xref: /sqlite-3.40.0/src/btree.c (revision bd5af9ea)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifndef SQLITE_OMIT_SHARED_CACHE
116 
117 #ifdef SQLITE_DEBUG
118 /*
119 **** This function is only used as part of an assert() statement. ***
120 **
121 ** Check to see if pBtree holds the required locks to read or write to the
122 ** table with root page iRoot.   Return 1 if it does and 0 if not.
123 **
124 ** For example, when writing to a table with root-page iRoot via
125 ** Btree connection pBtree:
126 **
127 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128 **
129 ** When writing to an index that resides in a sharable database, the
130 ** caller should have first obtained a lock specifying the root page of
131 ** the corresponding table. This makes things a bit more complicated,
132 ** as this module treats each table as a separate structure. To determine
133 ** the table corresponding to the index being written, this
134 ** function has to search through the database schema.
135 **
136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
137 ** hold a write-lock on the schema table (root page 1). This is also
138 ** acceptable.
139 */
140 static int hasSharedCacheTableLock(
141   Btree *pBtree,         /* Handle that must hold lock */
142   Pgno iRoot,            /* Root page of b-tree */
143   int isIndex,           /* True if iRoot is the root of an index b-tree */
144   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
145 ){
146   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147   Pgno iTab = 0;
148   BtLock *pLock;
149 
150   /* If this database is not shareable, or if the client is reading
151   ** and has the read-uncommitted flag set, then no lock is required.
152   ** Return true immediately.
153   */
154   if( (pBtree->sharable==0)
155    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
156   ){
157     return 1;
158   }
159 
160   /* If the client is reading  or writing an index and the schema is
161   ** not loaded, then it is too difficult to actually check to see if
162   ** the correct locks are held.  So do not bother - just return true.
163   ** This case does not come up very often anyhow.
164   */
165   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
166     return 1;
167   }
168 
169   /* Figure out the root-page that the lock should be held on. For table
170   ** b-trees, this is just the root page of the b-tree being read or
171   ** written. For index b-trees, it is the root page of the associated
172   ** table.  */
173   if( isIndex ){
174     HashElem *p;
175     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176       Index *pIdx = (Index *)sqliteHashData(p);
177       if( pIdx->tnum==(int)iRoot ){
178         if( iTab ){
179           /* Two or more indexes share the same root page.  There must
180           ** be imposter tables.  So just return true.  The assert is not
181           ** useful in that case. */
182           return 1;
183         }
184         iTab = pIdx->pTable->tnum;
185       }
186     }
187   }else{
188     iTab = iRoot;
189   }
190 
191   /* Search for the required lock. Either a write-lock on root-page iTab, a
192   ** write-lock on the schema table, or (if the client is reading) a
193   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
194   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195     if( pLock->pBtree==pBtree
196      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197      && pLock->eLock>=eLockType
198     ){
199       return 1;
200     }
201   }
202 
203   /* Failed to find the required lock. */
204   return 0;
205 }
206 #endif /* SQLITE_DEBUG */
207 
208 #ifdef SQLITE_DEBUG
209 /*
210 **** This function may be used as part of assert() statements only. ****
211 **
212 ** Return true if it would be illegal for pBtree to write into the
213 ** table or index rooted at iRoot because other shared connections are
214 ** simultaneously reading that same table or index.
215 **
216 ** It is illegal for pBtree to write if some other Btree object that
217 ** shares the same BtShared object is currently reading or writing
218 ** the iRoot table.  Except, if the other Btree object has the
219 ** read-uncommitted flag set, then it is OK for the other object to
220 ** have a read cursor.
221 **
222 ** For example, before writing to any part of the table or index
223 ** rooted at page iRoot, one should call:
224 **
225 **    assert( !hasReadConflicts(pBtree, iRoot) );
226 */
227 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228   BtCursor *p;
229   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230     if( p->pgnoRoot==iRoot
231      && p->pBtree!=pBtree
232      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233     ){
234       return 1;
235     }
236   }
237   return 0;
238 }
239 #endif    /* #ifdef SQLITE_DEBUG */
240 
241 /*
242 ** Query to see if Btree handle p may obtain a lock of type eLock
243 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
244 ** SQLITE_OK if the lock may be obtained (by calling
245 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
246 */
247 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
248   BtShared *pBt = p->pBt;
249   BtLock *pIter;
250 
251   assert( sqlite3BtreeHoldsMutex(p) );
252   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253   assert( p->db!=0 );
254   assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
255 
256   /* If requesting a write-lock, then the Btree must have an open write
257   ** transaction on this file. And, obviously, for this to be so there
258   ** must be an open write transaction on the file itself.
259   */
260   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262 
263   /* This routine is a no-op if the shared-cache is not enabled */
264   if( !p->sharable ){
265     return SQLITE_OK;
266   }
267 
268   /* If some other connection is holding an exclusive lock, the
269   ** requested lock may not be obtained.
270   */
271   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
272     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273     return SQLITE_LOCKED_SHAREDCACHE;
274   }
275 
276   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277     /* The condition (pIter->eLock!=eLock) in the following if(...)
278     ** statement is a simplification of:
279     **
280     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281     **
282     ** since we know that if eLock==WRITE_LOCK, then no other connection
283     ** may hold a WRITE_LOCK on any table in this file (since there can
284     ** only be a single writer).
285     */
286     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290       if( eLock==WRITE_LOCK ){
291         assert( p==pBt->pWriter );
292         pBt->btsFlags |= BTS_PENDING;
293       }
294       return SQLITE_LOCKED_SHAREDCACHE;
295     }
296   }
297   return SQLITE_OK;
298 }
299 #endif /* !SQLITE_OMIT_SHARED_CACHE */
300 
301 #ifndef SQLITE_OMIT_SHARED_CACHE
302 /*
303 ** Add a lock on the table with root-page iTable to the shared-btree used
304 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
305 ** WRITE_LOCK.
306 **
307 ** This function assumes the following:
308 **
309 **   (a) The specified Btree object p is connected to a sharable
310 **       database (one with the BtShared.sharable flag set), and
311 **
312 **   (b) No other Btree objects hold a lock that conflicts
313 **       with the requested lock (i.e. querySharedCacheTableLock() has
314 **       already been called and returned SQLITE_OK).
315 **
316 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317 ** is returned if a malloc attempt fails.
318 */
319 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
320   BtShared *pBt = p->pBt;
321   BtLock *pLock = 0;
322   BtLock *pIter;
323 
324   assert( sqlite3BtreeHoldsMutex(p) );
325   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326   assert( p->db!=0 );
327 
328   /* A connection with the read-uncommitted flag set will never try to
329   ** obtain a read-lock using this function. The only read-lock obtained
330   ** by a connection in read-uncommitted mode is on the sqlite_master
331   ** table, and that lock is obtained in BtreeBeginTrans().  */
332   assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333 
334   /* This function should only be called on a sharable b-tree after it
335   ** has been determined that no other b-tree holds a conflicting lock.  */
336   assert( p->sharable );
337   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
338 
339   /* First search the list for an existing lock on this table. */
340   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341     if( pIter->iTable==iTable && pIter->pBtree==p ){
342       pLock = pIter;
343       break;
344     }
345   }
346 
347   /* If the above search did not find a BtLock struct associating Btree p
348   ** with table iTable, allocate one and link it into the list.
