xref: /sqlite-3.40.0/src/btree.c (revision dac7e69d)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 /*
116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118 **
119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122 ** with the page number and filename associated with the (MemPage*).
123 */
124 #ifdef SQLITE_DEBUG
125 int corruptPageError(int lineno, MemPage *p){
126   char *zMsg;
127   sqlite3BeginBenignMalloc();
128   zMsg = sqlite3_mprintf("database corruption page %d of %s",
129       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130   );
131   sqlite3EndBenignMalloc();
132   if( zMsg ){
133     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134   }
135   sqlite3_free(zMsg);
136   return SQLITE_CORRUPT_BKPT;
137 }
138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139 #else
140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141 #endif
142 
143 #ifndef SQLITE_OMIT_SHARED_CACHE
144 
145 #ifdef SQLITE_DEBUG
146 /*
147 **** This function is only used as part of an assert() statement. ***
148 **
149 ** Check to see if pBtree holds the required locks to read or write to the
150 ** table with root page iRoot.   Return 1 if it does and 0 if not.
151 **
152 ** For example, when writing to a table with root-page iRoot via
153 ** Btree connection pBtree:
154 **
155 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156 **
157 ** When writing to an index that resides in a sharable database, the
158 ** caller should have first obtained a lock specifying the root page of
159 ** the corresponding table. This makes things a bit more complicated,
160 ** as this module treats each table as a separate structure. To determine
161 ** the table corresponding to the index being written, this
162 ** function has to search through the database schema.
163 **
164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
165 ** hold a write-lock on the schema table (root page 1). This is also
166 ** acceptable.
167 */
168 static int hasSharedCacheTableLock(
169   Btree *pBtree,         /* Handle that must hold lock */
170   Pgno iRoot,            /* Root page of b-tree */
171   int isIndex,           /* True if iRoot is the root of an index b-tree */
172   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
173 ){
174   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175   Pgno iTab = 0;
176   BtLock *pLock;
177 
178   /* If this database is not shareable, or if the client is reading
179   ** and has the read-uncommitted flag set, then no lock is required.
180   ** Return true immediately.
181   */
182   if( (pBtree->sharable==0)
183    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
184   ){
185     return 1;
186   }
187 
188   /* If the client is reading  or writing an index and the schema is
189   ** not loaded, then it is too difficult to actually check to see if
190   ** the correct locks are held.  So do not bother - just return true.
191   ** This case does not come up very often anyhow.
192   */
193   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
194     return 1;
195   }
196 
197   /* Figure out the root-page that the lock should be held on. For table
198   ** b-trees, this is just the root page of the b-tree being read or
199   ** written. For index b-trees, it is the root page of the associated
200   ** table.  */
201   if( isIndex ){
202     HashElem *p;
203     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204       Index *pIdx = (Index *)sqliteHashData(p);
205       if( pIdx->tnum==(int)iRoot ){
206         if( iTab ){
207           /* Two or more indexes share the same root page.  There must
208           ** be imposter tables.  So just return true.  The assert is not
209           ** useful in that case. */
210           return 1;
211         }
212         iTab = pIdx->pTable->tnum;
213       }
214     }
215   }else{
216     iTab = iRoot;
217   }
218 
219   /* Search for the required lock. Either a write-lock on root-page iTab, a
220   ** write-lock on the schema table, or (if the client is reading) a
221   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
222   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223     if( pLock->pBtree==pBtree
224      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225      && pLock->eLock>=eLockType
226     ){
227       return 1;
228     }
229   }
230 
231   /* Failed to find the required lock. */
232   return 0;
233 }
234 #endif /* SQLITE_DEBUG */
235 
236 #ifdef SQLITE_DEBUG
237 /*
238 **** This function may be used as part of assert() statements only. ****
239 **
240 ** Return true if it would be illegal for pBtree to write into the
241 ** table or index rooted at iRoot because other shared connections are
242 ** simultaneously reading that same table or index.
243 **
244 ** It is illegal for pBtree to write if some other Btree object that
245 ** shares the same BtShared object is currently reading or writing
246 ** the iRoot table.  Except, if the other Btree object has the
247 ** read-uncommitted flag set, then it is OK for the other object to
248 ** have a read cursor.
249 **
250 ** For example, before writing to any part of the table or index
251 ** rooted at page iRoot, one should call:
252 **
253 **    assert( !hasReadConflicts(pBtree, iRoot) );
254 */
255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256   BtCursor *p;
257   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258     if( p->pgnoRoot==iRoot
259      && p->pBtree!=pBtree
260      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
261     ){
262       return 1;
263     }
264   }
265   return 0;
266 }
267 #endif    /* #ifdef SQLITE_DEBUG */
268 
269 /*
270 ** Query to see if Btree handle p may obtain a lock of type eLock
271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
272 ** SQLITE_OK if the lock may be obtained (by calling
273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
274 */
275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
276   BtShared *pBt = p->pBt;
277   BtLock *pIter;
278 
279   assert( sqlite3BtreeHoldsMutex(p) );
280   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281   assert( p->db!=0 );
282   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
283 
284   /* If requesting a write-lock, then the Btree must have an open write
285   ** transaction on this file. And, obviously, for this to be so there
286   ** must be an open write transaction on the file itself.
287   */
288   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290 
291   /* This routine is a no-op if the shared-cache is not enabled */
292   if( !p->sharable ){
293     return SQLITE_OK;
294   }
295 
296   /* If some other connection is holding an exclusive lock, the
297   ** requested lock may not be obtained.
298   */
299   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
300     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301     return SQLITE_LOCKED_SHAREDCACHE;
302   }
303 
304   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305     /* The condition (pIter->eLock!=eLock) in the following if(...)
306     ** statement is a simplification of:
307     **
308     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309     **
310     ** since we know that if eLock==WRITE_LOCK, then no other connection
311     ** may hold a WRITE_LOCK on any table in this file (since there can
312     ** only be a single writer).
313     */
314     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318       if( eLock==WRITE_LOCK ){
319         assert( p==pBt->pWriter );
320         pBt->btsFlags |= BTS_PENDING;
321       }
322       return SQLITE_LOCKED_SHAREDCACHE;
323     }
324   }
325   return SQLITE_OK;
326 }
327 #endif /* !SQLITE_OMIT_SHARED_CACHE */
328 
329 #ifndef SQLITE_OMIT_SHARED_CACHE
330 /*
331 ** Add a lock on the table with root-page iTable to the shared-btree used
332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
333 ** WRITE_LOCK.
334 **
335 ** This function assumes the following:
336 **
337 **   (a) The specified Btree object p is connected to a sharable
338 **       database (one with the BtShared.sharable flag set), and
339 **
340 **   (b) No other Btree objects hold a lock that conflicts
341 **       with the requested lock (i.e. querySharedCacheTableLock() has
342 **       already been called and returned SQLITE_OK).
343 **
344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345 ** is returned if a malloc attempt fails.
346 */
347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
348   BtShared *pBt = p->pBt;
349   BtLock *pLock = 0;
350   BtLock *pIter;
351 
352   assert( sqlite3BtreeHoldsMutex(p) );
353   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354   assert( p->db!=0 );
355 
356   /* A connection with the read-uncommitted flag set will never try to
357   ** obtain a read-lock using this function. The only read-lock obtained
358   ** by a connection in read-uncommitted mode is on the sqlite_master
359   ** table, and that lock is obtained in BtreeBeginTrans().  */
360   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
361 
362   /* This function should only be called on a sharable b-tree after it
363   ** has been determined that no other b-tree holds a conflicting lock.  */
364   assert( p->sharable );
365   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
366 
367   /* First search the list for an existing lock on this table. */
368   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369     if( pIter->iTable==iTable && pIter->pBtree==p ){
370       pLock = pIter;
371       break;
372     }
373   }
374 
375   /* If the above search did not find a BtLock struct associating Btree p
376   ** with table iTable, allocate one and link it into the list.
377   */
378   if( !pLock ){
379     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
380     if( !pLock ){
381       return SQLITE_NOMEM_BKPT;
382     }
383     pLock->iTable = iTable;
384     pLock->pBtree = p;
385     pLock->pNext = pBt->pLock;
386     pBt->pLock = pLock;
387   }
388 
389   /* Set the BtLock.eLock variable to the maximum of the current lock
390   ** and the requested lock. This means if a write-lock was already held
391   ** and a read-lock requested, we don't incorrectly downgrade the lock.
392   */
393   assert( WRITE_LOCK>READ_LOCK );
394   if( eLock>pLock->eLock ){
395     pLock->eLock = eLock;
396   }
397 
398   return SQLITE_OK;
399 }
400 #endif /* !SQLITE_OMIT_SHARED_CACHE */
401 
402 #ifndef SQLITE_OMIT_SHARED_CACHE
403 /*
404 ** Release all the table locks (locks obtained via calls to
405 ** the setSharedCacheTableLock() procedure) held by Btree object p.
406 **
407 ** This function assumes that Btree p has an open read or write
408 ** transaction. If it does not, then the BTS_PENDING flag
409 ** may be incorrectly cleared.
410 */
411 static void clearAllSharedCacheTableLocks(Btree *p){
412   BtShared *pBt = p->pBt;
413   BtLock **ppIter = &pBt->pLock;
414 
415   assert( sqlite3BtreeHoldsMutex(p) );
416   assert( p->sharable || 0==*ppIter );
417   assert( p->inTrans>0 );
418 
419   while( *ppIter ){
420     BtLock *pLock = *ppIter;
421     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
422     assert( pLock->pBtree->inTrans>=pLock->eLock );
423     if( pLock->pBtree==p ){
424       *ppIter = pLock->pNext;
425       assert( pLock->iTable!=1 || pLock==&p->lock );
426       if( pLock->iTable!=1 ){
427         sqlite3_free(pLock);
428       }
429     }else{
430       ppIter = &pLock->pNext;
431     }
432   }
433 
434   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
435   if( pBt->pWriter==p ){
436     pBt->pWriter = 0;
437     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
438   }else if( pBt->nTransaction==2 ){
439     /* This function is called when Btree p is concluding its
440     ** transaction. If there currently exists a writer, and p is not
441     ** that writer, then the number of locks held by connections other
442     ** than the writer must be about to drop to zero. In this case
443     ** set the BTS_PENDING flag to 0.
444     **
445     ** If there is not currently a writer, then BTS_PENDING must
446     ** be zero already. So this next line is harmless in that case.
447     */
448     pBt->btsFlags &= ~BTS_PENDING;
449   }
450 }
451 
452 /*
453 ** This function changes all write-locks held by Btree p into read-locks.
454 */
455 static void downgradeAllSharedCacheTableLocks(Btree *p){
456   BtShared *pBt = p->pBt;
457   if( pBt->pWriter==p ){
458     BtLock *pLock;
459     pBt->pWriter = 0;
460     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
461     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463       pLock->eLock = READ_LOCK;
464     }
465   }
466 }
467 
468 #endif /* SQLITE_OMIT_SHARED_CACHE */
469 
470 static void releasePage(MemPage *pPage);         /* Forward reference */
471 static void releasePageOne(MemPage *pPage);      /* Forward reference */
472 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
473 
474 /*
475 ***** This routine is used inside of assert() only ****
476 **
477 ** Verify that the cursor holds the mutex on its BtShared
478 */
479 #ifdef SQLITE_DEBUG
480 static int cursorHoldsMutex(BtCursor *p){
481   return sqlite3_mutex_held(p->pBt->mutex);
482 }
483 
484 /* Verify that the cursor and the BtShared agree about what is the current
485 ** database connetion. This is important in shared-cache mode. If the database
486 ** connection pointers get out-of-sync, it is possible for routines like
487 ** btreeInitPage() to reference an stale connection pointer that references a
488 ** a connection that has already closed.  This routine is used inside assert()
489 ** statements only and for the purpose of double-checking that the btree code
490 ** does keep the database connection pointers up-to-date.
491 */
492 static int cursorOwnsBtShared(BtCursor *p){
493   assert( cursorHoldsMutex(p) );
494   return (p->pBtree->db==p->pBt->db);
495 }
496 #endif
497 
498 /*
499 ** Invalidate the overflow cache of the cursor passed as the first argument.
500 ** on the shared btree structure pBt.
501 */
502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
503 
504 /*
505 ** Invalidate the overflow page-list cache for all cursors opened
506 ** on the shared btree structure pBt.
507 */
508 static void invalidateAllOverflowCache(BtShared *pBt){
509   BtCursor *p;
510   assert( sqlite3_mutex_held(pBt->mutex) );
511   for(p=pBt->pCursor; p; p=p->pNext){
512     invalidateOverflowCache(p);
513   }
514 }
515 
516 #ifndef SQLITE_OMIT_INCRBLOB
517 /*
518 ** This function is called before modifying the contents of a table
519 ** to invalidate any incrblob cursors that are open on the
520 ** row or one of the rows being modified.
521 **
522 ** If argument isClearTable is true, then the entire contents of the
523 ** table is about to be deleted. In this case invalidate all incrblob
524 ** cursors open on any row within the table with root-page pgnoRoot.
525 **
526 ** Otherwise, if argument isClearTable is false, then the row with
527 ** rowid iRow is being replaced or deleted. In this case invalidate
528 ** only those incrblob cursors open on that specific row.
529 */
530 static void invalidateIncrblobCursors(
531   Btree *pBtree,          /* The database file to check */
532   Pgno pgnoRoot,          /* The table that might be changing */
533   i64 iRow,               /* The rowid that might be changing */
534   int isClearTable        /* True if all rows are being deleted */
535 ){
536   BtCursor *p;
537   if( pBtree->hasIncrblobCur==0 ) return;
538   assert( sqlite3BtreeHoldsMutex(pBtree) );
539   pBtree->hasIncrblobCur = 0;
540   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541     if( (p->curFlags & BTCF_Incrblob)!=0 ){
542       pBtree->hasIncrblobCur = 1;
543       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
544         p->eState = CURSOR_INVALID;
545       }
546     }
547   }
548 }
549 
550 #else
551   /* Stub function when INCRBLOB is omitted */
552   #define invalidateIncrblobCursors(w,x,y,z)
553 #endif /* SQLITE_OMIT_INCRBLOB */
554 
555 /*
556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557 ** when a page that previously contained data becomes a free-list leaf
558 ** page.
559 **
560 ** The BtShared.pHasContent bitvec exists to work around an obscure
561 ** bug caused by the interaction of two useful IO optimizations surrounding
562 ** free-list leaf pages:
563 **
564 **   1) When all data is deleted from a page and the page becomes
565 **      a free-list leaf page, the page is not written to the database
566 **      (as free-list leaf pages contain no meaningful data). Sometimes
567 **      such a page is not even journalled (as it will not be modified,
568 **      why bother journalling it?).
569 **
570 **   2) When a free-list leaf page is reused, its content is not read
571 **      from the database or written to the journal file (why should it
572 **      be, if it is not at all meaningful?).
573 **
574 ** By themselves, these optimizations work fine and provide a handy
575 ** performance boost to bulk delete or insert operations. However, if
576 ** a page is moved to the free-list and then reused within the same
577 ** transaction, a problem comes up. If the page is not journalled when
578 ** it is moved to the free-list and it is also not journalled when it
579 ** is extracted from the free-list and reused, then the original data
580 ** may be lost. In the event of a rollback, it may not be possible
581 ** to restore the database to its original configuration.
582 **
583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584 ** moved to become a free-list leaf page, the corresponding bit is
585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
586 ** optimization 2 above is omitted if the corresponding bit is already
587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
588 ** at the end of every transaction.
589 */
590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591   int rc = SQLITE_OK;
592   if( !pBt->pHasContent ){
593     assert( pgno<=pBt->nPage );
594     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
595     if( !pBt->pHasContent ){
596       rc = SQLITE_NOMEM_BKPT;
597     }
598   }
599   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601   }
602   return rc;
603 }
604 
605 /*
606 ** Query the BtShared.pHasContent vector.
607 **
608 ** This function is called when a free-list leaf page is removed from the
609 ** free-list for reuse. It returns false if it is safe to retrieve the
610 ** page from the pager layer with the 'no-content' flag set. True otherwise.
611 */
612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613   Bitvec *p = pBt->pHasContent;
614   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615 }
616 
617 /*
618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619 ** invoked at the conclusion of each write-transaction.
620 */
621 static void btreeClearHasContent(BtShared *pBt){
622   sqlite3BitvecDestroy(pBt->pHasContent);
623   pBt->pHasContent = 0;
624 }
625 
626 /*
627 ** Release all of the apPage[] pages for a cursor.
628 */
629 static void btreeReleaseAllCursorPages(BtCursor *pCur){
630   int i;
631   if( pCur->iPage>=0 ){
632     for(i=0; i<pCur->iPage; i++){
633       releasePageNotNull(pCur->apPage[i]);
634     }
635     releasePageNotNull(pCur->pPage);
636     pCur->iPage = -1;
637   }
638 }
639 
640 /*
641 ** The cursor passed as the only argument must point to a valid entry
642 ** when this function is called (i.e. have eState==CURSOR_VALID). This
643 ** function saves the current cursor key in variables pCur->nKey and
644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645 ** code otherwise.
646 **
647 ** If the cursor is open on an intkey table, then the integer key
648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650 ** set to point to a malloced buffer pCur->nKey bytes in size containing
651 ** the key.
652 */
653 static int saveCursorKey(BtCursor *pCur){
654   int rc = SQLITE_OK;
655   assert( CURSOR_VALID==pCur->eState );
656   assert( 0==pCur->pKey );
657   assert( cursorHoldsMutex(pCur) );
658 
659   if( pCur->curIntKey ){
660     /* Only the rowid is required for a table btree */
661     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662   }else{
663     /* For an index btree, save the complete key content. It is possible
664     ** that the current key is corrupt. In that case, it is possible that
665     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666     ** up to the size of 1 varint plus 1 8-byte value when the cursor
667     ** position is restored. Hence the 17 bytes of padding allocated
668     ** below. */
669     void *pKey;
670     pCur->nKey = sqlite3BtreePayloadSize(pCur);
671     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
672     if( pKey ){
673       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
674       if( rc==SQLITE_OK ){
675         memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
676         pCur->pKey = pKey;
677       }else{
678         sqlite3_free(pKey);
679       }
680     }else{
681       rc = SQLITE_NOMEM_BKPT;
682     }
683   }
684   assert( !pCur->curIntKey || !pCur->pKey );
685   return rc;
686 }
687 
688 /*
689 ** Save the current cursor position in the variables BtCursor.nKey
690 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
691 **
692 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693 ** prior to calling this routine.
694 */
695 static int saveCursorPosition(BtCursor *pCur){
696   int rc;
697 
698   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
699   assert( 0==pCur->pKey );
700   assert( cursorHoldsMutex(pCur) );
701 
702   if( pCur->eState==CURSOR_SKIPNEXT ){
703     pCur->eState = CURSOR_VALID;
704   }else{
705     pCur->skipNext = 0;
706   }
707 
708   rc = saveCursorKey(pCur);
709   if( rc==SQLITE_OK ){
710     btreeReleaseAllCursorPages(pCur);
711     pCur->eState = CURSOR_REQUIRESEEK;
712   }
713 
714   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
715   return rc;
716 }
717 
718 /* Forward reference */
719 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
720 
721 /*
722 ** Save the positions of all cursors (except pExcept) that are open on
723 ** the table with root-page iRoot.  "Saving the cursor position" means that
724 ** the location in the btree is remembered in such a way that it can be
725 ** moved back to the same spot after the btree has been modified.  This
726 ** routine is called just before cursor pExcept is used to modify the
727 ** table, for example in BtreeDelete() or BtreeInsert().
728 **
729 ** If there are two or more cursors on the same btree, then all such
730 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
731 ** routine enforces that rule.  This routine only needs to be called in
732 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
733 **
734 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
735 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
736 ** pointless call to this routine.
737 **
738 ** Implementation note:  This routine merely checks to see if any cursors
739 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
740 ** event that cursors are in need to being saved.
741 */
742 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
743   BtCursor *p;
744   assert( sqlite3_mutex_held(pBt->mutex) );
745   assert( pExcept==0 || pExcept->pBt==pBt );
746   for(p=pBt->pCursor; p; p=p->pNext){
747     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
748   }
749   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
750   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
751   return SQLITE_OK;
752 }
753 
754 /* This helper routine to saveAllCursors does the actual work of saving
755 ** the cursors if and when a cursor is found that actually requires saving.
756 ** The common case is that no cursors need to be saved, so this routine is
757 ** broken out from its caller to avoid unnecessary stack pointer movement.
758 */
759 static int SQLITE_NOINLINE saveCursorsOnList(
760   BtCursor *p,         /* The first cursor that needs saving */
761   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
762   BtCursor *pExcept    /* Do not save this cursor */
763 ){
764   do{
765     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
766       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
767         int rc = saveCursorPosition(p);
768         if( SQLITE_OK!=rc ){
769           return rc;
770         }
771       }else{
772         testcase( p->iPage>=0 );
773         btreeReleaseAllCursorPages(p);
774       }
775     }
776     p = p->pNext;
777   }while( p );
778   return SQLITE_OK;
779 }
780 
781 /*
782 ** Clear the current cursor position.
783 */
784 void sqlite3BtreeClearCursor(BtCursor *pCur){
785   assert( cursorHoldsMutex(pCur) );
786   sqlite3_free(pCur->pKey);
787   pCur->pKey = 0;
788   pCur->eState = CURSOR_INVALID;
789 }
790 
791 /*
792 ** In this version of BtreeMoveto, pKey is a packed index record
793 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
794 ** record and then call BtreeMovetoUnpacked() to do the work.
795 */
796 static int btreeMoveto(
797   BtCursor *pCur,     /* Cursor open on the btree to be searched */
798   const void *pKey,   /* Packed key if the btree is an index */
799   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
800   int bias,           /* Bias search to the high end */
801   int *pRes           /* Write search results here */
802 ){
803   int rc;                    /* Status code */
804   UnpackedRecord *pIdxKey;   /* Unpacked index key */
805 
806   if( pKey ){
807     KeyInfo *pKeyInfo = pCur->pKeyInfo;
808     assert( nKey==(i64)(int)nKey );
809     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
810     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
811     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
812     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
813       rc = SQLITE_CORRUPT_BKPT;
814       goto moveto_done;
815     }
816   }else{
817     pIdxKey = 0;
818   }
819   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
820 moveto_done:
821   if( pIdxKey ){
822     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
823   }
824   return rc;
825 }
826 
827 /*
828 ** Restore the cursor to the position it was in (or as close to as possible)
829 ** when saveCursorPosition() was called. Note that this call deletes the
830 ** saved position info stored by saveCursorPosition(), so there can be
831 ** at most one effective restoreCursorPosition() call after each
832 ** saveCursorPosition().
833 */
834 static int btreeRestoreCursorPosition(BtCursor *pCur){
835   int rc;
836   int skipNext = 0;
837   assert( cursorOwnsBtShared(pCur) );
838   assert( pCur->eState>=CURSOR_REQUIRESEEK );
839   if( pCur->eState==CURSOR_FAULT ){
840     return pCur->skipNext;
841   }
842   pCur->eState = CURSOR_INVALID;
843   if( sqlite3FaultSim(410) ){
844     rc = SQLITE_IOERR;
845   }else{
846     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
847   }
848   if( rc==SQLITE_OK ){
849     sqlite3_free(pCur->pKey);
850     pCur->pKey = 0;
851     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
852     if( skipNext ) pCur->skipNext = skipNext;
853     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
854       pCur->eState = CURSOR_SKIPNEXT;
855     }
856   }
857   return rc;
858 }
859 
860 #define restoreCursorPosition(p) \
861   (p->eState>=CURSOR_REQUIRESEEK ? \
862          btreeRestoreCursorPosition(p) : \
863          SQLITE_OK)
864 
865 /*
866 ** Determine whether or not a cursor has moved from the position where
867 ** it was last placed, or has been invalidated for any other reason.
868 ** Cursors can move when the row they are pointing at is deleted out
869 ** from under them, for example.  Cursor might also move if a btree
870 ** is rebalanced.
871 **
872 ** Calling this routine with a NULL cursor pointer returns false.
873 **
874 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
875 ** back to where it ought to be if this routine returns true.
876 */
877 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
878   assert( EIGHT_BYTE_ALIGNMENT(pCur)
879        || pCur==sqlite3BtreeFakeValidCursor() );
880   assert( offsetof(BtCursor, eState)==0 );
881   assert( sizeof(pCur->eState)==1 );
882   return CURSOR_VALID != *(u8*)pCur;
883 }
884 
885 /*
886 ** Return a pointer to a fake BtCursor object that will always answer
887 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
888 ** cursor returned must not be used with any other Btree interface.
889 */
890 BtCursor *sqlite3BtreeFakeValidCursor(void){
891   static u8 fakeCursor = CURSOR_VALID;
892   assert( offsetof(BtCursor, eState)==0 );
893   return (BtCursor*)&fakeCursor;
894 }
895 
896 /*
897 ** This routine restores a cursor back to its original position after it
898 ** has been moved by some outside activity (such as a btree rebalance or
899 ** a row having been deleted out from under the cursor).
900 **
901 ** On success, the *pDifferentRow parameter is false if the cursor is left
902 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
903 ** was pointing to has been deleted, forcing the cursor to point to some
904 ** nearby row.
905 **
906 ** This routine should only be called for a cursor that just returned
907 ** TRUE from sqlite3BtreeCursorHasMoved().
908 */
909 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
910   int rc;
911 
912   assert( pCur!=0 );
913   assert( pCur->eState!=CURSOR_VALID );
914   rc = restoreCursorPosition(pCur);
915   if( rc ){
916     *pDifferentRow = 1;
917     return rc;
918   }
919   if( pCur->eState!=CURSOR_VALID ){
920     *pDifferentRow = 1;
921   }else{
922     *pDifferentRow = 0;
923   }
924   return SQLITE_OK;
925 }
926 
927 #ifdef SQLITE_ENABLE_CURSOR_HINTS
928 /*
929 ** Provide hints to the cursor.  The particular hint given (and the type
930 ** and number of the varargs parameters) is determined by the eHintType
931 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
932 */
933 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
934   /* Used only by system that substitute their own storage engine */
935 }
936 #endif
937 
938 /*
939 ** Provide flag hints to the cursor.
940 */
941 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
942   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
943   pCur->hints = x;
944 }
945 
946 
947 #ifndef SQLITE_OMIT_AUTOVACUUM
948 /*
949 ** Given a page number of a regular database page, return the page
950 ** number for the pointer-map page that contains the entry for the
951 ** input page number.
952 **
953 ** Return 0 (not a valid page) for pgno==1 since there is
954 ** no pointer map associated with page 1.  The integrity_check logic
955 ** requires that ptrmapPageno(*,1)!=1.
956 */
957 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
958   int nPagesPerMapPage;
959   Pgno iPtrMap, ret;
960   assert( sqlite3_mutex_held(pBt->mutex) );
961   if( pgno<2 ) return 0;
962   nPagesPerMapPage = (pBt->usableSize/5)+1;
963   iPtrMap = (pgno-2)/nPagesPerMapPage;
964   ret = (iPtrMap*nPagesPerMapPage) + 2;
965   if( ret==PENDING_BYTE_PAGE(pBt) ){
966     ret++;
967   }
968   return ret;
969 }
970 
971 /*
972 ** Write an entry into the pointer map.
973 **
974 ** This routine updates the pointer map entry for page number 'key'
975 ** so that it maps to type 'eType' and parent page number 'pgno'.
976 **
977 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
978 ** a no-op.  If an error occurs, the appropriate error code is written
979 ** into *pRC.
980 */
981 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
982   DbPage *pDbPage;  /* The pointer map page */
983   u8 *pPtrmap;      /* The pointer map data */
984   Pgno iPtrmap;     /* The pointer map page number */
985   int offset;       /* Offset in pointer map page */
986   int rc;           /* Return code from subfunctions */
987 
988   if( *pRC ) return;
989 
990   assert( sqlite3_mutex_held(pBt->mutex) );
991   /* The master-journal page number must never be used as a pointer map page */
992   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
993 
994   assert( pBt->autoVacuum );
995   if( key==0 ){
996     *pRC = SQLITE_CORRUPT_BKPT;
997     return;
998   }
999   iPtrmap = PTRMAP_PAGENO(pBt, key);
1000   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1001   if( rc!=SQLITE_OK ){
1002     *pRC = rc;
1003     return;
1004   }
1005   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1006     /* The first byte of the extra data is the MemPage.isInit byte.
1007     ** If that byte is set, it means this page is also being used
1008     ** as a btree page. */
1009     *pRC = SQLITE_CORRUPT_BKPT;
1010     goto ptrmap_exit;
1011   }
1012   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1013   if( offset<0 ){
1014     *pRC = SQLITE_CORRUPT_BKPT;
1015     goto ptrmap_exit;
1016   }
1017   assert( offset <= (int)pBt->usableSize-5 );
1018   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1019 
1020   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1021     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1022     *pRC= rc = sqlite3PagerWrite(pDbPage);
1023     if( rc==SQLITE_OK ){
1024       pPtrmap[offset] = eType;
1025       put4byte(&pPtrmap[offset+1], parent);
1026     }
1027   }
1028 
1029 ptrmap_exit:
1030   sqlite3PagerUnref(pDbPage);
1031 }
1032 
1033 /*
1034 ** Read an entry from the pointer map.
1035 **
1036 ** This routine retrieves the pointer map entry for page 'key', writing
1037 ** the type and parent page number to *pEType and *pPgno respectively.
1038 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1039 */
1040 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1041   DbPage *pDbPage;   /* The pointer map page */
1042   int iPtrmap;       /* Pointer map page index */
1043   u8 *pPtrmap;       /* Pointer map page data */
1044   int offset;        /* Offset of entry in pointer map */
1045   int rc;
1046 
1047   assert( sqlite3_mutex_held(pBt->mutex) );
1048 
1049   iPtrmap = PTRMAP_PAGENO(pBt, key);
1050   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1051   if( rc!=0 ){
1052     return rc;
1053   }
1054   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1055 
1056   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1057   if( offset<0 ){
1058     sqlite3PagerUnref(pDbPage);
1059     return SQLITE_CORRUPT_BKPT;
1060   }
1061   assert( offset <= (int)pBt->usableSize-5 );
1062   assert( pEType!=0 );
1063   *pEType = pPtrmap[offset];
1064   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1065 
1066   sqlite3PagerUnref(pDbPage);
1067   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1068   return SQLITE_OK;
1069 }
1070 
1071 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1072   #define ptrmapPut(w,x,y,z,rc)
1073   #define ptrmapGet(w,x,y,z) SQLITE_OK
1074   #define ptrmapPutOvflPtr(x, y, z, rc)
1075 #endif
1076 
1077 /*
1078 ** Given a btree page and a cell index (0 means the first cell on
1079 ** the page, 1 means the second cell, and so forth) return a pointer
1080 ** to the cell content.
1081 **
1082 ** findCellPastPtr() does the same except it skips past the initial
1083 ** 4-byte child pointer found on interior pages, if there is one.
1084 **
1085 ** This routine works only for pages that do not contain overflow cells.
1086 */
1087 #define findCell(P,I) \
1088   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1089 #define findCellPastPtr(P,I) \
1090   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1091 
1092 
1093 /*
1094 ** This is common tail processing for btreeParseCellPtr() and
1095 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1096 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1097 ** structure.
1098 */
1099 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1100   MemPage *pPage,         /* Page containing the cell */
1101   u8 *pCell,              /* Pointer to the cell text. */
1102   CellInfo *pInfo         /* Fill in this structure */
1103 ){
1104   /* If the payload will not fit completely on the local page, we have
1105   ** to decide how much to store locally and how much to spill onto
1106   ** overflow pages.  The strategy is to minimize the amount of unused
1107   ** space on overflow pages while keeping the amount of local storage
1108   ** in between minLocal and maxLocal.
1109   **
1110   ** Warning:  changing the way overflow payload is distributed in any
1111   ** way will result in an incompatible file format.
1112   */
1113   int minLocal;  /* Minimum amount of payload held locally */
1114   int maxLocal;  /* Maximum amount of payload held locally */
1115   int surplus;   /* Overflow payload available for local storage */
1116 
1117   minLocal = pPage->minLocal;
1118   maxLocal = pPage->maxLocal;
1119   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1120   testcase( surplus==maxLocal );
1121   testcase( surplus==maxLocal+1 );
1122   if( surplus <= maxLocal ){
1123     pInfo->nLocal = (u16)surplus;
1124   }else{
1125     pInfo->nLocal = (u16)minLocal;
1126   }
1127   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1128 }
1129 
1130 /*
1131 ** The following routines are implementations of the MemPage.xParseCell()
1132 ** method.
1133 **
1134 ** Parse a cell content block and fill in the CellInfo structure.
1135 **
1136 ** btreeParseCellPtr()        =>   table btree leaf nodes
1137 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1138 ** btreeParseCellPtrIndex()   =>   index btree nodes
1139 **
1140 ** There is also a wrapper function btreeParseCell() that works for
1141 ** all MemPage types and that references the cell by index rather than
1142 ** by pointer.
1143 */
1144 static void btreeParseCellPtrNoPayload(
1145   MemPage *pPage,         /* Page containing the cell */
1146   u8 *pCell,              /* Pointer to the cell text. */
1147   CellInfo *pInfo         /* Fill in this structure */
1148 ){
1149   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1150   assert( pPage->leaf==0 );
1151   assert( pPage->childPtrSize==4 );
1152 #ifndef SQLITE_DEBUG
1153   UNUSED_PARAMETER(pPage);
1154 #endif
1155   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1156   pInfo->nPayload = 0;
1157   pInfo->nLocal = 0;
1158   pInfo->pPayload = 0;
1159   return;
1160 }
1161 static void btreeParseCellPtr(
1162   MemPage *pPage,         /* Page containing the cell */
1163   u8 *pCell,              /* Pointer to the cell text. */
1164   CellInfo *pInfo         /* Fill in this structure */
1165 ){
1166   u8 *pIter;              /* For scanning through pCell */
1167   u32 nPayload;           /* Number of bytes of cell payload */
1168   u64 iKey;               /* Extracted Key value */
1169 
1170   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1171   assert( pPage->leaf==0 || pPage->leaf==1 );
1172   assert( pPage->intKeyLeaf );
1173   assert( pPage->childPtrSize==0 );
1174   pIter = pCell;
1175 
1176   /* The next block of code is equivalent to:
1177   **
1178   **     pIter += getVarint32(pIter, nPayload);
1179   **
1180   ** The code is inlined to avoid a function call.
1181   */
1182   nPayload = *pIter;
1183   if( nPayload>=0x80 ){
1184     u8 *pEnd = &pIter[8];
1185     nPayload &= 0x7f;
1186     do{
1187       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1188     }while( (*pIter)>=0x80 && pIter<pEnd );
1189   }
1190   pIter++;
1191 
1192   /* The next block of code is equivalent to:
1193   **
1194   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1195   **
1196   ** The code is inlined to avoid a function call.
1197   */
1198   iKey = *pIter;
1199   if( iKey>=0x80 ){
1200     u8 *pEnd = &pIter[7];
1201     iKey &= 0x7f;
1202     while(1){
1203       iKey = (iKey<<7) | (*++pIter & 0x7f);
1204       if( (*pIter)<0x80 ) break;
1205       if( pIter>=pEnd ){
1206         iKey = (iKey<<8) | *++pIter;
1207         break;
1208       }
1209     }
1210   }
1211   pIter++;
1212 
1213   pInfo->nKey = *(i64*)&iKey;
1214   pInfo->nPayload = nPayload;
1215   pInfo->pPayload = pIter;
1216   testcase( nPayload==pPage->maxLocal );
1217   testcase( nPayload==pPage->maxLocal+1 );
1218   if( nPayload<=pPage->maxLocal ){
1219     /* This is the (easy) common case where the entire payload fits
1220     ** on the local page.  No overflow is required.
1221     */
1222     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1223     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1224     pInfo->nLocal = (u16)nPayload;
1225   }else{
1226     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1227   }
1228 }
1229 static void btreeParseCellPtrIndex(
1230   MemPage *pPage,         /* Page containing the cell */
1231   u8 *pCell,              /* Pointer to the cell text. */
1232   CellInfo *pInfo         /* Fill in this structure */
1233 ){
1234   u8 *pIter;              /* For scanning through pCell */
1235   u32 nPayload;           /* Number of bytes of cell payload */
1236 
1237   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1238   assert( pPage->leaf==0 || pPage->leaf==1 );
1239   assert( pPage->intKeyLeaf==0 );
1240   pIter = pCell + pPage->childPtrSize;
1241   nPayload = *pIter;
1242   if( nPayload>=0x80 ){
1243     u8 *pEnd = &pIter[8];
1244     nPayload &= 0x7f;
1245     do{
1246       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1247     }while( *(pIter)>=0x80 && pIter<pEnd );
1248   }
1249   pIter++;
1250   pInfo->nKey = nPayload;
1251   pInfo->nPayload = nPayload;
1252   pInfo->pPayload = pIter;
1253   testcase( nPayload==pPage->maxLocal );
1254   testcase( nPayload==pPage->maxLocal+1 );
1255   if( nPayload<=pPage->maxLocal ){
1256     /* This is the (easy) common case where the entire payload fits
1257     ** on the local page.  No overflow is required.
1258     */
1259     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1260     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1261     pInfo->nLocal = (u16)nPayload;
1262   }else{
1263     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1264   }
1265 }
1266 static void btreeParseCell(
1267   MemPage *pPage,         /* Page containing the cell */
1268   int iCell,              /* The cell index.  First cell is 0 */
1269   CellInfo *pInfo         /* Fill in this structure */
1270 ){
1271   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1272 }
1273 
1274 /*
1275 ** The following routines are implementations of the MemPage.xCellSize
1276 ** method.
1277 **
1278 ** Compute the total number of bytes that a Cell needs in the cell
1279 ** data area of the btree-page.  The return number includes the cell
1280 ** data header and the local payload, but not any overflow page or
1281 ** the space used by the cell pointer.
1282 **
1283 ** cellSizePtrNoPayload()    =>   table internal nodes
1284 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1285 */
1286 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1287   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1288   u8 *pEnd;                                /* End mark for a varint */
1289   u32 nSize;                               /* Size value to return */
1290 
1291 #ifdef SQLITE_DEBUG
1292   /* The value returned by this function should always be the same as
1293   ** the (CellInfo.nSize) value found by doing a full parse of the
1294   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1295   ** this function verifies that this invariant is not violated. */
1296   CellInfo debuginfo;
1297   pPage->xParseCell(pPage, pCell, &debuginfo);
1298 #endif
1299 
1300   nSize = *pIter;
1301   if( nSize>=0x80 ){
1302     pEnd = &pIter[8];
1303     nSize &= 0x7f;
1304     do{
1305       nSize = (nSize<<7) | (*++pIter & 0x7f);
1306     }while( *(pIter)>=0x80 && pIter<pEnd );
1307   }
1308   pIter++;
1309   if( pPage->intKey ){
1310     /* pIter now points at the 64-bit integer key value, a variable length
1311     ** integer. The following block moves pIter to point at the first byte
1312     ** past the end of the key value. */
1313     pEnd = &pIter[9];
1314     while( (*pIter++)&0x80 && pIter<pEnd );
1315   }
1316   testcase( nSize==pPage->maxLocal );
1317   testcase( nSize==pPage->maxLocal+1 );
1318   if( nSize<=pPage->maxLocal ){
1319     nSize += (u32)(pIter - pCell);
1320     if( nSize<4 ) nSize = 4;
1321   }else{
1322     int minLocal = pPage->minLocal;
1323     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1324     testcase( nSize==pPage->maxLocal );
1325     testcase( nSize==pPage->maxLocal+1 );
1326     if( nSize>pPage->maxLocal ){
1327       nSize = minLocal;
1328     }
1329     nSize += 4 + (u16)(pIter - pCell);
1330   }
1331   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1332   return (u16)nSize;
1333 }
1334 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1335   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1336   u8 *pEnd;              /* End mark for a varint */
1337 
1338 #ifdef SQLITE_DEBUG
1339   /* The value returned by this function should always be the same as
1340   ** the (CellInfo.nSize) value found by doing a full parse of the
1341   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342   ** this function verifies that this invariant is not violated. */
1343   CellInfo debuginfo;
1344   pPage->xParseCell(pPage, pCell, &debuginfo);
1345 #else
1346   UNUSED_PARAMETER(pPage);
1347 #endif
1348 
1349   assert( pPage->childPtrSize==4 );
1350   pEnd = pIter + 9;
1351   while( (*pIter++)&0x80 && pIter<pEnd );
1352   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1353   return (u16)(pIter - pCell);
1354 }
1355 
1356 
1357 #ifdef SQLITE_DEBUG
1358 /* This variation on cellSizePtr() is used inside of assert() statements
1359 ** only. */
1360 static u16 cellSize(MemPage *pPage, int iCell){
1361   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1362 }
1363 #endif
1364 
1365 #ifndef SQLITE_OMIT_AUTOVACUUM
1366 /*
1367 ** The cell pCell is currently part of page pSrc but will ultimately be part
1368 ** of pPage.  (pSrc and pPager are often the same.)  If pCell contains a
1369 ** pointer to an overflow page, insert an entry into the pointer-map for
1370 ** the overflow page that will be valid after pCell has been moved to pPage.
1371 */
1372 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1373   CellInfo info;
1374   if( *pRC ) return;
1375   assert( pCell!=0 );
1376   pPage->xParseCell(pPage, pCell, &info);
1377   if( info.nLocal<info.nPayload ){
1378     Pgno ovfl;
1379     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1380       testcase( pSrc!=pPage );
1381       *pRC = SQLITE_CORRUPT_BKPT;
1382       return;
1383     }
1384     ovfl = get4byte(&pCell[info.nSize-4]);
1385     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1386   }
1387 }
1388 #endif
1389 
1390 
1391 /*
1392 ** Defragment the page given. This routine reorganizes cells within the
1393 ** page so that there are no free-blocks on the free-block list.
1394 **
1395 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1396 ** present in the page after this routine returns.
1397 **
1398 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1399 ** b-tree page so that there are no freeblocks or fragment bytes, all
1400 ** unused bytes are contained in the unallocated space region, and all
1401 ** cells are packed tightly at the end of the page.
1402 */
1403 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1404   int i;                     /* Loop counter */
1405   int pc;                    /* Address of the i-th cell */
1406   int hdr;                   /* Offset to the page header */
1407   int size;                  /* Size of a cell */
1408   int usableSize;            /* Number of usable bytes on a page */
1409   int cellOffset;            /* Offset to the cell pointer array */
1410   int cbrk;                  /* Offset to the cell content area */
1411   int nCell;                 /* Number of cells on the page */
1412   unsigned char *data;       /* The page data */
1413   unsigned char *temp;       /* Temp area for cell content */
1414   unsigned char *src;        /* Source of content */
1415   int iCellFirst;            /* First allowable cell index */
1416   int iCellLast;             /* Last possible cell index */
1417 
1418   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1419   assert( pPage->pBt!=0 );
1420   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1421   assert( pPage->nOverflow==0 );
1422   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1423   temp = 0;
1424   src = data = pPage->aData;
1425   hdr = pPage->hdrOffset;
1426   cellOffset = pPage->cellOffset;
1427   nCell = pPage->nCell;
1428   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1429   iCellFirst = cellOffset + 2*nCell;
1430   usableSize = pPage->pBt->usableSize;
1431 
1432   /* This block handles pages with two or fewer free blocks and nMaxFrag
1433   ** or fewer fragmented bytes. In this case it is faster to move the
1434   ** two (or one) blocks of cells using memmove() and add the required
1435   ** offsets to each pointer in the cell-pointer array than it is to
1436   ** reconstruct the entire page.  */
1437   if( (int)data[hdr+7]<=nMaxFrag ){
1438     int iFree = get2byte(&data[hdr+1]);
1439     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1440     if( iFree ){
1441       int iFree2 = get2byte(&data[iFree]);
1442       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1443       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1444         u8 *pEnd = &data[cellOffset + nCell*2];
1445         u8 *pAddr;
1446         int sz2 = 0;
1447         int sz = get2byte(&data[iFree+2]);
1448         int top = get2byte(&data[hdr+5]);
1449         if( top>=iFree ){
1450           return SQLITE_CORRUPT_PAGE(pPage);
1451         }
1452         if( iFree2 ){
1453           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1454           sz2 = get2byte(&data[iFree2+2]);
1455           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1456           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1457           sz += sz2;
1458         }else if( iFree+sz>usableSize ){
1459           return SQLITE_CORRUPT_PAGE(pPage);
1460         }
1461 
1462         cbrk = top+sz;
1463         assert( cbrk+(iFree-top) <= usableSize );
1464         memmove(&data[cbrk], &data[top], iFree-top);
1465         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1466           pc = get2byte(pAddr);
1467           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1468           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1469         }
1470         goto defragment_out;
1471       }
1472     }
1473   }
1474 
1475   cbrk = usableSize;
1476   iCellLast = usableSize - 4;
1477   for(i=0; i<nCell; i++){
1478     u8 *pAddr;     /* The i-th cell pointer */
1479     pAddr = &data[cellOffset + i*2];
1480     pc = get2byte(pAddr);
1481     testcase( pc==iCellFirst );
1482     testcase( pc==iCellLast );
1483     /* These conditions have already been verified in btreeInitPage()
1484     ** if PRAGMA cell_size_check=ON.
