1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 /* 116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 118 ** 119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 122 ** with the page number and filename associated with the (MemPage*). 123 */ 124 #ifdef SQLITE_DEBUG 125 int corruptPageError(int lineno, MemPage *p){ 126 char *zMsg; 127 sqlite3BeginBenignMalloc(); 128 zMsg = sqlite3_mprintf("database corruption page %d of %s", 129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 130 ); 131 sqlite3EndBenignMalloc(); 132 if( zMsg ){ 133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 134 } 135 sqlite3_free(zMsg); 136 return SQLITE_CORRUPT_BKPT; 137 } 138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 139 #else 140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 141 #endif 142 143 #ifndef SQLITE_OMIT_SHARED_CACHE 144 145 #ifdef SQLITE_DEBUG 146 /* 147 **** This function is only used as part of an assert() statement. *** 148 ** 149 ** Check to see if pBtree holds the required locks to read or write to the 150 ** table with root page iRoot. Return 1 if it does and 0 if not. 151 ** 152 ** For example, when writing to a table with root-page iRoot via 153 ** Btree connection pBtree: 154 ** 155 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 156 ** 157 ** When writing to an index that resides in a sharable database, the 158 ** caller should have first obtained a lock specifying the root page of 159 ** the corresponding table. This makes things a bit more complicated, 160 ** as this module treats each table as a separate structure. To determine 161 ** the table corresponding to the index being written, this 162 ** function has to search through the database schema. 163 ** 164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 165 ** hold a write-lock on the schema table (root page 1). This is also 166 ** acceptable. 167 */ 168 static int hasSharedCacheTableLock( 169 Btree *pBtree, /* Handle that must hold lock */ 170 Pgno iRoot, /* Root page of b-tree */ 171 int isIndex, /* True if iRoot is the root of an index b-tree */ 172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 173 ){ 174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 175 Pgno iTab = 0; 176 BtLock *pLock; 177 178 /* If this database is not shareable, or if the client is reading 179 ** and has the read-uncommitted flag set, then no lock is required. 180 ** Return true immediately. 181 */ 182 if( (pBtree->sharable==0) 183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 184 ){ 185 return 1; 186 } 187 188 /* If the client is reading or writing an index and the schema is 189 ** not loaded, then it is too difficult to actually check to see if 190 ** the correct locks are held. So do not bother - just return true. 191 ** This case does not come up very often anyhow. 192 */ 193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 194 return 1; 195 } 196 197 /* Figure out the root-page that the lock should be held on. For table 198 ** b-trees, this is just the root page of the b-tree being read or 199 ** written. For index b-trees, it is the root page of the associated 200 ** table. */ 201 if( isIndex ){ 202 HashElem *p; 203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 204 Index *pIdx = (Index *)sqliteHashData(p); 205 if( pIdx->tnum==(int)iRoot ){ 206 if( iTab ){ 207 /* Two or more indexes share the same root page. There must 208 ** be imposter tables. So just return true. The assert is not 209 ** useful in that case. */ 210 return 1; 211 } 212 iTab = pIdx->pTable->tnum; 213 } 214 } 215 }else{ 216 iTab = iRoot; 217 } 218 219 /* Search for the required lock. Either a write-lock on root-page iTab, a 220 ** write-lock on the schema table, or (if the client is reading) a 221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 223 if( pLock->pBtree==pBtree 224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 225 && pLock->eLock>=eLockType 226 ){ 227 return 1; 228 } 229 } 230 231 /* Failed to find the required lock. */ 232 return 0; 233 } 234 #endif /* SQLITE_DEBUG */ 235 236 #ifdef SQLITE_DEBUG 237 /* 238 **** This function may be used as part of assert() statements only. **** 239 ** 240 ** Return true if it would be illegal for pBtree to write into the 241 ** table or index rooted at iRoot because other shared connections are 242 ** simultaneously reading that same table or index. 243 ** 244 ** It is illegal for pBtree to write if some other Btree object that 245 ** shares the same BtShared object is currently reading or writing 246 ** the iRoot table. Except, if the other Btree object has the 247 ** read-uncommitted flag set, then it is OK for the other object to 248 ** have a read cursor. 249 ** 250 ** For example, before writing to any part of the table or index 251 ** rooted at page iRoot, one should call: 252 ** 253 ** assert( !hasReadConflicts(pBtree, iRoot) ); 254 */ 255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 256 BtCursor *p; 257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 258 if( p->pgnoRoot==iRoot 259 && p->pBtree!=pBtree 260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 261 ){ 262 return 1; 263 } 264 } 265 return 0; 266 } 267 #endif /* #ifdef SQLITE_DEBUG */ 268 269 /* 270 ** Query to see if Btree handle p may obtain a lock of type eLock 271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 272 ** SQLITE_OK if the lock may be obtained (by calling 273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 274 */ 275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 276 BtShared *pBt = p->pBt; 277 BtLock *pIter; 278 279 assert( sqlite3BtreeHoldsMutex(p) ); 280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 281 assert( p->db!=0 ); 282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 283 284 /* If requesting a write-lock, then the Btree must have an open write 285 ** transaction on this file. And, obviously, for this to be so there 286 ** must be an open write transaction on the file itself. 287 */ 288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 290 291 /* This routine is a no-op if the shared-cache is not enabled */ 292 if( !p->sharable ){ 293 return SQLITE_OK; 294 } 295 296 /* If some other connection is holding an exclusive lock, the 297 ** requested lock may not be obtained. 298 */ 299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 301 return SQLITE_LOCKED_SHAREDCACHE; 302 } 303 304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 305 /* The condition (pIter->eLock!=eLock) in the following if(...) 306 ** statement is a simplification of: 307 ** 308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 309 ** 310 ** since we know that if eLock==WRITE_LOCK, then no other connection 311 ** may hold a WRITE_LOCK on any table in this file (since there can 312 ** only be a single writer). 313 */ 314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 318 if( eLock==WRITE_LOCK ){ 319 assert( p==pBt->pWriter ); 320 pBt->btsFlags |= BTS_PENDING; 321 } 322 return SQLITE_LOCKED_SHAREDCACHE; 323 } 324 } 325 return SQLITE_OK; 326 } 327 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 328 329 #ifndef SQLITE_OMIT_SHARED_CACHE 330 /* 331 ** Add a lock on the table with root-page iTable to the shared-btree used 332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 333 ** WRITE_LOCK. 334 ** 335 ** This function assumes the following: 336 ** 337 ** (a) The specified Btree object p is connected to a sharable 338 ** database (one with the BtShared.sharable flag set), and 339 ** 340 ** (b) No other Btree objects hold a lock that conflicts 341 ** with the requested lock (i.e. querySharedCacheTableLock() has 342 ** already been called and returned SQLITE_OK). 343 ** 344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 345 ** is returned if a malloc attempt fails. 346 */ 347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 348 BtShared *pBt = p->pBt; 349 BtLock *pLock = 0; 350 BtLock *pIter; 351 352 assert( sqlite3BtreeHoldsMutex(p) ); 353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 354 assert( p->db!=0 ); 355 356 /* A connection with the read-uncommitted flag set will never try to 357 ** obtain a read-lock using this function. The only read-lock obtained 358 ** by a connection in read-uncommitted mode is on the sqlite_master 359 ** table, and that lock is obtained in BtreeBeginTrans(). */ 360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 361 362 /* This function should only be called on a sharable b-tree after it 363 ** has been determined that no other b-tree holds a conflicting lock. */ 364 assert( p->sharable ); 365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 366 367 /* First search the list for an existing lock on this table. */ 368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 369 if( pIter->iTable==iTable && pIter->pBtree==p ){ 370 pLock = pIter; 371 break; 372 } 373 } 374 375 /* If the above search did not find a BtLock struct associating Btree p 376 ** with table iTable, allocate one and link it into the list. 377 */ 378 if( !pLock ){ 379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 380 if( !pLock ){ 381 return SQLITE_NOMEM_BKPT; 382 } 383 pLock->iTable = iTable; 384 pLock->pBtree = p; 385 pLock->pNext = pBt->pLock; 386 pBt->pLock = pLock; 387 } 388 389 /* Set the BtLock.eLock variable to the maximum of the current lock 390 ** and the requested lock. This means if a write-lock was already held 391 ** and a read-lock requested, we don't incorrectly downgrade the lock. 392 */ 393 assert( WRITE_LOCK>READ_LOCK ); 394 if( eLock>pLock->eLock ){ 395 pLock->eLock = eLock; 396 } 397 398 return SQLITE_OK; 399 } 400 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 401 402 #ifndef SQLITE_OMIT_SHARED_CACHE 403 /* 404 ** Release all the table locks (locks obtained via calls to 405 ** the setSharedCacheTableLock() procedure) held by Btree object p. 406 ** 407 ** This function assumes that Btree p has an open read or write 408 ** transaction. If it does not, then the BTS_PENDING flag 409 ** may be incorrectly cleared. 410 */ 411 static void clearAllSharedCacheTableLocks(Btree *p){ 412 BtShared *pBt = p->pBt; 413 BtLock **ppIter = &pBt->pLock; 414 415 assert( sqlite3BtreeHoldsMutex(p) ); 416 assert( p->sharable || 0==*ppIter ); 417 assert( p->inTrans>0 ); 418 419 while( *ppIter ){ 420 BtLock *pLock = *ppIter; 421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 422 assert( pLock->pBtree->inTrans>=pLock->eLock ); 423 if( pLock->pBtree==p ){ 424 *ppIter = pLock->pNext; 425 assert( pLock->iTable!=1 || pLock==&p->lock ); 426 if( pLock->iTable!=1 ){ 427 sqlite3_free(pLock); 428 } 429 }else{ 430 ppIter = &pLock->pNext; 431 } 432 } 433 434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 435 if( pBt->pWriter==p ){ 436 pBt->pWriter = 0; 437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 438 }else if( pBt->nTransaction==2 ){ 439 /* This function is called when Btree p is concluding its 440 ** transaction. If there currently exists a writer, and p is not 441 ** that writer, then the number of locks held by connections other 442 ** than the writer must be about to drop to zero. In this case 443 ** set the BTS_PENDING flag to 0. 444 ** 445 ** If there is not currently a writer, then BTS_PENDING must 446 ** be zero already. So this next line is harmless in that case. 447 */ 448 pBt->btsFlags &= ~BTS_PENDING; 449 } 450 } 451 452 /* 453 ** This function changes all write-locks held by Btree p into read-locks. 454 */ 455 static void downgradeAllSharedCacheTableLocks(Btree *p){ 456 BtShared *pBt = p->pBt; 457 if( pBt->pWriter==p ){ 458 BtLock *pLock; 459 pBt->pWriter = 0; 460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 463 pLock->eLock = READ_LOCK; 464 } 465 } 466 } 467 468 #endif /* SQLITE_OMIT_SHARED_CACHE */ 469 470 static void releasePage(MemPage *pPage); /* Forward reference */ 471 static void releasePageOne(MemPage *pPage); /* Forward reference */ 472 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 473 474 /* 475 ***** This routine is used inside of assert() only **** 476 ** 477 ** Verify that the cursor holds the mutex on its BtShared 478 */ 479 #ifdef SQLITE_DEBUG 480 static int cursorHoldsMutex(BtCursor *p){ 481 return sqlite3_mutex_held(p->pBt->mutex); 482 } 483 484 /* Verify that the cursor and the BtShared agree about what is the current 485 ** database connetion. This is important in shared-cache mode. If the database 486 ** connection pointers get out-of-sync, it is possible for routines like 487 ** btreeInitPage() to reference an stale connection pointer that references a 488 ** a connection that has already closed. This routine is used inside assert() 489 ** statements only and for the purpose of double-checking that the btree code 490 ** does keep the database connection pointers up-to-date. 491 */ 492 static int cursorOwnsBtShared(BtCursor *p){ 493 assert( cursorHoldsMutex(p) ); 494 return (p->pBtree->db==p->pBt->db); 495 } 496 #endif 497 498 /* 499 ** Invalidate the overflow cache of the cursor passed as the first argument. 500 ** on the shared btree structure pBt. 501 */ 502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 503 504 /* 505 ** Invalidate the overflow page-list cache for all cursors opened 506 ** on the shared btree structure pBt. 507 */ 508 static void invalidateAllOverflowCache(BtShared *pBt){ 509 BtCursor *p; 510 assert( sqlite3_mutex_held(pBt->mutex) ); 511 for(p=pBt->pCursor; p; p=p->pNext){ 512 invalidateOverflowCache(p); 513 } 514 } 515 516 #ifndef SQLITE_OMIT_INCRBLOB 517 /* 518 ** This function is called before modifying the contents of a table 519 ** to invalidate any incrblob cursors that are open on the 520 ** row or one of the rows being modified. 521 ** 522 ** If argument isClearTable is true, then the entire contents of the 523 ** table is about to be deleted. In this case invalidate all incrblob 524 ** cursors open on any row within the table with root-page pgnoRoot. 525 ** 526 ** Otherwise, if argument isClearTable is false, then the row with 527 ** rowid iRow is being replaced or deleted. In this case invalidate 528 ** only those incrblob cursors open on that specific row. 529 */ 530 static void invalidateIncrblobCursors( 531 Btree *pBtree, /* The database file to check */ 532 Pgno pgnoRoot, /* The table that might be changing */ 533 i64 iRow, /* The rowid that might be changing */ 534 int isClearTable /* True if all rows are being deleted */ 535 ){ 536 BtCursor *p; 537 if( pBtree->hasIncrblobCur==0 ) return; 538 assert( sqlite3BtreeHoldsMutex(pBtree) ); 539 pBtree->hasIncrblobCur = 0; 540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 541 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 542 pBtree->hasIncrblobCur = 1; 543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 544 p->eState = CURSOR_INVALID; 545 } 546 } 547 } 548 } 549 550 #else 551 /* Stub function when INCRBLOB is omitted */ 552 #define invalidateIncrblobCursors(w,x,y,z) 553 #endif /* SQLITE_OMIT_INCRBLOB */ 554 555 /* 556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 557 ** when a page that previously contained data becomes a free-list leaf 558 ** page. 559 ** 560 ** The BtShared.pHasContent bitvec exists to work around an obscure 561 ** bug caused by the interaction of two useful IO optimizations surrounding 562 ** free-list leaf pages: 563 ** 564 ** 1) When all data is deleted from a page and the page becomes 565 ** a free-list leaf page, the page is not written to the database 566 ** (as free-list leaf pages contain no meaningful data). Sometimes 567 ** such a page is not even journalled (as it will not be modified, 568 ** why bother journalling it?). 569 ** 570 ** 2) When a free-list leaf page is reused, its content is not read 571 ** from the database or written to the journal file (why should it 572 ** be, if it is not at all meaningful?). 573 ** 574 ** By themselves, these optimizations work fine and provide a handy 575 ** performance boost to bulk delete or insert operations. However, if 576 ** a page is moved to the free-list and then reused within the same 577 ** transaction, a problem comes up. If the page is not journalled when 578 ** it is moved to the free-list and it is also not journalled when it 579 ** is extracted from the free-list and reused, then the original data 580 ** may be lost. In the event of a rollback, it may not be possible 581 ** to restore the database to its original configuration. 582 ** 583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 584 ** moved to become a free-list leaf page, the corresponding bit is 585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 586 ** optimization 2 above is omitted if the corresponding bit is already 587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 588 ** at the end of every transaction. 589 */ 590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 591 int rc = SQLITE_OK; 592 if( !pBt->pHasContent ){ 593 assert( pgno<=pBt->nPage ); 594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 595 if( !pBt->pHasContent ){ 596 rc = SQLITE_NOMEM_BKPT; 597 } 598 } 599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 601 } 602 return rc; 603 } 604 605 /* 606 ** Query the BtShared.pHasContent vector. 607 ** 608 ** This function is called when a free-list leaf page is removed from the 609 ** free-list for reuse. It returns false if it is safe to retrieve the 610 ** page from the pager layer with the 'no-content' flag set. True otherwise. 611 */ 612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 613 Bitvec *p = pBt->pHasContent; 614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); 615 } 616 617 /* 618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 619 ** invoked at the conclusion of each write-transaction. 620 */ 621 static void btreeClearHasContent(BtShared *pBt){ 622 sqlite3BitvecDestroy(pBt->pHasContent); 623 pBt->pHasContent = 0; 624 } 625 626 /* 627 ** Release all of the apPage[] pages for a cursor. 628 */ 629 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 630 int i; 631 if( pCur->iPage>=0 ){ 632 for(i=0; i<pCur->iPage; i++){ 633 releasePageNotNull(pCur->apPage[i]); 634 } 635 releasePageNotNull(pCur->pPage); 636 pCur->iPage = -1; 637 } 638 } 639 640 /* 641 ** The cursor passed as the only argument must point to a valid entry 642 ** when this function is called (i.e. have eState==CURSOR_VALID). This 643 ** function saves the current cursor key in variables pCur->nKey and 644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 645 ** code otherwise. 646 ** 647 ** If the cursor is open on an intkey table, then the integer key 648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 650 ** set to point to a malloced buffer pCur->nKey bytes in size containing 651 ** the key. 652 */ 653 static int saveCursorKey(BtCursor *pCur){ 654 int rc = SQLITE_OK; 655 assert( CURSOR_VALID==pCur->eState ); 656 assert( 0==pCur->pKey ); 657 assert( cursorHoldsMutex(pCur) ); 658 659 if( pCur->curIntKey ){ 660 /* Only the rowid is required for a table btree */ 661 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 662 }else{ 663 /* For an index btree, save the complete key content. It is possible 664 ** that the current key is corrupt. In that case, it is possible that 665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 666 ** up to the size of 1 varint plus 1 8-byte value when the cursor 667 ** position is restored. Hence the 17 bytes of padding allocated 668 ** below. */ 669 void *pKey; 670 pCur->nKey = sqlite3BtreePayloadSize(pCur); 671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 672 if( pKey ){ 673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 674 if( rc==SQLITE_OK ){ 675 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 676 pCur->pKey = pKey; 677 }else{ 678 sqlite3_free(pKey); 679 } 680 }else{ 681 rc = SQLITE_NOMEM_BKPT; 682 } 683 } 684 assert( !pCur->curIntKey || !pCur->pKey ); 685 return rc; 686 } 687 688 /* 689 ** Save the current cursor position in the variables BtCursor.nKey 690 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 691 ** 692 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 693 ** prior to calling this routine. 694 */ 695 static int saveCursorPosition(BtCursor *pCur){ 696 int rc; 697 698 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 699 assert( 0==pCur->pKey ); 700 assert( cursorHoldsMutex(pCur) ); 701 702 if( pCur->eState==CURSOR_SKIPNEXT ){ 703 pCur->eState = CURSOR_VALID; 704 }else{ 705 pCur->skipNext = 0; 706 } 707 708 rc = saveCursorKey(pCur); 709 if( rc==SQLITE_OK ){ 710 btreeReleaseAllCursorPages(pCur); 711 pCur->eState = CURSOR_REQUIRESEEK; 712 } 713 714 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 715 return rc; 716 } 717 718 /* Forward reference */ 719 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 720 721 /* 722 ** Save the positions of all cursors (except pExcept) that are open on 723 ** the table with root-page iRoot. "Saving the cursor position" means that 724 ** the location in the btree is remembered in such a way that it can be 725 ** moved back to the same spot after the btree has been modified. This 726 ** routine is called just before cursor pExcept is used to modify the 727 ** table, for example in BtreeDelete() or BtreeInsert(). 728 ** 729 ** If there are two or more cursors on the same btree, then all such 730 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 731 ** routine enforces that rule. This routine only needs to be called in 732 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 733 ** 734 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 735 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 736 ** pointless call to this routine. 737 ** 738 ** Implementation note: This routine merely checks to see if any cursors 739 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 740 ** event that cursors are in need to being saved. 741 */ 742 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 743 BtCursor *p; 744 assert( sqlite3_mutex_held(pBt->mutex) ); 745 assert( pExcept==0 || pExcept->pBt==pBt ); 746 for(p=pBt->pCursor; p; p=p->pNext){ 747 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 748 } 749 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 750 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 751 return SQLITE_OK; 752 } 753 754 /* This helper routine to saveAllCursors does the actual work of saving 755 ** the cursors if and when a cursor is found that actually requires saving. 756 ** The common case is that no cursors need to be saved, so this routine is 757 ** broken out from its caller to avoid unnecessary stack pointer movement. 758 */ 759 static int SQLITE_NOINLINE saveCursorsOnList( 760 BtCursor *p, /* The first cursor that needs saving */ 761 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 762 BtCursor *pExcept /* Do not save this cursor */ 763 ){ 764 do{ 765 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 766 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 767 int rc = saveCursorPosition(p); 768 if( SQLITE_OK!=rc ){ 769 return rc; 770 } 771 }else{ 772 testcase( p->iPage>=0 ); 773 btreeReleaseAllCursorPages(p); 774 } 775 } 776 p = p->pNext; 777 }while( p ); 778 return SQLITE_OK; 779 } 780 781 /* 782 ** Clear the current cursor position. 783 */ 784 void sqlite3BtreeClearCursor(BtCursor *pCur){ 785 assert( cursorHoldsMutex(pCur) ); 786 sqlite3_free(pCur->pKey); 787 pCur->pKey = 0; 788 pCur->eState = CURSOR_INVALID; 789 } 790 791 /* 792 ** In this version of BtreeMoveto, pKey is a packed index record 793 ** such as is generated by the OP_MakeRecord opcode. Unpack the 794 ** record and then call BtreeMovetoUnpacked() to do the work. 795 */ 796 static int btreeMoveto( 797 BtCursor *pCur, /* Cursor open on the btree to be searched */ 798 const void *pKey, /* Packed key if the btree is an index */ 799 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 800 int bias, /* Bias search to the high end */ 801 int *pRes /* Write search results here */ 802 ){ 803 int rc; /* Status code */ 804 UnpackedRecord *pIdxKey; /* Unpacked index key */ 805 806 if( pKey ){ 807 KeyInfo *pKeyInfo = pCur->pKeyInfo; 808 assert( nKey==(i64)(int)nKey ); 809 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 810 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 811 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 812 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 813 rc = SQLITE_CORRUPT_BKPT; 814 goto moveto_done; 815 } 816 }else{ 817 pIdxKey = 0; 818 } 819 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); 820 moveto_done: 821 if( pIdxKey ){ 822 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 823 } 824 return rc; 825 } 826 827 /* 828 ** Restore the cursor to the position it was in (or as close to as possible) 829 ** when saveCursorPosition() was called. Note that this call deletes the 830 ** saved position info stored by saveCursorPosition(), so there can be 831 ** at most one effective restoreCursorPosition() call after each 832 ** saveCursorPosition(). 833 */ 834 static int btreeRestoreCursorPosition(BtCursor *pCur){ 835 int rc; 836 int skipNext = 0; 837 assert( cursorOwnsBtShared(pCur) ); 838 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 839 if( pCur->eState==CURSOR_FAULT ){ 840 return pCur->skipNext; 841 } 842 pCur->eState = CURSOR_INVALID; 843 if( sqlite3FaultSim(410) ){ 844 rc = SQLITE_IOERR; 845 }else{ 846 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 847 } 848 if( rc==SQLITE_OK ){ 849 sqlite3_free(pCur->pKey); 850 pCur->pKey = 0; 851 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 852 if( skipNext ) pCur->skipNext = skipNext; 853 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 854 pCur->eState = CURSOR_SKIPNEXT; 855 } 856 } 857 return rc; 858 } 859 860 #define restoreCursorPosition(p) \ 861 (p->eState>=CURSOR_REQUIRESEEK ? \ 862 btreeRestoreCursorPosition(p) : \ 863 SQLITE_OK) 864 865 /* 866 ** Determine whether or not a cursor has moved from the position where 867 ** it was last placed, or has been invalidated for any other reason. 868 ** Cursors can move when the row they are pointing at is deleted out 869 ** from under them, for example. Cursor might also move if a btree 870 ** is rebalanced. 871 ** 872 ** Calling this routine with a NULL cursor pointer returns false. 873 ** 874 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 875 ** back to where it ought to be if this routine returns true. 876 */ 877 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 878 assert( EIGHT_BYTE_ALIGNMENT(pCur) 879 || pCur==sqlite3BtreeFakeValidCursor() ); 880 assert( offsetof(BtCursor, eState)==0 ); 881 assert( sizeof(pCur->eState)==1 ); 882 return CURSOR_VALID != *(u8*)pCur; 883 } 884 885 /* 886 ** Return a pointer to a fake BtCursor object that will always answer 887 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 888 ** cursor returned must not be used with any other Btree interface. 889 */ 890 BtCursor *sqlite3BtreeFakeValidCursor(void){ 891 static u8 fakeCursor = CURSOR_VALID; 892 assert( offsetof(BtCursor, eState)==0 ); 893 return (BtCursor*)&fakeCursor; 894 } 895 896 /* 897 ** This routine restores a cursor back to its original position after it 898 ** has been moved by some outside activity (such as a btree rebalance or 899 ** a row having been deleted out from under the cursor). 900 ** 901 ** On success, the *pDifferentRow parameter is false if the cursor is left 902 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 903 ** was pointing to has been deleted, forcing the cursor to point to some 904 ** nearby row. 905 ** 906 ** This routine should only be called for a cursor that just returned 907 ** TRUE from sqlite3BtreeCursorHasMoved(). 908 */ 909 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 910 int rc; 911 912 assert( pCur!=0 ); 913 assert( pCur->eState!=CURSOR_VALID ); 914 rc = restoreCursorPosition(pCur); 915 if( rc ){ 916 *pDifferentRow = 1; 917 return rc; 918 } 919 if( pCur->eState!=CURSOR_VALID ){ 920 *pDifferentRow = 1; 921 }else{ 922 *pDifferentRow = 0; 923 } 924 return SQLITE_OK; 925 } 926 927 #ifdef SQLITE_ENABLE_CURSOR_HINTS 928 /* 929 ** Provide hints to the cursor. The particular hint given (and the type 930 ** and number of the varargs parameters) is determined by the eHintType 931 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 932 */ 933 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 934 /* Used only by system that substitute their own storage engine */ 935 } 936 #endif 937 938 /* 939 ** Provide flag hints to the cursor. 940 */ 941 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 942 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 943 pCur->hints = x; 944 } 945 946 947 #ifndef SQLITE_OMIT_AUTOVACUUM 948 /* 949 ** Given a page number of a regular database page, return the page 950 ** number for the pointer-map page that contains the entry for the 951 ** input page number. 952 ** 953 ** Return 0 (not a valid page) for pgno==1 since there is 954 ** no pointer map associated with page 1. The integrity_check logic 955 ** requires that ptrmapPageno(*,1)!=1. 956 */ 957 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 958 int nPagesPerMapPage; 959 Pgno iPtrMap, ret; 960 assert( sqlite3_mutex_held(pBt->mutex) ); 961 if( pgno<2 ) return 0; 962 nPagesPerMapPage = (pBt->usableSize/5)+1; 963 iPtrMap = (pgno-2)/nPagesPerMapPage; 964 ret = (iPtrMap*nPagesPerMapPage) + 2; 965 if( ret==PENDING_BYTE_PAGE(pBt) ){ 966 ret++; 967 } 968 return ret; 969 } 970 971 /* 972 ** Write an entry into the pointer map. 973 ** 974 ** This routine updates the pointer map entry for page number 'key' 975 ** so that it maps to type 'eType' and parent page number 'pgno'. 976 ** 977 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 978 ** a no-op. If an error occurs, the appropriate error code is written 979 ** into *pRC. 980 */ 981 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 982 DbPage *pDbPage; /* The pointer map page */ 983 u8 *pPtrmap; /* The pointer map data */ 984 Pgno iPtrmap; /* The pointer map page number */ 985 int offset; /* Offset in pointer map page */ 986 int rc; /* Return code from subfunctions */ 987 988 if( *pRC ) return; 989 990 assert( sqlite3_mutex_held(pBt->mutex) ); 991 /* The master-journal page number must never be used as a pointer map page */ 992 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 993 994 assert( pBt->autoVacuum ); 995 if( key==0 ){ 996 *pRC = SQLITE_CORRUPT_BKPT; 997 return; 998 } 999 iPtrmap = PTRMAP_PAGENO(pBt, key); 1000 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1001 if( rc!=SQLITE_OK ){ 1002 *pRC = rc; 1003 return; 1004 } 1005 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1006 /* The first byte of the extra data is the MemPage.isInit byte. 1007 ** If that byte is set, it means this page is also being used 1008 ** as a btree page. */ 1009 *pRC = SQLITE_CORRUPT_BKPT; 1010 goto ptrmap_exit; 1011 } 1012 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1013 if( offset<0 ){ 1014 *pRC = SQLITE_CORRUPT_BKPT; 1015 goto ptrmap_exit; 1016 } 1017 assert( offset <= (int)pBt->usableSize-5 ); 1018 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1019 1020 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1021 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1022 *pRC= rc = sqlite3PagerWrite(pDbPage); 1023 if( rc==SQLITE_OK ){ 1024 pPtrmap[offset] = eType; 1025 put4byte(&pPtrmap[offset+1], parent); 1026 } 1027 } 1028 1029 ptrmap_exit: 1030 sqlite3PagerUnref(pDbPage); 1031 } 1032 1033 /* 1034 ** Read an entry from the pointer map. 1035 ** 1036 ** This routine retrieves the pointer map entry for page 'key', writing 1037 ** the type and parent page number to *pEType and *pPgno respectively. 1038 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1039 */ 1040 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1041 DbPage *pDbPage; /* The pointer map page */ 1042 int iPtrmap; /* Pointer map page index */ 1043 u8 *pPtrmap; /* Pointer map page data */ 1044 int offset; /* Offset of entry in pointer map */ 1045 int rc; 1046 1047 assert( sqlite3_mutex_held(pBt->mutex) ); 1048 1049 iPtrmap = PTRMAP_PAGENO(pBt, key); 1050 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1051 if( rc!=0 ){ 1052 return rc; 1053 } 1054 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1055 1056 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1057 if( offset<0 ){ 1058 sqlite3PagerUnref(pDbPage); 1059 return SQLITE_CORRUPT_BKPT; 1060 } 1061 assert( offset <= (int)pBt->usableSize-5 ); 1062 assert( pEType!=0 ); 1063 *pEType = pPtrmap[offset]; 1064 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1065 1066 sqlite3PagerUnref(pDbPage); 1067 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1068 return SQLITE_OK; 1069 } 1070 1071 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1072 #define ptrmapPut(w,x,y,z,rc) 1073 #define ptrmapGet(w,x,y,z) SQLITE_OK 1074 #define ptrmapPutOvflPtr(x, y, z, rc) 1075 #endif 1076 1077 /* 1078 ** Given a btree page and a cell index (0 means the first cell on 1079 ** the page, 1 means the second cell, and so forth) return a pointer 1080 ** to the cell content. 1081 ** 1082 ** findCellPastPtr() does the same except it skips past the initial 1083 ** 4-byte child pointer found on interior pages, if there is one. 1084 ** 1085 ** This routine works only for pages that do not contain overflow cells. 1086 */ 1087 #define findCell(P,I) \ 1088 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1089 #define findCellPastPtr(P,I) \ 1090 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1091 1092 1093 /* 1094 ** This is common tail processing for btreeParseCellPtr() and 1095 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1096 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1097 ** structure. 1098 */ 1099 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1100 MemPage *pPage, /* Page containing the cell */ 1101 u8 *pCell, /* Pointer to the cell text. */ 1102 CellInfo *pInfo /* Fill in this structure */ 1103 ){ 1104 /* If the payload will not fit completely on the local page, we have 1105 ** to decide how much to store locally and how much to spill onto 1106 ** overflow pages. The strategy is to minimize the amount of unused 1107 ** space on overflow pages while keeping the amount of local storage 1108 ** in between minLocal and maxLocal. 1109 ** 1110 ** Warning: changing the way overflow payload is distributed in any 1111 ** way will result in an incompatible file format. 1112 */ 1113 int minLocal; /* Minimum amount of payload held locally */ 1114 int maxLocal; /* Maximum amount of payload held locally */ 1115 int surplus; /* Overflow payload available for local storage */ 1116 1117 minLocal = pPage->minLocal; 1118 maxLocal = pPage->maxLocal; 1119 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1120 testcase( surplus==maxLocal ); 1121 testcase( surplus==maxLocal+1 ); 1122 if( surplus <= maxLocal ){ 1123 pInfo->nLocal = (u16)surplus; 1124 }else{ 1125 pInfo->nLocal = (u16)minLocal; 1126 } 1127 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1128 } 1129 1130 /* 1131 ** The following routines are implementations of the MemPage.xParseCell() 1132 ** method. 1133 ** 1134 ** Parse a cell content block and fill in the CellInfo structure. 1135 ** 1136 ** btreeParseCellPtr() => table btree leaf nodes 1137 ** btreeParseCellNoPayload() => table btree internal nodes 1138 ** btreeParseCellPtrIndex() => index btree nodes 1139 ** 1140 ** There is also a wrapper function btreeParseCell() that works for 1141 ** all MemPage types and that references the cell by index rather than 1142 ** by pointer. 1143 */ 1144 static void btreeParseCellPtrNoPayload( 1145 MemPage *pPage, /* Page containing the cell */ 1146 u8 *pCell, /* Pointer to the cell text. */ 1147 CellInfo *pInfo /* Fill in this structure */ 1148 ){ 1149 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1150 assert( pPage->leaf==0 ); 1151 assert( pPage->childPtrSize==4 ); 1152 #ifndef SQLITE_DEBUG 1153 UNUSED_PARAMETER(pPage); 1154 #endif 1155 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1156 pInfo->nPayload = 0; 1157 pInfo->nLocal = 0; 1158 pInfo->pPayload = 0; 1159 return; 1160 } 1161 static void btreeParseCellPtr( 1162 MemPage *pPage, /* Page containing the cell */ 1163 u8 *pCell, /* Pointer to the cell text. */ 1164 CellInfo *pInfo /* Fill in this structure */ 1165 ){ 1166 u8 *pIter; /* For scanning through pCell */ 1167 u32 nPayload; /* Number of bytes of cell payload */ 1168 u64 iKey; /* Extracted Key value */ 1169 1170 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1171 assert( pPage->leaf==0 || pPage->leaf==1 ); 1172 assert( pPage->intKeyLeaf ); 1173 assert( pPage->childPtrSize==0 ); 1174 pIter = pCell; 1175 1176 /* The next block of code is equivalent to: 1177 ** 1178 ** pIter += getVarint32(pIter, nPayload); 1179 ** 1180 ** The code is inlined to avoid a function call. 1181 */ 1182 nPayload = *pIter; 1183 if( nPayload>=0x80 ){ 1184 u8 *pEnd = &pIter[8]; 1185 nPayload &= 0x7f; 1186 do{ 1187 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1188 }while( (*pIter)>=0x80 && pIter<pEnd ); 1189 } 1190 pIter++; 1191 1192 /* The next block of code is equivalent to: 1193 ** 1194 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1195 ** 1196 ** The code is inlined to avoid a function call. 1197 */ 1198 iKey = *pIter; 1199 if( iKey>=0x80 ){ 1200 u8 *pEnd = &pIter[7]; 1201 iKey &= 0x7f; 1202 while(1){ 1203 iKey = (iKey<<7) | (*++pIter & 0x7f); 1204 if( (*pIter)<0x80 ) break; 1205 if( pIter>=pEnd ){ 1206 iKey = (iKey<<8) | *++pIter; 1207 break; 1208 } 1209 } 1210 } 1211 pIter++; 1212 1213 pInfo->nKey = *(i64*)&iKey; 1214 pInfo->nPayload = nPayload; 1215 pInfo->pPayload = pIter; 1216 testcase( nPayload==pPage->maxLocal ); 1217 testcase( nPayload==pPage->maxLocal+1 ); 1218 if( nPayload<=pPage->maxLocal ){ 1219 /* This is the (easy) common case where the entire payload fits 1220 ** on the local page. No overflow is required. 1221 */ 1222 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1223 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1224 pInfo->nLocal = (u16)nPayload; 1225 }else{ 1226 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1227 } 1228 } 1229 static void btreeParseCellPtrIndex( 1230 MemPage *pPage, /* Page containing the cell */ 1231 u8 *pCell, /* Pointer to the cell text. */ 1232 CellInfo *pInfo /* Fill in this structure */ 1233 ){ 1234 u8 *pIter; /* For scanning through pCell */ 1235 u32 nPayload; /* Number of bytes of cell payload */ 1236 1237 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1238 assert( pPage->leaf==0 || pPage->leaf==1 ); 1239 assert( pPage->intKeyLeaf==0 ); 1240 pIter = pCell + pPage->childPtrSize; 1241 nPayload = *pIter; 1242 if( nPayload>=0x80 ){ 1243 u8 *pEnd = &pIter[8]; 1244 nPayload &= 0x7f; 1245 do{ 1246 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1247 }while( *(pIter)>=0x80 && pIter<pEnd ); 1248 } 1249 pIter++; 1250 pInfo->nKey = nPayload; 1251 pInfo->nPayload = nPayload; 1252 pInfo->pPayload = pIter; 1253 testcase( nPayload==pPage->maxLocal ); 1254 testcase( nPayload==pPage->maxLocal+1 ); 1255 if( nPayload<=pPage->maxLocal ){ 1256 /* This is the (easy) common case where the entire payload fits 1257 ** on the local page. No overflow is required. 1258 */ 1259 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1260 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1261 pInfo->nLocal = (u16)nPayload; 1262 }else{ 1263 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1264 } 1265 } 1266 static void btreeParseCell( 1267 MemPage *pPage, /* Page containing the cell */ 1268 int iCell, /* The cell index. First cell is 0 */ 1269 CellInfo *pInfo /* Fill in this structure */ 1270 ){ 1271 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1272 } 1273 1274 /* 1275 ** The following routines are implementations of the MemPage.xCellSize 1276 ** method. 1277 ** 1278 ** Compute the total number of bytes that a Cell needs in the cell 1279 ** data area of the btree-page. The return number includes the cell 1280 ** data header and the local payload, but not any overflow page or 1281 ** the space used by the cell pointer. 1282 ** 1283 ** cellSizePtrNoPayload() => table internal nodes 1284 ** cellSizePtr() => all index nodes & table leaf nodes 1285 */ 1286 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1287 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1288 u8 *pEnd; /* End mark for a varint */ 1289 u32 nSize; /* Size value to return */ 1290 1291 #ifdef SQLITE_DEBUG 1292 /* The value returned by this function should always be the same as 1293 ** the (CellInfo.nSize) value found by doing a full parse of the 1294 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1295 ** this function verifies that this invariant is not violated. */ 1296 CellInfo debuginfo; 1297 pPage->xParseCell(pPage, pCell, &debuginfo); 1298 #endif 1299 1300 nSize = *pIter; 1301 if( nSize>=0x80 ){ 1302 pEnd = &pIter[8]; 1303 nSize &= 0x7f; 1304 do{ 1305 nSize = (nSize<<7) | (*++pIter & 0x7f); 1306 }while( *(pIter)>=0x80 && pIter<pEnd ); 1307 } 1308 pIter++; 1309 if( pPage->intKey ){ 1310 /* pIter now points at the 64-bit integer key value, a variable length 1311 ** integer. The following block moves pIter to point at the first byte 1312 ** past the end of the key value. */ 1313 pEnd = &pIter[9]; 1314 while( (*pIter++)&0x80 && pIter<pEnd ); 1315 } 1316 testcase( nSize==pPage->maxLocal ); 1317 testcase( nSize==pPage->maxLocal+1 ); 1318 if( nSize<=pPage->maxLocal ){ 1319 nSize += (u32)(pIter - pCell); 1320 if( nSize<4 ) nSize = 4; 1321 }else{ 1322 int minLocal = pPage->minLocal; 1323 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1324 testcase( nSize==pPage->maxLocal ); 1325 testcase( nSize==pPage->maxLocal+1 ); 1326 if( nSize>pPage->maxLocal ){ 1327 nSize = minLocal; 1328 } 1329 nSize += 4 + (u16)(pIter - pCell); 1330 } 1331 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1332 return (u16)nSize; 1333 } 1334 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1335 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1336 u8 *pEnd; /* End mark for a varint */ 1337 1338 #ifdef SQLITE_DEBUG 1339 /* The value returned by this function should always be the same as 1340 ** the (CellInfo.nSize) value found by doing a full parse of the 1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1342 ** this function verifies that this invariant is not violated. */ 1343 CellInfo debuginfo; 1344 pPage->xParseCell(pPage, pCell, &debuginfo); 1345 #else 1346 UNUSED_PARAMETER(pPage); 1347 #endif 1348 1349 assert( pPage->childPtrSize==4 ); 1350 pEnd = pIter + 9; 1351 while( (*pIter++)&0x80 && pIter<pEnd ); 1352 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1353 return (u16)(pIter - pCell); 1354 } 1355 1356 1357 #ifdef SQLITE_DEBUG 1358 /* This variation on cellSizePtr() is used inside of assert() statements 1359 ** only. */ 1360 static u16 cellSize(MemPage *pPage, int iCell){ 1361 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1362 } 1363 #endif 1364 1365 #ifndef SQLITE_OMIT_AUTOVACUUM 1366 /* 1367 ** The cell pCell is currently part of page pSrc but will ultimately be part 1368 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a 1369 ** pointer to an overflow page, insert an entry into the pointer-map for 1370 ** the overflow page that will be valid after pCell has been moved to pPage. 1371 */ 1372 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1373 CellInfo info; 1374 if( *pRC ) return; 1375 assert( pCell!=0 ); 1376 pPage->xParseCell(pPage, pCell, &info); 1377 if( info.nLocal<info.nPayload ){ 1378 Pgno ovfl; 1379 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1380 testcase( pSrc!=pPage ); 1381 *pRC = SQLITE_CORRUPT_BKPT; 1382 return; 1383 } 1384 ovfl = get4byte(&pCell[info.nSize-4]); 1385 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1386 } 1387 } 1388 #endif 1389 1390 1391 /* 1392 ** Defragment the page given. This routine reorganizes cells within the 1393 ** page so that there are no free-blocks on the free-block list. 1394 ** 1395 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1396 ** present in the page after this routine returns. 1397 ** 1398 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1399 ** b-tree page so that there are no freeblocks or fragment bytes, all 1400 ** unused bytes are contained in the unallocated space region, and all 1401 ** cells are packed tightly at the end of the page. 1402 */ 1403 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1404 int i; /* Loop counter */ 1405 int pc; /* Address of the i-th cell */ 1406 int hdr; /* Offset to the page header */ 1407 int size; /* Size of a cell */ 1408 int usableSize; /* Number of usable bytes on a page */ 1409 int cellOffset; /* Offset to the cell pointer array */ 1410 int cbrk; /* Offset to the cell content area */ 1411 int nCell; /* Number of cells on the page */ 1412 unsigned char *data; /* The page data */ 1413 unsigned char *temp; /* Temp area for cell content */ 1414 unsigned char *src; /* Source of content */ 1415 int iCellFirst; /* First allowable cell index */ 1416 int iCellLast; /* Last possible cell index */ 1417 1418 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1419 assert( pPage->pBt!