1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifdef SQLITE_DEBUG 116 /* 117 ** Return and reset the seek counter for a Btree object. 118 */ 119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ 120 u64 n = pBt->nSeek; 121 pBt->nSeek = 0; 122 return n; 123 } 124 #endif 125 126 /* 127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 129 ** 130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 133 ** with the page number and filename associated with the (MemPage*). 134 */ 135 #ifdef SQLITE_DEBUG 136 int corruptPageError(int lineno, MemPage *p){ 137 char *zMsg; 138 sqlite3BeginBenignMalloc(); 139 zMsg = sqlite3_mprintf("database corruption page %d of %s", 140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 141 ); 142 sqlite3EndBenignMalloc(); 143 if( zMsg ){ 144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 145 } 146 sqlite3_free(zMsg); 147 return SQLITE_CORRUPT_BKPT; 148 } 149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 150 #else 151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 152 #endif 153 154 #ifndef SQLITE_OMIT_SHARED_CACHE 155 156 #ifdef SQLITE_DEBUG 157 /* 158 **** This function is only used as part of an assert() statement. *** 159 ** 160 ** Check to see if pBtree holds the required locks to read or write to the 161 ** table with root page iRoot. Return 1 if it does and 0 if not. 162 ** 163 ** For example, when writing to a table with root-page iRoot via 164 ** Btree connection pBtree: 165 ** 166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 167 ** 168 ** When writing to an index that resides in a sharable database, the 169 ** caller should have first obtained a lock specifying the root page of 170 ** the corresponding table. This makes things a bit more complicated, 171 ** as this module treats each table as a separate structure. To determine 172 ** the table corresponding to the index being written, this 173 ** function has to search through the database schema. 174 ** 175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 176 ** hold a write-lock on the schema table (root page 1). This is also 177 ** acceptable. 178 */ 179 static int hasSharedCacheTableLock( 180 Btree *pBtree, /* Handle that must hold lock */ 181 Pgno iRoot, /* Root page of b-tree */ 182 int isIndex, /* True if iRoot is the root of an index b-tree */ 183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 184 ){ 185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 186 Pgno iTab = 0; 187 BtLock *pLock; 188 189 /* If this database is not shareable, or if the client is reading 190 ** and has the read-uncommitted flag set, then no lock is required. 191 ** Return true immediately. 192 */ 193 if( (pBtree->sharable==0) 194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 195 ){ 196 return 1; 197 } 198 199 /* If the client is reading or writing an index and the schema is 200 ** not loaded, then it is too difficult to actually check to see if 201 ** the correct locks are held. So do not bother - just return true. 202 ** This case does not come up very often anyhow. 203 */ 204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 205 return 1; 206 } 207 208 /* Figure out the root-page that the lock should be held on. For table 209 ** b-trees, this is just the root page of the b-tree being read or 210 ** written. For index b-trees, it is the root page of the associated 211 ** table. */ 212 if( isIndex ){ 213 HashElem *p; 214 int bSeen = 0; 215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 216 Index *pIdx = (Index *)sqliteHashData(p); 217 if( pIdx->tnum==iRoot ){ 218 if( bSeen ){ 219 /* Two or more indexes share the same root page. There must 220 ** be imposter tables. So just return true. The assert is not 221 ** useful in that case. */ 222 return 1; 223 } 224 iTab = pIdx->pTable->tnum; 225 bSeen = 1; 226 } 227 } 228 }else{ 229 iTab = iRoot; 230 } 231 232 /* Search for the required lock. Either a write-lock on root-page iTab, a 233 ** write-lock on the schema table, or (if the client is reading) a 234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 236 if( pLock->pBtree==pBtree 237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 238 && pLock->eLock>=eLockType 239 ){ 240 return 1; 241 } 242 } 243 244 /* Failed to find the required lock. */ 245 return 0; 246 } 247 #endif /* SQLITE_DEBUG */ 248 249 #ifdef SQLITE_DEBUG 250 /* 251 **** This function may be used as part of assert() statements only. **** 252 ** 253 ** Return true if it would be illegal for pBtree to write into the 254 ** table or index rooted at iRoot because other shared connections are 255 ** simultaneously reading that same table or index. 256 ** 257 ** It is illegal for pBtree to write if some other Btree object that 258 ** shares the same BtShared object is currently reading or writing 259 ** the iRoot table. Except, if the other Btree object has the 260 ** read-uncommitted flag set, then it is OK for the other object to 261 ** have a read cursor. 262 ** 263 ** For example, before writing to any part of the table or index 264 ** rooted at page iRoot, one should call: 265 ** 266 ** assert( !hasReadConflicts(pBtree, iRoot) ); 267 */ 268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 269 BtCursor *p; 270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 271 if( p->pgnoRoot==iRoot 272 && p->pBtree!=pBtree 273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 274 ){ 275 return 1; 276 } 277 } 278 return 0; 279 } 280 #endif /* #ifdef SQLITE_DEBUG */ 281 282 /* 283 ** Query to see if Btree handle p may obtain a lock of type eLock 284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 285 ** SQLITE_OK if the lock may be obtained (by calling 286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 287 */ 288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 289 BtShared *pBt = p->pBt; 290 BtLock *pIter; 291 292 assert( sqlite3BtreeHoldsMutex(p) ); 293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 294 assert( p->db!=0 ); 295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 296 297 /* If requesting a write-lock, then the Btree must have an open write 298 ** transaction on this file. And, obviously, for this to be so there 299 ** must be an open write transaction on the file itself. 300 */ 301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 303 304 /* This routine is a no-op if the shared-cache is not enabled */ 305 if( !p->sharable ){ 306 return SQLITE_OK; 307 } 308 309 /* If some other connection is holding an exclusive lock, the 310 ** requested lock may not be obtained. 311 */ 312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 314 return SQLITE_LOCKED_SHAREDCACHE; 315 } 316 317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 318 /* The condition (pIter->eLock!=eLock) in the following if(...) 319 ** statement is a simplification of: 320 ** 321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 322 ** 323 ** since we know that if eLock==WRITE_LOCK, then no other connection 324 ** may hold a WRITE_LOCK on any table in this file (since there can 325 ** only be a single writer). 326 */ 327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 331 if( eLock==WRITE_LOCK ){ 332 assert( p==pBt->pWriter ); 333 pBt->btsFlags |= BTS_PENDING; 334 } 335 return SQLITE_LOCKED_SHAREDCACHE; 336 } 337 } 338 return SQLITE_OK; 339 } 340 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 341 342 #ifndef SQLITE_OMIT_SHARED_CACHE 343 /* 344 ** Add a lock on the table with root-page iTable to the shared-btree used 345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 346 ** WRITE_LOCK. 347 ** 348 ** This function assumes the following: 349 ** 350 ** (a) The specified Btree object p is connected to a sharable 351 ** database (one with the BtShared.sharable flag set), and 352 ** 353 ** (b) No other Btree objects hold a lock that conflicts 354 ** with the requested lock (i.e. querySharedCacheTableLock() has 355 ** already been called and returned SQLITE_OK). 356 ** 357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 358 ** is returned if a malloc attempt fails. 359 */ 360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 361 BtShared *pBt = p->pBt; 362 BtLock *pLock = 0; 363 BtLock *pIter; 364 365 assert( sqlite3BtreeHoldsMutex(p) ); 366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 367 assert( p->db!=0 ); 368 369 /* A connection with the read-uncommitted flag set will never try to 370 ** obtain a read-lock using this function. The only read-lock obtained 371 ** by a connection in read-uncommitted mode is on the sqlite_schema 372 ** table, and that lock is obtained in BtreeBeginTrans(). */ 373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 374 375 /* This function should only be called on a sharable b-tree after it 376 ** has been determined that no other b-tree holds a conflicting lock. */ 377 assert( p->sharable ); 378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 379 380 /* First search the list for an existing lock on this table. */ 381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 382 if( pIter->iTable==iTable && pIter->pBtree==p ){ 383 pLock = pIter; 384 break; 385 } 386 } 387 388 /* If the above search did not find a BtLock struct associating Btree p 389 ** with table iTable, allocate one and link it into the list. 390 */ 391 if( !pLock ){ 392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 393 if( !pLock ){ 394 return SQLITE_NOMEM_BKPT; 395 } 396 pLock->iTable = iTable; 397 pLock->pBtree = p; 398 pLock->pNext = pBt->pLock; 399 pBt->pLock = pLock; 400 } 401 402 /* Set the BtLock.eLock variable to the maximum of the current lock 403 ** and the requested lock. This means if a write-lock was already held 404 ** and a read-lock requested, we don't incorrectly downgrade the lock. 405 */ 406 assert( WRITE_LOCK>READ_LOCK ); 407 if( eLock>pLock->eLock ){ 408 pLock->eLock = eLock; 409 } 410 411 return SQLITE_OK; 412 } 413 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 414 415 #ifndef SQLITE_OMIT_SHARED_CACHE 416 /* 417 ** Release all the table locks (locks obtained via calls to 418 ** the setSharedCacheTableLock() procedure) held by Btree object p. 419 ** 420 ** This function assumes that Btree p has an open read or write 421 ** transaction. If it does not, then the BTS_PENDING flag 422 ** may be incorrectly cleared. 423 */ 424 static void clearAllSharedCacheTableLocks(Btree *p){ 425 BtShared *pBt = p->pBt; 426 BtLock **ppIter = &pBt->pLock; 427 428 assert( sqlite3BtreeHoldsMutex(p) ); 429 assert( p->sharable || 0==*ppIter ); 430 assert( p->inTrans>0 ); 431 432 while( *ppIter ){ 433 BtLock *pLock = *ppIter; 434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 435 assert( pLock->pBtree->inTrans>=pLock->eLock ); 436 if( pLock->pBtree==p ){ 437 *ppIter = pLock->pNext; 438 assert( pLock->iTable!=1 || pLock==&p->lock ); 439 if( pLock->iTable!=1 ){ 440 sqlite3_free(pLock); 441 } 442 }else{ 443 ppIter = &pLock->pNext; 444 } 445 } 446 447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 448 if( pBt->pWriter==p ){ 449 pBt->pWriter = 0; 450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 451 }else if( pBt->nTransaction==2 ){ 452 /* This function is called when Btree p is concluding its 453 ** transaction. If there currently exists a writer, and p is not 454 ** that writer, then the number of locks held by connections other 455 ** than the writer must be about to drop to zero. In this case 456 ** set the BTS_PENDING flag to 0. 457 ** 458 ** If there is not currently a writer, then BTS_PENDING must 459 ** be zero already. So this next line is harmless in that case. 460 */ 461 pBt->btsFlags &= ~BTS_PENDING; 462 } 463 } 464 465 /* 466 ** This function changes all write-locks held by Btree p into read-locks. 467 */ 468 static void downgradeAllSharedCacheTableLocks(Btree *p){ 469 BtShared *pBt = p->pBt; 470 if( pBt->pWriter==p ){ 471 BtLock *pLock; 472 pBt->pWriter = 0; 473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 476 pLock->eLock = READ_LOCK; 477 } 478 } 479 } 480 481 #endif /* SQLITE_OMIT_SHARED_CACHE */ 482 483 static void releasePage(MemPage *pPage); /* Forward reference */ 484 static void releasePageOne(MemPage *pPage); /* Forward reference */ 485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 486 487 /* 488 ***** This routine is used inside of assert() only **** 489 ** 490 ** Verify that the cursor holds the mutex on its BtShared 491 */ 492 #ifdef SQLITE_DEBUG 493 static int cursorHoldsMutex(BtCursor *p){ 494 return sqlite3_mutex_held(p->pBt->mutex); 495 } 496 497 /* Verify that the cursor and the BtShared agree about what is the current 498 ** database connetion. This is important in shared-cache mode. If the database 499 ** connection pointers get out-of-sync, it is possible for routines like 500 ** btreeInitPage() to reference an stale connection pointer that references a 501 ** a connection that has already closed. This routine is used inside assert() 502 ** statements only and for the purpose of double-checking that the btree code 503 ** does keep the database connection pointers up-to-date. 504 */ 505 static int cursorOwnsBtShared(BtCursor *p){ 506 assert( cursorHoldsMutex(p) ); 507 return (p->pBtree->db==p->pBt->db); 508 } 509 #endif 510 511 /* 512 ** Invalidate the overflow cache of the cursor passed as the first argument. 513 ** on the shared btree structure pBt. 514 */ 515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 516 517 /* 518 ** Invalidate the overflow page-list cache for all cursors opened 519 ** on the shared btree structure pBt. 520 */ 521 static void invalidateAllOverflowCache(BtShared *pBt){ 522 BtCursor *p; 523 assert( sqlite3_mutex_held(pBt->mutex) ); 524 for(p=pBt->pCursor; p; p=p->pNext){ 525 invalidateOverflowCache(p); 526 } 527 } 528 529 #ifndef SQLITE_OMIT_INCRBLOB 530 /* 531 ** This function is called before modifying the contents of a table 532 ** to invalidate any incrblob cursors that are open on the 533 ** row or one of the rows being modified. 534 ** 535 ** If argument isClearTable is true, then the entire contents of the 536 ** table is about to be deleted. In this case invalidate all incrblob 537 ** cursors open on any row within the table with root-page pgnoRoot. 538 ** 539 ** Otherwise, if argument isClearTable is false, then the row with 540 ** rowid iRow is being replaced or deleted. In this case invalidate 541 ** only those incrblob cursors open on that specific row. 542 */ 543 static void invalidateIncrblobCursors( 544 Btree *pBtree, /* The database file to check */ 545 Pgno pgnoRoot, /* The table that might be changing */ 546 i64 iRow, /* The rowid that might be changing */ 547 int isClearTable /* True if all rows are being deleted */ 548 ){ 549 BtCursor *p; 550 assert( pBtree->hasIncrblobCur ); 551 assert( sqlite3BtreeHoldsMutex(pBtree) ); 552 pBtree->hasIncrblobCur = 0; 553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 554 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 555 pBtree->hasIncrblobCur = 1; 556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 557 p->eState = CURSOR_INVALID; 558 } 559 } 560 } 561 } 562 563 #else 564 /* Stub function when INCRBLOB is omitted */ 565 #define invalidateIncrblobCursors(w,x,y,z) 566 #endif /* SQLITE_OMIT_INCRBLOB */ 567 568 /* 569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 570 ** when a page that previously contained data becomes a free-list leaf 571 ** page. 572 ** 573 ** The BtShared.pHasContent bitvec exists to work around an obscure 574 ** bug caused by the interaction of two useful IO optimizations surrounding 575 ** free-list leaf pages: 576 ** 577 ** 1) When all data is deleted from a page and the page becomes 578 ** a free-list leaf page, the page is not written to the database 579 ** (as free-list leaf pages contain no meaningful data). Sometimes 580 ** such a page is not even journalled (as it will not be modified, 581 ** why bother journalling it?). 582 ** 583 ** 2) When a free-list leaf page is reused, its content is not read 584 ** from the database or written to the journal file (why should it 585 ** be, if it is not at all meaningful?). 586 ** 587 ** By themselves, these optimizations work fine and provide a handy 588 ** performance boost to bulk delete or insert operations. However, if 589 ** a page is moved to the free-list and then reused within the same 590 ** transaction, a problem comes up. If the page is not journalled when 591 ** it is moved to the free-list and it is also not journalled when it 592 ** is extracted from the free-list and reused, then the original data 593 ** may be lost. In the event of a rollback, it may not be possible 594 ** to restore the database to its original configuration. 595 ** 596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 597 ** moved to become a free-list leaf page, the corresponding bit is 598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 599 ** optimization 2 above is omitted if the corresponding bit is already 600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 601 ** at the end of every transaction. 602 */ 603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 604 int rc = SQLITE_OK; 605 if( !pBt->pHasContent ){ 606 assert( pgno<=pBt->nPage ); 607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 608 if( !pBt->pHasContent ){ 609 rc = SQLITE_NOMEM_BKPT; 610 } 611 } 612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 614 } 615 return rc; 616 } 617 618 /* 619 ** Query the BtShared.pHasContent vector. 620 ** 621 ** This function is called when a free-list leaf page is removed from the 622 ** free-list for reuse. It returns false if it is safe to retrieve the 623 ** page from the pager layer with the 'no-content' flag set. True otherwise. 624 */ 625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 626 Bitvec *p = pBt->pHasContent; 627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); 628 } 629 630 /* 631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 632 ** invoked at the conclusion of each write-transaction. 633 */ 634 static void btreeClearHasContent(BtShared *pBt){ 635 sqlite3BitvecDestroy(pBt->pHasContent); 636 pBt->pHasContent = 0; 637 } 638 639 /* 640 ** Release all of the apPage[] pages for a cursor. 641 */ 642 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 643 int i; 644 if( pCur->iPage>=0 ){ 645 for(i=0; i<pCur->iPage; i++){ 646 releasePageNotNull(pCur->apPage[i]); 647 } 648 releasePageNotNull(pCur->pPage); 649 pCur->iPage = -1; 650 } 651 } 652 653 /* 654 ** The cursor passed as the only argument must point to a valid entry 655 ** when this function is called (i.e. have eState==CURSOR_VALID). This 656 ** function saves the current cursor key in variables pCur->nKey and 657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 658 ** code otherwise. 659 ** 660 ** If the cursor is open on an intkey table, then the integer key 661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 663 ** set to point to a malloced buffer pCur->nKey bytes in size containing 664 ** the key. 665 */ 666 static int saveCursorKey(BtCursor *pCur){ 667 int rc = SQLITE_OK; 668 assert( CURSOR_VALID==pCur->eState ); 669 assert( 0==pCur->pKey ); 670 assert( cursorHoldsMutex(pCur) ); 671 672 if( pCur->curIntKey ){ 673 /* Only the rowid is required for a table btree */ 674 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 675 }else{ 676 /* For an index btree, save the complete key content. It is possible 677 ** that the current key is corrupt. In that case, it is possible that 678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 679 ** up to the size of 1 varint plus 1 8-byte value when the cursor 680 ** position is restored. Hence the 17 bytes of padding allocated 681 ** below. */ 682 void *pKey; 683 pCur->nKey = sqlite3BtreePayloadSize(pCur); 684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 685 if( pKey ){ 686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 687 if( rc==SQLITE_OK ){ 688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 689 pCur->pKey = pKey; 690 }else{ 691 sqlite3_free(pKey); 692 } 693 }else{ 694 rc = SQLITE_NOMEM_BKPT; 695 } 696 } 697 assert( !pCur->curIntKey || !pCur->pKey ); 698 return rc; 699 } 700 701 /* 702 ** Save the current cursor position in the variables BtCursor.nKey 703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 704 ** 705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 706 ** prior to calling this routine. 707 */ 708 static int saveCursorPosition(BtCursor *pCur){ 709 int rc; 710 711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 712 assert( 0==pCur->pKey ); 713 assert( cursorHoldsMutex(pCur) ); 714 715 if( pCur->curFlags & BTCF_Pinned ){ 716 return SQLITE_CONSTRAINT_PINNED; 717 } 718 if( pCur->eState==CURSOR_SKIPNEXT ){ 719 pCur->eState = CURSOR_VALID; 720 }else{ 721 pCur->skipNext = 0; 722 } 723 724 rc = saveCursorKey(pCur); 725 if( rc==SQLITE_OK ){ 726 btreeReleaseAllCursorPages(pCur); 727 pCur->eState = CURSOR_REQUIRESEEK; 728 } 729 730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 731 return rc; 732 } 733 734 /* Forward reference */ 735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 736 737 /* 738 ** Save the positions of all cursors (except pExcept) that are open on 739 ** the table with root-page iRoot. "Saving the cursor position" means that 740 ** the location in the btree is remembered in such a way that it can be 741 ** moved back to the same spot after the btree has been modified. This 742 ** routine is called just before cursor pExcept is used to modify the 743 ** table, for example in BtreeDelete() or BtreeInsert(). 744 ** 745 ** If there are two or more cursors on the same btree, then all such 746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 747 ** routine enforces that rule. This routine only needs to be called in 748 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 749 ** 750 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 752 ** pointless call to this routine. 753 ** 754 ** Implementation note: This routine merely checks to see if any cursors 755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 756 ** event that cursors are in need to being saved. 757 */ 758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 759 BtCursor *p; 760 assert( sqlite3_mutex_held(pBt->mutex) ); 761 assert( pExcept==0 || pExcept->pBt==pBt ); 762 for(p=pBt->pCursor; p; p=p->pNext){ 763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 764 } 765 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 767 return SQLITE_OK; 768 } 769 770 /* This helper routine to saveAllCursors does the actual work of saving 771 ** the cursors if and when a cursor is found that actually requires saving. 772 ** The common case is that no cursors need to be saved, so this routine is 773 ** broken out from its caller to avoid unnecessary stack pointer movement. 774 */ 775 static int SQLITE_NOINLINE saveCursorsOnList( 776 BtCursor *p, /* The first cursor that needs saving */ 777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 778 BtCursor *pExcept /* Do not save this cursor */ 779 ){ 780 do{ 781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 783 int rc = saveCursorPosition(p); 784 if( SQLITE_OK!=rc ){ 785 return rc; 786 } 787 }else{ 788 testcase( p->iPage>=0 ); 789 btreeReleaseAllCursorPages(p); 790 } 791 } 792 p = p->pNext; 793 }while( p ); 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Clear the current cursor position. 799 */ 800 void sqlite3BtreeClearCursor(BtCursor *pCur){ 801 assert( cursorHoldsMutex(pCur) ); 802 sqlite3_free(pCur->pKey); 803 pCur->pKey = 0; 804 pCur->eState = CURSOR_INVALID; 805 } 806 807 /* 808 ** In this version of BtreeMoveto, pKey is a packed index record 809 ** such as is generated by the OP_MakeRecord opcode. Unpack the 810 ** record and then call sqlite3BtreeIndexMoveto() to do the work. 811 */ 812 static int btreeMoveto( 813 BtCursor *pCur, /* Cursor open on the btree to be searched */ 814 const void *pKey, /* Packed key if the btree is an index */ 815 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 816 int bias, /* Bias search to the high end */ 817 int *pRes /* Write search results here */ 818 ){ 819 int rc; /* Status code */ 820 UnpackedRecord *pIdxKey; /* Unpacked index key */ 821 822 if( pKey ){ 823 KeyInfo *pKeyInfo = pCur->pKeyInfo; 824 assert( nKey==(i64)(int)nKey ); 825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 829 rc = SQLITE_CORRUPT_BKPT; 830 }else{ 831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); 832 } 833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 834 }else{ 835 pIdxKey = 0; 836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); 837 } 838 return rc; 839 } 840 841 /* 842 ** Restore the cursor to the position it was in (or as close to as possible) 843 ** when saveCursorPosition() was called. Note that this call deletes the 844 ** saved position info stored by saveCursorPosition(), so there can be 845 ** at most one effective restoreCursorPosition() call after each 846 ** saveCursorPosition(). 847 */ 848 static int btreeRestoreCursorPosition(BtCursor *pCur){ 849 int rc; 850 int skipNext = 0; 851 assert( cursorOwnsBtShared(pCur) ); 852 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 853 if( pCur->eState==CURSOR_FAULT ){ 854 return pCur->skipNext; 855 } 856 pCur->eState = CURSOR_INVALID; 857 if( sqlite3FaultSim(410) ){ 858 rc = SQLITE_IOERR; 859 }else{ 860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 861 } 862 if( rc==SQLITE_OK ){ 863 sqlite3_free(pCur->pKey); 864 pCur->pKey = 0; 865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 866 if( skipNext ) pCur->skipNext = skipNext; 867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 868 pCur->eState = CURSOR_SKIPNEXT; 869 } 870 } 871 return rc; 872 } 873 874 #define restoreCursorPosition(p) \ 875 (p->eState>=CURSOR_REQUIRESEEK ? \ 876 btreeRestoreCursorPosition(p) : \ 877 SQLITE_OK) 878 879 /* 880 ** Determine whether or not a cursor has moved from the position where 881 ** it was last placed, or has been invalidated for any other reason. 882 ** Cursors can move when the row they are pointing at is deleted out 883 ** from under them, for example. Cursor might also move if a btree 884 ** is rebalanced. 885 ** 886 ** Calling this routine with a NULL cursor pointer returns false. 887 ** 888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 889 ** back to where it ought to be if this routine returns true. 890 */ 891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 892 assert( EIGHT_BYTE_ALIGNMENT(pCur) 893 || pCur==sqlite3BtreeFakeValidCursor() ); 894 assert( offsetof(BtCursor, eState)==0 ); 895 assert( sizeof(pCur->eState)==1 ); 896 return CURSOR_VALID != *(u8*)pCur; 897 } 898 899 /* 900 ** Return a pointer to a fake BtCursor object that will always answer 901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 902 ** cursor returned must not be used with any other Btree interface. 903 */ 904 BtCursor *sqlite3BtreeFakeValidCursor(void){ 905 static u8 fakeCursor = CURSOR_VALID; 906 assert( offsetof(BtCursor, eState)==0 ); 907 return (BtCursor*)&fakeCursor; 908 } 909 910 /* 911 ** This routine restores a cursor back to its original position after it 912 ** has been moved by some outside activity (such as a btree rebalance or 913 ** a row having been deleted out from under the cursor). 914 ** 915 ** On success, the *pDifferentRow parameter is false if the cursor is left 916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 917 ** was pointing to has been deleted, forcing the cursor to point to some 918 ** nearby row. 919 ** 920 ** This routine should only be called for a cursor that just returned 921 ** TRUE from sqlite3BtreeCursorHasMoved(). 922 */ 923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 924 int rc; 925 926 assert( pCur!=0 ); 927 assert( pCur->eState!=CURSOR_VALID ); 928 rc = restoreCursorPosition(pCur); 929 if( rc ){ 930 *pDifferentRow = 1; 931 return rc; 932 } 933 if( pCur->eState!=CURSOR_VALID ){ 934 *pDifferentRow = 1; 935 }else{ 936 *pDifferentRow = 0; 937 } 938 return SQLITE_OK; 939 } 940 941 #ifdef SQLITE_ENABLE_CURSOR_HINTS 942 /* 943 ** Provide hints to the cursor. The particular hint given (and the type 944 ** and number of the varargs parameters) is determined by the eHintType 945 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 946 */ 947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 948 /* Used only by system that substitute their own storage engine */ 949 } 950 #endif 951 952 /* 953 ** Provide flag hints to the cursor. 954 */ 955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 957 pCur->hints = x; 958 } 959 960 961 #ifndef SQLITE_OMIT_AUTOVACUUM 962 /* 963 ** Given a page number of a regular database page, return the page 964 ** number for the pointer-map page that contains the entry for the 965 ** input page number. 966 ** 967 ** Return 0 (not a valid page) for pgno==1 since there is 968 ** no pointer map associated with page 1. The integrity_check logic 969 ** requires that ptrmapPageno(*,1)!=1. 970 */ 971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 972 int nPagesPerMapPage; 973 Pgno iPtrMap, ret; 974 assert( sqlite3_mutex_held(pBt->mutex) ); 975 if( pgno<2 ) return 0; 976 nPagesPerMapPage = (pBt->usableSize/5)+1; 977 iPtrMap = (pgno-2)/nPagesPerMapPage; 978 ret = (iPtrMap*nPagesPerMapPage) + 2; 979 if( ret==PENDING_BYTE_PAGE(pBt) ){ 980 ret++; 981 } 982 return ret; 983 } 984 985 /* 986 ** Write an entry into the pointer map. 987 ** 988 ** This routine updates the pointer map entry for page number 'key' 989 ** so that it maps to type 'eType' and parent page number 'pgno'. 990 ** 991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 992 ** a no-op. If an error occurs, the appropriate error code is written 993 ** into *pRC. 994 */ 995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 996 DbPage *pDbPage; /* The pointer map page */ 997 u8 *pPtrmap; /* The pointer map data */ 998 Pgno iPtrmap; /* The pointer map page number */ 999 int offset; /* Offset in pointer map page */ 1000 int rc; /* Return code from subfunctions */ 1001 1002 if( *pRC ) return; 1003 1004 assert( sqlite3_mutex_held(pBt->mutex) ); 1005 /* The super-journal page number must never be used as a pointer map page */ 1006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 1007 1008 assert( pBt->autoVacuum ); 1009 if( key==0 ){ 1010 *pRC = SQLITE_CORRUPT_BKPT; 1011 return; 1012 } 1013 iPtrmap = PTRMAP_PAGENO(pBt, key); 1014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1015 if( rc!=SQLITE_OK ){ 1016 *pRC = rc; 1017 return; 1018 } 1019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1020 /* The first byte of the extra data is the MemPage.isInit byte. 1021 ** If that byte is set, it means this page is also being used 1022 ** as a btree page. */ 1023 *pRC = SQLITE_CORRUPT_BKPT; 1024 goto ptrmap_exit; 1025 } 1026 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1027 if( offset<0 ){ 1028 *pRC = SQLITE_CORRUPT_BKPT; 1029 goto ptrmap_exit; 1030 } 1031 assert( offset <= (int)pBt->usableSize-5 ); 1032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1033 1034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1036 *pRC= rc = sqlite3PagerWrite(pDbPage); 1037 if( rc==SQLITE_OK ){ 1038 pPtrmap[offset] = eType; 1039 put4byte(&pPtrmap[offset+1], parent); 1040 } 1041 } 1042 1043 ptrmap_exit: 1044 sqlite3PagerUnref(pDbPage); 1045 } 1046 1047 /* 1048 ** Read an entry from the pointer map. 1049 ** 1050 ** This routine retrieves the pointer map entry for page 'key', writing 1051 ** the type and parent page number to *pEType and *pPgno respectively. 1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1053 */ 1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1055 DbPage *pDbPage; /* The pointer map page */ 1056 int iPtrmap; /* Pointer map page index */ 1057 u8 *pPtrmap; /* Pointer map page data */ 1058 int offset; /* Offset of entry in pointer map */ 1059 int rc; 1060 1061 assert( sqlite3_mutex_held(pBt->mutex) ); 1062 1063 iPtrmap = PTRMAP_PAGENO(pBt, key); 1064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1065 if( rc!=0 ){ 1066 return rc; 1067 } 1068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1069 1070 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1071 if( offset<0 ){ 1072 sqlite3PagerUnref(pDbPage); 1073 return SQLITE_CORRUPT_BKPT; 1074 } 1075 assert( offset <= (int)pBt->usableSize-5 ); 1076 assert( pEType!=0 ); 1077 *pEType = pPtrmap[offset]; 1078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1079 1080 sqlite3PagerUnref(pDbPage); 1081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1082 return SQLITE_OK; 1083 } 1084 1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1086 #define ptrmapPut(w,x,y,z,rc) 1087 #define ptrmapGet(w,x,y,z) SQLITE_OK 1088 #define ptrmapPutOvflPtr(x, y, z, rc) 1089 #endif 1090 1091 /* 1092 ** Given a btree page and a cell index (0 means the first cell on 1093 ** the page, 1 means the second cell, and so forth) return a pointer 1094 ** to the cell content. 1095 ** 1096 ** findCellPastPtr() does the same except it skips past the initial 1097 ** 4-byte child pointer found on interior pages, if there is one. 1098 ** 1099 ** This routine works only for pages that do not contain overflow cells. 1100 */ 1101 #define findCell(P,I) \ 1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1103 #define findCellPastPtr(P,I) \ 1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1105 1106 1107 /* 1108 ** This is common tail processing for btreeParseCellPtr() and 1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1111 ** structure. 1112 */ 1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1114 MemPage *pPage, /* Page containing the cell */ 1115 u8 *pCell, /* Pointer to the cell text. */ 1116 CellInfo *pInfo /* Fill in this structure */ 1117 ){ 1118 /* If the payload will not fit completely on the local page, we have 1119 ** to decide how much to store locally and how much to spill onto 1120 ** overflow pages. The strategy is to minimize the amount of unused 1121 ** space on overflow pages while keeping the amount of local storage 1122 ** in between minLocal and maxLocal. 1123 ** 1124 ** Warning: changing the way overflow payload is distributed in any 1125 ** way will result in an incompatible file format. 1126 */ 1127 int minLocal; /* Minimum amount of payload held locally */ 1128 int maxLocal; /* Maximum amount of payload held locally */ 1129 int surplus; /* Overflow payload available for local storage */ 1130 1131 minLocal = pPage->minLocal; 1132 maxLocal = pPage->maxLocal; 1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1134 testcase( surplus==maxLocal ); 1135 testcase( surplus==maxLocal+1 ); 1136 if( surplus <= maxLocal ){ 1137 pInfo->nLocal = (u16)surplus; 1138 }else{ 1139 pInfo->nLocal = (u16)minLocal; 1140 } 1141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1142 } 1143 1144 /* 1145 ** Given a record with nPayload bytes of payload stored within btree 1146 ** page pPage, return the number of bytes of payload stored locally. 1147 */ 1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ 1149 int maxLocal; /* Maximum amount of payload held locally */ 1150 maxLocal = pPage->maxLocal; 1151 if( nPayload<=maxLocal ){ 1152 return nPayload; 1153 }else{ 1154 int minLocal; /* Minimum amount of payload held locally */ 1155 int surplus; /* Overflow payload available for local storage */ 1156 minLocal = pPage->minLocal; 1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); 1158 return ( surplus <= maxLocal ) ? surplus : minLocal; 1159 } 1160 } 1161 1162 /* 1163 ** The following routines are implementations of the MemPage.xParseCell() 1164 ** method. 1165 ** 1166 ** Parse a cell content block and fill in the CellInfo structure. 1167 ** 1168 ** btreeParseCellPtr() => table btree leaf nodes 1169 ** btreeParseCellNoPayload() => table btree internal nodes 1170 ** btreeParseCellPtrIndex() => index btree nodes 1171 ** 1172 ** There is also a wrapper function btreeParseCell() that works for 1173 ** all MemPage types and that references the cell by index rather than 1174 ** by pointer. 1175 */ 1176 static void btreeParseCellPtrNoPayload( 1177 MemPage *pPage, /* Page containing the cell */ 1178 u8 *pCell, /* Pointer to the cell text. */ 1179 CellInfo *pInfo /* Fill in this structure */ 1180 ){ 1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1182 assert( pPage->leaf==0 ); 1183 assert( pPage->childPtrSize==4 ); 1184 #ifndef SQLITE_DEBUG 1185 UNUSED_PARAMETER(pPage); 1186 #endif 1187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1188 pInfo->nPayload = 0; 1189 pInfo->nLocal = 0; 1190 pInfo->pPayload = 0; 1191 return; 1192 } 1193 static void btreeParseCellPtr( 1194 MemPage *pPage, /* Page containing the cell */ 1195 u8 *pCell, /* Pointer to the cell text. */ 1196 CellInfo *pInfo /* Fill in this structure */ 1197 ){ 1198 u8 *pIter; /* For scanning through pCell */ 1199 u32 nPayload; /* Number of bytes of cell payload */ 1200 u64 iKey; /* Extracted Key value */ 1201 1202 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1203 assert( pPage->leaf==0 || pPage->leaf==1 ); 1204 assert( pPage->intKeyLeaf ); 1205 assert( pPage->childPtrSize==0 ); 1206 pIter = pCell; 1207 1208 /* The next block of code is equivalent to: 1209 ** 1210 ** pIter += getVarint32(pIter, nPayload); 1211 ** 1212 ** The code is inlined to avoid a function call. 1213 */ 1214 nPayload = *pIter; 1215 if( nPayload>=0x80 ){ 1216 u8 *pEnd = &pIter[8]; 1217 nPayload &= 0x7f; 1218 do{ 1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1220 }while( (*pIter)>=0x80 && pIter<pEnd ); 1221 } 1222 pIter++; 1223 1224 /* The next block of code is equivalent to: 1225 ** 1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1227 ** 1228 ** The code is inlined and the loop is unrolled for performance. 1229 ** This routine is a high-runner. 1230 */ 1231 iKey = *pIter; 1232 if( iKey>=0x80 ){ 1233 u8 x; 1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f); 1235 if( x>=0x80 ){ 1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f); 1237 if( x>=0x80 ){ 1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1239 if( x>=0x80 ){ 1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1241 if( x>=0x80 ){ 1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1243 if( x>=0x80 ){ 1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1245 if( x>=0x80 ){ 1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1247 if( x>=0x80 ){ 1248 iKey = (iKey<<8) | (*++pIter); 1249 } 1250 } 1251 } 1252 } 1253 } 1254 } 1255 } 1256 } 1257 pIter++; 1258 1259 pInfo->nKey = *(i64*)&iKey; 1260 pInfo->nPayload = nPayload; 1261 pInfo->pPayload = pIter; 1262 testcase( nPayload==pPage->maxLocal ); 1263 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1264 if( nPayload<=pPage->maxLocal ){ 1265 /* This is the (easy) common case where the entire payload fits 1266 ** on the local page. No overflow is required. 1267 */ 1268 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1269 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1270 pInfo->nLocal = (u16)nPayload; 1271 }else{ 1272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1273 } 1274 } 1275 static void btreeParseCellPtrIndex( 1276 MemPage *pPage, /* Page containing the cell */ 1277 u8 *pCell, /* Pointer to the cell text. */ 1278 CellInfo *pInfo /* Fill in this structure */ 1279 ){ 1280 u8 *pIter; /* For scanning through pCell */ 1281 u32 nPayload; /* Number of bytes of cell payload */ 1282 1283 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1284 assert( pPage->leaf==0 || pPage->leaf==1 ); 1285 assert( pPage->intKeyLeaf==0 ); 1286 pIter = pCell + pPage->childPtrSize; 1287 nPayload = *pIter; 1288 if( nPayload>=0x80 ){ 1289 u8 *pEnd = &pIter[8]; 1290 nPayload &= 0x7f; 1291 do{ 1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1293 }while( *(pIter)>=0x80 && pIter<pEnd ); 1294 } 1295 pIter++; 1296 pInfo->nKey = nPayload; 1297 pInfo->nPayload = nPayload; 1298 pInfo->pPayload = pIter; 1299 testcase( nPayload==pPage->maxLocal ); 1300 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1301 if( nPayload<=pPage->maxLocal ){ 1302 /* This is the (easy) common case where the entire payload fits 1303 ** on the local page. No overflow is required. 1304 */ 1305 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1306 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1307 pInfo->nLocal = (u16)nPayload; 1308 }else{ 1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1310 } 1311 } 1312 static void btreeParseCell( 1313 MemPage *pPage, /* Page containing the cell */ 1314 int iCell, /* The cell index. First cell is 0 */ 1315 CellInfo *pInfo /* Fill in this structure */ 1316 ){ 1317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1318 } 1319 1320 /* 1321 ** The following routines are implementations of the MemPage.xCellSize 1322 ** method. 1323 ** 1324 ** Compute the total number of bytes that a Cell needs in the cell 1325 ** data area of the btree-page. The return number includes the cell 1326 ** data header and the local payload, but not any overflow page or 1327 ** the space used by the cell pointer. 1328 ** 1329 ** cellSizePtrNoPayload() => table internal nodes 1330 ** cellSizePtrTableLeaf() => table leaf nodes 1331 ** cellSizePtr() => all index nodes & table leaf nodes 1332 */ 1333 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1334 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1335 u8 *pEnd; /* End mark for a varint */ 1336 u32 nSize; /* Size value to return */ 1337 1338 #ifdef SQLITE_DEBUG 1339 /* The value returned by this function should always be the same as 1340 ** the (CellInfo.nSize) value found by doing a full parse of the 1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1342 ** this function verifies that this invariant is not violated. */ 1343 CellInfo debuginfo; 1344 pPage->xParseCell(pPage, pCell, &debuginfo); 1345 #endif 1346 1347 nSize = *pIter; 1348 if( nSize>=0x80 ){ 1349 pEnd = &pIter[8]; 1350 nSize &= 0x7f; 1351 do{ 1352 nSize = (nSize<<7) | (*++pIter & 0x7f); 1353 }while( *(pIter)>=0x80 && pIter<pEnd ); 1354 } 1355 pIter++; 1356 testcase( nSize==pPage->maxLocal ); 1357 testcase( nSize==(u32)pPage->maxLocal+1 ); 1358 if( nSize<=pPage->maxLocal ){ 1359 nSize += (u32)(pIter - pCell); 1360 if( nSize<4 ) nSize = 4; 1361 }else{ 1362 int minLocal = pPage->minLocal; 1363 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1364 testcase( nSize==pPage->maxLocal ); 1365 testcase( nSize==(u32)pPage->maxLocal+1 ); 1366 if( nSize>pPage->maxLocal ){ 1367 nSize = minLocal; 1368 } 1369 nSize += 4 + (u16)(pIter - pCell); 1370 } 1371 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1372 return (u16)nSize; 1373 } 1374 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1375 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1376 u8 *pEnd; /* End mark for a varint */ 1377 1378 #ifdef SQLITE_DEBUG 1379 /* The value returned by this function should always be the same as 1380 ** the (CellInfo.nSize) value found by doing a full parse of the 1381 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1382 ** this function verifies that this invariant is not violated. */ 1383 CellInfo debuginfo; 1384 pPage->xParseCell(pPage, pCell, &debuginfo); 1385 #else 1386 UNUSED_PARAMETER(pPage); 1387 #endif 1388 1389 assert( pPage->childPtrSize==4 ); 1390 pEnd = pIter + 9; 1391 while( (*pIter++)&0x80 && pIter<pEnd ); 1392 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1393 return (u16)(pIter - pCell); 1394 } 1395 static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){ 1396 u8 *pIter = pCell; /* For looping over bytes of pCell */ 1397 u8 *pEnd; /* End mark for a varint */ 1398 u32 nSize; /* Size value to return */ 1399 1400 #ifdef SQLITE_DEBUG 1401 /* The value returned by this function should always be the same as 1402 ** the (CellInfo.nSize) value found by doing a full parse of the 1403 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1404 ** this function verifies that this invariant is not violated. */ 1405 CellInfo debuginfo; 1406 pPage->xParseCell(pPage, pCell, &debuginfo); 1407 #endif 1408 1409 nSize = *pIter; 1410 if( nSize>=0x80 ){ 1411 pEnd = &pIter[8]; 1412 nSize &= 0x7f; 1413 do{ 1414 nSize = (nSize<<7) | (*++pIter & 0x7f); 1415 }while( *(pIter)>=0x80 && pIter<pEnd ); 1416 } 1417 pIter++; 1418 /* pIter now points at the 64-bit integer key value, a variable length 1419 ** integer. The following block moves pIter to point at the first byte 1420 ** past the end of the key value. */ 1421 if( (*pIter++)&0x80 1422 && (*pIter++)&0x80 1423 && (*pIter++)&0x80 1424 && (*pIter++)&0x80 1425 && (*pIter++)&0x80 1426 && (*pIter++)&0x80 1427 && (*pIter++)&0x80 1428 && (*pIter++)&0x80 ){ pIter++; } 1429 testcase( nSize==pPage->maxLocal ); 1430 testcase( nSize==(u32)pPage->maxLocal+1 ); 1431 if( nSize<=pPage->maxLocal ){ 1432 nSize += (u32)(pIter - pCell); 1433 if( nSize<4 ) nSize = 4; 1434 }else{ 1435 int minLocal = pPage->minLocal; 1436 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1437 testcase( nSize==pPage->maxLocal ); 1438 testcase( nSize==(u32)pPage->maxLocal+1 ); 1439 if( nSize>pPage->maxLocal ){ 1440 nSize = minLocal; 1441 } 1442 nSize += 4 + (u16)(pIter - pCell); 1443 } 1444 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1445 return (u16)nSize; 1446 } 1447 1448 1449 #ifdef SQLITE_DEBUG 1450 /* This variation on cellSizePtr() is used inside of assert() statements 1451 ** only. */ 1452 static u16 cellSize(MemPage *pPage, int iCell){ 1453 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1454 } 1455 #endif 1456 1457 #ifndef SQLITE_OMIT_AUTOVACUUM 1458 /* 1459 ** The cell pCell is currently part of page pSrc but will ultimately be part 1460 ** of pPage. (pSrc and pPage are often the same.) If pCell contains a 1461 ** pointer to an overflow page, insert an entry into the pointer-map for 1462 ** the overflow page that will be valid after pCell has been moved to pPage. 1463 */ 1464 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1465 CellInfo info; 1466 if( *pRC ) return; 1467 assert( pCell!=0 ); 1468 pPage->xParseCell(pPage, pCell, &info); 1469 if( info.nLocal<info.nPayload ){ 1470 Pgno ovfl; 1471 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1472 testcase( pSrc!=pPage ); 1473 *pRC = SQLITE_CORRUPT_BKPT; 1474 return; 1475 } 1476 ovfl = get4byte(&pCell[info.nSize-4]); 1477 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1478 } 1479 } 1480 #endif 1481 1482 1483 /* 1484 ** Defragment the page given. This routine reorganizes cells within the 1485 ** page so that there are no free-blocks on the free-block list. 1486 ** 1487 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1488 ** present in the page after this routine returns. 1489 ** 1490 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1491 ** b-tree page so that there are no freeblocks or fragment bytes, all 1492 ** unused bytes are contained in the unallocated space region, and all 1493 ** cells are packed tightly at the end of the page. 1494 */ 1495 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1496 int i; /* Loop counter */ 1497 int pc; /* Address of the i-th cell */ 1498 int hdr; /* Offset to the page header */ 1499 int size; /* Size of a cell */ 1500 int usableSize; /* Number of usable bytes on a page */ 1501 int cellOffset; /* Offset to the cell pointer array */ 1502 int cbrk; /* Offset to the cell content area */ 1503 int nCell; /* Number of cells on the page */ 1504 unsigned char *data; /* The page data */ 1505 unsigned char *temp; /* Temp area for cell content */ 1506 unsigned char *src; /* Source of content */ 1507 int iCellFirst; /* First allowable cell index */ 1508 int iCellLast; /* Last possible cell index */ 1509 int iCellStart; /* First cell offset in input */ 1510 1511 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1512 assert( pPage->pBt!