** debugging. This is usually disabled because a corrupt database may
8223     ** cause an assert() statement to fail.  */
8224     ptrmapCheckPages(apNew, nNew);
8225     ptrmapCheckPages(&pParent, 1);
8226   }
8227 #endif
8228 
8229   /*
8230   ** Cleanup before returning.
8231   */
8232 balance_cleanup:
8233   sqlite3StackFree(0, b.apCell);
8234   for(i=0; i<nOld; i++){
8235     releasePage(apOld[i]);
8236   }
8237   for(i=0; i<nNew; i++){
8238     releasePage(apNew[i]);
8239   }
8240 
8241   return rc;
8242 }
8243 
8244 
8245 /*
8246 ** This function is called when the root page of a b-tree structure is
8247 ** overfull (has one or more overflow pages).
8248 **
8249 ** A new child page is allocated and the contents of the current root
8250 ** page, including overflow cells, are copied into the child. The root
8251 ** page is then overwritten to make it an empty page with the right-child
8252 ** pointer pointing to the new page.
8253 **
8254 ** Before returning, all pointer-map entries corresponding to pages
8255 ** that the new child-page now contains pointers to are updated. The
8256 ** entry corresponding to the new right-child pointer of the root
8257 ** page is also updated.
8258 **
8259 ** If successful, *ppChild is set to contain a reference to the child
8260 ** page and SQLITE_OK is returned. In this case the caller is required
8261 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8262 ** an error code is returned and *ppChild is set to 0.
8263 */
8264 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8265   int rc;                        /* Return value from subprocedures */
8266   MemPage *pChild = 0;           /* Pointer to a new child page */
8267   Pgno pgnoChild = 0;            /* Page number of the new child page */
8268   BtShared *pBt = pRoot->pBt;    /* The BTree */
8269 
8270   assert( pRoot->nOverflow>0 );
8271   assert( sqlite3_mutex_held(pBt->mutex) );
8272 
8273   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8274   ** page that will become the new right-child of pPage. Copy the contents
8275   ** of the node stored on pRoot into the new child page.
8276   */
8277   rc = sqlite3PagerWrite(pRoot->pDbPage);
8278   if( rc==SQLITE_OK ){
8279     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8280     copyNodeContent(pRoot, pChild, &rc);
8281     if( ISAUTOVACUUM ){
8282       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8283     }
8284   }
8285   if( rc ){
8286     *ppChild = 0;
8287     releasePage(pChild);
8288     return rc;
8289   }
8290   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8291   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8292   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8293 
8294   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8295 
8296   /* Copy the overflow cells from pRoot to pChild */
8297   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8298          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8299   memcpy(pChild->apOvfl, pRoot->apOvfl,
8300          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8301   pChild->nOverflow = pRoot->nOverflow;
8302 
8303   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8304   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8305   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8306 
8307   *ppChild = pChild;
8308   return SQLITE_OK;
8309 }
8310 
8311 /*
8312 ** The page that pCur currently points to has just been modified in
8313 ** some way. This function figures out if this modification means the
8314 ** tree needs to be balanced, and if so calls the appropriate balancing
8315 ** routine. Balancing routines are:
8316 **
8317 **   balance_quick()
8318 **   balance_deeper()
8319 **   balance_nonroot()
8320 */
8321 static int balance(BtCursor *pCur){
8322   int rc = SQLITE_OK;
8323   const int nMin = pCur->pBt->usableSize * 2 / 3;
8324   u8 aBalanceQuickSpace[13];
8325   u8 *pFree = 0;
8326 
8327   VVA_ONLY( int balance_quick_called = 0 );
8328   VVA_ONLY( int balance_deeper_called = 0 );
8329 
8330   do {
8331     int iPage;
8332     MemPage *pPage = pCur->pPage;
8333 
8334     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8335     if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8336       break;
8337     }else if( (iPage = pCur->iPage)==0 ){
8338       if( pPage->nOverflow ){
8339         /* The root page of the b-tree is overfull. In this case call the
8340         ** balance_deeper() function to create a new child for the root-page
8341         ** and copy the current contents of the root-page to it. The
8342         ** next iteration of the do-loop will balance the child page.
8343         */
8344         assert( balance_deeper_called==0 );
8345         VVA_ONLY( balance_deeper_called++ );
8346         rc = balance_deeper(pPage, &pCur->apPage[1]);
8347         if( rc==SQLITE_OK ){
8348           pCur->iPage = 1;
8349           pCur->ix = 0;
8350           pCur->aiIdx[0] = 0;
8351           pCur->apPage[0] = pPage;
8352           pCur->pPage = pCur->apPage[1];
8353           assert( pCur->pPage->nOverflow );
8354         }
8355       }else{
8356         break;
8357       }
8358     }else{
8359       MemPage * const pParent = pCur->apPage[iPage-1];
8360       int const iIdx = pCur->aiIdx[iPage-1];
8361 
8362       rc = sqlite3PagerWrite(pParent->pDbPage);
8363       if( rc==SQLITE_OK && pParent->nFree<0 ){
8364         rc = btreeComputeFreeSpace(pParent);
8365       }
8366       if( rc==SQLITE_OK ){
8367 #ifndef SQLITE_OMIT_QUICKBALANCE
8368         if( pPage->intKeyLeaf
8369          && pPage->nOverflow==1
8370          && pPage->aiOvfl[0]==pPage->nCell
8371          && pParent->pgno!=1
8372          && pParent->nCell==iIdx
8373         ){
8374           /* Call balance_quick() to create a new sibling of pPage on which
8375           ** to store the overflow cell. balance_quick() inserts a new cell
8376           ** into pParent, which may cause pParent overflow. If this
8377           ** happens, the next iteration of the do-loop will balance pParent
8378           ** use either balance_nonroot() or balance_deeper(). Until this
8379           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8380           ** buffer.
8381           **
8382           ** The purpose of the following assert() is to check that only a
8383           ** single call to balance_quick() is made for each call to this
8384           ** function. If this were not verified, a subtle bug involving reuse
8385           ** of the aBalanceQuickSpace[] might sneak in.
8386           */
8387           assert( balance_quick_called==0 );
8388           VVA_ONLY( balance_quick_called++ );
8389           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8390         }else
8391 #endif
8392         {
8393           /* In this case, call balance_nonroot() to redistribute cells
8394           ** between pPage and up to 2 of its sibling pages. This involves
8395           ** modifying the contents of pParent, which may cause pParent to
8396           ** become overfull or underfull. The next iteration of the do-loop
8397           ** will balance the parent page to correct this.
8398           **
8399           ** If the parent page becomes overfull, the overflow cell or cells
8400           ** are stored in the pSpace buffer allocated immediately below.
8401           ** A subsequent iteration of the do-loop will deal with this by
8402           ** calling balance_nonroot() (balance_deeper() may be called first,
8403           ** but it doesn't deal with overflow cells - just moves them to a
8404           ** different page). Once this subsequent call to balance_nonroot()
8405           ** has completed, it is safe to release the pSpace buffer used by
8406           ** the previous call, as the overflow cell data will have been
8407           ** copied either into the body of a database page or into the new
8408           ** pSpace buffer passed to the latter call to balance_nonroot().
8409           */
8410           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8411           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8412                                pCur->hints&BTREE_BULKLOAD);
8413           if( pFree ){
8414             /* If pFree is not NULL, it points to the pSpace buffer used
8415             ** by a previous call to balance_nonroot(). Its contents are
8416             ** now stored either on real database pages or within the
8417             ** new pSpace buffer, so it may be safely freed here. */
8418             sqlite3PageFree(pFree);
8419           }
8420 
8421           /* The pSpace buffer will be freed after the next call to
8422           ** balance_nonroot(), or just before this function returns, whichever
8423           ** comes first. */
8424           pFree = pSpace;
8425         }
8426       }
8427 
8428       pPage->nOverflow = 0;
8429 
8430       /* The next iteration of the do-loop balances the parent page. */
8431       releasePage(pPage);
8432       pCur->iPage--;
8433       assert( pCur->iPage>=0 );
8434       pCur->pPage = pCur->apPage[pCur->iPage];
8435     }
8436   }while( rc==SQLITE_OK );
8437 
8438   if( pFree ){
8439     sqlite3PageFree(pFree);
8440   }
8441   return rc;
8442 }
8443 
8444 /* Overwrite content from pX into pDest.  Only do the write if the
8445 ** content is different from what is already there.
8446 */
8447 static int btreeOverwriteContent(
8448   MemPage *pPage,           /* MemPage on which writing will occur */
8449   u8 *pDest,                /* Pointer to the place to start writing */
8450   const BtreePayload *pX,   /* Source of data to write */
8451   int iOffset,              /* Offset of first byte to write */
8452   int iAmt                  /* Number of bytes to be written */
8453 ){
8454   int nData = pX->nData - iOffset;
8455   if( nData<=0 ){
8456     /* Overwritting with zeros */
8457     int i;
8458     for(i=0; i<iAmt && pDest[i]==0; i++){}
8459     if( i<iAmt ){
8460       int rc = sqlite3PagerWrite(pPage->pDbPage);
8461       if( rc ) return rc;
8462       memset(pDest + i, 0, iAmt - i);
8463     }
8464   }else{
8465     if( nData<iAmt ){
8466       /* Mixed read data and zeros at the end.  Make a recursive call
8467       ** to write the zeros then fall through to write the real data */
8468       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8469                                  iAmt-nData);
8470       if( rc ) return rc;
8471       iAmt = nData;
8472     }
8473     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8474       int rc = sqlite3PagerWrite(pPage->pDbPage);
8475       if( rc ) return rc;
8476       /* In a corrupt database, it is possible for the source and destination
8477       ** buffers to overlap.  This is harmless since the database is already
8478       ** corrupt but it does cause valgrind and ASAN warnings.  So use
8479       ** memmove(). */
8480       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8481     }
8482   }
8483   return SQLITE_OK;
8484 }
8485 
8486 /*
8487 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8488 ** contained in pX.