=0 ); 1420 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1421 assert( pPage->nOverflow==0 ); 1422 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1423 temp = 0; 1424 src = data = pPage->aData; 1425 hdr = pPage->hdrOffset; 1426 cellOffset = pPage->cellOffset; 1427 nCell = pPage->nCell; 1428 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1429 iCellFirst = cellOffset + 2*nCell; 1430 usableSize = pPage->pBt->usableSize; 1431 1432 /* This block handles pages with two or fewer free blocks and nMaxFrag 1433 ** or fewer fragmented bytes. In this case it is faster to move the 1434 ** two (or one) blocks of cells using memmove() and add the required 1435 ** offsets to each pointer in the cell-pointer array than it is to 1436 ** reconstruct the entire page. */ 1437 if( (int)data[hdr+7]<=nMaxFrag ){ 1438 int iFree = get2byte(&data[hdr+1]); 1439 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1440 if( iFree ){ 1441 int iFree2 = get2byte(&data[iFree]); 1442 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1443 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1444 u8 *pEnd = &data[cellOffset + nCell*2]; 1445 u8 *pAddr; 1446 int sz2 = 0; 1447 int sz = get2byte(&data[iFree+2]); 1448 int top = get2byte(&data[hdr+5]); 1449 if( top>=iFree ){ 1450 return SQLITE_CORRUPT_PAGE(pPage); 1451 } 1452 if( iFree2 ){ 1453 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1454 sz2 = get2byte(&data[iFree2+2]); 1455 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1456 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1457 sz += sz2; 1458 }else if( iFree+sz>usableSize ){ 1459 return SQLITE_CORRUPT_PAGE(pPage); 1460 } 1461 1462 cbrk = top+sz; 1463 assert( cbrk+(iFree-top) <= usableSize ); 1464 memmove(&data[cbrk], &data[top], iFree-top); 1465 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1466 pc = get2byte(pAddr); 1467 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1468 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1469 } 1470 goto defragment_out; 1471 } 1472 } 1473 } 1474 1475 cbrk = usableSize; 1476 iCellLast = usableSize - 4; 1477 for(i=0; i<nCell; i++){ 1478 u8 *pAddr; /* The i-th cell pointer */ 1479 pAddr = &data[cellOffset + i*2]; 1480 pc = get2byte(pAddr); 1481 testcase( pc==iCellFirst ); 1482 testcase( pc==iCellLast ); 1483 /* These conditions have already been verified in btreeInitPage() 1484 ** if PRAGMA cell_size_check=ON. 1485 */ 1486 if( pc<iCellFirst || pc>iCellLast ){ 1487 return SQLITE_CORRUPT_PAGE(pPage); 1488 } 1489 assert( pc>=iCellFirst && pc<=iCellLast ); 1490 size = pPage->xCellSize(pPage, &src[pc]); 1491 cbrk -= size; 1492 if( cbrk<iCellFirst || pc+size>usableSize ){ 1493 return SQLITE_CORRUPT_PAGE(pPage); 1494 } 1495 assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); 1496 testcase( cbrk+size==usableSize ); 1497 testcase( pc+size==usableSize ); 1498 put2byte(pAddr, cbrk); 1499 if( temp==0 ){ 1500 int x; 1501 if( cbrk==pc ) continue; 1502 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1503 x = get2byte(&data[hdr+5]); 1504 memcpy(&temp[x], &data[x], (cbrk+size) - x); 1505 src = temp; 1506 } 1507 memcpy(&data[cbrk], &src[pc], size); 1508 } 1509 data[hdr+7] = 0; 1510 1511 defragment_out: 1512 assert( pPage->nFree>=0 ); 1513 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1514 return SQLITE_CORRUPT_PAGE(pPage); 1515 } 1516 assert( cbrk>=iCellFirst ); 1517 put2byte(&data[hdr+5], cbrk); 1518 data[hdr+1] = 0; 1519 data[hdr+2] = 0; 1520 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1521 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1522 return SQLITE_OK; 1523 } 1524 1525 /* 1526 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1527 ** size. If one can be found, return a pointer to the space and remove it 1528 ** from the free-list. 1529 ** 1530 ** If no suitable space can be found on the free-list, return NULL. 1531 ** 1532 ** This function may detect corruption within pPg. If corruption is 1533 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1534 ** 1535 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1536 ** will be ignored if adding the extra space to the fragmentation count 1537 ** causes the fragmentation count to exceed 60. 1538 */ 1539 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1540 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1541 u8 * const aData = pPg->aData; /* Page data */ 1542 int iAddr = hdr + 1; /* Address of ptr to pc */ 1543 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */ 1544 int x; /* Excess size of the slot */ 1545 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1546 int size; /* Size of the free slot */ 1547 1548 assert( pc>0 ); 1549 while( pc<=maxPC ){ 1550 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1551 ** freeblock form a big-endian integer which is the size of the freeblock 1552 ** in bytes, including the 4-byte header. */ 1553 size = get2byte(&aData[pc+2]); 1554 if( (x = size - nByte)>=0 ){ 1555 testcase( x==4 ); 1556 testcase( x==3 ); 1557 if( x<4 ){ 1558 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1559 ** number of bytes in fragments may not exceed 60. */ 1560 if( aData[hdr+7]>57 ) return 0; 1561 1562 /* Remove the slot from the free-list. Update the number of 1563 ** fragmented bytes within the page. */ 1564 memcpy(&aData[iAddr], &aData[pc], 2); 1565 aData[hdr+7] += (u8)x; 1566 }else if( x+pc > maxPC ){ 1567 /* This slot extends off the end of the usable part of the page */ 1568 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1569 return 0; 1570 }else{ 1571 /* The slot remains on the free-list. Reduce its size to account 1572 ** for the portion used by the new allocation. */ 1573 put2byte(&aData[pc+2], x); 1574 } 1575 return &aData[pc + x]; 1576 } 1577 iAddr = pc; 1578 pc = get2byte(&aData[pc]); 1579 if( pc<=iAddr+size ){ 1580 if( pc ){ 1581 /* The next slot in the chain is not past the end of the current slot */ 1582 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1583 } 1584 return 0; 1585 } 1586 } 1587 if( pc>maxPC+nByte-4 ){ 1588 /* The free slot chain extends off the end of the page */ 1589 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1590 } 1591 return 0; 1592 } 1593 1594 /* 1595 ** Allocate nByte bytes of space from within the B-Tree page passed 1596 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1597 ** of the first byte of allocated space. Return either SQLITE_OK or 1598 ** an error code (usually SQLITE_CORRUPT). 1599 ** 1600 ** The caller guarantees that there is sufficient space to make the 1601 ** allocation. This routine might need to defragment in order to bring 1602 ** all the space together, however. This routine will avoid using 1603 ** the first two bytes past the cell pointer area since presumably this 1604 ** allocation is being made in order to insert a new cell, so we will 1605 ** also end up needing a new cell pointer. 1606 */ 1607 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1608 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1609 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1610 int top; /* First byte of cell content area */ 1611 int rc = SQLITE_OK; /* Integer return code */ 1612 int gap; /* First byte of gap between cell pointers and cell content */ 1613 1614 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1615 assert( pPage->pBt ); 1616 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1617 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1618 assert( pPage->nFree>=nByte ); 1619 assert( pPage->nOverflow==0 ); 1620 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1621 1622 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1623 gap = pPage->cellOffset + 2*pPage->nCell; 1624 assert( gap<=65536 ); 1625 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1626 ** and the reserved space is zero (the usual value for reserved space) 1627 ** then the cell content offset of an empty page wants to be 65536. 1628 ** However, that integer is too large to be stored in a 2-byte unsigned 1629 ** integer, so a value of 0 is used in its place. */ 1630 top = get2byte(&data[hdr+5]); 1631 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1632 if( gap>top ){ 1633 if( top==0 && pPage->pBt->usableSize==65536 ){ 1634 top = 65536; 1635 }else{ 1636 return SQLITE_CORRUPT_PAGE(pPage); 1637 } 1638 } 1639 1640 /* If there is enough space between gap and top for one more cell pointer, 1641 ** and if the freelist is not empty, then search the 1642 ** freelist looking for a slot big enough to satisfy the request. 1643 */ 1644 testcase( gap+2==top ); 1645 testcase( gap+1==top ); 1646 testcase( gap==top ); 1647 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1648 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1649 if( pSpace ){ 1650 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1651 if( (*pIdx = (int)(pSpace-data))<=gap ){ 1652 return SQLITE_CORRUPT_PAGE(pPage); 1653 }else{ 1654 return SQLITE_OK; 1655 } 1656 }else if( rc ){ 1657 return rc; 1658 } 1659 } 1660 1661 /* The request could not be fulfilled using a freelist slot. Check 1662 ** to see if defragmentation is necessary. 1663 */ 1664 testcase( gap+2+nByte==top ); 1665 if( gap+2+nByte>top ){ 1666 assert( pPage->nCell>0 || CORRUPT_DB ); 1667 assert( pPage->nFree>=0 ); 1668 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1669 if( rc ) return rc; 1670 top = get2byteNotZero(&data[hdr+5]); 1671 assert( gap+2+nByte<=top ); 1672 } 1673 1674 1675 /* Allocate memory from the gap in between the cell pointer array 1676 ** and the cell content area. The btreeComputeFreeSpace() call has already 1677 ** validated the freelist. Given that the freelist is valid, there 1678 ** is no way that the allocation can extend off the end of the page. 1679 ** The assert() below verifies the previous sentence. 1680 */ 1681 top -= nByte; 1682 put2byte(&data[hdr+5], top); 1683 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1684 *pIdx = top; 1685 return SQLITE_OK; 1686 } 1687 1688 /* 1689 ** Return a section of the pPage->aData to the freelist. 1690 ** The first byte of the new free block is pPage->aData[iStart] 1691 ** and the size of the block is iSize bytes. 1692 ** 1693 ** Adjacent freeblocks are coalesced. 1694 ** 1695 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1696 ** that routine will not detect overlap between cells or freeblocks. Nor 1697 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1698 ** at the end of the page. So do additional corruption checks inside this 1699 ** routine and return SQLITE_CORRUPT if any problems are found. 1700 */ 1701 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1702 u16 iPtr; /* Address of ptr to next freeblock */ 1703 u16 iFreeBlk; /* Address of the next freeblock */ 1704 u8 hdr; /* Page header size. 0 or 100 */ 1705 u8 nFrag = 0; /* Reduction in fragmentation */ 1706 u16 iOrigSize = iSize; /* Original value of iSize */ 1707 u16 x; /* Offset to cell content area */ 1708 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1709 unsigned char *data = pPage->aData; /* Page content */ 1710 1711 assert( pPage->pBt!=0 ); 1712 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1713 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1714 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1715 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1716 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1717 assert( iStart<=pPage->pBt->usableSize-4 ); 1718 1719 /* The list of freeblocks must be in ascending order. Find the 1720 ** spot on the list where iStart should be inserted. 1721 */ 1722 hdr = pPage->hdrOffset; 1723 iPtr = hdr + 1; 1724 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1725 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1726 }else{ 1727 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1728 if( iFreeBlk<iPtr+4 ){ 1729 if( iFreeBlk==0 ) break; 1730 return SQLITE_CORRUPT_PAGE(pPage); 1731 } 1732 iPtr = iFreeBlk; 1733 } 1734 if( iFreeBlk>pPage->pBt->usableSize-4 ){ 1735 return SQLITE_CORRUPT_PAGE(pPage); 1736 } 1737 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1738 1739 /* At this point: 1740 ** iFreeBlk: First freeblock after iStart, or zero if none 1741 ** iPtr: The address of a pointer to iFreeBlk 1742 ** 1743 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1744 */ 1745 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1746 nFrag = iFreeBlk - iEnd; 1747 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1748 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1749 if( iEnd > pPage->pBt->usableSize ){ 1750 return SQLITE_CORRUPT_PAGE(pPage); 1751 } 1752 iSize = iEnd - iStart; 1753 iFreeBlk = get2byte(&data[iFreeBlk]); 1754 } 1755 1756 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1757 ** pointer in the page header) then check to see if iStart should be 1758 ** coalesced onto the end of iPtr. 1759 */ 1760 if( iPtr>hdr+1 ){ 1761 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1762 if( iPtrEnd+3>=iStart ){ 1763 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1764 nFrag += iStart - iPtrEnd; 1765 iSize = iEnd - iPtr; 1766 iStart = iPtr; 1767 } 1768 } 1769 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1770 data[hdr+7] -= nFrag; 1771 } 1772 x = get2byte(&data[hdr+5]); 1773 if( iStart<=x ){ 1774 /* The new freeblock is at the beginning of the cell content area, 1775 ** so just extend the cell content area rather than create another 1776 ** freelist entry */ 1777 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1778 put2byte(&data[hdr+1], iFreeBlk); 1779 put2byte(&data[hdr+5], iEnd); 1780 }else{ 1781 /* Insert the new freeblock into the freelist */ 1782 put2byte(&data[iPtr], iStart); 1783 } 1784 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1785 /* Overwrite deleted information with zeros when the secure_delete 1786 ** option is enabled */ 1787 memset(&data[iStart], 0, iSize); 1788 } 1789 put2byte(&data[iStart], iFreeBlk); 1790 put2byte(&data[iStart+2], iSize); 1791 pPage->nFree += iOrigSize; 1792 return SQLITE_OK; 1793 } 1794 1795 /* 1796 ** Decode the flags byte (the first byte of the header) for a page 1797 ** and initialize fields of the MemPage structure accordingly. 1798 ** 1799 ** Only the following combinations are supported. Anything different 1800 ** indicates a corrupt database files: 1801 ** 1802 ** PTF_ZERODATA 1803 ** PTF_ZERODATA | PTF_LEAF 1804 ** PTF_LEAFDATA | PTF_INTKEY 1805 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1806 */ 1807 static int decodeFlags(MemPage *pPage, int flagByte){ 1808 BtShared *pBt; /* A copy of pPage->pBt */ 1809 1810 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1811 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1812 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1813 flagByte &= ~PTF_LEAF; 1814 pPage->childPtrSize = 4-4*pPage->leaf; 1815 pPage->xCellSize = cellSizePtr; 1816 pBt = pPage->pBt; 1817 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1818 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1819 ** interior table b-tree page. */ 1820 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1821 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1822 ** leaf table b-tree page. */ 1823 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1824 pPage->intKey = 1; 1825 if( pPage->leaf ){ 1826 pPage->intKeyLeaf = 1; 1827 pPage->xParseCell = btreeParseCellPtr; 1828 }else{ 1829 pPage->intKeyLeaf = 0; 1830 pPage->xCellSize = cellSizePtrNoPayload; 1831 pPage->xParseCell = btreeParseCellPtrNoPayload; 1832 } 1833 pPage->maxLocal = pBt->maxLeaf; 1834 pPage->minLocal = pBt->minLeaf; 1835 }else if( flagByte==PTF_ZERODATA ){ 1836 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1837 ** interior index b-tree page. */ 1838 assert( (PTF_ZERODATA)==2 ); 1839 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1840 ** leaf index b-tree page. */ 1841 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1842 pPage->intKey = 0; 1843 pPage->intKeyLeaf = 0; 1844 pPage->xParseCell = btreeParseCellPtrIndex; 1845 pPage->maxLocal = pBt->maxLocal; 1846 pPage->minLocal = pBt->minLocal; 1847 }else{ 1848 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1849 ** an error. */ 1850 return SQLITE_CORRUPT_PAGE(pPage); 1851 } 1852 pPage->max1bytePayload = pBt->max1bytePayload; 1853 return SQLITE_OK; 1854 } 1855 1856 /* 1857 ** Compute the amount of freespace on the page. In other words, fill 1858 ** in the pPage->nFree field. 1859 */ 1860 static int btreeComputeFreeSpace(MemPage *pPage){ 1861 int pc; /* Address of a freeblock within pPage->aData[] */ 1862 u8 hdr; /* Offset to beginning of page header */ 1863 u8 *data; /* Equal to pPage->aData */ 1864 int usableSize; /* Amount of usable space on each page */ 1865 int nFree; /* Number of unused bytes on the page */ 1866 int top; /* First byte of the cell content area */ 1867 int iCellFirst; /* First allowable cell or freeblock offset */ 1868 int iCellLast; /* Last possible cell or freeblock offset */ 1869 1870 assert( pPage->pBt!=0 ); 1871 assert( pPage->pBt->db!=0 ); 1872 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1873 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1874 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1875 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1876 assert( pPage->isInit==1 ); 1877 assert( pPage->nFree<0 ); 1878 1879 usableSize = pPage->pBt->usableSize; 1880 hdr = pPage->hdrOffset; 1881 data = pPage->aData; 1882 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1883 ** the start of the cell content area. A zero value for this integer is 1884 ** interpreted as 65536. */ 1885 top = get2byteNotZero(&data[hdr+5]); 1886 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1887 iCellLast = usableSize - 4; 1888 1889 /* Compute the total free space on the page 1890 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1891 ** start of the first freeblock on the page, or is zero if there are no 1892 ** freeblocks. */ 1893 pc = get2byte(&data[hdr+1]); 1894 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1895 if( pc>0 ){ 1896 u32 next, size; 1897 if( pc<iCellFirst ){ 1898 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1899 ** always be at least one cell before the first freeblock. 1900 */ 1901 return SQLITE_CORRUPT_PAGE(pPage); 1902 } 1903 while( 1 ){ 1904 if( pc>iCellLast ){ 1905 /* Freeblock off the end of the page */ 1906 return SQLITE_CORRUPT_PAGE(pPage); 1907 } 1908 next = get2byte(&data[pc]); 1909 size = get2byte(&data[pc+2]); 1910 nFree = nFree + size; 1911 if( next<=pc+size+3 ) break; 1912 pc = next; 1913 } 1914 if( next>0 ){ 1915 /* Freeblock not in ascending order */ 1916 return SQLITE_CORRUPT_PAGE(pPage); 1917 } 1918 if( pc+size>(unsigned int)usableSize ){ 1919 /* Last freeblock extends past page end */ 1920 return SQLITE_CORRUPT_PAGE(pPage); 1921 } 1922 } 1923 1924 /* At this point, nFree contains the sum of the offset to the start 1925 ** of the cell-content area plus the number of free bytes within 1926 ** the cell-content area. If this is greater than the usable-size 1927 ** of the page, then the page must be corrupted. This check also 1928 ** serves to verify that the offset to the start of the cell-content 1929 ** area, according to the page header, lies within the page. 1930 */ 1931 if( nFree>usableSize || nFree<iCellFirst ){ 1932 return SQLITE_CORRUPT_PAGE(pPage); 1933 } 1934 pPage->nFree = (u16)(nFree - iCellFirst); 1935 return SQLITE_OK; 1936 } 1937 1938 /* 1939 ** Do additional sanity check after btreeInitPage() if 1940 ** PRAGMA cell_size_check=ON 1941 */ 1942 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 1943 int iCellFirst; /* First allowable cell or freeblock offset */ 1944 int iCellLast; /* Last possible cell or freeblock offset */ 1945 int i; /* Index into the cell pointer array */ 1946 int sz; /* Size of a cell */ 1947 int pc; /* Address of a freeblock within pPage->aData[] */ 1948 u8 *data; /* Equal to pPage->aData */ 1949 int usableSize; /* Maximum usable space on the page */ 1950 int cellOffset; /* Start of cell content area */ 1951 1952 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 1953 usableSize = pPage->pBt->usableSize; 1954 iCellLast = usableSize - 4; 1955 data = pPage->aData; 1956 cellOffset = pPage->cellOffset; 1957 if( !pPage->leaf ) iCellLast--; 1958 for(i=0; i<pPage->nCell; i++){ 1959 pc = get2byteAligned(&data[cellOffset+i*2]); 1960 testcase( pc==iCellFirst ); 1961 testcase( pc==iCellLast ); 1962 if( pc<iCellFirst || pc>iCellLast ){ 1963 return SQLITE_CORRUPT_PAGE(pPage); 1964 } 1965 sz = pPage->xCellSize(pPage, &data[pc]); 1966 testcase( pc+sz==usableSize ); 1967 if( pc+sz>usableSize ){ 1968 return SQLITE_CORRUPT_PAGE(pPage); 1969 } 1970 } 1971 return SQLITE_OK; 1972 } 1973 1974 /* 1975 ** Initialize the auxiliary information for a disk block. 1976 ** 1977 ** Return SQLITE_OK on success. If we see that the page does 1978 ** not contain a well-formed database page, then return 1979 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 1980 ** guarantee that the page is well-formed. It only shows that 1981 ** we failed to detect any corruption. 1982 */ 1983 static int btreeInitPage(MemPage *pPage){ 1984 u8 *data; /* Equal to pPage->aData */ 1985 BtShared *pBt; /* The main btree structure */ 1986 1987 assert( pPage->pBt!=0 ); 1988 assert( pPage->pBt->db!=0 ); 1989 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1990 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1991 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1992 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1993 assert( pPage->isInit==0 ); 1994 1995 pBt = pPage->pBt; 1996 data = pPage->aData + pPage->hdrOffset; 1997 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 1998 ** the b-tree page type. */ 1999 if( decodeFlags(pPage, data[0]) ){ 2000 return SQLITE_CORRUPT_PAGE(pPage); 2001 } 2002 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2003 pPage->maskPage = (u16)(pBt->pageSize - 1); 2004 pPage->nOverflow = 0; 2005 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2006 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2007 pPage->aDataEnd = pPage->aData + pBt->usableSize; 2008 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2009 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2010 ** number of cells on the page. */ 2011 pPage->nCell = get2byte(&data[3]); 2012 if( pPage->nCell>MX_CELL(pBt) ){ 2013 /* To many cells for a single page. The page must be corrupt */ 2014 return SQLITE_CORRUPT_PAGE(pPage); 2015 } 2016 testcase( pPage->nCell==MX_CELL(pBt) ); 2017 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2018 ** possible for a root page of a table that contains no rows) then the 2019 ** offset to the cell content area will equal the page size minus the 2020 ** bytes of reserved space. */ 2021 assert( pPage->nCell>0 2022 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2023 || CORRUPT_DB ); 2024 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2025 pPage->isInit = 1; 2026 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2027 return btreeCellSizeCheck(pPage); 2028 } 2029 return SQLITE_OK; 2030 } 2031 2032 /* 2033 ** Set up a raw page so that it looks like a database page holding 2034 ** no entries. 2035 */ 2036 static void zeroPage(MemPage *pPage, int flags){ 2037 unsigned char *data = pPage->aData; 2038 BtShared *pBt = pPage->pBt; 2039 u8 hdr = pPage->hdrOffset; 2040 u16 first; 2041 2042 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 2043 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2044 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2045 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2046 assert( sqlite3_mutex_held(pBt->mutex) ); 2047 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2048 memset(&data[hdr], 0, pBt->usableSize - hdr); 2049 } 2050 data[hdr] = (char)flags; 2051 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2052 memset(&data[hdr+1], 0, 4); 2053 data[hdr+7] = 0; 2054 put2byte(&data[hdr+5], pBt->usableSize); 2055 pPage->nFree = (u16)(pBt->usableSize - first); 2056 decodeFlags(pPage, flags); 2057 pPage->cellOffset = first; 2058 pPage->aDataEnd = &data[pBt->usableSize]; 2059 pPage->aCellIdx = &data[first]; 2060 pPage->aDataOfst = &data[pPage->childPtrSize]; 2061 pPage->nOverflow = 0; 2062 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2063 pPage->maskPage = (u16)(pBt->pageSize - 1); 2064 pPage->nCell = 0; 2065 pPage->isInit = 1; 2066 } 2067 2068 2069 /* 2070 ** Convert a DbPage obtained from the pager into a MemPage used by 2071 ** the btree layer. 2072 */ 2073 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2074 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2075 if( pgno!=pPage->pgno ){ 2076 pPage->aData = sqlite3PagerGetData(pDbPage); 2077 pPage->pDbPage = pDbPage; 2078 pPage->pBt = pBt; 2079 pPage->pgno = pgno; 2080 pPage->hdrOffset = pgno==1 ? 100 : 0; 2081 } 2082 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2083 return pPage; 2084 } 2085 2086 /* 2087 ** Get a page from the pager. Initialize the MemPage.pBt and 2088 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2089 ** 2090 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2091 ** about the content of the page at this time. So do not go to the disk 2092 ** to fetch the content. Just fill in the content with zeros for now. 2093 ** If in the future we call sqlite3PagerWrite() on this page, that 2094 ** means we have started to be concerned about content and the disk 2095 ** read should occur at that point. 2096 */ 2097 static int btreeGetPage( 2098 BtShared *pBt, /* The btree */ 2099 Pgno pgno, /* Number of the page to fetch */ 2100 MemPage **ppPage, /* Return the page in this parameter */ 2101 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2102 ){ 2103 int rc; 2104 DbPage *pDbPage; 2105 2106 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2107 assert( sqlite3_mutex_held(pBt->mutex) ); 2108 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2109 if( rc ) return rc; 2110 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2111 return SQLITE_OK; 2112 } 2113 2114 /* 2115 ** Retrieve a page from the pager cache. If the requested page is not 2116 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2117 ** MemPage.aData elements if needed. 2118 */ 2119 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2120 DbPage *pDbPage; 2121 assert( sqlite3_mutex_held(pBt->mutex) ); 2122 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2123 if( pDbPage ){ 2124 return btreePageFromDbPage(pDbPage, pgno, pBt); 2125 } 2126 return 0; 2127 } 2128 2129 /* 2130 ** Return the size of the database file in pages. If there is any kind of 2131 ** error, return ((unsigned int)-1). 2132 */ 2133 static Pgno btreePagecount(BtShared *pBt){ 2134 return pBt->nPage; 2135 } 2136 u32 sqlite3BtreeLastPage(Btree *p){ 2137 assert( sqlite3BtreeHoldsMutex(p) ); 2138 assert( ((p->pBt->nPage)&0x80000000)==0 ); 2139 return btreePagecount(p->pBt); 2140 } 2141 2142 /* 2143 ** Get a page from the pager and initialize it. 2144 ** 2145 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2146 ** call. Do additional sanity checking on the page in this case. 2147 ** And if the fetch fails, this routine must decrement pCur->iPage. 2148 ** 2149 ** The page is fetched as read-write unless pCur is not NULL and is 2150 ** a read-only cursor. 2151 ** 2152 ** If an error occurs, then *ppPage is undefined. It 2153 ** may remain unchanged, or it may be set to an invalid value. 2154 */ 2155 static int getAndInitPage( 2156 BtShared *pBt, /* The database file */ 2157 Pgno pgno, /* Number of the page to get */ 2158 MemPage **ppPage, /* Write the page pointer here */ 2159 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2160 int bReadOnly /* True for a read-only page */ 2161 ){ 2162 int rc; 2163 DbPage *pDbPage; 2164 assert( sqlite3_mutex_held(pBt->mutex) ); 2165 assert( pCur==0 || ppPage==&pCur->pPage ); 2166 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2167 assert( pCur==0 || pCur->iPage>0 ); 2168 2169 if( pgno>btreePagecount(pBt) ){ 2170 rc = SQLITE_CORRUPT_BKPT; 2171 goto getAndInitPage_error1; 2172 } 2173 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2174 if( rc ){ 2175 goto getAndInitPage_error1; 2176 } 2177 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2178 if( (*ppPage)->isInit==0 ){ 2179 btreePageFromDbPage(pDbPage, pgno, pBt); 2180 rc = btreeInitPage(*ppPage); 2181 if( rc!=SQLITE_OK ){ 2182 goto getAndInitPage_error2; 2183 } 2184 } 2185 assert( (*ppPage)->pgno==pgno ); 2186 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2187 2188 /* If obtaining a child page for a cursor, we must verify that the page is 2189 ** compatible with the root page. */ 2190 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2191 rc = SQLITE_CORRUPT_PGNO(pgno); 2192 goto getAndInitPage_error2; 2193 } 2194 return SQLITE_OK; 2195 2196 getAndInitPage_error2: 2197 releasePage(*ppPage); 2198 getAndInitPage_error1: 2199 if( pCur ){ 2200 pCur->iPage--; 2201 pCur->pPage = pCur->apPage[pCur->iPage]; 2202 } 2203 testcase( pgno==0 ); 2204 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 2205 return rc; 2206 } 2207 2208 /* 2209 ** Release a MemPage. This should be called once for each prior 2210 ** call to btreeGetPage. 2211 ** 2212 ** Page1 is a special case and must be released using releasePageOne(). 2213 */ 2214 static void releasePageNotNull(MemPage *pPage){ 2215 assert( pPage->aData ); 2216 assert( pPage->pBt ); 2217 assert( pPage->pDbPage!=0 ); 2218 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2219 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2220 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2221 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2222 } 2223 static void releasePage(MemPage *pPage){ 2224 if( pPage ) releasePageNotNull(pPage); 2225 } 2226 static void releasePageOne(MemPage *pPage){ 2227 assert( pPage!=0 ); 2228 assert( pPage->aData ); 2229 assert( pPage->pBt ); 2230 assert( pPage->pDbPage!=0 ); 2231 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2232 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2233 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2234 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2235 } 2236 2237 /* 2238 ** Get an unused page. 2239 ** 2240 ** This works just like btreeGetPage() with the addition: 2241 ** 2242 ** * If the page is already in use for some other purpose, immediately 2243 ** release it and return an SQLITE_CURRUPT error. 2244 ** * Make sure the isInit flag is clear 2245 */ 2246 static int btreeGetUnusedPage( 2247 BtShared *pBt, /* The btree */ 2248 Pgno pgno, /* Number of the page to fetch */ 2249 MemPage **ppPage, /* Return the page in this parameter */ 2250 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2251 ){ 2252 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2253 if( rc==SQLITE_OK ){ 2254 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2255 releasePage(*ppPage); 2256 *ppPage = 0; 2257 return SQLITE_CORRUPT_BKPT; 2258 } 2259 (*ppPage)->isInit = 0; 2260 }else{ 2261 *ppPage = 0; 2262 } 2263 return rc; 2264 } 2265 2266 2267 /* 2268 ** During a rollback, when the pager reloads information into the cache 2269 ** so that the cache is restored to its original state at the start of 2270 ** the transaction, for each page restored this routine is called. 2271 ** 2272 ** This routine needs to reset the extra data section at the end of the 2273 ** page to agree with the restored data. 2274 */ 2275 static void pageReinit(DbPage *pData){ 2276 MemPage *pPage; 2277 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2278 assert( sqlite3PagerPageRefcount(pData)>0 ); 2279 if( pPage->isInit ){ 2280 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2281 pPage->isInit = 0; 2282 if( sqlite3PagerPageRefcount(pData)>1 ){ 2283 /* pPage might not be a btree page; it might be an overflow page 2284 ** or ptrmap page or a free page. In those cases, the following 2285 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2286 ** But no harm is done by this. And it is very important that 2287 ** btreeInitPage() be called on every btree page so we make 2288 ** the call for every page that comes in for re-initing. */ 2289 btreeInitPage(pPage); 2290 } 2291 } 2292 } 2293 2294 /* 2295 ** Invoke the busy handler for a btree. 2296 */ 2297 static int btreeInvokeBusyHandler(void *pArg){ 2298 BtShared *pBt = (BtShared*)pArg; 2299 assert( pBt->db ); 2300 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2301 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler, 2302 sqlite3PagerFile(pBt->pPager)); 2303 } 2304 2305 /* 2306 ** Open a database file. 2307 ** 2308 ** zFilename is the name of the database file. If zFilename is NULL 2309 ** then an ephemeral database is created. The ephemeral database might 2310 ** be exclusively in memory, or it might use a disk-based memory cache. 2311 ** Either way, the ephemeral database will be automatically deleted 2312 ** when sqlite3BtreeClose() is called. 2313 ** 2314 ** If zFilename is ":memory:" then an in-memory database is created 2315 ** that is automatically destroyed when it is closed. 2316 ** 2317 ** The "flags" parameter is a bitmask that might contain bits like 2318 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2319 ** 2320 ** If the database is already opened in the same database connection 2321 ** and we are in shared cache mode, then the open will fail with an 2322 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2323 ** objects in the same database connection since doing so will lead 2324 ** to problems with locking. 2325 */ 2326 int sqlite3BtreeOpen( 2327 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2328 const char *zFilename, /* Name of the file containing the BTree database */ 2329 sqlite3 *db, /* Associated database handle */ 2330 Btree **ppBtree, /* Pointer to new Btree object written here */ 2331 int flags, /* Options */ 2332 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2333 ){ 2334 BtShared *pBt = 0; /* Shared part of btree structure */ 2335 Btree *p; /* Handle to return */ 2336 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2337 int rc = SQLITE_OK; /* Result code from this function */ 2338 u8 nReserve; /* Byte of unused space on each page */ 2339 unsigned char zDbHeader[100]; /* Database header content */ 2340 2341 /* True if opening an ephemeral, temporary database */ 2342 const int isTempDb = zFilename==0 || zFilename[0]==0; 2343 2344 /* Set the variable isMemdb to true for an in-memory database, or 2345 ** false for a file-based database. 2346 */ 2347 #ifdef SQLITE_OMIT_MEMORYDB 2348 const int isMemdb = 0; 2349 #else 2350 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2351 || (isTempDb && sqlite3TempInMemory(db)) 2352 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2353 #endif 2354 2355 assert( db!=0 ); 2356 assert( pVfs!=0 ); 2357 assert( sqlite3_mutex_held(db->mutex) ); 2358 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2359 2360 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2361 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2362 2363 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2364 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2365 2366 if( isMemdb ){ 2367 flags |= BTREE_MEMORY; 2368 } 2369 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2370 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2371 } 2372 p = sqlite3MallocZero(sizeof(Btree)); 2373 if( !p ){ 2374 return SQLITE_NOMEM_BKPT; 2375 } 2376 p->inTrans = TRANS_NONE; 2377 p->db = db; 2378 #ifndef SQLITE_OMIT_SHARED_CACHE 2379 p->lock.pBtree = p; 2380 p->lock.iTable = 1; 2381 #endif 2382 2383 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2384 /* 2385 ** If this Btree is a candidate for shared cache, try to find an 2386 ** existing BtShared object that we can share with 2387 */ 2388 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2389 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2390 int nFilename = sqlite3Strlen30(zFilename)+1; 2391 int nFullPathname = pVfs->mxPathname+1; 2392 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2393 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2394 2395 p->sharable = 1; 2396 if( !zFullPathname ){ 2397 sqlite3_free(p); 2398 return SQLITE_NOMEM_BKPT; 2399 } 2400 if( isMemdb ){ 2401 memcpy(zFullPathname, zFilename, nFilename); 2402 }else{ 2403 rc = sqlite3OsFullPathname(pVfs, zFilename, 2404 nFullPathname, zFullPathname); 2405 if( rc ){ 2406 if( rc==SQLITE_OK_SYMLINK ){ 2407 rc = SQLITE_OK; 2408 }else{ 2409 sqlite3_free(zFullPathname); 2410 sqlite3_free(p); 2411 return rc; 2412 } 2413 } 2414 } 2415 #if SQLITE_THREADSAFE 2416 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2417 sqlite3_mutex_enter(mutexOpen); 2418 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 2419 sqlite3_mutex_enter(mutexShared); 2420 #endif 2421 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2422 assert( pBt->nRef>0 ); 2423 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2424 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2425 int iDb; 2426 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2427 Btree *pExisting = db->aDb[iDb].pBt; 2428 if( pExisting && pExisting->pBt==pBt ){ 2429 sqlite3_mutex_leave(mutexShared); 2430 sqlite3_mutex_leave(mutexOpen); 2431 sqlite3_free(zFullPathname); 2432 sqlite3_free(p); 2433 return SQLITE_CONSTRAINT; 2434 } 2435 } 2436 p->pBt = pBt; 2437 pBt->nRef++; 2438 break; 2439 } 2440 } 2441 sqlite3_mutex_leave(mutexShared); 2442 sqlite3_free(zFullPathname); 2443 } 2444 #ifdef SQLITE_DEBUG 2445 else{ 2446 /* In debug mode, we mark all persistent databases as sharable 2447 ** even when they are not. This exercises the locking code and 2448 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2449 ** statements to find locking problems. 2450 */ 2451 p->sharable = 1; 2452 } 2453 #endif 2454 } 2455 #endif 2456 if( pBt==0 ){ 2457 /* 2458 ** The following asserts make sure that structures used by the btree are 2459 ** the right size. This is to guard against size changes that result 2460 ** when compiling on a different architecture. 2461 */ 2462 assert( sizeof(i64)==8 ); 2463 assert( sizeof(u64)==8 ); 2464 assert( sizeof(u32)==4 ); 2465 assert( sizeof(u16)==2 ); 2466 assert( sizeof(Pgno)==4 ); 2467 2468 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2469 if( pBt==0 ){ 2470 rc = SQLITE_NOMEM_BKPT; 2471 goto btree_open_out; 2472 } 2473 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2474 sizeof(MemPage), flags, vfsFlags, pageReinit); 2475 if( rc==SQLITE_OK ){ 2476 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2477 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2478 } 2479 if( rc!=SQLITE_OK ){ 2480 goto btree_open_out; 2481 } 2482 pBt->openFlags = (u8)flags; 2483 pBt->db = db; 2484 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2485 p->pBt = pBt; 2486 2487 pBt->pCursor = 0; 2488 pBt->pPage1 = 0; 2489 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2490 #if defined(SQLITE_SECURE_DELETE) 2491 pBt->btsFlags |= BTS_SECURE_DELETE; 2492 #elif defined(SQLITE_FAST_SECURE_DELETE) 2493 pBt->btsFlags |= BTS_OVERWRITE; 2494 #endif 2495 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2496 ** determined by the 2-byte integer located at an offset of 16 bytes from 2497 ** the beginning of the database file. */ 2498 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2499 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2500 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2501 pBt->pageSize = 0; 2502 #ifndef SQLITE_OMIT_AUTOVACUUM 2503 /* If the magic name ":memory:" will create an in-memory database, then 2504 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2505 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2506 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2507 ** regular file-name. In this case the auto-vacuum applies as per normal. 2508 */ 2509 if( zFilename && !isMemdb ){ 2510 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2511 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2512 } 2513 #endif 2514 nReserve = 0; 2515 }else{ 2516 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2517 ** determined by the one-byte unsigned integer found at an offset of 20 2518 ** into the database file header. */ 2519 nReserve = zDbHeader[20]; 2520 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2521 #ifndef SQLITE_OMIT_AUTOVACUUM 2522 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2523 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2524 #endif 2525 } 2526 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2527 if( rc ) goto btree_open_out; 2528 pBt->usableSize = pBt->pageSize - nReserve; 2529 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2530 2531 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2532 /* Add the new BtShared object to the linked list sharable BtShareds. 2533 */ 2534 pBt->nRef = 1; 2535 if( p->sharable ){ 2536 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2537 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) 2538 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2539 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2540 if( pBt->mutex==0 ){ 2541 rc = SQLITE_NOMEM_BKPT; 2542 goto btree_open_out; 2543 } 2544 } 2545 sqlite3_mutex_enter(mutexShared); 2546 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2547 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2548 sqlite3_mutex_leave(mutexShared); 2549 } 2550 #endif 2551 } 2552 2553 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2554 /* If the new Btree uses a sharable pBtShared, then link the new 2555 ** Btree into the list of all sharable Btrees for the same connection. 2556 ** The list is kept in ascending order by pBt address. 2557 */ 2558 if( p->sharable ){ 2559 int i; 2560 Btree *pSib; 2561 for(i=0; i<db->nDb; i++){ 2562 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2563 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2564 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2565 p->pNext = pSib; 2566 p->pPrev = 0; 2567 pSib->pPrev = p; 2568 }else{ 2569 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2570 pSib = pSib->pNext; 2571 } 2572 p->pNext = pSib->pNext; 2573 p->pPrev = pSib; 2574 if( p->pNext ){ 2575 p->pNext->pPrev = p; 2576 } 2577 pSib->pNext = p; 2578 } 2579 break; 2580 } 2581 } 2582 } 2583 #endif 2584 *ppBtree = p; 2585 2586 btree_open_out: 2587 if( rc!=SQLITE_OK ){ 2588 if( pBt && pBt->pPager ){ 2589 sqlite3PagerClose(pBt->pPager, 0); 2590 } 2591 sqlite3_free(pBt); 2592 sqlite3_free(p); 2593 *ppBtree = 0; 2594 }else{ 2595 sqlite3_file *pFile; 2596 2597 /* If the B-Tree was successfully opened, set the pager-cache size to the 2598 ** default value. Except, when opening on an existing shared pager-cache, 2599 ** do not change the pager-cache size. 2600 */ 2601 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2602 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); 2603 } 2604 2605 pFile = sqlite3PagerFile(pBt->pPager); 2606 if( pFile->pMethods ){ 2607 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2608 } 2609 } 2610 if( mutexOpen ){ 2611 assert( sqlite3_mutex_held(mutexOpen) ); 2612 sqlite3_mutex_leave(mutexOpen); 2613 } 2614 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2615 return rc; 2616 } 2617 2618 /* 2619 ** Decrement the BtShared.nRef counter. When it reaches zero, 2620 ** remove the BtShared structure from the sharing list. Return 2621 ** true if the BtShared.nRef counter reaches zero and return 2622 ** false if it is still positive. 2623 */ 2624 static int removeFromSharingList(BtShared *pBt){ 2625 #ifndef SQLITE_OMIT_SHARED_CACHE 2626 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) 2627 BtShared *pList; 2628 int removed = 0; 2629 2630 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2631 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 2632 sqlite3_mutex_enter(pMaster); 2633 pBt->nRef--; 2634 if( pBt->nRef<=0 ){ 2635 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2636 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2637 }else{ 2638 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2639 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2640 pList=pList->pNext; 2641 } 2642 if( ALWAYS(pList) ){ 2643 pList->pNext = pBt->pNext; 2644 } 2645 } 2646 if( SQLITE_THREADSAFE ){ 2647 sqlite3_mutex_free(pBt->mutex); 2648 } 2649 removed = 1; 2650 } 2651 sqlite3_mutex_leave(pMaster); 2652 return removed; 2653 #else 2654 return 1; 2655 #endif 2656 } 2657 2658 /* 2659 ** Make sure pBt->pTmpSpace points to an allocation of 2660 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2661 ** pointer. 2662 */ 2663 static void allocateTempSpace(BtShared *pBt){ 2664 if( !pBt->pTmpSpace ){ 2665 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2666 2667 /* One of the uses of pBt->pTmpSpace is to format cells before 2668 ** inserting them into a leaf page (function fillInCell()). If 2669 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2670 ** by the various routines that manipulate binary cells. Which 2671 ** can mean that fillInCell() only initializes the first 2 or 3 2672 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2673 ** it into a database page. This is not actually a problem, but it 2674 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2675 ** data is passed to system call write(). So to avoid this error, 2676 ** zero the first 4 bytes of temp space here. 2677 ** 2678 ** Also: Provide four bytes of initialized space before the 2679 ** beginning of pTmpSpace as an area available to prepend the 2680 ** left-child pointer to the beginning of a cell. 2681 */ 2682 if( pBt->pTmpSpace ){ 2683 memset(pBt->pTmpSpace, 0, 8); 2684 pBt->pTmpSpace += 4; 2685 } 2686 } 2687 } 2688 2689 /* 2690 ** Free the pBt->pTmpSpace allocation 2691 */ 2692 static void freeTempSpace(BtShared *pBt){ 2693 if( pBt->pTmpSpace ){ 2694 pBt->pTmpSpace -= 4; 2695 sqlite3PageFree(pBt->pTmpSpace); 2696 pBt->pTmpSpace = 0; 2697 } 2698 } 2699 2700 /* 2701 ** Close an open database and invalidate all cursors. 2702 */ 2703 int sqlite3BtreeClose(Btree *p){ 2704 BtShared *pBt = p->pBt; 2705 BtCursor *pCur; 2706 2707 /* Close all cursors opened via this handle. */ 2708 assert( sqlite3_mutex_held(p->db->mutex) ); 2709 sqlite3BtreeEnter(p); 2710 pCur = pBt->pCursor; 2711 while( pCur ){ 2712 BtCursor *pTmp = pCur; 2713 pCur = pCur->pNext; 2714 if( pTmp->pBtree==p ){ 2715 sqlite3BtreeCloseCursor(pTmp); 2716 } 2717 } 2718 2719 /* Rollback any active transaction and free the handle structure. 2720 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2721 ** this handle. 2722 */ 2723 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2724 sqlite3BtreeLeave(p); 2725 2726 /* If there are still other outstanding references to the shared-btree 2727 ** structure, return now. The remainder of this procedure cleans 2728 ** up the shared-btree. 2729 */ 2730 assert( p->wantToLock==0 && p->locked==0 ); 2731 if( !p->sharable || removeFromSharingList(pBt) ){ 2732 /* The pBt is no longer on the sharing list, so we can access 2733 ** it without having to hold the mutex. 2734 ** 2735 ** Clean out and delete the BtShared object. 