xref: /sqlite-3.40.0/src/btree.c (revision dfe4e6bb)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifndef SQLITE_OMIT_SHARED_CACHE
116 
117 #ifdef SQLITE_DEBUG
118 /*
119 **** This function is only used as part of an assert() statement. ***
120 **
121 ** Check to see if pBtree holds the required locks to read or write to the
122 ** table with root page iRoot.   Return 1 if it does and 0 if not.
123 **
124 ** For example, when writing to a table with root-page iRoot via
125 ** Btree connection pBtree:
126 **
127 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128 **
129 ** When writing to an index that resides in a sharable database, the
130 ** caller should have first obtained a lock specifying the root page of
131 ** the corresponding table. This makes things a bit more complicated,
132 ** as this module treats each table as a separate structure. To determine
133 ** the table corresponding to the index being written, this
134 ** function has to search through the database schema.
135 **
136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
137 ** hold a write-lock on the schema table (root page 1). This is also
138 ** acceptable.
139 */
140 static int hasSharedCacheTableLock(
141   Btree *pBtree,         /* Handle that must hold lock */
142   Pgno iRoot,            /* Root page of b-tree */
143   int isIndex,           /* True if iRoot is the root of an index b-tree */
144   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
145 ){
146   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147   Pgno iTab = 0;
148   BtLock *pLock;
149 
150   /* If this database is not shareable, or if the client is reading
151   ** and has the read-uncommitted flag set, then no lock is required.
152   ** Return true immediately.
153   */
154   if( (pBtree->sharable==0)
155    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
156   ){
157     return 1;
158   }
159 
160   /* If the client is reading  or writing an index and the schema is
161   ** not loaded, then it is too difficult to actually check to see if
162   ** the correct locks are held.  So do not bother - just return true.
163   ** This case does not come up very often anyhow.
164   */
165   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
166     return 1;
167   }
168 
169   /* Figure out the root-page that the lock should be held on. For table
170   ** b-trees, this is just the root page of the b-tree being read or
171   ** written. For index b-trees, it is the root page of the associated
172   ** table.  */
173   if( isIndex ){
174     HashElem *p;
175     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176       Index *pIdx = (Index *)sqliteHashData(p);
177       if( pIdx->tnum==(int)iRoot ){
178         if( iTab ){
179           /* Two or more indexes share the same root page.  There must
180           ** be imposter tables.  So just return true.  The assert is not
181           ** useful in that case. */
182           return 1;
183         }
184         iTab = pIdx->pTable->tnum;
185       }
186     }
187   }else{
188     iTab = iRoot;
189   }
190 
191   /* Search for the required lock. Either a write-lock on root-page iTab, a
192   ** write-lock on the schema table, or (if the client is reading) a
193   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
194   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195     if( pLock->pBtree==pBtree
196      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197      && pLock->eLock>=eLockType
198     ){
199       return 1;
200     }
201   }
202 
203   /* Failed to find the required lock. */
204   return 0;
205 }
206 #endif /* SQLITE_DEBUG */
207 
208 #ifdef SQLITE_DEBUG
209 /*
210 **** This function may be used as part of assert() statements only. ****
211 **
212 ** Return true if it would be illegal for pBtree to write into the
213 ** table or index rooted at iRoot because other shared connections are
214 ** simultaneously reading that same table or index.
215 **
216 ** It is illegal for pBtree to write if some other Btree object that
217 ** shares the same BtShared object is currently reading or writing
218 ** the iRoot table.  Except, if the other Btree object has the
219 ** read-uncommitted flag set, then it is OK for the other object to
220 ** have a read cursor.
221 **
222 ** For example, before writing to any part of the table or index
223 ** rooted at page iRoot, one should call:
224 **
225 **    assert( !hasReadConflicts(pBtree, iRoot) );
226 */
227 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228   BtCursor *p;
229   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230     if( p->pgnoRoot==iRoot
231      && p->pBtree!=pBtree
232      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233     ){
234       return 1;
235     }
236   }
237   return 0;
238 }
239 #endif    /* #ifdef SQLITE_DEBUG */
240 
241 /*
242 ** Query to see if Btree handle p may obtain a lock of type eLock
243 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
244 ** SQLITE_OK if the lock may be obtained (by calling
245 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
246 */
247 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
248   BtShared *pBt = p->pBt;
249   BtLock *pIter;
250 
251   assert( sqlite3BtreeHoldsMutex(p) );
252   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253   assert( p->db!=0 );
254   assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
255 
256   /* If requesting a write-lock, then the Btree must have an open write
257   ** transaction on this file. And, obviously, for this to be so there
258   ** must be an open write transaction on the file itself.
259   */
260   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262 
263   /* This routine is a no-op if the shared-cache is not enabled */
264   if( !p->sharable ){
265     return SQLITE_OK;
266   }
267 
268   /* If some other connection is holding an exclusive lock, the
269   ** requested lock may not be obtained.
270   */
271   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
272     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273     return SQLITE_LOCKED_SHAREDCACHE;
274   }
275 
276   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277     /* The condition (pIter->eLock!=eLock) in the following if(...)
278     ** statement is a simplification of:
279     **
280     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281     **
282     ** since we know that if eLock==WRITE_LOCK, then no other connection
283     ** may hold a WRITE_LOCK on any table in this file (since there can
284     ** only be a single writer).
285     */
286     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290       if( eLock==WRITE_LOCK ){
291         assert( p==pBt->pWriter );
292         pBt->btsFlags |= BTS_PENDING;
293       }
294       return SQLITE_LOCKED_SHAREDCACHE;
295     }
296   }
297   return SQLITE_OK;
298 }
299 #endif /* !SQLITE_OMIT_SHARED_CACHE */
300 
301 #ifndef SQLITE_OMIT_SHARED_CACHE
302 /*
303 ** Add a lock on the table with root-page iTable to the shared-btree used
304 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
305 ** WRITE_LOCK.
306 **
307 ** This function assumes the following:
308 **
309 **   (a) The specified Btree object p is connected to a sharable
310 **       database (one with the BtShared.sharable flag set), and
311 **
312 **   (b) No other Btree objects hold a lock that conflicts
313 **       with the requested lock (i.e. querySharedCacheTableLock() has
314 **       already been called and returned SQLITE_OK).
315 **
316 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317 ** is returned if a malloc attempt fails.
318 */
319 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
320   BtShared *pBt = p->pBt;
321   BtLock *pLock = 0;
322   BtLock *pIter;
323 
324   assert( sqlite3BtreeHoldsMutex(p) );
325   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326   assert( p->db!=0 );
327 
328   /* A connection with the read-uncommitted flag set will never try to
329   ** obtain a read-lock using this function. The only read-lock obtained
330   ** by a connection in read-uncommitted mode is on the sqlite_master
331   ** table, and that lock is obtained in BtreeBeginTrans().  */
332   assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333 
334   /* This function should only be called on a sharable b-tree after it
335   ** has been determined that no other b-tree holds a conflicting lock.  */
336   assert( p->sharable );
337   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
338 
339   /* First search the list for an existing lock on this table. */
340   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341     if( pIter->iTable==iTable && pIter->pBtree==p ){
342       pLock = pIter;
343       break;
344     }
345   }
346 
347   /* If the above search did not find a BtLock struct associating Btree p
348   ** with table iTable, allocate one and link it into the list.
349   */
350   if( !pLock ){
351     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
352     if( !pLock ){
353       return SQLITE_NOMEM_BKPT;
354     }
355     pLock->iTable = iTable;
356     pLock->pBtree = p;
357     pLock->pNext = pBt->pLock;
358     pBt->pLock = pLock;
359   }
360 
361   /* Set the BtLock.eLock variable to the maximum of the current lock
362   ** and the requested lock. This means if a write-lock was already held
363   ** and a read-lock requested, we don't incorrectly downgrade the lock.
364   */
365   assert( WRITE_LOCK>READ_LOCK );
366   if( eLock>pLock->eLock ){
367     pLock->eLock = eLock;
368   }
369 
370   return SQLITE_OK;
371 }
372 #endif /* !SQLITE_OMIT_SHARED_CACHE */
373 
374 #ifndef SQLITE_OMIT_SHARED_CACHE
375 /*
376 ** Release all the table locks (locks obtained via calls to
377 ** the setSharedCacheTableLock() procedure) held by Btree object p.
378 **
379 ** This function assumes that Btree p has an open read or write
380 ** transaction. If it does not, then the BTS_PENDING flag
381 ** may be incorrectly cleared.
382 */
383 static void clearAllSharedCacheTableLocks(Btree *p){
384   BtShared *pBt = p->pBt;
385   BtLock **ppIter = &pBt->pLock;
386 
387   assert( sqlite3BtreeHoldsMutex(p) );
388   assert( p->sharable || 0==*ppIter );
389   assert( p->inTrans>0 );
390 
391   while( *ppIter ){
392     BtLock *pLock = *ppIter;
393     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
394     assert( pLock->pBtree->inTrans>=pLock->eLock );
395     if( pLock->pBtree==p ){
396       *ppIter = pLock->pNext;
397       assert( pLock->iTable!=1 || pLock==&p->lock );
398       if( pLock->iTable!=1 ){
399         sqlite3_free(pLock);
400       }
401     }else{
402       ppIter = &pLock->pNext;
403     }
404   }
405 
406   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
407   if( pBt->pWriter==p ){
408     pBt->pWriter = 0;
409     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
410   }else if( pBt->nTransaction==2 ){
411     /* This function is called when Btree p is concluding its
412     ** transaction. If there currently exists a writer, and p is not
413     ** that writer, then the number of locks held by connections other
414     ** than the writer must be about to drop to zero. In this case
415     ** set the BTS_PENDING flag to 0.
416     **
417     ** If there is not currently a writer, then BTS_PENDING must
418     ** be zero already. So this next line is harmless in that case.
419     */
420     pBt->btsFlags &= ~BTS_PENDING;
421   }
422 }
423 
424 /*
425 ** This function changes all write-locks held by Btree p into read-locks.
426 */
427 static void downgradeAllSharedCacheTableLocks(Btree *p){
428   BtShared *pBt = p->pBt;
429   if( pBt->pWriter==p ){
430     BtLock *pLock;
431     pBt->pWriter = 0;
432     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
433     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435       pLock->eLock = READ_LOCK;
436     }
437   }
438 }
439 
440 #endif /* SQLITE_OMIT_SHARED_CACHE */
441 
442 static void releasePage(MemPage *pPage);  /* Forward reference */
443 
444 /*
445 ***** This routine is used inside of assert() only ****
446 **
447 ** Verify that the cursor holds the mutex on its BtShared
448 */
449 #ifdef SQLITE_DEBUG
450 static int cursorHoldsMutex(BtCursor *p){
451   return sqlite3_mutex_held(p->pBt->mutex);
452 }
453 
454 /* Verify that the cursor and the BtShared agree about what is the current
455 ** database connetion. This is important in shared-cache mode. If the database
456 ** connection pointers get out-of-sync, it is possible for routines like
457 ** btreeInitPage() to reference an stale connection pointer that references a
458 ** a connection that has already closed.  This routine is used inside assert()
459 ** statements only and for the purpose of double-checking that the btree code
460 ** does keep the database connection pointers up-to-date.
461 */
462 static int cursorOwnsBtShared(BtCursor *p){
463   assert( cursorHoldsMutex(p) );
464   return (p->pBtree->db==p->pBt->db);
465 }
466 #endif
467 
468 /*
469 ** Invalidate the overflow cache of the cursor passed as the first argument.
470 ** on the shared btree structure pBt.
471 */
472 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
473 
474 /*
475 ** Invalidate the overflow page-list cache for all cursors opened
476 ** on the shared btree structure pBt.
477 */
478 static void invalidateAllOverflowCache(BtShared *pBt){
479   BtCursor *p;
480   assert( sqlite3_mutex_held(pBt->mutex) );
481   for(p=pBt->pCursor; p; p=p->pNext){
482     invalidateOverflowCache(p);
483   }
484 }
485 
486 #ifndef SQLITE_OMIT_INCRBLOB
487 /*
488 ** This function is called before modifying the contents of a table
489 ** to invalidate any incrblob cursors that are open on the
490 ** row or one of the rows being modified.
491 **
492 ** If argument isClearTable is true, then the entire contents of the
493 ** table is about to be deleted. In this case invalidate all incrblob
494 ** cursors open on any row within the table with root-page pgnoRoot.
495 **
496 ** Otherwise, if argument isClearTable is false, then the row with
497 ** rowid iRow is being replaced or deleted. In this case invalidate
498 ** only those incrblob cursors open on that specific row.
499 */
500 static void invalidateIncrblobCursors(
501   Btree *pBtree,          /* The database file to check */
502   i64 iRow,               /* The rowid that might be changing */
503   int isClearTable        /* True if all rows are being deleted */
504 ){
505   BtCursor *p;
506   if( pBtree->hasIncrblobCur==0 ) return;
507   assert( sqlite3BtreeHoldsMutex(pBtree) );
508   pBtree->hasIncrblobCur = 0;
509   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
510     if( (p->curFlags & BTCF_Incrblob)!=0 ){
511       pBtree->hasIncrblobCur = 1;
512       if( isClearTable || p->info.nKey==iRow ){
513         p->eState = CURSOR_INVALID;
514       }
515     }
516   }
517 }
518 
519 #else
520   /* Stub function when INCRBLOB is omitted */
521   #define invalidateIncrblobCursors(x,y,z)
522 #endif /* SQLITE_OMIT_INCRBLOB */
523 
524 /*
525 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
526 ** when a page that previously contained data becomes a free-list leaf
527 ** page.
528 **
529 ** The BtShared.pHasContent bitvec exists to work around an obscure
530 ** bug caused by the interaction of two useful IO optimizations surrounding
531 ** free-list leaf pages:
532 **
533 **   1) When all data is deleted from a page and the page becomes
534 **      a free-list leaf page, the page is not written to the database
535 **      (as free-list leaf pages contain no meaningful data). Sometimes
536 **      such a page is not even journalled (as it will not be modified,
537 **      why bother journalling it?).
538 **
539 **   2) When a free-list leaf page is reused, its content is not read
540 **      from the database or written to the journal file (why should it
541 **      be, if it is not at all meaningful?).
542 **
543 ** By themselves, these optimizations work fine and provide a handy
544 ** performance boost to bulk delete or insert operations. However, if
545 ** a page is moved to the free-list and then reused within the same
546 ** transaction, a problem comes up. If the page is not journalled when
547 ** it is moved to the free-list and it is also not journalled when it
548 ** is extracted from the free-list and reused, then the original data
549 ** may be lost. In the event of a rollback, it may not be possible
550 ** to restore the database to its original configuration.
551 **
552 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
553 ** moved to become a free-list leaf page, the corresponding bit is
554 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
555 ** optimization 2 above is omitted if the corresponding bit is already
556 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
557 ** at the end of every transaction.
558 */
559 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
560   int rc = SQLITE_OK;
561   if( !pBt->pHasContent ){
562     assert( pgno<=pBt->nPage );
563     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
564     if( !pBt->pHasContent ){
565       rc = SQLITE_NOMEM_BKPT;
566     }
567   }
568   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
569     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
570   }
571   return rc;
572 }
573 
574 /*
575 ** Query the BtShared.pHasContent vector.
576 **
577 ** This function is called when a free-list leaf page is removed from the
578 ** free-list for reuse. It returns false if it is safe to retrieve the
579 ** page from the pager layer with the 'no-content' flag set. True otherwise.
580 */
581 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
582   Bitvec *p = pBt->pHasContent;
583   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
584 }
585 
586 /*
587 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
588 ** invoked at the conclusion of each write-transaction.
589 */
590 static void btreeClearHasContent(BtShared *pBt){
591   sqlite3BitvecDestroy(pBt->pHasContent);
592   pBt->pHasContent = 0;
593 }
594 
595 /*
596 ** Release all of the apPage[] pages for a cursor.
597 */
598 static void btreeReleaseAllCursorPages(BtCursor *pCur){
599   int i;
600   for(i=0; i<=pCur->iPage; i++){
601     releasePage(pCur->apPage[i]);
602     pCur->apPage[i] = 0;
603   }
604   pCur->iPage = -1;
605 }
606 
607 /*
608 ** The cursor passed as the only argument must point to a valid entry
609 ** when this function is called (i.e. have eState==CURSOR_VALID). This
610 ** function saves the current cursor key in variables pCur->nKey and
611 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
612 ** code otherwise.
613 **
614 ** If the cursor is open on an intkey table, then the integer key
615 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
616 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
617 ** set to point to a malloced buffer pCur->nKey bytes in size containing
618 ** the key.
619 */
620 static int saveCursorKey(BtCursor *pCur){
621   int rc = SQLITE_OK;
622   assert( CURSOR_VALID==pCur->eState );
623   assert( 0==pCur->pKey );
624   assert( cursorHoldsMutex(pCur) );
625 
626   if( pCur->curIntKey ){
627     /* Only the rowid is required for a table btree */
628     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
629   }else{
630     /* For an index btree, save the complete key content */
631     void *pKey;
632     pCur->nKey = sqlite3BtreePayloadSize(pCur);
633     pKey = sqlite3Malloc( pCur->nKey );
634     if( pKey ){
635       rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
636       if( rc==SQLITE_OK ){
637         pCur->pKey = pKey;
638       }else{
639         sqlite3_free(pKey);
640       }
641     }else{
642       rc = SQLITE_NOMEM_BKPT;
643     }
644   }
645   assert( !pCur->curIntKey || !pCur->pKey );
646   return rc;
647 }
648 
649 /*
650 ** Save the current cursor position in the variables BtCursor.nKey
651 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
652 **
653 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
654 ** prior to calling this routine.
655 */
656 static int saveCursorPosition(BtCursor *pCur){
657   int rc;
658 
659   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
660   assert( 0==pCur->pKey );
661   assert( cursorHoldsMutex(pCur) );
662 
663   if( pCur->eState==CURSOR_SKIPNEXT ){
664     pCur->eState = CURSOR_VALID;
665   }else{
666     pCur->skipNext = 0;
667   }
668 
669   rc = saveCursorKey(pCur);
670   if( rc==SQLITE_OK ){
671     btreeReleaseAllCursorPages(pCur);
672     pCur->eState = CURSOR_REQUIRESEEK;
673   }
674 
675   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
676   return rc;
677 }
678 
679 /* Forward reference */
680 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
681 
682 /*
683 ** Save the positions of all cursors (except pExcept) that are open on
684 ** the table with root-page iRoot.  "Saving the cursor position" means that
685 ** the location in the btree is remembered in such a way that it can be
686 ** moved back to the same spot after the btree has been modified.  This
687 ** routine is called just before cursor pExcept is used to modify the
688 ** table, for example in BtreeDelete() or BtreeInsert().
689 **
690 ** If there are two or more cursors on the same btree, then all such
691 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
692 ** routine enforces that rule.  This routine only needs to be called in
693 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
694 **
695 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
696 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
697 ** pointless call to this routine.
698 **
699 ** Implementation note:  This routine merely checks to see if any cursors
700 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
701 ** event that cursors are in need to being saved.
702 */
703 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
704   BtCursor *p;
705   assert( sqlite3_mutex_held(pBt->mutex) );
706   assert( pExcept==0 || pExcept->pBt==pBt );
707   for(p=pBt->pCursor; p; p=p->pNext){
708     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
709   }
710   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
711   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
712   return SQLITE_OK;
713 }
714 
715 /* This helper routine to saveAllCursors does the actual work of saving
716 ** the cursors if and when a cursor is found that actually requires saving.
717 ** The common case is that no cursors need to be saved, so this routine is
718 ** broken out from its caller to avoid unnecessary stack pointer movement.
719 */
720 static int SQLITE_NOINLINE saveCursorsOnList(
721   BtCursor *p,         /* The first cursor that needs saving */
722   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
723   BtCursor *pExcept    /* Do not save this cursor */
724 ){
725   do{
726     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
727       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
728         int rc = saveCursorPosition(p);
729         if( SQLITE_OK!=rc ){
730           return rc;
731         }
732       }else{
733         testcase( p->iPage>0 );
734         btreeReleaseAllCursorPages(p);
735       }
736     }
737     p = p->pNext;
738   }while( p );
739   return SQLITE_OK;
740 }
741 
742 /*
743 ** Clear the current cursor position.
744 */
745 void sqlite3BtreeClearCursor(BtCursor *pCur){
746   assert( cursorHoldsMutex(pCur) );
747   sqlite3_free(pCur->pKey);
748   pCur->pKey = 0;
749   pCur->eState = CURSOR_INVALID;
750 }
751 
752 /*
753 ** In this version of BtreeMoveto, pKey is a packed index record
754 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
755 ** record and then call BtreeMovetoUnpacked() to do the work.
756 */
757 static int btreeMoveto(
758   BtCursor *pCur,     /* Cursor open on the btree to be searched */
759   const void *pKey,   /* Packed key if the btree is an index */
760   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
761   int bias,           /* Bias search to the high end */
762   int *pRes           /* Write search results here */
763 ){
764   int rc;                    /* Status code */
765   UnpackedRecord *pIdxKey;   /* Unpacked index key */
766   char aSpace[384];          /* Temp space for pIdxKey - to avoid a malloc */
767   char *pFree = 0;
768 
769   if( pKey ){
770     assert( nKey==(i64)(int)nKey );
771     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
772         pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
773     );
774     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
775     sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
776     if( pIdxKey->nField==0 ){
777       sqlite3DbFree(pCur->pKeyInfo->db, pFree);
778       return SQLITE_CORRUPT_BKPT;
779     }
780   }else{
781     pIdxKey = 0;
782   }
783   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
784   if( pFree ){
785     sqlite3DbFree(pCur->pKeyInfo->db, pFree);
786   }
787   return rc;
788 }
789 
790 /*
791 ** Restore the cursor to the position it was in (or as close to as possible)
792 ** when saveCursorPosition() was called. Note that this call deletes the
793 ** saved position info stored by saveCursorPosition(), so there can be
794 ** at most one effective restoreCursorPosition() call after each
795 ** saveCursorPosition().
796 */
797 static int btreeRestoreCursorPosition(BtCursor *pCur){
798   int rc;
799   int skipNext;
800   assert( cursorOwnsBtShared(pCur) );
801   assert( pCur->eState>=CURSOR_REQUIRESEEK );
802   if( pCur->eState==CURSOR_FAULT ){
803     return pCur->skipNext;
804   }
805   pCur->eState = CURSOR_INVALID;
806   rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
807   if( rc==SQLITE_OK ){
808     sqlite3_free(pCur->pKey);
809     pCur->pKey = 0;
810     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
811     pCur->skipNext |= skipNext;
812     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
813       pCur->eState = CURSOR_SKIPNEXT;
814     }
815   }
816   return rc;
817 }
818 
819 #define restoreCursorPosition(p) \
820   (p->eState>=CURSOR_REQUIRESEEK ? \
821          btreeRestoreCursorPosition(p) : \
822          SQLITE_OK)
823 
824 /*
825 ** Determine whether or not a cursor has moved from the position where
826 ** it was last placed, or has been invalidated for any other reason.
827 ** Cursors can move when the row they are pointing at is deleted out
828 ** from under them, for example.  Cursor might also move if a btree
829 ** is rebalanced.
830 **
831 ** Calling this routine with a NULL cursor pointer returns false.
832 **
833 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
834 ** back to where it ought to be if this routine returns true.
835 */
836 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
837   return pCur->eState!=CURSOR_VALID;
838 }
839 
840 /*
841 ** This routine restores a cursor back to its original position after it
842 ** has been moved by some outside activity (such as a btree rebalance or
843 ** a row having been deleted out from under the cursor).
844 **
845 ** On success, the *pDifferentRow parameter is false if the cursor is left
846 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
847 ** was pointing to has been deleted, forcing the cursor to point to some
848 ** nearby row.
849 **
850 ** This routine should only be called for a cursor that just returned
851 ** TRUE from sqlite3BtreeCursorHasMoved().
852 */
853 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
854   int rc;
855 
856   assert( pCur!=0 );
857   assert( pCur->eState!=CURSOR_VALID );
858   rc = restoreCursorPosition(pCur);
859   if( rc ){
860     *pDifferentRow = 1;
861     return rc;
862   }
863   if( pCur->eState!=CURSOR_VALID ){
864     *pDifferentRow = 1;
865   }else{
866     assert( pCur->skipNext==0 );
867     *pDifferentRow = 0;
868   }
869   return SQLITE_OK;
870 }
871 
872 #ifdef SQLITE_ENABLE_CURSOR_HINTS
873 /*
874 ** Provide hints to the cursor.  The particular hint given (and the type
875 ** and number of the varargs parameters) is determined by the eHintType
876 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
877 */
878 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
879   /* Used only by system that substitute their own storage engine */
880 }
881 #endif
882 
883 /*
884 ** Provide flag hints to the cursor.
885 */
886 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
887   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
888   pCur->hints = x;
889 }
890 
891 
892 #ifndef SQLITE_OMIT_AUTOVACUUM
893 /*
894 ** Given a page number of a regular database page, return the page
895 ** number for the pointer-map page that contains the entry for the
896 ** input page number.
897 **
898 ** Return 0 (not a valid page) for pgno==1 since there is
899 ** no pointer map associated with page 1.  The integrity_check logic
900 ** requires that ptrmapPageno(*,1)!=1.
901 */
902 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
903   int nPagesPerMapPage;
904   Pgno iPtrMap, ret;
905   assert( sqlite3_mutex_held(pBt->mutex) );
906   if( pgno<2 ) return 0;
907   nPagesPerMapPage = (pBt->usableSize/5)+1;
908   iPtrMap = (pgno-2)/nPagesPerMapPage;
909   ret = (iPtrMap*nPagesPerMapPage) + 2;
910   if( ret==PENDING_BYTE_PAGE(pBt) ){
911     ret++;
912   }
913   return ret;
914 }
915 
916 /*
917 ** Write an entry into the pointer map.
918 **
919 ** This routine updates the pointer map entry for page number 'key'
920 ** so that it maps to type 'eType' and parent page number 'pgno'.
921 **
922 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
923 ** a no-op.  If an error occurs, the appropriate error code is written
924 ** into *pRC.
925 */
926 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
927   DbPage *pDbPage;  /* The pointer map page */
928   u8 *pPtrmap;      /* The pointer map data */
929   Pgno iPtrmap;     /* The pointer map page number */
930   int offset;       /* Offset in pointer map page */
931   int rc;           /* Return code from subfunctions */
932 
933   if( *pRC ) return;
934 
935   assert( sqlite3_mutex_held(pBt->mutex) );
936   /* The master-journal page number must never be used as a pointer map page */
937   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
938 
939   assert( pBt->autoVacuum );
940   if( key==0 ){
941     *pRC = SQLITE_CORRUPT_BKPT;
942     return;
943   }
944   iPtrmap = PTRMAP_PAGENO(pBt, key);
945   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
946   if( rc!=SQLITE_OK ){
947     *pRC = rc;
948     return;
949   }
950   offset = PTRMAP_PTROFFSET(iPtrmap, key);
951   if( offset<0 ){
952     *pRC = SQLITE_CORRUPT_BKPT;
953     goto ptrmap_exit;
954   }
955   assert( offset <= (int)pBt->usableSize-5 );
956   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
957 
958   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
959     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
960     *pRC= rc = sqlite3PagerWrite(pDbPage);
961     if( rc==SQLITE_OK ){
962       pPtrmap[offset] = eType;
963       put4byte(&pPtrmap[offset+1], parent);
964     }
965   }
966 
967 ptrmap_exit:
968   sqlite3PagerUnref(pDbPage);
969 }
970 
971 /*
972 ** Read an entry from the pointer map.
973 **
974 ** This routine retrieves the pointer map entry for page 'key', writing
975 ** the type and parent page number to *pEType and *pPgno respectively.
976 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
977 */
978 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
979   DbPage *pDbPage;   /* The pointer map page */
980   int iPtrmap;       /* Pointer map page index */
981   u8 *pPtrmap;       /* Pointer map page data */
982   int offset;        /* Offset of entry in pointer map */
983   int rc;
984 
985   assert( sqlite3_mutex_held(pBt->mutex) );
986 
987   iPtrmap = PTRMAP_PAGENO(pBt, key);
988   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
989   if( rc!=0 ){
990     return rc;
991   }
992   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
993 
994   offset = PTRMAP_PTROFFSET(iPtrmap, key);
995   if( offset<0 ){
996     sqlite3PagerUnref(pDbPage);
997     return SQLITE_CORRUPT_BKPT;
998   }
999   assert( offset <= (int)pBt->usableSize-5 );
1000   assert( pEType!=0 );
1001   *pEType = pPtrmap[offset];
1002   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1003 
1004   sqlite3PagerUnref(pDbPage);
1005   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
1006   return SQLITE_OK;
1007 }
1008 
1009 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1010   #define ptrmapPut(w,x,y,z,rc)
1011   #define ptrmapGet(w,x,y,z) SQLITE_OK
1012   #define ptrmapPutOvflPtr(x, y, rc)
1013 #endif
1014 
1015 /*
1016 ** Given a btree page and a cell index (0 means the first cell on
1017 ** the page, 1 means the second cell, and so forth) return a pointer
1018 ** to the cell content.
1019 **
1020 ** findCellPastPtr() does the same except it skips past the initial
1021 ** 4-byte child pointer found on interior pages, if there is one.
1022 **
1023 ** This routine works only for pages that do not contain overflow cells.
1024 */
1025 #define findCell(P,I) \
1026   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1027 #define findCellPastPtr(P,I) \
1028   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1029 
1030 
1031 /*
1032 ** This is common tail processing for btreeParseCellPtr() and
1033 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1034 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1035 ** structure.
1036 */
1037 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1038   MemPage *pPage,         /* Page containing the cell */
1039   u8 *pCell,              /* Pointer to the cell text. */
1040   CellInfo *pInfo         /* Fill in this structure */
1041 ){
1042   /* If the payload will not fit completely on the local page, we have
1043   ** to decide how much to store locally and how much to spill onto
1044   ** overflow pages.  The strategy is to minimize the amount of unused
1045   ** space on overflow pages while keeping the amount of local storage
1046   ** in between minLocal and maxLocal.
1047   **
1048   ** Warning:  changing the way overflow payload is distributed in any
1049   ** way will result in an incompatible file format.
1050   */
1051   int minLocal;  /* Minimum amount of payload held locally */
1052   int maxLocal;  /* Maximum amount of payload held locally */
1053   int surplus;   /* Overflow payload available for local storage */
1054 
1055   minLocal = pPage->minLocal;
1056   maxLocal = pPage->maxLocal;
1057   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1058   testcase( surplus==maxLocal );
1059   testcase( surplus==maxLocal+1 );
1060   if( surplus <= maxLocal ){
1061     pInfo->nLocal = (u16)surplus;
1062   }else{
1063     pInfo->nLocal = (u16)minLocal;
1064   }
1065   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1066 }
1067 
1068 /*
1069 ** The following routines are implementations of the MemPage.xParseCell()
1070 ** method.
1071 **
1072 ** Parse a cell content block and fill in the CellInfo structure.
1073 **
1074 ** btreeParseCellPtr()        =>   table btree leaf nodes
1075 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1076 ** btreeParseCellPtrIndex()   =>   index btree nodes
1077 **
1078 ** There is also a wrapper function btreeParseCell() that works for
1079 ** all MemPage types and that references the cell by index rather than
1080 ** by pointer.
1081 */
1082 static void btreeParseCellPtrNoPayload(
1083   MemPage *pPage,         /* Page containing the cell */
1084   u8 *pCell,              /* Pointer to the cell text. */
1085   CellInfo *pInfo         /* Fill in this structure */
1086 ){
1087   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1088   assert( pPage->leaf==0 );
1089   assert( pPage->childPtrSize==4 );
1090 #ifndef SQLITE_DEBUG
1091   UNUSED_PARAMETER(pPage);
1092 #endif
1093   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1094   pInfo->nPayload = 0;
1095   pInfo->nLocal = 0;
1096   pInfo->pPayload = 0;
1097   return;
1098 }
1099 static void btreeParseCellPtr(
1100   MemPage *pPage,         /* Page containing the cell */
1101   u8 *pCell,              /* Pointer to the cell text. */
1102   CellInfo *pInfo         /* Fill in this structure */
1103 ){
1104   u8 *pIter;              /* For scanning through pCell */
1105   u32 nPayload;           /* Number of bytes of cell payload */
1106   u64 iKey;               /* Extracted Key value */
1107 
1108   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1109   assert( pPage->leaf==0 || pPage->leaf==1 );
1110   assert( pPage->intKeyLeaf );
1111   assert( pPage->childPtrSize==0 );
1112   pIter = pCell;
1113 
1114   /* The next block of code is equivalent to:
1115   **
1116   **     pIter += getVarint32(pIter, nPayload);
1117   **
1118   ** The code is inlined to avoid a function call.
1119   */
1120   nPayload = *pIter;
1121   if( nPayload>=0x80 ){
1122     u8 *pEnd = &pIter[8];
1123     nPayload &= 0x7f;
1124     do{
1125       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1126     }while( (*pIter)>=0x80 && pIter<pEnd );
1127   }
1128   pIter++;
1129 
1130   /* The next block of code is equivalent to:
1131   **
1132   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1133   **
1134   ** The code is inlined to avoid a function call.
1135   */
1136   iKey = *pIter;
1137   if( iKey>=0x80 ){
1138     u8 *pEnd = &pIter[7];
1139     iKey &= 0x7f;
1140     while(1){
1141       iKey = (iKey<<7) | (*++pIter & 0x7f);
1142       if( (*pIter)<0x80 ) break;
1143       if( pIter>=pEnd ){
1144         iKey = (iKey<<8) | *++pIter;
1145         break;
1146       }
1147     }
1148   }
1149   pIter++;
1150 
1151   pInfo->nKey = *(i64*)&iKey;
1152   pInfo->nPayload = nPayload;
1153   pInfo->pPayload = pIter;
1154   testcase( nPayload==pPage->maxLocal );
1155   testcase( nPayload==pPage->maxLocal+1 );
1156   if( nPayload<=pPage->maxLocal ){
1157     /* This is the (easy) common case where the entire payload fits
1158     ** on the local page.  No overflow is required.
1159     */
1160     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1161     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1162     pInfo->nLocal = (u16)nPayload;
1163   }else{
1164     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1165   }
1166 }
1167 static void btreeParseCellPtrIndex(
1168   MemPage *pPage,         /* Page containing the cell */
1169   u8 *pCell,              /* Pointer to the cell text. */
1170   CellInfo *pInfo         /* Fill in this structure */
1171 ){
1172   u8 *pIter;              /* For scanning through pCell */
1173   u32 nPayload;           /* Number of bytes of cell payload */
1174 
1175   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1176   assert( pPage->leaf==0 || pPage->leaf==1 );
1177   assert( pPage->intKeyLeaf==0 );
1178   pIter = pCell + pPage->childPtrSize;
1179   nPayload = *pIter;
1180   if( nPayload>=0x80 ){
1181     u8 *pEnd = &pIter[8];
1182     nPayload &= 0x7f;
1183     do{
1184       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1185     }while( *(pIter)>=0x80 && pIter<pEnd );
1186   }
1187   pIter++;
1188   pInfo->nKey = nPayload;
1189   pInfo->nPayload = nPayload;
1190   pInfo->pPayload = pIter;
1191   testcase( nPayload==pPage->maxLocal );
1192   testcase( nPayload==pPage->maxLocal+1 );
1193   if( nPayload<=pPage->maxLocal ){
1194     /* This is the (easy) common case where the entire payload fits
1195     ** on the local page.  No overflow is required.
1196     */
1197     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1198     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1199     pInfo->nLocal = (u16)nPayload;
1200   }else{
1201     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1202   }
1203 }
1204 static void btreeParseCell(
1205   MemPage *pPage,         /* Page containing the cell */
1206   int iCell,              /* The cell index.  First cell is 0 */
1207   CellInfo *pInfo         /* Fill in this structure */
1208 ){
1209   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1210 }
1211 
1212 /*
1213 ** The following routines are implementations of the MemPage.xCellSize
1214 ** method.
1215 **
1216 ** Compute the total number of bytes that a Cell needs in the cell
1217 ** data area of the btree-page.  The return number includes the cell
1218 ** data header and the local payload, but not any overflow page or
1219 ** the space used by the cell pointer.
1220 **
1221 ** cellSizePtrNoPayload()    =>   table internal nodes
1222 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1223 */
1224 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1225   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1226   u8 *pEnd;                                /* End mark for a varint */
1227   u32 nSize;                               /* Size value to return */
1228 
1229 #ifdef SQLITE_DEBUG
1230   /* The value returned by this function should always be the same as
1231   ** the (CellInfo.nSize) value found by doing a full parse of the
1232   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1233   ** this function verifies that this invariant is not violated. */
1234   CellInfo debuginfo;
1235   pPage->xParseCell(pPage, pCell, &debuginfo);
1236 #endif
1237 
1238   nSize = *pIter;
1239   if( nSize>=0x80 ){
1240     pEnd = &pIter[8];
1241     nSize &= 0x7f;
1242     do{
1243       nSize = (nSize<<7) | (*++pIter & 0x7f);
1244     }while( *(pIter)>=0x80 && pIter<pEnd );
1245   }
1246   pIter++;
1247   if( pPage->intKey ){
1248     /* pIter now points at the 64-bit integer key value, a variable length
1249     ** integer. The following block moves pIter to point at the first byte
1250     ** past the end of the key value. */
1251     pEnd = &pIter[9];
1252     while( (*pIter++)&0x80 && pIter<pEnd );
1253   }
1254   testcase( nSize==pPage->maxLocal );
1255   testcase( nSize==pPage->maxLocal+1 );
1256   if( nSize<=pPage->maxLocal ){
1257     nSize += (u32)(pIter - pCell);
1258     if( nSize<4 ) nSize = 4;
1259   }else{
1260     int minLocal = pPage->minLocal;
1261     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1262     testcase( nSize==pPage->maxLocal );
1263     testcase( nSize==pPage->maxLocal+1 );
1264     if( nSize>pPage->maxLocal ){
1265       nSize = minLocal;
1266     }
1267     nSize += 4 + (u16)(pIter - pCell);
1268   }
1269   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1270   return (u16)nSize;
1271 }
1272 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1273   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1274   u8 *pEnd;              /* End mark for a varint */
1275 
1276 #ifdef SQLITE_DEBUG
1277   /* The value returned by this function should always be the same as
1278   ** the (CellInfo.nSize) value found by doing a full parse of the
1279   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1280   ** this function verifies that this invariant is not violated. */
1281   CellInfo debuginfo;
1282   pPage->xParseCell(pPage, pCell, &debuginfo);
1283 #else
1284   UNUSED_PARAMETER(pPage);
1285 #endif
1286 
1287   assert( pPage->childPtrSize==4 );
1288   pEnd = pIter + 9;
1289   while( (*pIter++)&0x80 && pIter<pEnd );
1290   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1291   return (u16)(pIter - pCell);
1292 }
1293 
1294 
1295 #ifdef SQLITE_DEBUG
1296 /* This variation on cellSizePtr() is used inside of assert() statements
1297 ** only. */
1298 static u16 cellSize(MemPage *pPage, int iCell){
1299   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1300 }
1301 #endif
1302 
1303 #ifndef SQLITE_OMIT_AUTOVACUUM
1304 /*
1305 ** If the cell pCell, part of page pPage contains a pointer
1306 ** to an overflow page, insert an entry into the pointer-map
1307 ** for the overflow page.
1308 */
1309 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1310   CellInfo info;
1311   if( *pRC ) return;
1312   assert( pCell!=0 );
1313   pPage->xParseCell(pPage, pCell, &info);
1314   if( info.nLocal<info.nPayload ){
1315     Pgno ovfl = get4byte(&pCell[info.nSize-4]);
1316     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1317   }
1318 }
1319 #endif
1320 
1321 
1322 /*
1323 ** Defragment the page given.  All Cells are moved to the
1324 ** end of the page and all free space is collected into one
1325 ** big FreeBlk that occurs in between the header and cell
1326 ** pointer array and the cell content area.
1327 **
1328 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1329 ** b-tree page so that there are no freeblocks or fragment bytes, all
1330 ** unused bytes are contained in the unallocated space region, and all
1331 ** cells are packed tightly at the end of the page.
1332 */
1333 static int defragmentPage(MemPage *pPage){
1334   int i;                     /* Loop counter */
1335   int pc;                    /* Address of the i-th cell */
1336   int hdr;                   /* Offset to the page header */
1337   int size;                  /* Size of a cell */
1338   int usableSize;            /* Number of usable bytes on a page */
1339   int cellOffset;            /* Offset to the cell pointer array */
1340   int cbrk;                  /* Offset to the cell content area */
1341   int nCell;                 /* Number of cells on the page */
1342   unsigned char *data;       /* The page data */
1343   unsigned char *temp;       /* Temp area for cell content */
1344   unsigned char *src;        /* Source of content */
1345   int iCellFirst;            /* First allowable cell index */
1346   int iCellLast;             /* Last possible cell index */
1347 
1348 
1349   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1350   assert( pPage->pBt!=0 );
1351   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1352   assert( pPage->nOverflow==0 );
1353   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1354   temp = 0;
1355   src = data = pPage->aData;
1356   hdr = pPage->hdrOffset;
1357   cellOffset = pPage->cellOffset;
1358   nCell = pPage->nCell;
1359   assert( nCell==get2byte(&data[hdr+3]) );
1360   usableSize = pPage->pBt->usableSize;
1361   cbrk = usableSize;
1362   iCellFirst = cellOffset + 2*nCell;
1363   iCellLast = usableSize - 4;
1364   for(i=0; i<nCell; i++){
1365     u8 *pAddr;     /* The i-th cell pointer */
1366     pAddr = &data[cellOffset + i*2];
1367     pc = get2byte(pAddr);
1368     testcase( pc==iCellFirst );
1369     testcase( pc==iCellLast );
1370     /* These conditions have already been verified in btreeInitPage()
1371     ** if PRAGMA cell_size_check=ON.