8489 */
8490 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8491   int iOffset;                        /* Next byte of pX->pData to write */
8492   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8493   int rc;                             /* Return code */
8494   MemPage *pPage = pCur->pPage;       /* Page being written */
8495   BtShared *pBt;                      /* Btree */
8496   Pgno ovflPgno;                      /* Next overflow page to write */
8497   u32 ovflPageSize;                   /* Size to write on overflow page */
8498 
8499   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8500    || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8501   ){
8502     return SQLITE_CORRUPT_BKPT;
8503   }
8504   /* Overwrite the local portion first */
8505   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8506                              0, pCur->info.nLocal);
8507   if( rc ) return rc;
8508   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8509 
8510   /* Now overwrite the overflow pages */
8511   iOffset = pCur->info.nLocal;
8512   assert( nTotal>=0 );
8513   assert( iOffset>=0 );
8514   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8515   pBt = pPage->pBt;
8516   ovflPageSize = pBt->usableSize - 4;
8517   do{
8518     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8519     if( rc ) return rc;
8520     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
8521       rc = SQLITE_CORRUPT_BKPT;
8522     }else{
8523       if( iOffset+ovflPageSize<(u32)nTotal ){
8524         ovflPgno = get4byte(pPage->aData);
8525       }else{
8526         ovflPageSize = nTotal - iOffset;
8527       }
8528       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8529                                  iOffset, ovflPageSize);
8530     }
8531     sqlite3PagerUnref(pPage->pDbPage);
8532     if( rc ) return rc;
8533     iOffset += ovflPageSize;
8534   }while( iOffset<nTotal );
8535   return SQLITE_OK;
8536 }
8537 
8538 
8539 /*
8540 ** Insert a new record into the BTree.  The content of the new record
8541 ** is described by the pX object.  The pCur cursor is used only to
8542 ** define what table the record should be inserted into, and is left
8543 ** pointing at a random location.
8544 **
8545 ** For a table btree (used for rowid tables), only the pX.nKey value of
8546 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8547 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8548 ** hold the content of the row.
8549 **
8550 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8551 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8552 ** pX.pData,nData,nZero fields must be zero.
8553 **
8554 ** If the seekResult parameter is non-zero, then a successful call to
8555 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8556 ** been performed.  In other words, if seekResult!=0 then the cursor
8557 ** is currently pointing to a cell that will be adjacent to the cell
8558 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8559 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8560 ** that is larger than (pKey,nKey).
8561 **
8562 ** If seekResult==0, that means pCur is pointing at some unknown location.
8563 ** In that case, this routine must seek the cursor to the correct insertion
8564 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8565 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8566 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8567 ** to decode the key.
8568 */
8569 int sqlite3BtreeInsert(
8570   BtCursor *pCur,                /* Insert data into the table of this cursor */
8571   const BtreePayload *pX,        /* Content of the row to be inserted */
8572   int flags,                     /* True if this is likely an append */
8573   int seekResult                 /* Result of prior MovetoUnpacked() call */
8574 ){
8575   int rc;
8576   int loc = seekResult;          /* -1: before desired location  +1: after */
8577   int szNew = 0;
8578   int idx;
8579   MemPage *pPage;
8580   Btree *p = pCur->pBtree;
8581   BtShared *pBt = p->pBt;
8582   unsigned char *oldCell;
8583   unsigned char *newCell = 0;
8584 
8585   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8586 
8587   if( pCur->eState==CURSOR_FAULT ){
8588     assert( pCur->skipNext!=SQLITE_OK );
8589     return pCur->skipNext;
8590   }
8591 
8592   assert( cursorOwnsBtShared(pCur) );
8593   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8594               && pBt->inTransaction==TRANS_WRITE
8595               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8596   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8597 
8598   /* Assert that the caller has been consistent. If this cursor was opened
8599   ** expecting an index b-tree, then the caller should be inserting blob
8600   ** keys with no associated data. If the cursor was opened expecting an
8601   ** intkey table, the caller should be inserting integer keys with a
8602   ** blob of associated data.  */
8603   assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8604 
8605   /* Save the positions of any other cursors open on this table.
8606   **
8607   ** In some cases, the call to btreeMoveto() below is a no-op. For
8608   ** example, when inserting data into a table with auto-generated integer
8609   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8610   ** integer key to use. It then calls this function to actually insert the
8611   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8612   ** that the cursor is already where it needs to be and returns without
8613   ** doing any work. To avoid thwarting these optimizations, it is important
8614   ** not to clear the cursor here.
8615   */
8616   if( pCur->curFlags & BTCF_Multiple ){
8617     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8618     if( rc ) return rc;
8619   }
8620 
8621   if( pCur->pKeyInfo==0 ){
8622     assert( pX->pKey==0 );
8623     /* If this is an insert into a table b-tree, invalidate any incrblob
8624     ** cursors open on the row being replaced */
8625     invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8626 
8627     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8628     ** to a row with the same key as the new entry being inserted.
8629     */
8630 #ifdef SQLITE_DEBUG
8631     if( flags & BTREE_SAVEPOSITION ){
8632       assert( pCur->curFlags & BTCF_ValidNKey );
8633       assert( pX->nKey==pCur->info.nKey );
8634       assert( pCur->info.nSize!=0 );
8635       assert( loc==0 );
8636     }
8637 #endif
8638 
8639     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8640     ** that the cursor is not pointing to a row to be overwritten.
8641     ** So do a complete check.
8642     */
8643     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8644       /* The cursor is pointing to the entry that is to be
8645       ** overwritten */
8646       assert( pX->nData>=0 && pX->nZero>=0 );
8647       if( pCur->info.nSize!=0
8648        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8649       ){
8650         /* New entry is the same size as the old.  Do an overwrite */
8651         return btreeOverwriteCell(pCur, pX);
8652       }
8653       assert( loc==0 );
8654     }else if( loc==0 ){
8655       /* The cursor is *not* pointing to the cell to be overwritten, nor
8656       ** to an adjacent cell.  Move the cursor so that it is pointing either
8657       ** to the cell to be overwritten or an adjacent cell.
8658       */
8659       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8660       if( rc ) return rc;
8661     }
8662   }else{
8663     /* This is an index or a WITHOUT ROWID table */
8664 
8665     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8666     ** to a row with the same key as the new entry being inserted.
8667     */
8668     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8669 
8670     /* If the cursor is not already pointing either to the cell to be
8671     ** overwritten, or if a new cell is being inserted, if the cursor is
8672     ** not pointing to an immediately adjacent cell, then move the cursor
8673     ** so that it does.
8674     */
8675     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8676       if( pX->nMem ){
8677         UnpackedRecord r;
8678         r.pKeyInfo = pCur->pKeyInfo;
8679         r.aMem = pX->aMem;
8680         r.nField = pX->nMem;
8681         r.default_rc = 0;
8682         r.errCode = 0;
8683         r.r1 = 0;
8684         r.r2 = 0;
8685         r.eqSeen = 0;
8686         rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8687       }else{
8688         rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8689       }
8690       if( rc ) return rc;
8691     }
8692 
8693     /* If the cursor is currently pointing to an entry to be overwritten
8694     ** and the new content is the same as as the old, then use the
8695     ** overwrite optimization.
8696     */
8697     if( loc==0 ){
8698       getCellInfo(pCur);
8699       if( pCur->info.nKey==pX->nKey ){
8700         BtreePayload x2;
8701         x2.pData = pX->pKey;
8702         x2.nData = pX->nKey;
8703         x2.nZero = 0;
8704         return btreeOverwriteCell(pCur, &x2);
8705       }
8706     }
8707 
8708   }
8709   assert( pCur->eState==CURSOR_VALID
8710        || (pCur->eState==CURSOR_INVALID && loc)
8711        || CORRUPT_DB );
8712 
8713   pPage = pCur->pPage;
8714   assert( pPage->intKey || pX->nKey>=0 );
8715   assert( pPage->leaf || !pPage->intKey );
8716   if( pPage->nFree<0 ){
8717     rc = btreeComputeFreeSpace(pPage);
8718     if( rc ) return rc;
8719   }
8720 
8721   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8722           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8723           loc==0 ? "overwrite" : "new entry"));
8724   assert( pPage->isInit );
8725   newCell = pBt->pTmpSpace;
8726   assert( newCell!=0 );
8727   rc = fillInCell(pPage, newCell, pX, &szNew);
8728   if( rc ) goto end_insert;
8729   assert( szNew==pPage->xCellSize(pPage, newCell) );
8730   assert( szNew <= MX_CELL_SIZE(pBt) );
8731   idx = pCur->ix;
8732   if( loc==0 ){
8733     CellInfo info;
8734     assert( idx<pPage->nCell );
8735     rc = sqlite3PagerWrite(pPage->pDbPage);
8736     if( rc ){
8737       goto end_insert;
8738     }
8739     oldCell = findCell(pPage, idx);
8740     if( !pPage->leaf ){
8741       memcpy(newCell, oldCell, 4);
8742     }
8743     rc = clearCell(pPage, oldCell, &info);
8744     testcase( pCur->curFlags & BTCF_ValidOvfl );
8745     invalidateOverflowCache(pCur);
8746     if( info.nSize==szNew && info.nLocal==info.nPayload
8747      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8748     ){
8749       /* Overwrite the old cell with the new if they are the same size.
8750       ** We could also try to do this if the old cell is smaller, then add
8751       ** the leftover space to the free list.  But experiments show that
8752       ** doing that is no faster then skipping this optimization and just
8753       ** calling dropCell() and insertCell().