1485     */
1486     if( pc<iCellFirst || pc>iCellLast ){
1487       return SQLITE_CORRUPT_PAGE(pPage);
1488     }
1489     assert( pc>=iCellFirst && pc<=iCellLast );
1490     size = pPage->xCellSize(pPage, &src[pc]);
1491     cbrk -= size;
1492     if( cbrk<iCellFirst || pc+size>usableSize ){
1493       return SQLITE_CORRUPT_PAGE(pPage);
1494     }
1495     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1496     testcase( cbrk+size==usableSize );
1497     testcase( pc+size==usableSize );
1498     put2byte(pAddr, cbrk);
1499     if( temp==0 ){
1500       int x;
1501       if( cbrk==pc ) continue;
1502       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1503       x = get2byte(&data[hdr+5]);
1504       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1505       src = temp;
1506     }
1507     memcpy(&data[cbrk], &src[pc], size);
1508   }
1509   data[hdr+7] = 0;
1510 
1511  defragment_out:
1512   assert( pPage->nFree>=0 );
1513   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1514     return SQLITE_CORRUPT_PAGE(pPage);
1515   }
1516   assert( cbrk>=iCellFirst );
1517   put2byte(&data[hdr+5], cbrk);
1518   data[hdr+1] = 0;
1519   data[hdr+2] = 0;
1520   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1521   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1522   return SQLITE_OK;
1523 }
1524 
1525 /*
1526 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1527 ** size. If one can be found, return a pointer to the space and remove it
1528 ** from the free-list.
1529 **
1530 ** If no suitable space can be found on the free-list, return NULL.
1531 **
1532 ** This function may detect corruption within pPg.  If corruption is
1533 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1534 **
1535 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1536 ** will be ignored if adding the extra space to the fragmentation count
1537 ** causes the fragmentation count to exceed 60.
1538 */
1539 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1540   const int hdr = pPg->hdrOffset;            /* Offset to page header */
1541   u8 * const aData = pPg->aData;             /* Page data */
1542   int iAddr = hdr + 1;                       /* Address of ptr to pc */
1543   int pc = get2byte(&aData[iAddr]);          /* Address of a free slot */
1544   int x;                                     /* Excess size of the slot */
1545   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */
1546   int size;                                  /* Size of the free slot */
1547 
1548   assert( pc>0 );
1549   while( pc<=maxPC ){
1550     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1551     ** freeblock form a big-endian integer which is the size of the freeblock
1552     ** in bytes, including the 4-byte header. */
1553     size = get2byte(&aData[pc+2]);
1554     if( (x = size - nByte)>=0 ){
1555       testcase( x==4 );
1556       testcase( x==3 );
1557       if( x<4 ){
1558         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1559         ** number of bytes in fragments may not exceed 60. */
1560         if( aData[hdr+7]>57 ) return 0;
1561 
1562         /* Remove the slot from the free-list. Update the number of
1563         ** fragmented bytes within the page. */
1564         memcpy(&aData[iAddr], &aData[pc], 2);
1565         aData[hdr+7] += (u8)x;
1566       }else if( x+pc > maxPC ){
1567         /* This slot extends off the end of the usable part of the page */
1568         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1569         return 0;
1570       }else{
1571         /* The slot remains on the free-list. Reduce its size to account
1572         ** for the portion used by the new allocation. */
1573         put2byte(&aData[pc+2], x);
1574       }
1575       return &aData[pc + x];
1576     }
1577     iAddr = pc;
1578     pc = get2byte(&aData[pc]);
1579     if( pc<=iAddr+size ){
1580       if( pc ){
1581         /* The next slot in the chain is not past the end of the current slot */
1582         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1583       }
1584       return 0;
1585     }
1586   }
1587   if( pc>maxPC+nByte-4 ){
1588     /* The free slot chain extends off the end of the page */
1589     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1590   }
1591   return 0;
1592 }
1593 
1594 /*
1595 ** Allocate nByte bytes of space from within the B-Tree page passed
1596 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1597 ** of the first byte of allocated space. Return either SQLITE_OK or
1598 ** an error code (usually SQLITE_CORRUPT).
1599 **
1600 ** The caller guarantees that there is sufficient space to make the
1601 ** allocation.  This routine might need to defragment in order to bring
1602 ** all the space together, however.  This routine will avoid using
1603 ** the first two bytes past the cell pointer area since presumably this
1604 ** allocation is being made in order to insert a new cell, so we will
1605 ** also end up needing a new cell pointer.
1606 */
1607 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1608   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1609   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1610   int top;                             /* First byte of cell content area */
1611   int rc = SQLITE_OK;                  /* Integer return code */
1612   int gap;        /* First byte of gap between cell pointers and cell content */
1613 
1614   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1615   assert( pPage->pBt );
1616   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1617   assert( nByte>=0 );  /* Minimum cell size is 4 */
1618   assert( pPage->nFree>=nByte );
1619   assert( pPage->nOverflow==0 );
1620   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1621 
1622   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1623   gap = pPage->cellOffset + 2*pPage->nCell;
1624   assert( gap<=65536 );
1625   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1626   ** and the reserved space is zero (the usual value for reserved space)
1627   ** then the cell content offset of an empty page wants to be 65536.
1628   ** However, that integer is too large to be stored in a 2-byte unsigned
1629   ** integer, so a value of 0 is used in its place. */
1630   top = get2byte(&data[hdr+5]);
1631   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1632   if( gap>top ){
1633     if( top==0 && pPage->pBt->usableSize==65536 ){
1634       top = 65536;
1635     }else{
1636       return SQLITE_CORRUPT_PAGE(pPage);
1637     }
1638   }
1639 
1640   /* If there is enough space between gap and top for one more cell pointer,
1641   ** and if the freelist is not empty, then search the
1642   ** freelist looking for a slot big enough to satisfy the request.
1643   */
1644   testcase( gap+2==top );
1645   testcase( gap+1==top );
1646   testcase( gap==top );
1647   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1648     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1649     if( pSpace ){
1650       assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1651       if( (*pIdx = (int)(pSpace-data))<=gap ){
1652         return SQLITE_CORRUPT_PAGE(pPage);
1653       }else{
1654         return SQLITE_OK;
1655       }
1656     }else if( rc ){
1657       return rc;
1658     }
1659   }
1660 
1661   /* The request could not be fulfilled using a freelist slot.  Check
1662   ** to see if defragmentation is necessary.
1663   */
1664   testcase( gap+2+nByte==top );
1665   if( gap+2+nByte>top ){
1666     assert( pPage->nCell>0 || CORRUPT_DB );
1667     assert( pPage->nFree>=0 );
1668     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1669     if( rc ) return rc;
1670     top = get2byteNotZero(&data[hdr+5]);
1671     assert( gap+2+nByte<=top );
1672   }
1673 
1674 
1675   /* Allocate memory from the gap in between the cell pointer array
1676   ** and the cell content area.  The btreeComputeFreeSpace() call has already
1677   ** validated the freelist.  Given that the freelist is valid, there
1678   ** is no way that the allocation can extend off the end of the page.
1679   ** The assert() below verifies the previous sentence.
1680   */
1681   top -= nByte;
1682   put2byte(&data[hdr+5], top);
1683   assert( top+nByte <= (int)pPage->pBt->usableSize );
1684   *pIdx = top;
1685   return SQLITE_OK;
1686 }
1687 
1688 /*
1689 ** Return a section of the pPage->aData to the freelist.
1690 ** The first byte of the new free block is pPage->aData[iStart]
1691 ** and the size of the block is iSize bytes.
1692 **
1693 ** Adjacent freeblocks are coalesced.
1694 **
1695 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1696 ** that routine will not detect overlap between cells or freeblocks.  Nor
1697 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1698 ** at the end of the page.  So do additional corruption checks inside this
1699 ** routine and return SQLITE_CORRUPT if any problems are found.
1700 */
1701 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1702   u16 iPtr;                             /* Address of ptr to next freeblock */
1703   u16 iFreeBlk;                         /* Address of the next freeblock */
1704   u8 hdr;                               /* Page header size.  0 or 100 */
1705   u8 nFrag = 0;                         /* Reduction in fragmentation */
1706   u16 iOrigSize = iSize;                /* Original value of iSize */
1707   u16 x;                                /* Offset to cell content area */
1708   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1709   unsigned char *data = pPage->aData;   /* Page content */
1710 
1711   assert( pPage->pBt!=0 );
1712   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1713   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1714   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1715   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1716   assert( iSize>=4 );   /* Minimum cell size is 4 */
1717   assert( iStart<=pPage->pBt->usableSize-4 );
1718 
1719   /* The list of freeblocks must be in ascending order.  Find the
1720   ** spot on the list where iStart should be inserted.
1721   */
1722   hdr = pPage->hdrOffset;
1723   iPtr = hdr + 1;
1724   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1725     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1726   }else{
1727     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1728       if( iFreeBlk<iPtr+4 ){
1729         if( iFreeBlk==0 ) break;
1730         return SQLITE_CORRUPT_PAGE(pPage);
1731       }
1732       iPtr = iFreeBlk;
1733     }
1734     if( iFreeBlk>pPage->pBt->usableSize-4 ){
1735       return SQLITE_CORRUPT_PAGE(pPage);
1736     }
1737     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1738 
1739     /* At this point:
1740     **    iFreeBlk:   First freeblock after iStart, or zero if none
1741     **    iPtr:       The address of a pointer to iFreeBlk
1742     **
1743     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1744     */
1745     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1746       nFrag = iFreeBlk - iEnd;
1747       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1748       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1749       if( iEnd > pPage->pBt->usableSize ){
1750         return SQLITE_CORRUPT_PAGE(pPage);
1751       }
1752       iSize = iEnd - iStart;
1753       iFreeBlk = get2byte(&data[iFreeBlk]);
1754     }
1755 
1756     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1757     ** pointer in the page header) then check to see if iStart should be
1758     ** coalesced onto the end of iPtr.
1759     */
1760     if( iPtr>hdr+1 ){
1761       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1762       if( iPtrEnd+3>=iStart ){
1763         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1764         nFrag += iStart - iPtrEnd;
1765         iSize = iEnd - iPtr;
1766         iStart = iPtr;
1767       }
1768     }
1769     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1770     data[hdr+7] -= nFrag;
1771   }
1772   x = get2byte(&data[hdr+5]);
1773   if( iStart<=x ){
1774     /* The new freeblock is at the beginning of the cell content area,
1775     ** so just extend the cell content area rather than create another
1776     ** freelist entry */
1777     if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1778     put2byte(&data[hdr+1], iFreeBlk);
1779     put2byte(&data[hdr+5], iEnd);
1780   }else{
1781     /* Insert the new freeblock into the freelist */
1782     put2byte(&data[iPtr], iStart);
1783   }
1784   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1785     /* Overwrite deleted information with zeros when the secure_delete
1786     ** option is enabled */
1787     memset(&data[iStart], 0, iSize);
1788   }
1789   put2byte(&data[iStart], iFreeBlk);
1790   put2byte(&data[iStart+2], iSize);
1791   pPage->nFree += iOrigSize;
1792   return SQLITE_OK;
1793 }
1794 
1795 /*
1796 ** Decode the flags byte (the first byte of the header) for a page
1797 ** and initialize fields of the MemPage structure accordingly.
1798 **
1799 ** Only the following combinations are supported.  Anything different
1800 ** indicates a corrupt database files:
1801 **
1802 **         PTF_ZERODATA
1803 **         PTF_ZERODATA | PTF_LEAF
1804 **         PTF_LEAFDATA | PTF_INTKEY
1805 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1806 */
1807 static int decodeFlags(MemPage *pPage, int flagByte){
1808   BtShared *pBt;     /* A copy of pPage->pBt */
1809 
1810   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1811   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1812   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1813   flagByte &= ~PTF_LEAF;
1814   pPage->childPtrSize = 4-4*pPage->leaf;
1815   pPage->xCellSize = cellSizePtr;
1816   pBt = pPage->pBt;
1817   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1818     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1819     ** interior table b-tree page. */
1820     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1821     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1822     ** leaf table b-tree page. */
1823     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1824     pPage->intKey = 1;
1825     if( pPage->leaf ){
1826       pPage->intKeyLeaf = 1;
1827       pPage->xParseCell = btreeParseCellPtr;
1828     }else{
1829       pPage->intKeyLeaf = 0;
1830       pPage->xCellSize = cellSizePtrNoPayload;
1831       pPage->xParseCell = btreeParseCellPtrNoPayload;
1832     }
1833     pPage->maxLocal = pBt->maxLeaf;
1834     pPage->minLocal = pBt->minLeaf;
1835   }else if( flagByte==PTF_ZERODATA ){
1836     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1837     ** interior index b-tree page. */
1838     assert( (PTF_ZERODATA)==2 );
1839     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1840     ** leaf index b-tree page. */
1841     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1842     pPage->intKey = 0;
1843     pPage->intKeyLeaf = 0;
1844     pPage->xParseCell = btreeParseCellPtrIndex;
1845     pPage->maxLocal = pBt->maxLocal;
1846     pPage->minLocal = pBt->minLocal;
1847   }else{
1848     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1849     ** an error. */
1850     return SQLITE_CORRUPT_PAGE(pPage);
1851   }
1852   pPage->max1bytePayload = pBt->max1bytePayload;
1853   return SQLITE_OK;
1854 }
1855 
1856 /*
1857 ** Compute the amount of freespace on the page.  In other words, fill
1858 ** in the pPage->nFree field.
1859 */
1860 static int btreeComputeFreeSpace(MemPage *pPage){
1861   int pc;            /* Address of a freeblock within pPage->aData[] */
1862   u8 hdr;            /* Offset to beginning of page header */
1863   u8 *data;          /* Equal to pPage->aData */
1864   int usableSize;    /* Amount of usable space on each page */
1865   int nFree;         /* Number of unused bytes on the page */
1866   int top;           /* First byte of the cell content area */
1867   int iCellFirst;    /* First allowable cell or freeblock offset */
1868   int iCellLast;     /* Last possible cell or freeblock offset */
1869 
1870   assert( pPage->pBt!=0 );
1871   assert( pPage->pBt->db!=0 );
1872   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1873   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1874   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1875   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1876   assert( pPage->isInit==1 );
1877   assert( pPage->nFree<0 );
1878 
1879   usableSize = pPage->pBt->usableSize;
1880   hdr = pPage->hdrOffset;
1881   data = pPage->aData;
1882   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1883   ** the start of the cell content area. A zero value for this integer is
1884   ** interpreted as 65536. */
1885   top = get2byteNotZero(&data[hdr+5]);
1886   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1887   iCellLast = usableSize - 4;
1888 
1889   /* Compute the total free space on the page
1890   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1891   ** start of the first freeblock on the page, or is zero if there are no
1892   ** freeblocks. */
1893   pc = get2byte(&data[hdr+1]);
1894   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1895   if( pc>0 ){
1896     u32 next, size;
1897     if( pc<iCellFirst ){
1898       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1899       ** always be at least one cell before the first freeblock.
1900       */
1901       return SQLITE_CORRUPT_PAGE(pPage);
1902     }
1903     while( 1 ){
1904       if( pc>iCellLast ){
1905         /* Freeblock off the end of the page */
1906         return SQLITE_CORRUPT_PAGE(pPage);
1907       }
1908       next = get2byte(&data[pc]);
1909       size = get2byte(&data[pc+2]);
1910       nFree = nFree + size;
1911       if( next<=pc+size+3 ) break;
1912       pc = next;
1913     }
1914     if( next>0 ){
1915       /* Freeblock not in ascending order */
1916       return SQLITE_CORRUPT_PAGE(pPage);
1917     }
1918     if( pc+size>(unsigned int)usableSize ){
1919       /* Last freeblock extends past page end */
1920       return SQLITE_CORRUPT_PAGE(pPage);
1921     }
1922   }
1923 
1924   /* At this point, nFree contains the sum of the offset to the start
1925   ** of the cell-content area plus the number of free bytes within
1926   ** the cell-content area. If this is greater than the usable-size
1927   ** of the page, then the page must be corrupted. This check also
1928   ** serves to verify that the offset to the start of the cell-content
1929   ** area, according to the page header, lies within the page.
1930   */
1931   if( nFree>usableSize || nFree<iCellFirst ){
1932     return SQLITE_CORRUPT_PAGE(pPage);
1933   }
1934   pPage->nFree = (u16)(nFree - iCellFirst);
1935   return SQLITE_OK;
1936 }
1937 
1938 /*
1939 ** Do additional sanity check after btreeInitPage() if
1940 ** PRAGMA cell_size_check=ON
1941 */
1942 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1943   int iCellFirst;    /* First allowable cell or freeblock offset */
1944   int iCellLast;     /* Last possible cell or freeblock offset */
1945   int i;             /* Index into the cell pointer array */
1946   int sz;            /* Size of a cell */
1947   int pc;            /* Address of a freeblock within pPage->aData[] */
1948   u8 *data;          /* Equal to pPage->aData */
1949   int usableSize;    /* Maximum usable space on the page */
1950   int cellOffset;    /* Start of cell content area */
1951 
1952   iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1953   usableSize = pPage->pBt->usableSize;
1954   iCellLast = usableSize - 4;
1955   data = pPage->aData;
1956   cellOffset = pPage->cellOffset;
1957   if( !pPage->leaf ) iCellLast--;
1958   for(i=0; i<pPage->nCell; i++){
1959     pc = get2byteAligned(&data[cellOffset+i*2]);
1960     testcase( pc==iCellFirst );
1961     testcase( pc==iCellLast );
1962     if( pc<iCellFirst || pc>iCellLast ){
1963       return SQLITE_CORRUPT_PAGE(pPage);
1964     }
1965     sz = pPage->xCellSize(pPage, &data[pc]);
1966     testcase( pc+sz==usableSize );
1967     if( pc+sz>usableSize ){
1968       return SQLITE_CORRUPT_PAGE(pPage);
1969     }
1970   }
1971   return SQLITE_OK;
1972 }
1973 
1974 /*
1975 ** Initialize the auxiliary information for a disk block.
1976 **
1977 ** Return SQLITE_OK on success.  If we see that the page does
1978 ** not contain a well-formed database page, then return
1979 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1980 ** guarantee that the page is well-formed.  It only shows that
1981 ** we failed to detect any corruption.
1982 */
1983 static int btreeInitPage(MemPage *pPage){
1984   u8 *data;          /* Equal to pPage->aData */
1985   BtShared *pBt;        /* The main btree structure */
1986 
1987   assert( pPage->pBt!=0 );
1988   assert( pPage->pBt->db!=0 );
1989   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1990   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1991   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1992   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1993   assert( pPage->isInit==0 );
1994 
1995   pBt = pPage->pBt;
1996   data = pPage->aData + pPage->hdrOffset;
1997   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1998   ** the b-tree page type. */
1999   if( decodeFlags(pPage, data[0]) ){
2000     return SQLITE_CORRUPT_PAGE(pPage);
2001   }
2002   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2003   pPage->maskPage = (u16)(pBt->pageSize - 1);
2004   pPage->nOverflow = 0;
2005   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2006   pPage->aCellIdx = data + pPage->childPtrSize + 8;
2007   pPage->aDataEnd = pPage->aData + pBt->usableSize;
2008   pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2009   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2010   ** number of cells on the page. */
2011   pPage->nCell = get2byte(&data[3]);
2012   if( pPage->nCell>MX_CELL(pBt) ){
2013     /* To many cells for a single page.  The page must be corrupt */
2014     return SQLITE_CORRUPT_PAGE(pPage);
2015   }
2016   testcase( pPage->nCell==MX_CELL(pBt) );
2017   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2018   ** possible for a root page of a table that contains no rows) then the
2019   ** offset to the cell content area will equal the page size minus the
2020   ** bytes of reserved space. */
2021   assert( pPage->nCell>0
2022        || get2byteNotZero(&data[5])==(int)pBt->usableSize
2023        || CORRUPT_DB );
2024   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */
2025   pPage->isInit = 1;
2026   if( pBt->db->flags & SQLITE_CellSizeCk ){
2027     return btreeCellSizeCheck(pPage);
2028   }
2029   return SQLITE_OK;
2030 }
2031 
2032 /*
2033 ** Set up a raw page so that it looks like a database page holding
2034 ** no entries.
2035 */
2036 static void zeroPage(MemPage *pPage, int flags){
2037   unsigned char *data = pPage->aData;
2038   BtShared *pBt = pPage->pBt;
2039   u8 hdr = pPage->hdrOffset;
2040   u16 first;
2041 
2042   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
2043   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2044   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2045   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2046   assert( sqlite3_mutex_held(pBt->mutex) );
2047   if( pBt->btsFlags & BTS_FAST_SECURE ){
2048     memset(&data[hdr], 0, pBt->usableSize - hdr);
2049   }
2050   data[hdr] = (char)flags;
2051   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2052   memset(&data[hdr+1], 0, 4);
2053   data[hdr+7] = 0;
2054   put2byte(&data[hdr+5], pBt->usableSize);
2055   pPage->nFree = (u16)(pBt->usableSize - first);
2056   decodeFlags(pPage, flags);
2057   pPage->cellOffset = first;
2058   pPage->aDataEnd = &data[pBt->usableSize];
2059   pPage->aCellIdx = &data[first];
2060   pPage->aDataOfst = &data[pPage->childPtrSize];
2061   pPage->nOverflow = 0;
2062   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2063   pPage->maskPage = (u16)(pBt->pageSize - 1);
2064   pPage->nCell = 0;
2065   pPage->isInit = 1;
2066 }
2067 
2068 
2069 /*
2070 ** Convert a DbPage obtained from the pager into a MemPage used by
2071 ** the btree layer.
2072 */
2073 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2074   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2075   if( pgno!=pPage->pgno ){
2076     pPage->aData = sqlite3PagerGetData(pDbPage);
2077     pPage->pDbPage = pDbPage;
2078     pPage->pBt = pBt;
2079     pPage->pgno = pgno;
2080     pPage->hdrOffset = pgno==1 ? 100 : 0;
2081   }
2082   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2083   return pPage;
2084 }
2085 
2086 /*
2087 ** Get a page from the pager.  Initialize the MemPage.pBt and
2088 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2089 **
2090 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2091 ** about the content of the page at this time.  So do not go to the disk
2092 ** to fetch the content.  Just fill in the content with zeros for now.
2093 ** If in the future we call sqlite3PagerWrite() on this page, that
2094 ** means we have started to be concerned about content and the disk
2095 ** read should occur at that point.
2096 */
2097 static int btreeGetPage(
2098   BtShared *pBt,       /* The btree */
2099   Pgno pgno,           /* Number of the page to fetch */
2100   MemPage **ppPage,    /* Return the page in this parameter */
2101   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2102 ){
2103   int rc;
2104   DbPage *pDbPage;
2105 
2106   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2107   assert( sqlite3_mutex_held(pBt->mutex) );
2108   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2109   if( rc ) return rc;
2110   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2111   return SQLITE_OK;
2112 }
2113 
2114 /*
2115 ** Retrieve a page from the pager cache. If the requested page is not
2116 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2117 ** MemPage.aData elements if needed.
2118 */
2119 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2120   DbPage *pDbPage;
2121   assert( sqlite3_mutex_held(pBt->mutex) );
2122   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2123   if( pDbPage ){
2124     return btreePageFromDbPage(pDbPage, pgno, pBt);
2125   }
2126   return 0;
2127 }
2128 
2129 /*
2130 ** Return the size of the database file in pages. If there is any kind of
2131 ** error, return ((unsigned int)-1).
2132 */
2133 static Pgno btreePagecount(BtShared *pBt){
2134   return pBt->nPage;
2135 }
2136 u32 sqlite3BtreeLastPage(Btree *p){
2137   assert( sqlite3BtreeHoldsMutex(p) );
2138   assert( ((p->pBt->nPage)&0x80000000)==0 );
2139   return btreePagecount(p->pBt);
2140 }
2141 
2142 /*
2143 ** Get a page from the pager and initialize it.
2144 **
2145 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2146 ** call.  Do additional sanity checking on the page in this case.
2147 ** And if the fetch fails, this routine must decrement pCur->iPage.
2148 **
2149 ** The page is fetched as read-write unless pCur is not NULL and is
2150 ** a read-only cursor.
2151 **
2152 ** If an error occurs, then *ppPage is undefined. It
2153 ** may remain unchanged, or it may be set to an invalid value.
2154 */
2155 static int getAndInitPage(
2156   BtShared *pBt,                  /* The database file */
2157   Pgno pgno,                      /* Number of the page to get */
2158   MemPage **ppPage,               /* Write the page pointer here */
2159   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2160   int bReadOnly                   /* True for a read-only page */
2161 ){
2162   int rc;
2163   DbPage *pDbPage;
2164   assert( sqlite3_mutex_held(pBt->mutex) );
2165   assert( pCur==0 || ppPage==&pCur->pPage );
2166   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2167   assert( pCur==0 || pCur->iPage>0 );
2168 
2169   if( pgno>btreePagecount(pBt) ){
2170     rc = SQLITE_CORRUPT_BKPT;
2171     goto getAndInitPage_error1;
2172   }
2173   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2174   if( rc ){
2175     goto getAndInitPage_error1;
2176   }
2177   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2178   if( (*ppPage)->isInit==0 ){
2179     btreePageFromDbPage(pDbPage, pgno, pBt);
2180     rc = btreeInitPage(*ppPage);
2181     if( rc!=SQLITE_OK ){
2182       goto getAndInitPage_error2;
2183     }
2184   }
2185   assert( (*ppPage)->pgno==pgno );
2186   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2187 
2188   /* If obtaining a child page for a cursor, we must verify that the page is
2189   ** compatible with the root page. */
2190   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2191     rc = SQLITE_CORRUPT_PGNO(pgno);
2192     goto getAndInitPage_error2;
2193   }
2194   return SQLITE_OK;
2195 
2196 getAndInitPage_error2:
2197   releasePage(*ppPage);
2198 getAndInitPage_error1:
2199   if( pCur ){
2200     pCur->iPage--;
2201     pCur->pPage = pCur->apPage[pCur->iPage];
2202   }
2203   testcase( pgno==0 );
2204   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2205   return rc;
2206 }
2207 
2208 /*
2209 ** Release a MemPage.  This should be called once for each prior
2210 ** call to btreeGetPage.
2211 **
2212 ** Page1 is a special case and must be released using releasePageOne().
2213 */
2214 static void releasePageNotNull(MemPage *pPage){
2215   assert( pPage->aData );
2216   assert( pPage->pBt );
2217   assert( pPage->pDbPage!=0 );
2218   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2219   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2220   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2221   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2222 }
2223 static void releasePage(MemPage *pPage){
2224   if( pPage ) releasePageNotNull(pPage);
2225 }
2226 static void releasePageOne(MemPage *pPage){
2227   assert( pPage!=0 );
2228   assert( pPage->aData );
2229   assert( pPage->pBt );
2230   assert( pPage->pDbPage!=0 );
2231   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2232   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2233   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2234   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2235 }
2236 
2237 /*
2238 ** Get an unused page.
2239 **
2240 ** This works just like btreeGetPage() with the addition:
2241 **
2242 **   *  If the page is already in use for some other purpose, immediately
2243 **      release it and return an SQLITE_CURRUPT error.
2244 **   *  Make sure the isInit flag is clear
2245 */
2246 static int btreeGetUnusedPage(
2247   BtShared *pBt,       /* The btree */
2248   Pgno pgno,           /* Number of the page to fetch */
2249   MemPage **ppPage,    /* Return the page in this parameter */
2250   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2251 ){
2252   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2253   if( rc==SQLITE_OK ){
2254     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2255       releasePage(*ppPage);
2256       *ppPage = 0;
2257       return SQLITE_CORRUPT_BKPT;
2258     }
2259     (*ppPage)->isInit = 0;
2260   }else{
2261     *ppPage = 0;
2262   }
2263   return rc;
2264 }
2265 
2266 
2267 /*
2268 ** During a rollback, when the pager reloads information into the cache
2269 ** so that the cache is restored to its original state at the start of
2270 ** the transaction, for each page restored this routine is called.
2271 **
2272 ** This routine needs to reset the extra data section at the end of the
2273 ** page to agree with the restored data.
2274 */
2275 static void pageReinit(DbPage *pData){
2276   MemPage *pPage;
2277   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2278   assert( sqlite3PagerPageRefcount(pData)>0 );
2279   if( pPage->isInit ){
2280     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2281     pPage->isInit = 0;
2282     if( sqlite3PagerPageRefcount(pData)>1 ){
2283       /* pPage might not be a btree page;  it might be an overflow page
2284       ** or ptrmap page or a free page.  In those cases, the following
2285       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2286       ** But no harm is done by this.  And it is very important that
2287       ** btreeInitPage() be called on every btree page so we make
2288       ** the call for every page that comes in for re-initing. */
2289       btreeInitPage(pPage);
2290     }
2291   }
2292 }
2293 
2294 /*
2295 ** Invoke the busy handler for a btree.
2296 */
2297 static int btreeInvokeBusyHandler(void *pArg){
2298   BtShared *pBt = (BtShared*)pArg;
2299   assert( pBt->db );
2300   assert( sqlite3_mutex_held(pBt->db->mutex) );
2301   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2302                                   sqlite3PagerFile(pBt->pPager));
2303 }
2304 
2305 /*
2306 ** Open a database file.
2307 **
2308 ** zFilename is the name of the database file.  If zFilename is NULL
2309 ** then an ephemeral database is created.  The ephemeral database might
2310 ** be exclusively in memory, or it might use a disk-based memory cache.
2311 ** Either way, the ephemeral database will be automatically deleted
2312 ** when sqlite3BtreeClose() is called.
2313 **
2314 ** If zFilename is ":memory:" then an in-memory database is created
2315 ** that is automatically destroyed when it is closed.
2316 **
2317 ** The "flags" parameter is a bitmask that might contain bits like
2318 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2319 **
2320 ** If the database is already opened in the same database connection
2321 ** and we are in shared cache mode, then the open will fail with an
2322 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2323 ** objects in the same database connection since doing so will lead
2324 ** to problems with locking.
2325 */
2326 int sqlite3BtreeOpen(
2327   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2328   const char *zFilename,  /* Name of the file containing the BTree database */
2329   sqlite3 *db,            /* Associated database handle */
2330   Btree **ppBtree,        /* Pointer to new Btree object written here */
2331   int flags,              /* Options */
2332   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2333 ){
2334   BtShared *pBt = 0;             /* Shared part of btree structure */
2335   Btree *p;                      /* Handle to return */
2336   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2337   int rc = SQLITE_OK;            /* Result code from this function */
2338   u8 nReserve;                   /* Byte of unused space on each page */
2339   unsigned char zDbHeader[100];  /* Database header content */
2340 
2341   /* True if opening an ephemeral, temporary database */
2342   const int isTempDb = zFilename==0 || zFilename[0]==0;
2343 
2344   /* Set the variable isMemdb to true for an in-memory database, or
2345   ** false for a file-based database.
2346   */
2347 #ifdef SQLITE_OMIT_MEMORYDB
2348   const int isMemdb = 0;
2349 #else
2350   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2351                        || (isTempDb && sqlite3TempInMemory(db))
2352                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2353 #endif
2354 
2355   assert( db!=0 );
2356   assert( pVfs!=0 );
2357   assert( sqlite3_mutex_held(db->mutex) );
2358   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2359 
2360   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2361   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2362 
2363   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2364   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2365 
2366   if( isMemdb ){
2367     flags |= BTREE_MEMORY;
2368   }
2369   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2370     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2371   }
2372   p = sqlite3MallocZero(sizeof(Btree));
2373   if( !p ){
2374     return SQLITE_NOMEM_BKPT;
2375   }
2376   p->inTrans = TRANS_NONE;
2377   p->db = db;
2378 #ifndef SQLITE_OMIT_SHARED_CACHE
2379   p->lock.pBtree = p;
2380   p->lock.iTable = 1;
2381 #endif
2382 
2383 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2384   /*
2385   ** If this Btree is a candidate for shared cache, try to find an
2386   ** existing BtShared object that we can share with
2387   */
2388   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2389     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2390       int nFilename = sqlite3Strlen30(zFilename)+1;
2391       int nFullPathname = pVfs->mxPathname+1;
2392       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2393       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2394 
2395       p->sharable = 1;
2396       if( !zFullPathname ){
2397         sqlite3_free(p);
2398         return SQLITE_NOMEM_BKPT;
2399       }
2400       if( isMemdb ){
2401         memcpy(zFullPathname, zFilename, nFilename);
2402       }else{
2403         rc = sqlite3OsFullPathname(pVfs, zFilename,
2404                                    nFullPathname, zFullPathname);
2405         if( rc ){
2406           sqlite3_free(zFullPathname);
2407           sqlite3_free(p);
2408           return rc;
2409         }
2410       }
2411 #if SQLITE_THREADSAFE
2412       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2413       sqlite3_mutex_enter(mutexOpen);
2414       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2415       sqlite3_mutex_enter(mutexShared);
2416 #endif
2417       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2418         assert( pBt->nRef>0 );
2419         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2420                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2421           int iDb;
2422           for(iDb=db->nDb-1; iDb>=0; iDb--){
2423             Btree *pExisting = db->aDb[iDb].pBt;
2424             if( pExisting && pExisting->pBt==pBt ){
2425               sqlite3_mutex_leave(mutexShared);
2426               sqlite3_mutex_leave(mutexOpen);
2427               sqlite3_free(zFullPathname);
2428               sqlite3_free(p);
2429               return SQLITE_CONSTRAINT;
2430             }
2431           }
2432           p->pBt = pBt;
2433           pBt->nRef++;
2434           break;
2435         }
2436       }
2437       sqlite3_mutex_leave(mutexShared);
2438       sqlite3_free(zFullPathname);
2439     }
2440 #ifdef SQLITE_DEBUG
2441     else{
2442       /* In debug mode, we mark all persistent databases as sharable
2443       ** even when they are not.  This exercises the locking code and
2444       ** gives more opportunity for asserts(sqlite3_mutex_held())
2445       ** statements to find locking problems.
2446       */
2447       p->sharable = 1;
2448     }
2449 #endif
2450   }
2451 #endif
2452   if( pBt==0 ){
2453     /*
2454     ** The following asserts make sure that structures used by the btree are
2455     ** the right size.  This is to guard against size changes that result
2456     ** when compiling on a different architecture.
2457     */
2458     assert( sizeof(i64)==8 );
2459     assert( sizeof(u64)==8 );
2460     assert( sizeof(u32)==4 );
2461     assert( sizeof(u16)==2 );
2462     assert( sizeof(Pgno)==4 );
2463 
2464     pBt = sqlite3MallocZero( sizeof(*pBt) );
2465     if( pBt==0 ){
2466       rc = SQLITE_NOMEM_BKPT;
2467       goto btree_open_out;
2468     }
2469     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2470                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2471     if( rc==SQLITE_OK ){
2472       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2473       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2474     }
2475     if( rc!=SQLITE_OK ){
2476       goto btree_open_out;
2477     }
2478     pBt->openFlags = (u8)flags;
2479     pBt->db = db;
2480     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2481     p->pBt = pBt;
2482 
2483     pBt->pCursor = 0;
2484     pBt->pPage1 = 0;
2485     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2486 #if defined(SQLITE_SECURE_DELETE)
2487     pBt->btsFlags |= BTS_SECURE_DELETE;
2488 #elif defined(SQLITE_FAST_SECURE_DELETE)
2489     pBt->btsFlags |= BTS_OVERWRITE;
2490 #endif
2491     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2492     ** determined by the 2-byte integer located at an offset of 16 bytes from
2493     ** the beginning of the database file. */
2494     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2495     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2496          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2497       pBt->pageSize = 0;
2498 #ifndef SQLITE_OMIT_AUTOVACUUM
2499       /* If the magic name ":memory:" will create an in-memory database, then
2500       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2501       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2502       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2503       ** regular file-name. In this case the auto-vacuum applies as per normal.
2504       */
2505       if( zFilename && !isMemdb ){
2506         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2507         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2508       }
2509 #endif
2510       nReserve = 0;
2511     }else{
2512       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2513       ** determined by the one-byte unsigned integer found at an offset of 20
2514       ** into the database file header. */
2515       nReserve = zDbHeader[20];
2516       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2517 #ifndef SQLITE_OMIT_AUTOVACUUM
2518       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2519       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2520 #endif
2521     }
2522     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2523     if( rc ) goto btree_open_out;
2524     pBt->usableSize = pBt->pageSize - nReserve;
2525     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2526 
2527 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2528     /* Add the new BtShared object to the linked list sharable BtShareds.
2529     */
2530     pBt->nRef = 1;
2531     if( p->sharable ){
2532       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2533       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2534       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2535         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2536         if( pBt->mutex==0 ){
2537           rc = SQLITE_NOMEM_BKPT;
2538           goto btree_open_out;
2539         }
2540       }
2541       sqlite3_mutex_enter(mutexShared);
2542       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2543       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2544       sqlite3_mutex_leave(mutexShared);
2545     }
2546 #endif
2547   }
2548 
2549 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2550   /* If the new Btree uses a sharable pBtShared, then link the new
2551   ** Btree into the list of all sharable Btrees for the same connection.
2552   ** The list is kept in ascending order by pBt address.
2553   */
2554   if( p->sharable ){
2555     int i;
2556     Btree *pSib;
2557     for(i=0; i<db->nDb; i++){
2558       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2559         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2560         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2561           p->pNext = pSib;
2562           p->pPrev = 0;
2563           pSib->pPrev = p;
2564         }else{
2565           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2566             pSib = pSib->pNext;
2567           }
2568           p->pNext = pSib->pNext;
2569           p->pPrev = pSib;
2570           if( p->pNext ){
2571             p->pNext->pPrev = p;
2572           }
2573           pSib->pNext = p;
2574         }
2575         break;
2576       }
2577     }
2578   }
2579 #endif
2580   *ppBtree = p;
2581 
2582 btree_open_out:
2583   if( rc!=SQLITE_OK ){
2584     if( pBt && pBt->pPager ){
2585       sqlite3PagerClose(pBt->pPager, 0);
2586     }
2587     sqlite3_free(pBt);
2588     sqlite3_free(p);
2589     *ppBtree = 0;
2590   }else{
2591     sqlite3_file *pFile;
2592 
2593     /* If the B-Tree was successfully opened, set the pager-cache size to the
2594     ** default value. Except, when opening on an existing shared pager-cache,
2595     ** do not change the pager-cache size.
2596     */
2597     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2598       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2599     }
2600 
2601     pFile = sqlite3PagerFile(pBt->pPager);
2602     if( pFile->pMethods ){
2603       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2604     }
2605   }
2606   if( mutexOpen ){
2607     assert( sqlite3_mutex_held(mutexOpen) );
2608     sqlite3_mutex_leave(mutexOpen);
2609   }
2610   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2611   return rc;
2612 }
2613 
2614 /*
2615 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2616 ** remove the BtShared structure from the sharing list.  Return
2617 ** true if the BtShared.nRef counter reaches zero and return
2618 ** false if it is still positive.
2619 */
2620 static int removeFromSharingList(BtShared *pBt){
2621 #ifndef SQLITE_OMIT_SHARED_CACHE
2622   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2623   BtShared *pList;
2624   int removed = 0;
2625 
2626   assert( sqlite3_mutex_notheld(pBt->mutex) );
2627   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2628   sqlite3_mutex_enter(pMaster);
2629   pBt->nRef--;
2630   if( pBt->nRef<=0 ){
2631     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2632       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2633     }else{
2634       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2635       while( ALWAYS(pList) && pList->pNext!=pBt ){
2636         pList=pList->pNext;
2637       }
2638       if( ALWAYS(pList) ){
2639         pList->pNext = pBt->pNext;
2640       }
2641     }
2642     if( SQLITE_THREADSAFE ){
2643       sqlite3_mutex_free(pBt->mutex);
2644     }
2645     removed = 1;
2646   }
2647   sqlite3_mutex_leave(pMaster);
2648   return removed;
2649 #else
2650   return 1;
2651 #endif
2652 }
2653 
2654 /*
2655 ** Make sure pBt->pTmpSpace points to an allocation of
2656 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2657 ** pointer.
2658 */
2659 static void allocateTempSpace(BtShared *pBt){
2660   if( !pBt->pTmpSpace ){
2661     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2662 
2663     /* One of the uses of pBt->pTmpSpace is to format cells before
2664     ** inserting them into a leaf page (function fillInCell()). If
2665     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2666     ** by the various routines that manipulate binary cells. Which
2667     ** can mean that fillInCell() only initializes the first 2 or 3
2668     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2669     ** it into a database page. This is not actually a problem, but it
2670     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2671     ** data is passed to system call write(). So to avoid this error,
2672     ** zero the first 4 bytes of temp space here.
2673     **
2674     ** Also:  Provide four bytes of initialized space before the
2675     ** beginning of pTmpSpace as an area available to prepend the
2676     ** left-child pointer to the beginning of a cell.
2677     */
2678     if( pBt->pTmpSpace ){
2679       memset(pBt->pTmpSpace, 0, 8);
2680       pBt->pTmpSpace += 4;
2681     }
2682   }
2683 }
2684 
2685 /*
2686 ** Free the pBt->pTmpSpace allocation
2687 */
2688 static void freeTempSpace(BtShared *pBt){
2689   if( pBt->pTmpSpace ){
2690     pBt->pTmpSpace -= 4;
2691     sqlite3PageFree(pBt->pTmpSpace);
2692     pBt->pTmpSpace = 0;
2693   }
2694 }
2695 
2696 /*
2697 ** Close an open database and invalidate all cursors.
2698 */
2699 int sqlite3BtreeClose(Btree *p){
2700   BtShared *pBt = p->pBt;
2701   BtCursor *pCur;
2702 
2703   /* Close all cursors opened via this handle.  */
2704   assert( sqlite3_mutex_held(p->db->mutex) );
2705   sqlite3BtreeEnter(p);
2706   pCur = pBt->pCursor;
2707   while( pCur ){
2708     BtCursor *pTmp = pCur;
2709     pCur = pCur->pNext;
2710     if( pTmp->pBtree==p ){
2711       sqlite3BtreeCloseCursor(pTmp);
2712     }
2713   }
2714 
2715   /* Rollback any active transaction and free the handle structure.
2716   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2717   ** this handle.
2718   */
2719   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2720   sqlite3BtreeLeave(p);
2721 
2722   /* If there are still other outstanding references to the shared-btree
2723   ** structure, return now. The remainder of this procedure cleans
2724   ** up the shared-btree.
2725   */
2726   assert( p->wantToLock==0 && p->locked==0 );
2727   if( !p->sharable || removeFromSharingList(pBt) ){
2728     /* The pBt is no longer on the sharing list, so we can access
2729     ** it without having to hold the mutex.