=0 ); 1513 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1514 assert( pPage->nOverflow==0 ); 1515 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1516 data = pPage->aData; 1517 hdr = pPage->hdrOffset; 1518 cellOffset = pPage->cellOffset; 1519 nCell = pPage->nCell; 1520 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1521 iCellFirst = cellOffset + 2*nCell; 1522 usableSize = pPage->pBt->usableSize; 1523 1524 /* This block handles pages with two or fewer free blocks and nMaxFrag 1525 ** or fewer fragmented bytes. In this case it is faster to move the 1526 ** two (or one) blocks of cells using memmove() and add the required 1527 ** offsets to each pointer in the cell-pointer array than it is to 1528 ** reconstruct the entire page. */ 1529 if( (int)data[hdr+7]<=nMaxFrag ){ 1530 int iFree = get2byte(&data[hdr+1]); 1531 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1532 if( iFree ){ 1533 int iFree2 = get2byte(&data[iFree]); 1534 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1535 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1536 u8 *pEnd = &data[cellOffset + nCell*2]; 1537 u8 *pAddr; 1538 int sz2 = 0; 1539 int sz = get2byte(&data[iFree+2]); 1540 int top = get2byte(&data[hdr+5]); 1541 if( top>=iFree ){ 1542 return SQLITE_CORRUPT_PAGE(pPage); 1543 } 1544 if( iFree2 ){ 1545 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1546 sz2 = get2byte(&data[iFree2+2]); 1547 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1548 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1549 sz += sz2; 1550 }else if( iFree+sz>usableSize ){ 1551 return SQLITE_CORRUPT_PAGE(pPage); 1552 } 1553 1554 cbrk = top+sz; 1555 assert( cbrk+(iFree-top) <= usableSize ); 1556 memmove(&data[cbrk], &data[top], iFree-top); 1557 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1558 pc = get2byte(pAddr); 1559 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1560 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1561 } 1562 goto defragment_out; 1563 } 1564 } 1565 } 1566 1567 cbrk = usableSize; 1568 iCellLast = usableSize - 4; 1569 iCellStart = get2byte(&data[hdr+5]); 1570 if( nCell>0 ){ 1571 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1572 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); 1573 src = temp; 1574 for(i=0; i<nCell; i++){ 1575 u8 *pAddr; /* The i-th cell pointer */ 1576 pAddr = &data[cellOffset + i*2]; 1577 pc = get2byte(pAddr); 1578 testcase( pc==iCellFirst ); 1579 testcase( pc==iCellLast ); 1580 /* These conditions have already been verified in btreeInitPage() 1581 ** if PRAGMA cell_size_check=ON. 1582 */ 1583 if( pc<iCellStart || pc>iCellLast ){ 1584 return SQLITE_CORRUPT_PAGE(pPage); 1585 } 1586 assert( pc>=iCellStart && pc<=iCellLast ); 1587 size = pPage->xCellSize(pPage, &src[pc]); 1588 cbrk -= size; 1589 if( cbrk<iCellStart || pc+size>usableSize ){ 1590 return SQLITE_CORRUPT_PAGE(pPage); 1591 } 1592 assert( cbrk+size<=usableSize && cbrk>=iCellStart ); 1593 testcase( cbrk+size==usableSize ); 1594 testcase( pc+size==usableSize ); 1595 put2byte(pAddr, cbrk); 1596 memcpy(&data[cbrk], &src[pc], size); 1597 } 1598 } 1599 data[hdr+7] = 0; 1600 1601 defragment_out: 1602 assert( pPage->nFree>=0 ); 1603 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1604 return SQLITE_CORRUPT_PAGE(pPage); 1605 } 1606 assert( cbrk>=iCellFirst ); 1607 put2byte(&data[hdr+5], cbrk); 1608 data[hdr+1] = 0; 1609 data[hdr+2] = 0; 1610 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1611 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1612 return SQLITE_OK; 1613 } 1614 1615 /* 1616 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1617 ** size. If one can be found, return a pointer to the space and remove it 1618 ** from the free-list. 1619 ** 1620 ** If no suitable space can be found on the free-list, return NULL. 1621 ** 1622 ** This function may detect corruption within pPg. If corruption is 1623 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1624 ** 1625 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1626 ** will be ignored if adding the extra space to the fragmentation count 1627 ** causes the fragmentation count to exceed 60. 1628 */ 1629 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1630 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1631 u8 * const aData = pPg->aData; /* Page data */ 1632 int iAddr = hdr + 1; /* Address of ptr to pc */ 1633 u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */ 1634 int pc = get2byte(pTmp); /* Address of a free slot */ 1635 int x; /* Excess size of the slot */ 1636 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1637 int size; /* Size of the free slot */ 1638 1639 assert( pc>0 ); 1640 while( pc<=maxPC ){ 1641 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1642 ** freeblock form a big-endian integer which is the size of the freeblock 1643 ** in bytes, including the 4-byte header. */ 1644 pTmp = &aData[pc+2]; 1645 size = get2byte(pTmp); 1646 if( (x = size - nByte)>=0 ){ 1647 testcase( x==4 ); 1648 testcase( x==3 ); 1649 if( x<4 ){ 1650 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1651 ** number of bytes in fragments may not exceed 60. */ 1652 if( aData[hdr+7]>57 ) return 0; 1653 1654 /* Remove the slot from the free-list. Update the number of 1655 ** fragmented bytes within the page. */ 1656 memcpy(&aData[iAddr], &aData[pc], 2); 1657 aData[hdr+7] += (u8)x; 1658 testcase( pc+x>maxPC ); 1659 return &aData[pc]; 1660 }else if( x+pc > maxPC ){ 1661 /* This slot extends off the end of the usable part of the page */ 1662 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1663 return 0; 1664 }else{ 1665 /* The slot remains on the free-list. Reduce its size to account 1666 ** for the portion used by the new allocation. */ 1667 put2byte(&aData[pc+2], x); 1668 } 1669 return &aData[pc + x]; 1670 } 1671 iAddr = pc; 1672 pTmp = &aData[pc]; 1673 pc = get2byte(pTmp); 1674 if( pc<=iAddr ){ 1675 if( pc ){ 1676 /* The next slot in the chain comes before the current slot */ 1677 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1678 } 1679 return 0; 1680 } 1681 } 1682 if( pc>maxPC+nByte-4 ){ 1683 /* The free slot chain extends off the end of the page */ 1684 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1685 } 1686 return 0; 1687 } 1688 1689 /* 1690 ** Allocate nByte bytes of space from within the B-Tree page passed 1691 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1692 ** of the first byte of allocated space. Return either SQLITE_OK or 1693 ** an error code (usually SQLITE_CORRUPT). 1694 ** 1695 ** The caller guarantees that there is sufficient space to make the 1696 ** allocation. This routine might need to defragment in order to bring 1697 ** all the space together, however. This routine will avoid using 1698 ** the first two bytes past the cell pointer area since presumably this 1699 ** allocation is being made in order to insert a new cell, so we will 1700 ** also end up needing a new cell pointer. 1701 */ 1702 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1703 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1704 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1705 int top; /* First byte of cell content area */ 1706 int rc = SQLITE_OK; /* Integer return code */ 1707 u8 *pTmp; /* Temp ptr into data[] */ 1708 int gap; /* First byte of gap between cell pointers and cell content */ 1709 1710 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1711 assert( pPage->pBt ); 1712 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1713 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1714 assert( pPage->nFree>=nByte ); 1715 assert( pPage->nOverflow==0 ); 1716 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1717 1718 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1719 gap = pPage->cellOffset + 2*pPage->nCell; 1720 assert( gap<=65536 ); 1721 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1722 ** and the reserved space is zero (the usual value for reserved space) 1723 ** then the cell content offset of an empty page wants to be 65536. 1724 ** However, that integer is too large to be stored in a 2-byte unsigned 1725 ** integer, so a value of 0 is used in its place. */ 1726 pTmp = &data[hdr+5]; 1727 top = get2byte(pTmp); 1728 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1729 if( gap>top ){ 1730 if( top==0 && pPage->pBt->usableSize==65536 ){ 1731 top = 65536; 1732 }else{ 1733 return SQLITE_CORRUPT_PAGE(pPage); 1734 } 1735 } 1736 1737 /* If there is enough space between gap and top for one more cell pointer, 1738 ** and if the freelist is not empty, then search the 1739 ** freelist looking for a slot big enough to satisfy the request. 1740 */ 1741 testcase( gap+2==top ); 1742 testcase( gap+1==top ); 1743 testcase( gap==top ); 1744 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1745 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1746 if( pSpace ){ 1747 int g2; 1748 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1749 *pIdx = g2 = (int)(pSpace-data); 1750 if( g2<=gap ){ 1751 return SQLITE_CORRUPT_PAGE(pPage); 1752 }else{ 1753 return SQLITE_OK; 1754 } 1755 }else if( rc ){ 1756 return rc; 1757 } 1758 } 1759 1760 /* The request could not be fulfilled using a freelist slot. Check 1761 ** to see if defragmentation is necessary. 1762 */ 1763 testcase( gap+2+nByte==top ); 1764 if( gap+2+nByte>top ){ 1765 assert( pPage->nCell>0 || CORRUPT_DB ); 1766 assert( pPage->nFree>=0 ); 1767 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1768 if( rc ) return rc; 1769 top = get2byteNotZero(&data[hdr+5]); 1770 assert( gap+2+nByte<=top ); 1771 } 1772 1773 1774 /* Allocate memory from the gap in between the cell pointer array 1775 ** and the cell content area. The btreeComputeFreeSpace() call has already 1776 ** validated the freelist. Given that the freelist is valid, there 1777 ** is no way that the allocation can extend off the end of the page. 1778 ** The assert() below verifies the previous sentence. 1779 */ 1780 top -= nByte; 1781 put2byte(&data[hdr+5], top); 1782 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1783 *pIdx = top; 1784 return SQLITE_OK; 1785 } 1786 1787 /* 1788 ** Return a section of the pPage->aData to the freelist. 1789 ** The first byte of the new free block is pPage->aData[iStart] 1790 ** and the size of the block is iSize bytes. 1791 ** 1792 ** Adjacent freeblocks are coalesced. 1793 ** 1794 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1795 ** that routine will not detect overlap between cells or freeblocks. Nor 1796 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1797 ** at the end of the page. So do additional corruption checks inside this 1798 ** routine and return SQLITE_CORRUPT if any problems are found. 1799 */ 1800 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1801 u16 iPtr; /* Address of ptr to next freeblock */ 1802 u16 iFreeBlk; /* Address of the next freeblock */ 1803 u8 hdr; /* Page header size. 0 or 100 */ 1804 u8 nFrag = 0; /* Reduction in fragmentation */ 1805 u16 iOrigSize = iSize; /* Original value of iSize */ 1806 u16 x; /* Offset to cell content area */ 1807 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1808 unsigned char *data = pPage->aData; /* Page content */ 1809 u8 *pTmp; /* Temporary ptr into data[] */ 1810 1811 assert( pPage->pBt!=0 ); 1812 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1813 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1814 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1815 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1816 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1817 assert( iStart<=pPage->pBt->usableSize-4 ); 1818 1819 /* The list of freeblocks must be in ascending order. Find the 1820 ** spot on the list where iStart should be inserted. 1821 */ 1822 hdr = pPage->hdrOffset; 1823 iPtr = hdr + 1; 1824 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1825 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1826 }else{ 1827 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1828 if( iFreeBlk<=iPtr ){ 1829 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ 1830 return SQLITE_CORRUPT_PAGE(pPage); 1831 } 1832 iPtr = iFreeBlk; 1833 } 1834 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ 1835 return SQLITE_CORRUPT_PAGE(pPage); 1836 } 1837 assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB ); 1838 1839 /* At this point: 1840 ** iFreeBlk: First freeblock after iStart, or zero if none 1841 ** iPtr: The address of a pointer to iFreeBlk 1842 ** 1843 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1844 */ 1845 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1846 nFrag = iFreeBlk - iEnd; 1847 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1848 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1849 if( iEnd > pPage->pBt->usableSize ){ 1850 return SQLITE_CORRUPT_PAGE(pPage); 1851 } 1852 iSize = iEnd - iStart; 1853 iFreeBlk = get2byte(&data[iFreeBlk]); 1854 } 1855 1856 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1857 ** pointer in the page header) then check to see if iStart should be 1858 ** coalesced onto the end of iPtr. 1859 */ 1860 if( iPtr>hdr+1 ){ 1861 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1862 if( iPtrEnd+3>=iStart ){ 1863 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1864 nFrag += iStart - iPtrEnd; 1865 iSize = iEnd - iPtr; 1866 iStart = iPtr; 1867 } 1868 } 1869 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1870 data[hdr+7] -= nFrag; 1871 } 1872 pTmp = &data[hdr+5]; 1873 x = get2byte(pTmp); 1874 if( iStart<=x ){ 1875 /* The new freeblock is at the beginning of the cell content area, 1876 ** so just extend the cell content area rather than create another 1877 ** freelist entry */ 1878 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); 1879 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1880 put2byte(&data[hdr+1], iFreeBlk); 1881 put2byte(&data[hdr+5], iEnd); 1882 }else{ 1883 /* Insert the new freeblock into the freelist */ 1884 put2byte(&data[iPtr], iStart); 1885 } 1886 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1887 /* Overwrite deleted information with zeros when the secure_delete 1888 ** option is enabled */ 1889 memset(&data[iStart], 0, iSize); 1890 } 1891 put2byte(&data[iStart], iFreeBlk); 1892 put2byte(&data[iStart+2], iSize); 1893 pPage->nFree += iOrigSize; 1894 return SQLITE_OK; 1895 } 1896 1897 /* 1898 ** Decode the flags byte (the first byte of the header) for a page 1899 ** and initialize fields of the MemPage structure accordingly. 1900 ** 1901 ** Only the following combinations are supported. Anything different 1902 ** indicates a corrupt database files: 1903 ** 1904 ** PTF_ZERODATA 1905 ** PTF_ZERODATA | PTF_LEAF 1906 ** PTF_LEAFDATA | PTF_INTKEY 1907 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1908 */ 1909 static int decodeFlags(MemPage *pPage, int flagByte){ 1910 BtShared *pBt; /* A copy of pPage->pBt */ 1911 1912 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1913 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1914 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1915 flagByte &= ~PTF_LEAF; 1916 pPage->childPtrSize = 4-4*pPage->leaf; 1917 pBt = pPage->pBt; 1918 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1919 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1920 ** interior table b-tree page. */ 1921 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1922 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1923 ** leaf table b-tree page. */ 1924 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1925 pPage->intKey = 1; 1926 if( pPage->leaf ){ 1927 pPage->intKeyLeaf = 1; 1928 pPage->xCellSize = cellSizePtrTableLeaf; 1929 pPage->xParseCell = btreeParseCellPtr; 1930 }else{ 1931 pPage->intKeyLeaf = 0; 1932 pPage->xCellSize = cellSizePtrNoPayload; 1933 pPage->xParseCell = btreeParseCellPtrNoPayload; 1934 } 1935 pPage->maxLocal = pBt->maxLeaf; 1936 pPage->minLocal = pBt->minLeaf; 1937 }else if( flagByte==PTF_ZERODATA ){ 1938 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1939 ** interior index b-tree page. */ 1940 assert( (PTF_ZERODATA)==2 ); 1941 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1942 ** leaf index b-tree page. */ 1943 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1944 pPage->intKey = 0; 1945 pPage->intKeyLeaf = 0; 1946 pPage->xCellSize = cellSizePtr; 1947 pPage->xParseCell = btreeParseCellPtrIndex; 1948 pPage->maxLocal = pBt->maxLocal; 1949 pPage->minLocal = pBt->minLocal; 1950 }else{ 1951 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1952 ** an error. */ 1953 pPage->intKey = 0; 1954 pPage->intKeyLeaf = 0; 1955 pPage->xCellSize = cellSizePtr; 1956 pPage->xParseCell = btreeParseCellPtrIndex; 1957 return SQLITE_CORRUPT_PAGE(pPage); 1958 } 1959 pPage->max1bytePayload = pBt->max1bytePayload; 1960 return SQLITE_OK; 1961 } 1962 1963 /* 1964 ** Compute the amount of freespace on the page. In other words, fill 1965 ** in the pPage->nFree field. 1966 */ 1967 static int btreeComputeFreeSpace(MemPage *pPage){ 1968 int pc; /* Address of a freeblock within pPage->aData[] */ 1969 u8 hdr; /* Offset to beginning of page header */ 1970 u8 *data; /* Equal to pPage->aData */ 1971 int usableSize; /* Amount of usable space on each page */ 1972 int nFree; /* Number of unused bytes on the page */ 1973 int top; /* First byte of the cell content area */ 1974 int iCellFirst; /* First allowable cell or freeblock offset */ 1975 int iCellLast; /* Last possible cell or freeblock offset */ 1976 1977 assert( pPage->pBt!=0 ); 1978 assert( pPage->pBt->db!=0 ); 1979 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1980 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1981 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1982 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1983 assert( pPage->isInit==1 ); 1984 assert( pPage->nFree<0 ); 1985 1986 usableSize = pPage->pBt->usableSize; 1987 hdr = pPage->hdrOffset; 1988 data = pPage->aData; 1989 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1990 ** the start of the cell content area. A zero value for this integer is 1991 ** interpreted as 65536. */ 1992 top = get2byteNotZero(&data[hdr+5]); 1993 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1994 iCellLast = usableSize - 4; 1995 1996 /* Compute the total free space on the page 1997 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1998 ** start of the first freeblock on the page, or is zero if there are no 1999 ** freeblocks. */ 2000 pc = get2byte(&data[hdr+1]); 2001 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 2002 if( pc>0 ){ 2003 u32 next, size; 2004 if( pc<top ){ 2005 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 2006 ** always be at least one cell before the first freeblock. 2007 */ 2008 return SQLITE_CORRUPT_PAGE(pPage); 2009 } 2010 while( 1 ){ 2011 if( pc>iCellLast ){ 2012 /* Freeblock off the end of the page */ 2013 return SQLITE_CORRUPT_PAGE(pPage); 2014 } 2015 next = get2byte(&data[pc]); 2016 size = get2byte(&data[pc+2]); 2017 nFree = nFree + size; 2018 if( next<=pc+size+3 ) break; 2019 pc = next; 2020 } 2021 if( next>0 ){ 2022 /* Freeblock not in ascending order */ 2023 return SQLITE_CORRUPT_PAGE(pPage); 2024 } 2025 if( pc+size>(unsigned int)usableSize ){ 2026 /* Last freeblock extends past page end */ 2027 return SQLITE_CORRUPT_PAGE(pPage); 2028 } 2029 } 2030 2031 /* At this point, nFree contains the sum of the offset to the start 2032 ** of the cell-content area plus the number of free bytes within 2033 ** the cell-content area. If this is greater than the usable-size 2034 ** of the page, then the page must be corrupted. This check also 2035 ** serves to verify that the offset to the start of the cell-content 2036 ** area, according to the page header, lies within the page. 2037 */ 2038 if( nFree>usableSize || nFree<iCellFirst ){ 2039 return SQLITE_CORRUPT_PAGE(pPage); 2040 } 2041 pPage->nFree = (u16)(nFree - iCellFirst); 2042 return SQLITE_OK; 2043 } 2044 2045 /* 2046 ** Do additional sanity check after btreeInitPage() if 2047 ** PRAGMA cell_size_check=ON 2048 */ 2049 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 2050 int iCellFirst; /* First allowable cell or freeblock offset */ 2051 int iCellLast; /* Last possible cell or freeblock offset */ 2052 int i; /* Index into the cell pointer array */ 2053 int sz; /* Size of a cell */ 2054 int pc; /* Address of a freeblock within pPage->aData[] */ 2055 u8 *data; /* Equal to pPage->aData */ 2056 int usableSize; /* Maximum usable space on the page */ 2057 int cellOffset; /* Start of cell content area */ 2058 2059 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 2060 usableSize = pPage->pBt->usableSize; 2061 iCellLast = usableSize - 4; 2062 data = pPage->aData; 2063 cellOffset = pPage->cellOffset; 2064 if( !pPage->leaf ) iCellLast--; 2065 for(i=0; i<pPage->nCell; i++){ 2066 pc = get2byteAligned(&data[cellOffset+i*2]); 2067 testcase( pc==iCellFirst ); 2068 testcase( pc==iCellLast ); 2069 if( pc<iCellFirst || pc>iCellLast ){ 2070 return SQLITE_CORRUPT_PAGE(pPage); 2071 } 2072 sz = pPage->xCellSize(pPage, &data[pc]); 2073 testcase( pc+sz==usableSize ); 2074 if( pc+sz>usableSize ){ 2075 return SQLITE_CORRUPT_PAGE(pPage); 2076 } 2077 } 2078 return SQLITE_OK; 2079 } 2080 2081 /* 2082 ** Initialize the auxiliary information for a disk block. 2083 ** 2084 ** Return SQLITE_OK on success. If we see that the page does 2085 ** not contain a well-formed database page, then return 2086 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 2087 ** guarantee that the page is well-formed. It only shows that 2088 ** we failed to detect any corruption. 2089 */ 2090 static int btreeInitPage(MemPage *pPage){ 2091 u8 *data; /* Equal to pPage->aData */ 2092 BtShared *pBt; /* The main btree structure */ 2093 2094 assert( pPage->pBt!=0 ); 2095 assert( pPage->pBt->db!=0 ); 2096 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2097 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 2098 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 2099 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 2100 assert( pPage->isInit==0 ); 2101 2102 pBt = pPage->pBt; 2103 data = pPage->aData + pPage->hdrOffset; 2104 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 2105 ** the b-tree page type. */ 2106 if( decodeFlags(pPage, data[0]) ){ 2107 return SQLITE_CORRUPT_PAGE(pPage); 2108 } 2109 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2110 pPage->maskPage = (u16)(pBt->pageSize - 1); 2111 pPage->nOverflow = 0; 2112 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2113 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2114 pPage->aDataEnd = pPage->aData + pBt->pageSize; 2115 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2116 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2117 ** number of cells on the page. */ 2118 pPage->nCell = get2byte(&data[3]); 2119 if( pPage->nCell>MX_CELL(pBt) ){ 2120 /* To many cells for a single page. The page must be corrupt */ 2121 return SQLITE_CORRUPT_PAGE(pPage); 2122 } 2123 testcase( pPage->nCell==MX_CELL(pBt) ); 2124 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2125 ** possible for a root page of a table that contains no rows) then the 2126 ** offset to the cell content area will equal the page size minus the 2127 ** bytes of reserved space. */ 2128 assert( pPage->nCell>0 2129 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2130 || CORRUPT_DB ); 2131 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2132 pPage->isInit = 1; 2133 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2134 return btreeCellSizeCheck(pPage); 2135 } 2136 return SQLITE_OK; 2137 } 2138 2139 /* 2140 ** Set up a raw page so that it looks like a database page holding 2141 ** no entries. 2142 */ 2143 static void zeroPage(MemPage *pPage, int flags){ 2144 unsigned char *data = pPage->aData; 2145 BtShared *pBt = pPage->pBt; 2146 u8 hdr = pPage->hdrOffset; 2147 u16 first; 2148 2149 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB ); 2150 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2151 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2152 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2153 assert( sqlite3_mutex_held(pBt->mutex) ); 2154 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2155 memset(&data[hdr], 0, pBt->usableSize - hdr); 2156 } 2157 data[hdr] = (char)flags; 2158 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2159 memset(&data[hdr+1], 0, 4); 2160 data[hdr+7] = 0; 2161 put2byte(&data[hdr+5], pBt->usableSize); 2162 pPage->nFree = (u16)(pBt->usableSize - first); 2163 decodeFlags(pPage, flags); 2164 pPage->cellOffset = first; 2165 pPage->aDataEnd = &data[pBt->pageSize]; 2166 pPage->aCellIdx = &data[first]; 2167 pPage->aDataOfst = &data[pPage->childPtrSize]; 2168 pPage->nOverflow = 0; 2169 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2170 pPage->maskPage = (u16)(pBt->pageSize - 1); 2171 pPage->nCell = 0; 2172 pPage->isInit = 1; 2173 } 2174 2175 2176 /* 2177 ** Convert a DbPage obtained from the pager into a MemPage used by 2178 ** the btree layer. 2179 */ 2180 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2181 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2182 if( pgno!=pPage->pgno ){ 2183 pPage->aData = sqlite3PagerGetData(pDbPage); 2184 pPage->pDbPage = pDbPage; 2185 pPage->pBt = pBt; 2186 pPage->pgno = pgno; 2187 pPage->hdrOffset = pgno==1 ? 100 : 0; 2188 } 2189 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2190 return pPage; 2191 } 2192 2193 /* 2194 ** Get a page from the pager. Initialize the MemPage.pBt and 2195 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2196 ** 2197 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2198 ** about the content of the page at this time. So do not go to the disk 2199 ** to fetch the content. Just fill in the content with zeros for now. 2200 ** If in the future we call sqlite3PagerWrite() on this page, that 2201 ** means we have started to be concerned about content and the disk 2202 ** read should occur at that point. 2203 */ 2204 static int btreeGetPage( 2205 BtShared *pBt, /* The btree */ 2206 Pgno pgno, /* Number of the page to fetch */ 2207 MemPage **ppPage, /* Return the page in this parameter */ 2208 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2209 ){ 2210 int rc; 2211 DbPage *pDbPage; 2212 2213 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2214 assert( sqlite3_mutex_held(pBt->mutex) ); 2215 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2216 if( rc ) return rc; 2217 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2218 return SQLITE_OK; 2219 } 2220 2221 /* 2222 ** Retrieve a page from the pager cache. If the requested page is not 2223 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2224 ** MemPage.aData elements if needed. 2225 */ 2226 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2227 DbPage *pDbPage; 2228 assert( sqlite3_mutex_held(pBt->mutex) ); 2229 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2230 if( pDbPage ){ 2231 return btreePageFromDbPage(pDbPage, pgno, pBt); 2232 } 2233 return 0; 2234 } 2235 2236 /* 2237 ** Return the size of the database file in pages. If there is any kind of 2238 ** error, return ((unsigned int)-1). 2239 */ 2240 static Pgno btreePagecount(BtShared *pBt){ 2241 return pBt->nPage; 2242 } 2243 Pgno sqlite3BtreeLastPage(Btree *p){ 2244 assert( sqlite3BtreeHoldsMutex(p) ); 2245 return btreePagecount(p->pBt); 2246 } 2247 2248 /* 2249 ** Get a page from the pager and initialize it. 2250 ** 2251 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2252 ** call. Do additional sanity checking on the page in this case. 2253 ** And if the fetch fails, this routine must decrement pCur->iPage. 2254 ** 2255 ** The page is fetched as read-write unless pCur is not NULL and is 2256 ** a read-only cursor. 2257 ** 2258 ** If an error occurs, then *ppPage is undefined. It 2259 ** may remain unchanged, or it may be set to an invalid value. 2260 */ 2261 static int getAndInitPage( 2262 BtShared *pBt, /* The database file */ 2263 Pgno pgno, /* Number of the page to get */ 2264 MemPage **ppPage, /* Write the page pointer here */ 2265 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2266 int bReadOnly /* True for a read-only page */ 2267 ){ 2268 int rc; 2269 DbPage *pDbPage; 2270 assert( sqlite3_mutex_held(pBt->mutex) ); 2271 assert( pCur==0 || ppPage==&pCur->pPage ); 2272 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2273 assert( pCur==0 || pCur->iPage>0 ); 2274 2275 if( pgno>btreePagecount(pBt) ){ 2276 rc = SQLITE_CORRUPT_BKPT; 2277 goto getAndInitPage_error1; 2278 } 2279 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2280 if( rc ){ 2281 goto getAndInitPage_error1; 2282 } 2283 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2284 if( (*ppPage)->isInit==0 ){ 2285 btreePageFromDbPage(pDbPage, pgno, pBt); 2286 rc = btreeInitPage(*ppPage); 2287 if( rc!=SQLITE_OK ){ 2288 goto getAndInitPage_error2; 2289 } 2290 } 2291 assert( (*ppPage)->pgno==pgno || CORRUPT_DB ); 2292 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2293 2294 /* If obtaining a child page for a cursor, we must verify that the page is 2295 ** compatible with the root page. */ 2296 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2297 rc = SQLITE_CORRUPT_PGNO(pgno); 2298 goto getAndInitPage_error2; 2299 } 2300 return SQLITE_OK; 2301 2302 getAndInitPage_error2: 2303 releasePage(*ppPage); 2304 getAndInitPage_error1: 2305 if( pCur ){ 2306 pCur->iPage--; 2307 pCur->pPage = pCur->apPage[pCur->iPage]; 2308 } 2309 testcase( pgno==0 ); 2310 assert( pgno!=0 || rc!=SQLITE_OK ); 2311 return rc; 2312 } 2313 2314 /* 2315 ** Release a MemPage. This should be called once for each prior 2316 ** call to btreeGetPage. 2317 ** 2318 ** Page1 is a special case and must be released using releasePageOne(). 2319 */ 2320 static void releasePageNotNull(MemPage *pPage){ 2321 assert( pPage->aData ); 2322 assert( pPage->pBt ); 2323 assert( pPage->pDbPage!=0 ); 2324 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2325 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2326 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2327 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2328 } 2329 static void releasePage(MemPage *pPage){ 2330 if( pPage ) releasePageNotNull(pPage); 2331 } 2332 static void releasePageOne(MemPage *pPage){ 2333 assert( pPage!=0 ); 2334 assert( pPage->aData ); 2335 assert( pPage->pBt ); 2336 assert( pPage->pDbPage!=0 ); 2337 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2338 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2339 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2340 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2341 } 2342 2343 /* 2344 ** Get an unused page. 2345 ** 2346 ** This works just like btreeGetPage() with the addition: 2347 ** 2348 ** * If the page is already in use for some other purpose, immediately 2349 ** release it and return an SQLITE_CURRUPT error. 2350 ** * Make sure the isInit flag is clear 2351 */ 2352 static int btreeGetUnusedPage( 2353 BtShared *pBt, /* The btree */ 2354 Pgno pgno, /* Number of the page to fetch */ 2355 MemPage **ppPage, /* Return the page in this parameter */ 2356 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2357 ){ 2358 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2359 if( rc==SQLITE_OK ){ 2360 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2361 releasePage(*ppPage); 2362 *ppPage = 0; 2363 return SQLITE_CORRUPT_BKPT; 2364 } 2365 (*ppPage)->isInit = 0; 2366 }else{ 2367 *ppPage = 0; 2368 } 2369 return rc; 2370 } 2371 2372 2373 /* 2374 ** During a rollback, when the pager reloads information into the cache 2375 ** so that the cache is restored to its original state at the start of 2376 ** the transaction, for each page restored this routine is called. 2377 ** 2378 ** This routine needs to reset the extra data section at the end of the 2379 ** page to agree with the restored data. 2380 */ 2381 static void pageReinit(DbPage *pData){ 2382 MemPage *pPage; 2383 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2384 assert( sqlite3PagerPageRefcount(pData)>0 ); 2385 if( pPage->isInit ){ 2386 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2387 pPage->isInit = 0; 2388 if( sqlite3PagerPageRefcount(pData)>1 ){ 2389 /* pPage might not be a btree page; it might be an overflow page 2390 ** or ptrmap page or a free page. In those cases, the following 2391 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2392 ** But no harm is done by this. And it is very important that 2393 ** btreeInitPage() be called on every btree page so we make 2394 ** the call for every page that comes in for re-initing. */ 2395 btreeInitPage(pPage); 2396 } 2397 } 2398 } 2399 2400 /* 2401 ** Invoke the busy handler for a btree. 2402 */ 2403 static int btreeInvokeBusyHandler(void *pArg){ 2404 BtShared *pBt = (BtShared*)pArg; 2405 assert( pBt->db ); 2406 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2407 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 2408 } 2409 2410 /* 2411 ** Open a database file. 2412 ** 2413 ** zFilename is the name of the database file. If zFilename is NULL 2414 ** then an ephemeral database is created. The ephemeral database might 2415 ** be exclusively in memory, or it might use a disk-based memory cache. 2416 ** Either way, the ephemeral database will be automatically deleted 2417 ** when sqlite3BtreeClose() is called. 2418 ** 2419 ** If zFilename is ":memory:" then an in-memory database is created 2420 ** that is automatically destroyed when it is closed. 2421 ** 2422 ** The "flags" parameter is a bitmask that might contain bits like 2423 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2424 ** 2425 ** If the database is already opened in the same database connection 2426 ** and we are in shared cache mode, then the open will fail with an 2427 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2428 ** objects in the same database connection since doing so will lead 2429 ** to problems with locking. 2430 */ 2431 int sqlite3BtreeOpen( 2432 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2433 const char *zFilename, /* Name of the file containing the BTree database */ 2434 sqlite3 *db, /* Associated database handle */ 2435 Btree **ppBtree, /* Pointer to new Btree object written here */ 2436 int flags, /* Options */ 2437 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2438 ){ 2439 BtShared *pBt = 0; /* Shared part of btree structure */ 2440 Btree *p; /* Handle to return */ 2441 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2442 int rc = SQLITE_OK; /* Result code from this function */ 2443 u8 nReserve; /* Byte of unused space on each page */ 2444 unsigned char zDbHeader[100]; /* Database header content */ 2445 2446 /* True if opening an ephemeral, temporary database */ 2447 const int isTempDb = zFilename==0 || zFilename[0]==0; 2448 2449 /* Set the variable isMemdb to true for an in-memory database, or 2450 ** false for a file-based database. 2451 */ 2452 #ifdef SQLITE_OMIT_MEMORYDB 2453 const int isMemdb = 0; 2454 #else 2455 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2456 || (isTempDb && sqlite3TempInMemory(db)) 2457 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2458 #endif 2459 2460 assert( db!=0 ); 2461 assert( pVfs!=0 ); 2462 assert( sqlite3_mutex_held(db->mutex) ); 2463 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2464 2465 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2466 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2467 2468 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2469 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2470 2471 if( isMemdb ){ 2472 flags |= BTREE_MEMORY; 2473 } 2474 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2475 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2476 } 2477 p = sqlite3MallocZero(sizeof(Btree)); 2478 if( !p ){ 2479 return SQLITE_NOMEM_BKPT; 2480 } 2481 p->inTrans = TRANS_NONE; 2482 p->db = db; 2483 #ifndef SQLITE_OMIT_SHARED_CACHE 2484 p->lock.pBtree = p; 2485 p->lock.iTable = 1; 2486 #endif 2487 2488 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2489 /* 2490 ** If this Btree is a candidate for shared cache, try to find an 2491 ** existing BtShared object that we can share with 2492 */ 2493 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2494 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2495 int nFilename = sqlite3Strlen30(zFilename)+1; 2496 int nFullPathname = pVfs->mxPathname+1; 2497 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2498 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2499 2500 p->sharable = 1; 2501 if( !zFullPathname ){ 2502 sqlite3_free(p); 2503 return SQLITE_NOMEM_BKPT; 2504 } 2505 if( isMemdb ){ 2506 memcpy(zFullPathname, zFilename, nFilename); 2507 }else{ 2508 rc = sqlite3OsFullPathname(pVfs, zFilename, 2509 nFullPathname, zFullPathname); 2510 if( rc ){ 2511 if( rc==SQLITE_OK_SYMLINK ){ 2512 rc = SQLITE_OK; 2513 }else{ 2514 sqlite3_free(zFullPathname); 2515 sqlite3_free(p); 2516 return rc; 2517 } 2518 } 2519 } 2520 #if SQLITE_THREADSAFE 2521 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2522 sqlite3_mutex_enter(mutexOpen); 2523 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 2524 sqlite3_mutex_enter(mutexShared); 2525 #endif 2526 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2527 assert( pBt->nRef>0 ); 2528 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2529 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2530 int iDb; 2531 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2532 Btree *pExisting = db->aDb[iDb].pBt; 2533 if( pExisting && pExisting->pBt==pBt ){ 2534 sqlite3_mutex_leave(mutexShared); 2535 sqlite3_mutex_leave(mutexOpen); 2536 sqlite3_free(zFullPathname); 2537 sqlite3_free(p); 2538 return SQLITE_CONSTRAINT; 2539 } 2540 } 2541 p->pBt = pBt; 2542 pBt->nRef++; 2543 break; 2544 } 2545 } 2546 sqlite3_mutex_leave(mutexShared); 2547 sqlite3_free(zFullPathname); 2548 } 2549 #ifdef SQLITE_DEBUG 2550 else{ 2551 /* In debug mode, we mark all persistent databases as sharable 2552 ** even when they are not. This exercises the locking code and 2553 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2554 ** statements to find locking problems. 2555 */ 2556 p->sharable = 1; 2557 } 2558 #endif 2559 } 2560 #endif 2561 if( pBt==0 ){ 2562 /* 2563 ** The following asserts make sure that structures used by the btree are 2564 ** the right size. This is to guard against size changes that result 2565 ** when compiling on a different architecture. 2566 */ 2567 assert( sizeof(i64)==8 ); 2568 assert( sizeof(u64)==8 ); 2569 assert( sizeof(u32)==4 ); 2570 assert( sizeof(u16)==2 ); 2571 assert( sizeof(Pgno)==4 ); 2572 2573 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2574 if( pBt==0 ){ 2575 rc = SQLITE_NOMEM_BKPT; 2576 goto btree_open_out; 2577 } 2578 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2579 sizeof(MemPage), flags, vfsFlags, pageReinit); 2580 if( rc==SQLITE_OK ){ 2581 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2582 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2583 } 2584 if( rc!=SQLITE_OK ){ 2585 goto btree_open_out; 2586 } 2587 pBt->openFlags = (u8)flags; 2588 pBt->db = db; 2589 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2590 p->pBt = pBt; 2591 2592 pBt->pCursor = 0; 2593 pBt->pPage1 = 0; 2594 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2595 #if defined(SQLITE_SECURE_DELETE) 2596 pBt->btsFlags |= BTS_SECURE_DELETE; 2597 #elif defined(SQLITE_FAST_SECURE_DELETE) 2598 pBt->btsFlags |= BTS_OVERWRITE; 2599 #endif 2600 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2601 ** determined by the 2-byte integer located at an offset of 16 bytes from 2602 ** the beginning of the database file. */ 2603 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2604 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2605 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2606 pBt->pageSize = 0; 2607 #ifndef SQLITE_OMIT_AUTOVACUUM 2608 /* If the magic name ":memory:" will create an in-memory database, then 2609 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2610 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2611 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2612 ** regular file-name. In this case the auto-vacuum applies as per normal. 2613 */ 2614 if( zFilename && !isMemdb ){ 2615 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2616 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2617 } 2618 #endif 2619 nReserve = 0; 2620 }else{ 2621 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2622 ** determined by the one-byte unsigned integer found at an offset of 20 2623 ** into the database file header. */ 2624 nReserve = zDbHeader[20]; 2625 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2626 #ifndef SQLITE_OMIT_AUTOVACUUM 2627 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2628 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2629 #endif 2630 } 2631 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2632 if( rc ) goto btree_open_out; 2633 pBt->usableSize = pBt->pageSize - nReserve; 2634 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2635 2636 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2637 /* Add the new BtShared object to the linked list sharable BtShareds. 2638 */ 2639 pBt->nRef = 1; 2640 if( p->sharable ){ 2641 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2642 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) 2643 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2644 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2645 if( pBt->mutex==0 ){ 2646 rc = SQLITE_NOMEM_BKPT; 2647 goto btree_open_out; 2648 } 2649 } 2650 sqlite3_mutex_enter(mutexShared); 2651 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2652 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2653 sqlite3_mutex_leave(mutexShared); 2654 } 2655 #endif 2656 } 2657 2658 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2659 /* If the new Btree uses a sharable pBtShared, then link the new 2660 ** Btree into the list of all sharable Btrees for the same connection. 2661 ** The list is kept in ascending order by pBt address. 2662 */ 2663 if( p->sharable ){ 2664 int i; 2665 Btree *pSib; 2666 for(i=0; i<db->nDb; i++){ 2667 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2668 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2669 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2670 p->pNext = pSib; 2671 p->pPrev = 0; 2672 pSib->pPrev = p; 2673 }else{ 2674 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2675 pSib = pSib->pNext; 2676 } 2677 p->pNext = pSib->pNext; 2678 p->pPrev = pSib; 2679 if( p->pNext ){ 2680 p->pNext->pPrev = p; 2681 } 2682 pSib->pNext = p; 2683 } 2684 break; 2685 } 2686 } 2687 } 2688 #endif 2689 *ppBtree = p; 2690 2691 btree_open_out: 2692 if( rc!=SQLITE_OK ){ 2693 if( pBt && pBt->pPager ){ 2694 sqlite3PagerClose(pBt->pPager, 0); 2695 } 2696 sqlite3_free(pBt); 2697 sqlite3_free(p); 2698 *ppBtree = 0; 2699 }else{ 2700 sqlite3_file *pFile; 2701 2702 /* If the B-Tree was successfully opened, set the pager-cache size to the 2703 ** default value. Except, when opening on an existing shared pager-cache, 2704 ** do not change the pager-cache size. 2705 */ 2706 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2707 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); 2708 } 2709 2710 pFile = sqlite3PagerFile(pBt->pPager); 2711 if( pFile->pMethods ){ 2712 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2713 } 2714 } 2715 if( mutexOpen ){ 2716 assert( sqlite3_mutex_held(mutexOpen) ); 2717 sqlite3_mutex_leave(mutexOpen); 2718 } 2719 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2720 return rc; 2721 } 2722 2723 /* 2724 ** Decrement the BtShared.nRef counter. When it reaches zero, 2725 ** remove the BtShared structure from the sharing list. Return 2726 ** true if the BtShared.nRef counter reaches zero and return 2727 ** false if it is still positive. 2728 */ 2729 static int removeFromSharingList(BtShared *pBt){ 2730 #ifndef SQLITE_OMIT_SHARED_CACHE 2731 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) 2732 BtShared *pList; 2733 int removed = 0; 2734 2735 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2736 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 2737 sqlite3_mutex_enter(pMainMtx); 2738 pBt->nRef--; 2739 if( pBt->nRef<=0 ){ 2740 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2741 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2742 }else{ 2743 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2744 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2745 pList=pList->pNext; 2746 } 2747 if( ALWAYS(pList) ){ 2748 pList->pNext = pBt->pNext; 2749 } 2750 } 2751 if( SQLITE_THREADSAFE ){ 2752 sqlite3_mutex_free(pBt->mutex); 2753 } 2754 removed = 1; 2755 } 2756 sqlite3_mutex_leave(pMainMtx); 2757 return removed; 2758 #else 2759 return 1; 2760 #endif 2761 } 2762 2763 /* 2764 ** Make sure pBt->pTmpSpace points to an allocation of 2765 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2766 ** pointer. 2767 */ 2768 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ 2769 assert( pBt!=0 ); 2770 assert( pBt->pTmpSpace==0 ); 2771 /* This routine is called only by btreeCursor() when allocating the 2772 ** first write cursor for the BtShared object */ 2773 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); 2774 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2775 if( pBt->pTmpSpace==0 ){ 2776 BtCursor *pCur = pBt->pCursor; 2777 pBt->pCursor = pCur->pNext; /* Unlink the cursor */ 2778 memset(pCur, 0, sizeof(*pCur)); 2779 return SQLITE_NOMEM_BKPT; 2780 } 2781 2782 /* One of the uses of pBt->pTmpSpace is to format cells before 2783 ** inserting them into a leaf page (function fillInCell()). If 2784 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2785 ** by the various routines that manipulate binary cells. Which 2786 ** can mean that fillInCell() only initializes the first 2 or 3 2787 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2788 ** it into a database page. This is not actually a problem, but it 2789 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2790 ** data is passed to system call write(). So to avoid this error, 2791 ** zero the first 4 bytes of temp space here. 2792 ** 2793 ** Also: Provide four bytes of initialized space before the 2794 ** beginning of pTmpSpace as an area available to prepend the 2795 ** left-child pointer to the beginning of a cell. 2796 */ 2797 memset(pBt->pTmpSpace, 0, 8); 2798 pBt->pTmpSpace += 4; 2799 return SQLITE_OK; 2800 } 2801 2802 /* 2803 ** Free the pBt->pTmpSpace allocation 2804 */ 2805 static void freeTempSpace(BtShared *pBt){ 2806 if( pBt->pTmpSpace ){ 2807 pBt->pTmpSpace -= 4; 2808 sqlite3PageFree(pBt->pTmpSpace); 2809 pBt->pTmpSpace = 0; 2810 } 2811 } 2812 2813 /* 2814 ** Close an open database and invalidate all cursors. 2815 */ 2816 int sqlite3BtreeClose(Btree *p){ 2817 BtShared *pBt = p->pBt; 2818 2819 /* Close all cursors opened via this handle. */ 2820 assert( sqlite3_mutex_held(p->db->mutex) ); 2821 sqlite3BtreeEnter(p); 2822 2823 /* Verify that no other cursors have this Btree open */ 2824 #ifdef SQLITE_DEBUG 2825 { 2826 BtCursor *pCur = pBt->pCursor; 2827 while( pCur ){ 2828 BtCursor *pTmp = pCur; 2829 pCur = pCur->pNext; 2830 assert( pTmp->pBtree!=p ); 2831 2832 } 2833 } 2834 #endif 2835 2836 /* Rollback any active transaction and free the handle structure. 2837 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2838 ** this handle. 2839 */ 2840 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2841 sqlite3BtreeLeave(p); 2842 2843 /* If there are still other outstanding references to the shared-btree 2844 ** structure, return now. The remainder of this procedure cleans 2845 ** up the shared-btree. 2846 */ 2847 assert( p->wantToLock==0 && p->locked==0 ); 2848 if( !p->sharable || removeFromSharingList(pBt) ){ 2849 /* The pBt is no longer on the sharing list, so we can access 2850 ** it without having to hold the mutex. 2851 ** 2852 ** Clean out and delete the BtShared object. 2853 */ 2854 assert( !pBt->pCursor ); 2855 sqlite3PagerClose(pBt->pPager, p->db); 2856 if( pBt->xFreeSchema && pBt->pSchema ){ 2857 pBt->xFreeSchema(pBt->pSchema); 2858 } 2859 sqlite3DbFree(0, pBt->pSchema); 2860 freeTempSpace(pBt); 2861 sqlite3_free(pBt); 2862 } 2863 2864 #ifndef SQLITE_OMIT_SHARED_CACHE 2865 assert( p->wantToLock==0 ); 2866 assert( p->locked==0 ); 2867 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2868 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2869 #endif 2870 2871 sqlite3_free(p); 2872 return SQLITE_OK; 2873 } 2874 2875 /* 2876 ** Change the "soft" limit on the number of pages in the cache. 2877 ** Unused and unmodified pages will be recycled when the number of 2878 ** pages in the cache exceeds this soft limit. But the size of the 2879 ** cache is allowed to grow larger than this limit if it contains 2880 ** dirty pages or pages still in active use. 2881 */ 2882 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2883 BtShared *pBt = p->pBt; 2884 assert( sqlite3_mutex_held(p->db->mutex) ); 2885 sqlite3BtreeEnter(p); 2886 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2887 sqlite3BtreeLeave(p); 2888 return SQLITE_OK; 2889 } 2890 2891 /* 2892 ** Change the "spill" limit on the number of pages in the cache. 2893 ** If the number of pages exceeds this limit during a write transaction, 2894 ** the pager might attempt to "spill" pages to the journal early in 2895 ** order to free up memory. 2896 ** 2897 ** The value returned is the current spill size. If zero is passed 2898 ** as an argument, no changes are made to the spill size setting, so 2899 ** using mxPage of 0 is a way to query the current spill size. 2900 */ 2901 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2902 BtShared *pBt = p->pBt; 2903 int res; 2904 assert( sqlite3_mutex_held(p->db->mutex) ); 2905 sqlite3BtreeEnter(p); 2906 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2907 sqlite3BtreeLeave(p); 2908 return res; 2909 } 2910 2911 #if SQLITE_MAX_MMAP_SIZE>0 2912 /* 2913 ** Change the limit on the amount of the database file that may be 2914 ** memory mapped. 