8754       **
8755       ** This optimization cannot be used on an autovacuum database if the
8756       ** new entry uses overflow pages, as the insertCell() call below is
8757       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
8758       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8759       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8760         return SQLITE_CORRUPT_BKPT;
8761       }
8762       if( oldCell+szNew > pPage->aDataEnd ){
8763         return SQLITE_CORRUPT_BKPT;
8764       }
8765       memcpy(oldCell, newCell, szNew);
8766       return SQLITE_OK;
8767     }
8768     dropCell(pPage, idx, info.nSize, &rc);
8769     if( rc ) goto end_insert;
8770   }else if( loc<0 && pPage->nCell>0 ){
8771     assert( pPage->leaf );
8772     idx = ++pCur->ix;
8773     pCur->curFlags &= ~BTCF_ValidNKey;
8774   }else{
8775     assert( pPage->leaf );
8776   }
8777   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8778   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8779   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8780 
8781   /* If no error has occurred and pPage has an overflow cell, call balance()
8782   ** to redistribute the cells within the tree. Since balance() may move
8783   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8784   ** variables.
8785   **
8786   ** Previous versions of SQLite called moveToRoot() to move the cursor
8787   ** back to the root page as balance() used to invalidate the contents
8788   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8789   ** set the cursor state to "invalid". This makes common insert operations
8790   ** slightly faster.
8791   **
8792   ** There is a subtle but important optimization here too. When inserting
8793   ** multiple records into an intkey b-tree using a single cursor (as can
8794   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8795   ** is advantageous to leave the cursor pointing to the last entry in
8796   ** the b-tree if possible. If the cursor is left pointing to the last
8797   ** entry in the table, and the next row inserted has an integer key
8798   ** larger than the largest existing key, it is possible to insert the
8799   ** row without seeking the cursor. This can be a big performance boost.
8800   */
8801   pCur->info.nSize = 0;
8802   if( pPage->nOverflow ){
8803     assert( rc==SQLITE_OK );
8804     pCur->curFlags &= ~(BTCF_ValidNKey);
8805     rc = balance(pCur);
8806 
8807     /* Must make sure nOverflow is reset to zero even if the balance()
8808     ** fails. Internal data structure corruption will result otherwise.
8809     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8810     ** from trying to save the current position of the cursor.  */
8811     pCur->pPage->nOverflow = 0;
8812     pCur->eState = CURSOR_INVALID;
8813     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8814       btreeReleaseAllCursorPages(pCur);
8815       if( pCur->pKeyInfo ){
8816         assert( pCur->pKey==0 );
8817         pCur->pKey = sqlite3Malloc( pX->nKey );
8818         if( pCur->pKey==0 ){
8819           rc = SQLITE_NOMEM;
8820         }else{
8821           memcpy(pCur->pKey, pX->pKey, pX->nKey);
8822         }
8823       }
8824       pCur->eState = CURSOR_REQUIRESEEK;
8825       pCur->nKey = pX->nKey;
8826     }
8827   }
8828   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8829 
8830 end_insert:
8831   return rc;
8832 }
8833 
8834 /*
8835 ** Delete the entry that the cursor is pointing to.
8836 **
8837 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8838 ** the cursor is left pointing at an arbitrary location after the delete.
8839 ** But if that bit is set, then the cursor is left in a state such that
8840 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8841 ** as it would have been on if the call to BtreeDelete() had been omitted.
8842 **
8843 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8844 ** associated with a single table entry and its indexes.  Only one of those
8845 ** deletes is considered the "primary" delete.  The primary delete occurs
8846 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
8847 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8848 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8849 ** but which might be used by alternative storage engines.
8850 */
8851 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8852   Btree *p = pCur->pBtree;
8853   BtShared *pBt = p->pBt;
8854   int rc;                              /* Return code */
8855   MemPage *pPage;                      /* Page to delete cell from */
8856   unsigned char *pCell;                /* Pointer to cell to delete */
8857   int iCellIdx;                        /* Index of cell to delete */
8858   int iCellDepth;                      /* Depth of node containing pCell */
8859   CellInfo info;                       /* Size of the cell being deleted */
8860   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8861   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
8862 
8863   assert( cursorOwnsBtShared(pCur) );
8864   assert( pBt->inTransaction==TRANS_WRITE );
8865   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8866   assert( pCur->curFlags & BTCF_WriteFlag );
8867   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8868   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8869   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8870   if( pCur->eState==CURSOR_REQUIRESEEK ){
8871     rc = btreeRestoreCursorPosition(pCur);
8872     if( rc ) return rc;
8873   }
8874   assert( pCur->eState==CURSOR_VALID );
8875 
8876   iCellDepth = pCur->iPage;
8877   iCellIdx = pCur->ix;
8878   pPage = pCur->pPage;
8879   pCell = findCell(pPage, iCellIdx);
8880   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
8881 
8882   /* If the bPreserve flag is set to true, then the cursor position must
8883   ** be preserved following this delete operation. If the current delete
8884   ** will cause a b-tree rebalance, then this is done by saving the cursor
8885   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8886   ** returning.
8887   **
8888   ** Or, if the current delete will not cause a rebalance, then the cursor
8889   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8890   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8891   if( bPreserve ){
8892     if( !pPage->leaf
8893      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8894      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
8895     ){
8896       /* A b-tree rebalance will be required after deleting this entry.
8897       ** Save the cursor key.  */
8898       rc = saveCursorKey(pCur);
8899       if( rc ) return rc;
8900     }else{
8901       bSkipnext = 1;
8902     }
8903   }
8904 
8905   /* If the page containing the entry to delete is not a leaf page, move
8906   ** the cursor to the largest entry in the tree that is smaller than
8907   ** the entry being deleted. This cell will replace the cell being deleted
8908   ** from the internal node. The 'previous' entry is used for this instead
8909   ** of the 'next' entry, as the previous entry is always a part of the
8910   ** sub-tree headed by the child page of the cell being deleted. This makes
8911   ** balancing the tree following the delete operation easier.  */
8912   if( !pPage->leaf ){
8913     rc = sqlite3BtreePrevious(pCur, 0);
8914     assert( rc!=SQLITE_DONE );
8915     if( rc ) return rc;
8916   }
8917 
8918   /* Save the positions of any other cursors open on this table before
8919   ** making any modifications.  */
8920   if( pCur->curFlags & BTCF_Multiple ){
8921     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8922     if( rc ) return rc;
8923   }
8924 
8925   /* If this is a delete operation to remove a row from a table b-tree,
8926   ** invalidate any incrblob cursors open on the row being deleted.  */
8927   if( pCur->pKeyInfo==0 ){
8928     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
8929   }
8930 
8931   /* Make the page containing the entry to be deleted writable. Then free any
8932   ** overflow pages associated with the entry and finally remove the cell
8933   ** itself from within the page.  */
8934   rc = sqlite3PagerWrite(pPage->pDbPage);
8935   if( rc ) return rc;
8936   rc = clearCell(pPage, pCell, &info);
8937   dropCell(pPage, iCellIdx, info.nSize, &rc);
8938   if( rc ) return rc;
8939 
8940   /* If the cell deleted was not located on a leaf page, then the cursor
8941   ** is currently pointing to the largest entry in the sub-tree headed
8942   ** by the child-page of the cell that was just deleted from an internal
8943   ** node. The cell from the leaf node needs to be moved to the internal
8944   ** node to replace the deleted cell.  */
8945   if( !pPage->leaf ){
8946     MemPage *pLeaf = pCur->pPage;
8947     int nCell;
8948     Pgno n;
8949     unsigned char *pTmp;
8950 
8951     if( pLeaf->nFree<0 ){
8952       rc = btreeComputeFreeSpace(pLeaf);
8953       if( rc ) return rc;
8954     }
8955     if( iCellDepth<pCur->iPage-1 ){
8956       n = pCur->apPage[iCellDepth+1]->pgno;
8957     }else{
8958       n = pCur->pPage->pgno;
8959     }
8960     pCell = findCell(pLeaf, pLeaf->nCell-1);
8961     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8962     nCell = pLeaf->xCellSize(pLeaf, pCell);
8963     assert( MX_CELL_SIZE(pBt) >= nCell );
8964     pTmp = pBt->pTmpSpace;
8965     assert( pTmp!=0 );
8966     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8967     if( rc==SQLITE_OK ){
8968       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8969     }
8970     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8971     if( rc ) return rc;
8972   }
8973 
8974   /* Balance the tree. If the entry deleted was located on a leaf page,
8975   ** then the cursor still points to that page. In this case the first
8976   ** call to balance() repairs the tree, and the if(...) condition is
8977   ** never true.
8978   **
8979   ** Otherwise, if the entry deleted was on an internal node page, then
8980   ** pCur is pointing to the leaf page from which a cell was removed to
8981   ** replace the cell deleted from the internal node. This is slightly
8982   ** tricky as the leaf node may be underfull, and the internal node may
8983   ** be either under or overfull. In this case run the balancing algorithm
8984   ** on the leaf node first. If the balance proceeds far enough up the
8985   ** tree that we can be sure that any problem in the internal node has
8986   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8987   ** walk the cursor up the tree to the internal node and balance it as
8988   ** well.  */
8989   rc = balance(pCur);
8990   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8991     releasePageNotNull(pCur->pPage);
8992     pCur->iPage--;
8993     while( pCur->iPage>iCellDepth ){
8994       releasePage(pCur->apPage[pCur->iPage--]);
8995     }
8996     pCur->pPage = pCur->apPage[pCur->iPage];
8997     rc = balance(pCur);
8998   }
8999 
9000   if( rc==SQLITE_OK ){
9001     if( bSkipnext ){
9002       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
9003       assert( pPage==pCur->pPage || CORRUPT_DB );
9004       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9005       pCur->eState = CURSOR_SKIPNEXT;
9006       if( iCellIdx>=pPage->nCell ){
9007         pCur->skipNext = -1;
9008         pCur->ix = pPage->nCell-1;
9009       }else{
9010         pCur->skipNext = 1;
9011       }
9012     }else{
9013       rc = moveToRoot(pCur);
9014       if( bPreserve ){
9015         btreeReleaseAllCursorPages(pCur);
9016         pCur->eState = CURSOR_REQUIRESEEK;
9017       }
9018       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9019     }
9020   }
9021   return rc;
9022 }
9023 
9024 /*
9025 ** Create a new BTree table.  Write into *piTable the page
9026 ** number for the root page of the new table.