2736 */ 2737 assert( !pBt->pCursor ); 2738 sqlite3PagerClose(pBt->pPager, p->db); 2739 if( pBt->xFreeSchema && pBt->pSchema ){ 2740 pBt->xFreeSchema(pBt->pSchema); 2741 } 2742 sqlite3DbFree(0, pBt->pSchema); 2743 freeTempSpace(pBt); 2744 sqlite3_free(pBt); 2745 } 2746 2747 #ifndef SQLITE_OMIT_SHARED_CACHE 2748 assert( p->wantToLock==0 ); 2749 assert( p->locked==0 ); 2750 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2751 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2752 #endif 2753 2754 sqlite3_free(p); 2755 return SQLITE_OK; 2756 } 2757 2758 /* 2759 ** Change the "soft" limit on the number of pages in the cache. 2760 ** Unused and unmodified pages will be recycled when the number of 2761 ** pages in the cache exceeds this soft limit. But the size of the 2762 ** cache is allowed to grow larger than this limit if it contains 2763 ** dirty pages or pages still in active use. 2764 */ 2765 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2766 BtShared *pBt = p->pBt; 2767 assert( sqlite3_mutex_held(p->db->mutex) ); 2768 sqlite3BtreeEnter(p); 2769 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2770 sqlite3BtreeLeave(p); 2771 return SQLITE_OK; 2772 } 2773 2774 /* 2775 ** Change the "spill" limit on the number of pages in the cache. 2776 ** If the number of pages exceeds this limit during a write transaction, 2777 ** the pager might attempt to "spill" pages to the journal early in 2778 ** order to free up memory. 2779 ** 2780 ** The value returned is the current spill size. If zero is passed 2781 ** as an argument, no changes are made to the spill size setting, so 2782 ** using mxPage of 0 is a way to query the current spill size. 2783 */ 2784 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2785 BtShared *pBt = p->pBt; 2786 int res; 2787 assert( sqlite3_mutex_held(p->db->mutex) ); 2788 sqlite3BtreeEnter(p); 2789 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2790 sqlite3BtreeLeave(p); 2791 return res; 2792 } 2793 2794 #if SQLITE_MAX_MMAP_SIZE>0 2795 /* 2796 ** Change the limit on the amount of the database file that may be 2797 ** memory mapped. 2798 */ 2799 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2800 BtShared *pBt = p->pBt; 2801 assert( sqlite3_mutex_held(p->db->mutex) ); 2802 sqlite3BtreeEnter(p); 2803 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2804 sqlite3BtreeLeave(p); 2805 return SQLITE_OK; 2806 } 2807 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2808 2809 /* 2810 ** Change the way data is synced to disk in order to increase or decrease 2811 ** how well the database resists damage due to OS crashes and power 2812 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2813 ** there is a high probability of damage) Level 2 is the default. There 2814 ** is a very low but non-zero probability of damage. Level 3 reduces the 2815 ** probability of damage to near zero but with a write performance reduction. 2816 */ 2817 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2818 int sqlite3BtreeSetPagerFlags( 2819 Btree *p, /* The btree to set the safety level on */ 2820 unsigned pgFlags /* Various PAGER_* flags */ 2821 ){ 2822 BtShared *pBt = p->pBt; 2823 assert( sqlite3_mutex_held(p->db->mutex) ); 2824 sqlite3BtreeEnter(p); 2825 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2826 sqlite3BtreeLeave(p); 2827 return SQLITE_OK; 2828 } 2829 #endif 2830 2831 /* 2832 ** Change the default pages size and the number of reserved bytes per page. 2833 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2834 ** without changing anything. 2835 ** 2836 ** The page size must be a power of 2 between 512 and 65536. If the page 2837 ** size supplied does not meet this constraint then the page size is not 2838 ** changed. 2839 ** 2840 ** Page sizes are constrained to be a power of two so that the region 2841 ** of the database file used for locking (beginning at PENDING_BYTE, 2842 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2843 ** at the beginning of a page. 2844 ** 2845 ** If parameter nReserve is less than zero, then the number of reserved 2846 ** bytes per page is left unchanged. 2847 ** 2848 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2849 ** and autovacuum mode can no longer be changed. 2850 */ 2851 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2852 int rc = SQLITE_OK; 2853 BtShared *pBt = p->pBt; 2854 assert( nReserve>=-1 && nReserve<=255 ); 2855 sqlite3BtreeEnter(p); 2856 #if SQLITE_HAS_CODEC 2857 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve; 2858 #endif 2859 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2860 sqlite3BtreeLeave(p); 2861 return SQLITE_READONLY; 2862 } 2863 if( nReserve<0 ){ 2864 nReserve = pBt->pageSize - pBt->usableSize; 2865 } 2866 assert( nReserve>=0 && nReserve<=255 ); 2867 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2868 ((pageSize-1)&pageSize)==0 ){ 2869 assert( (pageSize & 7)==0 ); 2870 assert( !pBt->pCursor ); 2871 pBt->pageSize = (u32)pageSize; 2872 freeTempSpace(pBt); 2873 } 2874 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2875 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2876 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2877 sqlite3BtreeLeave(p); 2878 return rc; 2879 } 2880 2881 /* 2882 ** Return the currently defined page size 2883 */ 2884 int sqlite3BtreeGetPageSize(Btree *p){ 2885 return p->pBt->pageSize; 2886 } 2887 2888 /* 2889 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2890 ** may only be called if it is guaranteed that the b-tree mutex is already 2891 ** held. 2892 ** 2893 ** This is useful in one special case in the backup API code where it is 2894 ** known that the shared b-tree mutex is held, but the mutex on the 2895 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2896 ** were to be called, it might collide with some other operation on the 2897 ** database handle that owns *p, causing undefined behavior. 2898 */ 2899 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2900 int n; 2901 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2902 n = p->pBt->pageSize - p->pBt->usableSize; 2903 return n; 2904 } 2905 2906 /* 2907 ** Return the number of bytes of space at the end of every page that 2908 ** are intentually left unused. This is the "reserved" space that is 2909 ** sometimes used by extensions. 2910 ** 2911 ** If SQLITE_HAS_MUTEX is defined then the number returned is the 2912 ** greater of the current reserved space and the maximum requested 2913 ** reserve space. 2914 */ 2915 int sqlite3BtreeGetOptimalReserve(Btree *p){ 2916 int n; 2917 sqlite3BtreeEnter(p); 2918 n = sqlite3BtreeGetReserveNoMutex(p); 2919 #ifdef SQLITE_HAS_CODEC 2920 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve; 2921 #endif 2922 sqlite3BtreeLeave(p); 2923 return n; 2924 } 2925 2926 2927 /* 2928 ** Set the maximum page count for a database if mxPage is positive. 2929 ** No changes are made if mxPage is 0 or negative. 2930 ** Regardless of the value of mxPage, return the maximum page count. 2931 */ 2932 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ 2933 int n; 2934 sqlite3BtreeEnter(p); 2935 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2936 sqlite3BtreeLeave(p); 2937 return n; 2938 } 2939 2940 /* 2941 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 2942 ** 2943 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 2944 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 2945 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 2946 ** newFlag==(-1) No changes 2947 ** 2948 ** This routine acts as a query if newFlag is less than zero 2949 ** 2950 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 2951 ** freelist leaf pages are not written back to the database. Thus in-page 2952 ** deleted content is cleared, but freelist deleted content is not. 2953 ** 2954 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 2955 ** that freelist leaf pages are written back into the database, increasing 2956 ** the amount of disk I/O. 2957 */ 2958 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 2959 int b; 2960 if( p==0 ) return 0; 2961 sqlite3BtreeEnter(p); 2962 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 2963 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 2964 if( newFlag>=0 ){ 2965 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 2966 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 2967 } 2968 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 2969 sqlite3BtreeLeave(p); 2970 return b; 2971 } 2972 2973 /* 2974 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 2975 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 2976 ** is disabled. The default value for the auto-vacuum property is 2977 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 2978 */ 2979 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 2980 #ifdef SQLITE_OMIT_AUTOVACUUM 2981 return SQLITE_READONLY; 2982 #else 2983 BtShared *pBt = p->pBt; 2984 int rc = SQLITE_OK; 2985 u8 av = (u8)autoVacuum; 2986 2987 sqlite3BtreeEnter(p); 2988 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 2989 rc = SQLITE_READONLY; 2990 }else{ 2991 pBt->autoVacuum = av ?1:0; 2992 pBt->incrVacuum = av==2 ?1:0; 2993 } 2994 sqlite3BtreeLeave(p); 2995 return rc; 2996 #endif 2997 } 2998 2999 /* 3000 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3001 ** enabled 1 is returned. Otherwise 0. 3002 */ 3003 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3004 #ifdef SQLITE_OMIT_AUTOVACUUM 3005 return BTREE_AUTOVACUUM_NONE; 3006 #else 3007 int rc; 3008 sqlite3BtreeEnter(p); 3009 rc = ( 3010 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3011 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3012 BTREE_AUTOVACUUM_INCR 3013 ); 3014 sqlite3BtreeLeave(p); 3015 return rc; 3016 #endif 3017 } 3018 3019 /* 3020 ** If the user has not set the safety-level for this database connection 3021 ** using "PRAGMA synchronous", and if the safety-level is not already 3022 ** set to the value passed to this function as the second parameter, 3023 ** set it so. 3024 */ 3025 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3026 && !defined(SQLITE_OMIT_WAL) 3027 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3028 sqlite3 *db; 3029 Db *pDb; 3030 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3031 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3032 if( pDb->bSyncSet==0 3033 && pDb->safety_level!=safety_level 3034 && pDb!=&db->aDb[1] 3035 ){ 3036 pDb->safety_level = safety_level; 3037 sqlite3PagerSetFlags(pBt->pPager, 3038 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3039 } 3040 } 3041 } 3042 #else 3043 # define setDefaultSyncFlag(pBt,safety_level) 3044 #endif 3045 3046 /* Forward declaration */ 3047 static int newDatabase(BtShared*); 3048 3049 3050 /* 3051 ** Get a reference to pPage1 of the database file. This will 3052 ** also acquire a readlock on that file. 3053 ** 3054 ** SQLITE_OK is returned on success. If the file is not a 3055 ** well-formed database file, then SQLITE_CORRUPT is returned. 3056 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3057 ** is returned if we run out of memory. 3058 */ 3059 static int lockBtree(BtShared *pBt){ 3060 int rc; /* Result code from subfunctions */ 3061 MemPage *pPage1; /* Page 1 of the database file */ 3062 u32 nPage; /* Number of pages in the database */ 3063 u32 nPageFile = 0; /* Number of pages in the database file */ 3064 u32 nPageHeader; /* Number of pages in the database according to hdr */ 3065 3066 assert( sqlite3_mutex_held(pBt->mutex) ); 3067 assert( pBt->pPage1==0 ); 3068 rc = sqlite3PagerSharedLock(pBt->pPager); 3069 if( rc!=SQLITE_OK ) return rc; 3070 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3071 if( rc!=SQLITE_OK ) return rc; 3072 3073 /* Do some checking to help insure the file we opened really is 3074 ** a valid database file. 3075 */ 3076 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); 3077 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3078 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3079 nPage = nPageFile; 3080 } 3081 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3082 nPage = 0; 3083 } 3084 if( nPage>0 ){ 3085 u32 pageSize; 3086 u32 usableSize; 3087 u8 *page1 = pPage1->aData; 3088 rc = SQLITE_NOTADB; 3089 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3090 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3091 ** 61 74 20 33 00. */ 3092 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3093 goto page1_init_failed; 3094 } 3095 3096 #ifdef SQLITE_OMIT_WAL 3097 if( page1[18]>1 ){ 3098 pBt->btsFlags |= BTS_READ_ONLY; 3099 } 3100 if( page1[19]>1 ){ 3101 goto page1_init_failed; 3102 } 3103 #else 3104 if( page1[18]>2 ){ 3105 pBt->btsFlags |= BTS_READ_ONLY; 3106 } 3107 if( page1[19]>2 ){ 3108 goto page1_init_failed; 3109 } 3110 3111 /* If the write version is set to 2, this database should be accessed 3112 ** in WAL mode. If the log is not already open, open it now. Then 3113 ** return SQLITE_OK and return without populating BtShared.pPage1. 3114 ** The caller detects this and calls this function again. This is 3115 ** required as the version of page 1 currently in the page1 buffer 3116 ** may not be the latest version - there may be a newer one in the log 3117 ** file. 3118 */ 3119 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3120 int isOpen = 0; 3121 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3122 if( rc!=SQLITE_OK ){ 3123 goto page1_init_failed; 3124 }else{ 3125 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3126 if( isOpen==0 ){ 3127 releasePageOne(pPage1); 3128 return SQLITE_OK; 3129 } 3130 } 3131 rc = SQLITE_NOTADB; 3132 }else{ 3133 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3134 } 3135 #endif 3136 3137 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3138 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3139 ** 3140 ** The original design allowed these amounts to vary, but as of 3141 ** version 3.6.0, we require them to be fixed. 3142 */ 3143 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3144 goto page1_init_failed; 3145 } 3146 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3147 ** determined by the 2-byte integer located at an offset of 16 bytes from 3148 ** the beginning of the database file. */ 3149 pageSize = (page1[16]<<8) | (page1[17]<<16); 3150 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3151 ** between 512 and 65536 inclusive. */ 3152 if( ((pageSize-1)&pageSize)!=0 3153 || pageSize>SQLITE_MAX_PAGE_SIZE 3154 || pageSize<=256 3155 ){ 3156 goto page1_init_failed; 3157 } 3158 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3159 assert( (pageSize & 7)==0 ); 3160 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3161 ** integer at offset 20 is the number of bytes of space at the end of 3162 ** each page to reserve for extensions. 3163 ** 3164 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3165 ** determined by the one-byte unsigned integer found at an offset of 20 3166 ** into the database file header. */ 3167 usableSize = pageSize - page1[20]; 3168 if( (u32)pageSize!=pBt->pageSize ){ 3169 /* After reading the first page of the database assuming a page size 3170 ** of BtShared.pageSize, we have discovered that the page-size is 3171 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3172 ** zero and return SQLITE_OK. The caller will call this function 3173 ** again with the correct page-size. 3174 */ 3175 releasePageOne(pPage1); 3176 pBt->usableSize = usableSize; 3177 pBt->pageSize = pageSize; 3178 freeTempSpace(pBt); 3179 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3180 pageSize-usableSize); 3181 return rc; 3182 } 3183 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){ 3184 rc = SQLITE_CORRUPT_BKPT; 3185 goto page1_init_failed; 3186 } 3187 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3188 ** be less than 480. In other words, if the page size is 512, then the 3189 ** reserved space size cannot exceed 32. */ 3190 if( usableSize<480 ){ 3191 goto page1_init_failed; 3192 } 3193 pBt->pageSize = pageSize; 3194 pBt->usableSize = usableSize; 3195 #ifndef SQLITE_OMIT_AUTOVACUUM 3196 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3197 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3198 #endif 3199 } 3200 3201 /* maxLocal is the maximum amount of payload to store locally for 3202 ** a cell. Make sure it is small enough so that at least minFanout 3203 ** cells can will fit on one page. We assume a 10-byte page header. 3204 ** Besides the payload, the cell must store: 3205 ** 2-byte pointer to the cell 3206 ** 4-byte child pointer 3207 ** 9-byte nKey value 3208 ** 4-byte nData value 3209 ** 4-byte overflow page pointer 3210 ** So a cell consists of a 2-byte pointer, a header which is as much as 3211 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3212 ** page pointer. 3213 */ 3214 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3215 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3216 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3217 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3218 if( pBt->maxLocal>127 ){ 3219 pBt->max1bytePayload = 127; 3220 }else{ 3221 pBt->max1bytePayload = (u8)pBt->maxLocal; 3222 } 3223 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3224 pBt->pPage1 = pPage1; 3225 pBt->nPage = nPage; 3226 return SQLITE_OK; 3227 3228 page1_init_failed: 3229 releasePageOne(pPage1); 3230 pBt->pPage1 = 0; 3231 return rc; 3232 } 3233 3234 #ifndef NDEBUG 3235 /* 3236 ** Return the number of cursors open on pBt. This is for use 3237 ** in assert() expressions, so it is only compiled if NDEBUG is not 3238 ** defined. 3239 ** 3240 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3241 ** false then all cursors are counted. 3242 ** 3243 ** For the purposes of this routine, a cursor is any cursor that 3244 ** is capable of reading or writing to the database. Cursors that 3245 ** have been tripped into the CURSOR_FAULT state are not counted. 3246 */ 3247 static int countValidCursors(BtShared *pBt, int wrOnly){ 3248 BtCursor *pCur; 3249 int r = 0; 3250 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3251 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3252 && pCur->eState!=CURSOR_FAULT ) r++; 3253 } 3254 return r; 3255 } 3256 #endif 3257 3258 /* 3259 ** If there are no outstanding cursors and we are not in the middle 3260 ** of a transaction but there is a read lock on the database, then 3261 ** this routine unrefs the first page of the database file which 3262 ** has the effect of releasing the read lock. 3263 ** 3264 ** If there is a transaction in progress, this routine is a no-op. 3265 */ 3266 static void unlockBtreeIfUnused(BtShared *pBt){ 3267 assert( sqlite3_mutex_held(pBt->mutex) ); 3268 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3269 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3270 MemPage *pPage1 = pBt->pPage1; 3271 assert( pPage1->aData ); 3272 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3273 pBt->pPage1 = 0; 3274 releasePageOne(pPage1); 3275 } 3276 } 3277 3278 /* 3279 ** If pBt points to an empty file then convert that empty file 3280 ** into a new empty database by initializing the first page of 3281 ** the database. 3282 */ 3283 static int newDatabase(BtShared *pBt){ 3284 MemPage *pP1; 3285 unsigned char *data; 3286 int rc; 3287 3288 assert( sqlite3_mutex_held(pBt->mutex) ); 3289 if( pBt->nPage>0 ){ 3290 return SQLITE_OK; 3291 } 3292 pP1 = pBt->pPage1; 3293 assert( pP1!=0 ); 3294 data = pP1->aData; 3295 rc = sqlite3PagerWrite(pP1->pDbPage); 3296 if( rc ) return rc; 3297 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3298 assert( sizeof(zMagicHeader)==16 ); 3299 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3300 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3301 data[18] = 1; 3302 data[19] = 1; 3303 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3304 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3305 data[21] = 64; 3306 data[22] = 32; 3307 data[23] = 32; 3308 memset(&data[24], 0, 100-24); 3309 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3310 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3311 #ifndef SQLITE_OMIT_AUTOVACUUM 3312 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3313 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3314 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3315 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3316 #endif 3317 pBt->nPage = 1; 3318 data[31] = 1; 3319 return SQLITE_OK; 3320 } 3321 3322 /* 3323 ** Initialize the first page of the database file (creating a database 3324 ** consisting of a single page and no schema objects). Return SQLITE_OK 3325 ** if successful, or an SQLite error code otherwise. 3326 */ 3327 int sqlite3BtreeNewDb(Btree *p){ 3328 int rc; 3329 sqlite3BtreeEnter(p); 3330 p->pBt->nPage = 0; 3331 rc = newDatabase(p->pBt); 3332 sqlite3BtreeLeave(p); 3333 return rc; 3334 } 3335 3336 /* 3337 ** Attempt to start a new transaction. A write-transaction 3338 ** is started if the second argument is nonzero, otherwise a read- 3339 ** transaction. If the second argument is 2 or more and exclusive 3340 ** transaction is started, meaning that no other process is allowed 3341 ** to access the database. A preexisting transaction may not be 3342 ** upgraded to exclusive by calling this routine a second time - the 3343 ** exclusivity flag only works for a new transaction. 3344 ** 3345 ** A write-transaction must be started before attempting any 3346 ** changes to the database. None of the following routines 3347 ** will work unless a transaction is started first: 3348 ** 3349 ** sqlite3BtreeCreateTable() 3350 ** sqlite3BtreeCreateIndex() 3351 ** sqlite3BtreeClearTable() 3352 ** sqlite3BtreeDropTable() 3353 ** sqlite3BtreeInsert() 3354 ** sqlite3BtreeDelete() 3355 ** sqlite3BtreeUpdateMeta() 3356 ** 3357 ** If an initial attempt to acquire the lock fails because of lock contention 3358 ** and the database was previously unlocked, then invoke the busy handler 3359 ** if there is one. But if there was previously a read-lock, do not 3360 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3361 ** returned when there is already a read-lock in order to avoid a deadlock. 3362 ** 3363 ** Suppose there are two processes A and B. A has a read lock and B has 3364 ** a reserved lock. B tries to promote to exclusive but is blocked because 3365 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3366 ** One or the other of the two processes must give way or there can be 3367 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3368 ** when A already has a read lock, we encourage A to give up and let B 3369 ** proceed. 3370 */ 3371 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3372 BtShared *pBt = p->pBt; 3373 int rc = SQLITE_OK; 3374 3375 sqlite3BtreeEnter(p); 3376 btreeIntegrity(p); 3377 3378 /* If the btree is already in a write-transaction, or it 3379 ** is already in a read-transaction and a read-transaction 3380 ** is requested, this is a no-op. 3381 */ 3382 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3383 goto trans_begun; 3384 } 3385 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3386 3387 if( (p->db->flags & SQLITE_ResetDatabase) 3388 && sqlite3PagerIsreadonly(pBt->pPager)==0 3389 ){ 3390 pBt->btsFlags &= ~BTS_READ_ONLY; 3391 } 3392 3393 /* Write transactions are not possible on a read-only database */ 3394 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3395 rc = SQLITE_READONLY; 3396 goto trans_begun; 3397 } 3398 3399 #ifndef SQLITE_OMIT_SHARED_CACHE 3400 { 3401 sqlite3 *pBlock = 0; 3402 /* If another database handle has already opened a write transaction 3403 ** on this shared-btree structure and a second write transaction is 3404 ** requested, return SQLITE_LOCKED. 3405 */ 3406 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3407 || (pBt->btsFlags & BTS_PENDING)!=0 3408 ){ 3409 pBlock = pBt->pWriter->db; 3410 }else if( wrflag>1 ){ 3411 BtLock *pIter; 3412 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3413 if( pIter->pBtree!=p ){ 3414 pBlock = pIter->pBtree->db; 3415 break; 3416 } 3417 } 3418 } 3419 if( pBlock ){ 3420 sqlite3ConnectionBlocked(p->db, pBlock); 3421 rc = SQLITE_LOCKED_SHAREDCACHE; 3422 goto trans_begun; 3423 } 3424 } 3425 #endif 3426 3427 /* Any read-only or read-write transaction implies a read-lock on 3428 ** page 1. So if some other shared-cache client already has a write-lock 3429 ** on page 1, the transaction cannot be opened. */ 3430 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 3431 if( SQLITE_OK!=rc ) goto trans_begun; 3432 3433 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3434 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3435 do { 3436 /* Call lockBtree() until either pBt->pPage1 is populated or 3437 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3438 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3439 ** reading page 1 it discovers that the page-size of the database 3440 ** file is not pBt->pageSize. In this case lockBtree() will update 3441 ** pBt->pageSize to the page-size of the file on disk. 3442 */ 3443 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3444 3445 if( rc==SQLITE_OK && wrflag ){ 3446 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3447 rc = SQLITE_READONLY; 3448 }else{ 3449 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); 3450 if( rc==SQLITE_OK ){ 3451 rc = newDatabase(pBt); 3452 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3453 /* if there was no transaction opened when this function was 3454 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3455 ** code to SQLITE_BUSY. */ 3456 rc = SQLITE_BUSY; 3457 } 3458 } 3459 } 3460 3461 if( rc!=SQLITE_OK ){ 3462 unlockBtreeIfUnused(pBt); 3463 } 3464 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3465 btreeInvokeBusyHandler(pBt) ); 3466 sqlite3PagerResetLockTimeout(pBt->pPager); 3467 3468 if( rc==SQLITE_OK ){ 3469 if( p->inTrans==TRANS_NONE ){ 3470 pBt->nTransaction++; 3471 #ifndef SQLITE_OMIT_SHARED_CACHE 3472 if( p->sharable ){ 3473 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3474 p->lock.eLock = READ_LOCK; 3475 p->lock.pNext = pBt->pLock; 3476 pBt->pLock = &p->lock; 3477 } 3478 #endif 3479 } 3480 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3481 if( p->inTrans>pBt->inTransaction ){ 3482 pBt->inTransaction = p->inTrans; 3483 } 3484 if( wrflag ){ 3485 MemPage *pPage1 = pBt->pPage1; 3486 #ifndef SQLITE_OMIT_SHARED_CACHE 3487 assert( !pBt->pWriter ); 3488 pBt->pWriter = p; 3489 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3490 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3491 #endif 3492 3493 /* If the db-size header field is incorrect (as it may be if an old 3494 ** client has been writing the database file), update it now. Doing 3495 ** this sooner rather than later means the database size can safely 3496 ** re-read the database size from page 1 if a savepoint or transaction 3497 ** rollback occurs within the transaction. 3498 */ 3499 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3500 rc = sqlite3PagerWrite(pPage1->pDbPage); 3501 if( rc==SQLITE_OK ){ 3502 put4byte(&pPage1->aData[28], pBt->nPage); 3503 } 3504 } 3505 } 3506 } 3507 3508 trans_begun: 3509 if( rc==SQLITE_OK ){ 3510 if( pSchemaVersion ){ 3511 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3512 } 3513 if( wrflag ){ 3514 /* This call makes sure that the pager has the correct number of 3515 ** open savepoints. If the second parameter is greater than 0 and 3516 ** the sub-journal is not already open, then it will be opened here. 3517 */ 3518 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); 3519 } 3520 } 3521 3522 btreeIntegrity(p); 3523 sqlite3BtreeLeave(p); 3524 return rc; 3525 } 3526 3527 #ifndef SQLITE_OMIT_AUTOVACUUM 3528 3529 /* 3530 ** Set the pointer-map entries for all children of page pPage. Also, if 3531 ** pPage contains cells that point to overflow pages, set the pointer 3532 ** map entries for the overflow pages as well. 3533 */ 3534 static int setChildPtrmaps(MemPage *pPage){ 3535 int i; /* Counter variable */ 3536 int nCell; /* Number of cells in page pPage */ 3537 int rc; /* Return code */ 3538 BtShared *pBt = pPage->pBt; 3539 Pgno pgno = pPage->pgno; 3540 3541 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3542 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3543 if( rc!=SQLITE_OK ) return rc; 3544 nCell = pPage->nCell; 3545 3546 for(i=0; i<nCell; i++){ 3547 u8 *pCell = findCell(pPage, i); 3548 3549 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3550 3551 if( !pPage->leaf ){ 3552 Pgno childPgno = get4byte(pCell); 3553 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3554 } 3555 } 3556 3557 if( !pPage->leaf ){ 3558 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3559 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3560 } 3561 3562 return rc; 3563 } 3564 3565 /* 3566 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3567 ** that it points to iTo. Parameter eType describes the type of pointer to 3568 ** be modified, as follows: 3569 ** 3570 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3571 ** page of pPage. 3572 ** 3573 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3574 ** page pointed to by one of the cells on pPage. 3575 ** 3576 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3577 ** overflow page in the list. 3578 */ 3579 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3580 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3581 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3582 if( eType==PTRMAP_OVERFLOW2 ){ 3583 /* The pointer is always the first 4 bytes of the page in this case. */ 3584 if( get4byte(pPage->aData)!=iFrom ){ 3585 return SQLITE_CORRUPT_PAGE(pPage); 3586 } 3587 put4byte(pPage->aData, iTo); 3588 }else{ 3589 int i; 3590 int nCell; 3591 int rc; 3592 3593 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3594 if( rc ) return rc; 3595 nCell = pPage->nCell; 3596 3597 for(i=0; i<nCell; i++){ 3598 u8 *pCell = findCell(pPage, i); 3599 if( eType==PTRMAP_OVERFLOW1 ){ 3600 CellInfo info; 3601 pPage->xParseCell(pPage, pCell, &info); 3602 if( info.nLocal<info.nPayload ){ 3603 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3604 return SQLITE_CORRUPT_PAGE(pPage); 3605 } 3606 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3607 put4byte(pCell+info.nSize-4, iTo); 3608 break; 3609 } 3610 } 3611 }else{ 3612 if( get4byte(pCell)==iFrom ){ 3613 put4byte(pCell, iTo); 3614 break; 3615 } 3616 } 3617 } 3618 3619 if( i==nCell ){ 3620 if( eType!=PTRMAP_BTREE || 3621 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3622 return SQLITE_CORRUPT_PAGE(pPage); 3623 } 3624 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3625 } 3626 } 3627 return SQLITE_OK; 3628 } 3629 3630 3631 /* 3632 ** Move the open database page pDbPage to location iFreePage in the 3633 ** database. The pDbPage reference remains valid. 3634 ** 3635 ** The isCommit flag indicates that there is no need to remember that 3636 ** the journal needs to be sync()ed before database page pDbPage->pgno 3637 ** can be written to. The caller has already promised not to write to that 3638 ** page. 3639 */ 3640 static int relocatePage( 3641 BtShared *pBt, /* Btree */ 3642 MemPage *pDbPage, /* Open page to move */ 3643 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3644 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3645 Pgno iFreePage, /* The location to move pDbPage to */ 3646 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3647 ){ 3648 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3649 Pgno iDbPage = pDbPage->pgno; 3650 Pager *pPager = pBt->pPager; 3651 int rc; 3652 3653 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3654 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3655 assert( sqlite3_mutex_held(pBt->mutex) ); 3656 assert( pDbPage->pBt==pBt ); 3657 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3658 3659 /* Move page iDbPage from its current location to page number iFreePage */ 3660 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3661 iDbPage, iFreePage, iPtrPage, eType)); 3662 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3663 if( rc!=SQLITE_OK ){ 3664 return rc; 3665 } 3666 pDbPage->pgno = iFreePage; 3667 3668 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3669 ** that point to overflow pages. The pointer map entries for all these 3670 ** pages need to be changed. 3671 ** 3672 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3673 ** pointer to a subsequent overflow page. If this is the case, then 3674 ** the pointer map needs to be updated for the subsequent overflow page. 3675 */ 3676 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3677 rc = setChildPtrmaps(pDbPage); 3678 if( rc!=SQLITE_OK ){ 3679 return rc; 3680 } 3681 }else{ 3682 Pgno nextOvfl = get4byte(pDbPage->aData); 3683 if( nextOvfl!=0 ){ 3684 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3685 if( rc!=SQLITE_OK ){ 3686 return rc; 3687 } 3688 } 3689 } 3690 3691 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3692 ** that it points at iFreePage. Also fix the pointer map entry for 3693 ** iPtrPage. 3694 */ 3695 if( eType!=PTRMAP_ROOTPAGE ){ 3696 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3697 if( rc!=SQLITE_OK ){ 3698 return rc; 3699 } 3700 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3701 if( rc!=SQLITE_OK ){ 3702 releasePage(pPtrPage); 3703 return rc; 3704 } 3705 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3706 releasePage(pPtrPage); 3707 if( rc==SQLITE_OK ){ 3708 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3709 } 3710 } 3711 return rc; 3712 } 3713 3714 /* Forward declaration required by incrVacuumStep(). */ 3715 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3716 3717 /* 3718 ** Perform a single step of an incremental-vacuum. If successful, return 3719 ** SQLITE_OK. If there is no work to do (and therefore no point in 3720 ** calling this function again), return SQLITE_DONE. Or, if an error 3721 ** occurs, return some other error code. 3722 ** 3723 ** More specifically, this function attempts to re-organize the database so 3724 ** that the last page of the file currently in use is no longer in use. 3725 ** 3726 ** Parameter nFin is the number of pages that this database would contain 3727 ** were this function called until it returns SQLITE_DONE. 3728 ** 3729 ** If the bCommit parameter is non-zero, this function assumes that the 3730 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3731 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3732 ** operation, or false for an incremental vacuum. 3733 */ 3734 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3735 Pgno nFreeList; /* Number of pages still on the free-list */ 3736 int rc; 3737 3738 assert( sqlite3_mutex_held(pBt->mutex) ); 3739 assert( iLastPg>nFin ); 3740 3741 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3742 u8 eType; 3743 Pgno iPtrPage; 3744 3745 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3746 if( nFreeList==0 ){ 3747 return SQLITE_DONE; 3748 } 3749 3750 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3751 if( rc!=SQLITE_OK ){ 3752 return rc; 3753 } 3754 if( eType==PTRMAP_ROOTPAGE ){ 3755 return SQLITE_CORRUPT_BKPT; 3756 } 3757 3758 if( eType==PTRMAP_FREEPAGE ){ 3759 if( bCommit==0 ){ 3760 /* Remove the page from the files free-list. This is not required 3761 ** if bCommit is non-zero. In that case, the free-list will be 3762 ** truncated to zero after this function returns, so it doesn't 3763 ** matter if it still contains some garbage entries. 3764 */ 3765 Pgno iFreePg; 3766 MemPage *pFreePg; 3767 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3768 if( rc!=SQLITE_OK ){ 3769 return rc; 3770 } 3771 assert( iFreePg==iLastPg ); 3772 releasePage(pFreePg); 3773 } 3774 } else { 3775 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3776 MemPage *pLastPg; 3777 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3778 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3779 3780 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3781 if( rc!=SQLITE_OK ){ 3782 return rc; 3783 } 3784 3785 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3786 ** is swapped with the first free page pulled off the free list. 3787 ** 3788 ** On the other hand, if bCommit is greater than zero, then keep 3789 ** looping until a free-page located within the first nFin pages 3790 ** of the file is found. 3791 */ 3792 if( bCommit==0 ){ 3793 eMode = BTALLOC_LE; 3794 iNear = nFin; 3795 } 3796 do { 3797 MemPage *pFreePg; 3798 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3799 if( rc!=SQLITE_OK ){ 3800 releasePage(pLastPg); 3801 return rc; 3802 } 3803 releasePage(pFreePg); 3804 }while( bCommit && iFreePg>nFin ); 3805 assert( iFreePg<iLastPg ); 3806 3807 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3808 releasePage(pLastPg); 3809 if( rc!=SQLITE_OK ){ 3810 return rc; 3811 } 3812 } 3813 } 3814 3815 if( bCommit==0 ){ 3816 do { 3817 iLastPg--; 3818 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3819 pBt->bDoTruncate = 1; 3820 pBt->nPage = iLastPg; 3821 } 3822 return SQLITE_OK; 3823 } 3824 3825 /* 3826 ** The database opened by the first argument is an auto-vacuum database 3827 ** nOrig pages in size containing nFree free pages. Return the expected 3828 ** size of the database in pages following an auto-vacuum operation. 3829 */ 3830 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3831 int nEntry; /* Number of entries on one ptrmap page */ 3832 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3833 Pgno nFin; /* Return value */ 3834 3835 nEntry = pBt->usableSize/5; 3836 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3837 nFin = nOrig - nFree - nPtrmap; 3838 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3839 nFin--; 3840 } 3841 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3842 nFin--; 3843 } 3844 3845 return nFin; 3846 } 3847 3848 /* 3849 ** A write-transaction must be opened before calling this function. 3850 ** It performs a single unit of work towards an incremental vacuum. 3851 ** 3852 ** If the incremental vacuum is finished after this function has run, 3853 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3854 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3855 */ 3856 int sqlite3BtreeIncrVacuum(Btree *p){ 3857 int rc; 3858 BtShared *pBt = p->pBt; 3859 3860 sqlite3BtreeEnter(p); 3861 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3862 if( !pBt->autoVacuum ){ 3863 rc = SQLITE_DONE; 3864 }else{ 3865 Pgno nOrig = btreePagecount(pBt); 3866 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3867 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3868 3869 if( nOrig<nFin ){ 3870 rc = SQLITE_CORRUPT_BKPT; 3871 }else if( nFree>0 ){ 3872 rc = saveAllCursors(pBt, 0, 0); 3873 if( rc==SQLITE_OK ){ 3874 invalidateAllOverflowCache(pBt); 3875 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3876 } 3877 if( rc==SQLITE_OK ){ 3878 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3879 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3880 } 3881 }else{ 3882 rc = SQLITE_DONE; 3883 } 3884 } 3885 sqlite3BtreeLeave(p); 3886 return rc; 3887 } 3888 3889 /* 3890 ** This routine is called prior to sqlite3PagerCommit when a transaction 3891 ** is committed for an auto-vacuum database. 3892 ** 3893 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages 3894 ** the database file should be truncated to during the commit process. 3895 ** i.e. the database has been reorganized so that only the first *pnTrunc 3896 ** pages are in use. 3897 */ 3898 static int autoVacuumCommit(BtShared *pBt){ 3899 int rc = SQLITE_OK; 3900 Pager *pPager = pBt->pPager; 3901 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) 3902 3903 assert( sqlite3_mutex_held(pBt->mutex) ); 3904 invalidateAllOverflowCache(pBt); 3905 assert(pBt->autoVacuum); 3906 if( !pBt->incrVacuum ){ 3907 Pgno nFin; /* Number of pages in database after autovacuuming */ 3908 Pgno nFree; /* Number of pages on the freelist initially */ 3909 Pgno iFree; /* The next page to be freed */ 3910 Pgno nOrig; /* Database size before freeing */ 3911 3912 nOrig = btreePagecount(pBt); 3913 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3914 /* It is not possible to create a database for which the final page 3915 ** is either a pointer-map page or the pending-byte page. If one 3916 ** is encountered, this indicates corruption. 3917 */ 3918 return SQLITE_CORRUPT_BKPT; 3919 } 3920 3921 nFree = get4byte(&pBt->pPage1->aData[36]); 3922 nFin = finalDbSize(pBt, nOrig, nFree); 3923 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 3924 if( nFin<nOrig ){ 3925 rc = saveAllCursors(pBt, 0, 0); 3926 } 3927 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 3928 rc = incrVacuumStep(pBt, nFin, iFree, 1); 3929 } 3930 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 3931 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3932 put4byte(&pBt->pPage1->aData[32], 0); 3933 put4byte(&pBt->pPage1->aData[36], 0); 3934 put4byte(&pBt->pPage1->aData[28], nFin); 3935 pBt->bDoTruncate = 1; 3936 pBt->nPage = nFin; 3937 } 3938 if( rc!=SQLITE_OK ){ 3939 sqlite3PagerRollback(pPager); 3940 } 3941 } 3942 3943 assert( nRef>=sqlite3PagerRefcount(pPager) ); 3944 return rc; 3945 } 3946 3947 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 3948 # define setChildPtrmaps(x) SQLITE_OK 3949 #endif 3950 3951 /* 3952 ** This routine does the first phase of a two-phase commit. This routine 3953 ** causes a rollback journal to be created (if it does not already exist) 3954 ** and populated with enough information so that if a power loss occurs 3955 ** the database can be restored to its original state by playing back 3956 ** the journal. Then the contents of the journal are flushed out to 3957 ** the disk. After the journal is safely on oxide, the changes to the 3958 ** database are written into the database file and flushed to oxide. 3959 ** At the end of this call, the rollback journal still exists on the 3960 ** disk and we are still holding all locks, so the transaction has not 3961 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 3962 ** commit process. 3963 ** 3964 ** This call is a no-op if no write-transaction is currently active on pBt. 3965 ** 3966 ** Otherwise, sync the database file for the btree pBt. zMaster points to 3967 ** the name of a master journal file that should be written into the 3968 ** individual journal file, or is NULL, indicating no master journal file 3969 ** (single database transaction). 3970 ** 3971 ** When this is called, the master journal should already have been 3972 ** created, populated with this journal pointer and synced to disk. 3973 ** 3974 ** Once this is routine has returned, the only thing required to commit 3975 ** the write-transaction for this database file is to delete the journal. 3976 */ 3977 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ 3978 int rc = SQLITE_OK; 3979 if( p->inTrans==TRANS_WRITE ){ 3980 BtShared *pBt = p->pBt; 3981 sqlite3BtreeEnter(p); 3982 #ifndef SQLITE_OMIT_AUTOVACUUM 3983 if( pBt->autoVacuum ){ 3984 rc = autoVacuumCommit(pBt); 3985 if( rc!=SQLITE_OK ){ 3986 sqlite3BtreeLeave(p); 3987 return rc; 3988 } 3989 } 3990 if( pBt->bDoTruncate ){ 3991 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 3992 } 3993 #endif 3994 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); 3995 sqlite3BtreeLeave(p); 3996 } 3997 return rc; 3998 } 3999 4000 /* 4001 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4002 ** at the conclusion of a transaction. 4003 */ 4004 static void btreeEndTransaction(Btree *p){ 4005 BtShared *pBt = p->pBt; 4006 sqlite3 *db = p->db; 4007 assert( sqlite3BtreeHoldsMutex(p) ); 4008 4009 #ifndef SQLITE_OMIT_AUTOVACUUM 4010 pBt->bDoTruncate = 0; 4011 #endif 4012 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4013 /* If there are other active statements that belong to this database 4014 ** handle, downgrade to a read-only transaction. The other statements 4015 ** may still be reading from the database. */ 4016 downgradeAllSharedCacheTableLocks(p); 4017 p->inTrans = TRANS_READ; 4018 }else{ 4019 /* If the handle had any kind of transaction open, decrement the 4020 ** transaction count of the shared btree. If the transaction count 4021 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4022 ** call below will unlock the pager. */ 4023 if( p->inTrans!=TRANS_NONE ){ 4024 clearAllSharedCacheTableLocks(p); 4025 pBt->nTransaction--; 4026 if( 0==pBt->nTransaction ){ 4027 pBt->inTransaction = TRANS_NONE; 4028 } 4029 } 4030 4031 /* Set the current transaction state to TRANS_NONE and unlock the 4032 ** pager if this call closed the only read or write transaction. */ 4033 p->inTrans = TRANS_NONE; 4034 unlockBtreeIfUnused(pBt); 4035 } 4036 4037 btreeIntegrity(p); 4038 } 4039 4040 /* 4041 ** Commit the transaction currently in progress. 4042 ** 4043 ** This routine implements the second phase of a 2-phase commit. The 4044 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4045 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4046 ** routine did all the work of writing information out to disk and flushing the 4047 ** contents so that they are written onto the disk platter. All this 4048 ** routine has to do is delete or truncate or zero the header in the 4049 ** the rollback journal (which causes the transaction to commit) and 4050 ** drop locks. 4051 ** 4052 ** Normally, if an error occurs while the pager layer is attempting to 4053 ** finalize the underlying journal file, this function returns an error and 4054 ** the upper layer will attempt a rollback. However, if the second argument 4055 ** is non-zero then this b-tree transaction is part of a multi-file 4056 ** transaction. In this case, the transaction has already been committed 4057 ** (by deleting a master journal file) and the caller will ignore this 4058 ** functions return code. So, even if an error occurs in the pager layer, 4059 ** reset the b-tree objects internal state to indicate that the write 4060 ** transaction has been closed. This is quite safe, as the pager will have 4061 ** transitioned to the error state. 4062 ** 4063 ** This will release the write lock on the database file. If there 4064 ** are no active cursors, it also releases the read lock. 4065 */ 4066 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4067 4068 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4069 sqlite3BtreeEnter(p); 4070 btreeIntegrity(p); 4071 4072 /* If the handle has a write-transaction open, commit the shared-btrees 4073 ** transaction and set the shared state to TRANS_READ. 4074 */ 4075 if( p->inTrans==TRANS_WRITE ){ 4076 int rc; 4077 BtShared *pBt = p->pBt; 4078 assert( pBt->inTransaction==TRANS_WRITE ); 4079 assert( pBt->nTransaction>0 ); 4080 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4081 if( rc!