2915 */ 2916 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2917 BtShared *pBt = p->pBt; 2918 assert( sqlite3_mutex_held(p->db->mutex) ); 2919 sqlite3BtreeEnter(p); 2920 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2921 sqlite3BtreeLeave(p); 2922 return SQLITE_OK; 2923 } 2924 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2925 2926 /* 2927 ** Change the way data is synced to disk in order to increase or decrease 2928 ** how well the database resists damage due to OS crashes and power 2929 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2930 ** there is a high probability of damage) Level 2 is the default. There 2931 ** is a very low but non-zero probability of damage. Level 3 reduces the 2932 ** probability of damage to near zero but with a write performance reduction. 2933 */ 2934 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2935 int sqlite3BtreeSetPagerFlags( 2936 Btree *p, /* The btree to set the safety level on */ 2937 unsigned pgFlags /* Various PAGER_* flags */ 2938 ){ 2939 BtShared *pBt = p->pBt; 2940 assert( sqlite3_mutex_held(p->db->mutex) ); 2941 sqlite3BtreeEnter(p); 2942 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2943 sqlite3BtreeLeave(p); 2944 return SQLITE_OK; 2945 } 2946 #endif 2947 2948 /* 2949 ** Change the default pages size and the number of reserved bytes per page. 2950 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2951 ** without changing anything. 2952 ** 2953 ** The page size must be a power of 2 between 512 and 65536. If the page 2954 ** size supplied does not meet this constraint then the page size is not 2955 ** changed. 2956 ** 2957 ** Page sizes are constrained to be a power of two so that the region 2958 ** of the database file used for locking (beginning at PENDING_BYTE, 2959 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2960 ** at the beginning of a page. 2961 ** 2962 ** If parameter nReserve is less than zero, then the number of reserved 2963 ** bytes per page is left unchanged. 2964 ** 2965 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2966 ** and autovacuum mode can no longer be changed. 2967 */ 2968 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2969 int rc = SQLITE_OK; 2970 int x; 2971 BtShared *pBt = p->pBt; 2972 assert( nReserve>=0 && nReserve<=255 ); 2973 sqlite3BtreeEnter(p); 2974 pBt->nReserveWanted = nReserve; 2975 x = pBt->pageSize - pBt->usableSize; 2976 if( nReserve<x ) nReserve = x; 2977 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2978 sqlite3BtreeLeave(p); 2979 return SQLITE_READONLY; 2980 } 2981 assert( nReserve>=0 && nReserve<=255 ); 2982 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2983 ((pageSize-1)&pageSize)==0 ){ 2984 assert( (pageSize & 7)==0 ); 2985 assert( !pBt->pCursor ); 2986 if( nReserve>32 && pageSize==512 ) pageSize = 1024; 2987 pBt->pageSize = (u32)pageSize; 2988 freeTempSpace(pBt); 2989 } 2990 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2991 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2992 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2993 sqlite3BtreeLeave(p); 2994 return rc; 2995 } 2996 2997 /* 2998 ** Return the currently defined page size 2999 */ 3000 int sqlite3BtreeGetPageSize(Btree *p){ 3001 return p->pBt->pageSize; 3002 } 3003 3004 /* 3005 ** This function is similar to sqlite3BtreeGetReserve(), except that it 3006 ** may only be called if it is guaranteed that the b-tree mutex is already 3007 ** held. 3008 ** 3009 ** This is useful in one special case in the backup API code where it is 3010 ** known that the shared b-tree mutex is held, but the mutex on the 3011 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 3012 ** were to be called, it might collide with some other operation on the 3013 ** database handle that owns *p, causing undefined behavior. 3014 */ 3015 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 3016 int n; 3017 assert( sqlite3_mutex_held(p->pBt->mutex) ); 3018 n = p->pBt->pageSize - p->pBt->usableSize; 3019 return n; 3020 } 3021 3022 /* 3023 ** Return the number of bytes of space at the end of every page that 3024 ** are intentually left unused. This is the "reserved" space that is 3025 ** sometimes used by extensions. 3026 ** 3027 ** The value returned is the larger of the current reserve size and 3028 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. 3029 ** The amount of reserve can only grow - never shrink. 3030 */ 3031 int sqlite3BtreeGetRequestedReserve(Btree *p){ 3032 int n1, n2; 3033 sqlite3BtreeEnter(p); 3034 n1 = (int)p->pBt->nReserveWanted; 3035 n2 = sqlite3BtreeGetReserveNoMutex(p); 3036 sqlite3BtreeLeave(p); 3037 return n1>n2 ? n1 : n2; 3038 } 3039 3040 3041 /* 3042 ** Set the maximum page count for a database if mxPage is positive. 3043 ** No changes are made if mxPage is 0 or negative. 3044 ** Regardless of the value of mxPage, return the maximum page count. 3045 */ 3046 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ 3047 Pgno n; 3048 sqlite3BtreeEnter(p); 3049 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 3050 sqlite3BtreeLeave(p); 3051 return n; 3052 } 3053 3054 /* 3055 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 3056 ** 3057 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 3058 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 3059 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 3060 ** newFlag==(-1) No changes 3061 ** 3062 ** This routine acts as a query if newFlag is less than zero 3063 ** 3064 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 3065 ** freelist leaf pages are not written back to the database. Thus in-page 3066 ** deleted content is cleared, but freelist deleted content is not. 3067 ** 3068 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 3069 ** that freelist leaf pages are written back into the database, increasing 3070 ** the amount of disk I/O. 3071 */ 3072 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 3073 int b; 3074 if( p==0 ) return 0; 3075 sqlite3BtreeEnter(p); 3076 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 3077 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 3078 if( newFlag>=0 ){ 3079 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 3080 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 3081 } 3082 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 3083 sqlite3BtreeLeave(p); 3084 return b; 3085 } 3086 3087 /* 3088 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 3089 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 3090 ** is disabled. The default value for the auto-vacuum property is 3091 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 3092 */ 3093 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 3094 #ifdef SQLITE_OMIT_AUTOVACUUM 3095 return SQLITE_READONLY; 3096 #else 3097 BtShared *pBt = p->pBt; 3098 int rc = SQLITE_OK; 3099 u8 av = (u8)autoVacuum; 3100 3101 sqlite3BtreeEnter(p); 3102 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 3103 rc = SQLITE_READONLY; 3104 }else{ 3105 pBt->autoVacuum = av ?1:0; 3106 pBt->incrVacuum = av==2 ?1:0; 3107 } 3108 sqlite3BtreeLeave(p); 3109 return rc; 3110 #endif 3111 } 3112 3113 /* 3114 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3115 ** enabled 1 is returned. Otherwise 0. 3116 */ 3117 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3118 #ifdef SQLITE_OMIT_AUTOVACUUM 3119 return BTREE_AUTOVACUUM_NONE; 3120 #else 3121 int rc; 3122 sqlite3BtreeEnter(p); 3123 rc = ( 3124 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3125 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3126 BTREE_AUTOVACUUM_INCR 3127 ); 3128 sqlite3BtreeLeave(p); 3129 return rc; 3130 #endif 3131 } 3132 3133 /* 3134 ** If the user has not set the safety-level for this database connection 3135 ** using "PRAGMA synchronous", and if the safety-level is not already 3136 ** set to the value passed to this function as the second parameter, 3137 ** set it so. 3138 */ 3139 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3140 && !defined(SQLITE_OMIT_WAL) 3141 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3142 sqlite3 *db; 3143 Db *pDb; 3144 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3145 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3146 if( pDb->bSyncSet==0 3147 && pDb->safety_level!=safety_level 3148 && pDb!=&db->aDb[1] 3149 ){ 3150 pDb->safety_level = safety_level; 3151 sqlite3PagerSetFlags(pBt->pPager, 3152 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3153 } 3154 } 3155 } 3156 #else 3157 # define setDefaultSyncFlag(pBt,safety_level) 3158 #endif 3159 3160 /* Forward declaration */ 3161 static int newDatabase(BtShared*); 3162 3163 3164 /* 3165 ** Get a reference to pPage1 of the database file. This will 3166 ** also acquire a readlock on that file. 3167 ** 3168 ** SQLITE_OK is returned on success. If the file is not a 3169 ** well-formed database file, then SQLITE_CORRUPT is returned. 3170 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3171 ** is returned if we run out of memory. 3172 */ 3173 static int lockBtree(BtShared *pBt){ 3174 int rc; /* Result code from subfunctions */ 3175 MemPage *pPage1; /* Page 1 of the database file */ 3176 u32 nPage; /* Number of pages in the database */ 3177 u32 nPageFile = 0; /* Number of pages in the database file */ 3178 3179 assert( sqlite3_mutex_held(pBt->mutex) ); 3180 assert( pBt->pPage1==0 ); 3181 rc = sqlite3PagerSharedLock(pBt->pPager); 3182 if( rc!=SQLITE_OK ) return rc; 3183 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3184 if( rc!=SQLITE_OK ) return rc; 3185 3186 /* Do some checking to help insure the file we opened really is 3187 ** a valid database file. 3188 */ 3189 nPage = get4byte(28+(u8*)pPage1->aData); 3190 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3191 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3192 nPage = nPageFile; 3193 } 3194 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3195 nPage = 0; 3196 } 3197 if( nPage>0 ){ 3198 u32 pageSize; 3199 u32 usableSize; 3200 u8 *page1 = pPage1->aData; 3201 rc = SQLITE_NOTADB; 3202 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3203 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3204 ** 61 74 20 33 00. */ 3205 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3206 goto page1_init_failed; 3207 } 3208 3209 #ifdef SQLITE_OMIT_WAL 3210 if( page1[18]>1 ){ 3211 pBt->btsFlags |= BTS_READ_ONLY; 3212 } 3213 if( page1[19]>1 ){ 3214 goto page1_init_failed; 3215 } 3216 #else 3217 if( page1[18]>2 ){ 3218 pBt->btsFlags |= BTS_READ_ONLY; 3219 } 3220 if( page1[19]>2 ){ 3221 goto page1_init_failed; 3222 } 3223 3224 /* If the read version is set to 2, this database should be accessed 3225 ** in WAL mode. If the log is not already open, open it now. Then 3226 ** return SQLITE_OK and return without populating BtShared.pPage1. 3227 ** The caller detects this and calls this function again. This is 3228 ** required as the version of page 1 currently in the page1 buffer 3229 ** may not be the latest version - there may be a newer one in the log 3230 ** file. 3231 */ 3232 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3233 int isOpen = 0; 3234 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3235 if( rc!=SQLITE_OK ){ 3236 goto page1_init_failed; 3237 }else{ 3238 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3239 if( isOpen==0 ){ 3240 releasePageOne(pPage1); 3241 return SQLITE_OK; 3242 } 3243 } 3244 rc = SQLITE_NOTADB; 3245 }else{ 3246 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3247 } 3248 #endif 3249 3250 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3251 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3252 ** 3253 ** The original design allowed these amounts to vary, but as of 3254 ** version 3.6.0, we require them to be fixed. 3255 */ 3256 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3257 goto page1_init_failed; 3258 } 3259 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3260 ** determined by the 2-byte integer located at an offset of 16 bytes from 3261 ** the beginning of the database file. */ 3262 pageSize = (page1[16]<<8) | (page1[17]<<16); 3263 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3264 ** between 512 and 65536 inclusive. */ 3265 if( ((pageSize-1)&pageSize)!=0 3266 || pageSize>SQLITE_MAX_PAGE_SIZE 3267 || pageSize<=256 3268 ){ 3269 goto page1_init_failed; 3270 } 3271 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3272 assert( (pageSize & 7)==0 ); 3273 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3274 ** integer at offset 20 is the number of bytes of space at the end of 3275 ** each page to reserve for extensions. 3276 ** 3277 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3278 ** determined by the one-byte unsigned integer found at an offset of 20 3279 ** into the database file header. */ 3280 usableSize = pageSize - page1[20]; 3281 if( (u32)pageSize!=pBt->pageSize ){ 3282 /* After reading the first page of the database assuming a page size 3283 ** of BtShared.pageSize, we have discovered that the page-size is 3284 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3285 ** zero and return SQLITE_OK. The caller will call this function 3286 ** again with the correct page-size. 3287 */ 3288 releasePageOne(pPage1); 3289 pBt->usableSize = usableSize; 3290 pBt->pageSize = pageSize; 3291 freeTempSpace(pBt); 3292 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3293 pageSize-usableSize); 3294 return rc; 3295 } 3296 if( nPage>nPageFile ){ 3297 if( sqlite3WritableSchema(pBt->db)==0 ){ 3298 rc = SQLITE_CORRUPT_BKPT; 3299 goto page1_init_failed; 3300 }else{ 3301 nPage = nPageFile; 3302 } 3303 } 3304 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3305 ** be less than 480. In other words, if the page size is 512, then the 3306 ** reserved space size cannot exceed 32. */ 3307 if( usableSize<480 ){ 3308 goto page1_init_failed; 3309 } 3310 pBt->pageSize = pageSize; 3311 pBt->usableSize = usableSize; 3312 #ifndef SQLITE_OMIT_AUTOVACUUM 3313 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3314 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3315 #endif 3316 } 3317 3318 /* maxLocal is the maximum amount of payload to store locally for 3319 ** a cell. Make sure it is small enough so that at least minFanout 3320 ** cells can will fit on one page. We assume a 10-byte page header. 3321 ** Besides the payload, the cell must store: 3322 ** 2-byte pointer to the cell 3323 ** 4-byte child pointer 3324 ** 9-byte nKey value 3325 ** 4-byte nData value 3326 ** 4-byte overflow page pointer 3327 ** So a cell consists of a 2-byte pointer, a header which is as much as 3328 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3329 ** page pointer. 3330 */ 3331 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3332 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3333 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3334 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3335 if( pBt->maxLocal>127 ){ 3336 pBt->max1bytePayload = 127; 3337 }else{ 3338 pBt->max1bytePayload = (u8)pBt->maxLocal; 3339 } 3340 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3341 pBt->pPage1 = pPage1; 3342 pBt->nPage = nPage; 3343 return SQLITE_OK; 3344 3345 page1_init_failed: 3346 releasePageOne(pPage1); 3347 pBt->pPage1 = 0; 3348 return rc; 3349 } 3350 3351 #ifndef NDEBUG 3352 /* 3353 ** Return the number of cursors open on pBt. This is for use 3354 ** in assert() expressions, so it is only compiled if NDEBUG is not 3355 ** defined. 3356 ** 3357 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3358 ** false then all cursors are counted. 3359 ** 3360 ** For the purposes of this routine, a cursor is any cursor that 3361 ** is capable of reading or writing to the database. Cursors that 3362 ** have been tripped into the CURSOR_FAULT state are not counted. 3363 */ 3364 static int countValidCursors(BtShared *pBt, int wrOnly){ 3365 BtCursor *pCur; 3366 int r = 0; 3367 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3368 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3369 && pCur->eState!=CURSOR_FAULT ) r++; 3370 } 3371 return r; 3372 } 3373 #endif 3374 3375 /* 3376 ** If there are no outstanding cursors and we are not in the middle 3377 ** of a transaction but there is a read lock on the database, then 3378 ** this routine unrefs the first page of the database file which 3379 ** has the effect of releasing the read lock. 3380 ** 3381 ** If there is a transaction in progress, this routine is a no-op. 3382 */ 3383 static void unlockBtreeIfUnused(BtShared *pBt){ 3384 assert( sqlite3_mutex_held(pBt->mutex) ); 3385 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3386 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3387 MemPage *pPage1 = pBt->pPage1; 3388 assert( pPage1->aData ); 3389 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3390 pBt->pPage1 = 0; 3391 releasePageOne(pPage1); 3392 } 3393 } 3394 3395 /* 3396 ** If pBt points to an empty file then convert that empty file 3397 ** into a new empty database by initializing the first page of 3398 ** the database. 3399 */ 3400 static int newDatabase(BtShared *pBt){ 3401 MemPage *pP1; 3402 unsigned char *data; 3403 int rc; 3404 3405 assert( sqlite3_mutex_held(pBt->mutex) ); 3406 if( pBt->nPage>0 ){ 3407 return SQLITE_OK; 3408 } 3409 pP1 = pBt->pPage1; 3410 assert( pP1!=0 ); 3411 data = pP1->aData; 3412 rc = sqlite3PagerWrite(pP1->pDbPage); 3413 if( rc ) return rc; 3414 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3415 assert( sizeof(zMagicHeader)==16 ); 3416 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3417 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3418 data[18] = 1; 3419 data[19] = 1; 3420 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3421 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3422 data[21] = 64; 3423 data[22] = 32; 3424 data[23] = 32; 3425 memset(&data[24], 0, 100-24); 3426 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3427 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3428 #ifndef SQLITE_OMIT_AUTOVACUUM 3429 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3430 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3431 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3432 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3433 #endif 3434 pBt->nPage = 1; 3435 data[31] = 1; 3436 return SQLITE_OK; 3437 } 3438 3439 /* 3440 ** Initialize the first page of the database file (creating a database 3441 ** consisting of a single page and no schema objects). Return SQLITE_OK 3442 ** if successful, or an SQLite error code otherwise. 3443 */ 3444 int sqlite3BtreeNewDb(Btree *p){ 3445 int rc; 3446 sqlite3BtreeEnter(p); 3447 p->pBt->nPage = 0; 3448 rc = newDatabase(p->pBt); 3449 sqlite3BtreeLeave(p); 3450 return rc; 3451 } 3452 3453 /* 3454 ** Attempt to start a new transaction. A write-transaction 3455 ** is started if the second argument is nonzero, otherwise a read- 3456 ** transaction. If the second argument is 2 or more and exclusive 3457 ** transaction is started, meaning that no other process is allowed 3458 ** to access the database. A preexisting transaction may not be 3459 ** upgraded to exclusive by calling this routine a second time - the 3460 ** exclusivity flag only works for a new transaction. 3461 ** 3462 ** A write-transaction must be started before attempting any 3463 ** changes to the database. None of the following routines 3464 ** will work unless a transaction is started first: 3465 ** 3466 ** sqlite3BtreeCreateTable() 3467 ** sqlite3BtreeCreateIndex() 3468 ** sqlite3BtreeClearTable() 3469 ** sqlite3BtreeDropTable() 3470 ** sqlite3BtreeInsert() 3471 ** sqlite3BtreeDelete() 3472 ** sqlite3BtreeUpdateMeta() 3473 ** 3474 ** If an initial attempt to acquire the lock fails because of lock contention 3475 ** and the database was previously unlocked, then invoke the busy handler 3476 ** if there is one. But if there was previously a read-lock, do not 3477 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3478 ** returned when there is already a read-lock in order to avoid a deadlock. 3479 ** 3480 ** Suppose there are two processes A and B. A has a read lock and B has 3481 ** a reserved lock. B tries to promote to exclusive but is blocked because 3482 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3483 ** One or the other of the two processes must give way or there can be 3484 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3485 ** when A already has a read lock, we encourage A to give up and let B 3486 ** proceed. 3487 */ 3488 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3489 BtShared *pBt = p->pBt; 3490 Pager *pPager = pBt->pPager; 3491 int rc = SQLITE_OK; 3492 3493 sqlite3BtreeEnter(p); 3494 btreeIntegrity(p); 3495 3496 /* If the btree is already in a write-transaction, or it 3497 ** is already in a read-transaction and a read-transaction 3498 ** is requested, this is a no-op. 3499 */ 3500 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3501 goto trans_begun; 3502 } 3503 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3504 3505 if( (p->db->flags & SQLITE_ResetDatabase) 3506 && sqlite3PagerIsreadonly(pPager)==0 3507 ){ 3508 pBt->btsFlags &= ~BTS_READ_ONLY; 3509 } 3510 3511 /* Write transactions are not possible on a read-only database */ 3512 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3513 rc = SQLITE_READONLY; 3514 goto trans_begun; 3515 } 3516 3517 #ifndef SQLITE_OMIT_SHARED_CACHE 3518 { 3519 sqlite3 *pBlock = 0; 3520 /* If another database handle has already opened a write transaction 3521 ** on this shared-btree structure and a second write transaction is 3522 ** requested, return SQLITE_LOCKED. 3523 */ 3524 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3525 || (pBt->btsFlags & BTS_PENDING)!=0 3526 ){ 3527 pBlock = pBt->pWriter->db; 3528 }else if( wrflag>1 ){ 3529 BtLock *pIter; 3530 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3531 if( pIter->pBtree!=p ){ 3532 pBlock = pIter->pBtree->db; 3533 break; 3534 } 3535 } 3536 } 3537 if( pBlock ){ 3538 sqlite3ConnectionBlocked(p->db, pBlock); 3539 rc = SQLITE_LOCKED_SHAREDCACHE; 3540 goto trans_begun; 3541 } 3542 } 3543 #endif 3544 3545 /* Any read-only or read-write transaction implies a read-lock on 3546 ** page 1. So if some other shared-cache client already has a write-lock 3547 ** on page 1, the transaction cannot be opened. */ 3548 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 3549 if( SQLITE_OK!=rc ) goto trans_begun; 3550 3551 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3552 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3553 do { 3554 sqlite3PagerWalDb(pPager, p->db); 3555 3556 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3557 /* If transitioning from no transaction directly to a write transaction, 3558 ** block for the WRITER lock first if possible. */ 3559 if( pBt->pPage1==0 && wrflag ){ 3560 assert( pBt->inTransaction==TRANS_NONE ); 3561 rc = sqlite3PagerWalWriteLock(pPager, 1); 3562 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; 3563 } 3564 #endif 3565 3566 /* Call lockBtree() until either pBt->pPage1 is populated or 3567 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3568 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3569 ** reading page 1 it discovers that the page-size of the database 3570 ** file is not pBt->pageSize. In this case lockBtree() will update 3571 ** pBt->pageSize to the page-size of the file on disk. 3572 */ 3573 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3574 3575 if( rc==SQLITE_OK && wrflag ){ 3576 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3577 rc = SQLITE_READONLY; 3578 }else{ 3579 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); 3580 if( rc==SQLITE_OK ){ 3581 rc = newDatabase(pBt); 3582 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3583 /* if there was no transaction opened when this function was 3584 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3585 ** code to SQLITE_BUSY. */ 3586 rc = SQLITE_BUSY; 3587 } 3588 } 3589 } 3590 3591 if( rc!=SQLITE_OK ){ 3592 (void)sqlite3PagerWalWriteLock(pPager, 0); 3593 unlockBtreeIfUnused(pBt); 3594 } 3595 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3596 btreeInvokeBusyHandler(pBt) ); 3597 sqlite3PagerWalDb(pPager, 0); 3598 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3599 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3600 #endif 3601 3602 if( rc==SQLITE_OK ){ 3603 if( p->inTrans==TRANS_NONE ){ 3604 pBt->nTransaction++; 3605 #ifndef SQLITE_OMIT_SHARED_CACHE 3606 if( p->sharable ){ 3607 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3608 p->lock.eLock = READ_LOCK; 3609 p->lock.pNext = pBt->pLock; 3610 pBt->pLock = &p->lock; 3611 } 3612 #endif 3613 } 3614 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3615 if( p->inTrans>pBt->inTransaction ){ 3616 pBt->inTransaction = p->inTrans; 3617 } 3618 if( wrflag ){ 3619 MemPage *pPage1 = pBt->pPage1; 3620 #ifndef SQLITE_OMIT_SHARED_CACHE 3621 assert( !pBt->pWriter ); 3622 pBt->pWriter = p; 3623 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3624 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3625 #endif 3626 3627 /* If the db-size header field is incorrect (as it may be if an old 3628 ** client has been writing the database file), update it now. Doing 3629 ** this sooner rather than later means the database size can safely 3630 ** re-read the database size from page 1 if a savepoint or transaction 3631 ** rollback occurs within the transaction. 3632 */ 3633 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3634 rc = sqlite3PagerWrite(pPage1->pDbPage); 3635 if( rc==SQLITE_OK ){ 3636 put4byte(&pPage1->aData[28], pBt->nPage); 3637 } 3638 } 3639 } 3640 } 3641 3642 trans_begun: 3643 if( rc==SQLITE_OK ){ 3644 if( pSchemaVersion ){ 3645 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3646 } 3647 if( wrflag ){ 3648 /* This call makes sure that the pager has the correct number of 3649 ** open savepoints. If the second parameter is greater than 0 and 3650 ** the sub-journal is not already open, then it will be opened here. 3651 */ 3652 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); 3653 } 3654 } 3655 3656 btreeIntegrity(p); 3657 sqlite3BtreeLeave(p); 3658 return rc; 3659 } 3660 3661 #ifndef SQLITE_OMIT_AUTOVACUUM 3662 3663 /* 3664 ** Set the pointer-map entries for all children of page pPage. Also, if 3665 ** pPage contains cells that point to overflow pages, set the pointer 3666 ** map entries for the overflow pages as well. 3667 */ 3668 static int setChildPtrmaps(MemPage *pPage){ 3669 int i; /* Counter variable */ 3670 int nCell; /* Number of cells in page pPage */ 3671 int rc; /* Return code */ 3672 BtShared *pBt = pPage->pBt; 3673 Pgno pgno = pPage->pgno; 3674 3675 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3676 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3677 if( rc!=SQLITE_OK ) return rc; 3678 nCell = pPage->nCell; 3679 3680 for(i=0; i<nCell; i++){ 3681 u8 *pCell = findCell(pPage, i); 3682 3683 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3684 3685 if( !pPage->leaf ){ 3686 Pgno childPgno = get4byte(pCell); 3687 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3688 } 3689 } 3690 3691 if( !pPage->leaf ){ 3692 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3693 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3694 } 3695 3696 return rc; 3697 } 3698 3699 /* 3700 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3701 ** that it points to iTo. Parameter eType describes the type of pointer to 3702 ** be modified, as follows: 3703 ** 3704 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3705 ** page of pPage. 3706 ** 3707 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3708 ** page pointed to by one of the cells on pPage. 3709 ** 3710 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3711 ** overflow page in the list. 3712 */ 3713 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3714 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3715 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3716 if( eType==PTRMAP_OVERFLOW2 ){ 3717 /* The pointer is always the first 4 bytes of the page in this case. */ 3718 if( get4byte(pPage->aData)!=iFrom ){ 3719 return SQLITE_CORRUPT_PAGE(pPage); 3720 } 3721 put4byte(pPage->aData, iTo); 3722 }else{ 3723 int i; 3724 int nCell; 3725 int rc; 3726 3727 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3728 if( rc ) return rc; 3729 nCell = pPage->nCell; 3730 3731 for(i=0; i<nCell; i++){ 3732 u8 *pCell = findCell(pPage, i); 3733 if( eType==PTRMAP_OVERFLOW1 ){ 3734 CellInfo info; 3735 pPage->xParseCell(pPage, pCell, &info); 3736 if( info.nLocal<info.nPayload ){ 3737 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3738 return SQLITE_CORRUPT_PAGE(pPage); 3739 } 3740 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3741 put4byte(pCell+info.nSize-4, iTo); 3742 break; 3743 } 3744 } 3745 }else{ 3746 if( pCell+4 > pPage->aData+pPage->pBt->usableSize ){ 3747 return SQLITE_CORRUPT_PAGE(pPage); 3748 } 3749 if( get4byte(pCell)==iFrom ){ 3750 put4byte(pCell, iTo); 3751 break; 3752 } 3753 } 3754 } 3755 3756 if( i==nCell ){ 3757 if( eType!=PTRMAP_BTREE || 3758 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3759 return SQLITE_CORRUPT_PAGE(pPage); 3760 } 3761 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3762 } 3763 } 3764 return SQLITE_OK; 3765 } 3766 3767 3768 /* 3769 ** Move the open database page pDbPage to location iFreePage in the 3770 ** database. The pDbPage reference remains valid. 3771 ** 3772 ** The isCommit flag indicates that there is no need to remember that 3773 ** the journal needs to be sync()ed before database page pDbPage->pgno 3774 ** can be written to. The caller has already promised not to write to that 3775 ** page. 3776 */ 3777 static int relocatePage( 3778 BtShared *pBt, /* Btree */ 3779 MemPage *pDbPage, /* Open page to move */ 3780 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3781 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3782 Pgno iFreePage, /* The location to move pDbPage to */ 3783 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3784 ){ 3785 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3786 Pgno iDbPage = pDbPage->pgno; 3787 Pager *pPager = pBt->pPager; 3788 int rc; 3789 3790 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3791 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3792 assert( sqlite3_mutex_held(pBt->mutex) ); 3793 assert( pDbPage->pBt==pBt ); 3794 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3795 3796 /* Move page iDbPage from its current location to page number iFreePage */ 3797 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3798 iDbPage, iFreePage, iPtrPage, eType)); 3799 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3800 if( rc!=SQLITE_OK ){ 3801 return rc; 3802 } 3803 pDbPage->pgno = iFreePage; 3804 3805 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3806 ** that point to overflow pages. The pointer map entries for all these 3807 ** pages need to be changed. 3808 ** 3809 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3810 ** pointer to a subsequent overflow page. If this is the case, then 3811 ** the pointer map needs to be updated for the subsequent overflow page. 3812 */ 3813 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3814 rc = setChildPtrmaps(pDbPage); 3815 if( rc!=SQLITE_OK ){ 3816 return rc; 3817 } 3818 }else{ 3819 Pgno nextOvfl = get4byte(pDbPage->aData); 3820 if( nextOvfl!=0 ){ 3821 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3822 if( rc!=SQLITE_OK ){ 3823 return rc; 3824 } 3825 } 3826 } 3827 3828 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3829 ** that it points at iFreePage. Also fix the pointer map entry for 3830 ** iPtrPage. 3831 */ 3832 if( eType!=PTRMAP_ROOTPAGE ){ 3833 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3834 if( rc!=SQLITE_OK ){ 3835 return rc; 3836 } 3837 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3838 if( rc!=SQLITE_OK ){ 3839 releasePage(pPtrPage); 3840 return rc; 3841 } 3842 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3843 releasePage(pPtrPage); 3844 if( rc==SQLITE_OK ){ 3845 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3846 } 3847 } 3848 return rc; 3849 } 3850 3851 /* Forward declaration required by incrVacuumStep(). */ 3852 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3853 3854 /* 3855 ** Perform a single step of an incremental-vacuum. If successful, return 3856 ** SQLITE_OK. If there is no work to do (and therefore no point in 3857 ** calling this function again), return SQLITE_DONE. Or, if an error 3858 ** occurs, return some other error code. 3859 ** 3860 ** More specifically, this function attempts to re-organize the database so 3861 ** that the last page of the file currently in use is no longer in use. 3862 ** 3863 ** Parameter nFin is the number of pages that this database would contain 3864 ** were this function called until it returns SQLITE_DONE. 3865 ** 3866 ** If the bCommit parameter is non-zero, this function assumes that the 3867 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3868 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3869 ** operation, or false for an incremental vacuum. 3870 */ 3871 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3872 Pgno nFreeList; /* Number of pages still on the free-list */ 3873 int rc; 3874 3875 assert( sqlite3_mutex_held(pBt->mutex) ); 3876 assert( iLastPg>nFin ); 3877 3878 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3879 u8 eType; 3880 Pgno iPtrPage; 3881 3882 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3883 if( nFreeList==0 ){ 3884 return SQLITE_DONE; 3885 } 3886 3887 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3888 if( rc!=SQLITE_OK ){ 3889 return rc; 3890 } 3891 if( eType==PTRMAP_ROOTPAGE ){ 3892 return SQLITE_CORRUPT_BKPT; 3893 } 3894 3895 if( eType==PTRMAP_FREEPAGE ){ 3896 if( bCommit==0 ){ 3897 /* Remove the page from the files free-list. This is not required 3898 ** if bCommit is non-zero. In that case, the free-list will be 3899 ** truncated to zero after this function returns, so it doesn't 3900 ** matter if it still contains some garbage entries. 3901 */ 3902 Pgno iFreePg; 3903 MemPage *pFreePg; 3904 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3905 if( rc!=SQLITE_OK ){ 3906 return rc; 3907 } 3908 assert( iFreePg==iLastPg ); 3909 releasePage(pFreePg); 3910 } 3911 } else { 3912 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3913 MemPage *pLastPg; 3914 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3915 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3916 3917 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3918 if( rc!=SQLITE_OK ){ 3919 return rc; 3920 } 3921 3922 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3923 ** is swapped with the first free page pulled off the free list. 3924 ** 3925 ** On the other hand, if bCommit is greater than zero, then keep 3926 ** looping until a free-page located within the first nFin pages 3927 ** of the file is found. 3928 */ 3929 if( bCommit==0 ){ 3930 eMode = BTALLOC_LE; 3931 iNear = nFin; 3932 } 3933 do { 3934 MemPage *pFreePg; 3935 Pgno dbSize = btreePagecount(pBt); 3936 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3937 if( rc!=SQLITE_OK ){ 3938 releasePage(pLastPg); 3939 return rc; 3940 } 3941 releasePage(pFreePg); 3942 if( iFreePg>dbSize ){ 3943 releasePage(pLastPg); 3944 return SQLITE_CORRUPT_BKPT; 3945 } 3946 }while( bCommit && iFreePg>nFin ); 3947 assert( iFreePg<iLastPg ); 3948 3949 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3950 releasePage(pLastPg); 3951 if( rc!=SQLITE_OK ){ 3952 return rc; 3953 } 3954 } 3955 } 3956 3957 if( bCommit==0 ){ 3958 do { 3959 iLastPg--; 3960 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3961 pBt->bDoTruncate = 1; 3962 pBt->nPage = iLastPg; 3963 } 3964 return SQLITE_OK; 3965 } 3966 3967 /* 3968 ** The database opened by the first argument is an auto-vacuum database 3969 ** nOrig pages in size containing nFree free pages. Return the expected 3970 ** size of the database in pages following an auto-vacuum operation. 3971 */ 3972 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3973 int nEntry; /* Number of entries on one ptrmap page */ 3974 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3975 Pgno nFin; /* Return value */ 3976 3977 nEntry = pBt->usableSize/5; 3978 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3979 nFin = nOrig - nFree - nPtrmap; 3980 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3981 nFin--; 3982 } 3983 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3984 nFin--; 3985 } 3986 3987 return nFin; 3988 } 3989 3990 /* 3991 ** A write-transaction must be opened before calling this function. 3992 ** It performs a single unit of work towards an incremental vacuum. 3993 ** 3994 ** If the incremental vacuum is finished after this function has run, 3995 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3996 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3997 */ 3998 int sqlite3BtreeIncrVacuum(Btree *p){ 3999 int rc; 4000 BtShared *pBt = p->pBt; 4001 4002 sqlite3BtreeEnter(p); 4003 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 4004 if( !pBt->autoVacuum ){ 4005 rc = SQLITE_DONE; 4006 }else{ 4007 Pgno nOrig = btreePagecount(pBt); 4008 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 4009 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 4010 4011 if( nOrig<nFin || nFree>=nOrig ){ 4012 rc = SQLITE_CORRUPT_BKPT; 4013 }else if( nFree>0 ){ 4014 rc = saveAllCursors(pBt, 0, 0); 4015 if( rc==SQLITE_OK ){ 4016 invalidateAllOverflowCache(pBt); 4017 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 4018 } 4019 if( rc==SQLITE_OK ){ 4020 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4021 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 4022 } 4023 }else{ 4024 rc = SQLITE_DONE; 4025 } 4026 } 4027 sqlite3BtreeLeave(p); 4028 return rc; 4029 } 4030 4031 /* 4032 ** This routine is called prior to sqlite3PagerCommit when a transaction 4033 ** is committed for an auto-vacuum database. 4034 */ 4035 static int autoVacuumCommit(Btree *p){ 4036 int rc = SQLITE_OK; 4037 Pager *pPager; 4038 BtShared *pBt; 4039 sqlite3 *db; 4040 VVA_ONLY( int nRef ); 4041 4042 assert( p!=0 ); 4043 pBt = p->pBt; 4044 pPager = pBt->pPager; 4045 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) 4046 4047 assert( sqlite3_mutex_held(pBt->mutex) ); 4048 invalidateAllOverflowCache(pBt); 4049 assert(pBt->autoVacuum); 4050 if( !pBt->incrVacuum ){ 4051 Pgno nFin; /* Number of pages in database after autovacuuming */ 4052 Pgno nFree; /* Number of pages on the freelist initially */ 4053 Pgno nVac; /* Number of pages to vacuum */ 4054 Pgno iFree; /* The next page to be freed */ 4055 Pgno nOrig; /* Database size before freeing */ 4056 4057 nOrig = btreePagecount(pBt); 4058 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 4059 /* It is not possible to create a database for which the final page 4060 ** is either a pointer-map page or the pending-byte page. If one 4061 ** is encountered, this indicates corruption. 4062 */ 4063 return SQLITE_CORRUPT_BKPT; 4064 } 4065 4066 nFree = get4byte(&pBt->pPage1->aData[36]); 4067 db = p->db; 4068 if( db->xAutovacPages ){ 4069 int iDb; 4070 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ 4071 if( db->aDb[iDb].pBt==p ) break; 4072 } 4073 nVac = db->xAutovacPages( 4074 db->pAutovacPagesArg, 4075 db->aDb[iDb].zDbSName, 4076 nOrig, 4077 nFree, 4078 pBt->pageSize 4079 ); 4080 if( nVac>nFree ){ 4081 nVac = nFree; 4082 } 4083 if( nVac==0 ){ 4084 return SQLITE_OK; 4085 } 4086 }else{ 4087 nVac = nFree; 4088 } 4089 nFin = finalDbSize(pBt, nOrig, nVac); 4090 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 4091 if( nFin<nOrig ){ 4092 rc = saveAllCursors(pBt, 0, 0); 4093 } 4094 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 4095 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); 4096 } 4097 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 4098 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4099 if( nVac==nFree ){ 4100 put4byte(&pBt->pPage1->aData[32], 0); 4101 put4byte(&pBt->pPage1->aData[36], 0); 4102 } 4103 put4byte(&pBt->pPage1->aData[28], nFin); 4104 pBt->bDoTruncate = 1; 4105 pBt->nPage = nFin; 4106 } 4107 if( rc!=SQLITE_OK ){ 4108 sqlite3PagerRollback(pPager); 4109 } 4110 } 4111 4112 assert( nRef>=sqlite3PagerRefcount(pPager) ); 4113 return rc; 4114 } 4115 4116 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 4117 # define setChildPtrmaps(x) SQLITE_OK 4118 #endif 4119 4120 /* 4121 ** This routine does the first phase of a two-phase commit. This routine 4122 ** causes a rollback journal to be created (if it does not already exist) 4123 ** and populated with enough information so that if a power loss occurs 4124 ** the database can be restored to its original state by playing back 4125 ** the journal. Then the contents of the journal are flushed out to 4126 ** the disk. After the journal is safely on oxide, the changes to the 4127 ** database are written into the database file and flushed to oxide. 4128 ** At the end of this call, the rollback journal still exists on the 4129 ** disk and we are still holding all locks, so the transaction has not 4130 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 4131 ** commit process. 4132 ** 4133 ** This call is a no-op if no write-transaction is currently active on pBt. 4134 ** 4135 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to 4136 ** the name of a super-journal file that should be written into the 4137 ** individual journal file, or is NULL, indicating no super-journal file 4138 ** (single database transaction). 4139 ** 4140 ** When this is called, the super-journal should already have been 4141 ** created, populated with this journal pointer and synced to disk. 4142 ** 4143 ** Once this is routine has returned, the only thing required to commit 4144 ** the write-transaction for this database file is to delete the journal. 4145 */ 4146 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ 4147 int rc = SQLITE_OK; 4148 if( p->inTrans==TRANS_WRITE ){ 4149 BtShared *pBt = p->pBt; 4150 sqlite3BtreeEnter(p); 4151 #ifndef SQLITE_OMIT_AUTOVACUUM 4152 if( pBt->autoVacuum ){ 4153 rc = autoVacuumCommit(p); 4154 if( rc!=SQLITE_OK ){ 4155 sqlite3BtreeLeave(p); 4156 return rc; 4157 } 4158 } 4159 if( pBt->bDoTruncate ){ 4160 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 4161 } 4162 #endif 4163 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); 4164 sqlite3BtreeLeave(p); 4165 } 4166 return rc; 4167 } 4168 4169 /* 4170 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4171 ** at the conclusion of a transaction. 4172 */ 4173 static void btreeEndTransaction(Btree *p){ 4174 BtShared *pBt = p->pBt; 4175 sqlite3 *db = p->db; 4176 assert( sqlite3BtreeHoldsMutex(p) ); 4177 4178 #ifndef SQLITE_OMIT_AUTOVACUUM 4179 pBt->bDoTruncate = 0; 4180 #endif 4181 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4182 /* If there are other active statements that belong to this database 4183 ** handle, downgrade to a read-only transaction. The other statements 4184 ** may still be reading from the database. */ 4185 downgradeAllSharedCacheTableLocks(p); 4186 p->inTrans = TRANS_READ; 4187 }else{ 4188 /* If the handle had any kind of transaction open, decrement the 4189 ** transaction count of the shared btree. If the transaction count 4190 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4191 ** call below will unlock the pager. */ 4192 if( p->inTrans!=TRANS_NONE ){ 4193 clearAllSharedCacheTableLocks(p); 4194 pBt->nTransaction--; 4195 if( 0==pBt->nTransaction ){ 4196 pBt->inTransaction = TRANS_NONE; 4197 } 4198 } 4199 4200 /* Set the current transaction state to TRANS_NONE and unlock the 4201 ** pager if this call closed the only read or write transaction. */ 4202 p->inTrans = TRANS_NONE; 4203 unlockBtreeIfUnused(pBt); 4204 } 4205 4206 btreeIntegrity(p); 4207 } 4208 4209 /* 4210 ** Commit the transaction currently in progress. 4211 ** 4212 ** This routine implements the second phase of a 2-phase commit. The 4213 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4214 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4215 ** routine did all the work of writing information out to disk and flushing the 4216 ** contents so that they are written onto the disk platter. All this 4217 ** routine has to do is delete or truncate or zero the header in the 4218 ** the rollback journal (which causes the transaction to commit) and 4219 ** drop locks. 4220 ** 4221 ** Normally, if an error occurs while the pager layer is attempting to 4222 ** finalize the underlying journal file, this function returns an error and 4223 ** the upper layer will attempt a rollback. However, if the second argument 4224 ** is non-zero then this b-tree transaction is part of a multi-file 4225 ** transaction. In this case, the transaction has already been committed 4226 ** (by deleting a super-journal file) and the caller will ignore this 4227 ** functions return code. So, even if an error occurs in the pager layer, 4228 ** reset the b-tree objects internal state to indicate that the write 4229 ** transaction has been closed. This is quite safe, as the pager will have 4230 ** transitioned to the error state. 4231 ** 4232 ** This will release the write lock on the database file. If there 4233 ** are no active cursors, it also releases the read lock. 4234 */ 4235 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4236 4237 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4238 sqlite3BtreeEnter(p); 4239 btreeIntegrity(p); 4240 4241 /* If the handle has a write-transaction open, commit the shared-btrees 4242 ** transaction and set the shared state to TRANS_READ. 4243 */ 4244 if( p->inTrans==TRANS_WRITE ){ 4245 int rc; 4246 BtShared *pBt = p->pBt; 4247 assert( pBt->inTransaction==TRANS_WRITE ); 4248 assert( pBt->nTransaction>0 ); 4249 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4250 if( rc!=SQLITE_OK && bCleanup==0 ){ 4251 sqlite3BtreeLeave(p); 4252 return rc; 4253 } 4254 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4255 pBt->inTransaction = TRANS_READ; 4256 btreeClearHasContent(pBt); 4257 } 4258 4259 btreeEndTransaction(p); 4260 sqlite3BtreeLeave(p); 4261 return SQLITE_OK; 4262 } 4263 4264 /* 4265 ** Do both phases of a commit. 4266 */ 4267 int sqlite3BtreeCommit(Btree *p){ 4268 int rc; 4269 sqlite3BtreeEnter(p); 4270 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4271 if( rc==SQLITE_OK ){ 4272 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4273 } 4274 sqlite3BtreeLeave(p); 4275 return rc; 4276 } 4277 4278 /* 4279 ** This routine sets the state to CURSOR_FAULT and the error 4280 ** code to errCode for every cursor on any BtShared that pBtree 4281 ** references. Or if the writeOnly flag is set to 1, then only 4282 ** trip write cursors and leave read cursors unchanged. 4283 ** 4284 ** Every cursor is a candidate to be tripped, including cursors 4285 ** that belong to other database connections that happen to be 4286 ** sharing the cache with pBtree. 4287 ** 4288 ** This routine gets called when a rollback occurs. If the writeOnly 4289 ** flag is true, then only write-cursors need be tripped - read-only 4290 ** cursors save their current positions so that they may continue 4291 ** following the rollback. Or, if writeOnly is false, all cursors are 4292 ** tripped. In general, writeOnly is false if the transaction being 4293 ** rolled back modified the database schema. In this case b-tree root 4294 ** pages may be moved or deleted from the database altogether, making 4295 ** it unsafe for read cursors to continue. 4296 ** 4297 ** If the writeOnly flag is true and an error is encountered while 4298 ** saving the current position of a read-only cursor, all cursors, 4299 ** including all read-cursors are tripped. 4300 ** 4301 ** SQLITE_OK is returned if successful, or if an error occurs while 4302 ** saving a cursor position, an SQLite error code. 4303 */ 4304 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4305 BtCursor *p; 4306 int rc = SQLITE_OK; 4307 4308 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4309 if( pBtree ){ 4310 sqlite3BtreeEnter(pBtree); 4311 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4312 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4313 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4314 rc = saveCursorPosition(p); 4315 if( rc!=SQLITE_OK ){ 4316 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4317 break; 4318 } 4319 } 4320 }else{ 4321 sqlite3BtreeClearCursor(p); 4322 p->eState = CURSOR_FAULT; 4323 p->skipNext = errCode; 4324 } 4325 btreeReleaseAllCursorPages(p); 4326 } 4327 sqlite3BtreeLeave(pBtree); 4328 } 4329 return rc; 4330 } 4331 4332 /* 4333 ** Set the pBt->nPage field correctly, according to the current 4334 ** state of the database. Assume pBt->pPage1 is valid. 