349   */
350   if( !pLock ){
351     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
352     if( !pLock ){
353       return SQLITE_NOMEM;
354     }
355     pLock->iTable = iTable;
356     pLock->pBtree = p;
357     pLock->pNext = pBt->pLock;
358     pBt->pLock = pLock;
359   }
360 
361   /* Set the BtLock.eLock variable to the maximum of the current lock
362   ** and the requested lock. This means if a write-lock was already held
363   ** and a read-lock requested, we don't incorrectly downgrade the lock.
364   */
365   assert( WRITE_LOCK>READ_LOCK );
366   if( eLock>pLock->eLock ){
367     pLock->eLock = eLock;
368   }
369 
370   return SQLITE_OK;
371 }
372 #endif /* !SQLITE_OMIT_SHARED_CACHE */
373 
374 #ifndef SQLITE_OMIT_SHARED_CACHE
375 /*
376 ** Release all the table locks (locks obtained via calls to
377 ** the setSharedCacheTableLock() procedure) held by Btree object p.
378 **
379 ** This function assumes that Btree p has an open read or write
380 ** transaction. If it does not, then the BTS_PENDING flag
381 ** may be incorrectly cleared.
382 */
383 static void clearAllSharedCacheTableLocks(Btree *p){
384   BtShared *pBt = p->pBt;
385   BtLock **ppIter = &pBt->pLock;
386 
387   assert( sqlite3BtreeHoldsMutex(p) );
388   assert( p->sharable || 0==*ppIter );
389   assert( p->inTrans>0 );
390 
391   while( *ppIter ){
392     BtLock *pLock = *ppIter;
393     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
394     assert( pLock->pBtree->inTrans>=pLock->eLock );
395     if( pLock->pBtree==p ){
396       *ppIter = pLock->pNext;
397       assert( pLock->iTable!=1 || pLock==&p->lock );
398       if( pLock->iTable!=1 ){
399         sqlite3_free(pLock);
400       }
401     }else{
402       ppIter = &pLock->pNext;
403     }
404   }
405 
406   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
407   if( pBt->pWriter==p ){
408     pBt->pWriter = 0;
409     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
410   }else if( pBt->nTransaction==2 ){
411     /* This function is called when Btree p is concluding its
412     ** transaction. If there currently exists a writer, and p is not
413     ** that writer, then the number of locks held by connections other
414     ** than the writer must be about to drop to zero. In this case
415     ** set the BTS_PENDING flag to 0.
416     **
417     ** If there is not currently a writer, then BTS_PENDING must
418     ** be zero already. So this next line is harmless in that case.
419     */
420     pBt->btsFlags &= ~BTS_PENDING;
421   }
422 }
423 
424 /*
425 ** This function changes all write-locks held by Btree p into read-locks.
426 */
427 static void downgradeAllSharedCacheTableLocks(Btree *p){
428   BtShared *pBt = p->pBt;
429   if( pBt->pWriter==p ){
430     BtLock *pLock;
431     pBt->pWriter = 0;
432     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
433     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435       pLock->eLock = READ_LOCK;
436     }
437   }
438 }
439 
440 #endif /* SQLITE_OMIT_SHARED_CACHE */
441 
442 static void releasePage(MemPage *pPage);  /* Forward reference */
443 
444 /*
445 ***** This routine is used inside of assert() only ****
446 **
447 ** Verify that the cursor holds the mutex on its BtShared
448 */
449 #ifdef SQLITE_DEBUG
450 static int cursorHoldsMutex(BtCursor *p){
451   return sqlite3_mutex_held(p->pBt->mutex);
452 }
453 static int cursorOwnsBtShared(BtCursor *p){
454   assert( cursorHoldsMutex(p) );
455   return (p->pBtree->db==p->pBt->db);
456 }
457 #endif
458 
459 /*
460 ** Invalidate the overflow cache of the cursor passed as the first argument.
461 ** on the shared btree structure pBt.
462 */
463 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
464 
465 /*
466 ** Invalidate the overflow page-list cache for all cursors opened
467 ** on the shared btree structure pBt.
468 */
469 static void invalidateAllOverflowCache(BtShared *pBt){
470   BtCursor *p;
471   assert( sqlite3_mutex_held(pBt->mutex) );
472   for(p=pBt->pCursor; p; p=p->pNext){
473     invalidateOverflowCache(p);
474   }
475 }
476 
477 #ifndef SQLITE_OMIT_INCRBLOB
478 /*
479 ** This function is called before modifying the contents of a table
480 ** to invalidate any incrblob cursors that are open on the
481 ** row or one of the rows being modified.
482 **
483 ** If argument isClearTable is true, then the entire contents of the
484 ** table is about to be deleted. In this case invalidate all incrblob
485 ** cursors open on any row within the table with root-page pgnoRoot.
486 **
487 ** Otherwise, if argument isClearTable is false, then the row with
488 ** rowid iRow is being replaced or deleted. In this case invalidate
489 ** only those incrblob cursors open on that specific row.
490 */
491 static void invalidateIncrblobCursors(
492   Btree *pBtree,          /* The database file to check */
493   i64 iRow,               /* The rowid that might be changing */
494   int isClearTable        /* True if all rows are being deleted */
495 ){
496   BtCursor *p;
497   if( pBtree->hasIncrblobCur==0 ) return;
498   assert( sqlite3BtreeHoldsMutex(pBtree) );
499   pBtree->hasIncrblobCur = 0;
500   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
501     if( (p->curFlags & BTCF_Incrblob)!=0 ){
502       pBtree->hasIncrblobCur = 1;
503       if( isClearTable || p->info.nKey==iRow ){
504         p->eState = CURSOR_INVALID;
505       }
506     }
507   }
508 }
509 
510 #else
511   /* Stub function when INCRBLOB is omitted */
512   #define invalidateIncrblobCursors(x,y,z)
513 #endif /* SQLITE_OMIT_INCRBLOB */
514 
515 /*
516 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
517 ** when a page that previously contained data becomes a free-list leaf
518 ** page.
519 **
520 ** The BtShared.pHasContent bitvec exists to work around an obscure
521 ** bug caused by the interaction of two useful IO optimizations surrounding
522 ** free-list leaf pages:
523 **
524 **   1) When all data is deleted from a page and the page becomes
525 **      a free-list leaf page, the page is not written to the database
526 **      (as free-list leaf pages contain no meaningful data). Sometimes
527 **      such a page is not even journalled (as it will not be modified,
528 **      why bother journalling it?).
529 **
530 **   2) When a free-list leaf page is reused, its content is not read
531 **      from the database or written to the journal file (why should it
532 **      be, if it is not at all meaningful?).
533 **
534 ** By themselves, these optimizations work fine and provide a handy
535 ** performance boost to bulk delete or insert operations. However, if
536 ** a page is moved to the free-list and then reused within the same
537 ** transaction, a problem comes up. If the page is not journalled when
538 ** it is moved to the free-list and it is also not journalled when it
539 ** is extracted from the free-list and reused, then the original data
540 ** may be lost. In the event of a rollback, it may not be possible
541 ** to restore the database to its original configuration.
542 **
543 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
544 ** moved to become a free-list leaf page, the corresponding bit is
545 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
546 ** optimization 2 above is omitted if the corresponding bit is already
547 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
548 ** at the end of every transaction.
