1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 /* 116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 118 ** 119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 122 ** with the page number and filename associated with the (MemPage*). 123 */ 124 #ifdef SQLITE_DEBUG 125 int corruptPageError(int lineno, MemPage *p){ 126 char *zMsg; 127 sqlite3BeginBenignMalloc(); 128 zMsg = sqlite3_mprintf("database corruption page %d of %s", 129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 130 ); 131 sqlite3EndBenignMalloc(); 132 if( zMsg ){ 133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 134 } 135 sqlite3_free(zMsg); 136 return SQLITE_CORRUPT_BKPT; 137 } 138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 139 #else 140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 141 #endif 142 143 #ifndef SQLITE_OMIT_SHARED_CACHE 144 145 #ifdef SQLITE_DEBUG 146 /* 147 **** This function is only used as part of an assert() statement. *** 148 ** 149 ** Check to see if pBtree holds the required locks to read or write to the 150 ** table with root page iRoot. Return 1 if it does and 0 if not. 151 ** 152 ** For example, when writing to a table with root-page iRoot via 153 ** Btree connection pBtree: 154 ** 155 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 156 ** 157 ** When writing to an index that resides in a sharable database, the 158 ** caller should have first obtained a lock specifying the root page of 159 ** the corresponding table. This makes things a bit more complicated, 160 ** as this module treats each table as a separate structure. To determine 161 ** the table corresponding to the index being written, this 162 ** function has to search through the database schema. 163 ** 164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 165 ** hold a write-lock on the schema table (root page 1). This is also 166 ** acceptable. 167 */ 168 static int hasSharedCacheTableLock( 169 Btree *pBtree, /* Handle that must hold lock */ 170 Pgno iRoot, /* Root page of b-tree */ 171 int isIndex, /* True if iRoot is the root of an index b-tree */ 172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 173 ){ 174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 175 Pgno iTab = 0; 176 BtLock *pLock; 177 178 /* If this database is not shareable, or if the client is reading 179 ** and has the read-uncommitted flag set, then no lock is required. 180 ** Return true immediately. 181 */ 182 if( (pBtree->sharable==0) 183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 184 ){ 185 return 1; 186 } 187 188 /* If the client is reading or writing an index and the schema is 189 ** not loaded, then it is too difficult to actually check to see if 190 ** the correct locks are held. So do not bother - just return true. 191 ** This case does not come up very often anyhow. 192 */ 193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 194 return 1; 195 } 196 197 /* Figure out the root-page that the lock should be held on. For table 198 ** b-trees, this is just the root page of the b-tree being read or 199 ** written. For index b-trees, it is the root page of the associated 200 ** table. */ 201 if( isIndex ){ 202 HashElem *p; 203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 204 Index *pIdx = (Index *)sqliteHashData(p); 205 if( pIdx->tnum==(int)iRoot ){ 206 if( iTab ){ 207 /* Two or more indexes share the same root page. There must 208 ** be imposter tables. So just return true. The assert is not 209 ** useful in that case. */ 210 return 1; 211 } 212 iTab = pIdx->pTable->tnum; 213 } 214 } 215 }else{ 216 iTab = iRoot; 217 } 218 219 /* Search for the required lock. Either a write-lock on root-page iTab, a 220 ** write-lock on the schema table, or (if the client is reading) a 221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 223 if( pLock->pBtree==pBtree 224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 225 && pLock->eLock>=eLockType 226 ){ 227 return 1; 228 } 229 } 230 231 /* Failed to find the required lock. */ 232 return 0; 233 } 234 #endif /* SQLITE_DEBUG */ 235 236 #ifdef SQLITE_DEBUG 237 /* 238 **** This function may be used as part of assert() statements only. **** 239 ** 240 ** Return true if it would be illegal for pBtree to write into the 241 ** table or index rooted at iRoot because other shared connections are 242 ** simultaneously reading that same table or index. 243 ** 244 ** It is illegal for pBtree to write if some other Btree object that 245 ** shares the same BtShared object is currently reading or writing 246 ** the iRoot table. Except, if the other Btree object has the 247 ** read-uncommitted flag set, then it is OK for the other object to 248 ** have a read cursor. 249 ** 250 ** For example, before writing to any part of the table or index 251 ** rooted at page iRoot, one should call: 252 ** 253 ** assert( !hasReadConflicts(pBtree, iRoot) ); 254 */ 255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 256 BtCursor *p; 257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 258 if( p->pgnoRoot==iRoot 259 && p->pBtree!=pBtree 260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 261 ){ 262 return 1; 263 } 264 } 265 return 0; 266 } 267 #endif /* #ifdef SQLITE_DEBUG */ 268 269 /* 270 ** Query to see if Btree handle p may obtain a lock of type eLock 271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 272 ** SQLITE_OK if the lock may be obtained (by calling 273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 274 */ 275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 276 BtShared *pBt = p->pBt; 277 BtLock *pIter; 278 279 assert( sqlite3BtreeHoldsMutex(p) ); 280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 281 assert( p->db!=0 ); 282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 283 284 /* If requesting a write-lock, then the Btree must have an open write 285 ** transaction on this file. And, obviously, for this to be so there 286 ** must be an open write transaction on the file itself. 287 */ 288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 290 291 /* This routine is a no-op if the shared-cache is not enabled */ 292 if( !p->sharable ){ 293 return SQLITE_OK; 294 } 295 296 /* If some other connection is holding an exclusive lock, the 297 ** requested lock may not be obtained. 298 */ 299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 301 return SQLITE_LOCKED_SHAREDCACHE; 302 } 303 304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 305 /* The condition (pIter->eLock!=eLock) in the following if(...) 306 ** statement is a simplification of: 307 ** 308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 309 ** 310 ** since we know that if eLock==WRITE_LOCK, then no other connection 311 ** may hold a WRITE_LOCK on any table in this file (since there can 312 ** only be a single writer). 313 */ 314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 318 if( eLock==WRITE_LOCK ){ 319 assert( p==pBt->pWriter ); 320 pBt->btsFlags |= BTS_PENDING; 321 } 322 return SQLITE_LOCKED_SHAREDCACHE; 323 } 324 } 325 return SQLITE_OK; 326 } 327 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 328 329 #ifndef SQLITE_OMIT_SHARED_CACHE 330 /* 331 ** Add a lock on the table with root-page iTable to the shared-btree used 332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 333 ** WRITE_LOCK. 334 ** 335 ** This function assumes the following: 336 ** 337 ** (a) The specified Btree object p is connected to a sharable 338 ** database (one with the BtShared.sharable flag set), and 339 ** 340 ** (b) No other Btree objects hold a lock that conflicts 341 ** with the requested lock (i.e. querySharedCacheTableLock() has 342 ** already been called and returned SQLITE_OK). 343 ** 344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 345 ** is returned if a malloc attempt fails. 346 */ 347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 348 BtShared *pBt = p->pBt; 349 BtLock *pLock = 0; 350 BtLock *pIter; 351 352 assert( sqlite3BtreeHoldsMutex(p) ); 353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 354 assert( p->db!=0 ); 355 356 /* A connection with the read-uncommitted flag set will never try to 357 ** obtain a read-lock using this function. The only read-lock obtained 358 ** by a connection in read-uncommitted mode is on the sqlite_master 359 ** table, and that lock is obtained in BtreeBeginTrans(). */ 360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 361 362 /* This function should only be called on a sharable b-tree after it 363 ** has been determined that no other b-tree holds a conflicting lock. */ 364 assert( p->sharable ); 365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 366 367 /* First search the list for an existing lock on this table. */ 368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 369 if( pIter->iTable==iTable && pIter->pBtree==p ){ 370 pLock = pIter; 371 break; 372 } 373 } 374 375 /* If the above search did not find a BtLock struct associating Btree p 376 ** with table iTable, allocate one and link it into the list. 377 */ 378 if( !pLock ){ 379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 380 if( !pLock ){ 381 return SQLITE_NOMEM_BKPT; 382 } 383 pLock->iTable = iTable; 384 pLock->pBtree = p; 385 pLock->pNext = pBt->pLock; 386 pBt->pLock = pLock; 387 } 388 389 /* Set the BtLock.eLock variable to the maximum of the current lock 390 ** and the requested lock. This means if a write-lock was already held 391 ** and a read-lock requested, we don't incorrectly downgrade the lock. 392 */ 393 assert( WRITE_LOCK>READ_LOCK ); 394 if( eLock>pLock->eLock ){ 395 pLock->eLock = eLock; 396 } 397 398 return SQLITE_OK; 399 } 400 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 401 402 #ifndef SQLITE_OMIT_SHARED_CACHE 403 /* 404 ** Release all the table locks (locks obtained via calls to 405 ** the setSharedCacheTableLock() procedure) held by Btree object p. 406 ** 407 ** This function assumes that Btree p has an open read or write 408 ** transaction. If it does not, then the BTS_PENDING flag 409 ** may be incorrectly cleared. 410 */ 411 static void clearAllSharedCacheTableLocks(Btree *p){ 412 BtShared *pBt = p->pBt; 413 BtLock **ppIter = &pBt->pLock; 414 415 assert( sqlite3BtreeHoldsMutex(p) ); 416 assert( p->sharable || 0==*ppIter ); 417 assert( p->inTrans>0 ); 418 419 while( *ppIter ){ 420 BtLock *pLock = *ppIter; 421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 422 assert( pLock->pBtree->inTrans>=pLock->eLock ); 423 if( pLock->pBtree==p ){ 424 *ppIter = pLock->pNext; 425 assert( pLock->iTable!=1 || pLock==&p->lock ); 426 if( pLock->iTable!=1 ){ 427 sqlite3_free(pLock); 428 } 429 }else{ 430 ppIter = &pLock->pNext; 431 } 432 } 433 434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 435 if( pBt->pWriter==p ){ 436 pBt->pWriter = 0; 437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 438 }else if( pBt->nTransaction==2 ){ 439 /* This function is called when Btree p is concluding its 440 ** transaction. If there currently exists a writer, and p is not 441 ** that writer, then the number of locks held by connections other 442 ** than the writer must be about to drop to zero. In this case 443 ** set the BTS_PENDING flag to 0. 444 ** 445 ** If there is not currently a writer, then BTS_PENDING must 446 ** be zero already. So this next line is harmless in that case. 447 */ 448 pBt->btsFlags &= ~BTS_PENDING; 449 } 450 } 451 452 /* 453 ** This function changes all write-locks held by Btree p into read-locks. 454 */ 455 static void downgradeAllSharedCacheTableLocks(Btree *p){ 456 BtShared *pBt = p->pBt; 457 if( pBt->pWriter==p ){ 458 BtLock *pLock; 459 pBt->pWriter = 0; 460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 463 pLock->eLock = READ_LOCK; 464 } 465 } 466 } 467 468 #endif /* SQLITE_OMIT_SHARED_CACHE */ 469 470 static void releasePage(MemPage *pPage); /* Forward reference */ 471 static void releasePageOne(MemPage *pPage); /* Forward reference */ 472 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 473 474 /* 475 ***** This routine is used inside of assert() only **** 476 ** 477 ** Verify that the cursor holds the mutex on its BtShared 478 */ 479 #ifdef SQLITE_DEBUG 480 static int cursorHoldsMutex(BtCursor *p){ 481 return sqlite3_mutex_held(p->pBt->mutex); 482 } 483 484 /* Verify that the cursor and the BtShared agree about what is the current 485 ** database connetion. This is important in shared-cache mode. If the database 486 ** connection pointers get out-of-sync, it is possible for routines like 487 ** btreeInitPage() to reference an stale connection pointer that references a 488 ** a connection that has already closed. This routine is used inside assert() 489 ** statements only and for the purpose of double-checking that the btree code 490 ** does keep the database connection pointers up-to-date. 491 */ 492 static int cursorOwnsBtShared(BtCursor *p){ 493 assert( cursorHoldsMutex(p) ); 494 return (p->pBtree->db==p->pBt->db); 495 } 496 #endif 497 498 /* 499 ** Invalidate the overflow cache of the cursor passed as the first argument. 500 ** on the shared btree structure pBt. 501 */ 502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 503 504 /* 505 ** Invalidate the overflow page-list cache for all cursors opened 506 ** on the shared btree structure pBt. 507 */ 508 static void invalidateAllOverflowCache(BtShared *pBt){ 509 BtCursor *p; 510 assert( sqlite3_mutex_held(pBt->mutex) ); 511 for(p=pBt->pCursor; p; p=p->pNext){ 512 invalidateOverflowCache(p); 513 } 514 } 515 516 #ifndef SQLITE_OMIT_INCRBLOB 517 /* 518 ** This function is called before modifying the contents of a table 519 ** to invalidate any incrblob cursors that are open on the 520 ** row or one of the rows being modified. 521 ** 522 ** If argument isClearTable is true, then the entire contents of the 523 ** table is about to be deleted. In this case invalidate all incrblob 524 ** cursors open on any row within the table with root-page pgnoRoot. 525 ** 526 ** Otherwise, if argument isClearTable is false, then the row with 527 ** rowid iRow is being replaced or deleted. In this case invalidate 528 ** only those incrblob cursors open on that specific row. 529 */ 530 static void invalidateIncrblobCursors( 531 Btree *pBtree, /* The database file to check */ 532 Pgno pgnoRoot, /* The table that might be changing */ 533 i64 iRow, /* The rowid that might be changing */ 534 int isClearTable /* True if all rows are being deleted */ 535 ){ 536 BtCursor *p; 537 if( pBtree->hasIncrblobCur==0 ) return; 538 assert( sqlite3BtreeHoldsMutex(pBtree) ); 539 pBtree->hasIncrblobCur = 0; 540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 541 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 542 pBtree->hasIncrblobCur = 1; 543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 544 p->eState = CURSOR_INVALID; 545 } 546 } 547 } 548 } 549 550 #else 551 /* Stub function when INCRBLOB is omitted */ 552 #define invalidateIncrblobCursors(w,x,y,z) 553 #endif /* SQLITE_OMIT_INCRBLOB */ 554 555 /* 556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 557 ** when a page that previously contained data becomes a free-list leaf 558 ** page. 559 ** 560 ** The BtShared.pHasContent bitvec exists to work around an obscure 561 ** bug caused by the interaction of two useful IO optimizations surrounding 562 ** free-list leaf pages: 563 ** 564 ** 1) When all data is deleted from a page and the page becomes 565 ** a free-list leaf page, the page is not written to the database 566 ** (as free-list leaf pages contain no meaningful data). Sometimes 567 ** such a page is not even journalled (as it will not be modified, 568 ** why bother journalling it?). 569 ** 570 ** 2) When a free-list leaf page is reused, its content is not read 571 ** from the database or written to the journal file (why should it 572 ** be, if it is not at all meaningful?). 573 ** 574 ** By themselves, these optimizations work fine and provide a handy 575 ** performance boost to bulk delete or insert operations. However, if 576 ** a page is moved to the free-list and then reused within the same 577 ** transaction, a problem comes up. If the page is not journalled when 578 ** it is moved to the free-list and it is also not journalled when it 579 ** is extracted from the free-list and reused, then the original data 580 ** may be lost. In the event of a rollback, it may not be possible 581 ** to restore the database to its original configuration. 582 ** 583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 584 ** moved to become a free-list leaf page, the corresponding bit is 585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 586 ** optimization 2 above is omitted if the corresponding bit is already 587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 588 ** at the end of every transaction. 589 */ 590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 591 int rc = SQLITE_OK; 592 if( !pBt->pHasContent ){ 593 assert( pgno<=pBt->nPage ); 594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 595 if( !pBt->pHasContent ){ 596 rc = SQLITE_NOMEM_BKPT; 597 } 598 } 599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 601 } 602 return rc; 603 } 604 605 /* 606 ** Query the BtShared.pHasContent vector. 607 ** 608 ** This function is called when a free-list leaf page is removed from the 609 ** free-list for reuse. It returns false if it is safe to retrieve the 610 ** page from the pager layer with the 'no-content' flag set. True otherwise. 611 */ 612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 613 Bitvec *p = pBt->pHasContent; 614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); 615 } 616 617 /* 618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 619 ** invoked at the conclusion of each write-transaction. 620 */ 621 static void btreeClearHasContent(BtShared *pBt){ 622 sqlite3BitvecDestroy(pBt->pHasContent); 623 pBt->pHasContent = 0; 624 } 625 626 /* 627 ** Release all of the apPage[] pages for a cursor. 628 */ 629 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 630 int i; 631 if( pCur->iPage>=0 ){ 632 for(i=0; i<pCur->iPage; i++){ 633 releasePageNotNull(pCur->apPage[i]); 634 } 635 releasePageNotNull(pCur->pPage); 636 pCur->iPage = -1; 637 } 638 } 639 640 /* 641 ** The cursor passed as the only argument must point to a valid entry 642 ** when this function is called (i.e. have eState==CURSOR_VALID). This 643 ** function saves the current cursor key in variables pCur->nKey and 644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 645 ** code otherwise. 646 ** 647 ** If the cursor is open on an intkey table, then the integer key 648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 650 ** set to point to a malloced buffer pCur->nKey bytes in size containing 651 ** the key. 652 */ 653 static int saveCursorKey(BtCursor *pCur){ 654 int rc = SQLITE_OK; 655 assert( CURSOR_VALID==pCur->eState ); 656 assert( 0==pCur->pKey ); 657 assert( cursorHoldsMutex(pCur) ); 658 659 if( pCur->curIntKey ){ 660 /* Only the rowid is required for a table btree */ 661 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 662 }else{ 663 /* For an index btree, save the complete key content */ 664 void *pKey; 665 pCur->nKey = sqlite3BtreePayloadSize(pCur); 666 pKey = sqlite3Malloc( pCur->nKey ); 667 if( pKey ){ 668 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 669 if( rc==SQLITE_OK ){ 670 pCur->pKey = pKey; 671 }else{ 672 sqlite3_free(pKey); 673 } 674 }else{ 675 rc = SQLITE_NOMEM_BKPT; 676 } 677 } 678 assert( !pCur->curIntKey || !pCur->pKey ); 679 return rc; 680 } 681 682 /* 683 ** Save the current cursor position in the variables BtCursor.nKey 684 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 685 ** 686 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 687 ** prior to calling this routine. 688 */ 689 static int saveCursorPosition(BtCursor *pCur){ 690 int rc; 691 692 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 693 assert( 0==pCur->pKey ); 694 assert( cursorHoldsMutex(pCur) ); 695 696 if( pCur->eState==CURSOR_SKIPNEXT ){ 697 pCur->eState = CURSOR_VALID; 698 }else{ 699 pCur->skipNext = 0; 700 } 701 702 rc = saveCursorKey(pCur); 703 if( rc==SQLITE_OK ){ 704 btreeReleaseAllCursorPages(pCur); 705 pCur->eState = CURSOR_REQUIRESEEK; 706 } 707 708 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 709 return rc; 710 } 711 712 /* Forward reference */ 713 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 714 715 /* 716 ** Save the positions of all cursors (except pExcept) that are open on 717 ** the table with root-page iRoot. "Saving the cursor position" means that 718 ** the location in the btree is remembered in such a way that it can be 719 ** moved back to the same spot after the btree has been modified. This 720 ** routine is called just before cursor pExcept is used to modify the 721 ** table, for example in BtreeDelete() or BtreeInsert(). 722 ** 723 ** If there are two or more cursors on the same btree, then all such 724 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 725 ** routine enforces that rule. This routine only needs to be called in 726 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 727 ** 728 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 729 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 730 ** pointless call to this routine. 731 ** 732 ** Implementation note: This routine merely checks to see if any cursors 733 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 734 ** event that cursors are in need to being saved. 735 */ 736 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 737 BtCursor *p; 738 assert( sqlite3_mutex_held(pBt->mutex) ); 739 assert( pExcept==0 || pExcept->pBt==pBt ); 740 for(p=pBt->pCursor; p; p=p->pNext){ 741 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 742 } 743 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 744 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 745 return SQLITE_OK; 746 } 747 748 /* This helper routine to saveAllCursors does the actual work of saving 749 ** the cursors if and when a cursor is found that actually requires saving. 750 ** The common case is that no cursors need to be saved, so this routine is 751 ** broken out from its caller to avoid unnecessary stack pointer movement. 752 */ 753 static int SQLITE_NOINLINE saveCursorsOnList( 754 BtCursor *p, /* The first cursor that needs saving */ 755 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 756 BtCursor *pExcept /* Do not save this cursor */ 757 ){ 758 do{ 759 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 760 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 761 int rc = saveCursorPosition(p); 762 if( SQLITE_OK!=rc ){ 763 return rc; 764 } 765 }else{ 766 testcase( p->iPage>=0 ); 767 btreeReleaseAllCursorPages(p); 768 } 769 } 770 p = p->pNext; 771 }while( p ); 772 return SQLITE_OK; 773 } 774 775 /* 776 ** Clear the current cursor position. 777 */ 778 void sqlite3BtreeClearCursor(BtCursor *pCur){ 779 assert( cursorHoldsMutex(pCur) ); 780 sqlite3_free(pCur->pKey); 781 pCur->pKey = 0; 782 pCur->eState = CURSOR_INVALID; 783 } 784 785 /* 786 ** In this version of BtreeMoveto, pKey is a packed index record 787 ** such as is generated by the OP_MakeRecord opcode. Unpack the 788 ** record and then call BtreeMovetoUnpacked() to do the work. 789 */ 790 static int btreeMoveto( 791 BtCursor *pCur, /* Cursor open on the btree to be searched */ 792 const void *pKey, /* Packed key if the btree is an index */ 793 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 794 int bias, /* Bias search to the high end */ 795 int *pRes /* Write search results here */ 796 ){ 797 int rc; /* Status code */ 798 UnpackedRecord *pIdxKey; /* Unpacked index key */ 799 800 if( pKey ){ 801 assert( nKey==(i64)(int)nKey ); 802 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo); 803 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 804 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); 805 if( pIdxKey->nField==0 ){ 806 rc = SQLITE_CORRUPT_BKPT; 807 goto moveto_done; 808 } 809 }else{ 810 pIdxKey = 0; 811 } 812 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); 813 moveto_done: 814 if( pIdxKey ){ 815 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 816 } 817 return rc; 818 } 819 820 /* 821 ** Restore the cursor to the position it was in (or as close to as possible) 822 ** when saveCursorPosition() was called. Note that this call deletes the 823 ** saved position info stored by saveCursorPosition(), so there can be 824 ** at most one effective restoreCursorPosition() call after each 825 ** saveCursorPosition(). 826 */ 827 static int btreeRestoreCursorPosition(BtCursor *pCur){ 828 int rc; 829 int skipNext; 830 assert( cursorOwnsBtShared(pCur) ); 831 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 832 if( pCur->eState==CURSOR_FAULT ){ 833 return pCur->skipNext; 834 } 835 pCur->eState = CURSOR_INVALID; 836 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 837 if( rc==SQLITE_OK ){ 838 sqlite3_free(pCur->pKey); 839 pCur->pKey = 0; 840 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 841 pCur->skipNext |= skipNext; 842 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 843 pCur->eState = CURSOR_SKIPNEXT; 844 } 845 } 846 return rc; 847 } 848 849 #define restoreCursorPosition(p) \ 850 (p->eState>=CURSOR_REQUIRESEEK ? \ 851 btreeRestoreCursorPosition(p) : \ 852 SQLITE_OK) 853 854 /* 855 ** Determine whether or not a cursor has moved from the position where 856 ** it was last placed, or has been invalidated for any other reason. 857 ** Cursors can move when the row they are pointing at is deleted out 858 ** from under them, for example. Cursor might also move if a btree 859 ** is rebalanced. 860 ** 861 ** Calling this routine with a NULL cursor pointer returns false. 862 ** 863 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 864 ** back to where it ought to be if this routine returns true. 865 */ 866 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 867 assert( EIGHT_BYTE_ALIGNMENT(pCur) 868 || pCur==sqlite3BtreeFakeValidCursor() ); 869 assert( offsetof(BtCursor, eState)==0 ); 870 assert( sizeof(pCur->eState)==1 ); 871 return CURSOR_VALID != *(u8*)pCur; 872 } 873 874 /* 875 ** Return a pointer to a fake BtCursor object that will always answer 876 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 877 ** cursor returned must not be used with any other Btree interface. 878 */ 879 BtCursor *sqlite3BtreeFakeValidCursor(void){ 880 static u8 fakeCursor = CURSOR_VALID; 881 assert( offsetof(BtCursor, eState)==0 ); 882 return (BtCursor*)&fakeCursor; 883 } 884 885 /* 886 ** This routine restores a cursor back to its original position after it 887 ** has been moved by some outside activity (such as a btree rebalance or 888 ** a row having been deleted out from under the cursor). 889 ** 890 ** On success, the *pDifferentRow parameter is false if the cursor is left 891 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 892 ** was pointing to has been deleted, forcing the cursor to point to some 893 ** nearby row. 894 ** 895 ** This routine should only be called for a cursor that just returned 896 ** TRUE from sqlite3BtreeCursorHasMoved(). 897 */ 898 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 899 int rc; 900 901 assert( pCur!=0 ); 902 assert( pCur->eState!=CURSOR_VALID ); 903 rc = restoreCursorPosition(pCur); 904 if( rc ){ 905 *pDifferentRow = 1; 906 return rc; 907 } 908 if( pCur->eState!=CURSOR_VALID ){ 909 *pDifferentRow = 1; 910 }else{ 911 assert( pCur->skipNext==0 ); 912 *pDifferentRow = 0; 913 } 914 return SQLITE_OK; 915 } 916 917 #ifdef SQLITE_ENABLE_CURSOR_HINTS 918 /* 919 ** Provide hints to the cursor. The particular hint given (and the type 920 ** and number of the varargs parameters) is determined by the eHintType 921 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 922 */ 923 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 924 /* Used only by system that substitute their own storage engine */ 925 } 926 #endif 927 928 /* 929 ** Provide flag hints to the cursor. 930 */ 931 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 932 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 933 pCur->hints = x; 934 } 935 936 937 #ifndef SQLITE_OMIT_AUTOVACUUM 938 /* 939 ** Given a page number of a regular database page, return the page 940 ** number for the pointer-map page that contains the entry for the 941 ** input page number. 942 ** 943 ** Return 0 (not a valid page) for pgno==1 since there is 944 ** no pointer map associated with page 1. The integrity_check logic 945 ** requires that ptrmapPageno(*,1)!=1. 946 */ 947 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 948 int nPagesPerMapPage; 949 Pgno iPtrMap, ret; 950 assert( sqlite3_mutex_held(pBt->mutex) ); 951 if( pgno<2 ) return 0; 952 nPagesPerMapPage = (pBt->usableSize/5)+1; 953 iPtrMap = (pgno-2)/nPagesPerMapPage; 954 ret = (iPtrMap*nPagesPerMapPage) + 2; 955 if( ret==PENDING_BYTE_PAGE(pBt) ){ 956 ret++; 957 } 958 return ret; 959 } 960 961 /* 962 ** Write an entry into the pointer map. 963 ** 964 ** This routine updates the pointer map entry for page number 'key' 965 ** so that it maps to type 'eType' and parent page number 'pgno'. 966 ** 967 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 968 ** a no-op. If an error occurs, the appropriate error code is written 969 ** into *pRC. 970 */ 971 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 972 DbPage *pDbPage; /* The pointer map page */ 973 u8 *pPtrmap; /* The pointer map data */ 974 Pgno iPtrmap; /* The pointer map page number */ 975 int offset; /* Offset in pointer map page */ 976 int rc; /* Return code from subfunctions */ 977 978 if( *pRC ) return; 979 980 assert( sqlite3_mutex_held(pBt->mutex) ); 981 /* The master-journal page number must never be used as a pointer map page */ 982 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 983 984 assert( pBt->autoVacuum ); 985 if( key==0 ){ 986 *pRC = SQLITE_CORRUPT_BKPT; 987 return; 988 } 989 iPtrmap = PTRMAP_PAGENO(pBt, key); 990 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 991 if( rc!=SQLITE_OK ){ 992 *pRC = rc; 993 return; 994 } 995 offset = PTRMAP_PTROFFSET(iPtrmap, key); 996 if( offset<0 ){ 997 *pRC = SQLITE_CORRUPT_BKPT; 998 goto ptrmap_exit; 999 } 1000 assert( offset <= (int)pBt->usableSize-5 ); 1001 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1002 1003 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1004 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1005 *pRC= rc = sqlite3PagerWrite(pDbPage); 1006 if( rc==SQLITE_OK ){ 1007 pPtrmap[offset] = eType; 1008 put4byte(&pPtrmap[offset+1], parent); 1009 } 1010 } 1011 1012 ptrmap_exit: 1013 sqlite3PagerUnref(pDbPage); 1014 } 1015 1016 /* 1017 ** Read an entry from the pointer map. 1018 ** 1019 ** This routine retrieves the pointer map entry for page 'key', writing 1020 ** the type and parent page number to *pEType and *pPgno respectively. 1021 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1022 */ 1023 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1024 DbPage *pDbPage; /* The pointer map page */ 1025 int iPtrmap; /* Pointer map page index */ 1026 u8 *pPtrmap; /* Pointer map page data */ 1027 int offset; /* Offset of entry in pointer map */ 1028 int rc; 1029 1030 assert( sqlite3_mutex_held(pBt->mutex) ); 1031 1032 iPtrmap = PTRMAP_PAGENO(pBt, key); 1033 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1034 if( rc!=0 ){ 1035 return rc; 1036 } 1037 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1038 1039 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1040 if( offset<0 ){ 1041 sqlite3PagerUnref(pDbPage); 1042 return SQLITE_CORRUPT_BKPT; 1043 } 1044 assert( offset <= (int)pBt->usableSize-5 ); 1045 assert( pEType!=0 ); 1046 *pEType = pPtrmap[offset]; 1047 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1048 1049 sqlite3PagerUnref(pDbPage); 1050 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1051 return SQLITE_OK; 1052 } 1053 1054 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1055 #define ptrmapPut(w,x,y,z,rc) 1056 #define ptrmapGet(w,x,y,z) SQLITE_OK 1057 #define ptrmapPutOvflPtr(x, y, rc) 1058 #endif 1059 1060 /* 1061 ** Given a btree page and a cell index (0 means the first cell on 1062 ** the page, 1 means the second cell, and so forth) return a pointer 1063 ** to the cell content. 1064 ** 1065 ** findCellPastPtr() does the same except it skips past the initial 1066 ** 4-byte child pointer found on interior pages, if there is one. 1067 ** 1068 ** This routine works only for pages that do not contain overflow cells. 1069 */ 1070 #define findCell(P,I) \ 1071 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1072 #define findCellPastPtr(P,I) \ 1073 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1074 1075 1076 /* 1077 ** This is common tail processing for btreeParseCellPtr() and 1078 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1079 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1080 ** structure. 1081 */ 1082 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1083 MemPage *pPage, /* Page containing the cell */ 1084 u8 *pCell, /* Pointer to the cell text. */ 1085 CellInfo *pInfo /* Fill in this structure */ 1086 ){ 1087 /* If the payload will not fit completely on the local page, we have 1088 ** to decide how much to store locally and how much to spill onto 1089 ** overflow pages. The strategy is to minimize the amount of unused 1090 ** space on overflow pages while keeping the amount of local storage 1091 ** in between minLocal and maxLocal. 1092 ** 1093 ** Warning: changing the way overflow payload is distributed in any 1094 ** way will result in an incompatible file format. 1095 */ 1096 int minLocal; /* Minimum amount of payload held locally */ 1097 int maxLocal; /* Maximum amount of payload held locally */ 1098 int surplus; /* Overflow payload available for local storage */ 1099 1100 minLocal = pPage->minLocal; 1101 maxLocal = pPage->maxLocal; 1102 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1103 testcase( surplus==maxLocal ); 1104 testcase( surplus==maxLocal+1 ); 1105 if( surplus <= maxLocal ){ 1106 pInfo->nLocal = (u16)surplus; 1107 }else{ 1108 pInfo->nLocal = (u16)minLocal; 1109 } 1110 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1111 } 1112 1113 /* 1114 ** The following routines are implementations of the MemPage.xParseCell() 1115 ** method. 1116 ** 1117 ** Parse a cell content block and fill in the CellInfo structure. 1118 ** 1119 ** btreeParseCellPtr() => table btree leaf nodes 1120 ** btreeParseCellNoPayload() => table btree internal nodes 1121 ** btreeParseCellPtrIndex() => index btree nodes 1122 ** 1123 ** There is also a wrapper function btreeParseCell() that works for 1124 ** all MemPage types and that references the cell by index rather than 1125 ** by pointer. 1126 */ 1127 static void btreeParseCellPtrNoPayload( 1128 MemPage *pPage, /* Page containing the cell */ 1129 u8 *pCell, /* Pointer to the cell text. */ 1130 CellInfo *pInfo /* Fill in this structure */ 1131 ){ 1132 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1133 assert( pPage->leaf==0 ); 1134 assert( pPage->childPtrSize==4 ); 1135 #ifndef SQLITE_DEBUG 1136 UNUSED_PARAMETER(pPage); 1137 #endif 1138 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1139 pInfo->nPayload = 0; 1140 pInfo->nLocal = 0; 1141 pInfo->pPayload = 0; 1142 return; 1143 } 1144 static void btreeParseCellPtr( 1145 MemPage *pPage, /* Page containing the cell */ 1146 u8 *pCell, /* Pointer to the cell text. */ 1147 CellInfo *pInfo /* Fill in this structure */ 1148 ){ 1149 u8 *pIter; /* For scanning through pCell */ 1150 u32 nPayload; /* Number of bytes of cell payload */ 1151 u64 iKey; /* Extracted Key value */ 1152 1153 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1154 assert( pPage->leaf==0 || pPage->leaf==1 ); 1155 assert( pPage->intKeyLeaf ); 1156 assert( pPage->childPtrSize==0 ); 1157 pIter = pCell; 1158 1159 /* The next block of code is equivalent to: 1160 ** 1161 ** pIter += getVarint32(pIter, nPayload); 1162 ** 1163 ** The code is inlined to avoid a function call. 1164 */ 1165 nPayload = *pIter; 1166 if( nPayload>=0x80 ){ 1167 u8 *pEnd = &pIter[8]; 1168 nPayload &= 0x7f; 1169 do{ 1170 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1171 }while( (*pIter)>=0x80 && pIter<pEnd ); 1172 } 1173 pIter++; 1174 1175 /* The next block of code is equivalent to: 1176 ** 1177 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1178 ** 1179 ** The code is inlined to avoid a function call. 1180 */ 1181 iKey = *pIter; 1182 if( iKey>=0x80 ){ 1183 u8 *pEnd = &pIter[7]; 1184 iKey &= 0x7f; 1185 while(1){ 1186 iKey = (iKey<<7) | (*++pIter & 0x7f); 1187 if( (*pIter)<0x80 ) break; 1188 if( pIter>=pEnd ){ 1189 iKey = (iKey<<8) | *++pIter; 1190 break; 1191 } 1192 } 1193 } 1194 pIter++; 1195 1196 pInfo->nKey = *(i64*)&iKey; 1197 pInfo->nPayload = nPayload; 1198 pInfo->pPayload = pIter; 1199 testcase( nPayload==pPage->maxLocal ); 1200 testcase( nPayload==pPage->maxLocal+1 ); 1201 if( nPayload<=pPage->maxLocal ){ 1202 /* This is the (easy) common case where the entire payload fits 1203 ** on the local page. No overflow is required. 1204 */ 1205 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1206 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1207 pInfo->nLocal = (u16)nPayload; 1208 }else{ 1209 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1210 } 1211 } 1212 static void btreeParseCellPtrIndex( 1213 MemPage *pPage, /* Page containing the cell */ 1214 u8 *pCell, /* Pointer to the cell text. */ 1215 CellInfo *pInfo /* Fill in this structure */ 1216 ){ 1217 u8 *pIter; /* For scanning through pCell */ 1218 u32 nPayload; /* Number of bytes of cell payload */ 1219 1220 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1221 assert( pPage->leaf==0 || pPage->leaf==1 ); 1222 assert( pPage->intKeyLeaf==0 ); 1223 pIter = pCell + pPage->childPtrSize; 1224 nPayload = *pIter; 1225 if( nPayload>=0x80 ){ 1226 u8 *pEnd = &pIter[8]; 1227 nPayload &= 0x7f; 1228 do{ 1229 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1230 }while( *(pIter)>=0x80 && pIter<pEnd ); 1231 } 1232 pIter++; 1233 pInfo->nKey = nPayload; 1234 pInfo->nPayload = nPayload; 1235 pInfo->pPayload = pIter; 1236 testcase( nPayload==pPage->maxLocal ); 1237 testcase( nPayload==pPage->maxLocal+1 ); 1238 if( nPayload<=pPage->maxLocal ){ 1239 /* This is the (easy) common case where the entire payload fits 1240 ** on the local page. No overflow is required. 1241 */ 1242 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1243 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1244 pInfo->nLocal = (u16)nPayload; 1245 }else{ 1246 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1247 } 1248 } 1249 static void btreeParseCell( 1250 MemPage *pPage, /* Page containing the cell */ 1251 int iCell, /* The cell index. First cell is 0 */ 1252 CellInfo *pInfo /* Fill in this structure */ 1253 ){ 1254 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1255 } 1256 1257 /* 1258 ** The following routines are implementations of the MemPage.xCellSize 1259 ** method. 1260 ** 1261 ** Compute the total number of bytes that a Cell needs in the cell 1262 ** data area of the btree-page. The return number includes the cell 1263 ** data header and the local payload, but not any overflow page or 1264 ** the space used by the cell pointer. 1265 ** 1266 ** cellSizePtrNoPayload() => table internal nodes 1267 ** cellSizePtr() => all index nodes & table leaf nodes 1268 */ 1269 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1270 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1271 u8 *pEnd; /* End mark for a varint */ 1272 u32 nSize; /* Size value to return */ 1273 1274 #ifdef SQLITE_DEBUG 1275 /* The value returned by this function should always be the same as 1276 ** the (CellInfo.nSize) value found by doing a full parse of the 1277 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1278 ** this function verifies that this invariant is not violated. */ 1279 CellInfo debuginfo; 1280 pPage->xParseCell(pPage, pCell, &debuginfo); 1281 #endif 1282 1283 nSize = *pIter; 1284 if( nSize>=0x80 ){ 1285 pEnd = &pIter[8]; 1286 nSize &= 0x7f; 1287 do{ 1288 nSize = (nSize<<7) | (*++pIter & 0x7f); 1289 }while( *(pIter)>=0x80 && pIter<pEnd ); 1290 } 1291 pIter++; 1292 if( pPage->intKey ){ 1293 /* pIter now points at the 64-bit integer key value, a variable length 1294 ** integer. The following block moves pIter to point at the first byte 1295 ** past the end of the key value. */ 1296 pEnd = &pIter[9]; 1297 while( (*pIter++)&0x80 && pIter<pEnd ); 1298 } 1299 testcase( nSize==pPage->maxLocal ); 1300 testcase( nSize==pPage->maxLocal+1 ); 1301 if( nSize<=pPage->maxLocal ){ 1302 nSize += (u32)(pIter - pCell); 1303 if( nSize<4 ) nSize = 4; 1304 }else{ 1305 int minLocal = pPage->minLocal; 1306 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1307 testcase( nSize==pPage->maxLocal ); 1308 testcase( nSize==pPage->maxLocal+1 ); 1309 if( nSize>pPage->maxLocal ){ 1310 nSize = minLocal; 1311 } 1312 nSize += 4 + (u16)(pIter - pCell); 1313 } 1314 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1315 return (u16)nSize; 1316 } 1317 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1318 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1319 u8 *pEnd; /* End mark for a varint */ 1320 1321 #ifdef SQLITE_DEBUG 1322 /* The value returned by this function should always be the same as 1323 ** the (CellInfo.nSize) value found by doing a full parse of the 1324 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1325 ** this function verifies that this invariant is not violated. */ 1326 CellInfo debuginfo; 1327 pPage->xParseCell(pPage, pCell, &debuginfo); 1328 #else 1329 UNUSED_PARAMETER(pPage); 1330 #endif 1331 1332 assert( pPage->childPtrSize==4 ); 1333 pEnd = pIter + 9; 1334 while( (*pIter++)&0x80 && pIter<pEnd ); 1335 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1336 return (u16)(pIter - pCell); 1337 } 1338 1339 1340 #ifdef SQLITE_DEBUG 1341 /* This variation on cellSizePtr() is used inside of assert() statements 1342 ** only. */ 1343 static u16 cellSize(MemPage *pPage, int iCell){ 1344 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1345 } 1346 #endif 1347 1348 #ifndef SQLITE_OMIT_AUTOVACUUM 1349 /* 1350 ** If the cell pCell, part of page pPage contains a pointer 1351 ** to an overflow page, insert an entry into the pointer-map 1352 ** for the overflow page. 1353 */ 1354 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ 1355 CellInfo info; 1356 if( *pRC ) return; 1357 assert( pCell!=0 ); 1358 pPage->xParseCell(pPage, pCell, &info); 1359 if( info.nLocal<info.nPayload ){ 1360 Pgno ovfl = get4byte(&pCell[info.nSize-4]); 1361 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1362 } 1363 } 1364 #endif 1365 1366 1367 /* 1368 ** Defragment the page given. This routine reorganizes cells within the 1369 ** page so that there are no free-blocks on the free-block list. 1370 ** 1371 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1372 ** present in the page after this routine returns. 1373 ** 1374 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1375 ** b-tree page so that there are no freeblocks or fragment bytes, all 1376 ** unused bytes are contained in the unallocated space region, and all 1377 ** cells are packed tightly at the end of the page. 1378 */ 1379 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1380 int i; /* Loop counter */ 1381 int pc; /* Address of the i-th cell */ 1382 int hdr; /* Offset to the page header */ 1383 int size; /* Size of a cell */ 1384 int usableSize; /* Number of usable bytes on a page */ 1385 int cellOffset; /* Offset to the cell pointer array */ 1386 int cbrk; /* Offset to the cell content area */ 1387 int nCell; /* Number of cells on the page */ 1388 unsigned char *data; /* The page data */ 1389 unsigned char *temp; /* Temp area for cell content */ 1390 unsigned char *src; /* Source of content */ 1391 int iCellFirst; /* First allowable cell index */ 1392 int iCellLast; /* Last possible cell index */ 1393 1394 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1395 assert( pPage->pBt!