4335 */ 4336 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4337 int nPage = get4byte(&pPage1->aData[28]); 4338 testcase( nPage==0 ); 4339 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4340 testcase( pBt->nPage!=(u32)nPage ); 4341 pBt->nPage = nPage; 4342 } 4343 4344 /* 4345 ** Rollback the transaction in progress. 4346 ** 4347 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4348 ** Only write cursors are tripped if writeOnly is true but all cursors are 4349 ** tripped if writeOnly is false. Any attempt to use 4350 ** a tripped cursor will result in an error. 4351 ** 4352 ** This will release the write lock on the database file. If there 4353 ** are no active cursors, it also releases the read lock. 4354 */ 4355 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4356 int rc; 4357 BtShared *pBt = p->pBt; 4358 MemPage *pPage1; 4359 4360 assert( writeOnly==1 || writeOnly==0 ); 4361 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4362 sqlite3BtreeEnter(p); 4363 if( tripCode==SQLITE_OK ){ 4364 rc = tripCode = saveAllCursors(pBt, 0, 0); 4365 if( rc ) writeOnly = 0; 4366 }else{ 4367 rc = SQLITE_OK; 4368 } 4369 if( tripCode ){ 4370 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4371 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4372 if( rc2!=SQLITE_OK ) rc = rc2; 4373 } 4374 btreeIntegrity(p); 4375 4376 if( p->inTrans==TRANS_WRITE ){ 4377 int rc2; 4378 4379 assert( TRANS_WRITE==pBt->inTransaction ); 4380 rc2 = sqlite3PagerRollback(pBt->pPager); 4381 if( rc2!=SQLITE_OK ){ 4382 rc = rc2; 4383 } 4384 4385 /* The rollback may have destroyed the pPage1->aData value. So 4386 ** call btreeGetPage() on page 1 again to make 4387 ** sure pPage1->aData is set correctly. */ 4388 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4389 btreeSetNPage(pBt, pPage1); 4390 releasePageOne(pPage1); 4391 } 4392 assert( countValidCursors(pBt, 1)==0 ); 4393 pBt->inTransaction = TRANS_READ; 4394 btreeClearHasContent(pBt); 4395 } 4396 4397 btreeEndTransaction(p); 4398 sqlite3BtreeLeave(p); 4399 return rc; 4400 } 4401 4402 /* 4403 ** Start a statement subtransaction. The subtransaction can be rolled 4404 ** back independently of the main transaction. You must start a transaction 4405 ** before starting a subtransaction. The subtransaction is ended automatically 4406 ** if the main transaction commits or rolls back. 4407 ** 4408 ** Statement subtransactions are used around individual SQL statements 4409 ** that are contained within a BEGIN...COMMIT block. If a constraint 4410 ** error occurs within the statement, the effect of that one statement 4411 ** can be rolled back without having to rollback the entire transaction. 4412 ** 4413 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4414 ** value passed as the second parameter is the total number of savepoints, 4415 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4416 ** are no active savepoints and no other statement-transactions open, 4417 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4418 ** using the sqlite3BtreeSavepoint() function. 4419 */ 4420 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4421 int rc; 4422 BtShared *pBt = p->pBt; 4423 sqlite3BtreeEnter(p); 4424 assert( p->inTrans==TRANS_WRITE ); 4425 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4426 assert( iStatement>0 ); 4427 assert( iStatement>p->db->nSavepoint ); 4428 assert( pBt->inTransaction==TRANS_WRITE ); 4429 /* At the pager level, a statement transaction is a savepoint with 4430 ** an index greater than all savepoints created explicitly using 4431 ** SQL statements. It is illegal to open, release or rollback any 4432 ** such savepoints while the statement transaction savepoint is active. 4433 */ 4434 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4435 sqlite3BtreeLeave(p); 4436 return rc; 4437 } 4438 4439 /* 4440 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4441 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4442 ** savepoint identified by parameter iSavepoint, depending on the value 4443 ** of op. 4444 ** 4445 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4446 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4447 ** contents of the entire transaction are rolled back. This is different 4448 ** from a normal transaction rollback, as no locks are released and the 4449 ** transaction remains open. 4450 */ 4451 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4452 int rc = SQLITE_OK; 4453 if( p && p->inTrans==TRANS_WRITE ){ 4454 BtShared *pBt = p->pBt; 4455 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4456 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4457 sqlite3BtreeEnter(p); 4458 if( op==SAVEPOINT_ROLLBACK ){ 4459 rc = saveAllCursors(pBt, 0, 0); 4460 } 4461 if( rc==SQLITE_OK ){ 4462 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4463 } 4464 if( rc==SQLITE_OK ){ 4465 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4466 pBt->nPage = 0; 4467 } 4468 rc = newDatabase(pBt); 4469 btreeSetNPage(pBt, pBt->pPage1); 4470 4471 /* pBt->nPage might be zero if the database was corrupt when 4472 ** the transaction was started. Otherwise, it must be at least 1. */ 4473 assert( CORRUPT_DB || pBt->nPage>0 ); 4474 } 4475 sqlite3BtreeLeave(p); 4476 } 4477 return rc; 4478 } 4479 4480 /* 4481 ** Create a new cursor for the BTree whose root is on the page 4482 ** iTable. If a read-only cursor is requested, it is assumed that 4483 ** the caller already has at least a read-only transaction open 4484 ** on the database already. If a write-cursor is requested, then 4485 ** the caller is assumed to have an open write transaction. 4486 ** 4487 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4488 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4489 ** can be used for reading or for writing if other conditions for writing 4490 ** are also met. These are the conditions that must be met in order 4491 ** for writing to be allowed: 4492 ** 4493 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4494 ** 4495 ** 2: Other database connections that share the same pager cache 4496 ** but which are not in the READ_UNCOMMITTED state may not have 4497 ** cursors open with wrFlag==0 on the same table. Otherwise 4498 ** the changes made by this write cursor would be visible to 4499 ** the read cursors in the other database connection. 4500 ** 4501 ** 3: The database must be writable (not on read-only media) 4502 ** 4503 ** 4: There must be an active transaction. 4504 ** 4505 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4506 ** is set. If FORDELETE is set, that is a hint to the implementation that 4507 ** this cursor will only be used to seek to and delete entries of an index 4508 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4509 ** this implementation. But in a hypothetical alternative storage engine 4510 ** in which index entries are automatically deleted when corresponding table 4511 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4512 ** operations on this cursor can be no-ops and all READ operations can 4513 ** return a null row (2-bytes: 0x01 0x00). 4514 ** 4515 ** No checking is done to make sure that page iTable really is the 4516 ** root page of a b-tree. If it is not, then the cursor acquired 4517 ** will not work correctly. 4518 ** 4519 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4520 ** on pCur to initialize the memory space prior to invoking this routine. 4521 */ 4522 static int btreeCursor( 4523 Btree *p, /* The btree */ 4524 Pgno iTable, /* Root page of table to open */ 4525 int wrFlag, /* 1 to write. 0 read-only */ 4526 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4527 BtCursor *pCur /* Space for new cursor */ 4528 ){ 4529 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4530 BtCursor *pX; /* Looping over other all cursors */ 4531 4532 assert( sqlite3BtreeHoldsMutex(p) ); 4533 assert( wrFlag==0 4534 || wrFlag==BTREE_WRCSR 4535 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4536 ); 4537 4538 /* The following assert statements verify that if this is a sharable 4539 ** b-tree database, the connection is holding the required table locks, 4540 ** and that no other connection has any open cursor that conflicts with 4541 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4542 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4543 || iTable<1 ); 4544 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4545 4546 /* Assert that the caller has opened the required transaction. */ 4547 assert( p->inTrans>TRANS_NONE ); 4548 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4549 assert( pBt->pPage1 && pBt->pPage1->aData ); 4550 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4551 4552 if( iTable<=1 ){ 4553 if( iTable<1 ){ 4554 return SQLITE_CORRUPT_BKPT; 4555 }else if( btreePagecount(pBt)==0 ){ 4556 assert( wrFlag==0 ); 4557 iTable = 0; 4558 } 4559 } 4560 4561 /* Now that no other errors can occur, finish filling in the BtCursor 4562 ** variables and link the cursor into the BtShared list. */ 4563 pCur->pgnoRoot = iTable; 4564 pCur->iPage = -1; 4565 pCur->pKeyInfo = pKeyInfo; 4566 pCur->pBtree = p; 4567 pCur->pBt = pBt; 4568 pCur->curFlags = 0; 4569 /* If there are two or more cursors on the same btree, then all such 4570 ** cursors *must* have the BTCF_Multiple flag set. */ 4571 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4572 if( pX->pgnoRoot==iTable ){ 4573 pX->curFlags |= BTCF_Multiple; 4574 pCur->curFlags = BTCF_Multiple; 4575 } 4576 } 4577 pCur->eState = CURSOR_INVALID; 4578 pCur->pNext = pBt->pCursor; 4579 pBt->pCursor = pCur; 4580 if( wrFlag ){ 4581 pCur->curFlags |= BTCF_WriteFlag; 4582 pCur->curPagerFlags = 0; 4583 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); 4584 }else{ 4585 pCur->curPagerFlags = PAGER_GET_READONLY; 4586 } 4587 return SQLITE_OK; 4588 } 4589 static int btreeCursorWithLock( 4590 Btree *p, /* The btree */ 4591 Pgno iTable, /* Root page of table to open */ 4592 int wrFlag, /* 1 to write. 0 read-only */ 4593 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4594 BtCursor *pCur /* Space for new cursor */ 4595 ){ 4596 int rc; 4597 sqlite3BtreeEnter(p); 4598 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4599 sqlite3BtreeLeave(p); 4600 return rc; 4601 } 4602 int sqlite3BtreeCursor( 4603 Btree *p, /* The btree */ 4604 Pgno iTable, /* Root page of table to open */ 4605 int wrFlag, /* 1 to write. 0 read-only */ 4606 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4607 BtCursor *pCur /* Write new cursor here */ 4608 ){ 4609 if( p->sharable ){ 4610 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4611 }else{ 4612 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4613 } 4614 } 4615 4616 /* 4617 ** Return the size of a BtCursor object in bytes. 4618 ** 4619 ** This interfaces is needed so that users of cursors can preallocate 4620 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4621 ** to users so they cannot do the sizeof() themselves - they must call 4622 ** this routine. 4623 */ 4624 int sqlite3BtreeCursorSize(void){ 4625 return ROUND8(sizeof(BtCursor)); 4626 } 4627 4628 /* 4629 ** Initialize memory that will be converted into a BtCursor object. 4630 ** 4631 ** The simple approach here would be to memset() the entire object 4632 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4633 ** do not need to be zeroed and they are large, so we can save a lot 4634 ** of run-time by skipping the initialization of those elements. 4635 */ 4636 void sqlite3BtreeCursorZero(BtCursor *p){ 4637 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4638 } 4639 4640 /* 4641 ** Close a cursor. The read lock on the database file is released 4642 ** when the last cursor is closed. 4643 */ 4644 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4645 Btree *pBtree = pCur->pBtree; 4646 if( pBtree ){ 4647 BtShared *pBt = pCur->pBt; 4648 sqlite3BtreeEnter(pBtree); 4649 assert( pBt->pCursor!=0 ); 4650 if( pBt->pCursor==pCur ){ 4651 pBt->pCursor = pCur->pNext; 4652 }else{ 4653 BtCursor *pPrev = pBt->pCursor; 4654 do{ 4655 if( pPrev->pNext==pCur ){ 4656 pPrev->pNext = pCur->pNext; 4657 break; 4658 } 4659 pPrev = pPrev->pNext; 4660 }while( ALWAYS(pPrev) ); 4661 } 4662 btreeReleaseAllCursorPages(pCur); 4663 unlockBtreeIfUnused(pBt); 4664 sqlite3_free(pCur->aOverflow); 4665 sqlite3_free(pCur->pKey); 4666 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ 4667 /* Since the BtShared is not sharable, there is no need to 4668 ** worry about the missing sqlite3BtreeLeave() call here. */ 4669 assert( pBtree->sharable==0 ); 4670 sqlite3BtreeClose(pBtree); 4671 }else{ 4672 sqlite3BtreeLeave(pBtree); 4673 } 4674 pCur->pBtree = 0; 4675 } 4676 return SQLITE_OK; 4677 } 4678 4679 /* 4680 ** Make sure the BtCursor* given in the argument has a valid 4681 ** BtCursor.info structure. If it is not already valid, call 4682 ** btreeParseCell() to fill it in. 4683 ** 4684 ** BtCursor.info is a cache of the information in the current cell. 4685 ** Using this cache reduces the number of calls to btreeParseCell(). 4686 */ 4687 #ifndef NDEBUG 4688 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4689 if( a->nKey!=b->nKey ) return 0; 4690 if( a->pPayload!=b->pPayload ) return 0; 4691 if( a->nPayload!=b->nPayload ) return 0; 4692 if( a->nLocal!=b->nLocal ) return 0; 4693 if( a->nSize!=b->nSize ) return 0; 4694 return 1; 4695 } 4696 static void assertCellInfo(BtCursor *pCur){ 4697 CellInfo info; 4698 memset(&info, 0, sizeof(info)); 4699 btreeParseCell(pCur->pPage, pCur->ix, &info); 4700 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4701 } 4702 #else 4703 #define assertCellInfo(x) 4704 #endif 4705 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4706 if( pCur->info.nSize==0 ){ 4707 pCur->curFlags |= BTCF_ValidNKey; 4708 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4709 }else{ 4710 assertCellInfo(pCur); 4711 } 4712 } 4713 4714 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4715 /* 4716 ** Return true if the given BtCursor is valid. A valid cursor is one 4717 ** that is currently pointing to a row in a (non-empty) table. 4718 ** This is a verification routine is used only within assert() statements. 4719 */ 4720 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4721 return pCur && pCur->eState==CURSOR_VALID; 4722 } 4723 #endif /* NDEBUG */ 4724 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4725 assert( pCur!=0 ); 4726 return pCur->eState==CURSOR_VALID; 4727 } 4728 4729 /* 4730 ** Return the value of the integer key or "rowid" for a table btree. 4731 ** This routine is only valid for a cursor that is pointing into a 4732 ** ordinary table btree. If the cursor points to an index btree or 4733 ** is invalid, the result of this routine is undefined. 4734 */ 4735 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4736 assert( cursorHoldsMutex(pCur) ); 4737 assert( pCur->eState==CURSOR_VALID ); 4738 assert( pCur->curIntKey ); 4739 getCellInfo(pCur); 4740 return pCur->info.nKey; 4741 } 4742 4743 /* 4744 ** Pin or unpin a cursor. 4745 */ 4746 void sqlite3BtreeCursorPin(BtCursor *pCur){ 4747 assert( (pCur->curFlags & BTCF_Pinned)==0 ); 4748 pCur->curFlags |= BTCF_Pinned; 4749 } 4750 void sqlite3BtreeCursorUnpin(BtCursor *pCur){ 4751 assert( (pCur->curFlags & BTCF_Pinned)!=0 ); 4752 pCur->curFlags &= ~BTCF_Pinned; 4753 } 4754 4755 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4756 /* 4757 ** Return the offset into the database file for the start of the 4758 ** payload to which the cursor is pointing. 4759 */ 4760 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4761 assert( cursorHoldsMutex(pCur) ); 4762 assert( pCur->eState==CURSOR_VALID ); 4763 getCellInfo(pCur); 4764 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4765 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4766 } 4767 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4768 4769 /* 4770 ** Return the number of bytes of payload for the entry that pCur is 4771 ** currently pointing to. For table btrees, this will be the amount 4772 ** of data. For index btrees, this will be the size of the key. 4773 ** 4774 ** The caller must guarantee that the cursor is pointing to a non-NULL 4775 ** valid entry. In other words, the calling procedure must guarantee 4776 ** that the cursor has Cursor.eState==CURSOR_VALID. 4777 */ 4778 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4779 assert( cursorHoldsMutex(pCur) ); 4780 assert( pCur->eState==CURSOR_VALID ); 4781 getCellInfo(pCur); 4782 return pCur->info.nPayload; 4783 } 4784 4785 /* 4786 ** Return an upper bound on the size of any record for the table 4787 ** that the cursor is pointing into. 4788 ** 4789 ** This is an optimization. Everything will still work if this 4790 ** routine always returns 2147483647 (which is the largest record 4791 ** that SQLite can handle) or more. But returning a smaller value might 4792 ** prevent large memory allocations when trying to interpret a 4793 ** corrupt datrabase. 4794 ** 4795 ** The current implementation merely returns the size of the underlying 4796 ** database file. 4797 */ 4798 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4799 assert( cursorHoldsMutex(pCur) ); 4800 assert( pCur->eState==CURSOR_VALID ); 4801 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4802 } 4803 4804 /* 4805 ** Given the page number of an overflow page in the database (parameter 4806 ** ovfl), this function finds the page number of the next page in the 4807 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4808 ** pointer-map data instead of reading the content of page ovfl to do so. 4809 ** 4810 ** If an error occurs an SQLite error code is returned. Otherwise: 4811 ** 4812 ** The page number of the next overflow page in the linked list is 4813 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4814 ** list, *pPgnoNext is set to zero. 4815 ** 4816 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4817 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4818 ** reference. It is the responsibility of the caller to call releasePage() 4819 ** on *ppPage to free the reference. In no reference was obtained (because 4820 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4821 ** *ppPage is set to zero. 4822 */ 4823 static int getOverflowPage( 4824 BtShared *pBt, /* The database file */ 4825 Pgno ovfl, /* Current overflow page number */ 4826 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4827 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4828 ){ 4829 Pgno next = 0; 4830 MemPage *pPage = 0; 4831 int rc = SQLITE_OK; 4832 4833 assert( sqlite3_mutex_held(pBt->mutex) ); 4834 assert(pPgnoNext); 4835 4836 #ifndef SQLITE_OMIT_AUTOVACUUM 4837 /* Try to find the next page in the overflow list using the 4838 ** autovacuum pointer-map pages. Guess that the next page in 4839 ** the overflow list is page number (ovfl+1). If that guess turns 4840 ** out to be wrong, fall back to loading the data of page 4841 ** number ovfl to determine the next page number. 4842 */ 4843 if( pBt->autoVacuum ){ 4844 Pgno pgno; 4845 Pgno iGuess = ovfl+1; 4846 u8 eType; 4847 4848 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4849 iGuess++; 4850 } 4851 4852 if( iGuess<=btreePagecount(pBt) ){ 4853 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4854 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4855 next = iGuess; 4856 rc = SQLITE_DONE; 4857 } 4858 } 4859 } 4860 #endif 4861 4862 assert( next==0 || rc==SQLITE_DONE ); 4863 if( rc==SQLITE_OK ){ 4864 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4865 assert( rc==SQLITE_OK || pPage==0 ); 4866 if( rc==SQLITE_OK ){ 4867 next = get4byte(pPage->aData); 4868 } 4869 } 4870 4871 *pPgnoNext = next; 4872 if( ppPage ){ 4873 *ppPage = pPage; 4874 }else{ 4875 releasePage(pPage); 4876 } 4877 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4878 } 4879 4880 /* 4881 ** Copy data from a buffer to a page, or from a page to a buffer. 4882 ** 4883 ** pPayload is a pointer to data stored on database page pDbPage. 4884 ** If argument eOp is false, then nByte bytes of data are copied 4885 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4886 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4887 ** of data are copied from the buffer pBuf to pPayload. 4888 ** 4889 ** SQLITE_OK is returned on success, otherwise an error code. 4890 */ 4891 static int copyPayload( 4892 void *pPayload, /* Pointer to page data */ 4893 void *pBuf, /* Pointer to buffer */ 4894 int nByte, /* Number of bytes to copy */ 4895 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4896 DbPage *pDbPage /* Page containing pPayload */ 4897 ){ 4898 if( eOp ){ 4899 /* Copy data from buffer to page (a write operation) */ 4900 int rc = sqlite3PagerWrite(pDbPage); 4901 if( rc!=SQLITE_OK ){ 4902 return rc; 4903 } 4904 memcpy(pPayload, pBuf, nByte); 4905 }else{ 4906 /* Copy data from page to buffer (a read operation) */ 4907 memcpy(pBuf, pPayload, nByte); 4908 } 4909 return SQLITE_OK; 4910 } 4911 4912 /* 4913 ** This function is used to read or overwrite payload information 4914 ** for the entry that the pCur cursor is pointing to. The eOp 4915 ** argument is interpreted as follows: 4916 ** 4917 ** 0: The operation is a read. Populate the overflow cache. 4918 ** 1: The operation is a write. Populate the overflow cache. 4919 ** 4920 ** A total of "amt" bytes are read or written beginning at "offset". 4921 ** Data is read to or from the buffer pBuf. 4922 ** 4923 ** The content being read or written might appear on the main page 4924 ** or be scattered out on multiple overflow pages. 4925 ** 4926 ** If the current cursor entry uses one or more overflow pages 4927 ** this function may allocate space for and lazily populate 4928 ** the overflow page-list cache array (BtCursor.aOverflow). 4929 ** Subsequent calls use this cache to make seeking to the supplied offset 4930 ** more efficient. 4931 ** 4932 ** Once an overflow page-list cache has been allocated, it must be 4933 ** invalidated if some other cursor writes to the same table, or if 4934 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4935 ** mode, the following events may invalidate an overflow page-list cache. 4936 ** 4937 ** * An incremental vacuum, 4938 ** * A commit in auto_vacuum="full" mode, 4939 ** * Creating a table (may require moving an overflow page). 4940 */ 4941 static int accessPayload( 4942 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4943 u32 offset, /* Begin reading this far into payload */ 4944 u32 amt, /* Read this many bytes */ 4945 unsigned char *pBuf, /* Write the bytes into this buffer */ 4946 int eOp /* zero to read. non-zero to write. */ 4947 ){ 4948 unsigned char *aPayload; 4949 int rc = SQLITE_OK; 4950 int iIdx = 0; 4951 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4952 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4953 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4954 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4955 #endif 4956 4957 assert( pPage ); 4958 assert( eOp==0 || eOp==1 ); 4959 assert( pCur->eState==CURSOR_VALID ); 4960 if( pCur->ix>=pPage->nCell ){ 4961 return SQLITE_CORRUPT_PAGE(pPage); 4962 } 4963 assert( cursorHoldsMutex(pCur) ); 4964 4965 getCellInfo(pCur); 4966 aPayload = pCur->info.pPayload; 4967 assert( offset+amt <= pCur->info.nPayload ); 4968 4969 assert( aPayload > pPage->aData ); 4970 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4971 /* Trying to read or write past the end of the data is an error. The 4972 ** conditional above is really: 4973 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4974 ** but is recast into its current form to avoid integer overflow problems 4975 */ 4976 return SQLITE_CORRUPT_PAGE(pPage); 4977 } 4978 4979 /* Check if data must be read/written to/from the btree page itself. */ 4980 if( offset<pCur->info.nLocal ){ 4981 int a = amt; 4982 if( a+offset>pCur->info.nLocal ){ 4983 a = pCur->info.nLocal - offset; 4984 } 4985 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4986 offset = 0; 4987 pBuf += a; 4988 amt -= a; 4989 }else{ 4990 offset -= pCur->info.nLocal; 4991 } 4992 4993 4994 if( rc==SQLITE_OK && amt>0 ){ 4995 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4996 Pgno nextPage; 4997 4998 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4999 5000 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 5001 ** 5002 ** The aOverflow[] array is sized at one entry for each overflow page 5003 ** in the overflow chain. The page number of the first overflow page is 5004 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 5005 ** means "not yet known" (the cache is lazily populated). 5006 */ 5007 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 5008 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 5009 if( pCur->aOverflow==0 5010 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 5011 ){ 5012 Pgno *aNew = (Pgno*)sqlite3Realloc( 5013 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 5014 ); 5015 if( aNew==0 ){ 5016 return SQLITE_NOMEM_BKPT; 5017 }else{ 5018 pCur->aOverflow = aNew; 5019 } 5020 } 5021 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 5022 pCur->curFlags |= BTCF_ValidOvfl; 5023 }else{ 5024 /* If the overflow page-list cache has been allocated and the 5025 ** entry for the first required overflow page is valid, skip 5026 ** directly to it. 5027 */ 5028 if( pCur->aOverflow[offset/ovflSize] ){ 5029 iIdx = (offset/ovflSize); 5030 nextPage = pCur->aOverflow[iIdx]; 5031 offset = (offset%ovflSize); 5032 } 5033 } 5034 5035 assert( rc==SQLITE_OK && amt>0 ); 5036 while( nextPage ){ 5037 /* If required, populate the overflow page-list cache. */ 5038 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; 5039 assert( pCur->aOverflow[iIdx]==0 5040 || pCur->aOverflow[iIdx]==nextPage 5041 || CORRUPT_DB ); 5042 pCur->aOverflow[iIdx] = nextPage; 5043 5044 if( offset>=ovflSize ){ 5045 /* The only reason to read this page is to obtain the page 5046 ** number for the next page in the overflow chain. The page 5047 ** data is not required. So first try to lookup the overflow 5048 ** page-list cache, if any, then fall back to the getOverflowPage() 5049 ** function. 5050 */ 5051 assert( pCur->curFlags & BTCF_ValidOvfl ); 5052 assert( pCur->pBtree->db==pBt->db ); 5053 if( pCur->aOverflow[iIdx+1] ){ 5054 nextPage = pCur->aOverflow[iIdx+1]; 5055 }else{ 5056 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 5057 } 5058 offset -= ovflSize; 5059 }else{ 5060 /* Need to read this page properly. It contains some of the 5061 ** range of data that is being read (eOp==0) or written (eOp!=0). 5062 */ 5063 int a = amt; 5064 if( a + offset > ovflSize ){ 5065 a = ovflSize - offset; 5066 } 5067 5068 #ifdef SQLITE_DIRECT_OVERFLOW_READ 5069 /* If all the following are true: 5070 ** 5071 ** 1) this is a read operation, and 5072 ** 2) data is required from the start of this overflow page, and 5073 ** 3) there are no dirty pages in the page-cache 5074 ** 4) the database is file-backed, and 5075 ** 5) the page is not in the WAL file 5076 ** 6) at least 4 bytes have already been read into the output buffer 5077 ** 5078 ** then data can be read directly from the database file into the 5079 ** output buffer, bypassing the page-cache altogether. This speeds 5080 ** up loading large records that span many overflow pages. 5081 */ 5082 if( eOp==0 /* (1) */ 5083 && offset==0 /* (2) */ 5084 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 5085 && &pBuf[-4]>=pBufStart /* (6) */ 5086 ){ 5087 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 5088 u8 aSave[4]; 5089 u8 *aWrite = &pBuf[-4]; 5090 assert( aWrite>=pBufStart ); /* due to (6) */ 5091 memcpy(aSave, aWrite, 4); 5092 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 5093 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 5094 nextPage = get4byte(aWrite); 5095 memcpy(aWrite, aSave, 4); 5096 }else 5097 #endif 5098 5099 { 5100 DbPage *pDbPage; 5101 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 5102 (eOp==0 ? PAGER_GET_READONLY : 0) 5103 ); 5104 if( rc==SQLITE_OK ){ 5105 aPayload = sqlite3PagerGetData(pDbPage); 5106 nextPage = get4byte(aPayload); 5107 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 5108 sqlite3PagerUnref(pDbPage); 5109 offset = 0; 5110 } 5111 } 5112 amt -= a; 5113 if( amt==0 ) return rc; 5114 pBuf += a; 5115 } 5116 if( rc ) break; 5117 iIdx++; 5118 } 5119 } 5120 5121 if( rc==SQLITE_OK && amt>0 ){ 5122 /* Overflow chain ends prematurely */ 5123 return SQLITE_CORRUPT_PAGE(pPage); 5124 } 5125 return rc; 5126 } 5127 5128 /* 5129 ** Read part of the payload for the row at which that cursor pCur is currently 5130 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 5131 ** begins at "offset". 5132 ** 5133 ** pCur can be pointing to either a table or an index b-tree. 5134 ** If pointing to a table btree, then the content section is read. If 5135 ** pCur is pointing to an index b-tree then the key section is read. 5136 ** 5137 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 5138 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 5139 ** cursor might be invalid or might need to be restored before being read. 5140 ** 5141 ** Return SQLITE_OK on success or an error code if anything goes 5142 ** wrong. An error is returned if "offset+amt" is larger than 5143 ** the available payload. 5144 */ 5145 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5146 assert( cursorHoldsMutex(pCur) ); 5147 assert( pCur->eState==CURSOR_VALID ); 5148 assert( pCur->iPage>=0 && pCur->pPage ); 5149 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 5150 } 5151 5152 /* 5153 ** This variant of sqlite3BtreePayload() works even if the cursor has not 5154 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 5155 ** interface. 5156 */ 5157 #ifndef SQLITE_OMIT_INCRBLOB 5158 static SQLITE_NOINLINE int accessPayloadChecked( 5159 BtCursor *pCur, 5160 u32 offset, 5161 u32 amt, 5162 void *pBuf 5163 ){ 5164 int rc; 5165 if ( pCur->eState==CURSOR_INVALID ){ 5166 return SQLITE_ABORT; 5167 } 5168 assert( cursorOwnsBtShared(pCur) ); 5169 rc = btreeRestoreCursorPosition(pCur); 5170 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 5171 } 5172 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5173 if( pCur->eState==CURSOR_VALID ){ 5174 assert( cursorOwnsBtShared(pCur) ); 5175 return accessPayload(pCur, offset, amt, pBuf, 0); 5176 }else{ 5177 return accessPayloadChecked(pCur, offset, amt, pBuf); 5178 } 5179 } 5180 #endif /* SQLITE_OMIT_INCRBLOB */ 5181 5182 /* 5183 ** Return a pointer to payload information from the entry that the 5184 ** pCur cursor is pointing to. The pointer is to the beginning of 5185 ** the key if index btrees (pPage->intKey==0) and is the data for 5186 ** table btrees (pPage->intKey==1). The number of bytes of available 5187 ** key/data is written into *pAmt. If *pAmt==0, then the value 5188 ** returned will not be a valid pointer. 5189 ** 5190 ** This routine is an optimization. It is common for the entire key 5191 ** and data to fit on the local page and for there to be no overflow 5192 ** pages. When that is so, this routine can be used to access the 5193 ** key and data without making a copy. If the key and/or data spills 5194 ** onto overflow pages, then accessPayload() must be used to reassemble 5195 ** the key/data and copy it into a preallocated buffer. 5196 ** 5197 ** The pointer returned by this routine looks directly into the cached 5198 ** page of the database. The data might change or move the next time 5199 ** any btree routine is called. 5200 */ 5201 static const void *fetchPayload( 5202 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5203 u32 *pAmt /* Write the number of available bytes here */ 5204 ){ 5205 int amt; 5206 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5207 assert( pCur->eState==CURSOR_VALID ); 5208 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5209 assert( cursorOwnsBtShared(pCur) ); 5210 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5211 assert( pCur->info.nSize>0 ); 5212 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5213 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5214 amt = pCur->info.nLocal; 5215 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5216 /* There is too little space on the page for the expected amount 5217 ** of local content. Database must be corrupt. */ 5218 assert( CORRUPT_DB ); 5219 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5220 } 5221 *pAmt = (u32)amt; 5222 return (void*)pCur->info.pPayload; 5223 } 5224 5225 5226 /* 5227 ** For the entry that cursor pCur is point to, return as 5228 ** many bytes of the key or data as are available on the local 5229 ** b-tree page. Write the number of available bytes into *pAmt. 5230 ** 5231 ** The pointer returned is ephemeral. The key/data may move 5232 ** or be destroyed on the next call to any Btree routine, 5233 ** including calls from other threads against the same cache. 5234 ** Hence, a mutex on the BtShared should be held prior to calling 5235 ** this routine. 5236 ** 5237 ** These routines is used to get quick access to key and data 5238 ** in the common case where no overflow pages are used. 5239 */ 5240 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5241 return fetchPayload(pCur, pAmt); 5242 } 5243 5244 5245 /* 5246 ** Move the cursor down to a new child page. The newPgno argument is the 5247 ** page number of the child page to move to. 5248 ** 5249 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5250 ** the new child page does not match the flags field of the parent (i.e. 5251 ** if an intkey page appears to be the parent of a non-intkey page, or 5252 ** vice-versa). 5253 */ 5254 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5255 assert( cursorOwnsBtShared(pCur) ); 5256 assert( pCur->eState==CURSOR_VALID ); 5257 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5258 assert( pCur->iPage>=0 ); 5259 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5260 return SQLITE_CORRUPT_BKPT; 5261 } 5262 pCur->info.nSize = 0; 5263 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5264 pCur->aiIdx[pCur->iPage] = pCur->ix; 5265 pCur->apPage[pCur->iPage] = pCur->pPage; 5266 pCur->ix = 0; 5267 pCur->iPage++; 5268 return getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur, 5269 pCur->curPagerFlags); 5270 } 5271 5272 #ifdef SQLITE_DEBUG 5273 /* 5274 ** Page pParent is an internal (non-leaf) tree page. This function 5275 ** asserts that page number iChild is the left-child if the iIdx'th 5276 ** cell in page pParent. Or, if iIdx is equal to the total number of 5277 ** cells in pParent, that page number iChild is the right-child of 5278 ** the page. 5279 */ 5280 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5281 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5282 ** in a corrupt database */ 5283 assert( iIdx<=pParent->nCell ); 5284 if( iIdx==pParent->nCell ){ 5285 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5286 }else{ 5287 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5288 } 5289 } 5290 #else 5291 # define assertParentIndex(x,y,z) 5292 #endif 5293 5294 /* 5295 ** Move the cursor up to the parent page. 5296 ** 5297 ** pCur->idx is set to the cell index that contains the pointer 5298 ** to the page we are coming from. If we are coming from the 5299 ** right-most child page then pCur->idx is set to one more than 5300 ** the largest cell index. 5301 */ 5302 static void moveToParent(BtCursor *pCur){ 5303 MemPage *pLeaf; 5304 assert( cursorOwnsBtShared(pCur) ); 5305 assert( pCur->eState==CURSOR_VALID ); 5306 assert( pCur->iPage>0 ); 5307 assert( pCur->pPage ); 5308 assertParentIndex( 5309 pCur->apPage[pCur->iPage-1], 5310 pCur->aiIdx[pCur->iPage-1], 5311 pCur->pPage->pgno 5312 ); 5313 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5314 pCur->info.nSize = 0; 5315 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5316 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5317 pLeaf = pCur->pPage; 5318 pCur->pPage = pCur->apPage[--pCur->iPage]; 5319 releasePageNotNull(pLeaf); 5320 } 5321 5322 /* 5323 ** Move the cursor to point to the root page of its b-tree structure. 5324 ** 5325 ** If the table has a virtual root page, then the cursor is moved to point 5326 ** to the virtual root page instead of the actual root page. A table has a 5327 ** virtual root page when the actual root page contains no cells and a 5328 ** single child page. This can only happen with the table rooted at page 1. 5329 ** 5330 ** If the b-tree structure is empty, the cursor state is set to 5331 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5332 ** the cursor is set to point to the first cell located on the root 5333 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5334 ** 5335 ** If this function returns successfully, it may be assumed that the 5336 ** page-header flags indicate that the [virtual] root-page is the expected 5337 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5338 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5339 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5340 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5341 ** b-tree). 5342 */ 5343 static int moveToRoot(BtCursor *pCur){ 5344 MemPage *pRoot; 5345 int rc = SQLITE_OK; 5346 5347 assert( cursorOwnsBtShared(pCur) ); 5348 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5349 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5350 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5351 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5352 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5353 5354 if( pCur->iPage>=0 ){ 5355 if( pCur->iPage ){ 5356 releasePageNotNull(pCur->pPage); 5357 while( --pCur->iPage ){ 5358 releasePageNotNull(pCur->apPage[pCur->iPage]); 5359 } 5360 pRoot = pCur->pPage = pCur->apPage[0]; 5361 goto skip_init; 5362 } 5363 }else if( pCur->pgnoRoot==0 ){ 5364 pCur->eState = CURSOR_INVALID; 5365 return SQLITE_EMPTY; 5366 }else{ 5367 assert( pCur->iPage==(-1) ); 5368 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5369 if( pCur->eState==CURSOR_FAULT ){ 5370 assert( pCur->skipNext!=SQLITE_OK ); 5371 return pCur->skipNext; 5372 } 5373 sqlite3BtreeClearCursor(pCur); 5374 } 5375 rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage, 5376 0, pCur->curPagerFlags); 5377 if( rc!=SQLITE_OK ){ 5378 pCur->eState = CURSOR_INVALID; 5379 return rc; 5380 } 5381 pCur->iPage = 0; 5382 pCur->curIntKey = pCur->pPage->intKey; 5383 } 5384 pRoot = pCur->pPage; 5385 assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB ); 5386 5387 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5388 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5389 ** NULL, the caller expects a table b-tree. If this is not the case, 5390 ** return an SQLITE_CORRUPT error. 5391 ** 5392 ** Earlier versions of SQLite assumed that this test could not fail 5393 ** if the root page was already loaded when this function was called (i.e. 5394 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5395 ** in such a way that page pRoot is linked into a second b-tree table 5396 ** (or the freelist). */ 5397 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5398 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5399 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5400 } 5401 5402 skip_init: 5403 pCur->ix = 0; 5404 pCur->info.nSize = 0; 5405 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5406 5407 if( pRoot->nCell>0 ){ 5408 pCur->eState = CURSOR_VALID; 5409 }else if( !pRoot->leaf ){ 5410 Pgno subpage; 5411 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5412 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5413 pCur->eState = CURSOR_VALID; 5414 rc = moveToChild(pCur, subpage); 5415 }else{ 5416 pCur->eState = CURSOR_INVALID; 5417 rc = SQLITE_EMPTY; 5418 } 5419 return rc; 5420 } 5421 5422 /* 5423 ** Move the cursor down to the left-most leaf entry beneath the 5424 ** entry to which it is currently pointing. 5425 ** 5426 ** The left-most leaf is the one with the smallest key - the first 5427 ** in ascending order. 5428 */ 5429 static int moveToLeftmost(BtCursor *pCur){ 5430 Pgno pgno; 5431 int rc = SQLITE_OK; 5432 MemPage *pPage; 5433 5434 assert( cursorOwnsBtShared(pCur) ); 5435 assert( pCur->eState==CURSOR_VALID ); 5436 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5437 assert( pCur->ix<pPage->nCell ); 5438 pgno = get4byte(findCell(pPage, pCur->ix)); 5439 rc = moveToChild(pCur, pgno); 5440 } 5441 return rc; 5442 } 5443 5444 /* 5445 ** Move the cursor down to the right-most leaf entry beneath the 5446 ** page to which it is currently pointing. Notice the difference 5447 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5448 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5449 ** finds the right-most entry beneath the *page*. 5450 ** 5451 ** The right-most entry is the one with the largest key - the last 5452 ** key in ascending order. 5453 */ 5454 static int moveToRightmost(BtCursor *pCur){ 5455 Pgno pgno; 5456 int rc = SQLITE_OK; 5457 MemPage *pPage = 0; 5458 5459 assert( cursorOwnsBtShared(pCur) ); 5460 assert( pCur->eState==CURSOR_VALID ); 5461 while( !(pPage = pCur->pPage)->leaf ){ 5462 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5463 pCur->ix = pPage->nCell; 5464 rc = moveToChild(pCur, pgno); 5465 if( rc ) return rc; 5466 } 5467 pCur->ix = pPage->nCell-1; 5468 assert( pCur->info.nSize==0 ); 5469 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5470 return SQLITE_OK; 5471 } 5472 5473 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5474 ** on success. Set *pRes to 0 if the cursor actually points to something 5475 ** or set *pRes to 1 if the table is empty. 5476 */ 5477 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5478 int rc; 5479 5480 assert( cursorOwnsBtShared(pCur) ); 5481 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5482 rc = moveToRoot(pCur); 5483 if( rc==SQLITE_OK ){ 5484 assert( pCur->pPage->nCell>0 ); 5485 *pRes = 0; 5486 rc = moveToLeftmost(pCur); 5487 }else if( rc==SQLITE_EMPTY ){ 5488 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5489 *pRes = 1; 5490 rc = SQLITE_OK; 5491 } 5492 return rc; 5493 } 5494 5495 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5496 ** on success. Set *pRes to 0 if the cursor actually points to something 5497 ** or set *pRes to 1 if the table is empty. 5498 */ 5499 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5500 int rc; 5501 5502 assert( cursorOwnsBtShared(pCur) ); 5503 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5504 5505 /* If the cursor already points to the last entry, this is a no-op. */ 5506 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5507 #ifdef SQLITE_DEBUG 5508 /* This block serves to assert() that the cursor really does point 5509 ** to the last entry in the b-tree. */ 5510 int ii; 5511 for(ii=0; ii<pCur->iPage; ii++){ 5512 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5513 } 5514 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); 5515 testcase( pCur->ix!=pCur->pPage->nCell-1 ); 5516 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ 5517 assert( pCur->pPage->leaf ); 5518 #endif 5519 *pRes = 0; 5520 return SQLITE_OK; 5521 } 5522 5523 rc = moveToRoot(pCur); 5524 if( rc==SQLITE_OK ){ 5525 assert( pCur->eState==CURSOR_VALID ); 5526 *pRes = 0; 5527 rc = moveToRightmost(pCur); 5528 if( rc==SQLITE_OK ){ 5529 pCur->curFlags |= BTCF_AtLast; 5530 }else{ 5531 pCur->curFlags &= ~BTCF_AtLast; 5532 } 5533 }else if( rc==SQLITE_EMPTY ){ 5534 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5535 *pRes = 1; 5536 rc = SQLITE_OK; 5537 } 5538 return rc; 5539 } 5540 5541 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) 5542 ** table near the key intKey. Return a success code. 5543 ** 5544 ** If an exact match is not found, then the cursor is always 5545 ** left pointing at a leaf page which would hold the entry if it 5546 ** were present. The cursor might point to an entry that comes 5547 ** before or after the key. 5548 ** 5549 ** An integer is written into *pRes which is the result of 5550 ** comparing the key with the entry to which the cursor is 5551 ** pointing. The meaning of the integer written into 5552 ** *pRes is as follows: 5553 ** 5554 ** *pRes<0 The cursor is left pointing at an entry that 5555 ** is smaller than intKey or if the table is empty 5556 ** and the cursor is therefore left point to nothing. 5557 ** 5558 ** *pRes==0 The cursor is left pointing at an entry that 5559 ** exactly matches intKey. 5560 ** 5561 ** *pRes>0 The cursor is left pointing at an entry that 5562 ** is larger than intKey. 5563 */ 5564 int sqlite3BtreeTableMoveto( 5565 BtCursor *pCur, /* The cursor to be moved */ 5566 i64 intKey, /* The table key */ 5567 int biasRight, /* If true, bias the search to the high end */ 5568 int *pRes /* Write search results here */ 5569 ){ 5570 int rc; 5571 5572 assert( cursorOwnsBtShared(pCur) ); 5573 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5574 assert( pRes ); 5575 assert( pCur->pKeyInfo==0 ); 5576 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); 5577 5578 /* If the cursor is already positioned at the point we are trying 5579 ** to move to, then just return without doing any work */ 5580 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ 5581 if( pCur->info.nKey==intKey ){ 5582 *pRes = 0; 5583 return SQLITE_OK; 5584 } 5585 if( pCur->info.nKey<intKey ){ 5586 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5587 *pRes = -1; 5588 return SQLITE_OK; 5589 } 5590 /* If the requested key is one more than the previous key, then 5591 ** try to get there using sqlite3BtreeNext() rather than a full 5592 ** binary search. This is an optimization only. The correct answer 5593 ** is still obtained without this case, only a little more slowely */ 5594 if( pCur->info.nKey+1==intKey ){ 5595 *pRes = 0; 5596 rc = sqlite3BtreeNext(pCur, 0); 5597 if( rc==SQLITE_OK ){ 5598 getCellInfo(pCur); 5599 if( pCur->info.nKey==intKey ){ 5600 return SQLITE_OK; 5601 } 5602 }else if( rc!=SQLITE_DONE ){ 5603 return rc; 5604 } 5605 } 5606 } 5607 } 5608 5609 #ifdef SQLITE_DEBUG 5610 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5611 #endif 5612 5613 rc = moveToRoot(pCur); 5614 if( rc ){ 5615 if( rc==SQLITE_EMPTY ){ 5616 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5617 *pRes = -1; 5618 return SQLITE_OK; 5619 } 5620 return rc; 5621 } 5622 assert( pCur->pPage ); 5623 assert( pCur->pPage->isInit ); 5624 assert( pCur->eState==CURSOR_VALID ); 5625 assert( pCur->pPage->nCell > 0 ); 5626 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5627 assert( pCur->curIntKey ); 5628 5629 for(;;){ 5630 int lwr, upr, idx, c; 5631 Pgno chldPg; 5632 MemPage *pPage = pCur->pPage; 5633 u8 *pCell; /* Pointer to current cell in pPage */ 5634 5635 /* pPage->nCell must be greater than zero. If this is the root-page 5636 ** the cursor would have been INVALID above and this for(;;) loop 5637 ** not run. If this is not the root-page, then the moveToChild() routine 5638 ** would have already detected db corruption. Similarly, pPage must 5639 ** be the right kind (index or table) of b-tree page. Otherwise 5640 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5641 assert( pPage->nCell>0 ); 5642 assert( pPage->intKey ); 5643 lwr = 0; 5644 upr = pPage->nCell-1; 5645 assert( biasRight==0 || biasRight==1 ); 5646 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5647 for(;;){ 5648 i64 nCellKey; 5649 pCell = findCellPastPtr(pPage, idx); 5650 if( pPage->intKeyLeaf ){ 5651 while( 0x80 <= *(pCell++) ){ 5652 if( pCell>=pPage->aDataEnd ){ 5653 return SQLITE_CORRUPT_PAGE(pPage); 5654 } 5655 } 5656 } 5657 getVarint(pCell, (u64*)&nCellKey); 5658 if( nCellKey<intKey ){ 5659 lwr = idx+1; 5660 if( lwr>upr ){ c = -1; break; } 5661 }else if( nCellKey>intKey ){ 5662 upr = idx-1; 5663 if( lwr>upr ){ c = +1; break; } 5664 }else{ 5665 assert( nCellKey==intKey ); 5666 pCur->ix = (u16)idx; 5667 if( !pPage->leaf ){ 5668 lwr = idx; 5669 goto moveto_table_next_layer; 5670 }else{ 5671 pCur->curFlags |= BTCF_ValidNKey; 5672 pCur->info.nKey = nCellKey; 5673 pCur->info.nSize = 0; 5674 *pRes = 0; 5675 return SQLITE_OK; 5676 } 5677 } 5678 assert( lwr+upr>=0 ); 5679 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5680 } 5681 assert( lwr==upr+1 || !pPage->leaf ); 5682 assert( pPage->isInit ); 5683 if( pPage->leaf ){ 5684 assert( pCur->ix<pCur->pPage->nCell ); 5685 pCur->ix = (u16)idx; 5686 *pRes = c; 5687 rc = SQLITE_OK; 5688 goto moveto_table_finish; 5689 } 5690 moveto_table_next_layer: 5691 if( lwr>=pPage->nCell ){ 5692 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5693 }else{ 5694 chldPg = get4byte(findCell(pPage, lwr)); 5695 } 5696 pCur->ix = (u16)lwr; 5697 rc = moveToChild(pCur, chldPg); 5698 if( rc ) break; 5699 } 5700 moveto_table_finish: 5701 pCur->info.nSize = 0; 5702 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5703 return rc; 5704 } 5705 5706 /* 5707 ** Compare the "idx"-th cell on the page the cursor pCur is currently 5708 ** pointing to to pIdxKey using xRecordCompare. Return negative or 5709 ** zero if the cell is less than or equal pIdxKey. Return positive 5710 ** if unknown. 