=SQLITE_OK && bCleanup==0 ){ 4082 sqlite3BtreeLeave(p); 4083 return rc; 4084 } 4085 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4086 pBt->inTransaction = TRANS_READ; 4087 btreeClearHasContent(pBt); 4088 } 4089 4090 btreeEndTransaction(p); 4091 sqlite3BtreeLeave(p); 4092 return SQLITE_OK; 4093 } 4094 4095 /* 4096 ** Do both phases of a commit. 4097 */ 4098 int sqlite3BtreeCommit(Btree *p){ 4099 int rc; 4100 sqlite3BtreeEnter(p); 4101 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4102 if( rc==SQLITE_OK ){ 4103 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4104 } 4105 sqlite3BtreeLeave(p); 4106 return rc; 4107 } 4108 4109 /* 4110 ** This routine sets the state to CURSOR_FAULT and the error 4111 ** code to errCode for every cursor on any BtShared that pBtree 4112 ** references. Or if the writeOnly flag is set to 1, then only 4113 ** trip write cursors and leave read cursors unchanged. 4114 ** 4115 ** Every cursor is a candidate to be tripped, including cursors 4116 ** that belong to other database connections that happen to be 4117 ** sharing the cache with pBtree. 4118 ** 4119 ** This routine gets called when a rollback occurs. If the writeOnly 4120 ** flag is true, then only write-cursors need be tripped - read-only 4121 ** cursors save their current positions so that they may continue 4122 ** following the rollback. Or, if writeOnly is false, all cursors are 4123 ** tripped. In general, writeOnly is false if the transaction being 4124 ** rolled back modified the database schema. In this case b-tree root 4125 ** pages may be moved or deleted from the database altogether, making 4126 ** it unsafe for read cursors to continue. 4127 ** 4128 ** If the writeOnly flag is true and an error is encountered while 4129 ** saving the current position of a read-only cursor, all cursors, 4130 ** including all read-cursors are tripped. 4131 ** 4132 ** SQLITE_OK is returned if successful, or if an error occurs while 4133 ** saving a cursor position, an SQLite error code. 4134 */ 4135 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4136 BtCursor *p; 4137 int rc = SQLITE_OK; 4138 4139 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4140 if( pBtree ){ 4141 sqlite3BtreeEnter(pBtree); 4142 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4143 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4144 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4145 rc = saveCursorPosition(p); 4146 if( rc!=SQLITE_OK ){ 4147 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4148 break; 4149 } 4150 } 4151 }else{ 4152 sqlite3BtreeClearCursor(p); 4153 p->eState = CURSOR_FAULT; 4154 p->skipNext = errCode; 4155 } 4156 btreeReleaseAllCursorPages(p); 4157 } 4158 sqlite3BtreeLeave(pBtree); 4159 } 4160 return rc; 4161 } 4162 4163 /* 4164 ** Set the pBt->nPage field correctly, according to the current 4165 ** state of the database. Assume pBt->pPage1 is valid. 4166 */ 4167 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4168 int nPage = get4byte(&pPage1->aData[28]); 4169 testcase( nPage==0 ); 4170 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4171 testcase( pBt->nPage!=nPage ); 4172 pBt->nPage = nPage; 4173 } 4174 4175 /* 4176 ** Rollback the transaction in progress. 4177 ** 4178 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4179 ** Only write cursors are tripped if writeOnly is true but all cursors are 4180 ** tripped if writeOnly is false. Any attempt to use 4181 ** a tripped cursor will result in an error. 4182 ** 4183 ** This will release the write lock on the database file. If there 4184 ** are no active cursors, it also releases the read lock. 4185 */ 4186 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4187 int rc; 4188 BtShared *pBt = p->pBt; 4189 MemPage *pPage1; 4190 4191 assert( writeOnly==1 || writeOnly==0 ); 4192 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4193 sqlite3BtreeEnter(p); 4194 if( tripCode==SQLITE_OK ){ 4195 rc = tripCode = saveAllCursors(pBt, 0, 0); 4196 if( rc ) writeOnly = 0; 4197 }else{ 4198 rc = SQLITE_OK; 4199 } 4200 if( tripCode ){ 4201 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4202 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4203 if( rc2!=SQLITE_OK ) rc = rc2; 4204 } 4205 btreeIntegrity(p); 4206 4207 if( p->inTrans==TRANS_WRITE ){ 4208 int rc2; 4209 4210 assert( TRANS_WRITE==pBt->inTransaction ); 4211 rc2 = sqlite3PagerRollback(pBt->pPager); 4212 if( rc2!=SQLITE_OK ){ 4213 rc = rc2; 4214 } 4215 4216 /* The rollback may have destroyed the pPage1->aData value. So 4217 ** call btreeGetPage() on page 1 again to make 4218 ** sure pPage1->aData is set correctly. */ 4219 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4220 btreeSetNPage(pBt, pPage1); 4221 releasePageOne(pPage1); 4222 } 4223 assert( countValidCursors(pBt, 1)==0 ); 4224 pBt->inTransaction = TRANS_READ; 4225 btreeClearHasContent(pBt); 4226 } 4227 4228 btreeEndTransaction(p); 4229 sqlite3BtreeLeave(p); 4230 return rc; 4231 } 4232 4233 /* 4234 ** Start a statement subtransaction. The subtransaction can be rolled 4235 ** back independently of the main transaction. You must start a transaction 4236 ** before starting a subtransaction. The subtransaction is ended automatically 4237 ** if the main transaction commits or rolls back. 4238 ** 4239 ** Statement subtransactions are used around individual SQL statements 4240 ** that are contained within a BEGIN...COMMIT block. If a constraint 4241 ** error occurs within the statement, the effect of that one statement 4242 ** can be rolled back without having to rollback the entire transaction. 4243 ** 4244 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4245 ** value passed as the second parameter is the total number of savepoints, 4246 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4247 ** are no active savepoints and no other statement-transactions open, 4248 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4249 ** using the sqlite3BtreeSavepoint() function. 4250 */ 4251 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4252 int rc; 4253 BtShared *pBt = p->pBt; 4254 sqlite3BtreeEnter(p); 4255 assert( p->inTrans==TRANS_WRITE ); 4256 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4257 assert( iStatement>0 ); 4258 assert( iStatement>p->db->nSavepoint ); 4259 assert( pBt->inTransaction==TRANS_WRITE ); 4260 /* At the pager level, a statement transaction is a savepoint with 4261 ** an index greater than all savepoints created explicitly using 4262 ** SQL statements. It is illegal to open, release or rollback any 4263 ** such savepoints while the statement transaction savepoint is active. 4264 */ 4265 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4266 sqlite3BtreeLeave(p); 4267 return rc; 4268 } 4269 4270 /* 4271 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4272 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4273 ** savepoint identified by parameter iSavepoint, depending on the value 4274 ** of op. 4275 ** 4276 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4277 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4278 ** contents of the entire transaction are rolled back. This is different 4279 ** from a normal transaction rollback, as no locks are released and the 4280 ** transaction remains open. 4281 */ 4282 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4283 int rc = SQLITE_OK; 4284 if( p && p->inTrans==TRANS_WRITE ){ 4285 BtShared *pBt = p->pBt; 4286 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4287 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4288 sqlite3BtreeEnter(p); 4289 if( op==SAVEPOINT_ROLLBACK ){ 4290 rc = saveAllCursors(pBt, 0, 0); 4291 } 4292 if( rc==SQLITE_OK ){ 4293 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4294 } 4295 if( rc==SQLITE_OK ){ 4296 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4297 pBt->nPage = 0; 4298 } 4299 rc = newDatabase(pBt); 4300 btreeSetNPage(pBt, pBt->pPage1); 4301 4302 /* pBt->nPage might be zero if the database was corrupt when 4303 ** the transaction was started. Otherwise, it must be at least 1. */ 4304 assert( CORRUPT_DB || pBt->nPage>0 ); 4305 } 4306 sqlite3BtreeLeave(p); 4307 } 4308 return rc; 4309 } 4310 4311 /* 4312 ** Create a new cursor for the BTree whose root is on the page 4313 ** iTable. If a read-only cursor is requested, it is assumed that 4314 ** the caller already has at least a read-only transaction open 4315 ** on the database already. If a write-cursor is requested, then 4316 ** the caller is assumed to have an open write transaction. 4317 ** 4318 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4319 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4320 ** can be used for reading or for writing if other conditions for writing 4321 ** are also met. These are the conditions that must be met in order 4322 ** for writing to be allowed: 4323 ** 4324 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4325 ** 4326 ** 2: Other database connections that share the same pager cache 4327 ** but which are not in the READ_UNCOMMITTED state may not have 4328 ** cursors open with wrFlag==0 on the same table. Otherwise 4329 ** the changes made by this write cursor would be visible to 4330 ** the read cursors in the other database connection. 4331 ** 4332 ** 3: The database must be writable (not on read-only media) 4333 ** 4334 ** 4: There must be an active transaction. 4335 ** 4336 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4337 ** is set. If FORDELETE is set, that is a hint to the implementation that 4338 ** this cursor will only be used to seek to and delete entries of an index 4339 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4340 ** this implementation. But in a hypothetical alternative storage engine 4341 ** in which index entries are automatically deleted when corresponding table 4342 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4343 ** operations on this cursor can be no-ops and all READ operations can 4344 ** return a null row (2-bytes: 0x01 0x00). 4345 ** 4346 ** No checking is done to make sure that page iTable really is the 4347 ** root page of a b-tree. If it is not, then the cursor acquired 4348 ** will not work correctly. 4349 ** 4350 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4351 ** on pCur to initialize the memory space prior to invoking this routine. 4352 */ 4353 static int btreeCursor( 4354 Btree *p, /* The btree */ 4355 int iTable, /* Root page of table to open */ 4356 int wrFlag, /* 1 to write. 0 read-only */ 4357 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4358 BtCursor *pCur /* Space for new cursor */ 4359 ){ 4360 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4361 BtCursor *pX; /* Looping over other all cursors */ 4362 4363 assert( sqlite3BtreeHoldsMutex(p) ); 4364 assert( wrFlag==0 4365 || wrFlag==BTREE_WRCSR 4366 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4367 ); 4368 4369 /* The following assert statements verify that if this is a sharable 4370 ** b-tree database, the connection is holding the required table locks, 4371 ** and that no other connection has any open cursor that conflicts with 4372 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4373 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4374 || iTable<1 ); 4375 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4376 4377 /* Assert that the caller has opened the required transaction. */ 4378 assert( p->inTrans>TRANS_NONE ); 4379 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4380 assert( pBt->pPage1 && pBt->pPage1->aData ); 4381 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4382 4383 if( wrFlag ){ 4384 allocateTempSpace(pBt); 4385 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT; 4386 } 4387 if( iTable<=1 ){ 4388 if( iTable<1 ){ 4389 return SQLITE_CORRUPT_BKPT; 4390 }else if( btreePagecount(pBt)==0 ){ 4391 assert( wrFlag==0 ); 4392 iTable = 0; 4393 } 4394 } 4395 4396 /* Now that no other errors can occur, finish filling in the BtCursor 4397 ** variables and link the cursor into the BtShared list. */ 4398 pCur->pgnoRoot = (Pgno)iTable; 4399 pCur->iPage = -1; 4400 pCur->pKeyInfo = pKeyInfo; 4401 pCur->pBtree = p; 4402 pCur->pBt = pBt; 4403 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; 4404 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; 4405 /* If there are two or more cursors on the same btree, then all such 4406 ** cursors *must* have the BTCF_Multiple flag set. */ 4407 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4408 if( pX->pgnoRoot==(Pgno)iTable ){ 4409 pX->curFlags |= BTCF_Multiple; 4410 pCur->curFlags |= BTCF_Multiple; 4411 } 4412 } 4413 pCur->pNext = pBt->pCursor; 4414 pBt->pCursor = pCur; 4415 pCur->eState = CURSOR_INVALID; 4416 return SQLITE_OK; 4417 } 4418 static int btreeCursorWithLock( 4419 Btree *p, /* The btree */ 4420 int iTable, /* Root page of table to open */ 4421 int wrFlag, /* 1 to write. 0 read-only */ 4422 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4423 BtCursor *pCur /* Space for new cursor */ 4424 ){ 4425 int rc; 4426 sqlite3BtreeEnter(p); 4427 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4428 sqlite3BtreeLeave(p); 4429 return rc; 4430 } 4431 int sqlite3BtreeCursor( 4432 Btree *p, /* The btree */ 4433 int iTable, /* Root page of table to open */ 4434 int wrFlag, /* 1 to write. 0 read-only */ 4435 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4436 BtCursor *pCur /* Write new cursor here */ 4437 ){ 4438 if( p->sharable ){ 4439 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4440 }else{ 4441 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4442 } 4443 } 4444 4445 /* 4446 ** Return the size of a BtCursor object in bytes. 4447 ** 4448 ** This interfaces is needed so that users of cursors can preallocate 4449 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4450 ** to users so they cannot do the sizeof() themselves - they must call 4451 ** this routine. 4452 */ 4453 int sqlite3BtreeCursorSize(void){ 4454 return ROUND8(sizeof(BtCursor)); 4455 } 4456 4457 /* 4458 ** Initialize memory that will be converted into a BtCursor object. 4459 ** 4460 ** The simple approach here would be to memset() the entire object 4461 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4462 ** do not need to be zeroed and they are large, so we can save a lot 4463 ** of run-time by skipping the initialization of those elements. 4464 */ 4465 void sqlite3BtreeCursorZero(BtCursor *p){ 4466 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4467 } 4468 4469 /* 4470 ** Close a cursor. The read lock on the database file is released 4471 ** when the last cursor is closed. 4472 */ 4473 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4474 Btree *pBtree = pCur->pBtree; 4475 if( pBtree ){ 4476 BtShared *pBt = pCur->pBt; 4477 sqlite3BtreeEnter(pBtree); 4478 assert( pBt->pCursor!=0 ); 4479 if( pBt->pCursor==pCur ){ 4480 pBt->pCursor = pCur->pNext; 4481 }else{ 4482 BtCursor *pPrev = pBt->pCursor; 4483 do{ 4484 if( pPrev->pNext==pCur ){ 4485 pPrev->pNext = pCur->pNext; 4486 break; 4487 } 4488 pPrev = pPrev->pNext; 4489 }while( ALWAYS(pPrev) ); 4490 } 4491 btreeReleaseAllCursorPages(pCur); 4492 unlockBtreeIfUnused(pBt); 4493 sqlite3_free(pCur->aOverflow); 4494 sqlite3_free(pCur->pKey); 4495 sqlite3BtreeLeave(pBtree); 4496 pCur->pBtree = 0; 4497 } 4498 return SQLITE_OK; 4499 } 4500 4501 /* 4502 ** Make sure the BtCursor* given in the argument has a valid 4503 ** BtCursor.info structure. If it is not already valid, call 4504 ** btreeParseCell() to fill it in. 4505 ** 4506 ** BtCursor.info is a cache of the information in the current cell. 4507 ** Using this cache reduces the number of calls to btreeParseCell(). 4508 */ 4509 #ifndef NDEBUG 4510 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4511 if( a->nKey!=b->nKey ) return 0; 4512 if( a->pPayload!=b->pPayload ) return 0; 4513 if( a->nPayload!=b->nPayload ) return 0; 4514 if( a->nLocal!=b->nLocal ) return 0; 4515 if( a->nSize!=b->nSize ) return 0; 4516 return 1; 4517 } 4518 static void assertCellInfo(BtCursor *pCur){ 4519 CellInfo info; 4520 memset(&info, 0, sizeof(info)); 4521 btreeParseCell(pCur->pPage, pCur->ix, &info); 4522 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4523 } 4524 #else 4525 #define assertCellInfo(x) 4526 #endif 4527 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4528 if( pCur->info.nSize==0 ){ 4529 pCur->curFlags |= BTCF_ValidNKey; 4530 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4531 }else{ 4532 assertCellInfo(pCur); 4533 } 4534 } 4535 4536 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4537 /* 4538 ** Return true if the given BtCursor is valid. A valid cursor is one 4539 ** that is currently pointing to a row in a (non-empty) table. 4540 ** This is a verification routine is used only within assert() statements. 4541 */ 4542 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4543 return pCur && pCur->eState==CURSOR_VALID; 4544 } 4545 #endif /* NDEBUG */ 4546 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4547 assert( pCur!=0 ); 4548 return pCur->eState==CURSOR_VALID; 4549 } 4550 4551 /* 4552 ** Return the value of the integer key or "rowid" for a table btree. 4553 ** This routine is only valid for a cursor that is pointing into a 4554 ** ordinary table btree. If the cursor points to an index btree or 4555 ** is invalid, the result of this routine is undefined. 4556 */ 4557 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4558 assert( cursorHoldsMutex(pCur) ); 4559 assert( pCur->eState==CURSOR_VALID ); 4560 assert( pCur->curIntKey ); 4561 getCellInfo(pCur); 4562 return pCur->info.nKey; 4563 } 4564 4565 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4566 /* 4567 ** Return the offset into the database file for the start of the 4568 ** payload to which the cursor is pointing. 4569 */ 4570 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4571 assert( cursorHoldsMutex(pCur) ); 4572 assert( pCur->eState==CURSOR_VALID ); 4573 getCellInfo(pCur); 4574 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4575 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4576 } 4577 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4578 4579 /* 4580 ** Return the number of bytes of payload for the entry that pCur is 4581 ** currently pointing to. For table btrees, this will be the amount 4582 ** of data. For index btrees, this will be the size of the key. 4583 ** 4584 ** The caller must guarantee that the cursor is pointing to a non-NULL 4585 ** valid entry. In other words, the calling procedure must guarantee 4586 ** that the cursor has Cursor.eState==CURSOR_VALID. 4587 */ 4588 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4589 assert( cursorHoldsMutex(pCur) ); 4590 assert( pCur->eState==CURSOR_VALID ); 4591 getCellInfo(pCur); 4592 return pCur->info.nPayload; 4593 } 4594 4595 /* 4596 ** Return an upper bound on the size of any record for the table 4597 ** that the cursor is pointing into. 4598 ** 4599 ** This is an optimization. Everything will still work if this 4600 ** routine always returns 2147483647 (which is the largest record 4601 ** that SQLite can handle) or more. But returning a smaller value might 4602 ** prevent large memory allocations when trying to interpret a 4603 ** corrupt datrabase. 4604 ** 4605 ** The current implementation merely returns the size of the underlying 4606 ** database file. 4607 */ 4608 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4609 assert( cursorHoldsMutex(pCur) ); 4610 assert( pCur->eState==CURSOR_VALID ); 4611 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4612 } 4613 4614 /* 4615 ** Given the page number of an overflow page in the database (parameter 4616 ** ovfl), this function finds the page number of the next page in the 4617 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4618 ** pointer-map data instead of reading the content of page ovfl to do so. 4619 ** 4620 ** If an error occurs an SQLite error code is returned. Otherwise: 4621 ** 4622 ** The page number of the next overflow page in the linked list is 4623 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4624 ** list, *pPgnoNext is set to zero. 4625 ** 4626 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4627 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4628 ** reference. It is the responsibility of the caller to call releasePage() 4629 ** on *ppPage to free the reference. In no reference was obtained (because 4630 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4631 ** *ppPage is set to zero. 4632 */ 4633 static int getOverflowPage( 4634 BtShared *pBt, /* The database file */ 4635 Pgno ovfl, /* Current overflow page number */ 4636 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4637 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4638 ){ 4639 Pgno next = 0; 4640 MemPage *pPage = 0; 4641 int rc = SQLITE_OK; 4642 4643 assert( sqlite3_mutex_held(pBt->mutex) ); 4644 assert(pPgnoNext); 4645 4646 #ifndef SQLITE_OMIT_AUTOVACUUM 4647 /* Try to find the next page in the overflow list using the 4648 ** autovacuum pointer-map pages. Guess that the next page in 4649 ** the overflow list is page number (ovfl+1). If that guess turns 4650 ** out to be wrong, fall back to loading the data of page 4651 ** number ovfl to determine the next page number. 4652 */ 4653 if( pBt->autoVacuum ){ 4654 Pgno pgno; 4655 Pgno iGuess = ovfl+1; 4656 u8 eType; 4657 4658 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4659 iGuess++; 4660 } 4661 4662 if( iGuess<=btreePagecount(pBt) ){ 4663 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4664 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4665 next = iGuess; 4666 rc = SQLITE_DONE; 4667 } 4668 } 4669 } 4670 #endif 4671 4672 assert( next==0 || rc==SQLITE_DONE ); 4673 if( rc==SQLITE_OK ){ 4674 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4675 assert( rc==SQLITE_OK || pPage==0 ); 4676 if( rc==SQLITE_OK ){ 4677 next = get4byte(pPage->aData); 4678 } 4679 } 4680 4681 *pPgnoNext = next; 4682 if( ppPage ){ 4683 *ppPage = pPage; 4684 }else{ 4685 releasePage(pPage); 4686 } 4687 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4688 } 4689 4690 /* 4691 ** Copy data from a buffer to a page, or from a page to a buffer. 4692 ** 4693 ** pPayload is a pointer to data stored on database page pDbPage. 4694 ** If argument eOp is false, then nByte bytes of data are copied 4695 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4696 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4697 ** of data are copied from the buffer pBuf to pPayload. 4698 ** 4699 ** SQLITE_OK is returned on success, otherwise an error code. 4700 */ 4701 static int copyPayload( 4702 void *pPayload, /* Pointer to page data */ 4703 void *pBuf, /* Pointer to buffer */ 4704 int nByte, /* Number of bytes to copy */ 4705 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4706 DbPage *pDbPage /* Page containing pPayload */ 4707 ){ 4708 if( eOp ){ 4709 /* Copy data from buffer to page (a write operation) */ 4710 int rc = sqlite3PagerWrite(pDbPage); 4711 if( rc!=SQLITE_OK ){ 4712 return rc; 4713 } 4714 memcpy(pPayload, pBuf, nByte); 4715 }else{ 4716 /* Copy data from page to buffer (a read operation) */ 4717 memcpy(pBuf, pPayload, nByte); 4718 } 4719 return SQLITE_OK; 4720 } 4721 4722 /* 4723 ** This function is used to read or overwrite payload information 4724 ** for the entry that the pCur cursor is pointing to. The eOp 4725 ** argument is interpreted as follows: 4726 ** 4727 ** 0: The operation is a read. Populate the overflow cache. 4728 ** 1: The operation is a write. Populate the overflow cache. 4729 ** 4730 ** A total of "amt" bytes are read or written beginning at "offset". 4731 ** Data is read to or from the buffer pBuf. 4732 ** 4733 ** The content being read or written might appear on the main page 4734 ** or be scattered out on multiple overflow pages. 4735 ** 4736 ** If the current cursor entry uses one or more overflow pages 4737 ** this function may allocate space for and lazily populate 4738 ** the overflow page-list cache array (BtCursor.aOverflow). 4739 ** Subsequent calls use this cache to make seeking to the supplied offset 4740 ** more efficient. 4741 ** 4742 ** Once an overflow page-list cache has been allocated, it must be 4743 ** invalidated if some other cursor writes to the same table, or if 4744 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4745 ** mode, the following events may invalidate an overflow page-list cache. 4746 ** 4747 ** * An incremental vacuum, 4748 ** * A commit in auto_vacuum="full" mode, 4749 ** * Creating a table (may require moving an overflow page). 4750 */ 4751 static int accessPayload( 4752 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4753 u32 offset, /* Begin reading this far into payload */ 4754 u32 amt, /* Read this many bytes */ 4755 unsigned char *pBuf, /* Write the bytes into this buffer */ 4756 int eOp /* zero to read. non-zero to write. */ 4757 ){ 4758 unsigned char *aPayload; 4759 int rc = SQLITE_OK; 4760 int iIdx = 0; 4761 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4762 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4763 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4764 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4765 #endif 4766 4767 assert( pPage ); 4768 assert( eOp==0 || eOp==1 ); 4769 assert( pCur->eState==CURSOR_VALID ); 4770 assert( pCur->ix<pPage->nCell ); 4771 assert( cursorHoldsMutex(pCur) ); 4772 4773 getCellInfo(pCur); 4774 aPayload = pCur->info.pPayload; 4775 assert( offset+amt <= pCur->info.nPayload ); 4776 4777 assert( aPayload > pPage->aData ); 4778 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4779 /* Trying to read or write past the end of the data is an error. The 4780 ** conditional above is really: 4781 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4782 ** but is recast into its current form to avoid integer overflow problems 4783 */ 4784 return SQLITE_CORRUPT_PAGE(pPage); 4785 } 4786 4787 /* Check if data must be read/written to/from the btree page itself. */ 4788 if( offset<pCur->info.nLocal ){ 4789 int a = amt; 4790 if( a+offset>pCur->info.nLocal ){ 4791 a = pCur->info.nLocal - offset; 4792 } 4793 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4794 offset = 0; 4795 pBuf += a; 4796 amt -= a; 4797 }else{ 4798 offset -= pCur->info.nLocal; 4799 } 4800 4801 4802 if( rc==SQLITE_OK && amt>0 ){ 4803 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4804 Pgno nextPage; 4805 4806 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4807 4808 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4809 ** 4810 ** The aOverflow[] array is sized at one entry for each overflow page 4811 ** in the overflow chain. The page number of the first overflow page is 4812 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4813 ** means "not yet known" (the cache is lazily populated). 4814 */ 4815 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4816 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4817 if( pCur->aOverflow==0 4818 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 4819 ){ 4820 Pgno *aNew = (Pgno*)sqlite3Realloc( 4821 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4822 ); 4823 if( aNew==0 ){ 4824 return SQLITE_NOMEM_BKPT; 4825 }else{ 4826 pCur->aOverflow = aNew; 4827 } 4828 } 4829 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4830 pCur->curFlags |= BTCF_ValidOvfl; 4831 }else{ 4832 /* If the overflow page-list cache has been allocated and the 4833 ** entry for the first required overflow page is valid, skip 4834 ** directly to it. 4835 */ 4836 if( pCur->aOverflow[offset/ovflSize] ){ 4837 iIdx = (offset/ovflSize); 4838 nextPage = pCur->aOverflow[iIdx]; 4839 offset = (offset%ovflSize); 4840 } 4841 } 4842 4843 assert( rc==SQLITE_OK && amt>0 ); 4844 while( nextPage ){ 4845 /* If required, populate the overflow page-list cache. */ 4846 assert( pCur->aOverflow[iIdx]==0 4847 || pCur->aOverflow[iIdx]==nextPage 4848 || CORRUPT_DB ); 4849 pCur->aOverflow[iIdx] = nextPage; 4850 4851 if( offset>=ovflSize ){ 4852 /* The only reason to read this page is to obtain the page 4853 ** number for the next page in the overflow chain. The page 4854 ** data is not required. So first try to lookup the overflow 4855 ** page-list cache, if any, then fall back to the getOverflowPage() 4856 ** function. 4857 */ 4858 assert( pCur->curFlags & BTCF_ValidOvfl ); 4859 assert( pCur->pBtree->db==pBt->db ); 4860 if( pCur->aOverflow[iIdx+1] ){ 4861 nextPage = pCur->aOverflow[iIdx+1]; 4862 }else{ 4863 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4864 } 4865 offset -= ovflSize; 4866 }else{ 4867 /* Need to read this page properly. It contains some of the 4868 ** range of data that is being read (eOp==0) or written (eOp!=0). 4869 */ 4870 int a = amt; 4871 if( a + offset > ovflSize ){ 4872 a = ovflSize - offset; 4873 } 4874 4875 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4876 /* If all the following are true: 4877 ** 4878 ** 1) this is a read operation, and 4879 ** 2) data is required from the start of this overflow page, and 4880 ** 3) there are no dirty pages in the page-cache 4881 ** 4) the database is file-backed, and 4882 ** 5) the page is not in the WAL file 4883 ** 6) at least 4 bytes have already been read into the output buffer 4884 ** 4885 ** then data can be read directly from the database file into the 4886 ** output buffer, bypassing the page-cache altogether. This speeds 4887 ** up loading large records that span many overflow pages. 4888 */ 4889 if( eOp==0 /* (1) */ 4890 && offset==0 /* (2) */ 4891 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 4892 && &pBuf[-4]>=pBufStart /* (6) */ 4893 ){ 4894 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 4895 u8 aSave[4]; 4896 u8 *aWrite = &pBuf[-4]; 4897 assert( aWrite>=pBufStart ); /* due to (6) */ 4898 memcpy(aSave, aWrite, 4); 4899 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 4900 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 4901 nextPage = get4byte(aWrite); 4902 memcpy(aWrite, aSave, 4); 4903 }else 4904 #endif 4905 4906 { 4907 DbPage *pDbPage; 4908 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 4909 (eOp==0 ? PAGER_GET_READONLY : 0) 4910 ); 4911 if( rc==SQLITE_OK ){ 4912 aPayload = sqlite3PagerGetData(pDbPage); 4913 nextPage = get4byte(aPayload); 4914 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 4915 sqlite3PagerUnref(pDbPage); 4916 offset = 0; 4917 } 4918 } 4919 amt -= a; 4920 if( amt==0 ) return rc; 4921 pBuf += a; 4922 } 4923 if( rc ) break; 4924 iIdx++; 4925 } 4926 } 4927 4928 if( rc==SQLITE_OK && amt>0 ){ 4929 /* Overflow chain ends prematurely */ 4930 return SQLITE_CORRUPT_PAGE(pPage); 4931 } 4932 return rc; 4933 } 4934 4935 /* 4936 ** Read part of the payload for the row at which that cursor pCur is currently 4937 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 4938 ** begins at "offset". 4939 ** 4940 ** pCur can be pointing to either a table or an index b-tree. 4941 ** If pointing to a table btree, then the content section is read. If 4942 ** pCur is pointing to an index b-tree then the key section is read. 4943 ** 4944 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 4945 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 4946 ** cursor might be invalid or might need to be restored before being read. 4947 ** 4948 ** Return SQLITE_OK on success or an error code if anything goes 4949 ** wrong. An error is returned if "offset+amt" is larger than 4950 ** the available payload. 4951 */ 4952 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4953 assert( cursorHoldsMutex(pCur) ); 4954 assert( pCur->eState==CURSOR_VALID ); 4955 assert( pCur->iPage>=0 && pCur->pPage ); 4956 assert( pCur->ix<pCur->pPage->nCell ); 4957 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 4958 } 4959 4960 /* 4961 ** This variant of sqlite3BtreePayload() works even if the cursor has not 4962 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 4963 ** interface. 4964 */ 4965 #ifndef SQLITE_OMIT_INCRBLOB 4966 static SQLITE_NOINLINE int accessPayloadChecked( 4967 BtCursor *pCur, 4968 u32 offset, 4969 u32 amt, 4970 void *pBuf 4971 ){ 4972 int rc; 4973 if ( pCur->eState==CURSOR_INVALID ){ 4974 return SQLITE_ABORT; 4975 } 4976 assert( cursorOwnsBtShared(pCur) ); 4977 rc = btreeRestoreCursorPosition(pCur); 4978 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 4979 } 4980 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4981 if( pCur->eState==CURSOR_VALID ){ 4982 assert( cursorOwnsBtShared(pCur) ); 4983 return accessPayload(pCur, offset, amt, pBuf, 0); 4984 }else{ 4985 return accessPayloadChecked(pCur, offset, amt, pBuf); 4986 } 4987 } 4988 #endif /* SQLITE_OMIT_INCRBLOB */ 4989 4990 /* 4991 ** Return a pointer to payload information from the entry that the 4992 ** pCur cursor is pointing to. The pointer is to the beginning of 4993 ** the key if index btrees (pPage->intKey==0) and is the data for 4994 ** table btrees (pPage->intKey==1). The number of bytes of available 4995 ** key/data is written into *pAmt. If *pAmt==0, then the value 4996 ** returned will not be a valid pointer. 4997 ** 4998 ** This routine is an optimization. It is common for the entire key 4999 ** and data to fit on the local page and for there to be no overflow 5000 ** pages. When that is so, this routine can be used to access the 5001 ** key and data without making a copy. If the key and/or data spills 5002 ** onto overflow pages, then accessPayload() must be used to reassemble 5003 ** the key/data and copy it into a preallocated buffer. 5004 ** 5005 ** The pointer returned by this routine looks directly into the cached 5006 ** page of the database. The data might change or move the next time 5007 ** any btree routine is called. 5008 */ 5009 static const void *fetchPayload( 5010 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5011 u32 *pAmt /* Write the number of available bytes here */ 5012 ){ 5013 int amt; 5014 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5015 assert( pCur->eState==CURSOR_VALID ); 5016 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5017 assert( cursorOwnsBtShared(pCur) ); 5018 assert( pCur->ix<pCur->pPage->nCell ); 5019 assert( pCur->info.nSize>0 ); 5020 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5021 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5022 amt = pCur->info.nLocal; 5023 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5024 /* There is too little space on the page for the expected amount 5025 ** of local content. Database must be corrupt. */ 5026 assert( CORRUPT_DB ); 5027 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5028 } 5029 *pAmt = (u32)amt; 5030 return (void*)pCur->info.pPayload; 5031 } 5032 5033 5034 /* 5035 ** For the entry that cursor pCur is point to, return as 5036 ** many bytes of the key or data as are available on the local 5037 ** b-tree page. Write the number of available bytes into *pAmt. 5038 ** 5039 ** The pointer returned is ephemeral. The key/data may move 5040 ** or be destroyed on the next call to any Btree routine, 5041 ** including calls from other threads against the same cache. 5042 ** Hence, a mutex on the BtShared should be held prior to calling 5043 ** this routine. 5044 ** 5045 ** These routines is used to get quick access to key and data 5046 ** in the common case where no overflow pages are used. 5047 */ 5048 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5049 return fetchPayload(pCur, pAmt); 5050 } 5051 5052 5053 /* 5054 ** Move the cursor down to a new child page. The newPgno argument is the 5055 ** page number of the child page to move to. 5056 ** 5057 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5058 ** the new child page does not match the flags field of the parent (i.e. 5059 ** if an intkey page appears to be the parent of a non-intkey page, or 5060 ** vice-versa). 5061 */ 5062 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5063 BtShared *pBt = pCur->pBt; 5064 5065 assert( cursorOwnsBtShared(pCur) ); 5066 assert( pCur->eState==CURSOR_VALID ); 5067 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5068 assert( pCur->iPage>=0 ); 5069 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5070 return SQLITE_CORRUPT_BKPT; 5071 } 5072 pCur->info.nSize = 0; 5073 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5074 pCur->aiIdx[pCur->iPage] = pCur->ix; 5075 pCur->apPage[pCur->iPage] = pCur->pPage; 5076 pCur->ix = 0; 5077 pCur->iPage++; 5078 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 5079 } 5080 5081 #ifdef SQLITE_DEBUG 5082 /* 5083 ** Page pParent is an internal (non-leaf) tree page. This function 5084 ** asserts that page number iChild is the left-child if the iIdx'th 5085 ** cell in page pParent. Or, if iIdx is equal to the total number of 5086 ** cells in pParent, that page number iChild is the right-child of 5087 ** the page. 5088 */ 5089 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5090 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5091 ** in a corrupt database */ 5092 assert( iIdx<=pParent->nCell ); 5093 if( iIdx==pParent->nCell ){ 5094 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5095 }else{ 5096 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5097 } 5098 } 5099 #else 5100 # define assertParentIndex(x,y,z) 5101 #endif 5102 5103 /* 5104 ** Move the cursor up to the parent page. 5105 ** 5106 ** pCur->idx is set to the cell index that contains the pointer 5107 ** to the page we are coming from. If we are coming from the 5108 ** right-most child page then pCur->idx is set to one more than 5109 ** the largest cell index. 5110 */ 5111 static void moveToParent(BtCursor *pCur){ 5112 MemPage *pLeaf; 5113 assert( cursorOwnsBtShared(pCur) ); 5114 assert( pCur->eState==CURSOR_VALID ); 5115 assert( pCur->iPage>0 ); 5116 assert( pCur->pPage ); 5117 assertParentIndex( 5118 pCur->apPage[pCur->iPage-1], 5119 pCur->aiIdx[pCur->iPage-1], 5120 pCur->pPage->pgno 5121 ); 5122 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5123 pCur->info.nSize = 0; 5124 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5125 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5126 pLeaf = pCur->pPage; 5127 pCur->pPage = pCur->apPage[--pCur->iPage]; 5128 releasePageNotNull(pLeaf); 5129 } 5130 5131 /* 5132 ** Move the cursor to point to the root page of its b-tree structure. 5133 ** 5134 ** If the table has a virtual root page, then the cursor is moved to point 5135 ** to the virtual root page instead of the actual root page. A table has a 5136 ** virtual root page when the actual root page contains no cells and a 5137 ** single child page. This can only happen with the table rooted at page 1. 5138 ** 5139 ** If the b-tree structure is empty, the cursor state is set to 5140 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5141 ** the cursor is set to point to the first cell located on the root 5142 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5143 ** 5144 ** If this function returns successfully, it may be assumed that the 5145 ** page-header flags indicate that the [virtual] root-page is the expected 5146 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5147 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5148 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5149 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5150 ** b-tree). 5151 */ 5152 static int moveToRoot(BtCursor *pCur){ 5153 MemPage *pRoot; 5154 int rc = SQLITE_OK; 5155 5156 assert( cursorOwnsBtShared(pCur) ); 5157 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5158 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5159 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5160 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5161 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5162 5163 if( pCur->iPage>=0 ){ 5164 if( pCur->iPage ){ 5165 releasePageNotNull(pCur->pPage); 5166 while( --pCur->iPage ){ 5167 releasePageNotNull(pCur->apPage[pCur->iPage]); 5168 } 5169 pCur->pPage = pCur->apPage[0]; 5170 goto skip_init; 5171 } 5172 }else if( pCur->pgnoRoot==0 ){ 5173 pCur->eState = CURSOR_INVALID; 5174 return SQLITE_EMPTY; 5175 }else{ 5176 assert( pCur->iPage==(-1) ); 5177 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5178 if( pCur->eState==CURSOR_FAULT ){ 5179 assert( pCur->skipNext!=SQLITE_OK ); 5180 return pCur->skipNext; 5181 } 5182 sqlite3BtreeClearCursor(pCur); 5183 } 5184 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5185 0, pCur->curPagerFlags); 5186 if( rc!=SQLITE_OK ){ 5187 pCur->eState = CURSOR_INVALID; 5188 return rc; 5189 } 5190 pCur->iPage = 0; 5191 pCur->curIntKey = pCur->pPage->intKey; 5192 } 5193 pRoot = pCur->pPage; 5194 assert( pRoot->pgno==pCur->pgnoRoot ); 5195 5196 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5197 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5198 ** NULL, the caller expects a table b-tree. If this is not the case, 5199 ** return an SQLITE_CORRUPT error. 5200 ** 5201 ** Earlier versions of SQLite assumed that this test could not fail 5202 ** if the root page was already loaded when this function was called (i.e. 5203 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5204 ** in such a way that page pRoot is linked into a second b-tree table 5205 ** (or the freelist). */ 5206 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5207 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5208 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5209 } 5210 5211 skip_init: 5212 pCur->ix = 0; 5213 pCur->info.nSize = 0; 5214 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5215 5216 pRoot = pCur->pPage; 5217 if( pRoot->nCell>0 ){ 5218 pCur->eState = CURSOR_VALID; 5219 }else if( !pRoot->leaf ){ 5220 Pgno subpage; 5221 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5222 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5223 pCur->eState = CURSOR_VALID; 5224 rc = moveToChild(pCur, subpage); 5225 }else{ 5226 pCur->eState = CURSOR_INVALID; 5227 rc = SQLITE_EMPTY; 5228 } 5229 return rc; 5230 } 5231 5232 /* 5233 ** Move the cursor down to the left-most leaf entry beneath the 5234 ** entry to which it is currently pointing. 5235 ** 5236 ** The left-most leaf is the one with the smallest key - the first 5237 ** in ascending order. 5238 */ 5239 static int moveToLeftmost(BtCursor *pCur){ 5240 Pgno pgno; 5241 int rc = SQLITE_OK; 5242 MemPage *pPage; 5243 5244 assert( cursorOwnsBtShared(pCur) ); 5245 assert( pCur->eState==CURSOR_VALID ); 5246 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5247 assert( pCur->ix<pPage->nCell ); 5248 pgno = get4byte(findCell(pPage, pCur->ix)); 5249 rc = moveToChild(pCur, pgno); 5250 } 5251 return rc; 5252 } 5253 5254 /* 5255 ** Move the cursor down to the right-most leaf entry beneath the 5256 ** page to which it is currently pointing. Notice the difference 5257 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5258 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5259 ** finds the right-most entry beneath the *page*. 5260 ** 5261 ** The right-most entry is the one with the largest key - the last 5262 ** key in ascending order. 5263 */ 5264 static int moveToRightmost(BtCursor *pCur){ 5265 Pgno pgno; 5266 int rc = SQLITE_OK; 5267 MemPage *pPage = 0; 5268 5269 assert( cursorOwnsBtShared(pCur) ); 5270 assert( pCur->eState==CURSOR_VALID ); 5271 while( !(pPage = pCur->pPage)->leaf ){ 5272 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5273 pCur->ix = pPage->nCell; 5274 rc = moveToChild(pCur, pgno); 5275 if( rc ) return rc; 5276 } 5277 pCur->ix = pPage->nCell-1; 5278 assert( pCur->info.nSize==0 ); 5279 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5280 return SQLITE_OK; 5281 } 5282 5283 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5284 ** on success. Set *pRes to 0 if the cursor actually points to something 5285 ** or set *pRes to 1 if the table is empty. 5286 */ 5287 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5288 int rc; 5289 5290 assert( cursorOwnsBtShared(pCur) ); 5291 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5292 rc = moveToRoot(pCur); 5293 if( rc==SQLITE_OK ){ 5294 assert( pCur->pPage->nCell>0 ); 5295 *pRes = 0; 5296 rc = moveToLeftmost(pCur); 5297 }else if( rc==SQLITE_EMPTY ){ 5298 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5299 *pRes = 1; 5300 rc = SQLITE_OK; 5301 } 5302 return rc; 5303 } 5304 5305 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5306 ** on success. Set *pRes to 0 if the cursor actually points to something 5307 ** or set *pRes to 1 if the table is empty. 5308 */ 5309 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5310 int rc; 5311 5312 assert( cursorOwnsBtShared(pCur) ); 5313 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5314 5315 /* If the cursor already points to the last entry, this is a no-op. */ 5316 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5317 #ifdef SQLITE_DEBUG 5318 /* This block serves to assert() that the cursor really does point 5319 ** to the last entry in the b-tree. */ 5320 int ii; 5321 for(ii=0; ii<pCur->iPage; ii++){ 5322 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5323 } 5324 assert( pCur->ix==pCur->pPage->nCell-1 ); 5325 assert( pCur->pPage->leaf ); 5326 #endif 5327 *pRes = 0; 5328 return SQLITE_OK; 5329 } 5330 5331 rc = moveToRoot(pCur); 5332 if( rc==SQLITE_OK ){ 5333 assert( pCur->eState==CURSOR_VALID ); 5334 *pRes = 0; 5335 rc = moveToRightmost(pCur); 5336 if( rc==SQLITE_OK ){ 5337 pCur->curFlags |= BTCF_AtLast; 5338 }else{ 5339 pCur->curFlags &= ~BTCF_AtLast; 5340 } 5341 }else if( rc==SQLITE_EMPTY ){ 5342 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5343 *pRes = 1; 5344 rc = SQLITE_OK; 5345 } 5346 return rc; 5347 } 5348 5349 /* Move the cursor so that it points to an entry near the key 5350 ** specified by pIdxKey or intKey. Return a success code. 5351 ** 5352 ** For INTKEY tables, the intKey parameter is used. pIdxKey 5353 ** must be NULL. For index tables, pIdxKey is used and intKey 5354 ** is ignored. 