2730     **
2731     ** Clean out and delete the BtShared object.
2732     */
2733     assert( !pBt->pCursor );
2734     sqlite3PagerClose(pBt->pPager, p->db);
2735     if( pBt->xFreeSchema && pBt->pSchema ){
2736       pBt->xFreeSchema(pBt->pSchema);
2737     }
2738     sqlite3DbFree(0, pBt->pSchema);
2739     freeTempSpace(pBt);
2740     sqlite3_free(pBt);
2741   }
2742 
2743 #ifndef SQLITE_OMIT_SHARED_CACHE
2744   assert( p->wantToLock==0 );
2745   assert( p->locked==0 );
2746   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2747   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2748 #endif
2749 
2750   sqlite3_free(p);
2751   return SQLITE_OK;
2752 }
2753 
2754 /*
2755 ** Change the "soft" limit on the number of pages in the cache.
2756 ** Unused and unmodified pages will be recycled when the number of
2757 ** pages in the cache exceeds this soft limit.  But the size of the
2758 ** cache is allowed to grow larger than this limit if it contains
2759 ** dirty pages or pages still in active use.
2760 */
2761 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2762   BtShared *pBt = p->pBt;
2763   assert( sqlite3_mutex_held(p->db->mutex) );
2764   sqlite3BtreeEnter(p);
2765   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2766   sqlite3BtreeLeave(p);
2767   return SQLITE_OK;
2768 }
2769 
2770 /*
2771 ** Change the "spill" limit on the number of pages in the cache.
2772 ** If the number of pages exceeds this limit during a write transaction,
2773 ** the pager might attempt to "spill" pages to the journal early in
2774 ** order to free up memory.
2775 **
2776 ** The value returned is the current spill size.  If zero is passed
2777 ** as an argument, no changes are made to the spill size setting, so
2778 ** using mxPage of 0 is a way to query the current spill size.
2779 */
2780 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2781   BtShared *pBt = p->pBt;
2782   int res;
2783   assert( sqlite3_mutex_held(p->db->mutex) );
2784   sqlite3BtreeEnter(p);
2785   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2786   sqlite3BtreeLeave(p);
2787   return res;
2788 }
2789 
2790 #if SQLITE_MAX_MMAP_SIZE>0
2791 /*
2792 ** Change the limit on the amount of the database file that may be
2793 ** memory mapped.
2794 */
2795 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2796   BtShared *pBt = p->pBt;
2797   assert( sqlite3_mutex_held(p->db->mutex) );
2798   sqlite3BtreeEnter(p);
2799   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2800   sqlite3BtreeLeave(p);
2801   return SQLITE_OK;
2802 }
2803 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2804 
2805 /*
2806 ** Change the way data is synced to disk in order to increase or decrease
2807 ** how well the database resists damage due to OS crashes and power
2808 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2809 ** there is a high probability of damage)  Level 2 is the default.  There
2810 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2811 ** probability of damage to near zero but with a write performance reduction.
2812 */
2813 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2814 int sqlite3BtreeSetPagerFlags(
2815   Btree *p,              /* The btree to set the safety level on */
2816   unsigned pgFlags       /* Various PAGER_* flags */
2817 ){
2818   BtShared *pBt = p->pBt;
2819   assert( sqlite3_mutex_held(p->db->mutex) );
2820   sqlite3BtreeEnter(p);
2821   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2822   sqlite3BtreeLeave(p);
2823   return SQLITE_OK;
2824 }
2825 #endif
2826 
2827 /*
2828 ** Change the default pages size and the number of reserved bytes per page.
2829 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2830 ** without changing anything.
2831 **
2832 ** The page size must be a power of 2 between 512 and 65536.  If the page
2833 ** size supplied does not meet this constraint then the page size is not
2834 ** changed.
2835 **
2836 ** Page sizes are constrained to be a power of two so that the region
2837 ** of the database file used for locking (beginning at PENDING_BYTE,
2838 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2839 ** at the beginning of a page.
2840 **
2841 ** If parameter nReserve is less than zero, then the number of reserved
2842 ** bytes per page is left unchanged.
2843 **
2844 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2845 ** and autovacuum mode can no longer be changed.
2846 */
2847 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2848   int rc = SQLITE_OK;
2849   BtShared *pBt = p->pBt;
2850   assert( nReserve>=-1 && nReserve<=255 );
2851   sqlite3BtreeEnter(p);
2852 #if SQLITE_HAS_CODEC
2853   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2854 #endif
2855   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2856     sqlite3BtreeLeave(p);
2857     return SQLITE_READONLY;
2858   }
2859   if( nReserve<0 ){
2860     nReserve = pBt->pageSize - pBt->usableSize;
2861   }
2862   assert( nReserve>=0 && nReserve<=255 );
2863   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2864         ((pageSize-1)&pageSize)==0 ){
2865     assert( (pageSize & 7)==0 );
2866     assert( !pBt->pCursor );
2867     pBt->pageSize = (u32)pageSize;
2868     freeTempSpace(pBt);
2869   }
2870   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2871   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2872   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2873   sqlite3BtreeLeave(p);
2874   return rc;
2875 }
2876 
2877 /*
2878 ** Return the currently defined page size
2879 */
2880 int sqlite3BtreeGetPageSize(Btree *p){
2881   return p->pBt->pageSize;
2882 }
2883 
2884 /*
2885 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2886 ** may only be called if it is guaranteed that the b-tree mutex is already
2887 ** held.
2888 **
2889 ** This is useful in one special case in the backup API code where it is
2890 ** known that the shared b-tree mutex is held, but the mutex on the
2891 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2892 ** were to be called, it might collide with some other operation on the
2893 ** database handle that owns *p, causing undefined behavior.
2894 */
2895 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2896   int n;
2897   assert( sqlite3_mutex_held(p->pBt->mutex) );
2898   n = p->pBt->pageSize - p->pBt->usableSize;
2899   return n;
2900 }
2901 
2902 /*
2903 ** Return the number of bytes of space at the end of every page that
2904 ** are intentually left unused.  This is the "reserved" space that is
2905 ** sometimes used by extensions.
2906 **
2907 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2908 ** greater of the current reserved space and the maximum requested
2909 ** reserve space.
2910 */
2911 int sqlite3BtreeGetOptimalReserve(Btree *p){
2912   int n;
2913   sqlite3BtreeEnter(p);
2914   n = sqlite3BtreeGetReserveNoMutex(p);
2915 #ifdef SQLITE_HAS_CODEC
2916   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2917 #endif
2918   sqlite3BtreeLeave(p);
2919   return n;
2920 }
2921 
2922 
2923 /*
2924 ** Set the maximum page count for a database if mxPage is positive.
2925 ** No changes are made if mxPage is 0 or negative.
2926 ** Regardless of the value of mxPage, return the maximum page count.
2927 */
2928 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2929   int n;
2930   sqlite3BtreeEnter(p);
2931   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2932   sqlite3BtreeLeave(p);
2933   return n;
2934 }
2935 
2936 /*
2937 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2938 **
2939 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2940 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2941 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2942 **    newFlag==(-1)    No changes
2943 **
2944 ** This routine acts as a query if newFlag is less than zero
2945 **
2946 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2947 ** freelist leaf pages are not written back to the database.  Thus in-page
2948 ** deleted content is cleared, but freelist deleted content is not.
2949 **
2950 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2951 ** that freelist leaf pages are written back into the database, increasing
2952 ** the amount of disk I/O.
2953 */
2954 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2955   int b;
2956   if( p==0 ) return 0;
2957   sqlite3BtreeEnter(p);
2958   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2959   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2960   if( newFlag>=0 ){
2961     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2962     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2963   }
2964   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
2965   sqlite3BtreeLeave(p);
2966   return b;
2967 }
2968 
2969 /*
2970 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2971 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2972 ** is disabled. The default value for the auto-vacuum property is
2973 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2974 */
2975 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2976 #ifdef SQLITE_OMIT_AUTOVACUUM
2977   return SQLITE_READONLY;
2978 #else
2979   BtShared *pBt = p->pBt;
2980   int rc = SQLITE_OK;
2981   u8 av = (u8)autoVacuum;
2982 
2983   sqlite3BtreeEnter(p);
2984   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2985     rc = SQLITE_READONLY;
2986   }else{
2987     pBt->autoVacuum = av ?1:0;
2988     pBt->incrVacuum = av==2 ?1:0;
2989   }
2990   sqlite3BtreeLeave(p);
2991   return rc;
2992 #endif
2993 }
2994 
2995 /*
2996 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2997 ** enabled 1 is returned. Otherwise 0.
2998 */
2999 int sqlite3BtreeGetAutoVacuum(Btree *p){
3000 #ifdef SQLITE_OMIT_AUTOVACUUM
3001   return BTREE_AUTOVACUUM_NONE;
3002 #else
3003   int rc;
3004   sqlite3BtreeEnter(p);
3005   rc = (
3006     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3007     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3008     BTREE_AUTOVACUUM_INCR
3009   );
3010   sqlite3BtreeLeave(p);
3011   return rc;
3012 #endif
3013 }
3014 
3015 /*
3016 ** If the user has not set the safety-level for this database connection
3017 ** using "PRAGMA synchronous", and if the safety-level is not already
3018 ** set to the value passed to this function as the second parameter,
3019 ** set it so.
3020 */
3021 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3022     && !defined(SQLITE_OMIT_WAL)
3023 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3024   sqlite3 *db;
3025   Db *pDb;
3026   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3027     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3028     if( pDb->bSyncSet==0
3029      && pDb->safety_level!=safety_level
3030      && pDb!=&db->aDb[1]
3031     ){
3032       pDb->safety_level = safety_level;
3033       sqlite3PagerSetFlags(pBt->pPager,
3034           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3035     }
3036   }
3037 }
3038 #else
3039 # define setDefaultSyncFlag(pBt,safety_level)
3040 #endif
3041 
3042 /* Forward declaration */
3043 static int newDatabase(BtShared*);
3044 
3045 
3046 /*
3047 ** Get a reference to pPage1 of the database file.  This will
3048 ** also acquire a readlock on that file.
3049 **
3050 ** SQLITE_OK is returned on success.  If the file is not a
3051 ** well-formed database file, then SQLITE_CORRUPT is returned.
3052 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3053 ** is returned if we run out of memory.
3054 */
3055 static int lockBtree(BtShared *pBt){
3056   int rc;              /* Result code from subfunctions */
3057   MemPage *pPage1;     /* Page 1 of the database file */
3058   u32 nPage;           /* Number of pages in the database */
3059   u32 nPageFile = 0;   /* Number of pages in the database file */
3060   u32 nPageHeader;     /* Number of pages in the database according to hdr */
3061 
3062   assert( sqlite3_mutex_held(pBt->mutex) );
3063   assert( pBt->pPage1==0 );
3064   rc = sqlite3PagerSharedLock(pBt->pPager);
3065   if( rc!=SQLITE_OK ) return rc;
3066   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3067   if( rc!=SQLITE_OK ) return rc;
3068 
3069   /* Do some checking to help insure the file we opened really is
3070   ** a valid database file.
3071   */
3072   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3073   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3074   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3075     nPage = nPageFile;
3076   }
3077   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3078     nPage = 0;
3079   }
3080   if( nPage>0 ){
3081     u32 pageSize;
3082     u32 usableSize;
3083     u8 *page1 = pPage1->aData;
3084     rc = SQLITE_NOTADB;
3085     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3086     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3087     ** 61 74 20 33 00. */
3088     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3089       goto page1_init_failed;
3090     }
3091 
3092 #ifdef SQLITE_OMIT_WAL
3093     if( page1[18]>1 ){
3094       pBt->btsFlags |= BTS_READ_ONLY;
3095     }
3096     if( page1[19]>1 ){
3097       goto page1_init_failed;
3098     }
3099 #else
3100     if( page1[18]>2 ){
3101       pBt->btsFlags |= BTS_READ_ONLY;
3102     }
3103     if( page1[19]>2 ){
3104       goto page1_init_failed;
3105     }
3106 
3107     /* If the write version is set to 2, this database should be accessed
3108     ** in WAL mode. If the log is not already open, open it now. Then
3109     ** return SQLITE_OK and return without populating BtShared.pPage1.
3110     ** The caller detects this and calls this function again. This is
3111     ** required as the version of page 1 currently in the page1 buffer
3112     ** may not be the latest version - there may be a newer one in the log
3113     ** file.
3114     */
3115     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3116       int isOpen = 0;
3117       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3118       if( rc!=SQLITE_OK ){
3119         goto page1_init_failed;
3120       }else{
3121         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3122         if( isOpen==0 ){
3123           releasePageOne(pPage1);
3124           return SQLITE_OK;
3125         }
3126       }
3127       rc = SQLITE_NOTADB;
3128     }else{
3129       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3130     }
3131 #endif
3132 
3133     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3134     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3135     **
3136     ** The original design allowed these amounts to vary, but as of
3137     ** version 3.6.0, we require them to be fixed.
3138     */
3139     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3140       goto page1_init_failed;
3141     }
3142     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3143     ** determined by the 2-byte integer located at an offset of 16 bytes from
3144     ** the beginning of the database file. */
3145     pageSize = (page1[16]<<8) | (page1[17]<<16);
3146     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3147     ** between 512 and 65536 inclusive. */
3148     if( ((pageSize-1)&pageSize)!=0
3149      || pageSize>SQLITE_MAX_PAGE_SIZE
3150      || pageSize<=256
3151     ){
3152       goto page1_init_failed;
3153     }
3154     pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3155     assert( (pageSize & 7)==0 );
3156     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3157     ** integer at offset 20 is the number of bytes of space at the end of
3158     ** each page to reserve for extensions.
3159     **
3160     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3161     ** determined by the one-byte unsigned integer found at an offset of 20
3162     ** into the database file header. */
3163     usableSize = pageSize - page1[20];
3164     if( (u32)pageSize!=pBt->pageSize ){
3165       /* After reading the first page of the database assuming a page size
3166       ** of BtShared.pageSize, we have discovered that the page-size is
3167       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3168       ** zero and return SQLITE_OK. The caller will call this function
3169       ** again with the correct page-size.
3170       */
3171       releasePageOne(pPage1);
3172       pBt->usableSize = usableSize;
3173       pBt->pageSize = pageSize;
3174       freeTempSpace(pBt);
3175       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3176                                    pageSize-usableSize);
3177       return rc;
3178     }
3179     if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
3180       rc = SQLITE_CORRUPT_BKPT;
3181       goto page1_init_failed;
3182     }
3183     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3184     ** be less than 480. In other words, if the page size is 512, then the
3185     ** reserved space size cannot exceed 32. */
3186     if( usableSize<480 ){
3187       goto page1_init_failed;
3188     }
3189     pBt->pageSize = pageSize;
3190     pBt->usableSize = usableSize;
3191 #ifndef SQLITE_OMIT_AUTOVACUUM
3192     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3193     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3194 #endif
3195   }
3196 
3197   /* maxLocal is the maximum amount of payload to store locally for
3198   ** a cell.  Make sure it is small enough so that at least minFanout
3199   ** cells can will fit on one page.  We assume a 10-byte page header.
3200   ** Besides the payload, the cell must store:
3201   **     2-byte pointer to the cell
3202   **     4-byte child pointer
3203   **     9-byte nKey value
3204   **     4-byte nData value
3205   **     4-byte overflow page pointer
3206   ** So a cell consists of a 2-byte pointer, a header which is as much as
3207   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3208   ** page pointer.
3209   */
3210   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3211   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3212   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3213   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3214   if( pBt->maxLocal>127 ){
3215     pBt->max1bytePayload = 127;
3216   }else{
3217     pBt->max1bytePayload = (u8)pBt->maxLocal;
3218   }
3219   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3220   pBt->pPage1 = pPage1;
3221   pBt->nPage = nPage;
3222   return SQLITE_OK;
3223 
3224 page1_init_failed:
3225   releasePageOne(pPage1);
3226   pBt->pPage1 = 0;
3227   return rc;
3228 }
3229 
3230 #ifndef NDEBUG
3231 /*
3232 ** Return the number of cursors open on pBt. This is for use
3233 ** in assert() expressions, so it is only compiled if NDEBUG is not
3234 ** defined.
3235 **
3236 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3237 ** false then all cursors are counted.
3238 **
3239 ** For the purposes of this routine, a cursor is any cursor that
3240 ** is capable of reading or writing to the database.  Cursors that
3241 ** have been tripped into the CURSOR_FAULT state are not counted.
3242 */
3243 static int countValidCursors(BtShared *pBt, int wrOnly){
3244   BtCursor *pCur;
3245   int r = 0;
3246   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3247     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3248      && pCur->eState!=CURSOR_FAULT ) r++;
3249   }
3250   return r;
3251 }
3252 #endif
3253 
3254 /*
3255 ** If there are no outstanding cursors and we are not in the middle
3256 ** of a transaction but there is a read lock on the database, then
3257 ** this routine unrefs the first page of the database file which
3258 ** has the effect of releasing the read lock.
3259 **
3260 ** If there is a transaction in progress, this routine is a no-op.
3261 */
3262 static void unlockBtreeIfUnused(BtShared *pBt){
3263   assert( sqlite3_mutex_held(pBt->mutex) );
3264   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3265   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3266     MemPage *pPage1 = pBt->pPage1;
3267     assert( pPage1->aData );
3268     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3269     pBt->pPage1 = 0;
3270     releasePageOne(pPage1);
3271   }
3272 }
3273 
3274 /*
3275 ** If pBt points to an empty file then convert that empty file
3276 ** into a new empty database by initializing the first page of
3277 ** the database.
3278 */
3279 static int newDatabase(BtShared *pBt){
3280   MemPage *pP1;
3281   unsigned char *data;
3282   int rc;
3283 
3284   assert( sqlite3_mutex_held(pBt->mutex) );
3285   if( pBt->nPage>0 ){
3286     return SQLITE_OK;
3287   }
3288   pP1 = pBt->pPage1;
3289   assert( pP1!=0 );
3290   data = pP1->aData;
3291   rc = sqlite3PagerWrite(pP1->pDbPage);
3292   if( rc ) return rc;
3293   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3294   assert( sizeof(zMagicHeader)==16 );
3295   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3296   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3297   data[18] = 1;
3298   data[19] = 1;
3299   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3300   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3301   data[21] = 64;
3302   data[22] = 32;
3303   data[23] = 32;
3304   memset(&data[24], 0, 100-24);
3305   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3306   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3307 #ifndef SQLITE_OMIT_AUTOVACUUM
3308   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3309   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3310   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3311   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3312 #endif
3313   pBt->nPage = 1;
3314   data[31] = 1;
3315   return SQLITE_OK;
3316 }
3317 
3318 /*
3319 ** Initialize the first page of the database file (creating a database
3320 ** consisting of a single page and no schema objects). Return SQLITE_OK
3321 ** if successful, or an SQLite error code otherwise.
3322 */
3323 int sqlite3BtreeNewDb(Btree *p){
3324   int rc;
3325   sqlite3BtreeEnter(p);
3326   p->pBt->nPage = 0;
3327   rc = newDatabase(p->pBt);
3328   sqlite3BtreeLeave(p);
3329   return rc;
3330 }
3331 
3332 /*
3333 ** Attempt to start a new transaction. A write-transaction
3334 ** is started if the second argument is nonzero, otherwise a read-
3335 ** transaction.  If the second argument is 2 or more and exclusive
3336 ** transaction is started, meaning that no other process is allowed
3337 ** to access the database.  A preexisting transaction may not be
3338 ** upgraded to exclusive by calling this routine a second time - the
3339 ** exclusivity flag only works for a new transaction.
3340 **
3341 ** A write-transaction must be started before attempting any
3342 ** changes to the database.  None of the following routines
3343 ** will work unless a transaction is started first:
3344 **
3345 **      sqlite3BtreeCreateTable()
3346 **      sqlite3BtreeCreateIndex()
3347 **      sqlite3BtreeClearTable()
3348 **      sqlite3BtreeDropTable()
3349 **      sqlite3BtreeInsert()
3350 **      sqlite3BtreeDelete()
3351 **      sqlite3BtreeUpdateMeta()
3352 **
3353 ** If an initial attempt to acquire the lock fails because of lock contention
3354 ** and the database was previously unlocked, then invoke the busy handler
3355 ** if there is one.  But if there was previously a read-lock, do not
3356 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3357 ** returned when there is already a read-lock in order to avoid a deadlock.
3358 **
3359 ** Suppose there are two processes A and B.  A has a read lock and B has
3360 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3361 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3362 ** One or the other of the two processes must give way or there can be
3363 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3364 ** when A already has a read lock, we encourage A to give up and let B
3365 ** proceed.
3366 */
3367 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3368   BtShared *pBt = p->pBt;
3369   int rc = SQLITE_OK;
3370 
3371   sqlite3BtreeEnter(p);
3372   btreeIntegrity(p);
3373 
3374   /* If the btree is already in a write-transaction, or it
3375   ** is already in a read-transaction and a read-transaction
3376   ** is requested, this is a no-op.
3377   */
3378   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3379     goto trans_begun;
3380   }
3381   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3382 
3383   if( (p->db->flags & SQLITE_ResetDatabase)
3384    && sqlite3PagerIsreadonly(pBt->pPager)==0
3385   ){
3386     pBt->btsFlags &= ~BTS_READ_ONLY;
3387   }
3388 
3389   /* Write transactions are not possible on a read-only database */
3390   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3391     rc = SQLITE_READONLY;
3392     goto trans_begun;
3393   }
3394 
3395 #ifndef SQLITE_OMIT_SHARED_CACHE
3396   {
3397     sqlite3 *pBlock = 0;
3398     /* If another database handle has already opened a write transaction
3399     ** on this shared-btree structure and a second write transaction is
3400     ** requested, return SQLITE_LOCKED.
3401     */
3402     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3403      || (pBt->btsFlags & BTS_PENDING)!=0
3404     ){
3405       pBlock = pBt->pWriter->db;
3406     }else if( wrflag>1 ){
3407       BtLock *pIter;
3408       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3409         if( pIter->pBtree!=p ){
3410           pBlock = pIter->pBtree->db;
3411           break;
3412         }
3413       }
3414     }
3415     if( pBlock ){
3416       sqlite3ConnectionBlocked(p->db, pBlock);
3417       rc = SQLITE_LOCKED_SHAREDCACHE;
3418       goto trans_begun;
3419     }
3420   }
3421 #endif
3422 
3423   /* Any read-only or read-write transaction implies a read-lock on
3424   ** page 1. So if some other shared-cache client already has a write-lock
3425   ** on page 1, the transaction cannot be opened. */
3426   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3427   if( SQLITE_OK!=rc ) goto trans_begun;
3428 
3429   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3430   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3431   do {
3432     /* Call lockBtree() until either pBt->pPage1 is populated or
3433     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3434     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3435     ** reading page 1 it discovers that the page-size of the database
3436     ** file is not pBt->pageSize. In this case lockBtree() will update
3437     ** pBt->pageSize to the page-size of the file on disk.
3438     */
3439     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3440 
3441     if( rc==SQLITE_OK && wrflag ){
3442       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3443         rc = SQLITE_READONLY;
3444       }else{
3445         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3446         if( rc==SQLITE_OK ){
3447           rc = newDatabase(pBt);
3448         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3449           /* if there was no transaction opened when this function was
3450           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3451           ** code to SQLITE_BUSY. */
3452           rc = SQLITE_BUSY;
3453         }
3454       }
3455     }
3456 
3457     if( rc!=SQLITE_OK ){
3458       unlockBtreeIfUnused(pBt);
3459     }
3460   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3461           btreeInvokeBusyHandler(pBt) );
3462   sqlite3PagerResetLockTimeout(pBt->pPager);
3463 
3464   if( rc==SQLITE_OK ){
3465     if( p->inTrans==TRANS_NONE ){
3466       pBt->nTransaction++;
3467 #ifndef SQLITE_OMIT_SHARED_CACHE
3468       if( p->sharable ){
3469         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3470         p->lock.eLock = READ_LOCK;
3471         p->lock.pNext = pBt->pLock;
3472         pBt->pLock = &p->lock;
3473       }
3474 #endif
3475     }
3476     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3477     if( p->inTrans>pBt->inTransaction ){
3478       pBt->inTransaction = p->inTrans;
3479     }
3480     if( wrflag ){
3481       MemPage *pPage1 = pBt->pPage1;
3482 #ifndef SQLITE_OMIT_SHARED_CACHE
3483       assert( !pBt->pWriter );
3484       pBt->pWriter = p;
3485       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3486       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3487 #endif
3488 
3489       /* If the db-size header field is incorrect (as it may be if an old
3490       ** client has been writing the database file), update it now. Doing
3491       ** this sooner rather than later means the database size can safely
3492       ** re-read the database size from page 1 if a savepoint or transaction
3493       ** rollback occurs within the transaction.
3494       */
3495       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3496         rc = sqlite3PagerWrite(pPage1->pDbPage);
3497         if( rc==SQLITE_OK ){
3498           put4byte(&pPage1->aData[28], pBt->nPage);
3499         }
3500       }
3501     }
3502   }
3503 
3504 trans_begun:
3505   if( rc==SQLITE_OK ){
3506     if( pSchemaVersion ){
3507       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3508     }
3509     if( wrflag ){
3510       /* This call makes sure that the pager has the correct number of
3511       ** open savepoints. If the second parameter is greater than 0 and
3512       ** the sub-journal is not already open, then it will be opened here.
3513       */
3514       rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3515     }
3516   }
3517 
3518   btreeIntegrity(p);
3519   sqlite3BtreeLeave(p);
3520   return rc;
3521 }
3522 
3523 #ifndef SQLITE_OMIT_AUTOVACUUM
3524 
3525 /*
3526 ** Set the pointer-map entries for all children of page pPage. Also, if
3527 ** pPage contains cells that point to overflow pages, set the pointer
3528 ** map entries for the overflow pages as well.
3529 */
3530 static int setChildPtrmaps(MemPage *pPage){
3531   int i;                             /* Counter variable */
3532   int nCell;                         /* Number of cells in page pPage */
3533   int rc;                            /* Return code */
3534   BtShared *pBt = pPage->pBt;
3535   Pgno pgno = pPage->pgno;
3536 
3537   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3538   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3539   if( rc!=SQLITE_OK ) return rc;
3540   nCell = pPage->nCell;
3541 
3542   for(i=0; i<nCell; i++){
3543     u8 *pCell = findCell(pPage, i);
3544 
3545     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3546 
3547     if( !pPage->leaf ){
3548       Pgno childPgno = get4byte(pCell);
3549       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3550     }
3551   }
3552 
3553   if( !pPage->leaf ){
3554     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3555     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3556   }
3557 
3558   return rc;
3559 }
3560 
3561 /*
3562 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3563 ** that it points to iTo. Parameter eType describes the type of pointer to
3564 ** be modified, as  follows:
3565 **
3566 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3567 **                   page of pPage.
3568 **
3569 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3570 **                   page pointed to by one of the cells on pPage.
3571 **
3572 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3573 **                   overflow page in the list.
3574 */
3575 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3576   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3577   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3578   if( eType==PTRMAP_OVERFLOW2 ){
3579     /* The pointer is always the first 4 bytes of the page in this case.  */
3580     if( get4byte(pPage->aData)!=iFrom ){
3581       return SQLITE_CORRUPT_PAGE(pPage);
3582     }
3583     put4byte(pPage->aData, iTo);
3584   }else{
3585     int i;
3586     int nCell;
3587     int rc;
3588 
3589     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3590     if( rc ) return rc;
3591     nCell = pPage->nCell;
3592 
3593     for(i=0; i<nCell; i++){
3594       u8 *pCell = findCell(pPage, i);
3595       if( eType==PTRMAP_OVERFLOW1 ){
3596         CellInfo info;
3597         pPage->xParseCell(pPage, pCell, &info);
3598         if( info.nLocal<info.nPayload ){
3599           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3600             return SQLITE_CORRUPT_PAGE(pPage);
3601           }
3602           if( iFrom==get4byte(pCell+info.nSize-4) ){
3603             put4byte(pCell+info.nSize-4, iTo);
3604             break;
3605           }
3606         }
3607       }else{
3608         if( get4byte(pCell)==iFrom ){
3609           put4byte(pCell, iTo);
3610           break;
3611         }
3612       }
3613     }
3614 
3615     if( i==nCell ){
3616       if( eType!=PTRMAP_BTREE ||
3617           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3618         return SQLITE_CORRUPT_PAGE(pPage);
3619       }
3620       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3621     }
3622   }
3623   return SQLITE_OK;
3624 }
3625 
3626 
3627 /*
3628 ** Move the open database page pDbPage to location iFreePage in the
3629 ** database. The pDbPage reference remains valid.
3630 **
3631 ** The isCommit flag indicates that there is no need to remember that
3632 ** the journal needs to be sync()ed before database page pDbPage->pgno
3633 ** can be written to. The caller has already promised not to write to that
3634 ** page.
3635 */
3636 static int relocatePage(
3637   BtShared *pBt,           /* Btree */
3638   MemPage *pDbPage,        /* Open page to move */
3639   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3640   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3641   Pgno iFreePage,          /* The location to move pDbPage to */
3642   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3643 ){
3644   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3645   Pgno iDbPage = pDbPage->pgno;
3646   Pager *pPager = pBt->pPager;
3647   int rc;
3648 
3649   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3650       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3651   assert( sqlite3_mutex_held(pBt->mutex) );
3652   assert( pDbPage->pBt==pBt );
3653   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3654 
3655   /* Move page iDbPage from its current location to page number iFreePage */
3656   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3657       iDbPage, iFreePage, iPtrPage, eType));
3658   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3659   if( rc!=SQLITE_OK ){
3660     return rc;
3661   }
3662   pDbPage->pgno = iFreePage;
3663 
3664   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3665   ** that point to overflow pages. The pointer map entries for all these
3666   ** pages need to be changed.
3667   **
3668   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3669   ** pointer to a subsequent overflow page. If this is the case, then
3670   ** the pointer map needs to be updated for the subsequent overflow page.
3671   */
3672   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3673     rc = setChildPtrmaps(pDbPage);
3674     if( rc!=SQLITE_OK ){
3675       return rc;
3676     }
3677   }else{
3678     Pgno nextOvfl = get4byte(pDbPage->aData);
3679     if( nextOvfl!=0 ){
3680       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3681       if( rc!=SQLITE_OK ){
3682         return rc;
3683       }
3684     }
3685   }
3686 
3687   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3688   ** that it points at iFreePage. Also fix the pointer map entry for
3689   ** iPtrPage.
3690   */
3691   if( eType!=PTRMAP_ROOTPAGE ){
3692     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3693     if( rc!=SQLITE_OK ){
3694       return rc;
3695     }
3696     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3697     if( rc!=SQLITE_OK ){
3698       releasePage(pPtrPage);
3699       return rc;
3700     }
3701     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3702     releasePage(pPtrPage);
3703     if( rc==SQLITE_OK ){
3704       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3705     }
3706   }
3707   return rc;
3708 }
3709 
3710 /* Forward declaration required by incrVacuumStep(). */
3711 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3712 
3713 /*
3714 ** Perform a single step of an incremental-vacuum. If successful, return
3715 ** SQLITE_OK. If there is no work to do (and therefore no point in
3716 ** calling this function again), return SQLITE_DONE. Or, if an error
3717 ** occurs, return some other error code.
3718 **
3719 ** More specifically, this function attempts to re-organize the database so
3720 ** that the last page of the file currently in use is no longer in use.
3721 **
3722 ** Parameter nFin is the number of pages that this database would contain
3723 ** were this function called until it returns SQLITE_DONE.
3724 **
3725 ** If the bCommit parameter is non-zero, this function assumes that the
3726 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3727 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3728 ** operation, or false for an incremental vacuum.
3729 */
3730 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3731   Pgno nFreeList;           /* Number of pages still on the free-list */
3732   int rc;
3733 
3734   assert( sqlite3_mutex_held(pBt->mutex) );
3735   assert( iLastPg>nFin );
3736 
3737   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3738     u8 eType;
3739     Pgno iPtrPage;
3740 
3741     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3742     if( nFreeList==0 ){
3743       return SQLITE_DONE;
3744     }
3745 
3746     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3747     if( rc!=SQLITE_OK ){
3748       return rc;
3749     }
3750     if( eType==PTRMAP_ROOTPAGE ){
3751       return SQLITE_CORRUPT_BKPT;
3752     }
3753 
3754     if( eType==PTRMAP_FREEPAGE ){
3755       if( bCommit==0 ){
3756         /* Remove the page from the files free-list. This is not required
3757         ** if bCommit is non-zero. In that case, the free-list will be
3758         ** truncated to zero after this function returns, so it doesn't
3759         ** matter if it still contains some garbage entries.
3760         */
3761         Pgno iFreePg;
3762         MemPage *pFreePg;
3763         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3764         if( rc!=SQLITE_OK ){
3765           return rc;
3766         }
3767         assert( iFreePg==iLastPg );
3768         releasePage(pFreePg);
3769       }
3770     } else {
3771       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3772       MemPage *pLastPg;
3773       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3774       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3775 
3776       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3777       if( rc!=SQLITE_OK ){
3778         return rc;
3779       }
3780 
3781       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3782       ** is swapped with the first free page pulled off the free list.
3783       **
3784       ** On the other hand, if bCommit is greater than zero, then keep
3785       ** looping until a free-page located within the first nFin pages
3786       ** of the file is found.
3787       */
3788       if( bCommit==0 ){
3789         eMode = BTALLOC_LE;
3790         iNear = nFin;
3791       }
3792       do {
3793         MemPage *pFreePg;
3794         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3795         if( rc!=SQLITE_OK ){
3796           releasePage(pLastPg);
3797           return rc;
3798         }
3799         releasePage(pFreePg);
3800       }while( bCommit && iFreePg>nFin );
3801       assert( iFreePg<iLastPg );
3802 
3803       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3804       releasePage(pLastPg);
3805       if( rc!=SQLITE_OK ){
3806         return rc;
3807       }
3808     }
3809   }
3810 
3811   if( bCommit==0 ){
3812     do {
3813       iLastPg--;
3814     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3815     pBt->bDoTruncate = 1;
3816     pBt->nPage = iLastPg;
3817   }
3818   return SQLITE_OK;
3819 }
3820 
3821 /*
3822 ** The database opened by the first argument is an auto-vacuum database
3823 ** nOrig pages in size containing nFree free pages. Return the expected
3824 ** size of the database in pages following an auto-vacuum operation.
3825 */
3826 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3827   int nEntry;                     /* Number of entries on one ptrmap page */
3828   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3829   Pgno nFin;                      /* Return value */
3830 
3831   nEntry = pBt->usableSize/5;
3832   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3833   nFin = nOrig - nFree - nPtrmap;
3834   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3835     nFin--;
3836   }
3837   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3838     nFin--;
3839   }
3840 
3841   return nFin;
3842 }
3843 
3844 /*
3845 ** A write-transaction must be opened before calling this function.
3846 ** It performs a single unit of work towards an incremental vacuum.
3847 **
3848 ** If the incremental vacuum is finished after this function has run,
3849 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3850 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3851 */
3852 int sqlite3BtreeIncrVacuum(Btree *p){
3853   int rc;
3854   BtShared *pBt = p->pBt;
3855 
3856   sqlite3BtreeEnter(p);
3857   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3858   if( !pBt->autoVacuum ){
3859     rc = SQLITE_DONE;
3860   }else{
3861     Pgno nOrig = btreePagecount(pBt);
3862     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3863     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3864 
3865     if( nOrig<nFin ){
3866       rc = SQLITE_CORRUPT_BKPT;
3867     }else if( nFree>0 ){
3868       rc = saveAllCursors(pBt, 0, 0);
3869       if( rc==SQLITE_OK ){
3870         invalidateAllOverflowCache(pBt);
3871         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3872       }
3873       if( rc==SQLITE_OK ){
3874         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3875         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3876       }
3877     }else{
3878       rc = SQLITE_DONE;
3879     }
3880   }
3881   sqlite3BtreeLeave(p);
3882   return rc;
3883 }
3884 
3885 /*
3886 ** This routine is called prior to sqlite3PagerCommit when a transaction
3887 ** is committed for an auto-vacuum database.
3888 **
3889 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3890 ** the database file should be truncated to during the commit process.
3891 ** i.e. the database has been reorganized so that only the first *pnTrunc
3892 ** pages are in use.
3893 */
3894 static int autoVacuumCommit(BtShared *pBt){
3895   int rc = SQLITE_OK;
3896   Pager *pPager = pBt->pPager;
3897   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3898 
3899   assert( sqlite3_mutex_held(pBt->mutex) );
3900   invalidateAllOverflowCache(pBt);
3901   assert(pBt->autoVacuum);
3902   if( !pBt->incrVacuum ){
3903     Pgno nFin;         /* Number of pages in database after autovacuuming */
3904     Pgno nFree;        /* Number of pages on the freelist initially */
3905     Pgno iFree;        /* The next page to be freed */
3906     Pgno nOrig;        /* Database size before freeing */
3907 
3908     nOrig = btreePagecount(pBt);
3909     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3910       /* It is not possible to create a database for which the final page
3911       ** is either a pointer-map page or the pending-byte page. If one
3912       ** is encountered, this indicates corruption.
3913       */
3914       return SQLITE_CORRUPT_BKPT;
3915     }
3916 
3917     nFree = get4byte(&pBt->pPage1->aData[36]);
3918     nFin = finalDbSize(pBt, nOrig, nFree);
3919     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3920     if( nFin<nOrig ){
3921       rc = saveAllCursors(pBt, 0, 0);
3922     }
3923     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3924       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3925     }
3926     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3927       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3928       put4byte(&pBt->pPage1->aData[32], 0);
3929       put4byte(&pBt->pPage1->aData[36], 0);
3930       put4byte(&pBt->pPage1->aData[28], nFin);
3931       pBt->bDoTruncate = 1;
3932       pBt->nPage = nFin;
3933     }
3934     if( rc!=SQLITE_OK ){
3935       sqlite3PagerRollback(pPager);
3936     }
3937   }
3938 
3939   assert( nRef>=sqlite3PagerRefcount(pPager) );
3940   return rc;
3941 }
3942 
3943 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3944 # define setChildPtrmaps(x) SQLITE_OK
3945 #endif
3946 
3947 /*
3948 ** This routine does the first phase of a two-phase commit.  This routine
3949 ** causes a rollback journal to be created (if it does not already exist)
3950 ** and populated with enough information so that if a power loss occurs
3951 ** the database can be restored to its original state by playing back
3952 ** the journal.  Then the contents of the journal are flushed out to
3953 ** the disk.  After the journal is safely on oxide, the changes to the
3954 ** database are written into the database file and flushed to oxide.
3955 ** At the end of this call, the rollback journal still exists on the
3956 ** disk and we are still holding all locks, so the transaction has not
3957 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3958 ** commit process.
3959 **
3960 ** This call is a no-op if no write-transaction is currently active on pBt.
3961 **
3962 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3963 ** the name of a master journal file that should be written into the
3964 ** individual journal file, or is NULL, indicating no master journal file
3965 ** (single database transaction).
3966 **
3967 ** When this is called, the master journal should already have been
3968 ** created, populated with this journal pointer and synced to disk.
3969 **
3970 ** Once this is routine has returned, the only thing required to commit
3971 ** the write-transaction for this database file is to delete the journal.
3972 */
3973 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3974   int rc = SQLITE_OK;
3975   if( p->inTrans==TRANS_WRITE ){
3976     BtShared *pBt = p->pBt;
3977     sqlite3BtreeEnter(p);
3978 #ifndef SQLITE_OMIT_AUTOVACUUM
3979     if( pBt->autoVacuum ){
3980       rc = autoVacuumCommit(pBt);
3981       if( rc!=SQLITE_OK ){
3982         sqlite3BtreeLeave(p);
3983         return rc;
3984       }
3985     }
3986     if( pBt->bDoTruncate ){
3987       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3988     }
3989 #endif
3990     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3991     sqlite3BtreeLeave(p);
3992   }
3993   return rc;
3994 }
3995 
3996 /*
3997 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3998 ** at the conclusion of a transaction.
3999 */
4000 static void btreeEndTransaction(Btree *p){
4001   BtShared *pBt = p->pBt;
4002   sqlite3 *db = p->db;
4003   assert( sqlite3BtreeHoldsMutex(p) );
4004 
4005 #ifndef SQLITE_OMIT_AUTOVACUUM
4006   pBt->bDoTruncate = 0;
4007 #endif
4008   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4009     /* If there are other active statements that belong to this database
4010     ** handle, downgrade to a read-only transaction. The other statements
4011     ** may still be reading from the database.  */
4012     downgradeAllSharedCacheTableLocks(p);
4013     p->inTrans = TRANS_READ;
4014   }else{
4015     /* If the handle had any kind of transaction open, decrement the
4016     ** transaction count of the shared btree. If the transaction count
4017     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4018     ** call below will unlock the pager.  */
4019     if( p->inTrans!=TRANS_NONE ){
4020       clearAllSharedCacheTableLocks(p);
4021       pBt->nTransaction--;
4022       if( 0==pBt->nTransaction ){
4023         pBt->inTransaction = TRANS_NONE;
4024       }
4025     }
4026 
4027     /* Set the current transaction state to TRANS_NONE and unlock the
4028     ** pager if this call closed the only read or write transaction.  */
4029     p->inTrans = TRANS_NONE;
4030     unlockBtreeIfUnused(pBt);
4031   }
4032 
4033   btreeIntegrity(p);
4034 }
4035 
4036 /*
4037 ** Commit the transaction currently in progress.
4038 **
4039 ** This routine implements the second phase of a 2-phase commit.  The
4040 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4041 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
4042 ** routine did all the work of writing information out to disk and flushing the
4043 ** contents so that they are written onto the disk platter.  All this
4044 ** routine has to do is delete or truncate or zero the header in the
4045 ** the rollback journal (which causes the transaction to commit) and
4046 ** drop locks.
4047 **
4048 ** Normally, if an error occurs while the pager layer is attempting to
4049 ** finalize the underlying journal file, this function returns an error and
4050 ** the upper layer will attempt a rollback. However, if the second argument
4051 ** is non-zero then this b-tree transaction is part of a multi-file
4052 ** transaction. In this case, the transaction has already been committed
4053 ** (by deleting a master journal file) and the caller will ignore this
4054 ** functions return code. So, even if an error occurs in the pager layer,
4055 ** reset the b-tree objects internal state to indicate that the write
4056 ** transaction has been closed. This is quite safe, as the pager will have
4057 ** transitioned to the error state.
4058 **
4059 ** This will release the write lock on the database file.  If there
4060 ** are no active cursors, it also releases the read lock.
4061 */
4062 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4063 
4064   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4065   sqlite3BtreeEnter(p);
4066   btreeIntegrity(p);
4067 
4068   /* If the handle has a write-transaction open, commit the shared-btrees
4069   ** transaction and set the shared state to TRANS_READ.
4070   */
4071   if( p->inTrans==TRANS_WRITE ){
4072     int rc;
4073     BtShared *pBt = p->pBt;
4074     assert( pBt->inTransaction==TRANS_WRITE );
4075     assert( pBt->nTransaction>0 );
4076     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4077     if( rc!=SQLITE_OK && bCleanup==0 ){
4078       sqlite3BtreeLeave(p);
4079       return rc;
4080     }
4081     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4082     pBt->inTransaction = TRANS_READ;
4083     btreeClearHasContent(pBt);
4084   }
4085 
4086   btreeEndTransaction(p);
4087   sqlite3BtreeLeave(p);
4088   return SQLITE_OK;
4089 }
4090 
4091 /*
4092 ** Do both phases of a commit.
4093 */
4094 int sqlite3BtreeCommit(Btree *p){
4095   int rc;
4096   sqlite3BtreeEnter(p);
4097   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4098   if( rc==SQLITE_OK ){
4099     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4100   }
4101   sqlite3BtreeLeave(p);
4102   return rc;
4103 }
4104 
4105 /*
4106 ** This routine sets the state to CURSOR_FAULT and the error
4107 ** code to errCode for every cursor on any BtShared that pBtree
4108 ** references.  Or if the writeOnly flag is set to 1, then only
4109 ** trip write cursors and leave read cursors unchanged.