5711 ** 5712 ** Return value negative: Cell at pCur[idx] less than pIdxKey 5713 ** 5714 ** Return value is zero: Cell at pCur[idx] equals pIdxKey 5715 ** 5716 ** Return value positive: Nothing is known about the relationship 5717 ** of the cell at pCur[idx] and pIdxKey. 5718 ** 5719 ** This routine is part of an optimization. It is always safe to return 5720 ** a positive value as that will cause the optimization to be skipped. 5721 */ 5722 static int indexCellCompare( 5723 BtCursor *pCur, 5724 int idx, 5725 UnpackedRecord *pIdxKey, 5726 RecordCompare xRecordCompare 5727 ){ 5728 MemPage *pPage = pCur->pPage; 5729 int c; 5730 int nCell; /* Size of the pCell cell in bytes */ 5731 u8 *pCell = findCellPastPtr(pPage, idx); 5732 5733 nCell = pCell[0]; 5734 if( nCell<=pPage->max1bytePayload ){ 5735 /* This branch runs if the record-size field of the cell is a 5736 ** single byte varint and the record fits entirely on the main 5737 ** b-tree page. */ 5738 testcase( pCell+nCell+1==pPage->aDataEnd ); 5739 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5740 }else if( !(pCell[1] & 0x80) 5741 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5742 ){ 5743 /* The record-size field is a 2 byte varint and the record 5744 ** fits entirely on the main b-tree page. */ 5745 testcase( pCell+nCell+2==pPage->aDataEnd ); 5746 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5747 }else{ 5748 /* If the record extends into overflow pages, do not attempt 5749 ** the optimization. */ 5750 c = 99; 5751 } 5752 return c; 5753 } 5754 5755 /* 5756 ** Return true (non-zero) if pCur is current pointing to the last 5757 ** page of a table. 5758 */ 5759 static int cursorOnLastPage(BtCursor *pCur){ 5760 int i; 5761 assert( pCur->eState==CURSOR_VALID ); 5762 for(i=0; i<pCur->iPage; i++){ 5763 MemPage *pPage = pCur->apPage[i]; 5764 if( pCur->aiIdx[i]<pPage->nCell ) return 0; 5765 } 5766 return 1; 5767 } 5768 5769 /* Move the cursor so that it points to an entry in an index table 5770 ** near the key pIdxKey. Return a success code. 5771 ** 5772 ** If an exact match is not found, then the cursor is always 5773 ** left pointing at a leaf page which would hold the entry if it 5774 ** were present. The cursor might point to an entry that comes 5775 ** before or after the key. 5776 ** 5777 ** An integer is written into *pRes which is the result of 5778 ** comparing the key with the entry to which the cursor is 5779 ** pointing. The meaning of the integer written into 5780 ** *pRes is as follows: 5781 ** 5782 ** *pRes<0 The cursor is left pointing at an entry that 5783 ** is smaller than pIdxKey or if the table is empty 5784 ** and the cursor is therefore left point to nothing. 5785 ** 5786 ** *pRes==0 The cursor is left pointing at an entry that 5787 ** exactly matches pIdxKey. 5788 ** 5789 ** *pRes>0 The cursor is left pointing at an entry that 5790 ** is larger than pIdxKey. 5791 ** 5792 ** The pIdxKey->eqSeen field is set to 1 if there 5793 ** exists an entry in the table that exactly matches pIdxKey. 5794 */ 5795 int sqlite3BtreeIndexMoveto( 5796 BtCursor *pCur, /* The cursor to be moved */ 5797 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5798 int *pRes /* Write search results here */ 5799 ){ 5800 int rc; 5801 RecordCompare xRecordCompare; 5802 5803 assert( cursorOwnsBtShared(pCur) ); 5804 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5805 assert( pRes ); 5806 assert( pCur->pKeyInfo!=0 ); 5807 5808 #ifdef SQLITE_DEBUG 5809 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5810 #endif 5811 5812 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5813 pIdxKey->errCode = 0; 5814 assert( pIdxKey->default_rc==1 5815 || pIdxKey->default_rc==0 5816 || pIdxKey->default_rc==-1 5817 ); 5818 5819 5820 /* Check to see if we can skip a lot of work. Two cases: 5821 ** 5822 ** (1) If the cursor is already pointing to the very last cell 5823 ** in the table and the pIdxKey search key is greater than or 5824 ** equal to that last cell, then no movement is required. 5825 ** 5826 ** (2) If the cursor is on the last page of the table and the first 5827 ** cell on that last page is less than or equal to the pIdxKey 5828 ** search key, then we can start the search on the current page 5829 ** without needing to go back to root. 5830 */ 5831 if( pCur->eState==CURSOR_VALID 5832 && pCur->pPage->leaf 5833 && cursorOnLastPage(pCur) 5834 ){ 5835 int c; 5836 if( pCur->ix==pCur->pPage->nCell-1 5837 && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0 5838 && pIdxKey->errCode==SQLITE_OK 5839 ){ 5840 *pRes = c; 5841 return SQLITE_OK; /* Cursor already pointing at the correct spot */ 5842 } 5843 if( pCur->iPage>0 5844 && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0 5845 && pIdxKey->errCode==SQLITE_OK 5846 ){ 5847 pCur->curFlags &= ~BTCF_ValidOvfl; 5848 if( !pCur->pPage->isInit ){ 5849 return SQLITE_CORRUPT_BKPT; 5850 } 5851 goto bypass_moveto_root; /* Start search on the current page */ 5852 } 5853 pIdxKey->errCode = SQLITE_OK; 5854 } 5855 5856 rc = moveToRoot(pCur); 5857 if( rc ){ 5858 if( rc==SQLITE_EMPTY ){ 5859 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5860 *pRes = -1; 5861 return SQLITE_OK; 5862 } 5863 return rc; 5864 } 5865 5866 bypass_moveto_root: 5867 assert( pCur->pPage ); 5868 assert( pCur->pPage->isInit ); 5869 assert( pCur->eState==CURSOR_VALID ); 5870 assert( pCur->pPage->nCell > 0 ); 5871 assert( pCur->curIntKey==0 ); 5872 assert( pIdxKey!=0 ); 5873 for(;;){ 5874 int lwr, upr, idx, c; 5875 Pgno chldPg; 5876 MemPage *pPage = pCur->pPage; 5877 u8 *pCell; /* Pointer to current cell in pPage */ 5878 5879 /* pPage->nCell must be greater than zero. If this is the root-page 5880 ** the cursor would have been INVALID above and this for(;;) loop 5881 ** not run. If this is not the root-page, then the moveToChild() routine 5882 ** would have already detected db corruption. Similarly, pPage must 5883 ** be the right kind (index or table) of b-tree page. Otherwise 5884 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5885 assert( pPage->nCell>0 ); 5886 assert( pPage->intKey==0 ); 5887 lwr = 0; 5888 upr = pPage->nCell-1; 5889 idx = upr>>1; /* idx = (lwr+upr)/2; */ 5890 for(;;){ 5891 int nCell; /* Size of the pCell cell in bytes */ 5892 pCell = findCellPastPtr(pPage, idx); 5893 5894 /* The maximum supported page-size is 65536 bytes. This means that 5895 ** the maximum number of record bytes stored on an index B-Tree 5896 ** page is less than 16384 bytes and may be stored as a 2-byte 5897 ** varint. This information is used to attempt to avoid parsing 5898 ** the entire cell by checking for the cases where the record is 5899 ** stored entirely within the b-tree page by inspecting the first 5900 ** 2 bytes of the cell. 5901 */ 5902 nCell = pCell[0]; 5903 if( nCell<=pPage->max1bytePayload ){ 5904 /* This branch runs if the record-size field of the cell is a 5905 ** single byte varint and the record fits entirely on the main 5906 ** b-tree page. */ 5907 testcase( pCell+nCell+1==pPage->aDataEnd ); 5908 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5909 }else if( !(pCell[1] & 0x80) 5910 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5911 ){ 5912 /* The record-size field is a 2 byte varint and the record 5913 ** fits entirely on the main b-tree page. */ 5914 testcase( pCell+nCell+2==pPage->aDataEnd ); 5915 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5916 }else{ 5917 /* The record flows over onto one or more overflow pages. In 5918 ** this case the whole cell needs to be parsed, a buffer allocated 5919 ** and accessPayload() used to retrieve the record into the 5920 ** buffer before VdbeRecordCompare() can be called. 5921 ** 5922 ** If the record is corrupt, the xRecordCompare routine may read 5923 ** up to two varints past the end of the buffer. An extra 18 5924 ** bytes of padding is allocated at the end of the buffer in 5925 ** case this happens. */ 5926 void *pCellKey; 5927 u8 * const pCellBody = pCell - pPage->childPtrSize; 5928 const int nOverrun = 18; /* Size of the overrun padding */ 5929 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5930 nCell = (int)pCur->info.nKey; 5931 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5932 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5933 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5934 testcase( nCell==2 ); /* Minimum legal index key size */ 5935 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5936 rc = SQLITE_CORRUPT_PAGE(pPage); 5937 goto moveto_index_finish; 5938 } 5939 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5940 if( pCellKey==0 ){ 5941 rc = SQLITE_NOMEM_BKPT; 5942 goto moveto_index_finish; 5943 } 5944 pCur->ix = (u16)idx; 5945 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5946 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5947 pCur->curFlags &= ~BTCF_ValidOvfl; 5948 if( rc ){ 5949 sqlite3_free(pCellKey); 5950 goto moveto_index_finish; 5951 } 5952 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5953 sqlite3_free(pCellKey); 5954 } 5955 assert( 5956 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5957 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5958 ); 5959 if( c<0 ){ 5960 lwr = idx+1; 5961 }else if( c>0 ){ 5962 upr = idx-1; 5963 }else{ 5964 assert( c==0 ); 5965 *pRes = 0; 5966 rc = SQLITE_OK; 5967 pCur->ix = (u16)idx; 5968 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5969 goto moveto_index_finish; 5970 } 5971 if( lwr>upr ) break; 5972 assert( lwr+upr>=0 ); 5973 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5974 } 5975 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5976 assert( pPage->isInit ); 5977 if( pPage->leaf ){ 5978 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5979 pCur->ix = (u16)idx; 5980 *pRes = c; 5981 rc = SQLITE_OK; 5982 goto moveto_index_finish; 5983 } 5984 if( lwr>=pPage->nCell ){ 5985 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5986 }else{ 5987 chldPg = get4byte(findCell(pPage, lwr)); 5988 } 5989 pCur->ix = (u16)lwr; 5990 rc = moveToChild(pCur, chldPg); 5991 if( rc ) break; 5992 } 5993 moveto_index_finish: 5994 pCur->info.nSize = 0; 5995 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5996 return rc; 5997 } 5998 5999 6000 /* 6001 ** Return TRUE if the cursor is not pointing at an entry of the table. 6002 ** 6003 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 6004 ** past the last entry in the table or sqlite3BtreePrev() moves past 6005 ** the first entry. TRUE is also returned if the table is empty. 6006 */ 6007 int sqlite3BtreeEof(BtCursor *pCur){ 6008 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 6009 ** have been deleted? This API will need to change to return an error code 6010 ** as well as the boolean result value. 6011 */ 6012 return (CURSOR_VALID!=pCur->eState); 6013 } 6014 6015 /* 6016 ** Return an estimate for the number of rows in the table that pCur is 6017 ** pointing to. Return a negative number if no estimate is currently 6018 ** available. 6019 */ 6020 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 6021 i64 n; 6022 u8 i; 6023 6024 assert( cursorOwnsBtShared(pCur) ); 6025 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 6026 6027 /* Currently this interface is only called by the OP_IfSmaller 6028 ** opcode, and it that case the cursor will always be valid and 6029 ** will always point to a leaf node. */ 6030 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 6031 if( NEVER(pCur->pPage->leaf==0) ) return -1; 6032 6033 n = pCur->pPage->nCell; 6034 for(i=0; i<pCur->iPage; i++){ 6035 n *= pCur->apPage[i]->nCell; 6036 } 6037 return n; 6038 } 6039 6040 /* 6041 ** Advance the cursor to the next entry in the database. 6042 ** Return value: 6043 ** 6044 ** SQLITE_OK success 6045 ** SQLITE_DONE cursor is already pointing at the last element 6046 ** otherwise some kind of error occurred 6047 ** 6048 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 6049 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 6050 ** to the next cell on the current page. The (slower) btreeNext() helper 6051 ** routine is called when it is necessary to move to a different page or 6052 ** to restore the cursor. 6053 ** 6054 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 6055 ** cursor corresponds to an SQL index and this routine could have been 6056 ** skipped if the SQL index had been a unique index. The F argument 6057 ** is a hint to the implement. SQLite btree implementation does not use 6058 ** this hint, but COMDB2 does. 6059 */ 6060 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 6061 int rc; 6062 int idx; 6063 MemPage *pPage; 6064 6065 assert( cursorOwnsBtShared(pCur) ); 6066 if( pCur->eState!=CURSOR_VALID ){ 6067 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 6068 rc = restoreCursorPosition(pCur); 6069 if( rc!=SQLITE_OK ){ 6070 return rc; 6071 } 6072 if( CURSOR_INVALID==pCur->eState ){ 6073 return SQLITE_DONE; 6074 } 6075 if( pCur->eState==CURSOR_SKIPNEXT ){ 6076 pCur->eState = CURSOR_VALID; 6077 if( pCur->skipNext>0 ) return SQLITE_OK; 6078 } 6079 } 6080 6081 pPage = pCur->pPage; 6082 idx = ++pCur->ix; 6083 if( NEVER(!pPage->isInit) || sqlite3FaultSim(412) ){ 6084 return SQLITE_CORRUPT_BKPT; 6085 } 6086 6087 if( idx>=pPage->nCell ){ 6088 if( !pPage->leaf ){ 6089 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 6090 if( rc ) return rc; 6091 return moveToLeftmost(pCur); 6092 } 6093 do{ 6094 if( pCur->iPage==0 ){ 6095 pCur->eState = CURSOR_INVALID; 6096 return SQLITE_DONE; 6097 } 6098 moveToParent(pCur); 6099 pPage = pCur->pPage; 6100 }while( pCur->ix>=pPage->nCell ); 6101 if( pPage->intKey ){ 6102 return sqlite3BtreeNext(pCur, 0); 6103 }else{ 6104 return SQLITE_OK; 6105 } 6106 } 6107 if( pPage->leaf ){ 6108 return SQLITE_OK; 6109 }else{ 6110 return moveToLeftmost(pCur); 6111 } 6112 } 6113 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 6114 MemPage *pPage; 6115 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6116 assert( cursorOwnsBtShared(pCur) ); 6117 assert( flags==0 || flags==1 ); 6118 pCur->info.nSize = 0; 6119 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 6120 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 6121 pPage = pCur->pPage; 6122 if( (++pCur->ix)>=pPage->nCell ){ 6123 pCur->ix--; 6124 return btreeNext(pCur); 6125 } 6126 if( pPage->leaf ){ 6127 return SQLITE_OK; 6128 }else{ 6129 return moveToLeftmost(pCur); 6130 } 6131 } 6132 6133 /* 6134 ** Step the cursor to the back to the previous entry in the database. 6135 ** Return values: 6136 ** 6137 ** SQLITE_OK success 6138 ** SQLITE_DONE the cursor is already on the first element of the table 6139 ** otherwise some kind of error occurred 6140 ** 6141 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 6142 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 6143 ** to the previous cell on the current page. The (slower) btreePrevious() 6144 ** helper routine is called when it is necessary to move to a different page 6145 ** or to restore the cursor. 6146 ** 6147 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 6148 ** the cursor corresponds to an SQL index and this routine could have been 6149 ** skipped if the SQL index had been a unique index. The F argument is a 6150 ** hint to the implement. The native SQLite btree implementation does not 6151 ** use this hint, but COMDB2 does. 6152 */ 6153 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 6154 int rc; 6155 MemPage *pPage; 6156 6157 assert( cursorOwnsBtShared(pCur) ); 6158 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 6159 assert( pCur->info.nSize==0 ); 6160 if( pCur->eState!=CURSOR_VALID ){ 6161 rc = restoreCursorPosition(pCur); 6162 if( rc!=SQLITE_OK ){ 6163 return rc; 6164 } 6165 if( CURSOR_INVALID==pCur->eState ){ 6166 return SQLITE_DONE; 6167 } 6168 if( CURSOR_SKIPNEXT==pCur->eState ){ 6169 pCur->eState = CURSOR_VALID; 6170 if( pCur->skipNext<0 ) return SQLITE_OK; 6171 } 6172 } 6173 6174 pPage = pCur->pPage; 6175 assert( pPage->isInit ); 6176 if( !pPage->leaf ){ 6177 int idx = pCur->ix; 6178 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 6179 if( rc ) return rc; 6180 rc = moveToRightmost(pCur); 6181 }else{ 6182 while( pCur->ix==0 ){ 6183 if( pCur->iPage==0 ){ 6184 pCur->eState = CURSOR_INVALID; 6185 return SQLITE_DONE; 6186 } 6187 moveToParent(pCur); 6188 } 6189 assert( pCur->info.nSize==0 ); 6190 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 6191 6192 pCur->ix--; 6193 pPage = pCur->pPage; 6194 if( pPage->intKey && !pPage->leaf ){ 6195 rc = sqlite3BtreePrevious(pCur, 0); 6196 }else{ 6197 rc = SQLITE_OK; 6198 } 6199 } 6200 return rc; 6201 } 6202 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 6203 assert( cursorOwnsBtShared(pCur) ); 6204 assert( flags==0 || flags==1 ); 6205 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6206 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 6207 pCur->info.nSize = 0; 6208 if( pCur->eState!=CURSOR_VALID 6209 || pCur->ix==0 6210 || pCur->pPage->leaf==0 6211 ){ 6212 return btreePrevious(pCur); 6213 } 6214 pCur->ix--; 6215 return SQLITE_OK; 6216 } 6217 6218 /* 6219 ** Allocate a new page from the database file. 6220 ** 6221 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 6222 ** has already been called on the new page.) The new page has also 6223 ** been referenced and the calling routine is responsible for calling 6224 ** sqlite3PagerUnref() on the new page when it is done. 6225 ** 6226 ** SQLITE_OK is returned on success. Any other return value indicates 6227 ** an error. *ppPage is set to NULL in the event of an error. 6228 ** 6229 ** If the "nearby" parameter is not 0, then an effort is made to 6230 ** locate a page close to the page number "nearby". This can be used in an 6231 ** attempt to keep related pages close to each other in the database file, 6232 ** which in turn can make database access faster. 6233 ** 6234 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 6235 ** anywhere on the free-list, then it is guaranteed to be returned. If 6236 ** eMode is BTALLOC_LT then the page returned will be less than or equal 6237 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 6238 ** are no restrictions on which page is returned. 6239 */ 6240 static int allocateBtreePage( 6241 BtShared *pBt, /* The btree */ 6242 MemPage **ppPage, /* Store pointer to the allocated page here */ 6243 Pgno *pPgno, /* Store the page number here */ 6244 Pgno nearby, /* Search for a page near this one */ 6245 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 6246 ){ 6247 MemPage *pPage1; 6248 int rc; 6249 u32 n; /* Number of pages on the freelist */ 6250 u32 k; /* Number of leaves on the trunk of the freelist */ 6251 MemPage *pTrunk = 0; 6252 MemPage *pPrevTrunk = 0; 6253 Pgno mxPage; /* Total size of the database file */ 6254 6255 assert( sqlite3_mutex_held(pBt->mutex) ); 6256 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 6257 pPage1 = pBt->pPage1; 6258 mxPage = btreePagecount(pBt); 6259 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 6260 ** stores stores the total number of pages on the freelist. */ 6261 n = get4byte(&pPage1->aData[36]); 6262 testcase( n==mxPage-1 ); 6263 if( n>=mxPage ){ 6264 return SQLITE_CORRUPT_BKPT; 6265 } 6266 if( n>0 ){ 6267 /* There are pages on the freelist. Reuse one of those pages. */ 6268 Pgno iTrunk; 6269 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 6270 u32 nSearch = 0; /* Count of the number of search attempts */ 6271 6272 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 6273 ** shows that the page 'nearby' is somewhere on the free-list, then 6274 ** the entire-list will be searched for that page. 6275 */ 6276 #ifndef SQLITE_OMIT_AUTOVACUUM 6277 if( eMode==BTALLOC_EXACT ){ 6278 if( nearby<=mxPage ){ 6279 u8 eType; 6280 assert( nearby>0 ); 6281 assert( pBt->autoVacuum ); 6282 rc = ptrmapGet(pBt, nearby, &eType, 0); 6283 if( rc ) return rc; 6284 if( eType==PTRMAP_FREEPAGE ){ 6285 searchList = 1; 6286 } 6287 } 6288 }else if( eMode==BTALLOC_LE ){ 6289 searchList = 1; 6290 } 6291 #endif 6292 6293 /* Decrement the free-list count by 1. Set iTrunk to the index of the 6294 ** first free-list trunk page. iPrevTrunk is initially 1. 6295 */ 6296 rc = sqlite3PagerWrite(pPage1->pDbPage); 6297 if( rc ) return rc; 6298 put4byte(&pPage1->aData[36], n-1); 6299 6300 /* The code within this loop is run only once if the 'searchList' variable 6301 ** is not true. Otherwise, it runs once for each trunk-page on the 6302 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 6303 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 6304 */ 6305 do { 6306 pPrevTrunk = pTrunk; 6307 if( pPrevTrunk ){ 6308 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 6309 ** is the page number of the next freelist trunk page in the list or 6310 ** zero if this is the last freelist trunk page. */ 6311 iTrunk = get4byte(&pPrevTrunk->aData[0]); 6312 }else{ 6313 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 6314 ** stores the page number of the first page of the freelist, or zero if 6315 ** the freelist is empty. */ 6316 iTrunk = get4byte(&pPage1->aData[32]); 6317 } 6318 testcase( iTrunk==mxPage ); 6319 if( iTrunk>mxPage || nSearch++ > n ){ 6320 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 6321 }else{ 6322 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 6323 } 6324 if( rc ){ 6325 pTrunk = 0; 6326 goto end_allocate_page; 6327 } 6328 assert( pTrunk!=0 ); 6329 assert( pTrunk->aData!=0 ); 6330 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 6331 ** is the number of leaf page pointers to follow. */ 6332 k = get4byte(&pTrunk->aData[4]); 6333 if( k==0 && !searchList ){ 6334 /* The trunk has no leaves and the list is not being searched. 6335 ** So extract the trunk page itself and use it as the newly 6336 ** allocated page */ 6337 assert( pPrevTrunk==0 ); 6338 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6339 if( rc ){ 6340 goto end_allocate_page; 6341 } 6342 *pPgno = iTrunk; 6343 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6344 *ppPage = pTrunk; 6345 pTrunk = 0; 6346 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6347 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 6348 /* Value of k is out of range. Database corruption */ 6349 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6350 goto end_allocate_page; 6351 #ifndef SQLITE_OMIT_AUTOVACUUM 6352 }else if( searchList 6353 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 6354 ){ 6355 /* The list is being searched and this trunk page is the page 6356 ** to allocate, regardless of whether it has leaves. 6357 */ 6358 *pPgno = iTrunk; 6359 *ppPage = pTrunk; 6360 searchList = 0; 6361 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6362 if( rc ){ 6363 goto end_allocate_page; 6364 } 6365 if( k==0 ){ 6366 if( !pPrevTrunk ){ 6367 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6368 }else{ 6369 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6370 if( rc!=SQLITE_OK ){ 6371 goto end_allocate_page; 6372 } 6373 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6374 } 6375 }else{ 6376 /* The trunk page is required by the caller but it contains 6377 ** pointers to free-list leaves. The first leaf becomes a trunk 6378 ** page in this case. 6379 */ 6380 MemPage *pNewTrunk; 6381 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6382 if( iNewTrunk>mxPage ){ 6383 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6384 goto end_allocate_page; 6385 } 6386 testcase( iNewTrunk==mxPage ); 6387 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6388 if( rc!=SQLITE_OK ){ 6389 goto end_allocate_page; 6390 } 6391 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6392 if( rc!=SQLITE_OK ){ 6393 releasePage(pNewTrunk); 6394 goto end_allocate_page; 6395 } 6396 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6397 put4byte(&pNewTrunk->aData[4], k-1); 6398 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6399 releasePage(pNewTrunk); 6400 if( !pPrevTrunk ){ 6401 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6402 put4byte(&pPage1->aData[32], iNewTrunk); 6403 }else{ 6404 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6405 if( rc ){ 6406 goto end_allocate_page; 6407 } 6408 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6409 } 6410 } 6411 pTrunk = 0; 6412 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6413 #endif 6414 }else if( k>0 ){ 6415 /* Extract a leaf from the trunk */ 6416 u32 closest; 6417 Pgno iPage; 6418 unsigned char *aData = pTrunk->aData; 6419 if( nearby>0 ){ 6420 u32 i; 6421 closest = 0; 6422 if( eMode==BTALLOC_LE ){ 6423 for(i=0; i<k; i++){ 6424 iPage = get4byte(&aData[8+i*4]); 6425 if( iPage<=nearby ){ 6426 closest = i; 6427 break; 6428 } 6429 } 6430 }else{ 6431 int dist; 6432 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6433 for(i=1; i<k; i++){ 6434 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6435 if( d2<dist ){ 6436 closest = i; 6437 dist = d2; 6438 } 6439 } 6440 } 6441 }else{ 6442 closest = 0; 6443 } 6444 6445 iPage = get4byte(&aData[8+closest*4]); 6446 testcase( iPage==mxPage ); 6447 if( iPage>mxPage || iPage<2 ){ 6448 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6449 goto end_allocate_page; 6450 } 6451 testcase( iPage==mxPage ); 6452 if( !searchList 6453 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6454 ){ 6455 int noContent; 6456 *pPgno = iPage; 6457 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6458 ": %d more free pages\n", 6459 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6460 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6461 if( rc ) goto end_allocate_page; 6462 if( closest<k-1 ){ 6463 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6464 } 6465 put4byte(&aData[4], k-1); 6466 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6467 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6468 if( rc==SQLITE_OK ){ 6469 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6470 if( rc!=SQLITE_OK ){ 6471 releasePage(*ppPage); 6472 *ppPage = 0; 6473 } 6474 } 6475 searchList = 0; 6476 } 6477 } 6478 releasePage(pPrevTrunk); 6479 pPrevTrunk = 0; 6480 }while( searchList ); 6481 }else{ 6482 /* There are no pages on the freelist, so append a new page to the 6483 ** database image. 6484 ** 6485 ** Normally, new pages allocated by this block can be requested from the 6486 ** pager layer with the 'no-content' flag set. This prevents the pager 6487 ** from trying to read the pages content from disk. However, if the 6488 ** current transaction has already run one or more incremental-vacuum 6489 ** steps, then the page we are about to allocate may contain content 6490 ** that is required in the event of a rollback. In this case, do 6491 ** not set the no-content flag. This causes the pager to load and journal 6492 ** the current page content before overwriting it. 6493 ** 6494 ** Note that the pager will not actually attempt to load or journal 6495 ** content for any page that really does lie past the end of the database 6496 ** file on disk. So the effects of disabling the no-content optimization 6497 ** here are confined to those pages that lie between the end of the 6498 ** database image and the end of the database file. 6499 */ 6500 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6501 6502 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6503 if( rc ) return rc; 6504 pBt->nPage++; 6505 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6506 6507 #ifndef SQLITE_OMIT_AUTOVACUUM 6508 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6509 /* If *pPgno refers to a pointer-map page, allocate two new pages 6510 ** at the end of the file instead of one. The first allocated page 6511 ** becomes a new pointer-map page, the second is used by the caller. 6512 */ 6513 MemPage *pPg = 0; 6514 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6515 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6516 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6517 if( rc==SQLITE_OK ){ 6518 rc = sqlite3PagerWrite(pPg->pDbPage); 6519 releasePage(pPg); 6520 } 6521 if( rc ) return rc; 6522 pBt->nPage++; 6523 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6524 } 6525 #endif 6526 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6527 *pPgno = pBt->nPage; 6528 6529 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6530 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6531 if( rc ) return rc; 6532 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6533 if( rc!=SQLITE_OK ){ 6534 releasePage(*ppPage); 6535 *ppPage = 0; 6536 } 6537 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6538 } 6539 6540 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6541 6542 end_allocate_page: 6543 releasePage(pTrunk); 6544 releasePage(pPrevTrunk); 6545 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6546 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6547 return rc; 6548 } 6549 6550 /* 6551 ** This function is used to add page iPage to the database file free-list. 6552 ** It is assumed that the page is not already a part of the free-list. 6553 ** 6554 ** The value passed as the second argument to this function is optional. 6555 ** If the caller happens to have a pointer to the MemPage object 6556 ** corresponding to page iPage handy, it may pass it as the second value. 6557 ** Otherwise, it may pass NULL. 6558 ** 6559 ** If a pointer to a MemPage object is passed as the second argument, 6560 ** its reference count is not altered by this function. 6561 */ 6562 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6563 MemPage *pTrunk = 0; /* Free-list trunk page */ 6564 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6565 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6566 MemPage *pPage; /* Page being freed. May be NULL. */ 6567 int rc; /* Return Code */ 6568 u32 nFree; /* Initial number of pages on free-list */ 6569 6570 assert( sqlite3_mutex_held(pBt->mutex) ); 6571 assert( CORRUPT_DB || iPage>1 ); 6572 assert( !pMemPage || pMemPage->pgno==iPage ); 6573 6574 if( iPage<2 || iPage>pBt->nPage ){ 6575 return SQLITE_CORRUPT_BKPT; 6576 } 6577 if( pMemPage ){ 6578 pPage = pMemPage; 6579 sqlite3PagerRef(pPage->pDbPage); 6580 }else{ 6581 pPage = btreePageLookup(pBt, iPage); 6582 } 6583 6584 /* Increment the free page count on pPage1 */ 6585 rc = sqlite3PagerWrite(pPage1->pDbPage); 6586 if( rc ) goto freepage_out; 6587 nFree = get4byte(&pPage1->aData[36]); 6588 put4byte(&pPage1->aData[36], nFree+1); 6589 6590 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6591 /* If the secure_delete option is enabled, then 6592 ** always fully overwrite deleted information with zeros. 6593 */ 6594 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6595 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6596 ){ 6597 goto freepage_out; 6598 } 6599 memset(pPage->aData, 0, pPage->pBt->pageSize); 6600 } 6601 6602 /* If the database supports auto-vacuum, write an entry in the pointer-map 6603 ** to indicate that the page is free. 6604 */ 6605 if( ISAUTOVACUUM ){ 6606 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6607 if( rc ) goto freepage_out; 6608 } 6609 6610 /* Now manipulate the actual database free-list structure. There are two 6611 ** possibilities. If the free-list is currently empty, or if the first 6612 ** trunk page in the free-list is full, then this page will become a 6613 ** new free-list trunk page. Otherwise, it will become a leaf of the 6614 ** first trunk page in the current free-list. This block tests if it 6615 ** is possible to add the page as a new free-list leaf. 6616 */ 6617 if( nFree!=0 ){ 6618 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6619 6620 iTrunk = get4byte(&pPage1->aData[32]); 6621 if( iTrunk>btreePagecount(pBt) ){ 6622 rc = SQLITE_CORRUPT_BKPT; 6623 goto freepage_out; 6624 } 6625 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6626 if( rc!=SQLITE_OK ){ 6627 goto freepage_out; 6628 } 6629 6630 nLeaf = get4byte(&pTrunk->aData[4]); 6631 assert( pBt->usableSize>32 ); 6632 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6633 rc = SQLITE_CORRUPT_BKPT; 6634 goto freepage_out; 6635 } 6636 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6637 /* In this case there is room on the trunk page to insert the page 6638 ** being freed as a new leaf. 6639 ** 6640 ** Note that the trunk page is not really full until it contains 6641 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6642 ** coded. But due to a coding error in versions of SQLite prior to 6643 ** 3.6.0, databases with freelist trunk pages holding more than 6644 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6645 ** to maintain backwards compatibility with older versions of SQLite, 6646 ** we will continue to restrict the number of entries to usableSize/4 - 8 6647 ** for now. At some point in the future (once everyone has upgraded 6648 ** to 3.6.0 or later) we should consider fixing the conditional above 6649 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6650 ** 6651 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6652 ** avoid using the last six entries in the freelist trunk page array in 6653 ** order that database files created by newer versions of SQLite can be 6654 ** read by older versions of SQLite. 6655 */ 6656 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6657 if( rc==SQLITE_OK ){ 6658 put4byte(&pTrunk->aData[4], nLeaf+1); 6659 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6660 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6661 sqlite3PagerDontWrite(pPage->pDbPage); 6662 } 6663 rc = btreeSetHasContent(pBt, iPage); 6664 } 6665 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6666 goto freepage_out; 6667 } 6668 } 6669 6670 /* If control flows to this point, then it was not possible to add the 6671 ** the page being freed as a leaf page of the first trunk in the free-list. 6672 ** Possibly because the free-list is empty, or possibly because the 6673 ** first trunk in the free-list is full. Either way, the page being freed 6674 ** will become the new first trunk page in the free-list. 6675 */ 6676 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6677 goto freepage_out; 6678 } 6679 rc = sqlite3PagerWrite(pPage->pDbPage); 6680 if( rc!=SQLITE_OK ){ 6681 goto freepage_out; 6682 } 6683 put4byte(pPage->aData, iTrunk); 6684 put4byte(&pPage->aData[4], 0); 6685 put4byte(&pPage1->aData[32], iPage); 6686 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6687 6688 freepage_out: 6689 if( pPage ){ 6690 pPage->isInit = 0; 6691 } 6692 releasePage(pPage); 6693 releasePage(pTrunk); 6694 return rc; 6695 } 6696 static void freePage(MemPage *pPage, int *pRC){ 6697 if( (*pRC)==SQLITE_OK ){ 6698 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6699 } 6700 } 6701 6702 /* 6703 ** Free the overflow pages associated with the given Cell. 6704 */ 6705 static SQLITE_NOINLINE int clearCellOverflow( 6706 MemPage *pPage, /* The page that contains the Cell */ 6707 unsigned char *pCell, /* First byte of the Cell */ 6708 CellInfo *pInfo /* Size information about the cell */ 6709 ){ 6710 BtShared *pBt; 6711 Pgno ovflPgno; 6712 int rc; 6713 int nOvfl; 6714 u32 ovflPageSize; 6715 6716 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6717 assert( pInfo->nLocal!=pInfo->nPayload ); 6718 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6719 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6720 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6721 /* Cell extends past end of page */ 6722 return SQLITE_CORRUPT_PAGE(pPage); 6723 } 6724 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6725 pBt = pPage->pBt; 6726 assert( pBt->usableSize > 4 ); 6727 ovflPageSize = pBt->usableSize - 4; 6728 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6729 assert( nOvfl>0 || 6730 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6731 ); 6732 while( nOvfl-- ){ 6733 Pgno iNext = 0; 6734 MemPage *pOvfl = 0; 6735 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6736 /* 0 is not a legal page number and page 1 cannot be an 6737 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6738 ** file the database must be corrupt. */ 6739 return SQLITE_CORRUPT_BKPT; 6740 } 6741 if( nOvfl ){ 6742 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6743 if( rc ) return rc; 6744 } 6745 6746 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6747 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6748 ){ 6749 /* There is no reason any cursor should have an outstanding reference 6750 ** to an overflow page belonging to a cell that is being deleted/updated. 6751 ** So if there exists more than one reference to this page, then it 6752 ** must not really be an overflow page and the database must be corrupt. 6753 ** It is helpful to detect this before calling freePage2(), as 6754 ** freePage2() may zero the page contents if secure-delete mode is 6755 ** enabled. If this 'overflow' page happens to be a page that the 6756 ** caller is iterating through or using in some other way, this 6757 ** can be problematic. 6758 */ 6759 rc = SQLITE_CORRUPT_BKPT; 6760 }else{ 6761 rc = freePage2(pBt, pOvfl, ovflPgno); 6762 } 6763 6764 if( pOvfl ){ 6765 sqlite3PagerUnref(pOvfl->pDbPage); 6766 } 6767 if( rc ) return rc; 6768 ovflPgno = iNext; 6769 } 6770 return SQLITE_OK; 6771 } 6772 6773 /* Call xParseCell to compute the size of a cell. If the cell contains 6774 ** overflow, then invoke cellClearOverflow to clear out that overflow. 6775 ** STore the result code (SQLITE_OK or some error code) in rc. 6776 ** 6777 ** Implemented as macro to force inlining for performance. 6778 */ 6779 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ 6780 pPage->xParseCell(pPage, pCell, &sInfo); \ 6781 if( sInfo.nLocal!=sInfo.nPayload ){ \ 6782 rc = clearCellOverflow(pPage, pCell, &sInfo); \ 6783 }else{ \ 6784 rc = SQLITE_OK; \ 6785 } 6786 6787 6788 /* 6789 ** Create the byte sequence used to represent a cell on page pPage 6790 ** and write that byte sequence into pCell[]. Overflow pages are 6791 ** allocated and filled in as necessary. The calling procedure 6792 ** is responsible for making sure sufficient space has been allocated 6793 ** for pCell[]. 6794 ** 6795 ** Note that pCell does not necessary need to point to the pPage->aData 6796 ** area. pCell might point to some temporary storage. The cell will 6797 ** be constructed in this temporary area then copied into pPage->aData 6798 ** later. 6799 */ 6800 static int fillInCell( 6801 MemPage *pPage, /* The page that contains the cell */ 6802 unsigned char *pCell, /* Complete text of the cell */ 6803 const BtreePayload *pX, /* Payload with which to construct the cell */ 6804 int *pnSize /* Write cell size here */ 6805 ){ 6806 int nPayload; 6807 const u8 *pSrc; 6808 int nSrc, n, rc, mn; 6809 int spaceLeft; 6810 MemPage *pToRelease; 6811 unsigned char *pPrior; 6812 unsigned char *pPayload; 6813 BtShared *pBt; 6814 Pgno pgnoOvfl; 6815 int nHeader; 6816 6817 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6818 6819 /* pPage is not necessarily writeable since pCell might be auxiliary 6820 ** buffer space that is separate from the pPage buffer area */ 6821 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6822 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6823 6824 /* Fill in the header. */ 6825 nHeader = pPage->childPtrSize; 6826 if( pPage->intKey ){ 6827 nPayload = pX->nData + pX->nZero; 6828 pSrc = pX->pData; 6829 nSrc = pX->nData; 6830 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6831 nHeader += putVarint32(&pCell[nHeader], nPayload); 6832 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6833 }else{ 6834 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6835 nSrc = nPayload = (int)pX->nKey; 6836 pSrc = pX->pKey; 6837 nHeader += putVarint32(&pCell[nHeader], nPayload); 6838 } 6839 6840 /* Fill in the payload */ 6841 pPayload = &pCell[nHeader]; 6842 if( nPayload<=pPage->maxLocal ){ 6843 /* This is the common case where everything fits on the btree page 6844 ** and no overflow pages are required. */ 6845 n = nHeader + nPayload; 6846 testcase( n==3 ); 6847 testcase( n==4 ); 6848 if( n<4 ) n = 4; 6849 *pnSize = n; 6850 assert( nSrc<=nPayload ); 6851 testcase( nSrc<nPayload ); 6852 memcpy(pPayload, pSrc, nSrc); 6853 memset(pPayload+nSrc, 0, nPayload-nSrc); 6854 return SQLITE_OK; 6855 } 6856 6857 /* If we reach this point, it means that some of the content will need 6858 ** to spill onto overflow pages. 6859 */ 6860 mn = pPage->minLocal; 6861 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6862 testcase( n==pPage->maxLocal ); 6863 testcase( n==pPage->maxLocal+1 ); 6864 if( n > pPage->maxLocal ) n = mn; 6865 spaceLeft = n; 6866 *pnSize = n + nHeader + 4; 6867 pPrior = &pCell[nHeader+n]; 6868 pToRelease = 0; 6869 pgnoOvfl = 0; 6870 pBt = pPage->pBt; 6871 6872 /* At this point variables should be set as follows: 6873 ** 6874 ** nPayload Total payload size in bytes 6875 ** pPayload Begin writing payload here 6876 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6877 ** that means content must spill into overflow pages. 6878 ** *pnSize Size of the local cell (not counting overflow pages) 6879 ** pPrior Where to write the pgno of the first overflow page 6880 ** 6881 ** Use a call to btreeParseCellPtr() to verify that the values above 6882 ** were computed correctly. 6883 */ 6884 #ifdef SQLITE_DEBUG 6885 { 6886 CellInfo info; 6887 pPage->xParseCell(pPage, pCell, &info); 6888 assert( nHeader==(int)(info.pPayload - pCell) ); 6889 assert( info.nKey==pX->nKey ); 6890 assert( *pnSize == info.nSize ); 6891 assert( spaceLeft == info.nLocal ); 6892 } 6893 #endif 6894 6895 /* Write the payload into the local Cell and any extra into overflow pages */ 6896 while( 1 ){ 6897 n = nPayload; 6898 if( n>spaceLeft ) n = spaceLeft; 6899 6900 /* If pToRelease is not zero than pPayload points into the data area 6901 ** of pToRelease. Make sure pToRelease is still writeable. */ 6902 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6903 6904 /* If pPayload is part of the data area of pPage, then make sure pPage 6905 ** is still writeable */ 6906 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6907 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6908 6909 if( nSrc>=n ){ 6910 memcpy(pPayload, pSrc, n); 6911 }else if( nSrc>0 ){ 6912 n = nSrc; 6913 memcpy(pPayload, pSrc, n); 6914 }else{ 6915 memset(pPayload, 0, n); 6916 } 6917 nPayload -= n; 6918 if( nPayload<=0 ) break; 6919 pPayload += n; 6920 pSrc += n; 6921 nSrc -= n; 6922 spaceLeft -= n; 6923 if( spaceLeft==0 ){ 6924 MemPage *pOvfl = 0; 6925 #ifndef SQLITE_OMIT_AUTOVACUUM 6926 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6927 if( pBt->autoVacuum ){ 6928 do{ 6929 pgnoOvfl++; 6930 } while( 6931 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6932 ); 6933 } 6934 #endif 6935 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6936 #ifndef SQLITE_OMIT_AUTOVACUUM 6937 /* If the database supports auto-vacuum, and the second or subsequent 6938 ** overflow page is being allocated, add an entry to the pointer-map 6939 ** for that page now. 6940 ** 6941 ** If this is the first overflow page, then write a partial entry 6942 ** to the pointer-map. If we write nothing to this pointer-map slot, 6943 ** then the optimistic overflow chain processing in clearCell() 6944 ** may misinterpret the uninitialized values and delete the 6945 ** wrong pages from the database. 6946 */ 6947 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6948 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6949 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6950 if( rc ){ 6951 releasePage(pOvfl); 6952 } 6953 } 6954 #endif 6955 if( rc ){ 6956 releasePage(pToRelease); 6957 return rc; 6958 } 6959 6960 /* If pToRelease is not zero than pPrior points into the data area 6961 ** of pToRelease. Make sure pToRelease is still writeable. */ 6962 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6963 6964 /* If pPrior is part of the data area of pPage, then make sure pPage 6965 ** is still writeable */ 6966 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6967 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6968 6969 put4byte(pPrior, pgnoOvfl); 6970 releasePage(pToRelease); 6971 pToRelease = pOvfl; 6972 pPrior = pOvfl->aData; 6973 put4byte(pPrior, 0); 6974 pPayload = &pOvfl->aData[4]; 6975 spaceLeft = pBt->usableSize - 4; 6976 } 6977 } 6978 releasePage(pToRelease); 6979 return SQLITE_OK; 6980 } 6981 6982 /* 6983 ** Remove the i-th cell from pPage. This routine effects pPage only. 6984 ** The cell content is not freed or deallocated. It is assumed that 6985 ** the cell content has been copied someplace else. This routine just 6986 ** removes the reference to the cell from pPage. 6987 ** 6988 ** "sz" must be the number of bytes in the cell. 6989 */ 6990 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6991 u32 pc; /* Offset to cell content of cell being deleted */ 6992 u8 *data; /* pPage->aData */ 6993 u8 *ptr; /* Used to move bytes around within data[] */ 6994 int rc; /* The return code */ 6995 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6996 6997 if( *pRC ) return; 6998 assert( idx>=0 ); 6999 assert( idx<pPage->nCell ); 7000 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 7001 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 7002 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7003 assert( pPage->nFree>=0 ); 7004 data = pPage->aData; 7005 ptr = &pPage->aCellIdx[2*idx]; 7006 assert( pPage->pBt->usableSize > (u32)(ptr-data) ); 7007 pc = get2byte(ptr); 7008 hdr = pPage->hdrOffset; 7009 testcase( pc==(u32)get2byte(&data[hdr+5]) ); 7010 testcase( pc+sz==pPage->pBt->usableSize ); 7011 if( pc+sz > pPage->pBt->usableSize ){ 7012 *pRC = SQLITE_CORRUPT_BKPT; 7013 return; 7014 } 7015 rc = freeSpace(pPage, pc, sz); 7016 if( rc ){ 7017 *pRC = rc; 7018 return; 7019 } 7020 pPage->nCell--; 7021 if( pPage->nCell==0 ){ 7022 memset(&data[hdr+1], 0, 4); 7023 data[hdr+7] = 0; 7024 put2byte(&data[hdr+5], pPage->pBt->usableSize); 7025 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 7026 - pPage->childPtrSize - 8; 7027 }else{ 7028 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 7029 put2byte(&data[hdr+3], pPage->nCell); 7030 pPage->nFree += 2; 7031 } 7032 } 7033 7034 /* 7035 ** Insert a new cell on pPage at cell index "i". pCell points to the 7036 ** content of the cell. 7037 ** 7038 ** If the cell content will fit on the page, then put it there. If it 7039 ** will not fit, then make a copy of the cell content into pTemp if 7040 ** pTemp is not null. Regardless of pTemp, allocate a new entry 7041 ** in pPage->apOvfl[] and make it point to the cell content (either 7042 ** in pTemp or the original pCell) and also record its index. 7043 ** Allocating a new entry in pPage->aCell[] implies that 7044 ** pPage->nOverflow is incremented. 7045 ** 7046 ** *pRC must be SQLITE_OK when this routine is called. 7047 */ 7048 static void insertCell( 7049 MemPage *pPage, /* Page into which we are copying */ 7050 int i, /* New cell becomes the i-th cell of the page */ 7051 u8 *pCell, /* Content of the new cell */ 7052 int sz, /* Bytes of content in pCell */ 7053 u8 *pTemp, /* Temp storage space for pCell, if needed */ 7054 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 7055 int *pRC /* Read and write return code from here */ 7056 ){ 7057 int idx = 0; /* Where to write new cell content in data[] */ 7058 int j; /* Loop counter */ 7059 u8 *data; /* The content of the whole page */ 7060 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 7061 7062 assert( *pRC==SQLITE_OK ); 7063 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 7064 assert( MX_CELL(pPage->pBt)<=10921 ); 7065 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 7066 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 7067 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 7068 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7069 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 7070 assert( pPage->nFree>=0 ); 7071 if( pPage->nOverflow || sz+2>pPage->nFree ){ 7072 if( pTemp ){ 7073 memcpy(pTemp, pCell, sz); 7074 pCell = pTemp; 7075 } 7076 if( iChild ){ 7077 put4byte(pCell, iChild); 7078 } 7079 j = pPage->nOverflow++; 7080 /* Comparison against ArraySize-1 since we hold back one extra slot 7081 ** as a contingency. In other words, never need more than 3 overflow 7082 ** slots but 4 are allocated, just to be safe. */ 7083 assert( j < ArraySize(pPage->apOvfl)-1 ); 7084 pPage->apOvfl[j] = pCell; 7085 pPage->aiOvfl[j] = (u16)i; 7086 7087 /* When multiple overflows occur, they are always sequential and in 7088 ** sorted order. This invariants arise because multiple overflows can 7089 ** only occur when inserting divider cells into the parent page during 7090 ** balancing, and the dividers are adjacent and sorted. 