1372     */
1373     if( pc<iCellFirst || pc>iCellLast ){
1374       return SQLITE_CORRUPT_BKPT;
1375     }
1376     assert( pc>=iCellFirst && pc<=iCellLast );
1377     size = pPage->xCellSize(pPage, &src[pc]);
1378     cbrk -= size;
1379     if( cbrk<iCellFirst || pc+size>usableSize ){
1380       return SQLITE_CORRUPT_BKPT;
1381     }
1382     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1383     testcase( cbrk+size==usableSize );
1384     testcase( pc+size==usableSize );
1385     put2byte(pAddr, cbrk);
1386     if( temp==0 ){
1387       int x;
1388       if( cbrk==pc ) continue;
1389       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1390       x = get2byte(&data[hdr+5]);
1391       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1392       src = temp;
1393     }
1394     memcpy(&data[cbrk], &src[pc], size);
1395   }
1396   assert( cbrk>=iCellFirst );
1397   put2byte(&data[hdr+5], cbrk);
1398   data[hdr+1] = 0;
1399   data[hdr+2] = 0;
1400   data[hdr+7] = 0;
1401   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1402   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1403   if( cbrk-iCellFirst!=pPage->nFree ){
1404     return SQLITE_CORRUPT_BKPT;
1405   }
1406   return SQLITE_OK;
1407 }
1408 
1409 /*
1410 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1411 ** size. If one can be found, return a pointer to the space and remove it
1412 ** from the free-list.
1413 **
1414 ** If no suitable space can be found on the free-list, return NULL.
1415 **
1416 ** This function may detect corruption within pPg.  If corruption is
1417 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1418 **
1419 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1420 ** will be ignored if adding the extra space to the fragmentation count
1421 ** causes the fragmentation count to exceed 60.
1422 */
1423 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1424   const int hdr = pPg->hdrOffset;
1425   u8 * const aData = pPg->aData;
1426   int iAddr = hdr + 1;
1427   int pc = get2byte(&aData[iAddr]);
1428   int x;
1429   int usableSize = pPg->pBt->usableSize;
1430 
1431   assert( pc>0 );
1432   do{
1433     int size;            /* Size of the free slot */
1434     /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1435     ** increasing offset. */
1436     if( pc>usableSize-4 || pc<iAddr+4 ){
1437       *pRc = SQLITE_CORRUPT_BKPT;
1438       return 0;
1439     }
1440     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1441     ** freeblock form a big-endian integer which is the size of the freeblock
1442     ** in bytes, including the 4-byte header. */
1443     size = get2byte(&aData[pc+2]);
1444     if( (x = size - nByte)>=0 ){
1445       testcase( x==4 );
1446       testcase( x==3 );
1447       if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1448         *pRc = SQLITE_CORRUPT_BKPT;
1449         return 0;
1450       }else if( x<4 ){
1451         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1452         ** number of bytes in fragments may not exceed 60. */
1453         if( aData[hdr+7]>57 ) return 0;
1454 
1455         /* Remove the slot from the free-list. Update the number of
1456         ** fragmented bytes within the page. */
1457         memcpy(&aData[iAddr], &aData[pc], 2);
1458         aData[hdr+7] += (u8)x;
1459       }else{
1460         /* The slot remains on the free-list. Reduce its size to account
1461          ** for the portion used by the new allocation. */
1462         put2byte(&aData[pc+2], x);
1463       }
1464       return &aData[pc + x];
1465     }
1466     iAddr = pc;
1467     pc = get2byte(&aData[pc]);
1468   }while( pc );
1469 
1470   return 0;
1471 }
1472 
1473 /*
1474 ** Allocate nByte bytes of space from within the B-Tree page passed
1475 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1476 ** of the first byte of allocated space. Return either SQLITE_OK or
1477 ** an error code (usually SQLITE_CORRUPT).
1478 **
1479 ** The caller guarantees that there is sufficient space to make the
1480 ** allocation.  This routine might need to defragment in order to bring
1481 ** all the space together, however.  This routine will avoid using
1482 ** the first two bytes past the cell pointer area since presumably this
1483 ** allocation is being made in order to insert a new cell, so we will
1484 ** also end up needing a new cell pointer.
1485 */
1486 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1487   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1488   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1489   int top;                             /* First byte of cell content area */
1490   int rc = SQLITE_OK;                  /* Integer return code */
1491   int gap;        /* First byte of gap between cell pointers and cell content */
1492 
1493   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1494   assert( pPage->pBt );
1495   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1496   assert( nByte>=0 );  /* Minimum cell size is 4 */
1497   assert( pPage->nFree>=nByte );
1498   assert( pPage->nOverflow==0 );
1499   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1500 
1501   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1502   gap = pPage->cellOffset + 2*pPage->nCell;
1503   assert( gap<=65536 );
1504   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1505   ** and the reserved space is zero (the usual value for reserved space)
1506   ** then the cell content offset of an empty page wants to be 65536.
1507   ** However, that integer is too large to be stored in a 2-byte unsigned
1508   ** integer, so a value of 0 is used in its place. */
1509   top = get2byte(&data[hdr+5]);
1510   assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1511   if( gap>top ){
1512     if( top==0 && pPage->pBt->usableSize==65536 ){
1513       top = 65536;
1514     }else{
1515       return SQLITE_CORRUPT_BKPT;
1516     }
1517   }
1518 
1519   /* If there is enough space between gap and top for one more cell pointer
1520   ** array entry offset, and if the freelist is not empty, then search the
1521   ** freelist looking for a free slot big enough to satisfy the request.
1522   */
1523   testcase( gap+2==top );
1524   testcase( gap+1==top );
1525   testcase( gap==top );
1526   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1527     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1528     if( pSpace ){
1529       assert( pSpace>=data && (pSpace - data)<65536 );
1530       *pIdx = (int)(pSpace - data);
1531       return SQLITE_OK;
1532     }else if( rc ){
1533       return rc;
1534     }
1535   }
1536 
1537   /* The request could not be fulfilled using a freelist slot.  Check
1538   ** to see if defragmentation is necessary.
1539   */
1540   testcase( gap+2+nByte==top );
1541   if( gap+2+nByte>top ){
1542     assert( pPage->nCell>0 || CORRUPT_DB );
1543     rc = defragmentPage(pPage);
1544     if( rc ) return rc;
1545     top = get2byteNotZero(&data[hdr+5]);
1546     assert( gap+nByte<=top );
1547   }
1548 
1549 
1550   /* Allocate memory from the gap in between the cell pointer array
1551   ** and the cell content area.  The btreeInitPage() call has already
1552   ** validated the freelist.  Given that the freelist is valid, there
1553   ** is no way that the allocation can extend off the end of the page.
1554   ** The assert() below verifies the previous sentence.
1555   */
1556   top -= nByte;
1557   put2byte(&data[hdr+5], top);
1558   assert( top+nByte <= (int)pPage->pBt->usableSize );
1559   *pIdx = top;
1560   return SQLITE_OK;
1561 }
1562 
1563 /*
1564 ** Return a section of the pPage->aData to the freelist.
1565 ** The first byte of the new free block is pPage->aData[iStart]
1566 ** and the size of the block is iSize bytes.
1567 **
1568 ** Adjacent freeblocks are coalesced.
1569 **
1570 ** Note that even though the freeblock list was checked by btreeInitPage(),
1571 ** that routine will not detect overlap between cells or freeblocks.  Nor
1572 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1573 ** at the end of the page.  So do additional corruption checks inside this
1574 ** routine and return SQLITE_CORRUPT if any problems are found.
1575 */
1576 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1577   u16 iPtr;                             /* Address of ptr to next freeblock */
1578   u16 iFreeBlk;                         /* Address of the next freeblock */
1579   u8 hdr;                               /* Page header size.  0 or 100 */
1580   u8 nFrag = 0;                         /* Reduction in fragmentation */
1581   u16 iOrigSize = iSize;                /* Original value of iSize */
1582   u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1583   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1584   unsigned char *data = pPage->aData;   /* Page content */
1585 
1586   assert( pPage->pBt!=0 );
1587   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1588   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1589   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1590   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1591   assert( iSize>=4 );   /* Minimum cell size is 4 */
1592   assert( iStart<=iLast );
1593 
1594   /* Overwrite deleted information with zeros when the secure_delete
1595   ** option is enabled */
1596   if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
1597     memset(&data[iStart], 0, iSize);
1598   }
1599 
1600   /* The list of freeblocks must be in ascending order.  Find the
1601   ** spot on the list where iStart should be inserted.
1602   */
1603   hdr = pPage->hdrOffset;
1604   iPtr = hdr + 1;
1605   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1606     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1607   }else{
1608     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1609       if( iFreeBlk<iPtr+4 ){
1610         if( iFreeBlk==0 ) break;
1611         return SQLITE_CORRUPT_BKPT;
1612       }
1613       iPtr = iFreeBlk;
1614     }
1615     if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1616     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1617 
1618     /* At this point:
1619     **    iFreeBlk:   First freeblock after iStart, or zero if none
1620     **    iPtr:       The address of a pointer to iFreeBlk
1621     **
1622     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1623     */
1624     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1625       nFrag = iFreeBlk - iEnd;
1626       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1627       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1628       if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
1629       iSize = iEnd - iStart;
1630       iFreeBlk = get2byte(&data[iFreeBlk]);
1631     }
1632 
1633     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1634     ** pointer in the page header) then check to see if iStart should be
1635     ** coalesced onto the end of iPtr.
1636     */
1637     if( iPtr>hdr+1 ){
1638       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1639       if( iPtrEnd+3>=iStart ){
1640         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1641         nFrag += iStart - iPtrEnd;
1642         iSize = iEnd - iPtr;
1643         iStart = iPtr;
1644       }
1645     }
1646     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1647     data[hdr+7] -= nFrag;
1648   }
1649   if( iStart==get2byte(&data[hdr+5]) ){
1650     /* The new freeblock is at the beginning of the cell content area,
1651     ** so just extend the cell content area rather than create another
1652     ** freelist entry */
1653     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
1654     put2byte(&data[hdr+1], iFreeBlk);
1655     put2byte(&data[hdr+5], iEnd);
1656   }else{
1657     /* Insert the new freeblock into the freelist */
1658     put2byte(&data[iPtr], iStart);
1659     put2byte(&data[iStart], iFreeBlk);
1660     put2byte(&data[iStart+2], iSize);
1661   }
1662   pPage->nFree += iOrigSize;
1663   return SQLITE_OK;
1664 }
1665 
1666 /*
1667 ** Decode the flags byte (the first byte of the header) for a page
1668 ** and initialize fields of the MemPage structure accordingly.
1669 **
1670 ** Only the following combinations are supported.  Anything different
1671 ** indicates a corrupt database files:
1672 **
1673 **         PTF_ZERODATA
1674 **         PTF_ZERODATA | PTF_LEAF
1675 **         PTF_LEAFDATA | PTF_INTKEY
1676 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1677 */
1678 static int decodeFlags(MemPage *pPage, int flagByte){
1679   BtShared *pBt;     /* A copy of pPage->pBt */
1680 
1681   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1682   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1683   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1684   flagByte &= ~PTF_LEAF;
1685   pPage->childPtrSize = 4-4*pPage->leaf;
1686   pPage->xCellSize = cellSizePtr;
1687   pBt = pPage->pBt;
1688   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1689     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1690     ** interior table b-tree page. */
1691     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1692     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1693     ** leaf table b-tree page. */
1694     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1695     pPage->intKey = 1;
1696     if( pPage->leaf ){
1697       pPage->intKeyLeaf = 1;
1698       pPage->xParseCell = btreeParseCellPtr;
1699     }else{
1700       pPage->intKeyLeaf = 0;
1701       pPage->xCellSize = cellSizePtrNoPayload;
1702       pPage->xParseCell = btreeParseCellPtrNoPayload;
1703     }
1704     pPage->maxLocal = pBt->maxLeaf;
1705     pPage->minLocal = pBt->minLeaf;
1706   }else if( flagByte==PTF_ZERODATA ){
1707     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1708     ** interior index b-tree page. */
1709     assert( (PTF_ZERODATA)==2 );
1710     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1711     ** leaf index b-tree page. */
1712     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1713     pPage->intKey = 0;
1714     pPage->intKeyLeaf = 0;
1715     pPage->xParseCell = btreeParseCellPtrIndex;
1716     pPage->maxLocal = pBt->maxLocal;
1717     pPage->minLocal = pBt->minLocal;
1718   }else{
1719     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1720     ** an error. */
1721     return SQLITE_CORRUPT_BKPT;
1722   }
1723   pPage->max1bytePayload = pBt->max1bytePayload;
1724   return SQLITE_OK;
1725 }
1726 
1727 /*
1728 ** Initialize the auxiliary information for a disk block.
1729 **
1730 ** Return SQLITE_OK on success.  If we see that the page does
1731 ** not contain a well-formed database page, then return
1732 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1733 ** guarantee that the page is well-formed.  It only shows that
1734 ** we failed to detect any corruption.
1735 */
1736 static int btreeInitPage(MemPage *pPage){
1737 
1738   assert( pPage->pBt!=0 );
1739   assert( pPage->pBt->db!=0 );
1740   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1741   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1742   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1743   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1744 
1745   if( !pPage->isInit ){
1746     u16 pc;            /* Address of a freeblock within pPage->aData[] */
1747     u8 hdr;            /* Offset to beginning of page header */
1748     u8 *data;          /* Equal to pPage->aData */
1749     BtShared *pBt;        /* The main btree structure */
1750     int usableSize;    /* Amount of usable space on each page */
1751     u16 cellOffset;    /* Offset from start of page to first cell pointer */
1752     int nFree;         /* Number of unused bytes on the page */
1753     int top;           /* First byte of the cell content area */
1754     int iCellFirst;    /* First allowable cell or freeblock offset */
1755     int iCellLast;     /* Last possible cell or freeblock offset */
1756 
1757     pBt = pPage->pBt;
1758 
1759     hdr = pPage->hdrOffset;
1760     data = pPage->aData;
1761     /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1762     ** the b-tree page type. */
1763     if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1764     assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1765     pPage->maskPage = (u16)(pBt->pageSize - 1);
1766     pPage->nOverflow = 0;
1767     usableSize = pBt->usableSize;
1768     pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1769     pPage->aDataEnd = &data[usableSize];
1770     pPage->aCellIdx = &data[cellOffset];
1771     pPage->aDataOfst = &data[pPage->childPtrSize];
1772     /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1773     ** the start of the cell content area. A zero value for this integer is
1774     ** interpreted as 65536. */
1775     top = get2byteNotZero(&data[hdr+5]);
1776     /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1777     ** number of cells on the page. */
1778     pPage->nCell = get2byte(&data[hdr+3]);
1779     if( pPage->nCell>MX_CELL(pBt) ){
1780       /* To many cells for a single page.  The page must be corrupt */
1781       return SQLITE_CORRUPT_BKPT;
1782     }
1783     testcase( pPage->nCell==MX_CELL(pBt) );
1784     /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1785     ** possible for a root page of a table that contains no rows) then the
1786     ** offset to the cell content area will equal the page size minus the
1787     ** bytes of reserved space. */
1788     assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1789 
1790     /* A malformed database page might cause us to read past the end
1791     ** of page when parsing a cell.
1792     **
1793     ** The following block of code checks early to see if a cell extends
1794     ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1795     ** returned if it does.
1796     */
1797     iCellFirst = cellOffset + 2*pPage->nCell;
1798     iCellLast = usableSize - 4;
1799     if( pBt->db->flags & SQLITE_CellSizeCk ){
1800       int i;            /* Index into the cell pointer array */
1801       int sz;           /* Size of a cell */
1802 
1803       if( !pPage->leaf ) iCellLast--;
1804       for(i=0; i<pPage->nCell; i++){
1805         pc = get2byteAligned(&data[cellOffset+i*2]);
1806         testcase( pc==iCellFirst );
1807         testcase( pc==iCellLast );
1808         if( pc<iCellFirst || pc>iCellLast ){
1809           return SQLITE_CORRUPT_BKPT;
1810         }
1811         sz = pPage->xCellSize(pPage, &data[pc]);
1812         testcase( pc+sz==usableSize );
1813         if( pc+sz>usableSize ){
1814           return SQLITE_CORRUPT_BKPT;
1815         }
1816       }
1817       if( !pPage->leaf ) iCellLast++;
1818     }
1819 
1820     /* Compute the total free space on the page
1821     ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1822     ** start of the first freeblock on the page, or is zero if there are no
1823     ** freeblocks. */
1824     pc = get2byte(&data[hdr+1]);
1825     nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1826     while( pc>0 ){
1827       u16 next, size;
1828       if( pc<iCellFirst || pc>iCellLast ){
1829         /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1830         ** always be at least one cell before the first freeblock.
1831         **
1832         ** Or, the freeblock is off the end of the page
1833         */
1834         return SQLITE_CORRUPT_BKPT;
1835       }
1836       next = get2byte(&data[pc]);
1837       size = get2byte(&data[pc+2]);
1838       if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1839         /* Free blocks must be in ascending order. And the last byte of
1840         ** the free-block must lie on the database page.  */
1841         return SQLITE_CORRUPT_BKPT;
1842       }
1843       nFree = nFree + size;
1844       pc = next;
1845     }
1846 
1847     /* At this point, nFree contains the sum of the offset to the start
1848     ** of the cell-content area plus the number of free bytes within
1849     ** the cell-content area. If this is greater than the usable-size
1850     ** of the page, then the page must be corrupted. This check also
1851     ** serves to verify that the offset to the start of the cell-content
1852     ** area, according to the page header, lies within the page.
1853     */
1854     if( nFree>usableSize ){
1855       return SQLITE_CORRUPT_BKPT;
1856     }
1857     pPage->nFree = (u16)(nFree - iCellFirst);
1858     pPage->isInit = 1;
1859   }
1860   return SQLITE_OK;
1861 }
1862 
1863 /*
1864 ** Set up a raw page so that it looks like a database page holding
1865 ** no entries.
1866 */
1867 static void zeroPage(MemPage *pPage, int flags){
1868   unsigned char *data = pPage->aData;
1869   BtShared *pBt = pPage->pBt;
1870   u8 hdr = pPage->hdrOffset;
1871   u16 first;
1872 
1873   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1874   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1875   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1876   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1877   assert( sqlite3_mutex_held(pBt->mutex) );
1878   if( pBt->btsFlags & BTS_SECURE_DELETE ){
1879     memset(&data[hdr], 0, pBt->usableSize - hdr);
1880   }
1881   data[hdr] = (char)flags;
1882   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1883   memset(&data[hdr+1], 0, 4);
1884   data[hdr+7] = 0;
1885   put2byte(&data[hdr+5], pBt->usableSize);
1886   pPage->nFree = (u16)(pBt->usableSize - first);
1887   decodeFlags(pPage, flags);
1888   pPage->cellOffset = first;
1889   pPage->aDataEnd = &data[pBt->usableSize];
1890   pPage->aCellIdx = &data[first];
1891   pPage->aDataOfst = &data[pPage->childPtrSize];
1892   pPage->nOverflow = 0;
1893   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1894   pPage->maskPage = (u16)(pBt->pageSize - 1);
1895   pPage->nCell = 0;
1896   pPage->isInit = 1;
1897 }
1898 
1899 
1900 /*
1901 ** Convert a DbPage obtained from the pager into a MemPage used by
1902 ** the btree layer.
1903 */
1904 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1905   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1906   if( pgno!=pPage->pgno ){
1907     pPage->aData = sqlite3PagerGetData(pDbPage);
1908     pPage->pDbPage = pDbPage;
1909     pPage->pBt = pBt;
1910     pPage->pgno = pgno;
1911     pPage->hdrOffset = pgno==1 ? 100 : 0;
1912   }
1913   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
1914   return pPage;
1915 }
1916 
1917 /*
1918 ** Get a page from the pager.  Initialize the MemPage.pBt and
1919 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
1920 **
1921 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1922 ** about the content of the page at this time.  So do not go to the disk
1923 ** to fetch the content.  Just fill in the content with zeros for now.
1924 ** If in the future we call sqlite3PagerWrite() on this page, that
1925 ** means we have started to be concerned about content and the disk
1926 ** read should occur at that point.
1927 */
1928 static int btreeGetPage(
1929   BtShared *pBt,       /* The btree */
1930   Pgno pgno,           /* Number of the page to fetch */
1931   MemPage **ppPage,    /* Return the page in this parameter */
1932   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1933 ){
1934   int rc;
1935   DbPage *pDbPage;
1936 
1937   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
1938   assert( sqlite3_mutex_held(pBt->mutex) );
1939   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
1940   if( rc ) return rc;
1941   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1942   return SQLITE_OK;
1943 }
1944 
1945 /*
1946 ** Retrieve a page from the pager cache. If the requested page is not
1947 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
1948 ** MemPage.aData elements if needed.
1949 */
1950 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1951   DbPage *pDbPage;
1952   assert( sqlite3_mutex_held(pBt->mutex) );
1953   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1954   if( pDbPage ){
1955     return btreePageFromDbPage(pDbPage, pgno, pBt);
1956   }
1957   return 0;
1958 }
1959 
1960 /*
1961 ** Return the size of the database file in pages. If there is any kind of
1962 ** error, return ((unsigned int)-1).
1963 */
1964 static Pgno btreePagecount(BtShared *pBt){
1965   return pBt->nPage;
1966 }
1967 u32 sqlite3BtreeLastPage(Btree *p){
1968   assert( sqlite3BtreeHoldsMutex(p) );
1969   assert( ((p->pBt->nPage)&0x8000000)==0 );
1970   return btreePagecount(p->pBt);
1971 }
1972 
1973 /*
1974 ** Get a page from the pager and initialize it.
1975 **
1976 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
1977 ** call.  Do additional sanity checking on the page in this case.
1978 ** And if the fetch fails, this routine must decrement pCur->iPage.
1979 **
1980 ** The page is fetched as read-write unless pCur is not NULL and is
1981 ** a read-only cursor.
1982 **
1983 ** If an error occurs, then *ppPage is undefined. It
1984 ** may remain unchanged, or it may be set to an invalid value.
1985 */
1986 static int getAndInitPage(
1987   BtShared *pBt,                  /* The database file */
1988   Pgno pgno,                      /* Number of the page to get */
1989   MemPage **ppPage,               /* Write the page pointer here */
1990   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
1991   int bReadOnly                   /* True for a read-only page */
1992 ){
1993   int rc;
1994   DbPage *pDbPage;
1995   assert( sqlite3_mutex_held(pBt->mutex) );
1996   assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1997   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
1998   assert( pCur==0 || pCur->iPage>0 );
1999 
2000   if( pgno>btreePagecount(pBt) ){
2001     rc = SQLITE_CORRUPT_BKPT;
2002     goto getAndInitPage_error;
2003   }
2004   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2005   if( rc ){
2006     goto getAndInitPage_error;
2007   }
2008   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2009   if( (*ppPage)->isInit==0 ){
2010     btreePageFromDbPage(pDbPage, pgno, pBt);
2011     rc = btreeInitPage(*ppPage);
2012     if( rc!=SQLITE_OK ){
2013       releasePage(*ppPage);
2014       goto getAndInitPage_error;
2015     }
2016   }
2017   assert( (*ppPage)->pgno==pgno );
2018   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2019 
2020   /* If obtaining a child page for a cursor, we must verify that the page is
2021   ** compatible with the root page. */
2022   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2023     rc = SQLITE_CORRUPT_BKPT;
2024     releasePage(*ppPage);
2025     goto getAndInitPage_error;
2026   }
2027   return SQLITE_OK;
2028 
2029 getAndInitPage_error:
2030   if( pCur ) pCur->iPage--;
2031   testcase( pgno==0 );
2032   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2033   return rc;
2034 }
2035 
2036 /*
2037 ** Release a MemPage.  This should be called once for each prior
2038 ** call to btreeGetPage.
2039 */
2040 static void releasePageNotNull(MemPage *pPage){
2041   assert( pPage->aData );
2042   assert( pPage->pBt );
2043   assert( pPage->pDbPage!=0 );
2044   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2045   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2046   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2047   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2048 }
2049 static void releasePage(MemPage *pPage){
2050   if( pPage ) releasePageNotNull(pPage);
2051 }
2052 
2053 /*
2054 ** Get an unused page.
2055 **
2056 ** This works just like btreeGetPage() with the addition:
2057 **
2058 **   *  If the page is already in use for some other purpose, immediately
2059 **      release it and return an SQLITE_CURRUPT error.
2060 **   *  Make sure the isInit flag is clear
2061 */
2062 static int btreeGetUnusedPage(
2063   BtShared *pBt,       /* The btree */
2064   Pgno pgno,           /* Number of the page to fetch */
2065   MemPage **ppPage,    /* Return the page in this parameter */
2066   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2067 ){
2068   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2069   if( rc==SQLITE_OK ){
2070     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2071       releasePage(*ppPage);
2072       *ppPage = 0;
2073       return SQLITE_CORRUPT_BKPT;
2074     }
2075     (*ppPage)->isInit = 0;
2076   }else{
2077     *ppPage = 0;
2078   }
2079   return rc;
2080 }
2081 
2082 
2083 /*
2084 ** During a rollback, when the pager reloads information into the cache
2085 ** so that the cache is restored to its original state at the start of
2086 ** the transaction, for each page restored this routine is called.
2087 **
2088 ** This routine needs to reset the extra data section at the end of the
2089 ** page to agree with the restored data.
2090 */
2091 static void pageReinit(DbPage *pData){
2092   MemPage *pPage;
2093   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2094   assert( sqlite3PagerPageRefcount(pData)>0 );
2095   if( pPage->isInit ){
2096     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2097     pPage->isInit = 0;
2098     if( sqlite3PagerPageRefcount(pData)>1 ){
2099       /* pPage might not be a btree page;  it might be an overflow page
2100       ** or ptrmap page or a free page.  In those cases, the following
2101       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2102       ** But no harm is done by this.  And it is very important that
2103       ** btreeInitPage() be called on every btree page so we make
2104       ** the call for every page that comes in for re-initing. */
2105       btreeInitPage(pPage);
2106     }
2107   }
2108 }
2109 
2110 /*
2111 ** Invoke the busy handler for a btree.
2112 */
2113 static int btreeInvokeBusyHandler(void *pArg){
2114   BtShared *pBt = (BtShared*)pArg;
2115   assert( pBt->db );
2116   assert( sqlite3_mutex_held(pBt->db->mutex) );
2117   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2118 }
2119 
2120 /*
2121 ** Open a database file.
2122 **
2123 ** zFilename is the name of the database file.  If zFilename is NULL
2124 ** then an ephemeral database is created.  The ephemeral database might
2125 ** be exclusively in memory, or it might use a disk-based memory cache.
2126 ** Either way, the ephemeral database will be automatically deleted
2127 ** when sqlite3BtreeClose() is called.
2128 **
2129 ** If zFilename is ":memory:" then an in-memory database is created
2130 ** that is automatically destroyed when it is closed.
2131 **
2132 ** The "flags" parameter is a bitmask that might contain bits like
2133 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2134 **
2135 ** If the database is already opened in the same database connection
2136 ** and we are in shared cache mode, then the open will fail with an
2137 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2138 ** objects in the same database connection since doing so will lead
2139 ** to problems with locking.
2140 */
2141 int sqlite3BtreeOpen(
2142   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2143   const char *zFilename,  /* Name of the file containing the BTree database */
2144   sqlite3 *db,            /* Associated database handle */
2145   Btree **ppBtree,        /* Pointer to new Btree object written here */
2146   int flags,              /* Options */
2147   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2148 ){
2149   BtShared *pBt = 0;             /* Shared part of btree structure */
2150   Btree *p;                      /* Handle to return */
2151   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2152   int rc = SQLITE_OK;            /* Result code from this function */
2153   u8 nReserve;                   /* Byte of unused space on each page */
2154   unsigned char zDbHeader[100];  /* Database header content */
2155 
2156   /* True if opening an ephemeral, temporary database */
2157   const int isTempDb = zFilename==0 || zFilename[0]==0;
2158 
2159   /* Set the variable isMemdb to true for an in-memory database, or
2160   ** false for a file-based database.
2161   */
2162 #ifdef SQLITE_OMIT_MEMORYDB
2163   const int isMemdb = 0;
2164 #else
2165   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2166                        || (isTempDb && sqlite3TempInMemory(db))
2167                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2168 #endif
2169 
2170   assert( db!=0 );
2171   assert( pVfs!=0 );
2172   assert( sqlite3_mutex_held(db->mutex) );
2173   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2174 
2175   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2176   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2177 
2178   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2179   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2180 
2181   if( isMemdb ){
2182     flags |= BTREE_MEMORY;
2183   }
2184   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2185     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2186   }
2187   p = sqlite3MallocZero(sizeof(Btree));
2188   if( !p ){
2189     return SQLITE_NOMEM_BKPT;
2190   }
2191   p->inTrans = TRANS_NONE;
2192   p->db = db;
2193 #ifndef SQLITE_OMIT_SHARED_CACHE
2194   p->lock.pBtree = p;
2195   p->lock.iTable = 1;
2196 #endif
2197 
2198 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2199   /*
2200   ** If this Btree is a candidate for shared cache, try to find an
2201   ** existing BtShared object that we can share with
2202   */
2203   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2204     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2205       int nFilename = sqlite3Strlen30(zFilename)+1;
2206       int nFullPathname = pVfs->mxPathname+1;
2207       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2208       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2209 
2210       p->sharable = 1;
2211       if( !zFullPathname ){
2212         sqlite3_free(p);
2213         return SQLITE_NOMEM_BKPT;
2214       }
2215       if( isMemdb ){
2216         memcpy(zFullPathname, zFilename, nFilename);
2217       }else{
2218         rc = sqlite3OsFullPathname(pVfs, zFilename,
2219                                    nFullPathname, zFullPathname);
2220         if( rc ){
2221           sqlite3_free(zFullPathname);
2222           sqlite3_free(p);
2223           return rc;
2224         }
2225       }
2226 #if SQLITE_THREADSAFE
2227       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2228       sqlite3_mutex_enter(mutexOpen);
2229       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2230       sqlite3_mutex_enter(mutexShared);
2231 #endif
2232       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2233         assert( pBt->nRef>0 );
2234         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2235                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2236           int iDb;
2237           for(iDb=db->nDb-1; iDb>=0; iDb--){
2238             Btree *pExisting = db->aDb[iDb].pBt;
2239             if( pExisting && pExisting->pBt==pBt ){
2240               sqlite3_mutex_leave(mutexShared);
2241               sqlite3_mutex_leave(mutexOpen);
2242               sqlite3_free(zFullPathname);
2243               sqlite3_free(p);
2244               return SQLITE_CONSTRAINT;
2245             }
2246           }
2247           p->pBt = pBt;
2248           pBt->nRef++;
2249           break;
2250         }
2251       }
2252       sqlite3_mutex_leave(mutexShared);
2253       sqlite3_free(zFullPathname);
2254     }
2255 #ifdef SQLITE_DEBUG
2256     else{
2257       /* In debug mode, we mark all persistent databases as sharable
2258       ** even when they are not.  This exercises the locking code and
2259       ** gives more opportunity for asserts(sqlite3_mutex_held())
2260       ** statements to find locking problems.
2261       */
2262       p->sharable = 1;
2263     }
2264 #endif
2265   }
2266 #endif
2267   if( pBt==0 ){
2268     /*
2269     ** The following asserts make sure that structures used by the btree are
2270     ** the right size.  This is to guard against size changes that result
2271     ** when compiling on a different architecture.
2272     */
2273     assert( sizeof(i64)==8 );
2274     assert( sizeof(u64)==8 );
2275     assert( sizeof(u32)==4 );
2276     assert( sizeof(u16)==2 );
2277     assert( sizeof(Pgno)==4 );
2278 
2279     pBt = sqlite3MallocZero( sizeof(*pBt) );
2280     if( pBt==0 ){
2281       rc = SQLITE_NOMEM_BKPT;
2282       goto btree_open_out;
2283     }
2284     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2285                           EXTRA_SIZE, flags, vfsFlags, pageReinit);
2286     if( rc==SQLITE_OK ){
2287       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2288       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2289     }
2290     if( rc!=SQLITE_OK ){
2291       goto btree_open_out;
2292     }
2293     pBt->openFlags = (u8)flags;
2294     pBt->db = db;
2295     sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2296     p->pBt = pBt;
2297 
2298     pBt->pCursor = 0;
2299     pBt->pPage1 = 0;
2300     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2301 #ifdef SQLITE_SECURE_DELETE
2302     pBt->btsFlags |= BTS_SECURE_DELETE;
2303 #endif
2304     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2305     ** determined by the 2-byte integer located at an offset of 16 bytes from
2306     ** the beginning of the database file. */
2307     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2308     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2309          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2310       pBt->pageSize = 0;
2311 #ifndef SQLITE_OMIT_AUTOVACUUM
2312       /* If the magic name ":memory:" will create an in-memory database, then
2313       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2314       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2315       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2316       ** regular file-name. In this case the auto-vacuum applies as per normal.
2317       */
2318       if( zFilename && !isMemdb ){
2319         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2320         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2321       }
2322 #endif
2323       nReserve = 0;
2324     }else{
2325       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2326       ** determined by the one-byte unsigned integer found at an offset of 20
2327       ** into the database file header. */
2328       nReserve = zDbHeader[20];
2329       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2330 #ifndef SQLITE_OMIT_AUTOVACUUM
2331       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2332       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2333 #endif
2334     }
2335     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2336     if( rc ) goto btree_open_out;
2337     pBt->usableSize = pBt->pageSize - nReserve;
2338     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2339 
2340 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2341     /* Add the new BtShared object to the linked list sharable BtShareds.
2342     */
2343     pBt->nRef = 1;
2344     if( p->sharable ){
2345       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2346       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2347       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2348         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2349         if( pBt->mutex==0 ){
2350           rc = SQLITE_NOMEM_BKPT;
2351           goto btree_open_out;
2352         }
2353       }
2354       sqlite3_mutex_enter(mutexShared);
2355       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2356       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2357       sqlite3_mutex_leave(mutexShared);
2358     }
2359 #endif
2360   }
2361 
2362 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2363   /* If the new Btree uses a sharable pBtShared, then link the new
2364   ** Btree into the list of all sharable Btrees for the same connection.
2365   ** The list is kept in ascending order by pBt address.
2366   */
2367   if( p->sharable ){
2368     int i;
2369     Btree *pSib;
2370     for(i=0; i<db->nDb; i++){
2371       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2372         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2373         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2374           p->pNext = pSib;
2375           p->pPrev = 0;
2376           pSib->pPrev = p;
2377         }else{
2378           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2379             pSib = pSib->pNext;
2380           }
2381           p->pNext = pSib->pNext;
2382           p->pPrev = pSib;
2383           if( p->pNext ){
2384             p->pNext->pPrev = p;
2385           }
2386           pSib->pNext = p;
2387         }
2388         break;
2389       }
2390     }
2391   }
2392 #endif
2393   *ppBtree = p;
2394 
2395 btree_open_out:
2396   if( rc!=SQLITE_OK ){
2397     if( pBt && pBt->pPager ){
2398       sqlite3PagerClose(pBt->pPager);
2399     }
2400     sqlite3_free(pBt);
2401     sqlite3_free(p);
2402     *ppBtree = 0;
2403   }else{
2404     /* If the B-Tree was successfully opened, set the pager-cache size to the
2405     ** default value. Except, when opening on an existing shared pager-cache,
2406     ** do not change the pager-cache size.
2407     */
2408     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2409       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2410     }
2411   }
2412   if( mutexOpen ){
2413     assert( sqlite3_mutex_held(mutexOpen) );
2414     sqlite3_mutex_leave(mutexOpen);
2415   }
2416   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2417   return rc;
2418 }
2419 
2420 /*
2421 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2422 ** remove the BtShared structure from the sharing list.  Return
2423 ** true if the BtShared.nRef counter reaches zero and return
2424 ** false if it is still positive.
2425 */
2426 static int removeFromSharingList(BtShared *pBt){
2427 #ifndef SQLITE_OMIT_SHARED_CACHE
2428   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2429   BtShared *pList;
2430   int removed = 0;
2431 
2432   assert( sqlite3_mutex_notheld(pBt->mutex) );
2433   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2434   sqlite3_mutex_enter(pMaster);
2435   pBt->nRef--;
2436   if( pBt->nRef<=0 ){
2437     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2438       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2439     }else{
2440       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2441       while( ALWAYS(pList) && pList->pNext!=pBt ){
2442         pList=pList->pNext;
2443       }
2444       if( ALWAYS(pList) ){
2445         pList->pNext = pBt->pNext;
2446       }
2447     }
2448     if( SQLITE_THREADSAFE ){
2449       sqlite3_mutex_free(pBt->mutex);
2450     }
2451     removed = 1;
2452   }
2453   sqlite3_mutex_leave(pMaster);
2454   return removed;
2455 #else
2456   return 1;
2457 #endif
2458 }
2459 
2460 /*
2461 ** Make sure pBt->pTmpSpace points to an allocation of
2462 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2463 ** pointer.
2464 */
2465 static void allocateTempSpace(BtShared *pBt){
2466   if( !pBt->pTmpSpace ){
2467     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2468 
2469     /* One of the uses of pBt->pTmpSpace is to format cells before
2470     ** inserting them into a leaf page (function fillInCell()). If
2471     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2472     ** by the various routines that manipulate binary cells. Which
2473     ** can mean that fillInCell() only initializes the first 2 or 3
2474     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2475     ** it into a database page. This is not actually a problem, but it
2476     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2477     ** data is passed to system call write(). So to avoid this error,
2478     ** zero the first 4 bytes of temp space here.
2479     **
2480     ** Also:  Provide four bytes of initialized space before the
2481     ** beginning of pTmpSpace as an area available to prepend the
2482     ** left-child pointer to the beginning of a cell.
2483     */
2484     if( pBt->pTmpSpace ){
2485       memset(pBt->pTmpSpace, 0, 8);
2486       pBt->pTmpSpace += 4;
2487     }
2488   }
2489 }
2490 
2491 /*
2492 ** Free the pBt->pTmpSpace allocation
2493 */
2494 static void freeTempSpace(BtShared *pBt){
2495   if( pBt->pTmpSpace ){
2496     pBt->pTmpSpace -= 4;
2497     sqlite3PageFree(pBt->pTmpSpace);
2498     pBt->pTmpSpace = 0;
2499   }
2500 }
2501 
2502 /*
2503 ** Close an open database and invalidate all cursors.
2504 */
2505 int sqlite3BtreeClose(Btree *p){
2506   BtShared *pBt = p->pBt;
2507   BtCursor *pCur;
2508 
2509   /* Close all cursors opened via this handle.  */
2510   assert( sqlite3_mutex_held(p->db->mutex) );
2511   sqlite3BtreeEnter(p);
2512   pCur = pBt->pCursor;
2513   while( pCur ){
2514     BtCursor *pTmp = pCur;
2515     pCur = pCur->pNext;
2516     if( pTmp->pBtree==p ){
2517       sqlite3BtreeCloseCursor(pTmp);
2518     }
2519   }
2520 
2521   /* Rollback any active transaction and free the handle structure.
2522   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2523   ** this handle.
2524   */
2525   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2526   sqlite3BtreeLeave(p);
2527 
2528   /* If there are still other outstanding references to the shared-btree
2529   ** structure, return now. The remainder of this procedure cleans
2530   ** up the shared-btree.
2531   */
2532   assert( p->wantToLock==0 && p->locked==0 );
2533   if( !p->sharable || removeFromSharingList(pBt) ){
2534     /* The pBt is no longer on the sharing list, so we can access
2535     ** it without having to hold the mutex.
2536     **
2537     ** Clean out and delete the BtShared object.
2538     */
2539     assert( !pBt->pCursor );
2540     sqlite3PagerClose(pBt->pPager);
2541     if( pBt->xFreeSchema && pBt->pSchema ){
2542       pBt->xFreeSchema(pBt->pSchema);
2543     }
2544     sqlite3DbFree(0, pBt->pSchema);
2545     freeTempSpace(pBt);
2546     sqlite3_free(pBt);
2547   }
2548 
2549 #ifndef SQLITE_OMIT_SHARED_CACHE
2550   assert( p->wantToLock==0 );
2551   assert( p->locked==0 );
2552   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2553   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2554 #endif
2555 
2556   sqlite3_free(p);
2557   return SQLITE_OK;
2558 }
2559 
2560 /*
2561 ** Change the "soft" limit on the number of pages in the cache.