=0 ); 1396 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1397 assert( pPage->nOverflow==0 ); 1398 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1399 temp = 0; 1400 src = data = pPage->aData; 1401 hdr = pPage->hdrOffset; 1402 cellOffset = pPage->cellOffset; 1403 nCell = pPage->nCell; 1404 assert( nCell==get2byte(&data[hdr+3]) ); 1405 iCellFirst = cellOffset + 2*nCell; 1406 usableSize = pPage->pBt->usableSize; 1407 1408 /* This block handles pages with two or fewer free blocks and nMaxFrag 1409 ** or fewer fragmented bytes. In this case it is faster to move the 1410 ** two (or one) blocks of cells using memmove() and add the required 1411 ** offsets to each pointer in the cell-pointer array than it is to 1412 ** reconstruct the entire page. */ 1413 if( (int)data[hdr+7]<=nMaxFrag ){ 1414 int iFree = get2byte(&data[hdr+1]); 1415 if( iFree ){ 1416 int iFree2 = get2byte(&data[iFree]); 1417 1418 /* pageFindSlot() has already verified that free blocks are sorted 1419 ** in order of offset within the page, and that no block extends 1420 ** past the end of the page. Provided the two free slots do not 1421 ** overlap, this guarantees that the memmove() calls below will not 1422 ** overwrite the usableSize byte buffer, even if the database page 1423 ** is corrupt. */ 1424 assert( iFree2==0 || iFree2>iFree ); 1425 assert( iFree+get2byte(&data[iFree+2]) <= usableSize ); 1426 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize ); 1427 1428 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1429 u8 *pEnd = &data[cellOffset + nCell*2]; 1430 u8 *pAddr; 1431 int sz2 = 0; 1432 int sz = get2byte(&data[iFree+2]); 1433 int top = get2byte(&data[hdr+5]); 1434 if( top>=iFree ){ 1435 return SQLITE_CORRUPT_PAGE(pPage); 1436 } 1437 if( iFree2 ){ 1438 assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */ 1439 sz2 = get2byte(&data[iFree2+2]); 1440 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize ); 1441 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1442 sz += sz2; 1443 } 1444 cbrk = top+sz; 1445 assert( cbrk+(iFree-top) <= usableSize ); 1446 memmove(&data[cbrk], &data[top], iFree-top); 1447 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1448 pc = get2byte(pAddr); 1449 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1450 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1451 } 1452 goto defragment_out; 1453 } 1454 } 1455 } 1456 1457 cbrk = usableSize; 1458 iCellLast = usableSize - 4; 1459 for(i=0; i<nCell; i++){ 1460 u8 *pAddr; /* The i-th cell pointer */ 1461 pAddr = &data[cellOffset + i*2]; 1462 pc = get2byte(pAddr); 1463 testcase( pc==iCellFirst ); 1464 testcase( pc==iCellLast ); 1465 /* These conditions have already been verified in btreeInitPage() 1466 ** if PRAGMA cell_size_check=ON. 1467 */ 1468 if( pc<iCellFirst || pc>iCellLast ){ 1469 return SQLITE_CORRUPT_PAGE(pPage); 1470 } 1471 assert( pc>=iCellFirst && pc<=iCellLast ); 1472 size = pPage->xCellSize(pPage, &src[pc]); 1473 cbrk -= size; 1474 if( cbrk<iCellFirst || pc+size>usableSize ){ 1475 return SQLITE_CORRUPT_PAGE(pPage); 1476 } 1477 assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); 1478 testcase( cbrk+size==usableSize ); 1479 testcase( pc+size==usableSize ); 1480 put2byte(pAddr, cbrk); 1481 if( temp==0 ){ 1482 int x; 1483 if( cbrk==pc ) continue; 1484 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1485 x = get2byte(&data[hdr+5]); 1486 memcpy(&temp[x], &data[x], (cbrk+size) - x); 1487 src = temp; 1488 } 1489 memcpy(&data[cbrk], &src[pc], size); 1490 } 1491 data[hdr+7] = 0; 1492 1493 defragment_out: 1494 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1495 return SQLITE_CORRUPT_PAGE(pPage); 1496 } 1497 assert( cbrk>=iCellFirst ); 1498 put2byte(&data[hdr+5], cbrk); 1499 data[hdr+1] = 0; 1500 data[hdr+2] = 0; 1501 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1502 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1503 return SQLITE_OK; 1504 } 1505 1506 /* 1507 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1508 ** size. If one can be found, return a pointer to the space and remove it 1509 ** from the free-list. 1510 ** 1511 ** If no suitable space can be found on the free-list, return NULL. 1512 ** 1513 ** This function may detect corruption within pPg. If corruption is 1514 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1515 ** 1516 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1517 ** will be ignored if adding the extra space to the fragmentation count 1518 ** causes the fragmentation count to exceed 60. 1519 */ 1520 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1521 const int hdr = pPg->hdrOffset; 1522 u8 * const aData = pPg->aData; 1523 int iAddr = hdr + 1; 1524 int pc = get2byte(&aData[iAddr]); 1525 int x; 1526 int usableSize = pPg->pBt->usableSize; 1527 int size; /* Size of the free slot */ 1528 1529 assert( pc>0 ); 1530 while( pc<=usableSize-4 ){ 1531 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1532 ** freeblock form a big-endian integer which is the size of the freeblock 1533 ** in bytes, including the 4-byte header. */ 1534 size = get2byte(&aData[pc+2]); 1535 if( (x = size - nByte)>=0 ){ 1536 testcase( x==4 ); 1537 testcase( x==3 ); 1538 if( size+pc > usableSize ){ 1539 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1540 return 0; 1541 }else if( x<4 ){ 1542 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1543 ** number of bytes in fragments may not exceed 60. */ 1544 if( aData[hdr+7]>57 ) return 0; 1545 1546 /* Remove the slot from the free-list. Update the number of 1547 ** fragmented bytes within the page. */ 1548 memcpy(&aData[iAddr], &aData[pc], 2); 1549 aData[hdr+7] += (u8)x; 1550 }else{ 1551 /* The slot remains on the free-list. Reduce its size to account 1552 ** for the portion used by the new allocation. */ 1553 put2byte(&aData[pc+2], x); 1554 } 1555 return &aData[pc + x]; 1556 } 1557 iAddr = pc; 1558 pc = get2byte(&aData[pc]); 1559 if( pc<iAddr+size ) break; 1560 } 1561 if( pc ){ 1562 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1563 } 1564 1565 return 0; 1566 } 1567 1568 /* 1569 ** Allocate nByte bytes of space from within the B-Tree page passed 1570 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1571 ** of the first byte of allocated space. Return either SQLITE_OK or 1572 ** an error code (usually SQLITE_CORRUPT). 1573 ** 1574 ** The caller guarantees that there is sufficient space to make the 1575 ** allocation. This routine might need to defragment in order to bring 1576 ** all the space together, however. This routine will avoid using 1577 ** the first two bytes past the cell pointer area since presumably this 1578 ** allocation is being made in order to insert a new cell, so we will 1579 ** also end up needing a new cell pointer. 1580 */ 1581 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1582 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1583 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1584 int top; /* First byte of cell content area */ 1585 int rc = SQLITE_OK; /* Integer return code */ 1586 int gap; /* First byte of gap between cell pointers and cell content */ 1587 1588 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1589 assert( pPage->pBt ); 1590 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1591 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1592 assert( pPage->nFree>=nByte ); 1593 assert( pPage->nOverflow==0 ); 1594 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1595 1596 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1597 gap = pPage->cellOffset + 2*pPage->nCell; 1598 assert( gap<=65536 ); 1599 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1600 ** and the reserved space is zero (the usual value for reserved space) 1601 ** then the cell content offset of an empty page wants to be 65536. 1602 ** However, that integer is too large to be stored in a 2-byte unsigned 1603 ** integer, so a value of 0 is used in its place. */ 1604 top = get2byte(&data[hdr+5]); 1605 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */ 1606 if( gap>top ){ 1607 if( top==0 && pPage->pBt->usableSize==65536 ){ 1608 top = 65536; 1609 }else{ 1610 return SQLITE_CORRUPT_PAGE(pPage); 1611 } 1612 } 1613 1614 /* If there is enough space between gap and top for one more cell pointer 1615 ** array entry offset, and if the freelist is not empty, then search the 1616 ** freelist looking for a free slot big enough to satisfy the request. 1617 */ 1618 testcase( gap+2==top ); 1619 testcase( gap+1==top ); 1620 testcase( gap==top ); 1621 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1622 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1623 if( pSpace ){ 1624 assert( pSpace>=data && (pSpace - data)<65536 ); 1625 *pIdx = (int)(pSpace - data); 1626 return SQLITE_OK; 1627 }else if( rc ){ 1628 return rc; 1629 } 1630 } 1631 1632 /* The request could not be fulfilled using a freelist slot. Check 1633 ** to see if defragmentation is necessary. 1634 */ 1635 testcase( gap+2+nByte==top ); 1636 if( gap+2+nByte>top ){ 1637 assert( pPage->nCell>0 || CORRUPT_DB ); 1638 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1639 if( rc ) return rc; 1640 top = get2byteNotZero(&data[hdr+5]); 1641 assert( gap+2+nByte<=top ); 1642 } 1643 1644 1645 /* Allocate memory from the gap in between the cell pointer array 1646 ** and the cell content area. The btreeInitPage() call has already 1647 ** validated the freelist. Given that the freelist is valid, there 1648 ** is no way that the allocation can extend off the end of the page. 1649 ** The assert() below verifies the previous sentence. 1650 */ 1651 top -= nByte; 1652 put2byte(&data[hdr+5], top); 1653 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1654 *pIdx = top; 1655 return SQLITE_OK; 1656 } 1657 1658 /* 1659 ** Return a section of the pPage->aData to the freelist. 1660 ** The first byte of the new free block is pPage->aData[iStart] 1661 ** and the size of the block is iSize bytes. 1662 ** 1663 ** Adjacent freeblocks are coalesced. 1664 ** 1665 ** Note that even though the freeblock list was checked by btreeInitPage(), 1666 ** that routine will not detect overlap between cells or freeblocks. Nor 1667 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1668 ** at the end of the page. So do additional corruption checks inside this 1669 ** routine and return SQLITE_CORRUPT if any problems are found. 1670 */ 1671 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1672 u16 iPtr; /* Address of ptr to next freeblock */ 1673 u16 iFreeBlk; /* Address of the next freeblock */ 1674 u8 hdr; /* Page header size. 0 or 100 */ 1675 u8 nFrag = 0; /* Reduction in fragmentation */ 1676 u16 iOrigSize = iSize; /* Original value of iSize */ 1677 u16 x; /* Offset to cell content area */ 1678 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1679 unsigned char *data = pPage->aData; /* Page content */ 1680 1681 assert( pPage->pBt!=0 ); 1682 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1683 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1684 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1685 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1686 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1687 assert( iStart<=pPage->pBt->usableSize-4 ); 1688 1689 /* The list of freeblocks must be in ascending order. Find the 1690 ** spot on the list where iStart should be inserted. 1691 */ 1692 hdr = pPage->hdrOffset; 1693 iPtr = hdr + 1; 1694 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1695 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1696 }else{ 1697 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1698 if( iFreeBlk<iPtr+4 ){ 1699 if( iFreeBlk==0 ) break; 1700 return SQLITE_CORRUPT_PAGE(pPage); 1701 } 1702 iPtr = iFreeBlk; 1703 } 1704 if( iFreeBlk>pPage->pBt->usableSize-4 ){ 1705 return SQLITE_CORRUPT_PAGE(pPage); 1706 } 1707 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1708 1709 /* At this point: 1710 ** iFreeBlk: First freeblock after iStart, or zero if none 1711 ** iPtr: The address of a pointer to iFreeBlk 1712 ** 1713 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1714 */ 1715 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1716 nFrag = iFreeBlk - iEnd; 1717 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1718 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1719 if( iEnd > pPage->pBt->usableSize ){ 1720 return SQLITE_CORRUPT_PAGE(pPage); 1721 } 1722 iSize = iEnd - iStart; 1723 iFreeBlk = get2byte(&data[iFreeBlk]); 1724 } 1725 1726 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1727 ** pointer in the page header) then check to see if iStart should be 1728 ** coalesced onto the end of iPtr. 1729 */ 1730 if( iPtr>hdr+1 ){ 1731 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1732 if( iPtrEnd+3>=iStart ){ 1733 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1734 nFrag += iStart - iPtrEnd; 1735 iSize = iEnd - iPtr; 1736 iStart = iPtr; 1737 } 1738 } 1739 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1740 data[hdr+7] -= nFrag; 1741 } 1742 x = get2byte(&data[hdr+5]); 1743 if( iStart<=x ){ 1744 /* The new freeblock is at the beginning of the cell content area, 1745 ** so just extend the cell content area rather than create another 1746 ** freelist entry */ 1747 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1748 put2byte(&data[hdr+1], iFreeBlk); 1749 put2byte(&data[hdr+5], iEnd); 1750 }else{ 1751 /* Insert the new freeblock into the freelist */ 1752 put2byte(&data[iPtr], iStart); 1753 } 1754 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1755 /* Overwrite deleted information with zeros when the secure_delete 1756 ** option is enabled */ 1757 memset(&data[iStart], 0, iSize); 1758 } 1759 put2byte(&data[iStart], iFreeBlk); 1760 put2byte(&data[iStart+2], iSize); 1761 pPage->nFree += iOrigSize; 1762 return SQLITE_OK; 1763 } 1764 1765 /* 1766 ** Decode the flags byte (the first byte of the header) for a page 1767 ** and initialize fields of the MemPage structure accordingly. 1768 ** 1769 ** Only the following combinations are supported. Anything different 1770 ** indicates a corrupt database files: 1771 ** 1772 ** PTF_ZERODATA 1773 ** PTF_ZERODATA | PTF_LEAF 1774 ** PTF_LEAFDATA | PTF_INTKEY 1775 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1776 */ 1777 static int decodeFlags(MemPage *pPage, int flagByte){ 1778 BtShared *pBt; /* A copy of pPage->pBt */ 1779 1780 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1781 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1782 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1783 flagByte &= ~PTF_LEAF; 1784 pPage->childPtrSize = 4-4*pPage->leaf; 1785 pPage->xCellSize = cellSizePtr; 1786 pBt = pPage->pBt; 1787 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1788 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1789 ** interior table b-tree page. */ 1790 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1791 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1792 ** leaf table b-tree page. */ 1793 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1794 pPage->intKey = 1; 1795 if( pPage->leaf ){ 1796 pPage->intKeyLeaf = 1; 1797 pPage->xParseCell = btreeParseCellPtr; 1798 }else{ 1799 pPage->intKeyLeaf = 0; 1800 pPage->xCellSize = cellSizePtrNoPayload; 1801 pPage->xParseCell = btreeParseCellPtrNoPayload; 1802 } 1803 pPage->maxLocal = pBt->maxLeaf; 1804 pPage->minLocal = pBt->minLeaf; 1805 }else if( flagByte==PTF_ZERODATA ){ 1806 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1807 ** interior index b-tree page. */ 1808 assert( (PTF_ZERODATA)==2 ); 1809 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1810 ** leaf index b-tree page. */ 1811 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1812 pPage->intKey = 0; 1813 pPage->intKeyLeaf = 0; 1814 pPage->xParseCell = btreeParseCellPtrIndex; 1815 pPage->maxLocal = pBt->maxLocal; 1816 pPage->minLocal = pBt->minLocal; 1817 }else{ 1818 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1819 ** an error. */ 1820 return SQLITE_CORRUPT_PAGE(pPage); 1821 } 1822 pPage->max1bytePayload = pBt->max1bytePayload; 1823 return SQLITE_OK; 1824 } 1825 1826 /* 1827 ** Initialize the auxiliary information for a disk block. 1828 ** 1829 ** Return SQLITE_OK on success. If we see that the page does 1830 ** not contain a well-formed database page, then return 1831 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 1832 ** guarantee that the page is well-formed. It only shows that 1833 ** we failed to detect any corruption. 1834 */ 1835 static int btreeInitPage(MemPage *pPage){ 1836 int pc; /* Address of a freeblock within pPage->aData[] */ 1837 u8 hdr; /* Offset to beginning of page header */ 1838 u8 *data; /* Equal to pPage->aData */ 1839 BtShared *pBt; /* The main btree structure */ 1840 int usableSize; /* Amount of usable space on each page */ 1841 u16 cellOffset; /* Offset from start of page to first cell pointer */ 1842 int nFree; /* Number of unused bytes on the page */ 1843 int top; /* First byte of the cell content area */ 1844 int iCellFirst; /* First allowable cell or freeblock offset */ 1845 int iCellLast; /* Last possible cell or freeblock offset */ 1846 1847 assert( pPage->pBt!=0 ); 1848 assert( pPage->pBt->db!=0 ); 1849 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1850 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1851 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1852 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1853 assert( pPage->isInit==0 ); 1854 1855 pBt = pPage->pBt; 1856 hdr = pPage->hdrOffset; 1857 data = pPage->aData; 1858 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 1859 ** the b-tree page type. */ 1860 if( decodeFlags(pPage, data[hdr]) ){ 1861 return SQLITE_CORRUPT_PAGE(pPage); 1862 } 1863 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 1864 pPage->maskPage = (u16)(pBt->pageSize - 1); 1865 pPage->nOverflow = 0; 1866 usableSize = pBt->usableSize; 1867 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; 1868 pPage->aDataEnd = &data[usableSize]; 1869 pPage->aCellIdx = &data[cellOffset]; 1870 pPage->aDataOfst = &data[pPage->childPtrSize]; 1871 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1872 ** the start of the cell content area. A zero value for this integer is 1873 ** interpreted as 65536. */ 1874 top = get2byteNotZero(&data[hdr+5]); 1875 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 1876 ** number of cells on the page. */ 1877 pPage->nCell = get2byte(&data[hdr+3]); 1878 if( pPage->nCell>MX_CELL(pBt) ){ 1879 /* To many cells for a single page. The page must be corrupt */ 1880 return SQLITE_CORRUPT_PAGE(pPage); 1881 } 1882 testcase( pPage->nCell==MX_CELL(pBt) ); 1883 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 1884 ** possible for a root page of a table that contains no rows) then the 1885 ** offset to the cell content area will equal the page size minus the 1886 ** bytes of reserved space. */ 1887 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB ); 1888 1889 /* A malformed database page might cause us to read past the end 1890 ** of page when parsing a cell. 1891 ** 1892 ** The following block of code checks early to see if a cell extends 1893 ** past the end of a page boundary and causes SQLITE_CORRUPT to be 1894 ** returned if it does. 1895 */ 1896 iCellFirst = cellOffset + 2*pPage->nCell; 1897 iCellLast = usableSize - 4; 1898 if( pBt->db->flags & SQLITE_CellSizeCk ){ 1899 int i; /* Index into the cell pointer array */ 1900 int sz; /* Size of a cell */ 1901 1902 if( !pPage->leaf ) iCellLast--; 1903 for(i=0; i<pPage->nCell; i++){ 1904 pc = get2byteAligned(&data[cellOffset+i*2]); 1905 testcase( pc==iCellFirst ); 1906 testcase( pc==iCellLast ); 1907 if( pc<iCellFirst || pc>iCellLast ){ 1908 return SQLITE_CORRUPT_PAGE(pPage); 1909 } 1910 sz = pPage->xCellSize(pPage, &data[pc]); 1911 testcase( pc+sz==usableSize ); 1912 if( pc+sz>usableSize ){ 1913 return SQLITE_CORRUPT_PAGE(pPage); 1914 } 1915 } 1916 if( !pPage->leaf ) iCellLast++; 1917 } 1918 1919 /* Compute the total free space on the page 1920 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1921 ** start of the first freeblock on the page, or is zero if there are no 1922 ** freeblocks. */ 1923 pc = get2byte(&data[hdr+1]); 1924 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1925 if( pc>0 ){ 1926 u32 next, size; 1927 if( pc<iCellFirst ){ 1928 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1929 ** always be at least one cell before the first freeblock. 1930 */ 1931 return SQLITE_CORRUPT_PAGE(pPage); 1932 } 1933 while( 1 ){ 1934 if( pc>iCellLast ){ 1935 /* Freeblock off the end of the page */ 1936 return SQLITE_CORRUPT_PAGE(pPage); 1937 } 1938 next = get2byte(&data[pc]); 1939 size = get2byte(&data[pc+2]); 1940 nFree = nFree + size; 1941 if( next<=pc+size+3 ) break; 1942 pc = next; 1943 } 1944 if( next>0 ){ 1945 /* Freeblock not in ascending order */ 1946 return SQLITE_CORRUPT_PAGE(pPage); 1947 } 1948 if( pc+size>(unsigned int)usableSize ){ 1949 /* Last freeblock extends past page end */ 1950 return SQLITE_CORRUPT_PAGE(pPage); 1951 } 1952 } 1953 1954 /* At this point, nFree contains the sum of the offset to the start 1955 ** of the cell-content area plus the number of free bytes within 1956 ** the cell-content area. If this is greater than the usable-size 1957 ** of the page, then the page must be corrupted. This check also 1958 ** serves to verify that the offset to the start of the cell-content 1959 ** area, according to the page header, lies within the page. 1960 */ 1961 if( nFree>usableSize ){ 1962 return SQLITE_CORRUPT_PAGE(pPage); 1963 } 1964 pPage->nFree = (u16)(nFree - iCellFirst); 1965 pPage->isInit = 1; 1966 return SQLITE_OK; 1967 } 1968 1969 /* 1970 ** Set up a raw page so that it looks like a database page holding 1971 ** no entries. 1972 */ 1973 static void zeroPage(MemPage *pPage, int flags){ 1974 unsigned char *data = pPage->aData; 1975 BtShared *pBt = pPage->pBt; 1976 u8 hdr = pPage->hdrOffset; 1977 u16 first; 1978 1979 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 1980 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 1981 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 1982 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1983 assert( sqlite3_mutex_held(pBt->mutex) ); 1984 if( pBt->btsFlags & BTS_FAST_SECURE ){ 1985 memset(&data[hdr], 0, pBt->usableSize - hdr); 1986 } 1987 data[hdr] = (char)flags; 1988 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 1989 memset(&data[hdr+1], 0, 4); 1990 data[hdr+7] = 0; 1991 put2byte(&data[hdr+5], pBt->usableSize); 1992 pPage->nFree = (u16)(pBt->usableSize - first); 1993 decodeFlags(pPage, flags); 1994 pPage->cellOffset = first; 1995 pPage->aDataEnd = &data[pBt->usableSize]; 1996 pPage->aCellIdx = &data[first]; 1997 pPage->aDataOfst = &data[pPage->childPtrSize]; 1998 pPage->nOverflow = 0; 1999 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2000 pPage->maskPage = (u16)(pBt->pageSize - 1); 2001 pPage->nCell = 0; 2002 pPage->isInit = 1; 2003 } 2004 2005 2006 /* 2007 ** Convert a DbPage obtained from the pager into a MemPage used by 2008 ** the btree layer. 2009 */ 2010 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2011 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2012 if( pgno!=pPage->pgno ){ 2013 pPage->aData = sqlite3PagerGetData(pDbPage); 2014 pPage->pDbPage = pDbPage; 2015 pPage->pBt = pBt; 2016 pPage->pgno = pgno; 2017 pPage->hdrOffset = pgno==1 ? 100 : 0; 2018 } 2019 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2020 return pPage; 2021 } 2022 2023 /* 2024 ** Get a page from the pager. Initialize the MemPage.pBt and 2025 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2026 ** 2027 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2028 ** about the content of the page at this time. So do not go to the disk 2029 ** to fetch the content. Just fill in the content with zeros for now. 2030 ** If in the future we call sqlite3PagerWrite() on this page, that 2031 ** means we have started to be concerned about content and the disk 2032 ** read should occur at that point. 2033 */ 2034 static int btreeGetPage( 2035 BtShared *pBt, /* The btree */ 2036 Pgno pgno, /* Number of the page to fetch */ 2037 MemPage **ppPage, /* Return the page in this parameter */ 2038 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2039 ){ 2040 int rc; 2041 DbPage *pDbPage; 2042 2043 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2044 assert( sqlite3_mutex_held(pBt->mutex) ); 2045 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2046 if( rc ) return rc; 2047 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2048 return SQLITE_OK; 2049 } 2050 2051 /* 2052 ** Retrieve a page from the pager cache. If the requested page is not 2053 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2054 ** MemPage.aData elements if needed. 2055 */ 2056 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2057 DbPage *pDbPage; 2058 assert( sqlite3_mutex_held(pBt->mutex) ); 2059 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2060 if( pDbPage ){ 2061 return btreePageFromDbPage(pDbPage, pgno, pBt); 2062 } 2063 return 0; 2064 } 2065 2066 /* 2067 ** Return the size of the database file in pages. If there is any kind of 2068 ** error, return ((unsigned int)-1). 2069 */ 2070 static Pgno btreePagecount(BtShared *pBt){ 2071 return pBt->nPage; 2072 } 2073 u32 sqlite3BtreeLastPage(Btree *p){ 2074 assert( sqlite3BtreeHoldsMutex(p) ); 2075 assert( ((p->pBt->nPage)&0x80000000)==0 ); 2076 return btreePagecount(p->pBt); 2077 } 2078 2079 /* 2080 ** Get a page from the pager and initialize it. 2081 ** 2082 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2083 ** call. Do additional sanity checking on the page in this case. 2084 ** And if the fetch fails, this routine must decrement pCur->iPage. 2085 ** 2086 ** The page is fetched as read-write unless pCur is not NULL and is 2087 ** a read-only cursor. 2088 ** 2089 ** If an error occurs, then *ppPage is undefined. It 2090 ** may remain unchanged, or it may be set to an invalid value. 2091 */ 2092 static int getAndInitPage( 2093 BtShared *pBt, /* The database file */ 2094 Pgno pgno, /* Number of the page to get */ 2095 MemPage **ppPage, /* Write the page pointer here */ 2096 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2097 int bReadOnly /* True for a read-only page */ 2098 ){ 2099 int rc; 2100 DbPage *pDbPage; 2101 assert( sqlite3_mutex_held(pBt->mutex) ); 2102 assert( pCur==0 || ppPage==&pCur->pPage ); 2103 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2104 assert( pCur==0 || pCur->iPage>0 ); 2105 2106 if( pgno>btreePagecount(pBt) ){ 2107 rc = SQLITE_CORRUPT_BKPT; 2108 goto getAndInitPage_error; 2109 } 2110 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2111 if( rc ){ 2112 goto getAndInitPage_error; 2113 } 2114 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2115 if( (*ppPage)->isInit==0 ){ 2116 btreePageFromDbPage(pDbPage, pgno, pBt); 2117 rc = btreeInitPage(*ppPage); 2118 if( rc!=SQLITE_OK ){ 2119 releasePage(*ppPage); 2120 goto getAndInitPage_error; 2121 } 2122 } 2123 assert( (*ppPage)->pgno==pgno ); 2124 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2125 2126 /* If obtaining a child page for a cursor, we must verify that the page is 2127 ** compatible with the root page. */ 2128 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2129 rc = SQLITE_CORRUPT_PGNO(pgno); 2130 releasePage(*ppPage); 2131 goto getAndInitPage_error; 2132 } 2133 return SQLITE_OK; 2134 2135 getAndInitPage_error: 2136 if( pCur ){ 2137 pCur->iPage--; 2138 pCur->pPage = pCur->apPage[pCur->iPage]; 2139 } 2140 testcase( pgno==0 ); 2141 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 2142 return rc; 2143 } 2144 2145 /* 2146 ** Release a MemPage. This should be called once for each prior 2147 ** call to btreeGetPage. 2148 ** 2149 ** Page1 is a special case and must be released using releasePageOne(). 2150 */ 2151 static void releasePageNotNull(MemPage *pPage){ 2152 assert( pPage->aData ); 2153 assert( pPage->pBt ); 2154 assert( pPage->pDbPage!=0 ); 2155 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2156 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2157 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2158 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2159 } 2160 static void releasePage(MemPage *pPage){ 2161 if( pPage ) releasePageNotNull(pPage); 2162 } 2163 static void releasePageOne(MemPage *pPage){ 2164 assert( pPage!=0 ); 2165 assert( pPage->aData ); 2166 assert( pPage->pBt ); 2167 assert( pPage->pDbPage!=0 ); 2168 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2169 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2170 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2171 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2172 } 2173 2174 /* 2175 ** Get an unused page. 2176 ** 2177 ** This works just like btreeGetPage() with the addition: 2178 ** 2179 ** * If the page is already in use for some other purpose, immediately 2180 ** release it and return an SQLITE_CURRUPT error. 2181 ** * Make sure the isInit flag is clear 2182 */ 2183 static int btreeGetUnusedPage( 2184 BtShared *pBt, /* The btree */ 2185 Pgno pgno, /* Number of the page to fetch */ 2186 MemPage **ppPage, /* Return the page in this parameter */ 2187 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2188 ){ 2189 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2190 if( rc==SQLITE_OK ){ 2191 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2192 releasePage(*ppPage); 2193 *ppPage = 0; 2194 return SQLITE_CORRUPT_BKPT; 2195 } 2196 (*ppPage)->isInit = 0; 2197 }else{ 2198 *ppPage = 0; 2199 } 2200 return rc; 2201 } 2202 2203 2204 /* 2205 ** During a rollback, when the pager reloads information into the cache 2206 ** so that the cache is restored to its original state at the start of 2207 ** the transaction, for each page restored this routine is called. 2208 ** 2209 ** This routine needs to reset the extra data section at the end of the 2210 ** page to agree with the restored data. 2211 */ 2212 static void pageReinit(DbPage *pData){ 2213 MemPage *pPage; 2214 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2215 assert( sqlite3PagerPageRefcount(pData)>0 ); 2216 if( pPage->isInit ){ 2217 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2218 pPage->isInit = 0; 2219 if( sqlite3PagerPageRefcount(pData)>1 ){ 2220 /* pPage might not be a btree page; it might be an overflow page 2221 ** or ptrmap page or a free page. In those cases, the following 2222 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2223 ** But no harm is done by this. And it is very important that 2224 ** btreeInitPage() be called on every btree page so we make 2225 ** the call for every page that comes in for re-initing. */ 2226 btreeInitPage(pPage); 2227 } 2228 } 2229 } 2230 2231 /* 2232 ** Invoke the busy handler for a btree. 2233 */ 2234 static int btreeInvokeBusyHandler(void *pArg){ 2235 BtShared *pBt = (BtShared*)pArg; 2236 assert( pBt->db ); 2237 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2238 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler, 2239 sqlite3PagerFile(pBt->pPager)); 2240 } 2241 2242 /* 2243 ** Open a database file. 2244 ** 2245 ** zFilename is the name of the database file. If zFilename is NULL 2246 ** then an ephemeral database is created. The ephemeral database might 2247 ** be exclusively in memory, or it might use a disk-based memory cache. 2248 ** Either way, the ephemeral database will be automatically deleted 2249 ** when sqlite3BtreeClose() is called. 2250 ** 2251 ** If zFilename is ":memory:" then an in-memory database is created 2252 ** that is automatically destroyed when it is closed. 2253 ** 2254 ** The "flags" parameter is a bitmask that might contain bits like 2255 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2256 ** 2257 ** If the database is already opened in the same database connection 2258 ** and we are in shared cache mode, then the open will fail with an 2259 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2260 ** objects in the same database connection since doing so will lead 2261 ** to problems with locking. 2262 */ 2263 int sqlite3BtreeOpen( 2264 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2265 const char *zFilename, /* Name of the file containing the BTree database */ 2266 sqlite3 *db, /* Associated database handle */ 2267 Btree **ppBtree, /* Pointer to new Btree object written here */ 2268 int flags, /* Options */ 2269 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2270 ){ 2271 BtShared *pBt = 0; /* Shared part of btree structure */ 2272 Btree *p; /* Handle to return */ 2273 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2274 int rc = SQLITE_OK; /* Result code from this function */ 2275 u8 nReserve; /* Byte of unused space on each page */ 2276 unsigned char zDbHeader[100]; /* Database header content */ 2277 2278 /* True if opening an ephemeral, temporary database */ 2279 const int isTempDb = zFilename==0 || zFilename[0]==0; 2280 2281 /* Set the variable isMemdb to true for an in-memory database, or 2282 ** false for a file-based database. 2283 */ 2284 #ifdef SQLITE_OMIT_MEMORYDB 2285 const int isMemdb = 0; 2286 #else 2287 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2288 || (isTempDb && sqlite3TempInMemory(db)) 2289 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2290 #endif 2291 2292 assert( db!=0 ); 2293 assert( pVfs!=0 ); 2294 assert( sqlite3_mutex_held(db->mutex) ); 2295 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2296 2297 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2298 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2299 2300 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2301 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2302 2303 if( isMemdb ){ 2304 flags |= BTREE_MEMORY; 2305 } 2306 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2307 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2308 } 2309 p = sqlite3MallocZero(sizeof(Btree)); 2310 if( !p ){ 2311 return SQLITE_NOMEM_BKPT; 2312 } 2313 p->inTrans = TRANS_NONE; 2314 p->db = db; 2315 #ifndef SQLITE_OMIT_SHARED_CACHE 2316 p->lock.pBtree = p; 2317 p->lock.iTable = 1; 2318 #endif 2319 2320 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2321 /* 2322 ** If this Btree is a candidate for shared cache, try to find an 2323 ** existing BtShared object that we can share with 2324 */ 2325 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2326 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2327 int nFilename = sqlite3Strlen30(zFilename)+1; 2328 int nFullPathname = pVfs->mxPathname+1; 2329 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2330 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2331 2332 p->sharable = 1; 2333 if( !zFullPathname ){ 2334 sqlite3_free(p); 2335 return SQLITE_NOMEM_BKPT; 2336 } 2337 if( isMemdb ){ 2338 memcpy(zFullPathname, zFilename, nFilename); 2339 }else{ 2340 rc = sqlite3OsFullPathname(pVfs, zFilename, 2341 nFullPathname, zFullPathname); 2342 if( rc ){ 2343 sqlite3_free(zFullPathname); 2344 sqlite3_free(p); 2345 return rc; 2346 } 2347 } 2348 #if SQLITE_THREADSAFE 2349 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2350 sqlite3_mutex_enter(mutexOpen); 2351 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 2352 sqlite3_mutex_enter(mutexShared); 2353 #endif 2354 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2355 assert( pBt->nRef>0 ); 2356 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2357 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2358 int iDb; 2359 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2360 Btree *pExisting = db->aDb[iDb].pBt; 2361 if( pExisting && pExisting->pBt==pBt ){ 2362 sqlite3_mutex_leave(mutexShared); 2363 sqlite3_mutex_leave(mutexOpen); 2364 sqlite3_free(zFullPathname); 2365 sqlite3_free(p); 2366 return SQLITE_CONSTRAINT; 2367 } 2368 } 2369 p->pBt = pBt; 2370 pBt->nRef++; 2371 break; 2372 } 2373 } 2374 sqlite3_mutex_leave(mutexShared); 2375 sqlite3_free(zFullPathname); 2376 } 2377 #ifdef SQLITE_DEBUG 2378 else{ 2379 /* In debug mode, we mark all persistent databases as sharable 2380 ** even when they are not. This exercises the locking code and 2381 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2382 ** statements to find locking problems. 2383 */ 2384 p->sharable = 1; 2385 } 2386 #endif 2387 } 2388 #endif 2389 if( pBt==0 ){ 2390 /* 2391 ** The following asserts make sure that structures used by the btree are 2392 ** the right size. This is to guard against size changes that result 2393 ** when compiling on a different architecture. 2394 */ 2395 assert( sizeof(i64)==8 ); 2396 assert( sizeof(u64)==8 ); 2397 assert( sizeof(u32)==4 ); 2398 assert( sizeof(u16)==2 ); 2399 assert( sizeof(Pgno)==4 ); 2400 2401 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2402 if( pBt==0 ){ 2403 rc = SQLITE_NOMEM_BKPT; 2404 goto btree_open_out; 2405 } 2406 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2407 sizeof(MemPage), flags, vfsFlags, pageReinit); 2408 if( rc==SQLITE_OK ){ 2409 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2410 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2411 } 2412 if( rc!=SQLITE_OK ){ 2413 goto btree_open_out; 2414 } 2415 pBt->openFlags = (u8)flags; 2416 pBt->db = db; 2417 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2418 p->pBt = pBt; 2419 2420 pBt->pCursor = 0; 2421 pBt->pPage1 = 0; 2422 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2423 #if defined(SQLITE_SECURE_DELETE) 2424 pBt->btsFlags |= BTS_SECURE_DELETE; 2425 #elif defined(SQLITE_FAST_SECURE_DELETE) 2426 pBt->btsFlags |= BTS_OVERWRITE; 2427 #endif 2428 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2429 ** determined by the 2-byte integer located at an offset of 16 bytes from 2430 ** the beginning of the database file. */ 2431 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2432 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2433 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2434 pBt->pageSize = 0; 2435 #ifndef SQLITE_OMIT_AUTOVACUUM 2436 /* If the magic name ":memory:" will create an in-memory database, then 2437 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2438 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2439 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2440 ** regular file-name. In this case the auto-vacuum applies as per normal. 2441 */ 2442 if( zFilename && !isMemdb ){ 2443 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2444 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2445 } 2446 #endif 2447 nReserve = 0; 2448 }else{ 2449 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2450 ** determined by the one-byte unsigned integer found at an offset of 20 2451 ** into the database file header. */ 2452 nReserve = zDbHeader[20]; 2453 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2454 #ifndef SQLITE_OMIT_AUTOVACUUM 2455 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2456 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2457 #endif 2458 } 2459 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2460 if( rc ) goto btree_open_out; 2461 pBt->usableSize = pBt->pageSize - nReserve; 2462 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2463 2464 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2465 /* Add the new BtShared object to the linked list sharable BtShareds. 2466 */ 2467 pBt->nRef = 1; 2468 if( p->sharable ){ 2469 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2470 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) 2471 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2472 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2473 if( pBt->mutex==0 ){ 2474 rc = SQLITE_NOMEM_BKPT; 2475 goto btree_open_out; 2476 } 2477 } 2478 sqlite3_mutex_enter(mutexShared); 2479 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2480 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2481 sqlite3_mutex_leave(mutexShared); 2482 } 2483 #endif 2484 } 2485 2486 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2487 /* If the new Btree uses a sharable pBtShared, then link the new 2488 ** Btree into the list of all sharable Btrees for the same connection. 2489 ** The list is kept in ascending order by pBt address. 2490 */ 2491 if( p->sharable ){ 2492 int i; 2493 Btree *pSib; 2494 for(i=0; i<db->nDb; i++){ 2495 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2496 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2497 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2498 p->pNext = pSib; 2499 p->pPrev = 0; 2500 pSib->pPrev = p; 2501 }else{ 2502 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2503 pSib = pSib->pNext; 2504 } 2505 p->pNext = pSib->pNext; 2506 p->pPrev = pSib; 2507 if( p->pNext ){ 2508 p->pNext->pPrev = p; 2509 } 2510 pSib->pNext = p; 2511 } 2512 break; 2513 } 2514 } 2515 } 2516 #endif 2517 *ppBtree = p; 2518 2519 btree_open_out: 2520 if( rc!=SQLITE_OK ){ 2521 if( pBt && pBt->pPager ){ 2522 sqlite3PagerClose(pBt->pPager, 0); 2523 } 2524 sqlite3_free(pBt); 2525 sqlite3_free(p); 2526 *ppBtree = 0; 2527 }else{ 2528 sqlite3_file *pFile; 2529 2530 /* If the B-Tree was successfully opened, set the pager-cache size to the 2531 ** default value. Except, when opening on an existing shared pager-cache, 2532 ** do not change the pager-cache size. 2533 */ 2534 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2535 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); 2536 } 2537 2538 pFile = sqlite3PagerFile(pBt->pPager); 2539 if( pFile->pMethods ){ 2540 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2541 } 2542 } 2543 if( mutexOpen ){ 2544 assert( sqlite3_mutex_held(mutexOpen) ); 2545 sqlite3_mutex_leave(mutexOpen); 2546 } 2547 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2548 return rc; 2549 } 2550 2551 /* 2552 ** Decrement the BtShared.nRef counter. When it reaches zero, 2553 ** remove the BtShared structure from the sharing list. Return 2554 ** true if the BtShared.nRef counter reaches zero and return 2555 ** false if it is still positive. 2556 */ 2557 static int removeFromSharingList(BtShared *pBt){ 2558 #ifndef SQLITE_OMIT_SHARED_CACHE 2559 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) 2560 BtShared *pList; 2561 int removed = 0; 2562 2563 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2564 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 2565 sqlite3_mutex_enter(pMaster); 2566 pBt->nRef--; 2567 if( pBt->nRef<=0 ){ 2568 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2569 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2570 }else{ 2571 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2572 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2573 pList=pList->pNext; 2574 } 2575 if( ALWAYS(pList) ){ 2576 pList->pNext = pBt->pNext; 2577 } 2578 } 2579 if( SQLITE_THREADSAFE ){ 2580 sqlite3_mutex_free(pBt->mutex); 2581 } 2582 removed = 1; 2583 } 2584 sqlite3_mutex_leave(pMaster); 2585 return removed; 2586 #else 2587 return 1; 2588 #endif 2589 } 2590 2591 /* 2592 ** Make sure pBt->pTmpSpace points to an allocation of 2593 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2594 ** pointer. 2595 */ 2596 static void allocateTempSpace(BtShared *pBt){ 2597 if( !pBt->pTmpSpace ){ 2598 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2599 2600 /* One of the uses of pBt->pTmpSpace is to format cells before 2601 ** inserting them into a leaf page (function fillInCell()). If 2602 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2603 ** by the various routines that manipulate binary cells. Which 2604 ** can mean that fillInCell() only initializes the first 2 or 3 2605 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2606 ** it into a database page. This is not actually a problem, but it 2607 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2608 ** data is passed to system call write(). So to avoid this error, 2609 ** zero the first 4 bytes of temp space here. 2610 ** 2611 ** Also: Provide four bytes of initialized space before the 2612 ** beginning of pTmpSpace as an area available to prepend the 2613 ** left-child pointer to the beginning of a cell. 2614 */ 2615 if( pBt->pTmpSpace ){ 2616 memset(pBt->pTmpSpace, 0, 8); 2617 pBt->pTmpSpace += 4; 2618 } 2619 } 2620 } 2621 2622 /* 2623 ** Free the pBt->pTmpSpace allocation 2624 */ 2625 static void freeTempSpace(BtShared *pBt){ 2626 if( pBt->pTmpSpace ){ 2627 pBt->pTmpSpace -= 4; 2628 sqlite3PageFree(pBt->pTmpSpace); 2629 pBt->pTmpSpace = 0; 2630 } 2631 } 2632 2633 /* 2634 ** Close an open database and invalidate all cursors. 2635 */ 2636 int sqlite3BtreeClose(Btree *p){ 2637 BtShared *pBt = p->pBt; 2638 BtCursor *pCur; 2639 2640 /* Close all cursors opened via this handle. */ 2641 assert( sqlite3_mutex_held(p->db->mutex) ); 2642 sqlite3BtreeEnter(p); 2643 pCur = pBt->pCursor; 2644 while( pCur ){ 2645 BtCursor *pTmp = pCur; 2646 pCur = pCur->pNext; 2647 if( pTmp->pBtree==p ){ 2648 sqlite3BtreeCloseCursor(pTmp); 2649 } 2650 } 2651 2652 /* Rollback any active transaction and free the handle structure. 2653 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2654 ** this handle. 2655 */ 2656 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2657 sqlite3BtreeLeave(p); 2658 2659 /* If there are still other outstanding references to the shared-btree 2660 ** structure, return now. The remainder of this procedure cleans 2661 ** up the shared-btree. 2662 */ 2663 assert( p->wantToLock==0 && p->locked==0 ); 2664 if( !p->sharable || removeFromSharingList(pBt) ){ 2665 /* The pBt is no longer on the sharing list, so we can access 2666 ** it without having to hold the mutex. 2667 ** 2668 ** Clean out and delete the BtShared object. 