549 */
550 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
551   int rc = SQLITE_OK;
552   if( !pBt->pHasContent ){
553     assert( pgno<=pBt->nPage );
554     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
555     if( !pBt->pHasContent ){
556       rc = SQLITE_NOMEM;
557     }
558   }
559   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
560     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
561   }
562   return rc;
563 }
564 
565 /*
566 ** Query the BtShared.pHasContent vector.
567 **
568 ** This function is called when a free-list leaf page is removed from the
569 ** free-list for reuse. It returns false if it is safe to retrieve the
570 ** page from the pager layer with the 'no-content' flag set. True otherwise.
571 */
572 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
573   Bitvec *p = pBt->pHasContent;
574   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
575 }
576 
577 /*
578 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
579 ** invoked at the conclusion of each write-transaction.
580 */
581 static void btreeClearHasContent(BtShared *pBt){
582   sqlite3BitvecDestroy(pBt->pHasContent);
583   pBt->pHasContent = 0;
584 }
585 
586 /*
587 ** Release all of the apPage[] pages for a cursor.
588 */
589 static void btreeReleaseAllCursorPages(BtCursor *pCur){
590   int i;
591   for(i=0; i<=pCur->iPage; i++){
592     releasePage(pCur->apPage[i]);
593     pCur->apPage[i] = 0;
594   }
595   pCur->iPage = -1;
596 }
597 
598 /*
599 ** The cursor passed as the only argument must point to a valid entry
600 ** when this function is called (i.e. have eState==CURSOR_VALID). This
601 ** function saves the current cursor key in variables pCur->nKey and
602 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
603 ** code otherwise.
604 **
605 ** If the cursor is open on an intkey table, then the integer key
606 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
607 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
608 ** set to point to a malloced buffer pCur->nKey bytes in size containing
609 ** the key.
610 */
611 static int saveCursorKey(BtCursor *pCur){
612   int rc;
613   assert( CURSOR_VALID==pCur->eState );
614   assert( 0==pCur->pKey );
615   assert( cursorHoldsMutex(pCur) );
616 
617   rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
618   assert( rc==SQLITE_OK );  /* KeySize() cannot fail */
619 
620   /* If this is an intKey table, then the above call to BtreeKeySize()
621   ** stores the integer key in pCur->nKey. In this case this value is
622   ** all that is required. Otherwise, if pCur is not open on an intKey
623   ** table, then malloc space for and store the pCur->nKey bytes of key
624   ** data.  */
625   if( 0==pCur->curIntKey ){
626     void *pKey = sqlite3Malloc( pCur->nKey );
627     if( pKey ){
628       rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
629       if( rc==SQLITE_OK ){
630         pCur->pKey = pKey;
631       }else{
632         sqlite3_free(pKey);
633       }
634     }else{
635       rc = SQLITE_NOMEM;
636     }
637   }
638   assert( !pCur->curIntKey || !pCur->pKey );
639   return rc;
640 }
641 
642 /*
643 ** Save the current cursor position in the variables BtCursor.nKey
644 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
645 **
646 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
647 ** prior to calling this routine.
648 */
649 static int saveCursorPosition(BtCursor *pCur){
650   int rc;
651 
652   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
653   assert( 0==pCur->pKey );
654   assert( cursorHoldsMutex(pCur) );
655 
656   if( pCur->eState==CURSOR_SKIPNEXT ){
657     pCur->eState = CURSOR_VALID;
658   }else{
659     pCur->skipNext = 0;
660   }
661 
662   rc = saveCursorKey(pCur);
663   if( rc==SQLITE_OK ){
664     btreeReleaseAllCursorPages(pCur);
665     pCur->eState = CURSOR_REQUIRESEEK;
666   }
667 
668   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
669   return rc;
670 }
671 
672 /* Forward reference */
673 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
674 
675 /*
676 ** Save the positions of all cursors (except pExcept) that are open on
677 ** the table with root-page iRoot.  "Saving the cursor position" means that
678 ** the location in the btree is remembered in such a way that it can be
679 ** moved back to the same spot after the btree has been modified.  This
680 ** routine is called just before cursor pExcept is used to modify the
681 ** table, for example in BtreeDelete() or BtreeInsert().
682 **
683 ** If there are two or more cursors on the same btree, then all such
684 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
685 ** routine enforces that rule.  This routine only needs to be called in
686 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
687 **
688 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
689 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
690 ** pointless call to this routine.
691 **
692 ** Implementation note:  This routine merely checks to see if any cursors
693 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
694 ** event that cursors are in need to being saved.
695 */
696 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
697   BtCursor *p;
698   assert( sqlite3_mutex_held(pBt->mutex) );
699   assert( pExcept==0 || pExcept->pBt==pBt );
700   for(p=pBt->pCursor; p; p=p->pNext){
701     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
702   }
703   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
704   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
705   return SQLITE_OK;
706 }
707 
708 /* This helper routine to saveAllCursors does the actual work of saving
709 ** the cursors if and when a cursor is found that actually requires saving.
710 ** The common case is that no cursors need to be saved, so this routine is
711 ** broken out from its caller to avoid unnecessary stack pointer movement.
712 */
713 static int SQLITE_NOINLINE saveCursorsOnList(
714   BtCursor *p,         /* The first cursor that needs saving */
715   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
716   BtCursor *pExcept    /* Do not save this cursor */
717 ){
718   do{
719     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
720       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
721         int rc = saveCursorPosition(p);
722         if( SQLITE_OK!=rc ){
723           return rc;
724         }
725       }else{
726         testcase( p->iPage>0 );
727         btreeReleaseAllCursorPages(p);
728       }
729     }
730     p = p->pNext;
731   }while( p );
732   return SQLITE_OK;
733 }
734 
735 /*
736 ** Clear the current cursor position.
737 */
738 void sqlite3BtreeClearCursor(BtCursor *pCur){
739   assert( cursorHoldsMutex(pCur) );
740   sqlite3_free(pCur->pKey);
741   pCur->pKey = 0;
742   pCur->eState = CURSOR_INVALID;
743 }
744 
745 /*
746 ** In this version of BtreeMoveto, pKey is a packed index record
747 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
748 ** record and then call BtreeMovetoUnpacked() to do the work.
749 */
750 static int btreeMoveto(
751   BtCursor *pCur,     /* Cursor open on the btree to be searched */
752   const void *pKey,   /* Packed key if the btree is an index */
753   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
754   int bias,           /* Bias search to the high end */
755   int *pRes           /* Write search results here */
756 ){
757   int rc;                    /* Status code */
758   UnpackedRecord *pIdxKey;   /* Unpacked index key */
759   char aSpace[200];          /* Temp space for pIdxKey - to avoid a malloc */
760   char *pFree = 0;
761 
762   if( pKey ){
763     assert( nKey==(i64)(int)nKey );
764     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
765         pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
766     );
767     if( pIdxKey==0 ) return SQLITE_NOMEM;
768     sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
769     if( pIdxKey->nField==0 ){
770       sqlite3DbFree(pCur->pKeyInfo->db, pFree);
771       return SQLITE_CORRUPT_BKPT;
772     }
773   }else{
774     pIdxKey = 0;
775   }
776   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
777   if( pFree ){
778     sqlite3DbFree(pCur->pKeyInfo->db, pFree);
779   }
780   return rc;
781 }
782 
783 /*
784 ** Restore the cursor to the position it was in (or as close to as possible)
785 ** when saveCursorPosition() was called. Note that this call deletes the
786 ** saved position info stored by saveCursorPosition(), so there can be
787 ** at most one effective restoreCursorPosition() call after each
788 ** saveCursorPosition().