5355 ** 5356 ** If an exact match is not found, then the cursor is always 5357 ** left pointing at a leaf page which would hold the entry if it 5358 ** were present. The cursor might point to an entry that comes 5359 ** before or after the key. 5360 ** 5361 ** An integer is written into *pRes which is the result of 5362 ** comparing the key with the entry to which the cursor is 5363 ** pointing. The meaning of the integer written into 5364 ** *pRes is as follows: 5365 ** 5366 ** *pRes<0 The cursor is left pointing at an entry that 5367 ** is smaller than intKey/pIdxKey or if the table is empty 5368 ** and the cursor is therefore left point to nothing. 5369 ** 5370 ** *pRes==0 The cursor is left pointing at an entry that 5371 ** exactly matches intKey/pIdxKey. 5372 ** 5373 ** *pRes>0 The cursor is left pointing at an entry that 5374 ** is larger than intKey/pIdxKey. 5375 ** 5376 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there 5377 ** exists an entry in the table that exactly matches pIdxKey. 5378 */ 5379 int sqlite3BtreeMovetoUnpacked( 5380 BtCursor *pCur, /* The cursor to be moved */ 5381 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5382 i64 intKey, /* The table key */ 5383 int biasRight, /* If true, bias the search to the high end */ 5384 int *pRes /* Write search results here */ 5385 ){ 5386 int rc; 5387 RecordCompare xRecordCompare; 5388 5389 assert( cursorOwnsBtShared(pCur) ); 5390 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5391 assert( pRes ); 5392 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); 5393 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) ); 5394 5395 /* If the cursor is already positioned at the point we are trying 5396 ** to move to, then just return without doing any work */ 5397 if( pIdxKey==0 5398 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 5399 ){ 5400 if( pCur->info.nKey==intKey ){ 5401 *pRes = 0; 5402 return SQLITE_OK; 5403 } 5404 if( pCur->info.nKey<intKey ){ 5405 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5406 *pRes = -1; 5407 return SQLITE_OK; 5408 } 5409 /* If the requested key is one more than the previous key, then 5410 ** try to get there using sqlite3BtreeNext() rather than a full 5411 ** binary search. This is an optimization only. The correct answer 5412 ** is still obtained without this case, only a little more slowely */ 5413 if( pCur->info.nKey+1==intKey ){ 5414 *pRes = 0; 5415 rc = sqlite3BtreeNext(pCur, 0); 5416 if( rc==SQLITE_OK ){ 5417 getCellInfo(pCur); 5418 if( pCur->info.nKey==intKey ){ 5419 return SQLITE_OK; 5420 } 5421 }else if( rc==SQLITE_DONE ){ 5422 rc = SQLITE_OK; 5423 }else{ 5424 return rc; 5425 } 5426 } 5427 } 5428 } 5429 5430 if( pIdxKey ){ 5431 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5432 pIdxKey->errCode = 0; 5433 assert( pIdxKey->default_rc==1 5434 || pIdxKey->default_rc==0 5435 || pIdxKey->default_rc==-1 5436 ); 5437 }else{ 5438 xRecordCompare = 0; /* All keys are integers */ 5439 } 5440 5441 rc = moveToRoot(pCur); 5442 if( rc ){ 5443 if( rc==SQLITE_EMPTY ){ 5444 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5445 *pRes = -1; 5446 return SQLITE_OK; 5447 } 5448 return rc; 5449 } 5450 assert( pCur->pPage ); 5451 assert( pCur->pPage->isInit ); 5452 assert( pCur->eState==CURSOR_VALID ); 5453 assert( pCur->pPage->nCell > 0 ); 5454 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5455 assert( pCur->curIntKey || pIdxKey ); 5456 for(;;){ 5457 int lwr, upr, idx, c; 5458 Pgno chldPg; 5459 MemPage *pPage = pCur->pPage; 5460 u8 *pCell; /* Pointer to current cell in pPage */ 5461 5462 /* pPage->nCell must be greater than zero. If this is the root-page 5463 ** the cursor would have been INVALID above and this for(;;) loop 5464 ** not run. If this is not the root-page, then the moveToChild() routine 5465 ** would have already detected db corruption. Similarly, pPage must 5466 ** be the right kind (index or table) of b-tree page. Otherwise 5467 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5468 assert( pPage->nCell>0 ); 5469 assert( pPage->intKey==(pIdxKey==0) ); 5470 lwr = 0; 5471 upr = pPage->nCell-1; 5472 assert( biasRight==0 || biasRight==1 ); 5473 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5474 pCur->ix = (u16)idx; 5475 if( xRecordCompare==0 ){ 5476 for(;;){ 5477 i64 nCellKey; 5478 pCell = findCellPastPtr(pPage, idx); 5479 if( pPage->intKeyLeaf ){ 5480 while( 0x80 <= *(pCell++) ){ 5481 if( pCell>=pPage->aDataEnd ){ 5482 return SQLITE_CORRUPT_PAGE(pPage); 5483 } 5484 } 5485 } 5486 getVarint(pCell, (u64*)&nCellKey); 5487 if( nCellKey<intKey ){ 5488 lwr = idx+1; 5489 if( lwr>upr ){ c = -1; break; } 5490 }else if( nCellKey>intKey ){ 5491 upr = idx-1; 5492 if( lwr>upr ){ c = +1; break; } 5493 }else{ 5494 assert( nCellKey==intKey ); 5495 pCur->ix = (u16)idx; 5496 if( !pPage->leaf ){ 5497 lwr = idx; 5498 goto moveto_next_layer; 5499 }else{ 5500 pCur->curFlags |= BTCF_ValidNKey; 5501 pCur->info.nKey = nCellKey; 5502 pCur->info.nSize = 0; 5503 *pRes = 0; 5504 return SQLITE_OK; 5505 } 5506 } 5507 assert( lwr+upr>=0 ); 5508 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5509 } 5510 }else{ 5511 for(;;){ 5512 int nCell; /* Size of the pCell cell in bytes */ 5513 pCell = findCellPastPtr(pPage, idx); 5514 5515 /* The maximum supported page-size is 65536 bytes. This means that 5516 ** the maximum number of record bytes stored on an index B-Tree 5517 ** page is less than 16384 bytes and may be stored as a 2-byte 5518 ** varint. This information is used to attempt to avoid parsing 5519 ** the entire cell by checking for the cases where the record is 5520 ** stored entirely within the b-tree page by inspecting the first 5521 ** 2 bytes of the cell. 5522 */ 5523 nCell = pCell[0]; 5524 if( nCell<=pPage->max1bytePayload ){ 5525 /* This branch runs if the record-size field of the cell is a 5526 ** single byte varint and the record fits entirely on the main 5527 ** b-tree page. */ 5528 testcase( pCell+nCell+1==pPage->aDataEnd ); 5529 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5530 }else if( !(pCell[1] & 0x80) 5531 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5532 ){ 5533 /* The record-size field is a 2 byte varint and the record 5534 ** fits entirely on the main b-tree page. */ 5535 testcase( pCell+nCell+2==pPage->aDataEnd ); 5536 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5537 }else{ 5538 /* The record flows over onto one or more overflow pages. In 5539 ** this case the whole cell needs to be parsed, a buffer allocated 5540 ** and accessPayload() used to retrieve the record into the 5541 ** buffer before VdbeRecordCompare() can be called. 5542 ** 5543 ** If the record is corrupt, the xRecordCompare routine may read 5544 ** up to two varints past the end of the buffer. An extra 18 5545 ** bytes of padding is allocated at the end of the buffer in 5546 ** case this happens. */ 5547 void *pCellKey; 5548 u8 * const pCellBody = pCell - pPage->childPtrSize; 5549 const int nOverrun = 18; /* Size of the overrun padding */ 5550 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5551 nCell = (int)pCur->info.nKey; 5552 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5553 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5554 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5555 testcase( nCell==2 ); /* Minimum legal index key size */ 5556 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5557 rc = SQLITE_CORRUPT_PAGE(pPage); 5558 goto moveto_finish; 5559 } 5560 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5561 if( pCellKey==0 ){ 5562 rc = SQLITE_NOMEM_BKPT; 5563 goto moveto_finish; 5564 } 5565 pCur->ix = (u16)idx; 5566 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5567 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5568 pCur->curFlags &= ~BTCF_ValidOvfl; 5569 if( rc ){ 5570 sqlite3_free(pCellKey); 5571 goto moveto_finish; 5572 } 5573 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5574 sqlite3_free(pCellKey); 5575 } 5576 assert( 5577 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5578 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5579 ); 5580 if( c<0 ){ 5581 lwr = idx+1; 5582 }else if( c>0 ){ 5583 upr = idx-1; 5584 }else{ 5585 assert( c==0 ); 5586 *pRes = 0; 5587 rc = SQLITE_OK; 5588 pCur->ix = (u16)idx; 5589 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5590 goto moveto_finish; 5591 } 5592 if( lwr>upr ) break; 5593 assert( lwr+upr>=0 ); 5594 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5595 } 5596 } 5597 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5598 assert( pPage->isInit ); 5599 if( pPage->leaf ){ 5600 assert( pCur->ix<pCur->pPage->nCell ); 5601 pCur->ix = (u16)idx; 5602 *pRes = c; 5603 rc = SQLITE_OK; 5604 goto moveto_finish; 5605 } 5606 moveto_next_layer: 5607 if( lwr>=pPage->nCell ){ 5608 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5609 }else{ 5610 chldPg = get4byte(findCell(pPage, lwr)); 5611 } 5612 pCur->ix = (u16)lwr; 5613 rc = moveToChild(pCur, chldPg); 5614 if( rc ) break; 5615 } 5616 moveto_finish: 5617 pCur->info.nSize = 0; 5618 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5619 return rc; 5620 } 5621 5622 5623 /* 5624 ** Return TRUE if the cursor is not pointing at an entry of the table. 5625 ** 5626 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5627 ** past the last entry in the table or sqlite3BtreePrev() moves past 5628 ** the first entry. TRUE is also returned if the table is empty. 5629 */ 5630 int sqlite3BtreeEof(BtCursor *pCur){ 5631 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5632 ** have been deleted? This API will need to change to return an error code 5633 ** as well as the boolean result value. 5634 */ 5635 return (CURSOR_VALID!=pCur->eState); 5636 } 5637 5638 /* 5639 ** Return an estimate for the number of rows in the table that pCur is 5640 ** pointing to. Return a negative number if no estimate is currently 5641 ** available. 5642 */ 5643 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 5644 i64 n; 5645 u8 i; 5646 5647 assert( cursorOwnsBtShared(pCur) ); 5648 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5649 5650 /* Currently this interface is only called by the OP_IfSmaller 5651 ** opcode, and it that case the cursor will always be valid and 5652 ** will always point to a leaf node. */ 5653 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 5654 if( NEVER(pCur->pPage->leaf==0) ) return -1; 5655 5656 n = pCur->pPage->nCell; 5657 for(i=0; i<pCur->iPage; i++){ 5658 n *= pCur->apPage[i]->nCell; 5659 } 5660 return n; 5661 } 5662 5663 /* 5664 ** Advance the cursor to the next entry in the database. 5665 ** Return value: 5666 ** 5667 ** SQLITE_OK success 5668 ** SQLITE_DONE cursor is already pointing at the last element 5669 ** otherwise some kind of error occurred 5670 ** 5671 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5672 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5673 ** to the next cell on the current page. The (slower) btreeNext() helper 5674 ** routine is called when it is necessary to move to a different page or 5675 ** to restore the cursor. 5676 ** 5677 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 5678 ** cursor corresponds to an SQL index and this routine could have been 5679 ** skipped if the SQL index had been a unique index. The F argument 5680 ** is a hint to the implement. SQLite btree implementation does not use 5681 ** this hint, but COMDB2 does. 5682 */ 5683 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 5684 int rc; 5685 int idx; 5686 MemPage *pPage; 5687 5688 assert( cursorOwnsBtShared(pCur) ); 5689 if( pCur->eState!=CURSOR_VALID ){ 5690 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5691 rc = restoreCursorPosition(pCur); 5692 if( rc!=SQLITE_OK ){ 5693 return rc; 5694 } 5695 if( CURSOR_INVALID==pCur->eState ){ 5696 return SQLITE_DONE; 5697 } 5698 if( pCur->eState==CURSOR_SKIPNEXT ){ 5699 pCur->eState = CURSOR_VALID; 5700 if( pCur->skipNext>0 ) return SQLITE_OK; 5701 } 5702 } 5703 5704 pPage = pCur->pPage; 5705 idx = ++pCur->ix; 5706 if( !pPage->isInit ){ 5707 /* The only known way for this to happen is for there to be a 5708 ** recursive SQL function that does a DELETE operation as part of a 5709 ** SELECT which deletes content out from under an active cursor 5710 ** in a corrupt database file where the table being DELETE-ed from 5711 ** has pages in common with the table being queried. See TH3 5712 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 5713 ** example. */ 5714 return SQLITE_CORRUPT_BKPT; 5715 } 5716 5717 /* If the database file is corrupt, it is possible for the value of idx 5718 ** to be invalid here. This can only occur if a second cursor modifies 5719 ** the page while cursor pCur is holding a reference to it. Which can 5720 ** only happen if the database is corrupt in such a way as to link the 5721 ** page into more than one b-tree structure. */ 5722 testcase( idx>pPage->nCell ); 5723 5724 if( idx>=pPage->nCell ){ 5725 if( !pPage->leaf ){ 5726 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5727 if( rc ) return rc; 5728 return moveToLeftmost(pCur); 5729 } 5730 do{ 5731 if( pCur->iPage==0 ){ 5732 pCur->eState = CURSOR_INVALID; 5733 return SQLITE_DONE; 5734 } 5735 moveToParent(pCur); 5736 pPage = pCur->pPage; 5737 }while( pCur->ix>=pPage->nCell ); 5738 if( pPage->intKey ){ 5739 return sqlite3BtreeNext(pCur, 0); 5740 }else{ 5741 return SQLITE_OK; 5742 } 5743 } 5744 if( pPage->leaf ){ 5745 return SQLITE_OK; 5746 }else{ 5747 return moveToLeftmost(pCur); 5748 } 5749 } 5750 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 5751 MemPage *pPage; 5752 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5753 assert( cursorOwnsBtShared(pCur) ); 5754 assert( flags==0 || flags==1 ); 5755 pCur->info.nSize = 0; 5756 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5757 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 5758 pPage = pCur->pPage; 5759 if( (++pCur->ix)>=pPage->nCell ){ 5760 pCur->ix--; 5761 return btreeNext(pCur); 5762 } 5763 if( pPage->leaf ){ 5764 return SQLITE_OK; 5765 }else{ 5766 return moveToLeftmost(pCur); 5767 } 5768 } 5769 5770 /* 5771 ** Step the cursor to the back to the previous entry in the database. 5772 ** Return values: 5773 ** 5774 ** SQLITE_OK success 5775 ** SQLITE_DONE the cursor is already on the first element of the table 5776 ** otherwise some kind of error occurred 5777 ** 5778 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5779 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5780 ** to the previous cell on the current page. The (slower) btreePrevious() 5781 ** helper routine is called when it is necessary to move to a different page 5782 ** or to restore the cursor. 5783 ** 5784 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 5785 ** the cursor corresponds to an SQL index and this routine could have been 5786 ** skipped if the SQL index had been a unique index. The F argument is a 5787 ** hint to the implement. The native SQLite btree implementation does not 5788 ** use this hint, but COMDB2 does. 5789 */ 5790 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 5791 int rc; 5792 MemPage *pPage; 5793 5794 assert( cursorOwnsBtShared(pCur) ); 5795 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5796 assert( pCur->info.nSize==0 ); 5797 if( pCur->eState!=CURSOR_VALID ){ 5798 rc = restoreCursorPosition(pCur); 5799 if( rc!=SQLITE_OK ){ 5800 return rc; 5801 } 5802 if( CURSOR_INVALID==pCur->eState ){ 5803 return SQLITE_DONE; 5804 } 5805 if( CURSOR_SKIPNEXT==pCur->eState ){ 5806 pCur->eState = CURSOR_VALID; 5807 if( pCur->skipNext<0 ) return SQLITE_OK; 5808 } 5809 } 5810 5811 pPage = pCur->pPage; 5812 assert( pPage->isInit ); 5813 if( !pPage->leaf ){ 5814 int idx = pCur->ix; 5815 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 5816 if( rc ) return rc; 5817 rc = moveToRightmost(pCur); 5818 }else{ 5819 while( pCur->ix==0 ){ 5820 if( pCur->iPage==0 ){ 5821 pCur->eState = CURSOR_INVALID; 5822 return SQLITE_DONE; 5823 } 5824 moveToParent(pCur); 5825 } 5826 assert( pCur->info.nSize==0 ); 5827 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 5828 5829 pCur->ix--; 5830 pPage = pCur->pPage; 5831 if( pPage->intKey && !pPage->leaf ){ 5832 rc = sqlite3BtreePrevious(pCur, 0); 5833 }else{ 5834 rc = SQLITE_OK; 5835 } 5836 } 5837 return rc; 5838 } 5839 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 5840 assert( cursorOwnsBtShared(pCur) ); 5841 assert( flags==0 || flags==1 ); 5842 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5843 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 5844 pCur->info.nSize = 0; 5845 if( pCur->eState!=CURSOR_VALID 5846 || pCur->ix==0 5847 || pCur->pPage->leaf==0 5848 ){ 5849 return btreePrevious(pCur); 5850 } 5851 pCur->ix--; 5852 return SQLITE_OK; 5853 } 5854 5855 /* 5856 ** Allocate a new page from the database file. 5857 ** 5858 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 5859 ** has already been called on the new page.) The new page has also 5860 ** been referenced and the calling routine is responsible for calling 5861 ** sqlite3PagerUnref() on the new page when it is done. 5862 ** 5863 ** SQLITE_OK is returned on success. Any other return value indicates 5864 ** an error. *ppPage is set to NULL in the event of an error. 5865 ** 5866 ** If the "nearby" parameter is not 0, then an effort is made to 5867 ** locate a page close to the page number "nearby". This can be used in an 5868 ** attempt to keep related pages close to each other in the database file, 5869 ** which in turn can make database access faster. 5870 ** 5871 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 5872 ** anywhere on the free-list, then it is guaranteed to be returned. If 5873 ** eMode is BTALLOC_LT then the page returned will be less than or equal 5874 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 5875 ** are no restrictions on which page is returned. 5876 */ 5877 static int allocateBtreePage( 5878 BtShared *pBt, /* The btree */ 5879 MemPage **ppPage, /* Store pointer to the allocated page here */ 5880 Pgno *pPgno, /* Store the page number here */ 5881 Pgno nearby, /* Search for a page near this one */ 5882 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 5883 ){ 5884 MemPage *pPage1; 5885 int rc; 5886 u32 n; /* Number of pages on the freelist */ 5887 u32 k; /* Number of leaves on the trunk of the freelist */ 5888 MemPage *pTrunk = 0; 5889 MemPage *pPrevTrunk = 0; 5890 Pgno mxPage; /* Total size of the database file */ 5891 5892 assert( sqlite3_mutex_held(pBt->mutex) ); 5893 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 5894 pPage1 = pBt->pPage1; 5895 mxPage = btreePagecount(pBt); 5896 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 5897 ** stores stores the total number of pages on the freelist. */ 5898 n = get4byte(&pPage1->aData[36]); 5899 testcase( n==mxPage-1 ); 5900 if( n>=mxPage ){ 5901 return SQLITE_CORRUPT_BKPT; 5902 } 5903 if( n>0 ){ 5904 /* There are pages on the freelist. Reuse one of those pages. */ 5905 Pgno iTrunk; 5906 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 5907 u32 nSearch = 0; /* Count of the number of search attempts */ 5908 5909 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 5910 ** shows that the page 'nearby' is somewhere on the free-list, then 5911 ** the entire-list will be searched for that page. 5912 */ 5913 #ifndef SQLITE_OMIT_AUTOVACUUM 5914 if( eMode==BTALLOC_EXACT ){ 5915 if( nearby<=mxPage ){ 5916 u8 eType; 5917 assert( nearby>0 ); 5918 assert( pBt->autoVacuum ); 5919 rc = ptrmapGet(pBt, nearby, &eType, 0); 5920 if( rc ) return rc; 5921 if( eType==PTRMAP_FREEPAGE ){ 5922 searchList = 1; 5923 } 5924 } 5925 }else if( eMode==BTALLOC_LE ){ 5926 searchList = 1; 5927 } 5928 #endif 5929 5930 /* Decrement the free-list count by 1. Set iTrunk to the index of the 5931 ** first free-list trunk page. iPrevTrunk is initially 1. 5932 */ 5933 rc = sqlite3PagerWrite(pPage1->pDbPage); 5934 if( rc ) return rc; 5935 put4byte(&pPage1->aData[36], n-1); 5936 5937 /* The code within this loop is run only once if the 'searchList' variable 5938 ** is not true. Otherwise, it runs once for each trunk-page on the 5939 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 5940 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 5941 */ 5942 do { 5943 pPrevTrunk = pTrunk; 5944 if( pPrevTrunk ){ 5945 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 5946 ** is the page number of the next freelist trunk page in the list or 5947 ** zero if this is the last freelist trunk page. */ 5948 iTrunk = get4byte(&pPrevTrunk->aData[0]); 5949 }else{ 5950 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 5951 ** stores the page number of the first page of the freelist, or zero if 5952 ** the freelist is empty. */ 5953 iTrunk = get4byte(&pPage1->aData[32]); 5954 } 5955 testcase( iTrunk==mxPage ); 5956 if( iTrunk>mxPage || nSearch++ > n ){ 5957 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 5958 }else{ 5959 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 5960 } 5961 if( rc ){ 5962 pTrunk = 0; 5963 goto end_allocate_page; 5964 } 5965 assert( pTrunk!=0 ); 5966 assert( pTrunk->aData!=0 ); 5967 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 5968 ** is the number of leaf page pointers to follow. */ 5969 k = get4byte(&pTrunk->aData[4]); 5970 if( k==0 && !searchList ){ 5971 /* The trunk has no leaves and the list is not being searched. 5972 ** So extract the trunk page itself and use it as the newly 5973 ** allocated page */ 5974 assert( pPrevTrunk==0 ); 5975 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5976 if( rc ){ 5977 goto end_allocate_page; 5978 } 5979 *pPgno = iTrunk; 5980 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5981 *ppPage = pTrunk; 5982 pTrunk = 0; 5983 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5984 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 5985 /* Value of k is out of range. Database corruption */ 5986 rc = SQLITE_CORRUPT_PGNO(iTrunk); 5987 goto end_allocate_page; 5988 #ifndef SQLITE_OMIT_AUTOVACUUM 5989 }else if( searchList 5990 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 5991 ){ 5992 /* The list is being searched and this trunk page is the page 5993 ** to allocate, regardless of whether it has leaves. 5994 */ 5995 *pPgno = iTrunk; 5996 *ppPage = pTrunk; 5997 searchList = 0; 5998 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5999 if( rc ){ 6000 goto end_allocate_page; 6001 } 6002 if( k==0 ){ 6003 if( !pPrevTrunk ){ 6004 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6005 }else{ 6006 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6007 if( rc!=SQLITE_OK ){ 6008 goto end_allocate_page; 6009 } 6010 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6011 } 6012 }else{ 6013 /* The trunk page is required by the caller but it contains 6014 ** pointers to free-list leaves. The first leaf becomes a trunk 6015 ** page in this case. 6016 */ 6017 MemPage *pNewTrunk; 6018 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6019 if( iNewTrunk>mxPage ){ 6020 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6021 goto end_allocate_page; 6022 } 6023 testcase( iNewTrunk==mxPage ); 6024 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6025 if( rc!=SQLITE_OK ){ 6026 goto end_allocate_page; 6027 } 6028 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6029 if( rc!=SQLITE_OK ){ 6030 releasePage(pNewTrunk); 6031 goto end_allocate_page; 6032 } 6033 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6034 put4byte(&pNewTrunk->aData[4], k-1); 6035 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6036 releasePage(pNewTrunk); 6037 if( !pPrevTrunk ){ 6038 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6039 put4byte(&pPage1->aData[32], iNewTrunk); 6040 }else{ 6041 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6042 if( rc ){ 6043 goto end_allocate_page; 6044 } 6045 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6046 } 6047 } 6048 pTrunk = 0; 6049 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6050 #endif 6051 }else if( k>0 ){ 6052 /* Extract a leaf from the trunk */ 6053 u32 closest; 6054 Pgno iPage; 6055 unsigned char *aData = pTrunk->aData; 6056 if( nearby>0 ){ 6057 u32 i; 6058 closest = 0; 6059 if( eMode==BTALLOC_LE ){ 6060 for(i=0; i<k; i++){ 6061 iPage = get4byte(&aData[8+i*4]); 6062 if( iPage<=nearby ){ 6063 closest = i; 6064 break; 6065 } 6066 } 6067 }else{ 6068 int dist; 6069 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6070 for(i=1; i<k; i++){ 6071 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6072 if( d2<dist ){ 6073 closest = i; 6074 dist = d2; 6075 } 6076 } 6077 } 6078 }else{ 6079 closest = 0; 6080 } 6081 6082 iPage = get4byte(&aData[8+closest*4]); 6083 testcase( iPage==mxPage ); 6084 if( iPage>mxPage ){ 6085 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6086 goto end_allocate_page; 6087 } 6088 testcase( iPage==mxPage ); 6089 if( !searchList 6090 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6091 ){ 6092 int noContent; 6093 *pPgno = iPage; 6094 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6095 ": %d more free pages\n", 6096 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6097 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6098 if( rc ) goto end_allocate_page; 6099 if( closest<k-1 ){ 6100 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6101 } 6102 put4byte(&aData[4], k-1); 6103 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6104 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6105 if( rc==SQLITE_OK ){ 6106 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6107 if( rc!=SQLITE_OK ){ 6108 releasePage(*ppPage); 6109 *ppPage = 0; 6110 } 6111 } 6112 searchList = 0; 6113 } 6114 } 6115 releasePage(pPrevTrunk); 6116 pPrevTrunk = 0; 6117 }while( searchList ); 6118 }else{ 6119 /* There are no pages on the freelist, so append a new page to the 6120 ** database image. 6121 ** 6122 ** Normally, new pages allocated by this block can be requested from the 6123 ** pager layer with the 'no-content' flag set. This prevents the pager 6124 ** from trying to read the pages content from disk. However, if the 6125 ** current transaction has already run one or more incremental-vacuum 6126 ** steps, then the page we are about to allocate may contain content 6127 ** that is required in the event of a rollback. In this case, do 6128 ** not set the no-content flag. This causes the pager to load and journal 6129 ** the current page content before overwriting it. 6130 ** 6131 ** Note that the pager will not actually attempt to load or journal 6132 ** content for any page that really does lie past the end of the database 6133 ** file on disk. So the effects of disabling the no-content optimization 6134 ** here are confined to those pages that lie between the end of the 6135 ** database image and the end of the database file. 6136 */ 6137 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6138 6139 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6140 if( rc ) return rc; 6141 pBt->nPage++; 6142 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6143 6144 #ifndef SQLITE_OMIT_AUTOVACUUM 6145 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6146 /* If *pPgno refers to a pointer-map page, allocate two new pages 6147 ** at the end of the file instead of one. The first allocated page 6148 ** becomes a new pointer-map page, the second is used by the caller. 6149 */ 6150 MemPage *pPg = 0; 6151 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6152 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6153 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6154 if( rc==SQLITE_OK ){ 6155 rc = sqlite3PagerWrite(pPg->pDbPage); 6156 releasePage(pPg); 6157 } 6158 if( rc ) return rc; 6159 pBt->nPage++; 6160 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6161 } 6162 #endif 6163 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6164 *pPgno = pBt->nPage; 6165 6166 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6167 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6168 if( rc ) return rc; 6169 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6170 if( rc!=SQLITE_OK ){ 6171 releasePage(*ppPage); 6172 *ppPage = 0; 6173 } 6174 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6175 } 6176 6177 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6178 6179 end_allocate_page: 6180 releasePage(pTrunk); 6181 releasePage(pPrevTrunk); 6182 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6183 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6184 return rc; 6185 } 6186 6187 /* 6188 ** This function is used to add page iPage to the database file free-list. 6189 ** It is assumed that the page is not already a part of the free-list. 6190 ** 6191 ** The value passed as the second argument to this function is optional. 6192 ** If the caller happens to have a pointer to the MemPage object 6193 ** corresponding to page iPage handy, it may pass it as the second value. 6194 ** Otherwise, it may pass NULL. 6195 ** 6196 ** If a pointer to a MemPage object is passed as the second argument, 6197 ** its reference count is not altered by this function. 6198 */ 6199 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6200 MemPage *pTrunk = 0; /* Free-list trunk page */ 6201 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6202 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6203 MemPage *pPage; /* Page being freed. May be NULL. */ 6204 int rc; /* Return Code */ 6205 u32 nFree; /* Initial number of pages on free-list */ 6206 6207 assert( sqlite3_mutex_held(pBt->mutex) ); 6208 assert( CORRUPT_DB || iPage>1 ); 6209 assert( !pMemPage || pMemPage->pgno==iPage ); 6210 6211 if( iPage<2 || iPage>pBt->nPage ){ 6212 return SQLITE_CORRUPT_BKPT; 6213 } 6214 if( pMemPage ){ 6215 pPage = pMemPage; 6216 sqlite3PagerRef(pPage->pDbPage); 6217 }else{ 6218 pPage = btreePageLookup(pBt, iPage); 6219 } 6220 6221 /* Increment the free page count on pPage1 */ 6222 rc = sqlite3PagerWrite(pPage1->pDbPage); 6223 if( rc ) goto freepage_out; 6224 nFree = get4byte(&pPage1->aData[36]); 6225 put4byte(&pPage1->aData[36], nFree+1); 6226 6227 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6228 /* If the secure_delete option is enabled, then 6229 ** always fully overwrite deleted information with zeros. 6230 */ 6231 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6232 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6233 ){ 6234 goto freepage_out; 6235 } 6236 memset(pPage->aData, 0, pPage->pBt->pageSize); 6237 } 6238 6239 /* If the database supports auto-vacuum, write an entry in the pointer-map 6240 ** to indicate that the page is free. 6241 */ 6242 if( ISAUTOVACUUM ){ 6243 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6244 if( rc ) goto freepage_out; 6245 } 6246 6247 /* Now manipulate the actual database free-list structure. There are two 6248 ** possibilities. If the free-list is currently empty, or if the first 6249 ** trunk page in the free-list is full, then this page will become a 6250 ** new free-list trunk page. Otherwise, it will become a leaf of the 6251 ** first trunk page in the current free-list. This block tests if it 6252 ** is possible to add the page as a new free-list leaf. 6253 */ 6254 if( nFree!=0 ){ 6255 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6256 6257 iTrunk = get4byte(&pPage1->aData[32]); 6258 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6259 if( rc!=SQLITE_OK ){ 6260 goto freepage_out; 6261 } 6262 6263 nLeaf = get4byte(&pTrunk->aData[4]); 6264 assert( pBt->usableSize>32 ); 6265 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6266 rc = SQLITE_CORRUPT_BKPT; 6267 goto freepage_out; 6268 } 6269 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6270 /* In this case there is room on the trunk page to insert the page 6271 ** being freed as a new leaf. 6272 ** 6273 ** Note that the trunk page is not really full until it contains 6274 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6275 ** coded. But due to a coding error in versions of SQLite prior to 6276 ** 3.6.0, databases with freelist trunk pages holding more than 6277 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6278 ** to maintain backwards compatibility with older versions of SQLite, 6279 ** we will continue to restrict the number of entries to usableSize/4 - 8 6280 ** for now. At some point in the future (once everyone has upgraded 6281 ** to 3.6.0 or later) we should consider fixing the conditional above 6282 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6283 ** 6284 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6285 ** avoid using the last six entries in the freelist trunk page array in 6286 ** order that database files created by newer versions of SQLite can be 6287 ** read by older versions of SQLite. 6288 */ 6289 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6290 if( rc==SQLITE_OK ){ 6291 put4byte(&pTrunk->aData[4], nLeaf+1); 6292 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6293 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6294 sqlite3PagerDontWrite(pPage->pDbPage); 6295 } 6296 rc = btreeSetHasContent(pBt, iPage); 6297 } 6298 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6299 goto freepage_out; 6300 } 6301 } 6302 6303 /* If control flows to this point, then it was not possible to add the 6304 ** the page being freed as a leaf page of the first trunk in the free-list. 6305 ** Possibly because the free-list is empty, or possibly because the 6306 ** first trunk in the free-list is full. Either way, the page being freed 6307 ** will become the new first trunk page in the free-list. 6308 */ 6309 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6310 goto freepage_out; 6311 } 6312 rc = sqlite3PagerWrite(pPage->pDbPage); 6313 if( rc!=SQLITE_OK ){ 6314 goto freepage_out; 6315 } 6316 put4byte(pPage->aData, iTrunk); 6317 put4byte(&pPage->aData[4], 0); 6318 put4byte(&pPage1->aData[32], iPage); 6319 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6320 6321 freepage_out: 6322 if( pPage ){ 6323 pPage->isInit = 0; 6324 } 6325 releasePage(pPage); 6326 releasePage(pTrunk); 6327 return rc; 6328 } 6329 static void freePage(MemPage *pPage, int *pRC){ 6330 if( (*pRC)==SQLITE_OK ){ 6331 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6332 } 6333 } 6334 6335 /* 6336 ** Free any overflow pages associated with the given Cell. Store 6337 ** size information about the cell in pInfo. 6338 */ 6339 static int clearCell( 6340 MemPage *pPage, /* The page that contains the Cell */ 6341 unsigned char *pCell, /* First byte of the Cell */ 6342 CellInfo *pInfo /* Size information about the cell */ 6343 ){ 6344 BtShared *pBt; 6345 Pgno ovflPgno; 6346 int rc; 6347 int nOvfl; 6348 u32 ovflPageSize; 6349 6350 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6351 pPage->xParseCell(pPage, pCell, pInfo); 6352 if( pInfo->nLocal==pInfo->nPayload ){ 6353 return SQLITE_OK; /* No overflow pages. Return without doing anything */ 6354 } 6355 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6356 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6357 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6358 /* Cell extends past end of page */ 6359 return SQLITE_CORRUPT_PAGE(pPage); 6360 } 6361 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6362 pBt = pPage->pBt; 6363 assert( pBt->usableSize > 4 ); 6364 ovflPageSize = pBt->usableSize - 4; 6365 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6366 assert( nOvfl>0 || 6367 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6368 ); 6369 while( nOvfl-- ){ 6370 Pgno iNext = 0; 6371 MemPage *pOvfl = 0; 6372 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6373 /* 0 is not a legal page number and page 1 cannot be an 6374 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6375 ** file the database must be corrupt. */ 6376 return SQLITE_CORRUPT_BKPT; 6377 } 6378 if( nOvfl ){ 6379 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6380 if( rc ) return rc; 6381 } 6382 6383 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6384 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6385 ){ 6386 /* There is no reason any cursor should have an outstanding reference 6387 ** to an overflow page belonging to a cell that is being deleted/updated. 6388 ** So if there exists more than one reference to this page, then it 6389 ** must not really be an overflow page and the database must be corrupt. 6390 ** It is helpful to detect this before calling freePage2(), as 6391 ** freePage2() may zero the page contents if secure-delete mode is 6392 ** enabled. If this 'overflow' page happens to be a page that the 6393 ** caller is iterating through or using in some other way, this 6394 ** can be problematic. 6395 */ 6396 rc = SQLITE_CORRUPT_BKPT; 6397 }else{ 6398 rc = freePage2(pBt, pOvfl, ovflPgno); 6399 } 6400 6401 if( pOvfl ){ 6402 sqlite3PagerUnref(pOvfl->pDbPage); 6403 } 6404 if( rc ) return rc; 6405 ovflPgno = iNext; 6406 } 6407 return SQLITE_OK; 6408 } 6409 6410 /* 6411 ** Create the byte sequence used to represent a cell on page pPage 6412 ** and write that byte sequence into pCell[]. Overflow pages are 6413 ** allocated and filled in as necessary. The calling procedure 6414 ** is responsible for making sure sufficient space has been allocated 6415 ** for pCell[]. 6416 ** 6417 ** Note that pCell does not necessary need to point to the pPage->aData 6418 ** area. pCell might point to some temporary storage. The cell will 6419 ** be constructed in this temporary area then copied into pPage->aData 6420 ** later. 6421 */ 6422 static int fillInCell( 6423 MemPage *pPage, /* The page that contains the cell */ 6424 unsigned char *pCell, /* Complete text of the cell */ 6425 const BtreePayload *pX, /* Payload with which to construct the cell */ 6426 int *pnSize /* Write cell size here */ 6427 ){ 6428 int nPayload; 6429 const u8 *pSrc; 6430 int nSrc, n, rc, mn; 6431 int spaceLeft; 6432 MemPage *pToRelease; 6433 unsigned char *pPrior; 6434 unsigned char *pPayload; 6435 BtShared *pBt; 6436 Pgno pgnoOvfl; 6437 int nHeader; 6438 6439 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6440 6441 /* pPage is not necessarily writeable since pCell might be auxiliary 6442 ** buffer space that is separate from the pPage buffer area */ 6443 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6444 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6445 6446 /* Fill in the header. */ 6447 nHeader = pPage->childPtrSize; 6448 if( pPage->intKey ){ 6449 nPayload = pX->nData + pX->nZero; 6450 pSrc = pX->pData; 6451 nSrc = pX->nData; 6452 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6453 nHeader += putVarint32(&pCell[nHeader], nPayload); 6454 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6455 }else{ 6456 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6457 nSrc = nPayload = (int)pX->nKey; 6458 pSrc = pX->pKey; 6459 nHeader += putVarint32(&pCell[nHeader], nPayload); 6460 } 6461 6462 /* Fill in the payload */ 6463 pPayload = &pCell[nHeader]; 6464 if( nPayload<=pPage->maxLocal ){ 6465 /* This is the common case where everything fits on the btree page 6466 ** and no overflow pages are required. */ 6467 n = nHeader + nPayload; 6468 testcase( n==3 ); 6469 testcase( n==4 ); 6470 if( n<4 ) n = 4; 6471 *pnSize = n; 6472 assert( nSrc<=nPayload ); 6473 testcase( nSrc<nPayload ); 6474 memcpy(pPayload, pSrc, nSrc); 6475 memset(pPayload+nSrc, 0, nPayload-nSrc); 6476 return SQLITE_OK; 6477 } 6478 6479 /* If we reach this point, it means that some of the content will need 6480 ** to spill onto overflow pages. 6481 */ 6482 mn = pPage->minLocal; 6483 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6484 testcase( n==pPage->maxLocal ); 6485 testcase( n==pPage->maxLocal+1 ); 6486 if( n > pPage->maxLocal ) n = mn; 6487 spaceLeft = n; 6488 *pnSize = n + nHeader + 4; 6489 pPrior = &pCell[nHeader+n]; 6490 pToRelease = 0; 6491 pgnoOvfl = 0; 6492 pBt = pPage->pBt; 6493 6494 /* At this point variables should be set as follows: 6495 ** 6496 ** nPayload Total payload size in bytes 6497 ** pPayload Begin writing payload here 6498 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6499 ** that means content must spill into overflow pages. 6500 ** *pnSize Size of the local cell (not counting overflow pages) 6501 ** pPrior Where to write the pgno of the first overflow page 6502 ** 6503 ** Use a call to btreeParseCellPtr() to verify that the values above 6504 ** were computed correctly. 6505 */ 6506 #ifdef SQLITE_DEBUG 6507 { 6508 CellInfo info; 6509 pPage->xParseCell(pPage, pCell, &info); 6510 assert( nHeader==(int)(info.pPayload - pCell) ); 6511 assert( info.nKey==pX->nKey ); 6512 assert( *pnSize == info.nSize ); 6513 assert( spaceLeft == info.nLocal ); 6514 } 6515 #endif 6516 6517 /* Write the payload into the local Cell and any extra into overflow pages */ 6518 while( 1 ){ 6519 n = nPayload; 6520 if( n>spaceLeft ) n = spaceLeft; 6521 6522 /* If pToRelease is not zero than pPayload points into the data area 6523 ** of pToRelease. Make sure pToRelease is still writeable. */ 6524 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6525 6526 /* If pPayload is part of the data area of pPage, then make sure pPage 6527 ** is still writeable */ 6528 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6529 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6530 6531 if( nSrc>=n ){ 6532 memcpy(pPayload, pSrc, n); 6533 }else if( nSrc>0 ){ 6534 n = nSrc; 6535 memcpy(pPayload, pSrc, n); 6536 }else{ 6537 memset(pPayload, 0, n); 6538 } 6539 nPayload -= n; 6540 if( nPayload<=0 ) break; 6541 pPayload += n; 6542 pSrc += n; 6543 nSrc -= n; 6544 spaceLeft -= n; 6545 if( spaceLeft==0 ){ 6546 MemPage *pOvfl = 0; 6547 #ifndef SQLITE_OMIT_AUTOVACUUM 6548 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6549 if( pBt->autoVacuum ){ 6550 do{ 6551 pgnoOvfl++; 6552 } while( 6553 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6554 ); 6555 } 6556 #endif 6557 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6558 #ifndef SQLITE_OMIT_AUTOVACUUM 6559 /* If the database supports auto-vacuum, and the second or subsequent 6560 ** overflow page is being allocated, add an entry to the pointer-map 6561 ** for that page now. 6562 ** 6563 ** If this is the first overflow page, then write a partial entry 6564 ** to the pointer-map. If we write nothing to this pointer-map slot, 6565 ** then the optimistic overflow chain processing in clearCell() 6566 ** may misinterpret the uninitialized values and delete the 6567 ** wrong pages from the database. 6568 */ 6569 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6570 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6571 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6572 if( rc ){ 6573 releasePage(pOvfl); 6574 } 6575 } 6576 #endif 6577 if( rc ){ 6578 releasePage(pToRelease); 6579 return rc; 6580 } 6581 6582 /* If pToRelease is not zero than pPrior points into the data area 6583 ** of pToRelease. Make sure pToRelease is still writeable. */ 6584 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6585 6586 /* If pPrior is part of the data area of pPage, then make sure pPage 6587 ** is still writeable */ 6588 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6589 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6590 6591 put4byte(pPrior, pgnoOvfl); 6592 releasePage(pToRelease); 6593 pToRelease = pOvfl; 6594 pPrior = pOvfl->aData; 6595 put4byte(pPrior, 0); 6596 pPayload = &pOvfl->aData[4]; 6597 spaceLeft = pBt->usableSize - 4; 6598 } 6599 } 6600 releasePage(pToRelease); 6601 return SQLITE_OK; 6602 } 6603 6604 /* 6605 ** Remove the i-th cell from pPage. This routine effects pPage only. 6606 ** The cell content is not freed or deallocated. It is assumed that 6607 ** the cell content has been copied someplace else. This routine just 6608 ** removes the reference to the cell from pPage. 6609 ** 6610 ** "sz" must be the number of bytes in the cell. 6611 */ 6612 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6613 u32 pc; /* Offset to cell content of cell being deleted */ 6614 u8 *data; /* pPage->aData */ 6615 u8 *ptr; /* Used to move bytes around within data[] */ 6616 int rc; /* The return code */ 6617 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6618 6619 if( *pRC ) return; 6620 assert( idx>=0 && idx<pPage->nCell ); 6621 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6622 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6623 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6624 assert( pPage->nFree>=0 ); 6625 data = pPage->aData; 6626 ptr = &pPage->aCellIdx[2*idx]; 6627 pc = get2byte(ptr); 6628 hdr = pPage->hdrOffset; 6629 testcase( pc==get2byte(&data[hdr+5]) ); 6630 testcase( pc+sz==pPage->pBt->usableSize ); 6631 if( pc+sz > pPage->pBt->usableSize ){ 6632 *pRC = SQLITE_CORRUPT_BKPT; 6633 return; 6634 } 6635 rc = freeSpace(pPage, pc, sz); 6636 if( rc ){ 6637 *pRC = rc; 6638 return; 6639 } 6640 pPage->nCell--; 6641 if( pPage->nCell==0 ){ 6642 memset(&data[hdr+1], 0, 4); 6643 data[hdr+7] = 0; 6644 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6645 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6646 - pPage->childPtrSize - 8; 6647 }else{ 6648 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6649 put2byte(&data[hdr+3], pPage->nCell); 6650 pPage->nFree += 2; 6651 } 6652 } 6653 6654 /* 6655 ** Insert a new cell on pPage at cell index "i". pCell points to the 6656 ** content of the cell. 6657 ** 6658 ** If the cell content will fit on the page, then put it there. If it 6659 ** will not fit, then make a copy of the cell content into pTemp if 6660 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6661 ** in pPage->apOvfl[] and make it point to the cell content (either 6662 ** in pTemp or the original pCell) and also record its index. 6663 ** Allocating a new entry in pPage->aCell[] implies that 6664 ** pPage->nOverflow is incremented. 6665 ** 6666 ** *pRC must be SQLITE_OK when this routine is called. 