4110 **
4111 ** Every cursor is a candidate to be tripped, including cursors
4112 ** that belong to other database connections that happen to be
4113 ** sharing the cache with pBtree.
4114 **
4115 ** This routine gets called when a rollback occurs. If the writeOnly
4116 ** flag is true, then only write-cursors need be tripped - read-only
4117 ** cursors save their current positions so that they may continue
4118 ** following the rollback. Or, if writeOnly is false, all cursors are
4119 ** tripped. In general, writeOnly is false if the transaction being
4120 ** rolled back modified the database schema. In this case b-tree root
4121 ** pages may be moved or deleted from the database altogether, making
4122 ** it unsafe for read cursors to continue.
4123 **
4124 ** If the writeOnly flag is true and an error is encountered while
4125 ** saving the current position of a read-only cursor, all cursors,
4126 ** including all read-cursors are tripped.
4127 **
4128 ** SQLITE_OK is returned if successful, or if an error occurs while
4129 ** saving a cursor position, an SQLite error code.
4130 */
4131 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4132   BtCursor *p;
4133   int rc = SQLITE_OK;
4134 
4135   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4136   if( pBtree ){
4137     sqlite3BtreeEnter(pBtree);
4138     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4139       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4140         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4141           rc = saveCursorPosition(p);
4142           if( rc!=SQLITE_OK ){
4143             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4144             break;
4145           }
4146         }
4147       }else{
4148         sqlite3BtreeClearCursor(p);
4149         p->eState = CURSOR_FAULT;
4150         p->skipNext = errCode;
4151       }
4152       btreeReleaseAllCursorPages(p);
4153     }
4154     sqlite3BtreeLeave(pBtree);
4155   }
4156   return rc;
4157 }
4158 
4159 /*
4160 ** Set the pBt->nPage field correctly, according to the current
4161 ** state of the database.  Assume pBt->pPage1 is valid.
4162 */
4163 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4164   int nPage = get4byte(&pPage1->aData[28]);
4165   testcase( nPage==0 );
4166   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4167   testcase( pBt->nPage!=nPage );
4168   pBt->nPage = nPage;
4169 }
4170 
4171 /*
4172 ** Rollback the transaction in progress.
4173 **
4174 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4175 ** Only write cursors are tripped if writeOnly is true but all cursors are
4176 ** tripped if writeOnly is false.  Any attempt to use
4177 ** a tripped cursor will result in an error.
4178 **
4179 ** This will release the write lock on the database file.  If there
4180 ** are no active cursors, it also releases the read lock.
4181 */
4182 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4183   int rc;
4184   BtShared *pBt = p->pBt;
4185   MemPage *pPage1;
4186 
4187   assert( writeOnly==1 || writeOnly==0 );
4188   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4189   sqlite3BtreeEnter(p);
4190   if( tripCode==SQLITE_OK ){
4191     rc = tripCode = saveAllCursors(pBt, 0, 0);
4192     if( rc ) writeOnly = 0;
4193   }else{
4194     rc = SQLITE_OK;
4195   }
4196   if( tripCode ){
4197     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4198     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4199     if( rc2!=SQLITE_OK ) rc = rc2;
4200   }
4201   btreeIntegrity(p);
4202 
4203   if( p->inTrans==TRANS_WRITE ){
4204     int rc2;
4205 
4206     assert( TRANS_WRITE==pBt->inTransaction );
4207     rc2 = sqlite3PagerRollback(pBt->pPager);
4208     if( rc2!=SQLITE_OK ){
4209       rc = rc2;
4210     }
4211 
4212     /* The rollback may have destroyed the pPage1->aData value.  So
4213     ** call btreeGetPage() on page 1 again to make
4214     ** sure pPage1->aData is set correctly. */
4215     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4216       btreeSetNPage(pBt, pPage1);
4217       releasePageOne(pPage1);
4218     }
4219     assert( countValidCursors(pBt, 1)==0 );
4220     pBt->inTransaction = TRANS_READ;
4221     btreeClearHasContent(pBt);
4222   }
4223 
4224   btreeEndTransaction(p);
4225   sqlite3BtreeLeave(p);
4226   return rc;
4227 }
4228 
4229 /*
4230 ** Start a statement subtransaction. The subtransaction can be rolled
4231 ** back independently of the main transaction. You must start a transaction
4232 ** before starting a subtransaction. The subtransaction is ended automatically
4233 ** if the main transaction commits or rolls back.
4234 **
4235 ** Statement subtransactions are used around individual SQL statements
4236 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4237 ** error occurs within the statement, the effect of that one statement
4238 ** can be rolled back without having to rollback the entire transaction.
4239 **
4240 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4241 ** value passed as the second parameter is the total number of savepoints,
4242 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4243 ** are no active savepoints and no other statement-transactions open,
4244 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4245 ** using the sqlite3BtreeSavepoint() function.
4246 */
4247 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4248   int rc;
4249   BtShared *pBt = p->pBt;
4250   sqlite3BtreeEnter(p);
4251   assert( p->inTrans==TRANS_WRITE );
4252   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4253   assert( iStatement>0 );
4254   assert( iStatement>p->db->nSavepoint );
4255   assert( pBt->inTransaction==TRANS_WRITE );
4256   /* At the pager level, a statement transaction is a savepoint with
4257   ** an index greater than all savepoints created explicitly using
4258   ** SQL statements. It is illegal to open, release or rollback any
4259   ** such savepoints while the statement transaction savepoint is active.
4260   */
4261   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4262   sqlite3BtreeLeave(p);
4263   return rc;
4264 }
4265 
4266 /*
4267 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4268 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4269 ** savepoint identified by parameter iSavepoint, depending on the value
4270 ** of op.
4271 **
4272 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4273 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4274 ** contents of the entire transaction are rolled back. This is different
4275 ** from a normal transaction rollback, as no locks are released and the
4276 ** transaction remains open.
4277 */
4278 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4279   int rc = SQLITE_OK;
4280   if( p && p->inTrans==TRANS_WRITE ){
4281     BtShared *pBt = p->pBt;
4282     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4283     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4284     sqlite3BtreeEnter(p);
4285     if( op==SAVEPOINT_ROLLBACK ){
4286       rc = saveAllCursors(pBt, 0, 0);
4287     }
4288     if( rc==SQLITE_OK ){
4289       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4290     }
4291     if( rc==SQLITE_OK ){
4292       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4293         pBt->nPage = 0;
4294       }
4295       rc = newDatabase(pBt);
4296       btreeSetNPage(pBt, pBt->pPage1);
4297 
4298       /* pBt->nPage might be zero if the database was corrupt when
4299       ** the transaction was started. Otherwise, it must be at least 1.  */
4300       assert( CORRUPT_DB || pBt->nPage>0 );
4301     }
4302     sqlite3BtreeLeave(p);
4303   }
4304   return rc;
4305 }
4306 
4307 /*
4308 ** Create a new cursor for the BTree whose root is on the page
4309 ** iTable. If a read-only cursor is requested, it is assumed that
4310 ** the caller already has at least a read-only transaction open
4311 ** on the database already. If a write-cursor is requested, then
4312 ** the caller is assumed to have an open write transaction.
4313 **
4314 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4315 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4316 ** can be used for reading or for writing if other conditions for writing
4317 ** are also met.  These are the conditions that must be met in order
4318 ** for writing to be allowed:
4319 **
4320 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4321 **
4322 ** 2:  Other database connections that share the same pager cache
4323 **     but which are not in the READ_UNCOMMITTED state may not have
4324 **     cursors open with wrFlag==0 on the same table.  Otherwise
4325 **     the changes made by this write cursor would be visible to
4326 **     the read cursors in the other database connection.
4327 **
4328 ** 3:  The database must be writable (not on read-only media)
4329 **
4330 ** 4:  There must be an active transaction.
4331 **
4332 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4333 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4334 ** this cursor will only be used to seek to and delete entries of an index
4335 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4336 ** this implementation.  But in a hypothetical alternative storage engine
4337 ** in which index entries are automatically deleted when corresponding table
4338 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4339 ** operations on this cursor can be no-ops and all READ operations can
4340 ** return a null row (2-bytes: 0x01 0x00).
4341 **
4342 ** No checking is done to make sure that page iTable really is the
4343 ** root page of a b-tree.  If it is not, then the cursor acquired
4344 ** will not work correctly.
4345 **
4346 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4347 ** on pCur to initialize the memory space prior to invoking this routine.
4348 */
4349 static int btreeCursor(
4350   Btree *p,                              /* The btree */
4351   int iTable,                            /* Root page of table to open */
4352   int wrFlag,                            /* 1 to write. 0 read-only */
4353   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4354   BtCursor *pCur                         /* Space for new cursor */
4355 ){
4356   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4357   BtCursor *pX;                          /* Looping over other all cursors */
4358 
4359   assert( sqlite3BtreeHoldsMutex(p) );
4360   assert( wrFlag==0
4361        || wrFlag==BTREE_WRCSR
4362        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4363   );
4364 
4365   /* The following assert statements verify that if this is a sharable
4366   ** b-tree database, the connection is holding the required table locks,
4367   ** and that no other connection has any open cursor that conflicts with
4368   ** this lock.  */
4369   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4370   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4371 
4372   /* Assert that the caller has opened the required transaction. */
4373   assert( p->inTrans>TRANS_NONE );
4374   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4375   assert( pBt->pPage1 && pBt->pPage1->aData );
4376   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4377 
4378   if( wrFlag ){
4379     allocateTempSpace(pBt);
4380     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4381   }
4382   if( iTable==1 && btreePagecount(pBt)==0 ){
4383     assert( wrFlag==0 );
4384     iTable = 0;
4385   }
4386 
4387   /* Now that no other errors can occur, finish filling in the BtCursor
4388   ** variables and link the cursor into the BtShared list.  */
4389   pCur->pgnoRoot = (Pgno)iTable;
4390   pCur->iPage = -1;
4391   pCur->pKeyInfo = pKeyInfo;
4392   pCur->pBtree = p;
4393   pCur->pBt = pBt;
4394   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4395   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4396   /* If there are two or more cursors on the same btree, then all such
4397   ** cursors *must* have the BTCF_Multiple flag set. */
4398   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4399     if( pX->pgnoRoot==(Pgno)iTable ){
4400       pX->curFlags |= BTCF_Multiple;
4401       pCur->curFlags |= BTCF_Multiple;
4402     }
4403   }
4404   pCur->pNext = pBt->pCursor;
4405   pBt->pCursor = pCur;
4406   pCur->eState = CURSOR_INVALID;
4407   return SQLITE_OK;
4408 }
4409 int sqlite3BtreeCursor(
4410   Btree *p,                                   /* The btree */
4411   int iTable,                                 /* Root page of table to open */
4412   int wrFlag,                                 /* 1 to write. 0 read-only */
4413   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4414   BtCursor *pCur                              /* Write new cursor here */
4415 ){
4416   int rc;
4417   if( iTable<1 ){
4418     rc = SQLITE_CORRUPT_BKPT;
4419   }else{
4420     sqlite3BtreeEnter(p);
4421     rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4422     sqlite3BtreeLeave(p);
4423   }
4424   return rc;
4425 }
4426 
4427 /*
4428 ** Return the size of a BtCursor object in bytes.
4429 **
4430 ** This interfaces is needed so that users of cursors can preallocate
4431 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4432 ** to users so they cannot do the sizeof() themselves - they must call
4433 ** this routine.
4434 */
4435 int sqlite3BtreeCursorSize(void){
4436   return ROUND8(sizeof(BtCursor));
4437 }
4438 
4439 /*
4440 ** Initialize memory that will be converted into a BtCursor object.
4441 **
4442 ** The simple approach here would be to memset() the entire object
4443 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4444 ** do not need to be zeroed and they are large, so we can save a lot
4445 ** of run-time by skipping the initialization of those elements.
4446 */
4447 void sqlite3BtreeCursorZero(BtCursor *p){
4448   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4449 }
4450 
4451 /*
4452 ** Close a cursor.  The read lock on the database file is released
4453 ** when the last cursor is closed.
4454 */
4455 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4456   Btree *pBtree = pCur->pBtree;
4457   if( pBtree ){
4458     BtShared *pBt = pCur->pBt;
4459     sqlite3BtreeEnter(pBtree);
4460     assert( pBt->pCursor!=0 );
4461     if( pBt->pCursor==pCur ){
4462       pBt->pCursor = pCur->pNext;
4463     }else{
4464       BtCursor *pPrev = pBt->pCursor;
4465       do{
4466         if( pPrev->pNext==pCur ){
4467           pPrev->pNext = pCur->pNext;
4468           break;
4469         }
4470         pPrev = pPrev->pNext;
4471       }while( ALWAYS(pPrev) );
4472     }
4473     btreeReleaseAllCursorPages(pCur);
4474     unlockBtreeIfUnused(pBt);
4475     sqlite3_free(pCur->aOverflow);
4476     sqlite3_free(pCur->pKey);
4477     sqlite3BtreeLeave(pBtree);
4478     pCur->pBtree = 0;
4479   }
4480   return SQLITE_OK;
4481 }
4482 
4483 /*
4484 ** Make sure the BtCursor* given in the argument has a valid
4485 ** BtCursor.info structure.  If it is not already valid, call
4486 ** btreeParseCell() to fill it in.
4487 **
4488 ** BtCursor.info is a cache of the information in the current cell.
4489 ** Using this cache reduces the number of calls to btreeParseCell().
4490 */
4491 #ifndef NDEBUG
4492   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4493     if( a->nKey!=b->nKey ) return 0;
4494     if( a->pPayload!=b->pPayload ) return 0;
4495     if( a->nPayload!=b->nPayload ) return 0;
4496     if( a->nLocal!=b->nLocal ) return 0;
4497     if( a->nSize!=b->nSize ) return 0;
4498     return 1;
4499   }
4500   static void assertCellInfo(BtCursor *pCur){
4501     CellInfo info;
4502     memset(&info, 0, sizeof(info));
4503     btreeParseCell(pCur->pPage, pCur->ix, &info);
4504     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4505   }
4506 #else
4507   #define assertCellInfo(x)
4508 #endif
4509 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4510   if( pCur->info.nSize==0 ){
4511     pCur->curFlags |= BTCF_ValidNKey;
4512     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4513   }else{
4514     assertCellInfo(pCur);
4515   }
4516 }
4517 
4518 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4519 /*
4520 ** Return true if the given BtCursor is valid.  A valid cursor is one
4521 ** that is currently pointing to a row in a (non-empty) table.
4522 ** This is a verification routine is used only within assert() statements.
4523 */
4524 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4525   return pCur && pCur->eState==CURSOR_VALID;
4526 }
4527 #endif /* NDEBUG */
4528 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4529   assert( pCur!=0 );
4530   return pCur->eState==CURSOR_VALID;
4531 }
4532 
4533 /*
4534 ** Return the value of the integer key or "rowid" for a table btree.
4535 ** This routine is only valid for a cursor that is pointing into a
4536 ** ordinary table btree.  If the cursor points to an index btree or
4537 ** is invalid, the result of this routine is undefined.
4538 */
4539 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4540   assert( cursorHoldsMutex(pCur) );
4541   assert( pCur->eState==CURSOR_VALID );
4542   assert( pCur->curIntKey );
4543   getCellInfo(pCur);
4544   return pCur->info.nKey;
4545 }
4546 
4547 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4548 /*
4549 ** Return the offset into the database file for the start of the
4550 ** payload to which the cursor is pointing.
4551 */
4552 i64 sqlite3BtreeOffset(BtCursor *pCur){
4553   assert( cursorHoldsMutex(pCur) );
4554   assert( pCur->eState==CURSOR_VALID );
4555   getCellInfo(pCur);
4556   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4557          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4558 }
4559 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4560 
4561 /*
4562 ** Return the number of bytes of payload for the entry that pCur is
4563 ** currently pointing to.  For table btrees, this will be the amount
4564 ** of data.  For index btrees, this will be the size of the key.
4565 **
4566 ** The caller must guarantee that the cursor is pointing to a non-NULL
4567 ** valid entry.  In other words, the calling procedure must guarantee
4568 ** that the cursor has Cursor.eState==CURSOR_VALID.
4569 */
4570 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4571   assert( cursorHoldsMutex(pCur) );
4572   assert( pCur->eState==CURSOR_VALID );
4573   getCellInfo(pCur);
4574   return pCur->info.nPayload;
4575 }
4576 
4577 /*
4578 ** Return an upper bound on the size of any record for the table
4579 ** that the cursor is pointing into.
4580 **
4581 ** This is an optimization.  Everything will still work if this
4582 ** routine always returns 2147483647 (which is the largest record
4583 ** that SQLite can handle) or more.  But returning a smaller value might
4584 ** prevent large memory allocations when trying to interpret a
4585 ** corrupt datrabase.
4586 **
4587 ** The current implementation merely returns the size of the underlying
4588 ** database file.
4589 */
4590 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4591   assert( cursorHoldsMutex(pCur) );
4592   assert( pCur->eState==CURSOR_VALID );
4593   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4594 }
4595 
4596 /*
4597 ** Given the page number of an overflow page in the database (parameter
4598 ** ovfl), this function finds the page number of the next page in the
4599 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4600 ** pointer-map data instead of reading the content of page ovfl to do so.
4601 **
4602 ** If an error occurs an SQLite error code is returned. Otherwise:
4603 **
4604 ** The page number of the next overflow page in the linked list is
4605 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4606 ** list, *pPgnoNext is set to zero.
4607 **
4608 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4609 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4610 ** reference. It is the responsibility of the caller to call releasePage()
4611 ** on *ppPage to free the reference. In no reference was obtained (because
4612 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4613 ** *ppPage is set to zero.
4614 */
4615 static int getOverflowPage(
4616   BtShared *pBt,               /* The database file */
4617   Pgno ovfl,                   /* Current overflow page number */
4618   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4619   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4620 ){
4621   Pgno next = 0;
4622   MemPage *pPage = 0;
4623   int rc = SQLITE_OK;
4624 
4625   assert( sqlite3_mutex_held(pBt->mutex) );
4626   assert(pPgnoNext);
4627 
4628 #ifndef SQLITE_OMIT_AUTOVACUUM
4629   /* Try to find the next page in the overflow list using the
4630   ** autovacuum pointer-map pages. Guess that the next page in
4631   ** the overflow list is page number (ovfl+1). If that guess turns
4632   ** out to be wrong, fall back to loading the data of page
4633   ** number ovfl to determine the next page number.
4634   */
4635   if( pBt->autoVacuum ){
4636     Pgno pgno;
4637     Pgno iGuess = ovfl+1;
4638     u8 eType;
4639 
4640     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4641       iGuess++;
4642     }
4643 
4644     if( iGuess<=btreePagecount(pBt) ){
4645       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4646       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4647         next = iGuess;
4648         rc = SQLITE_DONE;
4649       }
4650     }
4651   }
4652 #endif
4653 
4654   assert( next==0 || rc==SQLITE_DONE );
4655   if( rc==SQLITE_OK ){
4656     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4657     assert( rc==SQLITE_OK || pPage==0 );
4658     if( rc==SQLITE_OK ){
4659       next = get4byte(pPage->aData);
4660     }
4661   }
4662 
4663   *pPgnoNext = next;
4664   if( ppPage ){
4665     *ppPage = pPage;
4666   }else{
4667     releasePage(pPage);
4668   }
4669   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4670 }
4671 
4672 /*
4673 ** Copy data from a buffer to a page, or from a page to a buffer.
4674 **
4675 ** pPayload is a pointer to data stored on database page pDbPage.
4676 ** If argument eOp is false, then nByte bytes of data are copied
4677 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4678 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4679 ** of data are copied from the buffer pBuf to pPayload.
4680 **
4681 ** SQLITE_OK is returned on success, otherwise an error code.
4682 */
4683 static int copyPayload(
4684   void *pPayload,           /* Pointer to page data */
4685   void *pBuf,               /* Pointer to buffer */
4686   int nByte,                /* Number of bytes to copy */
4687   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4688   DbPage *pDbPage           /* Page containing pPayload */
4689 ){
4690   if( eOp ){
4691     /* Copy data from buffer to page (a write operation) */
4692     int rc = sqlite3PagerWrite(pDbPage);
4693     if( rc!=SQLITE_OK ){
4694       return rc;
4695     }
4696     memcpy(pPayload, pBuf, nByte);
4697   }else{
4698     /* Copy data from page to buffer (a read operation) */
4699     memcpy(pBuf, pPayload, nByte);
4700   }
4701   return SQLITE_OK;
4702 }
4703 
4704 /*
4705 ** This function is used to read or overwrite payload information
4706 ** for the entry that the pCur cursor is pointing to. The eOp
4707 ** argument is interpreted as follows:
4708 **
4709 **   0: The operation is a read. Populate the overflow cache.
4710 **   1: The operation is a write. Populate the overflow cache.
4711 **
4712 ** A total of "amt" bytes are read or written beginning at "offset".
4713 ** Data is read to or from the buffer pBuf.
4714 **
4715 ** The content being read or written might appear on the main page
4716 ** or be scattered out on multiple overflow pages.
4717 **
4718 ** If the current cursor entry uses one or more overflow pages
4719 ** this function may allocate space for and lazily populate
4720 ** the overflow page-list cache array (BtCursor.aOverflow).
4721 ** Subsequent calls use this cache to make seeking to the supplied offset
4722 ** more efficient.
4723 **
4724 ** Once an overflow page-list cache has been allocated, it must be
4725 ** invalidated if some other cursor writes to the same table, or if
4726 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4727 ** mode, the following events may invalidate an overflow page-list cache.
4728 **
4729 **   * An incremental vacuum,
4730 **   * A commit in auto_vacuum="full" mode,
4731 **   * Creating a table (may require moving an overflow page).
4732 */
4733 static int accessPayload(
4734   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4735   u32 offset,          /* Begin reading this far into payload */
4736   u32 amt,             /* Read this many bytes */
4737   unsigned char *pBuf, /* Write the bytes into this buffer */
4738   int eOp              /* zero to read. non-zero to write. */
4739 ){
4740   unsigned char *aPayload;
4741   int rc = SQLITE_OK;
4742   int iIdx = 0;
4743   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4744   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4745 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4746   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4747 #endif
4748 
4749   assert( pPage );
4750   assert( eOp==0 || eOp==1 );
4751   assert( pCur->eState==CURSOR_VALID );
4752   assert( pCur->ix<pPage->nCell );
4753   assert( cursorHoldsMutex(pCur) );
4754 
4755   getCellInfo(pCur);
4756   aPayload = pCur->info.pPayload;
4757   assert( offset+amt <= pCur->info.nPayload );
4758 
4759   assert( aPayload > pPage->aData );
4760   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4761     /* Trying to read or write past the end of the data is an error.  The
4762     ** conditional above is really:
4763     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4764     ** but is recast into its current form to avoid integer overflow problems
4765     */
4766     return SQLITE_CORRUPT_PAGE(pPage);
4767   }
4768 
4769   /* Check if data must be read/written to/from the btree page itself. */
4770   if( offset<pCur->info.nLocal ){
4771     int a = amt;
4772     if( a+offset>pCur->info.nLocal ){
4773       a = pCur->info.nLocal - offset;
4774     }
4775     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4776     offset = 0;
4777     pBuf += a;
4778     amt -= a;
4779   }else{
4780     offset -= pCur->info.nLocal;
4781   }
4782 
4783 
4784   if( rc==SQLITE_OK && amt>0 ){
4785     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4786     Pgno nextPage;
4787 
4788     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4789 
4790     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4791     **
4792     ** The aOverflow[] array is sized at one entry for each overflow page
4793     ** in the overflow chain. The page number of the first overflow page is
4794     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4795     ** means "not yet known" (the cache is lazily populated).
4796     */
4797     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4798       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4799       if( pCur->aOverflow==0
4800        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4801       ){
4802         Pgno *aNew = (Pgno*)sqlite3Realloc(
4803             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4804         );
4805         if( aNew==0 ){
4806           return SQLITE_NOMEM_BKPT;
4807         }else{
4808           pCur->aOverflow = aNew;
4809         }
4810       }
4811       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4812       pCur->curFlags |= BTCF_ValidOvfl;
4813     }else{
4814       /* If the overflow page-list cache has been allocated and the
4815       ** entry for the first required overflow page is valid, skip
4816       ** directly to it.
4817       */
4818       if( pCur->aOverflow[offset/ovflSize] ){
4819         iIdx = (offset/ovflSize);
4820         nextPage = pCur->aOverflow[iIdx];
4821         offset = (offset%ovflSize);
4822       }
4823     }
4824 
4825     assert( rc==SQLITE_OK && amt>0 );
4826     while( nextPage ){
4827       /* If required, populate the overflow page-list cache. */
4828       assert( pCur->aOverflow[iIdx]==0
4829               || pCur->aOverflow[iIdx]==nextPage
4830               || CORRUPT_DB );
4831       pCur->aOverflow[iIdx] = nextPage;
4832 
4833       if( offset>=ovflSize ){
4834         /* The only reason to read this page is to obtain the page
4835         ** number for the next page in the overflow chain. The page
4836         ** data is not required. So first try to lookup the overflow
4837         ** page-list cache, if any, then fall back to the getOverflowPage()
4838         ** function.
4839         */
4840         assert( pCur->curFlags & BTCF_ValidOvfl );
4841         assert( pCur->pBtree->db==pBt->db );
4842         if( pCur->aOverflow[iIdx+1] ){
4843           nextPage = pCur->aOverflow[iIdx+1];
4844         }else{
4845           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4846         }
4847         offset -= ovflSize;
4848       }else{
4849         /* Need to read this page properly. It contains some of the
4850         ** range of data that is being read (eOp==0) or written (eOp!=0).
4851         */
4852         int a = amt;
4853         if( a + offset > ovflSize ){
4854           a = ovflSize - offset;
4855         }
4856 
4857 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4858         /* If all the following are true:
4859         **
4860         **   1) this is a read operation, and
4861         **   2) data is required from the start of this overflow page, and
4862         **   3) there are no dirty pages in the page-cache
4863         **   4) the database is file-backed, and
4864         **   5) the page is not in the WAL file
4865         **   6) at least 4 bytes have already been read into the output buffer
4866         **
4867         ** then data can be read directly from the database file into the
4868         ** output buffer, bypassing the page-cache altogether. This speeds
4869         ** up loading large records that span many overflow pages.
4870         */
4871         if( eOp==0                                             /* (1) */
4872          && offset==0                                          /* (2) */
4873          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
4874          && &pBuf[-4]>=pBufStart                               /* (6) */
4875         ){
4876           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
4877           u8 aSave[4];
4878           u8 *aWrite = &pBuf[-4];
4879           assert( aWrite>=pBufStart );                         /* due to (6) */
4880           memcpy(aSave, aWrite, 4);
4881           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4882           if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
4883           nextPage = get4byte(aWrite);
4884           memcpy(aWrite, aSave, 4);
4885         }else
4886 #endif
4887 
4888         {
4889           DbPage *pDbPage;
4890           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4891               (eOp==0 ? PAGER_GET_READONLY : 0)
4892           );
4893           if( rc==SQLITE_OK ){
4894             aPayload = sqlite3PagerGetData(pDbPage);
4895             nextPage = get4byte(aPayload);
4896             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4897             sqlite3PagerUnref(pDbPage);
4898             offset = 0;
4899           }
4900         }
4901         amt -= a;
4902         if( amt==0 ) return rc;
4903         pBuf += a;
4904       }
4905       if( rc ) break;
4906       iIdx++;
4907     }
4908   }
4909 
4910   if( rc==SQLITE_OK && amt>0 ){
4911     /* Overflow chain ends prematurely */
4912     return SQLITE_CORRUPT_PAGE(pPage);
4913   }
4914   return rc;
4915 }
4916 
4917 /*
4918 ** Read part of the payload for the row at which that cursor pCur is currently
4919 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
4920 ** begins at "offset".
4921 **
4922 ** pCur can be pointing to either a table or an index b-tree.
4923 ** If pointing to a table btree, then the content section is read.  If
4924 ** pCur is pointing to an index b-tree then the key section is read.
4925 **
4926 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4927 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
4928 ** cursor might be invalid or might need to be restored before being read.
4929 **
4930 ** Return SQLITE_OK on success or an error code if anything goes
4931 ** wrong.  An error is returned if "offset+amt" is larger than
4932 ** the available payload.
4933 */
4934 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4935   assert( cursorHoldsMutex(pCur) );
4936   assert( pCur->eState==CURSOR_VALID );
4937   assert( pCur->iPage>=0 && pCur->pPage );
4938   assert( pCur->ix<pCur->pPage->nCell );
4939   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4940 }
4941 
4942 /*
4943 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4944 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
4945 ** interface.
4946 */
4947 #ifndef SQLITE_OMIT_INCRBLOB
4948 static SQLITE_NOINLINE int accessPayloadChecked(
4949   BtCursor *pCur,
4950   u32 offset,
4951   u32 amt,
4952   void *pBuf
4953 ){
4954   int rc;
4955   if ( pCur->eState==CURSOR_INVALID ){
4956     return SQLITE_ABORT;
4957   }
4958   assert( cursorOwnsBtShared(pCur) );
4959   rc = btreeRestoreCursorPosition(pCur);
4960   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4961 }
4962 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4963   if( pCur->eState==CURSOR_VALID ){
4964     assert( cursorOwnsBtShared(pCur) );
4965     return accessPayload(pCur, offset, amt, pBuf, 0);
4966   }else{
4967     return accessPayloadChecked(pCur, offset, amt, pBuf);
4968   }
4969 }
4970 #endif /* SQLITE_OMIT_INCRBLOB */
4971 
4972 /*
4973 ** Return a pointer to payload information from the entry that the
4974 ** pCur cursor is pointing to.  The pointer is to the beginning of
4975 ** the key if index btrees (pPage->intKey==0) and is the data for
4976 ** table btrees (pPage->intKey==1). The number of bytes of available
4977 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4978 ** returned will not be a valid pointer.
4979 **
4980 ** This routine is an optimization.  It is common for the entire key
4981 ** and data to fit on the local page and for there to be no overflow
4982 ** pages.  When that is so, this routine can be used to access the
4983 ** key and data without making a copy.  If the key and/or data spills
4984 ** onto overflow pages, then accessPayload() must be used to reassemble
4985 ** the key/data and copy it into a preallocated buffer.
4986 **
4987 ** The pointer returned by this routine looks directly into the cached
4988 ** page of the database.  The data might change or move the next time
4989 ** any btree routine is called.
4990 */
4991 static const void *fetchPayload(
4992   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4993   u32 *pAmt            /* Write the number of available bytes here */
4994 ){
4995   int amt;
4996   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
4997   assert( pCur->eState==CURSOR_VALID );
4998   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4999   assert( cursorOwnsBtShared(pCur) );
5000   assert( pCur->ix<pCur->pPage->nCell );
5001   assert( pCur->info.nSize>0 );
5002   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5003   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5004   amt = pCur->info.nLocal;
5005   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5006     /* There is too little space on the page for the expected amount
5007     ** of local content. Database must be corrupt. */
5008     assert( CORRUPT_DB );
5009     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5010   }
5011   *pAmt = (u32)amt;
5012   return (void*)pCur->info.pPayload;
5013 }
5014 
5015 
5016 /*
5017 ** For the entry that cursor pCur is point to, return as
5018 ** many bytes of the key or data as are available on the local
5019 ** b-tree page.  Write the number of available bytes into *pAmt.
5020 **
5021 ** The pointer returned is ephemeral.  The key/data may move
5022 ** or be destroyed on the next call to any Btree routine,
5023 ** including calls from other threads against the same cache.
5024 ** Hence, a mutex on the BtShared should be held prior to calling
5025 ** this routine.
5026 **
5027 ** These routines is used to get quick access to key and data
5028 ** in the common case where no overflow pages are used.
5029 */
5030 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5031   return fetchPayload(pCur, pAmt);
5032 }
5033 
5034 
5035 /*
5036 ** Move the cursor down to a new child page.  The newPgno argument is the
5037 ** page number of the child page to move to.
5038 **
5039 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5040 ** the new child page does not match the flags field of the parent (i.e.
5041 ** if an intkey page appears to be the parent of a non-intkey page, or
5042 ** vice-versa).
5043 */
5044 static int moveToChild(BtCursor *pCur, u32 newPgno){
5045   BtShared *pBt = pCur->pBt;
5046 
5047   assert( cursorOwnsBtShared(pCur) );
5048   assert( pCur->eState==CURSOR_VALID );
5049   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5050   assert( pCur->iPage>=0 );
5051   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5052     return SQLITE_CORRUPT_BKPT;
5053   }
5054   pCur->info.nSize = 0;
5055   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5056   pCur->aiIdx[pCur->iPage] = pCur->ix;
5057   pCur->apPage[pCur->iPage] = pCur->pPage;
5058   pCur->ix = 0;
5059   pCur->iPage++;
5060   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5061 }
5062 
5063 #ifdef SQLITE_DEBUG
5064 /*
5065 ** Page pParent is an internal (non-leaf) tree page. This function
5066 ** asserts that page number iChild is the left-child if the iIdx'th
5067 ** cell in page pParent. Or, if iIdx is equal to the total number of
5068 ** cells in pParent, that page number iChild is the right-child of
5069 ** the page.
5070 */
5071 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5072   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
5073                             ** in a corrupt database */
5074   assert( iIdx<=pParent->nCell );
5075   if( iIdx==pParent->nCell ){
5076     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5077   }else{
5078     assert( get4byte(findCell(pParent, iIdx))==iChild );
5079   }
5080 }
5081 #else
5082 #  define assertParentIndex(x,y,z)
5083 #endif
5084 
5085 /*
5086 ** Move the cursor up to the parent page.
5087 **
5088 ** pCur->idx is set to the cell index that contains the pointer
5089 ** to the page we are coming from.  If we are coming from the
5090 ** right-most child page then pCur->idx is set to one more than
5091 ** the largest cell index.
5092 */
5093 static void moveToParent(BtCursor *pCur){
5094   MemPage *pLeaf;
5095   assert( cursorOwnsBtShared(pCur) );
5096   assert( pCur->eState==CURSOR_VALID );
5097   assert( pCur->iPage>0 );
5098   assert( pCur->pPage );
5099   assertParentIndex(
5100     pCur->apPage[pCur->iPage-1],
5101     pCur->aiIdx[pCur->iPage-1],
5102     pCur->pPage->pgno
5103   );
5104   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5105   pCur->info.nSize = 0;
5106   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5107   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5108   pLeaf = pCur->pPage;
5109   pCur->pPage = pCur->apPage[--pCur->iPage];
5110   releasePageNotNull(pLeaf);
5111 }
5112 
5113 /*
5114 ** Move the cursor to point to the root page of its b-tree structure.
5115 **
5116 ** If the table has a virtual root page, then the cursor is moved to point
5117 ** to the virtual root page instead of the actual root page. A table has a
5118 ** virtual root page when the actual root page contains no cells and a
5119 ** single child page. This can only happen with the table rooted at page 1.
5120 **
5121 ** If the b-tree structure is empty, the cursor state is set to
5122 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5123 ** the cursor is set to point to the first cell located on the root
5124 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5125 **
5126 ** If this function returns successfully, it may be assumed that the
5127 ** page-header flags indicate that the [virtual] root-page is the expected
5128 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5129 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5130 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5131 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5132 ** b-tree).
5133 */
5134 static int moveToRoot(BtCursor *pCur){
5135   MemPage *pRoot;
5136   int rc = SQLITE_OK;
5137 
5138   assert( cursorOwnsBtShared(pCur) );
5139   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5140   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5141   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5142   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5143   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5144 
5145   if( pCur->iPage>=0 ){
5146     if( pCur->iPage ){
5147       releasePageNotNull(pCur->pPage);
5148       while( --pCur->iPage ){
5149         releasePageNotNull(pCur->apPage[pCur->iPage]);
5150       }
5151       pCur->pPage = pCur->apPage[0];
5152       goto skip_init;
5153     }
5154   }else if( pCur->pgnoRoot==0 ){
5155     pCur->eState = CURSOR_INVALID;
5156     return SQLITE_EMPTY;
5157   }else{
5158     assert( pCur->iPage==(-1) );
5159     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5160       if( pCur->eState==CURSOR_FAULT ){
5161         assert( pCur->skipNext!=SQLITE_OK );
5162         return pCur->skipNext;
5163       }
5164       sqlite3BtreeClearCursor(pCur);
5165     }
5166     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5167                         0, pCur->curPagerFlags);
5168     if( rc!=SQLITE_OK ){
5169       pCur->eState = CURSOR_INVALID;
5170       return rc;
5171     }
5172     pCur->iPage = 0;
5173     pCur->curIntKey = pCur->pPage->intKey;
5174   }
5175   pRoot = pCur->pPage;
5176   assert( pRoot->pgno==pCur->pgnoRoot );
5177 
5178   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5179   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5180   ** NULL, the caller expects a table b-tree. If this is not the case,
5181   ** return an SQLITE_CORRUPT error.
5182   **
5183   ** Earlier versions of SQLite assumed that this test could not fail
5184   ** if the root page was already loaded when this function was called (i.e.
5185   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5186   ** in such a way that page pRoot is linked into a second b-tree table
5187   ** (or the freelist).  */
5188   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5189   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5190     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5191   }
5192 
5193 skip_init:
5194   pCur->ix = 0;
5195   pCur->info.nSize = 0;
5196   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5197 
5198   pRoot = pCur->pPage;
5199   if( pRoot->nCell>0 ){
5200     pCur->eState = CURSOR_VALID;
5201   }else if( !pRoot->leaf ){
5202     Pgno subpage;
5203     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5204     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5205     pCur->eState = CURSOR_VALID;
5206     rc = moveToChild(pCur, subpage);
5207   }else{
5208     pCur->eState = CURSOR_INVALID;
5209     rc = SQLITE_EMPTY;
5210   }
5211   return rc;
5212 }
5213 
5214 /*
5215 ** Move the cursor down to the left-most leaf entry beneath the
5216 ** entry to which it is currently pointing.
5217 **
5218 ** The left-most leaf is the one with the smallest key - the first
5219 ** in ascending order.
5220 */
5221 static int moveToLeftmost(BtCursor *pCur){
5222   Pgno pgno;
5223   int rc = SQLITE_OK;
5224   MemPage *pPage;
5225 
5226   assert( cursorOwnsBtShared(pCur) );
5227   assert( pCur->eState==CURSOR_VALID );
5228   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5229     assert( pCur->ix<pPage->nCell );
5230     pgno = get4byte(findCell(pPage, pCur->ix));
5231     rc = moveToChild(pCur, pgno);
5232   }
5233   return rc;
5234 }
5235 
5236 /*
5237 ** Move the cursor down to the right-most leaf entry beneath the
5238 ** page to which it is currently pointing.  Notice the difference
5239 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5240 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5241 ** finds the right-most entry beneath the *page*.
5242 **
5243 ** The right-most entry is the one with the largest key - the last
5244 ** key in ascending order.
5245 */
5246 static int moveToRightmost(BtCursor *pCur){
5247   Pgno pgno;
5248   int rc = SQLITE_OK;
5249   MemPage *pPage = 0;
5250 
5251   assert( cursorOwnsBtShared(pCur) );
5252   assert( pCur->eState==CURSOR_VALID );
5253   while( !(pPage = pCur->pPage)->leaf ){
5254     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5255     pCur->ix = pPage->nCell;
5256     rc = moveToChild(pCur, pgno);
5257     if( rc ) return rc;
5258   }
5259   pCur->ix = pPage->nCell-1;
5260   assert( pCur->info.nSize==0 );
5261   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5262   return SQLITE_OK;
5263 }
5264 
5265 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5266 ** on success.  Set *pRes to 0 if the cursor actually points to something
5267 ** or set *pRes to 1 if the table is empty.
5268 */
5269 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5270   int rc;
5271 
5272   assert( cursorOwnsBtShared(pCur) );
5273   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5274   rc = moveToRoot(pCur);
5275   if( rc==SQLITE_OK ){
5276     assert( pCur->pPage->nCell>0 );
5277     *pRes = 0;
5278     rc = moveToLeftmost(pCur);
5279   }else if( rc==SQLITE_EMPTY ){
5280     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5281     *pRes = 1;
5282     rc = SQLITE_OK;
5283   }
5284   return rc;
5285 }
5286 
5287 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5288 ** on success.  Set *pRes to 0 if the cursor actually points to something
5289 ** or set *pRes to 1 if the table is empty.
5290 */
5291 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5292   int rc;
5293 
5294   assert( cursorOwnsBtShared(pCur) );
5295   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5296 
5297   /* If the cursor already points to the last entry, this is a no-op. */
5298   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5299 #ifdef SQLITE_DEBUG
5300     /* This block serves to assert() that the cursor really does point
5301     ** to the last entry in the b-tree. */
5302     int ii;
5303     for(ii=0; ii<pCur->iPage; ii++){
5304       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5305     }
5306     assert( pCur->ix==pCur->pPage->nCell-1 );
5307     assert( pCur->pPage->leaf );
5308 #endif
5309     *pRes = 0;
5310     return SQLITE_OK;
5311   }
5312 
5313   rc = moveToRoot(pCur);
5314   if( rc==SQLITE_OK ){
5315     assert( pCur->eState==CURSOR_VALID );
5316     *pRes = 0;
5317     rc = moveToRightmost(pCur);
5318     if( rc==SQLITE_OK ){
5319       pCur->curFlags |= BTCF_AtLast;
5320     }else{
5321       pCur->curFlags &= ~BTCF_AtLast;
5322     }
5323   }else if( rc==SQLITE_EMPTY ){
5324     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5325     *pRes = 1;
5326     rc = SQLITE_OK;
5327   }
5328   return rc;
5329 }
5330 
5331 /* Move the cursor so that it points to an entry near the key
5332 ** specified by pIdxKey or intKey.   Return a success code.
5333 **
5334 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5335 ** must be NULL.  For index tables, pIdxKey is used and intKey
5336 ** is ignored.
5337 **
5338 ** If an exact match is not found, then the cursor is always
5339 ** left pointing at a leaf page which would hold the entry if it
5340 ** were present.  The cursor might point to an entry that comes
5341 ** before or after the key.
5342 **
5343 ** An integer is written into *pRes which is the result of
5344 ** comparing the key with the entry to which the cursor is
5345 ** pointing.  The meaning of the integer written into
5346 ** *pRes is as follows:
5347 **
5348 **     *pRes<0      The cursor is left pointing at an entry that
5349 **                  is smaller than intKey/pIdxKey or if the table is empty
5350 **                  and the cursor is therefore left point to nothing.
5351 **
5352 **     *pRes==0     The cursor is left pointing at an entry that
5353 **                  exactly matches intKey/pIdxKey.
5354 **
5355 **     *pRes>0      The cursor is left pointing at an entry that
5356 **                  is larger than intKey/pIdxKey.
5357 **
5358 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5359 ** exists an entry in the table that exactly matches pIdxKey.