789 */
790 static int btreeRestoreCursorPosition(BtCursor *pCur){
791   int rc;
792   int skipNext;
793   assert( cursorOwnsBtShared(pCur) );
794   assert( pCur->eState>=CURSOR_REQUIRESEEK );
795   if( pCur->eState==CURSOR_FAULT ){
796     return pCur->skipNext;
797   }
798   pCur->eState = CURSOR_INVALID;
799   rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
800   if( rc==SQLITE_OK ){
801     sqlite3_free(pCur->pKey);
802     pCur->pKey = 0;
803     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
804     pCur->skipNext |= skipNext;
805     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
806       pCur->eState = CURSOR_SKIPNEXT;
807     }
808   }
809   return rc;
810 }
811 
812 #define restoreCursorPosition(p) \
813   (p->eState>=CURSOR_REQUIRESEEK ? \
814          btreeRestoreCursorPosition(p) : \
815          SQLITE_OK)
816 
817 /*
818 ** Determine whether or not a cursor has moved from the position where
819 ** it was last placed, or has been invalidated for any other reason.
820 ** Cursors can move when the row they are pointing at is deleted out
821 ** from under them, for example.  Cursor might also move if a btree
822 ** is rebalanced.
823 **
824 ** Calling this routine with a NULL cursor pointer returns false.
825 **
826 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
827 ** back to where it ought to be if this routine returns true.
828 */
829 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
830   return pCur->eState!=CURSOR_VALID;
831 }
832 
833 /*
834 ** This routine restores a cursor back to its original position after it
835 ** has been moved by some outside activity (such as a btree rebalance or
836 ** a row having been deleted out from under the cursor).
837 **
838 ** On success, the *pDifferentRow parameter is false if the cursor is left
839 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
840 ** was pointing to has been deleted, forcing the cursor to point to some
841 ** nearby row.
842 **
843 ** This routine should only be called for a cursor that just returned
844 ** TRUE from sqlite3BtreeCursorHasMoved().
845 */
846 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
847   int rc;
848 
849   assert( pCur!=0 );
850   assert( pCur->eState!=CURSOR_VALID );
851   rc = restoreCursorPosition(pCur);
852   if( rc ){
853     *pDifferentRow = 1;
854     return rc;
855   }
856   if( pCur->eState!=CURSOR_VALID ){
857     *pDifferentRow = 1;
858   }else{
859     assert( pCur->skipNext==0 );
860     *pDifferentRow = 0;
861   }
862   return SQLITE_OK;
863 }
864 
865 #ifdef SQLITE_ENABLE_CURSOR_HINTS
866 /*
867 ** Provide hints to the cursor.  The particular hint given (and the type
868 ** and number of the varargs parameters) is determined by the eHintType
869 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
870 */
871 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
872   /* Used only by system that substitute their own storage engine */
873 }
874 #endif
875 
876 /*
877 ** Provide flag hints to the cursor.
878 */
879 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
880   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
881   pCur->hints = x;
882 }
883 
884 
885 #ifndef SQLITE_OMIT_AUTOVACUUM
886 /*
887 ** Given a page number of a regular database page, return the page
888 ** number for the pointer-map page that contains the entry for the
889 ** input page number.
890 **
891 ** Return 0 (not a valid page) for pgno==1 since there is
892 ** no pointer map associated with page 1.  The integrity_check logic
893 ** requires that ptrmapPageno(*,1)!=1.
894 */
895 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
896   int nPagesPerMapPage;
897   Pgno iPtrMap, ret;
898   assert( sqlite3_mutex_held(pBt->mutex) );
899   if( pgno<2 ) return 0;
900   nPagesPerMapPage = (pBt->usableSize/5)+1;
901   iPtrMap = (pgno-2)/nPagesPerMapPage;
902   ret = (iPtrMap*nPagesPerMapPage) + 2;
903   if( ret==PENDING_BYTE_PAGE(pBt) ){
904     ret++;
905   }
906   return ret;
907 }
908 
909 /*
910 ** Write an entry into the pointer map.
911 **
912 ** This routine updates the pointer map entry for page number 'key'
913 ** so that it maps to type 'eType' and parent page number 'pgno'.
914 **
915 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
916 ** a no-op.  If an error occurs, the appropriate error code is written
917 ** into *pRC.
918 */
919 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
920   DbPage *pDbPage;  /* The pointer map page */
921   u8 *pPtrmap;      /* The pointer map data */
922   Pgno iPtrmap;     /* The pointer map page number */
923   int offset;       /* Offset in pointer map page */
924   int rc;           /* Return code from subfunctions */
925 
926   if( *pRC ) return;
927 
928   assert( sqlite3_mutex_held(pBt->mutex) );
929   /* The master-journal page number must never be used as a pointer map page */
930   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
931 
932   assert( pBt->autoVacuum );
933   if( key==0 ){
934     *pRC = SQLITE_CORRUPT_BKPT;
935     return;
936   }
937   iPtrmap = PTRMAP_PAGENO(pBt, key);
938   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
939   if( rc!=SQLITE_OK ){
940     *pRC = rc;
941     return;
942   }
943   offset = PTRMAP_PTROFFSET(iPtrmap, key);
944   if( offset<0 ){
945     *pRC = SQLITE_CORRUPT_BKPT;
946     goto ptrmap_exit;
947   }
948   assert( offset <= (int)pBt->usableSize-5 );
949   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
950 
951   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
952     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
953     *pRC= rc = sqlite3PagerWrite(pDbPage);
954     if( rc==SQLITE_OK ){
955       pPtrmap[offset] = eType;
956       put4byte(&pPtrmap[offset+1], parent);
957     }
958   }
959 
960 ptrmap_exit:
961   sqlite3PagerUnref(pDbPage);
962 }
963 
964 /*
965 ** Read an entry from the pointer map.
966 **
967 ** This routine retrieves the pointer map entry for page 'key', writing
968 ** the type and parent page number to *pEType and *pPgno respectively.
969 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
970 */
971 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
972   DbPage *pDbPage;   /* The pointer map page */
973   int iPtrmap;       /* Pointer map page index */
974   u8 *pPtrmap;       /* Pointer map page data */
975   int offset;        /* Offset of entry in pointer map */
976   int rc;
977 
978   assert( sqlite3_mutex_held(pBt->mutex) );
979 
980   iPtrmap = PTRMAP_PAGENO(pBt, key);
981   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
982   if( rc!=0 ){
983     return rc;
984   }
985   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
986 
987   offset = PTRMAP_PTROFFSET(iPtrmap, key);
988   if( offset<0 ){
989     sqlite3PagerUnref(pDbPage);
990     return SQLITE_CORRUPT_BKPT;
991   }
992   assert( offset <= (int)pBt->usableSize-5 );
993   assert( pEType!=0 );
994   *pEType = pPtrmap[offset];
995   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
996 
997   sqlite3PagerUnref(pDbPage);
998   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
999   return SQLITE_OK;
1000 }
1001 
1002 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1003   #define ptrmapPut(w,x,y,z,rc)
1004   #define ptrmapGet(w,x,y,z) SQLITE_OK
1005   #define ptrmapPutOvflPtr(x, y, rc)
1006 #endif
1007 
1008 /*
1009 ** Given a btree page and a cell index (0 means the first cell on
1010 ** the page, 1 means the second cell, and so forth) return a pointer
1011 ** to the cell content.