2562 ** Unused and unmodified pages will be recycled when the number of
2563 ** pages in the cache exceeds this soft limit.  But the size of the
2564 ** cache is allowed to grow larger than this limit if it contains
2565 ** dirty pages or pages still in active use.
2566 */
2567 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2568   BtShared *pBt = p->pBt;
2569   assert( sqlite3_mutex_held(p->db->mutex) );
2570   sqlite3BtreeEnter(p);
2571   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2572   sqlite3BtreeLeave(p);
2573   return SQLITE_OK;
2574 }
2575 
2576 /*
2577 ** Change the "spill" limit on the number of pages in the cache.
2578 ** If the number of pages exceeds this limit during a write transaction,
2579 ** the pager might attempt to "spill" pages to the journal early in
2580 ** order to free up memory.
2581 **
2582 ** The value returned is the current spill size.  If zero is passed
2583 ** as an argument, no changes are made to the spill size setting, so
2584 ** using mxPage of 0 is a way to query the current spill size.
2585 */
2586 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2587   BtShared *pBt = p->pBt;
2588   int res;
2589   assert( sqlite3_mutex_held(p->db->mutex) );
2590   sqlite3BtreeEnter(p);
2591   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2592   sqlite3BtreeLeave(p);
2593   return res;
2594 }
2595 
2596 #if SQLITE_MAX_MMAP_SIZE>0
2597 /*
2598 ** Change the limit on the amount of the database file that may be
2599 ** memory mapped.
2600 */
2601 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2602   BtShared *pBt = p->pBt;
2603   assert( sqlite3_mutex_held(p->db->mutex) );
2604   sqlite3BtreeEnter(p);
2605   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2606   sqlite3BtreeLeave(p);
2607   return SQLITE_OK;
2608 }
2609 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2610 
2611 /*
2612 ** Change the way data is synced to disk in order to increase or decrease
2613 ** how well the database resists damage due to OS crashes and power
2614 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2615 ** there is a high probability of damage)  Level 2 is the default.  There
2616 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2617 ** probability of damage to near zero but with a write performance reduction.
2618 */
2619 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2620 int sqlite3BtreeSetPagerFlags(
2621   Btree *p,              /* The btree to set the safety level on */
2622   unsigned pgFlags       /* Various PAGER_* flags */
2623 ){
2624   BtShared *pBt = p->pBt;
2625   assert( sqlite3_mutex_held(p->db->mutex) );
2626   sqlite3BtreeEnter(p);
2627   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2628   sqlite3BtreeLeave(p);
2629   return SQLITE_OK;
2630 }
2631 #endif
2632 
2633 /*
2634 ** Change the default pages size and the number of reserved bytes per page.
2635 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2636 ** without changing anything.
2637 **
2638 ** The page size must be a power of 2 between 512 and 65536.  If the page
2639 ** size supplied does not meet this constraint then the page size is not
2640 ** changed.
2641 **
2642 ** Page sizes are constrained to be a power of two so that the region
2643 ** of the database file used for locking (beginning at PENDING_BYTE,
2644 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2645 ** at the beginning of a page.
2646 **
2647 ** If parameter nReserve is less than zero, then the number of reserved
2648 ** bytes per page is left unchanged.
2649 **
2650 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2651 ** and autovacuum mode can no longer be changed.
2652 */
2653 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2654   int rc = SQLITE_OK;
2655   BtShared *pBt = p->pBt;
2656   assert( nReserve>=-1 && nReserve<=255 );
2657   sqlite3BtreeEnter(p);
2658 #if SQLITE_HAS_CODEC
2659   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2660 #endif
2661   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2662     sqlite3BtreeLeave(p);
2663     return SQLITE_READONLY;
2664   }
2665   if( nReserve<0 ){
2666     nReserve = pBt->pageSize - pBt->usableSize;
2667   }
2668   assert( nReserve>=0 && nReserve<=255 );
2669   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2670         ((pageSize-1)&pageSize)==0 ){
2671     assert( (pageSize & 7)==0 );
2672     assert( !pBt->pCursor );
2673     pBt->pageSize = (u32)pageSize;
2674     freeTempSpace(pBt);
2675   }
2676   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2677   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2678   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2679   sqlite3BtreeLeave(p);
2680   return rc;
2681 }
2682 
2683 /*
2684 ** Return the currently defined page size
2685 */
2686 int sqlite3BtreeGetPageSize(Btree *p){
2687   return p->pBt->pageSize;
2688 }
2689 
2690 /*
2691 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2692 ** may only be called if it is guaranteed that the b-tree mutex is already
2693 ** held.
2694 **
2695 ** This is useful in one special case in the backup API code where it is
2696 ** known that the shared b-tree mutex is held, but the mutex on the
2697 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2698 ** were to be called, it might collide with some other operation on the
2699 ** database handle that owns *p, causing undefined behavior.
2700 */
2701 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2702   int n;
2703   assert( sqlite3_mutex_held(p->pBt->mutex) );
2704   n = p->pBt->pageSize - p->pBt->usableSize;
2705   return n;
2706 }
2707 
2708 /*
2709 ** Return the number of bytes of space at the end of every page that
2710 ** are intentually left unused.  This is the "reserved" space that is
2711 ** sometimes used by extensions.
2712 **
2713 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2714 ** greater of the current reserved space and the maximum requested
2715 ** reserve space.
2716 */
2717 int sqlite3BtreeGetOptimalReserve(Btree *p){
2718   int n;
2719   sqlite3BtreeEnter(p);
2720   n = sqlite3BtreeGetReserveNoMutex(p);
2721 #ifdef SQLITE_HAS_CODEC
2722   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2723 #endif
2724   sqlite3BtreeLeave(p);
2725   return n;
2726 }
2727 
2728 
2729 /*
2730 ** Set the maximum page count for a database if mxPage is positive.
2731 ** No changes are made if mxPage is 0 or negative.
2732 ** Regardless of the value of mxPage, return the maximum page count.
2733 */
2734 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2735   int n;
2736   sqlite3BtreeEnter(p);
2737   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2738   sqlite3BtreeLeave(p);
2739   return n;
2740 }
2741 
2742 /*
2743 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1.  If newFlag is -1,
2744 ** then make no changes.  Always return the value of the BTS_SECURE_DELETE
2745 ** setting after the change.
2746 */
2747 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2748   int b;
2749   if( p==0 ) return 0;
2750   sqlite3BtreeEnter(p);
2751   if( newFlag>=0 ){
2752     p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2753     if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
2754   }
2755   b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
2756   sqlite3BtreeLeave(p);
2757   return b;
2758 }
2759 
2760 /*
2761 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2762 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2763 ** is disabled. The default value for the auto-vacuum property is
2764 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2765 */
2766 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2767 #ifdef SQLITE_OMIT_AUTOVACUUM
2768   return SQLITE_READONLY;
2769 #else
2770   BtShared *pBt = p->pBt;
2771   int rc = SQLITE_OK;
2772   u8 av = (u8)autoVacuum;
2773 
2774   sqlite3BtreeEnter(p);
2775   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2776     rc = SQLITE_READONLY;
2777   }else{
2778     pBt->autoVacuum = av ?1:0;
2779     pBt->incrVacuum = av==2 ?1:0;
2780   }
2781   sqlite3BtreeLeave(p);
2782   return rc;
2783 #endif
2784 }
2785 
2786 /*
2787 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2788 ** enabled 1 is returned. Otherwise 0.
2789 */
2790 int sqlite3BtreeGetAutoVacuum(Btree *p){
2791 #ifdef SQLITE_OMIT_AUTOVACUUM
2792   return BTREE_AUTOVACUUM_NONE;
2793 #else
2794   int rc;
2795   sqlite3BtreeEnter(p);
2796   rc = (
2797     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2798     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2799     BTREE_AUTOVACUUM_INCR
2800   );
2801   sqlite3BtreeLeave(p);
2802   return rc;
2803 #endif
2804 }
2805 
2806 
2807 /*
2808 ** Get a reference to pPage1 of the database file.  This will
2809 ** also acquire a readlock on that file.
2810 **
2811 ** SQLITE_OK is returned on success.  If the file is not a
2812 ** well-formed database file, then SQLITE_CORRUPT is returned.
2813 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
2814 ** is returned if we run out of memory.
2815 */
2816 static int lockBtree(BtShared *pBt){
2817   int rc;              /* Result code from subfunctions */
2818   MemPage *pPage1;     /* Page 1 of the database file */
2819   int nPage;           /* Number of pages in the database */
2820   int nPageFile = 0;   /* Number of pages in the database file */
2821   int nPageHeader;     /* Number of pages in the database according to hdr */
2822 
2823   assert( sqlite3_mutex_held(pBt->mutex) );
2824   assert( pBt->pPage1==0 );
2825   rc = sqlite3PagerSharedLock(pBt->pPager);
2826   if( rc!=SQLITE_OK ) return rc;
2827   rc = btreeGetPage(pBt, 1, &pPage1, 0);
2828   if( rc!=SQLITE_OK ) return rc;
2829 
2830   /* Do some checking to help insure the file we opened really is
2831   ** a valid database file.
2832   */
2833   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2834   sqlite3PagerPagecount(pBt->pPager, &nPageFile);
2835   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
2836     nPage = nPageFile;
2837   }
2838   if( nPage>0 ){
2839     u32 pageSize;
2840     u32 usableSize;
2841     u8 *page1 = pPage1->aData;
2842     rc = SQLITE_NOTADB;
2843     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2844     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2845     ** 61 74 20 33 00. */
2846     if( memcmp(page1, zMagicHeader, 16)!=0 ){
2847       goto page1_init_failed;
2848     }
2849 
2850 #ifdef SQLITE_OMIT_WAL
2851     if( page1[18]>1 ){
2852       pBt->btsFlags |= BTS_READ_ONLY;
2853     }
2854     if( page1[19]>1 ){
2855       goto page1_init_failed;
2856     }
2857 #else
2858     if( page1[18]>2 ){
2859       pBt->btsFlags |= BTS_READ_ONLY;
2860     }
2861     if( page1[19]>2 ){
2862       goto page1_init_failed;
2863     }
2864 
2865     /* If the write version is set to 2, this database should be accessed
2866     ** in WAL mode. If the log is not already open, open it now. Then
2867     ** return SQLITE_OK and return without populating BtShared.pPage1.
2868     ** The caller detects this and calls this function again. This is
2869     ** required as the version of page 1 currently in the page1 buffer
2870     ** may not be the latest version - there may be a newer one in the log
2871     ** file.
2872     */
2873     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
2874       int isOpen = 0;
2875       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
2876       if( rc!=SQLITE_OK ){
2877         goto page1_init_failed;
2878       }else{
2879 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2880         sqlite3 *db;
2881         Db *pDb;
2882         if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2883           while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2884           if( pDb->bSyncSet==0
2885            && pDb->safety_level==SQLITE_DEFAULT_SYNCHRONOUS+1
2886           ){
2887             pDb->safety_level = SQLITE_DEFAULT_WAL_SYNCHRONOUS+1;
2888             sqlite3PagerSetFlags(pBt->pPager,
2889                pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2890           }
2891         }
2892 #endif
2893         if( isOpen==0 ){
2894           releasePage(pPage1);
2895           return SQLITE_OK;
2896         }
2897       }
2898       rc = SQLITE_NOTADB;
2899     }
2900 #endif
2901 
2902     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2903     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2904     **
2905     ** The original design allowed these amounts to vary, but as of
2906     ** version 3.6.0, we require them to be fixed.
2907     */
2908     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2909       goto page1_init_failed;
2910     }
2911     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2912     ** determined by the 2-byte integer located at an offset of 16 bytes from
2913     ** the beginning of the database file. */
2914     pageSize = (page1[16]<<8) | (page1[17]<<16);
2915     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2916     ** between 512 and 65536 inclusive. */
2917     if( ((pageSize-1)&pageSize)!=0
2918      || pageSize>SQLITE_MAX_PAGE_SIZE
2919      || pageSize<=256
2920     ){
2921       goto page1_init_failed;
2922     }
2923     assert( (pageSize & 7)==0 );
2924     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2925     ** integer at offset 20 is the number of bytes of space at the end of
2926     ** each page to reserve for extensions.
2927     **
2928     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2929     ** determined by the one-byte unsigned integer found at an offset of 20
2930     ** into the database file header. */
2931     usableSize = pageSize - page1[20];
2932     if( (u32)pageSize!=pBt->pageSize ){
2933       /* After reading the first page of the database assuming a page size
2934       ** of BtShared.pageSize, we have discovered that the page-size is
2935       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2936       ** zero and return SQLITE_OK. The caller will call this function
2937       ** again with the correct page-size.
2938       */
2939       releasePage(pPage1);
2940       pBt->usableSize = usableSize;
2941       pBt->pageSize = pageSize;
2942       freeTempSpace(pBt);
2943       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2944                                    pageSize-usableSize);
2945       return rc;
2946     }
2947     if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
2948       rc = SQLITE_CORRUPT_BKPT;
2949       goto page1_init_failed;
2950     }
2951     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2952     ** be less than 480. In other words, if the page size is 512, then the
2953     ** reserved space size cannot exceed 32. */
2954     if( usableSize<480 ){
2955       goto page1_init_failed;
2956     }
2957     pBt->pageSize = pageSize;
2958     pBt->usableSize = usableSize;
2959 #ifndef SQLITE_OMIT_AUTOVACUUM
2960     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
2961     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
2962 #endif
2963   }
2964 
2965   /* maxLocal is the maximum amount of payload to store locally for
2966   ** a cell.  Make sure it is small enough so that at least minFanout
2967   ** cells can will fit on one page.  We assume a 10-byte page header.
2968   ** Besides the payload, the cell must store:
2969   **     2-byte pointer to the cell
2970   **     4-byte child pointer
2971   **     9-byte nKey value
2972   **     4-byte nData value
2973   **     4-byte overflow page pointer
2974   ** So a cell consists of a 2-byte pointer, a header which is as much as
2975   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2976   ** page pointer.
2977   */
2978   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2979   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2980   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2981   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
2982   if( pBt->maxLocal>127 ){
2983     pBt->max1bytePayload = 127;
2984   }else{
2985     pBt->max1bytePayload = (u8)pBt->maxLocal;
2986   }
2987   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
2988   pBt->pPage1 = pPage1;
2989   pBt->nPage = nPage;
2990   return SQLITE_OK;
2991 
2992 page1_init_failed:
2993   releasePage(pPage1);
2994   pBt->pPage1 = 0;
2995   return rc;
2996 }
2997 
2998 #ifndef NDEBUG
2999 /*
3000 ** Return the number of cursors open on pBt. This is for use
3001 ** in assert() expressions, so it is only compiled if NDEBUG is not
3002 ** defined.
3003 **
3004 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3005 ** false then all cursors are counted.
3006 **
3007 ** For the purposes of this routine, a cursor is any cursor that
3008 ** is capable of reading or writing to the database.  Cursors that
3009 ** have been tripped into the CURSOR_FAULT state are not counted.
3010 */
3011 static int countValidCursors(BtShared *pBt, int wrOnly){
3012   BtCursor *pCur;
3013   int r = 0;
3014   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3015     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3016      && pCur->eState!=CURSOR_FAULT ) r++;
3017   }
3018   return r;
3019 }
3020 #endif
3021 
3022 /*
3023 ** If there are no outstanding cursors and we are not in the middle
3024 ** of a transaction but there is a read lock on the database, then
3025 ** this routine unrefs the first page of the database file which
3026 ** has the effect of releasing the read lock.
3027 **
3028 ** If there is a transaction in progress, this routine is a no-op.
3029 */
3030 static void unlockBtreeIfUnused(BtShared *pBt){
3031   assert( sqlite3_mutex_held(pBt->mutex) );
3032   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3033   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3034     MemPage *pPage1 = pBt->pPage1;
3035     assert( pPage1->aData );
3036     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3037     pBt->pPage1 = 0;
3038     releasePageNotNull(pPage1);
3039   }
3040 }
3041 
3042 /*
3043 ** If pBt points to an empty file then convert that empty file
3044 ** into a new empty database by initializing the first page of
3045 ** the database.
3046 */
3047 static int newDatabase(BtShared *pBt){
3048   MemPage *pP1;
3049   unsigned char *data;
3050   int rc;
3051 
3052   assert( sqlite3_mutex_held(pBt->mutex) );
3053   if( pBt->nPage>0 ){
3054     return SQLITE_OK;
3055   }
3056   pP1 = pBt->pPage1;
3057   assert( pP1!=0 );
3058   data = pP1->aData;
3059   rc = sqlite3PagerWrite(pP1->pDbPage);
3060   if( rc ) return rc;
3061   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3062   assert( sizeof(zMagicHeader)==16 );
3063   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3064   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3065   data[18] = 1;
3066   data[19] = 1;
3067   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3068   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3069   data[21] = 64;
3070   data[22] = 32;
3071   data[23] = 32;
3072   memset(&data[24], 0, 100-24);
3073   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3074   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3075 #ifndef SQLITE_OMIT_AUTOVACUUM
3076   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3077   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3078   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3079   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3080 #endif
3081   pBt->nPage = 1;
3082   data[31] = 1;
3083   return SQLITE_OK;
3084 }
3085 
3086 /*
3087 ** Initialize the first page of the database file (creating a database
3088 ** consisting of a single page and no schema objects). Return SQLITE_OK
3089 ** if successful, or an SQLite error code otherwise.
3090 */
3091 int sqlite3BtreeNewDb(Btree *p){
3092   int rc;
3093   sqlite3BtreeEnter(p);
3094   p->pBt->nPage = 0;
3095   rc = newDatabase(p->pBt);
3096   sqlite3BtreeLeave(p);
3097   return rc;
3098 }
3099 
3100 /*
3101 ** Attempt to start a new transaction. A write-transaction
3102 ** is started if the second argument is nonzero, otherwise a read-
3103 ** transaction.  If the second argument is 2 or more and exclusive
3104 ** transaction is started, meaning that no other process is allowed
3105 ** to access the database.  A preexisting transaction may not be
3106 ** upgraded to exclusive by calling this routine a second time - the
3107 ** exclusivity flag only works for a new transaction.
3108 **
3109 ** A write-transaction must be started before attempting any
3110 ** changes to the database.  None of the following routines
3111 ** will work unless a transaction is started first:
3112 **
3113 **      sqlite3BtreeCreateTable()
3114 **      sqlite3BtreeCreateIndex()
3115 **      sqlite3BtreeClearTable()
3116 **      sqlite3BtreeDropTable()
3117 **      sqlite3BtreeInsert()
3118 **      sqlite3BtreeDelete()
3119 **      sqlite3BtreeUpdateMeta()
3120 **
3121 ** If an initial attempt to acquire the lock fails because of lock contention
3122 ** and the database was previously unlocked, then invoke the busy handler
3123 ** if there is one.  But if there was previously a read-lock, do not
3124 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3125 ** returned when there is already a read-lock in order to avoid a deadlock.
3126 **
3127 ** Suppose there are two processes A and B.  A has a read lock and B has
3128 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3129 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3130 ** One or the other of the two processes must give way or there can be
3131 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3132 ** when A already has a read lock, we encourage A to give up and let B
3133 ** proceed.
3134 */
3135 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3136   BtShared *pBt = p->pBt;
3137   int rc = SQLITE_OK;
3138 
3139   sqlite3BtreeEnter(p);
3140   btreeIntegrity(p);
3141 
3142   /* If the btree is already in a write-transaction, or it
3143   ** is already in a read-transaction and a read-transaction
3144   ** is requested, this is a no-op.
3145   */
3146   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3147     goto trans_begun;
3148   }
3149   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3150 
3151   /* Write transactions are not possible on a read-only database */
3152   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3153     rc = SQLITE_READONLY;
3154     goto trans_begun;
3155   }
3156 
3157 #ifndef SQLITE_OMIT_SHARED_CACHE
3158   {
3159     sqlite3 *pBlock = 0;
3160     /* If another database handle has already opened a write transaction
3161     ** on this shared-btree structure and a second write transaction is
3162     ** requested, return SQLITE_LOCKED.
3163     */
3164     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3165      || (pBt->btsFlags & BTS_PENDING)!=0
3166     ){
3167       pBlock = pBt->pWriter->db;
3168     }else if( wrflag>1 ){
3169       BtLock *pIter;
3170       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3171         if( pIter->pBtree!=p ){
3172           pBlock = pIter->pBtree->db;
3173           break;
3174         }
3175       }
3176     }
3177     if( pBlock ){
3178       sqlite3ConnectionBlocked(p->db, pBlock);
3179       rc = SQLITE_LOCKED_SHAREDCACHE;
3180       goto trans_begun;
3181     }
3182   }
3183 #endif
3184 
3185   /* Any read-only or read-write transaction implies a read-lock on
3186   ** page 1. So if some other shared-cache client already has a write-lock
3187   ** on page 1, the transaction cannot be opened. */
3188   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3189   if( SQLITE_OK!=rc ) goto trans_begun;
3190 
3191   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3192   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3193   do {
3194     /* Call lockBtree() until either pBt->pPage1 is populated or
3195     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3196     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3197     ** reading page 1 it discovers that the page-size of the database
3198     ** file is not pBt->pageSize. In this case lockBtree() will update
3199     ** pBt->pageSize to the page-size of the file on disk.
3200     */
3201     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3202 
3203     if( rc==SQLITE_OK && wrflag ){
3204       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3205         rc = SQLITE_READONLY;
3206       }else{
3207         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3208         if( rc==SQLITE_OK ){
3209           rc = newDatabase(pBt);
3210         }
3211       }
3212     }
3213 
3214     if( rc!=SQLITE_OK ){
3215       unlockBtreeIfUnused(pBt);
3216     }
3217   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3218           btreeInvokeBusyHandler(pBt) );
3219 
3220   if( rc==SQLITE_OK ){
3221     if( p->inTrans==TRANS_NONE ){
3222       pBt->nTransaction++;
3223 #ifndef SQLITE_OMIT_SHARED_CACHE
3224       if( p->sharable ){
3225         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3226         p->lock.eLock = READ_LOCK;
3227         p->lock.pNext = pBt->pLock;
3228         pBt->pLock = &p->lock;
3229       }
3230 #endif
3231     }
3232     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3233     if( p->inTrans>pBt->inTransaction ){
3234       pBt->inTransaction = p->inTrans;
3235     }
3236     if( wrflag ){
3237       MemPage *pPage1 = pBt->pPage1;
3238 #ifndef SQLITE_OMIT_SHARED_CACHE
3239       assert( !pBt->pWriter );
3240       pBt->pWriter = p;
3241       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3242       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3243 #endif
3244 
3245       /* If the db-size header field is incorrect (as it may be if an old
3246       ** client has been writing the database file), update it now. Doing
3247       ** this sooner rather than later means the database size can safely
3248       ** re-read the database size from page 1 if a savepoint or transaction
3249       ** rollback occurs within the transaction.
3250       */
3251       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3252         rc = sqlite3PagerWrite(pPage1->pDbPage);
3253         if( rc==SQLITE_OK ){
3254           put4byte(&pPage1->aData[28], pBt->nPage);
3255         }
3256       }
3257     }
3258   }
3259 
3260 
3261 trans_begun:
3262   if( rc==SQLITE_OK && wrflag ){
3263     /* This call makes sure that the pager has the correct number of
3264     ** open savepoints. If the second parameter is greater than 0 and
3265     ** the sub-journal is not already open, then it will be opened here.
3266     */
3267     rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3268   }
3269 
3270   btreeIntegrity(p);
3271   sqlite3BtreeLeave(p);
3272   return rc;
3273 }
3274 
3275 #ifndef SQLITE_OMIT_AUTOVACUUM
3276 
3277 /*
3278 ** Set the pointer-map entries for all children of page pPage. Also, if
3279 ** pPage contains cells that point to overflow pages, set the pointer
3280 ** map entries for the overflow pages as well.
3281 */
3282 static int setChildPtrmaps(MemPage *pPage){
3283   int i;                             /* Counter variable */
3284   int nCell;                         /* Number of cells in page pPage */
3285   int rc;                            /* Return code */
3286   BtShared *pBt = pPage->pBt;
3287   u8 isInitOrig = pPage->isInit;
3288   Pgno pgno = pPage->pgno;
3289 
3290   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3291   rc = btreeInitPage(pPage);
3292   if( rc!=SQLITE_OK ){
3293     goto set_child_ptrmaps_out;
3294   }
3295   nCell = pPage->nCell;
3296 
3297   for(i=0; i<nCell; i++){
3298     u8 *pCell = findCell(pPage, i);
3299 
3300     ptrmapPutOvflPtr(pPage, pCell, &rc);
3301 
3302     if( !pPage->leaf ){
3303       Pgno childPgno = get4byte(pCell);
3304       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3305     }
3306   }
3307 
3308   if( !pPage->leaf ){
3309     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3310     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3311   }
3312 
3313 set_child_ptrmaps_out:
3314   pPage->isInit = isInitOrig;
3315   return rc;
3316 }
3317 
3318 /*
3319 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3320 ** that it points to iTo. Parameter eType describes the type of pointer to
3321 ** be modified, as  follows:
3322 **
3323 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3324 **                   page of pPage.
3325 **
3326 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3327 **                   page pointed to by one of the cells on pPage.
3328 **
3329 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3330 **                   overflow page in the list.
3331 */
3332 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3333   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3334   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3335   if( eType==PTRMAP_OVERFLOW2 ){
3336     /* The pointer is always the first 4 bytes of the page in this case.  */
3337     if( get4byte(pPage->aData)!=iFrom ){
3338       return SQLITE_CORRUPT_BKPT;
3339     }
3340     put4byte(pPage->aData, iTo);
3341   }else{
3342     u8 isInitOrig = pPage->isInit;
3343     int i;
3344     int nCell;
3345     int rc;
3346 
3347     rc = btreeInitPage(pPage);
3348     if( rc ) return rc;
3349     nCell = pPage->nCell;
3350 
3351     for(i=0; i<nCell; i++){
3352       u8 *pCell = findCell(pPage, i);
3353       if( eType==PTRMAP_OVERFLOW1 ){
3354         CellInfo info;
3355         pPage->xParseCell(pPage, pCell, &info);
3356         if( info.nLocal<info.nPayload
3357          && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
3358          && iFrom==get4byte(pCell+info.nSize-4)
3359         ){
3360           put4byte(pCell+info.nSize-4, iTo);
3361           break;
3362         }
3363       }else{
3364         if( get4byte(pCell)==iFrom ){
3365           put4byte(pCell, iTo);
3366           break;
3367         }
3368       }
3369     }
3370 
3371     if( i==nCell ){
3372       if( eType!=PTRMAP_BTREE ||
3373           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3374         return SQLITE_CORRUPT_BKPT;
3375       }
3376       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3377     }
3378 
3379     pPage->isInit = isInitOrig;
3380   }
3381   return SQLITE_OK;
3382 }
3383 
3384 
3385 /*
3386 ** Move the open database page pDbPage to location iFreePage in the
3387 ** database. The pDbPage reference remains valid.
3388 **
3389 ** The isCommit flag indicates that there is no need to remember that
3390 ** the journal needs to be sync()ed before database page pDbPage->pgno
3391 ** can be written to. The caller has already promised not to write to that
3392 ** page.
3393 */
3394 static int relocatePage(
3395   BtShared *pBt,           /* Btree */
3396   MemPage *pDbPage,        /* Open page to move */
3397   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3398   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3399   Pgno iFreePage,          /* The location to move pDbPage to */
3400   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3401 ){
3402   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3403   Pgno iDbPage = pDbPage->pgno;
3404   Pager *pPager = pBt->pPager;
3405   int rc;
3406 
3407   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3408       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3409   assert( sqlite3_mutex_held(pBt->mutex) );
3410   assert( pDbPage->pBt==pBt );
3411 
3412   /* Move page iDbPage from its current location to page number iFreePage */
3413   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3414       iDbPage, iFreePage, iPtrPage, eType));
3415   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3416   if( rc!=SQLITE_OK ){
3417     return rc;
3418   }
3419   pDbPage->pgno = iFreePage;
3420 
3421   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3422   ** that point to overflow pages. The pointer map entries for all these
3423   ** pages need to be changed.
3424   **
3425   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3426   ** pointer to a subsequent overflow page. If this is the case, then
3427   ** the pointer map needs to be updated for the subsequent overflow page.
3428   */
3429   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3430     rc = setChildPtrmaps(pDbPage);
3431     if( rc!=SQLITE_OK ){
3432       return rc;
3433     }
3434   }else{
3435     Pgno nextOvfl = get4byte(pDbPage->aData);
3436     if( nextOvfl!=0 ){
3437       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3438       if( rc!=SQLITE_OK ){
3439         return rc;
3440       }
3441     }
3442   }
3443 
3444   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3445   ** that it points at iFreePage. Also fix the pointer map entry for
3446   ** iPtrPage.
3447   */
3448   if( eType!=PTRMAP_ROOTPAGE ){
3449     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3450     if( rc!=SQLITE_OK ){
3451       return rc;
3452     }
3453     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3454     if( rc!=SQLITE_OK ){
3455       releasePage(pPtrPage);
3456       return rc;
3457     }
3458     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3459     releasePage(pPtrPage);
3460     if( rc==SQLITE_OK ){
3461       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3462     }
3463   }
3464   return rc;
3465 }
3466 
3467 /* Forward declaration required by incrVacuumStep(). */
3468 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3469 
3470 /*
3471 ** Perform a single step of an incremental-vacuum. If successful, return
3472 ** SQLITE_OK. If there is no work to do (and therefore no point in
3473 ** calling this function again), return SQLITE_DONE. Or, if an error
3474 ** occurs, return some other error code.
3475 **
3476 ** More specifically, this function attempts to re-organize the database so
3477 ** that the last page of the file currently in use is no longer in use.
3478 **
3479 ** Parameter nFin is the number of pages that this database would contain
3480 ** were this function called until it returns SQLITE_DONE.
3481 **
3482 ** If the bCommit parameter is non-zero, this function assumes that the
3483 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3484 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3485 ** operation, or false for an incremental vacuum.
3486 */
3487 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3488   Pgno nFreeList;           /* Number of pages still on the free-list */
3489   int rc;
3490 
3491   assert( sqlite3_mutex_held(pBt->mutex) );
3492   assert( iLastPg>nFin );
3493 
3494   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3495     u8 eType;
3496     Pgno iPtrPage;
3497 
3498     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3499     if( nFreeList==0 ){
3500       return SQLITE_DONE;
3501     }
3502 
3503     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3504     if( rc!=SQLITE_OK ){
3505       return rc;
3506     }
3507     if( eType==PTRMAP_ROOTPAGE ){
3508       return SQLITE_CORRUPT_BKPT;
3509     }
3510 
3511     if( eType==PTRMAP_FREEPAGE ){
3512       if( bCommit==0 ){
3513         /* Remove the page from the files free-list. This is not required
3514         ** if bCommit is non-zero. In that case, the free-list will be
3515         ** truncated to zero after this function returns, so it doesn't
3516         ** matter if it still contains some garbage entries.
3517         */
3518         Pgno iFreePg;
3519         MemPage *pFreePg;
3520         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3521         if( rc!=SQLITE_OK ){
3522           return rc;
3523         }
3524         assert( iFreePg==iLastPg );
3525         releasePage(pFreePg);
3526       }
3527     } else {
3528       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3529       MemPage *pLastPg;
3530       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3531       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3532 
3533       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3534       if( rc!=SQLITE_OK ){
3535         return rc;
3536       }
3537 
3538       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3539       ** is swapped with the first free page pulled off the free list.
3540       **
3541       ** On the other hand, if bCommit is greater than zero, then keep
3542       ** looping until a free-page located within the first nFin pages
3543       ** of the file is found.
3544       */
3545       if( bCommit==0 ){
3546         eMode = BTALLOC_LE;
3547         iNear = nFin;
3548       }
3549       do {
3550         MemPage *pFreePg;
3551         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3552         if( rc!=SQLITE_OK ){
3553           releasePage(pLastPg);
3554           return rc;
3555         }
3556         releasePage(pFreePg);
3557       }while( bCommit && iFreePg>nFin );
3558       assert( iFreePg<iLastPg );
3559 
3560       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3561       releasePage(pLastPg);
3562       if( rc!=SQLITE_OK ){
3563         return rc;
3564       }
3565     }
3566   }
3567 
3568   if( bCommit==0 ){
3569     do {
3570       iLastPg--;
3571     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3572     pBt->bDoTruncate = 1;
3573     pBt->nPage = iLastPg;
3574   }
3575   return SQLITE_OK;
3576 }
3577 
3578 /*
3579 ** The database opened by the first argument is an auto-vacuum database
3580 ** nOrig pages in size containing nFree free pages. Return the expected
3581 ** size of the database in pages following an auto-vacuum operation.
3582 */
3583 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3584   int nEntry;                     /* Number of entries on one ptrmap page */
3585   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3586   Pgno nFin;                      /* Return value */
3587 
3588   nEntry = pBt->usableSize/5;
3589   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3590   nFin = nOrig - nFree - nPtrmap;
3591   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3592     nFin--;
3593   }
3594   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3595     nFin--;
3596   }
3597 
3598   return nFin;
3599 }
3600 
3601 /*
3602 ** A write-transaction must be opened before calling this function.
3603 ** It performs a single unit of work towards an incremental vacuum.
3604 **
3605 ** If the incremental vacuum is finished after this function has run,
3606 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3607 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3608 */
3609 int sqlite3BtreeIncrVacuum(Btree *p){
3610   int rc;
3611   BtShared *pBt = p->pBt;
3612 
3613   sqlite3BtreeEnter(p);
3614   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3615   if( !pBt->autoVacuum ){
3616     rc = SQLITE_DONE;
3617   }else{
3618     Pgno nOrig = btreePagecount(pBt);
3619     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3620     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3621 
3622     if( nOrig<nFin ){
3623       rc = SQLITE_CORRUPT_BKPT;
3624     }else if( nFree>0 ){
3625       rc = saveAllCursors(pBt, 0, 0);
3626       if( rc==SQLITE_OK ){
3627         invalidateAllOverflowCache(pBt);
3628         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3629       }
3630       if( rc==SQLITE_OK ){
3631         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3632         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3633       }
3634     }else{
3635       rc = SQLITE_DONE;
3636     }
3637   }
3638   sqlite3BtreeLeave(p);
3639   return rc;
3640 }
3641 
3642 /*
3643 ** This routine is called prior to sqlite3PagerCommit when a transaction
3644 ** is committed for an auto-vacuum database.
3645 **
3646 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3647 ** the database file should be truncated to during the commit process.
3648 ** i.e. the database has been reorganized so that only the first *pnTrunc
3649 ** pages are in use.
3650 */
3651 static int autoVacuumCommit(BtShared *pBt){
3652   int rc = SQLITE_OK;
3653   Pager *pPager = pBt->pPager;
3654   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3655 
3656   assert( sqlite3_mutex_held(pBt->mutex) );
3657   invalidateAllOverflowCache(pBt);
3658   assert(pBt->autoVacuum);
3659   if( !pBt->incrVacuum ){
3660     Pgno nFin;         /* Number of pages in database after autovacuuming */
3661     Pgno nFree;        /* Number of pages on the freelist initially */
3662     Pgno iFree;        /* The next page to be freed */
3663     Pgno nOrig;        /* Database size before freeing */
3664 
3665     nOrig = btreePagecount(pBt);
3666     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3667       /* It is not possible to create a database for which the final page
3668       ** is either a pointer-map page or the pending-byte page. If one
3669       ** is encountered, this indicates corruption.
3670       */
3671       return SQLITE_CORRUPT_BKPT;
3672     }
3673 
3674     nFree = get4byte(&pBt->pPage1->aData[36]);
3675     nFin = finalDbSize(pBt, nOrig, nFree);
3676     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3677     if( nFin<nOrig ){
3678       rc = saveAllCursors(pBt, 0, 0);
3679     }
3680     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3681       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3682     }
3683     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3684       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3685       put4byte(&pBt->pPage1->aData[32], 0);
3686       put4byte(&pBt->pPage1->aData[36], 0);
3687       put4byte(&pBt->pPage1->aData[28], nFin);
3688       pBt->bDoTruncate = 1;
3689       pBt->nPage = nFin;
3690     }
3691     if( rc!=SQLITE_OK ){
3692       sqlite3PagerRollback(pPager);
3693     }
3694   }
3695 
3696   assert( nRef>=sqlite3PagerRefcount(pPager) );
3697   return rc;
3698 }
3699 
3700 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3701 # define setChildPtrmaps(x) SQLITE_OK
3702 #endif
3703 
3704 /*
3705 ** This routine does the first phase of a two-phase commit.  This routine
3706 ** causes a rollback journal to be created (if it does not already exist)
3707 ** and populated with enough information so that if a power loss occurs
3708 ** the database can be restored to its original state by playing back
3709 ** the journal.  Then the contents of the journal are flushed out to
3710 ** the disk.  After the journal is safely on oxide, the changes to the
3711 ** database are written into the database file and flushed to oxide.
3712 ** At the end of this call, the rollback journal still exists on the
3713 ** disk and we are still holding all locks, so the transaction has not
3714 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3715 ** commit process.
3716 **
3717 ** This call is a no-op if no write-transaction is currently active on pBt.
3718 **
3719 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3720 ** the name of a master journal file that should be written into the
3721 ** individual journal file, or is NULL, indicating no master journal file
3722 ** (single database transaction).
3723 **
3724 ** When this is called, the master journal should already have been
3725 ** created, populated with this journal pointer and synced to disk.
3726 **
3727 ** Once this is routine has returned, the only thing required to commit
3728 ** the write-transaction for this database file is to delete the journal.
3729 */
3730 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3731   int rc = SQLITE_OK;
3732   if( p->inTrans==TRANS_WRITE ){
3733     BtShared *pBt = p->pBt;
3734     sqlite3BtreeEnter(p);
3735 #ifndef SQLITE_OMIT_AUTOVACUUM
3736     if( pBt->autoVacuum ){
3737       rc = autoVacuumCommit(pBt);
3738       if( rc!=SQLITE_OK ){
3739         sqlite3BtreeLeave(p);
3740         return rc;
3741       }
3742     }
3743     if( pBt->bDoTruncate ){
3744       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3745     }
3746 #endif
3747     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3748     sqlite3BtreeLeave(p);
3749   }
3750   return rc;
3751 }
3752 
3753 /*
3754 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3755 ** at the conclusion of a transaction.
3756 */
3757 static void btreeEndTransaction(Btree *p){
3758   BtShared *pBt = p->pBt;
3759   sqlite3 *db = p->db;
3760   assert( sqlite3BtreeHoldsMutex(p) );
3761 
3762 #ifndef SQLITE_OMIT_AUTOVACUUM
3763   pBt->bDoTruncate = 0;
3764 #endif
3765   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3766     /* If there are other active statements that belong to this database
3767     ** handle, downgrade to a read-only transaction. The other statements
3768     ** may still be reading from the database.  */
3769     downgradeAllSharedCacheTableLocks(p);
3770     p->inTrans = TRANS_READ;
3771   }else{
3772     /* If the handle had any kind of transaction open, decrement the
3773     ** transaction count of the shared btree. If the transaction count
3774     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3775     ** call below will unlock the pager.  */
3776     if( p->inTrans!=TRANS_NONE ){
3777       clearAllSharedCacheTableLocks(p);
3778       pBt->nTransaction--;
3779       if( 0==pBt->nTransaction ){
3780         pBt->inTransaction = TRANS_NONE;
3781       }
3782     }
3783 
3784     /* Set the current transaction state to TRANS_NONE and unlock the
3785     ** pager if this call closed the only read or write transaction.  */
3786     p->inTrans = TRANS_NONE;
3787     unlockBtreeIfUnused(pBt);
3788   }
3789 
3790   btreeIntegrity(p);
3791 }
3792 
3793 /*
3794 ** Commit the transaction currently in progress.
3795 **
3796 ** This routine implements the second phase of a 2-phase commit.  The
3797 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3798 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
3799 ** routine did all the work of writing information out to disk and flushing the
3800 ** contents so that they are written onto the disk platter.  All this
3801 ** routine has to do is delete or truncate or zero the header in the
3802 ** the rollback journal (which causes the transaction to commit) and
3803 ** drop locks.
3804 **
3805 ** Normally, if an error occurs while the pager layer is attempting to
3806 ** finalize the underlying journal file, this function returns an error and
3807 ** the upper layer will attempt a rollback. However, if the second argument
3808 ** is non-zero then this b-tree transaction is part of a multi-file
3809 ** transaction. In this case, the transaction has already been committed
3810 ** (by deleting a master journal file) and the caller will ignore this
3811 ** functions return code. So, even if an error occurs in the pager layer,
3812 ** reset the b-tree objects internal state to indicate that the write
3813 ** transaction has been closed. This is quite safe, as the pager will have
3814 ** transitioned to the error state.
3815 **
3816 ** This will release the write lock on the database file.  If there
3817 ** are no active cursors, it also releases the read lock.
3818 */
3819 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3820 
3821   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3822   sqlite3BtreeEnter(p);
3823   btreeIntegrity(p);
3824 
3825   /* If the handle has a write-transaction open, commit the shared-btrees
3826   ** transaction and set the shared state to TRANS_READ.