5360 */
5361 int sqlite3BtreeMovetoUnpacked(
5362   BtCursor *pCur,          /* The cursor to be moved */
5363   UnpackedRecord *pIdxKey, /* Unpacked index key */
5364   i64 intKey,              /* The table key */
5365   int biasRight,           /* If true, bias the search to the high end */
5366   int *pRes                /* Write search results here */
5367 ){
5368   int rc;
5369   RecordCompare xRecordCompare;
5370 
5371   assert( cursorOwnsBtShared(pCur) );
5372   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5373   assert( pRes );
5374   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5375   assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5376 
5377   /* If the cursor is already positioned at the point we are trying
5378   ** to move to, then just return without doing any work */
5379   if( pIdxKey==0
5380    && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5381   ){
5382     if( pCur->info.nKey==intKey ){
5383       *pRes = 0;
5384       return SQLITE_OK;
5385     }
5386     if( pCur->info.nKey<intKey ){
5387       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5388         *pRes = -1;
5389         return SQLITE_OK;
5390       }
5391       /* If the requested key is one more than the previous key, then
5392       ** try to get there using sqlite3BtreeNext() rather than a full
5393       ** binary search.  This is an optimization only.  The correct answer
5394       ** is still obtained without this case, only a little more slowely */
5395       if( pCur->info.nKey+1==intKey ){
5396         *pRes = 0;
5397         rc = sqlite3BtreeNext(pCur, 0);
5398         if( rc==SQLITE_OK ){
5399           getCellInfo(pCur);
5400           if( pCur->info.nKey==intKey ){
5401             return SQLITE_OK;
5402           }
5403         }else if( rc==SQLITE_DONE ){
5404           rc = SQLITE_OK;
5405         }else{
5406           return rc;
5407         }
5408       }
5409     }
5410   }
5411 
5412   if( pIdxKey ){
5413     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5414     pIdxKey->errCode = 0;
5415     assert( pIdxKey->default_rc==1
5416          || pIdxKey->default_rc==0
5417          || pIdxKey->default_rc==-1
5418     );
5419   }else{
5420     xRecordCompare = 0; /* All keys are integers */
5421   }
5422 
5423   rc = moveToRoot(pCur);
5424   if( rc ){
5425     if( rc==SQLITE_EMPTY ){
5426       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5427       *pRes = -1;
5428       return SQLITE_OK;
5429     }
5430     return rc;
5431   }
5432   assert( pCur->pPage );
5433   assert( pCur->pPage->isInit );
5434   assert( pCur->eState==CURSOR_VALID );
5435   assert( pCur->pPage->nCell > 0 );
5436   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5437   assert( pCur->curIntKey || pIdxKey );
5438   for(;;){
5439     int lwr, upr, idx, c;
5440     Pgno chldPg;
5441     MemPage *pPage = pCur->pPage;
5442     u8 *pCell;                          /* Pointer to current cell in pPage */
5443 
5444     /* pPage->nCell must be greater than zero. If this is the root-page
5445     ** the cursor would have been INVALID above and this for(;;) loop
5446     ** not run. If this is not the root-page, then the moveToChild() routine
5447     ** would have already detected db corruption. Similarly, pPage must
5448     ** be the right kind (index or table) of b-tree page. Otherwise
5449     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5450     assert( pPage->nCell>0 );
5451     assert( pPage->intKey==(pIdxKey==0) );
5452     lwr = 0;
5453     upr = pPage->nCell-1;
5454     assert( biasRight==0 || biasRight==1 );
5455     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5456     pCur->ix = (u16)idx;
5457     if( xRecordCompare==0 ){
5458       for(;;){
5459         i64 nCellKey;
5460         pCell = findCellPastPtr(pPage, idx);
5461         if( pPage->intKeyLeaf ){
5462           while( 0x80 <= *(pCell++) ){
5463             if( pCell>=pPage->aDataEnd ){
5464               return SQLITE_CORRUPT_PAGE(pPage);
5465             }
5466           }
5467         }
5468         getVarint(pCell, (u64*)&nCellKey);
5469         if( nCellKey<intKey ){
5470           lwr = idx+1;
5471           if( lwr>upr ){ c = -1; break; }
5472         }else if( nCellKey>intKey ){
5473           upr = idx-1;
5474           if( lwr>upr ){ c = +1; break; }
5475         }else{
5476           assert( nCellKey==intKey );
5477           pCur->ix = (u16)idx;
5478           if( !pPage->leaf ){
5479             lwr = idx;
5480             goto moveto_next_layer;
5481           }else{
5482             pCur->curFlags |= BTCF_ValidNKey;
5483             pCur->info.nKey = nCellKey;
5484             pCur->info.nSize = 0;
5485             *pRes = 0;
5486             return SQLITE_OK;
5487           }
5488         }
5489         assert( lwr+upr>=0 );
5490         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5491       }
5492     }else{
5493       for(;;){
5494         int nCell;  /* Size of the pCell cell in bytes */
5495         pCell = findCellPastPtr(pPage, idx);
5496 
5497         /* The maximum supported page-size is 65536 bytes. This means that
5498         ** the maximum number of record bytes stored on an index B-Tree
5499         ** page is less than 16384 bytes and may be stored as a 2-byte
5500         ** varint. This information is used to attempt to avoid parsing
5501         ** the entire cell by checking for the cases where the record is
5502         ** stored entirely within the b-tree page by inspecting the first
5503         ** 2 bytes of the cell.
5504         */
5505         nCell = pCell[0];
5506         if( nCell<=pPage->max1bytePayload ){
5507           /* This branch runs if the record-size field of the cell is a
5508           ** single byte varint and the record fits entirely on the main
5509           ** b-tree page.  */
5510           testcase( pCell+nCell+1==pPage->aDataEnd );
5511           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5512         }else if( !(pCell[1] & 0x80)
5513           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5514         ){
5515           /* The record-size field is a 2 byte varint and the record
5516           ** fits entirely on the main b-tree page.  */
5517           testcase( pCell+nCell+2==pPage->aDataEnd );
5518           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5519         }else{
5520           /* The record flows over onto one or more overflow pages. In
5521           ** this case the whole cell needs to be parsed, a buffer allocated
5522           ** and accessPayload() used to retrieve the record into the
5523           ** buffer before VdbeRecordCompare() can be called.
5524           **
5525           ** If the record is corrupt, the xRecordCompare routine may read
5526           ** up to two varints past the end of the buffer. An extra 18
5527           ** bytes of padding is allocated at the end of the buffer in
5528           ** case this happens.  */
5529           void *pCellKey;
5530           u8 * const pCellBody = pCell - pPage->childPtrSize;
5531           const int nOverrun = 18;  /* Size of the overrun padding */
5532           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5533           nCell = (int)pCur->info.nKey;
5534           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5535           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5536           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5537           testcase( nCell==2 );  /* Minimum legal index key size */
5538           if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5539             rc = SQLITE_CORRUPT_PAGE(pPage);
5540             goto moveto_finish;
5541           }
5542           pCellKey = sqlite3Malloc( nCell+nOverrun );
5543           if( pCellKey==0 ){
5544             rc = SQLITE_NOMEM_BKPT;
5545             goto moveto_finish;
5546           }
5547           pCur->ix = (u16)idx;
5548           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5549           memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5550           pCur->curFlags &= ~BTCF_ValidOvfl;
5551           if( rc ){
5552             sqlite3_free(pCellKey);
5553             goto moveto_finish;
5554           }
5555           c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5556           sqlite3_free(pCellKey);
5557         }
5558         assert(
5559             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5560          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5561         );
5562         if( c<0 ){
5563           lwr = idx+1;
5564         }else if( c>0 ){
5565           upr = idx-1;
5566         }else{
5567           assert( c==0 );
5568           *pRes = 0;
5569           rc = SQLITE_OK;
5570           pCur->ix = (u16)idx;
5571           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5572           goto moveto_finish;
5573         }
5574         if( lwr>upr ) break;
5575         assert( lwr+upr>=0 );
5576         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5577       }
5578     }
5579     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5580     assert( pPage->isInit );
5581     if( pPage->leaf ){
5582       assert( pCur->ix<pCur->pPage->nCell );
5583       pCur->ix = (u16)idx;
5584       *pRes = c;
5585       rc = SQLITE_OK;
5586       goto moveto_finish;
5587     }
5588 moveto_next_layer:
5589     if( lwr>=pPage->nCell ){
5590       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5591     }else{
5592       chldPg = get4byte(findCell(pPage, lwr));
5593     }
5594     pCur->ix = (u16)lwr;
5595     rc = moveToChild(pCur, chldPg);
5596     if( rc ) break;
5597   }
5598 moveto_finish:
5599   pCur->info.nSize = 0;
5600   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5601   return rc;
5602 }
5603 
5604 
5605 /*
5606 ** Return TRUE if the cursor is not pointing at an entry of the table.
5607 **
5608 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5609 ** past the last entry in the table or sqlite3BtreePrev() moves past
5610 ** the first entry.  TRUE is also returned if the table is empty.
5611 */
5612 int sqlite3BtreeEof(BtCursor *pCur){
5613   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5614   ** have been deleted? This API will need to change to return an error code
5615   ** as well as the boolean result value.
5616   */
5617   return (CURSOR_VALID!=pCur->eState);
5618 }
5619 
5620 /*
5621 ** Return an estimate for the number of rows in the table that pCur is
5622 ** pointing to.  Return a negative number if no estimate is currently
5623 ** available.
5624 */
5625 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5626   i64 n;
5627   u8 i;
5628 
5629   assert( cursorOwnsBtShared(pCur) );
5630   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5631 
5632   /* Currently this interface is only called by the OP_IfSmaller
5633   ** opcode, and it that case the cursor will always be valid and
5634   ** will always point to a leaf node. */
5635   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5636   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5637 
5638   n = pCur->pPage->nCell;
5639   for(i=0; i<pCur->iPage; i++){
5640     n *= pCur->apPage[i]->nCell;
5641   }
5642   return n;
5643 }
5644 
5645 /*
5646 ** Advance the cursor to the next entry in the database.
5647 ** Return value:
5648 **
5649 **    SQLITE_OK        success
5650 **    SQLITE_DONE      cursor is already pointing at the last element
5651 **    otherwise        some kind of error occurred
5652 **
5653 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5654 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5655 ** to the next cell on the current page.  The (slower) btreeNext() helper
5656 ** routine is called when it is necessary to move to a different page or
5657 ** to restore the cursor.
5658 **
5659 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5660 ** cursor corresponds to an SQL index and this routine could have been
5661 ** skipped if the SQL index had been a unique index.  The F argument
5662 ** is a hint to the implement.  SQLite btree implementation does not use
5663 ** this hint, but COMDB2 does.
5664 */
5665 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5666   int rc;
5667   int idx;
5668   MemPage *pPage;
5669 
5670   assert( cursorOwnsBtShared(pCur) );
5671   if( pCur->eState!=CURSOR_VALID ){
5672     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5673     rc = restoreCursorPosition(pCur);
5674     if( rc!=SQLITE_OK ){
5675       return rc;
5676     }
5677     if( CURSOR_INVALID==pCur->eState ){
5678       return SQLITE_DONE;
5679     }
5680     if( pCur->eState==CURSOR_SKIPNEXT ){
5681       pCur->eState = CURSOR_VALID;
5682       if( pCur->skipNext>0 ) return SQLITE_OK;
5683     }
5684   }
5685 
5686   pPage = pCur->pPage;
5687   idx = ++pCur->ix;
5688   if( !pPage->isInit ){
5689     /* The only known way for this to happen is for there to be a
5690     ** recursive SQL function that does a DELETE operation as part of a
5691     ** SELECT which deletes content out from under an active cursor
5692     ** in a corrupt database file where the table being DELETE-ed from
5693     ** has pages in common with the table being queried.  See TH3
5694     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5695     ** example. */
5696     return SQLITE_CORRUPT_BKPT;
5697   }
5698 
5699   /* If the database file is corrupt, it is possible for the value of idx
5700   ** to be invalid here. This can only occur if a second cursor modifies
5701   ** the page while cursor pCur is holding a reference to it. Which can
5702   ** only happen if the database is corrupt in such a way as to link the
5703   ** page into more than one b-tree structure. */
5704   testcase( idx>pPage->nCell );
5705 
5706   if( idx>=pPage->nCell ){
5707     if( !pPage->leaf ){
5708       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5709       if( rc ) return rc;
5710       return moveToLeftmost(pCur);
5711     }
5712     do{
5713       if( pCur->iPage==0 ){
5714         pCur->eState = CURSOR_INVALID;
5715         return SQLITE_DONE;
5716       }
5717       moveToParent(pCur);
5718       pPage = pCur->pPage;
5719     }while( pCur->ix>=pPage->nCell );
5720     if( pPage->intKey ){
5721       return sqlite3BtreeNext(pCur, 0);
5722     }else{
5723       return SQLITE_OK;
5724     }
5725   }
5726   if( pPage->leaf ){
5727     return SQLITE_OK;
5728   }else{
5729     return moveToLeftmost(pCur);
5730   }
5731 }
5732 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5733   MemPage *pPage;
5734   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5735   assert( cursorOwnsBtShared(pCur) );
5736   assert( flags==0 || flags==1 );
5737   pCur->info.nSize = 0;
5738   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5739   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5740   pPage = pCur->pPage;
5741   if( (++pCur->ix)>=pPage->nCell ){
5742     pCur->ix--;
5743     return btreeNext(pCur);
5744   }
5745   if( pPage->leaf ){
5746     return SQLITE_OK;
5747   }else{
5748     return moveToLeftmost(pCur);
5749   }
5750 }
5751 
5752 /*
5753 ** Step the cursor to the back to the previous entry in the database.
5754 ** Return values:
5755 **
5756 **     SQLITE_OK     success
5757 **     SQLITE_DONE   the cursor is already on the first element of the table
5758 **     otherwise     some kind of error occurred
5759 **
5760 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5761 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5762 ** to the previous cell on the current page.  The (slower) btreePrevious()
5763 ** helper routine is called when it is necessary to move to a different page
5764 ** or to restore the cursor.
5765 **
5766 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5767 ** the cursor corresponds to an SQL index and this routine could have been
5768 ** skipped if the SQL index had been a unique index.  The F argument is a
5769 ** hint to the implement.  The native SQLite btree implementation does not
5770 ** use this hint, but COMDB2 does.
5771 */
5772 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5773   int rc;
5774   MemPage *pPage;
5775 
5776   assert( cursorOwnsBtShared(pCur) );
5777   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5778   assert( pCur->info.nSize==0 );
5779   if( pCur->eState!=CURSOR_VALID ){
5780     rc = restoreCursorPosition(pCur);
5781     if( rc!=SQLITE_OK ){
5782       return rc;
5783     }
5784     if( CURSOR_INVALID==pCur->eState ){
5785       return SQLITE_DONE;
5786     }
5787     if( CURSOR_SKIPNEXT==pCur->eState ){
5788       pCur->eState = CURSOR_VALID;
5789       if( pCur->skipNext<0 ) return SQLITE_OK;
5790     }
5791   }
5792 
5793   pPage = pCur->pPage;
5794   assert( pPage->isInit );
5795   if( !pPage->leaf ){
5796     int idx = pCur->ix;
5797     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5798     if( rc ) return rc;
5799     rc = moveToRightmost(pCur);
5800   }else{
5801     while( pCur->ix==0 ){
5802       if( pCur->iPage==0 ){
5803         pCur->eState = CURSOR_INVALID;
5804         return SQLITE_DONE;
5805       }
5806       moveToParent(pCur);
5807     }
5808     assert( pCur->info.nSize==0 );
5809     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5810 
5811     pCur->ix--;
5812     pPage = pCur->pPage;
5813     if( pPage->intKey && !pPage->leaf ){
5814       rc = sqlite3BtreePrevious(pCur, 0);
5815     }else{
5816       rc = SQLITE_OK;
5817     }
5818   }
5819   return rc;
5820 }
5821 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5822   assert( cursorOwnsBtShared(pCur) );
5823   assert( flags==0 || flags==1 );
5824   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5825   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5826   pCur->info.nSize = 0;
5827   if( pCur->eState!=CURSOR_VALID
5828    || pCur->ix==0
5829    || pCur->pPage->leaf==0
5830   ){
5831     return btreePrevious(pCur);
5832   }
5833   pCur->ix--;
5834   return SQLITE_OK;
5835 }
5836 
5837 /*
5838 ** Allocate a new page from the database file.
5839 **
5840 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5841 ** has already been called on the new page.)  The new page has also
5842 ** been referenced and the calling routine is responsible for calling
5843 ** sqlite3PagerUnref() on the new page when it is done.
5844 **
5845 ** SQLITE_OK is returned on success.  Any other return value indicates
5846 ** an error.  *ppPage is set to NULL in the event of an error.
5847 **
5848 ** If the "nearby" parameter is not 0, then an effort is made to
5849 ** locate a page close to the page number "nearby".  This can be used in an
5850 ** attempt to keep related pages close to each other in the database file,
5851 ** which in turn can make database access faster.
5852 **
5853 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5854 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5855 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5856 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5857 ** are no restrictions on which page is returned.
5858 */
5859 static int allocateBtreePage(
5860   BtShared *pBt,         /* The btree */
5861   MemPage **ppPage,      /* Store pointer to the allocated page here */
5862   Pgno *pPgno,           /* Store the page number here */
5863   Pgno nearby,           /* Search for a page near this one */
5864   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5865 ){
5866   MemPage *pPage1;
5867   int rc;
5868   u32 n;     /* Number of pages on the freelist */
5869   u32 k;     /* Number of leaves on the trunk of the freelist */
5870   MemPage *pTrunk = 0;
5871   MemPage *pPrevTrunk = 0;
5872   Pgno mxPage;     /* Total size of the database file */
5873 
5874   assert( sqlite3_mutex_held(pBt->mutex) );
5875   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5876   pPage1 = pBt->pPage1;
5877   mxPage = btreePagecount(pBt);
5878   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5879   ** stores stores the total number of pages on the freelist. */
5880   n = get4byte(&pPage1->aData[36]);
5881   testcase( n==mxPage-1 );
5882   if( n>=mxPage ){
5883     return SQLITE_CORRUPT_BKPT;
5884   }
5885   if( n>0 ){
5886     /* There are pages on the freelist.  Reuse one of those pages. */
5887     Pgno iTrunk;
5888     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5889     u32 nSearch = 0;   /* Count of the number of search attempts */
5890 
5891     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5892     ** shows that the page 'nearby' is somewhere on the free-list, then
5893     ** the entire-list will be searched for that page.
5894     */
5895 #ifndef SQLITE_OMIT_AUTOVACUUM
5896     if( eMode==BTALLOC_EXACT ){
5897       if( nearby<=mxPage ){
5898         u8 eType;
5899         assert( nearby>0 );
5900         assert( pBt->autoVacuum );
5901         rc = ptrmapGet(pBt, nearby, &eType, 0);
5902         if( rc ) return rc;
5903         if( eType==PTRMAP_FREEPAGE ){
5904           searchList = 1;
5905         }
5906       }
5907     }else if( eMode==BTALLOC_LE ){
5908       searchList = 1;
5909     }
5910 #endif
5911 
5912     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5913     ** first free-list trunk page. iPrevTrunk is initially 1.
5914     */
5915     rc = sqlite3PagerWrite(pPage1->pDbPage);
5916     if( rc ) return rc;
5917     put4byte(&pPage1->aData[36], n-1);
5918 
5919     /* The code within this loop is run only once if the 'searchList' variable
5920     ** is not true. Otherwise, it runs once for each trunk-page on the
5921     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5922     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5923     */
5924     do {
5925       pPrevTrunk = pTrunk;
5926       if( pPrevTrunk ){
5927         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5928         ** is the page number of the next freelist trunk page in the list or
5929         ** zero if this is the last freelist trunk page. */
5930         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5931       }else{
5932         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5933         ** stores the page number of the first page of the freelist, or zero if
5934         ** the freelist is empty. */
5935         iTrunk = get4byte(&pPage1->aData[32]);
5936       }
5937       testcase( iTrunk==mxPage );
5938       if( iTrunk>mxPage || nSearch++ > n ){
5939         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
5940       }else{
5941         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5942       }
5943       if( rc ){
5944         pTrunk = 0;
5945         goto end_allocate_page;
5946       }
5947       assert( pTrunk!=0 );
5948       assert( pTrunk->aData!=0 );
5949       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5950       ** is the number of leaf page pointers to follow. */
5951       k = get4byte(&pTrunk->aData[4]);
5952       if( k==0 && !searchList ){
5953         /* The trunk has no leaves and the list is not being searched.
5954         ** So extract the trunk page itself and use it as the newly
5955         ** allocated page */
5956         assert( pPrevTrunk==0 );
5957         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5958         if( rc ){
5959           goto end_allocate_page;
5960         }
5961         *pPgno = iTrunk;
5962         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5963         *ppPage = pTrunk;
5964         pTrunk = 0;
5965         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5966       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5967         /* Value of k is out of range.  Database corruption */
5968         rc = SQLITE_CORRUPT_PGNO(iTrunk);
5969         goto end_allocate_page;
5970 #ifndef SQLITE_OMIT_AUTOVACUUM
5971       }else if( searchList
5972             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5973       ){
5974         /* The list is being searched and this trunk page is the page
5975         ** to allocate, regardless of whether it has leaves.
5976         */
5977         *pPgno = iTrunk;
5978         *ppPage = pTrunk;
5979         searchList = 0;
5980         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5981         if( rc ){
5982           goto end_allocate_page;
5983         }
5984         if( k==0 ){
5985           if( !pPrevTrunk ){
5986             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5987           }else{
5988             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5989             if( rc!=SQLITE_OK ){
5990               goto end_allocate_page;
5991             }
5992             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5993           }
5994         }else{
5995           /* The trunk page is required by the caller but it contains
5996           ** pointers to free-list leaves. The first leaf becomes a trunk
5997           ** page in this case.
5998           */
5999           MemPage *pNewTrunk;
6000           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6001           if( iNewTrunk>mxPage ){
6002             rc = SQLITE_CORRUPT_PGNO(iTrunk);
6003             goto end_allocate_page;
6004           }
6005           testcase( iNewTrunk==mxPage );
6006           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6007           if( rc!=SQLITE_OK ){
6008             goto end_allocate_page;
6009           }
6010           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6011           if( rc!=SQLITE_OK ){
6012             releasePage(pNewTrunk);
6013             goto end_allocate_page;
6014           }
6015           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6016           put4byte(&pNewTrunk->aData[4], k-1);
6017           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6018           releasePage(pNewTrunk);
6019           if( !pPrevTrunk ){
6020             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6021             put4byte(&pPage1->aData[32], iNewTrunk);
6022           }else{
6023             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6024             if( rc ){
6025               goto end_allocate_page;
6026             }
6027             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6028           }
6029         }
6030         pTrunk = 0;
6031         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6032 #endif
6033       }else if( k>0 ){
6034         /* Extract a leaf from the trunk */
6035         u32 closest;
6036         Pgno iPage;
6037         unsigned char *aData = pTrunk->aData;
6038         if( nearby>0 ){
6039           u32 i;
6040           closest = 0;
6041           if( eMode==BTALLOC_LE ){
6042             for(i=0; i<k; i++){
6043               iPage = get4byte(&aData[8+i*4]);
6044               if( iPage<=nearby ){
6045                 closest = i;
6046                 break;
6047               }
6048             }
6049           }else{
6050             int dist;
6051             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6052             for(i=1; i<k; i++){
6053               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6054               if( d2<dist ){
6055                 closest = i;
6056                 dist = d2;
6057               }
6058             }
6059           }
6060         }else{
6061           closest = 0;
6062         }
6063 
6064         iPage = get4byte(&aData[8+closest*4]);
6065         testcase( iPage==mxPage );
6066         if( iPage>mxPage ){
6067           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6068           goto end_allocate_page;
6069         }
6070         testcase( iPage==mxPage );
6071         if( !searchList
6072          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6073         ){
6074           int noContent;
6075           *pPgno = iPage;
6076           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6077                  ": %d more free pages\n",
6078                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6079           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6080           if( rc ) goto end_allocate_page;
6081           if( closest<k-1 ){
6082             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6083           }
6084           put4byte(&aData[4], k-1);
6085           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6086           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6087           if( rc==SQLITE_OK ){
6088             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6089             if( rc!=SQLITE_OK ){
6090               releasePage(*ppPage);
6091               *ppPage = 0;
6092             }
6093           }
6094           searchList = 0;
6095         }
6096       }
6097       releasePage(pPrevTrunk);
6098       pPrevTrunk = 0;
6099     }while( searchList );
6100   }else{
6101     /* There are no pages on the freelist, so append a new page to the
6102     ** database image.
6103     **
6104     ** Normally, new pages allocated by this block can be requested from the
6105     ** pager layer with the 'no-content' flag set. This prevents the pager
6106     ** from trying to read the pages content from disk. However, if the
6107     ** current transaction has already run one or more incremental-vacuum
6108     ** steps, then the page we are about to allocate may contain content
6109     ** that is required in the event of a rollback. In this case, do
6110     ** not set the no-content flag. This causes the pager to load and journal
6111     ** the current page content before overwriting it.
6112     **
6113     ** Note that the pager will not actually attempt to load or journal
6114     ** content for any page that really does lie past the end of the database
6115     ** file on disk. So the effects of disabling the no-content optimization
6116     ** here are confined to those pages that lie between the end of the
6117     ** database image and the end of the database file.
6118     */
6119     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6120 
6121     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6122     if( rc ) return rc;
6123     pBt->nPage++;
6124     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6125 
6126 #ifndef SQLITE_OMIT_AUTOVACUUM
6127     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6128       /* If *pPgno refers to a pointer-map page, allocate two new pages
6129       ** at the end of the file instead of one. The first allocated page
6130       ** becomes a new pointer-map page, the second is used by the caller.
6131       */
6132       MemPage *pPg = 0;
6133       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6134       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6135       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6136       if( rc==SQLITE_OK ){
6137         rc = sqlite3PagerWrite(pPg->pDbPage);
6138         releasePage(pPg);
6139       }
6140       if( rc ) return rc;
6141       pBt->nPage++;
6142       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6143     }
6144 #endif
6145     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6146     *pPgno = pBt->nPage;
6147 
6148     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6149     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6150     if( rc ) return rc;
6151     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6152     if( rc!=SQLITE_OK ){
6153       releasePage(*ppPage);
6154       *ppPage = 0;
6155     }
6156     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6157   }
6158 
6159   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6160 
6161 end_allocate_page:
6162   releasePage(pTrunk);
6163   releasePage(pPrevTrunk);
6164   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6165   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6166   return rc;
6167 }
6168 
6169 /*
6170 ** This function is used to add page iPage to the database file free-list.
6171 ** It is assumed that the page is not already a part of the free-list.
6172 **
6173 ** The value passed as the second argument to this function is optional.
6174 ** If the caller happens to have a pointer to the MemPage object
6175 ** corresponding to page iPage handy, it may pass it as the second value.
6176 ** Otherwise, it may pass NULL.
6177 **
6178 ** If a pointer to a MemPage object is passed as the second argument,
6179 ** its reference count is not altered by this function.
6180 */
6181 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6182   MemPage *pTrunk = 0;                /* Free-list trunk page */
6183   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6184   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6185   MemPage *pPage;                     /* Page being freed. May be NULL. */
6186   int rc;                             /* Return Code */
6187   u32 nFree;                          /* Initial number of pages on free-list */
6188 
6189   assert( sqlite3_mutex_held(pBt->mutex) );
6190   assert( CORRUPT_DB || iPage>1 );
6191   assert( !pMemPage || pMemPage->pgno==iPage );
6192 
6193   if( iPage<2 || iPage>pBt->nPage ){
6194     return SQLITE_CORRUPT_BKPT;
6195   }
6196   if( pMemPage ){
6197     pPage = pMemPage;
6198     sqlite3PagerRef(pPage->pDbPage);
6199   }else{
6200     pPage = btreePageLookup(pBt, iPage);
6201   }
6202 
6203   /* Increment the free page count on pPage1 */
6204   rc = sqlite3PagerWrite(pPage1->pDbPage);
6205   if( rc ) goto freepage_out;
6206   nFree = get4byte(&pPage1->aData[36]);
6207   put4byte(&pPage1->aData[36], nFree+1);
6208 
6209   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6210     /* If the secure_delete option is enabled, then
6211     ** always fully overwrite deleted information with zeros.
6212     */
6213     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6214      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6215     ){
6216       goto freepage_out;
6217     }
6218     memset(pPage->aData, 0, pPage->pBt->pageSize);
6219   }
6220 
6221   /* If the database supports auto-vacuum, write an entry in the pointer-map
6222   ** to indicate that the page is free.
6223   */
6224   if( ISAUTOVACUUM ){
6225     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6226     if( rc ) goto freepage_out;
6227   }
6228 
6229   /* Now manipulate the actual database free-list structure. There are two
6230   ** possibilities. If the free-list is currently empty, or if the first
6231   ** trunk page in the free-list is full, then this page will become a
6232   ** new free-list trunk page. Otherwise, it will become a leaf of the
6233   ** first trunk page in the current free-list. This block tests if it
6234   ** is possible to add the page as a new free-list leaf.
6235   */
6236   if( nFree!=0 ){
6237     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6238 
6239     iTrunk = get4byte(&pPage1->aData[32]);
6240     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6241     if( rc!=SQLITE_OK ){
6242       goto freepage_out;
6243     }
6244 
6245     nLeaf = get4byte(&pTrunk->aData[4]);
6246     assert( pBt->usableSize>32 );
6247     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6248       rc = SQLITE_CORRUPT_BKPT;
6249       goto freepage_out;
6250     }
6251     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6252       /* In this case there is room on the trunk page to insert the page
6253       ** being freed as a new leaf.
6254       **
6255       ** Note that the trunk page is not really full until it contains
6256       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6257       ** coded.  But due to a coding error in versions of SQLite prior to
6258       ** 3.6.0, databases with freelist trunk pages holding more than
6259       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6260       ** to maintain backwards compatibility with older versions of SQLite,
6261       ** we will continue to restrict the number of entries to usableSize/4 - 8
6262       ** for now.  At some point in the future (once everyone has upgraded
6263       ** to 3.6.0 or later) we should consider fixing the conditional above
6264       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6265       **
6266       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6267       ** avoid using the last six entries in the freelist trunk page array in
6268       ** order that database files created by newer versions of SQLite can be
6269       ** read by older versions of SQLite.
6270       */
6271       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6272       if( rc==SQLITE_OK ){
6273         put4byte(&pTrunk->aData[4], nLeaf+1);
6274         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6275         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6276           sqlite3PagerDontWrite(pPage->pDbPage);
6277         }
6278         rc = btreeSetHasContent(pBt, iPage);
6279       }
6280       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6281       goto freepage_out;
6282     }
6283   }
6284 
6285   /* If control flows to this point, then it was not possible to add the
6286   ** the page being freed as a leaf page of the first trunk in the free-list.
6287   ** Possibly because the free-list is empty, or possibly because the
6288   ** first trunk in the free-list is full. Either way, the page being freed
6289   ** will become the new first trunk page in the free-list.
6290   */
6291   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6292     goto freepage_out;
6293   }
6294   rc = sqlite3PagerWrite(pPage->pDbPage);
6295   if( rc!=SQLITE_OK ){
6296     goto freepage_out;
6297   }
6298   put4byte(pPage->aData, iTrunk);
6299   put4byte(&pPage->aData[4], 0);
6300   put4byte(&pPage1->aData[32], iPage);
6301   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6302 
6303 freepage_out:
6304   if( pPage ){
6305     pPage->isInit = 0;
6306   }
6307   releasePage(pPage);
6308   releasePage(pTrunk);
6309   return rc;
6310 }
6311 static void freePage(MemPage *pPage, int *pRC){
6312   if( (*pRC)==SQLITE_OK ){
6313     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6314   }
6315 }
6316 
6317 /*
6318 ** Free any overflow pages associated with the given Cell.  Store
6319 ** size information about the cell in pInfo.
6320 */
6321 static int clearCell(
6322   MemPage *pPage,          /* The page that contains the Cell */
6323   unsigned char *pCell,    /* First byte of the Cell */
6324   CellInfo *pInfo          /* Size information about the cell */
6325 ){
6326   BtShared *pBt;
6327   Pgno ovflPgno;
6328   int rc;
6329   int nOvfl;
6330   u32 ovflPageSize;
6331 
6332   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6333   pPage->xParseCell(pPage, pCell, pInfo);
6334   if( pInfo->nLocal==pInfo->nPayload ){
6335     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
6336   }
6337   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6338   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6339   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6340     /* Cell extends past end of page */
6341     return SQLITE_CORRUPT_PAGE(pPage);
6342   }
6343   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6344   pBt = pPage->pBt;
6345   assert( pBt->usableSize > 4 );
6346   ovflPageSize = pBt->usableSize - 4;
6347   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6348   assert( nOvfl>0 ||
6349     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6350   );
6351   while( nOvfl-- ){
6352     Pgno iNext = 0;
6353     MemPage *pOvfl = 0;
6354     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6355       /* 0 is not a legal page number and page 1 cannot be an
6356       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6357       ** file the database must be corrupt. */
6358       return SQLITE_CORRUPT_BKPT;
6359     }
6360     if( nOvfl ){
6361       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6362       if( rc ) return rc;
6363     }
6364 
6365     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6366      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6367     ){
6368       /* There is no reason any cursor should have an outstanding reference
6369       ** to an overflow page belonging to a cell that is being deleted/updated.
6370       ** So if there exists more than one reference to this page, then it
6371       ** must not really be an overflow page and the database must be corrupt.
6372       ** It is helpful to detect this before calling freePage2(), as
6373       ** freePage2() may zero the page contents if secure-delete mode is
6374       ** enabled. If this 'overflow' page happens to be a page that the
6375       ** caller is iterating through or using in some other way, this
6376       ** can be problematic.
6377       */
6378       rc = SQLITE_CORRUPT_BKPT;
6379     }else{
6380       rc = freePage2(pBt, pOvfl, ovflPgno);
6381     }
6382 
6383     if( pOvfl ){
6384       sqlite3PagerUnref(pOvfl->pDbPage);
6385     }
6386     if( rc ) return rc;
6387     ovflPgno = iNext;
6388   }
6389   return SQLITE_OK;
6390 }
6391 
6392 /*
6393 ** Create the byte sequence used to represent a cell on page pPage
6394 ** and write that byte sequence into pCell[].  Overflow pages are
6395 ** allocated and filled in as necessary.  The calling procedure
6396 ** is responsible for making sure sufficient space has been allocated
6397 ** for pCell[].
6398 **
6399 ** Note that pCell does not necessary need to point to the pPage->aData
6400 ** area.  pCell might point to some temporary storage.  The cell will
6401 ** be constructed in this temporary area then copied into pPage->aData
6402 ** later.
6403 */
6404 static int fillInCell(
6405   MemPage *pPage,                /* The page that contains the cell */
6406   unsigned char *pCell,          /* Complete text of the cell */
6407   const BtreePayload *pX,        /* Payload with which to construct the cell */
6408   int *pnSize                    /* Write cell size here */
6409 ){
6410   int nPayload;
6411   const u8 *pSrc;
6412   int nSrc, n, rc, mn;
6413   int spaceLeft;
6414   MemPage *pToRelease;
6415   unsigned char *pPrior;
6416   unsigned char *pPayload;
6417   BtShared *pBt;
6418   Pgno pgnoOvfl;
6419   int nHeader;
6420 
6421   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6422 
6423   /* pPage is not necessarily writeable since pCell might be auxiliary
6424   ** buffer space that is separate from the pPage buffer area */
6425   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6426             || sqlite3PagerIswriteable(pPage->pDbPage) );
6427 
6428   /* Fill in the header. */
6429   nHeader = pPage->childPtrSize;
6430   if( pPage->intKey ){
6431     nPayload = pX->nData + pX->nZero;
6432     pSrc = pX->pData;
6433     nSrc = pX->nData;
6434     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6435     nHeader += putVarint32(&pCell[nHeader], nPayload);
6436     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6437   }else{
6438     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6439     nSrc = nPayload = (int)pX->nKey;
6440     pSrc = pX->pKey;
6441     nHeader += putVarint32(&pCell[nHeader], nPayload);
6442   }
6443 
6444   /* Fill in the payload */
6445   pPayload = &pCell[nHeader];
6446   if( nPayload<=pPage->maxLocal ){
6447     /* This is the common case where everything fits on the btree page
6448     ** and no overflow pages are required. */
6449     n = nHeader + nPayload;
6450     testcase( n==3 );
6451     testcase( n==4 );
6452     if( n<4 ) n = 4;
6453     *pnSize = n;
6454     assert( nSrc<=nPayload );
6455     testcase( nSrc<nPayload );
6456     memcpy(pPayload, pSrc, nSrc);
6457     memset(pPayload+nSrc, 0, nPayload-nSrc);
6458     return SQLITE_OK;
6459   }
6460 
6461   /* If we reach this point, it means that some of the content will need
6462   ** to spill onto overflow pages.
6463   */
6464   mn = pPage->minLocal;
6465   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6466   testcase( n==pPage->maxLocal );
6467   testcase( n==pPage->maxLocal+1 );
6468   if( n > pPage->maxLocal ) n = mn;
6469   spaceLeft = n;
6470   *pnSize = n + nHeader + 4;
6471   pPrior = &pCell[nHeader+n];
6472   pToRelease = 0;
6473   pgnoOvfl = 0;
6474   pBt = pPage->pBt;
6475 
6476   /* At this point variables should be set as follows:
6477   **
6478   **   nPayload           Total payload size in bytes
6479   **   pPayload           Begin writing payload here
6480   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6481   **                      that means content must spill into overflow pages.
6482   **   *pnSize            Size of the local cell (not counting overflow pages)
6483   **   pPrior             Where to write the pgno of the first overflow page
6484   **
6485   ** Use a call to btreeParseCellPtr() to verify that the values above
6486   ** were computed correctly.
6487   */
6488 #ifdef SQLITE_DEBUG
6489   {
6490     CellInfo info;
6491     pPage->xParseCell(pPage, pCell, &info);
6492     assert( nHeader==(int)(info.pPayload - pCell) );
6493     assert( info.nKey==pX->nKey );
6494     assert( *pnSize == info.nSize );
6495     assert( spaceLeft == info.nLocal );
6496   }
6497 #endif
6498 
6499   /* Write the payload into the local Cell and any extra into overflow pages */
6500   while( 1 ){
6501     n = nPayload;
6502     if( n>spaceLeft ) n = spaceLeft;
6503 
6504     /* If pToRelease is not zero than pPayload points into the data area
6505     ** of pToRelease.  Make sure pToRelease is still writeable. */
6506     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6507 
6508     /* If pPayload is part of the data area of pPage, then make sure pPage
6509     ** is still writeable */
6510     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6511             || sqlite3PagerIswriteable(pPage->pDbPage) );
6512 
6513     if( nSrc>=n ){
6514       memcpy(pPayload, pSrc, n);
6515     }else if( nSrc>0 ){
6516       n = nSrc;
6517       memcpy(pPayload, pSrc, n);
6518     }else{
6519       memset(pPayload, 0, n);
6520     }
6521     nPayload -= n;
6522     if( nPayload<=0 ) break;
6523     pPayload += n;
6524     pSrc += n;
6525     nSrc -= n;
6526     spaceLeft -= n;
6527     if( spaceLeft==0 ){
6528       MemPage *pOvfl = 0;
6529 #ifndef SQLITE_OMIT_AUTOVACUUM
6530       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6531       if( pBt->autoVacuum ){
6532         do{
6533           pgnoOvfl++;
6534         } while(
6535           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6536         );
6537       }
6538 #endif
6539       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6540 #ifndef SQLITE_OMIT_AUTOVACUUM
6541       /* If the database supports auto-vacuum, and the second or subsequent
6542       ** overflow page is being allocated, add an entry to the pointer-map
6543       ** for that page now.
6544       **
6545       ** If this is the first overflow page, then write a partial entry
6546       ** to the pointer-map. If we write nothing to this pointer-map slot,
6547       ** then the optimistic overflow chain processing in clearCell()
6548       ** may misinterpret the uninitialized values and delete the
6549       ** wrong pages from the database.
6550       */
6551       if( pBt->autoVacuum && rc==SQLITE_OK ){
6552         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6553         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6554         if( rc ){
6555           releasePage(pOvfl);
6556         }
6557       }
6558 #endif
6559       if( rc ){
6560         releasePage(pToRelease);
6561         return rc;
6562       }
6563 
6564       /* If pToRelease is not zero than pPrior points into the data area
6565       ** of pToRelease.  Make sure pToRelease is still writeable. */
6566       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6567 
6568       /* If pPrior is part of the data area of pPage, then make sure pPage
6569       ** is still writeable */
6570       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6571             || sqlite3PagerIswriteable(pPage->pDbPage) );
6572 
6573       put4byte(pPrior, pgnoOvfl);
6574       releasePage(pToRelease);
6575       pToRelease = pOvfl;
6576       pPrior = pOvfl->aData;
6577       put4byte(pPrior, 0);
6578       pPayload = &pOvfl->aData[4];
6579       spaceLeft = pBt->usableSize - 4;
6580     }
6581   }
6582   releasePage(pToRelease);
6583   return SQLITE_OK;
6584 }
6585 
6586 /*
6587 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6588 ** The cell content is not freed or deallocated.  It is assumed that
6589 ** the cell content has been copied someplace else.  This routine just
6590 ** removes the reference to the cell from pPage.
6591 **
6592 ** "sz" must be the number of bytes in the cell.
6593 */
6594 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6595   u32 pc;         /* Offset to cell content of cell being deleted */
6596   u8 *data;       /* pPage->aData */
6597   u8 *ptr;        /* Used to move bytes around within data[] */
6598   int rc;         /* The return code */
6599   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6600 
6601   if( *pRC ) return;
6602   assert( idx>=0 && idx<pPage->nCell );
6603   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6604   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6605   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6606   assert( pPage->nFree>=0 );
6607   data = pPage->aData;
6608   ptr = &pPage->aCellIdx[2*idx];
6609   pc = get2byte(ptr);
6610   hdr = pPage->hdrOffset;
6611   testcase( pc==get2byte(&data[hdr+5]) );
6612   testcase( pc+sz==pPage->pBt->usableSize );
6613   if( pc+sz > pPage->pBt->usableSize ){
6614     *pRC = SQLITE_CORRUPT_BKPT;
6615     return;
6616   }
6617   rc = freeSpace(pPage, pc, sz);
6618   if( rc ){
6619     *pRC = rc;
6620     return;
6621   }
6622   pPage->nCell--;
6623   if( pPage->nCell==0 ){
6624     memset(&data[hdr+1], 0, 4);
6625     data[hdr+7] = 0;
6626     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6627     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6628                        - pPage->childPtrSize - 8;
6629   }else{
6630     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6631     put2byte(&data[hdr+3], pPage->nCell);
6632     pPage->nFree += 2;
6633   }
6634 }
6635 
6636 /*
6637 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6638 ** content of the cell.
6639 **
6640 ** If the cell content will fit on the page, then put it there.  If it
6641 ** will not fit, then make a copy of the cell content into pTemp if
6642 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6643 ** in pPage->apOvfl[] and make it point to the cell content (either
6644 ** in pTemp or the original pCell) and also record its index.
6645 ** Allocating a new entry in pPage->aCell[] implies that
6646 ** pPage->nOverflow is incremented.
6647 **
6648 ** *pRC must be SQLITE_OK when this routine is called.
6649 */
6650 static void insertCell(
6651   MemPage *pPage,   /* Page into which we are copying */
6652   int i,            /* New cell becomes the i-th cell of the page */
6653   u8 *pCell,        /* Content of the new cell */
6654   int sz,           /* Bytes of content in pCell */
6655   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6656   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6657   int *pRC          /* Read and write return code from here */
6658 ){
6659   int idx = 0;      /* Where to write new cell content in data[] */
6660   int j;            /* Loop counter */
6661   u8 *data;         /* The content of the whole page */
6662   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6663 
6664   assert( *pRC==SQLITE_OK );
6665   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6666   assert( MX_CELL(pPage->pBt)<=10921 );
6667   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6668   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6669   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6670   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6671   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
6672   assert( pPage->nFree>=0 );
6673   if( pPage->nOverflow || sz+2>pPage->nFree ){
6674     if( pTemp ){
6675       memcpy(pTemp, pCell, sz);
6676       pCell = pTemp;
6677     }
6678     if( iChild ){
6679       put4byte(pCell, iChild);
6680     }
6681     j = pPage->nOverflow++;
6682     /* Comparison against ArraySize-1 since we hold back one extra slot
6683     ** as a contingency.  In other words, never need more than 3 overflow
6684     ** slots but 4 are allocated, just to be safe. */
6685     assert( j < ArraySize(pPage->apOvfl)-1 );
6686     pPage->apOvfl[j] = pCell;
6687     pPage->aiOvfl[j] = (u16)i;
6688 
6689     /* When multiple overflows occur, they are always sequential and in
6690     ** sorted order.  This invariants arise because multiple overflows can
6691     ** only occur when inserting divider cells into the parent page during
6692     ** balancing, and the dividers are adjacent and sorted.