1012 **
1013 ** findCellPastPtr() does the same except it skips past the initial
1014 ** 4-byte child pointer found on interior pages, if there is one.
1015 **
1016 ** This routine works only for pages that do not contain overflow cells.
1017 */
1018 #define findCell(P,I) \
1019   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1020 #define findCellPastPtr(P,I) \
1021   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1022 
1023 
1024 /*
1025 ** This is common tail processing for btreeParseCellPtr() and
1026 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1027 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1028 ** structure.
1029 */
1030 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1031   MemPage *pPage,         /* Page containing the cell */
1032   u8 *pCell,              /* Pointer to the cell text. */
1033   CellInfo *pInfo         /* Fill in this structure */
1034 ){
1035   /* If the payload will not fit completely on the local page, we have
1036   ** to decide how much to store locally and how much to spill onto
1037   ** overflow pages.  The strategy is to minimize the amount of unused
1038   ** space on overflow pages while keeping the amount of local storage
1039   ** in between minLocal and maxLocal.
1040   **
1041   ** Warning:  changing the way overflow payload is distributed in any
1042   ** way will result in an incompatible file format.
1043   */
1044   int minLocal;  /* Minimum amount of payload held locally */
1045   int maxLocal;  /* Maximum amount of payload held locally */
1046   int surplus;   /* Overflow payload available for local storage */
1047 
1048   minLocal = pPage->minLocal;
1049   maxLocal = pPage->maxLocal;
1050   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1051   testcase( surplus==maxLocal );
1052   testcase( surplus==maxLocal+1 );
1053   if( surplus <= maxLocal ){
1054     pInfo->nLocal = (u16)surplus;
1055   }else{
1056     pInfo->nLocal = (u16)minLocal;
1057   }
1058   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1059 }
1060 
1061 /*
1062 ** The following routines are implementations of the MemPage.xParseCell()
1063 ** method.
1064 **
1065 ** Parse a cell content block and fill in the CellInfo structure.
1066 **
1067 ** btreeParseCellPtr()        =>   table btree leaf nodes
1068 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1069 ** btreeParseCellPtrIndex()   =>   index btree nodes
1070 **
1071 ** There is also a wrapper function btreeParseCell() that works for
1072 ** all MemPage types and that references the cell by index rather than
1073 ** by pointer.
1074 */
1075 static void btreeParseCellPtrNoPayload(
1076   MemPage *pPage,         /* Page containing the cell */
1077   u8 *pCell,              /* Pointer to the cell text. */
1078   CellInfo *pInfo         /* Fill in this structure */
1079 ){
1080   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1081   assert( pPage->leaf==0 );
1082   assert( pPage->childPtrSize==4 );
1083 #ifndef SQLITE_DEBUG
1084   UNUSED_PARAMETER(pPage);
1085 #endif
1086   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1087   pInfo->nPayload = 0;
1088   pInfo->nLocal = 0;
1089   pInfo->pPayload = 0;
1090   return;
1091 }
1092 static void btreeParseCellPtr(
1093   MemPage *pPage,         /* Page containing the cell */
1094   u8 *pCell,              /* Pointer to the cell text. */
1095   CellInfo *pInfo         /* Fill in this structure */
1096 ){
1097   u8 *pIter;              /* For scanning through pCell */
1098   u32 nPayload;           /* Number of bytes of cell payload */
1099   u64 iKey;               /* Extracted Key value */
1100 
1101   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1102   assert( pPage->leaf==0 || pPage->leaf==1 );
1103   assert( pPage->intKeyLeaf );
1104   assert( pPage->childPtrSize==0 );
1105   pIter = pCell;
1106 
1107   /* The next block of code is equivalent to:
1108   **
1109   **     pIter += getVarint32(pIter, nPayload);
1110   **
1111   ** The code is inlined to avoid a function call.
1112   */
1113   nPayload = *pIter;
1114   if( nPayload>=0x80 ){
1115     u8 *pEnd = &pIter[8];
1116     nPayload &= 0x7f;
1117     do{
1118       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1119     }while( (*pIter)>=0x80 && pIter<pEnd );
1120   }
1121   pIter++;
1122 
1123   /* The next block of code is equivalent to:
1124   **
1125   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1126   **
1127   ** The code is inlined to avoid a function call.
1128   */
1129   iKey = *pIter;
1130   if( iKey>=0x80 ){
1131     u8 *pEnd = &pIter[7];
1132     iKey &= 0x7f;
1133     while(1){
1134       iKey = (iKey<<7) | (*++pIter & 0x7f);
1135       if( (*pIter)<0x80 ) break;
1136       if( pIter>=pEnd ){
1137         iKey = (iKey<<8) | *++pIter;
1138         break;
1139       }
1140     }
1141   }
1142   pIter++;
1143 
1144   pInfo->nKey = *(i64*)&iKey;
1145   pInfo->nPayload = nPayload;
1146   pInfo->pPayload = pIter;
1147   testcase( nPayload==pPage->maxLocal );
1148   testcase( nPayload==pPage->maxLocal+1 );
1149   if( nPayload<=pPage->maxLocal ){
1150     /* This is the (easy) common case where the entire payload fits
1151     ** on the local page.  No overflow is required.
1152     */
1153     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1154     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1155     pInfo->nLocal = (u16)nPayload;
1156   }else{
1157     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1158   }
1159 }
1160 static void btreeParseCellPtrIndex(
1161   MemPage *pPage,         /* Page containing the cell */
1162   u8 *pCell,              /* Pointer to the cell text. */
1163   CellInfo *pInfo         /* Fill in this structure */
1164 ){
1165   u8 *pIter;              /* For scanning through pCell */
1166   u32 nPayload;           /* Number of bytes of cell payload */
1167 
1168   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1169   assert( pPage->leaf==0 || pPage->leaf==1 );
1170   assert( pPage->intKeyLeaf==0 );
1171   pIter = pCell + pPage->childPtrSize;
1172   nPayload = *pIter;
1173   if( nPayload>=0x80 ){
1174     u8 *pEnd = &pIter[8];
1175     nPayload &= 0x7f;
1176     do{
1177       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1178     }while( *(pIter)>=0x80 && pIter<pEnd );
1179   }
1180   pIter++;
1181   pInfo->nKey = nPayload;
1182   pInfo->nPayload = nPayload;
1183   pInfo->pPayload = pIter;
1184   testcase( nPayload==pPage->maxLocal );
1185   testcase( nPayload==pPage->maxLocal+1 );
1186   if( nPayload<=pPage->maxLocal ){
1187     /* This is the (easy) common case where the entire payload fits
1188     ** on the local page.  No overflow is required.
1189     */
1190     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1191     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1192     pInfo->nLocal = (u16)nPayload;
1193   }else{
1194     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1195   }
1196 }
1197 static void btreeParseCell(
1198   MemPage *pPage,         /* Page containing the cell */
1199   int iCell,              /* The cell index.  First cell is 0 */
1200   CellInfo *pInfo         /* Fill in this structure */
1201 ){
1202   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1203 }
1204 
1205 /*
1206 ** The following routines are implementations of the MemPage.xCellSize
1207 ** method.