3827   */
3828   if( p->inTrans==TRANS_WRITE ){
3829     int rc;
3830     BtShared *pBt = p->pBt;
3831     assert( pBt->inTransaction==TRANS_WRITE );
3832     assert( pBt->nTransaction>0 );
3833     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3834     if( rc!=SQLITE_OK && bCleanup==0 ){
3835       sqlite3BtreeLeave(p);
3836       return rc;
3837     }
3838     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
3839     pBt->inTransaction = TRANS_READ;
3840     btreeClearHasContent(pBt);
3841   }
3842 
3843   btreeEndTransaction(p);
3844   sqlite3BtreeLeave(p);
3845   return SQLITE_OK;
3846 }
3847 
3848 /*
3849 ** Do both phases of a commit.
3850 */
3851 int sqlite3BtreeCommit(Btree *p){
3852   int rc;
3853   sqlite3BtreeEnter(p);
3854   rc = sqlite3BtreeCommitPhaseOne(p, 0);
3855   if( rc==SQLITE_OK ){
3856     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
3857   }
3858   sqlite3BtreeLeave(p);
3859   return rc;
3860 }
3861 
3862 /*
3863 ** This routine sets the state to CURSOR_FAULT and the error
3864 ** code to errCode for every cursor on any BtShared that pBtree
3865 ** references.  Or if the writeOnly flag is set to 1, then only
3866 ** trip write cursors and leave read cursors unchanged.
3867 **
3868 ** Every cursor is a candidate to be tripped, including cursors
3869 ** that belong to other database connections that happen to be
3870 ** sharing the cache with pBtree.
3871 **
3872 ** This routine gets called when a rollback occurs. If the writeOnly
3873 ** flag is true, then only write-cursors need be tripped - read-only
3874 ** cursors save their current positions so that they may continue
3875 ** following the rollback. Or, if writeOnly is false, all cursors are
3876 ** tripped. In general, writeOnly is false if the transaction being
3877 ** rolled back modified the database schema. In this case b-tree root
3878 ** pages may be moved or deleted from the database altogether, making
3879 ** it unsafe for read cursors to continue.
3880 **
3881 ** If the writeOnly flag is true and an error is encountered while
3882 ** saving the current position of a read-only cursor, all cursors,
3883 ** including all read-cursors are tripped.
3884 **
3885 ** SQLITE_OK is returned if successful, or if an error occurs while
3886 ** saving a cursor position, an SQLite error code.
3887 */
3888 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
3889   BtCursor *p;
3890   int rc = SQLITE_OK;
3891 
3892   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
3893   if( pBtree ){
3894     sqlite3BtreeEnter(pBtree);
3895     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3896       int i;
3897       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
3898         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
3899           rc = saveCursorPosition(p);
3900           if( rc!=SQLITE_OK ){
3901             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3902             break;
3903           }
3904         }
3905       }else{
3906         sqlite3BtreeClearCursor(p);
3907         p->eState = CURSOR_FAULT;
3908         p->skipNext = errCode;
3909       }
3910       for(i=0; i<=p->iPage; i++){
3911         releasePage(p->apPage[i]);
3912         p->apPage[i] = 0;
3913       }
3914     }
3915     sqlite3BtreeLeave(pBtree);
3916   }
3917   return rc;
3918 }
3919 
3920 /*
3921 ** Rollback the transaction in progress.
3922 **
3923 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3924 ** Only write cursors are tripped if writeOnly is true but all cursors are
3925 ** tripped if writeOnly is false.  Any attempt to use
3926 ** a tripped cursor will result in an error.
3927 **
3928 ** This will release the write lock on the database file.  If there
3929 ** are no active cursors, it also releases the read lock.
3930 */
3931 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
3932   int rc;
3933   BtShared *pBt = p->pBt;
3934   MemPage *pPage1;
3935 
3936   assert( writeOnly==1 || writeOnly==0 );
3937   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
3938   sqlite3BtreeEnter(p);
3939   if( tripCode==SQLITE_OK ){
3940     rc = tripCode = saveAllCursors(pBt, 0, 0);
3941     if( rc ) writeOnly = 0;
3942   }else{
3943     rc = SQLITE_OK;
3944   }
3945   if( tripCode ){
3946     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3947     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3948     if( rc2!=SQLITE_OK ) rc = rc2;
3949   }
3950   btreeIntegrity(p);
3951 
3952   if( p->inTrans==TRANS_WRITE ){
3953     int rc2;
3954 
3955     assert( TRANS_WRITE==pBt->inTransaction );
3956     rc2 = sqlite3PagerRollback(pBt->pPager);
3957     if( rc2!=SQLITE_OK ){
3958       rc = rc2;
3959     }
3960 
3961     /* The rollback may have destroyed the pPage1->aData value.  So
3962     ** call btreeGetPage() on page 1 again to make
3963     ** sure pPage1->aData is set correctly. */
3964     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
3965       int nPage = get4byte(28+(u8*)pPage1->aData);
3966       testcase( nPage==0 );
3967       if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3968       testcase( pBt->nPage!=nPage );
3969       pBt->nPage = nPage;
3970       releasePage(pPage1);
3971     }
3972     assert( countValidCursors(pBt, 1)==0 );
3973     pBt->inTransaction = TRANS_READ;
3974     btreeClearHasContent(pBt);
3975   }
3976 
3977   btreeEndTransaction(p);
3978   sqlite3BtreeLeave(p);
3979   return rc;
3980 }
3981 
3982 /*
3983 ** Start a statement subtransaction. The subtransaction can be rolled
3984 ** back independently of the main transaction. You must start a transaction
3985 ** before starting a subtransaction. The subtransaction is ended automatically
3986 ** if the main transaction commits or rolls back.
3987 **
3988 ** Statement subtransactions are used around individual SQL statements
3989 ** that are contained within a BEGIN...COMMIT block.  If a constraint
3990 ** error occurs within the statement, the effect of that one statement
3991 ** can be rolled back without having to rollback the entire transaction.
3992 **
3993 ** A statement sub-transaction is implemented as an anonymous savepoint. The
3994 ** value passed as the second parameter is the total number of savepoints,
3995 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3996 ** are no active savepoints and no other statement-transactions open,
3997 ** iStatement is 1. This anonymous savepoint can be released or rolled back
3998 ** using the sqlite3BtreeSavepoint() function.
3999 */
4000 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4001   int rc;
4002   BtShared *pBt = p->pBt;
4003   sqlite3BtreeEnter(p);
4004   assert( p->inTrans==TRANS_WRITE );
4005   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4006   assert( iStatement>0 );
4007   assert( iStatement>p->db->nSavepoint );
4008   assert( pBt->inTransaction==TRANS_WRITE );
4009   /* At the pager level, a statement transaction is a savepoint with
4010   ** an index greater than all savepoints created explicitly using
4011   ** SQL statements. It is illegal to open, release or rollback any
4012   ** such savepoints while the statement transaction savepoint is active.
4013   */
4014   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4015   sqlite3BtreeLeave(p);
4016   return rc;
4017 }
4018 
4019 /*
4020 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4021 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4022 ** savepoint identified by parameter iSavepoint, depending on the value
4023 ** of op.
4024 **
4025 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4026 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4027 ** contents of the entire transaction are rolled back. This is different
4028 ** from a normal transaction rollback, as no locks are released and the
4029 ** transaction remains open.
4030 */
4031 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4032   int rc = SQLITE_OK;
4033   if( p && p->inTrans==TRANS_WRITE ){
4034     BtShared *pBt = p->pBt;
4035     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4036     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4037     sqlite3BtreeEnter(p);
4038     rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4039     if( rc==SQLITE_OK ){
4040       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4041         pBt->nPage = 0;
4042       }
4043       rc = newDatabase(pBt);
4044       pBt->nPage = get4byte(28 + pBt->pPage1->aData);
4045 
4046       /* The database size was written into the offset 28 of the header
4047       ** when the transaction started, so we know that the value at offset
4048       ** 28 is nonzero. */
4049       assert( pBt->nPage>0 );
4050     }
4051     sqlite3BtreeLeave(p);
4052   }
4053   return rc;
4054 }
4055 
4056 /*
4057 ** Create a new cursor for the BTree whose root is on the page
4058 ** iTable. If a read-only cursor is requested, it is assumed that
4059 ** the caller already has at least a read-only transaction open
4060 ** on the database already. If a write-cursor is requested, then
4061 ** the caller is assumed to have an open write transaction.
4062 **
4063 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4064 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4065 ** can be used for reading or for writing if other conditions for writing
4066 ** are also met.  These are the conditions that must be met in order
4067 ** for writing to be allowed:
4068 **
4069 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4070 **
4071 ** 2:  Other database connections that share the same pager cache
4072 **     but which are not in the READ_UNCOMMITTED state may not have
4073 **     cursors open with wrFlag==0 on the same table.  Otherwise
4074 **     the changes made by this write cursor would be visible to
4075 **     the read cursors in the other database connection.
4076 **
4077 ** 3:  The database must be writable (not on read-only media)
4078 **
4079 ** 4:  There must be an active transaction.
4080 **
4081 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4082 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4083 ** this cursor will only be used to seek to and delete entries of an index
4084 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4085 ** this implementation.  But in a hypothetical alternative storage engine
4086 ** in which index entries are automatically deleted when corresponding table
4087 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4088 ** operations on this cursor can be no-ops and all READ operations can
4089 ** return a null row (2-bytes: 0x01 0x00).
4090 **
4091 ** No checking is done to make sure that page iTable really is the
4092 ** root page of a b-tree.  If it is not, then the cursor acquired
4093 ** will not work correctly.
4094 **
4095 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4096 ** on pCur to initialize the memory space prior to invoking this routine.
4097 */
4098 static int btreeCursor(
4099   Btree *p,                              /* The btree */
4100   int iTable,                            /* Root page of table to open */
4101   int wrFlag,                            /* 1 to write. 0 read-only */
4102   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4103   BtCursor *pCur                         /* Space for new cursor */
4104 ){
4105   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4106   BtCursor *pX;                          /* Looping over other all cursors */
4107 
4108   assert( sqlite3BtreeHoldsMutex(p) );
4109   assert( wrFlag==0
4110        || wrFlag==BTREE_WRCSR
4111        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4112   );
4113 
4114   /* The following assert statements verify that if this is a sharable
4115   ** b-tree database, the connection is holding the required table locks,
4116   ** and that no other connection has any open cursor that conflicts with
4117   ** this lock.  */
4118   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4119   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4120 
4121   /* Assert that the caller has opened the required transaction. */
4122   assert( p->inTrans>TRANS_NONE );
4123   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4124   assert( pBt->pPage1 && pBt->pPage1->aData );
4125   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4126 
4127   if( wrFlag ){
4128     allocateTempSpace(pBt);
4129     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4130   }
4131   if( iTable==1 && btreePagecount(pBt)==0 ){
4132     assert( wrFlag==0 );
4133     iTable = 0;
4134   }
4135 
4136   /* Now that no other errors can occur, finish filling in the BtCursor
4137   ** variables and link the cursor into the BtShared list.  */
4138   pCur->pgnoRoot = (Pgno)iTable;
4139   pCur->iPage = -1;
4140   pCur->pKeyInfo = pKeyInfo;
4141   pCur->pBtree = p;
4142   pCur->pBt = pBt;
4143   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4144   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4145   /* If there are two or more cursors on the same btree, then all such
4146   ** cursors *must* have the BTCF_Multiple flag set. */
4147   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4148     if( pX->pgnoRoot==(Pgno)iTable ){
4149       pX->curFlags |= BTCF_Multiple;
4150       pCur->curFlags |= BTCF_Multiple;
4151     }
4152   }
4153   pCur->pNext = pBt->pCursor;
4154   pBt->pCursor = pCur;
4155   pCur->eState = CURSOR_INVALID;
4156   return SQLITE_OK;
4157 }
4158 int sqlite3BtreeCursor(
4159   Btree *p,                                   /* The btree */
4160   int iTable,                                 /* Root page of table to open */
4161   int wrFlag,                                 /* 1 to write. 0 read-only */
4162   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4163   BtCursor *pCur                              /* Write new cursor here */
4164 ){
4165   int rc;
4166   if( iTable<1 ){
4167     rc = SQLITE_CORRUPT_BKPT;
4168   }else{
4169     sqlite3BtreeEnter(p);
4170     rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4171     sqlite3BtreeLeave(p);
4172   }
4173   return rc;
4174 }
4175 
4176 /*
4177 ** Return the size of a BtCursor object in bytes.
4178 **
4179 ** This interfaces is needed so that users of cursors can preallocate
4180 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4181 ** to users so they cannot do the sizeof() themselves - they must call
4182 ** this routine.
4183 */
4184 int sqlite3BtreeCursorSize(void){
4185   return ROUND8(sizeof(BtCursor));
4186 }
4187 
4188 /*
4189 ** Initialize memory that will be converted into a BtCursor object.
4190 **
4191 ** The simple approach here would be to memset() the entire object
4192 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4193 ** do not need to be zeroed and they are large, so we can save a lot
4194 ** of run-time by skipping the initialization of those elements.
4195 */
4196 void sqlite3BtreeCursorZero(BtCursor *p){
4197   memset(p, 0, offsetof(BtCursor, iPage));
4198 }
4199 
4200 /*
4201 ** Close a cursor.  The read lock on the database file is released
4202 ** when the last cursor is closed.
4203 */
4204 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4205   Btree *pBtree = pCur->pBtree;
4206   if( pBtree ){
4207     int i;
4208     BtShared *pBt = pCur->pBt;
4209     sqlite3BtreeEnter(pBtree);
4210     sqlite3BtreeClearCursor(pCur);
4211     assert( pBt->pCursor!=0 );
4212     if( pBt->pCursor==pCur ){
4213       pBt->pCursor = pCur->pNext;
4214     }else{
4215       BtCursor *pPrev = pBt->pCursor;
4216       do{
4217         if( pPrev->pNext==pCur ){
4218           pPrev->pNext = pCur->pNext;
4219           break;
4220         }
4221         pPrev = pPrev->pNext;
4222       }while( ALWAYS(pPrev) );
4223     }
4224     for(i=0; i<=pCur->iPage; i++){
4225       releasePage(pCur->apPage[i]);
4226     }
4227     unlockBtreeIfUnused(pBt);
4228     sqlite3_free(pCur->aOverflow);
4229     /* sqlite3_free(pCur); */
4230     sqlite3BtreeLeave(pBtree);
4231   }
4232   return SQLITE_OK;
4233 }
4234 
4235 /*
4236 ** Make sure the BtCursor* given in the argument has a valid
4237 ** BtCursor.info structure.  If it is not already valid, call
4238 ** btreeParseCell() to fill it in.
4239 **
4240 ** BtCursor.info is a cache of the information in the current cell.
4241 ** Using this cache reduces the number of calls to btreeParseCell().
4242 */
4243 #ifndef NDEBUG
4244   static void assertCellInfo(BtCursor *pCur){
4245     CellInfo info;
4246     int iPage = pCur->iPage;
4247     memset(&info, 0, sizeof(info));
4248     btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
4249     assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
4250   }
4251 #else
4252   #define assertCellInfo(x)
4253 #endif
4254 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4255   if( pCur->info.nSize==0 ){
4256     int iPage = pCur->iPage;
4257     pCur->curFlags |= BTCF_ValidNKey;
4258     btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4259   }else{
4260     assertCellInfo(pCur);
4261   }
4262 }
4263 
4264 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4265 /*
4266 ** Return true if the given BtCursor is valid.  A valid cursor is one
4267 ** that is currently pointing to a row in a (non-empty) table.
4268 ** This is a verification routine is used only within assert() statements.
4269 */
4270 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4271   return pCur && pCur->eState==CURSOR_VALID;
4272 }
4273 #endif /* NDEBUG */
4274 
4275 /*
4276 ** Return the value of the integer key or "rowid" for a table btree.
4277 ** This routine is only valid for a cursor that is pointing into a
4278 ** ordinary table btree.  If the cursor points to an index btree or
4279 ** is invalid, the result of this routine is undefined.
4280 */
4281 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4282   assert( cursorHoldsMutex(pCur) );
4283   assert( pCur->eState==CURSOR_VALID );
4284   assert( pCur->curIntKey );
4285   getCellInfo(pCur);
4286   return pCur->info.nKey;
4287 }
4288 
4289 /*
4290 ** Return the number of bytes of payload for the entry that pCur is
4291 ** currently pointing to.  For table btrees, this will be the amount
4292 ** of data.  For index btrees, this will be the size of the key.
4293 **
4294 ** The caller must guarantee that the cursor is pointing to a non-NULL
4295 ** valid entry.  In other words, the calling procedure must guarantee
4296 ** that the cursor has Cursor.eState==CURSOR_VALID.
4297 */
4298 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4299   assert( cursorHoldsMutex(pCur) );
4300   assert( pCur->eState==CURSOR_VALID );
4301   getCellInfo(pCur);
4302   return pCur->info.nPayload;
4303 }
4304 
4305 /*
4306 ** Given the page number of an overflow page in the database (parameter
4307 ** ovfl), this function finds the page number of the next page in the
4308 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4309 ** pointer-map data instead of reading the content of page ovfl to do so.
4310 **
4311 ** If an error occurs an SQLite error code is returned. Otherwise:
4312 **
4313 ** The page number of the next overflow page in the linked list is
4314 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4315 ** list, *pPgnoNext is set to zero.
4316 **
4317 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4318 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4319 ** reference. It is the responsibility of the caller to call releasePage()
4320 ** on *ppPage to free the reference. In no reference was obtained (because
4321 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4322 ** *ppPage is set to zero.
4323 */
4324 static int getOverflowPage(
4325   BtShared *pBt,               /* The database file */
4326   Pgno ovfl,                   /* Current overflow page number */
4327   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4328   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4329 ){
4330   Pgno next = 0;
4331   MemPage *pPage = 0;
4332   int rc = SQLITE_OK;
4333 
4334   assert( sqlite3_mutex_held(pBt->mutex) );
4335   assert(pPgnoNext);
4336 
4337 #ifndef SQLITE_OMIT_AUTOVACUUM
4338   /* Try to find the next page in the overflow list using the
4339   ** autovacuum pointer-map pages. Guess that the next page in
4340   ** the overflow list is page number (ovfl+1). If that guess turns
4341   ** out to be wrong, fall back to loading the data of page
4342   ** number ovfl to determine the next page number.
4343   */
4344   if( pBt->autoVacuum ){
4345     Pgno pgno;
4346     Pgno iGuess = ovfl+1;
4347     u8 eType;
4348 
4349     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4350       iGuess++;
4351     }
4352 
4353     if( iGuess<=btreePagecount(pBt) ){
4354       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4355       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4356         next = iGuess;
4357         rc = SQLITE_DONE;
4358       }
4359     }
4360   }
4361 #endif
4362 
4363   assert( next==0 || rc==SQLITE_DONE );
4364   if( rc==SQLITE_OK ){
4365     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4366     assert( rc==SQLITE_OK || pPage==0 );
4367     if( rc==SQLITE_OK ){
4368       next = get4byte(pPage->aData);
4369     }
4370   }
4371 
4372   *pPgnoNext = next;
4373   if( ppPage ){
4374     *ppPage = pPage;
4375   }else{
4376     releasePage(pPage);
4377   }
4378   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4379 }
4380 
4381 /*
4382 ** Copy data from a buffer to a page, or from a page to a buffer.
4383 **
4384 ** pPayload is a pointer to data stored on database page pDbPage.
4385 ** If argument eOp is false, then nByte bytes of data are copied
4386 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4387 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4388 ** of data are copied from the buffer pBuf to pPayload.
4389 **
4390 ** SQLITE_OK is returned on success, otherwise an error code.
4391 */
4392 static int copyPayload(
4393   void *pPayload,           /* Pointer to page data */
4394   void *pBuf,               /* Pointer to buffer */
4395   int nByte,                /* Number of bytes to copy */
4396   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4397   DbPage *pDbPage           /* Page containing pPayload */
4398 ){
4399   if( eOp ){
4400     /* Copy data from buffer to page (a write operation) */
4401     int rc = sqlite3PagerWrite(pDbPage);
4402     if( rc!=SQLITE_OK ){
4403       return rc;
4404     }
4405     memcpy(pPayload, pBuf, nByte);
4406   }else{
4407     /* Copy data from page to buffer (a read operation) */
4408     memcpy(pBuf, pPayload, nByte);
4409   }
4410   return SQLITE_OK;
4411 }
4412 
4413 /*
4414 ** This function is used to read or overwrite payload information
4415 ** for the entry that the pCur cursor is pointing to. The eOp
4416 ** argument is interpreted as follows:
4417 **
4418 **   0: The operation is a read. Populate the overflow cache.
4419 **   1: The operation is a write. Populate the overflow cache.
4420 **   2: The operation is a read. Do not populate the overflow cache.
4421 **
4422 ** A total of "amt" bytes are read or written beginning at "offset".
4423 ** Data is read to or from the buffer pBuf.
4424 **
4425 ** The content being read or written might appear on the main page
4426 ** or be scattered out on multiple overflow pages.
4427 **
4428 ** If the current cursor entry uses one or more overflow pages and the
4429 ** eOp argument is not 2, this function may allocate space for and lazily
4430 ** populates the overflow page-list cache array (BtCursor.aOverflow).
4431 ** Subsequent calls use this cache to make seeking to the supplied offset
4432 ** more efficient.
4433 **
4434 ** Once an overflow page-list cache has been allocated, it may be
4435 ** invalidated if some other cursor writes to the same table, or if
4436 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4437 ** mode, the following events may invalidate an overflow page-list cache.
4438 **
4439 **   * An incremental vacuum,
4440 **   * A commit in auto_vacuum="full" mode,
4441 **   * Creating a table (may require moving an overflow page).
4442 */
4443 static int accessPayload(
4444   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4445   u32 offset,          /* Begin reading this far into payload */
4446   u32 amt,             /* Read this many bytes */
4447   unsigned char *pBuf, /* Write the bytes into this buffer */
4448   int eOp              /* zero to read. non-zero to write. */
4449 ){
4450   unsigned char *aPayload;
4451   int rc = SQLITE_OK;
4452   int iIdx = 0;
4453   MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
4454   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4455 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4456   unsigned char * const pBufStart = pBuf;
4457   int bEnd;                                 /* True if reading to end of data */
4458 #endif
4459 
4460   assert( pPage );
4461   assert( pCur->eState==CURSOR_VALID );
4462   assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4463   assert( cursorHoldsMutex(pCur) );
4464   assert( eOp!=2 || offset==0 );    /* Always start from beginning for eOp==2 */
4465 
4466   getCellInfo(pCur);
4467   aPayload = pCur->info.pPayload;
4468 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4469   bEnd = offset+amt==pCur->info.nPayload;
4470 #endif
4471   assert( offset+amt <= pCur->info.nPayload );
4472 
4473   assert( aPayload > pPage->aData );
4474   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4475     /* Trying to read or write past the end of the data is an error.  The
4476     ** conditional above is really:
4477     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4478     ** but is recast into its current form to avoid integer overflow problems
4479     */
4480     return SQLITE_CORRUPT_BKPT;
4481   }
4482 
4483   /* Check if data must be read/written to/from the btree page itself. */
4484   if( offset<pCur->info.nLocal ){
4485     int a = amt;
4486     if( a+offset>pCur->info.nLocal ){
4487       a = pCur->info.nLocal - offset;
4488     }
4489     rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
4490     offset = 0;
4491     pBuf += a;
4492     amt -= a;
4493   }else{
4494     offset -= pCur->info.nLocal;
4495   }
4496 
4497 
4498   if( rc==SQLITE_OK && amt>0 ){
4499     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4500     Pgno nextPage;
4501 
4502     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4503 
4504     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4505     ** Except, do not allocate aOverflow[] for eOp==2.
4506     **
4507     ** The aOverflow[] array is sized at one entry for each overflow page
4508     ** in the overflow chain. The page number of the first overflow page is
4509     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4510     ** means "not yet known" (the cache is lazily populated).
4511     */
4512     if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4513       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4514       if( nOvfl>pCur->nOvflAlloc ){
4515         Pgno *aNew = (Pgno*)sqlite3Realloc(
4516             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4517         );
4518         if( aNew==0 ){
4519           rc = SQLITE_NOMEM_BKPT;
4520         }else{
4521           pCur->nOvflAlloc = nOvfl*2;
4522           pCur->aOverflow = aNew;
4523         }
4524       }
4525       if( rc==SQLITE_OK ){
4526         memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4527         pCur->curFlags |= BTCF_ValidOvfl;
4528       }
4529     }
4530 
4531     /* If the overflow page-list cache has been allocated and the
4532     ** entry for the first required overflow page is valid, skip
4533     ** directly to it.
4534     */
4535     if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4536      && pCur->aOverflow[offset/ovflSize]
4537     ){
4538       iIdx = (offset/ovflSize);
4539       nextPage = pCur->aOverflow[iIdx];
4540       offset = (offset%ovflSize);
4541     }
4542 
4543     for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4544 
4545       /* If required, populate the overflow page-list cache. */
4546       if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
4547         assert( pCur->aOverflow[iIdx]==0
4548                 || pCur->aOverflow[iIdx]==nextPage
4549                 || CORRUPT_DB );
4550         pCur->aOverflow[iIdx] = nextPage;
4551       }
4552 
4553       if( offset>=ovflSize ){
4554         /* The only reason to read this page is to obtain the page
4555         ** number for the next page in the overflow chain. The page
4556         ** data is not required. So first try to lookup the overflow
4557         ** page-list cache, if any, then fall back to the getOverflowPage()
4558         ** function.
4559         **
4560         ** Note that the aOverflow[] array must be allocated because eOp!=2
4561         ** here.  If eOp==2, then offset==0 and this branch is never taken.
4562         */
4563         assert( eOp!=2 );
4564         assert( pCur->curFlags & BTCF_ValidOvfl );
4565         assert( pCur->pBtree->db==pBt->db );
4566         if( pCur->aOverflow[iIdx+1] ){
4567           nextPage = pCur->aOverflow[iIdx+1];
4568         }else{
4569           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4570         }
4571         offset -= ovflSize;
4572       }else{
4573         /* Need to read this page properly. It contains some of the
4574         ** range of data that is being read (eOp==0) or written (eOp!=0).
4575         */
4576 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4577         sqlite3_file *fd;
4578 #endif
4579         int a = amt;
4580         if( a + offset > ovflSize ){
4581           a = ovflSize - offset;
4582         }
4583 
4584 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4585         /* If all the following are true:
4586         **
4587         **   1) this is a read operation, and
4588         **   2) data is required from the start of this overflow page, and
4589         **   3) the database is file-backed, and
4590         **   4) there is no open write-transaction, and
4591         **   5) the database is not a WAL database,
4592         **   6) all data from the page is being read.
4593         **   7) at least 4 bytes have already been read into the output buffer
4594         **
4595         ** then data can be read directly from the database file into the
4596         ** output buffer, bypassing the page-cache altogether. This speeds
4597         ** up loading large records that span many overflow pages.
4598         */
4599         if( (eOp&0x01)==0                                      /* (1) */
4600          && offset==0                                          /* (2) */
4601          && (bEnd || a==ovflSize)                              /* (6) */
4602          && pBt->inTransaction==TRANS_READ                     /* (4) */
4603          && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (3) */
4604          && pBt->pPage1->aData[19]==0x01                       /* (5) */
4605          && &pBuf[-4]>=pBufStart                               /* (7) */
4606         ){
4607           u8 aSave[4];
4608           u8 *aWrite = &pBuf[-4];
4609           assert( aWrite>=pBufStart );                         /* hence (7) */
4610           memcpy(aSave, aWrite, 4);
4611           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4612           nextPage = get4byte(aWrite);
4613           memcpy(aWrite, aSave, 4);
4614         }else
4615 #endif
4616 
4617         {
4618           DbPage *pDbPage;
4619           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4620               ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
4621           );
4622           if( rc==SQLITE_OK ){
4623             aPayload = sqlite3PagerGetData(pDbPage);
4624             nextPage = get4byte(aPayload);
4625             rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
4626             sqlite3PagerUnref(pDbPage);
4627             offset = 0;
4628           }
4629         }
4630         amt -= a;
4631         pBuf += a;
4632       }
4633     }
4634   }
4635 
4636   if( rc==SQLITE_OK && amt>0 ){
4637     return SQLITE_CORRUPT_BKPT;
4638   }
4639   return rc;
4640 }
4641 
4642 /*
4643 ** Read part of the key associated with cursor pCur.  Exactly
4644 ** "amt" bytes will be transferred into pBuf[].  The transfer
4645 ** begins at "offset".
4646 **
4647 ** The caller must ensure that pCur is pointing to a valid row
4648 ** in the table.
4649 **
4650 ** Return SQLITE_OK on success or an error code if anything goes
4651 ** wrong.  An error is returned if "offset+amt" is larger than
4652 ** the available payload.
4653 */
4654 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4655   assert( cursorHoldsMutex(pCur) );
4656   assert( pCur->eState==CURSOR_VALID );
4657   assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4658   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4659   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4660 }
4661 
4662 /*
4663 ** Read part of the data associated with cursor pCur.  Exactly
4664 ** "amt" bytes will be transfered into pBuf[].  The transfer
4665 ** begins at "offset".
4666 **
4667 ** Return SQLITE_OK on success or an error code if anything goes
4668 ** wrong.  An error is returned if "offset+amt" is larger than
4669 ** the available payload.
4670 */
4671 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4672   int rc;
4673 
4674 #ifndef SQLITE_OMIT_INCRBLOB
4675   if ( pCur->eState==CURSOR_INVALID ){
4676     return SQLITE_ABORT;
4677   }
4678 #endif
4679 
4680   assert( cursorOwnsBtShared(pCur) );
4681   rc = restoreCursorPosition(pCur);
4682   if( rc==SQLITE_OK ){
4683     assert( pCur->eState==CURSOR_VALID );
4684     assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4685     assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4686     rc = accessPayload(pCur, offset, amt, pBuf, 0);
4687   }
4688   return rc;
4689 }
4690 
4691 /*
4692 ** Return a pointer to payload information from the entry that the
4693 ** pCur cursor is pointing to.  The pointer is to the beginning of
4694 ** the key if index btrees (pPage->intKey==0) and is the data for
4695 ** table btrees (pPage->intKey==1). The number of bytes of available
4696 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4697 ** returned will not be a valid pointer.
4698 **
4699 ** This routine is an optimization.  It is common for the entire key
4700 ** and data to fit on the local page and for there to be no overflow
4701 ** pages.  When that is so, this routine can be used to access the
4702 ** key and data without making a copy.  If the key and/or data spills
4703 ** onto overflow pages, then accessPayload() must be used to reassemble
4704 ** the key/data and copy it into a preallocated buffer.
4705 **
4706 ** The pointer returned by this routine looks directly into the cached
4707 ** page of the database.  The data might change or move the next time
4708 ** any btree routine is called.
4709 */
4710 static const void *fetchPayload(
4711   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4712   u32 *pAmt            /* Write the number of available bytes here */
4713 ){
4714   u32 amt;
4715   assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
4716   assert( pCur->eState==CURSOR_VALID );
4717   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4718   assert( cursorOwnsBtShared(pCur) );
4719   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4720   assert( pCur->info.nSize>0 );
4721   assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4722   assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4723   amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4724   if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4725   *pAmt = amt;
4726   return (void*)pCur->info.pPayload;
4727 }
4728 
4729 
4730 /*
4731 ** For the entry that cursor pCur is point to, return as
4732 ** many bytes of the key or data as are available on the local
4733 ** b-tree page.  Write the number of available bytes into *pAmt.
4734 **
4735 ** The pointer returned is ephemeral.  The key/data may move
4736 ** or be destroyed on the next call to any Btree routine,
4737 ** including calls from other threads against the same cache.
4738 ** Hence, a mutex on the BtShared should be held prior to calling
4739 ** this routine.
4740 **
4741 ** These routines is used to get quick access to key and data
4742 ** in the common case where no overflow pages are used.
4743 */
4744 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
4745   return fetchPayload(pCur, pAmt);
4746 }
4747 
4748 
4749 /*
4750 ** Move the cursor down to a new child page.  The newPgno argument is the
4751 ** page number of the child page to move to.
4752 **
4753 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4754 ** the new child page does not match the flags field of the parent (i.e.
4755 ** if an intkey page appears to be the parent of a non-intkey page, or
4756 ** vice-versa).
4757 */
4758 static int moveToChild(BtCursor *pCur, u32 newPgno){
4759   BtShared *pBt = pCur->pBt;
4760 
4761   assert( cursorOwnsBtShared(pCur) );
4762   assert( pCur->eState==CURSOR_VALID );
4763   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4764   assert( pCur->iPage>=0 );
4765   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4766     return SQLITE_CORRUPT_BKPT;
4767   }
4768   pCur->info.nSize = 0;
4769   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4770   pCur->iPage++;
4771   pCur->aiIdx[pCur->iPage] = 0;
4772   return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4773                         pCur, pCur->curPagerFlags);
4774 }
4775 
4776 #if SQLITE_DEBUG
4777 /*
4778 ** Page pParent is an internal (non-leaf) tree page. This function
4779 ** asserts that page number iChild is the left-child if the iIdx'th
4780 ** cell in page pParent. Or, if iIdx is equal to the total number of
4781 ** cells in pParent, that page number iChild is the right-child of
4782 ** the page.
4783 */
4784 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4785   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
4786                             ** in a corrupt database */
4787   assert( iIdx<=pParent->nCell );
4788   if( iIdx==pParent->nCell ){
4789     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4790   }else{
4791     assert( get4byte(findCell(pParent, iIdx))==iChild );
4792   }
4793 }
4794 #else
4795 #  define assertParentIndex(x,y,z)
4796 #endif
4797 
4798 /*
4799 ** Move the cursor up to the parent page.
4800 **
4801 ** pCur->idx is set to the cell index that contains the pointer
4802 ** to the page we are coming from.  If we are coming from the
4803 ** right-most child page then pCur->idx is set to one more than
4804 ** the largest cell index.
4805 */
4806 static void moveToParent(BtCursor *pCur){
4807   assert( cursorOwnsBtShared(pCur) );
4808   assert( pCur->eState==CURSOR_VALID );
4809   assert( pCur->iPage>0 );
4810   assert( pCur->apPage[pCur->iPage] );
4811   assertParentIndex(
4812     pCur->apPage[pCur->iPage-1],
4813     pCur->aiIdx[pCur->iPage-1],
4814     pCur->apPage[pCur->iPage]->pgno
4815   );
4816   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4817   pCur->info.nSize = 0;
4818   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4819   releasePageNotNull(pCur->apPage[pCur->iPage--]);
4820 }
4821 
4822 /*
4823 ** Move the cursor to point to the root page of its b-tree structure.
4824 **
4825 ** If the table has a virtual root page, then the cursor is moved to point
4826 ** to the virtual root page instead of the actual root page. A table has a
4827 ** virtual root page when the actual root page contains no cells and a
4828 ** single child page. This can only happen with the table rooted at page 1.
4829 **
4830 ** If the b-tree structure is empty, the cursor state is set to
4831 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4832 ** cell located on the root (or virtual root) page and the cursor state
4833 ** is set to CURSOR_VALID.
4834 **
4835 ** If this function returns successfully, it may be assumed that the
4836 ** page-header flags indicate that the [virtual] root-page is the expected
4837 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4838 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4839 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4840 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4841 ** b-tree).
4842 */
4843 static int moveToRoot(BtCursor *pCur){
4844   MemPage *pRoot;
4845   int rc = SQLITE_OK;
4846 
4847   assert( cursorOwnsBtShared(pCur) );
4848   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4849   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
4850   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
4851   if( pCur->eState>=CURSOR_REQUIRESEEK ){
4852     if( pCur->eState==CURSOR_FAULT ){
4853       assert( pCur->skipNext!=SQLITE_OK );
4854       return pCur->skipNext;
4855     }
4856     sqlite3BtreeClearCursor(pCur);
4857   }
4858 
4859   if( pCur->iPage>=0 ){
4860     while( pCur->iPage ){
4861       assert( pCur->apPage[pCur->iPage]!=0 );
4862       releasePageNotNull(pCur->apPage[pCur->iPage--]);
4863     }
4864   }else if( pCur->pgnoRoot==0 ){
4865     pCur->eState = CURSOR_INVALID;
4866     return SQLITE_OK;
4867   }else{
4868     assert( pCur->iPage==(-1) );
4869     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
4870                         0, pCur->curPagerFlags);
4871     if( rc!=SQLITE_OK ){
4872       pCur->eState = CURSOR_INVALID;
4873       return rc;
4874     }
4875     pCur->iPage = 0;
4876     pCur->curIntKey = pCur->apPage[0]->intKey;
4877   }
4878   pRoot = pCur->apPage[0];
4879   assert( pRoot->pgno==pCur->pgnoRoot );
4880 
4881   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4882   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4883   ** NULL, the caller expects a table b-tree. If this is not the case,
4884   ** return an SQLITE_CORRUPT error.
4885   **
4886   ** Earlier versions of SQLite assumed that this test could not fail
4887   ** if the root page was already loaded when this function was called (i.e.
4888   ** if pCur->iPage>=0). But this is not so if the database is corrupted
4889   ** in such a way that page pRoot is linked into a second b-tree table
4890   ** (or the freelist).  */
4891   assert( pRoot->intKey==1 || pRoot->intKey==0 );
4892   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4893     return SQLITE_CORRUPT_BKPT;
4894   }
4895 
4896   pCur->aiIdx[0] = 0;
4897   pCur->info.nSize = 0;
4898   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
4899 
4900   if( pRoot->nCell>0 ){
4901     pCur->eState = CURSOR_VALID;
4902   }else if( !pRoot->leaf ){
4903     Pgno subpage;
4904     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
4905     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
4906     pCur->eState = CURSOR_VALID;
4907     rc = moveToChild(pCur, subpage);
4908   }else{
4909     pCur->eState = CURSOR_INVALID;
4910   }
4911   return rc;
4912 }
4913 
4914 /*
4915 ** Move the cursor down to the left-most leaf entry beneath the
4916 ** entry to which it is currently pointing.
4917 **
4918 ** The left-most leaf is the one with the smallest key - the first
4919 ** in ascending order.
4920 */
4921 static int moveToLeftmost(BtCursor *pCur){
4922   Pgno pgno;
4923   int rc = SQLITE_OK;
4924   MemPage *pPage;
4925 
4926   assert( cursorOwnsBtShared(pCur) );
4927   assert( pCur->eState==CURSOR_VALID );
4928   while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4929     assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4930     pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
4931     rc = moveToChild(pCur, pgno);
4932   }
4933   return rc;
4934 }
4935 
4936 /*
4937 ** Move the cursor down to the right-most leaf entry beneath the
4938 ** page to which it is currently pointing.  Notice the difference
4939 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
4940 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4941 ** finds the right-most entry beneath the *page*.
4942 **
4943 ** The right-most entry is the one with the largest key - the last
4944 ** key in ascending order.
4945 */
4946 static int moveToRightmost(BtCursor *pCur){
4947   Pgno pgno;
4948   int rc = SQLITE_OK;
4949   MemPage *pPage = 0;
4950 
4951   assert( cursorOwnsBtShared(pCur) );
4952   assert( pCur->eState==CURSOR_VALID );
4953   while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4954     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4955     pCur->aiIdx[pCur->iPage] = pPage->nCell;
4956     rc = moveToChild(pCur, pgno);
4957     if( rc ) return rc;
4958   }
4959   pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4960   assert( pCur->info.nSize==0 );
4961   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4962   return SQLITE_OK;
4963 }
4964 
4965 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
4966 ** on success.  Set *pRes to 0 if the cursor actually points to something
4967 ** or set *pRes to 1 if the table is empty.
4968 */
4969 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
4970   int rc;
4971 
4972   assert( cursorOwnsBtShared(pCur) );
4973   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4974   rc = moveToRoot(pCur);
4975   if( rc==SQLITE_OK ){
4976     if( pCur->eState==CURSOR_INVALID ){
4977       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4978       *pRes = 1;
4979     }else{
4980       assert( pCur->apPage[pCur->iPage]->nCell>0 );
4981       *pRes = 0;
4982       rc = moveToLeftmost(pCur);
4983     }
4984   }
4985   return rc;
4986 }
4987 
4988 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
4989 ** on success.  Set *pRes to 0 if the cursor actually points to something
4990 ** or set *pRes to 1 if the table is empty.