2669 */ 2670 assert( !pBt->pCursor ); 2671 sqlite3PagerClose(pBt->pPager, p->db); 2672 if( pBt->xFreeSchema && pBt->pSchema ){ 2673 pBt->xFreeSchema(pBt->pSchema); 2674 } 2675 sqlite3DbFree(0, pBt->pSchema); 2676 freeTempSpace(pBt); 2677 sqlite3_free(pBt); 2678 } 2679 2680 #ifndef SQLITE_OMIT_SHARED_CACHE 2681 assert( p->wantToLock==0 ); 2682 assert( p->locked==0 ); 2683 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2684 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2685 #endif 2686 2687 sqlite3_free(p); 2688 return SQLITE_OK; 2689 } 2690 2691 /* 2692 ** Change the "soft" limit on the number of pages in the cache. 2693 ** Unused and unmodified pages will be recycled when the number of 2694 ** pages in the cache exceeds this soft limit. But the size of the 2695 ** cache is allowed to grow larger than this limit if it contains 2696 ** dirty pages or pages still in active use. 2697 */ 2698 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2699 BtShared *pBt = p->pBt; 2700 assert( sqlite3_mutex_held(p->db->mutex) ); 2701 sqlite3BtreeEnter(p); 2702 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2703 sqlite3BtreeLeave(p); 2704 return SQLITE_OK; 2705 } 2706 2707 /* 2708 ** Change the "spill" limit on the number of pages in the cache. 2709 ** If the number of pages exceeds this limit during a write transaction, 2710 ** the pager might attempt to "spill" pages to the journal early in 2711 ** order to free up memory. 2712 ** 2713 ** The value returned is the current spill size. If zero is passed 2714 ** as an argument, no changes are made to the spill size setting, so 2715 ** using mxPage of 0 is a way to query the current spill size. 2716 */ 2717 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2718 BtShared *pBt = p->pBt; 2719 int res; 2720 assert( sqlite3_mutex_held(p->db->mutex) ); 2721 sqlite3BtreeEnter(p); 2722 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2723 sqlite3BtreeLeave(p); 2724 return res; 2725 } 2726 2727 #if SQLITE_MAX_MMAP_SIZE>0 2728 /* 2729 ** Change the limit on the amount of the database file that may be 2730 ** memory mapped. 2731 */ 2732 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2733 BtShared *pBt = p->pBt; 2734 assert( sqlite3_mutex_held(p->db->mutex) ); 2735 sqlite3BtreeEnter(p); 2736 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2737 sqlite3BtreeLeave(p); 2738 return SQLITE_OK; 2739 } 2740 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2741 2742 /* 2743 ** Change the way data is synced to disk in order to increase or decrease 2744 ** how well the database resists damage due to OS crashes and power 2745 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2746 ** there is a high probability of damage) Level 2 is the default. There 2747 ** is a very low but non-zero probability of damage. Level 3 reduces the 2748 ** probability of damage to near zero but with a write performance reduction. 2749 */ 2750 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2751 int sqlite3BtreeSetPagerFlags( 2752 Btree *p, /* The btree to set the safety level on */ 2753 unsigned pgFlags /* Various PAGER_* flags */ 2754 ){ 2755 BtShared *pBt = p->pBt; 2756 assert( sqlite3_mutex_held(p->db->mutex) ); 2757 sqlite3BtreeEnter(p); 2758 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2759 sqlite3BtreeLeave(p); 2760 return SQLITE_OK; 2761 } 2762 #endif 2763 2764 /* 2765 ** Change the default pages size and the number of reserved bytes per page. 2766 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2767 ** without changing anything. 2768 ** 2769 ** The page size must be a power of 2 between 512 and 65536. If the page 2770 ** size supplied does not meet this constraint then the page size is not 2771 ** changed. 2772 ** 2773 ** Page sizes are constrained to be a power of two so that the region 2774 ** of the database file used for locking (beginning at PENDING_BYTE, 2775 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2776 ** at the beginning of a page. 2777 ** 2778 ** If parameter nReserve is less than zero, then the number of reserved 2779 ** bytes per page is left unchanged. 2780 ** 2781 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2782 ** and autovacuum mode can no longer be changed. 2783 */ 2784 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2785 int rc = SQLITE_OK; 2786 BtShared *pBt = p->pBt; 2787 assert( nReserve>=-1 && nReserve<=255 ); 2788 sqlite3BtreeEnter(p); 2789 #if SQLITE_HAS_CODEC 2790 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve; 2791 #endif 2792 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2793 sqlite3BtreeLeave(p); 2794 return SQLITE_READONLY; 2795 } 2796 if( nReserve<0 ){ 2797 nReserve = pBt->pageSize - pBt->usableSize; 2798 } 2799 assert( nReserve>=0 && nReserve<=255 ); 2800 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2801 ((pageSize-1)&pageSize)==0 ){ 2802 assert( (pageSize & 7)==0 ); 2803 assert( !pBt->pCursor ); 2804 pBt->pageSize = (u32)pageSize; 2805 freeTempSpace(pBt); 2806 } 2807 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2808 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2809 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2810 sqlite3BtreeLeave(p); 2811 return rc; 2812 } 2813 2814 /* 2815 ** Return the currently defined page size 2816 */ 2817 int sqlite3BtreeGetPageSize(Btree *p){ 2818 return p->pBt->pageSize; 2819 } 2820 2821 /* 2822 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2823 ** may only be called if it is guaranteed that the b-tree mutex is already 2824 ** held. 2825 ** 2826 ** This is useful in one special case in the backup API code where it is 2827 ** known that the shared b-tree mutex is held, but the mutex on the 2828 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2829 ** were to be called, it might collide with some other operation on the 2830 ** database handle that owns *p, causing undefined behavior. 2831 */ 2832 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2833 int n; 2834 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2835 n = p->pBt->pageSize - p->pBt->usableSize; 2836 return n; 2837 } 2838 2839 /* 2840 ** Return the number of bytes of space at the end of every page that 2841 ** are intentually left unused. This is the "reserved" space that is 2842 ** sometimes used by extensions. 2843 ** 2844 ** If SQLITE_HAS_MUTEX is defined then the number returned is the 2845 ** greater of the current reserved space and the maximum requested 2846 ** reserve space. 2847 */ 2848 int sqlite3BtreeGetOptimalReserve(Btree *p){ 2849 int n; 2850 sqlite3BtreeEnter(p); 2851 n = sqlite3BtreeGetReserveNoMutex(p); 2852 #ifdef SQLITE_HAS_CODEC 2853 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve; 2854 #endif 2855 sqlite3BtreeLeave(p); 2856 return n; 2857 } 2858 2859 2860 /* 2861 ** Set the maximum page count for a database if mxPage is positive. 2862 ** No changes are made if mxPage is 0 or negative. 2863 ** Regardless of the value of mxPage, return the maximum page count. 2864 */ 2865 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ 2866 int n; 2867 sqlite3BtreeEnter(p); 2868 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2869 sqlite3BtreeLeave(p); 2870 return n; 2871 } 2872 2873 /* 2874 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 2875 ** 2876 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 2877 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 2878 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 2879 ** newFlag==(-1) No changes 2880 ** 2881 ** This routine acts as a query if newFlag is less than zero 2882 ** 2883 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 2884 ** freelist leaf pages are not written back to the database. Thus in-page 2885 ** deleted content is cleared, but freelist deleted content is not. 2886 ** 2887 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 2888 ** that freelist leaf pages are written back into the database, increasing 2889 ** the amount of disk I/O. 2890 */ 2891 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 2892 int b; 2893 if( p==0 ) return 0; 2894 sqlite3BtreeEnter(p); 2895 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 2896 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 2897 if( newFlag>=0 ){ 2898 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 2899 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 2900 } 2901 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 2902 sqlite3BtreeLeave(p); 2903 return b; 2904 } 2905 2906 /* 2907 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 2908 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 2909 ** is disabled. The default value for the auto-vacuum property is 2910 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 2911 */ 2912 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 2913 #ifdef SQLITE_OMIT_AUTOVACUUM 2914 return SQLITE_READONLY; 2915 #else 2916 BtShared *pBt = p->pBt; 2917 int rc = SQLITE_OK; 2918 u8 av = (u8)autoVacuum; 2919 2920 sqlite3BtreeEnter(p); 2921 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 2922 rc = SQLITE_READONLY; 2923 }else{ 2924 pBt->autoVacuum = av ?1:0; 2925 pBt->incrVacuum = av==2 ?1:0; 2926 } 2927 sqlite3BtreeLeave(p); 2928 return rc; 2929 #endif 2930 } 2931 2932 /* 2933 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 2934 ** enabled 1 is returned. Otherwise 0. 2935 */ 2936 int sqlite3BtreeGetAutoVacuum(Btree *p){ 2937 #ifdef SQLITE_OMIT_AUTOVACUUM 2938 return BTREE_AUTOVACUUM_NONE; 2939 #else 2940 int rc; 2941 sqlite3BtreeEnter(p); 2942 rc = ( 2943 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 2944 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 2945 BTREE_AUTOVACUUM_INCR 2946 ); 2947 sqlite3BtreeLeave(p); 2948 return rc; 2949 #endif 2950 } 2951 2952 /* 2953 ** If the user has not set the safety-level for this database connection 2954 ** using "PRAGMA synchronous", and if the safety-level is not already 2955 ** set to the value passed to this function as the second parameter, 2956 ** set it so. 2957 */ 2958 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 2959 && !defined(SQLITE_OMIT_WAL) 2960 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 2961 sqlite3 *db; 2962 Db *pDb; 2963 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 2964 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 2965 if( pDb->bSyncSet==0 2966 && pDb->safety_level!=safety_level 2967 && pDb!=&db->aDb[1] 2968 ){ 2969 pDb->safety_level = safety_level; 2970 sqlite3PagerSetFlags(pBt->pPager, 2971 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 2972 } 2973 } 2974 } 2975 #else 2976 # define setDefaultSyncFlag(pBt,safety_level) 2977 #endif 2978 2979 /* Forward declaration */ 2980 static int newDatabase(BtShared*); 2981 2982 2983 /* 2984 ** Get a reference to pPage1 of the database file. This will 2985 ** also acquire a readlock on that file. 2986 ** 2987 ** SQLITE_OK is returned on success. If the file is not a 2988 ** well-formed database file, then SQLITE_CORRUPT is returned. 2989 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 2990 ** is returned if we run out of memory. 2991 */ 2992 static int lockBtree(BtShared *pBt){ 2993 int rc; /* Result code from subfunctions */ 2994 MemPage *pPage1; /* Page 1 of the database file */ 2995 int nPage; /* Number of pages in the database */ 2996 int nPageFile = 0; /* Number of pages in the database file */ 2997 int nPageHeader; /* Number of pages in the database according to hdr */ 2998 2999 assert( sqlite3_mutex_held(pBt->mutex) ); 3000 assert( pBt->pPage1==0 ); 3001 rc = sqlite3PagerSharedLock(pBt->pPager); 3002 if( rc!=SQLITE_OK ) return rc; 3003 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3004 if( rc!=SQLITE_OK ) return rc; 3005 3006 /* Do some checking to help insure the file we opened really is 3007 ** a valid database file. 3008 */ 3009 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); 3010 sqlite3PagerPagecount(pBt->pPager, &nPageFile); 3011 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3012 nPage = nPageFile; 3013 } 3014 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3015 nPage = 0; 3016 } 3017 if( nPage>0 ){ 3018 u32 pageSize; 3019 u32 usableSize; 3020 u8 *page1 = pPage1->aData; 3021 rc = SQLITE_NOTADB; 3022 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3023 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3024 ** 61 74 20 33 00. */ 3025 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3026 goto page1_init_failed; 3027 } 3028 3029 #ifdef SQLITE_OMIT_WAL 3030 if( page1[18]>1 ){ 3031 pBt->btsFlags |= BTS_READ_ONLY; 3032 } 3033 if( page1[19]>1 ){ 3034 goto page1_init_failed; 3035 } 3036 #else 3037 if( page1[18]>2 ){ 3038 pBt->btsFlags |= BTS_READ_ONLY; 3039 } 3040 if( page1[19]>2 ){ 3041 goto page1_init_failed; 3042 } 3043 3044 /* If the write version is set to 2, this database should be accessed 3045 ** in WAL mode. If the log is not already open, open it now. Then 3046 ** return SQLITE_OK and return without populating BtShared.pPage1. 3047 ** The caller detects this and calls this function again. This is 3048 ** required as the version of page 1 currently in the page1 buffer 3049 ** may not be the latest version - there may be a newer one in the log 3050 ** file. 3051 */ 3052 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3053 int isOpen = 0; 3054 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3055 if( rc!=SQLITE_OK ){ 3056 goto page1_init_failed; 3057 }else{ 3058 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3059 if( isOpen==0 ){ 3060 releasePageOne(pPage1); 3061 return SQLITE_OK; 3062 } 3063 } 3064 rc = SQLITE_NOTADB; 3065 }else{ 3066 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3067 } 3068 #endif 3069 3070 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3071 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3072 ** 3073 ** The original design allowed these amounts to vary, but as of 3074 ** version 3.6.0, we require them to be fixed. 3075 */ 3076 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3077 goto page1_init_failed; 3078 } 3079 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3080 ** determined by the 2-byte integer located at an offset of 16 bytes from 3081 ** the beginning of the database file. */ 3082 pageSize = (page1[16]<<8) | (page1[17]<<16); 3083 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3084 ** between 512 and 65536 inclusive. */ 3085 if( ((pageSize-1)&pageSize)!=0 3086 || pageSize>SQLITE_MAX_PAGE_SIZE 3087 || pageSize<=256 3088 ){ 3089 goto page1_init_failed; 3090 } 3091 assert( (pageSize & 7)==0 ); 3092 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3093 ** integer at offset 20 is the number of bytes of space at the end of 3094 ** each page to reserve for extensions. 3095 ** 3096 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3097 ** determined by the one-byte unsigned integer found at an offset of 20 3098 ** into the database file header. */ 3099 usableSize = pageSize - page1[20]; 3100 if( (u32)pageSize!=pBt->pageSize ){ 3101 /* After reading the first page of the database assuming a page size 3102 ** of BtShared.pageSize, we have discovered that the page-size is 3103 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3104 ** zero and return SQLITE_OK. The caller will call this function 3105 ** again with the correct page-size. 3106 */ 3107 releasePageOne(pPage1); 3108 pBt->usableSize = usableSize; 3109 pBt->pageSize = pageSize; 3110 freeTempSpace(pBt); 3111 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3112 pageSize-usableSize); 3113 return rc; 3114 } 3115 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){ 3116 rc = SQLITE_CORRUPT_BKPT; 3117 goto page1_init_failed; 3118 } 3119 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3120 ** be less than 480. In other words, if the page size is 512, then the 3121 ** reserved space size cannot exceed 32. */ 3122 if( usableSize<480 ){ 3123 goto page1_init_failed; 3124 } 3125 pBt->pageSize = pageSize; 3126 pBt->usableSize = usableSize; 3127 #ifndef SQLITE_OMIT_AUTOVACUUM 3128 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3129 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3130 #endif 3131 } 3132 3133 /* maxLocal is the maximum amount of payload to store locally for 3134 ** a cell. Make sure it is small enough so that at least minFanout 3135 ** cells can will fit on one page. We assume a 10-byte page header. 3136 ** Besides the payload, the cell must store: 3137 ** 2-byte pointer to the cell 3138 ** 4-byte child pointer 3139 ** 9-byte nKey value 3140 ** 4-byte nData value 3141 ** 4-byte overflow page pointer 3142 ** So a cell consists of a 2-byte pointer, a header which is as much as 3143 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3144 ** page pointer. 3145 */ 3146 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3147 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3148 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3149 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3150 if( pBt->maxLocal>127 ){ 3151 pBt->max1bytePayload = 127; 3152 }else{ 3153 pBt->max1bytePayload = (u8)pBt->maxLocal; 3154 } 3155 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3156 pBt->pPage1 = pPage1; 3157 pBt->nPage = nPage; 3158 return SQLITE_OK; 3159 3160 page1_init_failed: 3161 releasePageOne(pPage1); 3162 pBt->pPage1 = 0; 3163 return rc; 3164 } 3165 3166 #ifndef NDEBUG 3167 /* 3168 ** Return the number of cursors open on pBt. This is for use 3169 ** in assert() expressions, so it is only compiled if NDEBUG is not 3170 ** defined. 3171 ** 3172 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3173 ** false then all cursors are counted. 3174 ** 3175 ** For the purposes of this routine, a cursor is any cursor that 3176 ** is capable of reading or writing to the database. Cursors that 3177 ** have been tripped into the CURSOR_FAULT state are not counted. 3178 */ 3179 static int countValidCursors(BtShared *pBt, int wrOnly){ 3180 BtCursor *pCur; 3181 int r = 0; 3182 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3183 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3184 && pCur->eState!=CURSOR_FAULT ) r++; 3185 } 3186 return r; 3187 } 3188 #endif 3189 3190 /* 3191 ** If there are no outstanding cursors and we are not in the middle 3192 ** of a transaction but there is a read lock on the database, then 3193 ** this routine unrefs the first page of the database file which 3194 ** has the effect of releasing the read lock. 3195 ** 3196 ** If there is a transaction in progress, this routine is a no-op. 3197 */ 3198 static void unlockBtreeIfUnused(BtShared *pBt){ 3199 assert( sqlite3_mutex_held(pBt->mutex) ); 3200 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3201 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3202 MemPage *pPage1 = pBt->pPage1; 3203 assert( pPage1->aData ); 3204 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3205 pBt->pPage1 = 0; 3206 releasePageOne(pPage1); 3207 } 3208 } 3209 3210 /* 3211 ** If pBt points to an empty file then convert that empty file 3212 ** into a new empty database by initializing the first page of 3213 ** the database. 3214 */ 3215 static int newDatabase(BtShared *pBt){ 3216 MemPage *pP1; 3217 unsigned char *data; 3218 int rc; 3219 3220 assert( sqlite3_mutex_held(pBt->mutex) ); 3221 if( pBt->nPage>0 ){ 3222 return SQLITE_OK; 3223 } 3224 pP1 = pBt->pPage1; 3225 assert( pP1!=0 ); 3226 data = pP1->aData; 3227 rc = sqlite3PagerWrite(pP1->pDbPage); 3228 if( rc ) return rc; 3229 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3230 assert( sizeof(zMagicHeader)==16 ); 3231 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3232 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3233 data[18] = 1; 3234 data[19] = 1; 3235 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3236 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3237 data[21] = 64; 3238 data[22] = 32; 3239 data[23] = 32; 3240 memset(&data[24], 0, 100-24); 3241 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3242 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3243 #ifndef SQLITE_OMIT_AUTOVACUUM 3244 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3245 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3246 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3247 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3248 #endif 3249 pBt->nPage = 1; 3250 data[31] = 1; 3251 return SQLITE_OK; 3252 } 3253 3254 /* 3255 ** Initialize the first page of the database file (creating a database 3256 ** consisting of a single page and no schema objects). Return SQLITE_OK 3257 ** if successful, or an SQLite error code otherwise. 3258 */ 3259 int sqlite3BtreeNewDb(Btree *p){ 3260 int rc; 3261 sqlite3BtreeEnter(p); 3262 p->pBt->nPage = 0; 3263 rc = newDatabase(p->pBt); 3264 sqlite3BtreeLeave(p); 3265 return rc; 3266 } 3267 3268 /* 3269 ** Attempt to start a new transaction. A write-transaction 3270 ** is started if the second argument is nonzero, otherwise a read- 3271 ** transaction. If the second argument is 2 or more and exclusive 3272 ** transaction is started, meaning that no other process is allowed 3273 ** to access the database. A preexisting transaction may not be 3274 ** upgraded to exclusive by calling this routine a second time - the 3275 ** exclusivity flag only works for a new transaction. 3276 ** 3277 ** A write-transaction must be started before attempting any 3278 ** changes to the database. None of the following routines 3279 ** will work unless a transaction is started first: 3280 ** 3281 ** sqlite3BtreeCreateTable() 3282 ** sqlite3BtreeCreateIndex() 3283 ** sqlite3BtreeClearTable() 3284 ** sqlite3BtreeDropTable() 3285 ** sqlite3BtreeInsert() 3286 ** sqlite3BtreeDelete() 3287 ** sqlite3BtreeUpdateMeta() 3288 ** 3289 ** If an initial attempt to acquire the lock fails because of lock contention 3290 ** and the database was previously unlocked, then invoke the busy handler 3291 ** if there is one. But if there was previously a read-lock, do not 3292 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3293 ** returned when there is already a read-lock in order to avoid a deadlock. 3294 ** 3295 ** Suppose there are two processes A and B. A has a read lock and B has 3296 ** a reserved lock. B tries to promote to exclusive but is blocked because 3297 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3298 ** One or the other of the two processes must give way or there can be 3299 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3300 ** when A already has a read lock, we encourage A to give up and let B 3301 ** proceed. 3302 */ 3303 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3304 BtShared *pBt = p->pBt; 3305 int rc = SQLITE_OK; 3306 3307 sqlite3BtreeEnter(p); 3308 btreeIntegrity(p); 3309 3310 /* If the btree is already in a write-transaction, or it 3311 ** is already in a read-transaction and a read-transaction 3312 ** is requested, this is a no-op. 3313 */ 3314 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3315 goto trans_begun; 3316 } 3317 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3318 3319 if( (p->db->flags & SQLITE_ResetDatabase) 3320 && sqlite3PagerIsreadonly(pBt->pPager)==0 3321 ){ 3322 pBt->btsFlags &= ~BTS_READ_ONLY; 3323 } 3324 3325 /* Write transactions are not possible on a read-only database */ 3326 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3327 rc = SQLITE_READONLY; 3328 goto trans_begun; 3329 } 3330 3331 #ifndef SQLITE_OMIT_SHARED_CACHE 3332 { 3333 sqlite3 *pBlock = 0; 3334 /* If another database handle has already opened a write transaction 3335 ** on this shared-btree structure and a second write transaction is 3336 ** requested, return SQLITE_LOCKED. 3337 */ 3338 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3339 || (pBt->btsFlags & BTS_PENDING)!=0 3340 ){ 3341 pBlock = pBt->pWriter->db; 3342 }else if( wrflag>1 ){ 3343 BtLock *pIter; 3344 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3345 if( pIter->pBtree!=p ){ 3346 pBlock = pIter->pBtree->db; 3347 break; 3348 } 3349 } 3350 } 3351 if( pBlock ){ 3352 sqlite3ConnectionBlocked(p->db, pBlock); 3353 rc = SQLITE_LOCKED_SHAREDCACHE; 3354 goto trans_begun; 3355 } 3356 } 3357 #endif 3358 3359 /* Any read-only or read-write transaction implies a read-lock on 3360 ** page 1. So if some other shared-cache client already has a write-lock 3361 ** on page 1, the transaction cannot be opened. */ 3362 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 3363 if( SQLITE_OK!=rc ) goto trans_begun; 3364 3365 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3366 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3367 do { 3368 /* Call lockBtree() until either pBt->pPage1 is populated or 3369 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3370 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3371 ** reading page 1 it discovers that the page-size of the database 3372 ** file is not pBt->pageSize. In this case lockBtree() will update 3373 ** pBt->pageSize to the page-size of the file on disk. 3374 */ 3375 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3376 3377 if( rc==SQLITE_OK && wrflag ){ 3378 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3379 rc = SQLITE_READONLY; 3380 }else{ 3381 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); 3382 if( rc==SQLITE_OK ){ 3383 rc = newDatabase(pBt); 3384 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3385 /* if there was no transaction opened when this function was 3386 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3387 ** code to SQLITE_BUSY. */ 3388 rc = SQLITE_BUSY; 3389 } 3390 } 3391 } 3392 3393 if( rc!=SQLITE_OK ){ 3394 unlockBtreeIfUnused(pBt); 3395 } 3396 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3397 btreeInvokeBusyHandler(pBt) ); 3398 sqlite3PagerResetLockTimeout(pBt->pPager); 3399 3400 if( rc==SQLITE_OK ){ 3401 if( p->inTrans==TRANS_NONE ){ 3402 pBt->nTransaction++; 3403 #ifndef SQLITE_OMIT_SHARED_CACHE 3404 if( p->sharable ){ 3405 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3406 p->lock.eLock = READ_LOCK; 3407 p->lock.pNext = pBt->pLock; 3408 pBt->pLock = &p->lock; 3409 } 3410 #endif 3411 } 3412 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3413 if( p->inTrans>pBt->inTransaction ){ 3414 pBt->inTransaction = p->inTrans; 3415 } 3416 if( wrflag ){ 3417 MemPage *pPage1 = pBt->pPage1; 3418 #ifndef SQLITE_OMIT_SHARED_CACHE 3419 assert( !pBt->pWriter ); 3420 pBt->pWriter = p; 3421 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3422 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3423 #endif 3424 3425 /* If the db-size header field is incorrect (as it may be if an old 3426 ** client has been writing the database file), update it now. Doing 3427 ** this sooner rather than later means the database size can safely 3428 ** re-read the database size from page 1 if a savepoint or transaction 3429 ** rollback occurs within the transaction. 3430 */ 3431 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3432 rc = sqlite3PagerWrite(pPage1->pDbPage); 3433 if( rc==SQLITE_OK ){ 3434 put4byte(&pPage1->aData[28], pBt->nPage); 3435 } 3436 } 3437 } 3438 } 3439 3440 trans_begun: 3441 if( rc==SQLITE_OK ){ 3442 if( pSchemaVersion ){ 3443 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3444 } 3445 if( wrflag ){ 3446 /* This call makes sure that the pager has the correct number of 3447 ** open savepoints. If the second parameter is greater than 0 and 3448 ** the sub-journal is not already open, then it will be opened here. 3449 */ 3450 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); 3451 } 3452 } 3453 3454 btreeIntegrity(p); 3455 sqlite3BtreeLeave(p); 3456 return rc; 3457 } 3458 3459 #ifndef SQLITE_OMIT_AUTOVACUUM 3460 3461 /* 3462 ** Set the pointer-map entries for all children of page pPage. Also, if 3463 ** pPage contains cells that point to overflow pages, set the pointer 3464 ** map entries for the overflow pages as well. 3465 */ 3466 static int setChildPtrmaps(MemPage *pPage){ 3467 int i; /* Counter variable */ 3468 int nCell; /* Number of cells in page pPage */ 3469 int rc; /* Return code */ 3470 BtShared *pBt = pPage->pBt; 3471 Pgno pgno = pPage->pgno; 3472 3473 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3474 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3475 if( rc!=SQLITE_OK ) return rc; 3476 nCell = pPage->nCell; 3477 3478 for(i=0; i<nCell; i++){ 3479 u8 *pCell = findCell(pPage, i); 3480 3481 ptrmapPutOvflPtr(pPage, pCell, &rc); 3482 3483 if( !pPage->leaf ){ 3484 Pgno childPgno = get4byte(pCell); 3485 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3486 } 3487 } 3488 3489 if( !pPage->leaf ){ 3490 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3491 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3492 } 3493 3494 return rc; 3495 } 3496 3497 /* 3498 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3499 ** that it points to iTo. Parameter eType describes the type of pointer to 3500 ** be modified, as follows: 3501 ** 3502 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3503 ** page of pPage. 3504 ** 3505 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3506 ** page pointed to by one of the cells on pPage. 3507 ** 3508 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3509 ** overflow page in the list. 3510 */ 3511 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3512 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3513 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3514 if( eType==PTRMAP_OVERFLOW2 ){ 3515 /* The pointer is always the first 4 bytes of the page in this case. */ 3516 if( get4byte(pPage->aData)!=iFrom ){ 3517 return SQLITE_CORRUPT_PAGE(pPage); 3518 } 3519 put4byte(pPage->aData, iTo); 3520 }else{ 3521 int i; 3522 int nCell; 3523 int rc; 3524 3525 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3526 if( rc ) return rc; 3527 nCell = pPage->nCell; 3528 3529 for(i=0; i<nCell; i++){ 3530 u8 *pCell = findCell(pPage, i); 3531 if( eType==PTRMAP_OVERFLOW1 ){ 3532 CellInfo info; 3533 pPage->xParseCell(pPage, pCell, &info); 3534 if( info.nLocal<info.nPayload ){ 3535 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3536 return SQLITE_CORRUPT_PAGE(pPage); 3537 } 3538 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3539 put4byte(pCell+info.nSize-4, iTo); 3540 break; 3541 } 3542 } 3543 }else{ 3544 if( get4byte(pCell)==iFrom ){ 3545 put4byte(pCell, iTo); 3546 break; 3547 } 3548 } 3549 } 3550 3551 if( i==nCell ){ 3552 if( eType!=PTRMAP_BTREE || 3553 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3554 return SQLITE_CORRUPT_PAGE(pPage); 3555 } 3556 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3557 } 3558 } 3559 return SQLITE_OK; 3560 } 3561 3562 3563 /* 3564 ** Move the open database page pDbPage to location iFreePage in the 3565 ** database. The pDbPage reference remains valid. 3566 ** 3567 ** The isCommit flag indicates that there is no need to remember that 3568 ** the journal needs to be sync()ed before database page pDbPage->pgno 3569 ** can be written to. The caller has already promised not to write to that 3570 ** page. 3571 */ 3572 static int relocatePage( 3573 BtShared *pBt, /* Btree */ 3574 MemPage *pDbPage, /* Open page to move */ 3575 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3576 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3577 Pgno iFreePage, /* The location to move pDbPage to */ 3578 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3579 ){ 3580 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3581 Pgno iDbPage = pDbPage->pgno; 3582 Pager *pPager = pBt->pPager; 3583 int rc; 3584 3585 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3586 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3587 assert( sqlite3_mutex_held(pBt->mutex) ); 3588 assert( pDbPage->pBt==pBt ); 3589 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3590 3591 /* Move page iDbPage from its current location to page number iFreePage */ 3592 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3593 iDbPage, iFreePage, iPtrPage, eType)); 3594 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3595 if( rc!=SQLITE_OK ){ 3596 return rc; 3597 } 3598 pDbPage->pgno = iFreePage; 3599 3600 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3601 ** that point to overflow pages. The pointer map entries for all these 3602 ** pages need to be changed. 3603 ** 3604 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3605 ** pointer to a subsequent overflow page. If this is the case, then 3606 ** the pointer map needs to be updated for the subsequent overflow page. 3607 */ 3608 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3609 rc = setChildPtrmaps(pDbPage); 3610 if( rc!=SQLITE_OK ){ 3611 return rc; 3612 } 3613 }else{ 3614 Pgno nextOvfl = get4byte(pDbPage->aData); 3615 if( nextOvfl!=0 ){ 3616 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3617 if( rc!=SQLITE_OK ){ 3618 return rc; 3619 } 3620 } 3621 } 3622 3623 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3624 ** that it points at iFreePage. Also fix the pointer map entry for 3625 ** iPtrPage. 3626 */ 3627 if( eType!=PTRMAP_ROOTPAGE ){ 3628 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3629 if( rc!=SQLITE_OK ){ 3630 return rc; 3631 } 3632 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3633 if( rc!=SQLITE_OK ){ 3634 releasePage(pPtrPage); 3635 return rc; 3636 } 3637 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3638 releasePage(pPtrPage); 3639 if( rc==SQLITE_OK ){ 3640 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3641 } 3642 } 3643 return rc; 3644 } 3645 3646 /* Forward declaration required by incrVacuumStep(). */ 3647 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3648 3649 /* 3650 ** Perform a single step of an incremental-vacuum. If successful, return 3651 ** SQLITE_OK. If there is no work to do (and therefore no point in 3652 ** calling this function again), return SQLITE_DONE. Or, if an error 3653 ** occurs, return some other error code. 3654 ** 3655 ** More specifically, this function attempts to re-organize the database so 3656 ** that the last page of the file currently in use is no longer in use. 3657 ** 3658 ** Parameter nFin is the number of pages that this database would contain 3659 ** were this function called until it returns SQLITE_DONE. 3660 ** 3661 ** If the bCommit parameter is non-zero, this function assumes that the 3662 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3663 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3664 ** operation, or false for an incremental vacuum. 3665 */ 3666 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3667 Pgno nFreeList; /* Number of pages still on the free-list */ 3668 int rc; 3669 3670 assert( sqlite3_mutex_held(pBt->mutex) ); 3671 assert( iLastPg>nFin ); 3672 3673 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3674 u8 eType; 3675 Pgno iPtrPage; 3676 3677 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3678 if( nFreeList==0 ){ 3679 return SQLITE_DONE; 3680 } 3681 3682 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3683 if( rc!=SQLITE_OK ){ 3684 return rc; 3685 } 3686 if( eType==PTRMAP_ROOTPAGE ){ 3687 return SQLITE_CORRUPT_BKPT; 3688 } 3689 3690 if( eType==PTRMAP_FREEPAGE ){ 3691 if( bCommit==0 ){ 3692 /* Remove the page from the files free-list. This is not required 3693 ** if bCommit is non-zero. In that case, the free-list will be 3694 ** truncated to zero after this function returns, so it doesn't 3695 ** matter if it still contains some garbage entries. 3696 */ 3697 Pgno iFreePg; 3698 MemPage *pFreePg; 3699 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3700 if( rc!=SQLITE_OK ){ 3701 return rc; 3702 } 3703 assert( iFreePg==iLastPg ); 3704 releasePage(pFreePg); 3705 } 3706 } else { 3707 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3708 MemPage *pLastPg; 3709 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3710 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3711 3712 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3713 if( rc!=SQLITE_OK ){ 3714 return rc; 3715 } 3716 3717 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3718 ** is swapped with the first free page pulled off the free list. 3719 ** 3720 ** On the other hand, if bCommit is greater than zero, then keep 3721 ** looping until a free-page located within the first nFin pages 3722 ** of the file is found. 3723 */ 3724 if( bCommit==0 ){ 3725 eMode = BTALLOC_LE; 3726 iNear = nFin; 3727 } 3728 do { 3729 MemPage *pFreePg; 3730 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3731 if( rc!=SQLITE_OK ){ 3732 releasePage(pLastPg); 3733 return rc; 3734 } 3735 releasePage(pFreePg); 3736 }while( bCommit && iFreePg>nFin ); 3737 assert( iFreePg<iLastPg ); 3738 3739 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3740 releasePage(pLastPg); 3741 if( rc!=SQLITE_OK ){ 3742 return rc; 3743 } 3744 } 3745 } 3746 3747 if( bCommit==0 ){ 3748 do { 3749 iLastPg--; 3750 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3751 pBt->bDoTruncate = 1; 3752 pBt->nPage = iLastPg; 3753 } 3754 return SQLITE_OK; 3755 } 3756 3757 /* 3758 ** The database opened by the first argument is an auto-vacuum database 3759 ** nOrig pages in size containing nFree free pages. Return the expected 3760 ** size of the database in pages following an auto-vacuum operation. 3761 */ 3762 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3763 int nEntry; /* Number of entries on one ptrmap page */ 3764 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3765 Pgno nFin; /* Return value */ 3766 3767 nEntry = pBt->usableSize/5; 3768 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3769 nFin = nOrig - nFree - nPtrmap; 3770 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3771 nFin--; 3772 } 3773 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3774 nFin--; 3775 } 3776 3777 return nFin; 3778 } 3779 3780 /* 3781 ** A write-transaction must be opened before calling this function. 3782 ** It performs a single unit of work towards an incremental vacuum. 3783 ** 3784 ** If the incremental vacuum is finished after this function has run, 3785 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3786 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3787 */ 3788 int sqlite3BtreeIncrVacuum(Btree *p){ 3789 int rc; 3790 BtShared *pBt = p->pBt; 3791 3792 sqlite3BtreeEnter(p); 3793 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3794 if( !pBt->autoVacuum ){ 3795 rc = SQLITE_DONE; 3796 }else{ 3797 Pgno nOrig = btreePagecount(pBt); 3798 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3799 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3800 3801 if( nOrig<nFin ){ 3802 rc = SQLITE_CORRUPT_BKPT; 3803 }else if( nFree>0 ){ 3804 rc = saveAllCursors(pBt, 0, 0); 3805 if( rc==SQLITE_OK ){ 3806 invalidateAllOverflowCache(pBt); 3807 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3808 } 3809 if( rc==SQLITE_OK ){ 3810 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3811 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3812 } 3813 }else{ 3814 rc = SQLITE_DONE; 3815 } 3816 } 3817 sqlite3BtreeLeave(p); 3818 return rc; 3819 } 3820 3821 /* 3822 ** This routine is called prior to sqlite3PagerCommit when a transaction 3823 ** is committed for an auto-vacuum database. 3824 ** 3825 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages 3826 ** the database file should be truncated to during the commit process. 3827 ** i.e. the database has been reorganized so that only the first *pnTrunc 3828 ** pages are in use. 3829 */ 3830 static int autoVacuumCommit(BtShared *pBt){ 3831 int rc = SQLITE_OK; 3832 Pager *pPager = pBt->pPager; 3833 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) 3834 3835 assert( sqlite3_mutex_held(pBt->mutex) ); 3836 invalidateAllOverflowCache(pBt); 3837 assert(pBt->autoVacuum); 3838 if( !pBt->incrVacuum ){ 3839 Pgno nFin; /* Number of pages in database after autovacuuming */ 3840 Pgno nFree; /* Number of pages on the freelist initially */ 3841 Pgno iFree; /* The next page to be freed */ 3842 Pgno nOrig; /* Database size before freeing */ 3843 3844 nOrig = btreePagecount(pBt); 3845 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3846 /* It is not possible to create a database for which the final page 3847 ** is either a pointer-map page or the pending-byte page. If one 3848 ** is encountered, this indicates corruption. 3849 */ 3850 return SQLITE_CORRUPT_BKPT; 3851 } 3852 3853 nFree = get4byte(&pBt->pPage1->aData[36]); 3854 nFin = finalDbSize(pBt, nOrig, nFree); 3855 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 3856 if( nFin<nOrig ){ 3857 rc = saveAllCursors(pBt, 0, 0); 3858 } 3859 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 3860 rc = incrVacuumStep(pBt, nFin, iFree, 1); 3861 } 3862 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 3863 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3864 put4byte(&pBt->pPage1->aData[32], 0); 3865 put4byte(&pBt->pPage1->aData[36], 0); 3866 put4byte(&pBt->pPage1->aData[28], nFin); 3867 pBt->bDoTruncate = 1; 3868 pBt->nPage = nFin; 3869 } 3870 if( rc!=SQLITE_OK ){ 3871 sqlite3PagerRollback(pPager); 3872 } 3873 } 3874 3875 assert( nRef>=sqlite3PagerRefcount(pPager) ); 3876 return rc; 3877 } 3878 3879 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 3880 # define setChildPtrmaps(x) SQLITE_OK 3881 #endif 3882 3883 /* 3884 ** This routine does the first phase of a two-phase commit. This routine 3885 ** causes a rollback journal to be created (if it does not already exist) 3886 ** and populated with enough information so that if a power loss occurs 3887 ** the database can be restored to its original state by playing back 3888 ** the journal. Then the contents of the journal are flushed out to 3889 ** the disk. After the journal is safely on oxide, the changes to the 3890 ** database are written into the database file and flushed to oxide. 3891 ** At the end of this call, the rollback journal still exists on the 3892 ** disk and we are still holding all locks, so the transaction has not 3893 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 3894 ** commit process. 3895 ** 3896 ** This call is a no-op if no write-transaction is currently active on pBt. 3897 ** 3898 ** Otherwise, sync the database file for the btree pBt. zMaster points to 3899 ** the name of a master journal file that should be written into the 3900 ** individual journal file, or is NULL, indicating no master journal file 3901 ** (single database transaction). 3902 ** 3903 ** When this is called, the master journal should already have been 3904 ** created, populated with this journal pointer and synced to disk. 3905 ** 3906 ** Once this is routine has returned, the only thing required to commit 3907 ** the write-transaction for this database file is to delete the journal. 3908 */ 3909 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ 3910 int rc = SQLITE_OK; 3911 if( p->inTrans==TRANS_WRITE ){ 3912 BtShared *pBt = p->pBt; 3913 sqlite3BtreeEnter(p); 3914 #ifndef SQLITE_OMIT_AUTOVACUUM 3915 if( pBt->autoVacuum ){ 3916 rc = autoVacuumCommit(pBt); 3917 if( rc!=SQLITE_OK ){ 3918 sqlite3BtreeLeave(p); 3919 return rc; 3920 } 3921 } 3922 if( pBt->bDoTruncate ){ 3923 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 3924 } 3925 #endif 3926 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); 3927 sqlite3BtreeLeave(p); 3928 } 3929 return rc; 3930 } 3931 3932 /* 3933 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 3934 ** at the conclusion of a transaction. 3935 */ 3936 static void btreeEndTransaction(Btree *p){ 3937 BtShared *pBt = p->pBt; 3938 sqlite3 *db = p->db; 3939 assert( sqlite3BtreeHoldsMutex(p) ); 3940 3941 #ifndef SQLITE_OMIT_AUTOVACUUM 3942 pBt->bDoTruncate = 0; 3943 #endif 3944 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 3945 /* If there are other active statements that belong to this database 3946 ** handle, downgrade to a read-only transaction. The other statements 3947 ** may still be reading from the database. */ 3948 downgradeAllSharedCacheTableLocks(p); 3949 p->inTrans = TRANS_READ; 3950 }else{ 3951 /* If the handle had any kind of transaction open, decrement the 3952 ** transaction count of the shared btree. If the transaction count 3953 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 3954 ** call below will unlock the pager. */ 3955 if( p->inTrans!=TRANS_NONE ){ 3956 clearAllSharedCacheTableLocks(p); 3957 pBt->nTransaction--; 3958 if( 0==pBt->nTransaction ){ 3959 pBt->inTransaction = TRANS_NONE; 3960 } 3961 } 3962 3963 /* Set the current transaction state to TRANS_NONE and unlock the 3964 ** pager if this call closed the only read or write transaction. */ 3965 p->inTrans = TRANS_NONE; 3966 unlockBtreeIfUnused(pBt); 3967 } 3968 3969 btreeIntegrity(p); 3970 } 3971 3972 /* 3973 ** Commit the transaction currently in progress. 