7091 */ 7092 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 7093 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 7094 }else{ 7095 int rc = sqlite3PagerWrite(pPage->pDbPage); 7096 if( rc!=SQLITE_OK ){ 7097 *pRC = rc; 7098 return; 7099 } 7100 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 7101 data = pPage->aData; 7102 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 7103 rc = allocateSpace(pPage, sz, &idx); 7104 if( rc ){ *pRC = rc; return; } 7105 /* The allocateSpace() routine guarantees the following properties 7106 ** if it returns successfully */ 7107 assert( idx >= 0 ); 7108 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 7109 assert( idx+sz <= (int)pPage->pBt->usableSize ); 7110 pPage->nFree -= (u16)(2 + sz); 7111 if( iChild ){ 7112 /* In a corrupt database where an entry in the cell index section of 7113 ** a btree page has a value of 3 or less, the pCell value might point 7114 ** as many as 4 bytes in front of the start of the aData buffer for 7115 ** the source page. Make sure this does not cause problems by not 7116 ** reading the first 4 bytes */ 7117 memcpy(&data[idx+4], pCell+4, sz-4); 7118 put4byte(&data[idx], iChild); 7119 }else{ 7120 memcpy(&data[idx], pCell, sz); 7121 } 7122 pIns = pPage->aCellIdx + i*2; 7123 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 7124 put2byte(pIns, idx); 7125 pPage->nCell++; 7126 /* increment the cell count */ 7127 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 7128 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 7129 #ifndef SQLITE_OMIT_AUTOVACUUM 7130 if( pPage->pBt->autoVacuum ){ 7131 /* The cell may contain a pointer to an overflow page. If so, write 7132 ** the entry for the overflow page into the pointer map. 7133 */ 7134 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 7135 } 7136 #endif 7137 } 7138 } 7139 7140 /* 7141 ** The following parameters determine how many adjacent pages get involved 7142 ** in a balancing operation. NN is the number of neighbors on either side 7143 ** of the page that participate in the balancing operation. NB is the 7144 ** total number of pages that participate, including the target page and 7145 ** NN neighbors on either side. 7146 ** 7147 ** The minimum value of NN is 1 (of course). Increasing NN above 1 7148 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 7149 ** in exchange for a larger degradation in INSERT and UPDATE performance. 7150 ** The value of NN appears to give the best results overall. 7151 ** 7152 ** (Later:) The description above makes it seem as if these values are 7153 ** tunable - as if you could change them and recompile and it would all work. 7154 ** But that is unlikely. NB has been 3 since the inception of SQLite and 7155 ** we have never tested any other value. 7156 */ 7157 #define NN 1 /* Number of neighbors on either side of pPage */ 7158 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 7159 7160 /* 7161 ** A CellArray object contains a cache of pointers and sizes for a 7162 ** consecutive sequence of cells that might be held on multiple pages. 7163 ** 7164 ** The cells in this array are the divider cell or cells from the pParent 7165 ** page plus up to three child pages. There are a total of nCell cells. 7166 ** 7167 ** pRef is a pointer to one of the pages that contributes cells. This is 7168 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 7169 ** which should be common to all pages that contribute cells to this array. 7170 ** 7171 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 7172 ** cell and the size of each cell. Some of the apCell[] pointers might refer 7173 ** to overflow cells. In other words, some apCel[] pointers might not point 7174 ** to content area of the pages. 7175 ** 7176 ** A szCell[] of zero means the size of that cell has not yet been computed. 7177 ** 7178 ** The cells come from as many as four different pages: 7179 ** 7180 ** ----------- 7181 ** | Parent | 7182 ** ----------- 7183 ** / | \ 7184 ** / | \ 7185 ** --------- --------- --------- 7186 ** |Child-1| |Child-2| |Child-3| 7187 ** --------- --------- --------- 7188 ** 7189 ** The order of cells is in the array is for an index btree is: 7190 ** 7191 ** 1. All cells from Child-1 in order 7192 ** 2. The first divider cell from Parent 7193 ** 3. All cells from Child-2 in order 7194 ** 4. The second divider cell from Parent 7195 ** 5. All cells from Child-3 in order 7196 ** 7197 ** For a table-btree (with rowids) the items 2 and 4 are empty because 7198 ** content exists only in leaves and there are no divider cells. 7199 ** 7200 ** For an index btree, the apEnd[] array holds pointer to the end of page 7201 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 7202 ** respectively. The ixNx[] array holds the number of cells contained in 7203 ** each of these 5 stages, and all stages to the left. Hence: 7204 ** 7205 ** ixNx[0] = Number of cells in Child-1. 7206 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 7207 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 7208 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 7209 ** ixNx[4] = Total number of cells. 7210 ** 7211 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 7212 ** are used and they point to the leaf pages only, and the ixNx value are: 7213 ** 7214 ** ixNx[0] = Number of cells in Child-1. 7215 ** ixNx[1] = Number of cells in Child-1 and Child-2. 7216 ** ixNx[2] = Total number of cells. 7217 ** 7218 ** Sometimes when deleting, a child page can have zero cells. In those 7219 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 7220 ** entries, shift down. The end result is that each ixNx[] entry should 7221 ** be larger than the previous 7222 */ 7223 typedef struct CellArray CellArray; 7224 struct CellArray { 7225 int nCell; /* Number of cells in apCell[] */ 7226 MemPage *pRef; /* Reference page */ 7227 u8 **apCell; /* All cells begin balanced */ 7228 u16 *szCell; /* Local size of all cells in apCell[] */ 7229 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 7230 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 7231 }; 7232 7233 /* 7234 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 7235 ** computed. 7236 */ 7237 static void populateCellCache(CellArray *p, int idx, int N){ 7238 assert( idx>=0 && idx+N<=p->nCell ); 7239 while( N>0 ){ 7240 assert( p->apCell[idx]!=0 ); 7241 if( p->szCell[idx]==0 ){ 7242 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 7243 }else{ 7244 assert( CORRUPT_DB || 7245 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 7246 } 7247 idx++; 7248 N--; 7249 } 7250 } 7251 7252 /* 7253 ** Return the size of the Nth element of the cell array 7254 */ 7255 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 7256 assert( N>=0 && N<p->nCell ); 7257 assert( p->szCell[N]==0 ); 7258 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 7259 return p->szCell[N]; 7260 } 7261 static u16 cachedCellSize(CellArray *p, int N){ 7262 assert( N>=0 && N<p->nCell ); 7263 if( p->szCell[N] ) return p->szCell[N]; 7264 return computeCellSize(p, N); 7265 } 7266 7267 /* 7268 ** Array apCell[] contains pointers to nCell b-tree page cells. The 7269 ** szCell[] array contains the size in bytes of each cell. This function 7270 ** replaces the current contents of page pPg with the contents of the cell 7271 ** array. 7272 ** 7273 ** Some of the cells in apCell[] may currently be stored in pPg. This 7274 ** function works around problems caused by this by making a copy of any 7275 ** such cells before overwriting the page data. 7276 ** 7277 ** The MemPage.nFree field is invalidated by this function. It is the 7278 ** responsibility of the caller to set it correctly. 7279 */ 7280 static int rebuildPage( 7281 CellArray *pCArray, /* Content to be added to page pPg */ 7282 int iFirst, /* First cell in pCArray to use */ 7283 int nCell, /* Final number of cells on page */ 7284 MemPage *pPg /* The page to be reconstructed */ 7285 ){ 7286 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 7287 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 7288 const int usableSize = pPg->pBt->usableSize; 7289 u8 * const pEnd = &aData[usableSize]; 7290 int i = iFirst; /* Which cell to copy from pCArray*/ 7291 u32 j; /* Start of cell content area */ 7292 int iEnd = i+nCell; /* Loop terminator */ 7293 u8 *pCellptr = pPg->aCellIdx; 7294 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7295 u8 *pData; 7296 int k; /* Current slot in pCArray->apEnd[] */ 7297 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 7298 7299 assert( i<iEnd ); 7300 j = get2byte(&aData[hdr+5]); 7301 if( j>(u32)usableSize ){ j = 0; } 7302 memcpy(&pTmp[j], &aData[j], usableSize - j); 7303 7304 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7305 pSrcEnd = pCArray->apEnd[k]; 7306 7307 pData = pEnd; 7308 while( 1/*exit by break*/ ){ 7309 u8 *pCell = pCArray->apCell[i]; 7310 u16 sz = pCArray->szCell[i]; 7311 assert( sz>0 ); 7312 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ 7313 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 7314 pCell = &pTmp[pCell - aData]; 7315 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 7316 && (uptr)(pCell)<(uptr)pSrcEnd 7317 ){ 7318 return SQLITE_CORRUPT_BKPT; 7319 } 7320 7321 pData -= sz; 7322 put2byte(pCellptr, (pData - aData)); 7323 pCellptr += 2; 7324 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 7325 memmove(pData, pCell, sz); 7326 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 7327 i++; 7328 if( i>=iEnd ) break; 7329 if( pCArray->ixNx[k]<=i ){ 7330 k++; 7331 pSrcEnd = pCArray->apEnd[k]; 7332 } 7333 } 7334 7335 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 7336 pPg->nCell = nCell; 7337 pPg->nOverflow = 0; 7338 7339 put2byte(&aData[hdr+1], 0); 7340 put2byte(&aData[hdr+3], pPg->nCell); 7341 put2byte(&aData[hdr+5], pData - aData); 7342 aData[hdr+7] = 0x00; 7343 return SQLITE_OK; 7344 } 7345 7346 /* 7347 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 7348 ** This function attempts to add the cells stored in the array to page pPg. 7349 ** If it cannot (because the page needs to be defragmented before the cells 7350 ** will fit), non-zero is returned. Otherwise, if the cells are added 7351 ** successfully, zero is returned. 7352 ** 7353 ** Argument pCellptr points to the first entry in the cell-pointer array 7354 ** (part of page pPg) to populate. After cell apCell[0] is written to the 7355 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 7356 ** cell in the array. It is the responsibility of the caller to ensure 7357 ** that it is safe to overwrite this part of the cell-pointer array. 7358 ** 7359 ** When this function is called, *ppData points to the start of the 7360 ** content area on page pPg. If the size of the content area is extended, 7361 ** *ppData is updated to point to the new start of the content area 7362 ** before returning. 7363 ** 7364 ** Finally, argument pBegin points to the byte immediately following the 7365 ** end of the space required by this page for the cell-pointer area (for 7366 ** all cells - not just those inserted by the current call). If the content 7367 ** area must be extended to before this point in order to accomodate all 7368 ** cells in apCell[], then the cells do not fit and non-zero is returned. 7369 */ 7370 static int pageInsertArray( 7371 MemPage *pPg, /* Page to add cells to */ 7372 u8 *pBegin, /* End of cell-pointer array */ 7373 u8 **ppData, /* IN/OUT: Page content-area pointer */ 7374 u8 *pCellptr, /* Pointer to cell-pointer area */ 7375 int iFirst, /* Index of first cell to add */ 7376 int nCell, /* Number of cells to add to pPg */ 7377 CellArray *pCArray /* Array of cells */ 7378 ){ 7379 int i = iFirst; /* Loop counter - cell index to insert */ 7380 u8 *aData = pPg->aData; /* Complete page */ 7381 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7382 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7383 int k; /* Current slot in pCArray->apEnd[] */ 7384 u8 *pEnd; /* Maximum extent of cell data */ 7385 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7386 if( iEnd<=iFirst ) return 0; 7387 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7388 pEnd = pCArray->apEnd[k]; 7389 while( 1 /*Exit by break*/ ){ 7390 int sz, rc; 7391 u8 *pSlot; 7392 assert( pCArray->szCell[i]!=0 ); 7393 sz = pCArray->szCell[i]; 7394 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7395 if( (pData - pBegin)<sz ) return 1; 7396 pData -= sz; 7397 pSlot = pData; 7398 } 7399 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7400 ** database. But they might for a corrupt database. Hence use memmove() 7401 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7402 assert( (pSlot+sz)<=pCArray->apCell[i] 7403 || pSlot>=(pCArray->apCell[i]+sz) 7404 || CORRUPT_DB ); 7405 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7406 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7407 ){ 7408 assert( CORRUPT_DB ); 7409 (void)SQLITE_CORRUPT_BKPT; 7410 return 1; 7411 } 7412 memmove(pSlot, pCArray->apCell[i], sz); 7413 put2byte(pCellptr, (pSlot - aData)); 7414 pCellptr += 2; 7415 i++; 7416 if( i>=iEnd ) break; 7417 if( pCArray->ixNx[k]<=i ){ 7418 k++; 7419 pEnd = pCArray->apEnd[k]; 7420 } 7421 } 7422 *ppData = pData; 7423 return 0; 7424 } 7425 7426 /* 7427 ** The pCArray object contains pointers to b-tree cells and their sizes. 7428 ** 7429 ** This function adds the space associated with each cell in the array 7430 ** that is currently stored within the body of pPg to the pPg free-list. 7431 ** The cell-pointers and other fields of the page are not updated. 7432 ** 7433 ** This function returns the total number of cells added to the free-list. 7434 */ 7435 static int pageFreeArray( 7436 MemPage *pPg, /* Page to edit */ 7437 int iFirst, /* First cell to delete */ 7438 int nCell, /* Cells to delete */ 7439 CellArray *pCArray /* Array of cells */ 7440 ){ 7441 u8 * const aData = pPg->aData; 7442 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7443 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7444 int nRet = 0; 7445 int i; 7446 int iEnd = iFirst + nCell; 7447 u8 *pFree = 0; 7448 int szFree = 0; 7449 7450 for(i=iFirst; i<iEnd; i++){ 7451 u8 *pCell = pCArray->apCell[i]; 7452 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7453 int sz; 7454 /* No need to use cachedCellSize() here. The sizes of all cells that 7455 ** are to be freed have already been computing while deciding which 7456 ** cells need freeing */ 7457 sz = pCArray->szCell[i]; assert( sz>0 ); 7458 if( pFree!=(pCell + sz) ){ 7459 if( pFree ){ 7460 assert( pFree>aData && (pFree - aData)<65536 ); 7461 freeSpace(pPg, (u16)(pFree - aData), szFree); 7462 } 7463 pFree = pCell; 7464 szFree = sz; 7465 if( pFree+sz>pEnd ){ 7466 return 0; 7467 } 7468 }else{ 7469 pFree = pCell; 7470 szFree += sz; 7471 } 7472 nRet++; 7473 } 7474 } 7475 if( pFree ){ 7476 assert( pFree>aData && (pFree - aData)<65536 ); 7477 freeSpace(pPg, (u16)(pFree - aData), szFree); 7478 } 7479 return nRet; 7480 } 7481 7482 /* 7483 ** pCArray contains pointers to and sizes of all cells in the page being 7484 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7485 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7486 ** starting at apCell[iNew]. 7487 ** 7488 ** This routine makes the necessary adjustments to pPg so that it contains 7489 ** the correct cells after being balanced. 7490 ** 7491 ** The pPg->nFree field is invalid when this function returns. It is the 7492 ** responsibility of the caller to set it correctly. 7493 */ 7494 static int editPage( 7495 MemPage *pPg, /* Edit this page */ 7496 int iOld, /* Index of first cell currently on page */ 7497 int iNew, /* Index of new first cell on page */ 7498 int nNew, /* Final number of cells on page */ 7499 CellArray *pCArray /* Array of cells and sizes */ 7500 ){ 7501 u8 * const aData = pPg->aData; 7502 const int hdr = pPg->hdrOffset; 7503 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7504 int nCell = pPg->nCell; /* Cells stored on pPg */ 7505 u8 *pData; 7506 u8 *pCellptr; 7507 int i; 7508 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7509 int iNewEnd = iNew + nNew; 7510 7511 #ifdef SQLITE_DEBUG 7512 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7513 memcpy(pTmp, aData, pPg->pBt->usableSize); 7514 #endif 7515 7516 /* Remove cells from the start and end of the page */ 7517 assert( nCell>=0 ); 7518 if( iOld<iNew ){ 7519 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7520 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; 7521 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7522 nCell -= nShift; 7523 } 7524 if( iNewEnd < iOldEnd ){ 7525 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7526 assert( nCell>=nTail ); 7527 nCell -= nTail; 7528 } 7529 7530 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7531 if( pData<pBegin ) goto editpage_fail; 7532 if( pData>pPg->aDataEnd ) goto editpage_fail; 7533 7534 /* Add cells to the start of the page */ 7535 if( iNew<iOld ){ 7536 int nAdd = MIN(nNew,iOld-iNew); 7537 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7538 assert( nAdd>=0 ); 7539 pCellptr = pPg->aCellIdx; 7540 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7541 if( pageInsertArray( 7542 pPg, pBegin, &pData, pCellptr, 7543 iNew, nAdd, pCArray 7544 ) ) goto editpage_fail; 7545 nCell += nAdd; 7546 } 7547 7548 /* Add any overflow cells */ 7549 for(i=0; i<pPg->nOverflow; i++){ 7550 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7551 if( iCell>=0 && iCell<nNew ){ 7552 pCellptr = &pPg->aCellIdx[iCell * 2]; 7553 if( nCell>iCell ){ 7554 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7555 } 7556 nCell++; 7557 cachedCellSize(pCArray, iCell+iNew); 7558 if( pageInsertArray( 7559 pPg, pBegin, &pData, pCellptr, 7560 iCell+iNew, 1, pCArray 7561 ) ) goto editpage_fail; 7562 } 7563 } 7564 7565 /* Append cells to the end of the page */ 7566 assert( nCell>=0 ); 7567 pCellptr = &pPg->aCellIdx[nCell*2]; 7568 if( pageInsertArray( 7569 pPg, pBegin, &pData, pCellptr, 7570 iNew+nCell, nNew-nCell, pCArray 7571 ) ) goto editpage_fail; 7572 7573 pPg->nCell = nNew; 7574 pPg->nOverflow = 0; 7575 7576 put2byte(&aData[hdr+3], pPg->nCell); 7577 put2byte(&aData[hdr+5], pData - aData); 7578 7579 #ifdef SQLITE_DEBUG 7580 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7581 u8 *pCell = pCArray->apCell[i+iNew]; 7582 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7583 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7584 pCell = &pTmp[pCell - aData]; 7585 } 7586 assert( 0==memcmp(pCell, &aData[iOff], 7587 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7588 } 7589 #endif 7590 7591 return SQLITE_OK; 7592 editpage_fail: 7593 /* Unable to edit this page. Rebuild it from scratch instead. */ 7594 populateCellCache(pCArray, iNew, nNew); 7595 return rebuildPage(pCArray, iNew, nNew, pPg); 7596 } 7597 7598 7599 #ifndef SQLITE_OMIT_QUICKBALANCE 7600 /* 7601 ** This version of balance() handles the common special case where 7602 ** a new entry is being inserted on the extreme right-end of the 7603 ** tree, in other words, when the new entry will become the largest 7604 ** entry in the tree. 7605 ** 7606 ** Instead of trying to balance the 3 right-most leaf pages, just add 7607 ** a new page to the right-hand side and put the one new entry in 7608 ** that page. This leaves the right side of the tree somewhat 7609 ** unbalanced. But odds are that we will be inserting new entries 7610 ** at the end soon afterwards so the nearly empty page will quickly 7611 ** fill up. On average. 7612 ** 7613 ** pPage is the leaf page which is the right-most page in the tree. 7614 ** pParent is its parent. pPage must have a single overflow entry 7615 ** which is also the right-most entry on the page. 7616 ** 7617 ** The pSpace buffer is used to store a temporary copy of the divider 7618 ** cell that will be inserted into pParent. Such a cell consists of a 4 7619 ** byte page number followed by a variable length integer. In other 7620 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7621 ** least 13 bytes in size. 7622 */ 7623 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7624 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7625 MemPage *pNew; /* Newly allocated page */ 7626 int rc; /* Return Code */ 7627 Pgno pgnoNew; /* Page number of pNew */ 7628 7629 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7630 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7631 assert( pPage->nOverflow==1 ); 7632 7633 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7634 assert( pPage->nFree>=0 ); 7635 assert( pParent->nFree>=0 ); 7636 7637 /* Allocate a new page. This page will become the right-sibling of 7638 ** pPage. Make the parent page writable, so that the new divider cell 7639 ** may be inserted. If both these operations are successful, proceed. 7640 */ 7641 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7642 7643 if( rc==SQLITE_OK ){ 7644 7645 u8 *pOut = &pSpace[4]; 7646 u8 *pCell = pPage->apOvfl[0]; 7647 u16 szCell = pPage->xCellSize(pPage, pCell); 7648 u8 *pStop; 7649 CellArray b; 7650 7651 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7652 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7653 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7654 b.nCell = 1; 7655 b.pRef = pPage; 7656 b.apCell = &pCell; 7657 b.szCell = &szCell; 7658 b.apEnd[0] = pPage->aDataEnd; 7659 b.ixNx[0] = 2; 7660 rc = rebuildPage(&b, 0, 1, pNew); 7661 if( NEVER(rc) ){ 7662 releasePage(pNew); 7663 return rc; 7664 } 7665 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7666 7667 /* If this is an auto-vacuum database, update the pointer map 7668 ** with entries for the new page, and any pointer from the 7669 ** cell on the page to an overflow page. If either of these 7670 ** operations fails, the return code is set, but the contents 7671 ** of the parent page are still manipulated by thh code below. 7672 ** That is Ok, at this point the parent page is guaranteed to 7673 ** be marked as dirty. Returning an error code will cause a 7674 ** rollback, undoing any changes made to the parent page. 7675 */ 7676 if( ISAUTOVACUUM ){ 7677 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7678 if( szCell>pNew->minLocal ){ 7679 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7680 } 7681 } 7682 7683 /* Create a divider cell to insert into pParent. The divider cell 7684 ** consists of a 4-byte page number (the page number of pPage) and 7685 ** a variable length key value (which must be the same value as the 7686 ** largest key on pPage). 7687 ** 7688 ** To find the largest key value on pPage, first find the right-most 7689 ** cell on pPage. The first two fields of this cell are the 7690 ** record-length (a variable length integer at most 32-bits in size) 7691 ** and the key value (a variable length integer, may have any value). 7692 ** The first of the while(...) loops below skips over the record-length 7693 ** field. The second while(...) loop copies the key value from the 7694 ** cell on pPage into the pSpace buffer. 7695 */ 7696 pCell = findCell(pPage, pPage->nCell-1); 7697 pStop = &pCell[9]; 7698 while( (*(pCell++)&0x80) && pCell<pStop ); 7699 pStop = &pCell[9]; 7700 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7701 7702 /* Insert the new divider cell into pParent. */ 7703 if( rc==SQLITE_OK ){ 7704 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7705 0, pPage->pgno, &rc); 7706 } 7707 7708 /* Set the right-child pointer of pParent to point to the new page. */ 7709 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7710 7711 /* Release the reference to the new page. */ 7712 releasePage(pNew); 7713 } 7714 7715 return rc; 7716 } 7717 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7718 7719 #if 0 7720 /* 7721 ** This function does not contribute anything to the operation of SQLite. 7722 ** it is sometimes activated temporarily while debugging code responsible 7723 ** for setting pointer-map entries. 7724 */ 7725 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7726 int i, j; 7727 for(i=0; i<nPage; i++){ 7728 Pgno n; 7729 u8 e; 7730 MemPage *pPage = apPage[i]; 7731 BtShared *pBt = pPage->pBt; 7732 assert( pPage->isInit ); 7733 7734 for(j=0; j<pPage->nCell; j++){ 7735 CellInfo info; 7736 u8 *z; 7737 7738 z = findCell(pPage, j); 7739 pPage->xParseCell(pPage, z, &info); 7740 if( info.nLocal<info.nPayload ){ 7741 Pgno ovfl = get4byte(&z[info.nSize-4]); 7742 ptrmapGet(pBt, ovfl, &e, &n); 7743 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7744 } 7745 if( !pPage->leaf ){ 7746 Pgno child = get4byte(z); 7747 ptrmapGet(pBt, child, &e, &n); 7748 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7749 } 7750 } 7751 if( !pPage->leaf ){ 7752 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7753 ptrmapGet(pBt, child, &e, &n); 7754 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7755 } 7756 } 7757 return 1; 7758 } 7759 #endif 7760 7761 /* 7762 ** This function is used to copy the contents of the b-tree node stored 7763 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7764 ** the pointer-map entries for each child page are updated so that the 7765 ** parent page stored in the pointer map is page pTo. If pFrom contained 7766 ** any cells with overflow page pointers, then the corresponding pointer 7767 ** map entries are also updated so that the parent page is page pTo. 7768 ** 7769 ** If pFrom is currently carrying any overflow cells (entries in the 7770 ** MemPage.apOvfl[] array), they are not copied to pTo. 7771 ** 7772 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7773 ** 7774 ** The performance of this function is not critical. It is only used by 7775 ** the balance_shallower() and balance_deeper() procedures, neither of 7776 ** which are called often under normal circumstances. 7777 */ 7778 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7779 if( (*pRC)==SQLITE_OK ){ 7780 BtShared * const pBt = pFrom->pBt; 7781 u8 * const aFrom = pFrom->aData; 7782 u8 * const aTo = pTo->aData; 7783 int const iFromHdr = pFrom->hdrOffset; 7784 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7785 int rc; 7786 int iData; 7787 7788 7789 assert( pFrom->isInit ); 7790 assert( pFrom->nFree>=iToHdr ); 7791 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7792 7793 /* Copy the b-tree node content from page pFrom to page pTo. */ 7794 iData = get2byte(&aFrom[iFromHdr+5]); 7795 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7796 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7797 7798 /* Reinitialize page pTo so that the contents of the MemPage structure 7799 ** match the new data. The initialization of pTo can actually fail under 7800 ** fairly obscure circumstances, even though it is a copy of initialized 7801 ** page pFrom. 7802 */ 7803 pTo->isInit = 0; 7804 rc = btreeInitPage(pTo); 7805 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7806 if( rc!=SQLITE_OK ){ 7807 *pRC = rc; 7808 return; 7809 } 7810 7811 /* If this is an auto-vacuum database, update the pointer-map entries 7812 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7813 */ 7814 if( ISAUTOVACUUM ){ 7815 *pRC = setChildPtrmaps(pTo); 7816 } 7817 } 7818 } 7819 7820 /* 7821 ** This routine redistributes cells on the iParentIdx'th child of pParent 7822 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7823 ** same amount of free space. Usually a single sibling on either side of the 7824 ** page are used in the balancing, though both siblings might come from one 7825 ** side if the page is the first or last child of its parent. If the page 7826 ** has fewer than 2 siblings (something which can only happen if the page 7827 ** is a root page or a child of a root page) then all available siblings 7828 ** participate in the balancing. 7829 ** 7830 ** The number of siblings of the page might be increased or decreased by 7831 ** one or two in an effort to keep pages nearly full but not over full. 7832 ** 7833 ** Note that when this routine is called, some of the cells on the page 7834 ** might not actually be stored in MemPage.aData[]. This can happen 7835 ** if the page is overfull. This routine ensures that all cells allocated 7836 ** to the page and its siblings fit into MemPage.aData[] before returning. 7837 ** 7838 ** In the course of balancing the page and its siblings, cells may be 7839 ** inserted into or removed from the parent page (pParent). Doing so 7840 ** may cause the parent page to become overfull or underfull. If this 7841 ** happens, it is the responsibility of the caller to invoke the correct 7842 ** balancing routine to fix this problem (see the balance() routine). 7843 ** 7844 ** If this routine fails for any reason, it might leave the database 7845 ** in a corrupted state. So if this routine fails, the database should 7846 ** be rolled back. 7847 ** 7848 ** The third argument to this function, aOvflSpace, is a pointer to a 7849 ** buffer big enough to hold one page. If while inserting cells into the parent 7850 ** page (pParent) the parent page becomes overfull, this buffer is 7851 ** used to store the parent's overflow cells. Because this function inserts 7852 ** a maximum of four divider cells into the parent page, and the maximum 7853 ** size of a cell stored within an internal node is always less than 1/4 7854 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7855 ** enough for all overflow cells. 7856 ** 7857 ** If aOvflSpace is set to a null pointer, this function returns 7858 ** SQLITE_NOMEM. 7859 */ 7860 static int balance_nonroot( 7861 MemPage *pParent, /* Parent page of siblings being balanced */ 7862 int iParentIdx, /* Index of "the page" in pParent */ 7863 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7864 int isRoot, /* True if pParent is a root-page */ 7865 int bBulk /* True if this call is part of a bulk load */ 7866 ){ 7867 BtShared *pBt; /* The whole database */ 7868 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7869 int nNew = 0; /* Number of pages in apNew[] */ 7870 int nOld; /* Number of pages in apOld[] */ 7871 int i, j, k; /* Loop counters */ 7872 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7873 int rc = SQLITE_OK; /* The return code */ 7874 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7875 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7876 int usableSpace; /* Bytes in pPage beyond the header */ 7877 int pageFlags; /* Value of pPage->aData[0] */ 7878 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7879 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7880 int szScratch; /* Size of scratch memory requested */ 7881 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7882 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7883 u8 *pRight; /* Location in parent of right-sibling pointer */ 7884 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7885 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7886 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7887 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7888 u8 *aSpace1; /* Space for copies of dividers cells */ 7889 Pgno pgno; /* Temp var to store a page number in */ 7890 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7891 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7892 CellArray b; /* Parsed information on cells being balanced */ 7893 7894 memset(abDone, 0, sizeof(abDone)); 7895 memset(&b, 0, sizeof(b)); 7896 pBt = pParent->pBt; 7897 assert( sqlite3_mutex_held(pBt->mutex) ); 7898 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7899 7900 /* At this point pParent may have at most one overflow cell. And if 7901 ** this overflow cell is present, it must be the cell with 7902 ** index iParentIdx. This scenario comes about when this function 7903 ** is called (indirectly) from sqlite3BtreeDelete(). 7904 */ 7905 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7906 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7907 7908 if( !aOvflSpace ){ 7909 return SQLITE_NOMEM_BKPT; 7910 } 7911 assert( pParent->nFree>=0 ); 7912 7913 /* Find the sibling pages to balance. Also locate the cells in pParent 7914 ** that divide the siblings. An attempt is made to find NN siblings on 7915 ** either side of pPage. More siblings are taken from one side, however, 7916 ** if there are fewer than NN siblings on the other side. If pParent 7917 ** has NB or fewer children then all children of pParent are taken. 7918 ** 7919 ** This loop also drops the divider cells from the parent page. This 7920 ** way, the remainder of the function does not have to deal with any 7921 ** overflow cells in the parent page, since if any existed they will 7922 ** have already been removed. 7923 */ 7924 i = pParent->nOverflow + pParent->nCell; 7925 if( i<2 ){ 7926 nxDiv = 0; 7927 }else{ 7928 assert( bBulk==0 || bBulk==1 ); 7929 if( iParentIdx==0 ){ 7930 nxDiv = 0; 7931 }else if( iParentIdx==i ){ 7932 nxDiv = i-2+bBulk; 7933 }else{ 7934 nxDiv = iParentIdx-1; 7935 } 7936 i = 2-bBulk; 7937 } 7938 nOld = i+1; 7939 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7940 pRight = &pParent->aData[pParent->hdrOffset+8]; 7941 }else{ 7942 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7943 } 7944 pgno = get4byte(pRight); 7945 while( 1 ){ 7946 if( rc==SQLITE_OK ){ 7947 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7948 } 7949 if( rc ){ 7950 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7951 goto balance_cleanup; 7952 } 7953 if( apOld[i]->nFree<0 ){ 7954 rc = btreeComputeFreeSpace(apOld[i]); 7955 if( rc ){ 7956 memset(apOld, 0, (i)*sizeof(MemPage*)); 7957 goto balance_cleanup; 7958 } 7959 } 7960 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); 7961 if( (i--)==0 ) break; 7962 7963 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7964 apDiv[i] = pParent->apOvfl[0]; 7965 pgno = get4byte(apDiv[i]); 7966 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7967 pParent->nOverflow = 0; 7968 }else{ 7969 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7970 pgno = get4byte(apDiv[i]); 7971 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7972 7973 /* Drop the cell from the parent page. apDiv[i] still points to 7974 ** the cell within the parent, even though it has been dropped. 7975 ** This is safe because dropping a cell only overwrites the first 7976 ** four bytes of it, and this function does not need the first 7977 ** four bytes of the divider cell. So the pointer is safe to use 7978 ** later on. 7979 ** 7980 ** But not if we are in secure-delete mode. In secure-delete mode, 7981 ** the dropCell() routine will overwrite the entire cell with zeroes. 7982 ** In this case, temporarily copy the cell into the aOvflSpace[] 7983 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7984 ** is allocated. */ 7985 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7986 int iOff; 7987 7988 /* If the following if() condition is not true, the db is corrupted. 7989 ** The call to dropCell() below will detect this. */ 7990 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7991 if( (iOff+szNew[i])<=(int)pBt->usableSize ){ 7992 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7993 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7994 } 7995 } 7996 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7997 } 7998 } 7999 8000 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 8001 ** alignment */ 8002 nMaxCells = (nMaxCells + 3)&~3; 8003 8004 /* 8005 ** Allocate space for memory structures 8006 */ 8007 szScratch = 8008 nMaxCells*sizeof(u8*) /* b.apCell */ 8009 + nMaxCells*sizeof(u16) /* b.szCell */ 8010 + pBt->pageSize; /* aSpace1 */ 8011 8012 assert( szScratch<=7*(int)pBt->pageSize ); 8013 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 8014 if( b.apCell==0 ){ 8015 rc = SQLITE_NOMEM_BKPT; 8016 goto balance_cleanup; 8017 } 8018 b.szCell = (u16*)&b.apCell[nMaxCells]; 8019 aSpace1 = (u8*)&b.szCell[nMaxCells]; 8020 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 8021 8022 /* 8023 ** Load pointers to all cells on sibling pages and the divider cells 8024 ** into the local b.apCell[] array. Make copies of the divider cells 8025 ** into space obtained from aSpace1[]. The divider cells have already 8026 ** been removed from pParent. 8027 ** 8028 ** If the siblings are on leaf pages, then the child pointers of the 8029 ** divider cells are stripped from the cells before they are copied 8030 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 8031 ** child pointers. If siblings are not leaves, then all cell in 8032 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 8033 ** are alike. 8034 ** 8035 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 8036 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 8037 */ 8038 b.pRef = apOld[0]; 8039 leafCorrection = b.pRef->leaf*4; 8040 leafData = b.pRef->intKeyLeaf; 8041 for(i=0; i<nOld; i++){ 8042 MemPage *pOld = apOld[i]; 8043 int limit = pOld->nCell; 8044 u8 *aData = pOld->aData; 8045 u16 maskPage = pOld->maskPage; 8046 u8 *piCell = aData + pOld->cellOffset; 8047 u8 *piEnd; 8048 VVA_ONLY( int nCellAtStart = b.nCell; ) 8049 8050 /* Verify that all sibling pages are of the same "type" (table-leaf, 8051 ** table-interior, index-leaf, or index-interior). 8052 */ 8053 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 8054 rc = SQLITE_CORRUPT_BKPT; 8055 goto balance_cleanup; 8056 } 8057 8058 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 8059 ** contains overflow cells, include them in the b.apCell[] array 8060 ** in the correct spot. 8061 ** 8062 ** Note that when there are multiple overflow cells, it is always the 8063 ** case that they are sequential and adjacent. This invariant arises 8064 ** because multiple overflows can only occurs when inserting divider 8065 ** cells into a parent on a prior balance, and divider cells are always 8066 ** adjacent and are inserted in order. There is an assert() tagged 8067 ** with "NOTE 1" in the overflow cell insertion loop to prove this 8068 ** invariant. 8069 ** 8070 ** This must be done in advance. Once the balance starts, the cell 8071 ** offset section of the btree page will be overwritten and we will no 8072 ** long be able to find the cells if a pointer to each cell is not saved 8073 ** first. 8074 */ 8075 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 8076 if( pOld->nOverflow>0 ){ 8077 if( NEVER(limit<pOld->aiOvfl[0]) ){ 8078 rc = SQLITE_CORRUPT_BKPT; 8079 goto balance_cleanup; 8080 } 8081 limit = pOld->aiOvfl[0]; 8082 for(j=0; j<limit; j++){ 8083 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 8084 piCell += 2; 8085 b.nCell++; 8086 } 8087 for(k=0; k<pOld->nOverflow; k++){ 8088 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 8089 b.apCell[b.nCell] = pOld->apOvfl[k]; 8090 b.nCell++; 8091 } 8092 } 8093 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 8094 while( piCell<piEnd ){ 8095 assert( b.nCell<nMaxCells ); 8096 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 8097 piCell += 2; 8098 b.nCell++; 8099 } 8100 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 8101 8102 cntOld[i] = b.nCell; 8103 if( i<nOld-1 && !leafData){ 8104 u16 sz = (u16)szNew[i]; 8105 u8 *pTemp; 8106 assert( b.nCell<nMaxCells ); 8107 b.szCell[b.nCell] = sz; 8108 pTemp = &aSpace1[iSpace1]; 8109 iSpace1 += sz; 8110 assert( sz<=pBt->maxLocal+23 ); 8111 assert( iSpace1 <= (int)pBt->pageSize ); 8112 memcpy(pTemp, apDiv[i], sz); 8113 b.apCell[b.nCell] = pTemp+leafCorrection; 8114 assert( leafCorrection==0 || leafCorrection==4 ); 8115 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 8116 if( !pOld->leaf ){ 8117 assert( leafCorrection==0 ); 8118 assert( pOld->hdrOffset==0 || CORRUPT_DB ); 8119 /* The right pointer of the child page pOld becomes the left 8120 ** pointer of the divider cell */ 8121 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 8122 }else{ 8123 assert( leafCorrection==4 ); 8124 while( b.szCell[b.nCell]<4 ){ 8125 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 8126 ** does exist, pad it with 0x00 bytes. */ 8127 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 8128 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 8129 aSpace1[iSpace1++] = 0x00; 8130 b.szCell[b.nCell]++; 8131 } 8132 } 8133 b.nCell++; 8134 } 8135 } 8136 8137 /* 8138 ** Figure out the number of pages needed to hold all b.nCell cells. 8139 ** Store this number in "k". Also compute szNew[] which is the total 8140 ** size of all cells on the i-th page and cntNew[] which is the index 8141 ** in b.apCell[] of the cell that divides page i from page i+1. 8142 ** cntNew[k] should equal b.nCell. 8143 ** 8144 ** Values computed by this block: 8145 ** 8146 ** k: The total number of sibling pages 8147 ** szNew[i]: Spaced used on the i-th sibling page. 8148 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 8149 ** the right of the i-th sibling page. 8150 ** usableSpace: Number of bytes of space available on each sibling. 8151 ** 8152 */ 8153 usableSpace = pBt->usableSize - 12 + leafCorrection; 8154 for(i=k=0; i<nOld; i++, k++){ 8155 MemPage *p = apOld[i]; 8156 b.apEnd[k] = p->aDataEnd; 8157 b.ixNx[k] = cntOld[i]; 8158 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 8159 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 8160 } 8161 if( !leafData ){ 8162 k++; 8163 b.apEnd[k] = pParent->aDataEnd; 8164 b.ixNx[k] = cntOld[i]+1; 8165 } 8166 assert( p->nFree>=0 ); 8167 szNew[i] = usableSpace - p->nFree; 8168 for(j=0; j<p->nOverflow; j++){ 8169 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 8170 } 8171 cntNew[i] = cntOld[i]; 8172 } 8173 k = nOld; 8174 for(i=0; i<k; i++){ 8175 int sz; 8176 while( szNew[i]>usableSpace ){ 8177 if( i+1>=k ){ 8178 k = i+2; 8179 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 8180 szNew[k-1] = 0; 8181 cntNew[k-1] = b.nCell; 8182 } 8183 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 8184 szNew[i] -= sz; 8185 if( !leafData ){ 8186 if( cntNew[i]<b.nCell ){ 8187 sz = 2 + cachedCellSize(&b, cntNew[i]); 8188 }else{ 8189 sz = 0; 8190 } 8191 } 8192 szNew[i+1] += sz; 8193 cntNew[i]--; 8194 } 8195 while( cntNew[i]<b.nCell ){ 8196 sz = 2 + cachedCellSize(&b, cntNew[i]); 8197 if( szNew[i]+sz>usableSpace ) break; 8198 szNew[i] += sz; 8199 cntNew[i]++; 8200 if( !leafData ){ 8201 if( cntNew[i]<b.nCell ){ 8202 sz = 2 + cachedCellSize(&b, cntNew[i]); 8203 }else{ 8204 sz = 0; 8205 } 8206 } 8207 szNew[i+1] -= sz; 8208 } 8209 if( cntNew[i]>=b.nCell ){ 8210 k = i+1; 8211 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 8212 rc = SQLITE_CORRUPT_BKPT; 8213 goto balance_cleanup; 8214 } 8215 } 8216 8217 /* 8218 ** The packing computed by the previous block is biased toward the siblings 8219 ** on the left side (siblings with smaller keys). The left siblings are 8220 ** always nearly full, while the right-most sibling might be nearly empty. 8221 ** The next block of code attempts to adjust the packing of siblings to 8222 ** get a better balance. 8223 ** 8224 ** This adjustment is more than an optimization. The packing above might 8225 ** be so out of balance as to be illegal. For example, the right-most 8226 ** sibling might be completely empty. This adjustment is not optional. 8227 */ 8228 for(i=k-1; i>0; i--){ 8229 int szRight = szNew[i]; /* Size of sibling on the right */ 8230 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 8231 int r; /* Index of right-most cell in left sibling */ 8232 int d; /* Index of first cell to the left of right sibling */ 8233 8234 r = cntNew[i-1] - 1; 8235 d = r + 1 - leafData; 8236 (void)cachedCellSize(&b, d); 8237 do{ 8238 assert( d<nMaxCells ); 8239 assert( r<nMaxCells ); 8240 (void)cachedCellSize(&b, r); 8241 if( szRight!=0 8242 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 8243 break; 8244 } 8245 szRight += b.szCell[d] + 2; 8246 szLeft -= b.szCell[r] + 2; 8247 cntNew[i-1] = r; 8248 r--; 8249 d--; 8250 }while( r>=0 ); 8251 szNew[i] = szRight; 8252 szNew[i-1] = szLeft; 8253 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 8254 rc = SQLITE_CORRUPT_BKPT; 8255 goto balance_cleanup; 8256 } 8257 } 8258 8259 /* Sanity check: For a non-corrupt database file one of the follwing 8260 ** must be true: 8261 ** (1) We found one or more cells (cntNew[0])>0), or 8262 ** (2) pPage is a virtual root page. A virtual root page is when 8263 ** the real root page is page 1 and we are the only child of 8264 ** that page. 8265 */ 8266 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 8267 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 8268 apOld[0]->pgno, apOld[0]->nCell, 8269 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 8270 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 8271 )); 8272 8273 /* 8274 ** Allocate k new pages. Reuse old pages where possible. 8275 */ 8276 pageFlags = apOld[0]->aData[0]; 8277 for(i=0; i<k; i++){ 8278 MemPage *pNew; 8279 if( i<nOld ){ 8280 pNew = apNew[i] = apOld[i]; 8281 apOld[i] = 0; 8282 rc = sqlite3PagerWrite(pNew->pDbPage); 8283 nNew++; 8284 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) 8285 && rc==SQLITE_OK 8286 ){ 8287 rc = SQLITE_CORRUPT_BKPT; 8288 } 8289 if( rc ) goto balance_cleanup; 8290 }else{ 8291 assert( i>0 ); 8292 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 8293 if( rc ) goto balance_cleanup; 8294 zeroPage(pNew, pageFlags); 8295 apNew[i] = pNew; 8296 nNew++; 8297 cntOld[i] = b.nCell; 8298 8299 /* Set the pointer-map entry for the new sibling page. */ 8300 if( ISAUTOVACUUM ){ 8301 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 8302 if( rc!=SQLITE_OK ){ 8303 goto balance_cleanup; 8304 } 8305 } 8306 } 8307 } 8308 8309 /* 8310 ** Reassign page numbers so that the new pages are in ascending order. 8311 ** This helps to keep entries in the disk file in order so that a scan 8312 ** of the table is closer to a linear scan through the file. That in turn 8313 ** helps the operating system to deliver pages from the disk more rapidly. 8314 ** 8315 ** An O(N*N) sort algorithm is used, but since N is never more than NB+2 8316 ** (5), that is not a performance concern. 8317 ** 8318 ** When NB==3, this one optimization makes the database about 25% faster 8319 ** for large insertions and deletions. 8320 */ 8321 for(i=0; i<nNew; i++){ 8322 aPgno[i] = apNew[i]->pgno; 8323 assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE ); 8324 assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY ); 8325 } 8326 for(i=0; i<nNew-1; i++){ 8327 int iB = i; 8328 for(j=i+1; j<nNew; j++){ 8329 if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j; 8330 } 8331 8332 /* If apNew[i] has a page number that is bigger than any of the 8333 ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent 8334 ** entry that has the smallest page number (which we know to be 8335 ** entry apNew[iB]). 8336 */ 8337 if( iB!=i ){ 8338 Pgno pgnoA = apNew[i]->pgno; 8339 Pgno pgnoB = apNew[iB]->pgno; 8340 Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1; 8341 u16 fgA = apNew[i]->pDbPage->flags; 8342 u16 fgB = apNew[iB]->pDbPage->flags; 8343 sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB); 8344 sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA); 8345 sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB); 8346 apNew[i]->pgno = pgnoB; 8347 apNew[iB]->pgno = pgnoA; 8348 } 8349 } 8350 8351 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 8352 "%d(%d nc=%d) %d(%d nc=%d)\n", 8353 apNew[0]->pgno, szNew[0], cntNew[0], 8354 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 8355 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 8356 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 8357 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 8358 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 8359 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 8360 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 8361 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 8362 )); 8363 8364 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8365 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 8366 assert( apNew[nNew-1]!