4991 */
4992 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
4993   int rc;
4994 
4995   assert( cursorOwnsBtShared(pCur) );
4996   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4997 
4998   /* If the cursor already points to the last entry, this is a no-op. */
4999   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5000 #ifdef SQLITE_DEBUG
5001     /* This block serves to assert() that the cursor really does point
5002     ** to the last entry in the b-tree. */
5003     int ii;
5004     for(ii=0; ii<pCur->iPage; ii++){
5005       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5006     }
5007     assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5008     assert( pCur->apPage[pCur->iPage]->leaf );
5009 #endif
5010     return SQLITE_OK;
5011   }
5012 
5013   rc = moveToRoot(pCur);
5014   if( rc==SQLITE_OK ){
5015     if( CURSOR_INVALID==pCur->eState ){
5016       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
5017       *pRes = 1;
5018     }else{
5019       assert( pCur->eState==CURSOR_VALID );
5020       *pRes = 0;
5021       rc = moveToRightmost(pCur);
5022       if( rc==SQLITE_OK ){
5023         pCur->curFlags |= BTCF_AtLast;
5024       }else{
5025         pCur->curFlags &= ~BTCF_AtLast;
5026       }
5027 
5028     }
5029   }
5030   return rc;
5031 }
5032 
5033 /* Move the cursor so that it points to an entry near the key
5034 ** specified by pIdxKey or intKey.   Return a success code.
5035 **
5036 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5037 ** must be NULL.  For index tables, pIdxKey is used and intKey
5038 ** is ignored.
5039 **
5040 ** If an exact match is not found, then the cursor is always
5041 ** left pointing at a leaf page which would hold the entry if it
5042 ** were present.  The cursor might point to an entry that comes
5043 ** before or after the key.
5044 **
5045 ** An integer is written into *pRes which is the result of
5046 ** comparing the key with the entry to which the cursor is
5047 ** pointing.  The meaning of the integer written into
5048 ** *pRes is as follows:
5049 **
5050 **     *pRes<0      The cursor is left pointing at an entry that
5051 **                  is smaller than intKey/pIdxKey or if the table is empty
5052 **                  and the cursor is therefore left point to nothing.
5053 **
5054 **     *pRes==0     The cursor is left pointing at an entry that
5055 **                  exactly matches intKey/pIdxKey.
5056 **
5057 **     *pRes>0      The cursor is left pointing at an entry that
5058 **                  is larger than intKey/pIdxKey.
5059 **
5060 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5061 ** exists an entry in the table that exactly matches pIdxKey.
5062 */
5063 int sqlite3BtreeMovetoUnpacked(
5064   BtCursor *pCur,          /* The cursor to be moved */
5065   UnpackedRecord *pIdxKey, /* Unpacked index key */
5066   i64 intKey,              /* The table key */
5067   int biasRight,           /* If true, bias the search to the high end */
5068   int *pRes                /* Write search results here */
5069 ){
5070   int rc;
5071   RecordCompare xRecordCompare;
5072 
5073   assert( cursorOwnsBtShared(pCur) );
5074   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5075   assert( pRes );
5076   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5077   assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5078 
5079   /* If the cursor is already positioned at the point we are trying
5080   ** to move to, then just return without doing any work */
5081   if( pIdxKey==0
5082    && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5083   ){
5084     if( pCur->info.nKey==intKey ){
5085       *pRes = 0;
5086       return SQLITE_OK;
5087     }
5088     if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
5089       *pRes = -1;
5090       return SQLITE_OK;
5091     }
5092   }
5093 
5094   if( pIdxKey ){
5095     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5096     pIdxKey->errCode = 0;
5097     assert( pIdxKey->default_rc==1
5098          || pIdxKey->default_rc==0
5099          || pIdxKey->default_rc==-1
5100     );
5101   }else{
5102     xRecordCompare = 0; /* All keys are integers */
5103   }
5104 
5105   rc = moveToRoot(pCur);
5106   if( rc ){
5107     return rc;
5108   }
5109   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5110   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5111   assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
5112   if( pCur->eState==CURSOR_INVALID ){
5113     *pRes = -1;
5114     assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
5115     return SQLITE_OK;
5116   }
5117   assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5118   assert( pCur->curIntKey || pIdxKey );
5119   for(;;){
5120     int lwr, upr, idx, c;
5121     Pgno chldPg;
5122     MemPage *pPage = pCur->apPage[pCur->iPage];
5123     u8 *pCell;                          /* Pointer to current cell in pPage */
5124 
5125     /* pPage->nCell must be greater than zero. If this is the root-page
5126     ** the cursor would have been INVALID above and this for(;;) loop
5127     ** not run. If this is not the root-page, then the moveToChild() routine
5128     ** would have already detected db corruption. Similarly, pPage must
5129     ** be the right kind (index or table) of b-tree page. Otherwise
5130     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5131     assert( pPage->nCell>0 );
5132     assert( pPage->intKey==(pIdxKey==0) );
5133     lwr = 0;
5134     upr = pPage->nCell-1;
5135     assert( biasRight==0 || biasRight==1 );
5136     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5137     pCur->aiIdx[pCur->iPage] = (u16)idx;
5138     if( xRecordCompare==0 ){
5139       for(;;){
5140         i64 nCellKey;
5141         pCell = findCellPastPtr(pPage, idx);
5142         if( pPage->intKeyLeaf ){
5143           while( 0x80 <= *(pCell++) ){
5144             if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5145           }
5146         }
5147         getVarint(pCell, (u64*)&nCellKey);
5148         if( nCellKey<intKey ){
5149           lwr = idx+1;
5150           if( lwr>upr ){ c = -1; break; }
5151         }else if( nCellKey>intKey ){
5152           upr = idx-1;
5153           if( lwr>upr ){ c = +1; break; }
5154         }else{
5155           assert( nCellKey==intKey );
5156           pCur->curFlags |= BTCF_ValidNKey;
5157           pCur->info.nKey = nCellKey;
5158           pCur->aiIdx[pCur->iPage] = (u16)idx;
5159           if( !pPage->leaf ){
5160             lwr = idx;
5161             goto moveto_next_layer;
5162           }else{
5163             *pRes = 0;
5164             rc = SQLITE_OK;
5165             goto moveto_finish;
5166           }
5167         }
5168         assert( lwr+upr>=0 );
5169         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5170       }
5171     }else{
5172       for(;;){
5173         int nCell;  /* Size of the pCell cell in bytes */
5174         pCell = findCellPastPtr(pPage, idx);
5175 
5176         /* The maximum supported page-size is 65536 bytes. This means that
5177         ** the maximum number of record bytes stored on an index B-Tree
5178         ** page is less than 16384 bytes and may be stored as a 2-byte
5179         ** varint. This information is used to attempt to avoid parsing
5180         ** the entire cell by checking for the cases where the record is
5181         ** stored entirely within the b-tree page by inspecting the first
5182         ** 2 bytes of the cell.
5183         */
5184         nCell = pCell[0];
5185         if( nCell<=pPage->max1bytePayload ){
5186           /* This branch runs if the record-size field of the cell is a
5187           ** single byte varint and the record fits entirely on the main
5188           ** b-tree page.  */
5189           testcase( pCell+nCell+1==pPage->aDataEnd );
5190           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5191         }else if( !(pCell[1] & 0x80)
5192           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5193         ){
5194           /* The record-size field is a 2 byte varint and the record
5195           ** fits entirely on the main b-tree page.  */
5196           testcase( pCell+nCell+2==pPage->aDataEnd );
5197           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5198         }else{
5199           /* The record flows over onto one or more overflow pages. In
5200           ** this case the whole cell needs to be parsed, a buffer allocated
5201           ** and accessPayload() used to retrieve the record into the
5202           ** buffer before VdbeRecordCompare() can be called.
5203           **
5204           ** If the record is corrupt, the xRecordCompare routine may read
5205           ** up to two varints past the end of the buffer. An extra 18
5206           ** bytes of padding is allocated at the end of the buffer in
5207           ** case this happens.  */
5208           void *pCellKey;
5209           u8 * const pCellBody = pCell - pPage->childPtrSize;
5210           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5211           nCell = (int)pCur->info.nKey;
5212           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5213           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5214           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5215           testcase( nCell==2 );  /* Minimum legal index key size */
5216           if( nCell<2 ){
5217             rc = SQLITE_CORRUPT_BKPT;
5218             goto moveto_finish;
5219           }
5220           pCellKey = sqlite3Malloc( nCell+18 );
5221           if( pCellKey==0 ){
5222             rc = SQLITE_NOMEM_BKPT;
5223             goto moveto_finish;
5224           }
5225           pCur->aiIdx[pCur->iPage] = (u16)idx;
5226           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
5227           if( rc ){
5228             sqlite3_free(pCellKey);
5229             goto moveto_finish;
5230           }
5231           c = xRecordCompare(nCell, pCellKey, pIdxKey);
5232           sqlite3_free(pCellKey);
5233         }
5234         assert(
5235             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5236          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5237         );
5238         if( c<0 ){
5239           lwr = idx+1;
5240         }else if( c>0 ){
5241           upr = idx-1;
5242         }else{
5243           assert( c==0 );
5244           *pRes = 0;
5245           rc = SQLITE_OK;
5246           pCur->aiIdx[pCur->iPage] = (u16)idx;
5247           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
5248           goto moveto_finish;
5249         }
5250         if( lwr>upr ) break;
5251         assert( lwr+upr>=0 );
5252         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5253       }
5254     }
5255     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5256     assert( pPage->isInit );
5257     if( pPage->leaf ){
5258       assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
5259       pCur->aiIdx[pCur->iPage] = (u16)idx;
5260       *pRes = c;
5261       rc = SQLITE_OK;
5262       goto moveto_finish;
5263     }
5264 moveto_next_layer:
5265     if( lwr>=pPage->nCell ){
5266       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5267     }else{
5268       chldPg = get4byte(findCell(pPage, lwr));
5269     }
5270     pCur->aiIdx[pCur->iPage] = (u16)lwr;
5271     rc = moveToChild(pCur, chldPg);
5272     if( rc ) break;
5273   }
5274 moveto_finish:
5275   pCur->info.nSize = 0;
5276   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5277   return rc;
5278 }
5279 
5280 
5281 /*
5282 ** Return TRUE if the cursor is not pointing at an entry of the table.
5283 **
5284 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5285 ** past the last entry in the table or sqlite3BtreePrev() moves past
5286 ** the first entry.  TRUE is also returned if the table is empty.
5287 */
5288 int sqlite3BtreeEof(BtCursor *pCur){
5289   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5290   ** have been deleted? This API will need to change to return an error code
5291   ** as well as the boolean result value.
5292   */
5293   return (CURSOR_VALID!=pCur->eState);
5294 }
5295 
5296 /*
5297 ** Advance the cursor to the next entry in the database.  If
5298 ** successful then set *pRes=0.  If the cursor
5299 ** was already pointing to the last entry in the database before
5300 ** this routine was called, then set *pRes=1.
5301 **
5302 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5303 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5304 ** to the next cell on the current page.  The (slower) btreeNext() helper
5305 ** routine is called when it is necessary to move to a different page or
5306 ** to restore the cursor.
5307 **
5308 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
5309 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5310 ** if this routine could have been skipped if that SQL index had been
5311 ** a unique index.  Otherwise the caller will have set *pRes to zero.
5312 ** Zero is the common case. The btree implementation is free to use the
5313 ** initial *pRes value as a hint to improve performance, but the current
5314 ** SQLite btree implementation does not. (Note that the comdb2 btree
5315 ** implementation does use this hint, however.)
5316 */
5317 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
5318   int rc;
5319   int idx;
5320   MemPage *pPage;
5321 
5322   assert( cursorOwnsBtShared(pCur) );
5323   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5324   assert( *pRes==0 );
5325   if( pCur->eState!=CURSOR_VALID ){
5326     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5327     rc = restoreCursorPosition(pCur);
5328     if( rc!=SQLITE_OK ){
5329       return rc;
5330     }
5331     if( CURSOR_INVALID==pCur->eState ){
5332       *pRes = 1;
5333       return SQLITE_OK;
5334     }
5335     if( pCur->skipNext ){
5336       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5337       pCur->eState = CURSOR_VALID;
5338       if( pCur->skipNext>0 ){
5339         pCur->skipNext = 0;
5340         return SQLITE_OK;
5341       }
5342       pCur->skipNext = 0;
5343     }
5344   }
5345 
5346   pPage = pCur->apPage[pCur->iPage];
5347   idx = ++pCur->aiIdx[pCur->iPage];
5348   assert( pPage->isInit );
5349 
5350   /* If the database file is corrupt, it is possible for the value of idx
5351   ** to be invalid here. This can only occur if a second cursor modifies
5352   ** the page while cursor pCur is holding a reference to it. Which can
5353   ** only happen if the database is corrupt in such a way as to link the
5354   ** page into more than one b-tree structure. */
5355   testcase( idx>pPage->nCell );
5356 
5357   if( idx>=pPage->nCell ){
5358     if( !pPage->leaf ){
5359       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5360       if( rc ) return rc;
5361       return moveToLeftmost(pCur);
5362     }
5363     do{
5364       if( pCur->iPage==0 ){
5365         *pRes = 1;
5366         pCur->eState = CURSOR_INVALID;
5367         return SQLITE_OK;
5368       }
5369       moveToParent(pCur);
5370       pPage = pCur->apPage[pCur->iPage];
5371     }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
5372     if( pPage->intKey ){
5373       return sqlite3BtreeNext(pCur, pRes);
5374     }else{
5375       return SQLITE_OK;
5376     }
5377   }
5378   if( pPage->leaf ){
5379     return SQLITE_OK;
5380   }else{
5381     return moveToLeftmost(pCur);
5382   }
5383 }
5384 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5385   MemPage *pPage;
5386   assert( cursorOwnsBtShared(pCur) );
5387   assert( pRes!=0 );
5388   assert( *pRes==0 || *pRes==1 );
5389   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5390   pCur->info.nSize = 0;
5391   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5392   *pRes = 0;
5393   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5394   pPage = pCur->apPage[pCur->iPage];
5395   if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5396     pCur->aiIdx[pCur->iPage]--;
5397     return btreeNext(pCur, pRes);
5398   }
5399   if( pPage->leaf ){
5400     return SQLITE_OK;
5401   }else{
5402     return moveToLeftmost(pCur);
5403   }
5404 }
5405 
5406 /*
5407 ** Step the cursor to the back to the previous entry in the database.  If
5408 ** successful then set *pRes=0.  If the cursor
5409 ** was already pointing to the first entry in the database before
5410 ** this routine was called, then set *pRes=1.
5411 **
5412 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5413 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5414 ** to the previous cell on the current page.  The (slower) btreePrevious()
5415 ** helper routine is called when it is necessary to move to a different page
5416 ** or to restore the cursor.
5417 **
5418 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
5419 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5420 ** if this routine could have been skipped if that SQL index had been
5421 ** a unique index.  Otherwise the caller will have set *pRes to zero.
5422 ** Zero is the common case. The btree implementation is free to use the
5423 ** initial *pRes value as a hint to improve performance, but the current
5424 ** SQLite btree implementation does not. (Note that the comdb2 btree
5425 ** implementation does use this hint, however.)
5426 */
5427 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
5428   int rc;
5429   MemPage *pPage;
5430 
5431   assert( cursorOwnsBtShared(pCur) );
5432   assert( pRes!=0 );
5433   assert( *pRes==0 );
5434   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5435   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5436   assert( pCur->info.nSize==0 );
5437   if( pCur->eState!=CURSOR_VALID ){
5438     rc = restoreCursorPosition(pCur);
5439     if( rc!=SQLITE_OK ){
5440       return rc;
5441     }
5442     if( CURSOR_INVALID==pCur->eState ){
5443       *pRes = 1;
5444       return SQLITE_OK;
5445     }
5446     if( pCur->skipNext ){
5447       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5448       pCur->eState = CURSOR_VALID;
5449       if( pCur->skipNext<0 ){
5450         pCur->skipNext = 0;
5451         return SQLITE_OK;
5452       }
5453       pCur->skipNext = 0;
5454     }
5455   }
5456 
5457   pPage = pCur->apPage[pCur->iPage];
5458   assert( pPage->isInit );
5459   if( !pPage->leaf ){
5460     int idx = pCur->aiIdx[pCur->iPage];
5461     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5462     if( rc ) return rc;
5463     rc = moveToRightmost(pCur);
5464   }else{
5465     while( pCur->aiIdx[pCur->iPage]==0 ){
5466       if( pCur->iPage==0 ){
5467         pCur->eState = CURSOR_INVALID;
5468         *pRes = 1;
5469         return SQLITE_OK;
5470       }
5471       moveToParent(pCur);
5472     }
5473     assert( pCur->info.nSize==0 );
5474     assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
5475 
5476     pCur->aiIdx[pCur->iPage]--;
5477     pPage = pCur->apPage[pCur->iPage];
5478     if( pPage->intKey && !pPage->leaf ){
5479       rc = sqlite3BtreePrevious(pCur, pRes);
5480     }else{
5481       rc = SQLITE_OK;
5482     }
5483   }
5484   return rc;
5485 }
5486 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5487   assert( cursorOwnsBtShared(pCur) );
5488   assert( pRes!=0 );
5489   assert( *pRes==0 || *pRes==1 );
5490   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5491   *pRes = 0;
5492   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5493   pCur->info.nSize = 0;
5494   if( pCur->eState!=CURSOR_VALID
5495    || pCur->aiIdx[pCur->iPage]==0
5496    || pCur->apPage[pCur->iPage]->leaf==0
5497   ){
5498     return btreePrevious(pCur, pRes);
5499   }
5500   pCur->aiIdx[pCur->iPage]--;
5501   return SQLITE_OK;
5502 }
5503 
5504 /*
5505 ** Allocate a new page from the database file.
5506 **
5507 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5508 ** has already been called on the new page.)  The new page has also
5509 ** been referenced and the calling routine is responsible for calling
5510 ** sqlite3PagerUnref() on the new page when it is done.
5511 **
5512 ** SQLITE_OK is returned on success.  Any other return value indicates
5513 ** an error.  *ppPage is set to NULL in the event of an error.
5514 **
5515 ** If the "nearby" parameter is not 0, then an effort is made to
5516 ** locate a page close to the page number "nearby".  This can be used in an
5517 ** attempt to keep related pages close to each other in the database file,
5518 ** which in turn can make database access faster.
5519 **
5520 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5521 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5522 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5523 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5524 ** are no restrictions on which page is returned.
5525 */
5526 static int allocateBtreePage(
5527   BtShared *pBt,         /* The btree */
5528   MemPage **ppPage,      /* Store pointer to the allocated page here */
5529   Pgno *pPgno,           /* Store the page number here */
5530   Pgno nearby,           /* Search for a page near this one */
5531   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5532 ){
5533   MemPage *pPage1;
5534   int rc;
5535   u32 n;     /* Number of pages on the freelist */
5536   u32 k;     /* Number of leaves on the trunk of the freelist */
5537   MemPage *pTrunk = 0;
5538   MemPage *pPrevTrunk = 0;
5539   Pgno mxPage;     /* Total size of the database file */
5540 
5541   assert( sqlite3_mutex_held(pBt->mutex) );
5542   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5543   pPage1 = pBt->pPage1;
5544   mxPage = btreePagecount(pBt);
5545   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5546   ** stores stores the total number of pages on the freelist. */
5547   n = get4byte(&pPage1->aData[36]);
5548   testcase( n==mxPage-1 );
5549   if( n>=mxPage ){
5550     return SQLITE_CORRUPT_BKPT;
5551   }
5552   if( n>0 ){
5553     /* There are pages on the freelist.  Reuse one of those pages. */
5554     Pgno iTrunk;
5555     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5556     u32 nSearch = 0;   /* Count of the number of search attempts */
5557 
5558     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5559     ** shows that the page 'nearby' is somewhere on the free-list, then
5560     ** the entire-list will be searched for that page.
5561     */
5562 #ifndef SQLITE_OMIT_AUTOVACUUM
5563     if( eMode==BTALLOC_EXACT ){
5564       if( nearby<=mxPage ){
5565         u8 eType;
5566         assert( nearby>0 );
5567         assert( pBt->autoVacuum );
5568         rc = ptrmapGet(pBt, nearby, &eType, 0);
5569         if( rc ) return rc;
5570         if( eType==PTRMAP_FREEPAGE ){
5571           searchList = 1;
5572         }
5573       }
5574     }else if( eMode==BTALLOC_LE ){
5575       searchList = 1;
5576     }
5577 #endif
5578 
5579     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5580     ** first free-list trunk page. iPrevTrunk is initially 1.
5581     */
5582     rc = sqlite3PagerWrite(pPage1->pDbPage);
5583     if( rc ) return rc;
5584     put4byte(&pPage1->aData[36], n-1);
5585 
5586     /* The code within this loop is run only once if the 'searchList' variable
5587     ** is not true. Otherwise, it runs once for each trunk-page on the
5588     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5589     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5590     */
5591     do {
5592       pPrevTrunk = pTrunk;
5593       if( pPrevTrunk ){
5594         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5595         ** is the page number of the next freelist trunk page in the list or
5596         ** zero if this is the last freelist trunk page. */
5597         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5598       }else{
5599         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5600         ** stores the page number of the first page of the freelist, or zero if
5601         ** the freelist is empty. */
5602         iTrunk = get4byte(&pPage1->aData[32]);
5603       }
5604       testcase( iTrunk==mxPage );
5605       if( iTrunk>mxPage || nSearch++ > n ){
5606         rc = SQLITE_CORRUPT_BKPT;
5607       }else{
5608         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5609       }
5610       if( rc ){
5611         pTrunk = 0;
5612         goto end_allocate_page;
5613       }
5614       assert( pTrunk!=0 );
5615       assert( pTrunk->aData!=0 );
5616       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5617       ** is the number of leaf page pointers to follow. */
5618       k = get4byte(&pTrunk->aData[4]);
5619       if( k==0 && !searchList ){
5620         /* The trunk has no leaves and the list is not being searched.
5621         ** So extract the trunk page itself and use it as the newly
5622         ** allocated page */
5623         assert( pPrevTrunk==0 );
5624         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5625         if( rc ){
5626           goto end_allocate_page;
5627         }
5628         *pPgno = iTrunk;
5629         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5630         *ppPage = pTrunk;
5631         pTrunk = 0;
5632         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5633       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5634         /* Value of k is out of range.  Database corruption */
5635         rc = SQLITE_CORRUPT_BKPT;
5636         goto end_allocate_page;
5637 #ifndef SQLITE_OMIT_AUTOVACUUM
5638       }else if( searchList
5639             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5640       ){
5641         /* The list is being searched and this trunk page is the page
5642         ** to allocate, regardless of whether it has leaves.
5643         */
5644         *pPgno = iTrunk;
5645         *ppPage = pTrunk;
5646         searchList = 0;
5647         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5648         if( rc ){
5649           goto end_allocate_page;
5650         }
5651         if( k==0 ){
5652           if( !pPrevTrunk ){
5653             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5654           }else{
5655             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5656             if( rc!=SQLITE_OK ){
5657               goto end_allocate_page;
5658             }
5659             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5660           }
5661         }else{
5662           /* The trunk page is required by the caller but it contains
5663           ** pointers to free-list leaves. The first leaf becomes a trunk
5664           ** page in this case.
5665           */
5666           MemPage *pNewTrunk;
5667           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5668           if( iNewTrunk>mxPage ){
5669             rc = SQLITE_CORRUPT_BKPT;
5670             goto end_allocate_page;
5671           }
5672           testcase( iNewTrunk==mxPage );
5673           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
5674           if( rc!=SQLITE_OK ){
5675             goto end_allocate_page;
5676           }
5677           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5678           if( rc!=SQLITE_OK ){
5679             releasePage(pNewTrunk);
5680             goto end_allocate_page;
5681           }
5682           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5683           put4byte(&pNewTrunk->aData[4], k-1);
5684           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5685           releasePage(pNewTrunk);
5686           if( !pPrevTrunk ){
5687             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5688             put4byte(&pPage1->aData[32], iNewTrunk);
5689           }else{
5690             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5691             if( rc ){
5692               goto end_allocate_page;
5693             }
5694             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5695           }
5696         }
5697         pTrunk = 0;
5698         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5699 #endif
5700       }else if( k>0 ){
5701         /* Extract a leaf from the trunk */
5702         u32 closest;
5703         Pgno iPage;
5704         unsigned char *aData = pTrunk->aData;
5705         if( nearby>0 ){
5706           u32 i;
5707           closest = 0;
5708           if( eMode==BTALLOC_LE ){
5709             for(i=0; i<k; i++){
5710               iPage = get4byte(&aData[8+i*4]);
5711               if( iPage<=nearby ){
5712                 closest = i;
5713                 break;
5714               }
5715             }
5716           }else{
5717             int dist;
5718             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5719             for(i=1; i<k; i++){
5720               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5721               if( d2<dist ){
5722                 closest = i;
5723                 dist = d2;
5724               }
5725             }
5726           }
5727         }else{
5728           closest = 0;
5729         }
5730 
5731         iPage = get4byte(&aData[8+closest*4]);
5732         testcase( iPage==mxPage );
5733         if( iPage>mxPage ){
5734           rc = SQLITE_CORRUPT_BKPT;
5735           goto end_allocate_page;
5736         }
5737         testcase( iPage==mxPage );
5738         if( !searchList
5739          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5740         ){
5741           int noContent;
5742           *pPgno = iPage;
5743           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5744                  ": %d more free pages\n",
5745                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
5746           rc = sqlite3PagerWrite(pTrunk->pDbPage);
5747           if( rc ) goto end_allocate_page;
5748           if( closest<k-1 ){
5749             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5750           }
5751           put4byte(&aData[4], k-1);
5752           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
5753           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
5754           if( rc==SQLITE_OK ){
5755             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5756             if( rc!=SQLITE_OK ){
5757               releasePage(*ppPage);
5758               *ppPage = 0;
5759             }
5760           }
5761           searchList = 0;
5762         }
5763       }
5764       releasePage(pPrevTrunk);
5765       pPrevTrunk = 0;
5766     }while( searchList );
5767   }else{
5768     /* There are no pages on the freelist, so append a new page to the
5769     ** database image.
5770     **
5771     ** Normally, new pages allocated by this block can be requested from the
5772     ** pager layer with the 'no-content' flag set. This prevents the pager
5773     ** from trying to read the pages content from disk. However, if the
5774     ** current transaction has already run one or more incremental-vacuum
5775     ** steps, then the page we are about to allocate may contain content
5776     ** that is required in the event of a rollback. In this case, do
5777     ** not set the no-content flag. This causes the pager to load and journal
5778     ** the current page content before overwriting it.
5779     **
5780     ** Note that the pager will not actually attempt to load or journal
5781     ** content for any page that really does lie past the end of the database
5782     ** file on disk. So the effects of disabling the no-content optimization
5783     ** here are confined to those pages that lie between the end of the
5784     ** database image and the end of the database file.
5785     */
5786     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
5787 
5788     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5789     if( rc ) return rc;
5790     pBt->nPage++;
5791     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
5792 
5793 #ifndef SQLITE_OMIT_AUTOVACUUM
5794     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
5795       /* If *pPgno refers to a pointer-map page, allocate two new pages
5796       ** at the end of the file instead of one. The first allocated page
5797       ** becomes a new pointer-map page, the second is used by the caller.
5798       */
5799       MemPage *pPg = 0;
5800       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5801       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
5802       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
5803       if( rc==SQLITE_OK ){
5804         rc = sqlite3PagerWrite(pPg->pDbPage);
5805         releasePage(pPg);
5806       }
5807       if( rc ) return rc;
5808       pBt->nPage++;
5809       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
5810     }
5811 #endif
5812     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5813     *pPgno = pBt->nPage;
5814 
5815     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5816     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
5817     if( rc ) return rc;
5818     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5819     if( rc!=SQLITE_OK ){
5820       releasePage(*ppPage);
5821       *ppPage = 0;
5822     }
5823     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
5824   }
5825 
5826   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5827 
5828 end_allocate_page:
5829   releasePage(pTrunk);
5830   releasePage(pPrevTrunk);
5831   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5832   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
5833   return rc;
5834 }
5835 
5836 /*
5837 ** This function is used to add page iPage to the database file free-list.
5838 ** It is assumed that the page is not already a part of the free-list.
5839 **
5840 ** The value passed as the second argument to this function is optional.
5841 ** If the caller happens to have a pointer to the MemPage object
5842 ** corresponding to page iPage handy, it may pass it as the second value.
5843 ** Otherwise, it may pass NULL.
5844 **
5845 ** If a pointer to a MemPage object is passed as the second argument,
5846 ** its reference count is not altered by this function.
5847 */
5848 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5849   MemPage *pTrunk = 0;                /* Free-list trunk page */
5850   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
5851   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
5852   MemPage *pPage;                     /* Page being freed. May be NULL. */
5853   int rc;                             /* Return Code */
5854   int nFree;                          /* Initial number of pages on free-list */
5855 
5856   assert( sqlite3_mutex_held(pBt->mutex) );
5857   assert( CORRUPT_DB || iPage>1 );
5858   assert( !pMemPage || pMemPage->pgno==iPage );
5859 
5860   if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
5861   if( pMemPage ){
5862     pPage = pMemPage;
5863     sqlite3PagerRef(pPage->pDbPage);
5864   }else{
5865     pPage = btreePageLookup(pBt, iPage);
5866   }
5867 
5868   /* Increment the free page count on pPage1 */
5869   rc = sqlite3PagerWrite(pPage1->pDbPage);
5870   if( rc ) goto freepage_out;
5871   nFree = get4byte(&pPage1->aData[36]);
5872   put4byte(&pPage1->aData[36], nFree+1);
5873 
5874   if( pBt->btsFlags & BTS_SECURE_DELETE ){
5875     /* If the secure_delete option is enabled, then
5876     ** always fully overwrite deleted information with zeros.
5877     */
5878     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5879      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
5880     ){
5881       goto freepage_out;
5882     }
5883     memset(pPage->aData, 0, pPage->pBt->pageSize);
5884   }
5885 
5886   /* If the database supports auto-vacuum, write an entry in the pointer-map
5887   ** to indicate that the page is free.
5888   */
5889   if( ISAUTOVACUUM ){
5890     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
5891     if( rc ) goto freepage_out;
5892   }
5893 
5894   /* Now manipulate the actual database free-list structure. There are two
5895   ** possibilities. If the free-list is currently empty, or if the first
5896   ** trunk page in the free-list is full, then this page will become a
5897   ** new free-list trunk page. Otherwise, it will become a leaf of the
5898   ** first trunk page in the current free-list. This block tests if it
5899   ** is possible to add the page as a new free-list leaf.
5900   */
5901   if( nFree!=0 ){
5902     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
5903 
5904     iTrunk = get4byte(&pPage1->aData[32]);
5905     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
5906     if( rc!=SQLITE_OK ){
5907       goto freepage_out;
5908     }
5909 
5910     nLeaf = get4byte(&pTrunk->aData[4]);
5911     assert( pBt->usableSize>32 );
5912     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
5913       rc = SQLITE_CORRUPT_BKPT;
5914       goto freepage_out;
5915     }
5916     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
5917       /* In this case there is room on the trunk page to insert the page
5918       ** being freed as a new leaf.
5919       **
5920       ** Note that the trunk page is not really full until it contains
5921       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5922       ** coded.  But due to a coding error in versions of SQLite prior to
5923       ** 3.6.0, databases with freelist trunk pages holding more than
5924       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
5925       ** to maintain backwards compatibility with older versions of SQLite,
5926       ** we will continue to restrict the number of entries to usableSize/4 - 8
5927       ** for now.  At some point in the future (once everyone has upgraded
5928       ** to 3.6.0 or later) we should consider fixing the conditional above
5929       ** to read "usableSize/4-2" instead of "usableSize/4-8".
5930       **
5931       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5932       ** avoid using the last six entries in the freelist trunk page array in
5933       ** order that database files created by newer versions of SQLite can be
5934       ** read by older versions of SQLite.
5935       */
5936       rc = sqlite3PagerWrite(pTrunk->pDbPage);
5937       if( rc==SQLITE_OK ){
5938         put4byte(&pTrunk->aData[4], nLeaf+1);
5939         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
5940         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
5941           sqlite3PagerDontWrite(pPage->pDbPage);
5942         }
5943         rc = btreeSetHasContent(pBt, iPage);
5944       }
5945       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
5946       goto freepage_out;
5947     }
5948   }
5949 
5950   /* If control flows to this point, then it was not possible to add the
5951   ** the page being freed as a leaf page of the first trunk in the free-list.
5952   ** Possibly because the free-list is empty, or possibly because the
5953   ** first trunk in the free-list is full. Either way, the page being freed
5954   ** will become the new first trunk page in the free-list.
5955   */
5956   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5957     goto freepage_out;
5958   }
5959   rc = sqlite3PagerWrite(pPage->pDbPage);
5960   if( rc!=SQLITE_OK ){
5961     goto freepage_out;
5962   }
5963   put4byte(pPage->aData, iTrunk);
5964   put4byte(&pPage->aData[4], 0);
5965   put4byte(&pPage1->aData[32], iPage);
5966   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5967 
5968 freepage_out:
5969   if( pPage ){
5970     pPage->isInit = 0;
5971   }
5972   releasePage(pPage);
5973   releasePage(pTrunk);
5974   return rc;
5975 }
5976 static void freePage(MemPage *pPage, int *pRC){
5977   if( (*pRC)==SQLITE_OK ){
5978     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5979   }
5980 }
5981 
5982 /*
5983 ** Free any overflow pages associated with the given Cell.  Write the
5984 ** local Cell size (the number of bytes on the original page, omitting
5985 ** overflow) into *pnSize.
5986 */
5987 static int clearCell(
5988   MemPage *pPage,          /* The page that contains the Cell */
5989   unsigned char *pCell,    /* First byte of the Cell */
5990   u16 *pnSize              /* Write the size of the Cell here */
5991 ){
5992   BtShared *pBt = pPage->pBt;
5993   CellInfo info;
5994   Pgno ovflPgno;
5995   int rc;
5996   int nOvfl;
5997   u32 ovflPageSize;
5998 
5999   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6000   pPage->xParseCell(pPage, pCell, &info);
6001   *pnSize = info.nSize;
6002   if( info.nLocal==info.nPayload ){
6003     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
6004   }
6005   if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){
6006     return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
6007   }
6008   ovflPgno = get4byte(pCell + info.nSize - 4);
6009   assert( pBt->usableSize > 4 );
6010   ovflPageSize = pBt->usableSize - 4;
6011   nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
6012   assert( nOvfl>0 ||
6013     (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
6014   );
6015   while( nOvfl-- ){
6016     Pgno iNext = 0;
6017     MemPage *pOvfl = 0;
6018     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6019       /* 0 is not a legal page number and page 1 cannot be an
6020       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6021       ** file the database must be corrupt. */
6022       return SQLITE_CORRUPT_BKPT;
6023     }
6024     if( nOvfl ){
6025       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6026       if( rc ) return rc;
6027     }
6028 
6029     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6030      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6031     ){
6032       /* There is no reason any cursor should have an outstanding reference
6033       ** to an overflow page belonging to a cell that is being deleted/updated.
6034       ** So if there exists more than one reference to this page, then it
6035       ** must not really be an overflow page and the database must be corrupt.
6036       ** It is helpful to detect this before calling freePage2(), as
6037       ** freePage2() may zero the page contents if secure-delete mode is
6038       ** enabled. If this 'overflow' page happens to be a page that the
6039       ** caller is iterating through or using in some other way, this
6040       ** can be problematic.
6041       */
6042       rc = SQLITE_CORRUPT_BKPT;
6043     }else{
6044       rc = freePage2(pBt, pOvfl, ovflPgno);
6045     }
6046 
6047     if( pOvfl ){
6048       sqlite3PagerUnref(pOvfl->pDbPage);
6049     }
6050     if( rc ) return rc;
6051     ovflPgno = iNext;
6052   }
6053   return SQLITE_OK;
6054 }
6055 
6056 /*
6057 ** Create the byte sequence used to represent a cell on page pPage
6058 ** and write that byte sequence into pCell[].  Overflow pages are
6059 ** allocated and filled in as necessary.  The calling procedure
6060 ** is responsible for making sure sufficient space has been allocated
6061 ** for pCell[].
6062 **
6063 ** Note that pCell does not necessary need to point to the pPage->aData
6064 ** area.  pCell might point to some temporary storage.  The cell will
6065 ** be constructed in this temporary area then copied into pPage->aData
6066 ** later.
6067 */
6068 static int fillInCell(
6069   MemPage *pPage,                /* The page that contains the cell */
6070   unsigned char *pCell,          /* Complete text of the cell */
6071   const BtreePayload *pX,        /* Payload with which to construct the cell */
6072   int *pnSize                    /* Write cell size here */
6073 ){
6074   int nPayload;
6075   const u8 *pSrc;
6076   int nSrc, n, rc;
6077   int spaceLeft;
6078   MemPage *pOvfl = 0;
6079   MemPage *pToRelease = 0;
6080   unsigned char *pPrior;
6081   unsigned char *pPayload;
6082   BtShared *pBt = pPage->pBt;
6083   Pgno pgnoOvfl = 0;
6084   int nHeader;
6085 
6086   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6087 
6088   /* pPage is not necessarily writeable since pCell might be auxiliary
6089   ** buffer space that is separate from the pPage buffer area */
6090   assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6091             || sqlite3PagerIswriteable(pPage->pDbPage) );
6092 
6093   /* Fill in the header. */
6094   nHeader = pPage->childPtrSize;
6095   if( pPage->intKey ){
6096     nPayload = pX->nData + pX->nZero;
6097     pSrc = pX->pData;
6098     nSrc = pX->nData;
6099     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6100     nHeader += putVarint32(&pCell[nHeader], nPayload);
6101     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6102   }else{
6103     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6104     nSrc = nPayload = (int)pX->nKey;
6105     pSrc = pX->pKey;
6106     nHeader += putVarint32(&pCell[nHeader], nPayload);
6107   }
6108 
6109   /* Fill in the payload */
6110   if( nPayload<=pPage->maxLocal ){
6111     n = nHeader + nPayload;
6112     testcase( n==3 );
6113     testcase( n==4 );
6114     if( n<4 ) n = 4;
6115     *pnSize = n;
6116     spaceLeft = nPayload;
6117     pPrior = pCell;
6118   }else{
6119     int mn = pPage->minLocal;
6120     n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6121     testcase( n==pPage->maxLocal );
6122     testcase( n==pPage->maxLocal+1 );
6123     if( n > pPage->maxLocal ) n = mn;
6124     spaceLeft = n;
6125     *pnSize = n + nHeader + 4;
6126     pPrior = &pCell[nHeader+n];
6127   }
6128   pPayload = &pCell[nHeader];
6129 
6130   /* At this point variables should be set as follows:
6131   **
6132   **   nPayload           Total payload size in bytes
6133   **   pPayload           Begin writing payload here
6134   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6135   **                      that means content must spill into overflow pages.
6136   **   *pnSize            Size of the local cell (not counting overflow pages)
6137   **   pPrior             Where to write the pgno of the first overflow page
6138   **
6139   ** Use a call to btreeParseCellPtr() to verify that the values above
6140   ** were computed correctly.
6141   */
6142 #if SQLITE_DEBUG
6143   {
6144     CellInfo info;
6145     pPage->xParseCell(pPage, pCell, &info);
6146     assert( nHeader==(int)(info.pPayload - pCell) );
6147     assert( info.nKey==pX->nKey );
6148     assert( *pnSize == info.nSize );
6149     assert( spaceLeft == info.nLocal );
6150   }
6151 #endif
6152 
6153   /* Write the payload into the local Cell and any extra into overflow pages */
6154   while( nPayload>0 ){
6155     if( spaceLeft==0 ){
6156 #ifndef SQLITE_OMIT_AUTOVACUUM
6157       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6158       if( pBt->autoVacuum ){
6159         do{
6160           pgnoOvfl++;
6161         } while(
6162           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6163         );
6164       }
6165 #endif
6166       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6167 #ifndef SQLITE_OMIT_AUTOVACUUM
6168       /* If the database supports auto-vacuum, and the second or subsequent
6169       ** overflow page is being allocated, add an entry to the pointer-map
6170       ** for that page now.
6171       **
6172       ** If this is the first overflow page, then write a partial entry
6173       ** to the pointer-map. If we write nothing to this pointer-map slot,
6174       ** then the optimistic overflow chain processing in clearCell()
6175       ** may misinterpret the uninitialized values and delete the
6176       ** wrong pages from the database.
6177       */
6178       if( pBt->autoVacuum && rc==SQLITE_OK ){
6179         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6180         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6181         if( rc ){
6182           releasePage(pOvfl);
6183         }
6184       }
6185 #endif
6186       if( rc ){
6187         releasePage(pToRelease);
6188         return rc;
6189       }
6190 
6191       /* If pToRelease is not zero than pPrior points into the data area
6192       ** of pToRelease.  Make sure pToRelease is still writeable. */
6193       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6194 
6195       /* If pPrior is part of the data area of pPage, then make sure pPage
6196       ** is still writeable */
6197       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6198             || sqlite3PagerIswriteable(pPage->pDbPage) );
6199 
6200       put4byte(pPrior, pgnoOvfl);
6201       releasePage(pToRelease);
6202       pToRelease = pOvfl;
6203       pPrior = pOvfl->aData;
6204       put4byte(pPrior, 0);
6205       pPayload = &pOvfl->aData[4];
6206       spaceLeft = pBt->usableSize - 4;
6207     }
6208     n = nPayload;
6209     if( n>spaceLeft ) n = spaceLeft;
6210 
6211     /* If pToRelease is not zero than pPayload points into the data area
6212     ** of pToRelease.  Make sure pToRelease is still writeable. */
6213     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6214 
6215     /* If pPayload is part of the data area of pPage, then make sure pPage
6216     ** is still writeable */
6217     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6218             || sqlite3PagerIswriteable(pPage->pDbPage) );
6219 
6220     if( nSrc>0 ){
6221       if( n>nSrc ) n = nSrc;
6222       assert( pSrc );
6223       memcpy(pPayload, pSrc, n);
6224     }else{
6225       memset(pPayload, 0, n);
6226     }
6227     nPayload -= n;
6228     pPayload += n;
6229     pSrc += n;
6230     nSrc -= n;
6231     spaceLeft -= n;
6232   }
6233   releasePage(pToRelease);
6234   return SQLITE_OK;
6235 }
6236 
6237 /*
6238 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6239 ** The cell content is not freed or deallocated.  It is assumed that
6240 ** the cell content has been copied someplace else.  This routine just
6241 ** removes the reference to the cell from pPage.