6667 */ 6668 static void insertCell( 6669 MemPage *pPage, /* Page into which we are copying */ 6670 int i, /* New cell becomes the i-th cell of the page */ 6671 u8 *pCell, /* Content of the new cell */ 6672 int sz, /* Bytes of content in pCell */ 6673 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6674 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6675 int *pRC /* Read and write return code from here */ 6676 ){ 6677 int idx = 0; /* Where to write new cell content in data[] */ 6678 int j; /* Loop counter */ 6679 u8 *data; /* The content of the whole page */ 6680 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 6681 6682 assert( *pRC==SQLITE_OK ); 6683 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6684 assert( MX_CELL(pPage->pBt)<=10921 ); 6685 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6686 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6687 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6688 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6689 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 6690 assert( pPage->nFree>=0 ); 6691 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6692 if( pTemp ){ 6693 memcpy(pTemp, pCell, sz); 6694 pCell = pTemp; 6695 } 6696 if( iChild ){ 6697 put4byte(pCell, iChild); 6698 } 6699 j = pPage->nOverflow++; 6700 /* Comparison against ArraySize-1 since we hold back one extra slot 6701 ** as a contingency. In other words, never need more than 3 overflow 6702 ** slots but 4 are allocated, just to be safe. */ 6703 assert( j < ArraySize(pPage->apOvfl)-1 ); 6704 pPage->apOvfl[j] = pCell; 6705 pPage->aiOvfl[j] = (u16)i; 6706 6707 /* When multiple overflows occur, they are always sequential and in 6708 ** sorted order. This invariants arise because multiple overflows can 6709 ** only occur when inserting divider cells into the parent page during 6710 ** balancing, and the dividers are adjacent and sorted. 6711 */ 6712 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 6713 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 6714 }else{ 6715 int rc = sqlite3PagerWrite(pPage->pDbPage); 6716 if( rc!=SQLITE_OK ){ 6717 *pRC = rc; 6718 return; 6719 } 6720 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6721 data = pPage->aData; 6722 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 6723 rc = allocateSpace(pPage, sz, &idx); 6724 if( rc ){ *pRC = rc; return; } 6725 /* The allocateSpace() routine guarantees the following properties 6726 ** if it returns successfully */ 6727 assert( idx >= 0 ); 6728 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 6729 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6730 pPage->nFree -= (u16)(2 + sz); 6731 if( iChild ){ 6732 /* In a corrupt database where an entry in the cell index section of 6733 ** a btree page has a value of 3 or less, the pCell value might point 6734 ** as many as 4 bytes in front of the start of the aData buffer for 6735 ** the source page. Make sure this does not cause problems by not 6736 ** reading the first 4 bytes */ 6737 memcpy(&data[idx+4], pCell+4, sz-4); 6738 put4byte(&data[idx], iChild); 6739 }else{ 6740 memcpy(&data[idx], pCell, sz); 6741 } 6742 pIns = pPage->aCellIdx + i*2; 6743 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 6744 put2byte(pIns, idx); 6745 pPage->nCell++; 6746 /* increment the cell count */ 6747 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 6748 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 6749 #ifndef SQLITE_OMIT_AUTOVACUUM 6750 if( pPage->pBt->autoVacuum ){ 6751 /* The cell may contain a pointer to an overflow page. If so, write 6752 ** the entry for the overflow page into the pointer map. 6753 */ 6754 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 6755 } 6756 #endif 6757 } 6758 } 6759 6760 /* 6761 ** The following parameters determine how many adjacent pages get involved 6762 ** in a balancing operation. NN is the number of neighbors on either side 6763 ** of the page that participate in the balancing operation. NB is the 6764 ** total number of pages that participate, including the target page and 6765 ** NN neighbors on either side. 6766 ** 6767 ** The minimum value of NN is 1 (of course). Increasing NN above 1 6768 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 6769 ** in exchange for a larger degradation in INSERT and UPDATE performance. 6770 ** The value of NN appears to give the best results overall. 6771 ** 6772 ** (Later:) The description above makes it seem as if these values are 6773 ** tunable - as if you could change them and recompile and it would all work. 6774 ** But that is unlikely. NB has been 3 since the inception of SQLite and 6775 ** we have never tested any other value. 6776 */ 6777 #define NN 1 /* Number of neighbors on either side of pPage */ 6778 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 6779 6780 /* 6781 ** A CellArray object contains a cache of pointers and sizes for a 6782 ** consecutive sequence of cells that might be held on multiple pages. 6783 ** 6784 ** The cells in this array are the divider cell or cells from the pParent 6785 ** page plus up to three child pages. There are a total of nCell cells. 6786 ** 6787 ** pRef is a pointer to one of the pages that contributes cells. This is 6788 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 6789 ** which should be common to all pages that contribute cells to this array. 6790 ** 6791 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 6792 ** cell and the size of each cell. Some of the apCell[] pointers might refer 6793 ** to overflow cells. In other words, some apCel[] pointers might not point 6794 ** to content area of the pages. 6795 ** 6796 ** A szCell[] of zero means the size of that cell has not yet been computed. 6797 ** 6798 ** The cells come from as many as four different pages: 6799 ** 6800 ** ----------- 6801 ** | Parent | 6802 ** ----------- 6803 ** / | \ 6804 ** / | \ 6805 ** --------- --------- --------- 6806 ** |Child-1| |Child-2| |Child-3| 6807 ** --------- --------- --------- 6808 ** 6809 ** The order of cells is in the array is for an index btree is: 6810 ** 6811 ** 1. All cells from Child-1 in order 6812 ** 2. The first divider cell from Parent 6813 ** 3. All cells from Child-2 in order 6814 ** 4. The second divider cell from Parent 6815 ** 5. All cells from Child-3 in order 6816 ** 6817 ** For a table-btree (with rowids) the items 2 and 4 are empty because 6818 ** content exists only in leaves and there are no divider cells. 6819 ** 6820 ** For an index btree, the apEnd[] array holds pointer to the end of page 6821 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 6822 ** respectively. The ixNx[] array holds the number of cells contained in 6823 ** each of these 5 stages, and all stages to the left. Hence: 6824 ** 6825 ** ixNx[0] = Number of cells in Child-1. 6826 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 6827 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 6828 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 6829 ** ixNx[4] = Total number of cells. 6830 ** 6831 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 6832 ** are used and they point to the leaf pages only, and the ixNx value are: 6833 ** 6834 ** ixNx[0] = Number of cells in Child-1. 6835 ** ixNx[1] = Number of cells in Child-1 and Child-2. 6836 ** ixNx[2] = Total number of cells. 6837 ** 6838 ** Sometimes when deleting, a child page can have zero cells. In those 6839 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 6840 ** entries, shift down. The end result is that each ixNx[] entry should 6841 ** be larger than the previous 6842 */ 6843 typedef struct CellArray CellArray; 6844 struct CellArray { 6845 int nCell; /* Number of cells in apCell[] */ 6846 MemPage *pRef; /* Reference page */ 6847 u8 **apCell; /* All cells begin balanced */ 6848 u16 *szCell; /* Local size of all cells in apCell[] */ 6849 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 6850 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 6851 }; 6852 6853 /* 6854 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 6855 ** computed. 6856 */ 6857 static void populateCellCache(CellArray *p, int idx, int N){ 6858 assert( idx>=0 && idx+N<=p->nCell ); 6859 while( N>0 ){ 6860 assert( p->apCell[idx]!=0 ); 6861 if( p->szCell[idx]==0 ){ 6862 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 6863 }else{ 6864 assert( CORRUPT_DB || 6865 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 6866 } 6867 idx++; 6868 N--; 6869 } 6870 } 6871 6872 /* 6873 ** Return the size of the Nth element of the cell array 6874 */ 6875 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 6876 assert( N>=0 && N<p->nCell ); 6877 assert( p->szCell[N]==0 ); 6878 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 6879 return p->szCell[N]; 6880 } 6881 static u16 cachedCellSize(CellArray *p, int N){ 6882 assert( N>=0 && N<p->nCell ); 6883 if( p->szCell[N] ) return p->szCell[N]; 6884 return computeCellSize(p, N); 6885 } 6886 6887 /* 6888 ** Array apCell[] contains pointers to nCell b-tree page cells. The 6889 ** szCell[] array contains the size in bytes of each cell. This function 6890 ** replaces the current contents of page pPg with the contents of the cell 6891 ** array. 6892 ** 6893 ** Some of the cells in apCell[] may currently be stored in pPg. This 6894 ** function works around problems caused by this by making a copy of any 6895 ** such cells before overwriting the page data. 6896 ** 6897 ** The MemPage.nFree field is invalidated by this function. It is the 6898 ** responsibility of the caller to set it correctly. 6899 */ 6900 static int rebuildPage( 6901 CellArray *pCArray, /* Content to be added to page pPg */ 6902 int iFirst, /* First cell in pCArray to use */ 6903 int nCell, /* Final number of cells on page */ 6904 MemPage *pPg /* The page to be reconstructed */ 6905 ){ 6906 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 6907 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 6908 const int usableSize = pPg->pBt->usableSize; 6909 u8 * const pEnd = &aData[usableSize]; 6910 int i = iFirst; /* Which cell to copy from pCArray*/ 6911 u32 j; /* Start of cell content area */ 6912 int iEnd = i+nCell; /* Loop terminator */ 6913 u8 *pCellptr = pPg->aCellIdx; 6914 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6915 u8 *pData; 6916 int k; /* Current slot in pCArray->apEnd[] */ 6917 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 6918 6919 assert( i<iEnd ); 6920 j = get2byte(&aData[hdr+5]); 6921 if( j>(u32)usableSize ){ j = 0; } 6922 memcpy(&pTmp[j], &aData[j], usableSize - j); 6923 6924 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 6925 pSrcEnd = pCArray->apEnd[k]; 6926 6927 pData = pEnd; 6928 while( 1/*exit by break*/ ){ 6929 u8 *pCell = pCArray->apCell[i]; 6930 u16 sz = pCArray->szCell[i]; 6931 assert( sz>0 ); 6932 if( SQLITE_WITHIN(pCell,aData,pEnd) ){ 6933 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 6934 pCell = &pTmp[pCell - aData]; 6935 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 6936 && (uptr)(pCell)<(uptr)pSrcEnd 6937 ){ 6938 return SQLITE_CORRUPT_BKPT; 6939 } 6940 6941 pData -= sz; 6942 put2byte(pCellptr, (pData - aData)); 6943 pCellptr += 2; 6944 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 6945 memcpy(pData, pCell, sz); 6946 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 6947 testcase( sz!=pPg->xCellSize(pPg,pCell) ); 6948 i++; 6949 if( i>=iEnd ) break; 6950 if( pCArray->ixNx[k]<=i ){ 6951 k++; 6952 pSrcEnd = pCArray->apEnd[k]; 6953 } 6954 } 6955 6956 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 6957 pPg->nCell = nCell; 6958 pPg->nOverflow = 0; 6959 6960 put2byte(&aData[hdr+1], 0); 6961 put2byte(&aData[hdr+3], pPg->nCell); 6962 put2byte(&aData[hdr+5], pData - aData); 6963 aData[hdr+7] = 0x00; 6964 return SQLITE_OK; 6965 } 6966 6967 /* 6968 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 6969 ** This function attempts to add the cells stored in the array to page pPg. 6970 ** If it cannot (because the page needs to be defragmented before the cells 6971 ** will fit), non-zero is returned. Otherwise, if the cells are added 6972 ** successfully, zero is returned. 6973 ** 6974 ** Argument pCellptr points to the first entry in the cell-pointer array 6975 ** (part of page pPg) to populate. After cell apCell[0] is written to the 6976 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 6977 ** cell in the array. It is the responsibility of the caller to ensure 6978 ** that it is safe to overwrite this part of the cell-pointer array. 6979 ** 6980 ** When this function is called, *ppData points to the start of the 6981 ** content area on page pPg. If the size of the content area is extended, 6982 ** *ppData is updated to point to the new start of the content area 6983 ** before returning. 6984 ** 6985 ** Finally, argument pBegin points to the byte immediately following the 6986 ** end of the space required by this page for the cell-pointer area (for 6987 ** all cells - not just those inserted by the current call). If the content 6988 ** area must be extended to before this point in order to accomodate all 6989 ** cells in apCell[], then the cells do not fit and non-zero is returned. 6990 */ 6991 static int pageInsertArray( 6992 MemPage *pPg, /* Page to add cells to */ 6993 u8 *pBegin, /* End of cell-pointer array */ 6994 u8 **ppData, /* IN/OUT: Page content-area pointer */ 6995 u8 *pCellptr, /* Pointer to cell-pointer area */ 6996 int iFirst, /* Index of first cell to add */ 6997 int nCell, /* Number of cells to add to pPg */ 6998 CellArray *pCArray /* Array of cells */ 6999 ){ 7000 int i = iFirst; /* Loop counter - cell index to insert */ 7001 u8 *aData = pPg->aData; /* Complete page */ 7002 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7003 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7004 int k; /* Current slot in pCArray->apEnd[] */ 7005 u8 *pEnd; /* Maximum extent of cell data */ 7006 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7007 if( iEnd<=iFirst ) return 0; 7008 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7009 pEnd = pCArray->apEnd[k]; 7010 while( 1 /*Exit by break*/ ){ 7011 int sz, rc; 7012 u8 *pSlot; 7013 assert( pCArray->szCell[i]!=0 ); 7014 sz = pCArray->szCell[i]; 7015 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7016 if( (pData - pBegin)<sz ) return 1; 7017 pData -= sz; 7018 pSlot = pData; 7019 } 7020 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7021 ** database. But they might for a corrupt database. Hence use memmove() 7022 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7023 assert( (pSlot+sz)<=pCArray->apCell[i] 7024 || pSlot>=(pCArray->apCell[i]+sz) 7025 || CORRUPT_DB ); 7026 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7027 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7028 ){ 7029 assert( CORRUPT_DB ); 7030 (void)SQLITE_CORRUPT_BKPT; 7031 return 1; 7032 } 7033 memmove(pSlot, pCArray->apCell[i], sz); 7034 put2byte(pCellptr, (pSlot - aData)); 7035 pCellptr += 2; 7036 i++; 7037 if( i>=iEnd ) break; 7038 if( pCArray->ixNx[k]<=i ){ 7039 k++; 7040 pEnd = pCArray->apEnd[k]; 7041 } 7042 } 7043 *ppData = pData; 7044 return 0; 7045 } 7046 7047 /* 7048 ** The pCArray object contains pointers to b-tree cells and their sizes. 7049 ** 7050 ** This function adds the space associated with each cell in the array 7051 ** that is currently stored within the body of pPg to the pPg free-list. 7052 ** The cell-pointers and other fields of the page are not updated. 7053 ** 7054 ** This function returns the total number of cells added to the free-list. 7055 */ 7056 static int pageFreeArray( 7057 MemPage *pPg, /* Page to edit */ 7058 int iFirst, /* First cell to delete */ 7059 int nCell, /* Cells to delete */ 7060 CellArray *pCArray /* Array of cells */ 7061 ){ 7062 u8 * const aData = pPg->aData; 7063 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7064 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7065 int nRet = 0; 7066 int i; 7067 int iEnd = iFirst + nCell; 7068 u8 *pFree = 0; 7069 int szFree = 0; 7070 7071 for(i=iFirst; i<iEnd; i++){ 7072 u8 *pCell = pCArray->apCell[i]; 7073 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7074 int sz; 7075 /* No need to use cachedCellSize() here. The sizes of all cells that 7076 ** are to be freed have already been computing while deciding which 7077 ** cells need freeing */ 7078 sz = pCArray->szCell[i]; assert( sz>0 ); 7079 if( pFree!=(pCell + sz) ){ 7080 if( pFree ){ 7081 assert( pFree>aData && (pFree - aData)<65536 ); 7082 freeSpace(pPg, (u16)(pFree - aData), szFree); 7083 } 7084 pFree = pCell; 7085 szFree = sz; 7086 if( pFree+sz>pEnd ) return 0; 7087 }else{ 7088 pFree = pCell; 7089 szFree += sz; 7090 } 7091 nRet++; 7092 } 7093 } 7094 if( pFree ){ 7095 assert( pFree>aData && (pFree - aData)<65536 ); 7096 freeSpace(pPg, (u16)(pFree - aData), szFree); 7097 } 7098 return nRet; 7099 } 7100 7101 /* 7102 ** pCArray contains pointers to and sizes of all cells in the page being 7103 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7104 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7105 ** starting at apCell[iNew]. 7106 ** 7107 ** This routine makes the necessary adjustments to pPg so that it contains 7108 ** the correct cells after being balanced. 7109 ** 7110 ** The pPg->nFree field is invalid when this function returns. It is the 7111 ** responsibility of the caller to set it correctly. 7112 */ 7113 static int editPage( 7114 MemPage *pPg, /* Edit this page */ 7115 int iOld, /* Index of first cell currently on page */ 7116 int iNew, /* Index of new first cell on page */ 7117 int nNew, /* Final number of cells on page */ 7118 CellArray *pCArray /* Array of cells and sizes */ 7119 ){ 7120 u8 * const aData = pPg->aData; 7121 const int hdr = pPg->hdrOffset; 7122 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7123 int nCell = pPg->nCell; /* Cells stored on pPg */ 7124 u8 *pData; 7125 u8 *pCellptr; 7126 int i; 7127 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7128 int iNewEnd = iNew + nNew; 7129 7130 #ifdef SQLITE_DEBUG 7131 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7132 memcpy(pTmp, aData, pPg->pBt->usableSize); 7133 #endif 7134 7135 /* Remove cells from the start and end of the page */ 7136 assert( nCell>=0 ); 7137 if( iOld<iNew ){ 7138 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7139 if( nShift>nCell ) return SQLITE_CORRUPT_BKPT; 7140 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7141 nCell -= nShift; 7142 } 7143 if( iNewEnd < iOldEnd ){ 7144 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7145 assert( nCell>=nTail ); 7146 nCell -= nTail; 7147 } 7148 7149 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7150 if( pData<pBegin ) goto editpage_fail; 7151 7152 /* Add cells to the start of the page */ 7153 if( iNew<iOld ){ 7154 int nAdd = MIN(nNew,iOld-iNew); 7155 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7156 assert( nAdd>=0 ); 7157 pCellptr = pPg->aCellIdx; 7158 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7159 if( pageInsertArray( 7160 pPg, pBegin, &pData, pCellptr, 7161 iNew, nAdd, pCArray 7162 ) ) goto editpage_fail; 7163 nCell += nAdd; 7164 } 7165 7166 /* Add any overflow cells */ 7167 for(i=0; i<pPg->nOverflow; i++){ 7168 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7169 if( iCell>=0 && iCell<nNew ){ 7170 pCellptr = &pPg->aCellIdx[iCell * 2]; 7171 if( nCell>iCell ){ 7172 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7173 } 7174 nCell++; 7175 cachedCellSize(pCArray, iCell+iNew); 7176 if( pageInsertArray( 7177 pPg, pBegin, &pData, pCellptr, 7178 iCell+iNew, 1, pCArray 7179 ) ) goto editpage_fail; 7180 } 7181 } 7182 7183 /* Append cells to the end of the page */ 7184 assert( nCell>=0 ); 7185 pCellptr = &pPg->aCellIdx[nCell*2]; 7186 if( pageInsertArray( 7187 pPg, pBegin, &pData, pCellptr, 7188 iNew+nCell, nNew-nCell, pCArray 7189 ) ) goto editpage_fail; 7190 7191 pPg->nCell = nNew; 7192 pPg->nOverflow = 0; 7193 7194 put2byte(&aData[hdr+3], pPg->nCell); 7195 put2byte(&aData[hdr+5], pData - aData); 7196 7197 #ifdef SQLITE_DEBUG 7198 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7199 u8 *pCell = pCArray->apCell[i+iNew]; 7200 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7201 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7202 pCell = &pTmp[pCell - aData]; 7203 } 7204 assert( 0==memcmp(pCell, &aData[iOff], 7205 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7206 } 7207 #endif 7208 7209 return SQLITE_OK; 7210 editpage_fail: 7211 /* Unable to edit this page. Rebuild it from scratch instead. */ 7212 populateCellCache(pCArray, iNew, nNew); 7213 return rebuildPage(pCArray, iNew, nNew, pPg); 7214 } 7215 7216 7217 #ifndef SQLITE_OMIT_QUICKBALANCE 7218 /* 7219 ** This version of balance() handles the common special case where 7220 ** a new entry is being inserted on the extreme right-end of the 7221 ** tree, in other words, when the new entry will become the largest 7222 ** entry in the tree. 7223 ** 7224 ** Instead of trying to balance the 3 right-most leaf pages, just add 7225 ** a new page to the right-hand side and put the one new entry in 7226 ** that page. This leaves the right side of the tree somewhat 7227 ** unbalanced. But odds are that we will be inserting new entries 7228 ** at the end soon afterwards so the nearly empty page will quickly 7229 ** fill up. On average. 7230 ** 7231 ** pPage is the leaf page which is the right-most page in the tree. 7232 ** pParent is its parent. pPage must have a single overflow entry 7233 ** which is also the right-most entry on the page. 7234 ** 7235 ** The pSpace buffer is used to store a temporary copy of the divider 7236 ** cell that will be inserted into pParent. Such a cell consists of a 4 7237 ** byte page number followed by a variable length integer. In other 7238 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7239 ** least 13 bytes in size. 7240 */ 7241 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7242 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7243 MemPage *pNew; /* Newly allocated page */ 7244 int rc; /* Return Code */ 7245 Pgno pgnoNew; /* Page number of pNew */ 7246 7247 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7248 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7249 assert( pPage->nOverflow==1 ); 7250 7251 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7252 assert( pPage->nFree>=0 ); 7253 assert( pParent->nFree>=0 ); 7254 7255 /* Allocate a new page. This page will become the right-sibling of 7256 ** pPage. Make the parent page writable, so that the new divider cell 7257 ** may be inserted. If both these operations are successful, proceed. 7258 */ 7259 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7260 7261 if( rc==SQLITE_OK ){ 7262 7263 u8 *pOut = &pSpace[4]; 7264 u8 *pCell = pPage->apOvfl[0]; 7265 u16 szCell = pPage->xCellSize(pPage, pCell); 7266 u8 *pStop; 7267 CellArray b; 7268 7269 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7270 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7271 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7272 b.nCell = 1; 7273 b.pRef = pPage; 7274 b.apCell = &pCell; 7275 b.szCell = &szCell; 7276 b.apEnd[0] = pPage->aDataEnd; 7277 b.ixNx[0] = 2; 7278 rc = rebuildPage(&b, 0, 1, pNew); 7279 if( NEVER(rc) ){ 7280 releasePage(pNew); 7281 return rc; 7282 } 7283 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7284 7285 /* If this is an auto-vacuum database, update the pointer map 7286 ** with entries for the new page, and any pointer from the 7287 ** cell on the page to an overflow page. If either of these 7288 ** operations fails, the return code is set, but the contents 7289 ** of the parent page are still manipulated by thh code below. 7290 ** That is Ok, at this point the parent page is guaranteed to 7291 ** be marked as dirty. Returning an error code will cause a 7292 ** rollback, undoing any changes made to the parent page. 7293 */ 7294 if( ISAUTOVACUUM ){ 7295 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7296 if( szCell>pNew->minLocal ){ 7297 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7298 } 7299 } 7300 7301 /* Create a divider cell to insert into pParent. The divider cell 7302 ** consists of a 4-byte page number (the page number of pPage) and 7303 ** a variable length key value (which must be the same value as the 7304 ** largest key on pPage). 7305 ** 7306 ** To find the largest key value on pPage, first find the right-most 7307 ** cell on pPage. The first two fields of this cell are the 7308 ** record-length (a variable length integer at most 32-bits in size) 7309 ** and the key value (a variable length integer, may have any value). 7310 ** The first of the while(...) loops below skips over the record-length 7311 ** field. The second while(...) loop copies the key value from the 7312 ** cell on pPage into the pSpace buffer. 7313 */ 7314 pCell = findCell(pPage, pPage->nCell-1); 7315 pStop = &pCell[9]; 7316 while( (*(pCell++)&0x80) && pCell<pStop ); 7317 pStop = &pCell[9]; 7318 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7319 7320 /* Insert the new divider cell into pParent. */ 7321 if( rc==SQLITE_OK ){ 7322 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7323 0, pPage->pgno, &rc); 7324 } 7325 7326 /* Set the right-child pointer of pParent to point to the new page. */ 7327 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7328 7329 /* Release the reference to the new page. */ 7330 releasePage(pNew); 7331 } 7332 7333 return rc; 7334 } 7335 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7336 7337 #if 0 7338 /* 7339 ** This function does not contribute anything to the operation of SQLite. 7340 ** it is sometimes activated temporarily while debugging code responsible 7341 ** for setting pointer-map entries. 7342 */ 7343 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7344 int i, j; 7345 for(i=0; i<nPage; i++){ 7346 Pgno n; 7347 u8 e; 7348 MemPage *pPage = apPage[i]; 7349 BtShared *pBt = pPage->pBt; 7350 assert( pPage->isInit ); 7351 7352 for(j=0; j<pPage->nCell; j++){ 7353 CellInfo info; 7354 u8 *z; 7355 7356 z = findCell(pPage, j); 7357 pPage->xParseCell(pPage, z, &info); 7358 if( info.nLocal<info.nPayload ){ 7359 Pgno ovfl = get4byte(&z[info.nSize-4]); 7360 ptrmapGet(pBt, ovfl, &e, &n); 7361 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7362 } 7363 if( !pPage->leaf ){ 7364 Pgno child = get4byte(z); 7365 ptrmapGet(pBt, child, &e, &n); 7366 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7367 } 7368 } 7369 if( !pPage->leaf ){ 7370 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7371 ptrmapGet(pBt, child, &e, &n); 7372 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7373 } 7374 } 7375 return 1; 7376 } 7377 #endif 7378 7379 /* 7380 ** This function is used to copy the contents of the b-tree node stored 7381 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7382 ** the pointer-map entries for each child page are updated so that the 7383 ** parent page stored in the pointer map is page pTo. If pFrom contained 7384 ** any cells with overflow page pointers, then the corresponding pointer 7385 ** map entries are also updated so that the parent page is page pTo. 7386 ** 7387 ** If pFrom is currently carrying any overflow cells (entries in the 7388 ** MemPage.apOvfl[] array), they are not copied to pTo. 7389 ** 7390 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7391 ** 7392 ** The performance of this function is not critical. It is only used by 7393 ** the balance_shallower() and balance_deeper() procedures, neither of 7394 ** which are called often under normal circumstances. 7395 */ 7396 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7397 if( (*pRC)==SQLITE_OK ){ 7398 BtShared * const pBt = pFrom->pBt; 7399 u8 * const aFrom = pFrom->aData; 7400 u8 * const aTo = pTo->aData; 7401 int const iFromHdr = pFrom->hdrOffset; 7402 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7403 int rc; 7404 int iData; 7405 7406 7407 assert( pFrom->isInit ); 7408 assert( pFrom->nFree>=iToHdr ); 7409 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7410 7411 /* Copy the b-tree node content from page pFrom to page pTo. */ 7412 iData = get2byte(&aFrom[iFromHdr+5]); 7413 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7414 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7415 7416 /* Reinitialize page pTo so that the contents of the MemPage structure 7417 ** match the new data. The initialization of pTo can actually fail under 7418 ** fairly obscure circumstances, even though it is a copy of initialized 7419 ** page pFrom. 7420 */ 7421 pTo->isInit = 0; 7422 rc = btreeInitPage(pTo); 7423 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7424 if( rc!=SQLITE_OK ){ 7425 *pRC = rc; 7426 return; 7427 } 7428 7429 /* If this is an auto-vacuum database, update the pointer-map entries 7430 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7431 */ 7432 if( ISAUTOVACUUM ){ 7433 *pRC = setChildPtrmaps(pTo); 7434 } 7435 } 7436 } 7437 7438 /* 7439 ** This routine redistributes cells on the iParentIdx'th child of pParent 7440 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7441 ** same amount of free space. Usually a single sibling on either side of the 7442 ** page are used in the balancing, though both siblings might come from one 7443 ** side if the page is the first or last child of its parent. If the page 7444 ** has fewer than 2 siblings (something which can only happen if the page 7445 ** is a root page or a child of a root page) then all available siblings 7446 ** participate in the balancing. 7447 ** 7448 ** The number of siblings of the page might be increased or decreased by 7449 ** one or two in an effort to keep pages nearly full but not over full. 7450 ** 7451 ** Note that when this routine is called, some of the cells on the page 7452 ** might not actually be stored in MemPage.aData[]. This can happen 7453 ** if the page is overfull. This routine ensures that all cells allocated 7454 ** to the page and its siblings fit into MemPage.aData[] before returning. 7455 ** 7456 ** In the course of balancing the page and its siblings, cells may be 7457 ** inserted into or removed from the parent page (pParent). Doing so 7458 ** may cause the parent page to become overfull or underfull. If this 7459 ** happens, it is the responsibility of the caller to invoke the correct 7460 ** balancing routine to fix this problem (see the balance() routine). 7461 ** 7462 ** If this routine fails for any reason, it might leave the database 7463 ** in a corrupted state. So if this routine fails, the database should 7464 ** be rolled back. 7465 ** 7466 ** The third argument to this function, aOvflSpace, is a pointer to a 7467 ** buffer big enough to hold one page. If while inserting cells into the parent 7468 ** page (pParent) the parent page becomes overfull, this buffer is 7469 ** used to store the parent's overflow cells. Because this function inserts 7470 ** a maximum of four divider cells into the parent page, and the maximum 7471 ** size of a cell stored within an internal node is always less than 1/4 7472 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7473 ** enough for all overflow cells. 7474 ** 7475 ** If aOvflSpace is set to a null pointer, this function returns 7476 ** SQLITE_NOMEM. 7477 */ 7478 static int balance_nonroot( 7479 MemPage *pParent, /* Parent page of siblings being balanced */ 7480 int iParentIdx, /* Index of "the page" in pParent */ 7481 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7482 int isRoot, /* True if pParent is a root-page */ 7483 int bBulk /* True if this call is part of a bulk load */ 7484 ){ 7485 BtShared *pBt; /* The whole database */ 7486 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7487 int nNew = 0; /* Number of pages in apNew[] */ 7488 int nOld; /* Number of pages in apOld[] */ 7489 int i, j, k; /* Loop counters */ 7490 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7491 int rc = SQLITE_OK; /* The return code */ 7492 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7493 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7494 int usableSpace; /* Bytes in pPage beyond the header */ 7495 int pageFlags; /* Value of pPage->aData[0] */ 7496 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7497 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7498 int szScratch; /* Size of scratch memory requested */ 7499 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7500 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7501 u8 *pRight; /* Location in parent of right-sibling pointer */ 7502 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7503 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7504 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7505 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7506 u8 *aSpace1; /* Space for copies of dividers cells */ 7507 Pgno pgno; /* Temp var to store a page number in */ 7508 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7509 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7510 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7511 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7512 CellArray b; /* Parsed information on cells being balanced */ 7513 7514 memset(abDone, 0, sizeof(abDone)); 7515 b.nCell = 0; 7516 b.apCell = 0; 7517 pBt = pParent->pBt; 7518 assert( sqlite3_mutex_held(pBt->mutex) ); 7519 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7520 7521 /* At this point pParent may have at most one overflow cell. And if 7522 ** this overflow cell is present, it must be the cell with 7523 ** index iParentIdx. This scenario comes about when this function 7524 ** is called (indirectly) from sqlite3BtreeDelete(). 7525 */ 7526 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7527 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7528 7529 if( !aOvflSpace ){ 7530 return SQLITE_NOMEM_BKPT; 7531 } 7532 assert( pParent->nFree>=0 ); 7533 7534 /* Find the sibling pages to balance. Also locate the cells in pParent 7535 ** that divide the siblings. An attempt is made to find NN siblings on 7536 ** either side of pPage. More siblings are taken from one side, however, 7537 ** if there are fewer than NN siblings on the other side. If pParent 7538 ** has NB or fewer children then all children of pParent are taken. 7539 ** 7540 ** This loop also drops the divider cells from the parent page. This 7541 ** way, the remainder of the function does not have to deal with any 7542 ** overflow cells in the parent page, since if any existed they will 7543 ** have already been removed. 7544 */ 7545 i = pParent->nOverflow + pParent->nCell; 7546 if( i<2 ){ 7547 nxDiv = 0; 7548 }else{ 7549 assert( bBulk==0 || bBulk==1 ); 7550 if( iParentIdx==0 ){ 7551 nxDiv = 0; 7552 }else if( iParentIdx==i ){ 7553 nxDiv = i-2+bBulk; 7554 }else{ 7555 nxDiv = iParentIdx-1; 7556 } 7557 i = 2-bBulk; 7558 } 7559 nOld = i+1; 7560 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7561 pRight = &pParent->aData[pParent->hdrOffset+8]; 7562 }else{ 7563 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7564 } 7565 pgno = get4byte(pRight); 7566 while( 1 ){ 7567 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7568 if( rc ){ 7569 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7570 goto balance_cleanup; 7571 } 7572 if( apOld[i]->nFree<0 ){ 7573 rc = btreeComputeFreeSpace(apOld[i]); 7574 if( rc ){ 7575 memset(apOld, 0, (i)*sizeof(MemPage*)); 7576 goto balance_cleanup; 7577 } 7578 } 7579 if( (i--)==0 ) break; 7580 7581 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7582 apDiv[i] = pParent->apOvfl[0]; 7583 pgno = get4byte(apDiv[i]); 7584 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7585 pParent->nOverflow = 0; 7586 }else{ 7587 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7588 pgno = get4byte(apDiv[i]); 7589 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7590 7591 /* Drop the cell from the parent page. apDiv[i] still points to 7592 ** the cell within the parent, even though it has been dropped. 7593 ** This is safe because dropping a cell only overwrites the first 7594 ** four bytes of it, and this function does not need the first 7595 ** four bytes of the divider cell. So the pointer is safe to use 7596 ** later on. 7597 ** 7598 ** But not if we are in secure-delete mode. In secure-delete mode, 7599 ** the dropCell() routine will overwrite the entire cell with zeroes. 7600 ** In this case, temporarily copy the cell into the aOvflSpace[] 7601 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7602 ** is allocated. */ 7603 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7604 int iOff; 7605 7606 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7607 if( (iOff+szNew[i])>(int)pBt->usableSize ){ 7608 rc = SQLITE_CORRUPT_BKPT; 7609 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7610 goto balance_cleanup; 7611 }else{ 7612 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7613 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7614 } 7615 } 7616 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7617 } 7618 } 7619 7620 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7621 ** alignment */ 7622 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl)); 7623 nMaxCells = (nMaxCells + 3)&~3; 7624 7625 /* 7626 ** Allocate space for memory structures 7627 */ 7628 szScratch = 7629 nMaxCells*sizeof(u8*) /* b.apCell */ 7630 + nMaxCells*sizeof(u16) /* b.szCell */ 7631 + pBt->pageSize; /* aSpace1 */ 7632 7633 assert( szScratch<=7*(int)pBt->pageSize ); 7634 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 7635 if( b.apCell==0 ){ 7636 rc = SQLITE_NOMEM_BKPT; 7637 goto balance_cleanup; 7638 } 7639 b.szCell = (u16*)&b.apCell[nMaxCells]; 7640 aSpace1 = (u8*)&b.szCell[nMaxCells]; 7641 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 7642 7643 /* 7644 ** Load pointers to all cells on sibling pages and the divider cells 7645 ** into the local b.apCell[] array. Make copies of the divider cells 7646 ** into space obtained from aSpace1[]. The divider cells have already 7647 ** been removed from pParent. 7648 ** 7649 ** If the siblings are on leaf pages, then the child pointers of the 7650 ** divider cells are stripped from the cells before they are copied 7651 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 7652 ** child pointers. If siblings are not leaves, then all cell in 7653 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 7654 ** are alike. 7655 ** 7656 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 7657 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 7658 */ 7659 b.pRef = apOld[0]; 7660 leafCorrection = b.pRef->leaf*4; 7661 leafData = b.pRef->intKeyLeaf; 7662 for(i=0; i<nOld; i++){ 7663 MemPage *pOld = apOld[i]; 7664 int limit = pOld->nCell; 7665 u8 *aData = pOld->aData; 7666 u16 maskPage = pOld->maskPage; 7667 u8 *piCell = aData + pOld->cellOffset; 7668 u8 *piEnd; 7669 VVA_ONLY( int nCellAtStart = b.nCell; ) 7670 7671 /* Verify that all sibling pages are of the same "type" (table-leaf, 7672 ** table-interior, index-leaf, or index-interior). 7673 */ 7674 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 7675 rc = SQLITE_CORRUPT_BKPT; 7676 goto balance_cleanup; 7677 } 7678 7679 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 7680 ** contains overflow cells, include them in the b.apCell[] array 7681 ** in the correct spot. 7682 ** 7683 ** Note that when there are multiple overflow cells, it is always the 7684 ** case that they are sequential and adjacent. This invariant arises 7685 ** because multiple overflows can only occurs when inserting divider 7686 ** cells into a parent on a prior balance, and divider cells are always 7687 ** adjacent and are inserted in order. There is an assert() tagged 7688 ** with "NOTE 1" in the overflow cell insertion loop to prove this 7689 ** invariant. 7690 ** 7691 ** This must be done in advance. Once the balance starts, the cell 7692 ** offset section of the btree page will be overwritten and we will no 7693 ** long be able to find the cells if a pointer to each cell is not saved 7694 ** first. 7695 */ 7696 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 7697 if( pOld->nOverflow>0 ){ 7698 if( NEVER(limit<pOld->aiOvfl[0]) ){ 7699 rc = SQLITE_CORRUPT_BKPT; 7700 goto balance_cleanup; 7701 } 7702 limit = pOld->aiOvfl[0]; 7703 for(j=0; j<limit; j++){ 7704 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7705 piCell += 2; 7706 b.nCell++; 7707 } 7708 for(k=0; k<pOld->nOverflow; k++){ 7709 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 7710 b.apCell[b.nCell] = pOld->apOvfl[k]; 7711 b.nCell++; 7712 } 7713 } 7714 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 7715 while( piCell<piEnd ){ 7716 assert( b.nCell<nMaxCells ); 7717 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7718 piCell += 2; 7719 b.nCell++; 7720 } 7721 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 7722 7723 cntOld[i] = b.nCell; 7724 if( i<nOld-1 && !leafData){ 7725 u16 sz = (u16)szNew[i]; 7726 u8 *pTemp; 7727 assert( b.nCell<nMaxCells ); 7728 b.szCell[b.nCell] = sz; 7729 pTemp = &aSpace1[iSpace1]; 7730 iSpace1 += sz; 7731 assert( sz<=pBt->maxLocal+23 ); 7732 assert( iSpace1 <= (int)pBt->pageSize ); 7733 memcpy(pTemp, apDiv[i], sz); 7734 b.apCell[b.nCell] = pTemp+leafCorrection; 7735 assert( leafCorrection==0 || leafCorrection==4 ); 7736 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 7737 if( !pOld->leaf ){ 7738 assert( leafCorrection==0 ); 7739 assert( pOld->hdrOffset==0 ); 7740 /* The right pointer of the child page pOld becomes the left 7741 ** pointer of the divider cell */ 7742 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 7743 }else{ 7744 assert( leafCorrection==4 ); 7745 while( b.szCell[b.nCell]<4 ){ 7746 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 7747 ** does exist, pad it with 0x00 bytes. */ 7748 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 7749 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 7750 aSpace1[iSpace1++] = 0x00; 7751 b.szCell[b.nCell]++; 7752 } 7753 } 7754 b.nCell++; 7755 } 7756 } 7757 7758 /* 7759 ** Figure out the number of pages needed to hold all b.nCell cells. 7760 ** Store this number in "k". Also compute szNew[] which is the total 7761 ** size of all cells on the i-th page and cntNew[] which is the index 7762 ** in b.apCell[] of the cell that divides page i from page i+1. 7763 ** cntNew[k] should equal b.nCell. 7764 ** 7765 ** Values computed by this block: 7766 ** 7767 ** k: The total number of sibling pages 7768 ** szNew[i]: Spaced used on the i-th sibling page. 7769 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 7770 ** the right of the i-th sibling page. 7771 ** usableSpace: Number of bytes of space available on each sibling. 7772 ** 7773 */ 7774 usableSpace = pBt->usableSize - 12 + leafCorrection; 7775 for(i=k=0; i<nOld; i++, k++){ 7776 MemPage *p = apOld[i]; 7777 b.apEnd[k] = p->aDataEnd; 7778 b.ixNx[k] = cntOld[i]; 7779 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 7780 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 7781 } 7782 if( !leafData ){ 7783 k++; 7784 b.apEnd[k] = pParent->aDataEnd; 7785 b.ixNx[k] = cntOld[i]+1; 7786 } 7787 assert( p->nFree>=0 ); 7788 szNew[i] = usableSpace - p->nFree; 7789 for(j=0; j<p->nOverflow; j++){ 7790 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 7791 } 7792 cntNew[i] = cntOld[i]; 7793 } 7794 k = nOld; 7795 for(i=0; i<k; i++){ 7796 int sz; 7797 while( szNew[i]>usableSpace ){ 7798 if( i+1>=k ){ 7799 k = i+2; 7800 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 7801 szNew[k-1] = 0; 7802 cntNew[k-1] = b.nCell; 7803 } 7804 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 7805 szNew[i] -= sz; 7806 if( !leafData ){ 7807 if( cntNew[i]<b.nCell ){ 7808 sz = 2 + cachedCellSize(&b, cntNew[i]); 7809 }else{ 7810 sz = 0; 7811 } 7812 } 7813 szNew[i+1] += sz; 7814 cntNew[i]--; 7815 } 7816 while( cntNew[i]<b.nCell ){ 7817 sz = 2 + cachedCellSize(&b, cntNew[i]); 7818 if( szNew[i]+sz>usableSpace ) break; 7819 szNew[i] += sz; 7820 cntNew[i]++; 7821 if( !leafData ){ 7822 if( cntNew[i]<b.nCell ){ 7823 sz = 2 + cachedCellSize(&b, cntNew[i]); 7824 }else{ 7825 sz = 0; 7826 } 7827 } 7828 szNew[i+1] -= sz; 7829 } 7830 if( cntNew[i]>=b.nCell ){ 7831 k = i+1; 7832 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 7833 rc = SQLITE_CORRUPT_BKPT; 7834 goto balance_cleanup; 7835 } 7836 } 7837 7838 /* 7839 ** The packing computed by the previous block is biased toward the siblings 7840 ** on the left side (siblings with smaller keys). The left siblings are 7841 ** always nearly full, while the right-most sibling might be nearly empty. 7842 ** The next block of code attempts to adjust the packing of siblings to 7843 ** get a better balance. 7844 ** 7845 ** This adjustment is more than an optimization. The packing above might 7846 ** be so out of balance as to be illegal. For example, the right-most 7847 ** sibling might be completely empty. This adjustment is not optional. 7848 */ 7849 for(i=k-1; i>0; i--){ 7850 int szRight = szNew[i]; /* Size of sibling on the right */ 7851 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 7852 int r; /* Index of right-most cell in left sibling */ 7853 int d; /* Index of first cell to the left of right sibling */ 7854 7855 r = cntNew[i-1] - 1; 7856 d = r + 1 - leafData; 7857 (void)cachedCellSize(&b, d); 7858 do{ 7859 assert( d<nMaxCells ); 7860 assert( r<nMaxCells ); 7861 (void)cachedCellSize(&b, r); 7862 if( szRight!=0 7863 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 7864 break; 7865 } 7866 szRight += b.szCell[d] + 2; 7867 szLeft -= b.szCell[r] + 2; 7868 cntNew[i-1] = r; 7869 r--; 7870 d--; 7871 }while( r>=0 ); 7872 szNew[i] = szRight; 7873 szNew[i-1] = szLeft; 7874 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 7875 rc = SQLITE_CORRUPT_BKPT; 7876 goto balance_cleanup; 7877 } 7878 } 7879 7880 /* Sanity check: For a non-corrupt database file one of the follwing 7881 ** must be true: 7882 ** (1) We found one or more cells (cntNew[0])>0), or 7883 ** (2) pPage is a virtual root page. A virtual root page is when 7884 ** the real root page is page 1 and we are the only child of 7885 ** that page. 7886 */ 7887 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 7888 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 7889 apOld[0]->pgno, apOld[0]->nCell, 7890 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 7891 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 7892 )); 7893 7894 /* 7895 ** Allocate k new pages. Reuse old pages where possible. 