=0 ); 8367 put4byte(pRight, apNew[nNew-1]->pgno); 8368 8369 /* If the sibling pages are not leaves, ensure that the right-child pointer 8370 ** of the right-most new sibling page is set to the value that was 8371 ** originally in the same field of the right-most old sibling page. */ 8372 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 8373 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 8374 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 8375 } 8376 8377 /* Make any required updates to pointer map entries associated with 8378 ** cells stored on sibling pages following the balance operation. Pointer 8379 ** map entries associated with divider cells are set by the insertCell() 8380 ** routine. The associated pointer map entries are: 8381 ** 8382 ** a) if the cell contains a reference to an overflow chain, the 8383 ** entry associated with the first page in the overflow chain, and 8384 ** 8385 ** b) if the sibling pages are not leaves, the child page associated 8386 ** with the cell. 8387 ** 8388 ** If the sibling pages are not leaves, then the pointer map entry 8389 ** associated with the right-child of each sibling may also need to be 8390 ** updated. This happens below, after the sibling pages have been 8391 ** populated, not here. 8392 */ 8393 if( ISAUTOVACUUM ){ 8394 MemPage *pOld; 8395 MemPage *pNew = pOld = apNew[0]; 8396 int cntOldNext = pNew->nCell + pNew->nOverflow; 8397 int iNew = 0; 8398 int iOld = 0; 8399 8400 for(i=0; i<b.nCell; i++){ 8401 u8 *pCell = b.apCell[i]; 8402 while( i==cntOldNext ){ 8403 iOld++; 8404 assert( iOld<nNew || iOld<nOld ); 8405 assert( iOld>=0 && iOld<NB ); 8406 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8407 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8408 } 8409 if( i==cntNew[iNew] ){ 8410 pNew = apNew[++iNew]; 8411 if( !leafData ) continue; 8412 } 8413 8414 /* Cell pCell is destined for new sibling page pNew. Originally, it 8415 ** was either part of sibling page iOld (possibly an overflow cell), 8416 ** or else the divider cell to the left of sibling page iOld. So, 8417 ** if sibling page iOld had the same page number as pNew, and if 8418 ** pCell really was a part of sibling page iOld (not a divider or 8419 ** overflow cell), we can skip updating the pointer map entries. */ 8420 if( iOld>=nNew 8421 || pNew->pgno!=aPgno[iOld] 8422 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8423 ){ 8424 if( !leafCorrection ){ 8425 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8426 } 8427 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8428 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8429 } 8430 if( rc ) goto balance_cleanup; 8431 } 8432 } 8433 } 8434 8435 /* Insert new divider cells into pParent. */ 8436 for(i=0; i<nNew-1; i++){ 8437 u8 *pCell; 8438 u8 *pTemp; 8439 int sz; 8440 u8 *pSrcEnd; 8441 MemPage *pNew = apNew[i]; 8442 j = cntNew[i]; 8443 8444 assert( j<nMaxCells ); 8445 assert( b.apCell[j]!=0 ); 8446 pCell = b.apCell[j]; 8447 sz = b.szCell[j] + leafCorrection; 8448 pTemp = &aOvflSpace[iOvflSpace]; 8449 if( !pNew->leaf ){ 8450 memcpy(&pNew->aData[8], pCell, 4); 8451 }else if( leafData ){ 8452 /* If the tree is a leaf-data tree, and the siblings are leaves, 8453 ** then there is no divider cell in b.apCell[]. Instead, the divider 8454 ** cell consists of the integer key for the right-most cell of 8455 ** the sibling-page assembled above only. 8456 */ 8457 CellInfo info; 8458 j--; 8459 pNew->xParseCell(pNew, b.apCell[j], &info); 8460 pCell = pTemp; 8461 sz = 4 + putVarint(&pCell[4], info.nKey); 8462 pTemp = 0; 8463 }else{ 8464 pCell -= 4; 8465 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8466 ** previously stored on a leaf node, and its reported size was 4 8467 ** bytes, then it may actually be smaller than this 8468 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8469 ** any cell). But it is important to pass the correct size to 8470 ** insertCell(), so reparse the cell now. 8471 ** 8472 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8473 ** and WITHOUT ROWID tables with exactly one column which is the 8474 ** primary key. 8475 */ 8476 if( b.szCell[j]==4 ){ 8477 assert(leafCorrection==4); 8478 sz = pParent->xCellSize(pParent, pCell); 8479 } 8480 } 8481 iOvflSpace += sz; 8482 assert( sz<=pBt->maxLocal+23 ); 8483 assert( iOvflSpace <= (int)pBt->pageSize ); 8484 for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){} 8485 pSrcEnd = b.apEnd[k]; 8486 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ 8487 rc = SQLITE_CORRUPT_BKPT; 8488 goto balance_cleanup; 8489 } 8490 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8491 if( rc!=SQLITE_OK ) goto balance_cleanup; 8492 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8493 } 8494 8495 /* Now update the actual sibling pages. The order in which they are updated 8496 ** is important, as this code needs to avoid disrupting any page from which 8497 ** cells may still to be read. In practice, this means: 8498 ** 8499 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8500 ** then it is not safe to update page apNew[iPg] until after 8501 ** the left-hand sibling apNew[iPg-1] has been updated. 8502 ** 8503 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8504 ** then it is not safe to update page apNew[iPg] until after 8505 ** the right-hand sibling apNew[iPg+1] has been updated. 8506 ** 8507 ** If neither of the above apply, the page is safe to update. 8508 ** 8509 ** The iPg value in the following loop starts at nNew-1 goes down 8510 ** to 0, then back up to nNew-1 again, thus making two passes over 8511 ** the pages. On the initial downward pass, only condition (1) above 8512 ** needs to be tested because (2) will always be true from the previous 8513 ** step. On the upward pass, both conditions are always true, so the 8514 ** upwards pass simply processes pages that were missed on the downward 8515 ** pass. 8516 */ 8517 for(i=1-nNew; i<nNew; i++){ 8518 int iPg = i<0 ? -i : i; 8519 assert( iPg>=0 && iPg<nNew ); 8520 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8521 if( i>=0 /* On the upwards pass, or... */ 8522 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8523 ){ 8524 int iNew; 8525 int iOld; 8526 int nNewCell; 8527 8528 /* Verify condition (1): If cells are moving left, update iPg 8529 ** only after iPg-1 has already been updated. */ 8530 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8531 8532 /* Verify condition (2): If cells are moving right, update iPg 8533 ** only after iPg+1 has already been updated. */ 8534 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8535 8536 if( iPg==0 ){ 8537 iNew = iOld = 0; 8538 nNewCell = cntNew[0]; 8539 }else{ 8540 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8541 iNew = cntNew[iPg-1] + !leafData; 8542 nNewCell = cntNew[iPg] - iNew; 8543 } 8544 8545 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8546 if( rc ) goto balance_cleanup; 8547 abDone[iPg]++; 8548 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8549 assert( apNew[iPg]->nOverflow==0 ); 8550 assert( apNew[iPg]->nCell==nNewCell ); 8551 } 8552 } 8553 8554 /* All pages have been processed exactly once */ 8555 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8556 8557 assert( nOld>0 ); 8558 assert( nNew>0 ); 8559 8560 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8561 /* The root page of the b-tree now contains no cells. The only sibling 8562 ** page is the right-child of the parent. Copy the contents of the 8563 ** child page into the parent, decreasing the overall height of the 8564 ** b-tree structure by one. This is described as the "balance-shallower" 8565 ** sub-algorithm in some documentation. 8566 ** 8567 ** If this is an auto-vacuum database, the call to copyNodeContent() 8568 ** sets all pointer-map entries corresponding to database image pages 8569 ** for which the pointer is stored within the content being copied. 8570 ** 8571 ** It is critical that the child page be defragmented before being 8572 ** copied into the parent, because if the parent is page 1 then it will 8573 ** by smaller than the child due to the database header, and so all the 8574 ** free space needs to be up front. 8575 */ 8576 assert( nNew==1 || CORRUPT_DB ); 8577 rc = defragmentPage(apNew[0], -1); 8578 testcase( rc!=SQLITE_OK ); 8579 assert( apNew[0]->nFree == 8580 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8581 - apNew[0]->nCell*2) 8582 || rc!=SQLITE_OK 8583 ); 8584 copyNodeContent(apNew[0], pParent, &rc); 8585 freePage(apNew[0], &rc); 8586 }else if( ISAUTOVACUUM && !leafCorrection ){ 8587 /* Fix the pointer map entries associated with the right-child of each 8588 ** sibling page. All other pointer map entries have already been taken 8589 ** care of. */ 8590 for(i=0; i<nNew; i++){ 8591 u32 key = get4byte(&apNew[i]->aData[8]); 8592 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8593 } 8594 } 8595 8596 assert( pParent->isInit ); 8597 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8598 nOld, nNew, b.nCell)); 8599 8600 /* Free any old pages that were not reused as new pages. 8601 */ 8602 for(i=nNew; i<nOld; i++){ 8603 freePage(apOld[i], &rc); 8604 } 8605 8606 #if 0 8607 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8608 /* The ptrmapCheckPages() contains assert() statements that verify that 8609 ** all pointer map pages are set correctly. This is helpful while 8610 ** debugging. This is usually disabled because a corrupt database may 8611 ** cause an assert() statement to fail. */ 8612 ptrmapCheckPages(apNew, nNew); 8613 ptrmapCheckPages(&pParent, 1); 8614 } 8615 #endif 8616 8617 /* 8618 ** Cleanup before returning. 8619 */ 8620 balance_cleanup: 8621 sqlite3StackFree(0, b.apCell); 8622 for(i=0; i<nOld; i++){ 8623 releasePage(apOld[i]); 8624 } 8625 for(i=0; i<nNew; i++){ 8626 releasePage(apNew[i]); 8627 } 8628 8629 return rc; 8630 } 8631 8632 8633 /* 8634 ** This function is called when the root page of a b-tree structure is 8635 ** overfull (has one or more overflow pages). 8636 ** 8637 ** A new child page is allocated and the contents of the current root 8638 ** page, including overflow cells, are copied into the child. The root 8639 ** page is then overwritten to make it an empty page with the right-child 8640 ** pointer pointing to the new page. 8641 ** 8642 ** Before returning, all pointer-map entries corresponding to pages 8643 ** that the new child-page now contains pointers to are updated. The 8644 ** entry corresponding to the new right-child pointer of the root 8645 ** page is also updated. 8646 ** 8647 ** If successful, *ppChild is set to contain a reference to the child 8648 ** page and SQLITE_OK is returned. In this case the caller is required 8649 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8650 ** an error code is returned and *ppChild is set to 0. 8651 */ 8652 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8653 int rc; /* Return value from subprocedures */ 8654 MemPage *pChild = 0; /* Pointer to a new child page */ 8655 Pgno pgnoChild = 0; /* Page number of the new child page */ 8656 BtShared *pBt = pRoot->pBt; /* The BTree */ 8657 8658 assert( pRoot->nOverflow>0 ); 8659 assert( sqlite3_mutex_held(pBt->mutex) ); 8660 8661 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8662 ** page that will become the new right-child of pPage. Copy the contents 8663 ** of the node stored on pRoot into the new child page. 8664 */ 8665 rc = sqlite3PagerWrite(pRoot->pDbPage); 8666 if( rc==SQLITE_OK ){ 8667 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8668 copyNodeContent(pRoot, pChild, &rc); 8669 if( ISAUTOVACUUM ){ 8670 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8671 } 8672 } 8673 if( rc ){ 8674 *ppChild = 0; 8675 releasePage(pChild); 8676 return rc; 8677 } 8678 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8679 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8680 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8681 8682 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8683 8684 /* Copy the overflow cells from pRoot to pChild */ 8685 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8686 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8687 memcpy(pChild->apOvfl, pRoot->apOvfl, 8688 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8689 pChild->nOverflow = pRoot->nOverflow; 8690 8691 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8692 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8693 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8694 8695 *ppChild = pChild; 8696 return SQLITE_OK; 8697 } 8698 8699 /* 8700 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid 8701 ** on the same B-tree as pCur. 8702 ** 8703 ** This can occur if a database is corrupt with two or more SQL tables 8704 ** pointing to the same b-tree. If an insert occurs on one SQL table 8705 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL 8706 ** table linked to the same b-tree. If the secondary insert causes a 8707 ** rebalance, that can change content out from under the cursor on the 8708 ** first SQL table, violating invariants on the first insert. 8709 */ 8710 static int anotherValidCursor(BtCursor *pCur){ 8711 BtCursor *pOther; 8712 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ 8713 if( pOther!=pCur 8714 && pOther->eState==CURSOR_VALID 8715 && pOther->pPage==pCur->pPage 8716 ){ 8717 return SQLITE_CORRUPT_BKPT; 8718 } 8719 } 8720 return SQLITE_OK; 8721 } 8722 8723 /* 8724 ** The page that pCur currently points to has just been modified in 8725 ** some way. This function figures out if this modification means the 8726 ** tree needs to be balanced, and if so calls the appropriate balancing 8727 ** routine. Balancing routines are: 8728 ** 8729 ** balance_quick() 8730 ** balance_deeper() 8731 ** balance_nonroot() 8732 */ 8733 static int balance(BtCursor *pCur){ 8734 int rc = SQLITE_OK; 8735 u8 aBalanceQuickSpace[13]; 8736 u8 *pFree = 0; 8737 8738 VVA_ONLY( int balance_quick_called = 0 ); 8739 VVA_ONLY( int balance_deeper_called = 0 ); 8740 8741 do { 8742 int iPage; 8743 MemPage *pPage = pCur->pPage; 8744 8745 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8746 if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ 8747 /* No rebalance required as long as: 8748 ** (1) There are no overflow cells 8749 ** (2) The amount of free space on the page is less than 2/3rds of 8750 ** the total usable space on the page. */ 8751 break; 8752 }else if( (iPage = pCur->iPage)==0 ){ 8753 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ 8754 /* The root page of the b-tree is overfull. In this case call the 8755 ** balance_deeper() function to create a new child for the root-page 8756 ** and copy the current contents of the root-page to it. The 8757 ** next iteration of the do-loop will balance the child page. 8758 */ 8759 assert( balance_deeper_called==0 ); 8760 VVA_ONLY( balance_deeper_called++ ); 8761 rc = balance_deeper(pPage, &pCur->apPage[1]); 8762 if( rc==SQLITE_OK ){ 8763 pCur->iPage = 1; 8764 pCur->ix = 0; 8765 pCur->aiIdx[0] = 0; 8766 pCur->apPage[0] = pPage; 8767 pCur->pPage = pCur->apPage[1]; 8768 assert( pCur->pPage->nOverflow ); 8769 } 8770 }else{ 8771 break; 8772 } 8773 }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){ 8774 /* The page being written is not a root page, and there is currently 8775 ** more than one reference to it. This only happens if the page is one 8776 ** of its own ancestor pages. Corruption. */ 8777 rc = SQLITE_CORRUPT_BKPT; 8778 }else{ 8779 MemPage * const pParent = pCur->apPage[iPage-1]; 8780 int const iIdx = pCur->aiIdx[iPage-1]; 8781 8782 rc = sqlite3PagerWrite(pParent->pDbPage); 8783 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8784 rc = btreeComputeFreeSpace(pParent); 8785 } 8786 if( rc==SQLITE_OK ){ 8787 #ifndef SQLITE_OMIT_QUICKBALANCE 8788 if( pPage->intKeyLeaf 8789 && pPage->nOverflow==1 8790 && pPage->aiOvfl[0]==pPage->nCell 8791 && pParent->pgno!=1 8792 && pParent->nCell==iIdx 8793 ){ 8794 /* Call balance_quick() to create a new sibling of pPage on which 8795 ** to store the overflow cell. balance_quick() inserts a new cell 8796 ** into pParent, which may cause pParent overflow. If this 8797 ** happens, the next iteration of the do-loop will balance pParent 8798 ** use either balance_nonroot() or balance_deeper(). Until this 8799 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8800 ** buffer. 8801 ** 8802 ** The purpose of the following assert() is to check that only a 8803 ** single call to balance_quick() is made for each call to this 8804 ** function. If this were not verified, a subtle bug involving reuse 8805 ** of the aBalanceQuickSpace[] might sneak in. 8806 */ 8807 assert( balance_quick_called==0 ); 8808 VVA_ONLY( balance_quick_called++ ); 8809 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8810 }else 8811 #endif 8812 { 8813 /* In this case, call balance_nonroot() to redistribute cells 8814 ** between pPage and up to 2 of its sibling pages. This involves 8815 ** modifying the contents of pParent, which may cause pParent to 8816 ** become overfull or underfull. The next iteration of the do-loop 8817 ** will balance the parent page to correct this. 8818 ** 8819 ** If the parent page becomes overfull, the overflow cell or cells 8820 ** are stored in the pSpace buffer allocated immediately below. 8821 ** A subsequent iteration of the do-loop will deal with this by 8822 ** calling balance_nonroot() (balance_deeper() may be called first, 8823 ** but it doesn't deal with overflow cells - just moves them to a 8824 ** different page). Once this subsequent call to balance_nonroot() 8825 ** has completed, it is safe to release the pSpace buffer used by 8826 ** the previous call, as the overflow cell data will have been 8827 ** copied either into the body of a database page or into the new 8828 ** pSpace buffer passed to the latter call to balance_nonroot(). 8829 */ 8830 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8831 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8832 pCur->hints&BTREE_BULKLOAD); 8833 if( pFree ){ 8834 /* If pFree is not NULL, it points to the pSpace buffer used 8835 ** by a previous call to balance_nonroot(). Its contents are 8836 ** now stored either on real database pages or within the 8837 ** new pSpace buffer, so it may be safely freed here. */ 8838 sqlite3PageFree(pFree); 8839 } 8840 8841 /* The pSpace buffer will be freed after the next call to 8842 ** balance_nonroot(), or just before this function returns, whichever 8843 ** comes first. */ 8844 pFree = pSpace; 8845 } 8846 } 8847 8848 pPage->nOverflow = 0; 8849 8850 /* The next iteration of the do-loop balances the parent page. */ 8851 releasePage(pPage); 8852 pCur->iPage--; 8853 assert( pCur->iPage>=0 ); 8854 pCur->pPage = pCur->apPage[pCur->iPage]; 8855 } 8856 }while( rc==SQLITE_OK ); 8857 8858 if( pFree ){ 8859 sqlite3PageFree(pFree); 8860 } 8861 return rc; 8862 } 8863 8864 /* Overwrite content from pX into pDest. Only do the write if the 8865 ** content is different from what is already there. 8866 */ 8867 static int btreeOverwriteContent( 8868 MemPage *pPage, /* MemPage on which writing will occur */ 8869 u8 *pDest, /* Pointer to the place to start writing */ 8870 const BtreePayload *pX, /* Source of data to write */ 8871 int iOffset, /* Offset of first byte to write */ 8872 int iAmt /* Number of bytes to be written */ 8873 ){ 8874 int nData = pX->nData - iOffset; 8875 if( nData<=0 ){ 8876 /* Overwritting with zeros */ 8877 int i; 8878 for(i=0; i<iAmt && pDest[i]==0; i++){} 8879 if( i<iAmt ){ 8880 int rc = sqlite3PagerWrite(pPage->pDbPage); 8881 if( rc ) return rc; 8882 memset(pDest + i, 0, iAmt - i); 8883 } 8884 }else{ 8885 if( nData<iAmt ){ 8886 /* Mixed read data and zeros at the end. Make a recursive call 8887 ** to write the zeros then fall through to write the real data */ 8888 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8889 iAmt-nData); 8890 if( rc ) return rc; 8891 iAmt = nData; 8892 } 8893 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8894 int rc = sqlite3PagerWrite(pPage->pDbPage); 8895 if( rc ) return rc; 8896 /* In a corrupt database, it is possible for the source and destination 8897 ** buffers to overlap. This is harmless since the database is already 8898 ** corrupt but it does cause valgrind and ASAN warnings. So use 8899 ** memmove(). */ 8900 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8901 } 8902 } 8903 return SQLITE_OK; 8904 } 8905 8906 /* 8907 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8908 ** contained in pX. 8909 */ 8910 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8911 int iOffset; /* Next byte of pX->pData to write */ 8912 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8913 int rc; /* Return code */ 8914 MemPage *pPage = pCur->pPage; /* Page being written */ 8915 BtShared *pBt; /* Btree */ 8916 Pgno ovflPgno; /* Next overflow page to write */ 8917 u32 ovflPageSize; /* Size to write on overflow page */ 8918 8919 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8920 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8921 ){ 8922 return SQLITE_CORRUPT_BKPT; 8923 } 8924 /* Overwrite the local portion first */ 8925 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8926 0, pCur->info.nLocal); 8927 if( rc ) return rc; 8928 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8929 8930 /* Now overwrite the overflow pages */ 8931 iOffset = pCur->info.nLocal; 8932 assert( nTotal>=0 ); 8933 assert( iOffset>=0 ); 8934 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8935 pBt = pPage->pBt; 8936 ovflPageSize = pBt->usableSize - 4; 8937 do{ 8938 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8939 if( rc ) return rc; 8940 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ 8941 rc = SQLITE_CORRUPT_BKPT; 8942 }else{ 8943 if( iOffset+ovflPageSize<(u32)nTotal ){ 8944 ovflPgno = get4byte(pPage->aData); 8945 }else{ 8946 ovflPageSize = nTotal - iOffset; 8947 } 8948 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8949 iOffset, ovflPageSize); 8950 } 8951 sqlite3PagerUnref(pPage->pDbPage); 8952 if( rc ) return rc; 8953 iOffset += ovflPageSize; 8954 }while( iOffset<nTotal ); 8955 return SQLITE_OK; 8956 } 8957 8958 8959 /* 8960 ** Insert a new record into the BTree. The content of the new record 8961 ** is described by the pX object. The pCur cursor is used only to 8962 ** define what table the record should be inserted into, and is left 8963 ** pointing at a random location. 8964 ** 8965 ** For a table btree (used for rowid tables), only the pX.nKey value of 8966 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8967 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8968 ** hold the content of the row. 8969 ** 8970 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8971 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8972 ** pX.pData,nData,nZero fields must be zero. 8973 ** 8974 ** If the seekResult parameter is non-zero, then a successful call to 8975 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already 8976 ** been performed. In other words, if seekResult!=0 then the cursor 8977 ** is currently pointing to a cell that will be adjacent to the cell 8978 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8979 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8980 ** that is larger than (pKey,nKey). 8981 ** 8982 ** If seekResult==0, that means pCur is pointing at some unknown location. 8983 ** In that case, this routine must seek the cursor to the correct insertion 8984 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8985 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8986 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8987 ** to decode the key. 8988 */ 8989 int sqlite3BtreeInsert( 8990 BtCursor *pCur, /* Insert data into the table of this cursor */ 8991 const BtreePayload *pX, /* Content of the row to be inserted */ 8992 int flags, /* True if this is likely an append */ 8993 int seekResult /* Result of prior IndexMoveto() call */ 8994 ){ 8995 int rc; 8996 int loc = seekResult; /* -1: before desired location +1: after */ 8997 int szNew = 0; 8998 int idx; 8999 MemPage *pPage; 9000 Btree *p = pCur->pBtree; 9001 BtShared *pBt = p->pBt; 9002 unsigned char *oldCell; 9003 unsigned char *newCell = 0; 9004 9005 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); 9006 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); 9007 9008 /* Save the positions of any other cursors open on this table. 9009 ** 9010 ** In some cases, the call to btreeMoveto() below is a no-op. For 9011 ** example, when inserting data into a table with auto-generated integer 9012 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 9013 ** integer key to use. It then calls this function to actually insert the 9014 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 9015 ** that the cursor is already where it needs to be and returns without 9016 ** doing any work. To avoid thwarting these optimizations, it is important 9017 ** not to clear the cursor here. 9018 */ 9019 if( pCur->curFlags & BTCF_Multiple ){ 9020 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9021 if( rc ) return rc; 9022 if( loc && pCur->iPage<0 ){ 9023 /* This can only happen if the schema is corrupt such that there is more 9024 ** than one table or index with the same root page as used by the cursor. 9025 ** Which can only happen if the SQLITE_NoSchemaError flag was set when 9026 ** the schema was loaded. This cannot be asserted though, as a user might 9027 ** set the flag, load the schema, and then unset the flag. */ 9028 return SQLITE_CORRUPT_BKPT; 9029 } 9030 } 9031 9032 /* Ensure that the cursor is not in the CURSOR_FAULT state and that it 9033 ** points to a valid cell. 9034 */ 9035 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 9036 testcase( pCur->eState==CURSOR_REQUIRESEEK ); 9037 testcase( pCur->eState==CURSOR_FAULT ); 9038 rc = moveToRoot(pCur); 9039 if( rc && rc!=SQLITE_EMPTY ) return rc; 9040 } 9041 9042 assert( cursorOwnsBtShared(pCur) ); 9043 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 9044 && pBt->inTransaction==TRANS_WRITE 9045 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9046 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9047 9048 /* Assert that the caller has been consistent. If this cursor was opened 9049 ** expecting an index b-tree, then the caller should be inserting blob 9050 ** keys with no associated data. If the cursor was opened expecting an 9051 ** intkey table, the caller should be inserting integer keys with a 9052 ** blob of associated data. */ 9053 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); 9054 9055 if( pCur->pKeyInfo==0 ){ 9056 assert( pX->pKey==0 ); 9057 /* If this is an insert into a table b-tree, invalidate any incrblob 9058 ** cursors open on the row being replaced */ 9059 if( p->hasIncrblobCur ){ 9060 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 9061 } 9062 9063 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 9064 ** to a row with the same key as the new entry being inserted. 9065 */ 9066 #ifdef SQLITE_DEBUG 9067 if( flags & BTREE_SAVEPOSITION ){ 9068 assert( pCur->curFlags & BTCF_ValidNKey ); 9069 assert( pX->nKey==pCur->info.nKey ); 9070 assert( loc==0 ); 9071 } 9072 #endif 9073 9074 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 9075 ** that the cursor is not pointing to a row to be overwritten. 9076 ** So do a complete check. 9077 */ 9078 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 9079 /* The cursor is pointing to the entry that is to be 9080 ** overwritten */ 9081 assert( pX->nData>=0 && pX->nZero>=0 ); 9082 if( pCur->info.nSize!=0 9083 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 9084 ){ 9085 /* New entry is the same size as the old. Do an overwrite */ 9086 return btreeOverwriteCell(pCur, pX); 9087 } 9088 assert( loc==0 ); 9089 }else if( loc==0 ){ 9090 /* The cursor is *not* pointing to the cell to be overwritten, nor 9091 ** to an adjacent cell. Move the cursor so that it is pointing either 9092 ** to the cell to be overwritten or an adjacent cell. 9093 */ 9094 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, 9095 (flags & BTREE_APPEND)!=0, &loc); 9096 if( rc ) return rc; 9097 } 9098 }else{ 9099 /* This is an index or a WITHOUT ROWID table */ 9100 9101 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 9102 ** to a row with the same key as the new entry being inserted. 9103 */ 9104 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 9105 9106 /* If the cursor is not already pointing either to the cell to be 9107 ** overwritten, or if a new cell is being inserted, if the cursor is 9108 ** not pointing to an immediately adjacent cell, then move the cursor 9109 ** so that it does. 9110 */ 9111 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 9112 if( pX->nMem ){ 9113 UnpackedRecord r; 9114 r.pKeyInfo = pCur->pKeyInfo; 9115 r.aMem = pX->aMem; 9116 r.nField = pX->nMem; 9117 r.default_rc = 0; 9118 r.eqSeen = 0; 9119 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); 9120 }else{ 9121 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, 9122 (flags & BTREE_APPEND)!=0, &loc); 9123 } 9124 if( rc ) return rc; 9125 } 9126 9127 /* If the cursor is currently pointing to an entry to be overwritten 9128 ** and the new content is the same as as the old, then use the 9129 ** overwrite optimization. 9130 */ 9131 if( loc==0 ){ 9132 getCellInfo(pCur); 9133 if( pCur->info.nKey==pX->nKey ){ 9134 BtreePayload x2; 9135 x2.pData = pX->pKey; 9136 x2.nData = pX->nKey; 9137 x2.nZero = 0; 9138 return btreeOverwriteCell(pCur, &x2); 9139 } 9140 } 9141 } 9142 assert( pCur->eState==CURSOR_VALID 9143 || (pCur->eState==CURSOR_INVALID && loc) ); 9144 9145 pPage = pCur->pPage; 9146 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); 9147 assert( pPage->leaf || !pPage->intKey ); 9148 if( pPage->nFree<0 ){ 9149 if( NEVER(pCur->eState>CURSOR_INVALID) ){ 9150 /* ^^^^^--- due to the moveToRoot() call above */ 9151 rc = SQLITE_CORRUPT_BKPT; 9152 }else{ 9153 rc = btreeComputeFreeSpace(pPage); 9154 } 9155 if( rc ) return rc; 9156 } 9157 9158 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 9159 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 9160 loc==0 ? "overwrite" : "new entry")); 9161 assert( pPage->isInit || CORRUPT_DB ); 9162 newCell = pBt->pTmpSpace; 9163 assert( newCell!=0 ); 9164 if( flags & BTREE_PREFORMAT ){ 9165 rc = SQLITE_OK; 9166 szNew = pBt->nPreformatSize; 9167 if( szNew<4 ) szNew = 4; 9168 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ 9169 CellInfo info; 9170 pPage->xParseCell(pPage, newCell, &info); 9171 if( info.nPayload!=info.nLocal ){ 9172 Pgno ovfl = get4byte(&newCell[szNew-4]); 9173 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); 9174 } 9175 } 9176 }else{ 9177 rc = fillInCell(pPage, newCell, pX, &szNew); 9178 } 9179 if( rc ) goto end_insert; 9180 assert( szNew==pPage->xCellSize(pPage, newCell) ); 9181 assert( szNew <= MX_CELL_SIZE(pBt) ); 9182 idx = pCur->ix; 9183 if( loc==0 ){ 9184 CellInfo info; 9185 assert( idx>=0 ); 9186 if( idx>=pPage->nCell ){ 9187 return SQLITE_CORRUPT_BKPT; 9188 } 9189 rc = sqlite3PagerWrite(pPage->pDbPage); 9190 if( rc ){ 9191 goto end_insert; 9192 } 9193 oldCell = findCell(pPage, idx); 9194 if( !pPage->leaf ){ 9195 memcpy(newCell, oldCell, 4); 9196 } 9197 BTREE_CLEAR_CELL(rc, pPage, oldCell, info); 9198 testcase( pCur->curFlags & BTCF_ValidOvfl ); 9199 invalidateOverflowCache(pCur); 9200 if( info.nSize==szNew && info.nLocal==info.nPayload 9201 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 9202 ){ 9203 /* Overwrite the old cell with the new if they are the same size. 9204 ** We could also try to do this if the old cell is smaller, then add 9205 ** the leftover space to the free list. But experiments show that 9206 ** doing that is no faster then skipping this optimization and just 9207 ** calling dropCell() and insertCell(). 9208 ** 9209 ** This optimization cannot be used on an autovacuum database if the 9210 ** new entry uses overflow pages, as the insertCell() call below is 9211 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 9212 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 9213 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 9214 return SQLITE_CORRUPT_BKPT; 9215 } 9216 if( oldCell+szNew > pPage->aDataEnd ){ 9217 return SQLITE_CORRUPT_BKPT; 9218 } 9219 memcpy(oldCell, newCell, szNew); 9220 return SQLITE_OK; 9221 } 9222 dropCell(pPage, idx, info.nSize, &rc); 9223 if( rc ) goto end_insert; 9224 }else if( loc<0 && pPage->nCell>0 ){ 9225 assert( pPage->leaf ); 9226 idx = ++pCur->ix; 9227 pCur->curFlags &= ~BTCF_ValidNKey; 9228 }else{ 9229 assert( pPage->leaf ); 9230 } 9231 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 9232 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 9233 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 9234 9235 /* If no error has occurred and pPage has an overflow cell, call balance() 9236 ** to redistribute the cells within the tree. Since balance() may move 9237 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 9238 ** variables. 9239 ** 9240 ** Previous versions of SQLite called moveToRoot() to move the cursor 9241 ** back to the root page as balance() used to invalidate the contents 9242 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 9243 ** set the cursor state to "invalid". This makes common insert operations 9244 ** slightly faster. 9245 ** 9246 ** There is a subtle but important optimization here too. When inserting 9247 ** multiple records into an intkey b-tree using a single cursor (as can 9248 ** happen while processing an "INSERT INTO ... SELECT" statement), it 9249 ** is advantageous to leave the cursor pointing to the last entry in 9250 ** the b-tree if possible. If the cursor is left pointing to the last 9251 ** entry in the table, and the next row inserted has an integer key 9252 ** larger than the largest existing key, it is possible to insert the 9253 ** row without seeking the cursor. This can be a big performance boost. 9254 */ 9255 pCur->info.nSize = 0; 9256 if( pPage->nOverflow ){ 9257 assert( rc==SQLITE_OK ); 9258 pCur->curFlags &= ~(BTCF_ValidNKey); 9259 rc = balance(pCur); 9260 9261 /* Must make sure nOverflow is reset to zero even if the balance() 9262 ** fails. Internal data structure corruption will result otherwise. 9263 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 9264 ** from trying to save the current position of the cursor. */ 9265 pCur->pPage->nOverflow = 0; 9266 pCur->eState = CURSOR_INVALID; 9267 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 9268 btreeReleaseAllCursorPages(pCur); 9269 if( pCur->pKeyInfo ){ 9270 assert( pCur->pKey==0 ); 9271 pCur->pKey = sqlite3Malloc( pX->nKey ); 9272 if( pCur->pKey==0 ){ 9273 rc = SQLITE_NOMEM; 9274 }else{ 9275 memcpy(pCur->pKey, pX->pKey, pX->nKey); 9276 } 9277 } 9278 pCur->eState = CURSOR_REQUIRESEEK; 9279 pCur->nKey = pX->nKey; 9280 } 9281 } 9282 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 9283 9284 end_insert: 9285 return rc; 9286 } 9287 9288 /* 9289 ** This function is used as part of copying the current row from cursor 9290 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then 9291 ** parameter iKey is used as the rowid value when the record is copied 9292 ** into pDest. Otherwise, the record is copied verbatim. 9293 ** 9294 ** This function does not actually write the new value to cursor pDest. 9295 ** Instead, it creates and populates any required overflow pages and 9296 ** writes the data for the new cell into the BtShared.pTmpSpace buffer 9297 ** for the destination database. The size of the cell, in bytes, is left 9298 ** in BtShared.nPreformatSize. The caller completes the insertion by 9299 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. 9300 ** 9301 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 9302 */ 9303 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ 9304 int rc = SQLITE_OK; 9305 BtShared *pBt = pDest->pBt; 9306 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ 9307 const u8 *aIn; /* Pointer to next input buffer */ 9308 u32 nIn; /* Size of input buffer aIn[] */ 9309 u32 nRem; /* Bytes of data still to copy */ 9310 9311 getCellInfo(pSrc); 9312 if( pSrc->info.nPayload<0x80 ){ 9313 *(aOut++) = pSrc->info.nPayload; 9314 }else{ 9315 aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload); 9316 } 9317 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); 9318 nIn = pSrc->info.nLocal; 9319 aIn = pSrc->info.pPayload; 9320 if( aIn+nIn>pSrc->pPage->aDataEnd ){ 9321 return SQLITE_CORRUPT_BKPT; 9322 } 9323 nRem = pSrc->info.nPayload; 9324 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ 9325 memcpy(aOut, aIn, nIn); 9326 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); 9327 }else{ 9328 Pager *pSrcPager = pSrc->pBt->pPager; 9329 u8 *pPgnoOut = 0; 9330 Pgno ovflIn = 0; 9331 DbPage *pPageIn = 0; 9332 MemPage *pPageOut = 0; 9333 u32 nOut; /* Size of output buffer aOut[] */ 9334 9335 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); 9336 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); 9337 if( nOut<pSrc->info.nPayload ){ 9338 pPgnoOut = &aOut[nOut]; 9339 pBt->nPreformatSize += 4; 9340 } 9341 9342 if( nRem>nIn ){ 9343 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ 9344 return SQLITE_CORRUPT_BKPT; 9345 } 9346 ovflIn = get4byte(&pSrc->info.pPayload[nIn]); 9347 } 9348 9349 do { 9350 nRem -= nOut; 9351 do{ 9352 assert( nOut>0 ); 9353 if( nIn>0 ){ 9354 int nCopy = MIN(nOut, nIn); 9355 memcpy(aOut, aIn, nCopy); 9356 nOut -= nCopy; 9357 nIn -= nCopy; 9358 aOut += nCopy; 9359 aIn += nCopy; 9360 } 9361 if( nOut>0 ){ 9362 sqlite3PagerUnref(pPageIn); 9363 pPageIn = 0; 9364 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); 9365 if( rc==SQLITE_OK ){ 9366 aIn = (const u8*)sqlite3PagerGetData(pPageIn); 9367 ovflIn = get4byte(aIn); 9368 aIn += 4; 9369 nIn = pSrc->pBt->usableSize - 4; 9370 } 9371 } 9372 }while( rc==SQLITE_OK && nOut>0 ); 9373 9374 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ 9375 Pgno pgnoNew; 9376 MemPage *pNew = 0; 9377 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 9378 put4byte(pPgnoOut, pgnoNew); 9379 if( ISAUTOVACUUM && pPageOut ){ 9380 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); 9381 } 9382 releasePage(pPageOut); 9383 pPageOut = pNew; 9384 if( pPageOut ){ 9385 pPgnoOut = pPageOut->aData; 9386 put4byte(pPgnoOut, 0); 9387 aOut = &pPgnoOut[4]; 9388 nOut = MIN(pBt->usableSize - 4, nRem); 9389 } 9390 } 9391 }while( nRem>0 && rc==SQLITE_OK ); 9392 9393 releasePage(pPageOut); 9394 sqlite3PagerUnref(pPageIn); 9395 } 9396 9397 return rc; 9398 } 9399 9400 /* 9401 ** Delete the entry that the cursor is pointing to. 9402 ** 9403 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 9404 ** the cursor is left pointing at an arbitrary location after the delete. 9405 ** But if that bit is set, then the cursor is left in a state such that 9406 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 9407 ** as it would have been on if the call to BtreeDelete() had been omitted. 9408 ** 9409 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 9410 ** associated with a single table entry and its indexes. Only one of those 9411 ** deletes is considered the "primary" delete. The primary delete occurs 9412 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 9413 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 9414 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 9415 ** but which might be used by alternative storage engines. 9416 */ 9417 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 9418 Btree *p = pCur->pBtree; 9419 BtShared *pBt = p->pBt; 9420 int rc; /* Return code */ 9421 MemPage *pPage; /* Page to delete cell from */ 9422 unsigned char *pCell; /* Pointer to cell to delete */ 9423 int iCellIdx; /* Index of cell to delete */ 9424 int iCellDepth; /* Depth of node containing pCell */ 9425 CellInfo info; /* Size of the cell being deleted */ 9426 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ 9427 9428 assert( cursorOwnsBtShared(pCur) ); 9429 assert( pBt->inTransaction==TRANS_WRITE ); 9430 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9431 assert( pCur->curFlags & BTCF_WriteFlag ); 9432 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9433 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 9434 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 9435 if( pCur->eState!=CURSOR_VALID ){ 9436 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 9437 rc = btreeRestoreCursorPosition(pCur); 9438 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9439 if( rc || pCur->eState!=CURSOR_VALID ) return rc; 9440 }else{ 9441 return SQLITE_CORRUPT_BKPT; 9442 } 9443 } 9444 assert( pCur->eState==CURSOR_VALID ); 9445 9446 iCellDepth = pCur->iPage; 9447 iCellIdx = pCur->ix; 9448 pPage = pCur->pPage; 9449 if( pPage->nCell<=iCellIdx ){ 9450 return SQLITE_CORRUPT_BKPT; 9451 } 9452 pCell = findCell(pPage, iCellIdx); 9453 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ 9454 return SQLITE_CORRUPT_BKPT; 9455 } 9456 9457 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must 9458 ** be preserved following this delete operation. If the current delete 9459 ** will cause a b-tree rebalance, then this is done by saving the cursor 9460 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 9461 ** returning. 9462 ** 9463 ** If the current delete will not cause a rebalance, then the cursor 9464 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 9465 ** before or after the deleted entry. 9466 ** 9467 ** The bPreserve value records which path is required: 9468 ** 9469 ** bPreserve==0 Not necessary to save the cursor position 9470 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position 9471 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. 9472 */ 9473 bPreserve = (flags & BTREE_SAVEPOSITION)!=0; 9474 if( bPreserve ){ 9475 if( !pPage->leaf 9476 || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) > 9477 (int)(pBt->usableSize*2/3) 9478 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 9479 ){ 9480 /* A b-tree rebalance will be required after deleting this entry. 9481 ** Save the cursor key. */ 9482 rc = saveCursorKey(pCur); 9483 if( rc ) return rc; 9484 }else{ 9485 bPreserve = 2; 9486 } 9487 } 9488 9489 /* If the page containing the entry to delete is not a leaf page, move 9490 ** the cursor to the largest entry in the tree that is smaller than 9491 ** the entry being deleted. This cell will replace the cell being deleted 9492 ** from the internal node. The 'previous' entry is used for this instead 9493 ** of the 'next' entry, as the previous entry is always a part of the 9494 ** sub-tree headed by the child page of the cell being deleted. This makes 9495 ** balancing the tree following the delete operation easier. */ 9496 if( !pPage->leaf ){ 9497 rc = sqlite3BtreePrevious(pCur, 0); 9498 assert( rc!=SQLITE_DONE ); 9499 if( rc ) return rc; 9500 } 9501 9502 /* Save the positions of any other cursors open on this table before 9503 ** making any modifications. */ 9504 if( pCur->curFlags & BTCF_Multiple ){ 9505 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9506 if( rc ) return rc; 9507 } 9508 9509 /* If this is a delete operation to remove a row from a table b-tree, 9510 ** invalidate any incrblob cursors open on the row being deleted. */ 9511 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ 9512 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 9513 } 9514 9515 /* Make the page containing the entry to be deleted writable. Then free any 9516 ** overflow pages associated with the entry and finally remove the cell 9517 ** itself from within the page. */ 9518 rc = sqlite3PagerWrite(pPage->pDbPage); 9519 if( rc ) return rc; 9520 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9521 dropCell(pPage, iCellIdx, info.nSize, &rc); 9522 if( rc ) return rc; 9523 9524 /* If the cell deleted was not located on a leaf page, then the cursor 9525 ** is currently pointing to the largest entry in the sub-tree headed 9526 ** by the child-page of the cell that was just deleted from an internal 9527 ** node. The cell from the leaf node needs to be moved to the internal 9528 ** node to replace the deleted cell. */ 9529 if( !pPage->leaf ){ 9530 MemPage *pLeaf = pCur->pPage; 9531 int nCell; 9532 Pgno n; 9533 unsigned char *pTmp; 9534 9535 if( pLeaf->nFree<0 ){ 9536 rc = btreeComputeFreeSpace(pLeaf); 9537 if( rc ) return rc; 9538 } 9539 if( iCellDepth<pCur->iPage-1 ){ 9540 n = pCur->apPage[iCellDepth+1]->pgno; 9541 }else{ 9542 n = pCur->pPage->pgno; 9543 } 9544 pCell = findCell(pLeaf, pLeaf->nCell-1); 9545 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 9546 nCell = pLeaf->xCellSize(pLeaf, pCell); 9547 assert( MX_CELL_SIZE(pBt) >= nCell ); 9548 pTmp = pBt->pTmpSpace; 9549 assert( pTmp!=0 ); 9550 rc = sqlite3PagerWrite(pLeaf->pDbPage); 9551 if( rc==SQLITE_OK ){ 9552 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 9553 } 9554 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 9555 if( rc ) return rc; 9556 } 9557 9558 /* Balance the tree. If the entry deleted was located on a leaf page, 9559 ** then the cursor still points to that page. In this case the first 9560 ** call to balance() repairs the tree, and the if(...) condition is 9561 ** never true. 9562 ** 9563 ** Otherwise, if the entry deleted was on an internal node page, then 9564 ** pCur is pointing to the leaf page from which a cell was removed to 9565 ** replace the cell deleted from the internal node. This is slightly 9566 ** tricky as the leaf node may be underfull, and the internal node may 9567 ** be either under or overfull. In this case run the balancing algorithm 9568 ** on the leaf node first. If the balance proceeds far enough up the 9569 ** tree that we can be sure that any problem in the internal node has 9570 ** been corrected, so be it. Otherwise, after balancing the leaf node, 9571 ** walk the cursor up the tree to the internal node and balance it as 9572 ** well. */ 9573 assert( pCur->pPage->nOverflow==0 ); 9574 assert( pCur->pPage->nFree>=0 ); 9575 if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ 9576 /* Optimization: If the free space is less than 2/3rds of the page, 9577 ** then balance() will always be a no-op. No need to invoke it. */ 9578 rc = SQLITE_OK; 9579 }else{ 9580 rc = balance(pCur); 9581 } 9582 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 9583 releasePageNotNull(pCur->pPage); 9584 pCur->iPage--; 9585 while( pCur->iPage>iCellDepth ){ 9586 releasePage(pCur->apPage[pCur->iPage--]); 9587 } 9588 pCur->pPage = pCur->apPage[pCur->iPage]; 9589 rc = balance(pCur); 9590 } 9591 9592 if( rc==SQLITE_OK ){ 9593 if( bPreserve>1 ){ 9594 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9595 assert( pPage==pCur->pPage || CORRUPT_DB ); 9596 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9597 pCur->eState = CURSOR_SKIPNEXT; 9598 if( iCellIdx>=pPage->nCell ){ 9599 pCur->skipNext = -1; 9600 pCur->ix = pPage->nCell-1; 9601 }else{ 9602 pCur->skipNext = 1; 9603 } 9604 }else{ 9605 rc = moveToRoot(pCur); 9606 if( bPreserve ){ 9607 btreeReleaseAllCursorPages(pCur); 9608 pCur->eState = CURSOR_REQUIRESEEK; 9609 } 9610 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9611 } 9612 } 9613 return rc; 9614 } 9615 9616 /* 9617 ** Create a new BTree table. Write into *piTable the page 9618 ** number for the root page of the new table. 9619 ** 9620 ** The type of type is determined by the flags parameter. Only the 9621 ** following values of flags are currently in use. Other values for 9622 ** flags might not work: 9623 ** 9624 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9625 ** BTREE_ZERODATA Used for SQL indices 9626 */ 9627 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ 9628 BtShared *pBt = p->pBt; 9629 MemPage *pRoot; 9630 Pgno pgnoRoot; 9631 int rc; 9632 int ptfFlags; /* Page-type flage for the root page of new table */ 9633 9634 assert( sqlite3BtreeHoldsMutex(p) ); 9635 assert( pBt->inTransaction==TRANS_WRITE ); 9636 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9637 9638 #ifdef SQLITE_OMIT_AUTOVACUUM 9639 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9640 if( rc ){ 9641 return rc; 9642 } 9643 #else 9644 if( pBt->autoVacuum ){ 9645 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9646 MemPage *pPageMove; /* The page to move to. */ 9647 9648 /* Creating a new table may probably require moving an existing database 9649 ** to make room for the new tables root page. In case this page turns 9650 ** out to be an overflow page, delete all overflow page-map caches 9651 ** held by open cursors. 9652 */ 9653 invalidateAllOverflowCache(pBt); 9654 9655 /* Read the value of meta[3] from the database to determine where the 9656 ** root page of the new table should go. meta[3] is the largest root-page 9657 ** created so far, so the new root-page is (meta[3]+1). 9658 */ 9659 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9660 if( pgnoRoot>btreePagecount(pBt) ){ 9661 return SQLITE_CORRUPT_BKPT; 9662 } 9663 pgnoRoot++; 9664 9665 /* The new root-page may not be allocated on a pointer-map page, or the 9666 ** PENDING_BYTE page. 9667 */ 9668 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9669 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9670 pgnoRoot++; 9671 } 9672 assert( pgnoRoot>=3 ); 9673 9674 /* Allocate a page. The page that currently resides at pgnoRoot will 9675 ** be moved to the allocated page (unless the allocated page happens 9676 ** to reside at pgnoRoot). 9677 */ 9678 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9679 if( rc!=SQLITE_OK ){ 9680 return rc; 9681 } 9682 9683 if( pgnoMove!