3974 ** 3975 ** This routine implements the second phase of a 2-phase commit. The 3976 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 3977 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 3978 ** routine did all the work of writing information out to disk and flushing the 3979 ** contents so that they are written onto the disk platter. All this 3980 ** routine has to do is delete or truncate or zero the header in the 3981 ** the rollback journal (which causes the transaction to commit) and 3982 ** drop locks. 3983 ** 3984 ** Normally, if an error occurs while the pager layer is attempting to 3985 ** finalize the underlying journal file, this function returns an error and 3986 ** the upper layer will attempt a rollback. However, if the second argument 3987 ** is non-zero then this b-tree transaction is part of a multi-file 3988 ** transaction. In this case, the transaction has already been committed 3989 ** (by deleting a master journal file) and the caller will ignore this 3990 ** functions return code. So, even if an error occurs in the pager layer, 3991 ** reset the b-tree objects internal state to indicate that the write 3992 ** transaction has been closed. This is quite safe, as the pager will have 3993 ** transitioned to the error state. 3994 ** 3995 ** This will release the write lock on the database file. If there 3996 ** are no active cursors, it also releases the read lock. 3997 */ 3998 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 3999 4000 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4001 sqlite3BtreeEnter(p); 4002 btreeIntegrity(p); 4003 4004 /* If the handle has a write-transaction open, commit the shared-btrees 4005 ** transaction and set the shared state to TRANS_READ. 4006 */ 4007 if( p->inTrans==TRANS_WRITE ){ 4008 int rc; 4009 BtShared *pBt = p->pBt; 4010 assert( pBt->inTransaction==TRANS_WRITE ); 4011 assert( pBt->nTransaction>0 ); 4012 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4013 if( rc!=SQLITE_OK && bCleanup==0 ){ 4014 sqlite3BtreeLeave(p); 4015 return rc; 4016 } 4017 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4018 pBt->inTransaction = TRANS_READ; 4019 btreeClearHasContent(pBt); 4020 } 4021 4022 btreeEndTransaction(p); 4023 sqlite3BtreeLeave(p); 4024 return SQLITE_OK; 4025 } 4026 4027 /* 4028 ** Do both phases of a commit. 4029 */ 4030 int sqlite3BtreeCommit(Btree *p){ 4031 int rc; 4032 sqlite3BtreeEnter(p); 4033 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4034 if( rc==SQLITE_OK ){ 4035 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4036 } 4037 sqlite3BtreeLeave(p); 4038 return rc; 4039 } 4040 4041 /* 4042 ** This routine sets the state to CURSOR_FAULT and the error 4043 ** code to errCode for every cursor on any BtShared that pBtree 4044 ** references. Or if the writeOnly flag is set to 1, then only 4045 ** trip write cursors and leave read cursors unchanged. 4046 ** 4047 ** Every cursor is a candidate to be tripped, including cursors 4048 ** that belong to other database connections that happen to be 4049 ** sharing the cache with pBtree. 4050 ** 4051 ** This routine gets called when a rollback occurs. If the writeOnly 4052 ** flag is true, then only write-cursors need be tripped - read-only 4053 ** cursors save their current positions so that they may continue 4054 ** following the rollback. Or, if writeOnly is false, all cursors are 4055 ** tripped. In general, writeOnly is false if the transaction being 4056 ** rolled back modified the database schema. In this case b-tree root 4057 ** pages may be moved or deleted from the database altogether, making 4058 ** it unsafe for read cursors to continue. 4059 ** 4060 ** If the writeOnly flag is true and an error is encountered while 4061 ** saving the current position of a read-only cursor, all cursors, 4062 ** including all read-cursors are tripped. 4063 ** 4064 ** SQLITE_OK is returned if successful, or if an error occurs while 4065 ** saving a cursor position, an SQLite error code. 4066 */ 4067 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4068 BtCursor *p; 4069 int rc = SQLITE_OK; 4070 4071 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4072 if( pBtree ){ 4073 sqlite3BtreeEnter(pBtree); 4074 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4075 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4076 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4077 rc = saveCursorPosition(p); 4078 if( rc!=SQLITE_OK ){ 4079 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4080 break; 4081 } 4082 } 4083 }else{ 4084 sqlite3BtreeClearCursor(p); 4085 p->eState = CURSOR_FAULT; 4086 p->skipNext = errCode; 4087 } 4088 btreeReleaseAllCursorPages(p); 4089 } 4090 sqlite3BtreeLeave(pBtree); 4091 } 4092 return rc; 4093 } 4094 4095 /* 4096 ** Rollback the transaction in progress. 4097 ** 4098 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4099 ** Only write cursors are tripped if writeOnly is true but all cursors are 4100 ** tripped if writeOnly is false. Any attempt to use 4101 ** a tripped cursor will result in an error. 4102 ** 4103 ** This will release the write lock on the database file. If there 4104 ** are no active cursors, it also releases the read lock. 4105 */ 4106 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4107 int rc; 4108 BtShared *pBt = p->pBt; 4109 MemPage *pPage1; 4110 4111 assert( writeOnly==1 || writeOnly==0 ); 4112 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4113 sqlite3BtreeEnter(p); 4114 if( tripCode==SQLITE_OK ){ 4115 rc = tripCode = saveAllCursors(pBt, 0, 0); 4116 if( rc ) writeOnly = 0; 4117 }else{ 4118 rc = SQLITE_OK; 4119 } 4120 if( tripCode ){ 4121 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4122 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4123 if( rc2!=SQLITE_OK ) rc = rc2; 4124 } 4125 btreeIntegrity(p); 4126 4127 if( p->inTrans==TRANS_WRITE ){ 4128 int rc2; 4129 4130 assert( TRANS_WRITE==pBt->inTransaction ); 4131 rc2 = sqlite3PagerRollback(pBt->pPager); 4132 if( rc2!=SQLITE_OK ){ 4133 rc = rc2; 4134 } 4135 4136 /* The rollback may have destroyed the pPage1->aData value. So 4137 ** call btreeGetPage() on page 1 again to make 4138 ** sure pPage1->aData is set correctly. */ 4139 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4140 int nPage = get4byte(28+(u8*)pPage1->aData); 4141 testcase( nPage==0 ); 4142 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4143 testcase( pBt->nPage!=nPage ); 4144 pBt->nPage = nPage; 4145 releasePageOne(pPage1); 4146 } 4147 assert( countValidCursors(pBt, 1)==0 ); 4148 pBt->inTransaction = TRANS_READ; 4149 btreeClearHasContent(pBt); 4150 } 4151 4152 btreeEndTransaction(p); 4153 sqlite3BtreeLeave(p); 4154 return rc; 4155 } 4156 4157 /* 4158 ** Start a statement subtransaction. The subtransaction can be rolled 4159 ** back independently of the main transaction. You must start a transaction 4160 ** before starting a subtransaction. The subtransaction is ended automatically 4161 ** if the main transaction commits or rolls back. 4162 ** 4163 ** Statement subtransactions are used around individual SQL statements 4164 ** that are contained within a BEGIN...COMMIT block. If a constraint 4165 ** error occurs within the statement, the effect of that one statement 4166 ** can be rolled back without having to rollback the entire transaction. 4167 ** 4168 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4169 ** value passed as the second parameter is the total number of savepoints, 4170 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4171 ** are no active savepoints and no other statement-transactions open, 4172 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4173 ** using the sqlite3BtreeSavepoint() function. 4174 */ 4175 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4176 int rc; 4177 BtShared *pBt = p->pBt; 4178 sqlite3BtreeEnter(p); 4179 assert( p->inTrans==TRANS_WRITE ); 4180 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4181 assert( iStatement>0 ); 4182 assert( iStatement>p->db->nSavepoint ); 4183 assert( pBt->inTransaction==TRANS_WRITE ); 4184 /* At the pager level, a statement transaction is a savepoint with 4185 ** an index greater than all savepoints created explicitly using 4186 ** SQL statements. It is illegal to open, release or rollback any 4187 ** such savepoints while the statement transaction savepoint is active. 4188 */ 4189 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4190 sqlite3BtreeLeave(p); 4191 return rc; 4192 } 4193 4194 /* 4195 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4196 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4197 ** savepoint identified by parameter iSavepoint, depending on the value 4198 ** of op. 4199 ** 4200 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4201 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4202 ** contents of the entire transaction are rolled back. This is different 4203 ** from a normal transaction rollback, as no locks are released and the 4204 ** transaction remains open. 4205 */ 4206 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4207 int rc = SQLITE_OK; 4208 if( p && p->inTrans==TRANS_WRITE ){ 4209 BtShared *pBt = p->pBt; 4210 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4211 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4212 sqlite3BtreeEnter(p); 4213 if( op==SAVEPOINT_ROLLBACK ){ 4214 rc = saveAllCursors(pBt, 0, 0); 4215 } 4216 if( rc==SQLITE_OK ){ 4217 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4218 } 4219 if( rc==SQLITE_OK ){ 4220 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4221 pBt->nPage = 0; 4222 } 4223 rc = newDatabase(pBt); 4224 pBt->nPage = get4byte(28 + pBt->pPage1->aData); 4225 4226 /* The database size was written into the offset 28 of the header 4227 ** when the transaction started, so we know that the value at offset 4228 ** 28 is nonzero. */ 4229 assert( pBt->nPage>0 ); 4230 } 4231 sqlite3BtreeLeave(p); 4232 } 4233 return rc; 4234 } 4235 4236 /* 4237 ** Create a new cursor for the BTree whose root is on the page 4238 ** iTable. If a read-only cursor is requested, it is assumed that 4239 ** the caller already has at least a read-only transaction open 4240 ** on the database already. If a write-cursor is requested, then 4241 ** the caller is assumed to have an open write transaction. 4242 ** 4243 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4244 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4245 ** can be used for reading or for writing if other conditions for writing 4246 ** are also met. These are the conditions that must be met in order 4247 ** for writing to be allowed: 4248 ** 4249 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4250 ** 4251 ** 2: Other database connections that share the same pager cache 4252 ** but which are not in the READ_UNCOMMITTED state may not have 4253 ** cursors open with wrFlag==0 on the same table. Otherwise 4254 ** the changes made by this write cursor would be visible to 4255 ** the read cursors in the other database connection. 4256 ** 4257 ** 3: The database must be writable (not on read-only media) 4258 ** 4259 ** 4: There must be an active transaction. 4260 ** 4261 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4262 ** is set. If FORDELETE is set, that is a hint to the implementation that 4263 ** this cursor will only be used to seek to and delete entries of an index 4264 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4265 ** this implementation. But in a hypothetical alternative storage engine 4266 ** in which index entries are automatically deleted when corresponding table 4267 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4268 ** operations on this cursor can be no-ops and all READ operations can 4269 ** return a null row (2-bytes: 0x01 0x00). 4270 ** 4271 ** No checking is done to make sure that page iTable really is the 4272 ** root page of a b-tree. If it is not, then the cursor acquired 4273 ** will not work correctly. 4274 ** 4275 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4276 ** on pCur to initialize the memory space prior to invoking this routine. 4277 */ 4278 static int btreeCursor( 4279 Btree *p, /* The btree */ 4280 int iTable, /* Root page of table to open */ 4281 int wrFlag, /* 1 to write. 0 read-only */ 4282 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4283 BtCursor *pCur /* Space for new cursor */ 4284 ){ 4285 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4286 BtCursor *pX; /* Looping over other all cursors */ 4287 4288 assert( sqlite3BtreeHoldsMutex(p) ); 4289 assert( wrFlag==0 4290 || wrFlag==BTREE_WRCSR 4291 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4292 ); 4293 4294 /* The following assert statements verify that if this is a sharable 4295 ** b-tree database, the connection is holding the required table locks, 4296 ** and that no other connection has any open cursor that conflicts with 4297 ** this lock. */ 4298 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) ); 4299 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4300 4301 /* Assert that the caller has opened the required transaction. */ 4302 assert( p->inTrans>TRANS_NONE ); 4303 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4304 assert( pBt->pPage1 && pBt->pPage1->aData ); 4305 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4306 4307 if( wrFlag ){ 4308 allocateTempSpace(pBt); 4309 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT; 4310 } 4311 if( iTable==1 && btreePagecount(pBt)==0 ){ 4312 assert( wrFlag==0 ); 4313 iTable = 0; 4314 } 4315 4316 /* Now that no other errors can occur, finish filling in the BtCursor 4317 ** variables and link the cursor into the BtShared list. */ 4318 pCur->pgnoRoot = (Pgno)iTable; 4319 pCur->iPage = -1; 4320 pCur->pKeyInfo = pKeyInfo; 4321 pCur->pBtree = p; 4322 pCur->pBt = pBt; 4323 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; 4324 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; 4325 /* If there are two or more cursors on the same btree, then all such 4326 ** cursors *must* have the BTCF_Multiple flag set. */ 4327 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4328 if( pX->pgnoRoot==(Pgno)iTable ){ 4329 pX->curFlags |= BTCF_Multiple; 4330 pCur->curFlags |= BTCF_Multiple; 4331 } 4332 } 4333 pCur->pNext = pBt->pCursor; 4334 pBt->pCursor = pCur; 4335 pCur->eState = CURSOR_INVALID; 4336 return SQLITE_OK; 4337 } 4338 int sqlite3BtreeCursor( 4339 Btree *p, /* The btree */ 4340 int iTable, /* Root page of table to open */ 4341 int wrFlag, /* 1 to write. 0 read-only */ 4342 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4343 BtCursor *pCur /* Write new cursor here */ 4344 ){ 4345 int rc; 4346 if( iTable<1 ){ 4347 rc = SQLITE_CORRUPT_BKPT; 4348 }else{ 4349 sqlite3BtreeEnter(p); 4350 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4351 sqlite3BtreeLeave(p); 4352 } 4353 return rc; 4354 } 4355 4356 /* 4357 ** Return the size of a BtCursor object in bytes. 4358 ** 4359 ** This interfaces is needed so that users of cursors can preallocate 4360 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4361 ** to users so they cannot do the sizeof() themselves - they must call 4362 ** this routine. 4363 */ 4364 int sqlite3BtreeCursorSize(void){ 4365 return ROUND8(sizeof(BtCursor)); 4366 } 4367 4368 /* 4369 ** Initialize memory that will be converted into a BtCursor object. 4370 ** 4371 ** The simple approach here would be to memset() the entire object 4372 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4373 ** do not need to be zeroed and they are large, so we can save a lot 4374 ** of run-time by skipping the initialization of those elements. 4375 */ 4376 void sqlite3BtreeCursorZero(BtCursor *p){ 4377 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4378 } 4379 4380 /* 4381 ** Close a cursor. The read lock on the database file is released 4382 ** when the last cursor is closed. 4383 */ 4384 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4385 Btree *pBtree = pCur->pBtree; 4386 if( pBtree ){ 4387 BtShared *pBt = pCur->pBt; 4388 sqlite3BtreeEnter(pBtree); 4389 assert( pBt->pCursor!=0 ); 4390 if( pBt->pCursor==pCur ){ 4391 pBt->pCursor = pCur->pNext; 4392 }else{ 4393 BtCursor *pPrev = pBt->pCursor; 4394 do{ 4395 if( pPrev->pNext==pCur ){ 4396 pPrev->pNext = pCur->pNext; 4397 break; 4398 } 4399 pPrev = pPrev->pNext; 4400 }while( ALWAYS(pPrev) ); 4401 } 4402 btreeReleaseAllCursorPages(pCur); 4403 unlockBtreeIfUnused(pBt); 4404 sqlite3_free(pCur->aOverflow); 4405 sqlite3_free(pCur->pKey); 4406 sqlite3BtreeLeave(pBtree); 4407 } 4408 return SQLITE_OK; 4409 } 4410 4411 /* 4412 ** Make sure the BtCursor* given in the argument has a valid 4413 ** BtCursor.info structure. If it is not already valid, call 4414 ** btreeParseCell() to fill it in. 4415 ** 4416 ** BtCursor.info is a cache of the information in the current cell. 4417 ** Using this cache reduces the number of calls to btreeParseCell(). 4418 */ 4419 #ifndef NDEBUG 4420 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4421 if( a->nKey!=b->nKey ) return 0; 4422 if( a->pPayload!=b->pPayload ) return 0; 4423 if( a->nPayload!=b->nPayload ) return 0; 4424 if( a->nLocal!=b->nLocal ) return 0; 4425 if( a->nSize!=b->nSize ) return 0; 4426 return 1; 4427 } 4428 static void assertCellInfo(BtCursor *pCur){ 4429 CellInfo info; 4430 memset(&info, 0, sizeof(info)); 4431 btreeParseCell(pCur->pPage, pCur->ix, &info); 4432 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4433 } 4434 #else 4435 #define assertCellInfo(x) 4436 #endif 4437 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4438 if( pCur->info.nSize==0 ){ 4439 pCur->curFlags |= BTCF_ValidNKey; 4440 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4441 }else{ 4442 assertCellInfo(pCur); 4443 } 4444 } 4445 4446 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4447 /* 4448 ** Return true if the given BtCursor is valid. A valid cursor is one 4449 ** that is currently pointing to a row in a (non-empty) table. 4450 ** This is a verification routine is used only within assert() statements. 4451 */ 4452 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4453 return pCur && pCur->eState==CURSOR_VALID; 4454 } 4455 #endif /* NDEBUG */ 4456 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4457 assert( pCur!=0 ); 4458 return pCur->eState==CURSOR_VALID; 4459 } 4460 4461 /* 4462 ** Return the value of the integer key or "rowid" for a table btree. 4463 ** This routine is only valid for a cursor that is pointing into a 4464 ** ordinary table btree. If the cursor points to an index btree or 4465 ** is invalid, the result of this routine is undefined. 4466 */ 4467 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4468 assert( cursorHoldsMutex(pCur) ); 4469 assert( pCur->eState==CURSOR_VALID ); 4470 assert( pCur->curIntKey ); 4471 getCellInfo(pCur); 4472 return pCur->info.nKey; 4473 } 4474 4475 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4476 /* 4477 ** Return the offset into the database file for the start of the 4478 ** payload to which the cursor is pointing. 4479 */ 4480 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4481 assert( cursorHoldsMutex(pCur) ); 4482 assert( pCur->eState==CURSOR_VALID ); 4483 getCellInfo(pCur); 4484 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4485 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4486 } 4487 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4488 4489 /* 4490 ** Return the number of bytes of payload for the entry that pCur is 4491 ** currently pointing to. For table btrees, this will be the amount 4492 ** of data. For index btrees, this will be the size of the key. 4493 ** 4494 ** The caller must guarantee that the cursor is pointing to a non-NULL 4495 ** valid entry. In other words, the calling procedure must guarantee 4496 ** that the cursor has Cursor.eState==CURSOR_VALID. 4497 */ 4498 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4499 assert( cursorHoldsMutex(pCur) ); 4500 assert( pCur->eState==CURSOR_VALID ); 4501 getCellInfo(pCur); 4502 return pCur->info.nPayload; 4503 } 4504 4505 /* 4506 ** Given the page number of an overflow page in the database (parameter 4507 ** ovfl), this function finds the page number of the next page in the 4508 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4509 ** pointer-map data instead of reading the content of page ovfl to do so. 4510 ** 4511 ** If an error occurs an SQLite error code is returned. Otherwise: 4512 ** 4513 ** The page number of the next overflow page in the linked list is 4514 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4515 ** list, *pPgnoNext is set to zero. 4516 ** 4517 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4518 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4519 ** reference. It is the responsibility of the caller to call releasePage() 4520 ** on *ppPage to free the reference. In no reference was obtained (because 4521 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4522 ** *ppPage is set to zero. 4523 */ 4524 static int getOverflowPage( 4525 BtShared *pBt, /* The database file */ 4526 Pgno ovfl, /* Current overflow page number */ 4527 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4528 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4529 ){ 4530 Pgno next = 0; 4531 MemPage *pPage = 0; 4532 int rc = SQLITE_OK; 4533 4534 assert( sqlite3_mutex_held(pBt->mutex) ); 4535 assert(pPgnoNext); 4536 4537 #ifndef SQLITE_OMIT_AUTOVACUUM 4538 /* Try to find the next page in the overflow list using the 4539 ** autovacuum pointer-map pages. Guess that the next page in 4540 ** the overflow list is page number (ovfl+1). If that guess turns 4541 ** out to be wrong, fall back to loading the data of page 4542 ** number ovfl to determine the next page number. 4543 */ 4544 if( pBt->autoVacuum ){ 4545 Pgno pgno; 4546 Pgno iGuess = ovfl+1; 4547 u8 eType; 4548 4549 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4550 iGuess++; 4551 } 4552 4553 if( iGuess<=btreePagecount(pBt) ){ 4554 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4555 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4556 next = iGuess; 4557 rc = SQLITE_DONE; 4558 } 4559 } 4560 } 4561 #endif 4562 4563 assert( next==0 || rc==SQLITE_DONE ); 4564 if( rc==SQLITE_OK ){ 4565 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4566 assert( rc==SQLITE_OK || pPage==0 ); 4567 if( rc==SQLITE_OK ){ 4568 next = get4byte(pPage->aData); 4569 } 4570 } 4571 4572 *pPgnoNext = next; 4573 if( ppPage ){ 4574 *ppPage = pPage; 4575 }else{ 4576 releasePage(pPage); 4577 } 4578 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4579 } 4580 4581 /* 4582 ** Copy data from a buffer to a page, or from a page to a buffer. 4583 ** 4584 ** pPayload is a pointer to data stored on database page pDbPage. 4585 ** If argument eOp is false, then nByte bytes of data are copied 4586 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4587 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4588 ** of data are copied from the buffer pBuf to pPayload. 4589 ** 4590 ** SQLITE_OK is returned on success, otherwise an error code. 4591 */ 4592 static int copyPayload( 4593 void *pPayload, /* Pointer to page data */ 4594 void *pBuf, /* Pointer to buffer */ 4595 int nByte, /* Number of bytes to copy */ 4596 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4597 DbPage *pDbPage /* Page containing pPayload */ 4598 ){ 4599 if( eOp ){ 4600 /* Copy data from buffer to page (a write operation) */ 4601 int rc = sqlite3PagerWrite(pDbPage); 4602 if( rc!=SQLITE_OK ){ 4603 return rc; 4604 } 4605 memcpy(pPayload, pBuf, nByte); 4606 }else{ 4607 /* Copy data from page to buffer (a read operation) */ 4608 memcpy(pBuf, pPayload, nByte); 4609 } 4610 return SQLITE_OK; 4611 } 4612 4613 /* 4614 ** This function is used to read or overwrite payload information 4615 ** for the entry that the pCur cursor is pointing to. The eOp 4616 ** argument is interpreted as follows: 4617 ** 4618 ** 0: The operation is a read. Populate the overflow cache. 4619 ** 1: The operation is a write. Populate the overflow cache. 4620 ** 4621 ** A total of "amt" bytes are read or written beginning at "offset". 4622 ** Data is read to or from the buffer pBuf. 4623 ** 4624 ** The content being read or written might appear on the main page 4625 ** or be scattered out on multiple overflow pages. 4626 ** 4627 ** If the current cursor entry uses one or more overflow pages 4628 ** this function may allocate space for and lazily populate 4629 ** the overflow page-list cache array (BtCursor.aOverflow). 4630 ** Subsequent calls use this cache to make seeking to the supplied offset 4631 ** more efficient. 4632 ** 4633 ** Once an overflow page-list cache has been allocated, it must be 4634 ** invalidated if some other cursor writes to the same table, or if 4635 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4636 ** mode, the following events may invalidate an overflow page-list cache. 4637 ** 4638 ** * An incremental vacuum, 4639 ** * A commit in auto_vacuum="full" mode, 4640 ** * Creating a table (may require moving an overflow page). 4641 */ 4642 static int accessPayload( 4643 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4644 u32 offset, /* Begin reading this far into payload */ 4645 u32 amt, /* Read this many bytes */ 4646 unsigned char *pBuf, /* Write the bytes into this buffer */ 4647 int eOp /* zero to read. non-zero to write. */ 4648 ){ 4649 unsigned char *aPayload; 4650 int rc = SQLITE_OK; 4651 int iIdx = 0; 4652 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4653 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4654 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4655 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4656 #endif 4657 4658 assert( pPage ); 4659 assert( eOp==0 || eOp==1 ); 4660 assert( pCur->eState==CURSOR_VALID ); 4661 assert( pCur->ix<pPage->nCell ); 4662 assert( cursorHoldsMutex(pCur) ); 4663 4664 getCellInfo(pCur); 4665 aPayload = pCur->info.pPayload; 4666 assert( offset+amt <= pCur->info.nPayload ); 4667 4668 assert( aPayload > pPage->aData ); 4669 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4670 /* Trying to read or write past the end of the data is an error. The 4671 ** conditional above is really: 4672 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4673 ** but is recast into its current form to avoid integer overflow problems 4674 */ 4675 return SQLITE_CORRUPT_PAGE(pPage); 4676 } 4677 4678 /* Check if data must be read/written to/from the btree page itself. */ 4679 if( offset<pCur->info.nLocal ){ 4680 int a = amt; 4681 if( a+offset>pCur->info.nLocal ){ 4682 a = pCur->info.nLocal - offset; 4683 } 4684 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4685 offset = 0; 4686 pBuf += a; 4687 amt -= a; 4688 }else{ 4689 offset -= pCur->info.nLocal; 4690 } 4691 4692 4693 if( rc==SQLITE_OK && amt>0 ){ 4694 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4695 Pgno nextPage; 4696 4697 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4698 4699 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4700 ** 4701 ** The aOverflow[] array is sized at one entry for each overflow page 4702 ** in the overflow chain. The page number of the first overflow page is 4703 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4704 ** means "not yet known" (the cache is lazily populated). 4705 */ 4706 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4707 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4708 if( pCur->aOverflow==0 4709 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 4710 ){ 4711 Pgno *aNew = (Pgno*)sqlite3Realloc( 4712 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4713 ); 4714 if( aNew==0 ){ 4715 return SQLITE_NOMEM_BKPT; 4716 }else{ 4717 pCur->aOverflow = aNew; 4718 } 4719 } 4720 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4721 pCur->curFlags |= BTCF_ValidOvfl; 4722 }else{ 4723 /* If the overflow page-list cache has been allocated and the 4724 ** entry for the first required overflow page is valid, skip 4725 ** directly to it. 4726 */ 4727 if( pCur->aOverflow[offset/ovflSize] ){ 4728 iIdx = (offset/ovflSize); 4729 nextPage = pCur->aOverflow[iIdx]; 4730 offset = (offset%ovflSize); 4731 } 4732 } 4733 4734 assert( rc==SQLITE_OK && amt>0 ); 4735 while( nextPage ){ 4736 /* If required, populate the overflow page-list cache. */ 4737 assert( pCur->aOverflow[iIdx]==0 4738 || pCur->aOverflow[iIdx]==nextPage 4739 || CORRUPT_DB ); 4740 pCur->aOverflow[iIdx] = nextPage; 4741 4742 if( offset>=ovflSize ){ 4743 /* The only reason to read this page is to obtain the page 4744 ** number for the next page in the overflow chain. The page 4745 ** data is not required. So first try to lookup the overflow 4746 ** page-list cache, if any, then fall back to the getOverflowPage() 4747 ** function. 4748 */ 4749 assert( pCur->curFlags & BTCF_ValidOvfl ); 4750 assert( pCur->pBtree->db==pBt->db ); 4751 if( pCur->aOverflow[iIdx+1] ){ 4752 nextPage = pCur->aOverflow[iIdx+1]; 4753 }else{ 4754 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4755 } 4756 offset -= ovflSize; 4757 }else{ 4758 /* Need to read this page properly. It contains some of the 4759 ** range of data that is being read (eOp==0) or written (eOp!=0). 4760 */ 4761 int a = amt; 4762 if( a + offset > ovflSize ){ 4763 a = ovflSize - offset; 4764 } 4765 4766 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4767 /* If all the following are true: 4768 ** 4769 ** 1) this is a read operation, and 4770 ** 2) data is required from the start of this overflow page, and 4771 ** 3) there are no dirty pages in the page-cache 4772 ** 4) the database is file-backed, and 4773 ** 5) the page is not in the WAL file 4774 ** 6) at least 4 bytes have already been read into the output buffer 4775 ** 4776 ** then data can be read directly from the database file into the 4777 ** output buffer, bypassing the page-cache altogether. This speeds 4778 ** up loading large records that span many overflow pages. 4779 */ 4780 if( eOp==0 /* (1) */ 4781 && offset==0 /* (2) */ 4782 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 4783 && &pBuf[-4]>=pBufStart /* (6) */ 4784 ){ 4785 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 4786 u8 aSave[4]; 4787 u8 *aWrite = &pBuf[-4]; 4788 assert( aWrite>=pBufStart ); /* due to (6) */ 4789 memcpy(aSave, aWrite, 4); 4790 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 4791 nextPage = get4byte(aWrite); 4792 memcpy(aWrite, aSave, 4); 4793 }else 4794 #endif 4795 4796 { 4797 DbPage *pDbPage; 4798 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 4799 (eOp==0 ? PAGER_GET_READONLY : 0) 4800 ); 4801 if( rc==SQLITE_OK ){ 4802 aPayload = sqlite3PagerGetData(pDbPage); 4803 nextPage = get4byte(aPayload); 4804 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 4805 sqlite3PagerUnref(pDbPage); 4806 offset = 0; 4807 } 4808 } 4809 amt -= a; 4810 if( amt==0 ) return rc; 4811 pBuf += a; 4812 } 4813 if( rc ) break; 4814 iIdx++; 4815 } 4816 } 4817 4818 if( rc==SQLITE_OK && amt>0 ){ 4819 /* Overflow chain ends prematurely */ 4820 return SQLITE_CORRUPT_PAGE(pPage); 4821 } 4822 return rc; 4823 } 4824 4825 /* 4826 ** Read part of the payload for the row at which that cursor pCur is currently 4827 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 4828 ** begins at "offset". 4829 ** 4830 ** pCur can be pointing to either a table or an index b-tree. 4831 ** If pointing to a table btree, then the content section is read. If 4832 ** pCur is pointing to an index b-tree then the key section is read. 4833 ** 4834 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 4835 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 4836 ** cursor might be invalid or might need to be restored before being read. 4837 ** 4838 ** Return SQLITE_OK on success or an error code if anything goes 4839 ** wrong. An error is returned if "offset+amt" is larger than 4840 ** the available payload. 4841 */ 4842 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4843 assert( cursorHoldsMutex(pCur) ); 4844 assert( pCur->eState==CURSOR_VALID ); 4845 assert( pCur->iPage>=0 && pCur->pPage ); 4846 assert( pCur->ix<pCur->pPage->nCell ); 4847 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 4848 } 4849 4850 /* 4851 ** This variant of sqlite3BtreePayload() works even if the cursor has not 4852 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 4853 ** interface. 4854 */ 4855 #ifndef SQLITE_OMIT_INCRBLOB 4856 static SQLITE_NOINLINE int accessPayloadChecked( 4857 BtCursor *pCur, 4858 u32 offset, 4859 u32 amt, 4860 void *pBuf 4861 ){ 4862 int rc; 4863 if ( pCur->eState==CURSOR_INVALID ){ 4864 return SQLITE_ABORT; 4865 } 4866 assert( cursorOwnsBtShared(pCur) ); 4867 rc = btreeRestoreCursorPosition(pCur); 4868 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 4869 } 4870 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4871 if( pCur->eState==CURSOR_VALID ){ 4872 assert( cursorOwnsBtShared(pCur) ); 4873 return accessPayload(pCur, offset, amt, pBuf, 0); 4874 }else{ 4875 return accessPayloadChecked(pCur, offset, amt, pBuf); 4876 } 4877 } 4878 #endif /* SQLITE_OMIT_INCRBLOB */ 4879 4880 /* 4881 ** Return a pointer to payload information from the entry that the 4882 ** pCur cursor is pointing to. The pointer is to the beginning of 4883 ** the key if index btrees (pPage->intKey==0) and is the data for 4884 ** table btrees (pPage->intKey==1). The number of bytes of available 4885 ** key/data is written into *pAmt. If *pAmt==0, then the value 4886 ** returned will not be a valid pointer. 4887 ** 4888 ** This routine is an optimization. It is common for the entire key 4889 ** and data to fit on the local page and for there to be no overflow 4890 ** pages. When that is so, this routine can be used to access the 4891 ** key and data without making a copy. If the key and/or data spills 4892 ** onto overflow pages, then accessPayload() must be used to reassemble 4893 ** the key/data and copy it into a preallocated buffer. 4894 ** 4895 ** The pointer returned by this routine looks directly into the cached 4896 ** page of the database. The data might change or move the next time 4897 ** any btree routine is called. 4898 */ 4899 static const void *fetchPayload( 4900 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4901 u32 *pAmt /* Write the number of available bytes here */ 4902 ){ 4903 int amt; 4904 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 4905 assert( pCur->eState==CURSOR_VALID ); 4906 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4907 assert( cursorOwnsBtShared(pCur) ); 4908 assert( pCur->ix<pCur->pPage->nCell ); 4909 assert( pCur->info.nSize>0 ); 4910 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 4911 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 4912 amt = pCur->info.nLocal; 4913 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 4914 /* There is too little space on the page for the expected amount 4915 ** of local content. Database must be corrupt. */ 4916 assert( CORRUPT_DB ); 4917 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 4918 } 4919 *pAmt = (u32)amt; 4920 return (void*)pCur->info.pPayload; 4921 } 4922 4923 4924 /* 4925 ** For the entry that cursor pCur is point to, return as 4926 ** many bytes of the key or data as are available on the local 4927 ** b-tree page. Write the number of available bytes into *pAmt. 4928 ** 4929 ** The pointer returned is ephemeral. The key/data may move 4930 ** or be destroyed on the next call to any Btree routine, 4931 ** including calls from other threads against the same cache. 4932 ** Hence, a mutex on the BtShared should be held prior to calling 4933 ** this routine. 4934 ** 4935 ** These routines is used to get quick access to key and data 4936 ** in the common case where no overflow pages are used. 4937 */ 4938 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 4939 return fetchPayload(pCur, pAmt); 4940 } 4941 4942 4943 /* 4944 ** Move the cursor down to a new child page. The newPgno argument is the 4945 ** page number of the child page to move to. 4946 ** 4947 ** This function returns SQLITE_CORRUPT if the page-header flags field of 4948 ** the new child page does not match the flags field of the parent (i.e. 4949 ** if an intkey page appears to be the parent of a non-intkey page, or 4950 ** vice-versa). 4951 */ 4952 static int moveToChild(BtCursor *pCur, u32 newPgno){ 4953 BtShared *pBt = pCur->pBt; 4954 4955 assert( cursorOwnsBtShared(pCur) ); 4956 assert( pCur->eState==CURSOR_VALID ); 4957 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 4958 assert( pCur->iPage>=0 ); 4959 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 4960 return SQLITE_CORRUPT_BKPT; 4961 } 4962 pCur->info.nSize = 0; 4963 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 4964 pCur->aiIdx[pCur->iPage] = pCur->ix; 4965 pCur->apPage[pCur->iPage] = pCur->pPage; 4966 pCur->ix = 0; 4967 pCur->iPage++; 4968 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 4969 } 4970 4971 #ifdef SQLITE_DEBUG 4972 /* 4973 ** Page pParent is an internal (non-leaf) tree page. This function 4974 ** asserts that page number iChild is the left-child if the iIdx'th 4975 ** cell in page pParent. Or, if iIdx is equal to the total number of 4976 ** cells in pParent, that page number iChild is the right-child of 4977 ** the page. 4978 */ 4979 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 4980 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 4981 ** in a corrupt database */ 4982 assert( iIdx<=pParent->nCell ); 4983 if( iIdx==pParent->nCell ){ 4984 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 4985 }else{ 4986 assert( get4byte(findCell(pParent, iIdx))==iChild ); 4987 } 4988 } 4989 #else 4990 # define assertParentIndex(x,y,z) 4991 #endif 4992 4993 /* 4994 ** Move the cursor up to the parent page. 4995 ** 4996 ** pCur->idx is set to the cell index that contains the pointer 4997 ** to the page we are coming from. If we are coming from the 4998 ** right-most child page then pCur->idx is set to one more than 4999 ** the largest cell index. 5000 */ 5001 static void moveToParent(BtCursor *pCur){ 5002 MemPage *pLeaf; 5003 assert( cursorOwnsBtShared(pCur) ); 5004 assert( pCur->eState==CURSOR_VALID ); 5005 assert( pCur->iPage>0 ); 5006 assert( pCur->pPage ); 5007 assertParentIndex( 5008 pCur->apPage[pCur->iPage-1], 5009 pCur->aiIdx[pCur->iPage-1], 5010 pCur->pPage->pgno 5011 ); 5012 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5013 pCur->info.nSize = 0; 5014 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5015 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5016 pLeaf = pCur->pPage; 5017 pCur->pPage = pCur->apPage[--pCur->iPage]; 5018 releasePageNotNull(pLeaf); 5019 } 5020 5021 /* 5022 ** Move the cursor to point to the root page of its b-tree structure. 5023 ** 5024 ** If the table has a virtual root page, then the cursor is moved to point 5025 ** to the virtual root page instead of the actual root page. A table has a 5026 ** virtual root page when the actual root page contains no cells and a 5027 ** single child page. This can only happen with the table rooted at page 1. 5028 ** 5029 ** If the b-tree structure is empty, the cursor state is set to 5030 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5031 ** the cursor is set to point to the first cell located on the root 5032 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5033 ** 5034 ** If this function returns successfully, it may be assumed that the 5035 ** page-header flags indicate that the [virtual] root-page is the expected 5036 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5037 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5038 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5039 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5040 ** b-tree). 5041 */ 5042 static int moveToRoot(BtCursor *pCur){ 5043 MemPage *pRoot; 5044 int rc = SQLITE_OK; 5045 5046 assert( cursorOwnsBtShared(pCur) ); 5047 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5048 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5049 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5050 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5051 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5052 5053 if( pCur->iPage>=0 ){ 5054 if( pCur->iPage ){ 5055 releasePageNotNull(pCur->pPage); 5056 while( --pCur->iPage ){ 5057 releasePageNotNull(pCur->apPage[pCur->iPage]); 5058 } 5059 pCur->pPage = pCur->apPage[0]; 5060 goto skip_init; 5061 } 5062 }else if( pCur->pgnoRoot==0 ){ 5063 pCur->eState = CURSOR_INVALID; 5064 return SQLITE_EMPTY; 5065 }else{ 5066 assert( pCur->iPage==(-1) ); 5067 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5068 if( pCur->eState==CURSOR_FAULT ){ 5069 assert( pCur->skipNext!=SQLITE_OK ); 5070 return pCur->skipNext; 5071 } 5072 sqlite3BtreeClearCursor(pCur); 5073 } 5074 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5075 0, pCur->curPagerFlags); 5076 if( rc!=SQLITE_OK ){ 5077 pCur->eState = CURSOR_INVALID; 5078 return rc; 5079 } 5080 pCur->iPage = 0; 5081 pCur->curIntKey = pCur->pPage->intKey; 5082 } 5083 pRoot = pCur->pPage; 5084 assert( pRoot->pgno==pCur->pgnoRoot ); 5085 5086 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5087 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5088 ** NULL, the caller expects a table b-tree. If this is not the case, 5089 ** return an SQLITE_CORRUPT error. 5090 ** 5091 ** Earlier versions of SQLite assumed that this test could not fail 5092 ** if the root page was already loaded when this function was called (i.e. 5093 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5094 ** in such a way that page pRoot is linked into a second b-tree table 5095 ** (or the freelist). */ 5096 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5097 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5098 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5099 } 5100 5101 skip_init: 5102 pCur->ix = 0; 5103 pCur->info.nSize = 0; 5104 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5105 5106 pRoot = pCur->pPage; 5107 if( pRoot->nCell>0 ){ 5108 pCur->eState = CURSOR_VALID; 5109 }else if( !pRoot->leaf ){ 5110 Pgno subpage; 5111 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5112 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5113 pCur->eState = CURSOR_VALID; 5114 rc = moveToChild(pCur, subpage); 5115 }else{ 5116 pCur->eState = CURSOR_INVALID; 5117 rc = SQLITE_EMPTY; 5118 } 5119 return rc; 5120 } 5121 5122 /* 5123 ** Move the cursor down to the left-most leaf entry beneath the 5124 ** entry to which it is currently pointing. 5125 ** 5126 ** The left-most leaf is the one with the smallest key - the first 5127 ** in ascending order. 5128 */ 5129 static int moveToLeftmost(BtCursor *pCur){ 5130 Pgno pgno; 5131 int rc = SQLITE_OK; 5132 MemPage *pPage; 5133 5134 assert( cursorOwnsBtShared(pCur) ); 5135 assert( pCur->eState==CURSOR_VALID ); 5136 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5137 assert( pCur->ix<pPage->nCell ); 5138 pgno = get4byte(findCell(pPage, pCur->ix)); 5139 rc = moveToChild(pCur, pgno); 5140 } 5141 return rc; 5142 } 5143 5144 /* 5145 ** Move the cursor down to the right-most leaf entry beneath the 5146 ** page to which it is currently pointing. Notice the difference 5147 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5148 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5149 ** finds the right-most entry beneath the *page*. 5150 ** 5151 ** The right-most entry is the one with the largest key - the last 5152 ** key in ascending order. 5153 */ 5154 static int moveToRightmost(BtCursor *pCur){ 5155 Pgno pgno; 5156 int rc = SQLITE_OK; 5157 MemPage *pPage = 0; 5158 5159 assert( cursorOwnsBtShared(pCur) ); 5160 assert( pCur->eState==CURSOR_VALID ); 5161 while( !(pPage = pCur->pPage)->leaf ){ 5162 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5163 pCur->ix = pPage->nCell; 5164 rc = moveToChild(pCur, pgno); 5165 if( rc ) return rc; 5166 } 5167 pCur->ix = pPage->nCell-1; 5168 assert( pCur->info.nSize==0 ); 5169 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5170 return SQLITE_OK; 5171 } 5172 5173 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5174 ** on success. Set *pRes to 0 if the cursor actually points to something 5175 ** or set *pRes to 1 if the table is empty. 5176 */ 5177 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5178 int rc; 5179 5180 assert( cursorOwnsBtShared(pCur) ); 5181 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5182 rc = moveToRoot(pCur); 5183 if( rc==SQLITE_OK ){ 5184 assert( pCur->pPage->nCell>0 ); 5185 *pRes = 0; 5186 rc = moveToLeftmost(pCur); 5187 }else if( rc==SQLITE_EMPTY ){ 5188 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5189 *pRes = 1; 5190 rc = SQLITE_OK; 5191 } 5192 return rc; 5193 } 5194 5195 /* 5196 ** This function is a no-op if cursor pCur does not point to a valid row. 5197 ** Otherwise, if pCur is valid, configure it so that the next call to 5198 ** sqlite3BtreeNext() is a no-op. 5199 */ 5200 #ifndef SQLITE_OMIT_WINDOWFUNC 5201 void sqlite3BtreeSkipNext(BtCursor *pCur){ 5202 /* We believe that the cursor must always be in the valid state when 5203 ** this routine is called, but the proof is difficult, so we add an 5204 ** ALWaYS() test just in case we are wrong. */ 5205 if( ALWAYS(pCur->eState==CURSOR_VALID) ){ 5206 pCur->eState = CURSOR_SKIPNEXT; 5207 pCur->skipNext = 1; 5208 } 5209 } 5210 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5211 5212 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5213 ** on success. Set *pRes to 0 if the cursor actually points to something 5214 ** or set *pRes to 1 if the table is empty. 