1208 **
1209 ** Compute the total number of bytes that a Cell needs in the cell
1210 ** data area of the btree-page.  The return number includes the cell
1211 ** data header and the local payload, but not any overflow page or
1212 ** the space used by the cell pointer.
1213 **
1214 ** cellSizePtrNoPayload()    =>   table internal nodes
1215 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1216 */
1217 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1218   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1219   u8 *pEnd;                                /* End mark for a varint */
1220   u32 nSize;                               /* Size value to return */
1221 
1222 #ifdef SQLITE_DEBUG
1223   /* The value returned by this function should always be the same as
1224   ** the (CellInfo.nSize) value found by doing a full parse of the
1225   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1226   ** this function verifies that this invariant is not violated. */
1227   CellInfo debuginfo;
1228   pPage->xParseCell(pPage, pCell, &debuginfo);
1229 #endif
1230 
1231   nSize = *pIter;
1232   if( nSize>=0x80 ){
1233     pEnd = &pIter[8];
1234     nSize &= 0x7f;
1235     do{
1236       nSize = (nSize<<7) | (*++pIter & 0x7f);
1237     }while( *(pIter)>=0x80 && pIter<pEnd );
1238   }
1239   pIter++;
1240   if( pPage->intKey ){
1241     /* pIter now points at the 64-bit integer key value, a variable length
1242     ** integer. The following block moves pIter to point at the first byte
1243     ** past the end of the key value. */
1244     pEnd = &pIter[9];
1245     while( (*pIter++)&0x80 && pIter<pEnd );
1246   }
1247   testcase( nSize==pPage->maxLocal );
1248   testcase( nSize==pPage->maxLocal+1 );
1249   if( nSize<=pPage->maxLocal ){
1250     nSize += (u32)(pIter - pCell);
1251     if( nSize<4 ) nSize = 4;
1252   }else{
1253     int minLocal = pPage->minLocal;
1254     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1255     testcase( nSize==pPage->maxLocal );
1256     testcase( nSize==pPage->maxLocal+1 );
1257     if( nSize>pPage->maxLocal ){
1258       nSize = minLocal;
1259     }
1260     nSize += 4 + (u16)(pIter - pCell);
1261   }
1262   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1263   return (u16)nSize;
1264 }
1265 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1266   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1267   u8 *pEnd;              /* End mark for a varint */
1268 
1269 #ifdef SQLITE_DEBUG
1270   /* The value returned by this function should always be the same as
1271   ** the (CellInfo.nSize) value found by doing a full parse of the
1272   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1273   ** this function verifies that this invariant is not violated. */
1274   CellInfo debuginfo;
1275   pPage->xParseCell(pPage, pCell, &debuginfo);
1276 #else
1277   UNUSED_PARAMETER(pPage);
1278 #endif
1279 
1280   assert( pPage->childPtrSize==4 );
1281   pEnd = pIter + 9;
1282   while( (*pIter++)&0x80 && pIter<pEnd );
1283   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1284   return (u16)(pIter - pCell);
1285 }
1286 
1287 
1288 #ifdef SQLITE_DEBUG
1289 /* This variation on cellSizePtr() is used inside of assert() statements
1290 ** only. */
1291 static u16 cellSize(MemPage *pPage, int iCell){
1292   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1293 }
1294 #endif
1295 
1296 #ifndef SQLITE_OMIT_AUTOVACUUM
1297 /*
1298 ** If the cell pCell, part of page pPage contains a pointer
1299 ** to an overflow page, insert an entry into the pointer-map
1300 ** for the overflow page.
1301 */
1302 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1303   CellInfo info;
1304   if( *pRC ) return;
1305   assert( pCell!=0 );
1306   pPage->xParseCell(pPage, pCell, &info);
1307   if( info.nLocal<info.nPayload ){
1308     Pgno ovfl = get4byte(&pCell[info.nSize-4]);
1309     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1310   }
1311 }
1312 #endif
1313 
1314 
1315 /*
1316 ** Defragment the page given.  All Cells are moved to the
1317 ** end of the page and all free space is collected into one
1318 ** big FreeBlk that occurs in between the header and cell
1319 ** pointer array and the cell content area.
1320 **
1321 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1322 ** b-tree page so that there are no freeblocks or fragment bytes, all
1323 ** unused bytes are contained in the unallocated space region, and all
1324 ** cells are packed tightly at the end of the page.
1325 */
1326 static int defragmentPage(MemPage *pPage){
1327   int i;                     /* Loop counter */
1328   int pc;                    /* Address of the i-th cell */
1329   int hdr;                   /* Offset to the page header */
1330   int size;                  /* Size of a cell */
1331   int usableSize;            /* Number of usable bytes on a page */
1332   int cellOffset;            /* Offset to the cell pointer array */
1333   int cbrk;                  /* Offset to the cell content area */
1334   int nCell;                 /* Number of cells on the page */
1335   unsigned char *data;       /* The page data */
1336   unsigned char *temp;       /* Temp area for cell content */
1337   unsigned char *src;        /* Source of content */
1338   int iCellFirst;            /* First allowable cell index */
1339   int iCellLast;             /* Last possible cell index */
1340 
1341 
1342   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1343   assert( pPage->pBt!=0 );
1344   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1345   assert( pPage->nOverflow==0 );
1346   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1347   temp = 0;
1348   src = data = pPage->aData;
1349   hdr = pPage->hdrOffset;
1350   cellOffset = pPage->cellOffset;
1351   nCell = pPage->nCell;
1352   assert( nCell==get2byte(&data[hdr+3]) );
1353   usableSize = pPage->pBt->usableSize;
1354   cbrk = usableSize;
1355   iCellFirst = cellOffset + 2*nCell;
1356   iCellLast = usableSize - 4;
1357   for(i=0; i<nCell; i++){
1358     u8 *pAddr;     /* The i-th cell pointer */
1359     pAddr = &data[cellOffset + i*2];
1360     pc = get2byte(pAddr);
1361     testcase( pc==iCellFirst );
1362     testcase( pc==iCellLast );
1363     /* These conditions have already been verified in btreeInitPage()
1364     ** if PRAGMA cell_size_check=ON.
1365     */
1366     if( pc<iCellFirst || pc>iCellLast ){
1367       return SQLITE_CORRUPT_BKPT;
1368     }
1369     assert( pc>=iCellFirst && pc<=iCellLast );
1370     size = pPage->xCellSize(pPage, &src[pc]);
1371     cbrk -= size;
1372     if( cbrk<iCellFirst || pc+size>usableSize ){
1373       return SQLITE_CORRUPT_BKPT;
1374     }
1375     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1376     testcase( cbrk+size==usableSize );
1377     testcase( pc+size==usableSize );
1378     put2byte(pAddr, cbrk);
1379     if( temp==0 ){
1380       int x;
1381       if( cbrk==pc ) continue;
1382       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1383       x = get2byte(&data[hdr+5]);
1384       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1385       src = temp;
1386     }
1387     memcpy(&data[cbrk], &src[pc], size);
1388   }
1389   assert( cbrk>=iCellFirst );
1390   put2byte(&data[hdr+5], cbrk);
1391   data[hdr+1] = 0;
1392   data[hdr+2] = 0;
1393   data[hdr+7] = 0;
1394   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1395   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1396   if( cbrk-iCellFirst!=pPage->nFree ){
1397     return SQLITE_CORRUPT_BKPT;
1398   }
1399   return SQLITE_OK;
1400 }
1401 
1402 /*
1403 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1404 ** size. If one can be found, return a pointer to the space and remove it
1405 ** from the free-list.