6693     */
6694     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6695     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6696   }else{
6697     int rc = sqlite3PagerWrite(pPage->pDbPage);
6698     if( rc!=SQLITE_OK ){
6699       *pRC = rc;
6700       return;
6701     }
6702     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6703     data = pPage->aData;
6704     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6705     rc = allocateSpace(pPage, sz, &idx);
6706     if( rc ){ *pRC = rc; return; }
6707     /* The allocateSpace() routine guarantees the following properties
6708     ** if it returns successfully */
6709     assert( idx >= 0 );
6710     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6711     assert( idx+sz <= (int)pPage->pBt->usableSize );
6712     pPage->nFree -= (u16)(2 + sz);
6713     if( iChild ){
6714       /* In a corrupt database where an entry in the cell index section of
6715       ** a btree page has a value of 3 or less, the pCell value might point
6716       ** as many as 4 bytes in front of the start of the aData buffer for
6717       ** the source page.  Make sure this does not cause problems by not
6718       ** reading the first 4 bytes */
6719       memcpy(&data[idx+4], pCell+4, sz-4);
6720       put4byte(&data[idx], iChild);
6721     }else{
6722       memcpy(&data[idx], pCell, sz);
6723     }
6724     pIns = pPage->aCellIdx + i*2;
6725     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6726     put2byte(pIns, idx);
6727     pPage->nCell++;
6728     /* increment the cell count */
6729     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6730     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
6731 #ifndef SQLITE_OMIT_AUTOVACUUM
6732     if( pPage->pBt->autoVacuum ){
6733       /* The cell may contain a pointer to an overflow page. If so, write
6734       ** the entry for the overflow page into the pointer map.
6735       */
6736       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
6737     }
6738 #endif
6739   }
6740 }
6741 
6742 /*
6743 ** The following parameters determine how many adjacent pages get involved
6744 ** in a balancing operation.  NN is the number of neighbors on either side
6745 ** of the page that participate in the balancing operation.  NB is the
6746 ** total number of pages that participate, including the target page and
6747 ** NN neighbors on either side.
6748 **
6749 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6750 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6751 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6752 ** The value of NN appears to give the best results overall.
6753 **
6754 ** (Later:) The description above makes it seem as if these values are
6755 ** tunable - as if you could change them and recompile and it would all work.
6756 ** But that is unlikely.  NB has been 3 since the inception of SQLite and
6757 ** we have never tested any other value.
6758 */
6759 #define NN 1             /* Number of neighbors on either side of pPage */
6760 #define NB 3             /* (NN*2+1): Total pages involved in the balance */
6761 
6762 /*
6763 ** A CellArray object contains a cache of pointers and sizes for a
6764 ** consecutive sequence of cells that might be held on multiple pages.
6765 **
6766 ** The cells in this array are the divider cell or cells from the pParent
6767 ** page plus up to three child pages.  There are a total of nCell cells.
6768 **
6769 ** pRef is a pointer to one of the pages that contributes cells.  This is
6770 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6771 ** which should be common to all pages that contribute cells to this array.
6772 **
6773 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
6774 ** cell and the size of each cell.  Some of the apCell[] pointers might refer
6775 ** to overflow cells.  In other words, some apCel[] pointers might not point
6776 ** to content area of the pages.
6777 **
6778 ** A szCell[] of zero means the size of that cell has not yet been computed.
6779 **
6780 ** The cells come from as many as four different pages:
6781 **
6782 **             -----------
6783 **             | Parent  |
6784 **             -----------
6785 **            /     |     \
6786 **           /      |      \
6787 **  ---------   ---------   ---------
6788 **  |Child-1|   |Child-2|   |Child-3|
6789 **  ---------   ---------   ---------
6790 **
6791 ** The order of cells is in the array is for an index btree is:
6792 **
6793 **       1.  All cells from Child-1 in order
6794 **       2.  The first divider cell from Parent
6795 **       3.  All cells from Child-2 in order
6796 **       4.  The second divider cell from Parent
6797 **       5.  All cells from Child-3 in order
6798 **
6799 ** For a table-btree (with rowids) the items 2 and 4 are empty because
6800 ** content exists only in leaves and there are no divider cells.
6801 **
6802 ** For an index btree, the apEnd[] array holds pointer to the end of page
6803 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6804 ** respectively. The ixNx[] array holds the number of cells contained in
6805 ** each of these 5 stages, and all stages to the left.  Hence:
6806 **
6807 **    ixNx[0] = Number of cells in Child-1.
6808 **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6809 **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6810 **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6811 **    ixNx[4] = Total number of cells.
6812 **
6813 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6814 ** are used and they point to the leaf pages only, and the ixNx value are:
6815 **
6816 **    ixNx[0] = Number of cells in Child-1.
6817 **    ixNx[1] = Number of cells in Child-1 and Child-2.
6818 **    ixNx[2] = Total number of cells.
6819 **
6820 ** Sometimes when deleting, a child page can have zero cells.  In those
6821 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6822 ** entries, shift down.  The end result is that each ixNx[] entry should
6823 ** be larger than the previous
6824 */
6825 typedef struct CellArray CellArray;
6826 struct CellArray {
6827   int nCell;              /* Number of cells in apCell[] */
6828   MemPage *pRef;          /* Reference page */
6829   u8 **apCell;            /* All cells begin balanced */
6830   u16 *szCell;            /* Local size of all cells in apCell[] */
6831   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */
6832   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */
6833 };
6834 
6835 /*
6836 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6837 ** computed.
6838 */
6839 static void populateCellCache(CellArray *p, int idx, int N){
6840   assert( idx>=0 && idx+N<=p->nCell );
6841   while( N>0 ){
6842     assert( p->apCell[idx]!=0 );
6843     if( p->szCell[idx]==0 ){
6844       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6845     }else{
6846       assert( CORRUPT_DB ||
6847               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6848     }
6849     idx++;
6850     N--;
6851   }
6852 }
6853 
6854 /*
6855 ** Return the size of the Nth element of the cell array
6856 */
6857 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6858   assert( N>=0 && N<p->nCell );
6859   assert( p->szCell[N]==0 );
6860   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6861   return p->szCell[N];
6862 }
6863 static u16 cachedCellSize(CellArray *p, int N){
6864   assert( N>=0 && N<p->nCell );
6865   if( p->szCell[N] ) return p->szCell[N];
6866   return computeCellSize(p, N);
6867 }
6868 
6869 /*
6870 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6871 ** szCell[] array contains the size in bytes of each cell. This function
6872 ** replaces the current contents of page pPg with the contents of the cell
6873 ** array.
6874 **
6875 ** Some of the cells in apCell[] may currently be stored in pPg. This
6876 ** function works around problems caused by this by making a copy of any
6877 ** such cells before overwriting the page data.
6878 **
6879 ** The MemPage.nFree field is invalidated by this function. It is the
6880 ** responsibility of the caller to set it correctly.
6881 */
6882 static int rebuildPage(
6883   CellArray *pCArray,             /* Content to be added to page pPg */
6884   int iFirst,                     /* First cell in pCArray to use */
6885   int nCell,                      /* Final number of cells on page */
6886   MemPage *pPg                    /* The page to be reconstructed */
6887 ){
6888   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6889   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6890   const int usableSize = pPg->pBt->usableSize;
6891   u8 * const pEnd = &aData[usableSize];
6892   int i = iFirst;                 /* Which cell to copy from pCArray*/
6893   u32 j;                          /* Start of cell content area */
6894   int iEnd = i+nCell;             /* Loop terminator */
6895   u8 *pCellptr = pPg->aCellIdx;
6896   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6897   u8 *pData;
6898   int k;                          /* Current slot in pCArray->apEnd[] */
6899   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */
6900 
6901   assert( i<iEnd );
6902   j = get2byte(&aData[hdr+5]);
6903   if( j>(u32)usableSize ){ j = 0; }
6904   memcpy(&pTmp[j], &aData[j], usableSize - j);
6905 
6906   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6907   pSrcEnd = pCArray->apEnd[k];
6908 
6909   pData = pEnd;
6910   while( 1/*exit by break*/ ){
6911     u8 *pCell = pCArray->apCell[i];
6912     u16 sz = pCArray->szCell[i];
6913     assert( sz>0 );
6914     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6915       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
6916       pCell = &pTmp[pCell - aData];
6917     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6918            && (uptr)(pCell)<(uptr)pSrcEnd
6919     ){
6920       return SQLITE_CORRUPT_BKPT;
6921     }
6922 
6923     pData -= sz;
6924     put2byte(pCellptr, (pData - aData));
6925     pCellptr += 2;
6926     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6927     memcpy(pData, pCell, sz);
6928     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6929     testcase( sz!=pPg->xCellSize(pPg,pCell) );
6930     i++;
6931     if( i>=iEnd ) break;
6932     if( pCArray->ixNx[k]<=i ){
6933       k++;
6934       pSrcEnd = pCArray->apEnd[k];
6935     }
6936   }
6937 
6938   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6939   pPg->nCell = nCell;
6940   pPg->nOverflow = 0;
6941 
6942   put2byte(&aData[hdr+1], 0);
6943   put2byte(&aData[hdr+3], pPg->nCell);
6944   put2byte(&aData[hdr+5], pData - aData);
6945   aData[hdr+7] = 0x00;
6946   return SQLITE_OK;
6947 }
6948 
6949 /*
6950 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
6951 ** This function attempts to add the cells stored in the array to page pPg.
6952 ** If it cannot (because the page needs to be defragmented before the cells
6953 ** will fit), non-zero is returned. Otherwise, if the cells are added
6954 ** successfully, zero is returned.
6955 **
6956 ** Argument pCellptr points to the first entry in the cell-pointer array
6957 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6958 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6959 ** cell in the array. It is the responsibility of the caller to ensure
6960 ** that it is safe to overwrite this part of the cell-pointer array.
6961 **
6962 ** When this function is called, *ppData points to the start of the
6963 ** content area on page pPg. If the size of the content area is extended,
6964 ** *ppData is updated to point to the new start of the content area
6965 ** before returning.
6966 **
6967 ** Finally, argument pBegin points to the byte immediately following the
6968 ** end of the space required by this page for the cell-pointer area (for
6969 ** all cells - not just those inserted by the current call). If the content
6970 ** area must be extended to before this point in order to accomodate all
6971 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6972 */
6973 static int pageInsertArray(
6974   MemPage *pPg,                   /* Page to add cells to */
6975   u8 *pBegin,                     /* End of cell-pointer array */
6976   u8 **ppData,                    /* IN/OUT: Page content-area pointer */
6977   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6978   int iFirst,                     /* Index of first cell to add */
6979   int nCell,                      /* Number of cells to add to pPg */
6980   CellArray *pCArray              /* Array of cells */
6981 ){
6982   int i = iFirst;                 /* Loop counter - cell index to insert */
6983   u8 *aData = pPg->aData;         /* Complete page */
6984   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */
6985   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */
6986   int k;                          /* Current slot in pCArray->apEnd[] */
6987   u8 *pEnd;                       /* Maximum extent of cell data */
6988   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
6989   if( iEnd<=iFirst ) return 0;
6990   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6991   pEnd = pCArray->apEnd[k];
6992   while( 1 /*Exit by break*/ ){
6993     int sz, rc;
6994     u8 *pSlot;
6995     sz = cachedCellSize(pCArray, i);
6996     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6997       if( (pData - pBegin)<sz ) return 1;
6998       pData -= sz;
6999       pSlot = pData;
7000     }
7001     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7002     ** database.  But they might for a corrupt database.  Hence use memmove()
7003     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7004     assert( (pSlot+sz)<=pCArray->apCell[i]
7005          || pSlot>=(pCArray->apCell[i]+sz)
7006          || CORRUPT_DB );
7007     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7008      && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7009     ){
7010       assert( CORRUPT_DB );
7011       (void)SQLITE_CORRUPT_BKPT;
7012       return 1;
7013     }
7014     memmove(pSlot, pCArray->apCell[i], sz);
7015     put2byte(pCellptr, (pSlot - aData));
7016     pCellptr += 2;
7017     i++;
7018     if( i>=iEnd ) break;
7019     if( pCArray->ixNx[k]<=i ){
7020       k++;
7021       pEnd = pCArray->apEnd[k];
7022     }
7023   }
7024   *ppData = pData;
7025   return 0;
7026 }
7027 
7028 /*
7029 ** The pCArray object contains pointers to b-tree cells and their sizes.
7030 **
7031 ** This function adds the space associated with each cell in the array
7032 ** that is currently stored within the body of pPg to the pPg free-list.
7033 ** The cell-pointers and other fields of the page are not updated.
7034 **
7035 ** This function returns the total number of cells added to the free-list.
7036 */
7037 static int pageFreeArray(
7038   MemPage *pPg,                   /* Page to edit */
7039   int iFirst,                     /* First cell to delete */
7040   int nCell,                      /* Cells to delete */
7041   CellArray *pCArray              /* Array of cells */
7042 ){
7043   u8 * const aData = pPg->aData;
7044   u8 * const pEnd = &aData[pPg->pBt->usableSize];
7045   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7046   int nRet = 0;
7047   int i;
7048   int iEnd = iFirst + nCell;
7049   u8 *pFree = 0;
7050   int szFree = 0;
7051 
7052   for(i=iFirst; i<iEnd; i++){
7053     u8 *pCell = pCArray->apCell[i];
7054     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7055       int sz;
7056       /* No need to use cachedCellSize() here.  The sizes of all cells that
7057       ** are to be freed have already been computing while deciding which
7058       ** cells need freeing */
7059       sz = pCArray->szCell[i];  assert( sz>0 );
7060       if( pFree!=(pCell + sz) ){
7061         if( pFree ){
7062           assert( pFree>aData && (pFree - aData)<65536 );
7063           freeSpace(pPg, (u16)(pFree - aData), szFree);
7064         }
7065         pFree = pCell;
7066         szFree = sz;
7067         if( pFree+sz>pEnd ) return 0;
7068       }else{
7069         pFree = pCell;
7070         szFree += sz;
7071       }
7072       nRet++;
7073     }
7074   }
7075   if( pFree ){
7076     assert( pFree>aData && (pFree - aData)<65536 );
7077     freeSpace(pPg, (u16)(pFree - aData), szFree);
7078   }
7079   return nRet;
7080 }
7081 
7082 /*
7083 ** pCArray contains pointers to and sizes of all cells in the page being
7084 ** balanced.  The current page, pPg, has pPg->nCell cells starting with
7085 ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells
7086 ** starting at apCell[iNew].
7087 **
7088 ** This routine makes the necessary adjustments to pPg so that it contains
7089 ** the correct cells after being balanced.
7090 **
7091 ** The pPg->nFree field is invalid when this function returns. It is the
7092 ** responsibility of the caller to set it correctly.
7093 */
7094 static int editPage(
7095   MemPage *pPg,                   /* Edit this page */
7096   int iOld,                       /* Index of first cell currently on page */
7097   int iNew,                       /* Index of new first cell on page */
7098   int nNew,                       /* Final number of cells on page */
7099   CellArray *pCArray              /* Array of cells and sizes */
7100 ){
7101   u8 * const aData = pPg->aData;
7102   const int hdr = pPg->hdrOffset;
7103   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7104   int nCell = pPg->nCell;       /* Cells stored on pPg */
7105   u8 *pData;
7106   u8 *pCellptr;
7107   int i;
7108   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7109   int iNewEnd = iNew + nNew;
7110 
7111 #ifdef SQLITE_DEBUG
7112   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7113   memcpy(pTmp, aData, pPg->pBt->usableSize);
7114 #endif
7115 
7116   /* Remove cells from the start and end of the page */
7117   assert( nCell>=0 );
7118   if( iOld<iNew ){
7119     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7120     if( nShift>nCell ) return SQLITE_CORRUPT_BKPT;
7121     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7122     nCell -= nShift;
7123   }
7124   if( iNewEnd < iOldEnd ){
7125     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7126     assert( nCell>=nTail );
7127     nCell -= nTail;
7128   }
7129 
7130   pData = &aData[get2byteNotZero(&aData[hdr+5])];
7131   if( pData<pBegin ) goto editpage_fail;
7132 
7133   /* Add cells to the start of the page */
7134   if( iNew<iOld ){
7135     int nAdd = MIN(nNew,iOld-iNew);
7136     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7137     assert( nAdd>=0 );
7138     pCellptr = pPg->aCellIdx;
7139     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7140     if( pageInsertArray(
7141           pPg, pBegin, &pData, pCellptr,
7142           iNew, nAdd, pCArray
7143     ) ) goto editpage_fail;
7144     nCell += nAdd;
7145   }
7146 
7147   /* Add any overflow cells */
7148   for(i=0; i<pPg->nOverflow; i++){
7149     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7150     if( iCell>=0 && iCell<nNew ){
7151       pCellptr = &pPg->aCellIdx[iCell * 2];
7152       if( nCell>iCell ){
7153         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7154       }
7155       nCell++;
7156       if( pageInsertArray(
7157             pPg, pBegin, &pData, pCellptr,
7158             iCell+iNew, 1, pCArray
7159       ) ) goto editpage_fail;
7160     }
7161   }
7162 
7163   /* Append cells to the end of the page */
7164   assert( nCell>=0 );
7165   pCellptr = &pPg->aCellIdx[nCell*2];
7166   if( pageInsertArray(
7167         pPg, pBegin, &pData, pCellptr,
7168         iNew+nCell, nNew-nCell, pCArray
7169   ) ) goto editpage_fail;
7170 
7171   pPg->nCell = nNew;
7172   pPg->nOverflow = 0;
7173 
7174   put2byte(&aData[hdr+3], pPg->nCell);
7175   put2byte(&aData[hdr+5], pData - aData);
7176 
7177 #ifdef SQLITE_DEBUG
7178   for(i=0; i<nNew && !CORRUPT_DB; i++){
7179     u8 *pCell = pCArray->apCell[i+iNew];
7180     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7181     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7182       pCell = &pTmp[pCell - aData];
7183     }
7184     assert( 0==memcmp(pCell, &aData[iOff],
7185             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7186   }
7187 #endif
7188 
7189   return SQLITE_OK;
7190  editpage_fail:
7191   /* Unable to edit this page. Rebuild it from scratch instead. */
7192   populateCellCache(pCArray, iNew, nNew);
7193   return rebuildPage(pCArray, iNew, nNew, pPg);
7194 }
7195 
7196 
7197 #ifndef SQLITE_OMIT_QUICKBALANCE
7198 /*
7199 ** This version of balance() handles the common special case where
7200 ** a new entry is being inserted on the extreme right-end of the
7201 ** tree, in other words, when the new entry will become the largest
7202 ** entry in the tree.
7203 **
7204 ** Instead of trying to balance the 3 right-most leaf pages, just add
7205 ** a new page to the right-hand side and put the one new entry in
7206 ** that page.  This leaves the right side of the tree somewhat
7207 ** unbalanced.  But odds are that we will be inserting new entries
7208 ** at the end soon afterwards so the nearly empty page will quickly
7209 ** fill up.  On average.
7210 **
7211 ** pPage is the leaf page which is the right-most page in the tree.
7212 ** pParent is its parent.  pPage must have a single overflow entry
7213 ** which is also the right-most entry on the page.
7214 **
7215 ** The pSpace buffer is used to store a temporary copy of the divider
7216 ** cell that will be inserted into pParent. Such a cell consists of a 4
7217 ** byte page number followed by a variable length integer. In other
7218 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7219 ** least 13 bytes in size.
7220 */
7221 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7222   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7223   MemPage *pNew;                       /* Newly allocated page */
7224   int rc;                              /* Return Code */
7225   Pgno pgnoNew;                        /* Page number of pNew */
7226 
7227   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7228   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7229   assert( pPage->nOverflow==1 );
7230 
7231   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7232   assert( pPage->nFree>=0 );
7233   assert( pParent->nFree>=0 );
7234 
7235   /* Allocate a new page. This page will become the right-sibling of
7236   ** pPage. Make the parent page writable, so that the new divider cell
7237   ** may be inserted. If both these operations are successful, proceed.
7238   */
7239   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7240 
7241   if( rc==SQLITE_OK ){
7242 
7243     u8 *pOut = &pSpace[4];
7244     u8 *pCell = pPage->apOvfl[0];
7245     u16 szCell = pPage->xCellSize(pPage, pCell);
7246     u8 *pStop;
7247     CellArray b;
7248 
7249     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7250     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7251     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7252     b.nCell = 1;
7253     b.pRef = pPage;
7254     b.apCell = &pCell;
7255     b.szCell = &szCell;
7256     b.apEnd[0] = pPage->aDataEnd;
7257     b.ixNx[0] = 2;
7258     rc = rebuildPage(&b, 0, 1, pNew);
7259     if( NEVER(rc) ){
7260       releasePage(pNew);
7261       return rc;
7262     }
7263     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7264 
7265     /* If this is an auto-vacuum database, update the pointer map
7266     ** with entries for the new page, and any pointer from the
7267     ** cell on the page to an overflow page. If either of these
7268     ** operations fails, the return code is set, but the contents
7269     ** of the parent page are still manipulated by thh code below.
7270     ** That is Ok, at this point the parent page is guaranteed to
7271     ** be marked as dirty. Returning an error code will cause a
7272     ** rollback, undoing any changes made to the parent page.
7273     */
7274     if( ISAUTOVACUUM ){
7275       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7276       if( szCell>pNew->minLocal ){
7277         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7278       }
7279     }
7280 
7281     /* Create a divider cell to insert into pParent. The divider cell
7282     ** consists of a 4-byte page number (the page number of pPage) and
7283     ** a variable length key value (which must be the same value as the
7284     ** largest key on pPage).
7285     **
7286     ** To find the largest key value on pPage, first find the right-most
7287     ** cell on pPage. The first two fields of this cell are the
7288     ** record-length (a variable length integer at most 32-bits in size)
7289     ** and the key value (a variable length integer, may have any value).
7290     ** The first of the while(...) loops below skips over the record-length
7291     ** field. The second while(...) loop copies the key value from the
7292     ** cell on pPage into the pSpace buffer.
7293     */
7294     pCell = findCell(pPage, pPage->nCell-1);
7295     pStop = &pCell[9];
7296     while( (*(pCell++)&0x80) && pCell<pStop );
7297     pStop = &pCell[9];
7298     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7299 
7300     /* Insert the new divider cell into pParent. */
7301     if( rc==SQLITE_OK ){
7302       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7303                    0, pPage->pgno, &rc);
7304     }
7305 
7306     /* Set the right-child pointer of pParent to point to the new page. */
7307     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7308 
7309     /* Release the reference to the new page. */
7310     releasePage(pNew);
7311   }
7312 
7313   return rc;
7314 }
7315 #endif /* SQLITE_OMIT_QUICKBALANCE */
7316 
7317 #if 0
7318 /*
7319 ** This function does not contribute anything to the operation of SQLite.
7320 ** it is sometimes activated temporarily while debugging code responsible
7321 ** for setting pointer-map entries.
7322 */
7323 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7324   int i, j;
7325   for(i=0; i<nPage; i++){
7326     Pgno n;
7327     u8 e;
7328     MemPage *pPage = apPage[i];
7329     BtShared *pBt = pPage->pBt;
7330     assert( pPage->isInit );
7331 
7332     for(j=0; j<pPage->nCell; j++){
7333       CellInfo info;
7334       u8 *z;
7335 
7336       z = findCell(pPage, j);
7337       pPage->xParseCell(pPage, z, &info);
7338       if( info.nLocal<info.nPayload ){
7339         Pgno ovfl = get4byte(&z[info.nSize-4]);
7340         ptrmapGet(pBt, ovfl, &e, &n);
7341         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7342       }
7343       if( !pPage->leaf ){
7344         Pgno child = get4byte(z);
7345         ptrmapGet(pBt, child, &e, &n);
7346         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7347       }
7348     }
7349     if( !pPage->leaf ){
7350       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7351       ptrmapGet(pBt, child, &e, &n);
7352       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7353     }
7354   }
7355   return 1;
7356 }
7357 #endif
7358 
7359 /*
7360 ** This function is used to copy the contents of the b-tree node stored
7361 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7362 ** the pointer-map entries for each child page are updated so that the
7363 ** parent page stored in the pointer map is page pTo. If pFrom contained
7364 ** any cells with overflow page pointers, then the corresponding pointer
7365 ** map entries are also updated so that the parent page is page pTo.
7366 **
7367 ** If pFrom is currently carrying any overflow cells (entries in the
7368 ** MemPage.apOvfl[] array), they are not copied to pTo.
7369 **
7370 ** Before returning, page pTo is reinitialized using btreeInitPage().
7371 **
7372 ** The performance of this function is not critical. It is only used by
7373 ** the balance_shallower() and balance_deeper() procedures, neither of
7374 ** which are called often under normal circumstances.
7375 */
7376 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7377   if( (*pRC)==SQLITE_OK ){
7378     BtShared * const pBt = pFrom->pBt;
7379     u8 * const aFrom = pFrom->aData;
7380     u8 * const aTo = pTo->aData;
7381     int const iFromHdr = pFrom->hdrOffset;
7382     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7383     int rc;
7384     int iData;
7385 
7386 
7387     assert( pFrom->isInit );
7388     assert( pFrom->nFree>=iToHdr );
7389     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7390 
7391     /* Copy the b-tree node content from page pFrom to page pTo. */
7392     iData = get2byte(&aFrom[iFromHdr+5]);
7393     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7394     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7395 
7396     /* Reinitialize page pTo so that the contents of the MemPage structure
7397     ** match the new data. The initialization of pTo can actually fail under
7398     ** fairly obscure circumstances, even though it is a copy of initialized
7399     ** page pFrom.
7400     */
7401     pTo->isInit = 0;
7402     rc = btreeInitPage(pTo);
7403     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7404     if( rc!=SQLITE_OK ){
7405       *pRC = rc;
7406       return;
7407     }
7408 
7409     /* If this is an auto-vacuum database, update the pointer-map entries
7410     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7411     */
7412     if( ISAUTOVACUUM ){
7413       *pRC = setChildPtrmaps(pTo);
7414     }
7415   }
7416 }
7417 
7418 /*
7419 ** This routine redistributes cells on the iParentIdx'th child of pParent
7420 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7421 ** same amount of free space. Usually a single sibling on either side of the
7422 ** page are used in the balancing, though both siblings might come from one
7423 ** side if the page is the first or last child of its parent. If the page
7424 ** has fewer than 2 siblings (something which can only happen if the page
7425 ** is a root page or a child of a root page) then all available siblings
7426 ** participate in the balancing.
7427 **
7428 ** The number of siblings of the page might be increased or decreased by
7429 ** one or two in an effort to keep pages nearly full but not over full.
7430 **
7431 ** Note that when this routine is called, some of the cells on the page
7432 ** might not actually be stored in MemPage.aData[]. This can happen
7433 ** if the page is overfull. This routine ensures that all cells allocated
7434 ** to the page and its siblings fit into MemPage.aData[] before returning.
7435 **
7436 ** In the course of balancing the page and its siblings, cells may be
7437 ** inserted into or removed from the parent page (pParent). Doing so
7438 ** may cause the parent page to become overfull or underfull. If this
7439 ** happens, it is the responsibility of the caller to invoke the correct
7440 ** balancing routine to fix this problem (see the balance() routine).
7441 **
7442 ** If this routine fails for any reason, it might leave the database
7443 ** in a corrupted state. So if this routine fails, the database should
7444 ** be rolled back.
7445 **
7446 ** The third argument to this function, aOvflSpace, is a pointer to a
7447 ** buffer big enough to hold one page. If while inserting cells into the parent
7448 ** page (pParent) the parent page becomes overfull, this buffer is
7449 ** used to store the parent's overflow cells. Because this function inserts
7450 ** a maximum of four divider cells into the parent page, and the maximum
7451 ** size of a cell stored within an internal node is always less than 1/4
7452 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7453 ** enough for all overflow cells.
7454 **
7455 ** If aOvflSpace is set to a null pointer, this function returns
7456 ** SQLITE_NOMEM.
7457 */
7458 static int balance_nonroot(
7459   MemPage *pParent,               /* Parent page of siblings being balanced */
7460   int iParentIdx,                 /* Index of "the page" in pParent */
7461   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7462   int isRoot,                     /* True if pParent is a root-page */
7463   int bBulk                       /* True if this call is part of a bulk load */
7464 ){
7465   BtShared *pBt;               /* The whole database */
7466   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7467   int nNew = 0;                /* Number of pages in apNew[] */
7468   int nOld;                    /* Number of pages in apOld[] */
7469   int i, j, k;                 /* Loop counters */
7470   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7471   int rc = SQLITE_OK;          /* The return code */
7472   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7473   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7474   int usableSpace;             /* Bytes in pPage beyond the header */
7475   int pageFlags;               /* Value of pPage->aData[0] */
7476   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7477   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7478   int szScratch;               /* Size of scratch memory requested */
7479   MemPage *apOld[NB];          /* pPage and up to two siblings */
7480   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7481   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7482   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7483   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7484   int cntOld[NB+2];            /* Old index in b.apCell[] */
7485   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7486   u8 *aSpace1;                 /* Space for copies of dividers cells */
7487   Pgno pgno;                   /* Temp var to store a page number in */
7488   u8 abDone[NB+2];             /* True after i'th new page is populated */
7489   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7490   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7491   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7492   CellArray b;                  /* Parsed information on cells being balanced */
7493 
7494   memset(abDone, 0, sizeof(abDone));
7495   b.nCell = 0;
7496   b.apCell = 0;
7497   pBt = pParent->pBt;
7498   assert( sqlite3_mutex_held(pBt->mutex) );
7499   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7500 
7501   /* At this point pParent may have at most one overflow cell. And if
7502   ** this overflow cell is present, it must be the cell with
7503   ** index iParentIdx. This scenario comes about when this function
7504   ** is called (indirectly) from sqlite3BtreeDelete().
7505   */
7506   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7507   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7508 
7509   if( !aOvflSpace ){
7510     return SQLITE_NOMEM_BKPT;
7511   }
7512   assert( pParent->nFree>=0 );
7513 
7514   /* Find the sibling pages to balance. Also locate the cells in pParent
7515   ** that divide the siblings. An attempt is made to find NN siblings on
7516   ** either side of pPage. More siblings are taken from one side, however,
7517   ** if there are fewer than NN siblings on the other side. If pParent
7518   ** has NB or fewer children then all children of pParent are taken.
7519   **
7520   ** This loop also drops the divider cells from the parent page. This
7521   ** way, the remainder of the function does not have to deal with any
7522   ** overflow cells in the parent page, since if any existed they will
7523   ** have already been removed.
7524   */
7525   i = pParent->nOverflow + pParent->nCell;
7526   if( i<2 ){
7527     nxDiv = 0;
7528   }else{
7529     assert( bBulk==0 || bBulk==1 );
7530     if( iParentIdx==0 ){
7531       nxDiv = 0;
7532     }else if( iParentIdx==i ){
7533       nxDiv = i-2+bBulk;
7534     }else{
7535       nxDiv = iParentIdx-1;
7536     }
7537     i = 2-bBulk;
7538   }
7539   nOld = i+1;
7540   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7541     pRight = &pParent->aData[pParent->hdrOffset+8];
7542   }else{
7543     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7544   }
7545   pgno = get4byte(pRight);
7546   while( 1 ){
7547     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7548     if( rc ){
7549       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7550       goto balance_cleanup;
7551     }
7552     if( apOld[i]->nFree<0 ){
7553       rc = btreeComputeFreeSpace(apOld[i]);
7554       if( rc ){
7555         memset(apOld, 0, (i)*sizeof(MemPage*));
7556         goto balance_cleanup;
7557       }
7558     }
7559     if( (i--)==0 ) break;
7560 
7561     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7562       apDiv[i] = pParent->apOvfl[0];
7563       pgno = get4byte(apDiv[i]);
7564       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7565       pParent->nOverflow = 0;
7566     }else{
7567       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7568       pgno = get4byte(apDiv[i]);
7569       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7570 
7571       /* Drop the cell from the parent page. apDiv[i] still points to
7572       ** the cell within the parent, even though it has been dropped.
7573       ** This is safe because dropping a cell only overwrites the first
7574       ** four bytes of it, and this function does not need the first
7575       ** four bytes of the divider cell. So the pointer is safe to use
7576       ** later on.
7577       **
7578       ** But not if we are in secure-delete mode. In secure-delete mode,
7579       ** the dropCell() routine will overwrite the entire cell with zeroes.
7580       ** In this case, temporarily copy the cell into the aOvflSpace[]
7581       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7582       ** is allocated.  */
7583       if( pBt->btsFlags & BTS_FAST_SECURE ){
7584         int iOff;
7585 
7586         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7587         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7588           rc = SQLITE_CORRUPT_BKPT;
7589           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7590           goto balance_cleanup;
7591         }else{
7592           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7593           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7594         }
7595       }
7596       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7597     }
7598   }
7599 
7600   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7601   ** alignment */
7602   nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
7603   nMaxCells = (nMaxCells + 3)&~3;
7604 
7605   /*
7606   ** Allocate space for memory structures
7607   */
7608   szScratch =
7609        nMaxCells*sizeof(u8*)                       /* b.apCell */
7610      + nMaxCells*sizeof(u16)                       /* b.szCell */
7611      + pBt->pageSize;                              /* aSpace1 */
7612 
7613   assert( szScratch<=7*(int)pBt->pageSize );
7614   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7615   if( b.apCell==0 ){
7616     rc = SQLITE_NOMEM_BKPT;
7617     goto balance_cleanup;
7618   }
7619   b.szCell = (u16*)&b.apCell[nMaxCells];
7620   aSpace1 = (u8*)&b.szCell[nMaxCells];
7621   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7622 
7623   /*
7624   ** Load pointers to all cells on sibling pages and the divider cells
7625   ** into the local b.apCell[] array.  Make copies of the divider cells
7626   ** into space obtained from aSpace1[]. The divider cells have already
7627   ** been removed from pParent.
7628   **
7629   ** If the siblings are on leaf pages, then the child pointers of the
7630   ** divider cells are stripped from the cells before they are copied
7631   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7632   ** child pointers.  If siblings are not leaves, then all cell in
7633   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7634   ** are alike.
7635   **
7636   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7637   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7638   */
7639   b.pRef = apOld[0];
7640   leafCorrection = b.pRef->leaf*4;
7641   leafData = b.pRef->intKeyLeaf;
7642   for(i=0; i<nOld; i++){
7643     MemPage *pOld = apOld[i];
7644     int limit = pOld->nCell;
7645     u8 *aData = pOld->aData;
7646     u16 maskPage = pOld->maskPage;
7647     u8 *piCell = aData + pOld->cellOffset;
7648     u8 *piEnd;
7649     VVA_ONLY( int nCellAtStart = b.nCell; )
7650 
7651     /* Verify that all sibling pages are of the same "type" (table-leaf,
7652     ** table-interior, index-leaf, or index-interior).
7653     */
7654     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7655       rc = SQLITE_CORRUPT_BKPT;
7656       goto balance_cleanup;
7657     }
7658 
7659     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7660     ** contains overflow cells, include them in the b.apCell[] array
7661     ** in the correct spot.
7662     **
7663     ** Note that when there are multiple overflow cells, it is always the
7664     ** case that they are sequential and adjacent.  This invariant arises
7665     ** because multiple overflows can only occurs when inserting divider
7666     ** cells into a parent on a prior balance, and divider cells are always
7667     ** adjacent and are inserted in order.  There is an assert() tagged
7668     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7669     ** invariant.
7670     **
7671     ** This must be done in advance.  Once the balance starts, the cell
7672     ** offset section of the btree page will be overwritten and we will no
7673     ** long be able to find the cells if a pointer to each cell is not saved
7674     ** first.
7675     */
7676     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7677     if( pOld->nOverflow>0 ){
7678       if( NEVER(limit<pOld->aiOvfl[0]) ){
7679         rc = SQLITE_CORRUPT_BKPT;
7680         goto balance_cleanup;
7681       }
7682       limit = pOld->aiOvfl[0];
7683       for(j=0; j<limit; j++){
7684         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7685         piCell += 2;
7686         b.nCell++;
7687       }
7688       for(k=0; k<pOld->nOverflow; k++){
7689         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7690         b.apCell[b.nCell] = pOld->apOvfl[k];
7691         b.nCell++;
7692       }
7693     }
7694     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7695     while( piCell<piEnd ){
7696       assert( b.nCell<nMaxCells );
7697       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7698       piCell += 2;
7699       b.nCell++;
7700     }
7701     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
7702 
7703     cntOld[i] = b.nCell;
7704     if( i<nOld-1 && !leafData){
7705       u16 sz = (u16)szNew[i];
7706       u8 *pTemp;
7707       assert( b.nCell<nMaxCells );
7708       b.szCell[b.nCell] = sz;
7709       pTemp = &aSpace1[iSpace1];
7710       iSpace1 += sz;
7711       assert( sz<=pBt->maxLocal+23 );
7712       assert( iSpace1 <= (int)pBt->pageSize );
7713       memcpy(pTemp, apDiv[i], sz);
7714       b.apCell[b.nCell] = pTemp+leafCorrection;
7715       assert( leafCorrection==0 || leafCorrection==4 );
7716       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7717       if( !pOld->leaf ){
7718         assert( leafCorrection==0 );
7719         assert( pOld->hdrOffset==0 );
7720         /* The right pointer of the child page pOld becomes the left
7721         ** pointer of the divider cell */
7722         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7723       }else{
7724         assert( leafCorrection==4 );
7725         while( b.szCell[b.nCell]<4 ){
7726           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7727           ** does exist, pad it with 0x00 bytes. */
7728           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7729           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7730           aSpace1[iSpace1++] = 0x00;
7731           b.szCell[b.nCell]++;
7732         }
7733       }
7734       b.nCell++;
7735     }
7736   }
7737 
7738   /*
7739   ** Figure out the number of pages needed to hold all b.nCell cells.
7740   ** Store this number in "k".  Also compute szNew[] which is the total
7741   ** size of all cells on the i-th page and cntNew[] which is the index
7742   ** in b.apCell[] of the cell that divides page i from page i+1.
7743   ** cntNew[k] should equal b.nCell.
7744   **
7745   ** Values computed by this block:
7746   **
7747   **           k: The total number of sibling pages
7748   **    szNew[i]: Spaced used on the i-th sibling page.
7749   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7750   **              the right of the i-th sibling page.
7751   ** usableSpace: Number of bytes of space available on each sibling.
7752   **
7753   */
7754   usableSpace = pBt->usableSize - 12 + leafCorrection;
7755   for(i=k=0; i<nOld; i++, k++){
7756     MemPage *p = apOld[i];
7757     b.apEnd[k] = p->aDataEnd;
7758     b.ixNx[k] = cntOld[i];
7759     if( k && b.ixNx[k]==b.ixNx[k-1] ){
7760       k--;  /* Omit b.ixNx[] entry for child pages with no cells */
7761     }
7762     if( !leafData ){
7763       k++;
7764       b.apEnd[k] = pParent->aDataEnd;
7765       b.ixNx[k] = cntOld[i]+1;
7766     }
7767     assert( p->nFree>=0 );
7768     szNew[i] = usableSpace - p->nFree;
7769     for(j=0; j<p->nOverflow; j++){
7770       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7771     }
7772     cntNew[i] = cntOld[i];
7773   }
7774   k = nOld;
7775   for(i=0; i<k; i++){
7776     int sz;
7777     while( szNew[i]>usableSpace ){
7778       if( i+1>=k ){
7779         k = i+2;
7780         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7781         szNew[k-1] = 0;
7782         cntNew[k-1] = b.nCell;
7783       }
7784       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7785       szNew[i] -= sz;
7786       if( !leafData ){
7787         if( cntNew[i]<b.nCell ){
7788           sz = 2 + cachedCellSize(&b, cntNew[i]);
7789         }else{
7790           sz = 0;
7791         }
7792       }
7793       szNew[i+1] += sz;
7794       cntNew[i]--;
7795     }
7796     while( cntNew[i]<b.nCell ){
7797       sz = 2 + cachedCellSize(&b, cntNew[i]);
7798       if( szNew[i]+sz>usableSpace ) break;
7799       szNew[i] += sz;
7800       cntNew[i]++;
7801       if( !leafData ){
7802         if( cntNew[i]<b.nCell ){
7803           sz = 2 + cachedCellSize(&b, cntNew[i]);
7804         }else{
7805           sz = 0;
7806         }
7807       }
7808       szNew[i+1] -= sz;
7809     }
7810     if( cntNew[i]>=b.nCell ){
7811       k = i+1;
7812     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7813       rc = SQLITE_CORRUPT_BKPT;
7814       goto balance_cleanup;
7815     }
7816   }
7817 
7818   /*
7819   ** The packing computed by the previous block is biased toward the siblings
7820   ** on the left side (siblings with smaller keys). The left siblings are
7821   ** always nearly full, while the right-most sibling might be nearly empty.
7822   ** The next block of code attempts to adjust the packing of siblings to
7823   ** get a better balance.
7824   **
7825   ** This adjustment is more than an optimization.  The packing above might
7826   ** be so out of balance as to be illegal.  For example, the right-most
7827   ** sibling might be completely empty.  This adjustment is not optional.
7828   */
7829   for(i=k-1; i>0; i--){
7830     int szRight = szNew[i];  /* Size of sibling on the right */
7831     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7832     int r;              /* Index of right-most cell in left sibling */
7833     int d;              /* Index of first cell to the left of right sibling */
7834 
7835     r = cntNew[i-1] - 1;
7836     d = r + 1 - leafData;
7837     (void)cachedCellSize(&b, d);
7838     do{
7839       assert( d<nMaxCells );
7840       assert( r<nMaxCells );
7841       (void)cachedCellSize(&b, r);
7842       if( szRight!=0
7843        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7844         break;
7845       }
7846       szRight += b.szCell[d] + 2;
7847       szLeft -= b.szCell[r] + 2;
7848       cntNew[i-1] = r;
7849       r--;
7850       d--;
7851     }while( r>=0 );
7852     szNew[i] = szRight;
7853     szNew[i-1] = szLeft;
7854     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7855       rc = SQLITE_CORRUPT_BKPT;
7856       goto balance_cleanup;
7857     }
7858   }
7859 
7860   /* Sanity check:  For a non-corrupt database file one of the follwing
7861   ** must be true:
7862   **    (1) We found one or more cells (cntNew[0])>0), or
7863   **    (2) pPage is a virtual root page.  A virtual root page is when
7864   **        the real root page is page 1 and we are the only child of
7865   **        that page.
7866   */
7867   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7868   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7869     apOld[0]->pgno, apOld[0]->nCell,
7870     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7871     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7872   ));
7873 
7874   /*
7875   ** Allocate k new pages.  Reuse old pages where possible.
7876   */
7877   pageFlags = apOld[0]->aData[0];
7878   for(i=0; i<k; i++){
7879     MemPage *pNew;
7880     if( i<nOld ){
7881       pNew = apNew[i] = apOld[i];
7882       apOld[i] = 0;
7883       rc = sqlite3PagerWrite(pNew->pDbPage);
7884       nNew++;
7885       if( rc ) goto balance_cleanup;
7886     }else{
7887       assert( i>0 );
7888       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7889       if( rc ) goto balance_cleanup;
7890       zeroPage(pNew, pageFlags);
7891       apNew[i] = pNew;
7892       nNew++;
7893       cntOld[i] = b.nCell;
7894 
7895       /* Set the pointer-map entry for the new sibling page. */
7896       if( ISAUTOVACUUM ){
7897         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7898         if( rc!=SQLITE_OK ){
7899           goto balance_cleanup;
7900         }
7901       }
7902     }
7903   }
7904 
7905   /*
7906   ** Reassign page numbers so that the new pages are in ascending order.