6242 **
6243 ** "sz" must be the number of bytes in the cell.
6244 */
6245 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6246   u32 pc;         /* Offset to cell content of cell being deleted */
6247   u8 *data;       /* pPage->aData */
6248   u8 *ptr;        /* Used to move bytes around within data[] */
6249   int rc;         /* The return code */
6250   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6251 
6252   if( *pRC ) return;
6253 
6254   assert( idx>=0 && idx<pPage->nCell );
6255   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6256   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6257   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6258   data = pPage->aData;
6259   ptr = &pPage->aCellIdx[2*idx];
6260   pc = get2byte(ptr);
6261   hdr = pPage->hdrOffset;
6262   testcase( pc==get2byte(&data[hdr+5]) );
6263   testcase( pc+sz==pPage->pBt->usableSize );
6264   if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
6265     *pRC = SQLITE_CORRUPT_BKPT;
6266     return;
6267   }
6268   rc = freeSpace(pPage, pc, sz);
6269   if( rc ){
6270     *pRC = rc;
6271     return;
6272   }
6273   pPage->nCell--;
6274   if( pPage->nCell==0 ){
6275     memset(&data[hdr+1], 0, 4);
6276     data[hdr+7] = 0;
6277     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6278     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6279                        - pPage->childPtrSize - 8;
6280   }else{
6281     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6282     put2byte(&data[hdr+3], pPage->nCell);
6283     pPage->nFree += 2;
6284   }
6285 }
6286 
6287 /*
6288 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6289 ** content of the cell.
6290 **
6291 ** If the cell content will fit on the page, then put it there.  If it
6292 ** will not fit, then make a copy of the cell content into pTemp if
6293 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6294 ** in pPage->apOvfl[] and make it point to the cell content (either
6295 ** in pTemp or the original pCell) and also record its index.
6296 ** Allocating a new entry in pPage->aCell[] implies that
6297 ** pPage->nOverflow is incremented.
6298 **
6299 ** *pRC must be SQLITE_OK when this routine is called.
6300 */
6301 static void insertCell(
6302   MemPage *pPage,   /* Page into which we are copying */
6303   int i,            /* New cell becomes the i-th cell of the page */
6304   u8 *pCell,        /* Content of the new cell */
6305   int sz,           /* Bytes of content in pCell */
6306   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6307   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6308   int *pRC          /* Read and write return code from here */
6309 ){
6310   int idx = 0;      /* Where to write new cell content in data[] */
6311   int j;            /* Loop counter */
6312   u8 *data;         /* The content of the whole page */
6313   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6314 
6315   assert( *pRC==SQLITE_OK );
6316   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6317   assert( MX_CELL(pPage->pBt)<=10921 );
6318   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6319   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6320   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6321   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6322   /* The cell should normally be sized correctly.  However, when moving a
6323   ** malformed cell from a leaf page to an interior page, if the cell size
6324   ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6325   ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
6326   ** the term after the || in the following assert(). */
6327   assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
6328   if( pPage->nOverflow || sz+2>pPage->nFree ){
6329     if( pTemp ){
6330       memcpy(pTemp, pCell, sz);
6331       pCell = pTemp;
6332     }
6333     if( iChild ){
6334       put4byte(pCell, iChild);
6335     }
6336     j = pPage->nOverflow++;
6337     assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6338     pPage->apOvfl[j] = pCell;
6339     pPage->aiOvfl[j] = (u16)i;
6340 
6341     /* When multiple overflows occur, they are always sequential and in
6342     ** sorted order.  This invariants arise because multiple overflows can
6343     ** only occur when inserting divider cells into the parent page during
6344     ** balancing, and the dividers are adjacent and sorted.
6345     */
6346     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6347     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6348   }else{
6349     int rc = sqlite3PagerWrite(pPage->pDbPage);
6350     if( rc!=SQLITE_OK ){
6351       *pRC = rc;
6352       return;
6353     }
6354     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6355     data = pPage->aData;
6356     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6357     rc = allocateSpace(pPage, sz, &idx);
6358     if( rc ){ *pRC = rc; return; }
6359     /* The allocateSpace() routine guarantees the following properties
6360     ** if it returns successfully */
6361     assert( idx >= 0 );
6362     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6363     assert( idx+sz <= (int)pPage->pBt->usableSize );
6364     pPage->nFree -= (u16)(2 + sz);
6365     memcpy(&data[idx], pCell, sz);
6366     if( iChild ){
6367       put4byte(&data[idx], iChild);
6368     }
6369     pIns = pPage->aCellIdx + i*2;
6370     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6371     put2byte(pIns, idx);
6372     pPage->nCell++;
6373     /* increment the cell count */
6374     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6375     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
6376 #ifndef SQLITE_OMIT_AUTOVACUUM
6377     if( pPage->pBt->autoVacuum ){
6378       /* The cell may contain a pointer to an overflow page. If so, write
6379       ** the entry for the overflow page into the pointer map.
6380       */
6381       ptrmapPutOvflPtr(pPage, pCell, pRC);
6382     }
6383 #endif
6384   }
6385 }
6386 
6387 /*
6388 ** A CellArray object contains a cache of pointers and sizes for a
6389 ** consecutive sequence of cells that might be held on multiple pages.
6390 */
6391 typedef struct CellArray CellArray;
6392 struct CellArray {
6393   int nCell;              /* Number of cells in apCell[] */
6394   MemPage *pRef;          /* Reference page */
6395   u8 **apCell;            /* All cells begin balanced */
6396   u16 *szCell;            /* Local size of all cells in apCell[] */
6397 };
6398 
6399 /*
6400 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6401 ** computed.
6402 */
6403 static void populateCellCache(CellArray *p, int idx, int N){
6404   assert( idx>=0 && idx+N<=p->nCell );
6405   while( N>0 ){
6406     assert( p->apCell[idx]!=0 );
6407     if( p->szCell[idx]==0 ){
6408       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6409     }else{
6410       assert( CORRUPT_DB ||
6411               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6412     }
6413     idx++;
6414     N--;
6415   }
6416 }
6417 
6418 /*
6419 ** Return the size of the Nth element of the cell array
6420 */
6421 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6422   assert( N>=0 && N<p->nCell );
6423   assert( p->szCell[N]==0 );
6424   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6425   return p->szCell[N];
6426 }
6427 static u16 cachedCellSize(CellArray *p, int N){
6428   assert( N>=0 && N<p->nCell );
6429   if( p->szCell[N] ) return p->szCell[N];
6430   return computeCellSize(p, N);
6431 }
6432 
6433 /*
6434 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6435 ** szCell[] array contains the size in bytes of each cell. This function
6436 ** replaces the current contents of page pPg with the contents of the cell
6437 ** array.
6438 **
6439 ** Some of the cells in apCell[] may currently be stored in pPg. This
6440 ** function works around problems caused by this by making a copy of any
6441 ** such cells before overwriting the page data.
6442 **
6443 ** The MemPage.nFree field is invalidated by this function. It is the
6444 ** responsibility of the caller to set it correctly.
6445 */
6446 static int rebuildPage(
6447   MemPage *pPg,                   /* Edit this page */
6448   int nCell,                      /* Final number of cells on page */
6449   u8 **apCell,                    /* Array of cells */
6450   u16 *szCell                     /* Array of cell sizes */
6451 ){
6452   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6453   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6454   const int usableSize = pPg->pBt->usableSize;
6455   u8 * const pEnd = &aData[usableSize];
6456   int i;
6457   u8 *pCellptr = pPg->aCellIdx;
6458   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6459   u8 *pData;
6460 
6461   i = get2byte(&aData[hdr+5]);
6462   memcpy(&pTmp[i], &aData[i], usableSize - i);
6463 
6464   pData = pEnd;
6465   for(i=0; i<nCell; i++){
6466     u8 *pCell = apCell[i];
6467     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6468       pCell = &pTmp[pCell - aData];
6469     }
6470     pData -= szCell[i];
6471     put2byte(pCellptr, (pData - aData));
6472     pCellptr += 2;
6473     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6474     memcpy(pData, pCell, szCell[i]);
6475     assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6476     testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
6477   }
6478 
6479   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6480   pPg->nCell = nCell;
6481   pPg->nOverflow = 0;
6482 
6483   put2byte(&aData[hdr+1], 0);
6484   put2byte(&aData[hdr+3], pPg->nCell);
6485   put2byte(&aData[hdr+5], pData - aData);
6486   aData[hdr+7] = 0x00;
6487   return SQLITE_OK;
6488 }
6489 
6490 /*
6491 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6492 ** contains the size in bytes of each such cell. This function attempts to
6493 ** add the cells stored in the array to page pPg. If it cannot (because
6494 ** the page needs to be defragmented before the cells will fit), non-zero
6495 ** is returned. Otherwise, if the cells are added successfully, zero is
6496 ** returned.
6497 **
6498 ** Argument pCellptr points to the first entry in the cell-pointer array
6499 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6500 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6501 ** cell in the array. It is the responsibility of the caller to ensure
6502 ** that it is safe to overwrite this part of the cell-pointer array.
6503 **
6504 ** When this function is called, *ppData points to the start of the
6505 ** content area on page pPg. If the size of the content area is extended,
6506 ** *ppData is updated to point to the new start of the content area
6507 ** before returning.
6508 **
6509 ** Finally, argument pBegin points to the byte immediately following the
6510 ** end of the space required by this page for the cell-pointer area (for
6511 ** all cells - not just those inserted by the current call). If the content
6512 ** area must be extended to before this point in order to accomodate all
6513 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6514 */
6515 static int pageInsertArray(
6516   MemPage *pPg,                   /* Page to add cells to */
6517   u8 *pBegin,                     /* End of cell-pointer array */
6518   u8 **ppData,                    /* IN/OUT: Page content -area pointer */
6519   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6520   int iFirst,                     /* Index of first cell to add */
6521   int nCell,                      /* Number of cells to add to pPg */
6522   CellArray *pCArray              /* Array of cells */
6523 ){
6524   int i;
6525   u8 *aData = pPg->aData;
6526   u8 *pData = *ppData;
6527   int iEnd = iFirst + nCell;
6528   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
6529   for(i=iFirst; i<iEnd; i++){
6530     int sz, rc;
6531     u8 *pSlot;
6532     sz = cachedCellSize(pCArray, i);
6533     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6534       if( (pData - pBegin)<sz ) return 1;
6535       pData -= sz;
6536       pSlot = pData;
6537     }
6538     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6539     ** database.  But they might for a corrupt database.  Hence use memmove()
6540     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6541     assert( (pSlot+sz)<=pCArray->apCell[i]
6542          || pSlot>=(pCArray->apCell[i]+sz)
6543          || CORRUPT_DB );
6544     memmove(pSlot, pCArray->apCell[i], sz);
6545     put2byte(pCellptr, (pSlot - aData));
6546     pCellptr += 2;
6547   }
6548   *ppData = pData;
6549   return 0;
6550 }
6551 
6552 /*
6553 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6554 ** contains the size in bytes of each such cell. This function adds the
6555 ** space associated with each cell in the array that is currently stored
6556 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6557 ** fields of the page are not updated.
6558 **
6559 ** This function returns the total number of cells added to the free-list.
6560 */
6561 static int pageFreeArray(
6562   MemPage *pPg,                   /* Page to edit */
6563   int iFirst,                     /* First cell to delete */
6564   int nCell,                      /* Cells to delete */
6565   CellArray *pCArray              /* Array of cells */
6566 ){
6567   u8 * const aData = pPg->aData;
6568   u8 * const pEnd = &aData[pPg->pBt->usableSize];
6569   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
6570   int nRet = 0;
6571   int i;
6572   int iEnd = iFirst + nCell;
6573   u8 *pFree = 0;
6574   int szFree = 0;
6575 
6576   for(i=iFirst; i<iEnd; i++){
6577     u8 *pCell = pCArray->apCell[i];
6578     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
6579       int sz;
6580       /* No need to use cachedCellSize() here.  The sizes of all cells that
6581       ** are to be freed have already been computing while deciding which
6582       ** cells need freeing */
6583       sz = pCArray->szCell[i];  assert( sz>0 );
6584       if( pFree!=(pCell + sz) ){
6585         if( pFree ){
6586           assert( pFree>aData && (pFree - aData)<65536 );
6587           freeSpace(pPg, (u16)(pFree - aData), szFree);
6588         }
6589         pFree = pCell;
6590         szFree = sz;
6591         if( pFree+sz>pEnd ) return 0;
6592       }else{
6593         pFree = pCell;
6594         szFree += sz;
6595       }
6596       nRet++;
6597     }
6598   }
6599   if( pFree ){
6600     assert( pFree>aData && (pFree - aData)<65536 );
6601     freeSpace(pPg, (u16)(pFree - aData), szFree);
6602   }
6603   return nRet;
6604 }
6605 
6606 /*
6607 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6608 ** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
6609 ** with apCell[iOld].  After balancing, this page should hold nNew cells
6610 ** starting at apCell[iNew].
6611 **
6612 ** This routine makes the necessary adjustments to pPg so that it contains
6613 ** the correct cells after being balanced.
6614 **
6615 ** The pPg->nFree field is invalid when this function returns. It is the
6616 ** responsibility of the caller to set it correctly.
6617 */
6618 static int editPage(
6619   MemPage *pPg,                   /* Edit this page */
6620   int iOld,                       /* Index of first cell currently on page */
6621   int iNew,                       /* Index of new first cell on page */
6622   int nNew,                       /* Final number of cells on page */
6623   CellArray *pCArray              /* Array of cells and sizes */
6624 ){
6625   u8 * const aData = pPg->aData;
6626   const int hdr = pPg->hdrOffset;
6627   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6628   int nCell = pPg->nCell;       /* Cells stored on pPg */
6629   u8 *pData;
6630   u8 *pCellptr;
6631   int i;
6632   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6633   int iNewEnd = iNew + nNew;
6634 
6635 #ifdef SQLITE_DEBUG
6636   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6637   memcpy(pTmp, aData, pPg->pBt->usableSize);
6638 #endif
6639 
6640   /* Remove cells from the start and end of the page */
6641   if( iOld<iNew ){
6642     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
6643     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6644     nCell -= nShift;
6645   }
6646   if( iNewEnd < iOldEnd ){
6647     nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
6648   }
6649 
6650   pData = &aData[get2byteNotZero(&aData[hdr+5])];
6651   if( pData<pBegin ) goto editpage_fail;
6652 
6653   /* Add cells to the start of the page */
6654   if( iNew<iOld ){
6655     int nAdd = MIN(nNew,iOld-iNew);
6656     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
6657     pCellptr = pPg->aCellIdx;
6658     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6659     if( pageInsertArray(
6660           pPg, pBegin, &pData, pCellptr,
6661           iNew, nAdd, pCArray
6662     ) ) goto editpage_fail;
6663     nCell += nAdd;
6664   }
6665 
6666   /* Add any overflow cells */
6667   for(i=0; i<pPg->nOverflow; i++){
6668     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6669     if( iCell>=0 && iCell<nNew ){
6670       pCellptr = &pPg->aCellIdx[iCell * 2];
6671       memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6672       nCell++;
6673       if( pageInsertArray(
6674             pPg, pBegin, &pData, pCellptr,
6675             iCell+iNew, 1, pCArray
6676       ) ) goto editpage_fail;
6677     }
6678   }
6679 
6680   /* Append cells to the end of the page */
6681   pCellptr = &pPg->aCellIdx[nCell*2];
6682   if( pageInsertArray(
6683         pPg, pBegin, &pData, pCellptr,
6684         iNew+nCell, nNew-nCell, pCArray
6685   ) ) goto editpage_fail;
6686 
6687   pPg->nCell = nNew;
6688   pPg->nOverflow = 0;
6689 
6690   put2byte(&aData[hdr+3], pPg->nCell);
6691   put2byte(&aData[hdr+5], pData - aData);
6692 
6693 #ifdef SQLITE_DEBUG
6694   for(i=0; i<nNew && !CORRUPT_DB; i++){
6695     u8 *pCell = pCArray->apCell[i+iNew];
6696     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
6697     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
6698       pCell = &pTmp[pCell - aData];
6699     }
6700     assert( 0==memcmp(pCell, &aData[iOff],
6701             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
6702   }
6703 #endif
6704 
6705   return SQLITE_OK;
6706  editpage_fail:
6707   /* Unable to edit this page. Rebuild it from scratch instead. */
6708   populateCellCache(pCArray, iNew, nNew);
6709   return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
6710 }
6711 
6712 /*
6713 ** The following parameters determine how many adjacent pages get involved
6714 ** in a balancing operation.  NN is the number of neighbors on either side
6715 ** of the page that participate in the balancing operation.  NB is the
6716 ** total number of pages that participate, including the target page and
6717 ** NN neighbors on either side.
6718 **
6719 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6720 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6721 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6722 ** The value of NN appears to give the best results overall.
6723 */
6724 #define NN 1             /* Number of neighbors on either side of pPage */
6725 #define NB (NN*2+1)      /* Total pages involved in the balance */
6726 
6727 
6728 #ifndef SQLITE_OMIT_QUICKBALANCE
6729 /*
6730 ** This version of balance() handles the common special case where
6731 ** a new entry is being inserted on the extreme right-end of the
6732 ** tree, in other words, when the new entry will become the largest
6733 ** entry in the tree.
6734 **
6735 ** Instead of trying to balance the 3 right-most leaf pages, just add
6736 ** a new page to the right-hand side and put the one new entry in
6737 ** that page.  This leaves the right side of the tree somewhat
6738 ** unbalanced.  But odds are that we will be inserting new entries
6739 ** at the end soon afterwards so the nearly empty page will quickly
6740 ** fill up.  On average.
6741 **
6742 ** pPage is the leaf page which is the right-most page in the tree.
6743 ** pParent is its parent.  pPage must have a single overflow entry
6744 ** which is also the right-most entry on the page.
6745 **
6746 ** The pSpace buffer is used to store a temporary copy of the divider
6747 ** cell that will be inserted into pParent. Such a cell consists of a 4
6748 ** byte page number followed by a variable length integer. In other
6749 ** words, at most 13 bytes. Hence the pSpace buffer must be at
6750 ** least 13 bytes in size.
6751 */
6752 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6753   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
6754   MemPage *pNew;                       /* Newly allocated page */
6755   int rc;                              /* Return Code */
6756   Pgno pgnoNew;                        /* Page number of pNew */
6757 
6758   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6759   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6760   assert( pPage->nOverflow==1 );
6761 
6762   /* This error condition is now caught prior to reaching this function */
6763   if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
6764 
6765   /* Allocate a new page. This page will become the right-sibling of
6766   ** pPage. Make the parent page writable, so that the new divider cell
6767   ** may be inserted. If both these operations are successful, proceed.
6768   */
6769   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
6770 
6771   if( rc==SQLITE_OK ){
6772 
6773     u8 *pOut = &pSpace[4];
6774     u8 *pCell = pPage->apOvfl[0];
6775     u16 szCell = pPage->xCellSize(pPage, pCell);
6776     u8 *pStop;
6777 
6778     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
6779     assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6780     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
6781     rc = rebuildPage(pNew, 1, &pCell, &szCell);
6782     if( NEVER(rc) ) return rc;
6783     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
6784 
6785     /* If this is an auto-vacuum database, update the pointer map
6786     ** with entries for the new page, and any pointer from the
6787     ** cell on the page to an overflow page. If either of these
6788     ** operations fails, the return code is set, but the contents
6789     ** of the parent page are still manipulated by thh code below.
6790     ** That is Ok, at this point the parent page is guaranteed to
6791     ** be marked as dirty. Returning an error code will cause a
6792     ** rollback, undoing any changes made to the parent page.
6793     */
6794     if( ISAUTOVACUUM ){
6795       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6796       if( szCell>pNew->minLocal ){
6797         ptrmapPutOvflPtr(pNew, pCell, &rc);
6798       }
6799     }
6800 
6801     /* Create a divider cell to insert into pParent. The divider cell
6802     ** consists of a 4-byte page number (the page number of pPage) and
6803     ** a variable length key value (which must be the same value as the
6804     ** largest key on pPage).
6805     **
6806     ** To find the largest key value on pPage, first find the right-most
6807     ** cell on pPage. The first two fields of this cell are the
6808     ** record-length (a variable length integer at most 32-bits in size)
6809     ** and the key value (a variable length integer, may have any value).
6810     ** The first of the while(...) loops below skips over the record-length
6811     ** field. The second while(...) loop copies the key value from the
6812     ** cell on pPage into the pSpace buffer.
6813     */
6814     pCell = findCell(pPage, pPage->nCell-1);
6815     pStop = &pCell[9];
6816     while( (*(pCell++)&0x80) && pCell<pStop );
6817     pStop = &pCell[9];
6818     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6819 
6820     /* Insert the new divider cell into pParent. */
6821     if( rc==SQLITE_OK ){
6822       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6823                    0, pPage->pgno, &rc);
6824     }
6825 
6826     /* Set the right-child pointer of pParent to point to the new page. */
6827     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6828 
6829     /* Release the reference to the new page. */
6830     releasePage(pNew);
6831   }
6832 
6833   return rc;
6834 }
6835 #endif /* SQLITE_OMIT_QUICKBALANCE */
6836 
6837 #if 0
6838 /*
6839 ** This function does not contribute anything to the operation of SQLite.
6840 ** it is sometimes activated temporarily while debugging code responsible
6841 ** for setting pointer-map entries.
6842 */
6843 static int ptrmapCheckPages(MemPage **apPage, int nPage){
6844   int i, j;
6845   for(i=0; i<nPage; i++){
6846     Pgno n;
6847     u8 e;
6848     MemPage *pPage = apPage[i];
6849     BtShared *pBt = pPage->pBt;
6850     assert( pPage->isInit );
6851 
6852     for(j=0; j<pPage->nCell; j++){
6853       CellInfo info;
6854       u8 *z;
6855 
6856       z = findCell(pPage, j);
6857       pPage->xParseCell(pPage, z, &info);
6858       if( info.nLocal<info.nPayload ){
6859         Pgno ovfl = get4byte(&z[info.nSize-4]);
6860         ptrmapGet(pBt, ovfl, &e, &n);
6861         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6862       }
6863       if( !pPage->leaf ){
6864         Pgno child = get4byte(z);
6865         ptrmapGet(pBt, child, &e, &n);
6866         assert( n==pPage->pgno && e==PTRMAP_BTREE );
6867       }
6868     }
6869     if( !pPage->leaf ){
6870       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6871       ptrmapGet(pBt, child, &e, &n);
6872       assert( n==pPage->pgno && e==PTRMAP_BTREE );
6873     }
6874   }
6875   return 1;
6876 }
6877 #endif
6878 
6879 /*
6880 ** This function is used to copy the contents of the b-tree node stored
6881 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6882 ** the pointer-map entries for each child page are updated so that the
6883 ** parent page stored in the pointer map is page pTo. If pFrom contained
6884 ** any cells with overflow page pointers, then the corresponding pointer
6885 ** map entries are also updated so that the parent page is page pTo.
6886 **
6887 ** If pFrom is currently carrying any overflow cells (entries in the
6888 ** MemPage.apOvfl[] array), they are not copied to pTo.
6889 **
6890 ** Before returning, page pTo is reinitialized using btreeInitPage().
6891 **
6892 ** The performance of this function is not critical. It is only used by
6893 ** the balance_shallower() and balance_deeper() procedures, neither of
6894 ** which are called often under normal circumstances.
6895 */
6896 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6897   if( (*pRC)==SQLITE_OK ){
6898     BtShared * const pBt = pFrom->pBt;
6899     u8 * const aFrom = pFrom->aData;
6900     u8 * const aTo = pTo->aData;
6901     int const iFromHdr = pFrom->hdrOffset;
6902     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
6903     int rc;
6904     int iData;
6905 
6906 
6907     assert( pFrom->isInit );
6908     assert( pFrom->nFree>=iToHdr );
6909     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
6910 
6911     /* Copy the b-tree node content from page pFrom to page pTo. */
6912     iData = get2byte(&aFrom[iFromHdr+5]);
6913     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6914     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6915 
6916     /* Reinitialize page pTo so that the contents of the MemPage structure
6917     ** match the new data. The initialization of pTo can actually fail under
6918     ** fairly obscure circumstances, even though it is a copy of initialized
6919     ** page pFrom.
6920     */
6921     pTo->isInit = 0;
6922     rc = btreeInitPage(pTo);
6923     if( rc!=SQLITE_OK ){
6924       *pRC = rc;
6925       return;
6926     }
6927 
6928     /* If this is an auto-vacuum database, update the pointer-map entries
6929     ** for any b-tree or overflow pages that pTo now contains the pointers to.
6930     */
6931     if( ISAUTOVACUUM ){
6932       *pRC = setChildPtrmaps(pTo);
6933     }
6934   }
6935 }
6936 
6937 /*
6938 ** This routine redistributes cells on the iParentIdx'th child of pParent
6939 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
6940 ** same amount of free space. Usually a single sibling on either side of the
6941 ** page are used in the balancing, though both siblings might come from one
6942 ** side if the page is the first or last child of its parent. If the page
6943 ** has fewer than 2 siblings (something which can only happen if the page
6944 ** is a root page or a child of a root page) then all available siblings
6945 ** participate in the balancing.
6946 **
6947 ** The number of siblings of the page might be increased or decreased by
6948 ** one or two in an effort to keep pages nearly full but not over full.
6949 **
6950 ** Note that when this routine is called, some of the cells on the page
6951 ** might not actually be stored in MemPage.aData[]. This can happen
6952 ** if the page is overfull. This routine ensures that all cells allocated
6953 ** to the page and its siblings fit into MemPage.aData[] before returning.
6954 **
6955 ** In the course of balancing the page and its siblings, cells may be
6956 ** inserted into or removed from the parent page (pParent). Doing so
6957 ** may cause the parent page to become overfull or underfull. If this
6958 ** happens, it is the responsibility of the caller to invoke the correct
6959 ** balancing routine to fix this problem (see the balance() routine).
6960 **
6961 ** If this routine fails for any reason, it might leave the database
6962 ** in a corrupted state. So if this routine fails, the database should
6963 ** be rolled back.
6964 **
6965 ** The third argument to this function, aOvflSpace, is a pointer to a
6966 ** buffer big enough to hold one page. If while inserting cells into the parent
6967 ** page (pParent) the parent page becomes overfull, this buffer is
6968 ** used to store the parent's overflow cells. Because this function inserts
6969 ** a maximum of four divider cells into the parent page, and the maximum
6970 ** size of a cell stored within an internal node is always less than 1/4
6971 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6972 ** enough for all overflow cells.
6973 **
6974 ** If aOvflSpace is set to a null pointer, this function returns
6975 ** SQLITE_NOMEM.
6976 */
6977 static int balance_nonroot(
6978   MemPage *pParent,               /* Parent page of siblings being balanced */
6979   int iParentIdx,                 /* Index of "the page" in pParent */
6980   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
6981   int isRoot,                     /* True if pParent is a root-page */
6982   int bBulk                       /* True if this call is part of a bulk load */
6983 ){
6984   BtShared *pBt;               /* The whole database */
6985   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
6986   int nNew = 0;                /* Number of pages in apNew[] */
6987   int nOld;                    /* Number of pages in apOld[] */
6988   int i, j, k;                 /* Loop counters */
6989   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
6990   int rc = SQLITE_OK;          /* The return code */
6991   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
6992   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
6993   int usableSpace;             /* Bytes in pPage beyond the header */
6994   int pageFlags;               /* Value of pPage->aData[0] */
6995   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
6996   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
6997   int szScratch;               /* Size of scratch memory requested */
6998   MemPage *apOld[NB];          /* pPage and up to two siblings */
6999   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7000   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7001   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7002   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7003   int cntOld[NB+2];            /* Old index in b.apCell[] */
7004   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7005   u8 *aSpace1;                 /* Space for copies of dividers cells */
7006   Pgno pgno;                   /* Temp var to store a page number in */
7007   u8 abDone[NB+2];             /* True after i'th new page is populated */
7008   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7009   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7010   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7011   CellArray b;                  /* Parsed information on cells being balanced */
7012 
7013   memset(abDone, 0, sizeof(abDone));
7014   b.nCell = 0;
7015   b.apCell = 0;
7016   pBt = pParent->pBt;
7017   assert( sqlite3_mutex_held(pBt->mutex) );
7018   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7019 
7020 #if 0
7021   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
7022 #endif
7023 
7024   /* At this point pParent may have at most one overflow cell. And if
7025   ** this overflow cell is present, it must be the cell with
7026   ** index iParentIdx. This scenario comes about when this function
7027   ** is called (indirectly) from sqlite3BtreeDelete().
7028   */
7029   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7030   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7031 
7032   if( !aOvflSpace ){
7033     return SQLITE_NOMEM_BKPT;
7034   }
7035 
7036   /* Find the sibling pages to balance. Also locate the cells in pParent
7037   ** that divide the siblings. An attempt is made to find NN siblings on
7038   ** either side of pPage. More siblings are taken from one side, however,
7039   ** if there are fewer than NN siblings on the other side. If pParent
7040   ** has NB or fewer children then all children of pParent are taken.
7041   **
7042   ** This loop also drops the divider cells from the parent page. This
7043   ** way, the remainder of the function does not have to deal with any
7044   ** overflow cells in the parent page, since if any existed they will
7045   ** have already been removed.
7046   */
7047   i = pParent->nOverflow + pParent->nCell;
7048   if( i<2 ){
7049     nxDiv = 0;
7050   }else{
7051     assert( bBulk==0 || bBulk==1 );
7052     if( iParentIdx==0 ){
7053       nxDiv = 0;
7054     }else if( iParentIdx==i ){
7055       nxDiv = i-2+bBulk;
7056     }else{
7057       nxDiv = iParentIdx-1;
7058     }
7059     i = 2-bBulk;
7060   }
7061   nOld = i+1;
7062   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7063     pRight = &pParent->aData[pParent->hdrOffset+8];
7064   }else{
7065     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7066   }
7067   pgno = get4byte(pRight);
7068   while( 1 ){
7069     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7070     if( rc ){
7071       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7072       goto balance_cleanup;
7073     }
7074     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
7075     if( (i--)==0 ) break;
7076 
7077     if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7078       apDiv[i] = pParent->apOvfl[0];
7079       pgno = get4byte(apDiv[i]);
7080       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7081       pParent->nOverflow = 0;
7082     }else{
7083       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7084       pgno = get4byte(apDiv[i]);
7085       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7086 
7087       /* Drop the cell from the parent page. apDiv[i] still points to
7088       ** the cell within the parent, even though it has been dropped.
7089       ** This is safe because dropping a cell only overwrites the first
7090       ** four bytes of it, and this function does not need the first
7091       ** four bytes of the divider cell. So the pointer is safe to use
7092       ** later on.
7093       **
7094       ** But not if we are in secure-delete mode. In secure-delete mode,
7095       ** the dropCell() routine will overwrite the entire cell with zeroes.
7096       ** In this case, temporarily copy the cell into the aOvflSpace[]
7097       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7098       ** is allocated.  */
7099       if( pBt->btsFlags & BTS_SECURE_DELETE ){
7100         int iOff;
7101 
7102         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7103         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7104           rc = SQLITE_CORRUPT_BKPT;
7105           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7106           goto balance_cleanup;
7107         }else{
7108           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7109           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7110         }
7111       }
7112       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7113     }
7114   }
7115 
7116   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7117   ** alignment */
7118   nMaxCells = (nMaxCells + 3)&~3;
7119 
7120   /*
7121   ** Allocate space for memory structures
7122   */
7123   szScratch =
7124        nMaxCells*sizeof(u8*)                       /* b.apCell */
7125      + nMaxCells*sizeof(u16)                       /* b.szCell */
7126      + pBt->pageSize;                              /* aSpace1 */
7127 
7128   /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7129   ** that is more than 6 times the database page size. */
7130   assert( szScratch<=6*(int)pBt->pageSize );
7131   b.apCell = sqlite3ScratchMalloc( szScratch );
7132   if( b.apCell==0 ){
7133     rc = SQLITE_NOMEM_BKPT;
7134     goto balance_cleanup;
7135   }
7136   b.szCell = (u16*)&b.apCell[nMaxCells];
7137   aSpace1 = (u8*)&b.szCell[nMaxCells];
7138   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7139 
7140   /*
7141   ** Load pointers to all cells on sibling pages and the divider cells
7142   ** into the local b.apCell[] array.  Make copies of the divider cells
7143   ** into space obtained from aSpace1[]. The divider cells have already
7144   ** been removed from pParent.
7145   **
7146   ** If the siblings are on leaf pages, then the child pointers of the
7147   ** divider cells are stripped from the cells before they are copied
7148   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7149   ** child pointers.  If siblings are not leaves, then all cell in
7150   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7151   ** are alike.
7152   **
7153   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7154   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7155   */
7156   b.pRef = apOld[0];
7157   leafCorrection = b.pRef->leaf*4;
7158   leafData = b.pRef->intKeyLeaf;
7159   for(i=0; i<nOld; i++){
7160     MemPage *pOld = apOld[i];
7161     int limit = pOld->nCell;
7162     u8 *aData = pOld->aData;
7163     u16 maskPage = pOld->maskPage;
7164     u8 *piCell = aData + pOld->cellOffset;
7165     u8 *piEnd;
7166 
7167     /* Verify that all sibling pages are of the same "type" (table-leaf,
7168     ** table-interior, index-leaf, or index-interior).
7169     */
7170     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7171       rc = SQLITE_CORRUPT_BKPT;
7172       goto balance_cleanup;
7173     }
7174 
7175     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7176     ** constains overflow cells, include them in the b.apCell[] array
7177     ** in the correct spot.
7178     **
7179     ** Note that when there are multiple overflow cells, it is always the
7180     ** case that they are sequential and adjacent.  This invariant arises
7181     ** because multiple overflows can only occurs when inserting divider
7182     ** cells into a parent on a prior balance, and divider cells are always
7183     ** adjacent and are inserted in order.  There is an assert() tagged
7184     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7185     ** invariant.
7186     **
7187     ** This must be done in advance.  Once the balance starts, the cell
7188     ** offset section of the btree page will be overwritten and we will no
7189     ** long be able to find the cells if a pointer to each cell is not saved
7190     ** first.
7191     */
7192     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7193     if( pOld->nOverflow>0 ){
7194       limit = pOld->aiOvfl[0];
7195       for(j=0; j<limit; j++){
7196         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7197         piCell += 2;
7198         b.nCell++;
7199       }
7200       for(k=0; k<pOld->nOverflow; k++){
7201         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7202         b.apCell[b.nCell] = pOld->apOvfl[k];
7203         b.nCell++;
7204       }
7205     }
7206     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7207     while( piCell<piEnd ){
7208       assert( b.nCell<nMaxCells );
7209       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7210       piCell += 2;
7211       b.nCell++;
7212     }
7213 
7214     cntOld[i] = b.nCell;
7215     if( i<nOld-1 && !leafData){
7216       u16 sz = (u16)szNew[i];
7217       u8 *pTemp;
7218       assert( b.nCell<nMaxCells );
7219       b.szCell[b.nCell] = sz;
7220       pTemp = &aSpace1[iSpace1];
7221       iSpace1 += sz;
7222       assert( sz<=pBt->maxLocal+23 );
7223       assert( iSpace1 <= (int)pBt->pageSize );
7224       memcpy(pTemp, apDiv[i], sz);
7225       b.apCell[b.nCell] = pTemp+leafCorrection;
7226       assert( leafCorrection==0 || leafCorrection==4 );
7227       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7228       if( !pOld->leaf ){
7229         assert( leafCorrection==0 );
7230         assert( pOld->hdrOffset==0 );
7231         /* The right pointer of the child page pOld becomes the left
7232         ** pointer of the divider cell */
7233         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7234       }else{
7235         assert( leafCorrection==4 );
7236         while( b.szCell[b.nCell]<4 ){
7237           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7238           ** does exist, pad it with 0x00 bytes. */
7239           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7240           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7241           aSpace1[iSpace1++] = 0x00;
7242           b.szCell[b.nCell]++;
7243         }
7244       }
7245       b.nCell++;
7246     }
7247   }
7248 
7249   /*
7250   ** Figure out the number of pages needed to hold all b.nCell cells.
7251   ** Store this number in "k".  Also compute szNew[] which is the total
7252   ** size of all cells on the i-th page and cntNew[] which is the index
7253   ** in b.apCell[] of the cell that divides page i from page i+1.
7254   ** cntNew[k] should equal b.nCell.
7255   **
7256   ** Values computed by this block:
7257   **
7258   **           k: The total number of sibling pages
7259   **    szNew[i]: Spaced used on the i-th sibling page.
7260   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7261   **              the right of the i-th sibling page.
7262   ** usableSpace: Number of bytes of space available on each sibling.
7263   **
7264   */
7265   usableSpace = pBt->usableSize - 12 + leafCorrection;
7266   for(i=0; i<nOld; i++){
7267     MemPage *p = apOld[i];
7268     szNew[i] = usableSpace - p->nFree;
7269     if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7270     for(j=0; j<p->nOverflow; j++){
7271       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7272     }
7273     cntNew[i] = cntOld[i];
7274   }
7275   k = nOld;
7276   for(i=0; i<k; i++){
7277     int sz;
7278     while( szNew[i]>usableSpace ){
7279       if( i+1>=k ){
7280         k = i+2;
7281         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7282         szNew[k-1] = 0;
7283         cntNew[k-1] = b.nCell;
7284       }
7285       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7286       szNew[i] -= sz;
7287       if( !leafData ){
7288         if( cntNew[i]<b.nCell ){
7289           sz = 2 + cachedCellSize(&b, cntNew[i]);
7290         }else{
7291           sz = 0;
7292         }
7293       }
7294       szNew[i+1] += sz;
7295       cntNew[i]--;
7296     }
7297     while( cntNew[i]<b.nCell ){
7298       sz = 2 + cachedCellSize(&b, cntNew[i]);
7299       if( szNew[i]+sz>usableSpace ) break;
7300       szNew[i] += sz;
7301       cntNew[i]++;
7302       if( !leafData ){
7303         if( cntNew[i]<b.nCell ){
7304           sz = 2 + cachedCellSize(&b, cntNew[i]);
7305         }else{
7306           sz = 0;
7307         }
7308       }
7309       szNew[i+1] -= sz;
7310     }
7311     if( cntNew[i]>=b.nCell ){
7312       k = i+1;
7313     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7314       rc = SQLITE_CORRUPT_BKPT;
7315       goto balance_cleanup;
7316     }
7317   }
7318 
7319   /*
7320   ** The packing computed by the previous block is biased toward the siblings
7321   ** on the left side (siblings with smaller keys). The left siblings are
7322   ** always nearly full, while the right-most sibling might be nearly empty.
7323   ** The next block of code attempts to adjust the packing of siblings to
7324   ** get a better balance.
7325   **
7326   ** This adjustment is more than an optimization.  The packing above might
7327   ** be so out of balance as to be illegal.  For example, the right-most
7328   ** sibling might be completely empty.  This adjustment is not optional.
7329   */
7330   for(i=k-1; i>0; i--){
7331     int szRight = szNew[i];  /* Size of sibling on the right */
7332     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7333     int r;              /* Index of right-most cell in left sibling */
7334     int d;              /* Index of first cell to the left of right sibling */
7335 
7336     r = cntNew[i-1] - 1;
7337     d = r + 1 - leafData;
7338     (void)cachedCellSize(&b, d);
7339     do{
7340       assert( d<nMaxCells );
7341       assert( r<nMaxCells );
7342       (void)cachedCellSize(&b, r);
7343       if( szRight!=0
7344        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7345         break;
7346       }
7347       szRight += b.szCell[d] + 2;
7348       szLeft -= b.szCell[r] + 2;
7349       cntNew[i-1] = r;
7350       r--;
7351       d--;
7352     }while( r>=0 );
7353     szNew[i] = szRight;
7354     szNew[i-1] = szLeft;
7355     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7356       rc = SQLITE_CORRUPT_BKPT;
7357       goto balance_cleanup;
7358     }
7359   }
7360 
7361   /* Sanity check:  For a non-corrupt database file one of the follwing
7362   ** must be true:
7363   **    (1) We found one or more cells (cntNew[0])>0), or
7364   **    (2) pPage is a virtual root page.  A virtual root page is when
7365   **        the real root page is page 1 and we are the only child of
7366   **        that page.