5215 */ 5216 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5217 int rc; 5218 5219 assert( cursorOwnsBtShared(pCur) ); 5220 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5221 5222 /* If the cursor already points to the last entry, this is a no-op. */ 5223 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5224 #ifdef SQLITE_DEBUG 5225 /* This block serves to assert() that the cursor really does point 5226 ** to the last entry in the b-tree. */ 5227 int ii; 5228 for(ii=0; ii<pCur->iPage; ii++){ 5229 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5230 } 5231 assert( pCur->ix==pCur->pPage->nCell-1 ); 5232 assert( pCur->pPage->leaf ); 5233 #endif 5234 return SQLITE_OK; 5235 } 5236 5237 rc = moveToRoot(pCur); 5238 if( rc==SQLITE_OK ){ 5239 assert( pCur->eState==CURSOR_VALID ); 5240 *pRes = 0; 5241 rc = moveToRightmost(pCur); 5242 if( rc==SQLITE_OK ){ 5243 pCur->curFlags |= BTCF_AtLast; 5244 }else{ 5245 pCur->curFlags &= ~BTCF_AtLast; 5246 } 5247 }else if( rc==SQLITE_EMPTY ){ 5248 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5249 *pRes = 1; 5250 rc = SQLITE_OK; 5251 } 5252 return rc; 5253 } 5254 5255 /* Move the cursor so that it points to an entry near the key 5256 ** specified by pIdxKey or intKey. Return a success code. 5257 ** 5258 ** For INTKEY tables, the intKey parameter is used. pIdxKey 5259 ** must be NULL. For index tables, pIdxKey is used and intKey 5260 ** is ignored. 5261 ** 5262 ** If an exact match is not found, then the cursor is always 5263 ** left pointing at a leaf page which would hold the entry if it 5264 ** were present. The cursor might point to an entry that comes 5265 ** before or after the key. 5266 ** 5267 ** An integer is written into *pRes which is the result of 5268 ** comparing the key with the entry to which the cursor is 5269 ** pointing. The meaning of the integer written into 5270 ** *pRes is as follows: 5271 ** 5272 ** *pRes<0 The cursor is left pointing at an entry that 5273 ** is smaller than intKey/pIdxKey or if the table is empty 5274 ** and the cursor is therefore left point to nothing. 5275 ** 5276 ** *pRes==0 The cursor is left pointing at an entry that 5277 ** exactly matches intKey/pIdxKey. 5278 ** 5279 ** *pRes>0 The cursor is left pointing at an entry that 5280 ** is larger than intKey/pIdxKey. 5281 ** 5282 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there 5283 ** exists an entry in the table that exactly matches pIdxKey. 5284 */ 5285 int sqlite3BtreeMovetoUnpacked( 5286 BtCursor *pCur, /* The cursor to be moved */ 5287 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5288 i64 intKey, /* The table key */ 5289 int biasRight, /* If true, bias the search to the high end */ 5290 int *pRes /* Write search results here */ 5291 ){ 5292 int rc; 5293 RecordCompare xRecordCompare; 5294 5295 assert( cursorOwnsBtShared(pCur) ); 5296 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5297 assert( pRes ); 5298 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); 5299 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) ); 5300 5301 /* If the cursor is already positioned at the point we are trying 5302 ** to move to, then just return without doing any work */ 5303 if( pIdxKey==0 5304 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 5305 ){ 5306 if( pCur->info.nKey==intKey ){ 5307 *pRes = 0; 5308 return SQLITE_OK; 5309 } 5310 if( pCur->info.nKey<intKey ){ 5311 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5312 *pRes = -1; 5313 return SQLITE_OK; 5314 } 5315 /* If the requested key is one more than the previous key, then 5316 ** try to get there using sqlite3BtreeNext() rather than a full 5317 ** binary search. This is an optimization only. The correct answer 5318 ** is still obtained without this case, only a little more slowely */ 5319 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){ 5320 *pRes = 0; 5321 rc = sqlite3BtreeNext(pCur, 0); 5322 if( rc==SQLITE_OK ){ 5323 getCellInfo(pCur); 5324 if( pCur->info.nKey==intKey ){ 5325 return SQLITE_OK; 5326 } 5327 }else if( rc==SQLITE_DONE ){ 5328 rc = SQLITE_OK; 5329 }else{ 5330 return rc; 5331 } 5332 } 5333 } 5334 } 5335 5336 if( pIdxKey ){ 5337 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5338 pIdxKey->errCode = 0; 5339 assert( pIdxKey->default_rc==1 5340 || pIdxKey->default_rc==0 5341 || pIdxKey->default_rc==-1 5342 ); 5343 }else{ 5344 xRecordCompare = 0; /* All keys are integers */ 5345 } 5346 5347 rc = moveToRoot(pCur); 5348 if( rc ){ 5349 if( rc==SQLITE_EMPTY ){ 5350 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5351 *pRes = -1; 5352 return SQLITE_OK; 5353 } 5354 return rc; 5355 } 5356 assert( pCur->pPage ); 5357 assert( pCur->pPage->isInit ); 5358 assert( pCur->eState==CURSOR_VALID ); 5359 assert( pCur->pPage->nCell > 0 ); 5360 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5361 assert( pCur->curIntKey || pIdxKey ); 5362 for(;;){ 5363 int lwr, upr, idx, c; 5364 Pgno chldPg; 5365 MemPage *pPage = pCur->pPage; 5366 u8 *pCell; /* Pointer to current cell in pPage */ 5367 5368 /* pPage->nCell must be greater than zero. If this is the root-page 5369 ** the cursor would have been INVALID above and this for(;;) loop 5370 ** not run. If this is not the root-page, then the moveToChild() routine 5371 ** would have already detected db corruption. Similarly, pPage must 5372 ** be the right kind (index or table) of b-tree page. Otherwise 5373 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5374 assert( pPage->nCell>0 ); 5375 assert( pPage->intKey==(pIdxKey==0) ); 5376 lwr = 0; 5377 upr = pPage->nCell-1; 5378 assert( biasRight==0 || biasRight==1 ); 5379 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5380 pCur->ix = (u16)idx; 5381 if( xRecordCompare==0 ){ 5382 for(;;){ 5383 i64 nCellKey; 5384 pCell = findCellPastPtr(pPage, idx); 5385 if( pPage->intKeyLeaf ){ 5386 while( 0x80 <= *(pCell++) ){ 5387 if( pCell>=pPage->aDataEnd ){ 5388 return SQLITE_CORRUPT_PAGE(pPage); 5389 } 5390 } 5391 } 5392 getVarint(pCell, (u64*)&nCellKey); 5393 if( nCellKey<intKey ){ 5394 lwr = idx+1; 5395 if( lwr>upr ){ c = -1; break; } 5396 }else if( nCellKey>intKey ){ 5397 upr = idx-1; 5398 if( lwr>upr ){ c = +1; break; } 5399 }else{ 5400 assert( nCellKey==intKey ); 5401 pCur->ix = (u16)idx; 5402 if( !pPage->leaf ){ 5403 lwr = idx; 5404 goto moveto_next_layer; 5405 }else{ 5406 pCur->curFlags |= BTCF_ValidNKey; 5407 pCur->info.nKey = nCellKey; 5408 pCur->info.nSize = 0; 5409 *pRes = 0; 5410 return SQLITE_OK; 5411 } 5412 } 5413 assert( lwr+upr>=0 ); 5414 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5415 } 5416 }else{ 5417 for(;;){ 5418 int nCell; /* Size of the pCell cell in bytes */ 5419 pCell = findCellPastPtr(pPage, idx); 5420 5421 /* The maximum supported page-size is 65536 bytes. This means that 5422 ** the maximum number of record bytes stored on an index B-Tree 5423 ** page is less than 16384 bytes and may be stored as a 2-byte 5424 ** varint. This information is used to attempt to avoid parsing 5425 ** the entire cell by checking for the cases where the record is 5426 ** stored entirely within the b-tree page by inspecting the first 5427 ** 2 bytes of the cell. 5428 */ 5429 nCell = pCell[0]; 5430 if( nCell<=pPage->max1bytePayload ){ 5431 /* This branch runs if the record-size field of the cell is a 5432 ** single byte varint and the record fits entirely on the main 5433 ** b-tree page. */ 5434 testcase( pCell+nCell+1==pPage->aDataEnd ); 5435 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5436 }else if( !(pCell[1] & 0x80) 5437 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5438 ){ 5439 /* The record-size field is a 2 byte varint and the record 5440 ** fits entirely on the main b-tree page. */ 5441 testcase( pCell+nCell+2==pPage->aDataEnd ); 5442 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5443 }else{ 5444 /* The record flows over onto one or more overflow pages. In 5445 ** this case the whole cell needs to be parsed, a buffer allocated 5446 ** and accessPayload() used to retrieve the record into the 5447 ** buffer before VdbeRecordCompare() can be called. 5448 ** 5449 ** If the record is corrupt, the xRecordCompare routine may read 5450 ** up to two varints past the end of the buffer. An extra 18 5451 ** bytes of padding is allocated at the end of the buffer in 5452 ** case this happens. */ 5453 void *pCellKey; 5454 u8 * const pCellBody = pCell - pPage->childPtrSize; 5455 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5456 nCell = (int)pCur->info.nKey; 5457 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5458 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5459 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5460 testcase( nCell==2 ); /* Minimum legal index key size */ 5461 if( nCell<2 ){ 5462 rc = SQLITE_CORRUPT_PAGE(pPage); 5463 goto moveto_finish; 5464 } 5465 pCellKey = sqlite3Malloc( nCell+18 ); 5466 if( pCellKey==0 ){ 5467 rc = SQLITE_NOMEM_BKPT; 5468 goto moveto_finish; 5469 } 5470 pCur->ix = (u16)idx; 5471 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5472 pCur->curFlags &= ~BTCF_ValidOvfl; 5473 if( rc ){ 5474 sqlite3_free(pCellKey); 5475 goto moveto_finish; 5476 } 5477 c = xRecordCompare(nCell, pCellKey, pIdxKey); 5478 sqlite3_free(pCellKey); 5479 } 5480 assert( 5481 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5482 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5483 ); 5484 if( c<0 ){ 5485 lwr = idx+1; 5486 }else if( c>0 ){ 5487 upr = idx-1; 5488 }else{ 5489 assert( c==0 ); 5490 *pRes = 0; 5491 rc = SQLITE_OK; 5492 pCur->ix = (u16)idx; 5493 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5494 goto moveto_finish; 5495 } 5496 if( lwr>upr ) break; 5497 assert( lwr+upr>=0 ); 5498 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5499 } 5500 } 5501 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5502 assert( pPage->isInit ); 5503 if( pPage->leaf ){ 5504 assert( pCur->ix<pCur->pPage->nCell ); 5505 pCur->ix = (u16)idx; 5506 *pRes = c; 5507 rc = SQLITE_OK; 5508 goto moveto_finish; 5509 } 5510 moveto_next_layer: 5511 if( lwr>=pPage->nCell ){ 5512 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5513 }else{ 5514 chldPg = get4byte(findCell(pPage, lwr)); 5515 } 5516 pCur->ix = (u16)lwr; 5517 rc = moveToChild(pCur, chldPg); 5518 if( rc ) break; 5519 } 5520 moveto_finish: 5521 pCur->info.nSize = 0; 5522 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5523 return rc; 5524 } 5525 5526 5527 /* 5528 ** Return TRUE if the cursor is not pointing at an entry of the table. 5529 ** 5530 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5531 ** past the last entry in the table or sqlite3BtreePrev() moves past 5532 ** the first entry. TRUE is also returned if the table is empty. 5533 */ 5534 int sqlite3BtreeEof(BtCursor *pCur){ 5535 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5536 ** have been deleted? This API will need to change to return an error code 5537 ** as well as the boolean result value. 5538 */ 5539 return (CURSOR_VALID!=pCur->eState); 5540 } 5541 5542 /* 5543 ** Return an estimate for the number of rows in the table that pCur is 5544 ** pointing to. Return a negative number if no estimate is currently 5545 ** available. 5546 */ 5547 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 5548 i64 n; 5549 u8 i; 5550 5551 assert( cursorOwnsBtShared(pCur) ); 5552 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5553 5554 /* Currently this interface is only called by the OP_IfSmaller 5555 ** opcode, and it that case the cursor will always be valid and 5556 ** will always point to a leaf node. */ 5557 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 5558 if( NEVER(pCur->pPage->leaf==0) ) return -1; 5559 5560 n = pCur->pPage->nCell; 5561 for(i=0; i<pCur->iPage; i++){ 5562 n *= pCur->apPage[i]->nCell; 5563 } 5564 return n; 5565 } 5566 5567 /* 5568 ** Advance the cursor to the next entry in the database. 5569 ** Return value: 5570 ** 5571 ** SQLITE_OK success 5572 ** SQLITE_DONE cursor is already pointing at the last element 5573 ** otherwise some kind of error occurred 5574 ** 5575 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5576 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5577 ** to the next cell on the current page. The (slower) btreeNext() helper 5578 ** routine is called when it is necessary to move to a different page or 5579 ** to restore the cursor. 5580 ** 5581 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 5582 ** cursor corresponds to an SQL index and this routine could have been 5583 ** skipped if the SQL index had been a unique index. The F argument 5584 ** is a hint to the implement. SQLite btree implementation does not use 5585 ** this hint, but COMDB2 does. 5586 */ 5587 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 5588 int rc; 5589 int idx; 5590 MemPage *pPage; 5591 5592 assert( cursorOwnsBtShared(pCur) ); 5593 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5594 if( pCur->eState!=CURSOR_VALID ){ 5595 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5596 rc = restoreCursorPosition(pCur); 5597 if( rc!=SQLITE_OK ){ 5598 return rc; 5599 } 5600 if( CURSOR_INVALID==pCur->eState ){ 5601 return SQLITE_DONE; 5602 } 5603 if( pCur->skipNext ){ 5604 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); 5605 pCur->eState = CURSOR_VALID; 5606 if( pCur->skipNext>0 ){ 5607 pCur->skipNext = 0; 5608 return SQLITE_OK; 5609 } 5610 pCur->skipNext = 0; 5611 } 5612 } 5613 5614 pPage = pCur->pPage; 5615 idx = ++pCur->ix; 5616 if( !pPage->isInit ){ 5617 /* The only known way for this to happen is for there to be a 5618 ** recursive SQL function that does a DELETE operation as part of a 5619 ** SELECT which deletes content out from under an active cursor 5620 ** in a corrupt database file where the table being DELETE-ed from 5621 ** has pages in common with the table being queried. See TH3 5622 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 5623 ** example. */ 5624 return SQLITE_CORRUPT_BKPT; 5625 } 5626 5627 /* If the database file is corrupt, it is possible for the value of idx 5628 ** to be invalid here. This can only occur if a second cursor modifies 5629 ** the page while cursor pCur is holding a reference to it. Which can 5630 ** only happen if the database is corrupt in such a way as to link the 5631 ** page into more than one b-tree structure. */ 5632 testcase( idx>pPage->nCell ); 5633 5634 if( idx>=pPage->nCell ){ 5635 if( !pPage->leaf ){ 5636 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5637 if( rc ) return rc; 5638 return moveToLeftmost(pCur); 5639 } 5640 do{ 5641 if( pCur->iPage==0 ){ 5642 pCur->eState = CURSOR_INVALID; 5643 return SQLITE_DONE; 5644 } 5645 moveToParent(pCur); 5646 pPage = pCur->pPage; 5647 }while( pCur->ix>=pPage->nCell ); 5648 if( pPage->intKey ){ 5649 return sqlite3BtreeNext(pCur, 0); 5650 }else{ 5651 return SQLITE_OK; 5652 } 5653 } 5654 if( pPage->leaf ){ 5655 return SQLITE_OK; 5656 }else{ 5657 return moveToLeftmost(pCur); 5658 } 5659 } 5660 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 5661 MemPage *pPage; 5662 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5663 assert( cursorOwnsBtShared(pCur) ); 5664 assert( flags==0 || flags==1 ); 5665 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5666 pCur->info.nSize = 0; 5667 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5668 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 5669 pPage = pCur->pPage; 5670 if( (++pCur->ix)>=pPage->nCell ){ 5671 pCur->ix--; 5672 return btreeNext(pCur); 5673 } 5674 if( pPage->leaf ){ 5675 return SQLITE_OK; 5676 }else{ 5677 return moveToLeftmost(pCur); 5678 } 5679 } 5680 5681 /* 5682 ** Step the cursor to the back to the previous entry in the database. 5683 ** Return values: 5684 ** 5685 ** SQLITE_OK success 5686 ** SQLITE_DONE the cursor is already on the first element of the table 5687 ** otherwise some kind of error occurred 5688 ** 5689 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5690 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5691 ** to the previous cell on the current page. The (slower) btreePrevious() 5692 ** helper routine is called when it is necessary to move to a different page 5693 ** or to restore the cursor. 5694 ** 5695 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 5696 ** the cursor corresponds to an SQL index and this routine could have been 5697 ** skipped if the SQL index had been a unique index. The F argument is a 5698 ** hint to the implement. The native SQLite btree implementation does not 5699 ** use this hint, but COMDB2 does. 5700 */ 5701 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 5702 int rc; 5703 MemPage *pPage; 5704 5705 assert( cursorOwnsBtShared(pCur) ); 5706 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5707 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5708 assert( pCur->info.nSize==0 ); 5709 if( pCur->eState!=CURSOR_VALID ){ 5710 rc = restoreCursorPosition(pCur); 5711 if( rc!=SQLITE_OK ){ 5712 return rc; 5713 } 5714 if( CURSOR_INVALID==pCur->eState ){ 5715 return SQLITE_DONE; 5716 } 5717 if( pCur->skipNext ){ 5718 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); 5719 pCur->eState = CURSOR_VALID; 5720 if( pCur->skipNext<0 ){ 5721 pCur->skipNext = 0; 5722 return SQLITE_OK; 5723 } 5724 pCur->skipNext = 0; 5725 } 5726 } 5727 5728 pPage = pCur->pPage; 5729 assert( pPage->isInit ); 5730 if( !pPage->leaf ){ 5731 int idx = pCur->ix; 5732 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 5733 if( rc ) return rc; 5734 rc = moveToRightmost(pCur); 5735 }else{ 5736 while( pCur->ix==0 ){ 5737 if( pCur->iPage==0 ){ 5738 pCur->eState = CURSOR_INVALID; 5739 return SQLITE_DONE; 5740 } 5741 moveToParent(pCur); 5742 } 5743 assert( pCur->info.nSize==0 ); 5744 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 5745 5746 pCur->ix--; 5747 pPage = pCur->pPage; 5748 if( pPage->intKey && !pPage->leaf ){ 5749 rc = sqlite3BtreePrevious(pCur, 0); 5750 }else{ 5751 rc = SQLITE_OK; 5752 } 5753 } 5754 return rc; 5755 } 5756 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 5757 assert( cursorOwnsBtShared(pCur) ); 5758 assert( flags==0 || flags==1 ); 5759 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5760 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5761 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 5762 pCur->info.nSize = 0; 5763 if( pCur->eState!=CURSOR_VALID 5764 || pCur->ix==0 5765 || pCur->pPage->leaf==0 5766 ){ 5767 return btreePrevious(pCur); 5768 } 5769 pCur->ix--; 5770 return SQLITE_OK; 5771 } 5772 5773 /* 5774 ** Allocate a new page from the database file. 5775 ** 5776 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 5777 ** has already been called on the new page.) The new page has also 5778 ** been referenced and the calling routine is responsible for calling 5779 ** sqlite3PagerUnref() on the new page when it is done. 5780 ** 5781 ** SQLITE_OK is returned on success. Any other return value indicates 5782 ** an error. *ppPage is set to NULL in the event of an error. 5783 ** 5784 ** If the "nearby" parameter is not 0, then an effort is made to 5785 ** locate a page close to the page number "nearby". This can be used in an 5786 ** attempt to keep related pages close to each other in the database file, 5787 ** which in turn can make database access faster. 5788 ** 5789 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 5790 ** anywhere on the free-list, then it is guaranteed to be returned. If 5791 ** eMode is BTALLOC_LT then the page returned will be less than or equal 5792 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 5793 ** are no restrictions on which page is returned. 5794 */ 5795 static int allocateBtreePage( 5796 BtShared *pBt, /* The btree */ 5797 MemPage **ppPage, /* Store pointer to the allocated page here */ 5798 Pgno *pPgno, /* Store the page number here */ 5799 Pgno nearby, /* Search for a page near this one */ 5800 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 5801 ){ 5802 MemPage *pPage1; 5803 int rc; 5804 u32 n; /* Number of pages on the freelist */ 5805 u32 k; /* Number of leaves on the trunk of the freelist */ 5806 MemPage *pTrunk = 0; 5807 MemPage *pPrevTrunk = 0; 5808 Pgno mxPage; /* Total size of the database file */ 5809 5810 assert( sqlite3_mutex_held(pBt->mutex) ); 5811 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 5812 pPage1 = pBt->pPage1; 5813 mxPage = btreePagecount(pBt); 5814 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 5815 ** stores stores the total number of pages on the freelist. */ 5816 n = get4byte(&pPage1->aData[36]); 5817 testcase( n==mxPage-1 ); 5818 if( n>=mxPage ){ 5819 return SQLITE_CORRUPT_BKPT; 5820 } 5821 if( n>0 ){ 5822 /* There are pages on the freelist. Reuse one of those pages. */ 5823 Pgno iTrunk; 5824 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 5825 u32 nSearch = 0; /* Count of the number of search attempts */ 5826 5827 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 5828 ** shows that the page 'nearby' is somewhere on the free-list, then 5829 ** the entire-list will be searched for that page. 5830 */ 5831 #ifndef SQLITE_OMIT_AUTOVACUUM 5832 if( eMode==BTALLOC_EXACT ){ 5833 if( nearby<=mxPage ){ 5834 u8 eType; 5835 assert( nearby>0 ); 5836 assert( pBt->autoVacuum ); 5837 rc = ptrmapGet(pBt, nearby, &eType, 0); 5838 if( rc ) return rc; 5839 if( eType==PTRMAP_FREEPAGE ){ 5840 searchList = 1; 5841 } 5842 } 5843 }else if( eMode==BTALLOC_LE ){ 5844 searchList = 1; 5845 } 5846 #endif 5847 5848 /* Decrement the free-list count by 1. Set iTrunk to the index of the 5849 ** first free-list trunk page. iPrevTrunk is initially 1. 5850 */ 5851 rc = sqlite3PagerWrite(pPage1->pDbPage); 5852 if( rc ) return rc; 5853 put4byte(&pPage1->aData[36], n-1); 5854 5855 /* The code within this loop is run only once if the 'searchList' variable 5856 ** is not true. Otherwise, it runs once for each trunk-page on the 5857 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 5858 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 5859 */ 5860 do { 5861 pPrevTrunk = pTrunk; 5862 if( pPrevTrunk ){ 5863 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 5864 ** is the page number of the next freelist trunk page in the list or 5865 ** zero if this is the last freelist trunk page. */ 5866 iTrunk = get4byte(&pPrevTrunk->aData[0]); 5867 }else{ 5868 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 5869 ** stores the page number of the first page of the freelist, or zero if 5870 ** the freelist is empty. */ 5871 iTrunk = get4byte(&pPage1->aData[32]); 5872 } 5873 testcase( iTrunk==mxPage ); 5874 if( iTrunk>mxPage || nSearch++ > n ){ 5875 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 5876 }else{ 5877 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 5878 } 5879 if( rc ){ 5880 pTrunk = 0; 5881 goto end_allocate_page; 5882 } 5883 assert( pTrunk!=0 ); 5884 assert( pTrunk->aData!=0 ); 5885 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 5886 ** is the number of leaf page pointers to follow. */ 5887 k = get4byte(&pTrunk->aData[4]); 5888 if( k==0 && !searchList ){ 5889 /* The trunk has no leaves and the list is not being searched. 5890 ** So extract the trunk page itself and use it as the newly 5891 ** allocated page */ 5892 assert( pPrevTrunk==0 ); 5893 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5894 if( rc ){ 5895 goto end_allocate_page; 5896 } 5897 *pPgno = iTrunk; 5898 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5899 *ppPage = pTrunk; 5900 pTrunk = 0; 5901 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5902 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 5903 /* Value of k is out of range. Database corruption */ 5904 rc = SQLITE_CORRUPT_PGNO(iTrunk); 5905 goto end_allocate_page; 5906 #ifndef SQLITE_OMIT_AUTOVACUUM 5907 }else if( searchList 5908 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 5909 ){ 5910 /* The list is being searched and this trunk page is the page 5911 ** to allocate, regardless of whether it has leaves. 5912 */ 5913 *pPgno = iTrunk; 5914 *ppPage = pTrunk; 5915 searchList = 0; 5916 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5917 if( rc ){ 5918 goto end_allocate_page; 5919 } 5920 if( k==0 ){ 5921 if( !pPrevTrunk ){ 5922 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5923 }else{ 5924 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 5925 if( rc!=SQLITE_OK ){ 5926 goto end_allocate_page; 5927 } 5928 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 5929 } 5930 }else{ 5931 /* The trunk page is required by the caller but it contains 5932 ** pointers to free-list leaves. The first leaf becomes a trunk 5933 ** page in this case. 5934 */ 5935 MemPage *pNewTrunk; 5936 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 5937 if( iNewTrunk>mxPage ){ 5938 rc = SQLITE_CORRUPT_PGNO(iTrunk); 5939 goto end_allocate_page; 5940 } 5941 testcase( iNewTrunk==mxPage ); 5942 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 5943 if( rc!=SQLITE_OK ){ 5944 goto end_allocate_page; 5945 } 5946 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 5947 if( rc!=SQLITE_OK ){ 5948 releasePage(pNewTrunk); 5949 goto end_allocate_page; 5950 } 5951 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 5952 put4byte(&pNewTrunk->aData[4], k-1); 5953 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 5954 releasePage(pNewTrunk); 5955 if( !pPrevTrunk ){ 5956 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 5957 put4byte(&pPage1->aData[32], iNewTrunk); 5958 }else{ 5959 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 5960 if( rc ){ 5961 goto end_allocate_page; 5962 } 5963 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 5964 } 5965 } 5966 pTrunk = 0; 5967 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5968 #endif 5969 }else if( k>0 ){ 5970 /* Extract a leaf from the trunk */ 5971 u32 closest; 5972 Pgno iPage; 5973 unsigned char *aData = pTrunk->aData; 5974 if( nearby>0 ){ 5975 u32 i; 5976 closest = 0; 5977 if( eMode==BTALLOC_LE ){ 5978 for(i=0; i<k; i++){ 5979 iPage = get4byte(&aData[8+i*4]); 5980 if( iPage<=nearby ){ 5981 closest = i; 5982 break; 5983 } 5984 } 5985 }else{ 5986 int dist; 5987 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 5988 for(i=1; i<k; i++){ 5989 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 5990 if( d2<dist ){ 5991 closest = i; 5992 dist = d2; 5993 } 5994 } 5995 } 5996 }else{ 5997 closest = 0; 5998 } 5999 6000 iPage = get4byte(&aData[8+closest*4]); 6001 testcase( iPage==mxPage ); 6002 if( iPage>mxPage ){ 6003 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6004 goto end_allocate_page; 6005 } 6006 testcase( iPage==mxPage ); 6007 if( !searchList 6008 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6009 ){ 6010 int noContent; 6011 *pPgno = iPage; 6012 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6013 ": %d more free pages\n", 6014 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6015 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6016 if( rc ) goto end_allocate_page; 6017 if( closest<k-1 ){ 6018 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6019 } 6020 put4byte(&aData[4], k-1); 6021 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6022 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6023 if( rc==SQLITE_OK ){ 6024 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6025 if( rc!=SQLITE_OK ){ 6026 releasePage(*ppPage); 6027 *ppPage = 0; 6028 } 6029 } 6030 searchList = 0; 6031 } 6032 } 6033 releasePage(pPrevTrunk); 6034 pPrevTrunk = 0; 6035 }while( searchList ); 6036 }else{ 6037 /* There are no pages on the freelist, so append a new page to the 6038 ** database image. 6039 ** 6040 ** Normally, new pages allocated by this block can be requested from the 6041 ** pager layer with the 'no-content' flag set. This prevents the pager 6042 ** from trying to read the pages content from disk. However, if the 6043 ** current transaction has already run one or more incremental-vacuum 6044 ** steps, then the page we are about to allocate may contain content 6045 ** that is required in the event of a rollback. In this case, do 6046 ** not set the no-content flag. This causes the pager to load and journal 6047 ** the current page content before overwriting it. 6048 ** 6049 ** Note that the pager will not actually attempt to load or journal 6050 ** content for any page that really does lie past the end of the database 6051 ** file on disk. So the effects of disabling the no-content optimization 6052 ** here are confined to those pages that lie between the end of the 6053 ** database image and the end of the database file. 6054 */ 6055 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6056 6057 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6058 if( rc ) return rc; 6059 pBt->nPage++; 6060 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6061 6062 #ifndef SQLITE_OMIT_AUTOVACUUM 6063 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6064 /* If *pPgno refers to a pointer-map page, allocate two new pages 6065 ** at the end of the file instead of one. The first allocated page 6066 ** becomes a new pointer-map page, the second is used by the caller. 6067 */ 6068 MemPage *pPg = 0; 6069 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6070 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6071 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6072 if( rc==SQLITE_OK ){ 6073 rc = sqlite3PagerWrite(pPg->pDbPage); 6074 releasePage(pPg); 6075 } 6076 if( rc ) return rc; 6077 pBt->nPage++; 6078 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6079 } 6080 #endif 6081 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6082 *pPgno = pBt->nPage; 6083 6084 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6085 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6086 if( rc ) return rc; 6087 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6088 if( rc!=SQLITE_OK ){ 6089 releasePage(*ppPage); 6090 *ppPage = 0; 6091 } 6092 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6093 } 6094 6095 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6096 6097 end_allocate_page: 6098 releasePage(pTrunk); 6099 releasePage(pPrevTrunk); 6100 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6101 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6102 return rc; 6103 } 6104 6105 /* 6106 ** This function is used to add page iPage to the database file free-list. 6107 ** It is assumed that the page is not already a part of the free-list. 6108 ** 6109 ** The value passed as the second argument to this function is optional. 6110 ** If the caller happens to have a pointer to the MemPage object 6111 ** corresponding to page iPage handy, it may pass it as the second value. 6112 ** Otherwise, it may pass NULL. 6113 ** 6114 ** If a pointer to a MemPage object is passed as the second argument, 6115 ** its reference count is not altered by this function. 6116 */ 6117 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6118 MemPage *pTrunk = 0; /* Free-list trunk page */ 6119 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6120 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6121 MemPage *pPage; /* Page being freed. May be NULL. */ 6122 int rc; /* Return Code */ 6123 int nFree; /* Initial number of pages on free-list */ 6124 6125 assert( sqlite3_mutex_held(pBt->mutex) ); 6126 assert( CORRUPT_DB || iPage>1 ); 6127 assert( !pMemPage || pMemPage->pgno==iPage ); 6128 6129 if( iPage<2 ) return SQLITE_CORRUPT_BKPT; 6130 if( pMemPage ){ 6131 pPage = pMemPage; 6132 sqlite3PagerRef(pPage->pDbPage); 6133 }else{ 6134 pPage = btreePageLookup(pBt, iPage); 6135 } 6136 6137 /* Increment the free page count on pPage1 */ 6138 rc = sqlite3PagerWrite(pPage1->pDbPage); 6139 if( rc ) goto freepage_out; 6140 nFree = get4byte(&pPage1->aData[36]); 6141 put4byte(&pPage1->aData[36], nFree+1); 6142 6143 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6144 /* If the secure_delete option is enabled, then 6145 ** always fully overwrite deleted information with zeros. 6146 */ 6147 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6148 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6149 ){ 6150 goto freepage_out; 6151 } 6152 memset(pPage->aData, 0, pPage->pBt->pageSize); 6153 } 6154 6155 /* If the database supports auto-vacuum, write an entry in the pointer-map 6156 ** to indicate that the page is free. 6157 */ 6158 if( ISAUTOVACUUM ){ 6159 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6160 if( rc ) goto freepage_out; 6161 } 6162 6163 /* Now manipulate the actual database free-list structure. There are two 6164 ** possibilities. If the free-list is currently empty, or if the first 6165 ** trunk page in the free-list is full, then this page will become a 6166 ** new free-list trunk page. Otherwise, it will become a leaf of the 6167 ** first trunk page in the current free-list. This block tests if it 6168 ** is possible to add the page as a new free-list leaf. 6169 */ 6170 if( nFree!=0 ){ 6171 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6172 6173 iTrunk = get4byte(&pPage1->aData[32]); 6174 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6175 if( rc!=SQLITE_OK ){ 6176 goto freepage_out; 6177 } 6178 6179 nLeaf = get4byte(&pTrunk->aData[4]); 6180 assert( pBt->usableSize>32 ); 6181 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6182 rc = SQLITE_CORRUPT_BKPT; 6183 goto freepage_out; 6184 } 6185 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6186 /* In this case there is room on the trunk page to insert the page 6187 ** being freed as a new leaf. 6188 ** 6189 ** Note that the trunk page is not really full until it contains 6190 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6191 ** coded. But due to a coding error in versions of SQLite prior to 6192 ** 3.6.0, databases with freelist trunk pages holding more than 6193 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6194 ** to maintain backwards compatibility with older versions of SQLite, 6195 ** we will continue to restrict the number of entries to usableSize/4 - 8 6196 ** for now. At some point in the future (once everyone has upgraded 6197 ** to 3.6.0 or later) we should consider fixing the conditional above 6198 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6199 ** 6200 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6201 ** avoid using the last six entries in the freelist trunk page array in 6202 ** order that database files created by newer versions of SQLite can be 6203 ** read by older versions of SQLite. 6204 */ 6205 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6206 if( rc==SQLITE_OK ){ 6207 put4byte(&pTrunk->aData[4], nLeaf+1); 6208 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6209 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6210 sqlite3PagerDontWrite(pPage->pDbPage); 6211 } 6212 rc = btreeSetHasContent(pBt, iPage); 6213 } 6214 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6215 goto freepage_out; 6216 } 6217 } 6218 6219 /* If control flows to this point, then it was not possible to add the 6220 ** the page being freed as a leaf page of the first trunk in the free-list. 6221 ** Possibly because the free-list is empty, or possibly because the 6222 ** first trunk in the free-list is full. Either way, the page being freed 6223 ** will become the new first trunk page in the free-list. 6224 */ 6225 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6226 goto freepage_out; 6227 } 6228 rc = sqlite3PagerWrite(pPage->pDbPage); 6229 if( rc!=SQLITE_OK ){ 6230 goto freepage_out; 6231 } 6232 put4byte(pPage->aData, iTrunk); 6233 put4byte(&pPage->aData[4], 0); 6234 put4byte(&pPage1->aData[32], iPage); 6235 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6236 6237 freepage_out: 6238 if( pPage ){ 6239 pPage->isInit = 0; 6240 } 6241 releasePage(pPage); 6242 releasePage(pTrunk); 6243 return rc; 6244 } 6245 static void freePage(MemPage *pPage, int *pRC){ 6246 if( (*pRC)==SQLITE_OK ){ 6247 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6248 } 6249 } 6250 6251 /* 6252 ** Free any overflow pages associated with the given Cell. Store 6253 ** size information about the cell in pInfo. 6254 */ 6255 static int clearCell( 6256 MemPage *pPage, /* The page that contains the Cell */ 6257 unsigned char *pCell, /* First byte of the Cell */ 6258 CellInfo *pInfo /* Size information about the cell */ 6259 ){ 6260 BtShared *pBt; 6261 Pgno ovflPgno; 6262 int rc; 6263 int nOvfl; 6264 u32 ovflPageSize; 6265 6266 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6267 pPage->xParseCell(pPage, pCell, pInfo); 6268 if( pInfo->nLocal==pInfo->nPayload ){ 6269 return SQLITE_OK; /* No overflow pages. Return without doing anything */ 6270 } 6271 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6272 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6273 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6274 /* Cell extends past end of page */ 6275 return SQLITE_CORRUPT_PAGE(pPage); 6276 } 6277 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6278 pBt = pPage->pBt; 6279 assert( pBt->usableSize > 4 ); 6280 ovflPageSize = pBt->usableSize - 4; 6281 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6282 assert( nOvfl>0 || 6283 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6284 ); 6285 while( nOvfl-- ){ 6286 Pgno iNext = 0; 6287 MemPage *pOvfl = 0; 6288 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6289 /* 0 is not a legal page number and page 1 cannot be an 6290 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6291 ** file the database must be corrupt. */ 6292 return SQLITE_CORRUPT_BKPT; 6293 } 6294 if( nOvfl ){ 6295 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6296 if( rc ) return rc; 6297 } 6298 6299 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6300 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6301 ){ 6302 /* There is no reason any cursor should have an outstanding reference 6303 ** to an overflow page belonging to a cell that is being deleted/updated. 6304 ** So if there exists more than one reference to this page, then it 6305 ** must not really be an overflow page and the database must be corrupt. 6306 ** It is helpful to detect this before calling freePage2(), as 6307 ** freePage2() may zero the page contents if secure-delete mode is 6308 ** enabled. If this 'overflow' page happens to be a page that the 6309 ** caller is iterating through or using in some other way, this 6310 ** can be problematic. 6311 */ 6312 rc = SQLITE_CORRUPT_BKPT; 6313 }else{ 6314 rc = freePage2(pBt, pOvfl, ovflPgno); 6315 } 6316 6317 if( pOvfl ){ 6318 sqlite3PagerUnref(pOvfl->pDbPage); 6319 } 6320 if( rc ) return rc; 6321 ovflPgno = iNext; 6322 } 6323 return SQLITE_OK; 6324 } 6325 6326 /* 6327 ** Create the byte sequence used to represent a cell on page pPage 6328 ** and write that byte sequence into pCell[]. Overflow pages are 6329 ** allocated and filled in as necessary. The calling procedure 6330 ** is responsible for making sure sufficient space has been allocated 6331 ** for pCell[]. 6332 ** 6333 ** Note that pCell does not necessary need to point to the pPage->aData 6334 ** area. pCell might point to some temporary storage. The cell will 6335 ** be constructed in this temporary area then copied into pPage->aData 6336 ** later. 6337 */ 6338 static int fillInCell( 6339 MemPage *pPage, /* The page that contains the cell */ 6340 unsigned char *pCell, /* Complete text of the cell */ 6341 const BtreePayload *pX, /* Payload with which to construct the cell */ 6342 int *pnSize /* Write cell size here */ 6343 ){ 6344 int nPayload; 6345 const u8 *pSrc; 6346 int nSrc, n, rc, mn; 6347 int spaceLeft; 6348 MemPage *pToRelease; 6349 unsigned char *pPrior; 6350 unsigned char *pPayload; 6351 BtShared *pBt; 6352 Pgno pgnoOvfl; 6353 int nHeader; 6354 6355 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6356 6357 /* pPage is not necessarily writeable since pCell might be auxiliary 6358 ** buffer space that is separate from the pPage buffer area */ 6359 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6360 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6361 6362 /* Fill in the header. */ 6363 nHeader = pPage->childPtrSize; 6364 if( pPage->intKey ){ 6365 nPayload = pX->nData + pX->nZero; 6366 pSrc = pX->pData; 6367 nSrc = pX->nData; 6368 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6369 nHeader += putVarint32(&pCell[nHeader], nPayload); 6370 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6371 }else{ 6372 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6373 nSrc = nPayload = (int)pX->nKey; 6374 pSrc = pX->pKey; 6375 nHeader += putVarint32(&pCell[nHeader], nPayload); 6376 } 6377 6378 /* Fill in the payload */ 6379 pPayload = &pCell[nHeader]; 6380 if( nPayload<=pPage->maxLocal ){ 6381 /* This is the common case where everything fits on the btree page 6382 ** and no overflow pages are required. */ 6383 n = nHeader + nPayload; 6384 testcase( n==3 ); 6385 testcase( n==4 ); 6386 if( n<4 ) n = 4; 6387 *pnSize = n; 6388 assert( nSrc<=nPayload ); 6389 testcase( nSrc<nPayload ); 6390 memcpy(pPayload, pSrc, nSrc); 6391 memset(pPayload+nSrc, 0, nPayload-nSrc); 6392 return SQLITE_OK; 6393 } 6394 6395 /* If we reach this point, it means that some of the content will need 6396 ** to spill onto overflow pages. 6397 */ 6398 mn = pPage->minLocal; 6399 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6400 testcase( n==pPage->maxLocal ); 6401 testcase( n==pPage->maxLocal+1 ); 6402 if( n > pPage->maxLocal ) n = mn; 6403 spaceLeft = n; 6404 *pnSize = n + nHeader + 4; 6405 pPrior = &pCell[nHeader+n]; 6406 pToRelease = 0; 6407 pgnoOvfl = 0; 6408 pBt = pPage->pBt; 6409 6410 /* At this point variables should be set as follows: 6411 ** 6412 ** nPayload Total payload size in bytes 6413 ** pPayload Begin writing payload here 6414 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6415 ** that means content must spill into overflow pages. 6416 ** *pnSize Size of the local cell (not counting overflow pages) 6417 ** pPrior Where to write the pgno of the first overflow page 6418 ** 6419 ** Use a call to btreeParseCellPtr() to verify that the values above 6420 ** were computed correctly. 6421 */ 6422 #ifdef SQLITE_DEBUG 6423 { 6424 CellInfo info; 6425 pPage->xParseCell(pPage, pCell, &info); 6426 assert( nHeader==(int)(info.pPayload - pCell) ); 6427 assert( info.nKey==pX->nKey ); 6428 assert( *pnSize == info.nSize ); 6429 assert( spaceLeft == info.nLocal ); 6430 } 6431 #endif 6432 6433 /* Write the payload into the local Cell and any extra into overflow pages */ 6434 while( 1 ){ 6435 n = nPayload; 6436 if( n>spaceLeft ) n = spaceLeft; 6437 6438 /* If pToRelease is not zero than pPayload points into the data area 6439 ** of pToRelease. Make sure pToRelease is still writeable. */ 6440 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6441 6442 /* If pPayload is part of the data area of pPage, then make sure pPage 6443 ** is still writeable */ 6444 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6445 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6446 6447 if( nSrc>=n ){ 6448 memcpy(pPayload, pSrc, n); 6449 }else if( nSrc>0 ){ 6450 n = nSrc; 6451 memcpy(pPayload, pSrc, n); 6452 }else{ 6453 memset(pPayload, 0, n); 6454 } 6455 nPayload -= n; 6456 if( nPayload<=0 ) break; 6457 pPayload += n; 6458 pSrc += n; 6459 nSrc -= n; 6460 spaceLeft -= n; 6461 if( spaceLeft==0 ){ 6462 MemPage *pOvfl = 0; 6463 #ifndef SQLITE_OMIT_AUTOVACUUM 6464 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6465 if( pBt->autoVacuum ){ 6466 do{ 6467 pgnoOvfl++; 6468 } while( 6469 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6470 ); 6471 } 6472 #endif 6473 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6474 #ifndef SQLITE_OMIT_AUTOVACUUM 6475 /* If the database supports auto-vacuum, and the second or subsequent 6476 ** overflow page is being allocated, add an entry to the pointer-map 6477 ** for that page now. 6478 ** 6479 ** If this is the first overflow page, then write a partial entry 6480 ** to the pointer-map. If we write nothing to this pointer-map slot, 6481 ** then the optimistic overflow chain processing in clearCell() 6482 ** may misinterpret the uninitialized values and delete the 6483 ** wrong pages from the database. 