7907   ** This helps to keep entries in the disk file in order so that a scan
7908   ** of the table is closer to a linear scan through the file. That in turn
7909   ** helps the operating system to deliver pages from the disk more rapidly.
7910   **
7911   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7912   ** than (NB+2) (a small constant), that should not be a problem.
7913   **
7914   ** When NB==3, this one optimization makes the database about 25% faster
7915   ** for large insertions and deletions.
7916   */
7917   for(i=0; i<nNew; i++){
7918     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7919     aPgFlags[i] = apNew[i]->pDbPage->flags;
7920     for(j=0; j<i; j++){
7921       if( aPgno[j]==aPgno[i] ){
7922         /* This branch is taken if the set of sibling pages somehow contains
7923         ** duplicate entries. This can happen if the database is corrupt.
7924         ** It would be simpler to detect this as part of the loop below, but
7925         ** we do the detection here in order to avoid populating the pager
7926         ** cache with two separate objects associated with the same
7927         ** page number.  */
7928         assert( CORRUPT_DB );
7929         rc = SQLITE_CORRUPT_BKPT;
7930         goto balance_cleanup;
7931       }
7932     }
7933   }
7934   for(i=0; i<nNew; i++){
7935     int iBest = 0;                /* aPgno[] index of page number to use */
7936     for(j=1; j<nNew; j++){
7937       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7938     }
7939     pgno = aPgOrder[iBest];
7940     aPgOrder[iBest] = 0xffffffff;
7941     if( iBest!=i ){
7942       if( iBest>i ){
7943         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7944       }
7945       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7946       apNew[i]->pgno = pgno;
7947     }
7948   }
7949 
7950   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7951          "%d(%d nc=%d) %d(%d nc=%d)\n",
7952     apNew[0]->pgno, szNew[0], cntNew[0],
7953     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7954     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7955     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7956     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7957     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7958     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7959     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7960     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7961   ));
7962 
7963   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7964   assert( nNew>=1 && nNew<=ArraySize(apNew) );
7965   assert( apNew[nNew-1]!=0 );
7966   put4byte(pRight, apNew[nNew-1]->pgno);
7967 
7968   /* If the sibling pages are not leaves, ensure that the right-child pointer
7969   ** of the right-most new sibling page is set to the value that was
7970   ** originally in the same field of the right-most old sibling page. */
7971   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7972     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7973     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7974   }
7975 
7976   /* Make any required updates to pointer map entries associated with
7977   ** cells stored on sibling pages following the balance operation. Pointer
7978   ** map entries associated with divider cells are set by the insertCell()
7979   ** routine. The associated pointer map entries are:
7980   **
7981   **   a) if the cell contains a reference to an overflow chain, the
7982   **      entry associated with the first page in the overflow chain, and
7983   **
7984   **   b) if the sibling pages are not leaves, the child page associated
7985   **      with the cell.
7986   **
7987   ** If the sibling pages are not leaves, then the pointer map entry
7988   ** associated with the right-child of each sibling may also need to be
7989   ** updated. This happens below, after the sibling pages have been
7990   ** populated, not here.
7991   */
7992   if( ISAUTOVACUUM ){
7993     MemPage *pOld;
7994     MemPage *pNew = pOld = apNew[0];
7995     int cntOldNext = pNew->nCell + pNew->nOverflow;
7996     int iNew = 0;
7997     int iOld = 0;
7998 
7999     for(i=0; i<b.nCell; i++){
8000       u8 *pCell = b.apCell[i];
8001       while( i==cntOldNext ){
8002         iOld++;
8003         assert( iOld<nNew || iOld<nOld );
8004         assert( iOld>=0 && iOld<NB );
8005         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8006         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8007       }
8008       if( i==cntNew[iNew] ){
8009         pNew = apNew[++iNew];
8010         if( !leafData ) continue;
8011       }
8012 
8013       /* Cell pCell is destined for new sibling page pNew. Originally, it
8014       ** was either part of sibling page iOld (possibly an overflow cell),
8015       ** or else the divider cell to the left of sibling page iOld. So,
8016       ** if sibling page iOld had the same page number as pNew, and if
8017       ** pCell really was a part of sibling page iOld (not a divider or
8018       ** overflow cell), we can skip updating the pointer map entries.  */
8019       if( iOld>=nNew
8020        || pNew->pgno!=aPgno[iOld]
8021        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8022       ){
8023         if( !leafCorrection ){
8024           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8025         }
8026         if( cachedCellSize(&b,i)>pNew->minLocal ){
8027           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8028         }
8029         if( rc ) goto balance_cleanup;
8030       }
8031     }
8032   }
8033 
8034   /* Insert new divider cells into pParent. */
8035   for(i=0; i<nNew-1; i++){
8036     u8 *pCell;
8037     u8 *pTemp;
8038     int sz;
8039     MemPage *pNew = apNew[i];
8040     j = cntNew[i];
8041 
8042     assert( j<nMaxCells );
8043     assert( b.apCell[j]!=0 );
8044     pCell = b.apCell[j];
8045     sz = b.szCell[j] + leafCorrection;
8046     pTemp = &aOvflSpace[iOvflSpace];
8047     if( !pNew->leaf ){
8048       memcpy(&pNew->aData[8], pCell, 4);
8049     }else if( leafData ){
8050       /* If the tree is a leaf-data tree, and the siblings are leaves,
8051       ** then there is no divider cell in b.apCell[]. Instead, the divider
8052       ** cell consists of the integer key for the right-most cell of
8053       ** the sibling-page assembled above only.
8054       */
8055       CellInfo info;
8056       j--;
8057       pNew->xParseCell(pNew, b.apCell[j], &info);
8058       pCell = pTemp;
8059       sz = 4 + putVarint(&pCell[4], info.nKey);
8060       pTemp = 0;
8061     }else{
8062       pCell -= 4;
8063       /* Obscure case for non-leaf-data trees: If the cell at pCell was
8064       ** previously stored on a leaf node, and its reported size was 4
8065       ** bytes, then it may actually be smaller than this
8066       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8067       ** any cell). But it is important to pass the correct size to
8068       ** insertCell(), so reparse the cell now.
8069       **
8070       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8071       ** and WITHOUT ROWID tables with exactly one column which is the
8072       ** primary key.
8073       */
8074       if( b.szCell[j]==4 ){
8075         assert(leafCorrection==4);
8076         sz = pParent->xCellSize(pParent, pCell);
8077       }
8078     }
8079     iOvflSpace += sz;
8080     assert( sz<=pBt->maxLocal+23 );
8081     assert( iOvflSpace <= (int)pBt->pageSize );
8082     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8083     if( rc!=SQLITE_OK ) goto balance_cleanup;
8084     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8085   }
8086 
8087   /* Now update the actual sibling pages. The order in which they are updated
8088   ** is important, as this code needs to avoid disrupting any page from which
8089   ** cells may still to be read. In practice, this means:
8090   **
8091   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8092   **      then it is not safe to update page apNew[iPg] until after
8093   **      the left-hand sibling apNew[iPg-1] has been updated.
8094   **
8095   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8096   **      then it is not safe to update page apNew[iPg] until after
8097   **      the right-hand sibling apNew[iPg+1] has been updated.
8098   **
8099   ** If neither of the above apply, the page is safe to update.
8100   **
8101   ** The iPg value in the following loop starts at nNew-1 goes down
8102   ** to 0, then back up to nNew-1 again, thus making two passes over
8103   ** the pages.  On the initial downward pass, only condition (1) above
8104   ** needs to be tested because (2) will always be true from the previous
8105   ** step.  On the upward pass, both conditions are always true, so the
8106   ** upwards pass simply processes pages that were missed on the downward
8107   ** pass.
8108   */
8109   for(i=1-nNew; i<nNew; i++){
8110     int iPg = i<0 ? -i : i;
8111     assert( iPg>=0 && iPg<nNew );
8112     if( abDone[iPg] ) continue;         /* Skip pages already processed */
8113     if( i>=0                            /* On the upwards pass, or... */
8114      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
8115     ){
8116       int iNew;
8117       int iOld;
8118       int nNewCell;
8119 
8120       /* Verify condition (1):  If cells are moving left, update iPg
8121       ** only after iPg-1 has already been updated. */
8122       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8123 
8124       /* Verify condition (2):  If cells are moving right, update iPg
8125       ** only after iPg+1 has already been updated. */
8126       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8127 
8128       if( iPg==0 ){
8129         iNew = iOld = 0;
8130         nNewCell = cntNew[0];
8131       }else{
8132         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8133         iNew = cntNew[iPg-1] + !leafData;
8134         nNewCell = cntNew[iPg] - iNew;
8135       }
8136 
8137       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8138       if( rc ) goto balance_cleanup;
8139       abDone[iPg]++;
8140       apNew[iPg]->nFree = usableSpace-szNew[iPg];
8141       assert( apNew[iPg]->nOverflow==0 );
8142       assert( apNew[iPg]->nCell==nNewCell );
8143     }
8144   }
8145 
8146   /* All pages have been processed exactly once */
8147   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8148 
8149   assert( nOld>0 );
8150   assert( nNew>0 );
8151 
8152   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8153     /* The root page of the b-tree now contains no cells. The only sibling
8154     ** page is the right-child of the parent. Copy the contents of the
8155     ** child page into the parent, decreasing the overall height of the
8156     ** b-tree structure by one. This is described as the "balance-shallower"
8157     ** sub-algorithm in some documentation.
8158     **
8159     ** If this is an auto-vacuum database, the call to copyNodeContent()
8160     ** sets all pointer-map entries corresponding to database image pages
8161     ** for which the pointer is stored within the content being copied.
8162     **
8163     ** It is critical that the child page be defragmented before being
8164     ** copied into the parent, because if the parent is page 1 then it will
8165     ** by smaller than the child due to the database header, and so all the
8166     ** free space needs to be up front.
8167     */
8168     assert( nNew==1 || CORRUPT_DB );
8169     rc = defragmentPage(apNew[0], -1);
8170     testcase( rc!=SQLITE_OK );
8171     assert( apNew[0]->nFree ==
8172         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8173           - apNew[0]->nCell*2)
8174       || rc!=SQLITE_OK
8175     );
8176     copyNodeContent(apNew[0], pParent, &rc);
8177     freePage(apNew[0], &rc);
8178   }else if( ISAUTOVACUUM && !leafCorrection ){
8179     /* Fix the pointer map entries associated with the right-child of each
8180     ** sibling page. All other pointer map entries have already been taken
8181     ** care of.  */
8182     for(i=0; i<nNew; i++){
8183       u32 key = get4byte(&apNew[i]->aData[8]);
8184       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8185     }
8186   }
8187 
8188   assert( pParent->isInit );
8189   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8190           nOld, nNew, b.nCell));
8191 
8192   /* Free any old pages that were not reused as new pages.
8193   */
8194   for(i=nNew; i<nOld; i++){
8195     freePage(apOld[i], &rc);
8196   }
8197 
8198 #if 0
8199   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8200     /* The ptrmapCheckPages() contains assert() statements that verify that
8201     ** all pointer map pages are set correctly. This is helpful while
8202     ** debugging. This is usually disabled because a corrupt database may
8203     ** cause an assert() statement to fail.  */
8204     ptrmapCheckPages(apNew, nNew);
8205     ptrmapCheckPages(&pParent, 1);
8206   }
8207 #endif
8208 
8209   /*
8210   ** Cleanup before returning.
8211   */
8212 balance_cleanup:
8213   sqlite3StackFree(0, b.apCell);
8214   for(i=0; i<nOld; i++){
8215     releasePage(apOld[i]);
8216   }
8217   for(i=0; i<nNew; i++){
8218     releasePage(apNew[i]);
8219   }
8220 
8221   return rc;
8222 }
8223 
8224 
8225 /*
8226 ** This function is called when the root page of a b-tree structure is
8227 ** overfull (has one or more overflow pages).
8228 **
8229 ** A new child page is allocated and the contents of the current root
8230 ** page, including overflow cells, are copied into the child. The root
8231 ** page is then overwritten to make it an empty page with the right-child
8232 ** pointer pointing to the new page.
8233 **
8234 ** Before returning, all pointer-map entries corresponding to pages
8235 ** that the new child-page now contains pointers to are updated. The
8236 ** entry corresponding to the new right-child pointer of the root
8237 ** page is also updated.
8238 **
8239 ** If successful, *ppChild is set to contain a reference to the child
8240 ** page and SQLITE_OK is returned. In this case the caller is required
8241 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8242 ** an error code is returned and *ppChild is set to 0.
8243 */
8244 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8245   int rc;                        /* Return value from subprocedures */
8246   MemPage *pChild = 0;           /* Pointer to a new child page */
8247   Pgno pgnoChild = 0;            /* Page number of the new child page */
8248   BtShared *pBt = pRoot->pBt;    /* The BTree */
8249 
8250   assert( pRoot->nOverflow>0 );
8251   assert( sqlite3_mutex_held(pBt->mutex) );
8252 
8253   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8254   ** page that will become the new right-child of pPage. Copy the contents
8255   ** of the node stored on pRoot into the new child page.
8256   */
8257   rc = sqlite3PagerWrite(pRoot->pDbPage);
8258   if( rc==SQLITE_OK ){
8259     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8260     copyNodeContent(pRoot, pChild, &rc);
8261     if( ISAUTOVACUUM ){
8262       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8263     }
8264   }
8265   if( rc ){
8266     *ppChild = 0;
8267     releasePage(pChild);
8268     return rc;
8269   }
8270   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8271   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8272   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8273 
8274   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8275 
8276   /* Copy the overflow cells from pRoot to pChild */
8277   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8278          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8279   memcpy(pChild->apOvfl, pRoot->apOvfl,
8280          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8281   pChild->nOverflow = pRoot->nOverflow;
8282 
8283   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8284   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8285   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8286 
8287   *ppChild = pChild;
8288   return SQLITE_OK;
8289 }
8290 
8291 /*
8292 ** The page that pCur currently points to has just been modified in
8293 ** some way. This function figures out if this modification means the
8294 ** tree needs to be balanced, and if so calls the appropriate balancing
8295 ** routine. Balancing routines are:
8296 **
8297 **   balance_quick()
8298 **   balance_deeper()
8299 **   balance_nonroot()
8300 */
8301 static int balance(BtCursor *pCur){
8302   int rc = SQLITE_OK;
8303   const int nMin = pCur->pBt->usableSize * 2 / 3;
8304   u8 aBalanceQuickSpace[13];
8305   u8 *pFree = 0;
8306 
8307   VVA_ONLY( int balance_quick_called = 0 );
8308   VVA_ONLY( int balance_deeper_called = 0 );
8309 
8310   do {
8311     int iPage;
8312     MemPage *pPage = pCur->pPage;
8313 
8314     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8315     if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8316       break;
8317     }else if( (iPage = pCur->iPage)==0 ){
8318       if( pPage->nOverflow ){
8319         /* The root page of the b-tree is overfull. In this case call the
8320         ** balance_deeper() function to create a new child for the root-page
8321         ** and copy the current contents of the root-page to it. The
8322         ** next iteration of the do-loop will balance the child page.
8323         */
8324         assert( balance_deeper_called==0 );
8325         VVA_ONLY( balance_deeper_called++ );
8326         rc = balance_deeper(pPage, &pCur->apPage[1]);
8327         if( rc==SQLITE_OK ){
8328           pCur->iPage = 1;
8329           pCur->ix = 0;
8330           pCur->aiIdx[0] = 0;
8331           pCur->apPage[0] = pPage;
8332           pCur->pPage = pCur->apPage[1];
8333           assert( pCur->pPage->nOverflow );
8334         }
8335       }else{
8336         break;
8337       }
8338     }else{
8339       MemPage * const pParent = pCur->apPage[iPage-1];
8340       int const iIdx = pCur->aiIdx[iPage-1];
8341 
8342       rc = sqlite3PagerWrite(pParent->pDbPage);
8343       if( rc==SQLITE_OK && pParent->nFree<0 ){
8344         rc = btreeComputeFreeSpace(pParent);
8345       }
8346       if( rc==SQLITE_OK ){
8347 #ifndef SQLITE_OMIT_QUICKBALANCE
8348         if( pPage->intKeyLeaf
8349          && pPage->nOverflow==1
8350          && pPage->aiOvfl[0]==pPage->nCell
8351          && pParent->pgno!=1
8352          && pParent->nCell==iIdx
8353         ){
8354           /* Call balance_quick() to create a new sibling of pPage on which
8355           ** to store the overflow cell. balance_quick() inserts a new cell
8356           ** into pParent, which may cause pParent overflow. If this
8357           ** happens, the next iteration of the do-loop will balance pParent
8358           ** use either balance_nonroot() or balance_deeper(). Until this
8359           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8360           ** buffer.
8361           **
8362           ** The purpose of the following assert() is to check that only a
8363           ** single call to balance_quick() is made for each call to this
8364           ** function. If this were not verified, a subtle bug involving reuse
8365           ** of the aBalanceQuickSpace[] might sneak in.
8366           */
8367           assert( balance_quick_called==0 );
8368           VVA_ONLY( balance_quick_called++ );
8369           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8370         }else
8371 #endif
8372         {
8373           /* In this case, call balance_nonroot() to redistribute cells
8374           ** between pPage and up to 2 of its sibling pages. This involves
8375           ** modifying the contents of pParent, which may cause pParent to
8376           ** become overfull or underfull. The next iteration of the do-loop
8377           ** will balance the parent page to correct this.
8378           **
8379           ** If the parent page becomes overfull, the overflow cell or cells
8380           ** are stored in the pSpace buffer allocated immediately below.
8381           ** A subsequent iteration of the do-loop will deal with this by
8382           ** calling balance_nonroot() (balance_deeper() may be called first,
8383           ** but it doesn't deal with overflow cells - just moves them to a
8384           ** different page). Once this subsequent call to balance_nonroot()
8385           ** has completed, it is safe to release the pSpace buffer used by
8386           ** the previous call, as the overflow cell data will have been
8387           ** copied either into the body of a database page or into the new
8388           ** pSpace buffer passed to the latter call to balance_nonroot().
8389           */
8390           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8391           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8392                                pCur->hints&BTREE_BULKLOAD);
8393           if( pFree ){
8394             /* If pFree is not NULL, it points to the pSpace buffer used
8395             ** by a previous call to balance_nonroot(). Its contents are
8396             ** now stored either on real database pages or within the
8397             ** new pSpace buffer, so it may be safely freed here. */
8398             sqlite3PageFree(pFree);
8399           }
8400 
8401           /* The pSpace buffer will be freed after the next call to
8402           ** balance_nonroot(), or just before this function returns, whichever
8403           ** comes first. */
8404           pFree = pSpace;
8405         }
8406       }
8407 
8408       pPage->nOverflow = 0;
8409 
8410       /* The next iteration of the do-loop balances the parent page. */
8411       releasePage(pPage);
8412       pCur->iPage--;
8413       assert( pCur->iPage>=0 );
8414       pCur->pPage = pCur->apPage[pCur->iPage];
8415     }
8416   }while( rc==SQLITE_OK );
8417 
8418   if( pFree ){
8419     sqlite3PageFree(pFree);
8420   }
8421   return rc;
8422 }
8423 
8424 /* Overwrite content from pX into pDest.  Only do the write if the
8425 ** content is different from what is already there.
8426 */
8427 static int btreeOverwriteContent(
8428   MemPage *pPage,           /* MemPage on which writing will occur */
8429   u8 *pDest,                /* Pointer to the place to start writing */
8430   const BtreePayload *pX,   /* Source of data to write */
8431   int iOffset,              /* Offset of first byte to write */
8432   int iAmt                  /* Number of bytes to be written */
8433 ){
8434   int nData = pX->nData - iOffset;
8435   if( nData<=0 ){
8436     /* Overwritting with zeros */
8437     int i;
8438     for(i=0; i<iAmt && pDest[i]==0; i++){}
8439     if( i<iAmt ){
8440       int rc = sqlite3PagerWrite(pPage->pDbPage);
8441       if( rc ) return rc;
8442       memset(pDest + i, 0, iAmt - i);
8443     }
8444   }else{
8445     if( nData<iAmt ){
8446       /* Mixed read data and zeros at the end.  Make a recursive call
8447       ** to write the zeros then fall through to write the real data */
8448       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8449                                  iAmt-nData);
8450       if( rc ) return rc;
8451       iAmt = nData;
8452     }
8453     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8454       int rc = sqlite3PagerWrite(pPage->pDbPage);
8455       if( rc ) return rc;
8456       /* In a corrupt database, it is possible for the source and destination
8457       ** buffers to overlap.  This is harmless since the database is already
8458       ** corrupt but it does cause valgrind and ASAN warnings.  So use
8459       ** memmove(). */
8460       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8461     }
8462   }
8463   return SQLITE_OK;
8464 }
8465 
8466 /*
8467 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8468 ** contained in pX.
8469 */
8470 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8471   int iOffset;                        /* Next byte of pX->pData to write */
8472   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8473   int rc;                             /* Return code */
8474   MemPage *pPage = pCur->pPage;       /* Page being written */
8475   BtShared *pBt;                      /* Btree */
8476   Pgno ovflPgno;                      /* Next overflow page to write */
8477   u32 ovflPageSize;                   /* Size to write on overflow page */
8478 
8479   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8480    || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8481   ){
8482     return SQLITE_CORRUPT_BKPT;
8483   }
8484   /* Overwrite the local portion first */
8485   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8486                              0, pCur->info.nLocal);
8487   if( rc ) return rc;
8488   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8489 
8490   /* Now overwrite the overflow pages */
8491   iOffset = pCur->info.nLocal;
8492   assert( nTotal>=0 );
8493   assert( iOffset>=0 );
8494   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8495   pBt = pPage->pBt;
8496   ovflPageSize = pBt->usableSize - 4;
8497   do{
8498     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8499     if( rc ) return rc;
8500     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
8501       rc = SQLITE_CORRUPT_BKPT;
8502     }else{
8503       if( iOffset+ovflPageSize<(u32)nTotal ){
8504         ovflPgno = get4byte(pPage->aData);
8505       }else{
8506         ovflPageSize = nTotal - iOffset;
8507       }
8508       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8509                                  iOffset, ovflPageSize);
8510     }
8511     sqlite3PagerUnref(pPage->pDbPage);
8512     if( rc ) return rc;
8513     iOffset += ovflPageSize;
8514   }while( iOffset<nTotal );
8515   return SQLITE_OK;
8516 }
8517 
8518 
8519 /*
8520 ** Insert a new record into the BTree.  The content of the new record
8521 ** is described by the pX object.  The pCur cursor is used only to
8522 ** define what table the record should be inserted into, and is left
8523 ** pointing at a random location.
8524 **
8525 ** For a table btree (used for rowid tables), only the pX.nKey value of
8526 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8527 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8528 ** hold the content of the row.
8529 **
8530 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8531 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8532 ** pX.pData,nData,nZero fields must be zero.
8533 **
8534 ** If the seekResult parameter is non-zero, then a successful call to
8535 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8536 ** been performed.  In other words, if seekResult!=0 then the cursor
8537 ** is currently pointing to a cell that will be adjacent to the cell
8538 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8539 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8540 ** that is larger than (pKey,nKey).
8541 **
8542 ** If seekResult==0, that means pCur is pointing at some unknown location.
8543 ** In that case, this routine must seek the cursor to the correct insertion
8544 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8545 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8546 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8547 ** to decode the key.
8548 */
8549 int sqlite3BtreeInsert(
8550   BtCursor *pCur,                /* Insert data into the table of this cursor */
8551   const BtreePayload *pX,        /* Content of the row to be inserted */
8552   int flags,                     /* True if this is likely an append */
8553   int seekResult                 /* Result of prior MovetoUnpacked() call */
8554 ){
8555   int rc;
8556   int loc = seekResult;          /* -1: before desired location  +1: after */
8557   int szNew = 0;
8558   int idx;
8559   MemPage *pPage;
8560   Btree *p = pCur->pBtree;
8561   BtShared *pBt = p->pBt;
8562   unsigned char *oldCell;
8563   unsigned char *newCell = 0;
8564 
8565   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8566 
8567   if( pCur->eState==CURSOR_FAULT ){
8568     assert( pCur->skipNext!=SQLITE_OK );
8569     return pCur->skipNext;
8570   }
8571 
8572   assert( cursorOwnsBtShared(pCur) );
8573   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8574               && pBt->inTransaction==TRANS_WRITE
8575               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8576   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8577 
8578   /* Assert that the caller has been consistent. If this cursor was opened
8579   ** expecting an index b-tree, then the caller should be inserting blob
8580   ** keys with no associated data. If the cursor was opened expecting an
8581   ** intkey table, the caller should be inserting integer keys with a
8582   ** blob of associated data.  */
8583   assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8584 
8585   /* Save the positions of any other cursors open on this table.
8586   **
8587   ** In some cases, the call to btreeMoveto() below is a no-op. For
8588   ** example, when inserting data into a table with auto-generated integer
8589   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8590   ** integer key to use. It then calls this function to actually insert the
8591   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8592   ** that the cursor is already where it needs to be and returns without
8593   ** doing any work. To avoid thwarting these optimizations, it is important
8594   ** not to clear the cursor here.
8595   */
8596   if( pCur->curFlags & BTCF_Multiple ){
8597     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8598     if( rc ) return rc;
8599   }
8600 
8601   if( pCur->pKeyInfo==0 ){
8602     assert( pX->pKey==0 );
8603     /* If this is an insert into a table b-tree, invalidate any incrblob
8604     ** cursors open on the row being replaced */
8605     invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8606 
8607     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8608     ** to a row with the same key as the new entry being inserted.
8609     */
8610 #ifdef SQLITE_DEBUG
8611     if( flags & BTREE_SAVEPOSITION ){
8612       assert( pCur->curFlags & BTCF_ValidNKey );
8613       assert( pX->nKey==pCur->info.nKey );
8614       assert( pCur->info.nSize!=0 );
8615       assert( loc==0 );
8616     }
8617 #endif
8618 
8619     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8620     ** that the cursor is not pointing to a row to be overwritten.
8621     ** So do a complete check.
8622     */
8623     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8624       /* The cursor is pointing to the entry that is to be
8625       ** overwritten */
8626       assert( pX->nData>=0 && pX->nZero>=0 );
8627       if( pCur->info.nSize!=0
8628        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8629       ){
8630         /* New entry is the same size as the old.  Do an overwrite */
8631         return btreeOverwriteCell(pCur, pX);
8632       }
8633       assert( loc==0 );
8634     }else if( loc==0 ){
8635       /* The cursor is *not* pointing to the cell to be overwritten, nor
8636       ** to an adjacent cell.  Move the cursor so that it is pointing either
8637       ** to the cell to be overwritten or an adjacent cell.
8638       */
8639       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8640       if( rc ) return rc;
8641     }
8642   }else{
8643     /* This is an index or a WITHOUT ROWID table */
8644 
8645     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8646     ** to a row with the same key as the new entry being inserted.
8647     */
8648     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8649 
8650     /* If the cursor is not already pointing either to the cell to be
8651     ** overwritten, or if a new cell is being inserted, if the cursor is
8652     ** not pointing to an immediately adjacent cell, then move the cursor
8653     ** so that it does.
8654     */
8655     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8656       if( pX->nMem ){
8657         UnpackedRecord r;
8658         r.pKeyInfo = pCur->pKeyInfo;
8659         r.aMem = pX->aMem;
8660         r.nField = pX->nMem;
8661         r.default_rc = 0;
8662         r.errCode = 0;
8663         r.r1 = 0;
8664         r.r2 = 0;
8665         r.eqSeen = 0;
8666         rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8667       }else{
8668         rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8669       }
8670       if( rc ) return rc;
8671     }
8672 
8673     /* If the cursor is currently pointing to an entry to be overwritten
8674     ** and the new content is the same as as the old, then use the
8675     ** overwrite optimization.
8676     */
8677     if( loc==0 ){
8678       getCellInfo(pCur);
8679       if( pCur->info.nKey==pX->nKey ){
8680         BtreePayload x2;
8681         x2.pData = pX->pKey;
8682         x2.nData = pX->nKey;
8683         x2.nZero = 0;
8684         return btreeOverwriteCell(pCur, &x2);
8685       }
8686     }
8687 
8688   }
8689   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8690 
8691   pPage = pCur->pPage;
8692   assert( pPage->intKey || pX->nKey>=0 );
8693   assert( pPage->leaf || !pPage->intKey );
8694   if( pPage->nFree<0 ){
8695     rc = btreeComputeFreeSpace(pPage);
8696     if( rc ) return rc;
8697   }
8698 
8699   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8700           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8701           loc==0 ? "overwrite" : "new entry"));
8702   assert( pPage->isInit );
8703   newCell = pBt->pTmpSpace;
8704   assert( newCell!=0 );
8705   rc = fillInCell(pPage, newCell, pX, &szNew);
8706   if( rc ) goto end_insert;
8707   assert( szNew==pPage->xCellSize(pPage, newCell) );
8708   assert( szNew <= MX_CELL_SIZE(pBt) );
8709   idx = pCur->ix;
8710   if( loc==0 ){
8711     CellInfo info;
8712     assert( idx<pPage->nCell );
8713     rc = sqlite3PagerWrite(pPage->pDbPage);
8714     if( rc ){
8715       goto end_insert;
8716     }
8717     oldCell = findCell(pPage, idx);
8718     if( !pPage->leaf ){
8719       memcpy(newCell, oldCell, 4);
8720     }
8721     rc = clearCell(pPage, oldCell, &info);
8722     testcase( pCur->curFlags & BTCF_ValidOvfl );
8723     invalidateOverflowCache(pCur);
8724     if( info.nSize==szNew && info.nLocal==info.nPayload
8725      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8726     ){
8727       /* Overwrite the old cell with the new if they are the same size.
8728       ** We could also try to do this if the old cell is smaller, then add
8729       ** the leftover space to the free list.  But experiments show that
8730       ** doing that is no faster then skipping this optimization and just
8731       ** calling dropCell() and insertCell().
8732       **
8733       ** This optimization cannot be used on an autovacuum database if the
8734       ** new entry uses overflow pages, as the insertCell() call below is
8735       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
8736       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8737       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8738         return SQLITE_CORRUPT_BKPT;
8739       }
8740       if( oldCell+szNew > pPage->aDataEnd ){
8741         return SQLITE_CORRUPT_BKPT;
8742       }
8743       memcpy(oldCell, newCell, szNew);
8744       return SQLITE_OK;
8745     }
8746     dropCell(pPage, idx, info.nSize, &rc);
8747     if( rc ) goto end_insert;
8748   }else if( loc<0 && pPage->nCell>0 ){
8749     assert( pPage->leaf );
8750     idx = ++pCur->ix;
8751     pCur->curFlags &= ~BTCF_ValidNKey;
8752   }else{
8753     assert( pPage->leaf );
8754   }
8755   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8756   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8757   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8758 
8759   /* If no error has occurred and pPage has an overflow cell, call balance()
8760   ** to redistribute the cells within the tree. Since balance() may move
8761   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8762   ** variables.
8763   **
8764   ** Previous versions of SQLite called moveToRoot() to move the cursor
8765   ** back to the root page as balance() used to invalidate the contents
8766   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8767   ** set the cursor state to "invalid". This makes common insert operations
8768   ** slightly faster.
8769   **
8770   ** There is a subtle but important optimization here too. When inserting
8771   ** multiple records into an intkey b-tree using a single cursor (as can
8772   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8773   ** is advantageous to leave the cursor pointing to the last entry in
8774   ** the b-tree if possible. If the cursor is left pointing to the last
8775   ** entry in the table, and the next row inserted has an integer key
8776   ** larger than the largest existing key, it is possible to insert the
8777   ** row without seeking the cursor. This can be a big performance boost.
8778   */
8779   pCur->info.nSize = 0;
8780   if( pPage->nOverflow ){
8781     assert( rc==SQLITE_OK );
8782     pCur->curFlags &= ~(BTCF_ValidNKey);
8783     rc = balance(pCur);
8784 
8785     /* Must make sure nOverflow is reset to zero even if the balance()
8786     ** fails. Internal data structure corruption will result otherwise.
8787     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8788     ** from trying to save the current position of the cursor.  */
8789     pCur->pPage->nOverflow = 0;
8790     pCur->eState = CURSOR_INVALID;
8791     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8792       btreeReleaseAllCursorPages(pCur);
8793       if( pCur->pKeyInfo ){
8794         assert( pCur->pKey==0 );
8795         pCur->pKey = sqlite3Malloc( pX->nKey );
8796         if( pCur->pKey==0 ){
8797           rc = SQLITE_NOMEM;
8798         }else{
8799           memcpy(pCur->pKey, pX->pKey, pX->nKey);
8800         }
8801       }
8802       pCur->eState = CURSOR_REQUIRESEEK;
8803       pCur->nKey = pX->nKey;
8804     }
8805   }
8806   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8807 
8808 end_insert:
8809   return rc;
8810 }
8811 
8812 /*
8813 ** Delete the entry that the cursor is pointing to.
8814 **
8815 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8816 ** the cursor is left pointing at an arbitrary location after the delete.
8817 ** But if that bit is set, then the cursor is left in a state such that
8818 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8819 ** as it would have been on if the call to BtreeDelete() had been omitted.
8820 **
8821 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8822 ** associated with a single table entry and its indexes.  Only one of those
8823 ** deletes is considered the "primary" delete.  The primary delete occurs
8824 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
8825 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8826 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8827 ** but which might be used by alternative storage engines.
8828 */
8829 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8830   Btree *p = pCur->pBtree;
8831   BtShared *pBt = p->pBt;
8832   int rc;                              /* Return code */
8833   MemPage *pPage;                      /* Page to delete cell from */
8834   unsigned char *pCell;                /* Pointer to cell to delete */
8835   int iCellIdx;                        /* Index of cell to delete */
8836   int iCellDepth;                      /* Depth of node containing pCell */
8837   CellInfo info;                       /* Size of the cell being deleted */
8838   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8839   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
8840 
8841   assert( cursorOwnsBtShared(pCur) );
8842   assert( pBt->inTransaction==TRANS_WRITE );
8843   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8844   assert( pCur->curFlags & BTCF_WriteFlag );
8845   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8846   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8847   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8848   if( pCur->eState==CURSOR_REQUIRESEEK ){
8849     rc = btreeRestoreCursorPosition(pCur);
8850     if( rc ) return rc;
8851   }
8852   assert( pCur->eState==CURSOR_VALID );
8853 
8854   iCellDepth = pCur->iPage;
8855   iCellIdx = pCur->ix;
8856   pPage = pCur->pPage;
8857   pCell = findCell(pPage, iCellIdx);
8858   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
8859 
8860   /* If the bPreserve flag is set to true, then the cursor position must
8861   ** be preserved following this delete operation. If the current delete
8862   ** will cause a b-tree rebalance, then this is done by saving the cursor
8863   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8864   ** returning.
8865   **
8866   ** Or, if the current delete will not cause a rebalance, then the cursor
8867   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8868   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8869   if( bPreserve ){
8870     if( !pPage->leaf
8871      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8872      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
8873     ){
8874       /* A b-tree rebalance will be required after deleting this entry.
8875       ** Save the cursor key.  */
8876       rc = saveCursorKey(pCur);
8877       if( rc ) return rc;
8878     }else{
8879       bSkipnext = 1;
8880     }
8881   }
8882 
8883   /* If the page containing the entry to delete is not a leaf page, move
8884   ** the cursor to the largest entry in the tree that is smaller than
8885   ** the entry being deleted. This cell will replace the cell being deleted
8886   ** from the internal node. The 'previous' entry is used for this instead
8887   ** of the 'next' entry, as the previous entry is always a part of the
8888   ** sub-tree headed by the child page of the cell being deleted. This makes
8889   ** balancing the tree following the delete operation easier.  */
8890   if( !pPage->leaf ){
8891     rc = sqlite3BtreePrevious(pCur, 0);
8892     assert( rc!=SQLITE_DONE );
8893     if( rc ) return rc;
8894   }
8895 
8896   /* Save the positions of any other cursors open on this table before
8897   ** making any modifications.  */
8898   if( pCur->curFlags & BTCF_Multiple ){
8899     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8900     if( rc ) return rc;
8901   }
8902 
8903   /* If this is a delete operation to remove a row from a table b-tree,
8904   ** invalidate any incrblob cursors open on the row being deleted.  */
8905   if( pCur->pKeyInfo==0 ){
8906     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
8907   }
8908 
8909   /* Make the page containing the entry to be deleted writable. Then free any
8910   ** overflow pages associated with the entry and finally remove the cell
8911   ** itself from within the page.  */
8912   rc = sqlite3PagerWrite(pPage->pDbPage);
8913   if( rc ) return rc;
8914   rc = clearCell(pPage, pCell, &info);
8915   dropCell(pPage, iCellIdx, info.nSize, &rc);
8916   if( rc ) return rc;
8917 
8918   /* If the cell deleted was not located on a leaf page, then the cursor
8919   ** is currently pointing to the largest entry in the sub-tree headed
8920   ** by the child-page of the cell that was just deleted from an internal
8921   ** node. The cell from the leaf node needs to be moved to the internal
8922   ** node to replace the deleted cell.  */
8923   if( !pPage->leaf ){
8924     MemPage *pLeaf = pCur->pPage;
8925     int nCell;
8926     Pgno n;
8927     unsigned char *pTmp;
8928 
8929     if( pLeaf->nFree<0 ){
8930       rc = btreeComputeFreeSpace(pLeaf);
8931       if( rc ) return rc;
8932     }
8933     if( iCellDepth<pCur->iPage-1 ){
8934       n = pCur->apPage[iCellDepth+1]->pgno;
8935     }else{
8936       n = pCur->pPage->pgno;
8937     }
8938     pCell = findCell(pLeaf, pLeaf->nCell-1);
8939     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8940     nCell = pLeaf->xCellSize(pLeaf, pCell);
8941     assert( MX_CELL_SIZE(pBt) >= nCell );
8942     pTmp = pBt->pTmpSpace;
8943     assert( pTmp!=0 );
8944     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8945     if( rc==SQLITE_OK ){
8946       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8947     }
8948     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8949     if( rc ) return rc;
8950   }
8951 
8952   /* Balance the tree. If the entry deleted was located on a leaf page,
8953   ** then the cursor still points to that page. In this case the first
8954   ** call to balance() repairs the tree, and the if(...) condition is
8955   ** never true.
8956   **
8957   ** Otherwise, if the entry deleted was on an internal node page, then
8958   ** pCur is pointing to the leaf page from which a cell was removed to
8959   ** replace the cell deleted from the internal node. This is slightly
8960   ** tricky as the leaf node may be underfull, and the internal node may
8961   ** be either under or overfull. In this case run the balancing algorithm
8962   ** on the leaf node first. If the balance proceeds far enough up the
8963   ** tree that we can be sure that any problem in the internal node has
8964   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8965   ** walk the cursor up the tree to the internal node and balance it as
8966   ** well.  */
8967   rc = balance(pCur);
8968   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8969     releasePageNotNull(pCur->pPage);
8970     pCur->iPage--;
8971     while( pCur->iPage>iCellDepth ){
8972       releasePage(pCur->apPage[pCur->iPage--]);
8973     }
8974     pCur->pPage = pCur->apPage[pCur->iPage];
8975     rc = balance(pCur);
8976   }
8977 
8978   if( rc==SQLITE_OK ){
8979     if( bSkipnext ){
8980       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8981       assert( pPage==pCur->pPage || CORRUPT_DB );
8982       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8983       pCur->eState = CURSOR_SKIPNEXT;
8984       if( iCellIdx>=pPage->nCell ){
8985         pCur->skipNext = -1;
8986         pCur->ix = pPage->nCell-1;
8987       }else{
8988         pCur->skipNext = 1;
8989       }
8990     }else{
8991       rc = moveToRoot(pCur);
8992       if( bPreserve ){
8993         btreeReleaseAllCursorPages(pCur);
8994         pCur->eState = CURSOR_REQUIRESEEK;
8995       }
8996       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
8997     }
8998   }
8999   return rc;
9000 }
9001 
9002 /*
9003 ** Create a new BTree table.  Write into *piTable the page
9004 ** number for the root page of the new table.
9005 **
9006 ** The type of type is determined by the flags parameter.  Only the
9007 ** following values of flags are currently in use.  Other values for
9008 ** flags might not work:
9009 **
9010 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
9011 **     BTREE_ZERODATA                  Used for SQL indices
9012 */
9013 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
9014   BtShared *pBt = p->pBt;
9015   MemPage *pRoot;
9016   Pgno pgnoRoot;
9017   int rc;
9018   int ptfFlags;          /* Page-type flage for the root page of new table */
9019 
9020   assert( sqlite3BtreeHoldsMutex(p) );
9021   assert( pBt->inTransaction==TRANS_WRITE );
9022   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9023 
9024 #ifdef SQLITE_OMIT_AUTOVACUUM
9025   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9026   if( rc ){
9027     return rc;
9028   }
9029 #else
9030   if( pBt->autoVacuum ){
9031     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
9032     MemPage *pPageMove; /* The page to move to. */
9033 
9034     /* Creating a new table may probably require moving an existing database
9035     ** to make room for the new tables root page. In case this page turns
9036     ** out to be an overflow page, delete all overflow page-map caches
9037     ** held by open cursors.
9038     */
9039     invalidateAllOverflowCache(pBt);
9040 
9041     /* Read the value of meta[3] from the database to determine where the
9042     ** root page of the new table should go. meta[3] is the largest root-page
9043     ** created so far, so the new root-page is (meta[3]+1).
9044     */
9045     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9046     pgnoRoot++;
9047 
9048     /* The new root-page may not be allocated on a pointer-map page, or the
9049     ** PENDING_BYTE page.
9050     */
9051     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9052         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9053       pgnoRoot++;
9054     }
9055     assert( pgnoRoot>=3 || CORRUPT_DB );
9056     testcase( pgnoRoot<3 );
9057 
9058     /* Allocate a page. The page that currently resides at pgnoRoot will
9059     ** be moved to the allocated page (unless the allocated page happens
9060     ** to reside at pgnoRoot).
9061     */
9062     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9063     if( rc!=SQLITE_OK ){
9064       return rc;
9065     }
9066 
9067     if( pgnoMove!=pgnoRoot ){
9068       /* pgnoRoot is the page that will be used for the root-page of
9069       ** the new table (assuming an error did not occur). But we were
9070       ** allocated pgnoMove. If required (i.e. if it was not allocated
9071       ** by extending the file), the current page at position pgnoMove
9072       ** is already journaled.
9073       */
9074       u8 eType = 0;
9075       Pgno iPtrPage = 0;
9076 
9077       /* Save the positions of any open cursors. This is required in
9078       ** case they are holding a reference to an xFetch reference
9079       ** corresponding to page pgnoRoot.  */
9080       rc = saveAllCursors(pBt, 0, 0);
9081       releasePage(pPageMove);
9082       if( rc!=SQLITE_OK ){
9083         return rc;
9084       }
9085 
9086       /* Move the page currently at pgnoRoot to pgnoMove. */
9087       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9088       if( rc!=SQLITE_OK ){
9089         return rc;
9090       }
9091       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9092       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9093         rc = SQLITE_CORRUPT_BKPT;
9094       }
9095       if( rc!=SQLITE_OK ){
9096         releasePage(pRoot);
9097         return rc;
9098       }
9099       assert( eType!=PTRMAP_ROOTPAGE );
9100       assert( eType!=PTRMAP_FREEPAGE );
9101       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9102       releasePage(pRoot);
9103 
9104       /* Obtain the page at pgnoRoot */
9105       if( rc!=SQLITE_OK ){
9106         return rc;
9107       }
9108       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9109       if( rc!=SQLITE_OK ){
9110         return rc;
9111       }
9112       rc = sqlite3PagerWrite(pRoot->pDbPage);
9113       if( rc!=SQLITE_OK ){
9114         releasePage(pRoot);
9115         return rc;
9116       }
9117     }else{
9118       pRoot = pPageMove;
9119     }
9120 
9121     /* Update the pointer-map and meta-data with the new root-page number. */
9122     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9123     if( rc ){
9124       releasePage(pRoot);
9125       return rc;
9126     }
9127 
9128     /* When the new root page was allocated, page 1 was made writable in
9129     ** order either to increase the database filesize, or to decrement the
9130     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9131     */
9132     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9133     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9134     if( NEVER(rc) ){
9135       releasePage(pRoot);
9136       return rc;
9137     }
9138 
9139   }else{
9140     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9141     if( rc ) return rc;
9142   }
9143 #endif
9144   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9145   if( createTabFlags & BTREE_INTKEY ){
9146     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9147   }else{
9148     ptfFlags = PTF_ZERODATA | PTF_LEAF;
9149   }
9150   zeroPage(pRoot, ptfFlags);
9151   sqlite3PagerUnref(pRoot->pDbPage);
9152   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9153   *piTable = (int)pgnoRoot;
9154   return SQLITE_OK;
9155 }
9156 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9157   int rc;
9158   sqlite3BtreeEnter(p);
9159   rc = btreeCreateTable(p, piTable, flags);
9160   sqlite3BtreeLeave(p);
9161   return rc;
9162 }
9163 
9164 /*
9165 ** Erase the given database page and all its children.  Return
9166 ** the page to the freelist.