9027 **
9028 ** The type of type is determined by the flags parameter.  Only the
9029 ** following values of flags are currently in use.  Other values for
9030 ** flags might not work:
9031 **
9032 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
9033 **     BTREE_ZERODATA                  Used for SQL indices
9034 */
9035 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
9036   BtShared *pBt = p->pBt;
9037   MemPage *pRoot;
9038   Pgno pgnoRoot;
9039   int rc;
9040   int ptfFlags;          /* Page-type flage for the root page of new table */
9041 
9042   assert( sqlite3BtreeHoldsMutex(p) );
9043   assert( pBt->inTransaction==TRANS_WRITE );
9044   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9045 
9046 #ifdef SQLITE_OMIT_AUTOVACUUM
9047   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9048   if( rc ){
9049     return rc;
9050   }
9051 #else
9052   if( pBt->autoVacuum ){
9053     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
9054     MemPage *pPageMove; /* The page to move to. */
9055 
9056     /* Creating a new table may probably require moving an existing database
9057     ** to make room for the new tables root page. In case this page turns
9058     ** out to be an overflow page, delete all overflow page-map caches
9059     ** held by open cursors.
9060     */
9061     invalidateAllOverflowCache(pBt);
9062 
9063     /* Read the value of meta[3] from the database to determine where the
9064     ** root page of the new table should go. meta[3] is the largest root-page
9065     ** created so far, so the new root-page is (meta[3]+1).
9066     */
9067     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9068     pgnoRoot++;
9069 
9070     /* The new root-page may not be allocated on a pointer-map page, or the
9071     ** PENDING_BYTE page.
9072     */
9073     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9074         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9075       pgnoRoot++;
9076     }
9077     assert( pgnoRoot>=3 || CORRUPT_DB );
9078     testcase( pgnoRoot<3 );
9079 
9080     /* Allocate a page. The page that currently resides at pgnoRoot will
9081     ** be moved to the allocated page (unless the allocated page happens
9082     ** to reside at pgnoRoot).
9083     */
9084     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9085     if( rc!=SQLITE_OK ){
9086       return rc;
9087     }
9088 
9089     if( pgnoMove!=pgnoRoot ){
9090       /* pgnoRoot is the page that will be used for the root-page of
9091       ** the new table (assuming an error did not occur). But we were
9092       ** allocated pgnoMove. If required (i.e. if it was not allocated
9093       ** by extending the file), the current page at position pgnoMove
9094       ** is already journaled.
9095       */
9096       u8 eType = 0;
9097       Pgno iPtrPage = 0;
9098 
9099       /* Save the positions of any open cursors. This is required in
9100       ** case they are holding a reference to an xFetch reference
9101       ** corresponding to page pgnoRoot.  */
9102       rc = saveAllCursors(pBt, 0, 0);
9103       releasePage(pPageMove);
9104       if( rc!=SQLITE_OK ){
9105         return rc;
9106       }
9107 
9108       /* Move the page currently at pgnoRoot to pgnoMove. */
9109       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9110       if( rc!=SQLITE_OK ){
9111         return rc;
9112       }
9113       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9114       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9115         rc = SQLITE_CORRUPT_BKPT;
9116       }
9117       if( rc!=SQLITE_OK ){
9118         releasePage(pRoot);
9119         return rc;
9120       }
9121       assert( eType!=PTRMAP_ROOTPAGE );
9122       assert( eType!=PTRMAP_FREEPAGE );
9123       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9124       releasePage(pRoot);
9125 
9126       /* Obtain the page at pgnoRoot */
9127       if( rc!=SQLITE_OK ){
9128         return rc;
9129       }
9130       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9131       if( rc!=SQLITE_OK ){
9132         return rc;
9133       }
9134       rc = sqlite3PagerWrite(pRoot->pDbPage);
9135       if( rc!=SQLITE_OK ){
9136         releasePage(pRoot);
9137         return rc;
9138       }
9139     }else{
9140       pRoot = pPageMove;
9141     }
9142 
9143     /* Update the pointer-map and meta-data with the new root-page number. */
9144     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9145     if( rc ){
9146       releasePage(pRoot);
9147       return rc;
9148     }
9149 
9150     /* When the new root page was allocated, page 1 was made writable in
9151     ** order either to increase the database filesize, or to decrement the
9152     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9153     */
9154     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9155     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9156     if( NEVER(rc) ){
9157       releasePage(pRoot);
9158       return rc;
9159     }
9160 
9161   }else{
9162     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9163     if( rc ) return rc;
9164   }
9165 #endif
9166   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9167   if( createTabFlags & BTREE_INTKEY ){
9168     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9169   }else{
9170     ptfFlags = PTF_ZERODATA | PTF_LEAF;
9171   }
9172   zeroPage(pRoot, ptfFlags);
9173   sqlite3PagerUnref(pRoot->pDbPage);
9174   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9175   *piTable = (int)pgnoRoot;
9176   return SQLITE_OK;
9177 }
9178 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9179   int rc;
9180   sqlite3BtreeEnter(p);
9181   rc = btreeCreateTable(p, piTable, flags);
9182   sqlite3BtreeLeave(p);
9183   return rc;
9184 }
9185 
9186 /*
9187 ** Erase the given database page and all its children.  Return
9188 ** the page to the freelist.
9189 */
9190 static int clearDatabasePage(
9191   BtShared *pBt,           /* The BTree that contains the table */
9192   Pgno pgno,               /* Page number to clear */
9193   int freePageFlag,        /* Deallocate page if true */
9194   int *pnChange            /* Add number of Cells freed to this counter */
9195 ){
9196   MemPage *pPage;
9197   int rc;
9198   unsigned char *pCell;
9199   int i;
9200   int hdr;
9201   CellInfo info;
9202 
9203   assert( sqlite3_mutex_held(pBt->mutex) );
9204   if( pgno>btreePagecount(pBt) ){
9205     return SQLITE_CORRUPT_BKPT;
9206   }
9207   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9208   if( rc ) return rc;
9209   if( pPage->bBusy ){
9210     rc = SQLITE_CORRUPT_BKPT;
9211     goto cleardatabasepage_out;
9212   }
9213   pPage->bBusy = 1;
9214   hdr = pPage->hdrOffset;
9215   for(i=0; i<pPage->nCell; i++){
9216     pCell = findCell(pPage, i);
9217     if( !pPage->leaf ){
9218       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9219       if( rc ) goto cleardatabasepage_out;
9220     }
9221     rc = clearCell(pPage, pCell, &info);
9222     if( rc ) goto cleardatabasepage_out;
9223   }
9224   if( !pPage->leaf ){
9225     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9226     if( rc ) goto cleardatabasepage_out;
9227   }else if( pnChange ){
9228     assert( pPage->intKey || CORRUPT_DB );
9229     testcase( !pPage->intKey );
9230     *pnChange += pPage->nCell;
9231   }
9232   if( freePageFlag ){
9233     freePage(pPage, &rc);
9234   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9235     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9236   }
9237 
9238 cleardatabasepage_out:
9239   pPage->bBusy = 0;
9240   releasePage(pPage);
9241   return rc;
9242 }
9243 
9244 /*
9245 ** Delete all information from a single table in the database.  iTable is
9246 ** the page number of the root of the table.  After this routine returns,
9247 ** the root page is empty, but still exists.
9248 **
9249 ** This routine will fail with SQLITE_LOCKED if there are any open
9250 ** read cursors on the table.  Open write cursors are moved to the
9251 ** root of the table.
9252 **
9253 ** If pnChange is not NULL, then table iTable must be an intkey table. The
9254 ** integer value pointed to by pnChange is incremented by the number of
9255 ** entries in the table.
9256 */
9257 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
9258   int rc;
9259   BtShared *pBt = p->pBt;
9260   sqlite3BtreeEnter(p);
9261   assert( p->inTrans==TRANS_WRITE );
9262 
9263   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9264 
9265   if( SQLITE_OK==rc ){
9266     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9267     ** is the root of a table b-tree - if it is not, the following call is
9268     ** a no-op).  */
9269     invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9270     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9271   }
9272   sqlite3BtreeLeave(p);
9273   return rc;
9274 }
9275 
9276 /*
9277 ** Delete all information from the single table that pCur is open on.
9278 **
9279 ** This routine only work for pCur on an ephemeral table.
9280 */
9281 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9282   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9283 }
9284 
9285 /*
9286 ** Erase all information in a table and add the root of the table to
9287 ** the freelist.  Except, the root of the principle table (the one on
9288 ** page 1) is never added to the freelist.
9289 **
9290 ** This routine will fail with SQLITE_LOCKED if there are any open
9291 ** cursors on the table.
9292 **
9293 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9294 ** root page in the database file, then the last root page
9295 ** in the database file is moved into the slot formerly occupied by
9296 ** iTable and that last slot formerly occupied by the last root page
9297 ** is added to the freelist instead of iTable.  In this say, all
9298 ** root pages are kept at the beginning of the database file, which
9299 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9300 ** page number that used to be the last root page in the file before
9301 ** the move.  If no page gets moved, *piMoved is set to 0.
9302 ** The last root page is recorded in meta[3] and the value of
9303 ** meta[3] is updated by this procedure.