6484 */ 6485 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6486 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6487 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6488 if( rc ){ 6489 releasePage(pOvfl); 6490 } 6491 } 6492 #endif 6493 if( rc ){ 6494 releasePage(pToRelease); 6495 return rc; 6496 } 6497 6498 /* If pToRelease is not zero than pPrior points into the data area 6499 ** of pToRelease. Make sure pToRelease is still writeable. */ 6500 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6501 6502 /* If pPrior is part of the data area of pPage, then make sure pPage 6503 ** is still writeable */ 6504 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6505 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6506 6507 put4byte(pPrior, pgnoOvfl); 6508 releasePage(pToRelease); 6509 pToRelease = pOvfl; 6510 pPrior = pOvfl->aData; 6511 put4byte(pPrior, 0); 6512 pPayload = &pOvfl->aData[4]; 6513 spaceLeft = pBt->usableSize - 4; 6514 } 6515 } 6516 releasePage(pToRelease); 6517 return SQLITE_OK; 6518 } 6519 6520 /* 6521 ** Remove the i-th cell from pPage. This routine effects pPage only. 6522 ** The cell content is not freed or deallocated. It is assumed that 6523 ** the cell content has been copied someplace else. This routine just 6524 ** removes the reference to the cell from pPage. 6525 ** 6526 ** "sz" must be the number of bytes in the cell. 6527 */ 6528 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6529 u32 pc; /* Offset to cell content of cell being deleted */ 6530 u8 *data; /* pPage->aData */ 6531 u8 *ptr; /* Used to move bytes around within data[] */ 6532 int rc; /* The return code */ 6533 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6534 6535 if( *pRC ) return; 6536 assert( idx>=0 && idx<pPage->nCell ); 6537 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6538 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6539 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6540 data = pPage->aData; 6541 ptr = &pPage->aCellIdx[2*idx]; 6542 pc = get2byte(ptr); 6543 hdr = pPage->hdrOffset; 6544 testcase( pc==get2byte(&data[hdr+5]) ); 6545 testcase( pc+sz==pPage->pBt->usableSize ); 6546 if( pc+sz > pPage->pBt->usableSize ){ 6547 *pRC = SQLITE_CORRUPT_BKPT; 6548 return; 6549 } 6550 rc = freeSpace(pPage, pc, sz); 6551 if( rc ){ 6552 *pRC = rc; 6553 return; 6554 } 6555 pPage->nCell--; 6556 if( pPage->nCell==0 ){ 6557 memset(&data[hdr+1], 0, 4); 6558 data[hdr+7] = 0; 6559 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6560 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6561 - pPage->childPtrSize - 8; 6562 }else{ 6563 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6564 put2byte(&data[hdr+3], pPage->nCell); 6565 pPage->nFree += 2; 6566 } 6567 } 6568 6569 /* 6570 ** Insert a new cell on pPage at cell index "i". pCell points to the 6571 ** content of the cell. 6572 ** 6573 ** If the cell content will fit on the page, then put it there. If it 6574 ** will not fit, then make a copy of the cell content into pTemp if 6575 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6576 ** in pPage->apOvfl[] and make it point to the cell content (either 6577 ** in pTemp or the original pCell) and also record its index. 6578 ** Allocating a new entry in pPage->aCell[] implies that 6579 ** pPage->nOverflow is incremented. 6580 ** 6581 ** *pRC must be SQLITE_OK when this routine is called. 6582 */ 6583 static void insertCell( 6584 MemPage *pPage, /* Page into which we are copying */ 6585 int i, /* New cell becomes the i-th cell of the page */ 6586 u8 *pCell, /* Content of the new cell */ 6587 int sz, /* Bytes of content in pCell */ 6588 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6589 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6590 int *pRC /* Read and write return code from here */ 6591 ){ 6592 int idx = 0; /* Where to write new cell content in data[] */ 6593 int j; /* Loop counter */ 6594 u8 *data; /* The content of the whole page */ 6595 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 6596 6597 assert( *pRC==SQLITE_OK ); 6598 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6599 assert( MX_CELL(pPage->pBt)<=10921 ); 6600 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6601 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6602 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6603 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6604 /* The cell should normally be sized correctly. However, when moving a 6605 ** malformed cell from a leaf page to an interior page, if the cell size 6606 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size 6607 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence 6608 ** the term after the || in the following assert(). */ 6609 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) ); 6610 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6611 if( pTemp ){ 6612 memcpy(pTemp, pCell, sz); 6613 pCell = pTemp; 6614 } 6615 if( iChild ){ 6616 put4byte(pCell, iChild); 6617 } 6618 j = pPage->nOverflow++; 6619 /* Comparison against ArraySize-1 since we hold back one extra slot 6620 ** as a contingency. In other words, never need more than 3 overflow 6621 ** slots but 4 are allocated, just to be safe. */ 6622 assert( j < ArraySize(pPage->apOvfl)-1 ); 6623 pPage->apOvfl[j] = pCell; 6624 pPage->aiOvfl[j] = (u16)i; 6625 6626 /* When multiple overflows occur, they are always sequential and in 6627 ** sorted order. This invariants arise because multiple overflows can 6628 ** only occur when inserting divider cells into the parent page during 6629 ** balancing, and the dividers are adjacent and sorted. 6630 */ 6631 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 6632 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 6633 }else{ 6634 int rc = sqlite3PagerWrite(pPage->pDbPage); 6635 if( rc!=SQLITE_OK ){ 6636 *pRC = rc; 6637 return; 6638 } 6639 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6640 data = pPage->aData; 6641 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 6642 rc = allocateSpace(pPage, sz, &idx); 6643 if( rc ){ *pRC = rc; return; } 6644 /* The allocateSpace() routine guarantees the following properties 6645 ** if it returns successfully */ 6646 assert( idx >= 0 ); 6647 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 6648 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6649 pPage->nFree -= (u16)(2 + sz); 6650 memcpy(&data[idx], pCell, sz); 6651 if( iChild ){ 6652 put4byte(&data[idx], iChild); 6653 } 6654 pIns = pPage->aCellIdx + i*2; 6655 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 6656 put2byte(pIns, idx); 6657 pPage->nCell++; 6658 /* increment the cell count */ 6659 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 6660 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell ); 6661 #ifndef SQLITE_OMIT_AUTOVACUUM 6662 if( pPage->pBt->autoVacuum ){ 6663 /* The cell may contain a pointer to an overflow page. If so, write 6664 ** the entry for the overflow page into the pointer map. 6665 */ 6666 ptrmapPutOvflPtr(pPage, pCell, pRC); 6667 } 6668 #endif 6669 } 6670 } 6671 6672 /* 6673 ** A CellArray object contains a cache of pointers and sizes for a 6674 ** consecutive sequence of cells that might be held on multiple pages. 6675 */ 6676 typedef struct CellArray CellArray; 6677 struct CellArray { 6678 int nCell; /* Number of cells in apCell[] */ 6679 MemPage *pRef; /* Reference page */ 6680 u8 **apCell; /* All cells begin balanced */ 6681 u16 *szCell; /* Local size of all cells in apCell[] */ 6682 }; 6683 6684 /* 6685 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 6686 ** computed. 6687 */ 6688 static void populateCellCache(CellArray *p, int idx, int N){ 6689 assert( idx>=0 && idx+N<=p->nCell ); 6690 while( N>0 ){ 6691 assert( p->apCell[idx]!=0 ); 6692 if( p->szCell[idx]==0 ){ 6693 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 6694 }else{ 6695 assert( CORRUPT_DB || 6696 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 6697 } 6698 idx++; 6699 N--; 6700 } 6701 } 6702 6703 /* 6704 ** Return the size of the Nth element of the cell array 6705 */ 6706 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 6707 assert( N>=0 && N<p->nCell ); 6708 assert( p->szCell[N]==0 ); 6709 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 6710 return p->szCell[N]; 6711 } 6712 static u16 cachedCellSize(CellArray *p, int N){ 6713 assert( N>=0 && N<p->nCell ); 6714 if( p->szCell[N] ) return p->szCell[N]; 6715 return computeCellSize(p, N); 6716 } 6717 6718 /* 6719 ** Array apCell[] contains pointers to nCell b-tree page cells. The 6720 ** szCell[] array contains the size in bytes of each cell. This function 6721 ** replaces the current contents of page pPg with the contents of the cell 6722 ** array. 6723 ** 6724 ** Some of the cells in apCell[] may currently be stored in pPg. This 6725 ** function works around problems caused by this by making a copy of any 6726 ** such cells before overwriting the page data. 6727 ** 6728 ** The MemPage.nFree field is invalidated by this function. It is the 6729 ** responsibility of the caller to set it correctly. 6730 */ 6731 static int rebuildPage( 6732 MemPage *pPg, /* Edit this page */ 6733 int nCell, /* Final number of cells on page */ 6734 u8 **apCell, /* Array of cells */ 6735 u16 *szCell /* Array of cell sizes */ 6736 ){ 6737 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 6738 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 6739 const int usableSize = pPg->pBt->usableSize; 6740 u8 * const pEnd = &aData[usableSize]; 6741 int i; 6742 u8 *pCellptr = pPg->aCellIdx; 6743 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6744 u8 *pData; 6745 6746 i = get2byte(&aData[hdr+5]); 6747 memcpy(&pTmp[i], &aData[i], usableSize - i); 6748 6749 pData = pEnd; 6750 for(i=0; i<nCell; i++){ 6751 u8 *pCell = apCell[i]; 6752 if( SQLITE_WITHIN(pCell,aData,pEnd) ){ 6753 pCell = &pTmp[pCell - aData]; 6754 } 6755 pData -= szCell[i]; 6756 put2byte(pCellptr, (pData - aData)); 6757 pCellptr += 2; 6758 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 6759 memcpy(pData, pCell, szCell[i]); 6760 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 6761 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) ); 6762 } 6763 6764 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 6765 pPg->nCell = nCell; 6766 pPg->nOverflow = 0; 6767 6768 put2byte(&aData[hdr+1], 0); 6769 put2byte(&aData[hdr+3], pPg->nCell); 6770 put2byte(&aData[hdr+5], pData - aData); 6771 aData[hdr+7] = 0x00; 6772 return SQLITE_OK; 6773 } 6774 6775 /* 6776 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 6777 ** contains the size in bytes of each such cell. This function attempts to 6778 ** add the cells stored in the array to page pPg. If it cannot (because 6779 ** the page needs to be defragmented before the cells will fit), non-zero 6780 ** is returned. Otherwise, if the cells are added successfully, zero is 6781 ** returned. 6782 ** 6783 ** Argument pCellptr points to the first entry in the cell-pointer array 6784 ** (part of page pPg) to populate. After cell apCell[0] is written to the 6785 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 6786 ** cell in the array. It is the responsibility of the caller to ensure 6787 ** that it is safe to overwrite this part of the cell-pointer array. 6788 ** 6789 ** When this function is called, *ppData points to the start of the 6790 ** content area on page pPg. If the size of the content area is extended, 6791 ** *ppData is updated to point to the new start of the content area 6792 ** before returning. 6793 ** 6794 ** Finally, argument pBegin points to the byte immediately following the 6795 ** end of the space required by this page for the cell-pointer area (for 6796 ** all cells - not just those inserted by the current call). If the content 6797 ** area must be extended to before this point in order to accomodate all 6798 ** cells in apCell[], then the cells do not fit and non-zero is returned. 6799 */ 6800 static int pageInsertArray( 6801 MemPage *pPg, /* Page to add cells to */ 6802 u8 *pBegin, /* End of cell-pointer array */ 6803 u8 **ppData, /* IN/OUT: Page content -area pointer */ 6804 u8 *pCellptr, /* Pointer to cell-pointer area */ 6805 int iFirst, /* Index of first cell to add */ 6806 int nCell, /* Number of cells to add to pPg */ 6807 CellArray *pCArray /* Array of cells */ 6808 ){ 6809 int i; 6810 u8 *aData = pPg->aData; 6811 u8 *pData = *ppData; 6812 int iEnd = iFirst + nCell; 6813 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 6814 for(i=iFirst; i<iEnd; i++){ 6815 int sz, rc; 6816 u8 *pSlot; 6817 sz = cachedCellSize(pCArray, i); 6818 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 6819 if( (pData - pBegin)<sz ) return 1; 6820 pData -= sz; 6821 pSlot = pData; 6822 } 6823 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 6824 ** database. But they might for a corrupt database. Hence use memmove() 6825 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 6826 assert( (pSlot+sz)<=pCArray->apCell[i] 6827 || pSlot>=(pCArray->apCell[i]+sz) 6828 || CORRUPT_DB ); 6829 memmove(pSlot, pCArray->apCell[i], sz); 6830 put2byte(pCellptr, (pSlot - aData)); 6831 pCellptr += 2; 6832 } 6833 *ppData = pData; 6834 return 0; 6835 } 6836 6837 /* 6838 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 6839 ** contains the size in bytes of each such cell. This function adds the 6840 ** space associated with each cell in the array that is currently stored 6841 ** within the body of pPg to the pPg free-list. The cell-pointers and other 6842 ** fields of the page are not updated. 6843 ** 6844 ** This function returns the total number of cells added to the free-list. 6845 */ 6846 static int pageFreeArray( 6847 MemPage *pPg, /* Page to edit */ 6848 int iFirst, /* First cell to delete */ 6849 int nCell, /* Cells to delete */ 6850 CellArray *pCArray /* Array of cells */ 6851 ){ 6852 u8 * const aData = pPg->aData; 6853 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 6854 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 6855 int nRet = 0; 6856 int i; 6857 int iEnd = iFirst + nCell; 6858 u8 *pFree = 0; 6859 int szFree = 0; 6860 6861 for(i=iFirst; i<iEnd; i++){ 6862 u8 *pCell = pCArray->apCell[i]; 6863 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 6864 int sz; 6865 /* No need to use cachedCellSize() here. The sizes of all cells that 6866 ** are to be freed have already been computing while deciding which 6867 ** cells need freeing */ 6868 sz = pCArray->szCell[i]; assert( sz>0 ); 6869 if( pFree!=(pCell + sz) ){ 6870 if( pFree ){ 6871 assert( pFree>aData && (pFree - aData)<65536 ); 6872 freeSpace(pPg, (u16)(pFree - aData), szFree); 6873 } 6874 pFree = pCell; 6875 szFree = sz; 6876 if( pFree+sz>pEnd ) return 0; 6877 }else{ 6878 pFree = pCell; 6879 szFree += sz; 6880 } 6881 nRet++; 6882 } 6883 } 6884 if( pFree ){ 6885 assert( pFree>aData && (pFree - aData)<65536 ); 6886 freeSpace(pPg, (u16)(pFree - aData), szFree); 6887 } 6888 return nRet; 6889 } 6890 6891 /* 6892 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the 6893 ** pages being balanced. The current page, pPg, has pPg->nCell cells starting 6894 ** with apCell[iOld]. After balancing, this page should hold nNew cells 6895 ** starting at apCell[iNew]. 6896 ** 6897 ** This routine makes the necessary adjustments to pPg so that it contains 6898 ** the correct cells after being balanced. 6899 ** 6900 ** The pPg->nFree field is invalid when this function returns. It is the 6901 ** responsibility of the caller to set it correctly. 6902 */ 6903 static int editPage( 6904 MemPage *pPg, /* Edit this page */ 6905 int iOld, /* Index of first cell currently on page */ 6906 int iNew, /* Index of new first cell on page */ 6907 int nNew, /* Final number of cells on page */ 6908 CellArray *pCArray /* Array of cells and sizes */ 6909 ){ 6910 u8 * const aData = pPg->aData; 6911 const int hdr = pPg->hdrOffset; 6912 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 6913 int nCell = pPg->nCell; /* Cells stored on pPg */ 6914 u8 *pData; 6915 u8 *pCellptr; 6916 int i; 6917 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 6918 int iNewEnd = iNew + nNew; 6919 6920 #ifdef SQLITE_DEBUG 6921 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6922 memcpy(pTmp, aData, pPg->pBt->usableSize); 6923 #endif 6924 6925 /* Remove cells from the start and end of the page */ 6926 if( iOld<iNew ){ 6927 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 6928 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 6929 nCell -= nShift; 6930 } 6931 if( iNewEnd < iOldEnd ){ 6932 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 6933 } 6934 6935 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 6936 if( pData<pBegin ) goto editpage_fail; 6937 6938 /* Add cells to the start of the page */ 6939 if( iNew<iOld ){ 6940 int nAdd = MIN(nNew,iOld-iNew); 6941 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 6942 pCellptr = pPg->aCellIdx; 6943 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 6944 if( pageInsertArray( 6945 pPg, pBegin, &pData, pCellptr, 6946 iNew, nAdd, pCArray 6947 ) ) goto editpage_fail; 6948 nCell += nAdd; 6949 } 6950 6951 /* Add any overflow cells */ 6952 for(i=0; i<pPg->nOverflow; i++){ 6953 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 6954 if( iCell>=0 && iCell<nNew ){ 6955 pCellptr = &pPg->aCellIdx[iCell * 2]; 6956 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 6957 nCell++; 6958 if( pageInsertArray( 6959 pPg, pBegin, &pData, pCellptr, 6960 iCell+iNew, 1, pCArray 6961 ) ) goto editpage_fail; 6962 } 6963 } 6964 6965 /* Append cells to the end of the page */ 6966 pCellptr = &pPg->aCellIdx[nCell*2]; 6967 if( pageInsertArray( 6968 pPg, pBegin, &pData, pCellptr, 6969 iNew+nCell, nNew-nCell, pCArray 6970 ) ) goto editpage_fail; 6971 6972 pPg->nCell = nNew; 6973 pPg->nOverflow = 0; 6974 6975 put2byte(&aData[hdr+3], pPg->nCell); 6976 put2byte(&aData[hdr+5], pData - aData); 6977 6978 #ifdef SQLITE_DEBUG 6979 for(i=0; i<nNew && !CORRUPT_DB; i++){ 6980 u8 *pCell = pCArray->apCell[i+iNew]; 6981 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 6982 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 6983 pCell = &pTmp[pCell - aData]; 6984 } 6985 assert( 0==memcmp(pCell, &aData[iOff], 6986 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 6987 } 6988 #endif 6989 6990 return SQLITE_OK; 6991 editpage_fail: 6992 /* Unable to edit this page. Rebuild it from scratch instead. */ 6993 populateCellCache(pCArray, iNew, nNew); 6994 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]); 6995 } 6996 6997 /* 6998 ** The following parameters determine how many adjacent pages get involved 6999 ** in a balancing operation. NN is the number of neighbors on either side 7000 ** of the page that participate in the balancing operation. NB is the 7001 ** total number of pages that participate, including the target page and 7002 ** NN neighbors on either side. 7003 ** 7004 ** The minimum value of NN is 1 (of course). Increasing NN above 1 7005 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 7006 ** in exchange for a larger degradation in INSERT and UPDATE performance. 7007 ** The value of NN appears to give the best results overall. 7008 */ 7009 #define NN 1 /* Number of neighbors on either side of pPage */ 7010 #define NB (NN*2+1) /* Total pages involved in the balance */ 7011 7012 7013 #ifndef SQLITE_OMIT_QUICKBALANCE 7014 /* 7015 ** This version of balance() handles the common special case where 7016 ** a new entry is being inserted on the extreme right-end of the 7017 ** tree, in other words, when the new entry will become the largest 7018 ** entry in the tree. 7019 ** 7020 ** Instead of trying to balance the 3 right-most leaf pages, just add 7021 ** a new page to the right-hand side and put the one new entry in 7022 ** that page. This leaves the right side of the tree somewhat 7023 ** unbalanced. But odds are that we will be inserting new entries 7024 ** at the end soon afterwards so the nearly empty page will quickly 7025 ** fill up. On average. 7026 ** 7027 ** pPage is the leaf page which is the right-most page in the tree. 7028 ** pParent is its parent. pPage must have a single overflow entry 7029 ** which is also the right-most entry on the page. 7030 ** 7031 ** The pSpace buffer is used to store a temporary copy of the divider 7032 ** cell that will be inserted into pParent. Such a cell consists of a 4 7033 ** byte page number followed by a variable length integer. In other 7034 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7035 ** least 13 bytes in size. 7036 */ 7037 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7038 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7039 MemPage *pNew; /* Newly allocated page */ 7040 int rc; /* Return Code */ 7041 Pgno pgnoNew; /* Page number of pNew */ 7042 7043 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7044 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7045 assert( pPage->nOverflow==1 ); 7046 7047 /* This error condition is now caught prior to reaching this function */ 7048 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT; 7049 7050 /* Allocate a new page. This page will become the right-sibling of 7051 ** pPage. Make the parent page writable, so that the new divider cell 7052 ** may be inserted. If both these operations are successful, proceed. 7053 */ 7054 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7055 7056 if( rc==SQLITE_OK ){ 7057 7058 u8 *pOut = &pSpace[4]; 7059 u8 *pCell = pPage->apOvfl[0]; 7060 u16 szCell = pPage->xCellSize(pPage, pCell); 7061 u8 *pStop; 7062 7063 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7064 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7065 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7066 rc = rebuildPage(pNew, 1, &pCell, &szCell); 7067 if( NEVER(rc) ) return rc; 7068 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7069 7070 /* If this is an auto-vacuum database, update the pointer map 7071 ** with entries for the new page, and any pointer from the 7072 ** cell on the page to an overflow page. If either of these 7073 ** operations fails, the return code is set, but the contents 7074 ** of the parent page are still manipulated by thh code below. 7075 ** That is Ok, at this point the parent page is guaranteed to 7076 ** be marked as dirty. Returning an error code will cause a 7077 ** rollback, undoing any changes made to the parent page. 7078 */ 7079 if( ISAUTOVACUUM ){ 7080 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7081 if( szCell>pNew->minLocal ){ 7082 ptrmapPutOvflPtr(pNew, pCell, &rc); 7083 } 7084 } 7085 7086 /* Create a divider cell to insert into pParent. The divider cell 7087 ** consists of a 4-byte page number (the page number of pPage) and 7088 ** a variable length key value (which must be the same value as the 7089 ** largest key on pPage). 7090 ** 7091 ** To find the largest key value on pPage, first find the right-most 7092 ** cell on pPage. The first two fields of this cell are the 7093 ** record-length (a variable length integer at most 32-bits in size) 7094 ** and the key value (a variable length integer, may have any value). 7095 ** The first of the while(...) loops below skips over the record-length 7096 ** field. The second while(...) loop copies the key value from the 7097 ** cell on pPage into the pSpace buffer. 7098 */ 7099 pCell = findCell(pPage, pPage->nCell-1); 7100 pStop = &pCell[9]; 7101 while( (*(pCell++)&0x80) && pCell<pStop ); 7102 pStop = &pCell[9]; 7103 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7104 7105 /* Insert the new divider cell into pParent. */ 7106 if( rc==SQLITE_OK ){ 7107 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7108 0, pPage->pgno, &rc); 7109 } 7110 7111 /* Set the right-child pointer of pParent to point to the new page. */ 7112 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7113 7114 /* Release the reference to the new page. */ 7115 releasePage(pNew); 7116 } 7117 7118 return rc; 7119 } 7120 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7121 7122 #if 0 7123 /* 7124 ** This function does not contribute anything to the operation of SQLite. 7125 ** it is sometimes activated temporarily while debugging code responsible 7126 ** for setting pointer-map entries. 7127 */ 7128 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7129 int i, j; 7130 for(i=0; i<nPage; i++){ 7131 Pgno n; 7132 u8 e; 7133 MemPage *pPage = apPage[i]; 7134 BtShared *pBt = pPage->pBt; 7135 assert( pPage->isInit ); 7136 7137 for(j=0; j<pPage->nCell; j++){ 7138 CellInfo info; 7139 u8 *z; 7140 7141 z = findCell(pPage, j); 7142 pPage->xParseCell(pPage, z, &info); 7143 if( info.nLocal<info.nPayload ){ 7144 Pgno ovfl = get4byte(&z[info.nSize-4]); 7145 ptrmapGet(pBt, ovfl, &e, &n); 7146 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7147 } 7148 if( !pPage->leaf ){ 7149 Pgno child = get4byte(z); 7150 ptrmapGet(pBt, child, &e, &n); 7151 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7152 } 7153 } 7154 if( !pPage->leaf ){ 7155 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7156 ptrmapGet(pBt, child, &e, &n); 7157 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7158 } 7159 } 7160 return 1; 7161 } 7162 #endif 7163 7164 /* 7165 ** This function is used to copy the contents of the b-tree node stored 7166 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7167 ** the pointer-map entries for each child page are updated so that the 7168 ** parent page stored in the pointer map is page pTo. If pFrom contained 7169 ** any cells with overflow page pointers, then the corresponding pointer 7170 ** map entries are also updated so that the parent page is page pTo. 7171 ** 7172 ** If pFrom is currently carrying any overflow cells (entries in the 7173 ** MemPage.apOvfl[] array), they are not copied to pTo. 7174 ** 7175 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7176 ** 7177 ** The performance of this function is not critical. It is only used by 7178 ** the balance_shallower() and balance_deeper() procedures, neither of 7179 ** which are called often under normal circumstances. 7180 */ 7181 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7182 if( (*pRC)==SQLITE_OK ){ 7183 BtShared * const pBt = pFrom->pBt; 7184 u8 * const aFrom = pFrom->aData; 7185 u8 * const aTo = pTo->aData; 7186 int const iFromHdr = pFrom->hdrOffset; 7187 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7188 int rc; 7189 int iData; 7190 7191 7192 assert( pFrom->isInit ); 7193 assert( pFrom->nFree>=iToHdr ); 7194 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7195 7196 /* Copy the b-tree node content from page pFrom to page pTo. */ 7197 iData = get2byte(&aFrom[iFromHdr+5]); 7198 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7199 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7200 7201 /* Reinitialize page pTo so that the contents of the MemPage structure 7202 ** match the new data. The initialization of pTo can actually fail under 7203 ** fairly obscure circumstances, even though it is a copy of initialized 7204 ** page pFrom. 7205 */ 7206 pTo->isInit = 0; 7207 rc = btreeInitPage(pTo); 7208 if( rc!=SQLITE_OK ){ 7209 *pRC = rc; 7210 return; 7211 } 7212 7213 /* If this is an auto-vacuum database, update the pointer-map entries 7214 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7215 */ 7216 if( ISAUTOVACUUM ){ 7217 *pRC = setChildPtrmaps(pTo); 7218 } 7219 } 7220 } 7221 7222 /* 7223 ** This routine redistributes cells on the iParentIdx'th child of pParent 7224 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7225 ** same amount of free space. Usually a single sibling on either side of the 7226 ** page are used in the balancing, though both siblings might come from one 7227 ** side if the page is the first or last child of its parent. If the page 7228 ** has fewer than 2 siblings (something which can only happen if the page 7229 ** is a root page or a child of a root page) then all available siblings 7230 ** participate in the balancing. 7231 ** 7232 ** The number of siblings of the page might be increased or decreased by 7233 ** one or two in an effort to keep pages nearly full but not over full. 7234 ** 7235 ** Note that when this routine is called, some of the cells on the page 7236 ** might not actually be stored in MemPage.aData[]. This can happen 7237 ** if the page is overfull. This routine ensures that all cells allocated 7238 ** to the page and its siblings fit into MemPage.aData[] before returning. 7239 ** 7240 ** In the course of balancing the page and its siblings, cells may be 7241 ** inserted into or removed from the parent page (pParent). Doing so 7242 ** may cause the parent page to become overfull or underfull. If this 7243 ** happens, it is the responsibility of the caller to invoke the correct 7244 ** balancing routine to fix this problem (see the balance() routine). 7245 ** 7246 ** If this routine fails for any reason, it might leave the database 7247 ** in a corrupted state. So if this routine fails, the database should 7248 ** be rolled back. 7249 ** 7250 ** The third argument to this function, aOvflSpace, is a pointer to a 7251 ** buffer big enough to hold one page. If while inserting cells into the parent 7252 ** page (pParent) the parent page becomes overfull, this buffer is 7253 ** used to store the parent's overflow cells. Because this function inserts 7254 ** a maximum of four divider cells into the parent page, and the maximum 7255 ** size of a cell stored within an internal node is always less than 1/4 7256 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7257 ** enough for all overflow cells. 7258 ** 7259 ** If aOvflSpace is set to a null pointer, this function returns 7260 ** SQLITE_NOMEM. 7261 */ 7262 static int balance_nonroot( 7263 MemPage *pParent, /* Parent page of siblings being balanced */ 7264 int iParentIdx, /* Index of "the page" in pParent */ 7265 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7266 int isRoot, /* True if pParent is a root-page */ 7267 int bBulk /* True if this call is part of a bulk load */ 7268 ){ 7269 BtShared *pBt; /* The whole database */ 7270 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7271 int nNew = 0; /* Number of pages in apNew[] */ 7272 int nOld; /* Number of pages in apOld[] */ 7273 int i, j, k; /* Loop counters */ 7274 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7275 int rc = SQLITE_OK; /* The return code */ 7276 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7277 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7278 int usableSpace; /* Bytes in pPage beyond the header */ 7279 int pageFlags; /* Value of pPage->aData[0] */ 7280 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7281 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7282 int szScratch; /* Size of scratch memory requested */ 7283 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7284 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7285 u8 *pRight; /* Location in parent of right-sibling pointer */ 7286 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7287 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7288 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7289 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7290 u8 *aSpace1; /* Space for copies of dividers cells */ 7291 Pgno pgno; /* Temp var to store a page number in */ 7292 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7293 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7294 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7295 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7296 CellArray b; /* Parsed information on cells being balanced */ 7297 7298 memset(abDone, 0, sizeof(abDone)); 7299 b.nCell = 0; 7300 b.apCell = 0; 7301 pBt = pParent->pBt; 7302 assert( sqlite3_mutex_held(pBt->mutex) ); 7303 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7304 7305 #if 0 7306 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); 7307 #endif 7308 7309 /* At this point pParent may have at most one overflow cell. And if 7310 ** this overflow cell is present, it must be the cell with 7311 ** index iParentIdx. This scenario comes about when this function 7312 ** is called (indirectly) from sqlite3BtreeDelete(). 7313 */ 7314 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7315 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7316 7317 if( !aOvflSpace ){ 7318 return SQLITE_NOMEM_BKPT; 7319 } 7320 7321 /* Find the sibling pages to balance. Also locate the cells in pParent 7322 ** that divide the siblings. An attempt is made to find NN siblings on 7323 ** either side of pPage. More siblings are taken from one side, however, 7324 ** if there are fewer than NN siblings on the other side. If pParent 7325 ** has NB or fewer children then all children of pParent are taken. 7326 ** 7327 ** This loop also drops the divider cells from the parent page. This 7328 ** way, the remainder of the function does not have to deal with any 7329 ** overflow cells in the parent page, since if any existed they will 7330 ** have already been removed. 7331 */ 7332 i = pParent->nOverflow + pParent->nCell; 7333 if( i<2 ){ 7334 nxDiv = 0; 7335 }else{ 7336 assert( bBulk==0 || bBulk==1 ); 7337 if( iParentIdx==0 ){ 7338 nxDiv = 0; 7339 }else if( iParentIdx==i ){ 7340 nxDiv = i-2+bBulk; 7341 }else{ 7342 nxDiv = iParentIdx-1; 7343 } 7344 i = 2-bBulk; 7345 } 7346 nOld = i+1; 7347 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7348 pRight = &pParent->aData[pParent->hdrOffset+8]; 7349 }else{ 7350 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7351 } 7352 pgno = get4byte(pRight); 7353 while( 1 ){ 7354 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7355 if( rc ){ 7356 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7357 goto balance_cleanup; 7358 } 7359 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; 7360 if( (i--)==0 ) break; 7361 7362 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7363 apDiv[i] = pParent->apOvfl[0]; 7364 pgno = get4byte(apDiv[i]); 7365 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7366 pParent->nOverflow = 0; 7367 }else{ 7368 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7369 pgno = get4byte(apDiv[i]); 7370 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7371 7372 /* Drop the cell from the parent page. apDiv[i] still points to 7373 ** the cell within the parent, even though it has been dropped. 7374 ** This is safe because dropping a cell only overwrites the first 7375 ** four bytes of it, and this function does not need the first 7376 ** four bytes of the divider cell. So the pointer is safe to use 7377 ** later on. 7378 ** 7379 ** But not if we are in secure-delete mode. In secure-delete mode, 7380 ** the dropCell() routine will overwrite the entire cell with zeroes. 7381 ** In this case, temporarily copy the cell into the aOvflSpace[] 7382 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7383 ** is allocated. */ 7384 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7385 int iOff; 7386 7387 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7388 if( (iOff+szNew[i])>(int)pBt->usableSize ){ 7389 rc = SQLITE_CORRUPT_BKPT; 7390 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7391 goto balance_cleanup; 7392 }else{ 7393 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7394 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7395 } 7396 } 7397 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7398 } 7399 } 7400 7401 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7402 ** alignment */ 7403 nMaxCells = (nMaxCells + 3)&~3; 7404 7405 /* 7406 ** Allocate space for memory structures 7407 */ 7408 szScratch = 7409 nMaxCells*sizeof(u8*) /* b.apCell */ 7410 + nMaxCells*sizeof(u16) /* b.szCell */ 7411 + pBt->pageSize; /* aSpace1 */ 7412 7413 assert( szScratch<=6*(int)pBt->pageSize ); 7414 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 7415 if( b.apCell==0 ){ 7416 rc = SQLITE_NOMEM_BKPT; 7417 goto balance_cleanup; 7418 } 7419 b.szCell = (u16*)&b.apCell[nMaxCells]; 7420 aSpace1 = (u8*)&b.szCell[nMaxCells]; 7421 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 7422 7423 /* 7424 ** Load pointers to all cells on sibling pages and the divider cells 7425 ** into the local b.apCell[] array. Make copies of the divider cells 7426 ** into space obtained from aSpace1[]. The divider cells have already 7427 ** been removed from pParent. 7428 ** 7429 ** If the siblings are on leaf pages, then the child pointers of the 7430 ** divider cells are stripped from the cells before they are copied 7431 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 7432 ** child pointers. If siblings are not leaves, then all cell in 7433 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 7434 ** are alike. 7435 ** 7436 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 7437 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 7438 */ 7439 b.pRef = apOld[0]; 7440 leafCorrection = b.pRef->leaf*4; 7441 leafData = b.pRef->intKeyLeaf; 7442 for(i=0; i<nOld; i++){ 7443 MemPage *pOld = apOld[i]; 7444 int limit = pOld->nCell; 7445 u8 *aData = pOld->aData; 7446 u16 maskPage = pOld->maskPage; 7447 u8 *piCell = aData + pOld->cellOffset; 7448 u8 *piEnd; 7449 7450 /* Verify that all sibling pages are of the same "type" (table-leaf, 7451 ** table-interior, index-leaf, or index-interior). 7452 */ 7453 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 7454 rc = SQLITE_CORRUPT_BKPT; 7455 goto balance_cleanup; 7456 } 7457 7458 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 7459 ** contains overflow cells, include them in the b.apCell[] array 7460 ** in the correct spot. 7461 ** 7462 ** Note that when there are multiple overflow cells, it is always the 7463 ** case that they are sequential and adjacent. This invariant arises 7464 ** because multiple overflows can only occurs when inserting divider 7465 ** cells into a parent on a prior balance, and divider cells are always 7466 ** adjacent and are inserted in order. There is an assert() tagged 7467 ** with "NOTE 1" in the overflow cell insertion loop to prove this 7468 ** invariant. 7469 ** 7470 ** This must be done in advance. Once the balance starts, the cell 7471 ** offset section of the btree page will be overwritten and we will no 7472 ** long be able to find the cells if a pointer to each cell is not saved 7473 ** first. 7474 */ 7475 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 7476 if( pOld->nOverflow>0 ){ 7477 limit = pOld->aiOvfl[0]; 7478 for(j=0; j<limit; j++){ 7479 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7480 piCell += 2; 7481 b.nCell++; 7482 } 7483 for(k=0; k<pOld->nOverflow; k++){ 7484 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 7485 b.apCell[b.nCell] = pOld->apOvfl[k]; 7486 b.nCell++; 7487 } 7488 } 7489 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 7490 while( piCell<piEnd ){ 7491 assert( b.nCell<nMaxCells ); 7492 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7493 piCell += 2; 7494 b.nCell++; 7495 } 7496 7497 cntOld[i] = b.nCell; 7498 if( i<nOld-1 && !leafData){ 7499 u16 sz = (u16)szNew[i]; 7500 u8 *pTemp; 7501 assert( b.nCell<nMaxCells ); 7502 b.szCell[b.nCell] = sz; 7503 pTemp = &aSpace1[iSpace1]; 7504 iSpace1 += sz; 7505 assert( sz<=pBt->maxLocal+23 ); 7506 assert( iSpace1 <= (int)pBt->pageSize ); 7507 memcpy(pTemp, apDiv[i], sz); 7508 b.apCell[b.nCell] = pTemp+leafCorrection; 7509 assert( leafCorrection==0 || leafCorrection==4 ); 7510 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 7511 if( !pOld->leaf ){ 7512 assert( leafCorrection==0 ); 7513 assert( pOld->hdrOffset==0 ); 7514 /* The right pointer of the child page pOld becomes the left 7515 ** pointer of the divider cell */ 7516 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 7517 }else{ 7518 assert( leafCorrection==4 ); 7519 while( b.szCell[b.nCell]<4 ){ 7520 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 7521 ** does exist, pad it with 0x00 bytes. */ 7522 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 7523 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 7524 aSpace1[iSpace1++] = 0x00; 7525 b.szCell[b.nCell]++; 7526 } 7527 } 7528 b.nCell++; 7529 } 7530 } 7531 7532 /* 7533 ** Figure out the number of pages needed to hold all b.nCell cells. 7534 ** Store this number in "k". Also compute szNew[] which is the total 7535 ** size of all cells on the i-th page and cntNew[] which is the index 7536 ** in b.apCell[] of the cell that divides page i from page i+1. 7537 ** cntNew[k] should equal b.nCell. 7538 ** 7539 ** Values computed by this block: 7540 ** 7541 ** k: The total number of sibling pages 7542 ** szNew[i]: Spaced used on the i-th sibling page. 7543 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 7544 ** the right of the i-th sibling page. 7545 ** usableSpace: Number of bytes of space available on each sibling. 7546 ** 7547 */ 7548 usableSpace = pBt->usableSize - 12 + leafCorrection; 7549 for(i=0; i<nOld; i++){ 7550 MemPage *p = apOld[i]; 7551 szNew[i] = usableSpace - p->nFree; 7552 for(j=0; j<p->nOverflow; j++){ 7553 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 7554 } 7555 cntNew[i] = cntOld[i]; 7556 } 7557 k = nOld; 7558 for(i=0; i<k; i++){ 7559 int sz; 7560 while( szNew[i]>usableSpace ){ 7561 if( i+1>=k ){ 7562 k = i+2; 7563 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 7564 szNew[k-1] = 0; 7565 cntNew[k-1] = b.nCell; 7566 } 7567 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 7568 szNew[i] -= sz; 7569 if( !leafData ){ 7570 if( cntNew[i]<b.nCell ){ 7571 sz = 2 + cachedCellSize(&b, cntNew[i]); 7572 }else{ 7573 sz = 0; 7574 } 7575 } 7576 szNew[i+1] += sz; 7577 cntNew[i]--; 7578 } 7579 while( cntNew[i]<b.nCell ){ 7580 sz = 2 + cachedCellSize(&b, cntNew[i]); 7581 if( szNew[i]+sz>usableSpace ) break; 7582 szNew[i] += sz; 7583 cntNew[i]++; 7584 if( !leafData ){ 7585 if( cntNew[i]<b.nCell ){ 7586 sz = 2 + cachedCellSize(&b, cntNew[i]); 7587 }else{ 7588 sz = 0; 7589 } 7590 } 7591 szNew[i+1] -= sz; 7592 } 7593 if( cntNew[i]>=b.nCell ){ 7594 k = i+1; 7595 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 7596 rc = SQLITE_CORRUPT_BKPT; 7597 goto balance_cleanup; 7598 } 7599 } 7600 7601 /* 7602 ** The packing computed by the previous block is biased toward the siblings 7603 ** on the left side (siblings with smaller keys). The left siblings are 7604 ** always nearly full, while the right-most sibling might be nearly empty. 7605 ** The next block of code attempts to adjust the packing of siblings to 7606 ** get a better balance. 7607 ** 7608 ** This adjustment is more than an optimization. The packing above might 7609 ** be so out of balance as to be illegal. For example, the right-most 7610 ** sibling might be completely empty. This adjustment is not optional. 7611 */ 7612 for(i=k-1; i>0; i--){ 7613 int szRight = szNew[i]; /* Size of sibling on the right */ 7614 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 7615 int r; /* Index of right-most cell in left sibling */ 7616 int d; /* Index of first cell to the left of right sibling */ 7617 7618 r = cntNew[i-1] - 1; 7619 d = r + 1 - leafData; 7620 (void)cachedCellSize(&b, d); 7621 do{ 7622 assert( d<nMaxCells ); 7623 assert( r<nMaxCells ); 7624 (void)cachedCellSize(&b, r); 7625 if( szRight!=0 7626 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 7627 break; 7628 } 7629 szRight += b.szCell[d] + 2; 7630 szLeft -= b.szCell[r] + 2; 7631 cntNew[i-1] = r; 7632 r--; 7633 d--; 7634 }while( r>=0 ); 7635 szNew[i] = szRight; 7636 szNew[i-1] = szLeft; 7637 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 7638 rc = SQLITE_CORRUPT_BKPT; 7639 goto balance_cleanup; 7640 } 7641 } 7642 7643 /* Sanity check: For a non-corrupt database file one of the follwing 7644 ** must be true: 7645 ** (1) We found one or more cells (cntNew[0])>0), or 7646 ** (2) pPage is a virtual root page. A virtual root page is when 7647 ** the real root page is page 1 and we are the only child of 7648 ** that page. 7649 */ 7650 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 7651 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 7652 apOld[0]->pgno, apOld[0]->nCell, 7653 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 7654 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 7655 )); 7656 7657 /* 7658 ** Allocate k new pages. Reuse old pages where possible. 7659 */ 7660 pageFlags = apOld[0]->aData[0]; 7661 for(i=0; i<k; i++){ 7662 MemPage *pNew; 7663 if( i<nOld ){ 7664 pNew = apNew[i] = apOld[i]; 7665 apOld[i] = 0; 7666 rc = sqlite3PagerWrite(pNew->pDbPage); 7667 nNew++; 7668 if( rc ) goto balance_cleanup; 7669 }else{ 7670 assert( i>0 ); 7671 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 7672 if( rc ) goto balance_cleanup; 7673 zeroPage(pNew, pageFlags); 7674 apNew[i] = pNew; 7675 nNew++; 7676 cntOld[i] = b.nCell; 7677 7678 /* Set the pointer-map entry for the new sibling page. */ 7679 if( ISAUTOVACUUM ){ 7680 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 7681 if( rc!=SQLITE_OK ){ 7682 goto balance_cleanup; 7683 } 7684 } 7685 } 7686 } 7687 7688 /* 7689 ** Reassign page numbers so that the new pages are in ascending order. 7690 ** This helps to keep entries in the disk file in order so that a scan 7691 ** of the table is closer to a linear scan through the file. That in turn 7692 ** helps the operating system to deliver pages from the disk more rapidly. 