7367   */
7368   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7369   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7370     apOld[0]->pgno, apOld[0]->nCell,
7371     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7372     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7373   ));
7374 
7375   /*
7376   ** Allocate k new pages.  Reuse old pages where possible.
7377   */
7378   pageFlags = apOld[0]->aData[0];
7379   for(i=0; i<k; i++){
7380     MemPage *pNew;
7381     if( i<nOld ){
7382       pNew = apNew[i] = apOld[i];
7383       apOld[i] = 0;
7384       rc = sqlite3PagerWrite(pNew->pDbPage);
7385       nNew++;
7386       if( rc ) goto balance_cleanup;
7387     }else{
7388       assert( i>0 );
7389       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7390       if( rc ) goto balance_cleanup;
7391       zeroPage(pNew, pageFlags);
7392       apNew[i] = pNew;
7393       nNew++;
7394       cntOld[i] = b.nCell;
7395 
7396       /* Set the pointer-map entry for the new sibling page. */
7397       if( ISAUTOVACUUM ){
7398         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7399         if( rc!=SQLITE_OK ){
7400           goto balance_cleanup;
7401         }
7402       }
7403     }
7404   }
7405 
7406   /*
7407   ** Reassign page numbers so that the new pages are in ascending order.
7408   ** This helps to keep entries in the disk file in order so that a scan
7409   ** of the table is closer to a linear scan through the file. That in turn
7410   ** helps the operating system to deliver pages from the disk more rapidly.
7411   **
7412   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7413   ** than (NB+2) (a small constant), that should not be a problem.
7414   **
7415   ** When NB==3, this one optimization makes the database about 25% faster
7416   ** for large insertions and deletions.
7417   */
7418   for(i=0; i<nNew; i++){
7419     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7420     aPgFlags[i] = apNew[i]->pDbPage->flags;
7421     for(j=0; j<i; j++){
7422       if( aPgno[j]==aPgno[i] ){
7423         /* This branch is taken if the set of sibling pages somehow contains
7424         ** duplicate entries. This can happen if the database is corrupt.
7425         ** It would be simpler to detect this as part of the loop below, but
7426         ** we do the detection here in order to avoid populating the pager
7427         ** cache with two separate objects associated with the same
7428         ** page number.  */
7429         assert( CORRUPT_DB );
7430         rc = SQLITE_CORRUPT_BKPT;
7431         goto balance_cleanup;
7432       }
7433     }
7434   }
7435   for(i=0; i<nNew; i++){
7436     int iBest = 0;                /* aPgno[] index of page number to use */
7437     for(j=1; j<nNew; j++){
7438       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7439     }
7440     pgno = aPgOrder[iBest];
7441     aPgOrder[iBest] = 0xffffffff;
7442     if( iBest!=i ){
7443       if( iBest>i ){
7444         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7445       }
7446       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7447       apNew[i]->pgno = pgno;
7448     }
7449   }
7450 
7451   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7452          "%d(%d nc=%d) %d(%d nc=%d)\n",
7453     apNew[0]->pgno, szNew[0], cntNew[0],
7454     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7455     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7456     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7457     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7458     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7459     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7460     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7461     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7462   ));
7463 
7464   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7465   put4byte(pRight, apNew[nNew-1]->pgno);
7466 
7467   /* If the sibling pages are not leaves, ensure that the right-child pointer
7468   ** of the right-most new sibling page is set to the value that was
7469   ** originally in the same field of the right-most old sibling page. */
7470   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7471     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7472     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7473   }
7474 
7475   /* Make any required updates to pointer map entries associated with
7476   ** cells stored on sibling pages following the balance operation. Pointer
7477   ** map entries associated with divider cells are set by the insertCell()
7478   ** routine. The associated pointer map entries are:
7479   **
7480   **   a) if the cell contains a reference to an overflow chain, the
7481   **      entry associated with the first page in the overflow chain, and
7482   **
7483   **   b) if the sibling pages are not leaves, the child page associated
7484   **      with the cell.
7485   **
7486   ** If the sibling pages are not leaves, then the pointer map entry
7487   ** associated with the right-child of each sibling may also need to be
7488   ** updated. This happens below, after the sibling pages have been
7489   ** populated, not here.
7490   */
7491   if( ISAUTOVACUUM ){
7492     MemPage *pNew = apNew[0];
7493     u8 *aOld = pNew->aData;
7494     int cntOldNext = pNew->nCell + pNew->nOverflow;
7495     int usableSize = pBt->usableSize;
7496     int iNew = 0;
7497     int iOld = 0;
7498 
7499     for(i=0; i<b.nCell; i++){
7500       u8 *pCell = b.apCell[i];
7501       if( i==cntOldNext ){
7502         MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7503         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7504         aOld = pOld->aData;
7505       }
7506       if( i==cntNew[iNew] ){
7507         pNew = apNew[++iNew];
7508         if( !leafData ) continue;
7509       }
7510 
7511       /* Cell pCell is destined for new sibling page pNew. Originally, it
7512       ** was either part of sibling page iOld (possibly an overflow cell),
7513       ** or else the divider cell to the left of sibling page iOld. So,
7514       ** if sibling page iOld had the same page number as pNew, and if
7515       ** pCell really was a part of sibling page iOld (not a divider or
7516       ** overflow cell), we can skip updating the pointer map entries.  */
7517       if( iOld>=nNew
7518        || pNew->pgno!=aPgno[iOld]
7519        || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
7520       ){
7521         if( !leafCorrection ){
7522           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7523         }
7524         if( cachedCellSize(&b,i)>pNew->minLocal ){
7525           ptrmapPutOvflPtr(pNew, pCell, &rc);
7526         }
7527         if( rc ) goto balance_cleanup;
7528       }
7529     }
7530   }
7531 
7532   /* Insert new divider cells into pParent. */
7533   for(i=0; i<nNew-1; i++){
7534     u8 *pCell;
7535     u8 *pTemp;
7536     int sz;
7537     MemPage *pNew = apNew[i];
7538     j = cntNew[i];
7539 
7540     assert( j<nMaxCells );
7541     assert( b.apCell[j]!=0 );
7542     pCell = b.apCell[j];
7543     sz = b.szCell[j] + leafCorrection;
7544     pTemp = &aOvflSpace[iOvflSpace];
7545     if( !pNew->leaf ){
7546       memcpy(&pNew->aData[8], pCell, 4);
7547     }else if( leafData ){
7548       /* If the tree is a leaf-data tree, and the siblings are leaves,
7549       ** then there is no divider cell in b.apCell[]. Instead, the divider
7550       ** cell consists of the integer key for the right-most cell of
7551       ** the sibling-page assembled above only.
7552       */
7553       CellInfo info;
7554       j--;
7555       pNew->xParseCell(pNew, b.apCell[j], &info);
7556       pCell = pTemp;
7557       sz = 4 + putVarint(&pCell[4], info.nKey);
7558       pTemp = 0;
7559     }else{
7560       pCell -= 4;
7561       /* Obscure case for non-leaf-data trees: If the cell at pCell was
7562       ** previously stored on a leaf node, and its reported size was 4
7563       ** bytes, then it may actually be smaller than this
7564       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7565       ** any cell). But it is important to pass the correct size to
7566       ** insertCell(), so reparse the cell now.
7567       **
7568       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7569       ** and WITHOUT ROWID tables with exactly one column which is the
7570       ** primary key.
7571       */
7572       if( b.szCell[j]==4 ){
7573         assert(leafCorrection==4);
7574         sz = pParent->xCellSize(pParent, pCell);
7575       }
7576     }
7577     iOvflSpace += sz;
7578     assert( sz<=pBt->maxLocal+23 );
7579     assert( iOvflSpace <= (int)pBt->pageSize );
7580     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7581     if( rc!=SQLITE_OK ) goto balance_cleanup;
7582     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7583   }
7584 
7585   /* Now update the actual sibling pages. The order in which they are updated
7586   ** is important, as this code needs to avoid disrupting any page from which
7587   ** cells may still to be read. In practice, this means:
7588   **
7589   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7590   **      then it is not safe to update page apNew[iPg] until after
7591   **      the left-hand sibling apNew[iPg-1] has been updated.
7592   **
7593   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7594   **      then it is not safe to update page apNew[iPg] until after
7595   **      the right-hand sibling apNew[iPg+1] has been updated.
7596   **
7597   ** If neither of the above apply, the page is safe to update.
7598   **
7599   ** The iPg value in the following loop starts at nNew-1 goes down
7600   ** to 0, then back up to nNew-1 again, thus making two passes over
7601   ** the pages.  On the initial downward pass, only condition (1) above
7602   ** needs to be tested because (2) will always be true from the previous
7603   ** step.  On the upward pass, both conditions are always true, so the
7604   ** upwards pass simply processes pages that were missed on the downward
7605   ** pass.
7606   */
7607   for(i=1-nNew; i<nNew; i++){
7608     int iPg = i<0 ? -i : i;
7609     assert( iPg>=0 && iPg<nNew );
7610     if( abDone[iPg] ) continue;         /* Skip pages already processed */
7611     if( i>=0                            /* On the upwards pass, or... */
7612      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
7613     ){
7614       int iNew;
7615       int iOld;
7616       int nNewCell;
7617 
7618       /* Verify condition (1):  If cells are moving left, update iPg
7619       ** only after iPg-1 has already been updated. */
7620       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7621 
7622       /* Verify condition (2):  If cells are moving right, update iPg
7623       ** only after iPg+1 has already been updated. */
7624       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7625 
7626       if( iPg==0 ){
7627         iNew = iOld = 0;
7628         nNewCell = cntNew[0];
7629       }else{
7630         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
7631         iNew = cntNew[iPg-1] + !leafData;
7632         nNewCell = cntNew[iPg] - iNew;
7633       }
7634 
7635       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
7636       if( rc ) goto balance_cleanup;
7637       abDone[iPg]++;
7638       apNew[iPg]->nFree = usableSpace-szNew[iPg];
7639       assert( apNew[iPg]->nOverflow==0 );
7640       assert( apNew[iPg]->nCell==nNewCell );
7641     }
7642   }
7643 
7644   /* All pages have been processed exactly once */
7645   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7646 
7647   assert( nOld>0 );
7648   assert( nNew>0 );
7649 
7650   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7651     /* The root page of the b-tree now contains no cells. The only sibling
7652     ** page is the right-child of the parent. Copy the contents of the
7653     ** child page into the parent, decreasing the overall height of the
7654     ** b-tree structure by one. This is described as the "balance-shallower"
7655     ** sub-algorithm in some documentation.
7656     **
7657     ** If this is an auto-vacuum database, the call to copyNodeContent()
7658     ** sets all pointer-map entries corresponding to database image pages
7659     ** for which the pointer is stored within the content being copied.
7660     **
7661     ** It is critical that the child page be defragmented before being
7662     ** copied into the parent, because if the parent is page 1 then it will
7663     ** by smaller than the child due to the database header, and so all the
7664     ** free space needs to be up front.
7665     */
7666     assert( nNew==1 || CORRUPT_DB );
7667     rc = defragmentPage(apNew[0]);
7668     testcase( rc!=SQLITE_OK );
7669     assert( apNew[0]->nFree ==
7670         (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7671       || rc!=SQLITE_OK
7672     );
7673     copyNodeContent(apNew[0], pParent, &rc);
7674     freePage(apNew[0], &rc);
7675   }else if( ISAUTOVACUUM && !leafCorrection ){
7676     /* Fix the pointer map entries associated with the right-child of each
7677     ** sibling page. All other pointer map entries have already been taken
7678     ** care of.  */
7679     for(i=0; i<nNew; i++){
7680       u32 key = get4byte(&apNew[i]->aData[8]);
7681       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
7682     }
7683   }
7684 
7685   assert( pParent->isInit );
7686   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7687           nOld, nNew, b.nCell));
7688 
7689   /* Free any old pages that were not reused as new pages.
7690   */
7691   for(i=nNew; i<nOld; i++){
7692     freePage(apOld[i], &rc);
7693   }
7694 
7695 #if 0
7696   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
7697     /* The ptrmapCheckPages() contains assert() statements that verify that
7698     ** all pointer map pages are set correctly. This is helpful while
7699     ** debugging. This is usually disabled because a corrupt database may
7700     ** cause an assert() statement to fail.  */
7701     ptrmapCheckPages(apNew, nNew);
7702     ptrmapCheckPages(&pParent, 1);
7703   }
7704 #endif
7705 
7706   /*
7707   ** Cleanup before returning.
7708   */
7709 balance_cleanup:
7710   sqlite3ScratchFree(b.apCell);
7711   for(i=0; i<nOld; i++){
7712     releasePage(apOld[i]);
7713   }
7714   for(i=0; i<nNew; i++){
7715     releasePage(apNew[i]);
7716   }
7717 
7718   return rc;
7719 }
7720 
7721 
7722 /*
7723 ** This function is called when the root page of a b-tree structure is
7724 ** overfull (has one or more overflow pages).
7725 **
7726 ** A new child page is allocated and the contents of the current root
7727 ** page, including overflow cells, are copied into the child. The root
7728 ** page is then overwritten to make it an empty page with the right-child
7729 ** pointer pointing to the new page.
7730 **
7731 ** Before returning, all pointer-map entries corresponding to pages
7732 ** that the new child-page now contains pointers to are updated. The
7733 ** entry corresponding to the new right-child pointer of the root
7734 ** page is also updated.
7735 **
7736 ** If successful, *ppChild is set to contain a reference to the child
7737 ** page and SQLITE_OK is returned. In this case the caller is required
7738 ** to call releasePage() on *ppChild exactly once. If an error occurs,
7739 ** an error code is returned and *ppChild is set to 0.
7740 */
7741 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7742   int rc;                        /* Return value from subprocedures */
7743   MemPage *pChild = 0;           /* Pointer to a new child page */
7744   Pgno pgnoChild = 0;            /* Page number of the new child page */
7745   BtShared *pBt = pRoot->pBt;    /* The BTree */
7746 
7747   assert( pRoot->nOverflow>0 );
7748   assert( sqlite3_mutex_held(pBt->mutex) );
7749 
7750   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7751   ** page that will become the new right-child of pPage. Copy the contents
7752   ** of the node stored on pRoot into the new child page.
7753   */
7754   rc = sqlite3PagerWrite(pRoot->pDbPage);
7755   if( rc==SQLITE_OK ){
7756     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
7757     copyNodeContent(pRoot, pChild, &rc);
7758     if( ISAUTOVACUUM ){
7759       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
7760     }
7761   }
7762   if( rc ){
7763     *ppChild = 0;
7764     releasePage(pChild);
7765     return rc;
7766   }
7767   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7768   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7769   assert( pChild->nCell==pRoot->nCell );
7770 
7771   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7772 
7773   /* Copy the overflow cells from pRoot to pChild */
7774   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7775          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7776   memcpy(pChild->apOvfl, pRoot->apOvfl,
7777          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
7778   pChild->nOverflow = pRoot->nOverflow;
7779 
7780   /* Zero the contents of pRoot. Then install pChild as the right-child. */
7781   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7782   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7783 
7784   *ppChild = pChild;
7785   return SQLITE_OK;
7786 }
7787 
7788 /*
7789 ** The page that pCur currently points to has just been modified in
7790 ** some way. This function figures out if this modification means the
7791 ** tree needs to be balanced, and if so calls the appropriate balancing
7792 ** routine. Balancing routines are:
7793 **
7794 **   balance_quick()
7795 **   balance_deeper()
7796 **   balance_nonroot()
7797 */
7798 static int balance(BtCursor *pCur){
7799   int rc = SQLITE_OK;
7800   const int nMin = pCur->pBt->usableSize * 2 / 3;
7801   u8 aBalanceQuickSpace[13];
7802   u8 *pFree = 0;
7803 
7804   VVA_ONLY( int balance_quick_called = 0 );
7805   VVA_ONLY( int balance_deeper_called = 0 );
7806 
7807   do {
7808     int iPage = pCur->iPage;
7809     MemPage *pPage = pCur->apPage[iPage];
7810 
7811     if( iPage==0 ){
7812       if( pPage->nOverflow ){
7813         /* The root page of the b-tree is overfull. In this case call the
7814         ** balance_deeper() function to create a new child for the root-page
7815         ** and copy the current contents of the root-page to it. The
7816         ** next iteration of the do-loop will balance the child page.
7817         */
7818         assert( balance_deeper_called==0 );
7819         VVA_ONLY( balance_deeper_called++ );
7820         rc = balance_deeper(pPage, &pCur->apPage[1]);
7821         if( rc==SQLITE_OK ){
7822           pCur->iPage = 1;
7823           pCur->aiIdx[0] = 0;
7824           pCur->aiIdx[1] = 0;
7825           assert( pCur->apPage[1]->nOverflow );
7826         }
7827       }else{
7828         break;
7829       }
7830     }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7831       break;
7832     }else{
7833       MemPage * const pParent = pCur->apPage[iPage-1];
7834       int const iIdx = pCur->aiIdx[iPage-1];
7835 
7836       rc = sqlite3PagerWrite(pParent->pDbPage);
7837       if( rc==SQLITE_OK ){
7838 #ifndef SQLITE_OMIT_QUICKBALANCE
7839         if( pPage->intKeyLeaf
7840          && pPage->nOverflow==1
7841          && pPage->aiOvfl[0]==pPage->nCell
7842          && pParent->pgno!=1
7843          && pParent->nCell==iIdx
7844         ){
7845           /* Call balance_quick() to create a new sibling of pPage on which
7846           ** to store the overflow cell. balance_quick() inserts a new cell
7847           ** into pParent, which may cause pParent overflow. If this
7848           ** happens, the next iteration of the do-loop will balance pParent
7849           ** use either balance_nonroot() or balance_deeper(). Until this
7850           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7851           ** buffer.
7852           **
7853           ** The purpose of the following assert() is to check that only a
7854           ** single call to balance_quick() is made for each call to this
7855           ** function. If this were not verified, a subtle bug involving reuse
7856           ** of the aBalanceQuickSpace[] might sneak in.
7857           */
7858           assert( balance_quick_called==0 );
7859           VVA_ONLY( balance_quick_called++ );
7860           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7861         }else
7862 #endif
7863         {
7864           /* In this case, call balance_nonroot() to redistribute cells
7865           ** between pPage and up to 2 of its sibling pages. This involves
7866           ** modifying the contents of pParent, which may cause pParent to
7867           ** become overfull or underfull. The next iteration of the do-loop
7868           ** will balance the parent page to correct this.
7869           **
7870           ** If the parent page becomes overfull, the overflow cell or cells
7871           ** are stored in the pSpace buffer allocated immediately below.
7872           ** A subsequent iteration of the do-loop will deal with this by
7873           ** calling balance_nonroot() (balance_deeper() may be called first,
7874           ** but it doesn't deal with overflow cells - just moves them to a
7875           ** different page). Once this subsequent call to balance_nonroot()
7876           ** has completed, it is safe to release the pSpace buffer used by
7877           ** the previous call, as the overflow cell data will have been
7878           ** copied either into the body of a database page or into the new
7879           ** pSpace buffer passed to the latter call to balance_nonroot().
7880           */
7881           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
7882           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7883                                pCur->hints&BTREE_BULKLOAD);
7884           if( pFree ){
7885             /* If pFree is not NULL, it points to the pSpace buffer used
7886             ** by a previous call to balance_nonroot(). Its contents are
7887             ** now stored either on real database pages or within the
7888             ** new pSpace buffer, so it may be safely freed here. */
7889             sqlite3PageFree(pFree);
7890           }
7891 
7892           /* The pSpace buffer will be freed after the next call to
7893           ** balance_nonroot(), or just before this function returns, whichever
7894           ** comes first. */
7895           pFree = pSpace;
7896         }
7897       }
7898 
7899       pPage->nOverflow = 0;
7900 
7901       /* The next iteration of the do-loop balances the parent page. */
7902       releasePage(pPage);
7903       pCur->iPage--;
7904       assert( pCur->iPage>=0 );
7905     }
7906   }while( rc==SQLITE_OK );
7907 
7908   if( pFree ){
7909     sqlite3PageFree(pFree);
7910   }
7911   return rc;
7912 }
7913 
7914 
7915 /*
7916 ** Insert a new record into the BTree.  The content of the new record
7917 ** is described by the pX object.  The pCur cursor is used only to
7918 ** define what table the record should be inserted into, and is left
7919 ** pointing at a random location.
7920 **
7921 ** For a table btree (used for rowid tables), only the pX.nKey value of
7922 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
7923 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
7924 ** hold the content of the row.
7925 **
7926 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
7927 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
7928 ** pX.pData,nData,nZero fields must be zero.
7929 **
7930 ** If the seekResult parameter is non-zero, then a successful call to
7931 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
7932 ** been performed. seekResult is the search result returned (a negative
7933 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
7934 ** a positive value if pCur points at an entry that is larger than
7935 ** (pKey, nKey)).
7936 **
7937 ** If the seekResult parameter is non-zero, then the caller guarantees that
7938 ** cursor pCur is pointing at the existing copy of a row that is to be
7939 ** overwritten.  If the seekResult parameter is 0, then cursor pCur may
7940 ** point to any entry or to no entry at all and so this function has to seek
7941 ** the cursor before the new key can be inserted.
7942 */
7943 int sqlite3BtreeInsert(
7944   BtCursor *pCur,                /* Insert data into the table of this cursor */
7945   const BtreePayload *pX,        /* Content of the row to be inserted */
7946   int appendBias,                /* True if this is likely an append */
7947   int seekResult                 /* Result of prior MovetoUnpacked() call */
7948 ){
7949   int rc;
7950   int loc = seekResult;          /* -1: before desired location  +1: after */
7951   int szNew = 0;
7952   int idx;
7953   MemPage *pPage;
7954   Btree *p = pCur->pBtree;
7955   BtShared *pBt = p->pBt;
7956   unsigned char *oldCell;
7957   unsigned char *newCell = 0;
7958 
7959   if( pCur->eState==CURSOR_FAULT ){
7960     assert( pCur->skipNext!=SQLITE_OK );
7961     return pCur->skipNext;
7962   }
7963 
7964   assert( cursorOwnsBtShared(pCur) );
7965   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7966               && pBt->inTransaction==TRANS_WRITE
7967               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
7968   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7969 
7970   /* Assert that the caller has been consistent. If this cursor was opened
7971   ** expecting an index b-tree, then the caller should be inserting blob
7972   ** keys with no associated data. If the cursor was opened expecting an
7973   ** intkey table, the caller should be inserting integer keys with a
7974   ** blob of associated data.  */
7975   assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
7976 
7977   /* Save the positions of any other cursors open on this table.
7978   **
7979   ** In some cases, the call to btreeMoveto() below is a no-op. For
7980   ** example, when inserting data into a table with auto-generated integer
7981   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7982   ** integer key to use. It then calls this function to actually insert the
7983   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
7984   ** that the cursor is already where it needs to be and returns without
7985   ** doing any work. To avoid thwarting these optimizations, it is important
7986   ** not to clear the cursor here.
7987   */
7988   if( pCur->curFlags & BTCF_Multiple ){
7989     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7990     if( rc ) return rc;
7991   }
7992 
7993   if( pCur->pKeyInfo==0 ){
7994     assert( pX->pKey==0 );
7995     /* If this is an insert into a table b-tree, invalidate any incrblob
7996     ** cursors open on the row being replaced */
7997     invalidateIncrblobCursors(p, pX->nKey, 0);
7998 
7999     /* If the cursor is currently on the last row and we are appending a
8000     ** new row onto the end, set the "loc" to avoid an unnecessary
8001     ** btreeMoveto() call */
8002     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
8003       && pCur->info.nKey==pX->nKey-1 ){
8004        loc = -1;
8005     }else if( loc==0 ){
8006       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, appendBias, &loc);
8007       if( rc ) return rc;
8008     }
8009   }else if( loc==0 ){
8010     rc = btreeMoveto(pCur, pX->pKey, pX->nKey, appendBias, &loc);
8011     if( rc ) return rc;
8012   }
8013   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8014 
8015   pPage = pCur->apPage[pCur->iPage];
8016   assert( pPage->intKey || pX->nKey>=0 );
8017   assert( pPage->leaf || !pPage->intKey );
8018 
8019   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8020           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8021           loc==0 ? "overwrite" : "new entry"));
8022   assert( pPage->isInit );
8023   newCell = pBt->pTmpSpace;
8024   assert( newCell!=0 );
8025   rc = fillInCell(pPage, newCell, pX, &szNew);
8026   if( rc ) goto end_insert;
8027   assert( szNew==pPage->xCellSize(pPage, newCell) );
8028   assert( szNew <= MX_CELL_SIZE(pBt) );
8029   idx = pCur->aiIdx[pCur->iPage];
8030   if( loc==0 ){
8031     u16 szOld;
8032     assert( idx<pPage->nCell );
8033     rc = sqlite3PagerWrite(pPage->pDbPage);
8034     if( rc ){
8035       goto end_insert;
8036     }
8037     oldCell = findCell(pPage, idx);
8038     if( !pPage->leaf ){
8039       memcpy(newCell, oldCell, 4);
8040     }
8041     rc = clearCell(pPage, oldCell, &szOld);
8042     dropCell(pPage, idx, szOld, &rc);
8043     if( rc ) goto end_insert;
8044   }else if( loc<0 && pPage->nCell>0 ){
8045     assert( pPage->leaf );
8046     idx = ++pCur->aiIdx[pCur->iPage];
8047   }else{
8048     assert( pPage->leaf );
8049   }
8050   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8051   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8052   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8053 
8054   /* If no error has occurred and pPage has an overflow cell, call balance()
8055   ** to redistribute the cells within the tree. Since balance() may move
8056   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8057   ** variables.
8058   **
8059   ** Previous versions of SQLite called moveToRoot() to move the cursor
8060   ** back to the root page as balance() used to invalidate the contents
8061   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8062   ** set the cursor state to "invalid". This makes common insert operations
8063   ** slightly faster.
8064   **
8065   ** There is a subtle but important optimization here too. When inserting
8066   ** multiple records into an intkey b-tree using a single cursor (as can
8067   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8068   ** is advantageous to leave the cursor pointing to the last entry in
8069   ** the b-tree if possible. If the cursor is left pointing to the last
8070   ** entry in the table, and the next row inserted has an integer key
8071   ** larger than the largest existing key, it is possible to insert the
8072   ** row without seeking the cursor. This can be a big performance boost.
8073   */
8074   pCur->info.nSize = 0;
8075   if( pPage->nOverflow ){
8076     assert( rc==SQLITE_OK );
8077     pCur->curFlags &= ~(BTCF_ValidNKey);
8078     rc = balance(pCur);
8079 
8080     /* Must make sure nOverflow is reset to zero even if the balance()
8081     ** fails. Internal data structure corruption will result otherwise.
8082     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8083     ** from trying to save the current position of the cursor.  */
8084     pCur->apPage[pCur->iPage]->nOverflow = 0;
8085     pCur->eState = CURSOR_INVALID;
8086   }
8087   assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
8088 
8089 end_insert:
8090   return rc;
8091 }
8092 
8093 /*
8094 ** Delete the entry that the cursor is pointing to.
8095 **
8096 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8097 ** the cursor is left pointing at an arbitrary location after the delete.
8098 ** But if that bit is set, then the cursor is left in a state such that
8099 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8100 ** as it would have been on if the call to BtreeDelete() had been omitted.
8101 **
8102 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8103 ** associated with a single table entry and its indexes.  Only one of those
8104 ** deletes is considered the "primary" delete.  The primary delete occurs
8105 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
8106 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8107 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8108 ** but which might be used by alternative storage engines.
8109 */
8110 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8111   Btree *p = pCur->pBtree;
8112   BtShared *pBt = p->pBt;
8113   int rc;                              /* Return code */
8114   MemPage *pPage;                      /* Page to delete cell from */
8115   unsigned char *pCell;                /* Pointer to cell to delete */
8116   int iCellIdx;                        /* Index of cell to delete */
8117   int iCellDepth;                      /* Depth of node containing pCell */
8118   u16 szCell;                          /* Size of the cell being deleted */
8119   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8120   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
8121 
8122   assert( cursorOwnsBtShared(pCur) );
8123   assert( pBt->inTransaction==TRANS_WRITE );
8124   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8125   assert( pCur->curFlags & BTCF_WriteFlag );
8126   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8127   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8128   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8129   assert( pCur->eState==CURSOR_VALID );
8130   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8131 
8132   iCellDepth = pCur->iPage;
8133   iCellIdx = pCur->aiIdx[iCellDepth];
8134   pPage = pCur->apPage[iCellDepth];
8135   pCell = findCell(pPage, iCellIdx);
8136 
8137   /* If the bPreserve flag is set to true, then the cursor position must
8138   ** be preserved following this delete operation. If the current delete
8139   ** will cause a b-tree rebalance, then this is done by saving the cursor
8140   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8141   ** returning.
8142   **
8143   ** Or, if the current delete will not cause a rebalance, then the cursor
8144   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8145   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8146   if( bPreserve ){
8147     if( !pPage->leaf
8148      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8149     ){
8150       /* A b-tree rebalance will be required after deleting this entry.
8151       ** Save the cursor key.  */
8152       rc = saveCursorKey(pCur);
8153       if( rc ) return rc;
8154     }else{
8155       bSkipnext = 1;
8156     }
8157   }
8158 
8159   /* If the page containing the entry to delete is not a leaf page, move
8160   ** the cursor to the largest entry in the tree that is smaller than
8161   ** the entry being deleted. This cell will replace the cell being deleted
8162   ** from the internal node. The 'previous' entry is used for this instead
8163   ** of the 'next' entry, as the previous entry is always a part of the
8164   ** sub-tree headed by the child page of the cell being deleted. This makes
8165   ** balancing the tree following the delete operation easier.  */
8166   if( !pPage->leaf ){
8167     int notUsed = 0;
8168     rc = sqlite3BtreePrevious(pCur, &notUsed);
8169     if( rc ) return rc;
8170   }
8171 
8172   /* Save the positions of any other cursors open on this table before
8173   ** making any modifications.  */
8174   if( pCur->curFlags & BTCF_Multiple ){
8175     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8176     if( rc ) return rc;
8177   }
8178 
8179   /* If this is a delete operation to remove a row from a table b-tree,
8180   ** invalidate any incrblob cursors open on the row being deleted.  */
8181   if( pCur->pKeyInfo==0 ){
8182     invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8183   }
8184 
8185   /* Make the page containing the entry to be deleted writable. Then free any
8186   ** overflow pages associated with the entry and finally remove the cell
8187   ** itself from within the page.  */
8188   rc = sqlite3PagerWrite(pPage->pDbPage);
8189   if( rc ) return rc;
8190   rc = clearCell(pPage, pCell, &szCell);
8191   dropCell(pPage, iCellIdx, szCell, &rc);
8192   if( rc ) return rc;
8193 
8194   /* If the cell deleted was not located on a leaf page, then the cursor
8195   ** is currently pointing to the largest entry in the sub-tree headed
8196   ** by the child-page of the cell that was just deleted from an internal
8197   ** node. The cell from the leaf node needs to be moved to the internal
8198   ** node to replace the deleted cell.  */
8199   if( !pPage->leaf ){
8200     MemPage *pLeaf = pCur->apPage[pCur->iPage];
8201     int nCell;
8202     Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8203     unsigned char *pTmp;
8204 
8205     pCell = findCell(pLeaf, pLeaf->nCell-1);
8206     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8207     nCell = pLeaf->xCellSize(pLeaf, pCell);
8208     assert( MX_CELL_SIZE(pBt) >= nCell );
8209     pTmp = pBt->pTmpSpace;
8210     assert( pTmp!=0 );
8211     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8212     if( rc==SQLITE_OK ){
8213       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8214     }
8215     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8216     if( rc ) return rc;
8217   }
8218 
8219   /* Balance the tree. If the entry deleted was located on a leaf page,
8220   ** then the cursor still points to that page. In this case the first
8221   ** call to balance() repairs the tree, and the if(...) condition is
8222   ** never true.
8223   **
8224   ** Otherwise, if the entry deleted was on an internal node page, then
8225   ** pCur is pointing to the leaf page from which a cell was removed to
8226   ** replace the cell deleted from the internal node. This is slightly
8227   ** tricky as the leaf node may be underfull, and the internal node may
8228   ** be either under or overfull. In this case run the balancing algorithm
8229   ** on the leaf node first. If the balance proceeds far enough up the
8230   ** tree that we can be sure that any problem in the internal node has
8231   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8232   ** walk the cursor up the tree to the internal node and balance it as
8233   ** well.  */
8234   rc = balance(pCur);
8235   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8236     while( pCur->iPage>iCellDepth ){
8237       releasePage(pCur->apPage[pCur->iPage--]);
8238     }
8239     rc = balance(pCur);
8240   }
8241 
8242   if( rc==SQLITE_OK ){
8243     if( bSkipnext ){
8244       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8245       assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
8246       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8247       pCur->eState = CURSOR_SKIPNEXT;
8248       if( iCellIdx>=pPage->nCell ){
8249         pCur->skipNext = -1;
8250         pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8251       }else{
8252         pCur->skipNext = 1;
8253       }
8254     }else{
8255       rc = moveToRoot(pCur);
8256       if( bPreserve ){
8257         pCur->eState = CURSOR_REQUIRESEEK;
8258       }
8259     }
8260   }
8261   return rc;
8262 }
8263 
8264 /*
8265 ** Create a new BTree table.  Write into *piTable the page
8266 ** number for the root page of the new table.
8267 **
8268 ** The type of type is determined by the flags parameter.  Only the
8269 ** following values of flags are currently in use.  Other values for
8270 ** flags might not work:
8271 **
8272 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
8273 **     BTREE_ZERODATA                  Used for SQL indices
8274 */
8275 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
8276   BtShared *pBt = p->pBt;
8277   MemPage *pRoot;
8278   Pgno pgnoRoot;
8279   int rc;
8280   int ptfFlags;          /* Page-type flage for the root page of new table */
8281 
8282   assert( sqlite3BtreeHoldsMutex(p) );
8283   assert( pBt->inTransaction==TRANS_WRITE );
8284   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8285 
8286 #ifdef SQLITE_OMIT_AUTOVACUUM
8287   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8288   if( rc ){
8289     return rc;
8290   }
8291 #else
8292   if( pBt->autoVacuum ){
8293     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
8294     MemPage *pPageMove; /* The page to move to. */
8295 
8296     /* Creating a new table may probably require moving an existing database
8297     ** to make room for the new tables root page. In case this page turns
8298     ** out to be an overflow page, delete all overflow page-map caches
8299     ** held by open cursors.
8300     */
8301     invalidateAllOverflowCache(pBt);
8302 
8303     /* Read the value of meta[3] from the database to determine where the
8304     ** root page of the new table should go. meta[3] is the largest root-page
8305     ** created so far, so the new root-page is (meta[3]+1).
8306     */
8307     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
8308     pgnoRoot++;
8309 
8310     /* The new root-page may not be allocated on a pointer-map page, or the
8311     ** PENDING_BYTE page.
8312     */
8313     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
8314         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
8315       pgnoRoot++;
8316     }
8317     assert( pgnoRoot>=3 || CORRUPT_DB );
8318     testcase( pgnoRoot<3 );
8319 
8320     /* Allocate a page. The page that currently resides at pgnoRoot will
8321     ** be moved to the allocated page (unless the allocated page happens
8322     ** to reside at pgnoRoot).
8323     */
8324     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
8325     if( rc!=SQLITE_OK ){
8326       return rc;
8327     }
8328 
8329     if( pgnoMove!=pgnoRoot ){
8330       /* pgnoRoot is the page that will be used for the root-page of
8331       ** the new table (assuming an error did not occur). But we were
8332       ** allocated pgnoMove. If required (i.e. if it was not allocated
8333       ** by extending the file), the current page at position pgnoMove
8334       ** is already journaled.
8335       */
8336       u8 eType = 0;
8337       Pgno iPtrPage = 0;
8338 
8339       /* Save the positions of any open cursors. This is required in
8340       ** case they are holding a reference to an xFetch reference
8341       ** corresponding to page pgnoRoot.  */
8342       rc = saveAllCursors(pBt, 0, 0);
8343       releasePage(pPageMove);
8344       if( rc!=SQLITE_OK ){
8345         return rc;
8346       }
8347 
8348       /* Move the page currently at pgnoRoot to pgnoMove. */
8349       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8350       if( rc!=SQLITE_OK ){
8351         return rc;
8352       }
8353       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
8354       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8355         rc = SQLITE_CORRUPT_BKPT;
8356       }
8357       if( rc!=SQLITE_OK ){
8358         releasePage(pRoot);
8359         return rc;
8360       }
8361       assert( eType!=PTRMAP_ROOTPAGE );
8362       assert( eType!=PTRMAP_FREEPAGE );
8363       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
8364       releasePage(pRoot);
8365 
8366       /* Obtain the page at pgnoRoot */
8367       if( rc!=SQLITE_OK ){
8368         return rc;
8369       }
8370       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8371       if( rc!=SQLITE_OK ){
8372         return rc;
8373       }
8374       rc = sqlite3PagerWrite(pRoot->pDbPage);
8375       if( rc!=SQLITE_OK ){
8376         releasePage(pRoot);
8377         return rc;
8378       }
8379     }else{
8380       pRoot = pPageMove;
8381     }
8382 
8383     /* Update the pointer-map and meta-data with the new root-page number. */
8384     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
8385     if( rc ){
8386       releasePage(pRoot);
8387       return rc;
8388     }
8389 
8390     /* When the new root page was allocated, page 1 was made writable in
8391     ** order either to increase the database filesize, or to decrement the
8392     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8393     */
8394     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
8395     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
8396     if( NEVER(rc) ){
8397       releasePage(pRoot);
8398       return rc;
8399     }
8400 
8401   }else{
8402     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8403     if( rc ) return rc;
8404   }
8405 #endif
8406   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8407   if( createTabFlags & BTREE_INTKEY ){
8408     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8409   }else{
8410     ptfFlags = PTF_ZERODATA | PTF_LEAF;
8411   }
8412   zeroPage(pRoot, ptfFlags);
8413   sqlite3PagerUnref(pRoot->pDbPage);
8414   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
8415   *piTable = (int)pgnoRoot;
8416   return SQLITE_OK;
8417 }
8418 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8419   int rc;
8420   sqlite3BtreeEnter(p);
8421   rc = btreeCreateTable(p, piTable, flags);
8422   sqlite3BtreeLeave(p);
8423   return rc;
8424 }
8425 
8426 /*
8427 ** Erase the given database page and all its children.  Return
8428 ** the page to the freelist.
8429 */
8430 static int clearDatabasePage(
8431   BtShared *pBt,           /* The BTree that contains the table */
8432   Pgno pgno,               /* Page number to clear */
8433   int freePageFlag,        /* Deallocate page if true */
8434   int *pnChange            /* Add number of Cells freed to this counter */
8435 ){
8436   MemPage *pPage;
8437   int rc;
8438   unsigned char *pCell;
8439   int i;
8440   int hdr;
8441   u16 szCell;
8442 
8443   assert( sqlite3_mutex_held(pBt->mutex) );
8444   if( pgno>btreePagecount(pBt) ){
8445     return SQLITE_CORRUPT_BKPT;
8446   }
8447   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
8448   if( rc ) return rc;
8449   if( pPage->bBusy ){
8450     rc = SQLITE_CORRUPT_BKPT;
8451     goto cleardatabasepage_out;
8452   }
8453   pPage->bBusy = 1;
8454   hdr = pPage->hdrOffset;
8455   for(i=0; i<pPage->nCell; i++){
8456     pCell = findCell(pPage, i);
8457     if( !pPage->leaf ){
8458       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
8459       if( rc ) goto cleardatabasepage_out;
8460     }
8461     rc = clearCell(pPage, pCell, &szCell);
8462     if( rc ) goto cleardatabasepage_out;
8463   }
8464   if( !pPage->leaf ){
8465     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
8466     if( rc ) goto cleardatabasepage_out;
8467   }else if( pnChange ){
8468     assert( pPage->intKey || CORRUPT_DB );
8469     testcase( !pPage->intKey );
8470     *pnChange += pPage->nCell;
8471   }
8472   if( freePageFlag ){
8473     freePage(pPage, &rc);
8474   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
8475     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
8476   }
8477 
8478 cleardatabasepage_out:
8479   pPage->bBusy = 0;
8480   releasePage(pPage);
8481   return rc;
8482 }
8483 
8484 /*
8485 ** Delete all information from a single table in the database.  iTable is
8486 ** the page number of the root of the table.  After this routine returns,
8487 ** the root page is empty, but still exists.
8488 **
8489 ** This routine will fail with SQLITE_LOCKED if there are any open
8490 ** read cursors on the table.  Open write cursors are moved to the
8491 ** root of the table.
8492 **
8493 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8494 ** integer value pointed to by pnChange is incremented by the number of
8495 ** entries in the table.