9304 */
9305 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9306   int rc;
9307   MemPage *pPage = 0;
9308   BtShared *pBt = p->pBt;
9309 
9310   assert( sqlite3BtreeHoldsMutex(p) );
9311   assert( p->inTrans==TRANS_WRITE );
9312   assert( iTable>=2 );
9313   if( iTable>btreePagecount(pBt) ){
9314     return SQLITE_CORRUPT_BKPT;
9315   }
9316 
9317   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9318   if( rc ) return rc;
9319   rc = sqlite3BtreeClearTable(p, iTable, 0);
9320   if( rc ){
9321     releasePage(pPage);
9322     return rc;
9323   }
9324 
9325   *piMoved = 0;
9326 
9327 #ifdef SQLITE_OMIT_AUTOVACUUM
9328   freePage(pPage, &rc);
9329   releasePage(pPage);
9330 #else
9331   if( pBt->autoVacuum ){
9332     Pgno maxRootPgno;
9333     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9334 
9335     if( iTable==maxRootPgno ){
9336       /* If the table being dropped is the table with the largest root-page
9337       ** number in the database, put the root page on the free list.
9338       */
9339       freePage(pPage, &rc);
9340       releasePage(pPage);
9341       if( rc!=SQLITE_OK ){
9342         return rc;
9343       }
9344     }else{
9345       /* The table being dropped does not have the largest root-page
9346       ** number in the database. So move the page that does into the
9347       ** gap left by the deleted root-page.
9348       */
9349       MemPage *pMove;
9350       releasePage(pPage);
9351       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9352       if( rc!=SQLITE_OK ){
9353         return rc;
9354       }
9355       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9356       releasePage(pMove);
9357       if( rc!=SQLITE_OK ){
9358         return rc;
9359       }
9360       pMove = 0;
9361       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9362       freePage(pMove, &rc);
9363       releasePage(pMove);
9364       if( rc!=SQLITE_OK ){
9365         return rc;
9366       }
9367       *piMoved = maxRootPgno;
9368     }
9369 
9370     /* Set the new 'max-root-page' value in the database header. This
9371     ** is the old value less one, less one more if that happens to
9372     ** be a root-page number, less one again if that is the
9373     ** PENDING_BYTE_PAGE.
9374     */
9375     maxRootPgno--;
9376     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9377            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9378       maxRootPgno--;
9379     }
9380     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9381 
9382     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9383   }else{
9384     freePage(pPage, &rc);
9385     releasePage(pPage);
9386   }
9387 #endif
9388   return rc;
9389 }
9390 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9391   int rc;
9392   sqlite3BtreeEnter(p);
9393   rc = btreeDropTable(p, iTable, piMoved);
9394   sqlite3BtreeLeave(p);
9395   return rc;
9396 }
9397 
9398 
9399 /*
9400 ** This function may only be called if the b-tree connection already
9401 ** has a read or write transaction open on the database.
9402 **
9403 ** Read the meta-information out of a database file.  Meta[0]
9404 ** is the number of free pages currently in the database.  Meta[1]
9405 ** through meta[15] are available for use by higher layers.  Meta[0]
9406 ** is read-only, the others are read/write.
9407 **
9408 ** The schema layer numbers meta values differently.  At the schema
9409 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9410 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
9411 **
9412 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
9413 ** of reading the value out of the header, it instead loads the "DataVersion"
9414 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
9415 ** database file.  It is a number computed by the pager.  But its access
9416 ** pattern is the same as header meta values, and so it is convenient to
9417 ** read it from this routine.
9418 */
9419 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9420   BtShared *pBt = p->pBt;
9421 
9422   sqlite3BtreeEnter(p);
9423   assert( p->inTrans>TRANS_NONE );
9424   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
9425   assert( pBt->pPage1 );
9426   assert( idx>=0 && idx<=15 );
9427 
9428   if( idx==BTREE_DATA_VERSION ){
9429     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
9430   }else{
9431     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9432   }
9433 
9434   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9435   ** database, mark the database as read-only.  */
9436 #ifdef SQLITE_OMIT_AUTOVACUUM
9437   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9438     pBt->btsFlags |= BTS_READ_ONLY;
9439   }
9440 #endif
9441 
9442   sqlite3BtreeLeave(p);
9443 }
9444 
9445 /*
9446 ** Write meta-information back into the database.  Meta[0] is
9447 ** read-only and may not be written.
9448 */
9449 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9450   BtShared *pBt = p->pBt;
9451   unsigned char *pP1;
9452   int rc;
9453   assert( idx>=1 && idx<=15 );
9454   sqlite3BtreeEnter(p);
9455   assert( p->inTrans==TRANS_WRITE );
9456   assert( pBt->pPage1!=0 );
9457   pP1 = pBt->pPage1->aData;
9458   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9459   if( rc==SQLITE_OK ){
9460     put4byte(&pP1[36 + idx*4], iMeta);
9461 #ifndef SQLITE_OMIT_AUTOVACUUM
9462     if( idx==BTREE_INCR_VACUUM ){
9463       assert( pBt->autoVacuum || iMeta==0 );
9464       assert( iMeta==0 || iMeta==1 );
9465       pBt->incrVacuum = (u8)iMeta;
9466     }
9467 #endif
9468   }
9469   sqlite3BtreeLeave(p);
9470   return rc;
9471 }
9472 
9473 #ifndef SQLITE_OMIT_BTREECOUNT
9474 /*
9475 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9476 ** number of entries in the b-tree and write the result to *pnEntry.
9477 **
9478 ** SQLITE_OK is returned if the operation is successfully executed.
9479 ** Otherwise, if an error is encountered (i.e. an IO error or database
9480 ** corruption) an SQLite error code is returned.
9481 */
9482 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
9483   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9484   int rc;                              /* Return code */
9485 
9486   rc = moveToRoot(pCur);
9487   if( rc==SQLITE_EMPTY ){
9488     *pnEntry = 0;
9489     return SQLITE_OK;
9490   }
9491 
9492   /* Unless an error occurs, the following loop runs one iteration for each
9493   ** page in the B-Tree structure (not including overflow pages).
9494   */
9495   while( rc==SQLITE_OK && !db->u1.isInterrupted ){
9496     int iIdx;                          /* Index of child node in parent */
9497     MemPage *pPage;                    /* Current page of the b-tree */
9498 
9499     /* If this is a leaf page or the tree is not an int-key tree, then
9500     ** this page contains countable entries. Increment the entry counter
9501     ** accordingly.
9502     */
9503     pPage = pCur->pPage;
9504     if( pPage->leaf || !pPage->intKey ){
9505       nEntry += pPage->nCell;
9506     }
9507 
9508     /* pPage is a leaf node. This loop navigates the cursor so that it
9509     ** points to the first interior cell that it points to the parent of
9510     ** the next page in the tree that has not yet been visited. The
9511     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9512     ** of the page, or to the number of cells in the page if the next page
9513     ** to visit is the right-child of its parent.
9514     **
9515     ** If all pages in the tree have been visited, return SQLITE_OK to the
9516     ** caller.
9517     */
9518     if( pPage->leaf ){
9519       do {
9520         if( pCur->iPage==0 ){
9521           /* All pages of the b-tree have been visited. Return successfully. */
9522           *pnEntry = nEntry;
9523           return moveToRoot(pCur);
9524         }
9525         moveToParent(pCur);
9526       }while ( pCur->ix>=pCur->pPage->nCell );
9527 
9528       pCur->ix++;
9529       pPage = pCur->pPage;
9530     }
9531 
9532     /* Descend to the child node of the cell that the cursor currently
9533     ** points at. This is the right-child if (iIdx==pPage->nCell).
9534     */
9535     iIdx = pCur->ix;
9536     if( iIdx==pPage->nCell ){
9537       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9538     }else{
9539       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9540     }
9541   }
9542 
9543   /* An error has occurred. Return an error code. */
9544   return rc;
9545 }
9546 #endif
9547 
9548 /*
9549 ** Return the pager associated with a BTree.  This routine is used for
9550 ** testing and debugging only.
9551 */
9552 Pager *sqlite3BtreePager(Btree *p){
9553   return p->pBt->pPager;
9554 }
9555 
9556 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9557 /*
9558 ** Append a message to the error message string.
9559 */
9560 static void checkAppendMsg(
9561   IntegrityCk *pCheck,
9562   const char *zFormat,
9563   ...
9564 ){
9565   va_list ap;
9566   if( !pCheck->mxErr ) return;
9567   pCheck->mxErr--;
9568   pCheck->nErr++;
9569   va_start(ap, zFormat);
9570   if( pCheck->errMsg.nChar ){
9571     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9572   }
9573   if( pCheck->zPfx ){
9574     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9575   }
9576   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9577   va_end(ap);
9578   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9579     pCheck->mallocFailed = 1;
9580   }
9581 }
9582 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9583 
9584 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9585 
9586 /*
9587 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9588 ** corresponds to page iPg is already set.
9589 */
9590 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9591   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9592   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9593 }
9594 
9595 /*
9596 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9597 */
9598 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9599   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9600   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9601 }
9602 
9603 
9604 /*
9605 ** Add 1 to the reference count for page iPage.  If this is the second
9606 ** reference to the page, add an error message to pCheck->zErrMsg.
9607 ** Return 1 if there are 2 or more references to the page and 0 if
9608 ** if this is the first reference to the page.
9609 **
9610 ** Also check that the page number is in bounds.
9611 */
9612 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9613   if( iPage>pCheck->nPage || iPage==0 ){
9614     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9615     return 1;
9616   }
9617   if( getPageReferenced(pCheck, iPage) ){
9618     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9619     return 1;
9620   }
9621   if( pCheck->db->u1.isInterrupted ) return 1;
9622   setPageReferenced(pCheck, iPage);
9623   return 0;
9624 }
9625 
9626 #ifndef SQLITE_OMIT_AUTOVACUUM
9627 /*
9628 ** Check that the entry in the pointer-map for page iChild maps to
9629 ** page iParent, pointer type ptrType. If not, append an error message
9630 ** to pCheck.