7896 */ 7897 pageFlags = apOld[0]->aData[0]; 7898 for(i=0; i<k; i++){ 7899 MemPage *pNew; 7900 if( i<nOld ){ 7901 pNew = apNew[i] = apOld[i]; 7902 apOld[i] = 0; 7903 rc = sqlite3PagerWrite(pNew->pDbPage); 7904 nNew++; 7905 if( rc ) goto balance_cleanup; 7906 }else{ 7907 assert( i>0 ); 7908 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 7909 if( rc ) goto balance_cleanup; 7910 zeroPage(pNew, pageFlags); 7911 apNew[i] = pNew; 7912 nNew++; 7913 cntOld[i] = b.nCell; 7914 7915 /* Set the pointer-map entry for the new sibling page. */ 7916 if( ISAUTOVACUUM ){ 7917 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 7918 if( rc!=SQLITE_OK ){ 7919 goto balance_cleanup; 7920 } 7921 } 7922 } 7923 } 7924 7925 /* 7926 ** Reassign page numbers so that the new pages are in ascending order. 7927 ** This helps to keep entries in the disk file in order so that a scan 7928 ** of the table is closer to a linear scan through the file. That in turn 7929 ** helps the operating system to deliver pages from the disk more rapidly. 7930 ** 7931 ** An O(n^2) insertion sort algorithm is used, but since n is never more 7932 ** than (NB+2) (a small constant), that should not be a problem. 7933 ** 7934 ** When NB==3, this one optimization makes the database about 25% faster 7935 ** for large insertions and deletions. 7936 */ 7937 for(i=0; i<nNew; i++){ 7938 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 7939 aPgFlags[i] = apNew[i]->pDbPage->flags; 7940 for(j=0; j<i; j++){ 7941 if( aPgno[j]==aPgno[i] ){ 7942 /* This branch is taken if the set of sibling pages somehow contains 7943 ** duplicate entries. This can happen if the database is corrupt. 7944 ** It would be simpler to detect this as part of the loop below, but 7945 ** we do the detection here in order to avoid populating the pager 7946 ** cache with two separate objects associated with the same 7947 ** page number. */ 7948 assert( CORRUPT_DB ); 7949 rc = SQLITE_CORRUPT_BKPT; 7950 goto balance_cleanup; 7951 } 7952 } 7953 } 7954 for(i=0; i<nNew; i++){ 7955 int iBest = 0; /* aPgno[] index of page number to use */ 7956 for(j=1; j<nNew; j++){ 7957 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 7958 } 7959 pgno = aPgOrder[iBest]; 7960 aPgOrder[iBest] = 0xffffffff; 7961 if( iBest!=i ){ 7962 if( iBest>i ){ 7963 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 7964 } 7965 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 7966 apNew[i]->pgno = pgno; 7967 } 7968 } 7969 7970 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 7971 "%d(%d nc=%d) %d(%d nc=%d)\n", 7972 apNew[0]->pgno, szNew[0], cntNew[0], 7973 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 7974 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 7975 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 7976 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 7977 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 7978 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 7979 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 7980 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 7981 )); 7982 7983 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7984 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 7985 assert( apNew[nNew-1]!=0 ); 7986 put4byte(pRight, apNew[nNew-1]->pgno); 7987 7988 /* If the sibling pages are not leaves, ensure that the right-child pointer 7989 ** of the right-most new sibling page is set to the value that was 7990 ** originally in the same field of the right-most old sibling page. */ 7991 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 7992 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 7993 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 7994 } 7995 7996 /* Make any required updates to pointer map entries associated with 7997 ** cells stored on sibling pages following the balance operation. Pointer 7998 ** map entries associated with divider cells are set by the insertCell() 7999 ** routine. The associated pointer map entries are: 8000 ** 8001 ** a) if the cell contains a reference to an overflow chain, the 8002 ** entry associated with the first page in the overflow chain, and 8003 ** 8004 ** b) if the sibling pages are not leaves, the child page associated 8005 ** with the cell. 8006 ** 8007 ** If the sibling pages are not leaves, then the pointer map entry 8008 ** associated with the right-child of each sibling may also need to be 8009 ** updated. This happens below, after the sibling pages have been 8010 ** populated, not here. 8011 */ 8012 if( ISAUTOVACUUM ){ 8013 MemPage *pOld; 8014 MemPage *pNew = pOld = apNew[0]; 8015 int cntOldNext = pNew->nCell + pNew->nOverflow; 8016 int iNew = 0; 8017 int iOld = 0; 8018 8019 for(i=0; i<b.nCell; i++){ 8020 u8 *pCell = b.apCell[i]; 8021 while( i==cntOldNext ){ 8022 iOld++; 8023 assert( iOld<nNew || iOld<nOld ); 8024 assert( iOld>=0 && iOld<NB ); 8025 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8026 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8027 } 8028 if( i==cntNew[iNew] ){ 8029 pNew = apNew[++iNew]; 8030 if( !leafData ) continue; 8031 } 8032 8033 /* Cell pCell is destined for new sibling page pNew. Originally, it 8034 ** was either part of sibling page iOld (possibly an overflow cell), 8035 ** or else the divider cell to the left of sibling page iOld. So, 8036 ** if sibling page iOld had the same page number as pNew, and if 8037 ** pCell really was a part of sibling page iOld (not a divider or 8038 ** overflow cell), we can skip updating the pointer map entries. */ 8039 if( iOld>=nNew 8040 || pNew->pgno!=aPgno[iOld] 8041 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8042 ){ 8043 if( !leafCorrection ){ 8044 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8045 } 8046 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8047 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8048 } 8049 if( rc ) goto balance_cleanup; 8050 } 8051 } 8052 } 8053 8054 /* Insert new divider cells into pParent. */ 8055 for(i=0; i<nNew-1; i++){ 8056 u8 *pCell; 8057 u8 *pTemp; 8058 int sz; 8059 MemPage *pNew = apNew[i]; 8060 j = cntNew[i]; 8061 8062 assert( j<nMaxCells ); 8063 assert( b.apCell[j]!=0 ); 8064 pCell = b.apCell[j]; 8065 sz = b.szCell[j] + leafCorrection; 8066 pTemp = &aOvflSpace[iOvflSpace]; 8067 if( !pNew->leaf ){ 8068 memcpy(&pNew->aData[8], pCell, 4); 8069 }else if( leafData ){ 8070 /* If the tree is a leaf-data tree, and the siblings are leaves, 8071 ** then there is no divider cell in b.apCell[]. Instead, the divider 8072 ** cell consists of the integer key for the right-most cell of 8073 ** the sibling-page assembled above only. 8074 */ 8075 CellInfo info; 8076 j--; 8077 pNew->xParseCell(pNew, b.apCell[j], &info); 8078 pCell = pTemp; 8079 sz = 4 + putVarint(&pCell[4], info.nKey); 8080 pTemp = 0; 8081 }else{ 8082 pCell -= 4; 8083 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8084 ** previously stored on a leaf node, and its reported size was 4 8085 ** bytes, then it may actually be smaller than this 8086 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8087 ** any cell). But it is important to pass the correct size to 8088 ** insertCell(), so reparse the cell now. 8089 ** 8090 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8091 ** and WITHOUT ROWID tables with exactly one column which is the 8092 ** primary key. 8093 */ 8094 if( b.szCell[j]==4 ){ 8095 assert(leafCorrection==4); 8096 sz = pParent->xCellSize(pParent, pCell); 8097 } 8098 } 8099 iOvflSpace += sz; 8100 assert( sz<=pBt->maxLocal+23 ); 8101 assert( iOvflSpace <= (int)pBt->pageSize ); 8102 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8103 if( rc!=SQLITE_OK ) goto balance_cleanup; 8104 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8105 } 8106 8107 /* Now update the actual sibling pages. The order in which they are updated 8108 ** is important, as this code needs to avoid disrupting any page from which 8109 ** cells may still to be read. In practice, this means: 8110 ** 8111 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8112 ** then it is not safe to update page apNew[iPg] until after 8113 ** the left-hand sibling apNew[iPg-1] has been updated. 8114 ** 8115 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8116 ** then it is not safe to update page apNew[iPg] until after 8117 ** the right-hand sibling apNew[iPg+1] has been updated. 8118 ** 8119 ** If neither of the above apply, the page is safe to update. 8120 ** 8121 ** The iPg value in the following loop starts at nNew-1 goes down 8122 ** to 0, then back up to nNew-1 again, thus making two passes over 8123 ** the pages. On the initial downward pass, only condition (1) above 8124 ** needs to be tested because (2) will always be true from the previous 8125 ** step. On the upward pass, both conditions are always true, so the 8126 ** upwards pass simply processes pages that were missed on the downward 8127 ** pass. 8128 */ 8129 for(i=1-nNew; i<nNew; i++){ 8130 int iPg = i<0 ? -i : i; 8131 assert( iPg>=0 && iPg<nNew ); 8132 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8133 if( i>=0 /* On the upwards pass, or... */ 8134 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8135 ){ 8136 int iNew; 8137 int iOld; 8138 int nNewCell; 8139 8140 /* Verify condition (1): If cells are moving left, update iPg 8141 ** only after iPg-1 has already been updated. */ 8142 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8143 8144 /* Verify condition (2): If cells are moving right, update iPg 8145 ** only after iPg+1 has already been updated. */ 8146 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8147 8148 if( iPg==0 ){ 8149 iNew = iOld = 0; 8150 nNewCell = cntNew[0]; 8151 }else{ 8152 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8153 iNew = cntNew[iPg-1] + !leafData; 8154 nNewCell = cntNew[iPg] - iNew; 8155 } 8156 8157 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8158 if( rc ) goto balance_cleanup; 8159 abDone[iPg]++; 8160 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8161 assert( apNew[iPg]->nOverflow==0 ); 8162 assert( apNew[iPg]->nCell==nNewCell ); 8163 } 8164 } 8165 8166 /* All pages have been processed exactly once */ 8167 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8168 8169 assert( nOld>0 ); 8170 assert( nNew>0 ); 8171 8172 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8173 /* The root page of the b-tree now contains no cells. The only sibling 8174 ** page is the right-child of the parent. Copy the contents of the 8175 ** child page into the parent, decreasing the overall height of the 8176 ** b-tree structure by one. This is described as the "balance-shallower" 8177 ** sub-algorithm in some documentation. 8178 ** 8179 ** If this is an auto-vacuum database, the call to copyNodeContent() 8180 ** sets all pointer-map entries corresponding to database image pages 8181 ** for which the pointer is stored within the content being copied. 8182 ** 8183 ** It is critical that the child page be defragmented before being 8184 ** copied into the parent, because if the parent is page 1 then it will 8185 ** by smaller than the child due to the database header, and so all the 8186 ** free space needs to be up front. 8187 */ 8188 assert( nNew==1 || CORRUPT_DB ); 8189 rc = defragmentPage(apNew[0], -1); 8190 testcase( rc!=SQLITE_OK ); 8191 assert( apNew[0]->nFree == 8192 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8193 - apNew[0]->nCell*2) 8194 || rc!=SQLITE_OK 8195 ); 8196 copyNodeContent(apNew[0], pParent, &rc); 8197 freePage(apNew[0], &rc); 8198 }else if( ISAUTOVACUUM && !leafCorrection ){ 8199 /* Fix the pointer map entries associated with the right-child of each 8200 ** sibling page. All other pointer map entries have already been taken 8201 ** care of. */ 8202 for(i=0; i<nNew; i++){ 8203 u32 key = get4byte(&apNew[i]->aData[8]); 8204 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8205 } 8206 } 8207 8208 assert( pParent->isInit ); 8209 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8210 nOld, nNew, b.nCell)); 8211 8212 /* Free any old pages that were not reused as new pages. 8213 */ 8214 for(i=nNew; i<nOld; i++){ 8215 freePage(apOld[i], &rc); 8216 } 8217 8218 #if 0 8219 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8220 /* The ptrmapCheckPages() contains assert() statements that verify that 8221 ** all pointer map pages are set correctly. This is helpful while 8222 ** debugging. This is usually disabled because a corrupt database may 8223 ** cause an assert() statement to fail. */ 8224 ptrmapCheckPages(apNew, nNew); 8225 ptrmapCheckPages(&pParent, 1); 8226 } 8227 #endif 8228 8229 /* 8230 ** Cleanup before returning. 8231 */ 8232 balance_cleanup: 8233 sqlite3StackFree(0, b.apCell); 8234 for(i=0; i<nOld; i++){ 8235 releasePage(apOld[i]); 8236 } 8237 for(i=0; i<nNew; i++){ 8238 releasePage(apNew[i]); 8239 } 8240 8241 return rc; 8242 } 8243 8244 8245 /* 8246 ** This function is called when the root page of a b-tree structure is 8247 ** overfull (has one or more overflow pages). 8248 ** 8249 ** A new child page is allocated and the contents of the current root 8250 ** page, including overflow cells, are copied into the child. The root 8251 ** page is then overwritten to make it an empty page with the right-child 8252 ** pointer pointing to the new page. 8253 ** 8254 ** Before returning, all pointer-map entries corresponding to pages 8255 ** that the new child-page now contains pointers to are updated. The 8256 ** entry corresponding to the new right-child pointer of the root 8257 ** page is also updated. 8258 ** 8259 ** If successful, *ppChild is set to contain a reference to the child 8260 ** page and SQLITE_OK is returned. In this case the caller is required 8261 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8262 ** an error code is returned and *ppChild is set to 0. 8263 */ 8264 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8265 int rc; /* Return value from subprocedures */ 8266 MemPage *pChild = 0; /* Pointer to a new child page */ 8267 Pgno pgnoChild = 0; /* Page number of the new child page */ 8268 BtShared *pBt = pRoot->pBt; /* The BTree */ 8269 8270 assert( pRoot->nOverflow>0 ); 8271 assert( sqlite3_mutex_held(pBt->mutex) ); 8272 8273 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8274 ** page that will become the new right-child of pPage. Copy the contents 8275 ** of the node stored on pRoot into the new child page. 8276 */ 8277 rc = sqlite3PagerWrite(pRoot->pDbPage); 8278 if( rc==SQLITE_OK ){ 8279 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8280 copyNodeContent(pRoot, pChild, &rc); 8281 if( ISAUTOVACUUM ){ 8282 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8283 } 8284 } 8285 if( rc ){ 8286 *ppChild = 0; 8287 releasePage(pChild); 8288 return rc; 8289 } 8290 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8291 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8292 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8293 8294 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8295 8296 /* Copy the overflow cells from pRoot to pChild */ 8297 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8298 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8299 memcpy(pChild->apOvfl, pRoot->apOvfl, 8300 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8301 pChild->nOverflow = pRoot->nOverflow; 8302 8303 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8304 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8305 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8306 8307 *ppChild = pChild; 8308 return SQLITE_OK; 8309 } 8310 8311 /* 8312 ** The page that pCur currently points to has just been modified in 8313 ** some way. This function figures out if this modification means the 8314 ** tree needs to be balanced, and if so calls the appropriate balancing 8315 ** routine. Balancing routines are: 8316 ** 8317 ** balance_quick() 8318 ** balance_deeper() 8319 ** balance_nonroot() 8320 */ 8321 static int balance(BtCursor *pCur){ 8322 int rc = SQLITE_OK; 8323 const int nMin = pCur->pBt->usableSize * 2 / 3; 8324 u8 aBalanceQuickSpace[13]; 8325 u8 *pFree = 0; 8326 8327 VVA_ONLY( int balance_quick_called = 0 ); 8328 VVA_ONLY( int balance_deeper_called = 0 ); 8329 8330 do { 8331 int iPage; 8332 MemPage *pPage = pCur->pPage; 8333 8334 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8335 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8336 break; 8337 }else if( (iPage = pCur->iPage)==0 ){ 8338 if( pPage->nOverflow ){ 8339 /* The root page of the b-tree is overfull. In this case call the 8340 ** balance_deeper() function to create a new child for the root-page 8341 ** and copy the current contents of the root-page to it. The 8342 ** next iteration of the do-loop will balance the child page. 8343 */ 8344 assert( balance_deeper_called==0 ); 8345 VVA_ONLY( balance_deeper_called++ ); 8346 rc = balance_deeper(pPage, &pCur->apPage[1]); 8347 if( rc==SQLITE_OK ){ 8348 pCur->iPage = 1; 8349 pCur->ix = 0; 8350 pCur->aiIdx[0] = 0; 8351 pCur->apPage[0] = pPage; 8352 pCur->pPage = pCur->apPage[1]; 8353 assert( pCur->pPage->nOverflow ); 8354 } 8355 }else{ 8356 break; 8357 } 8358 }else{ 8359 MemPage * const pParent = pCur->apPage[iPage-1]; 8360 int const iIdx = pCur->aiIdx[iPage-1]; 8361 8362 rc = sqlite3PagerWrite(pParent->pDbPage); 8363 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8364 rc = btreeComputeFreeSpace(pParent); 8365 } 8366 if( rc==SQLITE_OK ){ 8367 #ifndef SQLITE_OMIT_QUICKBALANCE 8368 if( pPage->intKeyLeaf 8369 && pPage->nOverflow==1 8370 && pPage->aiOvfl[0]==pPage->nCell 8371 && pParent->pgno!=1 8372 && pParent->nCell==iIdx 8373 ){ 8374 /* Call balance_quick() to create a new sibling of pPage on which 8375 ** to store the overflow cell. balance_quick() inserts a new cell 8376 ** into pParent, which may cause pParent overflow. If this 8377 ** happens, the next iteration of the do-loop will balance pParent 8378 ** use either balance_nonroot() or balance_deeper(). Until this 8379 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8380 ** buffer. 8381 ** 8382 ** The purpose of the following assert() is to check that only a 8383 ** single call to balance_quick() is made for each call to this 8384 ** function. If this were not verified, a subtle bug involving reuse 8385 ** of the aBalanceQuickSpace[] might sneak in. 8386 */ 8387 assert( balance_quick_called==0 ); 8388 VVA_ONLY( balance_quick_called++ ); 8389 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8390 }else 8391 #endif 8392 { 8393 /* In this case, call balance_nonroot() to redistribute cells 8394 ** between pPage and up to 2 of its sibling pages. This involves 8395 ** modifying the contents of pParent, which may cause pParent to 8396 ** become overfull or underfull. The next iteration of the do-loop 8397 ** will balance the parent page to correct this. 8398 ** 8399 ** If the parent page becomes overfull, the overflow cell or cells 8400 ** are stored in the pSpace buffer allocated immediately below. 8401 ** A subsequent iteration of the do-loop will deal with this by 8402 ** calling balance_nonroot() (balance_deeper() may be called first, 8403 ** but it doesn't deal with overflow cells - just moves them to a 8404 ** different page). Once this subsequent call to balance_nonroot() 8405 ** has completed, it is safe to release the pSpace buffer used by 8406 ** the previous call, as the overflow cell data will have been 8407 ** copied either into the body of a database page or into the new 8408 ** pSpace buffer passed to the latter call to balance_nonroot(). 8409 */ 8410 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8411 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8412 pCur->hints&BTREE_BULKLOAD); 8413 if( pFree ){ 8414 /* If pFree is not NULL, it points to the pSpace buffer used 8415 ** by a previous call to balance_nonroot(). Its contents are 8416 ** now stored either on real database pages or within the 8417 ** new pSpace buffer, so it may be safely freed here. */ 8418 sqlite3PageFree(pFree); 8419 } 8420 8421 /* The pSpace buffer will be freed after the next call to 8422 ** balance_nonroot(), or just before this function returns, whichever 8423 ** comes first. */ 8424 pFree = pSpace; 8425 } 8426 } 8427 8428 pPage->nOverflow = 0; 8429 8430 /* The next iteration of the do-loop balances the parent page. */ 8431 releasePage(pPage); 8432 pCur->iPage--; 8433 assert( pCur->iPage>=0 ); 8434 pCur->pPage = pCur->apPage[pCur->iPage]; 8435 } 8436 }while( rc==SQLITE_OK ); 8437 8438 if( pFree ){ 8439 sqlite3PageFree(pFree); 8440 } 8441 return rc; 8442 } 8443 8444 /* Overwrite content from pX into pDest. Only do the write if the 8445 ** content is different from what is already there. 8446 */ 8447 static int btreeOverwriteContent( 8448 MemPage *pPage, /* MemPage on which writing will occur */ 8449 u8 *pDest, /* Pointer to the place to start writing */ 8450 const BtreePayload *pX, /* Source of data to write */ 8451 int iOffset, /* Offset of first byte to write */ 8452 int iAmt /* Number of bytes to be written */ 8453 ){ 8454 int nData = pX->nData - iOffset; 8455 if( nData<=0 ){ 8456 /* Overwritting with zeros */ 8457 int i; 8458 for(i=0; i<iAmt && pDest[i]==0; i++){} 8459 if( i<iAmt ){ 8460 int rc = sqlite3PagerWrite(pPage->pDbPage); 8461 if( rc ) return rc; 8462 memset(pDest + i, 0, iAmt - i); 8463 } 8464 }else{ 8465 if( nData<iAmt ){ 8466 /* Mixed read data and zeros at the end. Make a recursive call 8467 ** to write the zeros then fall through to write the real data */ 8468 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8469 iAmt-nData); 8470 if( rc ) return rc; 8471 iAmt = nData; 8472 } 8473 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8474 int rc = sqlite3PagerWrite(pPage->pDbPage); 8475 if( rc ) return rc; 8476 /* In a corrupt database, it is possible for the source and destination 8477 ** buffers to overlap. This is harmless since the database is already 8478 ** corrupt but it does cause valgrind and ASAN warnings. So use 8479 ** memmove(). */ 8480 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8481 } 8482 } 8483 return SQLITE_OK; 8484 } 8485 8486 /* 8487 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8488 ** contained in pX. 8489 */ 8490 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8491 int iOffset; /* Next byte of pX->pData to write */ 8492 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8493 int rc; /* Return code */ 8494 MemPage *pPage = pCur->pPage; /* Page being written */ 8495 BtShared *pBt; /* Btree */ 8496 Pgno ovflPgno; /* Next overflow page to write */ 8497 u32 ovflPageSize; /* Size to write on overflow page */ 8498 8499 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8500 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8501 ){ 8502 return SQLITE_CORRUPT_BKPT; 8503 } 8504 /* Overwrite the local portion first */ 8505 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8506 0, pCur->info.nLocal); 8507 if( rc ) return rc; 8508 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8509 8510 /* Now overwrite the overflow pages */ 8511 iOffset = pCur->info.nLocal; 8512 assert( nTotal>=0 ); 8513 assert( iOffset>=0 ); 8514 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8515 pBt = pPage->pBt; 8516 ovflPageSize = pBt->usableSize - 4; 8517 do{ 8518 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8519 if( rc ) return rc; 8520 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){ 8521 rc = SQLITE_CORRUPT_BKPT; 8522 }else{ 8523 if( iOffset+ovflPageSize<(u32)nTotal ){ 8524 ovflPgno = get4byte(pPage->aData); 8525 }else{ 8526 ovflPageSize = nTotal - iOffset; 8527 } 8528 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8529 iOffset, ovflPageSize); 8530 } 8531 sqlite3PagerUnref(pPage->pDbPage); 8532 if( rc ) return rc; 8533 iOffset += ovflPageSize; 8534 }while( iOffset<nTotal ); 8535 return SQLITE_OK; 8536 } 8537 8538 8539 /* 8540 ** Insert a new record into the BTree. The content of the new record 8541 ** is described by the pX object. The pCur cursor is used only to 8542 ** define what table the record should be inserted into, and is left 8543 ** pointing at a random location. 8544 ** 8545 ** For a table btree (used for rowid tables), only the pX.nKey value of 8546 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8547 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8548 ** hold the content of the row. 8549 ** 8550 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8551 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8552 ** pX.pData,nData,nZero fields must be zero. 8553 ** 8554 ** If the seekResult parameter is non-zero, then a successful call to 8555 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 8556 ** been performed. In other words, if seekResult!=0 then the cursor 8557 ** is currently pointing to a cell that will be adjacent to the cell 8558 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8559 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8560 ** that is larger than (pKey,nKey). 8561 ** 8562 ** If seekResult==0, that means pCur is pointing at some unknown location. 8563 ** In that case, this routine must seek the cursor to the correct insertion 8564 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8565 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8566 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8567 ** to decode the key. 8568 */ 8569 int sqlite3BtreeInsert( 8570 BtCursor *pCur, /* Insert data into the table of this cursor */ 8571 const BtreePayload *pX, /* Content of the row to be inserted */ 8572 int flags, /* True if this is likely an append */ 8573 int seekResult /* Result of prior MovetoUnpacked() call */ 8574 ){ 8575 int rc; 8576 int loc = seekResult; /* -1: before desired location +1: after */ 8577 int szNew = 0; 8578 int idx; 8579 MemPage *pPage; 8580 Btree *p = pCur->pBtree; 8581 BtShared *pBt = p->pBt; 8582 unsigned char *oldCell; 8583 unsigned char *newCell = 0; 8584 8585 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags ); 8586 8587 if( pCur->eState==CURSOR_FAULT ){ 8588 assert( pCur->skipNext!=SQLITE_OK ); 8589 return pCur->skipNext; 8590 } 8591 8592 assert( cursorOwnsBtShared(pCur) ); 8593 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 8594 && pBt->inTransaction==TRANS_WRITE 8595 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8596 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8597 8598 /* Assert that the caller has been consistent. If this cursor was opened 8599 ** expecting an index b-tree, then the caller should be inserting blob 8600 ** keys with no associated data. If the cursor was opened expecting an 8601 ** intkey table, the caller should be inserting integer keys with a 8602 ** blob of associated data. */ 8603 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) ); 8604 8605 /* Save the positions of any other cursors open on this table. 8606 ** 8607 ** In some cases, the call to btreeMoveto() below is a no-op. For 8608 ** example, when inserting data into a table with auto-generated integer 8609 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 8610 ** integer key to use. It then calls this function to actually insert the 8611 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 8612 ** that the cursor is already where it needs to be and returns without 8613 ** doing any work. To avoid thwarting these optimizations, it is important 8614 ** not to clear the cursor here. 8615 */ 8616 if( pCur->curFlags & BTCF_Multiple ){ 8617 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8618 if( rc ) return rc; 8619 } 8620 8621 if( pCur->pKeyInfo==0 ){ 8622 assert( pX->pKey==0 ); 8623 /* If this is an insert into a table b-tree, invalidate any incrblob 8624 ** cursors open on the row being replaced */ 8625 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 8626 8627 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8628 ** to a row with the same key as the new entry being inserted. 8629 */ 8630 #ifdef SQLITE_DEBUG 8631 if( flags & BTREE_SAVEPOSITION ){ 8632 assert( pCur->curFlags & BTCF_ValidNKey ); 8633 assert( pX->nKey==pCur->info.nKey ); 8634 assert( pCur->info.nSize!=0 ); 8635 assert( loc==0 ); 8636 } 8637 #endif 8638 8639 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 8640 ** that the cursor is not pointing to a row to be overwritten. 8641 ** So do a complete check. 8642 */ 8643 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 8644 /* The cursor is pointing to the entry that is to be 8645 ** overwritten */ 8646 assert( pX->nData>=0 && pX->nZero>=0 ); 8647 if( pCur->info.nSize!=0 8648 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 8649 ){ 8650 /* New entry is the same size as the old. Do an overwrite */ 8651 return btreeOverwriteCell(pCur, pX); 8652 } 8653 assert( loc==0 ); 8654 }else if( loc==0 ){ 8655 /* The cursor is *not* pointing to the cell to be overwritten, nor 8656 ** to an adjacent cell. Move the cursor so that it is pointing either 8657 ** to the cell to be overwritten or an adjacent cell. 8658 */ 8659 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc); 8660 if( rc ) return rc; 8661 } 8662 }else{ 8663 /* This is an index or a WITHOUT ROWID table */ 8664 8665 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8666 ** to a row with the same key as the new entry being inserted. 8667 */ 8668 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 8669 8670 /* If the cursor is not already pointing either to the cell to be 8671 ** overwritten, or if a new cell is being inserted, if the cursor is 8672 ** not pointing to an immediately adjacent cell, then move the cursor 8673 ** so that it does. 8674 */ 8675 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 8676 if( pX->nMem ){ 8677 UnpackedRecord r; 8678 r.pKeyInfo = pCur->pKeyInfo; 8679 r.aMem = pX->aMem; 8680 r.nField = pX->nMem; 8681 r.default_rc = 0; 8682 r.errCode = 0; 8683 r.r1 = 0; 8684 r.r2 = 0; 8685 r.eqSeen = 0; 8686 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc); 8687 }else{ 8688 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); 8689 } 8690 if( rc ) return rc; 8691 } 8692 8693 /* If the cursor is currently pointing to an entry to be overwritten 8694 ** and the new content is the same as as the old, then use the 8695 ** overwrite optimization. 8696 */ 8697 if( loc==0 ){ 8698 getCellInfo(pCur); 8699 if( pCur->info.nKey==pX->nKey ){ 8700 BtreePayload x2; 8701 x2.pData = pX->pKey; 8702 x2.nData = pX->nKey; 8703 x2.nZero = 0; 8704 return btreeOverwriteCell(pCur, &x2); 8705 } 8706 } 8707 8708 } 8709 assert( pCur->eState==CURSOR_VALID 8710 || (pCur->eState==CURSOR_INVALID && loc) 8711 || CORRUPT_DB ); 8712 8713 pPage = pCur->pPage; 8714 assert( pPage->intKey || pX->nKey>=0 ); 8715 assert( pPage->leaf || !pPage->intKey ); 8716 if( pPage->nFree<0 ){ 8717 rc = btreeComputeFreeSpace(pPage); 8718 if( rc ) return rc; 8719 } 8720 8721 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 8722 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 8723 loc==0 ? "overwrite" : "new entry")); 8724 assert( pPage->isInit ); 8725 newCell = pBt->pTmpSpace; 8726 assert( newCell!=0 ); 8727 rc = fillInCell(pPage, newCell, pX, &szNew); 8728 if( rc ) goto end_insert; 8729 assert( szNew==pPage->xCellSize(pPage, newCell) ); 8730 assert( szNew <= MX_CELL_SIZE(pBt) ); 8731 idx = pCur->ix; 8732 if( loc==0 ){ 8733 CellInfo info; 8734 assert( idx<pPage->nCell ); 8735 rc = sqlite3PagerWrite(pPage->pDbPage); 8736 if( rc ){ 8737 goto end_insert; 8738 } 8739 oldCell = findCell(pPage, idx); 8740 if( !pPage->leaf ){ 8741 memcpy(newCell, oldCell, 4); 8742 } 8743 rc = clearCell(pPage, oldCell, &info); 8744 testcase( pCur->curFlags & BTCF_ValidOvfl ); 8745 invalidateOverflowCache(pCur); 8746 if( info.nSize==szNew && info.nLocal==info.nPayload 8747 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 8748 ){ 8749 /* Overwrite the old cell with the new if they are the same size. 8750 ** We could also try to do this if the old cell is smaller, then add 8751 ** the leftover space to the free list. But experiments show that 8752 ** doing that is no faster then skipping this optimization and just 8753 ** calling dropCell() and insertCell(). 8754 ** 8755 ** This optimization cannot be used on an autovacuum database if the 8756 ** new entry uses overflow pages, as the insertCell() call below is 8757 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 8758 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 8759 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 8760 return SQLITE_CORRUPT_BKPT; 8761 } 8762 if( oldCell+szNew > pPage->aDataEnd ){ 8763 return SQLITE_CORRUPT_BKPT; 8764 } 8765 memcpy(oldCell, newCell, szNew); 8766 return SQLITE_OK; 8767 } 8768 dropCell(pPage, idx, info.nSize, &rc); 8769 if( rc ) goto end_insert; 8770 }else if( loc<0 && pPage->nCell>0 ){ 8771 assert( pPage->leaf ); 8772 idx = ++pCur->ix; 8773 pCur->curFlags &= ~BTCF_ValidNKey; 8774 }else{ 8775 assert( pPage->leaf ); 8776 } 8777 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 8778 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 8779 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 8780 8781 /* If no error has occurred and pPage has an overflow cell, call balance() 8782 ** to redistribute the cells within the tree. Since balance() may move 8783 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 8784 ** variables. 8785 ** 8786 ** Previous versions of SQLite called moveToRoot() to move the cursor 8787 ** back to the root page as balance() used to invalidate the contents 8788 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 8789 ** set the cursor state to "invalid". This makes common insert operations 8790 ** slightly faster. 8791 ** 8792 ** There is a subtle but important optimization here too. When inserting 8793 ** multiple records into an intkey b-tree using a single cursor (as can 8794 ** happen while processing an "INSERT INTO ... SELECT" statement), it 8795 ** is advantageous to leave the cursor pointing to the last entry in 8796 ** the b-tree if possible. If the cursor is left pointing to the last 8797 ** entry in the table, and the next row inserted has an integer key 8798 ** larger than the largest existing key, it is possible to insert the 8799 ** row without seeking the cursor. This can be a big performance boost. 8800 */ 8801 pCur->info.nSize = 0; 8802 if( pPage->nOverflow ){ 8803 assert( rc==SQLITE_OK ); 8804 pCur->curFlags &= ~(BTCF_ValidNKey); 8805 rc = balance(pCur); 8806 8807 /* Must make sure nOverflow is reset to zero even if the balance() 8808 ** fails. Internal data structure corruption will result otherwise. 8809 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 8810 ** from trying to save the current position of the cursor. */ 8811 pCur->pPage->nOverflow = 0; 8812 pCur->eState = CURSOR_INVALID; 8813 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 8814 btreeReleaseAllCursorPages(pCur); 8815 if( pCur->pKeyInfo ){ 8816 assert( pCur->pKey==0 ); 8817 pCur->pKey = sqlite3Malloc( pX->nKey ); 8818 if( pCur->pKey==0 ){ 8819 rc = SQLITE_NOMEM; 8820 }else{ 8821 memcpy(pCur->pKey, pX->pKey, pX->nKey); 8822 } 8823 } 8824 pCur->eState = CURSOR_REQUIRESEEK; 8825 pCur->nKey = pX->nKey; 8826 } 8827 } 8828 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 8829 8830 end_insert: 8831 return rc; 8832 } 8833 8834 /* 8835 ** Delete the entry that the cursor is pointing to. 8836 ** 8837 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 8838 ** the cursor is left pointing at an arbitrary location after the delete. 8839 ** But if that bit is set, then the cursor is left in a state such that 8840 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 8841 ** as it would have been on if the call to BtreeDelete() had been omitted. 8842 ** 8843 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 8844 ** associated with a single table entry and its indexes. Only one of those 8845 ** deletes is considered the "primary" delete. The primary delete occurs 8846 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 8847 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 8848 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 8849 ** but which might be used by alternative storage engines. 8850 */ 8851 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 8852 Btree *p = pCur->pBtree; 8853 BtShared *pBt = p->pBt; 8854 int rc; /* Return code */ 8855 MemPage *pPage; /* Page to delete cell from */ 8856 unsigned char *pCell; /* Pointer to cell to delete */ 8857 int iCellIdx; /* Index of cell to delete */ 8858 int iCellDepth; /* Depth of node containing pCell */ 8859 CellInfo info; /* Size of the cell being deleted */ 8860 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ 8861 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */ 8862 8863 assert( cursorOwnsBtShared(pCur) ); 8864 assert( pBt->inTransaction==TRANS_WRITE ); 8865 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8866 assert( pCur->curFlags & BTCF_WriteFlag ); 8867 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8868 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 8869 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 8870 if( pCur->eState==CURSOR_REQUIRESEEK ){ 8871 rc = btreeRestoreCursorPosition(pCur); 8872 if( rc ) return rc; 8873 } 8874 assert( pCur->eState==CURSOR_VALID ); 8875 8876 iCellDepth = pCur->iPage; 8877 iCellIdx = pCur->ix; 8878 pPage = pCur->pPage; 8879 pCell = findCell(pPage, iCellIdx); 8880 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT; 8881 8882 /* If the bPreserve flag is set to true, then the cursor position must 8883 ** be preserved following this delete operation. If the current delete 8884 ** will cause a b-tree rebalance, then this is done by saving the cursor 8885 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 8886 ** returning. 8887 ** 8888 ** Or, if the current delete will not cause a rebalance, then the cursor 8889 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 8890 ** before or after the deleted entry. In this case set bSkipnext to true. */ 8891 if( bPreserve ){ 8892 if( !pPage->leaf 8893 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 8894 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 8895 ){ 8896 /* A b-tree rebalance will be required after deleting this entry. 8897 ** Save the cursor key. */ 8898 rc = saveCursorKey(pCur); 8899 if( rc ) return rc; 8900 }else{ 8901 bSkipnext = 1; 8902 } 8903 } 8904 8905 /* If the page containing the entry to delete is not a leaf page, move 8906 ** the cursor to the largest entry in the tree that is smaller than 8907 ** the entry being deleted. This cell will replace the cell being deleted 8908 ** from the internal node. The 'previous' entry is used for this instead 8909 ** of the 'next' entry, as the previous entry is always a part of the 8910 ** sub-tree headed by the child page of the cell being deleted. This makes 8911 ** balancing the tree following the delete operation easier. */ 8912 if( !pPage->leaf ){ 8913 rc = sqlite3BtreePrevious(pCur, 0); 8914 assert( rc!=SQLITE_DONE ); 8915 if( rc ) return rc; 8916 } 8917 8918 /* Save the positions of any other cursors open on this table before 8919 ** making any modifications. */ 8920 if( pCur->curFlags & BTCF_Multiple ){ 8921 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8922 if( rc ) return rc; 8923 } 8924 8925 /* If this is a delete operation to remove a row from a table b-tree, 8926 ** invalidate any incrblob cursors open on the row being deleted. */ 8927 if( pCur->pKeyInfo==0 ){ 8928 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 8929 } 8930 8931 /* Make the page containing the entry to be deleted writable. Then free any 8932 ** overflow pages associated with the entry and finally remove the cell 8933 ** itself from within the page. */ 8934 rc = sqlite3PagerWrite(pPage->pDbPage); 8935 if( rc ) return rc; 8936 rc = clearCell(pPage, pCell, &info); 8937 dropCell(pPage, iCellIdx, info.nSize, &rc); 8938 if( rc ) return rc; 8939 8940 /* If the cell deleted was not located on a leaf page, then the cursor 8941 ** is currently pointing to the largest entry in the sub-tree headed 8942 ** by the child-page of the cell that was just deleted from an internal 8943 ** node. The cell from the leaf node needs to be moved to the internal 8944 ** node to replace the deleted cell. */ 8945 if( !pPage->leaf ){ 8946 MemPage *pLeaf = pCur->pPage; 8947 int nCell; 8948 Pgno n; 8949 unsigned char *pTmp; 8950 8951 if( pLeaf->nFree<0 ){ 8952 rc = btreeComputeFreeSpace(pLeaf); 8953 if( rc ) return rc; 8954 } 8955 if( iCellDepth<pCur->iPage-1 ){ 8956 n = pCur->apPage[iCellDepth+1]->pgno; 8957 }else{ 8958 n = pCur->pPage->pgno; 8959 } 8960 pCell = findCell(pLeaf, pLeaf->nCell-1); 8961 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 8962 nCell = pLeaf->xCellSize(pLeaf, pCell); 8963 assert( MX_CELL_SIZE(pBt) >= nCell ); 8964 pTmp = pBt->pTmpSpace; 8965 assert( pTmp!=0 ); 8966 rc = sqlite3PagerWrite(pLeaf->pDbPage); 8967 if( rc==SQLITE_OK ){ 8968 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 8969 } 8970 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 8971 if( rc ) return rc; 8972 } 8973 8974 /* Balance the tree. If the entry deleted was located on a leaf page, 8975 ** then the cursor still points to that page. In this case the first 8976 ** call to balance() repairs the tree, and the if(...) condition is 8977 ** never true. 8978 ** 8979 ** Otherwise, if the entry deleted was on an internal node page, then 8980 ** pCur is pointing to the leaf page from which a cell was removed to 8981 ** replace the cell deleted from the internal node. This is slightly 8982 ** tricky as the leaf node may be underfull, and the internal node may 8983 ** be either under or overfull. In this case run the balancing algorithm 8984 ** on the leaf node first. If the balance proceeds far enough up the 8985 ** tree that we can be sure that any problem in the internal node has 8986 ** been corrected, so be it. Otherwise, after balancing the leaf node, 8987 ** walk the cursor up the tree to the internal node and balance it as 8988 ** well. */ 8989 rc = balance(pCur); 8990 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 8991 releasePageNotNull(pCur->pPage); 8992 pCur->iPage--; 8993 while( pCur->iPage>iCellDepth ){ 8994 releasePage(pCur->apPage[pCur->iPage--]); 8995 } 8996 pCur->pPage = pCur->apPage[pCur->iPage]; 8997 rc = balance(pCur); 8998 } 8999 9000 if( rc==SQLITE_OK ){ 9001 if( bSkipnext ){ 9002 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9003 assert( pPage==pCur->pPage || CORRUPT_DB ); 9004 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9005 pCur->eState = CURSOR_SKIPNEXT; 9006 if( iCellIdx>=pPage->nCell ){ 9007 pCur->skipNext = -1; 9008 pCur->ix = pPage->nCell-1; 9009 }else{ 9010 pCur->skipNext = 1; 9011 } 9012 }else{ 9013 rc = moveToRoot(pCur); 9014 if( bPreserve ){ 9015 btreeReleaseAllCursorPages(pCur); 9016 pCur->eState = CURSOR_REQUIRESEEK; 9017 } 9018 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9019 } 9020 } 9021 return rc; 9022 } 9023 9024 /* 9025 ** Create a new BTree table. Write into *piTable the page 9026 ** number for the root page of the new table. 9027 ** 9028 ** The type of type is determined by the flags parameter. Only the 9029 ** following values of flags are currently in use. Other values for 9030 ** flags might not work: 9031 ** 9032 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9033 ** BTREE_ZERODATA Used for SQL indices 9034 */ 9035 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ 9036 BtShared *pBt = p->pBt; 9037 MemPage *pRoot; 9038 Pgno pgnoRoot; 9039 int rc; 9040 int ptfFlags; /* Page-type flage for the root page of new table */ 9041 9042 assert( sqlite3BtreeHoldsMutex(p) ); 9043 assert( pBt->inTransaction==TRANS_WRITE ); 9044 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9045 9046 #ifdef SQLITE_OMIT_AUTOVACUUM 9047 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9048 if( rc ){ 9049 return rc; 9050 } 9051 #else 9052 if( pBt->autoVacuum ){ 9053 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9054 MemPage *pPageMove; /* The page to move to. */ 9055 9056 /* Creating a new table may probably require moving an existing database 9057 ** to make room for the new tables root page. In case this page turns 9058 ** out to be an overflow page, delete all overflow page-map caches 9059 ** held by open cursors. 9060 */ 9061 invalidateAllOverflowCache(pBt); 9062 9063 /* Read the value of meta[3] from the database to determine where the 9064 ** root page of the new table should go. meta[3] is the largest root-page 9065 ** created so far, so the new root-page is (meta[3]+1). 9066 */ 9067 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9068 pgnoRoot++; 9069 9070 /* The new root-page may not be allocated on a pointer-map page, or the 9071 ** PENDING_BYTE page. 9072 */ 9073 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9074 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9075 pgnoRoot++; 9076 } 9077 assert( pgnoRoot>=3 || CORRUPT_DB ); 9078 testcase( pgnoRoot<3 ); 9079 9080 /* Allocate a page. The page that currently resides at pgnoRoot will 9081 ** be moved to the allocated page (unless the allocated page happens 9082 ** to reside at pgnoRoot). 9083 */ 9084 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9085 if( rc!=SQLITE_OK ){ 9086 return rc; 9087 } 9088 9089 if( pgnoMove!=pgnoRoot ){ 9090 /* pgnoRoot is the page that will be used for the root-page of 9091 ** the new table (assuming an error did not occur). But we were 9092 ** allocated pgnoMove. If required (i.e. if it was not allocated 9093 ** by extending the file), the current page at position pgnoMove 9094 ** is already journaled. 9095 */ 9096 u8 eType = 0; 9097 Pgno iPtrPage = 0; 9098 9099 /* Save the positions of any open cursors. This is required in 9100 ** case they are holding a reference to an xFetch reference 9101 ** corresponding to page pgnoRoot. */ 9102 rc = saveAllCursors(pBt, 0, 0); 9103 releasePage(pPageMove); 9104 if( rc!=SQLITE_OK ){ 9105 return rc; 9106 } 9107 9108 /* Move the page currently at pgnoRoot to pgnoMove. */ 9109 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9110 if( rc!=SQLITE_OK ){ 9111 return rc; 9112 } 9113 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9114 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9115 rc = SQLITE_CORRUPT_BKPT; 9116 } 9117 if( rc!=SQLITE_OK ){ 9118 releasePage(pRoot); 9119 return rc; 9120 } 9121 assert( eType!=PTRMAP_ROOTPAGE ); 9122 assert( eType!