1406 **
1407 ** If no suitable space can be found on the free-list, return NULL.
1408 **
1409 ** This function may detect corruption within pPg.  If corruption is
1410 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1411 **
1412 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1413 ** will be ignored if adding the extra space to the fragmentation count
1414 ** causes the fragmentation count to exceed 60.
1415 */
1416 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1417   const int hdr = pPg->hdrOffset;
1418   u8 * const aData = pPg->aData;
1419   int iAddr = hdr + 1;
1420   int pc = get2byte(&aData[iAddr]);
1421   int x;
1422   int usableSize = pPg->pBt->usableSize;
1423 
1424   assert( pc>0 );
1425   do{
1426     int size;            /* Size of the free slot */
1427     /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1428     ** increasing offset. */
1429     if( pc>usableSize-4 || pc<iAddr+4 ){
1430       *pRc = SQLITE_CORRUPT_BKPT;
1431       return 0;
1432     }
1433     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1434     ** freeblock form a big-endian integer which is the size of the freeblock
1435     ** in bytes, including the 4-byte header. */
1436     size = get2byte(&aData[pc+2]);
1437     if( (x = size - nByte)>=0 ){
1438       testcase( x==4 );
1439       testcase( x==3 );
1440       if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1441         *pRc = SQLITE_CORRUPT_BKPT;
1442         return 0;
1443       }else if( x<4 ){
1444         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1445         ** number of bytes in fragments may not exceed 60. */
1446         if( aData[hdr+7]>57 ) return 0;
1447 
1448         /* Remove the slot from the free-list. Update the number of
1449         ** fragmented bytes within the page. */
1450         memcpy(&aData[iAddr], &aData[pc], 2);
1451         aData[hdr+7] += (u8)x;
1452       }else{
1453         /* The slot remains on the free-list. Reduce its size to account
1454          ** for the portion used by the new allocation. */
1455         put2byte(&aData[pc+2], x);
1456       }
1457       return &aData[pc + x];
1458     }
1459     iAddr = pc;
1460     pc = get2byte(&aData[pc]);
1461   }while( pc );
1462 
1463   return 0;
1464 }
1465 
1466 /*
1467 ** Allocate nByte bytes of space from within the B-Tree page passed
1468 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1469 ** of the first byte of allocated space. Return either SQLITE_OK or
1470 ** an error code (usually SQLITE_CORRUPT).
1471 **
1472 ** The caller guarantees that there is sufficient space to make the
1473 ** allocation.  This routine might need to defragment in order to bring
1474 ** all the space together, however.  This routine will avoid using
1475 ** the first two bytes past the cell pointer area since presumably this
1476 ** allocation is being made in order to insert a new cell, so we will
1477 ** also end up needing a new cell pointer.
1478 */
1479 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1480   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1481   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1482   int top;                             /* First byte of cell content area */
1483   int rc = SQLITE_OK;                  /* Integer return code */
1484   int gap;        /* First byte of gap between cell pointers and cell content */
1485 
1486   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1487   assert( pPage->pBt );
1488   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1489   assert( nByte>=0 );  /* Minimum cell size is 4 */
1490   assert( pPage->nFree>=nByte );
1491   assert( pPage->nOverflow==0 );
1492   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1493 
1494   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1495   gap = pPage->cellOffset + 2*pPage->nCell;
1496   assert( gap<=65536 );
1497   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1498   ** and the reserved space is zero (the usual value for reserved space)
1499   ** then the cell content offset of an empty page wants to be 65536.
1500   ** However, that integer is too large to be stored in a 2-byte unsigned
1501   ** integer, so a value of 0 is used in its place. */
1502   top = get2byte(&data[hdr+5]);
1503   assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1504   if( gap>top ){
1505     if( top==0 && pPage->pBt->usableSize==65536 ){
1506       top = 65536;
1507     }else{
1508       return SQLITE_CORRUPT_BKPT;
1509     }
1510   }
1511 
1512   /* If there is enough space between gap and top for one more cell pointer
1513   ** array entry offset, and if the freelist is not empty, then search the
1514   ** freelist looking for a free slot big enough to satisfy the request.
1515   */
1516   testcase( gap+2==top );
1517   testcase( gap+1==top );
1518   testcase( gap==top );
1519   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1520     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1521     if( pSpace ){
1522       assert( pSpace>=data && (pSpace - data)<65536 );
1523       *pIdx = (int)(pSpace - data);
1524       return SQLITE_OK;
1525     }else if( rc ){
1526       return rc;
1527     }
1528   }
1529 
1530   /* The request could not be fulfilled using a freelist slot.  Check
1531   ** to see if defragmentation is necessary.
1532   */
1533   testcase( gap+2+nByte==top );
1534   if( gap+2+nByte>top ){
1535     assert( pPage->nCell>0 || CORRUPT_DB );
1536     rc = defragmentPage(pPage);
1537     if( rc ) return rc;
1538     top = get2byteNotZero(&data[hdr+5]);
1539     assert( gap+nByte<=top );
1540   }
1541 
1542 
1543   /* Allocate memory from the gap in between the cell pointer array
1544   ** and the cell content area.  The btreeInitPage() call has already
1545   ** validated the freelist.  Given that the freelist is valid, there
1546   ** is no way that the allocation can extend off the end of the page.
1547   ** The assert() below verifies the previous sentence.
1548   */
1549   top -= nByte;
1550   put2byte(&data[hdr+5], top);
1551   assert( top+nByte <= (int)pPage->pBt->usableSize );
1552   *pIdx = top;
1553   return SQLITE_OK;
1554 }
1555 
1556 /*
1557 ** Return a section of the pPage->aData to the freelist.
1558 ** The first byte of the new free block is pPage->aData[iStart]
1559 ** and the size of the block is iSize bytes.
1560 **
1561 ** Adjacent freeblocks are coalesced.
1562 **
1563 ** Note that even though the freeblock list was checked by btreeInitPage(),
1564 ** that routine will not detect overlap between cells or freeblocks.  Nor
1565 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1566 ** at the end of the page.  So do additional corruption checks inside this
1567 ** routine and return SQLITE_CORRUPT if any problems are found.
1568 */
1569 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1570   u16 iPtr;                             /* Address of ptr to next freeblock */
1571   u16 iFreeBlk;                         /* Address of the next freeblock */
1572   u8 hdr;                               /* Page header size.  0 or 100 */
1573   u8 nFrag = 0;                         /* Reduction in fragmentation */
1574   u16 iOrigSize = iSize;                /* Original value of iSize */
1575   u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1576   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1577   unsigned char *data = pPage->aData;   /* Page content */
1578 
1579   assert( pPage->pBt!=0 );
1580   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1581   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1582   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1583   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1584   assert( iSize>=4 );   /* Minimum cell size is 4 */
1585   assert( iStart<=iLast );
1586 
1587   /* Overwrite deleted information with zeros when the secure_delete
1588   ** option is enabled */
1589   if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
1590     memset(&data[iStart], 0, iSize);
1591   }
1592 
1593   /* The list of freeblocks must be in ascending order.  Find the
1594   ** spot on the list where iStart should be inserted.