9631 */
9632 static void checkPtrmap(
9633   IntegrityCk *pCheck,   /* Integrity check context */
9634   Pgno iChild,           /* Child page number */
9635   u8 eType,              /* Expected pointer map type */
9636   Pgno iParent           /* Expected pointer map parent page number */
9637 ){
9638   int rc;
9639   u8 ePtrmapType;
9640   Pgno iPtrmapParent;
9641 
9642   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9643   if( rc!=SQLITE_OK ){
9644     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9645     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9646     return;
9647   }
9648 
9649   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9650     checkAppendMsg(pCheck,
9651       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9652       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9653   }
9654 }
9655 #endif
9656 
9657 /*
9658 ** Check the integrity of the freelist or of an overflow page list.
9659 ** Verify that the number of pages on the list is N.
9660 */
9661 static void checkList(
9662   IntegrityCk *pCheck,  /* Integrity checking context */
9663   int isFreeList,       /* True for a freelist.  False for overflow page list */
9664   int iPage,            /* Page number for first page in the list */
9665   u32 N                 /* Expected number of pages in the list */
9666 ){
9667   int i;
9668   u32 expected = N;
9669   int nErrAtStart = pCheck->nErr;
9670   while( iPage!=0 && pCheck->mxErr ){
9671     DbPage *pOvflPage;
9672     unsigned char *pOvflData;
9673     if( checkRef(pCheck, iPage) ) break;
9674     N--;
9675     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9676       checkAppendMsg(pCheck, "failed to get page %d", iPage);
9677       break;
9678     }
9679     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9680     if( isFreeList ){
9681       u32 n = (u32)get4byte(&pOvflData[4]);
9682 #ifndef SQLITE_OMIT_AUTOVACUUM
9683       if( pCheck->pBt->autoVacuum ){
9684         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9685       }
9686 #endif
9687       if( n>pCheck->pBt->usableSize/4-2 ){
9688         checkAppendMsg(pCheck,
9689            "freelist leaf count too big on page %d", iPage);
9690         N--;
9691       }else{
9692         for(i=0; i<(int)n; i++){
9693           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9694 #ifndef SQLITE_OMIT_AUTOVACUUM
9695           if( pCheck->pBt->autoVacuum ){
9696             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9697           }
9698 #endif
9699           checkRef(pCheck, iFreePage);
9700         }
9701         N -= n;
9702       }
9703     }
9704 #ifndef SQLITE_OMIT_AUTOVACUUM
9705     else{
9706       /* If this database supports auto-vacuum and iPage is not the last
9707       ** page in this overflow list, check that the pointer-map entry for
9708       ** the following page matches iPage.
9709       */
9710       if( pCheck->pBt->autoVacuum && N>0 ){
9711         i = get4byte(pOvflData);
9712         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9713       }
9714     }
9715 #endif
9716     iPage = get4byte(pOvflData);
9717     sqlite3PagerUnref(pOvflPage);
9718   }
9719   if( N && nErrAtStart==pCheck->nErr ){
9720     checkAppendMsg(pCheck,
9721       "%s is %d but should be %d",
9722       isFreeList ? "size" : "overflow list length",
9723       expected-N, expected);
9724   }
9725 }
9726 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9727 
9728 /*
9729 ** An implementation of a min-heap.
9730 **
9731 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
9732 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
9733 ** and aHeap[N*2+1].
9734 **
9735 ** The heap property is this:  Every node is less than or equal to both
9736 ** of its daughter nodes.  A consequence of the heap property is that the
9737 ** root node aHeap[1] is always the minimum value currently in the heap.
9738 **
9739 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9740 ** the heap, preserving the heap property.  The btreeHeapPull() routine
9741 ** removes the root element from the heap (the minimum value in the heap)
9742 ** and then moves other nodes around as necessary to preserve the heap
9743 ** property.
9744 **
9745 ** This heap is used for cell overlap and coverage testing.  Each u32
9746 ** entry represents the span of a cell or freeblock on a btree page.
9747 ** The upper 16 bits are the index of the first byte of a range and the
9748 ** lower 16 bits are the index of the last byte of that range.
9749 */
9750 static void btreeHeapInsert(u32 *aHeap, u32 x){
9751   u32 j, i = ++aHeap[0];
9752   aHeap[i] = x;
9753   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9754     x = aHeap[j];
9755     aHeap[j] = aHeap[i];
9756     aHeap[i] = x;
9757     i = j;
9758   }
9759 }
9760 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9761   u32 j, i, x;
9762   if( (x = aHeap[0])==0 ) return 0;
9763   *pOut = aHeap[1];
9764   aHeap[1] = aHeap[x];
9765   aHeap[x] = 0xffffffff;
9766   aHeap[0]--;
9767   i = 1;
9768   while( (j = i*2)<=aHeap[0] ){
9769     if( aHeap[j]>aHeap[j+1] ) j++;
9770     if( aHeap[i]<aHeap[j] ) break;
9771     x = aHeap[i];
9772     aHeap[i] = aHeap[j];
9773     aHeap[j] = x;
9774     i = j;
9775   }
9776   return 1;
9777 }
9778 
9779 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9780 /*
9781 ** Do various sanity checks on a single page of a tree.  Return
9782 ** the tree depth.  Root pages return 0.  Parents of root pages
9783 ** return 1, and so forth.
9784 **
9785 ** These checks are done:
9786 **
9787 **      1.  Make sure that cells and freeblocks do not overlap
9788 **          but combine to completely cover the page.
9789 **      2.  Make sure integer cell keys are in order.
9790 **      3.  Check the integrity of overflow pages.
9791 **      4.  Recursively call checkTreePage on all children.
9792 **      5.  Verify that the depth of all children is the same.
9793 */
9794 static int checkTreePage(
9795   IntegrityCk *pCheck,  /* Context for the sanity check */
9796   int iPage,            /* Page number of the page to check */
9797   i64 *piMinKey,        /* Write minimum integer primary key here */
9798   i64 maxKey            /* Error if integer primary key greater than this */
9799 ){
9800   MemPage *pPage = 0;      /* The page being analyzed */
9801   int i;                   /* Loop counter */
9802   int rc;                  /* Result code from subroutine call */
9803   int depth = -1, d2;      /* Depth of a subtree */
9804   int pgno;                /* Page number */
9805   int nFrag;               /* Number of fragmented bytes on the page */
9806   int hdr;                 /* Offset to the page header */
9807   int cellStart;           /* Offset to the start of the cell pointer array */
9808   int nCell;               /* Number of cells */
9809   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9810   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9811                            ** False if IPK must be strictly less than maxKey */
9812   u8 *data;                /* Page content */
9813   u8 *pCell;               /* Cell content */
9814   u8 *pCellIdx;            /* Next element of the cell pointer array */
9815   BtShared *pBt;           /* The BtShared object that owns pPage */
9816   u32 pc;                  /* Address of a cell */
9817   u32 usableSize;          /* Usable size of the page */
9818   u32 contentOffset;       /* Offset to the start of the cell content area */
9819   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9820   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9821   const char *saved_zPfx = pCheck->zPfx;
9822   int saved_v1 = pCheck->v1;
9823   int saved_v2 = pCheck->v2;
9824   u8 savedIsInit = 0;
9825 
9826   /* Check that the page exists
9827   */
9828   pBt = pCheck->pBt;
9829   usableSize = pBt->usableSize;
9830   if( iPage==0 ) return 0;
9831   if( checkRef(pCheck, iPage) ) return 0;
9832   pCheck->zPfx = "Page %d: ";
9833   pCheck->v1 = iPage;
9834   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9835     checkAppendMsg(pCheck,
9836        "unable to get the page. error code=%d", rc);
9837     goto end_of_check;
9838   }
9839 
9840   /* Clear MemPage.isInit to make sure the corruption detection code in
9841   ** btreeInitPage() is executed.  */
9842   savedIsInit = pPage->isInit;
9843   pPage->isInit = 0;
9844   if( (rc = btreeInitPage(pPage))!=0 ){
9845     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9846     checkAppendMsg(pCheck,
9847                    "btreeInitPage() returns error code %d", rc);
9848     goto end_of_check;
9849   }
9850   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9851     assert( rc==SQLITE_CORRUPT );
9852     checkAppendMsg(pCheck, "free space corruption", rc);
9853     goto end_of_check;
9854   }
9855   data = pPage->aData;
9856   hdr = pPage->hdrOffset;
9857 
9858   /* Set up for cell analysis */
9859   pCheck->zPfx = "On tree page %d cell %d: ";
9860   contentOffset = get2byteNotZero(&data[hdr+5]);
9861   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9862 
9863   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9864   ** number of cells on the page. */
9865   nCell = get2byte(&data[hdr+3]);
9866   assert( pPage->nCell==nCell );
9867 
9868   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9869   ** immediately follows the b-tree page header. */
9870   cellStart = hdr + 12 - 4*pPage->leaf;
9871   assert( pPage->aCellIdx==&data[cellStart] );
9872   pCellIdx = &data[cellStart + 2*(nCell-1)];
9873 
9874   if( !pPage->leaf ){
9875     /* Analyze the right-child page of internal pages */
9876     pgno = get4byte(&data[hdr+8]);
9877 #ifndef SQLITE_OMIT_AUTOVACUUM
9878     if( pBt->autoVacuum ){
9879       pCheck->zPfx = "On page %d at right child: ";
9880       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9881     }
9882 #endif
9883     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9884     keyCanBeEqual = 0;
9885   }else{
9886     /* For leaf pages, the coverage check will occur in the same loop
9887     ** as the other cell checks, so initialize the heap.  */
9888     heap = pCheck->heap;
9889     heap[0] = 0;
9890   }
9891 
9892   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9893   ** integer offsets to the cell contents. */
9894   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9895     CellInfo info;
9896 
9897     /* Check cell size */
9898     pCheck->v2 = i;
9899     assert( pCellIdx==&data[cellStart + i*2] );
9900     pc = get2byteAligned(pCellIdx);
9901     pCellIdx -= 2;
9902     if( pc<contentOffset || pc>usableSize-4 ){
9903       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9904                              pc, contentOffset, usableSize-4);
9905       doCoverageCheck = 0;
9906       continue;
9907     }
9908     pCell = &data[pc];
9909     pPage->xParseCell(pPage, pCell, &info);
9910     if( pc+info.nSize>usableSize ){
9911       checkAppendMsg(pCheck, "Extends off end of page");
9912       doCoverageCheck = 0;
9913       continue;
9914     }
9915 
9916     /* Check for integer primary key out of range */
9917     if( pPage->intKey ){
9918       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9919         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9920       }
9921       maxKey = info.nKey;
9922       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
9923     }
9924 
9925     /* Check the content overflow list */
9926     if( info.nPayload>info.nLocal ){
9927       u32 nPage;       /* Number of pages on the overflow chain */
9928       Pgno pgnoOvfl;   /* First page of the overflow chain */
9929       assert( pc + info.nSize - 4 <= usableSize );
9930       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9931       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9932 #ifndef SQLITE_OMIT_AUTOVACUUM
9933       if( pBt->autoVacuum ){
9934         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9935       }
9936 #endif
9937       checkList(pCheck, 0, pgnoOvfl, nPage);
9938     }
9939 
9940     if( !pPage->leaf ){
9941       /* Check sanity of left child page for internal pages */
9942       pgno = get4byte(pCell);
9943 #ifndef SQLITE_OMIT_AUTOVACUUM
9944       if( pBt->autoVacuum ){
9945         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9946       }
9947 #endif
9948       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9949       keyCanBeEqual = 0;
9950       if( d2!=depth ){
9951         checkAppendMsg(pCheck, "Child page depth differs");
9952         depth = d2;
9953       }
9954     }else{
9955       /* Populate the coverage-checking heap for leaf pages */
9956       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9957     }
9958   }
9959   *piMinKey = maxKey;
9960 
9961   /* Check for complete coverage of the page
9962   */
9963   pCheck->zPfx = 0;
9964   if( doCoverageCheck && pCheck->mxErr>0 ){
9965     /* For leaf pages, the min-heap has already been initialized and the
9966     ** cells have already been inserted.  But for internal pages, that has
9967     ** not yet been done, so do it now */
9968     if( !pPage->leaf ){
9969       heap = pCheck->heap;
9970       heap[0] = 0;
9971       for(i=nCell-1; i>=0; i--){
9972         u32 size;
9973         pc = get2byteAligned(&data[cellStart+i*2]);
9974         size = pPage->xCellSize(pPage, &data[pc]);
9975         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9976       }
9977     }
9978     /* Add the freeblocks to the min-heap
9979     **
9980     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9981     ** is the offset of the first freeblock, or zero if there are no
9982     ** freeblocks on the page.