=pgnoRoot ){ 9684 /* pgnoRoot is the page that will be used for the root-page of 9685 ** the new table (assuming an error did not occur). But we were 9686 ** allocated pgnoMove. If required (i.e. if it was not allocated 9687 ** by extending the file), the current page at position pgnoMove 9688 ** is already journaled. 9689 */ 9690 u8 eType = 0; 9691 Pgno iPtrPage = 0; 9692 9693 /* Save the positions of any open cursors. This is required in 9694 ** case they are holding a reference to an xFetch reference 9695 ** corresponding to page pgnoRoot. */ 9696 rc = saveAllCursors(pBt, 0, 0); 9697 releasePage(pPageMove); 9698 if( rc!=SQLITE_OK ){ 9699 return rc; 9700 } 9701 9702 /* Move the page currently at pgnoRoot to pgnoMove. */ 9703 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9704 if( rc!=SQLITE_OK ){ 9705 return rc; 9706 } 9707 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9708 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9709 rc = SQLITE_CORRUPT_BKPT; 9710 } 9711 if( rc!=SQLITE_OK ){ 9712 releasePage(pRoot); 9713 return rc; 9714 } 9715 assert( eType!=PTRMAP_ROOTPAGE ); 9716 assert( eType!=PTRMAP_FREEPAGE ); 9717 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9718 releasePage(pRoot); 9719 9720 /* Obtain the page at pgnoRoot */ 9721 if( rc!=SQLITE_OK ){ 9722 return rc; 9723 } 9724 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9725 if( rc!=SQLITE_OK ){ 9726 return rc; 9727 } 9728 rc = sqlite3PagerWrite(pRoot->pDbPage); 9729 if( rc!=SQLITE_OK ){ 9730 releasePage(pRoot); 9731 return rc; 9732 } 9733 }else{ 9734 pRoot = pPageMove; 9735 } 9736 9737 /* Update the pointer-map and meta-data with the new root-page number. */ 9738 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9739 if( rc ){ 9740 releasePage(pRoot); 9741 return rc; 9742 } 9743 9744 /* When the new root page was allocated, page 1 was made writable in 9745 ** order either to increase the database filesize, or to decrement the 9746 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9747 */ 9748 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9749 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9750 if( NEVER(rc) ){ 9751 releasePage(pRoot); 9752 return rc; 9753 } 9754 9755 }else{ 9756 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9757 if( rc ) return rc; 9758 } 9759 #endif 9760 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9761 if( createTabFlags & BTREE_INTKEY ){ 9762 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9763 }else{ 9764 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9765 } 9766 zeroPage(pRoot, ptfFlags); 9767 sqlite3PagerUnref(pRoot->pDbPage); 9768 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9769 *piTable = pgnoRoot; 9770 return SQLITE_OK; 9771 } 9772 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ 9773 int rc; 9774 sqlite3BtreeEnter(p); 9775 rc = btreeCreateTable(p, piTable, flags); 9776 sqlite3BtreeLeave(p); 9777 return rc; 9778 } 9779 9780 /* 9781 ** Erase the given database page and all its children. Return 9782 ** the page to the freelist. 9783 */ 9784 static int clearDatabasePage( 9785 BtShared *pBt, /* The BTree that contains the table */ 9786 Pgno pgno, /* Page number to clear */ 9787 int freePageFlag, /* Deallocate page if true */ 9788 i64 *pnChange /* Add number of Cells freed to this counter */ 9789 ){ 9790 MemPage *pPage; 9791 int rc; 9792 unsigned char *pCell; 9793 int i; 9794 int hdr; 9795 CellInfo info; 9796 9797 assert( sqlite3_mutex_held(pBt->mutex) ); 9798 if( pgno>btreePagecount(pBt) ){ 9799 return SQLITE_CORRUPT_BKPT; 9800 } 9801 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9802 if( rc ) return rc; 9803 if( (pBt->openFlags & BTREE_SINGLE)==0 9804 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) 9805 ){ 9806 rc = SQLITE_CORRUPT_BKPT; 9807 goto cleardatabasepage_out; 9808 } 9809 hdr = pPage->hdrOffset; 9810 for(i=0; i<pPage->nCell; i++){ 9811 pCell = findCell(pPage, i); 9812 if( !pPage->leaf ){ 9813 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9814 if( rc ) goto cleardatabasepage_out; 9815 } 9816 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9817 if( rc ) goto cleardatabasepage_out; 9818 } 9819 if( !pPage->leaf ){ 9820 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9821 if( rc ) goto cleardatabasepage_out; 9822 if( pPage->intKey ) pnChange = 0; 9823 } 9824 if( pnChange ){ 9825 testcase( !pPage->intKey ); 9826 *pnChange += pPage->nCell; 9827 } 9828 if( freePageFlag ){ 9829 freePage(pPage, &rc); 9830 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9831 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9832 } 9833 9834 cleardatabasepage_out: 9835 releasePage(pPage); 9836 return rc; 9837 } 9838 9839 /* 9840 ** Delete all information from a single table in the database. iTable is 9841 ** the page number of the root of the table. After this routine returns, 9842 ** the root page is empty, but still exists. 9843 ** 9844 ** This routine will fail with SQLITE_LOCKED if there are any open 9845 ** read cursors on the table. Open write cursors are moved to the 9846 ** root of the table. 9847 ** 9848 ** If pnChange is not NULL, then the integer value pointed to by pnChange 9849 ** is incremented by the number of entries in the table. 9850 */ 9851 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ 9852 int rc; 9853 BtShared *pBt = p->pBt; 9854 sqlite3BtreeEnter(p); 9855 assert( p->inTrans==TRANS_WRITE ); 9856 9857 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9858 9859 if( SQLITE_OK==rc ){ 9860 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9861 ** is the root of a table b-tree - if it is not, the following call is 9862 ** a no-op). */ 9863 if( p->hasIncrblobCur ){ 9864 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9865 } 9866 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9867 } 9868 sqlite3BtreeLeave(p); 9869 return rc; 9870 } 9871 9872 /* 9873 ** Delete all information from the single table that pCur is open on. 9874 ** 9875 ** This routine only work for pCur on an ephemeral table. 9876 */ 9877 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9878 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9879 } 9880 9881 /* 9882 ** Erase all information in a table and add the root of the table to 9883 ** the freelist. Except, the root of the principle table (the one on 9884 ** page 1) is never added to the freelist. 9885 ** 9886 ** This routine will fail with SQLITE_LOCKED if there are any open 9887 ** cursors on the table. 9888 ** 9889 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9890 ** root page in the database file, then the last root page 9891 ** in the database file is moved into the slot formerly occupied by 9892 ** iTable and that last slot formerly occupied by the last root page 9893 ** is added to the freelist instead of iTable. In this say, all 9894 ** root pages are kept at the beginning of the database file, which 9895 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9896 ** page number that used to be the last root page in the file before 9897 ** the move. If no page gets moved, *piMoved is set to 0. 9898 ** The last root page is recorded in meta[3] and the value of 9899 ** meta[3] is updated by this procedure. 9900 */ 9901 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9902 int rc; 9903 MemPage *pPage = 0; 9904 BtShared *pBt = p->pBt; 9905 9906 assert( sqlite3BtreeHoldsMutex(p) ); 9907 assert( p->inTrans==TRANS_WRITE ); 9908 assert( iTable>=2 ); 9909 if( iTable>btreePagecount(pBt) ){ 9910 return SQLITE_CORRUPT_BKPT; 9911 } 9912 9913 rc = sqlite3BtreeClearTable(p, iTable, 0); 9914 if( rc ) return rc; 9915 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9916 if( NEVER(rc) ){ 9917 releasePage(pPage); 9918 return rc; 9919 } 9920 9921 *piMoved = 0; 9922 9923 #ifdef SQLITE_OMIT_AUTOVACUUM 9924 freePage(pPage, &rc); 9925 releasePage(pPage); 9926 #else 9927 if( pBt->autoVacuum ){ 9928 Pgno maxRootPgno; 9929 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9930 9931 if( iTable==maxRootPgno ){ 9932 /* If the table being dropped is the table with the largest root-page 9933 ** number in the database, put the root page on the free list. 9934 */ 9935 freePage(pPage, &rc); 9936 releasePage(pPage); 9937 if( rc!=SQLITE_OK ){ 9938 return rc; 9939 } 9940 }else{ 9941 /* The table being dropped does not have the largest root-page 9942 ** number in the database. So move the page that does into the 9943 ** gap left by the deleted root-page. 9944 */ 9945 MemPage *pMove; 9946 releasePage(pPage); 9947 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9948 if( rc!=SQLITE_OK ){ 9949 return rc; 9950 } 9951 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9952 releasePage(pMove); 9953 if( rc!=SQLITE_OK ){ 9954 return rc; 9955 } 9956 pMove = 0; 9957 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9958 freePage(pMove, &rc); 9959 releasePage(pMove); 9960 if( rc!=SQLITE_OK ){ 9961 return rc; 9962 } 9963 *piMoved = maxRootPgno; 9964 } 9965 9966 /* Set the new 'max-root-page' value in the database header. This 9967 ** is the old value less one, less one more if that happens to 9968 ** be a root-page number, less one again if that is the 9969 ** PENDING_BYTE_PAGE. 9970 */ 9971 maxRootPgno--; 9972 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9973 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9974 maxRootPgno--; 9975 } 9976 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9977 9978 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9979 }else{ 9980 freePage(pPage, &rc); 9981 releasePage(pPage); 9982 } 9983 #endif 9984 return rc; 9985 } 9986 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9987 int rc; 9988 sqlite3BtreeEnter(p); 9989 rc = btreeDropTable(p, iTable, piMoved); 9990 sqlite3BtreeLeave(p); 9991 return rc; 9992 } 9993 9994 9995 /* 9996 ** This function may only be called if the b-tree connection already 9997 ** has a read or write transaction open on the database. 9998 ** 9999 ** Read the meta-information out of a database file. Meta[0] 10000 ** is the number of free pages currently in the database. Meta[1] 10001 ** through meta[15] are available for use by higher layers. Meta[0] 10002 ** is read-only, the others are read/write. 10003 ** 10004 ** The schema layer numbers meta values differently. At the schema 10005 ** layer (and the SetCookie and ReadCookie opcodes) the number of 10006 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 10007 ** 10008 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 10009 ** of reading the value out of the header, it instead loads the "DataVersion" 10010 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 10011 ** database file. It is a number computed by the pager. But its access 10012 ** pattern is the same as header meta values, and so it is convenient to 10013 ** read it from this routine. 10014 */ 10015 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 10016 BtShared *pBt = p->pBt; 10017 10018 sqlite3BtreeEnter(p); 10019 assert( p->inTrans>TRANS_NONE ); 10020 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); 10021 assert( pBt->pPage1 ); 10022 assert( idx>=0 && idx<=15 ); 10023 10024 if( idx==BTREE_DATA_VERSION ){ 10025 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; 10026 }else{ 10027 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 10028 } 10029 10030 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 10031 ** database, mark the database as read-only. */ 10032 #ifdef SQLITE_OMIT_AUTOVACUUM 10033 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 10034 pBt->btsFlags |= BTS_READ_ONLY; 10035 } 10036 #endif 10037 10038 sqlite3BtreeLeave(p); 10039 } 10040 10041 /* 10042 ** Write meta-information back into the database. Meta[0] is 10043 ** read-only and may not be written. 10044 */ 10045 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 10046 BtShared *pBt = p->pBt; 10047 unsigned char *pP1; 10048 int rc; 10049 assert( idx>=1 && idx<=15 ); 10050 sqlite3BtreeEnter(p); 10051 assert( p->inTrans==TRANS_WRITE ); 10052 assert( pBt->pPage1!=0 ); 10053 pP1 = pBt->pPage1->aData; 10054 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10055 if( rc==SQLITE_OK ){ 10056 put4byte(&pP1[36 + idx*4], iMeta); 10057 #ifndef SQLITE_OMIT_AUTOVACUUM 10058 if( idx==BTREE_INCR_VACUUM ){ 10059 assert( pBt->autoVacuum || iMeta==0 ); 10060 assert( iMeta==0 || iMeta==1 ); 10061 pBt->incrVacuum = (u8)iMeta; 10062 } 10063 #endif 10064 } 10065 sqlite3BtreeLeave(p); 10066 return rc; 10067 } 10068 10069 /* 10070 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 10071 ** number of entries in the b-tree and write the result to *pnEntry. 10072 ** 10073 ** SQLITE_OK is returned if the operation is successfully executed. 10074 ** Otherwise, if an error is encountered (i.e. an IO error or database 10075 ** corruption) an SQLite error code is returned. 10076 */ 10077 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 10078 i64 nEntry = 0; /* Value to return in *pnEntry */ 10079 int rc; /* Return code */ 10080 10081 rc = moveToRoot(pCur); 10082 if( rc==SQLITE_EMPTY ){ 10083 *pnEntry = 0; 10084 return SQLITE_OK; 10085 } 10086 10087 /* Unless an error occurs, the following loop runs one iteration for each 10088 ** page in the B-Tree structure (not including overflow pages). 10089 */ 10090 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ 10091 int iIdx; /* Index of child node in parent */ 10092 MemPage *pPage; /* Current page of the b-tree */ 10093 10094 /* If this is a leaf page or the tree is not an int-key tree, then 10095 ** this page contains countable entries. Increment the entry counter 10096 ** accordingly. 10097 */ 10098 pPage = pCur->pPage; 10099 if( pPage->leaf || !pPage->intKey ){ 10100 nEntry += pPage->nCell; 10101 } 10102 10103 /* pPage is a leaf node. This loop navigates the cursor so that it 10104 ** points to the first interior cell that it points to the parent of 10105 ** the next page in the tree that has not yet been visited. The 10106 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 10107 ** of the page, or to the number of cells in the page if the next page 10108 ** to visit is the right-child of its parent. 10109 ** 10110 ** If all pages in the tree have been visited, return SQLITE_OK to the 10111 ** caller. 10112 */ 10113 if( pPage->leaf ){ 10114 do { 10115 if( pCur->iPage==0 ){ 10116 /* All pages of the b-tree have been visited. Return successfully. */ 10117 *pnEntry = nEntry; 10118 return moveToRoot(pCur); 10119 } 10120 moveToParent(pCur); 10121 }while ( pCur->ix>=pCur->pPage->nCell ); 10122 10123 pCur->ix++; 10124 pPage = pCur->pPage; 10125 } 10126 10127 /* Descend to the child node of the cell that the cursor currently 10128 ** points at. This is the right-child if (iIdx==pPage->nCell). 10129 */ 10130 iIdx = pCur->ix; 10131 if( iIdx==pPage->nCell ){ 10132 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 10133 }else{ 10134 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 10135 } 10136 } 10137 10138 /* An error has occurred. Return an error code. */ 10139 return rc; 10140 } 10141 10142 /* 10143 ** Return the pager associated with a BTree. This routine is used for 10144 ** testing and debugging only. 10145 */ 10146 Pager *sqlite3BtreePager(Btree *p){ 10147 return p->pBt->pPager; 10148 } 10149 10150 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10151 /* 10152 ** Append a message to the error message string. 10153 */ 10154 static void checkAppendMsg( 10155 IntegrityCk *pCheck, 10156 const char *zFormat, 10157 ... 10158 ){ 10159 va_list ap; 10160 if( !pCheck->mxErr ) return; 10161 pCheck->mxErr--; 10162 pCheck->nErr++; 10163 va_start(ap, zFormat); 10164 if( pCheck->errMsg.nChar ){ 10165 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 10166 } 10167 if( pCheck->zPfx ){ 10168 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 10169 } 10170 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 10171 va_end(ap); 10172 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 10173 pCheck->bOomFault = 1; 10174 } 10175 } 10176 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10177 10178 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10179 10180 /* 10181 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 10182 ** corresponds to page iPg is already set. 10183 */ 10184 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10185 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10186 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 10187 } 10188 10189 /* 10190 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 10191 */ 10192 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10193 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10194 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 10195 } 10196 10197 10198 /* 10199 ** Add 1 to the reference count for page iPage. If this is the second 10200 ** reference to the page, add an error message to pCheck->zErrMsg. 10201 ** Return 1 if there are 2 or more references to the page and 0 if 10202 ** if this is the first reference to the page. 10203 ** 10204 ** Also check that the page number is in bounds. 10205 */ 10206 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 10207 if( iPage>pCheck->nPage || iPage==0 ){ 10208 checkAppendMsg(pCheck, "invalid page number %d", iPage); 10209 return 1; 10210 } 10211 if( getPageReferenced(pCheck, iPage) ){ 10212 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 10213 return 1; 10214 } 10215 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; 10216 setPageReferenced(pCheck, iPage); 10217 return 0; 10218 } 10219 10220 #ifndef SQLITE_OMIT_AUTOVACUUM 10221 /* 10222 ** Check that the entry in the pointer-map for page iChild maps to 10223 ** page iParent, pointer type ptrType. If not, append an error message 10224 ** to pCheck. 10225 */ 10226 static void checkPtrmap( 10227 IntegrityCk *pCheck, /* Integrity check context */ 10228 Pgno iChild, /* Child page number */ 10229 u8 eType, /* Expected pointer map type */ 10230 Pgno iParent /* Expected pointer map parent page number */ 10231 ){ 10232 int rc; 10233 u8 ePtrmapType; 10234 Pgno iPtrmapParent; 10235 10236 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 10237 if( rc!=SQLITE_OK ){ 10238 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; 10239 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 10240 return; 10241 } 10242 10243 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 10244 checkAppendMsg(pCheck, 10245 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 10246 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 10247 } 10248 } 10249 #endif 10250 10251 /* 10252 ** Check the integrity of the freelist or of an overflow page list. 10253 ** Verify that the number of pages on the list is N. 10254 */ 10255 static void checkList( 10256 IntegrityCk *pCheck, /* Integrity checking context */ 10257 int isFreeList, /* True for a freelist. False for overflow page list */ 10258 Pgno iPage, /* Page number for first page in the list */ 10259 u32 N /* Expected number of pages in the list */ 10260 ){ 10261 int i; 10262 u32 expected = N; 10263 int nErrAtStart = pCheck->nErr; 10264 while( iPage!=0 && pCheck->mxErr ){ 10265 DbPage *pOvflPage; 10266 unsigned char *pOvflData; 10267 if( checkRef(pCheck, iPage) ) break; 10268 N--; 10269 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 10270 checkAppendMsg(pCheck, "failed to get page %d", iPage); 10271 break; 10272 } 10273 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 10274 if( isFreeList ){ 10275 u32 n = (u32)get4byte(&pOvflData[4]); 10276 #ifndef SQLITE_OMIT_AUTOVACUUM 10277 if( pCheck->pBt->autoVacuum ){ 10278 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 10279 } 10280 #endif 10281 if( n>pCheck->pBt->usableSize/4-2 ){ 10282 checkAppendMsg(pCheck, 10283 "freelist leaf count too big on page %d", iPage); 10284 N--; 10285 }else{ 10286 for(i=0; i<(int)n; i++){ 10287 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 10288 #ifndef SQLITE_OMIT_AUTOVACUUM 10289 if( pCheck->pBt->autoVacuum ){ 10290 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 10291 } 10292 #endif 10293 checkRef(pCheck, iFreePage); 10294 } 10295 N -= n; 10296 } 10297 } 10298 #ifndef SQLITE_OMIT_AUTOVACUUM 10299 else{ 10300 /* If this database supports auto-vacuum and iPage is not the last 10301 ** page in this overflow list, check that the pointer-map entry for 10302 ** the following page matches iPage. 10303 */ 10304 if( pCheck->pBt->autoVacuum && N>0 ){ 10305 i = get4byte(pOvflData); 10306 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 10307 } 10308 } 10309 #endif 10310 iPage = get4byte(pOvflData); 10311 sqlite3PagerUnref(pOvflPage); 10312 } 10313 if( N && nErrAtStart==pCheck->nErr ){ 10314 checkAppendMsg(pCheck, 10315 "%s is %d but should be %d", 10316 isFreeList ? "size" : "overflow list length", 10317 expected-N, expected); 10318 } 10319 } 10320 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10321 10322 /* 10323 ** An implementation of a min-heap. 10324 ** 10325 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 10326 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 10327 ** and aHeap[N*2+1]. 10328 ** 10329 ** The heap property is this: Every node is less than or equal to both 10330 ** of its daughter nodes. A consequence of the heap property is that the 10331 ** root node aHeap[1] is always the minimum value currently in the heap. 10332 ** 10333 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 10334 ** the heap, preserving the heap property. The btreeHeapPull() routine 10335 ** removes the root element from the heap (the minimum value in the heap) 10336 ** and then moves other nodes around as necessary to preserve the heap 10337 ** property. 10338 ** 10339 ** This heap is used for cell overlap and coverage testing. Each u32 10340 ** entry represents the span of a cell or freeblock on a btree page. 10341 ** The upper 16 bits are the index of the first byte of a range and the 10342 ** lower 16 bits are the index of the last byte of that range. 10343 */ 10344 static void btreeHeapInsert(u32 *aHeap, u32 x){ 10345 u32 j, i = ++aHeap[0]; 10346 aHeap[i] = x; 10347 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 10348 x = aHeap[j]; 10349 aHeap[j] = aHeap[i]; 10350 aHeap[i] = x; 10351 i = j; 10352 } 10353 } 10354 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 10355 u32 j, i, x; 10356 if( (x = aHeap[0])==0 ) return 0; 10357 *pOut = aHeap[1]; 10358 aHeap[1] = aHeap[x]; 10359 aHeap[x] = 0xffffffff; 10360 aHeap[0]--; 10361 i = 1; 10362 while( (j = i*2)<=aHeap[0] ){ 10363 if( aHeap[j]>aHeap[j+1] ) j++; 10364 if( aHeap[i]<aHeap[j] ) break; 10365 x = aHeap[i]; 10366 aHeap[i] = aHeap[j]; 10367 aHeap[j] = x; 10368 i = j; 10369 } 10370 return 1; 10371 } 10372 10373 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10374 /* 10375 ** Do various sanity checks on a single page of a tree. Return 10376 ** the tree depth. Root pages return 0. Parents of root pages 10377 ** return 1, and so forth. 10378 ** 10379 ** These checks are done: 10380 ** 10381 ** 1. Make sure that cells and freeblocks do not overlap 10382 ** but combine to completely cover the page. 10383 ** 2. Make sure integer cell keys are in order. 10384 ** 3. Check the integrity of overflow pages. 10385 ** 4. Recursively call checkTreePage on all children. 10386 ** 5. Verify that the depth of all children is the same. 10387 */ 10388 static int checkTreePage( 10389 IntegrityCk *pCheck, /* Context for the sanity check */ 10390 Pgno iPage, /* Page number of the page to check */ 10391 i64 *piMinKey, /* Write minimum integer primary key here */ 10392 i64 maxKey /* Error if integer primary key greater than this */ 10393 ){ 10394 MemPage *pPage = 0; /* The page being analyzed */ 10395 int i; /* Loop counter */ 10396 int rc; /* Result code from subroutine call */ 10397 int depth = -1, d2; /* Depth of a subtree */ 10398 int pgno; /* Page number */ 10399 int nFrag; /* Number of fragmented bytes on the page */ 10400 int hdr; /* Offset to the page header */ 10401 int cellStart; /* Offset to the start of the cell pointer array */ 10402 int nCell; /* Number of cells */ 10403 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 10404 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 10405 ** False if IPK must be strictly less than maxKey */ 10406 u8 *data; /* Page content */ 10407 u8 *pCell; /* Cell content */ 10408 u8 *pCellIdx; /* Next element of the cell pointer array */ 10409 BtShared *pBt; /* The BtShared object that owns pPage */ 10410 u32 pc; /* Address of a cell */ 10411 u32 usableSize; /* Usable size of the page */ 10412 u32 contentOffset; /* Offset to the start of the cell content area */ 10413 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 10414 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 10415 const char *saved_zPfx = pCheck->zPfx; 10416 int saved_v1 = pCheck->v1; 10417 int saved_v2 = pCheck->v2; 10418 u8 savedIsInit = 0; 10419 10420 /* Check that the page exists 10421 */ 10422 pBt = pCheck->pBt; 10423 usableSize = pBt->usableSize; 10424 if( iPage==0 ) return 0; 10425 if( checkRef(pCheck, iPage) ) return 0; 10426 pCheck->zPfx = "Page %u: "; 10427 pCheck->v1 = iPage; 10428 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ 10429 checkAppendMsg(pCheck, 10430 "unable to get the page. error code=%d", rc); 10431 goto end_of_check; 10432 } 10433 10434 /* Clear MemPage.isInit to make sure the corruption detection code in 10435 ** btreeInitPage() is executed. */ 10436 savedIsInit = pPage->isInit; 10437 pPage->isInit = 0; 10438 if( (rc = btreeInitPage(pPage))!=0 ){ 10439 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 10440 checkAppendMsg(pCheck, 10441 "btreeInitPage() returns error code %d", rc); 10442 goto end_of_check; 10443 } 10444 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 10445 assert( rc==SQLITE_CORRUPT ); 10446 checkAppendMsg(pCheck, "free space corruption", rc); 10447 goto end_of_check; 10448 } 10449 data = pPage->aData; 10450 hdr = pPage->hdrOffset; 10451 10452 /* Set up for cell analysis */ 10453 pCheck->zPfx = "On tree page %u cell %d: "; 10454 contentOffset = get2byteNotZero(&data[hdr+5]); 10455 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 10456 10457 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 10458 ** number of cells on the page. */ 10459 nCell = get2byte(&data[hdr+3]); 10460 assert( pPage->nCell==nCell ); 10461 10462 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 10463 ** immediately follows the b-tree page header. */ 10464 cellStart = hdr + 12 - 4*pPage->leaf; 10465 assert( pPage->aCellIdx==&data[cellStart] ); 10466 pCellIdx = &data[cellStart + 2*(nCell-1)]; 10467 10468 if( !pPage->leaf ){ 10469 /* Analyze the right-child page of internal pages */ 10470 pgno = get4byte(&data[hdr+8]); 10471 #ifndef SQLITE_OMIT_AUTOVACUUM 10472 if( pBt->autoVacuum ){ 10473 pCheck->zPfx = "On page %u at right child: "; 10474 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10475 } 10476 #endif 10477 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10478 keyCanBeEqual = 0; 10479 }else{ 10480 /* For leaf pages, the coverage check will occur in the same loop 10481 ** as the other cell checks, so initialize the heap. */ 10482 heap = pCheck->heap; 10483 heap[0] = 0; 10484 } 10485 10486 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 10487 ** integer offsets to the cell contents. */ 10488 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 10489 CellInfo info; 10490 10491 /* Check cell size */ 10492 pCheck->v2 = i; 10493 assert( pCellIdx==&data[cellStart + i*2] ); 10494 pc = get2byteAligned(pCellIdx); 10495 pCellIdx -= 2; 10496 if( pc<contentOffset || pc>usableSize-4 ){ 10497 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 10498 pc, contentOffset, usableSize-4); 10499 doCoverageCheck = 0; 10500 continue; 10501 } 10502 pCell = &data[pc]; 10503 pPage->xParseCell(pPage, pCell, &info); 10504 if( pc+info.nSize>usableSize ){ 10505 checkAppendMsg(pCheck, "Extends off end of page"); 10506 doCoverageCheck = 0; 10507 continue; 10508 } 10509 10510 /* Check for integer primary key out of range */ 10511 if( pPage->intKey ){ 10512 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 10513 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 10514 } 10515 maxKey = info.nKey; 10516 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 10517 } 10518 10519 /* Check the content overflow list */ 10520 if( info.nPayload>info.nLocal ){ 10521 u32 nPage; /* Number of pages on the overflow chain */ 10522 Pgno pgnoOvfl; /* First page of the overflow chain */ 10523 assert( pc + info.nSize - 4 <= usableSize ); 10524 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 10525 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 10526 #ifndef SQLITE_OMIT_AUTOVACUUM 10527 if( pBt->autoVacuum ){ 10528 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 10529 } 10530 #endif 10531 checkList(pCheck, 0, pgnoOvfl, nPage); 10532 } 10533 10534 if( !pPage->leaf ){ 10535 /* Check sanity of left child page for internal pages */ 10536 pgno = get4byte(pCell); 10537 #ifndef SQLITE_OMIT_AUTOVACUUM 10538 if( pBt->autoVacuum ){ 10539 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10540 } 10541 #endif 10542 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10543 keyCanBeEqual = 0; 10544 if( d2!=depth ){ 10545 checkAppendMsg(pCheck, "Child page depth differs"); 10546 depth = d2; 10547 } 10548 }else{ 10549 /* Populate the coverage-checking heap for leaf pages */ 10550 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 10551 } 10552 } 10553 *piMinKey = maxKey; 10554 10555 /* Check for complete coverage of the page 10556 */ 10557 pCheck->zPfx = 0; 10558 if( doCoverageCheck && pCheck->mxErr>0 ){ 10559 /* For leaf pages, the min-heap has already been initialized and the 10560 ** cells have already been inserted. But for internal pages, that has 10561 ** not yet been done, so do it now */ 10562 if( !pPage->leaf ){ 10563 heap = pCheck->heap; 10564 heap[0] = 0; 10565 for(i=nCell-1; i>=0; i--){ 10566 u32 size; 10567 pc = get2byteAligned(&data[cellStart+i*2]); 10568 size = pPage->xCellSize(pPage, &data[pc]); 10569 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 10570 } 10571 } 10572 /* Add the freeblocks to the min-heap 10573 ** 10574 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 10575 ** is the offset of the first freeblock, or zero if there are no 10576 ** freeblocks on the page. 10577 */ 10578 i = get2byte(&data[hdr+1]); 10579 while( i>0 ){ 10580 int size, j; 10581 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10582 size = get2byte(&data[i+2]); 10583 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 10584 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 10585 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 10586 ** big-endian integer which is the offset in the b-tree page of the next 10587 ** freeblock in the chain, or zero if the freeblock is the last on the 10588 ** chain. */ 10589 j = get2byte(&data[i]); 10590 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 10591 ** increasing offset. */ 10592 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 10593 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10594 i = j; 10595 } 10596 /* Analyze the min-heap looking for overlap between cells and/or 10597 ** freeblocks, and counting the number of untracked bytes in nFrag. 10598 ** 10599 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10600 ** There is an implied first entry the covers the page header, the cell 10601 ** pointer index, and the gap between the cell pointer index and the start 10602 ** of cell content. 10603 ** 10604 ** The loop below pulls entries from the min-heap in order and compares 10605 ** the start_address against the previous end_address. If there is an 10606 ** overlap, that means bytes are used multiple times. If there is a gap, 10607 ** that gap is added to the fragmentation count. 10608 */ 10609 nFrag = 0; 10610 prev = contentOffset - 1; /* Implied first min-heap entry */ 10611 while( btreeHeapPull(heap,&x) ){ 10612 if( (prev&0xffff)>=(x>>16) ){ 10613 checkAppendMsg(pCheck, 10614 "Multiple uses for byte %u of page %u", x>>16, iPage); 10615 break; 10616 }else{ 10617 nFrag += (x>>16) - (prev&0xffff) - 1; 10618 prev = x; 10619 } 10620 } 10621 nFrag += usableSize - (prev&0xffff) - 1; 10622 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10623 ** is stored in the fifth field of the b-tree page header. 10624 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10625 ** number of fragmented free bytes within the cell content area. 10626 */ 10627 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10628 checkAppendMsg(pCheck, 10629 "Fragmentation of %d bytes reported as %d on page %u", 10630 nFrag, data[hdr+7], iPage); 10631 } 10632 } 10633 10634 end_of_check: 10635 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10636 releasePage(pPage); 10637 pCheck->zPfx = saved_zPfx; 10638 pCheck->v1 = saved_v1; 10639 pCheck->v2 = saved_v2; 10640 return depth+1; 10641 } 10642 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10643 10644 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10645 /* 10646 ** This routine does a complete check of the given BTree file. aRoot[] is 10647 ** an array of pages numbers were each page number is the root page of 10648 ** a table. nRoot is the number of entries in aRoot. 10649 ** 10650 ** A read-only or read-write transaction must be opened before calling 10651 ** this function. 10652 ** 10653 ** Write the number of error seen in *pnErr. Except for some memory 10654 ** allocation errors, an error message held in memory obtained from 10655 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10656 ** returned. If a memory allocation error occurs, NULL is returned. 10657 ** 10658 ** If the first entry in aRoot[] is 0, that indicates that the list of 10659 ** root pages is incomplete. This is a "partial integrity-check". This 10660 ** happens when performing an integrity check on a single table. The 10661 ** zero is skipped, of course. But in addition, the freelist checks 10662 ** and the checks to make sure every page is referenced are also skipped, 10663 ** since obviously it is not possible to know which pages are covered by 10664 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 10665 ** checks are still performed. 10666 */ 10667 char *sqlite3BtreeIntegrityCheck( 10668 sqlite3 *db, /* Database connection that is running the check */ 10669 Btree *p, /* The btree to be checked */ 10670 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 10671 int nRoot, /* Number of entries in aRoot[] */ 10672 int mxErr, /* Stop reporting errors after this many */ 10673 int *pnErr /* Write number of errors seen to this variable */ 10674 ){ 10675 Pgno i; 10676 IntegrityCk sCheck; 10677 BtShared *pBt = p->pBt; 10678 u64 savedDbFlags = pBt->db->flags; 10679 char zErr[100]; 10680 int bPartial = 0; /* True if not checking all btrees */ 10681 int bCkFreelist = 1; /* True to scan the freelist */ 10682 VVA_ONLY( int nRef ); 10683 assert( nRoot>0 ); 10684 10685 /* aRoot[0]==0 means this is a partial check */ 10686 if( aRoot[0]==0 ){ 10687 assert( nRoot>1 ); 10688 bPartial = 1; 10689 if( aRoot[1]!=1 ) bCkFreelist = 0; 10690 } 10691 10692 sqlite3BtreeEnter(p); 10693 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10694 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10695 assert( nRef>=0 ); 10696 sCheck.db = db; 10697 sCheck.pBt = pBt; 10698 sCheck.pPager = pBt->pPager; 10699 sCheck.nPage = btreePagecount(sCheck.pBt); 10700 sCheck.mxErr = mxErr; 10701 sCheck.nErr = 0; 10702 sCheck.bOomFault = 0; 10703 sCheck.zPfx = 0; 10704 sCheck.v1 = 0; 10705 sCheck.v2 = 0; 10706 sCheck.aPgRef = 0; 10707 sCheck.heap = 0; 10708 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10709 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10710 if( sCheck.nPage==0 ){ 10711 goto integrity_ck_cleanup; 10712 } 10713 10714 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10715 if( !sCheck.aPgRef ){ 10716 sCheck.bOomFault = 1; 10717 goto integrity_ck_cleanup; 10718 } 10719 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10720 if( sCheck.heap==0 ){ 10721 sCheck.bOomFault = 1; 10722 goto integrity_ck_cleanup; 10723 } 10724 10725 i = PENDING_BYTE_PAGE(pBt); 10726 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10727 10728 /* Check the integrity of the freelist 10729 */ 10730 if( bCkFreelist ){ 10731 sCheck.zPfx = "Main freelist: "; 10732 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10733 get4byte(&pBt->pPage1->aData[36])); 10734 sCheck.zPfx = 0; 10735 } 10736 10737 /* Check all the tables. 10738 */ 10739 #ifndef SQLITE_OMIT_AUTOVACUUM 10740 if( !bPartial ){ 10741 if( pBt->autoVacuum ){ 10742 Pgno mx = 0; 10743 Pgno mxInHdr; 10744 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10745 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10746 if( mx!=mxInHdr ){ 10747 checkAppendMsg(&sCheck, 10748 "max rootpage (%d) disagrees with header (%d)", 10749 mx, mxInHdr 10750 ); 10751 } 10752 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10753 checkAppendMsg(&sCheck, 10754 "incremental_vacuum enabled with a max rootpage of zero" 10755 ); 10756 } 10757 } 10758 #endif 10759 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10760 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10761 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10762 i64 notUsed; 10763 if( aRoot[i]==0 ) continue; 10764 #ifndef SQLITE_OMIT_AUTOVACUUM 10765 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 10766 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10767 } 10768 #endif 10769 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10770 } 10771 pBt->db->flags = savedDbFlags; 10772 10773 /* Make sure every page in the file is referenced 10774 */ 10775 if( !bPartial ){ 10776 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10777 #ifdef SQLITE_OMIT_AUTOVACUUM 10778 if( getPageReferenced(&sCheck, i)==0 ){ 10779 checkAppendMsg(&sCheck, "Page %d is never used", i); 10780 } 10781 #else 10782 /* If the database supports auto-vacuum, make sure no tables contain 10783 ** references to pointer-map pages. 10784 */ 10785 if( getPageReferenced(&sCheck, i)==0 && 10786 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10787 checkAppendMsg(&sCheck, "Page %d is never used", i); 10788 } 10789 if( getPageReferenced(&sCheck, i)!=0 && 10790 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10791 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10792 } 10793 #endif 10794 } 10795 } 10796 10797 /* Clean up and report errors. 10798 */ 10799 integrity_ck_cleanup: 10800 sqlite3PageFree(sCheck.heap); 10801 sqlite3_free(sCheck.aPgRef); 10802 if( sCheck.bOomFault ){ 10803 sqlite3_str_reset(&sCheck.errMsg); 10804 sCheck.nErr++; 10805 } 10806 *pnErr = sCheck.nErr; 10807 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10808 /* Make sure this analysis did not leave any unref() pages. */ 10809 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10810 sqlite3BtreeLeave(p); 10811 return sqlite3StrAccumFinish(&sCheck.errMsg); 10812 } 10813 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10814 10815 /* 10816 ** Return the full pathname of the underlying database file. Return 10817 ** an empty string if the database is in-memory or a TEMP database. 10818 ** 10819 ** The pager filename is invariant as long as the pager is 10820 ** open so it is safe to access without the BtShared mutex. 10821 */ 10822 const char *sqlite3BtreeGetFilename(Btree *p){ 10823 assert( p->pBt->pPager!=0 ); 10824 return sqlite3PagerFilename(p->pBt->pPager, 1); 10825 } 10826 10827 /* 10828 ** Return the pathname of the journal file for this database. The return 10829 ** value of this routine is the same regardless of whether the journal file 10830 ** has been created or not. 10831 ** 10832 ** The pager journal filename is invariant as long as the pager is 10833 ** open so it is safe to access without the BtShared mutex. 10834 */ 10835 const char *sqlite3BtreeGetJournalname(Btree *p){ 10836 assert( p->pBt->pPager!=0 ); 10837 return sqlite3PagerJournalname(p->pBt->pPager); 10838 } 10839 10840 /* 10841 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE 10842 ** to describe the current transaction state of Btree p. 10843 */ 10844 int sqlite3BtreeTxnState(Btree *p){ 10845 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10846 return p ? p->inTrans : 0; 10847 } 10848 10849 #ifndef SQLITE_OMIT_WAL 10850 /* 10851 ** Run a checkpoint on the Btree passed as the first argument. 10852 ** 10853 ** Return SQLITE_LOCKED if this or any other connection has an open 10854 ** transaction on the shared-cache the argument Btree is connected to. 10855 ** 10856 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10857 */ 10858 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10859 int rc = SQLITE_OK; 10860 if( p ){ 10861 BtShared *pBt = p->pBt; 10862 sqlite3BtreeEnter(p); 10863 if( pBt->inTransaction!=TRANS_NONE ){ 10864 rc = SQLITE_LOCKED; 10865 }else{ 10866 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10867 } 10868 sqlite3BtreeLeave(p); 10869 } 10870 return rc; 10871 } 10872 #endif 10873 10874 /* 10875 ** Return true if there is currently a backup running on Btree p. 10876 */ 10877 int sqlite3BtreeIsInBackup(Btree *p){ 10878 assert( p ); 10879 assert( sqlite3_mutex_held(p->db->mutex) ); 10880 return p->nBackup!=0; 10881 } 10882 10883 /* 10884 ** This function returns a pointer to a blob of memory associated with 10885 ** a single shared-btree. The memory is used by client code for its own 10886 ** purposes (for example, to store a high-level schema associated with 10887 ** the shared-btree). The btree layer manages reference counting issues. 10888 ** 10889 ** The first time this is called on a shared-btree, nBytes bytes of memory 10890 ** are allocated, zeroed, and returned to the caller. For each subsequent 10891 ** call the nBytes parameter is ignored and a pointer to the same blob 10892 ** of memory returned. 10893 ** 10894 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10895 ** allocated, a null pointer is returned. If the blob has already been 10896 ** allocated, it is returned as normal. 10897 ** 10898 ** Just before the shared-btree is closed, the function passed as the 10899 ** xFree argument when the memory allocation was made is invoked on the 10900 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10901 ** on the memory, the btree layer does that. 10902 */ 10903 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10904 BtShared *pBt = p->pBt; 10905 sqlite3BtreeEnter(p); 10906 if( !pBt->pSchema && nBytes ){ 10907 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10908 pBt->xFreeSchema = xFree; 10909 } 10910 sqlite3BtreeLeave(p); 10911 return pBt->pSchema; 10912 } 10913 10914 /* 10915 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10916 ** btree as the argument handle holds an exclusive lock on the 10917 ** sqlite_schema table. Otherwise SQLITE_OK. 10918 */ 10919 int sqlite3BtreeSchemaLocked(Btree *p){ 10920 int rc; 10921 assert( sqlite3_mutex_held(p->db->mutex) ); 10922 sqlite3BtreeEnter(p); 10923 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 10924 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10925 sqlite3BtreeLeave(p); 10926 return rc; 10927 } 10928 10929 10930 #ifndef SQLITE_OMIT_SHARED_CACHE 10931 /* 10932 ** Obtain a lock on the table whose root page is iTab. The 10933 ** lock is a write lock if isWritelock is true or a read lock 10934 ** if it is false. 10935 */ 10936 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10937 int rc = SQLITE_OK; 10938 assert( p->inTrans!=TRANS_NONE ); 10939 if( p->sharable ){ 10940 u8 lockType = READ_LOCK + isWriteLock; 10941 assert( READ_LOCK+1==WRITE_LOCK ); 10942 assert( isWriteLock==0 || isWriteLock==1 ); 10943 10944 sqlite3BtreeEnter(p); 10945 rc = querySharedCacheTableLock(p, iTab, lockType); 10946 if( rc==SQLITE_OK ){ 10947 rc = setSharedCacheTableLock(p, iTab, lockType); 10948 } 10949 sqlite3BtreeLeave(p); 10950 } 10951 return rc; 10952 } 10953 #endif 10954 10955 #ifndef SQLITE_OMIT_INCRBLOB 10956 /* 10957 ** Argument pCsr must be a cursor opened for writing on an 10958 ** INTKEY table currently pointing at a valid table entry. 10959 ** This function modifies the data stored as part of that entry. 10960 ** 10961 ** Only the data content may only be modified, it is not possible to 10962 ** change the length of the data stored. If this function is called with 10963 ** parameters that attempt to write past the end of the existing data, 10964 ** no modifications are made and SQLITE_CORRUPT is returned. 10965 */ 10966 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10967 int rc; 10968 assert( cursorOwnsBtShared(pCsr) ); 10969 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10970 assert( pCsr->curFlags & BTCF_Incrblob ); 10971 10972 rc = restoreCursorPosition(pCsr); 10973 if( rc!=SQLITE_OK ){ 10974 return rc; 10975 } 10976 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10977 if( pCsr->eState!=CURSOR_VALID ){ 10978 return SQLITE_ABORT; 10979 } 10980 10981 /* Save the positions of all other cursors open on this table. This is 10982 ** required in case any of them are holding references to an xFetch 10983 ** version of the b-tree page modified by the accessPayload call below. 10984 ** 10985 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10986 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10987 ** saveAllCursors can only return SQLITE_OK. 10988 */ 10989 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10990 assert( rc==SQLITE_OK ); 10991 10992 /* Check some assumptions: 10993 ** (a) the cursor is open for writing, 10994 ** (b) there is a read/write transaction open, 10995 ** (c) the connection holds a write-lock on the table (if required), 10996 ** (d) there are no conflicting read-locks, and 10997 ** (e) the cursor points at a valid row of an intKey table. 10998 */ 10999 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 11000 return SQLITE_READONLY; 11001 } 11002 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 11003 && pCsr->pBt->inTransaction==TRANS_WRITE ); 11004 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 11005 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 11006 assert( pCsr->pPage->intKey ); 11007 11008 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 11009 } 11010 11011 /* 11012 ** Mark this cursor as an incremental blob cursor. 11013 */ 11014 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 11015 pCur->curFlags |= BTCF_Incrblob; 11016 pCur->pBtree->hasIncrblobCur = 1; 11017 } 11018 #endif 11019 11020 /* 11021 ** Set both the "read version" (single byte at byte offset 18) and 11022 ** "write version" (single byte at byte offset 19) fields in the database 11023 ** header to iVersion. 11024 */ 11025 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 11026 BtShared *pBt = pBtree->pBt; 11027 int rc; /* Return code */ 11028 11029 assert( iVersion==1 || iVersion==2 ); 11030 11031 /* If setting the version fields to 1, do not automatically open the 11032 ** WAL connection, even if the version fields are currently set to 2. 11033 */ 11034 pBt->btsFlags &= ~BTS_NO_WAL; 11035 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 11036 11037 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 11038 if( rc==SQLITE_OK ){ 11039 u8 *aData = pBt->pPage1->aData; 11040 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 11041 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 11042 if( rc==SQLITE_OK ){ 11043 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 11044 if( rc==SQLITE_OK ){ 11045 aData[18] = (u8)iVersion; 11046 aData[19] = (u8)iVersion; 11047 } 11048 } 11049 } 11050 } 11051 11052 pBt->btsFlags &= ~BTS_NO_WAL; 11053 return rc; 11054 } 11055 11056 /* 11057 ** Return true if the cursor has a hint specified. This routine is 11058 ** only used from within assert() statements 11059 */ 11060 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 11061 return (pCsr->hints & mask)!=0; 11062 } 11063 11064 /* 11065 ** Return true if the given Btree is read-only. 11066 */ 11067 int sqlite3BtreeIsReadonly(Btree *p){ 11068 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 11069 } 11070 11071 /* 11072 ** Return the size of the header added to each page by this module. 11073 */ 11074 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 11075 11076 #if !defined(SQLITE_OMIT_SHARED_CACHE) 11077 /* 11078 ** Return true if the Btree passed as the only argument is sharable. 11079 */ 11080 int sqlite3BtreeSharable(Btree *p){ 11081 return p->sharable; 11082 } 11083 11084 /* 11085 ** Return the number of connections to the BtShared object accessed by 11086 ** the Btree handle passed as the only argument. For private caches 11087 ** this is always 1. For shared caches it may be 1 or greater. 11088 */ 11089 int sqlite3BtreeConnectionCount(Btree *p){ 11090 testcase( p->sharable ); 11091 return p->pBt->nRef; 11092 } 11093 #endif 11094