9167 */
9168 static int clearDatabasePage(
9169   BtShared *pBt,           /* The BTree that contains the table */
9170   Pgno pgno,               /* Page number to clear */
9171   int freePageFlag,        /* Deallocate page if true */
9172   int *pnChange            /* Add number of Cells freed to this counter */
9173 ){
9174   MemPage *pPage;
9175   int rc;
9176   unsigned char *pCell;
9177   int i;
9178   int hdr;
9179   CellInfo info;
9180 
9181   assert( sqlite3_mutex_held(pBt->mutex) );
9182   if( pgno>btreePagecount(pBt) ){
9183     return SQLITE_CORRUPT_BKPT;
9184   }
9185   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9186   if( rc ) return rc;
9187   if( pPage->bBusy ){
9188     rc = SQLITE_CORRUPT_BKPT;
9189     goto cleardatabasepage_out;
9190   }
9191   pPage->bBusy = 1;
9192   hdr = pPage->hdrOffset;
9193   for(i=0; i<pPage->nCell; i++){
9194     pCell = findCell(pPage, i);
9195     if( !pPage->leaf ){
9196       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9197       if( rc ) goto cleardatabasepage_out;
9198     }
9199     rc = clearCell(pPage, pCell, &info);
9200     if( rc ) goto cleardatabasepage_out;
9201   }
9202   if( !pPage->leaf ){
9203     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9204     if( rc ) goto cleardatabasepage_out;
9205   }else if( pnChange ){
9206     assert( pPage->intKey || CORRUPT_DB );
9207     testcase( !pPage->intKey );
9208     *pnChange += pPage->nCell;
9209   }
9210   if( freePageFlag ){
9211     freePage(pPage, &rc);
9212   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9213     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9214   }
9215 
9216 cleardatabasepage_out:
9217   pPage->bBusy = 0;
9218   releasePage(pPage);
9219   return rc;
9220 }
9221 
9222 /*
9223 ** Delete all information from a single table in the database.  iTable is
9224 ** the page number of the root of the table.  After this routine returns,
9225 ** the root page is empty, but still exists.
9226 **
9227 ** This routine will fail with SQLITE_LOCKED if there are any open
9228 ** read cursors on the table.  Open write cursors are moved to the
9229 ** root of the table.
9230 **
9231 ** If pnChange is not NULL, then table iTable must be an intkey table. The
9232 ** integer value pointed to by pnChange is incremented by the number of
9233 ** entries in the table.
9234 */
9235 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
9236   int rc;
9237   BtShared *pBt = p->pBt;
9238   sqlite3BtreeEnter(p);
9239   assert( p->inTrans==TRANS_WRITE );
9240 
9241   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9242 
9243   if( SQLITE_OK==rc ){
9244     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9245     ** is the root of a table b-tree - if it is not, the following call is
9246     ** a no-op).  */
9247     invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9248     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9249   }
9250   sqlite3BtreeLeave(p);
9251   return rc;
9252 }
9253 
9254 /*
9255 ** Delete all information from the single table that pCur is open on.
9256 **
9257 ** This routine only work for pCur on an ephemeral table.
9258 */
9259 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9260   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9261 }
9262 
9263 /*
9264 ** Erase all information in a table and add the root of the table to
9265 ** the freelist.  Except, the root of the principle table (the one on
9266 ** page 1) is never added to the freelist.
9267 **
9268 ** This routine will fail with SQLITE_LOCKED if there are any open
9269 ** cursors on the table.
9270 **
9271 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9272 ** root page in the database file, then the last root page
9273 ** in the database file is moved into the slot formerly occupied by
9274 ** iTable and that last slot formerly occupied by the last root page
9275 ** is added to the freelist instead of iTable.  In this say, all
9276 ** root pages are kept at the beginning of the database file, which
9277 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9278 ** page number that used to be the last root page in the file before
9279 ** the move.  If no page gets moved, *piMoved is set to 0.
9280 ** The last root page is recorded in meta[3] and the value of
9281 ** meta[3] is updated by this procedure.
9282 */
9283 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9284   int rc;
9285   MemPage *pPage = 0;
9286   BtShared *pBt = p->pBt;
9287 
9288   assert( sqlite3BtreeHoldsMutex(p) );
9289   assert( p->inTrans==TRANS_WRITE );
9290   assert( iTable>=2 );
9291   if( iTable>btreePagecount(pBt) ){
9292     return SQLITE_CORRUPT_BKPT;
9293   }
9294 
9295   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9296   if( rc ) return rc;
9297   rc = sqlite3BtreeClearTable(p, iTable, 0);
9298   if( rc ){
9299     releasePage(pPage);
9300     return rc;
9301   }
9302 
9303   *piMoved = 0;
9304 
9305 #ifdef SQLITE_OMIT_AUTOVACUUM
9306   freePage(pPage, &rc);
9307   releasePage(pPage);
9308 #else
9309   if( pBt->autoVacuum ){
9310     Pgno maxRootPgno;
9311     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9312 
9313     if( iTable==maxRootPgno ){
9314       /* If the table being dropped is the table with the largest root-page
9315       ** number in the database, put the root page on the free list.
9316       */
9317       freePage(pPage, &rc);
9318       releasePage(pPage);
9319       if( rc!=SQLITE_OK ){
9320         return rc;
9321       }
9322     }else{
9323       /* The table being dropped does not have the largest root-page
9324       ** number in the database. So move the page that does into the
9325       ** gap left by the deleted root-page.
9326       */
9327       MemPage *pMove;
9328       releasePage(pPage);
9329       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9330       if( rc!=SQLITE_OK ){
9331         return rc;
9332       }
9333       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9334       releasePage(pMove);
9335       if( rc!=SQLITE_OK ){
9336         return rc;
9337       }
9338       pMove = 0;
9339       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9340       freePage(pMove, &rc);
9341       releasePage(pMove);
9342       if( rc!=SQLITE_OK ){
9343         return rc;
9344       }
9345       *piMoved = maxRootPgno;
9346     }
9347 
9348     /* Set the new 'max-root-page' value in the database header. This
9349     ** is the old value less one, less one more if that happens to
9350     ** be a root-page number, less one again if that is the
9351     ** PENDING_BYTE_PAGE.
9352     */
9353     maxRootPgno--;
9354     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9355            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9356       maxRootPgno--;
9357     }
9358     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9359 
9360     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9361   }else{
9362     freePage(pPage, &rc);
9363     releasePage(pPage);
9364   }
9365 #endif
9366   return rc;
9367 }
9368 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9369   int rc;
9370   sqlite3BtreeEnter(p);
9371   rc = btreeDropTable(p, iTable, piMoved);
9372   sqlite3BtreeLeave(p);
9373   return rc;
9374 }
9375 
9376 
9377 /*
9378 ** This function may only be called if the b-tree connection already
9379 ** has a read or write transaction open on the database.
9380 **
9381 ** Read the meta-information out of a database file.  Meta[0]
9382 ** is the number of free pages currently in the database.  Meta[1]
9383 ** through meta[15] are available for use by higher layers.  Meta[0]
9384 ** is read-only, the others are read/write.
9385 **
9386 ** The schema layer numbers meta values differently.  At the schema
9387 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9388 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
9389 **
9390 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
9391 ** of reading the value out of the header, it instead loads the "DataVersion"
9392 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
9393 ** database file.  It is a number computed by the pager.  But its access
9394 ** pattern is the same as header meta values, and so it is convenient to
9395 ** read it from this routine.
9396 */
9397 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9398   BtShared *pBt = p->pBt;
9399 
9400   sqlite3BtreeEnter(p);
9401   assert( p->inTrans>TRANS_NONE );
9402   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
9403   assert( pBt->pPage1 );
9404   assert( idx>=0 && idx<=15 );
9405 
9406   if( idx==BTREE_DATA_VERSION ){
9407     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
9408   }else{
9409     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9410   }
9411 
9412   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9413   ** database, mark the database as read-only.  */
9414 #ifdef SQLITE_OMIT_AUTOVACUUM
9415   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9416     pBt->btsFlags |= BTS_READ_ONLY;
9417   }
9418 #endif
9419 
9420   sqlite3BtreeLeave(p);
9421 }
9422 
9423 /*
9424 ** Write meta-information back into the database.  Meta[0] is
9425 ** read-only and may not be written.
9426 */
9427 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9428   BtShared *pBt = p->pBt;
9429   unsigned char *pP1;
9430   int rc;
9431   assert( idx>=1 && idx<=15 );
9432   sqlite3BtreeEnter(p);
9433   assert( p->inTrans==TRANS_WRITE );
9434   assert( pBt->pPage1!=0 );
9435   pP1 = pBt->pPage1->aData;
9436   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9437   if( rc==SQLITE_OK ){
9438     put4byte(&pP1[36 + idx*4], iMeta);
9439 #ifndef SQLITE_OMIT_AUTOVACUUM
9440     if( idx==BTREE_INCR_VACUUM ){
9441       assert( pBt->autoVacuum || iMeta==0 );
9442       assert( iMeta==0 || iMeta==1 );
9443       pBt->incrVacuum = (u8)iMeta;
9444     }
9445 #endif
9446   }
9447   sqlite3BtreeLeave(p);
9448   return rc;
9449 }
9450 
9451 #ifndef SQLITE_OMIT_BTREECOUNT
9452 /*
9453 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9454 ** number of entries in the b-tree and write the result to *pnEntry.
9455 **
9456 ** SQLITE_OK is returned if the operation is successfully executed.
9457 ** Otherwise, if an error is encountered (i.e. an IO error or database
9458 ** corruption) an SQLite error code is returned.
9459 */
9460 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9461   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9462   int rc;                              /* Return code */
9463 
9464   rc = moveToRoot(pCur);
9465   if( rc==SQLITE_EMPTY ){
9466     *pnEntry = 0;
9467     return SQLITE_OK;
9468   }
9469 
9470   /* Unless an error occurs, the following loop runs one iteration for each
9471   ** page in the B-Tree structure (not including overflow pages).
9472   */
9473   while( rc==SQLITE_OK ){
9474     int iIdx;                          /* Index of child node in parent */
9475     MemPage *pPage;                    /* Current page of the b-tree */
9476 
9477     /* If this is a leaf page or the tree is not an int-key tree, then
9478     ** this page contains countable entries. Increment the entry counter
9479     ** accordingly.
9480     */
9481     pPage = pCur->pPage;
9482     if( pPage->leaf || !pPage->intKey ){
9483       nEntry += pPage->nCell;
9484     }
9485 
9486     /* pPage is a leaf node. This loop navigates the cursor so that it
9487     ** points to the first interior cell that it points to the parent of
9488     ** the next page in the tree that has not yet been visited. The
9489     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9490     ** of the page, or to the number of cells in the page if the next page
9491     ** to visit is the right-child of its parent.
9492     **
9493     ** If all pages in the tree have been visited, return SQLITE_OK to the
9494     ** caller.
9495     */
9496     if( pPage->leaf ){
9497       do {
9498         if( pCur->iPage==0 ){
9499           /* All pages of the b-tree have been visited. Return successfully. */
9500           *pnEntry = nEntry;
9501           return moveToRoot(pCur);
9502         }
9503         moveToParent(pCur);
9504       }while ( pCur->ix>=pCur->pPage->nCell );
9505 
9506       pCur->ix++;
9507       pPage = pCur->pPage;
9508     }
9509 
9510     /* Descend to the child node of the cell that the cursor currently
9511     ** points at. This is the right-child if (iIdx==pPage->nCell).
9512     */
9513     iIdx = pCur->ix;
9514     if( iIdx==pPage->nCell ){
9515       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9516     }else{
9517       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9518     }
9519   }
9520 
9521   /* An error has occurred. Return an error code. */
9522   return rc;
9523 }
9524 #endif
9525 
9526 /*
9527 ** Return the pager associated with a BTree.  This routine is used for
9528 ** testing and debugging only.
9529 */
9530 Pager *sqlite3BtreePager(Btree *p){
9531   return p->pBt->pPager;
9532 }
9533 
9534 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9535 /*
9536 ** Append a message to the error message string.
9537 */
9538 static void checkAppendMsg(
9539   IntegrityCk *pCheck,
9540   const char *zFormat,
9541   ...
9542 ){
9543   va_list ap;
9544   if( !pCheck->mxErr ) return;
9545   pCheck->mxErr--;
9546   pCheck->nErr++;
9547   va_start(ap, zFormat);
9548   if( pCheck->errMsg.nChar ){
9549     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9550   }
9551   if( pCheck->zPfx ){
9552     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9553   }
9554   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9555   va_end(ap);
9556   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9557     pCheck->mallocFailed = 1;
9558   }
9559 }
9560 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9561 
9562 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9563 
9564 /*
9565 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9566 ** corresponds to page iPg is already set.
9567 */
9568 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9569   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9570   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9571 }
9572 
9573 /*
9574 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9575 */
9576 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9577   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9578   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9579 }
9580 
9581 
9582 /*
9583 ** Add 1 to the reference count for page iPage.  If this is the second
9584 ** reference to the page, add an error message to pCheck->zErrMsg.
9585 ** Return 1 if there are 2 or more references to the page and 0 if
9586 ** if this is the first reference to the page.
9587 **
9588 ** Also check that the page number is in bounds.
9589 */
9590 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9591   if( iPage>pCheck->nPage || iPage==0 ){
9592     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9593     return 1;
9594   }
9595   if( getPageReferenced(pCheck, iPage) ){
9596     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9597     return 1;
9598   }
9599   setPageReferenced(pCheck, iPage);
9600   return 0;
9601 }
9602 
9603 #ifndef SQLITE_OMIT_AUTOVACUUM
9604 /*
9605 ** Check that the entry in the pointer-map for page iChild maps to
9606 ** page iParent, pointer type ptrType. If not, append an error message
9607 ** to pCheck.
9608 */
9609 static void checkPtrmap(
9610   IntegrityCk *pCheck,   /* Integrity check context */
9611   Pgno iChild,           /* Child page number */
9612   u8 eType,              /* Expected pointer map type */
9613   Pgno iParent           /* Expected pointer map parent page number */
9614 ){
9615   int rc;
9616   u8 ePtrmapType;
9617   Pgno iPtrmapParent;
9618 
9619   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9620   if( rc!=SQLITE_OK ){
9621     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9622     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9623     return;
9624   }
9625 
9626   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9627     checkAppendMsg(pCheck,
9628       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9629       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9630   }
9631 }
9632 #endif
9633 
9634 /*
9635 ** Check the integrity of the freelist or of an overflow page list.
9636 ** Verify that the number of pages on the list is N.
9637 */
9638 static void checkList(
9639   IntegrityCk *pCheck,  /* Integrity checking context */
9640   int isFreeList,       /* True for a freelist.  False for overflow page list */
9641   int iPage,            /* Page number for first page in the list */
9642   u32 N                 /* Expected number of pages in the list */
9643 ){
9644   int i;
9645   u32 expected = N;
9646   int nErrAtStart = pCheck->nErr;
9647   while( iPage!=0 && pCheck->mxErr ){
9648     DbPage *pOvflPage;
9649     unsigned char *pOvflData;
9650     if( checkRef(pCheck, iPage) ) break;
9651     N--;
9652     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9653       checkAppendMsg(pCheck, "failed to get page %d", iPage);
9654       break;
9655     }
9656     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9657     if( isFreeList ){
9658       u32 n = (u32)get4byte(&pOvflData[4]);
9659 #ifndef SQLITE_OMIT_AUTOVACUUM
9660       if( pCheck->pBt->autoVacuum ){
9661         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9662       }
9663 #endif
9664       if( n>pCheck->pBt->usableSize/4-2 ){
9665         checkAppendMsg(pCheck,
9666            "freelist leaf count too big on page %d", iPage);
9667         N--;
9668       }else{
9669         for(i=0; i<(int)n; i++){
9670           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9671 #ifndef SQLITE_OMIT_AUTOVACUUM
9672           if( pCheck->pBt->autoVacuum ){
9673             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9674           }
9675 #endif
9676           checkRef(pCheck, iFreePage);
9677         }
9678         N -= n;
9679       }
9680     }
9681 #ifndef SQLITE_OMIT_AUTOVACUUM
9682     else{
9683       /* If this database supports auto-vacuum and iPage is not the last
9684       ** page in this overflow list, check that the pointer-map entry for
9685       ** the following page matches iPage.
9686       */
9687       if( pCheck->pBt->autoVacuum && N>0 ){
9688         i = get4byte(pOvflData);
9689         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9690       }
9691     }
9692 #endif
9693     iPage = get4byte(pOvflData);
9694     sqlite3PagerUnref(pOvflPage);
9695   }
9696   if( N && nErrAtStart==pCheck->nErr ){
9697     checkAppendMsg(pCheck,
9698       "%s is %d but should be %d",
9699       isFreeList ? "size" : "overflow list length",
9700       expected-N, expected);
9701   }
9702 }
9703 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9704 
9705 /*
9706 ** An implementation of a min-heap.
9707 **
9708 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
9709 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
9710 ** and aHeap[N*2+1].
9711 **
9712 ** The heap property is this:  Every node is less than or equal to both
9713 ** of its daughter nodes.  A consequence of the heap property is that the
9714 ** root node aHeap[1] is always the minimum value currently in the heap.
9715 **
9716 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9717 ** the heap, preserving the heap property.  The btreeHeapPull() routine
9718 ** removes the root element from the heap (the minimum value in the heap)
9719 ** and then moves other nodes around as necessary to preserve the heap
9720 ** property.
9721 **
9722 ** This heap is used for cell overlap and coverage testing.  Each u32
9723 ** entry represents the span of a cell or freeblock on a btree page.
9724 ** The upper 16 bits are the index of the first byte of a range and the
9725 ** lower 16 bits are the index of the last byte of that range.
9726 */
9727 static void btreeHeapInsert(u32 *aHeap, u32 x){
9728   u32 j, i = ++aHeap[0];
9729   aHeap[i] = x;
9730   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9731     x = aHeap[j];
9732     aHeap[j] = aHeap[i];
9733     aHeap[i] = x;
9734     i = j;
9735   }
9736 }
9737 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9738   u32 j, i, x;
9739   if( (x = aHeap[0])==0 ) return 0;
9740   *pOut = aHeap[1];
9741   aHeap[1] = aHeap[x];
9742   aHeap[x] = 0xffffffff;
9743   aHeap[0]--;
9744   i = 1;
9745   while( (j = i*2)<=aHeap[0] ){
9746     if( aHeap[j]>aHeap[j+1] ) j++;
9747     if( aHeap[i]<aHeap[j] ) break;
9748     x = aHeap[i];
9749     aHeap[i] = aHeap[j];
9750     aHeap[j] = x;
9751     i = j;
9752   }
9753   return 1;
9754 }
9755 
9756 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9757 /*
9758 ** Do various sanity checks on a single page of a tree.  Return
9759 ** the tree depth.  Root pages return 0.  Parents of root pages
9760 ** return 1, and so forth.
9761 **
9762 ** These checks are done:
9763 **
9764 **      1.  Make sure that cells and freeblocks do not overlap
9765 **          but combine to completely cover the page.
9766 **      2.  Make sure integer cell keys are in order.
9767 **      3.  Check the integrity of overflow pages.
9768 **      4.  Recursively call checkTreePage on all children.
9769 **      5.  Verify that the depth of all children is the same.
9770 */
9771 static int checkTreePage(
9772   IntegrityCk *pCheck,  /* Context for the sanity check */
9773   int iPage,            /* Page number of the page to check */
9774   i64 *piMinKey,        /* Write minimum integer primary key here */
9775   i64 maxKey            /* Error if integer primary key greater than this */
9776 ){
9777   MemPage *pPage = 0;      /* The page being analyzed */
9778   int i;                   /* Loop counter */
9779   int rc;                  /* Result code from subroutine call */
9780   int depth = -1, d2;      /* Depth of a subtree */
9781   int pgno;                /* Page number */
9782   int nFrag;               /* Number of fragmented bytes on the page */
9783   int hdr;                 /* Offset to the page header */
9784   int cellStart;           /* Offset to the start of the cell pointer array */
9785   int nCell;               /* Number of cells */
9786   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9787   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9788                            ** False if IPK must be strictly less than maxKey */
9789   u8 *data;                /* Page content */
9790   u8 *pCell;               /* Cell content */
9791   u8 *pCellIdx;            /* Next element of the cell pointer array */
9792   BtShared *pBt;           /* The BtShared object that owns pPage */
9793   u32 pc;                  /* Address of a cell */
9794   u32 usableSize;          /* Usable size of the page */
9795   u32 contentOffset;       /* Offset to the start of the cell content area */
9796   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9797   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9798   const char *saved_zPfx = pCheck->zPfx;
9799   int saved_v1 = pCheck->v1;
9800   int saved_v2 = pCheck->v2;
9801   u8 savedIsInit = 0;
9802 
9803   /* Check that the page exists
9804   */
9805   pBt = pCheck->pBt;
9806   usableSize = pBt->usableSize;
9807   if( iPage==0 ) return 0;
9808   if( checkRef(pCheck, iPage) ) return 0;
9809   pCheck->zPfx = "Page %d: ";
9810   pCheck->v1 = iPage;
9811   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9812     checkAppendMsg(pCheck,
9813        "unable to get the page. error code=%d", rc);
9814     goto end_of_check;
9815   }
9816 
9817   /* Clear MemPage.isInit to make sure the corruption detection code in
9818   ** btreeInitPage() is executed.  */
9819   savedIsInit = pPage->isInit;
9820   pPage->isInit = 0;
9821   if( (rc = btreeInitPage(pPage))!=0 ){
9822     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9823     checkAppendMsg(pCheck,
9824                    "btreeInitPage() returns error code %d", rc);
9825     goto end_of_check;
9826   }
9827   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9828     assert( rc==SQLITE_CORRUPT );
9829     checkAppendMsg(pCheck, "free space corruption", rc);
9830     goto end_of_check;
9831   }
9832   data = pPage->aData;
9833   hdr = pPage->hdrOffset;
9834 
9835   /* Set up for cell analysis */
9836   pCheck->zPfx = "On tree page %d cell %d: ";
9837   contentOffset = get2byteNotZero(&data[hdr+5]);
9838   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9839 
9840   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9841   ** number of cells on the page. */
9842   nCell = get2byte(&data[hdr+3]);
9843   assert( pPage->nCell==nCell );
9844 
9845   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9846   ** immediately follows the b-tree page header. */
9847   cellStart = hdr + 12 - 4*pPage->leaf;
9848   assert( pPage->aCellIdx==&data[cellStart] );
9849   pCellIdx = &data[cellStart + 2*(nCell-1)];
9850 
9851   if( !pPage->leaf ){
9852     /* Analyze the right-child page of internal pages */
9853     pgno = get4byte(&data[hdr+8]);
9854 #ifndef SQLITE_OMIT_AUTOVACUUM
9855     if( pBt->autoVacuum ){
9856       pCheck->zPfx = "On page %d at right child: ";
9857       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9858     }
9859 #endif
9860     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9861     keyCanBeEqual = 0;
9862   }else{
9863     /* For leaf pages, the coverage check will occur in the same loop
9864     ** as the other cell checks, so initialize the heap.  */
9865     heap = pCheck->heap;
9866     heap[0] = 0;
9867   }
9868 
9869   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9870   ** integer offsets to the cell contents. */
9871   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9872     CellInfo info;
9873 
9874     /* Check cell size */
9875     pCheck->v2 = i;
9876     assert( pCellIdx==&data[cellStart + i*2] );
9877     pc = get2byteAligned(pCellIdx);
9878     pCellIdx -= 2;
9879     if( pc<contentOffset || pc>usableSize-4 ){
9880       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9881                              pc, contentOffset, usableSize-4);
9882       doCoverageCheck = 0;
9883       continue;
9884     }
9885     pCell = &data[pc];
9886     pPage->xParseCell(pPage, pCell, &info);
9887     if( pc+info.nSize>usableSize ){
9888       checkAppendMsg(pCheck, "Extends off end of page");
9889       doCoverageCheck = 0;
9890       continue;
9891     }
9892 
9893     /* Check for integer primary key out of range */
9894     if( pPage->intKey ){
9895       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9896         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9897       }
9898       maxKey = info.nKey;
9899       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
9900     }
9901 
9902     /* Check the content overflow list */
9903     if( info.nPayload>info.nLocal ){
9904       u32 nPage;       /* Number of pages on the overflow chain */
9905       Pgno pgnoOvfl;   /* First page of the overflow chain */
9906       assert( pc + info.nSize - 4 <= usableSize );
9907       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9908       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9909 #ifndef SQLITE_OMIT_AUTOVACUUM
9910       if( pBt->autoVacuum ){
9911         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9912       }
9913 #endif
9914       checkList(pCheck, 0, pgnoOvfl, nPage);
9915     }
9916 
9917     if( !pPage->leaf ){
9918       /* Check sanity of left child page for internal pages */
9919       pgno = get4byte(pCell);
9920 #ifndef SQLITE_OMIT_AUTOVACUUM
9921       if( pBt->autoVacuum ){
9922         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9923       }
9924 #endif
9925       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9926       keyCanBeEqual = 0;
9927       if( d2!=depth ){
9928         checkAppendMsg(pCheck, "Child page depth differs");
9929         depth = d2;
9930       }
9931     }else{
9932       /* Populate the coverage-checking heap for leaf pages */
9933       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9934     }
9935   }
9936   *piMinKey = maxKey;
9937 
9938   /* Check for complete coverage of the page
9939   */
9940   pCheck->zPfx = 0;
9941   if( doCoverageCheck && pCheck->mxErr>0 ){
9942     /* For leaf pages, the min-heap has already been initialized and the
9943     ** cells have already been inserted.  But for internal pages, that has
9944     ** not yet been done, so do it now */
9945     if( !pPage->leaf ){
9946       heap = pCheck->heap;
9947       heap[0] = 0;
9948       for(i=nCell-1; i>=0; i--){
9949         u32 size;
9950         pc = get2byteAligned(&data[cellStart+i*2]);
9951         size = pPage->xCellSize(pPage, &data[pc]);
9952         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9953       }
9954     }
9955     /* Add the freeblocks to the min-heap
9956     **
9957     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9958     ** is the offset of the first freeblock, or zero if there are no
9959     ** freeblocks on the page.
9960     */
9961     i = get2byte(&data[hdr+1]);
9962     while( i>0 ){
9963       int size, j;
9964       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
9965       size = get2byte(&data[i+2]);
9966       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
9967       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9968       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9969       ** big-endian integer which is the offset in the b-tree page of the next
9970       ** freeblock in the chain, or zero if the freeblock is the last on the
9971       ** chain. */
9972       j = get2byte(&data[i]);
9973       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9974       ** increasing offset. */
9975       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */
9976       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
9977       i = j;
9978     }
9979     /* Analyze the min-heap looking for overlap between cells and/or
9980     ** freeblocks, and counting the number of untracked bytes in nFrag.
9981     **
9982     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
9983     ** There is an implied first entry the covers the page header, the cell
9984     ** pointer index, and the gap between the cell pointer index and the start
9985     ** of cell content.
9986     **
9987     ** The loop below pulls entries from the min-heap in order and compares
9988     ** the start_address against the previous end_address.  If there is an
9989     ** overlap, that means bytes are used multiple times.  If there is a gap,
9990     ** that gap is added to the fragmentation count.
9991     */
9992     nFrag = 0;
9993     prev = contentOffset - 1;   /* Implied first min-heap entry */
9994     while( btreeHeapPull(heap,&x) ){
9995       if( (prev&0xffff)>=(x>>16) ){
9996         checkAppendMsg(pCheck,
9997           "Multiple uses for byte %u of page %d", x>>16, iPage);
9998         break;
9999       }else{
10000         nFrag += (x>>16) - (prev&0xffff) - 1;
10001         prev = x;
10002       }
10003     }
10004     nFrag += usableSize - (prev&0xffff) - 1;
10005     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10006     ** is stored in the fifth field of the b-tree page header.
10007     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10008     ** number of fragmented free bytes within the cell content area.
10009     */
10010     if( heap[0]==0 && nFrag!=data[hdr+7] ){
10011       checkAppendMsg(pCheck,
10012           "Fragmentation of %d bytes reported as %d on page %d",
10013           nFrag, data[hdr+7], iPage);
10014     }
10015   }
10016 
10017 end_of_check:
10018   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10019   releasePage(pPage);
10020   pCheck->zPfx = saved_zPfx;
10021   pCheck->v1 = saved_v1;
10022   pCheck->v2 = saved_v2;
10023   return depth+1;
10024 }
10025 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10026 
10027 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10028 /*
10029 ** This routine does a complete check of the given BTree file.  aRoot[] is
10030 ** an array of pages numbers were each page number is the root page of
10031 ** a table.  nRoot is the number of entries in aRoot.
10032 **
10033 ** A read-only or read-write transaction must be opened before calling
10034 ** this function.
10035 **
10036 ** Write the number of error seen in *pnErr.  Except for some memory
10037 ** allocation errors,  an error message held in memory obtained from
10038 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
10039 ** returned.  If a memory allocation error occurs, NULL is returned.
10040 */
10041 char *sqlite3BtreeIntegrityCheck(
10042   Btree *p,     /* The btree to be checked */
10043   int *aRoot,   /* An array of root pages numbers for individual trees */
10044   int nRoot,    /* Number of entries in aRoot[] */
10045   int mxErr,    /* Stop reporting errors after this many */
10046   int *pnErr    /* Write number of errors seen to this variable */
10047 ){
10048   Pgno i;
10049   IntegrityCk sCheck;
10050   BtShared *pBt = p->pBt;
10051   u64 savedDbFlags = pBt->db->flags;
10052   char zErr[100];
10053   VVA_ONLY( int nRef );
10054 
10055   sqlite3BtreeEnter(p);
10056   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10057   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10058   assert( nRef>=0 );
10059   sCheck.pBt = pBt;
10060   sCheck.pPager = pBt->pPager;
10061   sCheck.nPage = btreePagecount(sCheck.pBt);
10062   sCheck.mxErr = mxErr;
10063   sCheck.nErr = 0;
10064   sCheck.mallocFailed = 0;
10065   sCheck.zPfx = 0;
10066   sCheck.v1 = 0;
10067   sCheck.v2 = 0;
10068   sCheck.aPgRef = 0;
10069   sCheck.heap = 0;
10070   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10071   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10072   if( sCheck.nPage==0 ){
10073     goto integrity_ck_cleanup;
10074   }
10075 
10076   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10077   if( !sCheck.aPgRef ){
10078     sCheck.mallocFailed = 1;
10079     goto integrity_ck_cleanup;
10080   }
10081   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10082   if( sCheck.heap==0 ){
10083     sCheck.mallocFailed = 1;
10084     goto integrity_ck_cleanup;
10085   }
10086 
10087   i = PENDING_BYTE_PAGE(pBt);
10088   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10089 
10090   /* Check the integrity of the freelist
10091   */
10092   sCheck.zPfx = "Main freelist: ";
10093   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10094             get4byte(&pBt->pPage1->aData[36]));
10095   sCheck.zPfx = 0;
10096 
10097   /* Check all the tables.
10098   */
10099 #ifndef SQLITE_OMIT_AUTOVACUUM
10100   if( pBt->autoVacuum ){
10101     int mx = 0;
10102     int mxInHdr;
10103     for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10104     mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10105     if( mx!=mxInHdr ){
10106       checkAppendMsg(&sCheck,
10107         "max rootpage (%d) disagrees with header (%d)",
10108         mx, mxInHdr
10109       );
10110     }
10111   }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10112     checkAppendMsg(&sCheck,
10113       "incremental_vacuum enabled with a max rootpage of zero"
10114     );
10115   }
10116 #endif
10117   testcase( pBt->db->flags & SQLITE_CellSizeCk );
10118   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10119   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10120     i64 notUsed;
10121     if( aRoot[i]==0 ) continue;
10122 #ifndef SQLITE_OMIT_AUTOVACUUM
10123     if( pBt->autoVacuum && aRoot[i]>1 ){
10124       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10125     }
10126 #endif
10127     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10128   }
10129   pBt->db->flags = savedDbFlags;
10130 
10131   /* Make sure every page in the file is referenced
10132   */
10133   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10134 #ifdef SQLITE_OMIT_AUTOVACUUM
10135     if( getPageReferenced(&sCheck, i)==0 ){
10136       checkAppendMsg(&sCheck, "Page %d is never used", i);
10137     }
10138 #else
10139     /* If the database supports auto-vacuum, make sure no tables contain
10140     ** references to pointer-map pages.
10141     */
10142     if( getPageReferenced(&sCheck, i)==0 &&
10143        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10144       checkAppendMsg(&sCheck, "Page %d is never used", i);
10145     }
10146     if( getPageReferenced(&sCheck, i)!=0 &&
10147        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10148       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10149     }
10150 #endif
10151   }
10152 
10153   /* Clean  up and report errors.
10154   */
10155 integrity_ck_cleanup:
10156   sqlite3PageFree(sCheck.heap);
10157   sqlite3_free(sCheck.aPgRef);
10158   if( sCheck.mallocFailed ){
10159     sqlite3_str_reset(&sCheck.errMsg);
10160     sCheck.nErr++;
10161   }
10162   *pnErr = sCheck.nErr;
10163   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10164   /* Make sure this analysis did not leave any unref() pages. */
10165   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10166   sqlite3BtreeLeave(p);
10167   return sqlite3StrAccumFinish(&sCheck.errMsg);
10168 }
10169 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10170 
10171 /*
10172 ** Return the full pathname of the underlying database file.  Return
10173 ** an empty string if the database is in-memory or a TEMP database.
10174 **
10175 ** The pager filename is invariant as long as the pager is
10176 ** open so it is safe to access without the BtShared mutex.
10177 */
10178 const char *sqlite3BtreeGetFilename(Btree *p){
10179   assert( p->pBt->pPager!=0 );
10180   return sqlite3PagerFilename(p->pBt->pPager, 1);
10181 }
10182 
10183 /*
10184 ** Return the pathname of the journal file for this database. The return
10185 ** value of this routine is the same regardless of whether the journal file
10186 ** has been created or not.
10187 **
10188 ** The pager journal filename is invariant as long as the pager is
10189 ** open so it is safe to access without the BtShared mutex.
10190 */
10191 const char *sqlite3BtreeGetJournalname(Btree *p){
10192   assert( p->pBt->pPager!=0 );
10193   return sqlite3PagerJournalname(p->pBt->pPager);
10194 }
10195 
10196 /*
10197 ** Return non-zero if a transaction is active.
10198 */
10199 int sqlite3BtreeIsInTrans(Btree *p){
10200   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10201   return (p && (p->inTrans==TRANS_WRITE));
10202 }
10203 
10204 #ifndef SQLITE_OMIT_WAL
10205 /*
10206 ** Run a checkpoint on the Btree passed as the first argument.
10207 **
10208 ** Return SQLITE_LOCKED if this or any other connection has an open
10209 ** transaction on the shared-cache the argument Btree is connected to.
10210 **
10211 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10212 */
10213 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10214   int rc = SQLITE_OK;
10215   if( p ){
10216     BtShared *pBt = p->pBt;
10217     sqlite3BtreeEnter(p);
10218     if( pBt->inTransaction!=TRANS_NONE ){
10219       rc = SQLITE_LOCKED;
10220     }else{
10221       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10222     }
10223     sqlite3BtreeLeave(p);
10224   }
10225   return rc;
10226 }
10227 #endif
10228 
10229 /*
10230 ** Return non-zero if a read (or write) transaction is active.
10231 */
10232 int sqlite3BtreeIsInReadTrans(Btree *p){
10233   assert( p );
10234   assert( sqlite3_mutex_held(p->db->mutex) );
10235   return p->inTrans!=TRANS_NONE;
10236 }
10237 
10238 int sqlite3BtreeIsInBackup(Btree *p){
10239   assert( p );
10240   assert( sqlite3_mutex_held(p->db->mutex) );
10241   return p->nBackup!=0;
10242 }
10243 
10244 /*
10245 ** This function returns a pointer to a blob of memory associated with
10246 ** a single shared-btree. The memory is used by client code for its own
10247 ** purposes (for example, to store a high-level schema associated with
10248 ** the shared-btree). The btree layer manages reference counting issues.
10249 **
10250 ** The first time this is called on a shared-btree, nBytes bytes of memory
10251 ** are allocated, zeroed, and returned to the caller. For each subsequent
10252 ** call the nBytes parameter is ignored and a pointer to the same blob
10253 ** of memory returned.
10254 **
10255 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10256 ** allocated, a null pointer is returned. If the blob has already been
10257 ** allocated, it is returned as normal.
10258 **
10259 ** Just before the shared-btree is closed, the function passed as the
10260 ** xFree argument when the memory allocation was made is invoked on the
10261 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10262 ** on the memory, the btree layer does that.
10263 */
10264 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10265   BtShared *pBt = p->pBt;
10266   sqlite3BtreeEnter(p);
10267   if( !pBt->pSchema && nBytes ){
10268     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10269     pBt->xFreeSchema = xFree;
10270   }
10271   sqlite3BtreeLeave(p);
10272   return pBt->pSchema;
10273 }
10274 
10275 /*
10276 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10277 ** btree as the argument handle holds an exclusive lock on the
10278 ** sqlite_master table. Otherwise SQLITE_OK.
10279 */
10280 int sqlite3BtreeSchemaLocked(Btree *p){
10281   int rc;
10282   assert( sqlite3_mutex_held(p->db->mutex) );
10283   sqlite3BtreeEnter(p);
10284   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10285   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10286   sqlite3BtreeLeave(p);
10287   return rc;
10288 }
10289 
10290 
10291 #ifndef SQLITE_OMIT_SHARED_CACHE
10292 /*
10293 ** Obtain a lock on the table whose root page is iTab.  The
10294 ** lock is a write lock if isWritelock is true or a read lock
10295 ** if it is false.
10296 */
10297 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10298   int rc = SQLITE_OK;
10299   assert( p->inTrans!=TRANS_NONE );
10300   if( p->sharable ){
10301     u8 lockType = READ_LOCK + isWriteLock;
10302     assert( READ_LOCK+1==WRITE_LOCK );
10303     assert( isWriteLock==0 || isWriteLock==1 );
10304 
10305     sqlite3BtreeEnter(p);
10306     rc = querySharedCacheTableLock(p, iTab, lockType);
10307     if( rc==SQLITE_OK ){
10308       rc = setSharedCacheTableLock(p, iTab, lockType);
10309     }
10310     sqlite3BtreeLeave(p);
10311   }
10312   return rc;
10313 }
10314 #endif
10315 
10316 #ifndef SQLITE_OMIT_INCRBLOB
10317 /*
10318 ** Argument pCsr must be a cursor opened for writing on an
10319 ** INTKEY table currently pointing at a valid table entry.
10320 ** This function modifies the data stored as part of that entry.
10321 **
10322 ** Only the data content may only be modified, it is not possible to
10323 ** change the length of the data stored. If this function is called with
10324 ** parameters that attempt to write past the end of the existing data,
10325 ** no modifications are made and SQLITE_CORRUPT is returned.
10326 */
10327 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10328   int rc;
10329   assert( cursorOwnsBtShared(pCsr) );
10330   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10331   assert( pCsr->curFlags & BTCF_Incrblob );
10332 
10333   rc = restoreCursorPosition(pCsr);
10334   if( rc!=SQLITE_OK ){
10335     return rc;
10336   }
10337   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10338   if( pCsr->eState!=CURSOR_VALID ){
10339     return SQLITE_ABORT;
10340   }
10341 
10342   /* Save the positions of all other cursors open on this table. This is
10343   ** required in case any of them are holding references to an xFetch
10344   ** version of the b-tree page modified by the accessPayload call below.
10345   **
10346   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10347   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10348   ** saveAllCursors can only return SQLITE_OK.
10349   */
10350   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10351   assert( rc==SQLITE_OK );
10352 
10353   /* Check some assumptions:
10354   **   (a) the cursor is open for writing,
10355   **   (b) there is a read/write transaction open,
10356   **   (c) the connection holds a write-lock on the table (if required),
10357   **   (d) there are no conflicting read-locks, and
10358   **   (e) the cursor points at a valid row of an intKey table.
10359   */
10360   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10361     return SQLITE_READONLY;
10362   }
10363   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10364               && pCsr->pBt->inTransaction==TRANS_WRITE );
10365   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10366   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10367   assert( pCsr->pPage->intKey );
10368 
10369   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10370 }
10371 
10372 /*
10373 ** Mark this cursor as an incremental blob cursor.
10374 */
10375 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10376   pCur->curFlags |= BTCF_Incrblob;
10377   pCur->pBtree->hasIncrblobCur = 1;
10378 }
10379 #endif
10380 
10381 /*
10382 ** Set both the "read version" (single byte at byte offset 18) and
10383 ** "write version" (single byte at byte offset 19) fields in the database
10384 ** header to iVersion.
10385 */
10386 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10387   BtShared *pBt = pBtree->pBt;
10388   int rc;                         /* Return code */
10389 
10390   assert( iVersion==1 || iVersion==2 );
10391 
10392   /* If setting the version fields to 1, do not automatically open the
10393   ** WAL connection, even if the version fields are currently set to 2.
10394   */
10395   pBt->btsFlags &= ~BTS_NO_WAL;
10396   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10397 
10398   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10399   if( rc==SQLITE_OK ){
10400     u8 *aData = pBt->pPage1->aData;
10401     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10402       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10403       if( rc==SQLITE_OK ){
10404         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10405         if( rc==SQLITE_OK ){
10406           aData[18] = (u8)iVersion;
10407           aData[19] = (u8)iVersion;
10408         }
10409       }
10410     }
10411   }
10412 
10413   pBt->btsFlags &= ~BTS_NO_WAL;
10414   return rc;
10415 }
10416 
10417 /*
10418 ** Return true if the cursor has a hint specified.  This routine is
10419 ** only used from within assert() statements
10420 */
10421 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10422   return (pCsr->hints & mask)!=0;
10423 }
10424 
10425 /*
10426 ** Return true if the given Btree is read-only.
10427 */
10428 int sqlite3BtreeIsReadonly(Btree *p){
10429   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10430 }
10431 
10432 /*
10433 ** Return the size of the header added to each page by this module.
10434 */
10435 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10436 
10437 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10438 /*
10439 ** Return true if the Btree passed as the only argument is sharable.
10440 */
10441 int sqlite3BtreeSharable(Btree *p){
10442   return p->sharable;
10443 }
10444 
10445 /*
10446 ** Return the number of connections to the BtShared object accessed by
10447 ** the Btree handle passed as the only argument. For private caches
10448 ** this is always 1. For shared caches it may be 1 or greater.
10449 */
10450 int sqlite3BtreeConnectionCount(Btree *p){
10451   testcase( p->sharable );
10452   return p->pBt->nRef;
10453 }
10454 #endif
10455