7693 ** 7694 ** An O(n^2) insertion sort algorithm is used, but since n is never more 7695 ** than (NB+2) (a small constant), that should not be a problem. 7696 ** 7697 ** When NB==3, this one optimization makes the database about 25% faster 7698 ** for large insertions and deletions. 7699 */ 7700 for(i=0; i<nNew; i++){ 7701 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 7702 aPgFlags[i] = apNew[i]->pDbPage->flags; 7703 for(j=0; j<i; j++){ 7704 if( aPgno[j]==aPgno[i] ){ 7705 /* This branch is taken if the set of sibling pages somehow contains 7706 ** duplicate entries. This can happen if the database is corrupt. 7707 ** It would be simpler to detect this as part of the loop below, but 7708 ** we do the detection here in order to avoid populating the pager 7709 ** cache with two separate objects associated with the same 7710 ** page number. */ 7711 assert( CORRUPT_DB ); 7712 rc = SQLITE_CORRUPT_BKPT; 7713 goto balance_cleanup; 7714 } 7715 } 7716 } 7717 for(i=0; i<nNew; i++){ 7718 int iBest = 0; /* aPgno[] index of page number to use */ 7719 for(j=1; j<nNew; j++){ 7720 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 7721 } 7722 pgno = aPgOrder[iBest]; 7723 aPgOrder[iBest] = 0xffffffff; 7724 if( iBest!=i ){ 7725 if( iBest>i ){ 7726 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 7727 } 7728 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 7729 apNew[i]->pgno = pgno; 7730 } 7731 } 7732 7733 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 7734 "%d(%d nc=%d) %d(%d nc=%d)\n", 7735 apNew[0]->pgno, szNew[0], cntNew[0], 7736 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 7737 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 7738 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 7739 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 7740 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 7741 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 7742 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 7743 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 7744 )); 7745 7746 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7747 put4byte(pRight, apNew[nNew-1]->pgno); 7748 7749 /* If the sibling pages are not leaves, ensure that the right-child pointer 7750 ** of the right-most new sibling page is set to the value that was 7751 ** originally in the same field of the right-most old sibling page. */ 7752 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 7753 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 7754 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 7755 } 7756 7757 /* Make any required updates to pointer map entries associated with 7758 ** cells stored on sibling pages following the balance operation. Pointer 7759 ** map entries associated with divider cells are set by the insertCell() 7760 ** routine. The associated pointer map entries are: 7761 ** 7762 ** a) if the cell contains a reference to an overflow chain, the 7763 ** entry associated with the first page in the overflow chain, and 7764 ** 7765 ** b) if the sibling pages are not leaves, the child page associated 7766 ** with the cell. 7767 ** 7768 ** If the sibling pages are not leaves, then the pointer map entry 7769 ** associated with the right-child of each sibling may also need to be 7770 ** updated. This happens below, after the sibling pages have been 7771 ** populated, not here. 7772 */ 7773 if( ISAUTOVACUUM ){ 7774 MemPage *pNew = apNew[0]; 7775 u8 *aOld = pNew->aData; 7776 int cntOldNext = pNew->nCell + pNew->nOverflow; 7777 int usableSize = pBt->usableSize; 7778 int iNew = 0; 7779 int iOld = 0; 7780 7781 for(i=0; i<b.nCell; i++){ 7782 u8 *pCell = b.apCell[i]; 7783 if( i==cntOldNext ){ 7784 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld]; 7785 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 7786 aOld = pOld->aData; 7787 } 7788 if( i==cntNew[iNew] ){ 7789 pNew = apNew[++iNew]; 7790 if( !leafData ) continue; 7791 } 7792 7793 /* Cell pCell is destined for new sibling page pNew. Originally, it 7794 ** was either part of sibling page iOld (possibly an overflow cell), 7795 ** or else the divider cell to the left of sibling page iOld. So, 7796 ** if sibling page iOld had the same page number as pNew, and if 7797 ** pCell really was a part of sibling page iOld (not a divider or 7798 ** overflow cell), we can skip updating the pointer map entries. */ 7799 if( iOld>=nNew 7800 || pNew->pgno!=aPgno[iOld] 7801 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize]) 7802 ){ 7803 if( !leafCorrection ){ 7804 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 7805 } 7806 if( cachedCellSize(&b,i)>pNew->minLocal ){ 7807 ptrmapPutOvflPtr(pNew, pCell, &rc); 7808 } 7809 if( rc ) goto balance_cleanup; 7810 } 7811 } 7812 } 7813 7814 /* Insert new divider cells into pParent. */ 7815 for(i=0; i<nNew-1; i++){ 7816 u8 *pCell; 7817 u8 *pTemp; 7818 int sz; 7819 MemPage *pNew = apNew[i]; 7820 j = cntNew[i]; 7821 7822 assert( j<nMaxCells ); 7823 assert( b.apCell[j]!=0 ); 7824 pCell = b.apCell[j]; 7825 sz = b.szCell[j] + leafCorrection; 7826 pTemp = &aOvflSpace[iOvflSpace]; 7827 if( !pNew->leaf ){ 7828 memcpy(&pNew->aData[8], pCell, 4); 7829 }else if( leafData ){ 7830 /* If the tree is a leaf-data tree, and the siblings are leaves, 7831 ** then there is no divider cell in b.apCell[]. Instead, the divider 7832 ** cell consists of the integer key for the right-most cell of 7833 ** the sibling-page assembled above only. 7834 */ 7835 CellInfo info; 7836 j--; 7837 pNew->xParseCell(pNew, b.apCell[j], &info); 7838 pCell = pTemp; 7839 sz = 4 + putVarint(&pCell[4], info.nKey); 7840 pTemp = 0; 7841 }else{ 7842 pCell -= 4; 7843 /* Obscure case for non-leaf-data trees: If the cell at pCell was 7844 ** previously stored on a leaf node, and its reported size was 4 7845 ** bytes, then it may actually be smaller than this 7846 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 7847 ** any cell). But it is important to pass the correct size to 7848 ** insertCell(), so reparse the cell now. 7849 ** 7850 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 7851 ** and WITHOUT ROWID tables with exactly one column which is the 7852 ** primary key. 7853 */ 7854 if( b.szCell[j]==4 ){ 7855 assert(leafCorrection==4); 7856 sz = pParent->xCellSize(pParent, pCell); 7857 } 7858 } 7859 iOvflSpace += sz; 7860 assert( sz<=pBt->maxLocal+23 ); 7861 assert( iOvflSpace <= (int)pBt->pageSize ); 7862 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 7863 if( rc!=SQLITE_OK ) goto balance_cleanup; 7864 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7865 } 7866 7867 /* Now update the actual sibling pages. The order in which they are updated 7868 ** is important, as this code needs to avoid disrupting any page from which 7869 ** cells may still to be read. In practice, this means: 7870 ** 7871 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 7872 ** then it is not safe to update page apNew[iPg] until after 7873 ** the left-hand sibling apNew[iPg-1] has been updated. 7874 ** 7875 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 7876 ** then it is not safe to update page apNew[iPg] until after 7877 ** the right-hand sibling apNew[iPg+1] has been updated. 7878 ** 7879 ** If neither of the above apply, the page is safe to update. 7880 ** 7881 ** The iPg value in the following loop starts at nNew-1 goes down 7882 ** to 0, then back up to nNew-1 again, thus making two passes over 7883 ** the pages. On the initial downward pass, only condition (1) above 7884 ** needs to be tested because (2) will always be true from the previous 7885 ** step. On the upward pass, both conditions are always true, so the 7886 ** upwards pass simply processes pages that were missed on the downward 7887 ** pass. 7888 */ 7889 for(i=1-nNew; i<nNew; i++){ 7890 int iPg = i<0 ? -i : i; 7891 assert( iPg>=0 && iPg<nNew ); 7892 if( abDone[iPg] ) continue; /* Skip pages already processed */ 7893 if( i>=0 /* On the upwards pass, or... */ 7894 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 7895 ){ 7896 int iNew; 7897 int iOld; 7898 int nNewCell; 7899 7900 /* Verify condition (1): If cells are moving left, update iPg 7901 ** only after iPg-1 has already been updated. */ 7902 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 7903 7904 /* Verify condition (2): If cells are moving right, update iPg 7905 ** only after iPg+1 has already been updated. */ 7906 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 7907 7908 if( iPg==0 ){ 7909 iNew = iOld = 0; 7910 nNewCell = cntNew[0]; 7911 }else{ 7912 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 7913 iNew = cntNew[iPg-1] + !leafData; 7914 nNewCell = cntNew[iPg] - iNew; 7915 } 7916 7917 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 7918 if( rc ) goto balance_cleanup; 7919 abDone[iPg]++; 7920 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 7921 assert( apNew[iPg]->nOverflow==0 ); 7922 assert( apNew[iPg]->nCell==nNewCell ); 7923 } 7924 } 7925 7926 /* All pages have been processed exactly once */ 7927 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 7928 7929 assert( nOld>0 ); 7930 assert( nNew>0 ); 7931 7932 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 7933 /* The root page of the b-tree now contains no cells. The only sibling 7934 ** page is the right-child of the parent. Copy the contents of the 7935 ** child page into the parent, decreasing the overall height of the 7936 ** b-tree structure by one. This is described as the "balance-shallower" 7937 ** sub-algorithm in some documentation. 7938 ** 7939 ** If this is an auto-vacuum database, the call to copyNodeContent() 7940 ** sets all pointer-map entries corresponding to database image pages 7941 ** for which the pointer is stored within the content being copied. 7942 ** 7943 ** It is critical that the child page be defragmented before being 7944 ** copied into the parent, because if the parent is page 1 then it will 7945 ** by smaller than the child due to the database header, and so all the 7946 ** free space needs to be up front. 7947 */ 7948 assert( nNew==1 || CORRUPT_DB ); 7949 rc = defragmentPage(apNew[0], -1); 7950 testcase( rc!=SQLITE_OK ); 7951 assert( apNew[0]->nFree == 7952 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) 7953 || rc!=SQLITE_OK 7954 ); 7955 copyNodeContent(apNew[0], pParent, &rc); 7956 freePage(apNew[0], &rc); 7957 }else if( ISAUTOVACUUM && !leafCorrection ){ 7958 /* Fix the pointer map entries associated with the right-child of each 7959 ** sibling page. All other pointer map entries have already been taken 7960 ** care of. */ 7961 for(i=0; i<nNew; i++){ 7962 u32 key = get4byte(&apNew[i]->aData[8]); 7963 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 7964 } 7965 } 7966 7967 assert( pParent->isInit ); 7968 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 7969 nOld, nNew, b.nCell)); 7970 7971 /* Free any old pages that were not reused as new pages. 7972 */ 7973 for(i=nNew; i<nOld; i++){ 7974 freePage(apOld[i], &rc); 7975 } 7976 7977 #if 0 7978 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 7979 /* The ptrmapCheckPages() contains assert() statements that verify that 7980 ** all pointer map pages are set correctly. This is helpful while 7981 ** debugging. This is usually disabled because a corrupt database may 7982 ** cause an assert() statement to fail. */ 7983 ptrmapCheckPages(apNew, nNew); 7984 ptrmapCheckPages(&pParent, 1); 7985 } 7986 #endif 7987 7988 /* 7989 ** Cleanup before returning. 7990 */ 7991 balance_cleanup: 7992 sqlite3StackFree(0, b.apCell); 7993 for(i=0; i<nOld; i++){ 7994 releasePage(apOld[i]); 7995 } 7996 for(i=0; i<nNew; i++){ 7997 releasePage(apNew[i]); 7998 } 7999 8000 return rc; 8001 } 8002 8003 8004 /* 8005 ** This function is called when the root page of a b-tree structure is 8006 ** overfull (has one or more overflow pages). 8007 ** 8008 ** A new child page is allocated and the contents of the current root 8009 ** page, including overflow cells, are copied into the child. The root 8010 ** page is then overwritten to make it an empty page with the right-child 8011 ** pointer pointing to the new page. 8012 ** 8013 ** Before returning, all pointer-map entries corresponding to pages 8014 ** that the new child-page now contains pointers to are updated. The 8015 ** entry corresponding to the new right-child pointer of the root 8016 ** page is also updated. 8017 ** 8018 ** If successful, *ppChild is set to contain a reference to the child 8019 ** page and SQLITE_OK is returned. In this case the caller is required 8020 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8021 ** an error code is returned and *ppChild is set to 0. 8022 */ 8023 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8024 int rc; /* Return value from subprocedures */ 8025 MemPage *pChild = 0; /* Pointer to a new child page */ 8026 Pgno pgnoChild = 0; /* Page number of the new child page */ 8027 BtShared *pBt = pRoot->pBt; /* The BTree */ 8028 8029 assert( pRoot->nOverflow>0 ); 8030 assert( sqlite3_mutex_held(pBt->mutex) ); 8031 8032 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8033 ** page that will become the new right-child of pPage. Copy the contents 8034 ** of the node stored on pRoot into the new child page. 8035 */ 8036 rc = sqlite3PagerWrite(pRoot->pDbPage); 8037 if( rc==SQLITE_OK ){ 8038 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8039 copyNodeContent(pRoot, pChild, &rc); 8040 if( ISAUTOVACUUM ){ 8041 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8042 } 8043 } 8044 if( rc ){ 8045 *ppChild = 0; 8046 releasePage(pChild); 8047 return rc; 8048 } 8049 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8050 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8051 assert( pChild->nCell==pRoot->nCell ); 8052 8053 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8054 8055 /* Copy the overflow cells from pRoot to pChild */ 8056 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8057 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8058 memcpy(pChild->apOvfl, pRoot->apOvfl, 8059 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8060 pChild->nOverflow = pRoot->nOverflow; 8061 8062 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8063 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8064 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8065 8066 *ppChild = pChild; 8067 return SQLITE_OK; 8068 } 8069 8070 /* 8071 ** The page that pCur currently points to has just been modified in 8072 ** some way. This function figures out if this modification means the 8073 ** tree needs to be balanced, and if so calls the appropriate balancing 8074 ** routine. Balancing routines are: 8075 ** 8076 ** balance_quick() 8077 ** balance_deeper() 8078 ** balance_nonroot() 8079 */ 8080 static int balance(BtCursor *pCur){ 8081 int rc = SQLITE_OK; 8082 const int nMin = pCur->pBt->usableSize * 2 / 3; 8083 u8 aBalanceQuickSpace[13]; 8084 u8 *pFree = 0; 8085 8086 VVA_ONLY( int balance_quick_called = 0 ); 8087 VVA_ONLY( int balance_deeper_called = 0 ); 8088 8089 do { 8090 int iPage = pCur->iPage; 8091 MemPage *pPage = pCur->pPage; 8092 8093 if( iPage==0 ){ 8094 if( pPage->nOverflow ){ 8095 /* The root page of the b-tree is overfull. In this case call the 8096 ** balance_deeper() function to create a new child for the root-page 8097 ** and copy the current contents of the root-page to it. The 8098 ** next iteration of the do-loop will balance the child page. 8099 */ 8100 assert( balance_deeper_called==0 ); 8101 VVA_ONLY( balance_deeper_called++ ); 8102 rc = balance_deeper(pPage, &pCur->apPage[1]); 8103 if( rc==SQLITE_OK ){ 8104 pCur->iPage = 1; 8105 pCur->ix = 0; 8106 pCur->aiIdx[0] = 0; 8107 pCur->apPage[0] = pPage; 8108 pCur->pPage = pCur->apPage[1]; 8109 assert( pCur->pPage->nOverflow ); 8110 } 8111 }else{ 8112 break; 8113 } 8114 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8115 break; 8116 }else{ 8117 MemPage * const pParent = pCur->apPage[iPage-1]; 8118 int const iIdx = pCur->aiIdx[iPage-1]; 8119 8120 rc = sqlite3PagerWrite(pParent->pDbPage); 8121 if( rc==SQLITE_OK ){ 8122 #ifndef SQLITE_OMIT_QUICKBALANCE 8123 if( pPage->intKeyLeaf 8124 && pPage->nOverflow==1 8125 && pPage->aiOvfl[0]==pPage->nCell 8126 && pParent->pgno!=1 8127 && pParent->nCell==iIdx 8128 ){ 8129 /* Call balance_quick() to create a new sibling of pPage on which 8130 ** to store the overflow cell. balance_quick() inserts a new cell 8131 ** into pParent, which may cause pParent overflow. If this 8132 ** happens, the next iteration of the do-loop will balance pParent 8133 ** use either balance_nonroot() or balance_deeper(). Until this 8134 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8135 ** buffer. 8136 ** 8137 ** The purpose of the following assert() is to check that only a 8138 ** single call to balance_quick() is made for each call to this 8139 ** function. If this were not verified, a subtle bug involving reuse 8140 ** of the aBalanceQuickSpace[] might sneak in. 8141 */ 8142 assert( balance_quick_called==0 ); 8143 VVA_ONLY( balance_quick_called++ ); 8144 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8145 }else 8146 #endif 8147 { 8148 /* In this case, call balance_nonroot() to redistribute cells 8149 ** between pPage and up to 2 of its sibling pages. This involves 8150 ** modifying the contents of pParent, which may cause pParent to 8151 ** become overfull or underfull. The next iteration of the do-loop 8152 ** will balance the parent page to correct this. 8153 ** 8154 ** If the parent page becomes overfull, the overflow cell or cells 8155 ** are stored in the pSpace buffer allocated immediately below. 8156 ** A subsequent iteration of the do-loop will deal with this by 8157 ** calling balance_nonroot() (balance_deeper() may be called first, 8158 ** but it doesn't deal with overflow cells - just moves them to a 8159 ** different page). Once this subsequent call to balance_nonroot() 8160 ** has completed, it is safe to release the pSpace buffer used by 8161 ** the previous call, as the overflow cell data will have been 8162 ** copied either into the body of a database page or into the new 8163 ** pSpace buffer passed to the latter call to balance_nonroot(). 8164 */ 8165 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8166 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8167 pCur->hints&BTREE_BULKLOAD); 8168 if( pFree ){ 8169 /* If pFree is not NULL, it points to the pSpace buffer used 8170 ** by a previous call to balance_nonroot(). Its contents are 8171 ** now stored either on real database pages or within the 8172 ** new pSpace buffer, so it may be safely freed here. */ 8173 sqlite3PageFree(pFree); 8174 } 8175 8176 /* The pSpace buffer will be freed after the next call to 8177 ** balance_nonroot(), or just before this function returns, whichever 8178 ** comes first. */ 8179 pFree = pSpace; 8180 } 8181 } 8182 8183 pPage->nOverflow = 0; 8184 8185 /* The next iteration of the do-loop balances the parent page. */ 8186 releasePage(pPage); 8187 pCur->iPage--; 8188 assert( pCur->iPage>=0 ); 8189 pCur->pPage = pCur->apPage[pCur->iPage]; 8190 } 8191 }while( rc==SQLITE_OK ); 8192 8193 if( pFree ){ 8194 sqlite3PageFree(pFree); 8195 } 8196 return rc; 8197 } 8198 8199 /* Overwrite content from pX into pDest. Only do the write if the 8200 ** content is different from what is already there. 8201 */ 8202 static int btreeOverwriteContent( 8203 MemPage *pPage, /* MemPage on which writing will occur */ 8204 u8 *pDest, /* Pointer to the place to start writing */ 8205 const BtreePayload *pX, /* Source of data to write */ 8206 int iOffset, /* Offset of first byte to write */ 8207 int iAmt /* Number of bytes to be written */ 8208 ){ 8209 int nData = pX->nData - iOffset; 8210 if( nData<=0 ){ 8211 /* Overwritting with zeros */ 8212 int i; 8213 for(i=0; i<iAmt && pDest[i]==0; i++){} 8214 if( i<iAmt ){ 8215 int rc = sqlite3PagerWrite(pPage->pDbPage); 8216 if( rc ) return rc; 8217 memset(pDest + i, 0, iAmt - i); 8218 } 8219 }else{ 8220 if( nData<iAmt ){ 8221 /* Mixed read data and zeros at the end. Make a recursive call 8222 ** to write the zeros then fall through to write the real data */ 8223 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8224 iAmt-nData); 8225 if( rc ) return rc; 8226 iAmt = nData; 8227 } 8228 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8229 int rc = sqlite3PagerWrite(pPage->pDbPage); 8230 if( rc ) return rc; 8231 memcpy(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8232 } 8233 } 8234 return SQLITE_OK; 8235 } 8236 8237 /* 8238 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8239 ** contained in pX. 8240 */ 8241 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8242 int iOffset; /* Next byte of pX->pData to write */ 8243 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8244 int rc; /* Return code */ 8245 MemPage *pPage = pCur->pPage; /* Page being written */ 8246 BtShared *pBt; /* Btree */ 8247 Pgno ovflPgno; /* Next overflow page to write */ 8248 u32 ovflPageSize; /* Size to write on overflow page */ 8249 8250 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){ 8251 return SQLITE_CORRUPT_BKPT; 8252 } 8253 /* Overwrite the local portion first */ 8254 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8255 0, pCur->info.nLocal); 8256 if( rc ) return rc; 8257 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8258 8259 /* Now overwrite the overflow pages */ 8260 iOffset = pCur->info.nLocal; 8261 assert( nTotal>=0 ); 8262 assert( iOffset>=0 ); 8263 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8264 pBt = pPage->pBt; 8265 ovflPageSize = pBt->usableSize - 4; 8266 do{ 8267 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8268 if( rc ) return rc; 8269 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){ 8270 rc = SQLITE_CORRUPT_BKPT; 8271 }else{ 8272 if( iOffset+ovflPageSize<(u32)nTotal ){ 8273 ovflPgno = get4byte(pPage->aData); 8274 }else{ 8275 ovflPageSize = nTotal - iOffset; 8276 } 8277 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8278 iOffset, ovflPageSize); 8279 } 8280 sqlite3PagerUnref(pPage->pDbPage); 8281 if( rc ) return rc; 8282 iOffset += ovflPageSize; 8283 }while( iOffset<nTotal ); 8284 return SQLITE_OK; 8285 } 8286 8287 8288 /* 8289 ** Insert a new record into the BTree. The content of the new record 8290 ** is described by the pX object. The pCur cursor is used only to 8291 ** define what table the record should be inserted into, and is left 8292 ** pointing at a random location. 8293 ** 8294 ** For a table btree (used for rowid tables), only the pX.nKey value of 8295 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8296 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8297 ** hold the content of the row. 8298 ** 8299 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8300 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8301 ** pX.pData,nData,nZero fields must be zero. 8302 ** 8303 ** If the seekResult parameter is non-zero, then a successful call to 8304 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 8305 ** been performed. In other words, if seekResult!=0 then the cursor 8306 ** is currently pointing to a cell that will be adjacent to the cell 8307 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8308 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8309 ** that is larger than (pKey,nKey). 8310 ** 8311 ** If seekResult==0, that means pCur is pointing at some unknown location. 8312 ** In that case, this routine must seek the cursor to the correct insertion 8313 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8314 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8315 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8316 ** to decode the key. 8317 */ 8318 int sqlite3BtreeInsert( 8319 BtCursor *pCur, /* Insert data into the table of this cursor */ 8320 const BtreePayload *pX, /* Content of the row to be inserted */ 8321 int flags, /* True if this is likely an append */ 8322 int seekResult /* Result of prior MovetoUnpacked() call */ 8323 ){ 8324 int rc; 8325 int loc = seekResult; /* -1: before desired location +1: after */ 8326 int szNew = 0; 8327 int idx; 8328 MemPage *pPage; 8329 Btree *p = pCur->pBtree; 8330 BtShared *pBt = p->pBt; 8331 unsigned char *oldCell; 8332 unsigned char *newCell = 0; 8333 8334 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags ); 8335 8336 if( pCur->eState==CURSOR_FAULT ){ 8337 assert( pCur->skipNext!=SQLITE_OK ); 8338 return pCur->skipNext; 8339 } 8340 8341 assert( cursorOwnsBtShared(pCur) ); 8342 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 8343 && pBt->inTransaction==TRANS_WRITE 8344 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8345 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8346 8347 /* Assert that the caller has been consistent. If this cursor was opened 8348 ** expecting an index b-tree, then the caller should be inserting blob 8349 ** keys with no associated data. If the cursor was opened expecting an 8350 ** intkey table, the caller should be inserting integer keys with a 8351 ** blob of associated data. */ 8352 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) ); 8353 8354 /* Save the positions of any other cursors open on this table. 8355 ** 8356 ** In some cases, the call to btreeMoveto() below is a no-op. For 8357 ** example, when inserting data into a table with auto-generated integer 8358 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 8359 ** integer key to use. It then calls this function to actually insert the 8360 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 8361 ** that the cursor is already where it needs to be and returns without 8362 ** doing any work. To avoid thwarting these optimizations, it is important 8363 ** not to clear the cursor here. 8364 */ 8365 if( pCur->curFlags & BTCF_Multiple ){ 8366 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8367 if( rc ) return rc; 8368 } 8369 8370 if( pCur->pKeyInfo==0 ){ 8371 assert( pX->pKey==0 ); 8372 /* If this is an insert into a table b-tree, invalidate any incrblob 8373 ** cursors open on the row being replaced */ 8374 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 8375 8376 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8377 ** to a row with the same key as the new entry being inserted. 8378 */ 8379 #ifdef SQLITE_DEBUG 8380 if( flags & BTREE_SAVEPOSITION ){ 8381 assert( pCur->curFlags & BTCF_ValidNKey ); 8382 assert( pX->nKey==pCur->info.nKey ); 8383 assert( pCur->info.nSize!=0 ); 8384 assert( loc==0 ); 8385 } 8386 #endif 8387 8388 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 8389 ** that the cursor is not pointing to a row to be overwritten. 8390 ** So do a complete check. 8391 */ 8392 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 8393 /* The cursor is pointing to the entry that is to be 8394 ** overwritten */ 8395 assert( pX->nData>=0 && pX->nZero>=0 ); 8396 if( pCur->info.nSize!=0 8397 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 8398 ){ 8399 /* New entry is the same size as the old. Do an overwrite */ 8400 return btreeOverwriteCell(pCur, pX); 8401 } 8402 assert( loc==0 ); 8403 }else if( loc==0 ){ 8404 /* The cursor is *not* pointing to the cell to be overwritten, nor 8405 ** to an adjacent cell. Move the cursor so that it is pointing either 8406 ** to the cell to be overwritten or an adjacent cell. 8407 */ 8408 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc); 8409 if( rc ) return rc; 8410 } 8411 }else{ 8412 /* This is an index or a WITHOUT ROWID table */ 8413 8414 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8415 ** to a row with the same key as the new entry being inserted. 8416 */ 8417 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 8418 8419 /* If the cursor is not already pointing either to the cell to be 8420 ** overwritten, or if a new cell is being inserted, if the cursor is 8421 ** not pointing to an immediately adjacent cell, then move the cursor 8422 ** so that it does. 8423 */ 8424 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 8425 if( pX->nMem ){ 8426 UnpackedRecord r; 8427 r.pKeyInfo = pCur->pKeyInfo; 8428 r.aMem = pX->aMem; 8429 r.nField = pX->nMem; 8430 r.default_rc = 0; 8431 r.errCode = 0; 8432 r.r1 = 0; 8433 r.r2 = 0; 8434 r.eqSeen = 0; 8435 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc); 8436 }else{ 8437 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); 8438 } 8439 if( rc ) return rc; 8440 } 8441 8442 /* If the cursor is currently pointing to an entry to be overwritten 8443 ** and the new content is the same as as the old, then use the 8444 ** overwrite optimization. 8445 */ 8446 if( loc==0 ){ 8447 getCellInfo(pCur); 8448 if( pCur->info.nKey==pX->nKey ){ 8449 BtreePayload x2; 8450 x2.pData = pX->pKey; 8451 x2.nData = pX->nKey; 8452 x2.nZero = 0; 8453 return btreeOverwriteCell(pCur, &x2); 8454 } 8455 } 8456 8457 } 8458 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); 8459 8460 pPage = pCur->pPage; 8461 assert( pPage->intKey || pX->nKey>=0 ); 8462 assert( pPage->leaf || !pPage->intKey ); 8463 8464 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 8465 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 8466 loc==0 ? "overwrite" : "new entry")); 8467 assert( pPage->isInit ); 8468 newCell = pBt->pTmpSpace; 8469 assert( newCell!=0 ); 8470 rc = fillInCell(pPage, newCell, pX, &szNew); 8471 if( rc ) goto end_insert; 8472 assert( szNew==pPage->xCellSize(pPage, newCell) ); 8473 assert( szNew <= MX_CELL_SIZE(pBt) ); 8474 idx = pCur->ix; 8475 if( loc==0 ){ 8476 CellInfo info; 8477 assert( idx<pPage->nCell ); 8478 rc = sqlite3PagerWrite(pPage->pDbPage); 8479 if( rc ){ 8480 goto end_insert; 8481 } 8482 oldCell = findCell(pPage, idx); 8483 if( !pPage->leaf ){ 8484 memcpy(newCell, oldCell, 4); 8485 } 8486 rc = clearCell(pPage, oldCell, &info); 8487 if( info.nSize==szNew && info.nLocal==info.nPayload 8488 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 8489 ){ 8490 /* Overwrite the old cell with the new if they are the same size. 8491 ** We could also try to do this if the old cell is smaller, then add 8492 ** the leftover space to the free list. But experiments show that 8493 ** doing that is no faster then skipping this optimization and just 8494 ** calling dropCell() and insertCell(). 8495 ** 8496 ** This optimization cannot be used on an autovacuum database if the 8497 ** new entry uses overflow pages, as the insertCell() call below is 8498 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 8499 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 8500 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; 8501 memcpy(oldCell, newCell, szNew); 8502 return SQLITE_OK; 8503 } 8504 dropCell(pPage, idx, info.nSize, &rc); 8505 if( rc ) goto end_insert; 8506 }else if( loc<0 && pPage->nCell>0 ){ 8507 assert( pPage->leaf ); 8508 idx = ++pCur->ix; 8509 pCur->curFlags &= ~BTCF_ValidNKey; 8510 }else{ 8511 assert( pPage->leaf ); 8512 } 8513 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 8514 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 8515 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 8516 8517 /* If no error has occurred and pPage has an overflow cell, call balance() 8518 ** to redistribute the cells within the tree. Since balance() may move 8519 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 8520 ** variables. 8521 ** 8522 ** Previous versions of SQLite called moveToRoot() to move the cursor 8523 ** back to the root page as balance() used to invalidate the contents 8524 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 8525 ** set the cursor state to "invalid". This makes common insert operations 8526 ** slightly faster. 8527 ** 8528 ** There is a subtle but important optimization here too. When inserting 8529 ** multiple records into an intkey b-tree using a single cursor (as can 8530 ** happen while processing an "INSERT INTO ... SELECT" statement), it 8531 ** is advantageous to leave the cursor pointing to the last entry in 8532 ** the b-tree if possible. If the cursor is left pointing to the last 8533 ** entry in the table, and the next row inserted has an integer key 8534 ** larger than the largest existing key, it is possible to insert the 8535 ** row without seeking the cursor. This can be a big performance boost. 8536 */ 8537 pCur->info.nSize = 0; 8538 if( pPage->nOverflow ){ 8539 assert( rc==SQLITE_OK ); 8540 pCur->curFlags &= ~(BTCF_ValidNKey); 8541 rc = balance(pCur); 8542 8543 /* Must make sure nOverflow is reset to zero even if the balance() 8544 ** fails. Internal data structure corruption will result otherwise. 8545 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 8546 ** from trying to save the current position of the cursor. */ 8547 pCur->pPage->nOverflow = 0; 8548 pCur->eState = CURSOR_INVALID; 8549 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 8550 btreeReleaseAllCursorPages(pCur); 8551 if( pCur->pKeyInfo ){ 8552 assert( pCur->pKey==0 ); 8553 pCur->pKey = sqlite3Malloc( pX->nKey ); 8554 if( pCur->pKey==0 ){ 8555 rc = SQLITE_NOMEM; 8556 }else{ 8557 memcpy(pCur->pKey, pX->pKey, pX->nKey); 8558 } 8559 } 8560 pCur->eState = CURSOR_REQUIRESEEK; 8561 pCur->nKey = pX->nKey; 8562 } 8563 } 8564 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 8565 8566 end_insert: 8567 return rc; 8568 } 8569 8570 /* 8571 ** Delete the entry that the cursor is pointing to. 8572 ** 8573 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 8574 ** the cursor is left pointing at an arbitrary location after the delete. 8575 ** But if that bit is set, then the cursor is left in a state such that 8576 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 8577 ** as it would have been on if the call to BtreeDelete() had been omitted. 8578 ** 8579 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 8580 ** associated with a single table entry and its indexes. Only one of those 8581 ** deletes is considered the "primary" delete. The primary delete occurs 8582 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 8583 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 8584 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 8585 ** but which might be used by alternative storage engines. 8586 */ 8587 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 8588 Btree *p = pCur->pBtree; 8589 BtShared *pBt = p->pBt; 8590 int rc; /* Return code */ 8591 MemPage *pPage; /* Page to delete cell from */ 8592 unsigned char *pCell; /* Pointer to cell to delete */ 8593 int iCellIdx; /* Index of cell to delete */ 8594 int iCellDepth; /* Depth of node containing pCell */ 8595 CellInfo info; /* Size of the cell being deleted */ 8596 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ 8597 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */ 8598 8599 assert( cursorOwnsBtShared(pCur) ); 8600 assert( pBt->inTransaction==TRANS_WRITE ); 8601 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8602 assert( pCur->curFlags & BTCF_WriteFlag ); 8603 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8604 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 8605 assert( pCur->ix<pCur->pPage->nCell ); 8606 assert( pCur->eState==CURSOR_VALID ); 8607 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 8608 8609 iCellDepth = pCur->iPage; 8610 iCellIdx = pCur->ix; 8611 pPage = pCur->pPage; 8612 pCell = findCell(pPage, iCellIdx); 8613 8614 /* If the bPreserve flag is set to true, then the cursor position must 8615 ** be preserved following this delete operation. If the current delete 8616 ** will cause a b-tree rebalance, then this is done by saving the cursor 8617 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 8618 ** returning. 8619 ** 8620 ** Or, if the current delete will not cause a rebalance, then the cursor 8621 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 8622 ** before or after the deleted entry. In this case set bSkipnext to true. */ 8623 if( bPreserve ){ 8624 if( !pPage->leaf 8625 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 8626 ){ 8627 /* A b-tree rebalance will be required after deleting this entry. 8628 ** Save the cursor key. */ 8629 rc = saveCursorKey(pCur); 8630 if( rc ) return rc; 8631 }else{ 8632 bSkipnext = 1; 8633 } 8634 } 8635 8636 /* If the page containing the entry to delete is not a leaf page, move 8637 ** the cursor to the largest entry in the tree that is smaller than 8638 ** the entry being deleted. This cell will replace the cell being deleted 8639 ** from the internal node. The 'previous' entry is used for this instead 8640 ** of the 'next' entry, as the previous entry is always a part of the 8641 ** sub-tree headed by the child page of the cell being deleted. This makes 8642 ** balancing the tree following the delete operation easier. */ 8643 if( !pPage->leaf ){ 8644 rc = sqlite3BtreePrevious(pCur, 0); 8645 assert( rc!=SQLITE_DONE ); 8646 if( rc ) return rc; 8647 } 8648 8649 /* Save the positions of any other cursors open on this table before 8650 ** making any modifications. */ 8651 if( pCur->curFlags & BTCF_Multiple ){ 8652 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8653 if( rc ) return rc; 8654 } 8655 8656 /* If this is a delete operation to remove a row from a table b-tree, 8657 ** invalidate any incrblob cursors open on the row being deleted. */ 8658 if( pCur->pKeyInfo==0 ){ 8659 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 8660 } 8661 8662 /* Make the page containing the entry to be deleted writable. Then free any 8663 ** overflow pages associated with the entry and finally remove the cell 8664 ** itself from within the page. */ 8665 rc = sqlite3PagerWrite(pPage->pDbPage); 8666 if( rc ) return rc; 8667 rc = clearCell(pPage, pCell, &info); 8668 dropCell(pPage, iCellIdx, info.nSize, &rc); 8669 if( rc ) return rc; 8670 8671 /* If the cell deleted was not located on a leaf page, then the cursor 8672 ** is currently pointing to the largest entry in the sub-tree headed 8673 ** by the child-page of the cell that was just deleted from an internal 8674 ** node. The cell from the leaf node needs to be moved to the internal 8675 ** node to replace the deleted cell. */ 8676 if( !pPage->leaf ){ 8677 MemPage *pLeaf = pCur->pPage; 8678 int nCell; 8679 Pgno n; 8680 unsigned char *pTmp; 8681 8682 if( iCellDepth<pCur->iPage-1 ){ 8683 n = pCur->apPage[iCellDepth+1]->pgno; 8684 }else{ 8685 n = pCur->pPage->pgno; 8686 } 8687 pCell = findCell(pLeaf, pLeaf->nCell-1); 8688 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 8689 nCell = pLeaf->xCellSize(pLeaf, pCell); 8690 assert( MX_CELL_SIZE(pBt) >= nCell ); 8691 pTmp = pBt->pTmpSpace; 8692 assert( pTmp!=0 ); 8693 rc = sqlite3PagerWrite(pLeaf->pDbPage); 8694 if( rc==SQLITE_OK ){ 8695 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 8696 } 8697 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 8698 if( rc ) return rc; 8699 } 8700 8701 /* Balance the tree. If the entry deleted was located on a leaf page, 8702 ** then the cursor still points to that page. In this case the first 8703 ** call to balance() repairs the tree, and the if(...) condition is 8704 ** never true. 8705 ** 8706 ** Otherwise, if the entry deleted was on an internal node page, then 8707 ** pCur is pointing to the leaf page from which a cell was removed to 8708 ** replace the cell deleted from the internal node. This is slightly 8709 ** tricky as the leaf node may be underfull, and the internal node may 8710 ** be either under or overfull. In this case run the balancing algorithm 8711 ** on the leaf node first. If the balance proceeds far enough up the 8712 ** tree that we can be sure that any problem in the internal node has 8713 ** been corrected, so be it. Otherwise, after balancing the leaf node, 8714 ** walk the cursor up the tree to the internal node and balance it as 8715 ** well. */ 8716 rc = balance(pCur); 8717 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 8718 releasePageNotNull(pCur->pPage); 8719 pCur->iPage--; 8720 while( pCur->iPage>iCellDepth ){ 8721 releasePage(pCur->apPage[pCur->iPage--]); 8722 } 8723 pCur->pPage = pCur->apPage[pCur->iPage]; 8724 rc = balance(pCur); 8725 } 8726 8727 if( rc==SQLITE_OK ){ 8728 if( bSkipnext ){ 8729 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); 8730 assert( pPage==pCur->pPage || CORRUPT_DB ); 8731 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 8732 pCur->eState = CURSOR_SKIPNEXT; 8733 if( iCellIdx>=pPage->nCell ){ 8734 pCur->skipNext = -1; 8735 pCur->ix = pPage->nCell-1; 8736 }else{ 8737 pCur->skipNext = 1; 8738 } 8739 }else{ 8740 rc = moveToRoot(pCur); 8741 if( bPreserve ){ 8742 btreeReleaseAllCursorPages(pCur); 8743 pCur->eState = CURSOR_REQUIRESEEK; 8744 } 8745 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 8746 } 8747 } 8748 return rc; 8749 } 8750 8751 /* 8752 ** Create a new BTree table. Write into *piTable the page 8753 ** number for the root page of the new table. 8754 ** 8755 ** The type of type is determined by the flags parameter. Only the 8756 ** following values of flags are currently in use. Other values for 8757 ** flags might not work: 8758 ** 8759 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 8760 ** BTREE_ZERODATA Used for SQL indices 8761 */ 8762 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ 8763 BtShared *pBt = p->pBt; 8764 MemPage *pRoot; 8765 Pgno pgnoRoot; 8766 int rc; 8767 int ptfFlags; /* Page-type flage for the root page of new table */ 8768 8769 assert( sqlite3BtreeHoldsMutex(p) ); 8770 assert( pBt->inTransaction==TRANS_WRITE ); 8771 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8772 8773 #ifdef SQLITE_OMIT_AUTOVACUUM 8774 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 8775 if( rc ){ 8776 return rc; 8777 } 8778 #else 8779 if( pBt->autoVacuum ){ 8780 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 8781 MemPage *pPageMove; /* The page to move to. */ 8782 8783 /* Creating a new table may probably require moving an existing database 8784 ** to make room for the new tables root page. In case this page turns 8785 ** out to be an overflow page, delete all overflow page-map caches 8786 ** held by open cursors. 8787 */ 8788 invalidateAllOverflowCache(pBt); 8789 8790 /* Read the value of meta[3] from the database to determine where the 8791 ** root page of the new table should go. meta[3] is the largest root-page 8792 ** created so far, so the new root-page is (meta[3]+1). 8793 */ 8794 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 8795 pgnoRoot++; 8796 8797 /* The new root-page may not be allocated on a pointer-map page, or the 8798 ** PENDING_BYTE page. 8799 */ 8800 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 8801 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 8802 pgnoRoot++; 8803 } 8804 assert( pgnoRoot>=3 || CORRUPT_DB ); 8805 testcase( pgnoRoot<3 ); 8806 8807 /* Allocate a page. The page that currently resides at pgnoRoot will 8808 ** be moved to the allocated page (unless the allocated page happens 8809 ** to reside at pgnoRoot). 8810 */ 8811 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 8812 if( rc!=SQLITE_OK ){ 8813 return rc; 8814 } 8815 8816 if( pgnoMove!=pgnoRoot ){ 8817 /* pgnoRoot is the page that will be used for the root-page of 8818 ** the new table (assuming an error did not occur). But we were 8819 ** allocated pgnoMove. If required (i.e. if it was not allocated 8820 ** by extending the file), the current page at position pgnoMove 8821 ** is already journaled. 8822 */ 8823 u8 eType = 0; 8824 Pgno iPtrPage = 0; 8825 8826 /* Save the positions of any open cursors. This is required in 8827 ** case they are holding a reference to an xFetch reference 8828 ** corresponding to page pgnoRoot. */ 8829 rc = saveAllCursors(pBt, 0, 0); 8830 releasePage(pPageMove); 8831 if( rc!=SQLITE_OK ){ 8832 return rc; 8833 } 8834 8835 /* Move the page currently at pgnoRoot to pgnoMove. */ 8836 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 8837 if( rc!=SQLITE_OK ){ 8838 return rc; 8839 } 8840 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 8841 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 8842 rc = SQLITE_CORRUPT_BKPT; 8843 } 8844 if( rc!=SQLITE_OK ){ 8845 releasePage(pRoot); 8846 return rc; 8847 } 8848 assert( eType!=PTRMAP_ROOTPAGE ); 8849 assert( eType!=PTRMAP_FREEPAGE ); 8850 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 8851 releasePage(pRoot); 8852 8853 /* Obtain the page at pgnoRoot */ 8854 if( rc!=SQLITE_OK ){ 8855 return rc; 8856 } 8857 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 8858 if( rc!=SQLITE_OK ){ 8859 return rc; 8860 } 8861 rc = sqlite3PagerWrite(pRoot->pDbPage); 8862 if( rc!