9983     */
9984     i = get2byte(&data[hdr+1]);
9985     while( i>0 ){
9986       int size, j;
9987       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
9988       size = get2byte(&data[i+2]);
9989       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
9990       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9991       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9992       ** big-endian integer which is the offset in the b-tree page of the next
9993       ** freeblock in the chain, or zero if the freeblock is the last on the
9994       ** chain. */
9995       j = get2byte(&data[i]);
9996       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9997       ** increasing offset. */
9998       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */
9999       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10000       i = j;
10001     }
10002     /* Analyze the min-heap looking for overlap between cells and/or
10003     ** freeblocks, and counting the number of untracked bytes in nFrag.
10004     **
10005     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
10006     ** There is an implied first entry the covers the page header, the cell
10007     ** pointer index, and the gap between the cell pointer index and the start
10008     ** of cell content.
10009     **
10010     ** The loop below pulls entries from the min-heap in order and compares
10011     ** the start_address against the previous end_address.  If there is an
10012     ** overlap, that means bytes are used multiple times.  If there is a gap,
10013     ** that gap is added to the fragmentation count.
10014     */
10015     nFrag = 0;
10016     prev = contentOffset - 1;   /* Implied first min-heap entry */
10017     while( btreeHeapPull(heap,&x) ){
10018       if( (prev&0xffff)>=(x>>16) ){
10019         checkAppendMsg(pCheck,
10020           "Multiple uses for byte %u of page %d", x>>16, iPage);
10021         break;
10022       }else{
10023         nFrag += (x>>16) - (prev&0xffff) - 1;
10024         prev = x;
10025       }
10026     }
10027     nFrag += usableSize - (prev&0xffff) - 1;
10028     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10029     ** is stored in the fifth field of the b-tree page header.
10030     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10031     ** number of fragmented free bytes within the cell content area.
10032     */
10033     if( heap[0]==0 && nFrag!=data[hdr+7] ){
10034       checkAppendMsg(pCheck,
10035           "Fragmentation of %d bytes reported as %d on page %d",
10036           nFrag, data[hdr+7], iPage);
10037     }
10038   }
10039 
10040 end_of_check:
10041   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10042   releasePage(pPage);
10043   pCheck->zPfx = saved_zPfx;
10044   pCheck->v1 = saved_v1;
10045   pCheck->v2 = saved_v2;
10046   return depth+1;
10047 }
10048 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10049 
10050 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10051 /*
10052 ** This routine does a complete check of the given BTree file.  aRoot[] is
10053 ** an array of pages numbers were each page number is the root page of
10054 ** a table.  nRoot is the number of entries in aRoot.
10055 **
10056 ** A read-only or read-write transaction must be opened before calling
10057 ** this function.
10058 **
10059 ** Write the number of error seen in *pnErr.  Except for some memory
10060 ** allocation errors,  an error message held in memory obtained from
10061 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
10062 ** returned.  If a memory allocation error occurs, NULL is returned.
10063 */
10064 char *sqlite3BtreeIntegrityCheck(
10065   sqlite3 *db,  /* Database connection that is running the check */
10066   Btree *p,     /* The btree to be checked */
10067   int *aRoot,   /* An array of root pages numbers for individual trees */
10068   int nRoot,    /* Number of entries in aRoot[] */
10069   int mxErr,    /* Stop reporting errors after this many */
10070   int *pnErr    /* Write number of errors seen to this variable */
10071 ){
10072   Pgno i;
10073   IntegrityCk sCheck;
10074   BtShared *pBt = p->pBt;
10075   u64 savedDbFlags = pBt->db->flags;
10076   char zErr[100];
10077   VVA_ONLY( int nRef );
10078 
10079   sqlite3BtreeEnter(p);
10080   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10081   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10082   assert( nRef>=0 );
10083   sCheck.db = db;
10084   sCheck.pBt = pBt;
10085   sCheck.pPager = pBt->pPager;
10086   sCheck.nPage = btreePagecount(sCheck.pBt);
10087   sCheck.mxErr = mxErr;
10088   sCheck.nErr = 0;
10089   sCheck.mallocFailed = 0;
10090   sCheck.zPfx = 0;
10091   sCheck.v1 = 0;
10092   sCheck.v2 = 0;
10093   sCheck.aPgRef = 0;
10094   sCheck.heap = 0;
10095   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10096   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10097   if( sCheck.nPage==0 ){
10098     goto integrity_ck_cleanup;
10099   }
10100 
10101   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10102   if( !sCheck.aPgRef ){
10103     sCheck.mallocFailed = 1;
10104     goto integrity_ck_cleanup;
10105   }
10106   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10107   if( sCheck.heap==0 ){
10108     sCheck.mallocFailed = 1;
10109     goto integrity_ck_cleanup;
10110   }
10111 
10112   i = PENDING_BYTE_PAGE(pBt);
10113   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10114 
10115   /* Check the integrity of the freelist
10116   */
10117   sCheck.zPfx = "Main freelist: ";
10118   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10119             get4byte(&pBt->pPage1->aData[36]));
10120   sCheck.zPfx = 0;
10121 
10122   /* Check all the tables.
10123   */
10124 #ifndef SQLITE_OMIT_AUTOVACUUM
10125   if( pBt->autoVacuum ){
10126     int mx = 0;
10127     int mxInHdr;
10128     for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10129     mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10130     if( mx!=mxInHdr ){
10131       checkAppendMsg(&sCheck,
10132         "max rootpage (%d) disagrees with header (%d)",
10133         mx, mxInHdr
10134       );
10135     }
10136   }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10137     checkAppendMsg(&sCheck,
10138       "incremental_vacuum enabled with a max rootpage of zero"
10139     );
10140   }
10141 #endif
10142   testcase( pBt->db->flags & SQLITE_CellSizeCk );
10143   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10144   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10145     i64 notUsed;
10146     if( aRoot[i]==0 ) continue;
10147 #ifndef SQLITE_OMIT_AUTOVACUUM
10148     if( pBt->autoVacuum && aRoot[i]>1 ){
10149       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10150     }
10151 #endif
10152     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10153   }
10154   pBt->db->flags = savedDbFlags;
10155 
10156   /* Make sure every page in the file is referenced
10157   */
10158   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10159 #ifdef SQLITE_OMIT_AUTOVACUUM
10160     if( getPageReferenced(&sCheck, i)==0 ){
10161       checkAppendMsg(&sCheck, "Page %d is never used", i);
10162     }
10163 #else
10164     /* If the database supports auto-vacuum, make sure no tables contain
10165     ** references to pointer-map pages.
10166     */
10167     if( getPageReferenced(&sCheck, i)==0 &&
10168        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10169       checkAppendMsg(&sCheck, "Page %d is never used", i);
10170     }
10171     if( getPageReferenced(&sCheck, i)!=0 &&
10172        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10173       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10174     }
10175 #endif
10176   }
10177 
10178   /* Clean  up and report errors.