8496 */
8497 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
8498   int rc;
8499   BtShared *pBt = p->pBt;
8500   sqlite3BtreeEnter(p);
8501   assert( p->inTrans==TRANS_WRITE );
8502 
8503   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
8504 
8505   if( SQLITE_OK==rc ){
8506     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8507     ** is the root of a table b-tree - if it is not, the following call is
8508     ** a no-op).  */
8509     invalidateIncrblobCursors(p, 0, 1);
8510     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
8511   }
8512   sqlite3BtreeLeave(p);
8513   return rc;
8514 }
8515 
8516 /*
8517 ** Delete all information from the single table that pCur is open on.
8518 **
8519 ** This routine only work for pCur on an ephemeral table.
8520 */
8521 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8522   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8523 }
8524 
8525 /*
8526 ** Erase all information in a table and add the root of the table to
8527 ** the freelist.  Except, the root of the principle table (the one on
8528 ** page 1) is never added to the freelist.
8529 **
8530 ** This routine will fail with SQLITE_LOCKED if there are any open
8531 ** cursors on the table.
8532 **
8533 ** If AUTOVACUUM is enabled and the page at iTable is not the last
8534 ** root page in the database file, then the last root page
8535 ** in the database file is moved into the slot formerly occupied by
8536 ** iTable and that last slot formerly occupied by the last root page
8537 ** is added to the freelist instead of iTable.  In this say, all
8538 ** root pages are kept at the beginning of the database file, which
8539 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
8540 ** page number that used to be the last root page in the file before
8541 ** the move.  If no page gets moved, *piMoved is set to 0.
8542 ** The last root page is recorded in meta[3] and the value of
8543 ** meta[3] is updated by this procedure.
8544 */
8545 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
8546   int rc;
8547   MemPage *pPage = 0;
8548   BtShared *pBt = p->pBt;
8549 
8550   assert( sqlite3BtreeHoldsMutex(p) );
8551   assert( p->inTrans==TRANS_WRITE );
8552 
8553   /* It is illegal to drop a table if any cursors are open on the
8554   ** database. This is because in auto-vacuum mode the backend may
8555   ** need to move another root-page to fill a gap left by the deleted
8556   ** root page. If an open cursor was using this page a problem would
8557   ** occur.
8558   **
8559   ** This error is caught long before control reaches this point.
8560   */
8561   if( NEVER(pBt->pCursor) ){
8562     sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8563     return SQLITE_LOCKED_SHAREDCACHE;
8564   }
8565 
8566   /*
8567   ** It is illegal to drop the sqlite_master table on page 1.  But again,
8568   ** this error is caught long before reaching this point.
8569   */
8570   if( NEVER(iTable<2) ){
8571     return SQLITE_CORRUPT_BKPT;
8572   }
8573 
8574   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
8575   if( rc ) return rc;
8576   rc = sqlite3BtreeClearTable(p, iTable, 0);
8577   if( rc ){
8578     releasePage(pPage);
8579     return rc;
8580   }
8581 
8582   *piMoved = 0;
8583 
8584 #ifdef SQLITE_OMIT_AUTOVACUUM
8585   freePage(pPage, &rc);
8586   releasePage(pPage);
8587 #else
8588   if( pBt->autoVacuum ){
8589     Pgno maxRootPgno;
8590     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
8591 
8592     if( iTable==maxRootPgno ){
8593       /* If the table being dropped is the table with the largest root-page
8594       ** number in the database, put the root page on the free list.
8595       */
8596       freePage(pPage, &rc);
8597       releasePage(pPage);
8598       if( rc!=SQLITE_OK ){
8599         return rc;
8600       }
8601     }else{
8602       /* The table being dropped does not have the largest root-page
8603       ** number in the database. So move the page that does into the
8604       ** gap left by the deleted root-page.
8605       */
8606       MemPage *pMove;
8607       releasePage(pPage);
8608       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8609       if( rc!=SQLITE_OK ){
8610         return rc;
8611       }
8612       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8613       releasePage(pMove);
8614       if( rc!=SQLITE_OK ){
8615         return rc;
8616       }
8617       pMove = 0;
8618       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8619       freePage(pMove, &rc);
8620       releasePage(pMove);
8621       if( rc!=SQLITE_OK ){
8622         return rc;
8623       }
8624       *piMoved = maxRootPgno;
8625     }
8626 
8627     /* Set the new 'max-root-page' value in the database header. This
8628     ** is the old value less one, less one more if that happens to
8629     ** be a root-page number, less one again if that is the
8630     ** PENDING_BYTE_PAGE.
8631     */
8632     maxRootPgno--;
8633     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8634            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8635       maxRootPgno--;
8636     }
8637     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8638 
8639     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8640   }else{
8641     freePage(pPage, &rc);
8642     releasePage(pPage);
8643   }
8644 #endif
8645   return rc;
8646 }
8647 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8648   int rc;
8649   sqlite3BtreeEnter(p);
8650   rc = btreeDropTable(p, iTable, piMoved);
8651   sqlite3BtreeLeave(p);
8652   return rc;
8653 }
8654 
8655 
8656 /*
8657 ** This function may only be called if the b-tree connection already
8658 ** has a read or write transaction open on the database.
8659 **
8660 ** Read the meta-information out of a database file.  Meta[0]
8661 ** is the number of free pages currently in the database.  Meta[1]
8662 ** through meta[15] are available for use by higher layers.  Meta[0]
8663 ** is read-only, the others are read/write.
8664 **
8665 ** The schema layer numbers meta values differently.  At the schema
8666 ** layer (and the SetCookie and ReadCookie opcodes) the number of
8667 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
8668 **
8669 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
8670 ** of reading the value out of the header, it instead loads the "DataVersion"
8671 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
8672 ** database file.  It is a number computed by the pager.  But its access
8673 ** pattern is the same as header meta values, and so it is convenient to
8674 ** read it from this routine.
8675 */
8676 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
8677   BtShared *pBt = p->pBt;
8678 
8679   sqlite3BtreeEnter(p);
8680   assert( p->inTrans>TRANS_NONE );
8681   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
8682   assert( pBt->pPage1 );
8683   assert( idx>=0 && idx<=15 );
8684 
8685   if( idx==BTREE_DATA_VERSION ){
8686     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
8687   }else{
8688     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8689   }
8690 
8691   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8692   ** database, mark the database as read-only.  */
8693 #ifdef SQLITE_OMIT_AUTOVACUUM
8694   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8695     pBt->btsFlags |= BTS_READ_ONLY;
8696   }
8697 #endif
8698 
8699   sqlite3BtreeLeave(p);
8700 }
8701 
8702 /*
8703 ** Write meta-information back into the database.  Meta[0] is
8704 ** read-only and may not be written.
8705 */
8706 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8707   BtShared *pBt = p->pBt;
8708   unsigned char *pP1;
8709   int rc;
8710   assert( idx>=1 && idx<=15 );
8711   sqlite3BtreeEnter(p);
8712   assert( p->inTrans==TRANS_WRITE );
8713   assert( pBt->pPage1!=0 );
8714   pP1 = pBt->pPage1->aData;
8715   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8716   if( rc==SQLITE_OK ){
8717     put4byte(&pP1[36 + idx*4], iMeta);
8718 #ifndef SQLITE_OMIT_AUTOVACUUM
8719     if( idx==BTREE_INCR_VACUUM ){
8720       assert( pBt->autoVacuum || iMeta==0 );
8721       assert( iMeta==0 || iMeta==1 );
8722       pBt->incrVacuum = (u8)iMeta;
8723     }
8724 #endif
8725   }
8726   sqlite3BtreeLeave(p);
8727   return rc;
8728 }
8729 
8730 #ifndef SQLITE_OMIT_BTREECOUNT
8731 /*
8732 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
8733 ** number of entries in the b-tree and write the result to *pnEntry.
8734 **
8735 ** SQLITE_OK is returned if the operation is successfully executed.
8736 ** Otherwise, if an error is encountered (i.e. an IO error or database
8737 ** corruption) an SQLite error code is returned.
8738 */
8739 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8740   i64 nEntry = 0;                      /* Value to return in *pnEntry */
8741   int rc;                              /* Return code */
8742 
8743   if( pCur->pgnoRoot==0 ){
8744     *pnEntry = 0;
8745     return SQLITE_OK;
8746   }
8747   rc = moveToRoot(pCur);
8748 
8749   /* Unless an error occurs, the following loop runs one iteration for each
8750   ** page in the B-Tree structure (not including overflow pages).
8751   */
8752   while( rc==SQLITE_OK ){
8753     int iIdx;                          /* Index of child node in parent */
8754     MemPage *pPage;                    /* Current page of the b-tree */
8755 
8756     /* If this is a leaf page or the tree is not an int-key tree, then
8757     ** this page contains countable entries. Increment the entry counter
8758     ** accordingly.
8759     */
8760     pPage = pCur->apPage[pCur->iPage];
8761     if( pPage->leaf || !pPage->intKey ){
8762       nEntry += pPage->nCell;
8763     }
8764 
8765     /* pPage is a leaf node. This loop navigates the cursor so that it
8766     ** points to the first interior cell that it points to the parent of
8767     ** the next page in the tree that has not yet been visited. The
8768     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8769     ** of the page, or to the number of cells in the page if the next page
8770     ** to visit is the right-child of its parent.
8771     **
8772     ** If all pages in the tree have been visited, return SQLITE_OK to the
8773     ** caller.
8774     */
8775     if( pPage->leaf ){
8776       do {
8777         if( pCur->iPage==0 ){
8778           /* All pages of the b-tree have been visited. Return successfully. */
8779           *pnEntry = nEntry;
8780           return moveToRoot(pCur);
8781         }
8782         moveToParent(pCur);
8783       }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8784 
8785       pCur->aiIdx[pCur->iPage]++;
8786       pPage = pCur->apPage[pCur->iPage];
8787     }
8788 
8789     /* Descend to the child node of the cell that the cursor currently
8790     ** points at. This is the right-child if (iIdx==pPage->nCell).
8791     */
8792     iIdx = pCur->aiIdx[pCur->iPage];
8793     if( iIdx==pPage->nCell ){
8794       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8795     }else{
8796       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8797     }
8798   }
8799 
8800   /* An error has occurred. Return an error code. */
8801   return rc;
8802 }
8803 #endif
8804 
8805 /*
8806 ** Return the pager associated with a BTree.  This routine is used for
8807 ** testing and debugging only.
8808 */
8809 Pager *sqlite3BtreePager(Btree *p){
8810   return p->pBt->pPager;
8811 }
8812 
8813 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8814 /*
8815 ** Append a message to the error message string.
8816 */
8817 static void checkAppendMsg(
8818   IntegrityCk *pCheck,
8819   const char *zFormat,
8820   ...
8821 ){
8822   va_list ap;
8823   if( !pCheck->mxErr ) return;
8824   pCheck->mxErr--;
8825   pCheck->nErr++;
8826   va_start(ap, zFormat);
8827   if( pCheck->errMsg.nChar ){
8828     sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
8829   }
8830   if( pCheck->zPfx ){
8831     sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
8832   }
8833   sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
8834   va_end(ap);
8835   if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
8836     pCheck->mallocFailed = 1;
8837   }
8838 }
8839 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8840 
8841 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8842 
8843 /*
8844 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8845 ** corresponds to page iPg is already set.
8846 */
8847 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8848   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8849   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8850 }
8851 
8852 /*
8853 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8854 */
8855 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8856   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8857   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8858 }
8859 
8860 
8861 /*
8862 ** Add 1 to the reference count for page iPage.  If this is the second
8863 ** reference to the page, add an error message to pCheck->zErrMsg.
8864 ** Return 1 if there are 2 or more references to the page and 0 if
8865 ** if this is the first reference to the page.
8866 **
8867 ** Also check that the page number is in bounds.
8868 */
8869 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
8870   if( iPage==0 ) return 1;
8871   if( iPage>pCheck->nPage ){
8872     checkAppendMsg(pCheck, "invalid page number %d", iPage);
8873     return 1;
8874   }
8875   if( getPageReferenced(pCheck, iPage) ){
8876     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
8877     return 1;
8878   }
8879   setPageReferenced(pCheck, iPage);
8880   return 0;
8881 }
8882 
8883 #ifndef SQLITE_OMIT_AUTOVACUUM
8884 /*
8885 ** Check that the entry in the pointer-map for page iChild maps to
8886 ** page iParent, pointer type ptrType. If not, append an error message
8887 ** to pCheck.
8888 */
8889 static void checkPtrmap(
8890   IntegrityCk *pCheck,   /* Integrity check context */
8891   Pgno iChild,           /* Child page number */
8892   u8 eType,              /* Expected pointer map type */
8893   Pgno iParent           /* Expected pointer map parent page number */
8894 ){
8895   int rc;
8896   u8 ePtrmapType;
8897   Pgno iPtrmapParent;
8898 
8899   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8900   if( rc!=SQLITE_OK ){
8901     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
8902     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
8903     return;
8904   }
8905 
8906   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
8907     checkAppendMsg(pCheck,
8908       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8909       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8910   }
8911 }
8912 #endif
8913 
8914 /*
8915 ** Check the integrity of the freelist or of an overflow page list.
8916 ** Verify that the number of pages on the list is N.
8917 */
8918 static void checkList(
8919   IntegrityCk *pCheck,  /* Integrity checking context */
8920   int isFreeList,       /* True for a freelist.  False for overflow page list */
8921   int iPage,            /* Page number for first page in the list */
8922   int N                 /* Expected number of pages in the list */
8923 ){
8924   int i;
8925   int expected = N;
8926   int iFirst = iPage;
8927   while( N-- > 0 && pCheck->mxErr ){
8928     DbPage *pOvflPage;
8929     unsigned char *pOvflData;
8930     if( iPage<1 ){
8931       checkAppendMsg(pCheck,
8932          "%d of %d pages missing from overflow list starting at %d",
8933           N+1, expected, iFirst);
8934       break;
8935     }
8936     if( checkRef(pCheck, iPage) ) break;
8937     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
8938       checkAppendMsg(pCheck, "failed to get page %d", iPage);
8939       break;
8940     }
8941     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
8942     if( isFreeList ){
8943       int n = get4byte(&pOvflData[4]);
8944 #ifndef SQLITE_OMIT_AUTOVACUUM
8945       if( pCheck->pBt->autoVacuum ){
8946         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
8947       }
8948 #endif
8949       if( n>(int)pCheck->pBt->usableSize/4-2 ){
8950         checkAppendMsg(pCheck,
8951            "freelist leaf count too big on page %d", iPage);
8952         N--;
8953       }else{
8954         for(i=0; i<n; i++){
8955           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
8956 #ifndef SQLITE_OMIT_AUTOVACUUM
8957           if( pCheck->pBt->autoVacuum ){
8958             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
8959           }
8960 #endif
8961           checkRef(pCheck, iFreePage);
8962         }
8963         N -= n;
8964       }
8965     }
8966 #ifndef SQLITE_OMIT_AUTOVACUUM
8967     else{
8968       /* If this database supports auto-vacuum and iPage is not the last
8969       ** page in this overflow list, check that the pointer-map entry for
8970       ** the following page matches iPage.
8971       */
8972       if( pCheck->pBt->autoVacuum && N>0 ){
8973         i = get4byte(pOvflData);
8974         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
8975       }
8976     }
8977 #endif
8978     iPage = get4byte(pOvflData);
8979     sqlite3PagerUnref(pOvflPage);
8980 
8981     if( isFreeList && N<(iPage!=0) ){
8982       checkAppendMsg(pCheck, "free-page count in header is too small");
8983     }
8984   }
8985 }
8986 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8987 
8988 /*
8989 ** An implementation of a min-heap.
8990 **
8991 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
8992 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
8993 ** and aHeap[N*2+1].
8994 **
8995 ** The heap property is this:  Every node is less than or equal to both
8996 ** of its daughter nodes.  A consequence of the heap property is that the
8997 ** root node aHeap[1] is always the minimum value currently in the heap.
8998 **
8999 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9000 ** the heap, preserving the heap property.  The btreeHeapPull() routine
9001 ** removes the root element from the heap (the minimum value in the heap)
9002 ** and then moves other nodes around as necessary to preserve the heap
9003 ** property.
9004 **
9005 ** This heap is used for cell overlap and coverage testing.  Each u32
9006 ** entry represents the span of a cell or freeblock on a btree page.
9007 ** The upper 16 bits are the index of the first byte of a range and the
9008 ** lower 16 bits are the index of the last byte of that range.
9009 */
9010 static void btreeHeapInsert(u32 *aHeap, u32 x){
9011   u32 j, i = ++aHeap[0];
9012   aHeap[i] = x;
9013   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9014     x = aHeap[j];
9015     aHeap[j] = aHeap[i];
9016     aHeap[i] = x;
9017     i = j;
9018   }
9019 }
9020 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9021   u32 j, i, x;
9022   if( (x = aHeap[0])==0 ) return 0;
9023   *pOut = aHeap[1];
9024   aHeap[1] = aHeap[x];
9025   aHeap[x] = 0xffffffff;
9026   aHeap[0]--;
9027   i = 1;
9028   while( (j = i*2)<=aHeap[0] ){
9029     if( aHeap[j]>aHeap[j+1] ) j++;
9030     if( aHeap[i]<aHeap[j] ) break;
9031     x = aHeap[i];
9032     aHeap[i] = aHeap[j];
9033     aHeap[j] = x;
9034     i = j;
9035   }
9036   return 1;
9037 }
9038 
9039 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9040 /*
9041 ** Do various sanity checks on a single page of a tree.  Return
9042 ** the tree depth.  Root pages return 0.  Parents of root pages
9043 ** return 1, and so forth.
9044 **
9045 ** These checks are done:
9046 **
9047 **      1.  Make sure that cells and freeblocks do not overlap
9048 **          but combine to completely cover the page.
9049 **      2.  Make sure integer cell keys are in order.
9050 **      3.  Check the integrity of overflow pages.
9051 **      4.  Recursively call checkTreePage on all children.
9052 **      5.  Verify that the depth of all children is the same.
9053 */
9054 static int checkTreePage(
9055   IntegrityCk *pCheck,  /* Context for the sanity check */
9056   int iPage,            /* Page number of the page to check */
9057   i64 *piMinKey,        /* Write minimum integer primary key here */
9058   i64 maxKey            /* Error if integer primary key greater than this */
9059 ){
9060   MemPage *pPage = 0;      /* The page being analyzed */
9061   int i;                   /* Loop counter */
9062   int rc;                  /* Result code from subroutine call */
9063   int depth = -1, d2;      /* Depth of a subtree */
9064   int pgno;                /* Page number */
9065   int nFrag;               /* Number of fragmented bytes on the page */
9066   int hdr;                 /* Offset to the page header */
9067   int cellStart;           /* Offset to the start of the cell pointer array */
9068   int nCell;               /* Number of cells */
9069   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9070   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9071                            ** False if IPK must be strictly less than maxKey */
9072   u8 *data;                /* Page content */
9073   u8 *pCell;               /* Cell content */
9074   u8 *pCellIdx;            /* Next element of the cell pointer array */
9075   BtShared *pBt;           /* The BtShared object that owns pPage */
9076   u32 pc;                  /* Address of a cell */
9077   u32 usableSize;          /* Usable size of the page */
9078   u32 contentOffset;       /* Offset to the start of the cell content area */
9079   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9080   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9081   const char *saved_zPfx = pCheck->zPfx;
9082   int saved_v1 = pCheck->v1;
9083   int saved_v2 = pCheck->v2;
9084   u8 savedIsInit = 0;
9085 
9086   /* Check that the page exists
9087   */
9088   pBt = pCheck->pBt;
9089   usableSize = pBt->usableSize;
9090   if( iPage==0 ) return 0;
9091   if( checkRef(pCheck, iPage) ) return 0;
9092   pCheck->zPfx = "Page %d: ";
9093   pCheck->v1 = iPage;
9094   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9095     checkAppendMsg(pCheck,
9096        "unable to get the page. error code=%d", rc);
9097     goto end_of_check;
9098   }
9099 
9100   /* Clear MemPage.isInit to make sure the corruption detection code in
9101   ** btreeInitPage() is executed.  */
9102   savedIsInit = pPage->isInit;
9103   pPage->isInit = 0;
9104   if( (rc = btreeInitPage(pPage))!=0 ){
9105     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9106     checkAppendMsg(pCheck,
9107                    "btreeInitPage() returns error code %d", rc);
9108     goto end_of_check;
9109   }
9110   data = pPage->aData;
9111   hdr = pPage->hdrOffset;
9112 
9113   /* Set up for cell analysis */
9114   pCheck->zPfx = "On tree page %d cell %d: ";
9115   contentOffset = get2byteNotZero(&data[hdr+5]);
9116   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9117 
9118   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9119   ** number of cells on the page. */
9120   nCell = get2byte(&data[hdr+3]);
9121   assert( pPage->nCell==nCell );
9122 
9123   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9124   ** immediately follows the b-tree page header. */
9125   cellStart = hdr + 12 - 4*pPage->leaf;
9126   assert( pPage->aCellIdx==&data[cellStart] );
9127   pCellIdx = &data[cellStart + 2*(nCell-1)];
9128 
9129   if( !pPage->leaf ){
9130     /* Analyze the right-child page of internal pages */
9131     pgno = get4byte(&data[hdr+8]);
9132 #ifndef SQLITE_OMIT_AUTOVACUUM
9133     if( pBt->autoVacuum ){
9134       pCheck->zPfx = "On page %d at right child: ";
9135       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9136     }
9137 #endif
9138     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9139     keyCanBeEqual = 0;
9140   }else{
9141     /* For leaf pages, the coverage check will occur in the same loop
9142     ** as the other cell checks, so initialize the heap.  */
9143     heap = pCheck->heap;
9144     heap[0] = 0;
9145   }
9146 
9147   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9148   ** integer offsets to the cell contents. */
9149   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9150     CellInfo info;
9151 
9152     /* Check cell size */
9153     pCheck->v2 = i;
9154     assert( pCellIdx==&data[cellStart + i*2] );
9155     pc = get2byteAligned(pCellIdx);
9156     pCellIdx -= 2;
9157     if( pc<contentOffset || pc>usableSize-4 ){
9158       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9159                              pc, contentOffset, usableSize-4);
9160       doCoverageCheck = 0;
9161       continue;
9162     }
9163     pCell = &data[pc];
9164     pPage->xParseCell(pPage, pCell, &info);
9165     if( pc+info.nSize>usableSize ){
9166       checkAppendMsg(pCheck, "Extends off end of page");
9167       doCoverageCheck = 0;
9168       continue;
9169     }
9170 
9171     /* Check for integer primary key out of range */
9172     if( pPage->intKey ){
9173       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9174         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9175       }
9176       maxKey = info.nKey;
9177     }
9178 
9179     /* Check the content overflow list */
9180     if( info.nPayload>info.nLocal ){
9181       int nPage;       /* Number of pages on the overflow chain */
9182       Pgno pgnoOvfl;   /* First page of the overflow chain */
9183       assert( pc + info.nSize - 4 <= usableSize );
9184       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9185       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9186 #ifndef SQLITE_OMIT_AUTOVACUUM
9187       if( pBt->autoVacuum ){
9188         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9189       }
9190 #endif
9191       checkList(pCheck, 0, pgnoOvfl, nPage);
9192     }
9193 
9194     if( !pPage->leaf ){
9195       /* Check sanity of left child page for internal pages */
9196       pgno = get4byte(pCell);
9197 #ifndef SQLITE_OMIT_AUTOVACUUM
9198       if( pBt->autoVacuum ){
9199         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9200       }
9201 #endif
9202       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9203       keyCanBeEqual = 0;
9204       if( d2!=depth ){
9205         checkAppendMsg(pCheck, "Child page depth differs");
9206         depth = d2;
9207       }
9208     }else{
9209       /* Populate the coverage-checking heap for leaf pages */
9210       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9211     }
9212   }
9213   *piMinKey = maxKey;
9214 
9215   /* Check for complete coverage of the page
9216   */
9217   pCheck->zPfx = 0;
9218   if( doCoverageCheck && pCheck->mxErr>0 ){
9219     /* For leaf pages, the min-heap has already been initialized and the
9220     ** cells have already been inserted.  But for internal pages, that has
9221     ** not yet been done, so do it now */
9222     if( !pPage->leaf ){
9223       heap = pCheck->heap;
9224       heap[0] = 0;
9225       for(i=nCell-1; i>=0; i--){
9226         u32 size;
9227         pc = get2byteAligned(&data[cellStart+i*2]);
9228         size = pPage->xCellSize(pPage, &data[pc]);
9229         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9230       }
9231     }
9232     /* Add the freeblocks to the min-heap
9233     **
9234     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9235     ** is the offset of the first freeblock, or zero if there are no
9236     ** freeblocks on the page.
9237     */
9238     i = get2byte(&data[hdr+1]);
9239     while( i>0 ){
9240       int size, j;
9241       assert( (u32)i<=usableSize-4 );     /* Enforced by btreeInitPage() */
9242       size = get2byte(&data[i+2]);
9243       assert( (u32)(i+size)<=usableSize );  /* Enforced by btreeInitPage() */
9244       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9245       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9246       ** big-endian integer which is the offset in the b-tree page of the next
9247       ** freeblock in the chain, or zero if the freeblock is the last on the
9248       ** chain. */
9249       j = get2byte(&data[i]);
9250       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9251       ** increasing offset. */
9252       assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
9253       assert( (u32)j<=usableSize-4 );   /* Enforced by btreeInitPage() */
9254       i = j;
9255     }
9256     /* Analyze the min-heap looking for overlap between cells and/or
9257     ** freeblocks, and counting the number of untracked bytes in nFrag.
9258     **
9259     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
9260     ** There is an implied first entry the covers the page header, the cell
9261     ** pointer index, and the gap between the cell pointer index and the start
9262     ** of cell content.
9263     **
9264     ** The loop below pulls entries from the min-heap in order and compares
9265     ** the start_address against the previous end_address.  If there is an
9266     ** overlap, that means bytes are used multiple times.  If there is a gap,
9267     ** that gap is added to the fragmentation count.
9268     */
9269     nFrag = 0;
9270     prev = contentOffset - 1;   /* Implied first min-heap entry */
9271     while( btreeHeapPull(heap,&x) ){
9272       if( (prev&0xffff)>=(x>>16) ){
9273         checkAppendMsg(pCheck,
9274           "Multiple uses for byte %u of page %d", x>>16, iPage);
9275         break;
9276       }else{
9277         nFrag += (x>>16) - (prev&0xffff) - 1;
9278         prev = x;
9279       }
9280     }
9281     nFrag += usableSize - (prev&0xffff) - 1;
9282     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9283     ** is stored in the fifth field of the b-tree page header.
9284     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9285     ** number of fragmented free bytes within the cell content area.
9286     */
9287     if( heap[0]==0 && nFrag!=data[hdr+7] ){
9288       checkAppendMsg(pCheck,
9289           "Fragmentation of %d bytes reported as %d on page %d",
9290           nFrag, data[hdr+7], iPage);
9291     }
9292   }
9293 
9294 end_of_check:
9295   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
9296   releasePage(pPage);
9297   pCheck->zPfx = saved_zPfx;
9298   pCheck->v1 = saved_v1;
9299   pCheck->v2 = saved_v2;
9300   return depth+1;
9301 }
9302 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9303 
9304 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9305 /*
9306 ** This routine does a complete check of the given BTree file.  aRoot[] is
9307 ** an array of pages numbers were each page number is the root page of
9308 ** a table.  nRoot is the number of entries in aRoot.
9309 **
9310 ** A read-only or read-write transaction must be opened before calling
9311 ** this function.
9312 **
9313 ** Write the number of error seen in *pnErr.  Except for some memory
9314 ** allocation errors,  an error message held in memory obtained from
9315 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
9316 ** returned.  If a memory allocation error occurs, NULL is returned.
9317 */
9318 char *sqlite3BtreeIntegrityCheck(
9319   Btree *p,     /* The btree to be checked */
9320   int *aRoot,   /* An array of root pages numbers for individual trees */
9321   int nRoot,    /* Number of entries in aRoot[] */
9322   int mxErr,    /* Stop reporting errors after this many */
9323   int *pnErr    /* Write number of errors seen to this variable */
9324 ){
9325   Pgno i;
9326   IntegrityCk sCheck;
9327   BtShared *pBt = p->pBt;
9328   int savedDbFlags = pBt->db->flags;
9329   char zErr[100];
9330   VVA_ONLY( int nRef );
9331 
9332   sqlite3BtreeEnter(p);
9333   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
9334   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9335   assert( nRef>=0 );
9336   sCheck.pBt = pBt;
9337   sCheck.pPager = pBt->pPager;
9338   sCheck.nPage = btreePagecount(sCheck.pBt);
9339   sCheck.mxErr = mxErr;
9340   sCheck.nErr = 0;
9341   sCheck.mallocFailed = 0;
9342   sCheck.zPfx = 0;
9343   sCheck.v1 = 0;
9344   sCheck.v2 = 0;
9345   sCheck.aPgRef = 0;
9346   sCheck.heap = 0;
9347   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
9348   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
9349   if( sCheck.nPage==0 ){
9350     goto integrity_ck_cleanup;
9351   }
9352 
9353   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9354   if( !sCheck.aPgRef ){
9355     sCheck.mallocFailed = 1;
9356     goto integrity_ck_cleanup;
9357   }
9358   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9359   if( sCheck.heap==0 ){
9360     sCheck.mallocFailed = 1;
9361     goto integrity_ck_cleanup;
9362   }
9363 
9364   i = PENDING_BYTE_PAGE(pBt);
9365   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
9366 
9367   /* Check the integrity of the freelist
9368   */
9369   sCheck.zPfx = "Main freelist: ";
9370   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
9371             get4byte(&pBt->pPage1->aData[36]));
9372   sCheck.zPfx = 0;
9373 
9374   /* Check all the tables.
9375   */
9376   testcase( pBt->db->flags & SQLITE_CellSizeCk );
9377   pBt->db->flags &= ~SQLITE_CellSizeCk;
9378   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
9379     i64 notUsed;
9380     if( aRoot[i]==0 ) continue;
9381 #ifndef SQLITE_OMIT_AUTOVACUUM
9382     if( pBt->autoVacuum && aRoot[i]>1 ){
9383       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
9384     }
9385 #endif
9386     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
9387   }
9388   pBt->db->flags = savedDbFlags;
9389 
9390   /* Make sure every page in the file is referenced
9391   */
9392   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
9393 #ifdef SQLITE_OMIT_AUTOVACUUM
9394     if( getPageReferenced(&sCheck, i)==0 ){
9395       checkAppendMsg(&sCheck, "Page %d is never used", i);
9396     }
9397 #else
9398     /* If the database supports auto-vacuum, make sure no tables contain
9399     ** references to pointer-map pages.
9400     */
9401     if( getPageReferenced(&sCheck, i)==0 &&
9402        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
9403       checkAppendMsg(&sCheck, "Page %d is never used", i);
9404     }
9405     if( getPageReferenced(&sCheck, i)!=0 &&
9406        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
9407       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
9408     }
9409 #endif
9410   }
9411 
9412   /* Clean  up and report errors.
9413   */
9414 integrity_ck_cleanup:
9415   sqlite3PageFree(sCheck.heap);
9416   sqlite3_free(sCheck.aPgRef);
9417   if( sCheck.mallocFailed ){
9418     sqlite3StrAccumReset(&sCheck.errMsg);
9419     sCheck.nErr++;
9420   }
9421   *pnErr = sCheck.nErr;
9422   if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9423   /* Make sure this analysis did not leave any unref() pages. */
9424   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9425   sqlite3BtreeLeave(p);
9426   return sqlite3StrAccumFinish(&sCheck.errMsg);
9427 }
9428 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9429 
9430 /*
9431 ** Return the full pathname of the underlying database file.  Return
9432 ** an empty string if the database is in-memory or a TEMP database.
9433 **
9434 ** The pager filename is invariant as long as the pager is
9435 ** open so it is safe to access without the BtShared mutex.
9436 */
9437 const char *sqlite3BtreeGetFilename(Btree *p){
9438   assert( p->pBt->pPager!=0 );
9439   return sqlite3PagerFilename(p->pBt->pPager, 1);
9440 }
9441 
9442 /*
9443 ** Return the pathname of the journal file for this database. The return
9444 ** value of this routine is the same regardless of whether the journal file
9445 ** has been created or not.
9446 **
9447 ** The pager journal filename is invariant as long as the pager is
9448 ** open so it is safe to access without the BtShared mutex.
9449 */
9450 const char *sqlite3BtreeGetJournalname(Btree *p){
9451   assert( p->pBt->pPager!=0 );
9452   return sqlite3PagerJournalname(p->pBt->pPager);
9453 }
9454 
9455 /*
9456 ** Return non-zero if a transaction is active.
9457 */
9458 int sqlite3BtreeIsInTrans(Btree *p){
9459   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
9460   return (p && (p->inTrans==TRANS_WRITE));
9461 }
9462 
9463 #ifndef SQLITE_OMIT_WAL
9464 /*
9465 ** Run a checkpoint on the Btree passed as the first argument.
9466 **
9467 ** Return SQLITE_LOCKED if this or any other connection has an open
9468 ** transaction on the shared-cache the argument Btree is connected to.
9469 **
9470 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9471 */
9472 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
9473   int rc = SQLITE_OK;
9474   if( p ){
9475     BtShared *pBt = p->pBt;
9476     sqlite3BtreeEnter(p);
9477     if( pBt->inTransaction!=TRANS_NONE ){
9478       rc = SQLITE_LOCKED;
9479     }else{
9480       rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
9481     }
9482     sqlite3BtreeLeave(p);
9483   }
9484   return rc;
9485 }
9486 #endif
9487 
9488 /*
9489 ** Return non-zero if a read (or write) transaction is active.
9490 */
9491 int sqlite3BtreeIsInReadTrans(Btree *p){
9492   assert( p );
9493   assert( sqlite3_mutex_held(p->db->mutex) );
9494   return p->inTrans!=TRANS_NONE;
9495 }
9496 
9497 int sqlite3BtreeIsInBackup(Btree *p){
9498   assert( p );
9499   assert( sqlite3_mutex_held(p->db->mutex) );
9500   return p->nBackup!=0;
9501 }
9502 
9503 /*
9504 ** This function returns a pointer to a blob of memory associated with
9505 ** a single shared-btree. The memory is used by client code for its own
9506 ** purposes (for example, to store a high-level schema associated with
9507 ** the shared-btree). The btree layer manages reference counting issues.
9508 **
9509 ** The first time this is called on a shared-btree, nBytes bytes of memory
9510 ** are allocated, zeroed, and returned to the caller. For each subsequent
9511 ** call the nBytes parameter is ignored and a pointer to the same blob
9512 ** of memory returned.
9513 **
9514 ** If the nBytes parameter is 0 and the blob of memory has not yet been
9515 ** allocated, a null pointer is returned. If the blob has already been
9516 ** allocated, it is returned as normal.
9517 **
9518 ** Just before the shared-btree is closed, the function passed as the
9519 ** xFree argument when the memory allocation was made is invoked on the
9520 ** blob of allocated memory. The xFree function should not call sqlite3_free()
9521 ** on the memory, the btree layer does that.
9522 */
9523 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9524   BtShared *pBt = p->pBt;
9525   sqlite3BtreeEnter(p);
9526   if( !pBt->pSchema && nBytes ){
9527     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
9528     pBt->xFreeSchema = xFree;
9529   }
9530   sqlite3BtreeLeave(p);
9531   return pBt->pSchema;
9532 }
9533 
9534 /*
9535 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9536 ** btree as the argument handle holds an exclusive lock on the
9537 ** sqlite_master table. Otherwise SQLITE_OK.
9538 */
9539 int sqlite3BtreeSchemaLocked(Btree *p){
9540   int rc;
9541   assert( sqlite3_mutex_held(p->db->mutex) );
9542   sqlite3BtreeEnter(p);
9543   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9544   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
9545   sqlite3BtreeLeave(p);
9546   return rc;
9547 }
9548 
9549 
9550 #ifndef SQLITE_OMIT_SHARED_CACHE
9551 /*
9552 ** Obtain a lock on the table whose root page is iTab.  The
9553 ** lock is a write lock if isWritelock is true or a read lock
9554 ** if it is false.
9555 */
9556 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
9557   int rc = SQLITE_OK;
9558   assert( p->inTrans!=TRANS_NONE );
9559   if( p->sharable ){
9560     u8 lockType = READ_LOCK + isWriteLock;
9561     assert( READ_LOCK+1==WRITE_LOCK );
9562     assert( isWriteLock==0 || isWriteLock==1 );
9563 
9564     sqlite3BtreeEnter(p);
9565     rc = querySharedCacheTableLock(p, iTab, lockType);
9566     if( rc==SQLITE_OK ){
9567       rc = setSharedCacheTableLock(p, iTab, lockType);
9568     }
9569     sqlite3BtreeLeave(p);
9570   }
9571   return rc;
9572 }
9573 #endif
9574 
9575 #ifndef SQLITE_OMIT_INCRBLOB
9576 /*
9577 ** Argument pCsr must be a cursor opened for writing on an
9578 ** INTKEY table currently pointing at a valid table entry.
9579 ** This function modifies the data stored as part of that entry.
9580 **
9581 ** Only the data content may only be modified, it is not possible to
9582 ** change the length of the data stored. If this function is called with
9583 ** parameters that attempt to write past the end of the existing data,
9584 ** no modifications are made and SQLITE_CORRUPT is returned.
9585 */
9586 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
9587   int rc;
9588   assert( cursorOwnsBtShared(pCsr) );
9589   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
9590   assert( pCsr->curFlags & BTCF_Incrblob );
9591 
9592   rc = restoreCursorPosition(pCsr);
9593   if( rc!=SQLITE_OK ){
9594     return rc;
9595   }
9596   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9597   if( pCsr->eState!=CURSOR_VALID ){
9598     return SQLITE_ABORT;
9599   }
9600 
9601   /* Save the positions of all other cursors open on this table. This is
9602   ** required in case any of them are holding references to an xFetch
9603   ** version of the b-tree page modified by the accessPayload call below.
9604   **
9605   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
9606   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9607   ** saveAllCursors can only return SQLITE_OK.
9608   */
9609   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9610   assert( rc==SQLITE_OK );
9611 
9612   /* Check some assumptions:
9613   **   (a) the cursor is open for writing,
9614   **   (b) there is a read/write transaction open,
9615   **   (c) the connection holds a write-lock on the table (if required),
9616   **   (d) there are no conflicting read-locks, and
9617   **   (e) the cursor points at a valid row of an intKey table.
9618   */
9619   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
9620     return SQLITE_READONLY;
9621   }
9622   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9623               && pCsr->pBt->inTransaction==TRANS_WRITE );
9624   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9625   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
9626   assert( pCsr->apPage[pCsr->iPage]->intKey );
9627 
9628   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
9629 }
9630 
9631 /*
9632 ** Mark this cursor as an incremental blob cursor.
9633 */
9634 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
9635   pCur->curFlags |= BTCF_Incrblob;
9636   pCur->pBtree->hasIncrblobCur = 1;
9637 }
9638 #endif
9639 
9640 /*
9641 ** Set both the "read version" (single byte at byte offset 18) and
9642 ** "write version" (single byte at byte offset 19) fields in the database
9643 ** header to iVersion.
9644 */
9645 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9646   BtShared *pBt = pBtree->pBt;
9647   int rc;                         /* Return code */
9648 
9649   assert( iVersion==1 || iVersion==2 );
9650 
9651   /* If setting the version fields to 1, do not automatically open the
9652   ** WAL connection, even if the version fields are currently set to 2.
9653   */
9654   pBt->btsFlags &= ~BTS_NO_WAL;
9655   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
9656 
9657   rc = sqlite3BtreeBeginTrans(pBtree, 0);
9658   if( rc==SQLITE_OK ){
9659     u8 *aData = pBt->pPage1->aData;
9660     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
9661       rc = sqlite3BtreeBeginTrans(pBtree, 2);
9662       if( rc==SQLITE_OK ){
9663         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9664         if( rc==SQLITE_OK ){
9665           aData[18] = (u8)iVersion;
9666           aData[19] = (u8)iVersion;
9667         }
9668       }
9669     }
9670   }
9671 
9672   pBt->btsFlags &= ~BTS_NO_WAL;
9673   return rc;
9674 }
9675 
9676 /*
9677 ** Return true if the cursor has a hint specified.  This routine is
9678 ** only used from within assert() statements
9679 */
9680 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9681   return (pCsr->hints & mask)!=0;
9682 }
9683 
9684 /*
9685 ** Return true if the given Btree is read-only.
9686 */
9687 int sqlite3BtreeIsReadonly(Btree *p){
9688   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9689 }
9690 
9691 /*
9692 ** Return the size of the header added to each page by this module.
9693 */
9694 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
9695 
9696 #if !defined(SQLITE_OMIT_SHARED_CACHE)
9697 /*
9698 ** Return true if the Btree passed as the only argument is sharable.
9699 */
9700 int sqlite3BtreeSharable(Btree *p){
9701   return p->sharable;
9702 }
9703 
9704 /*
9705 ** Return the number of connections to the BtShared object accessed by
9706 ** the Btree handle passed as the only argument. For private caches
9707 ** this is always 1. For shared caches it may be 1 or greater.
9708 */
9709 int sqlite3BtreeConnectionCount(Btree *p){
9710   testcase( p->sharable );
9711   return p->pBt->nRef;
9712 }
9713 #endif
9714