=PTRMAP_FREEPAGE ); 9123 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9124 releasePage(pRoot); 9125 9126 /* Obtain the page at pgnoRoot */ 9127 if( rc!=SQLITE_OK ){ 9128 return rc; 9129 } 9130 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9131 if( rc!=SQLITE_OK ){ 9132 return rc; 9133 } 9134 rc = sqlite3PagerWrite(pRoot->pDbPage); 9135 if( rc!=SQLITE_OK ){ 9136 releasePage(pRoot); 9137 return rc; 9138 } 9139 }else{ 9140 pRoot = pPageMove; 9141 } 9142 9143 /* Update the pointer-map and meta-data with the new root-page number. */ 9144 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9145 if( rc ){ 9146 releasePage(pRoot); 9147 return rc; 9148 } 9149 9150 /* When the new root page was allocated, page 1 was made writable in 9151 ** order either to increase the database filesize, or to decrement the 9152 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9153 */ 9154 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9155 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9156 if( NEVER(rc) ){ 9157 releasePage(pRoot); 9158 return rc; 9159 } 9160 9161 }else{ 9162 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9163 if( rc ) return rc; 9164 } 9165 #endif 9166 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9167 if( createTabFlags & BTREE_INTKEY ){ 9168 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9169 }else{ 9170 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9171 } 9172 zeroPage(pRoot, ptfFlags); 9173 sqlite3PagerUnref(pRoot->pDbPage); 9174 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9175 *piTable = (int)pgnoRoot; 9176 return SQLITE_OK; 9177 } 9178 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ 9179 int rc; 9180 sqlite3BtreeEnter(p); 9181 rc = btreeCreateTable(p, piTable, flags); 9182 sqlite3BtreeLeave(p); 9183 return rc; 9184 } 9185 9186 /* 9187 ** Erase the given database page and all its children. Return 9188 ** the page to the freelist. 9189 */ 9190 static int clearDatabasePage( 9191 BtShared *pBt, /* The BTree that contains the table */ 9192 Pgno pgno, /* Page number to clear */ 9193 int freePageFlag, /* Deallocate page if true */ 9194 int *pnChange /* Add number of Cells freed to this counter */ 9195 ){ 9196 MemPage *pPage; 9197 int rc; 9198 unsigned char *pCell; 9199 int i; 9200 int hdr; 9201 CellInfo info; 9202 9203 assert( sqlite3_mutex_held(pBt->mutex) ); 9204 if( pgno>btreePagecount(pBt) ){ 9205 return SQLITE_CORRUPT_BKPT; 9206 } 9207 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9208 if( rc ) return rc; 9209 if( pPage->bBusy ){ 9210 rc = SQLITE_CORRUPT_BKPT; 9211 goto cleardatabasepage_out; 9212 } 9213 pPage->bBusy = 1; 9214 hdr = pPage->hdrOffset; 9215 for(i=0; i<pPage->nCell; i++){ 9216 pCell = findCell(pPage, i); 9217 if( !pPage->leaf ){ 9218 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9219 if( rc ) goto cleardatabasepage_out; 9220 } 9221 rc = clearCell(pPage, pCell, &info); 9222 if( rc ) goto cleardatabasepage_out; 9223 } 9224 if( !pPage->leaf ){ 9225 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9226 if( rc ) goto cleardatabasepage_out; 9227 }else if( pnChange ){ 9228 assert( pPage->intKey || CORRUPT_DB ); 9229 testcase( !pPage->intKey ); 9230 *pnChange += pPage->nCell; 9231 } 9232 if( freePageFlag ){ 9233 freePage(pPage, &rc); 9234 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9235 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9236 } 9237 9238 cleardatabasepage_out: 9239 pPage->bBusy = 0; 9240 releasePage(pPage); 9241 return rc; 9242 } 9243 9244 /* 9245 ** Delete all information from a single table in the database. iTable is 9246 ** the page number of the root of the table. After this routine returns, 9247 ** the root page is empty, but still exists. 9248 ** 9249 ** This routine will fail with SQLITE_LOCKED if there are any open 9250 ** read cursors on the table. Open write cursors are moved to the 9251 ** root of the table. 9252 ** 9253 ** If pnChange is not NULL, then table iTable must be an intkey table. The 9254 ** integer value pointed to by pnChange is incremented by the number of 9255 ** entries in the table. 9256 */ 9257 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ 9258 int rc; 9259 BtShared *pBt = p->pBt; 9260 sqlite3BtreeEnter(p); 9261 assert( p->inTrans==TRANS_WRITE ); 9262 9263 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9264 9265 if( SQLITE_OK==rc ){ 9266 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9267 ** is the root of a table b-tree - if it is not, the following call is 9268 ** a no-op). */ 9269 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9270 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9271 } 9272 sqlite3BtreeLeave(p); 9273 return rc; 9274 } 9275 9276 /* 9277 ** Delete all information from the single table that pCur is open on. 9278 ** 9279 ** This routine only work for pCur on an ephemeral table. 9280 */ 9281 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9282 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9283 } 9284 9285 /* 9286 ** Erase all information in a table and add the root of the table to 9287 ** the freelist. Except, the root of the principle table (the one on 9288 ** page 1) is never added to the freelist. 9289 ** 9290 ** This routine will fail with SQLITE_LOCKED if there are any open 9291 ** cursors on the table. 9292 ** 9293 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9294 ** root page in the database file, then the last root page 9295 ** in the database file is moved into the slot formerly occupied by 9296 ** iTable and that last slot formerly occupied by the last root page 9297 ** is added to the freelist instead of iTable. In this say, all 9298 ** root pages are kept at the beginning of the database file, which 9299 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9300 ** page number that used to be the last root page in the file before 9301 ** the move. If no page gets moved, *piMoved is set to 0. 9302 ** The last root page is recorded in meta[3] and the value of 9303 ** meta[3] is updated by this procedure. 9304 */ 9305 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9306 int rc; 9307 MemPage *pPage = 0; 9308 BtShared *pBt = p->pBt; 9309 9310 assert( sqlite3BtreeHoldsMutex(p) ); 9311 assert( p->inTrans==TRANS_WRITE ); 9312 assert( iTable>=2 ); 9313 if( iTable>btreePagecount(pBt) ){ 9314 return SQLITE_CORRUPT_BKPT; 9315 } 9316 9317 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9318 if( rc ) return rc; 9319 rc = sqlite3BtreeClearTable(p, iTable, 0); 9320 if( rc ){ 9321 releasePage(pPage); 9322 return rc; 9323 } 9324 9325 *piMoved = 0; 9326 9327 #ifdef SQLITE_OMIT_AUTOVACUUM 9328 freePage(pPage, &rc); 9329 releasePage(pPage); 9330 #else 9331 if( pBt->autoVacuum ){ 9332 Pgno maxRootPgno; 9333 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9334 9335 if( iTable==maxRootPgno ){ 9336 /* If the table being dropped is the table with the largest root-page 9337 ** number in the database, put the root page on the free list. 9338 */ 9339 freePage(pPage, &rc); 9340 releasePage(pPage); 9341 if( rc!=SQLITE_OK ){ 9342 return rc; 9343 } 9344 }else{ 9345 /* The table being dropped does not have the largest root-page 9346 ** number in the database. So move the page that does into the 9347 ** gap left by the deleted root-page. 9348 */ 9349 MemPage *pMove; 9350 releasePage(pPage); 9351 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9352 if( rc!=SQLITE_OK ){ 9353 return rc; 9354 } 9355 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9356 releasePage(pMove); 9357 if( rc!=SQLITE_OK ){ 9358 return rc; 9359 } 9360 pMove = 0; 9361 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9362 freePage(pMove, &rc); 9363 releasePage(pMove); 9364 if( rc!=SQLITE_OK ){ 9365 return rc; 9366 } 9367 *piMoved = maxRootPgno; 9368 } 9369 9370 /* Set the new 'max-root-page' value in the database header. This 9371 ** is the old value less one, less one more if that happens to 9372 ** be a root-page number, less one again if that is the 9373 ** PENDING_BYTE_PAGE. 9374 */ 9375 maxRootPgno--; 9376 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9377 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9378 maxRootPgno--; 9379 } 9380 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9381 9382 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9383 }else{ 9384 freePage(pPage, &rc); 9385 releasePage(pPage); 9386 } 9387 #endif 9388 return rc; 9389 } 9390 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9391 int rc; 9392 sqlite3BtreeEnter(p); 9393 rc = btreeDropTable(p, iTable, piMoved); 9394 sqlite3BtreeLeave(p); 9395 return rc; 9396 } 9397 9398 9399 /* 9400 ** This function may only be called if the b-tree connection already 9401 ** has a read or write transaction open on the database. 9402 ** 9403 ** Read the meta-information out of a database file. Meta[0] 9404 ** is the number of free pages currently in the database. Meta[1] 9405 ** through meta[15] are available for use by higher layers. Meta[0] 9406 ** is read-only, the others are read/write. 9407 ** 9408 ** The schema layer numbers meta values differently. At the schema 9409 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9410 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9411 ** 9412 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9413 ** of reading the value out of the header, it instead loads the "DataVersion" 9414 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9415 ** database file. It is a number computed by the pager. But its access 9416 ** pattern is the same as header meta values, and so it is convenient to 9417 ** read it from this routine. 9418 */ 9419 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9420 BtShared *pBt = p->pBt; 9421 9422 sqlite3BtreeEnter(p); 9423 assert( p->inTrans>TRANS_NONE ); 9424 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); 9425 assert( pBt->pPage1 ); 9426 assert( idx>=0 && idx<=15 ); 9427 9428 if( idx==BTREE_DATA_VERSION ){ 9429 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion; 9430 }else{ 9431 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 9432 } 9433 9434 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 9435 ** database, mark the database as read-only. */ 9436 #ifdef SQLITE_OMIT_AUTOVACUUM 9437 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 9438 pBt->btsFlags |= BTS_READ_ONLY; 9439 } 9440 #endif 9441 9442 sqlite3BtreeLeave(p); 9443 } 9444 9445 /* 9446 ** Write meta-information back into the database. Meta[0] is 9447 ** read-only and may not be written. 9448 */ 9449 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 9450 BtShared *pBt = p->pBt; 9451 unsigned char *pP1; 9452 int rc; 9453 assert( idx>=1 && idx<=15 ); 9454 sqlite3BtreeEnter(p); 9455 assert( p->inTrans==TRANS_WRITE ); 9456 assert( pBt->pPage1!=0 ); 9457 pP1 = pBt->pPage1->aData; 9458 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9459 if( rc==SQLITE_OK ){ 9460 put4byte(&pP1[36 + idx*4], iMeta); 9461 #ifndef SQLITE_OMIT_AUTOVACUUM 9462 if( idx==BTREE_INCR_VACUUM ){ 9463 assert( pBt->autoVacuum || iMeta==0 ); 9464 assert( iMeta==0 || iMeta==1 ); 9465 pBt->incrVacuum = (u8)iMeta; 9466 } 9467 #endif 9468 } 9469 sqlite3BtreeLeave(p); 9470 return rc; 9471 } 9472 9473 #ifndef SQLITE_OMIT_BTREECOUNT 9474 /* 9475 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 9476 ** number of entries in the b-tree and write the result to *pnEntry. 9477 ** 9478 ** SQLITE_OK is returned if the operation is successfully executed. 9479 ** Otherwise, if an error is encountered (i.e. an IO error or database 9480 ** corruption) an SQLite error code is returned. 9481 */ 9482 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 9483 i64 nEntry = 0; /* Value to return in *pnEntry */ 9484 int rc; /* Return code */ 9485 9486 rc = moveToRoot(pCur); 9487 if( rc==SQLITE_EMPTY ){ 9488 *pnEntry = 0; 9489 return SQLITE_OK; 9490 } 9491 9492 /* Unless an error occurs, the following loop runs one iteration for each 9493 ** page in the B-Tree structure (not including overflow pages). 9494 */ 9495 while( rc==SQLITE_OK && !db->u1.isInterrupted ){ 9496 int iIdx; /* Index of child node in parent */ 9497 MemPage *pPage; /* Current page of the b-tree */ 9498 9499 /* If this is a leaf page or the tree is not an int-key tree, then 9500 ** this page contains countable entries. Increment the entry counter 9501 ** accordingly. 9502 */ 9503 pPage = pCur->pPage; 9504 if( pPage->leaf || !pPage->intKey ){ 9505 nEntry += pPage->nCell; 9506 } 9507 9508 /* pPage is a leaf node. This loop navigates the cursor so that it 9509 ** points to the first interior cell that it points to the parent of 9510 ** the next page in the tree that has not yet been visited. The 9511 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 9512 ** of the page, or to the number of cells in the page if the next page 9513 ** to visit is the right-child of its parent. 9514 ** 9515 ** If all pages in the tree have been visited, return SQLITE_OK to the 9516 ** caller. 9517 */ 9518 if( pPage->leaf ){ 9519 do { 9520 if( pCur->iPage==0 ){ 9521 /* All pages of the b-tree have been visited. Return successfully. */ 9522 *pnEntry = nEntry; 9523 return moveToRoot(pCur); 9524 } 9525 moveToParent(pCur); 9526 }while ( pCur->ix>=pCur->pPage->nCell ); 9527 9528 pCur->ix++; 9529 pPage = pCur->pPage; 9530 } 9531 9532 /* Descend to the child node of the cell that the cursor currently 9533 ** points at. This is the right-child if (iIdx==pPage->nCell). 9534 */ 9535 iIdx = pCur->ix; 9536 if( iIdx==pPage->nCell ){ 9537 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 9538 }else{ 9539 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 9540 } 9541 } 9542 9543 /* An error has occurred. Return an error code. */ 9544 return rc; 9545 } 9546 #endif 9547 9548 /* 9549 ** Return the pager associated with a BTree. This routine is used for 9550 ** testing and debugging only. 9551 */ 9552 Pager *sqlite3BtreePager(Btree *p){ 9553 return p->pBt->pPager; 9554 } 9555 9556 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9557 /* 9558 ** Append a message to the error message string. 9559 */ 9560 static void checkAppendMsg( 9561 IntegrityCk *pCheck, 9562 const char *zFormat, 9563 ... 9564 ){ 9565 va_list ap; 9566 if( !pCheck->mxErr ) return; 9567 pCheck->mxErr--; 9568 pCheck->nErr++; 9569 va_start(ap, zFormat); 9570 if( pCheck->errMsg.nChar ){ 9571 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 9572 } 9573 if( pCheck->zPfx ){ 9574 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 9575 } 9576 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 9577 va_end(ap); 9578 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 9579 pCheck->mallocFailed = 1; 9580 } 9581 } 9582 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9583 9584 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9585 9586 /* 9587 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 9588 ** corresponds to page iPg is already set. 9589 */ 9590 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9591 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9592 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 9593 } 9594 9595 /* 9596 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 9597 */ 9598 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9599 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9600 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 9601 } 9602 9603 9604 /* 9605 ** Add 1 to the reference count for page iPage. If this is the second 9606 ** reference to the page, add an error message to pCheck->zErrMsg. 9607 ** Return 1 if there are 2 or more references to the page and 0 if 9608 ** if this is the first reference to the page. 9609 ** 9610 ** Also check that the page number is in bounds. 9611 */ 9612 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 9613 if( iPage>pCheck->nPage || iPage==0 ){ 9614 checkAppendMsg(pCheck, "invalid page number %d", iPage); 9615 return 1; 9616 } 9617 if( getPageReferenced(pCheck, iPage) ){ 9618 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 9619 return 1; 9620 } 9621 if( pCheck->db->u1.isInterrupted ) return 1; 9622 setPageReferenced(pCheck, iPage); 9623 return 0; 9624 } 9625 9626 #ifndef SQLITE_OMIT_AUTOVACUUM 9627 /* 9628 ** Check that the entry in the pointer-map for page iChild maps to 9629 ** page iParent, pointer type ptrType. If not, append an error message 9630 ** to pCheck. 9631 */ 9632 static void checkPtrmap( 9633 IntegrityCk *pCheck, /* Integrity check context */ 9634 Pgno iChild, /* Child page number */ 9635 u8 eType, /* Expected pointer map type */ 9636 Pgno iParent /* Expected pointer map parent page number */ 9637 ){ 9638 int rc; 9639 u8 ePtrmapType; 9640 Pgno iPtrmapParent; 9641 9642 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 9643 if( rc!=SQLITE_OK ){ 9644 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; 9645 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 9646 return; 9647 } 9648 9649 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 9650 checkAppendMsg(pCheck, 9651 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 9652 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 9653 } 9654 } 9655 #endif 9656 9657 /* 9658 ** Check the integrity of the freelist or of an overflow page list. 9659 ** Verify that the number of pages on the list is N. 9660 */ 9661 static void checkList( 9662 IntegrityCk *pCheck, /* Integrity checking context */ 9663 int isFreeList, /* True for a freelist. False for overflow page list */ 9664 int iPage, /* Page number for first page in the list */ 9665 u32 N /* Expected number of pages in the list */ 9666 ){ 9667 int i; 9668 u32 expected = N; 9669 int nErrAtStart = pCheck->nErr; 9670 while( iPage!=0 && pCheck->mxErr ){ 9671 DbPage *pOvflPage; 9672 unsigned char *pOvflData; 9673 if( checkRef(pCheck, iPage) ) break; 9674 N--; 9675 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 9676 checkAppendMsg(pCheck, "failed to get page %d", iPage); 9677 break; 9678 } 9679 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 9680 if( isFreeList ){ 9681 u32 n = (u32)get4byte(&pOvflData[4]); 9682 #ifndef SQLITE_OMIT_AUTOVACUUM 9683 if( pCheck->pBt->autoVacuum ){ 9684 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 9685 } 9686 #endif 9687 if( n>pCheck->pBt->usableSize/4-2 ){ 9688 checkAppendMsg(pCheck, 9689 "freelist leaf count too big on page %d", iPage); 9690 N--; 9691 }else{ 9692 for(i=0; i<(int)n; i++){ 9693 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 9694 #ifndef SQLITE_OMIT_AUTOVACUUM 9695 if( pCheck->pBt->autoVacuum ){ 9696 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 9697 } 9698 #endif 9699 checkRef(pCheck, iFreePage); 9700 } 9701 N -= n; 9702 } 9703 } 9704 #ifndef SQLITE_OMIT_AUTOVACUUM 9705 else{ 9706 /* If this database supports auto-vacuum and iPage is not the last 9707 ** page in this overflow list, check that the pointer-map entry for 9708 ** the following page matches iPage. 9709 */ 9710 if( pCheck->pBt->autoVacuum && N>0 ){ 9711 i = get4byte(pOvflData); 9712 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 9713 } 9714 } 9715 #endif 9716 iPage = get4byte(pOvflData); 9717 sqlite3PagerUnref(pOvflPage); 9718 } 9719 if( N && nErrAtStart==pCheck->nErr ){ 9720 checkAppendMsg(pCheck, 9721 "%s is %d but should be %d", 9722 isFreeList ? "size" : "overflow list length", 9723 expected-N, expected); 9724 } 9725 } 9726 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9727 9728 /* 9729 ** An implementation of a min-heap. 9730 ** 9731 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 9732 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 9733 ** and aHeap[N*2+1]. 9734 ** 9735 ** The heap property is this: Every node is less than or equal to both 9736 ** of its daughter nodes. A consequence of the heap property is that the 9737 ** root node aHeap[1] is always the minimum value currently in the heap. 9738 ** 9739 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 9740 ** the heap, preserving the heap property. The btreeHeapPull() routine 9741 ** removes the root element from the heap (the minimum value in the heap) 9742 ** and then moves other nodes around as necessary to preserve the heap 9743 ** property. 9744 ** 9745 ** This heap is used for cell overlap and coverage testing. Each u32 9746 ** entry represents the span of a cell or freeblock on a btree page. 9747 ** The upper 16 bits are the index of the first byte of a range and the 9748 ** lower 16 bits are the index of the last byte of that range. 9749 */ 9750 static void btreeHeapInsert(u32 *aHeap, u32 x){ 9751 u32 j, i = ++aHeap[0]; 9752 aHeap[i] = x; 9753 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 9754 x = aHeap[j]; 9755 aHeap[j] = aHeap[i]; 9756 aHeap[i] = x; 9757 i = j; 9758 } 9759 } 9760 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 9761 u32 j, i, x; 9762 if( (x = aHeap[0])==0 ) return 0; 9763 *pOut = aHeap[1]; 9764 aHeap[1] = aHeap[x]; 9765 aHeap[x] = 0xffffffff; 9766 aHeap[0]--; 9767 i = 1; 9768 while( (j = i*2)<=aHeap[0] ){ 9769 if( aHeap[j]>aHeap[j+1] ) j++; 9770 if( aHeap[i]<aHeap[j] ) break; 9771 x = aHeap[i]; 9772 aHeap[i] = aHeap[j]; 9773 aHeap[j] = x; 9774 i = j; 9775 } 9776 return 1; 9777 } 9778 9779 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9780 /* 9781 ** Do various sanity checks on a single page of a tree. Return 9782 ** the tree depth. Root pages return 0. Parents of root pages 9783 ** return 1, and so forth. 9784 ** 9785 ** These checks are done: 9786 ** 9787 ** 1. Make sure that cells and freeblocks do not overlap 9788 ** but combine to completely cover the page. 9789 ** 2. Make sure integer cell keys are in order. 9790 ** 3. Check the integrity of overflow pages. 9791 ** 4. Recursively call checkTreePage on all children. 9792 ** 5. Verify that the depth of all children is the same. 9793 */ 9794 static int checkTreePage( 9795 IntegrityCk *pCheck, /* Context for the sanity check */ 9796 int iPage, /* Page number of the page to check */ 9797 i64 *piMinKey, /* Write minimum integer primary key here */ 9798 i64 maxKey /* Error if integer primary key greater than this */ 9799 ){ 9800 MemPage *pPage = 0; /* The page being analyzed */ 9801 int i; /* Loop counter */ 9802 int rc; /* Result code from subroutine call */ 9803 int depth = -1, d2; /* Depth of a subtree */ 9804 int pgno; /* Page number */ 9805 int nFrag; /* Number of fragmented bytes on the page */ 9806 int hdr; /* Offset to the page header */ 9807 int cellStart; /* Offset to the start of the cell pointer array */ 9808 int nCell; /* Number of cells */ 9809 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 9810 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 9811 ** False if IPK must be strictly less than maxKey */ 9812 u8 *data; /* Page content */ 9813 u8 *pCell; /* Cell content */ 9814 u8 *pCellIdx; /* Next element of the cell pointer array */ 9815 BtShared *pBt; /* The BtShared object that owns pPage */ 9816 u32 pc; /* Address of a cell */ 9817 u32 usableSize; /* Usable size of the page */ 9818 u32 contentOffset; /* Offset to the start of the cell content area */ 9819 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 9820 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 9821 const char *saved_zPfx = pCheck->zPfx; 9822 int saved_v1 = pCheck->v1; 9823 int saved_v2 = pCheck->v2; 9824 u8 savedIsInit = 0; 9825 9826 /* Check that the page exists 9827 */ 9828 pBt = pCheck->pBt; 9829 usableSize = pBt->usableSize; 9830 if( iPage==0 ) return 0; 9831 if( checkRef(pCheck, iPage) ) return 0; 9832 pCheck->zPfx = "Page %d: "; 9833 pCheck->v1 = iPage; 9834 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ 9835 checkAppendMsg(pCheck, 9836 "unable to get the page. error code=%d", rc); 9837 goto end_of_check; 9838 } 9839 9840 /* Clear MemPage.isInit to make sure the corruption detection code in 9841 ** btreeInitPage() is executed. */ 9842 savedIsInit = pPage->isInit; 9843 pPage->isInit = 0; 9844 if( (rc = btreeInitPage(pPage))!=0 ){ 9845 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 9846 checkAppendMsg(pCheck, 9847 "btreeInitPage() returns error code %d", rc); 9848 goto end_of_check; 9849 } 9850 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 9851 assert( rc==SQLITE_CORRUPT ); 9852 checkAppendMsg(pCheck, "free space corruption", rc); 9853 goto end_of_check; 9854 } 9855 data = pPage->aData; 9856 hdr = pPage->hdrOffset; 9857 9858 /* Set up for cell analysis */ 9859 pCheck->zPfx = "On tree page %d cell %d: "; 9860 contentOffset = get2byteNotZero(&data[hdr+5]); 9861 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 9862 9863 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 9864 ** number of cells on the page. */ 9865 nCell = get2byte(&data[hdr+3]); 9866 assert( pPage->nCell==nCell ); 9867 9868 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 9869 ** immediately follows the b-tree page header. */ 9870 cellStart = hdr + 12 - 4*pPage->leaf; 9871 assert( pPage->aCellIdx==&data[cellStart] ); 9872 pCellIdx = &data[cellStart + 2*(nCell-1)]; 9873 9874 if( !pPage->leaf ){ 9875 /* Analyze the right-child page of internal pages */ 9876 pgno = get4byte(&data[hdr+8]); 9877 #ifndef SQLITE_OMIT_AUTOVACUUM 9878 if( pBt->autoVacuum ){ 9879 pCheck->zPfx = "On page %d at right child: "; 9880 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9881 } 9882 #endif 9883 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9884 keyCanBeEqual = 0; 9885 }else{ 9886 /* For leaf pages, the coverage check will occur in the same loop 9887 ** as the other cell checks, so initialize the heap. */ 9888 heap = pCheck->heap; 9889 heap[0] = 0; 9890 } 9891 9892 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 9893 ** integer offsets to the cell contents. */ 9894 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 9895 CellInfo info; 9896 9897 /* Check cell size */ 9898 pCheck->v2 = i; 9899 assert( pCellIdx==&data[cellStart + i*2] ); 9900 pc = get2byteAligned(pCellIdx); 9901 pCellIdx -= 2; 9902 if( pc<contentOffset || pc>usableSize-4 ){ 9903 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 9904 pc, contentOffset, usableSize-4); 9905 doCoverageCheck = 0; 9906 continue; 9907 } 9908 pCell = &data[pc]; 9909 pPage->xParseCell(pPage, pCell, &info); 9910 if( pc+info.nSize>usableSize ){ 9911 checkAppendMsg(pCheck, "Extends off end of page"); 9912 doCoverageCheck = 0; 9913 continue; 9914 } 9915 9916 /* Check for integer primary key out of range */ 9917 if( pPage->intKey ){ 9918 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 9919 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 9920 } 9921 maxKey = info.nKey; 9922 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 9923 } 9924 9925 /* Check the content overflow list */ 9926 if( info.nPayload>info.nLocal ){ 9927 u32 nPage; /* Number of pages on the overflow chain */ 9928 Pgno pgnoOvfl; /* First page of the overflow chain */ 9929 assert( pc + info.nSize - 4 <= usableSize ); 9930 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 9931 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 9932 #ifndef SQLITE_OMIT_AUTOVACUUM 9933 if( pBt->autoVacuum ){ 9934 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 9935 } 9936 #endif 9937 checkList(pCheck, 0, pgnoOvfl, nPage); 9938 } 9939 9940 if( !pPage->leaf ){ 9941 /* Check sanity of left child page for internal pages */ 9942 pgno = get4byte(pCell); 9943 #ifndef SQLITE_OMIT_AUTOVACUUM 9944 if( pBt->autoVacuum ){ 9945 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9946 } 9947 #endif 9948 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9949 keyCanBeEqual = 0; 9950 if( d2!=depth ){ 9951 checkAppendMsg(pCheck, "Child page depth differs"); 9952 depth = d2; 9953 } 9954 }else{ 9955 /* Populate the coverage-checking heap for leaf pages */ 9956 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 9957 } 9958 } 9959 *piMinKey = maxKey; 9960 9961 /* Check for complete coverage of the page 9962 */ 9963 pCheck->zPfx = 0; 9964 if( doCoverageCheck && pCheck->mxErr>0 ){ 9965 /* For leaf pages, the min-heap has already been initialized and the 9966 ** cells have already been inserted. But for internal pages, that has 9967 ** not yet been done, so do it now */ 9968 if( !pPage->leaf ){ 9969 heap = pCheck->heap; 9970 heap[0] = 0; 9971 for(i=nCell-1; i>=0; i--){ 9972 u32 size; 9973 pc = get2byteAligned(&data[cellStart+i*2]); 9974 size = pPage->xCellSize(pPage, &data[pc]); 9975 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 9976 } 9977 } 9978 /* Add the freeblocks to the min-heap 9979 ** 9980 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 9981 ** is the offset of the first freeblock, or zero if there are no 9982 ** freeblocks on the page. 9983 */ 9984 i = get2byte(&data[hdr+1]); 9985 while( i>0 ){ 9986 int size, j; 9987 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 9988 size = get2byte(&data[i+2]); 9989 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 9990 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 9991 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 9992 ** big-endian integer which is the offset in the b-tree page of the next 9993 ** freeblock in the chain, or zero if the freeblock is the last on the 9994 ** chain. */ 9995 j = get2byte(&data[i]); 9996 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 9997 ** increasing offset. */ 9998 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 9999 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10000 i = j; 10001 } 10002 /* Analyze the min-heap looking for overlap between cells and/or 10003 ** freeblocks, and counting the number of untracked bytes in nFrag. 10004 ** 10005 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10006 ** There is an implied first entry the covers the page header, the cell 10007 ** pointer index, and the gap between the cell pointer index and the start 10008 ** of cell content. 10009 ** 10010 ** The loop below pulls entries from the min-heap in order and compares 10011 ** the start_address against the previous end_address. If there is an 10012 ** overlap, that means bytes are used multiple times. If there is a gap, 10013 ** that gap is added to the fragmentation count. 10014 */ 10015 nFrag = 0; 10016 prev = contentOffset - 1; /* Implied first min-heap entry */ 10017 while( btreeHeapPull(heap,&x) ){ 10018 if( (prev&0xffff)>=(x>>16) ){ 10019 checkAppendMsg(pCheck, 10020 "Multiple uses for byte %u of page %d", x>>16, iPage); 10021 break; 10022 }else{ 10023 nFrag += (x>>16) - (prev&0xffff) - 1; 10024 prev = x; 10025 } 10026 } 10027 nFrag += usableSize - (prev&0xffff) - 1; 10028 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10029 ** is stored in the fifth field of the b-tree page header. 10030 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10031 ** number of fragmented free bytes within the cell content area. 10032 */ 10033 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10034 checkAppendMsg(pCheck, 10035 "Fragmentation of %d bytes reported as %d on page %d", 10036 nFrag, data[hdr+7], iPage); 10037 } 10038 } 10039 10040 end_of_check: 10041 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10042 releasePage(pPage); 10043 pCheck->zPfx = saved_zPfx; 10044 pCheck->v1 = saved_v1; 10045 pCheck->v2 = saved_v2; 10046 return depth+1; 10047 } 10048 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10049 10050 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10051 /* 10052 ** This routine does a complete check of the given BTree file. aRoot[] is 10053 ** an array of pages numbers were each page number is the root page of 10054 ** a table. nRoot is the number of entries in aRoot. 10055 ** 10056 ** A read-only or read-write transaction must be opened before calling 10057 ** this function. 10058 ** 10059 ** Write the number of error seen in *pnErr. Except for some memory 10060 ** allocation errors, an error message held in memory obtained from 10061 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10062 ** returned. If a memory allocation error occurs, NULL is returned. 10063 */ 10064 char *sqlite3BtreeIntegrityCheck( 10065 sqlite3 *db, /* Database connection that is running the check */ 10066 Btree *p, /* The btree to be checked */ 10067 int *aRoot, /* An array of root pages numbers for individual trees */ 10068 int nRoot, /* Number of entries in aRoot[] */ 10069 int mxErr, /* Stop reporting errors after this many */ 10070 int *pnErr /* Write number of errors seen to this variable */ 10071 ){ 10072 Pgno i; 10073 IntegrityCk sCheck; 10074 BtShared *pBt = p->pBt; 10075 u64 savedDbFlags = pBt->db->flags; 10076 char zErr[100]; 10077 VVA_ONLY( int nRef ); 10078 10079 sqlite3BtreeEnter(p); 10080 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10081 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10082 assert( nRef>=0 ); 10083 sCheck.db = db; 10084 sCheck.pBt = pBt; 10085 sCheck.pPager = pBt->pPager; 10086 sCheck.nPage = btreePagecount(sCheck.pBt); 10087 sCheck.mxErr = mxErr; 10088 sCheck.nErr = 0; 10089 sCheck.mallocFailed = 0; 10090 sCheck.zPfx = 0; 10091 sCheck.v1 = 0; 10092 sCheck.v2 = 0; 10093 sCheck.aPgRef = 0; 10094 sCheck.heap = 0; 10095 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10096 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10097 if( sCheck.nPage==0 ){ 10098 goto integrity_ck_cleanup; 10099 } 10100 10101 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10102 if( !sCheck.aPgRef ){ 10103 sCheck.mallocFailed = 1; 10104 goto integrity_ck_cleanup; 10105 } 10106 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10107 if( sCheck.heap==0 ){ 10108 sCheck.mallocFailed = 1; 10109 goto integrity_ck_cleanup; 10110 } 10111 10112 i = PENDING_BYTE_PAGE(pBt); 10113 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10114 10115 /* Check the integrity of the freelist 10116 */ 10117 sCheck.zPfx = "Main freelist: "; 10118 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10119 get4byte(&pBt->pPage1->aData[36])); 10120 sCheck.zPfx = 0; 10121 10122 /* Check all the tables. 10123 */ 10124 #ifndef SQLITE_OMIT_AUTOVACUUM 10125 if( pBt->autoVacuum ){ 10126 int mx = 0; 10127 int mxInHdr; 10128 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10129 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10130 if( mx!=mxInHdr ){ 10131 checkAppendMsg(&sCheck, 10132 "max rootpage (%d) disagrees with header (%d)", 10133 mx, mxInHdr 10134 ); 10135 } 10136 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10137 checkAppendMsg(&sCheck, 10138 "incremental_vacuum enabled with a max rootpage of zero" 10139 ); 10140 } 10141 #endif 10142 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10143 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10144 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10145 i64 notUsed; 10146 if( aRoot[i]==0 ) continue; 10147 #ifndef SQLITE_OMIT_AUTOVACUUM 10148 if( pBt->autoVacuum && aRoot[i]>1 ){ 10149 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10150 } 10151 #endif 10152 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10153 } 10154 pBt->db->flags = savedDbFlags; 10155 10156 /* Make sure every page in the file is referenced 10157 */ 10158 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10159 #ifdef SQLITE_OMIT_AUTOVACUUM 10160 if( getPageReferenced(&sCheck, i)==0 ){ 10161 checkAppendMsg(&sCheck, "Page %d is never used", i); 10162 } 10163 #else 10164 /* If the database supports auto-vacuum, make sure no tables contain 10165 ** references to pointer-map pages. 10166 */ 10167 if( getPageReferenced(&sCheck, i)==0 && 10168 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10169 checkAppendMsg(&sCheck, "Page %d is never used", i); 10170 } 10171 if( getPageReferenced(&sCheck, i)!=0 && 10172 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10173 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10174 } 10175 #endif 10176 } 10177 10178 /* Clean up and report errors. 10179 */ 10180 integrity_ck_cleanup: 10181 sqlite3PageFree(sCheck.heap); 10182 sqlite3_free(sCheck.aPgRef); 10183 if( sCheck.mallocFailed ){ 10184 sqlite3_str_reset(&sCheck.errMsg); 10185 sCheck.nErr++; 10186 } 10187 *pnErr = sCheck.nErr; 10188 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10189 /* Make sure this analysis did not leave any unref() pages. */ 10190 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10191 sqlite3BtreeLeave(p); 10192 return sqlite3StrAccumFinish(&sCheck.errMsg); 10193 } 10194 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10195 10196 /* 10197 ** Return the full pathname of the underlying database file. Return 10198 ** an empty string if the database is in-memory or a TEMP database. 10199 ** 10200 ** The pager filename is invariant as long as the pager is 10201 ** open so it is safe to access without the BtShared mutex. 10202 */ 10203 const char *sqlite3BtreeGetFilename(Btree *p){ 10204 assert( p->pBt->pPager!=0 ); 10205 return sqlite3PagerFilename(p->pBt->pPager, 1); 10206 } 10207 10208 /* 10209 ** Return the pathname of the journal file for this database. The return 10210 ** value of this routine is the same regardless of whether the journal file 10211 ** has been created or not. 10212 ** 10213 ** The pager journal filename is invariant as long as the pager is 10214 ** open so it is safe to access without the BtShared mutex. 10215 */ 10216 const char *sqlite3BtreeGetJournalname(Btree *p){ 10217 assert( p->pBt->pPager!=0 ); 10218 return sqlite3PagerJournalname(p->pBt->pPager); 10219 } 10220 10221 /* 10222 ** Return non-zero if a transaction is active. 10223 */ 10224 int sqlite3BtreeIsInTrans(Btree *p){ 10225 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10226 return (p && (p->inTrans==TRANS_WRITE)); 10227 } 10228 10229 #ifndef SQLITE_OMIT_WAL 10230 /* 10231 ** Run a checkpoint on the Btree passed as the first argument. 10232 ** 10233 ** Return SQLITE_LOCKED if this or any other connection has an open 10234 ** transaction on the shared-cache the argument Btree is connected to. 10235 ** 10236 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10237 */ 10238 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10239 int rc = SQLITE_OK; 10240 if( p ){ 10241 BtShared *pBt = p->pBt; 10242 sqlite3BtreeEnter(p); 10243 if( pBt->inTransaction!=TRANS_NONE ){ 10244 rc = SQLITE_LOCKED; 10245 }else{ 10246 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10247 } 10248 sqlite3BtreeLeave(p); 10249 } 10250 return rc; 10251 } 10252 #endif 10253 10254 /* 10255 ** Return non-zero if a read (or write) transaction is active. 10256 */ 10257 int sqlite3BtreeIsInReadTrans(Btree *p){ 10258 assert( p ); 10259 assert( sqlite3_mutex_held(p->db->mutex) ); 10260 return p->inTrans!=TRANS_NONE; 10261 } 10262 10263 int sqlite3BtreeIsInBackup(Btree *p){ 10264 assert( p ); 10265 assert( sqlite3_mutex_held(p->db->mutex) ); 10266 return p->nBackup!=0; 10267 } 10268 10269 /* 10270 ** This function returns a pointer to a blob of memory associated with 10271 ** a single shared-btree. The memory is used by client code for its own 10272 ** purposes (for example, to store a high-level schema associated with 10273 ** the shared-btree). The btree layer manages reference counting issues. 10274 ** 10275 ** The first time this is called on a shared-btree, nBytes bytes of memory 10276 ** are allocated, zeroed, and returned to the caller. For each subsequent 10277 ** call the nBytes parameter is ignored and a pointer to the same blob 10278 ** of memory returned. 10279 ** 10280 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10281 ** allocated, a null pointer is returned. If the blob has already been 10282 ** allocated, it is returned as normal. 10283 ** 10284 ** Just before the shared-btree is closed, the function passed as the 10285 ** xFree argument when the memory allocation was made is invoked on the 10286 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10287 ** on the memory, the btree layer does that. 10288 */ 10289 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10290 BtShared *pBt = p->pBt; 10291 sqlite3BtreeEnter(p); 10292 if( !pBt->pSchema && nBytes ){ 10293 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10294 pBt->xFreeSchema = xFree; 10295 } 10296 sqlite3BtreeLeave(p); 10297 return pBt->pSchema; 10298 } 10299 10300 /* 10301 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10302 ** btree as the argument handle holds an exclusive lock on the 10303 ** sqlite_master table. Otherwise SQLITE_OK. 10304 */ 10305 int sqlite3BtreeSchemaLocked(Btree *p){ 10306 int rc; 10307 assert( sqlite3_mutex_held(p->db->mutex) ); 10308 sqlite3BtreeEnter(p); 10309 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 10310 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10311 sqlite3BtreeLeave(p); 10312 return rc; 10313 } 10314 10315 10316 #ifndef SQLITE_OMIT_SHARED_CACHE 10317 /* 10318 ** Obtain a lock on the table whose root page is iTab. The 10319 ** lock is a write lock if isWritelock is true or a read lock 10320 ** if it is false. 10321 */ 10322 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10323 int rc = SQLITE_OK; 10324 assert( p->inTrans!=TRANS_NONE ); 10325 if( p->sharable ){ 10326 u8 lockType = READ_LOCK + isWriteLock; 10327 assert( READ_LOCK+1==WRITE_LOCK ); 10328 assert( isWriteLock==0 || isWriteLock==1 ); 10329 10330 sqlite3BtreeEnter(p); 10331 rc = querySharedCacheTableLock(p, iTab, lockType); 10332 if( rc==SQLITE_OK ){ 10333 rc = setSharedCacheTableLock(p, iTab, lockType); 10334 } 10335 sqlite3BtreeLeave(p); 10336 } 10337 return rc; 10338 } 10339 #endif 10340 10341 #ifndef SQLITE_OMIT_INCRBLOB 10342 /* 10343 ** Argument pCsr must be a cursor opened for writing on an 10344 ** INTKEY table currently pointing at a valid table entry. 10345 ** This function modifies the data stored as part of that entry. 10346 ** 10347 ** Only the data content may only be modified, it is not possible to 10348 ** change the length of the data stored. If this function is called with 10349 ** parameters that attempt to write past the end of the existing data, 10350 ** no modifications are made and SQLITE_CORRUPT is returned. 10351 */ 10352 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10353 int rc; 10354 assert( cursorOwnsBtShared(pCsr) ); 10355 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10356 assert( pCsr->curFlags & BTCF_Incrblob ); 10357 10358 rc = restoreCursorPosition(pCsr); 10359 if( rc!=SQLITE_OK ){ 10360 return rc; 10361 } 10362 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10363 if( pCsr->eState!=CURSOR_VALID ){ 10364 return SQLITE_ABORT; 10365 } 10366 10367 /* Save the positions of all other cursors open on this table. This is 10368 ** required in case any of them are holding references to an xFetch 10369 ** version of the b-tree page modified by the accessPayload call below. 10370 ** 10371 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10372 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10373 ** saveAllCursors can only return SQLITE_OK. 10374 */ 10375 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10376 assert( rc==SQLITE_OK ); 10377 10378 /* Check some assumptions: 10379 ** (a) the cursor is open for writing, 10380 ** (b) there is a read/write transaction open, 10381 ** (c) the connection holds a write-lock on the table (if required), 10382 ** (d) there are no conflicting read-locks, and 10383 ** (e) the cursor points at a valid row of an intKey table. 10384 */ 10385 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10386 return SQLITE_READONLY; 10387 } 10388 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10389 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10390 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10391 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10392 assert( pCsr->pPage->intKey ); 10393 10394 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10395 } 10396 10397 /* 10398 ** Mark this cursor as an incremental blob cursor. 10399 */ 10400 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10401 pCur->curFlags |= BTCF_Incrblob; 10402 pCur->pBtree->hasIncrblobCur = 1; 10403 } 10404 #endif 10405 10406 /* 10407 ** Set both the "read version" (single byte at byte offset 18) and 10408 ** "write version" (single byte at byte offset 19) fields in the database 10409 ** header to iVersion. 10410 */ 10411 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 10412 BtShared *pBt = pBtree->pBt; 10413 int rc; /* Return code */ 10414 10415 assert( iVersion==1 || iVersion==2 ); 10416 10417 /* If setting the version fields to 1, do not automatically open the 10418 ** WAL connection, even if the version fields are currently set to 2. 10419 */ 10420 pBt->btsFlags &= ~BTS_NO_WAL; 10421 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 10422 10423 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 10424 if( rc==SQLITE_OK ){ 10425 u8 *aData = pBt->pPage1->aData; 10426 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 10427 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 10428 if( rc==SQLITE_OK ){ 10429 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10430 if( rc==SQLITE_OK ){ 10431 aData[18] = (u8)iVersion; 10432 aData[19] = (u8)iVersion; 10433 } 10434 } 10435 } 10436 } 10437 10438 pBt->btsFlags &= ~BTS_NO_WAL; 10439 return rc; 10440 } 10441 10442 /* 10443 ** Return true if the cursor has a hint specified. This routine is 10444 ** only used from within assert() statements 10445 */ 10446 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 10447 return (pCsr->hints & mask)!=0; 10448 } 10449 10450 /* 10451 ** Return true if the given Btree is read-only. 10452 */ 10453 int sqlite3BtreeIsReadonly(Btree *p){ 10454 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 10455 } 10456 10457 /* 10458 ** Return the size of the header added to each page by this module. 10459 */ 10460 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 10461 10462 #if !defined(SQLITE_OMIT_SHARED_CACHE) 10463 /* 10464 ** Return true if the Btree passed as the only argument is sharable. 10465 */ 10466 int sqlite3BtreeSharable(Btree *p){ 10467 return p->sharable; 10468 } 10469 10470 /* 10471 ** Return the number of connections to the BtShared object accessed by 10472 ** the Btree handle passed as the only argument. For private caches 10473 ** this is always 1. For shared caches it may be 1 or greater. 10474 */ 10475 int sqlite3BtreeConnectionCount(Btree *p){ 10476 testcase( p->sharable ); 10477 return p->pBt->nRef; 10478 } 10479 #endif 10480