10179   */
10180 integrity_ck_cleanup:
10181   sqlite3PageFree(sCheck.heap);
10182   sqlite3_free(sCheck.aPgRef);
10183   if( sCheck.mallocFailed ){
10184     sqlite3_str_reset(&sCheck.errMsg);
10185     sCheck.nErr++;
10186   }
10187   *pnErr = sCheck.nErr;
10188   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10189   /* Make sure this analysis did not leave any unref() pages. */
10190   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10191   sqlite3BtreeLeave(p);
10192   return sqlite3StrAccumFinish(&sCheck.errMsg);
10193 }
10194 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10195 
10196 /*
10197 ** Return the full pathname of the underlying database file.  Return
10198 ** an empty string if the database is in-memory or a TEMP database.
10199 **
10200 ** The pager filename is invariant as long as the pager is
10201 ** open so it is safe to access without the BtShared mutex.
10202 */
10203 const char *sqlite3BtreeGetFilename(Btree *p){
10204   assert( p->pBt->pPager!=0 );
10205   return sqlite3PagerFilename(p->pBt->pPager, 1);
10206 }
10207 
10208 /*
10209 ** Return the pathname of the journal file for this database. The return
10210 ** value of this routine is the same regardless of whether the journal file
10211 ** has been created or not.
10212 **
10213 ** The pager journal filename is invariant as long as the pager is
10214 ** open so it is safe to access without the BtShared mutex.
10215 */
10216 const char *sqlite3BtreeGetJournalname(Btree *p){
10217   assert( p->pBt->pPager!=0 );
10218   return sqlite3PagerJournalname(p->pBt->pPager);
10219 }
10220 
10221 /*
10222 ** Return non-zero if a transaction is active.
10223 */
10224 int sqlite3BtreeIsInTrans(Btree *p){
10225   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10226   return (p && (p->inTrans==TRANS_WRITE));
10227 }
10228 
10229 #ifndef SQLITE_OMIT_WAL
10230 /*
10231 ** Run a checkpoint on the Btree passed as the first argument.
10232 **
10233 ** Return SQLITE_LOCKED if this or any other connection has an open
10234 ** transaction on the shared-cache the argument Btree is connected to.
10235 **
10236 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10237 */
10238 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10239   int rc = SQLITE_OK;
10240   if( p ){
10241     BtShared *pBt = p->pBt;
10242     sqlite3BtreeEnter(p);
10243     if( pBt->inTransaction!=TRANS_NONE ){
10244       rc = SQLITE_LOCKED;
10245     }else{
10246       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10247     }
10248     sqlite3BtreeLeave(p);
10249   }
10250   return rc;
10251 }
10252 #endif
10253 
10254 /*
10255 ** Return non-zero if a read (or write) transaction is active.
10256 */
10257 int sqlite3BtreeIsInReadTrans(Btree *p){
10258   assert( p );
10259   assert( sqlite3_mutex_held(p->db->mutex) );
10260   return p->inTrans!=TRANS_NONE;
10261 }
10262 
10263 int sqlite3BtreeIsInBackup(Btree *p){
10264   assert( p );
10265   assert( sqlite3_mutex_held(p->db->mutex) );
10266   return p->nBackup!=0;
10267 }
10268 
10269 /*
10270 ** This function returns a pointer to a blob of memory associated with
10271 ** a single shared-btree. The memory is used by client code for its own
10272 ** purposes (for example, to store a high-level schema associated with
10273 ** the shared-btree). The btree layer manages reference counting issues.
10274 **
10275 ** The first time this is called on a shared-btree, nBytes bytes of memory
10276 ** are allocated, zeroed, and returned to the caller. For each subsequent
10277 ** call the nBytes parameter is ignored and a pointer to the same blob
10278 ** of memory returned.
10279 **
10280 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10281 ** allocated, a null pointer is returned. If the blob has already been
10282 ** allocated, it is returned as normal.
10283 **
10284 ** Just before the shared-btree is closed, the function passed as the
10285 ** xFree argument when the memory allocation was made is invoked on the
10286 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10287 ** on the memory, the btree layer does that.
10288 */
10289 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10290   BtShared *pBt = p->pBt;
10291   sqlite3BtreeEnter(p);
10292   if( !pBt->pSchema && nBytes ){
10293     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10294     pBt->xFreeSchema = xFree;
10295   }
10296   sqlite3BtreeLeave(p);
10297   return pBt->pSchema;
10298 }
10299 
10300 /*
10301 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10302 ** btree as the argument handle holds an exclusive lock on the
10303 ** sqlite_master table. Otherwise SQLITE_OK.
10304 */
10305 int sqlite3BtreeSchemaLocked(Btree *p){
10306   int rc;
10307   assert( sqlite3_mutex_held(p->db->mutex) );
10308   sqlite3BtreeEnter(p);
10309   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10310   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10311   sqlite3BtreeLeave(p);
10312   return rc;
10313 }
10314 
10315 
10316 #ifndef SQLITE_OMIT_SHARED_CACHE
10317 /*
10318 ** Obtain a lock on the table whose root page is iTab.  The
10319 ** lock is a write lock if isWritelock is true or a read lock
10320 ** if it is false.
10321 */
10322 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10323   int rc = SQLITE_OK;
10324   assert( p->inTrans!=TRANS_NONE );
10325   if( p->sharable ){
10326     u8 lockType = READ_LOCK + isWriteLock;
10327     assert( READ_LOCK+1==WRITE_LOCK );
10328     assert( isWriteLock==0 || isWriteLock==1 );
10329 
10330     sqlite3BtreeEnter(p);
10331     rc = querySharedCacheTableLock(p, iTab, lockType);
10332     if( rc==SQLITE_OK ){
10333       rc = setSharedCacheTableLock(p, iTab, lockType);
10334     }
10335     sqlite3BtreeLeave(p);
10336   }
10337   return rc;
10338 }
10339 #endif
10340 
10341 #ifndef SQLITE_OMIT_INCRBLOB
10342 /*
10343 ** Argument pCsr must be a cursor opened for writing on an
10344 ** INTKEY table currently pointing at a valid table entry.
10345 ** This function modifies the data stored as part of that entry.
10346 **
10347 ** Only the data content may only be modified, it is not possible to
10348 ** change the length of the data stored. If this function is called with
10349 ** parameters that attempt to write past the end of the existing data,
10350 ** no modifications are made and SQLITE_CORRUPT is returned.
10351 */
10352 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10353   int rc;
10354   assert( cursorOwnsBtShared(pCsr) );
10355   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10356   assert( pCsr->curFlags & BTCF_Incrblob );
10357 
10358   rc = restoreCursorPosition(pCsr);
10359   if( rc!=SQLITE_OK ){
10360     return rc;
10361   }
10362   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10363   if( pCsr->eState!=CURSOR_VALID ){
10364     return SQLITE_ABORT;
10365   }
10366 
10367   /* Save the positions of all other cursors open on this table. This is
10368   ** required in case any of them are holding references to an xFetch
10369   ** version of the b-tree page modified by the accessPayload call below.
10370   **
10371   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10372   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10373   ** saveAllCursors can only return SQLITE_OK.
10374   */
10375   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10376   assert( rc==SQLITE_OK );
10377 
10378   /* Check some assumptions:
10379   **   (a) the cursor is open for writing,
10380   **   (b) there is a read/write transaction open,
10381   **   (c) the connection holds a write-lock on the table (if required),
10382   **   (d) there are no conflicting read-locks, and
10383   **   (e) the cursor points at a valid row of an intKey table.
10384   */
10385   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10386     return SQLITE_READONLY;
10387   }
10388   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10389               && pCsr->pBt->inTransaction==TRANS_WRITE );
10390   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10391   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10392   assert( pCsr->pPage->intKey );
10393 
10394   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10395 }
10396 
10397 /*
10398 ** Mark this cursor as an incremental blob cursor.
10399 */
10400 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10401   pCur->curFlags |= BTCF_Incrblob;
10402   pCur->pBtree->hasIncrblobCur = 1;
10403 }
10404 #endif
10405 
10406 /*
10407 ** Set both the "read version" (single byte at byte offset 18) and
10408 ** "write version" (single byte at byte offset 19) fields in the database
10409 ** header to iVersion.
10410 */
10411 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10412   BtShared *pBt = pBtree->pBt;
10413   int rc;                         /* Return code */
10414 
10415   assert( iVersion==1 || iVersion==2 );
10416 
10417   /* If setting the version fields to 1, do not automatically open the
10418   ** WAL connection, even if the version fields are currently set to 2.
10419   */
10420   pBt->btsFlags &= ~BTS_NO_WAL;
10421   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10422 
10423   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10424   if( rc==SQLITE_OK ){
10425     u8 *aData = pBt->pPage1->aData;
10426     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10427       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10428       if( rc==SQLITE_OK ){
10429         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10430         if( rc==SQLITE_OK ){
10431           aData[18] = (u8)iVersion;
10432           aData[19] = (u8)iVersion;
10433         }
10434       }
10435     }
10436   }
10437 
10438   pBt->btsFlags &= ~BTS_NO_WAL;
10439   return rc;
10440 }
10441 
10442 /*
10443 ** Return true if the cursor has a hint specified.  This routine is
10444 ** only used from within assert() statements
10445 */
10446 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10447   return (pCsr->hints & mask)!=0;
10448 }
10449 
10450 /*
10451 ** Return true if the given Btree is read-only.
10452 */
10453 int sqlite3BtreeIsReadonly(Btree *p){
10454   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10455 }
10456 
10457 /*
10458 ** Return the size of the header added to each page by this module.
10459 */
10460 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10461 
10462 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10463 /*
10464 ** Return true if the Btree passed as the only argument is sharable.
10465 */
10466 int sqlite3BtreeSharable(Btree *p){
10467   return p->sharable;
10468 }
10469 
10470 /*
10471 ** Return the number of connections to the BtShared object accessed by
10472 ** the Btree handle passed as the only argument. For private caches
10473 ** this is always 1. For shared caches it may be 1 or greater.
10474 */
10475 int sqlite3BtreeConnectionCount(Btree *p){
10476   testcase( p->sharable );
10477   return p->pBt->nRef;
10478 }
10479 #endif
10480