=SQLITE_OK ){ 8863 releasePage(pRoot); 8864 return rc; 8865 } 8866 }else{ 8867 pRoot = pPageMove; 8868 } 8869 8870 /* Update the pointer-map and meta-data with the new root-page number. */ 8871 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 8872 if( rc ){ 8873 releasePage(pRoot); 8874 return rc; 8875 } 8876 8877 /* When the new root page was allocated, page 1 was made writable in 8878 ** order either to increase the database filesize, or to decrement the 8879 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 8880 */ 8881 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 8882 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 8883 if( NEVER(rc) ){ 8884 releasePage(pRoot); 8885 return rc; 8886 } 8887 8888 }else{ 8889 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 8890 if( rc ) return rc; 8891 } 8892 #endif 8893 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8894 if( createTabFlags & BTREE_INTKEY ){ 8895 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 8896 }else{ 8897 ptfFlags = PTF_ZERODATA | PTF_LEAF; 8898 } 8899 zeroPage(pRoot, ptfFlags); 8900 sqlite3PagerUnref(pRoot->pDbPage); 8901 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 8902 *piTable = (int)pgnoRoot; 8903 return SQLITE_OK; 8904 } 8905 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ 8906 int rc; 8907 sqlite3BtreeEnter(p); 8908 rc = btreeCreateTable(p, piTable, flags); 8909 sqlite3BtreeLeave(p); 8910 return rc; 8911 } 8912 8913 /* 8914 ** Erase the given database page and all its children. Return 8915 ** the page to the freelist. 8916 */ 8917 static int clearDatabasePage( 8918 BtShared *pBt, /* The BTree that contains the table */ 8919 Pgno pgno, /* Page number to clear */ 8920 int freePageFlag, /* Deallocate page if true */ 8921 int *pnChange /* Add number of Cells freed to this counter */ 8922 ){ 8923 MemPage *pPage; 8924 int rc; 8925 unsigned char *pCell; 8926 int i; 8927 int hdr; 8928 CellInfo info; 8929 8930 assert( sqlite3_mutex_held(pBt->mutex) ); 8931 if( pgno>btreePagecount(pBt) ){ 8932 return SQLITE_CORRUPT_BKPT; 8933 } 8934 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 8935 if( rc ) return rc; 8936 if( pPage->bBusy ){ 8937 rc = SQLITE_CORRUPT_BKPT; 8938 goto cleardatabasepage_out; 8939 } 8940 pPage->bBusy = 1; 8941 hdr = pPage->hdrOffset; 8942 for(i=0; i<pPage->nCell; i++){ 8943 pCell = findCell(pPage, i); 8944 if( !pPage->leaf ){ 8945 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 8946 if( rc ) goto cleardatabasepage_out; 8947 } 8948 rc = clearCell(pPage, pCell, &info); 8949 if( rc ) goto cleardatabasepage_out; 8950 } 8951 if( !pPage->leaf ){ 8952 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 8953 if( rc ) goto cleardatabasepage_out; 8954 }else if( pnChange ){ 8955 assert( pPage->intKey || CORRUPT_DB ); 8956 testcase( !pPage->intKey ); 8957 *pnChange += pPage->nCell; 8958 } 8959 if( freePageFlag ){ 8960 freePage(pPage, &rc); 8961 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 8962 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 8963 } 8964 8965 cleardatabasepage_out: 8966 pPage->bBusy = 0; 8967 releasePage(pPage); 8968 return rc; 8969 } 8970 8971 /* 8972 ** Delete all information from a single table in the database. iTable is 8973 ** the page number of the root of the table. After this routine returns, 8974 ** the root page is empty, but still exists. 8975 ** 8976 ** This routine will fail with SQLITE_LOCKED if there are any open 8977 ** read cursors on the table. Open write cursors are moved to the 8978 ** root of the table. 8979 ** 8980 ** If pnChange is not NULL, then table iTable must be an intkey table. The 8981 ** integer value pointed to by pnChange is incremented by the number of 8982 ** entries in the table. 8983 */ 8984 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ 8985 int rc; 8986 BtShared *pBt = p->pBt; 8987 sqlite3BtreeEnter(p); 8988 assert( p->inTrans==TRANS_WRITE ); 8989 8990 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 8991 8992 if( SQLITE_OK==rc ){ 8993 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 8994 ** is the root of a table b-tree - if it is not, the following call is 8995 ** a no-op). */ 8996 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 8997 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 8998 } 8999 sqlite3BtreeLeave(p); 9000 return rc; 9001 } 9002 9003 /* 9004 ** Delete all information from the single table that pCur is open on. 9005 ** 9006 ** This routine only work for pCur on an ephemeral table. 9007 */ 9008 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9009 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9010 } 9011 9012 /* 9013 ** Erase all information in a table and add the root of the table to 9014 ** the freelist. Except, the root of the principle table (the one on 9015 ** page 1) is never added to the freelist. 9016 ** 9017 ** This routine will fail with SQLITE_LOCKED if there are any open 9018 ** cursors on the table. 9019 ** 9020 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9021 ** root page in the database file, then the last root page 9022 ** in the database file is moved into the slot formerly occupied by 9023 ** iTable and that last slot formerly occupied by the last root page 9024 ** is added to the freelist instead of iTable. In this say, all 9025 ** root pages are kept at the beginning of the database file, which 9026 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9027 ** page number that used to be the last root page in the file before 9028 ** the move. If no page gets moved, *piMoved is set to 0. 9029 ** The last root page is recorded in meta[3] and the value of 9030 ** meta[3] is updated by this procedure. 9031 */ 9032 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9033 int rc; 9034 MemPage *pPage = 0; 9035 BtShared *pBt = p->pBt; 9036 9037 assert( sqlite3BtreeHoldsMutex(p) ); 9038 assert( p->inTrans==TRANS_WRITE ); 9039 assert( iTable>=2 ); 9040 9041 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9042 if( rc ) return rc; 9043 rc = sqlite3BtreeClearTable(p, iTable, 0); 9044 if( rc ){ 9045 releasePage(pPage); 9046 return rc; 9047 } 9048 9049 *piMoved = 0; 9050 9051 #ifdef SQLITE_OMIT_AUTOVACUUM 9052 freePage(pPage, &rc); 9053 releasePage(pPage); 9054 #else 9055 if( pBt->autoVacuum ){ 9056 Pgno maxRootPgno; 9057 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9058 9059 if( iTable==maxRootPgno ){ 9060 /* If the table being dropped is the table with the largest root-page 9061 ** number in the database, put the root page on the free list. 9062 */ 9063 freePage(pPage, &rc); 9064 releasePage(pPage); 9065 if( rc!=SQLITE_OK ){ 9066 return rc; 9067 } 9068 }else{ 9069 /* The table being dropped does not have the largest root-page 9070 ** number in the database. So move the page that does into the 9071 ** gap left by the deleted root-page. 9072 */ 9073 MemPage *pMove; 9074 releasePage(pPage); 9075 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9076 if( rc!=SQLITE_OK ){ 9077 return rc; 9078 } 9079 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9080 releasePage(pMove); 9081 if( rc!=SQLITE_OK ){ 9082 return rc; 9083 } 9084 pMove = 0; 9085 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9086 freePage(pMove, &rc); 9087 releasePage(pMove); 9088 if( rc!=SQLITE_OK ){ 9089 return rc; 9090 } 9091 *piMoved = maxRootPgno; 9092 } 9093 9094 /* Set the new 'max-root-page' value in the database header. This 9095 ** is the old value less one, less one more if that happens to 9096 ** be a root-page number, less one again if that is the 9097 ** PENDING_BYTE_PAGE. 9098 */ 9099 maxRootPgno--; 9100 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9101 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9102 maxRootPgno--; 9103 } 9104 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9105 9106 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9107 }else{ 9108 freePage(pPage, &rc); 9109 releasePage(pPage); 9110 } 9111 #endif 9112 return rc; 9113 } 9114 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9115 int rc; 9116 sqlite3BtreeEnter(p); 9117 rc = btreeDropTable(p, iTable, piMoved); 9118 sqlite3BtreeLeave(p); 9119 return rc; 9120 } 9121 9122 9123 /* 9124 ** This function may only be called if the b-tree connection already 9125 ** has a read or write transaction open on the database. 9126 ** 9127 ** Read the meta-information out of a database file. Meta[0] 9128 ** is the number of free pages currently in the database. Meta[1] 9129 ** through meta[15] are available for use by higher layers. Meta[0] 9130 ** is read-only, the others are read/write. 9131 ** 9132 ** The schema layer numbers meta values differently. At the schema 9133 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9134 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9135 ** 9136 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9137 ** of reading the value out of the header, it instead loads the "DataVersion" 9138 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9139 ** database file. It is a number computed by the pager. But its access 9140 ** pattern is the same as header meta values, and so it is convenient to 9141 ** read it from this routine. 9142 */ 9143 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9144 BtShared *pBt = p->pBt; 9145 9146 sqlite3BtreeEnter(p); 9147 assert( p->inTrans>TRANS_NONE ); 9148 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); 9149 assert( pBt->pPage1 ); 9150 assert( idx>=0 && idx<=15 ); 9151 9152 if( idx==BTREE_DATA_VERSION ){ 9153 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion; 9154 }else{ 9155 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 9156 } 9157 9158 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 9159 ** database, mark the database as read-only. */ 9160 #ifdef SQLITE_OMIT_AUTOVACUUM 9161 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 9162 pBt->btsFlags |= BTS_READ_ONLY; 9163 } 9164 #endif 9165 9166 sqlite3BtreeLeave(p); 9167 } 9168 9169 /* 9170 ** Write meta-information back into the database. Meta[0] is 9171 ** read-only and may not be written. 9172 */ 9173 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 9174 BtShared *pBt = p->pBt; 9175 unsigned char *pP1; 9176 int rc; 9177 assert( idx>=1 && idx<=15 ); 9178 sqlite3BtreeEnter(p); 9179 assert( p->inTrans==TRANS_WRITE ); 9180 assert( pBt->pPage1!=0 ); 9181 pP1 = pBt->pPage1->aData; 9182 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9183 if( rc==SQLITE_OK ){ 9184 put4byte(&pP1[36 + idx*4], iMeta); 9185 #ifndef SQLITE_OMIT_AUTOVACUUM 9186 if( idx==BTREE_INCR_VACUUM ){ 9187 assert( pBt->autoVacuum || iMeta==0 ); 9188 assert( iMeta==0 || iMeta==1 ); 9189 pBt->incrVacuum = (u8)iMeta; 9190 } 9191 #endif 9192 } 9193 sqlite3BtreeLeave(p); 9194 return rc; 9195 } 9196 9197 #ifndef SQLITE_OMIT_BTREECOUNT 9198 /* 9199 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 9200 ** number of entries in the b-tree and write the result to *pnEntry. 9201 ** 9202 ** SQLITE_OK is returned if the operation is successfully executed. 9203 ** Otherwise, if an error is encountered (i.e. an IO error or database 9204 ** corruption) an SQLite error code is returned. 9205 */ 9206 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ 9207 i64 nEntry = 0; /* Value to return in *pnEntry */ 9208 int rc; /* Return code */ 9209 9210 rc = moveToRoot(pCur); 9211 if( rc==SQLITE_EMPTY ){ 9212 *pnEntry = 0; 9213 return SQLITE_OK; 9214 } 9215 9216 /* Unless an error occurs, the following loop runs one iteration for each 9217 ** page in the B-Tree structure (not including overflow pages). 9218 */ 9219 while( rc==SQLITE_OK ){ 9220 int iIdx; /* Index of child node in parent */ 9221 MemPage *pPage; /* Current page of the b-tree */ 9222 9223 /* If this is a leaf page or the tree is not an int-key tree, then 9224 ** this page contains countable entries. Increment the entry counter 9225 ** accordingly. 9226 */ 9227 pPage = pCur->pPage; 9228 if( pPage->leaf || !pPage->intKey ){ 9229 nEntry += pPage->nCell; 9230 } 9231 9232 /* pPage is a leaf node. This loop navigates the cursor so that it 9233 ** points to the first interior cell that it points to the parent of 9234 ** the next page in the tree that has not yet been visited. The 9235 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 9236 ** of the page, or to the number of cells in the page if the next page 9237 ** to visit is the right-child of its parent. 9238 ** 9239 ** If all pages in the tree have been visited, return SQLITE_OK to the 9240 ** caller. 9241 */ 9242 if( pPage->leaf ){ 9243 do { 9244 if( pCur->iPage==0 ){ 9245 /* All pages of the b-tree have been visited. Return successfully. */ 9246 *pnEntry = nEntry; 9247 return moveToRoot(pCur); 9248 } 9249 moveToParent(pCur); 9250 }while ( pCur->ix>=pCur->pPage->nCell ); 9251 9252 pCur->ix++; 9253 pPage = pCur->pPage; 9254 } 9255 9256 /* Descend to the child node of the cell that the cursor currently 9257 ** points at. This is the right-child if (iIdx==pPage->nCell). 9258 */ 9259 iIdx = pCur->ix; 9260 if( iIdx==pPage->nCell ){ 9261 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 9262 }else{ 9263 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 9264 } 9265 } 9266 9267 /* An error has occurred. Return an error code. */ 9268 return rc; 9269 } 9270 #endif 9271 9272 /* 9273 ** Return the pager associated with a BTree. This routine is used for 9274 ** testing and debugging only. 9275 */ 9276 Pager *sqlite3BtreePager(Btree *p){ 9277 return p->pBt->pPager; 9278 } 9279 9280 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9281 /* 9282 ** Append a message to the error message string. 9283 */ 9284 static void checkAppendMsg( 9285 IntegrityCk *pCheck, 9286 const char *zFormat, 9287 ... 9288 ){ 9289 va_list ap; 9290 if( !pCheck->mxErr ) return; 9291 pCheck->mxErr--; 9292 pCheck->nErr++; 9293 va_start(ap, zFormat); 9294 if( pCheck->errMsg.nChar ){ 9295 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 9296 } 9297 if( pCheck->zPfx ){ 9298 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 9299 } 9300 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 9301 va_end(ap); 9302 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 9303 pCheck->mallocFailed = 1; 9304 } 9305 } 9306 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9307 9308 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9309 9310 /* 9311 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 9312 ** corresponds to page iPg is already set. 9313 */ 9314 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9315 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9316 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 9317 } 9318 9319 /* 9320 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 9321 */ 9322 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9323 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9324 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 9325 } 9326 9327 9328 /* 9329 ** Add 1 to the reference count for page iPage. If this is the second 9330 ** reference to the page, add an error message to pCheck->zErrMsg. 9331 ** Return 1 if there are 2 or more references to the page and 0 if 9332 ** if this is the first reference to the page. 9333 ** 9334 ** Also check that the page number is in bounds. 9335 */ 9336 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 9337 if( iPage>pCheck->nPage || iPage==0 ){ 9338 checkAppendMsg(pCheck, "invalid page number %d", iPage); 9339 return 1; 9340 } 9341 if( getPageReferenced(pCheck, iPage) ){ 9342 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 9343 return 1; 9344 } 9345 setPageReferenced(pCheck, iPage); 9346 return 0; 9347 } 9348 9349 #ifndef SQLITE_OMIT_AUTOVACUUM 9350 /* 9351 ** Check that the entry in the pointer-map for page iChild maps to 9352 ** page iParent, pointer type ptrType. If not, append an error message 9353 ** to pCheck. 9354 */ 9355 static void checkPtrmap( 9356 IntegrityCk *pCheck, /* Integrity check context */ 9357 Pgno iChild, /* Child page number */ 9358 u8 eType, /* Expected pointer map type */ 9359 Pgno iParent /* Expected pointer map parent page number */ 9360 ){ 9361 int rc; 9362 u8 ePtrmapType; 9363 Pgno iPtrmapParent; 9364 9365 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 9366 if( rc!=SQLITE_OK ){ 9367 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; 9368 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 9369 return; 9370 } 9371 9372 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 9373 checkAppendMsg(pCheck, 9374 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 9375 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 9376 } 9377 } 9378 #endif 9379 9380 /* 9381 ** Check the integrity of the freelist or of an overflow page list. 9382 ** Verify that the number of pages on the list is N. 9383 */ 9384 static void checkList( 9385 IntegrityCk *pCheck, /* Integrity checking context */ 9386 int isFreeList, /* True for a freelist. False for overflow page list */ 9387 int iPage, /* Page number for first page in the list */ 9388 int N /* Expected number of pages in the list */ 9389 ){ 9390 int i; 9391 int expected = N; 9392 int nErrAtStart = pCheck->nErr; 9393 while( iPage!=0 && pCheck->mxErr ){ 9394 DbPage *pOvflPage; 9395 unsigned char *pOvflData; 9396 if( checkRef(pCheck, iPage) ) break; 9397 N--; 9398 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 9399 checkAppendMsg(pCheck, "failed to get page %d", iPage); 9400 break; 9401 } 9402 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 9403 if( isFreeList ){ 9404 int n = get4byte(&pOvflData[4]); 9405 #ifndef SQLITE_OMIT_AUTOVACUUM 9406 if( pCheck->pBt->autoVacuum ){ 9407 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 9408 } 9409 #endif 9410 if( n>(int)pCheck->pBt->usableSize/4-2 ){ 9411 checkAppendMsg(pCheck, 9412 "freelist leaf count too big on page %d", iPage); 9413 N--; 9414 }else{ 9415 for(i=0; i<n; i++){ 9416 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 9417 #ifndef SQLITE_OMIT_AUTOVACUUM 9418 if( pCheck->pBt->autoVacuum ){ 9419 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 9420 } 9421 #endif 9422 checkRef(pCheck, iFreePage); 9423 } 9424 N -= n; 9425 } 9426 } 9427 #ifndef SQLITE_OMIT_AUTOVACUUM 9428 else{ 9429 /* If this database supports auto-vacuum and iPage is not the last 9430 ** page in this overflow list, check that the pointer-map entry for 9431 ** the following page matches iPage. 9432 */ 9433 if( pCheck->pBt->autoVacuum && N>0 ){ 9434 i = get4byte(pOvflData); 9435 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 9436 } 9437 } 9438 #endif 9439 iPage = get4byte(pOvflData); 9440 sqlite3PagerUnref(pOvflPage); 9441 } 9442 if( N && nErrAtStart==pCheck->nErr ){ 9443 checkAppendMsg(pCheck, 9444 "%s is %d but should be %d", 9445 isFreeList ? "size" : "overflow list length", 9446 expected-N, expected); 9447 } 9448 } 9449 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9450 9451 /* 9452 ** An implementation of a min-heap. 9453 ** 9454 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 9455 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 9456 ** and aHeap[N*2+1]. 9457 ** 9458 ** The heap property is this: Every node is less than or equal to both 9459 ** of its daughter nodes. A consequence of the heap property is that the 9460 ** root node aHeap[1] is always the minimum value currently in the heap. 9461 ** 9462 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 9463 ** the heap, preserving the heap property. The btreeHeapPull() routine 9464 ** removes the root element from the heap (the minimum value in the heap) 9465 ** and then moves other nodes around as necessary to preserve the heap 9466 ** property. 9467 ** 9468 ** This heap is used for cell overlap and coverage testing. Each u32 9469 ** entry represents the span of a cell or freeblock on a btree page. 9470 ** The upper 16 bits are the index of the first byte of a range and the 9471 ** lower 16 bits are the index of the last byte of that range. 9472 */ 9473 static void btreeHeapInsert(u32 *aHeap, u32 x){ 9474 u32 j, i = ++aHeap[0]; 9475 aHeap[i] = x; 9476 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 9477 x = aHeap[j]; 9478 aHeap[j] = aHeap[i]; 9479 aHeap[i] = x; 9480 i = j; 9481 } 9482 } 9483 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 9484 u32 j, i, x; 9485 if( (x = aHeap[0])==0 ) return 0; 9486 *pOut = aHeap[1]; 9487 aHeap[1] = aHeap[x]; 9488 aHeap[x] = 0xffffffff; 9489 aHeap[0]--; 9490 i = 1; 9491 while( (j = i*2)<=aHeap[0] ){ 9492 if( aHeap[j]>aHeap[j+1] ) j++; 9493 if( aHeap[i]<aHeap[j] ) break; 9494 x = aHeap[i]; 9495 aHeap[i] = aHeap[j]; 9496 aHeap[j] = x; 9497 i = j; 9498 } 9499 return 1; 9500 } 9501 9502 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9503 /* 9504 ** Do various sanity checks on a single page of a tree. Return 9505 ** the tree depth. Root pages return 0. Parents of root pages 9506 ** return 1, and so forth. 9507 ** 9508 ** These checks are done: 9509 ** 9510 ** 1. Make sure that cells and freeblocks do not overlap 9511 ** but combine to completely cover the page. 9512 ** 2. Make sure integer cell keys are in order. 9513 ** 3. Check the integrity of overflow pages. 9514 ** 4. Recursively call checkTreePage on all children. 9515 ** 5. Verify that the depth of all children is the same. 9516 */ 9517 static int checkTreePage( 9518 IntegrityCk *pCheck, /* Context for the sanity check */ 9519 int iPage, /* Page number of the page to check */ 9520 i64 *piMinKey, /* Write minimum integer primary key here */ 9521 i64 maxKey /* Error if integer primary key greater than this */ 9522 ){ 9523 MemPage *pPage = 0; /* The page being analyzed */ 9524 int i; /* Loop counter */ 9525 int rc; /* Result code from subroutine call */ 9526 int depth = -1, d2; /* Depth of a subtree */ 9527 int pgno; /* Page number */ 9528 int nFrag; /* Number of fragmented bytes on the page */ 9529 int hdr; /* Offset to the page header */ 9530 int cellStart; /* Offset to the start of the cell pointer array */ 9531 int nCell; /* Number of cells */ 9532 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 9533 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 9534 ** False if IPK must be strictly less than maxKey */ 9535 u8 *data; /* Page content */ 9536 u8 *pCell; /* Cell content */ 9537 u8 *pCellIdx; /* Next element of the cell pointer array */ 9538 BtShared *pBt; /* The BtShared object that owns pPage */ 9539 u32 pc; /* Address of a cell */ 9540 u32 usableSize; /* Usable size of the page */ 9541 u32 contentOffset; /* Offset to the start of the cell content area */ 9542 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 9543 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 9544 const char *saved_zPfx = pCheck->zPfx; 9545 int saved_v1 = pCheck->v1; 9546 int saved_v2 = pCheck->v2; 9547 u8 savedIsInit = 0; 9548 9549 /* Check that the page exists 9550 */ 9551 pBt = pCheck->pBt; 9552 usableSize = pBt->usableSize; 9553 if( iPage==0 ) return 0; 9554 if( checkRef(pCheck, iPage) ) return 0; 9555 pCheck->zPfx = "Page %d: "; 9556 pCheck->v1 = iPage; 9557 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ 9558 checkAppendMsg(pCheck, 9559 "unable to get the page. error code=%d", rc); 9560 goto end_of_check; 9561 } 9562 9563 /* Clear MemPage.isInit to make sure the corruption detection code in 9564 ** btreeInitPage() is executed. */ 9565 savedIsInit = pPage->isInit; 9566 pPage->isInit = 0; 9567 if( (rc = btreeInitPage(pPage))!=0 ){ 9568 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 9569 checkAppendMsg(pCheck, 9570 "btreeInitPage() returns error code %d", rc); 9571 goto end_of_check; 9572 } 9573 data = pPage->aData; 9574 hdr = pPage->hdrOffset; 9575 9576 /* Set up for cell analysis */ 9577 pCheck->zPfx = "On tree page %d cell %d: "; 9578 contentOffset = get2byteNotZero(&data[hdr+5]); 9579 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 9580 9581 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 9582 ** number of cells on the page. */ 9583 nCell = get2byte(&data[hdr+3]); 9584 assert( pPage->nCell==nCell ); 9585 9586 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 9587 ** immediately follows the b-tree page header. */ 9588 cellStart = hdr + 12 - 4*pPage->leaf; 9589 assert( pPage->aCellIdx==&data[cellStart] ); 9590 pCellIdx = &data[cellStart + 2*(nCell-1)]; 9591 9592 if( !pPage->leaf ){ 9593 /* Analyze the right-child page of internal pages */ 9594 pgno = get4byte(&data[hdr+8]); 9595 #ifndef SQLITE_OMIT_AUTOVACUUM 9596 if( pBt->autoVacuum ){ 9597 pCheck->zPfx = "On page %d at right child: "; 9598 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9599 } 9600 #endif 9601 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9602 keyCanBeEqual = 0; 9603 }else{ 9604 /* For leaf pages, the coverage check will occur in the same loop 9605 ** as the other cell checks, so initialize the heap. */ 9606 heap = pCheck->heap; 9607 heap[0] = 0; 9608 } 9609 9610 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 9611 ** integer offsets to the cell contents. */ 9612 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 9613 CellInfo info; 9614 9615 /* Check cell size */ 9616 pCheck->v2 = i; 9617 assert( pCellIdx==&data[cellStart + i*2] ); 9618 pc = get2byteAligned(pCellIdx); 9619 pCellIdx -= 2; 9620 if( pc<contentOffset || pc>usableSize-4 ){ 9621 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 9622 pc, contentOffset, usableSize-4); 9623 doCoverageCheck = 0; 9624 continue; 9625 } 9626 pCell = &data[pc]; 9627 pPage->xParseCell(pPage, pCell, &info); 9628 if( pc+info.nSize>usableSize ){ 9629 checkAppendMsg(pCheck, "Extends off end of page"); 9630 doCoverageCheck = 0; 9631 continue; 9632 } 9633 9634 /* Check for integer primary key out of range */ 9635 if( pPage->intKey ){ 9636 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 9637 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 9638 } 9639 maxKey = info.nKey; 9640 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 9641 } 9642 9643 /* Check the content overflow list */ 9644 if( info.nPayload>info.nLocal ){ 9645 int nPage; /* Number of pages on the overflow chain */ 9646 Pgno pgnoOvfl; /* First page of the overflow chain */ 9647 assert( pc + info.nSize - 4 <= usableSize ); 9648 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 9649 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 9650 #ifndef SQLITE_OMIT_AUTOVACUUM 9651 if( pBt->autoVacuum ){ 9652 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 9653 } 9654 #endif 9655 checkList(pCheck, 0, pgnoOvfl, nPage); 9656 } 9657 9658 if( !pPage->leaf ){ 9659 /* Check sanity of left child page for internal pages */ 9660 pgno = get4byte(pCell); 9661 #ifndef SQLITE_OMIT_AUTOVACUUM 9662 if( pBt->autoVacuum ){ 9663 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9664 } 9665 #endif 9666 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9667 keyCanBeEqual = 0; 9668 if( d2!=depth ){ 9669 checkAppendMsg(pCheck, "Child page depth differs"); 9670 depth = d2; 9671 } 9672 }else{ 9673 /* Populate the coverage-checking heap for leaf pages */ 9674 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 9675 } 9676 } 9677 *piMinKey = maxKey; 9678 9679 /* Check for complete coverage of the page 9680 */ 9681 pCheck->zPfx = 0; 9682 if( doCoverageCheck && pCheck->mxErr>0 ){ 9683 /* For leaf pages, the min-heap has already been initialized and the 9684 ** cells have already been inserted. But for internal pages, that has 9685 ** not yet been done, so do it now */ 9686 if( !pPage->leaf ){ 9687 heap = pCheck->heap; 9688 heap[0] = 0; 9689 for(i=nCell-1; i>=0; i--){ 9690 u32 size; 9691 pc = get2byteAligned(&data[cellStart+i*2]); 9692 size = pPage->xCellSize(pPage, &data[pc]); 9693 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 9694 } 9695 } 9696 /* Add the freeblocks to the min-heap 9697 ** 9698 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 9699 ** is the offset of the first freeblock, or zero if there are no 9700 ** freeblocks on the page. 9701 */ 9702 i = get2byte(&data[hdr+1]); 9703 while( i>0 ){ 9704 int size, j; 9705 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */ 9706 size = get2byte(&data[i+2]); 9707 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */ 9708 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 9709 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 9710 ** big-endian integer which is the offset in the b-tree page of the next 9711 ** freeblock in the chain, or zero if the freeblock is the last on the 9712 ** chain. */ 9713 j = get2byte(&data[i]); 9714 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 9715 ** increasing offset. */ 9716 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ 9717 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */ 9718 i = j; 9719 } 9720 /* Analyze the min-heap looking for overlap between cells and/or 9721 ** freeblocks, and counting the number of untracked bytes in nFrag. 9722 ** 9723 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 9724 ** There is an implied first entry the covers the page header, the cell 9725 ** pointer index, and the gap between the cell pointer index and the start 9726 ** of cell content. 9727 ** 9728 ** The loop below pulls entries from the min-heap in order and compares 9729 ** the start_address against the previous end_address. If there is an 9730 ** overlap, that means bytes are used multiple times. If there is a gap, 9731 ** that gap is added to the fragmentation count. 9732 */ 9733 nFrag = 0; 9734 prev = contentOffset - 1; /* Implied first min-heap entry */ 9735 while( btreeHeapPull(heap,&x) ){ 9736 if( (prev&0xffff)>=(x>>16) ){ 9737 checkAppendMsg(pCheck, 9738 "Multiple uses for byte %u of page %d", x>>16, iPage); 9739 break; 9740 }else{ 9741 nFrag += (x>>16) - (prev&0xffff) - 1; 9742 prev = x; 9743 } 9744 } 9745 nFrag += usableSize - (prev&0xffff) - 1; 9746 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 9747 ** is stored in the fifth field of the b-tree page header. 9748 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 9749 ** number of fragmented free bytes within the cell content area. 9750 */ 9751 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 9752 checkAppendMsg(pCheck, 9753 "Fragmentation of %d bytes reported as %d on page %d", 9754 nFrag, data[hdr+7], iPage); 9755 } 9756 } 9757 9758 end_of_check: 9759 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 9760 releasePage(pPage); 9761 pCheck->zPfx = saved_zPfx; 9762 pCheck->v1 = saved_v1; 9763 pCheck->v2 = saved_v2; 9764 return depth+1; 9765 } 9766 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9767 9768 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9769 /* 9770 ** This routine does a complete check of the given BTree file. aRoot[] is 9771 ** an array of pages numbers were each page number is the root page of 9772 ** a table. nRoot is the number of entries in aRoot. 9773 ** 9774 ** A read-only or read-write transaction must be opened before calling 9775 ** this function. 9776 ** 9777 ** Write the number of error seen in *pnErr. Except for some memory 9778 ** allocation errors, an error message held in memory obtained from 9779 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 9780 ** returned. If a memory allocation error occurs, NULL is returned. 9781 */ 9782 char *sqlite3BtreeIntegrityCheck( 9783 Btree *p, /* The btree to be checked */ 9784 int *aRoot, /* An array of root pages numbers for individual trees */ 9785 int nRoot, /* Number of entries in aRoot[] */ 9786 int mxErr, /* Stop reporting errors after this many */ 9787 int *pnErr /* Write number of errors seen to this variable */ 9788 ){ 9789 Pgno i; 9790 IntegrityCk sCheck; 9791 BtShared *pBt = p->pBt; 9792 int savedDbFlags = pBt->db->flags; 9793 char zErr[100]; 9794 VVA_ONLY( int nRef ); 9795 9796 sqlite3BtreeEnter(p); 9797 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 9798 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 9799 assert( nRef>=0 ); 9800 sCheck.pBt = pBt; 9801 sCheck.pPager = pBt->pPager; 9802 sCheck.nPage = btreePagecount(sCheck.pBt); 9803 sCheck.mxErr = mxErr; 9804 sCheck.nErr = 0; 9805 sCheck.mallocFailed = 0; 9806 sCheck.zPfx = 0; 9807 sCheck.v1 = 0; 9808 sCheck.v2 = 0; 9809 sCheck.aPgRef = 0; 9810 sCheck.heap = 0; 9811 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 9812 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 9813 if( sCheck.nPage==0 ){ 9814 goto integrity_ck_cleanup; 9815 } 9816 9817 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 9818 if( !sCheck.aPgRef ){ 9819 sCheck.mallocFailed = 1; 9820 goto integrity_ck_cleanup; 9821 } 9822 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 9823 if( sCheck.heap==0 ){ 9824 sCheck.mallocFailed = 1; 9825 goto integrity_ck_cleanup; 9826 } 9827 9828 i = PENDING_BYTE_PAGE(pBt); 9829 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 9830 9831 /* Check the integrity of the freelist 9832 */ 9833 sCheck.zPfx = "Main freelist: "; 9834 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 9835 get4byte(&pBt->pPage1->aData[36])); 9836 sCheck.zPfx = 0; 9837 9838 /* Check all the tables. 9839 */ 9840 #ifndef SQLITE_OMIT_AUTOVACUUM 9841 if( pBt->autoVacuum ){ 9842 int mx = 0; 9843 int mxInHdr; 9844 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 9845 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 9846 if( mx!=mxInHdr ){ 9847 checkAppendMsg(&sCheck, 9848 "max rootpage (%d) disagrees with header (%d)", 9849 mx, mxInHdr 9850 ); 9851 } 9852 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 9853 checkAppendMsg(&sCheck, 9854 "incremental_vacuum enabled with a max rootpage of zero" 9855 ); 9856 } 9857 #endif 9858 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 9859 pBt->db->flags &= ~SQLITE_CellSizeCk; 9860 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 9861 i64 notUsed; 9862 if( aRoot[i]==0 ) continue; 9863 #ifndef SQLITE_OMIT_AUTOVACUUM 9864 if( pBt->autoVacuum && aRoot[i]>1 ){ 9865 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 9866 } 9867 #endif 9868 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 9869 } 9870 pBt->db->flags = savedDbFlags; 9871 9872 /* Make sure every page in the file is referenced 9873 */ 9874 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 9875 #ifdef SQLITE_OMIT_AUTOVACUUM 9876 if( getPageReferenced(&sCheck, i)==0 ){ 9877 checkAppendMsg(&sCheck, "Page %d is never used", i); 9878 } 9879 #else 9880 /* If the database supports auto-vacuum, make sure no tables contain 9881 ** references to pointer-map pages. 9882 */ 9883 if( getPageReferenced(&sCheck, i)==0 && 9884 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 9885 checkAppendMsg(&sCheck, "Page %d is never used", i); 9886 } 9887 if( getPageReferenced(&sCheck, i)!=0 && 9888 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 9889 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 9890 } 9891 #endif 9892 } 9893 9894 /* Clean up and report errors. 9895 */ 9896 integrity_ck_cleanup: 9897 sqlite3PageFree(sCheck.heap); 9898 sqlite3_free(sCheck.aPgRef); 9899 if( sCheck.mallocFailed ){ 9900 sqlite3_str_reset(&sCheck.errMsg); 9901 sCheck.nErr++; 9902 } 9903 *pnErr = sCheck.nErr; 9904 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 9905 /* Make sure this analysis did not leave any unref() pages. */ 9906 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 9907 sqlite3BtreeLeave(p); 9908 return sqlite3StrAccumFinish(&sCheck.errMsg); 9909 } 9910 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9911 9912 /* 9913 ** Return the full pathname of the underlying database file. Return 9914 ** an empty string if the database is in-memory or a TEMP database. 9915 ** 9916 ** The pager filename is invariant as long as the pager is 9917 ** open so it is safe to access without the BtShared mutex. 9918 */ 9919 const char *sqlite3BtreeGetFilename(Btree *p){ 9920 assert( p->pBt->pPager!=0 ); 9921 return sqlite3PagerFilename(p->pBt->pPager, 1); 9922 } 9923 9924 /* 9925 ** Return the pathname of the journal file for this database. The return 9926 ** value of this routine is the same regardless of whether the journal file 9927 ** has been created or not. 9928 ** 9929 ** The pager journal filename is invariant as long as the pager is 9930 ** open so it is safe to access without the BtShared mutex. 9931 */ 9932 const char *sqlite3BtreeGetJournalname(Btree *p){ 9933 assert( p->pBt->pPager!=0 ); 9934 return sqlite3PagerJournalname(p->pBt->pPager); 9935 } 9936 9937 /* 9938 ** Return non-zero if a transaction is active. 9939 */ 9940 int sqlite3BtreeIsInTrans(Btree *p){ 9941 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 9942 return (p && (p->inTrans==TRANS_WRITE)); 9943 } 9944 9945 #ifndef SQLITE_OMIT_WAL 9946 /* 9947 ** Run a checkpoint on the Btree passed as the first argument. 9948 ** 9949 ** Return SQLITE_LOCKED if this or any other connection has an open 9950 ** transaction on the shared-cache the argument Btree is connected to. 9951 ** 9952 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 9953 */ 9954 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 9955 int rc = SQLITE_OK; 9956 if( p ){ 9957 BtShared *pBt = p->pBt; 9958 sqlite3BtreeEnter(p); 9959 if( pBt->inTransaction!=TRANS_NONE ){ 9960 rc = SQLITE_LOCKED; 9961 }else{ 9962 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 9963 } 9964 sqlite3BtreeLeave(p); 9965 } 9966 return rc; 9967 } 9968 #endif 9969 9970 /* 9971 ** Return non-zero if a read (or write) transaction is active. 9972 */ 9973 int sqlite3BtreeIsInReadTrans(Btree *p){ 9974 assert( p ); 9975 assert( sqlite3_mutex_held(p->db->mutex) ); 9976 return p->inTrans!=TRANS_NONE; 9977 } 9978 9979 int sqlite3BtreeIsInBackup(Btree *p){ 9980 assert( p ); 9981 assert( sqlite3_mutex_held(p->db->mutex) ); 9982 return p->nBackup!=0; 9983 } 9984 9985 /* 9986 ** This function returns a pointer to a blob of memory associated with 9987 ** a single shared-btree. The memory is used by client code for its own 9988 ** purposes (for example, to store a high-level schema associated with 9989 ** the shared-btree). The btree layer manages reference counting issues. 9990 ** 9991 ** The first time this is called on a shared-btree, nBytes bytes of memory 9992 ** are allocated, zeroed, and returned to the caller. For each subsequent 9993 ** call the nBytes parameter is ignored and a pointer to the same blob 9994 ** of memory returned. 9995 ** 9996 ** If the nBytes parameter is 0 and the blob of memory has not yet been 9997 ** allocated, a null pointer is returned. If the blob has already been 9998 ** allocated, it is returned as normal. 9999 ** 10000 ** Just before the shared-btree is closed, the function passed as the 10001 ** xFree argument when the memory allocation was made is invoked on the 10002 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10003 ** on the memory, the btree layer does that. 10004 */ 10005 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10006 BtShared *pBt = p->pBt; 10007 sqlite3BtreeEnter(p); 10008 if( !pBt->pSchema && nBytes ){ 10009 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10010 pBt->xFreeSchema = xFree; 10011 } 10012 sqlite3BtreeLeave(p); 10013 return pBt->pSchema; 10014 } 10015 10016 /* 10017 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10018 ** btree as the argument handle holds an exclusive lock on the 10019 ** sqlite_master table. Otherwise SQLITE_OK. 10020 */ 10021 int sqlite3BtreeSchemaLocked(Btree *p){ 10022 int rc; 10023 assert( sqlite3_mutex_held(p->db->mutex) ); 10024 sqlite3BtreeEnter(p); 10025 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 10026 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10027 sqlite3BtreeLeave(p); 10028 return rc; 10029 } 10030 10031 10032 #ifndef SQLITE_OMIT_SHARED_CACHE 10033 /* 10034 ** Obtain a lock on the table whose root page is iTab. The 10035 ** lock is a write lock if isWritelock is true or a read lock 10036 ** if it is false. 10037 */ 10038 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10039 int rc = SQLITE_OK; 10040 assert( p->inTrans!=TRANS_NONE ); 10041 if( p->sharable ){ 10042 u8 lockType = READ_LOCK + isWriteLock; 10043 assert( READ_LOCK+1==WRITE_LOCK ); 10044 assert( isWriteLock==0 || isWriteLock==1 ); 10045 10046 sqlite3BtreeEnter(p); 10047 rc = querySharedCacheTableLock(p, iTab, lockType); 10048 if( rc==SQLITE_OK ){ 10049 rc = setSharedCacheTableLock(p, iTab, lockType); 10050 } 10051 sqlite3BtreeLeave(p); 10052 } 10053 return rc; 10054 } 10055 #endif 10056 10057 #ifndef SQLITE_OMIT_INCRBLOB 10058 /* 10059 ** Argument pCsr must be a cursor opened for writing on an 10060 ** INTKEY table currently pointing at a valid table entry. 10061 ** This function modifies the data stored as part of that entry. 10062 ** 10063 ** Only the data content may only be modified, it is not possible to 10064 ** change the length of the data stored. If this function is called with 10065 ** parameters that attempt to write past the end of the existing data, 10066 ** no modifications are made and SQLITE_CORRUPT is returned. 10067 */ 10068 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10069 int rc; 10070 assert( cursorOwnsBtShared(pCsr) ); 10071 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10072 assert( pCsr->curFlags & BTCF_Incrblob ); 10073 10074 rc = restoreCursorPosition(pCsr); 10075 if( rc!=SQLITE_OK ){ 10076 return rc; 10077 } 10078 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10079 if( pCsr->eState!=CURSOR_VALID ){ 10080 return SQLITE_ABORT; 10081 } 10082 10083 /* Save the positions of all other cursors open on this table. This is 10084 ** required in case any of them are holding references to an xFetch 10085 ** version of the b-tree page modified by the accessPayload call below. 10086 ** 10087 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10088 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10089 ** saveAllCursors can only return SQLITE_OK. 10090 */ 10091 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10092 assert( rc==SQLITE_OK ); 10093 10094 /* Check some assumptions: 10095 ** (a) the cursor is open for writing, 10096 ** (b) there is a read/write transaction open, 10097 ** (c) the connection holds a write-lock on the table (if required), 10098 ** (d) there are no conflicting read-locks, and 10099 ** (e) the cursor points at a valid row of an intKey table. 10100 */ 10101 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10102 return SQLITE_READONLY; 10103 } 10104 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10105 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10106 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10107 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10108 assert( pCsr->pPage->intKey ); 10109 10110 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10111 } 10112 10113 /* 10114 ** Mark this cursor as an incremental blob cursor. 10115 */ 10116 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10117 pCur->curFlags |= BTCF_Incrblob; 10118 pCur->pBtree->hasIncrblobCur = 1; 10119 } 10120 #endif 10121 10122 /* 10123 ** Set both the "read version" (single byte at byte offset 18) and 10124 ** "write version" (single byte at byte offset 19) fields in the database 10125 ** header to iVersion. 10126 */ 10127 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 10128 BtShared *pBt = pBtree->pBt; 10129 int rc; /* Return code */ 10130 10131 assert( iVersion==1 || iVersion==2 ); 10132 10133 /* If setting the version fields to 1, do not automatically open the 10134 ** WAL connection, even if the version fields are currently set to 2. 10135 */ 10136 pBt->btsFlags &= ~BTS_NO_WAL; 10137 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 10138 10139 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 10140 if( rc==SQLITE_OK ){ 10141 u8 *aData = pBt->pPage1->aData; 10142 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 10143 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 10144 if( rc==SQLITE_OK ){ 10145 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10146 if( rc==SQLITE_OK ){ 10147 aData[18] = (u8)iVersion; 10148 aData[19] = (u8)iVersion; 10149 } 10150 } 10151 } 10152 } 10153 10154 pBt->btsFlags &= ~BTS_NO_WAL; 10155 return rc; 10156 } 10157 10158 /* 10159 ** Return true if the cursor has a hint specified. This routine is 10160 ** only used from within assert() statements 10161 */ 10162 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 10163 return (pCsr->hints & mask)!=0; 10164 } 10165 10166 /* 10167 ** Return true if the given Btree is read-only. 10168 */ 10169 int sqlite3BtreeIsReadonly(Btree *p){ 10170 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 10171 } 10172 10173 /* 10174 ** Return the size of the header added to each page by this module. 10175 */ 10176 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 10177 10178 #if !defined(SQLITE_OMIT_SHARED_CACHE) 10179 /* 10180 ** Return true if the Btree passed as the only argument is sharable. 10181 */ 10182 int sqlite3BtreeSharable(Btree *p){ 10183 return p->sharable; 10184 } 10185 10186 /* 10187 ** Return the number of connections to the BtShared object accessed by 10188 ** the Btree handle passed as the only argument. For private caches 10189 ** this is always 1. For shared caches it may be 1 or greater. 10190 */ 10191 int sqlite3BtreeConnectionCount(Btree *p){ 10192 testcase( p->sharable ); 10193 return p->pBt->nRef; 10194 } 10195 #endif 10196