1595   */
1596   hdr = pPage->hdrOffset;
1597   iPtr = hdr + 1;
1598   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1599     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1600   }else{
1601     while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1602       if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1603       iPtr = iFreeBlk;
1604     }
1605     if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1606     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1607 
1608     /* At this point:
1609     **    iFreeBlk:   First freeblock after iStart, or zero if none
1610     **    iPtr:       The address of a pointer to iFreeBlk
1611     **
1612     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1613     */
1614     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1615       nFrag = iFreeBlk - iEnd;
1616       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1617       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1618       if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
1619       iSize = iEnd - iStart;
1620       iFreeBlk = get2byte(&data[iFreeBlk]);
1621     }
1622 
1623     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1624     ** pointer in the page header) then check to see if iStart should be
1625     ** coalesced onto the end of iPtr.
1626     */
1627     if( iPtr>hdr+1 ){
1628       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1629       if( iPtrEnd+3>=iStart ){
1630         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1631         nFrag += iStart - iPtrEnd;
1632         iSize = iEnd - iPtr;
1633         iStart = iPtr;
1634       }
1635     }
1636     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1637     data[hdr+7] -= nFrag;
1638   }
1639   if( iStart==get2byte(&data[hdr+5]) ){
1640     /* The new freeblock is at the beginning of the cell content area,
1641     ** so just extend the cell content area rather than create another
1642     ** freelist entry */
1643     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
1644     put2byte(&data[hdr+1], iFreeBlk);
1645     put2byte(&data[hdr+5], iEnd);
1646   }else{
1647     /* Insert the new freeblock into the freelist */
1648     put2byte(&data[iPtr], iStart);
1649     put2byte(&data[iStart], iFreeBlk);
1650     put2byte(&data[iStart+2], iSize);
1651   }
1652   pPage->nFree += iOrigSize;
1653   return SQLITE_OK;
1654 }
1655 
1656 /*
1657 ** Decode the flags byte (the first byte of the header) for a page
1658 ** and initialize fields of the MemPage structure accordingly.
1659 **
1660 ** Only the following combinations are supported.  Anything different
1661 ** indicates a corrupt database files:
1662 **
1663 **         PTF_ZERODATA
1664 **         PTF_ZERODATA | PTF_LEAF
1665 **         PTF_LEAFDATA | PTF_INTKEY
1666 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1667 */
1668 static int decodeFlags(MemPage *pPage, int flagByte){
1669   BtShared *pBt;     /* A copy of pPage->pBt */
1670 
1671   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1672   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1673   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1674   flagByte &= ~PTF_LEAF;
1675   pPage->childPtrSize = 4-4*pPage->leaf;
1676   pPage->xCellSize = cellSizePtr;
1677   pBt = pPage->pBt;
1678   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1679     /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1680     ** table b-tree page. */
1681     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1682     /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1683     ** table b-tree page. */
1684     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1685     pPage->intKey = 1;
1686     if( pPage->leaf ){
1687       pPage->intKeyLeaf = 1;
1688       pPage->xParseCell = btreeParseCellPtr;
1689     }else{
1690       pPage->intKeyLeaf = 0;
1691       pPage->xCellSize = cellSizePtrNoPayload;
1692       pPage->xParseCell = btreeParseCellPtrNoPayload;
1693     }
1694     pPage->maxLocal = pBt->maxLeaf;
1695     pPage->minLocal = pBt->minLeaf;
1696   }else if( flagByte==PTF_ZERODATA ){
1697     /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1698     ** index b-tree page. */
1699     assert( (PTF_ZERODATA)==2 );
1700     /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1701     ** index b-tree page. */
1702     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1703     pPage->intKey = 0;
1704     pPage->intKeyLeaf = 0;
1705     pPage->xParseCell = btreeParseCellPtrIndex;
1706     pPage->maxLocal = pBt->maxLocal;
1707     pPage->minLocal = pBt->minLocal;
1708   }else{
1709     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1710     ** an error. */
1711     return SQLITE_CORRUPT_BKPT;
1712   }
1713   pPage->max1bytePayload = pBt->max1bytePayload;
1714   return SQLITE_OK;
1715 }
1716 
1717 /*
1718 ** Initialize the auxiliary information for a disk block.
1719 **
1720 ** Return SQLITE_OK on success.  If we see that the page does
1721 ** not contain a well-formed database page, then return
1722 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1723 ** guarantee that the page is well-formed.  It only shows that
1724 ** we failed to detect any corruption.
1725 */
1726 static int btreeInitPage(MemPage *pPage){
1727 
1728   assert( pPage->pBt!=0 );
1729   assert( pPage->pBt->db!=0 );
1730   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1731   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1732   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1733   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1734 
1735   if( !pPage->isInit ){
1736     u16 pc;            /* Address of a freeblock within pPage->aData[] */
1737     u8 hdr;            /* Offset to beginning of page header */
1738     u8 *data;          /* Equal to pPage->aData */
1739     BtShared *pBt;        /* The main btree structure */
1740     int usableSize;    /* Amount of usable space on each page */
1741     u16 cellOffset;    /* Offset from start of page to first cell pointer */
1742     int nFree;         /* Number of unused bytes on the page */
1743     int top;           /* First byte of the cell content area */
1744     int iCellFirst;    /* First allowable cell or freeblock offset */
1745     int iCellLast;     /* Last possible cell or freeblock offset */
1746 
1747     pBt = pPage->pBt;
1748 
1749     hdr = pPage->hdrOffset;
1750     data = pPage->aData;
1751     /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1752     ** the b-tree page type. */
1753     if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1754     assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1755     pPage->maskPage = (u16)(pBt->pageSize - 1);
1756     pPage->nOverflow = 0;
1757     usableSize = pBt->usableSize;
1758     pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1759     pPage->aDataEnd = &data[usableSize];
1760     pPage->aCellIdx = &data[cellOffset];
1761     pPage->aDataOfst = &data[pPage->childPtrSize];
1762     /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1763     ** the start of the cell content area. A zero value for this integer is
1764     ** interpreted as 65536. */
1765     top = get2byteNotZero(&data[hdr+5]);
1766     /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1767     ** number of cells on the page. */
1768     pPage->nCell = get2byte(&data[hdr+3]);
1769     if( pPage->nCell>MX_CELL(pBt) ){
1770       /* To many cells for a single page.  The page must be corrupt */
1771       return SQLITE_CORRUPT_BKPT;
1772     }
1773     testcase( pPage->nCell==MX_CELL(pBt) );
1774     /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1775     ** possible for a root page of a table that contains no rows) then the
1776     ** offset to the cell content area will equal the page size minus the
1777     ** bytes of reserved space. */
1778     assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1779 
1780     /* A malformed database page might cause us to read past the end
1781     ** of page when parsing a cell.
1782     **
1783     ** The following block of code checks early to see if a cell extends
1784     ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1785     ** returned if it does.
1786     */
1787     iCellFirst = cellOffset + 2*pPage->nCell;
1788     iCellLast = usableSize - 4;
1789     if( pBt->db->flags & SQLITE_CellSizeCk ){
1790       int i;            /* Index into the cell pointer array */
1791       int sz;           /* Size of a cell */
1792 
1793       if( !pPage->leaf ) iCellLast--;
1794       for(i=0; i<pPage->nCell; i++){
1795         pc = get2byteAligned(&data[cellOffset+i*2]);
1796         testcase( pc==iCellFirst );
1797         testcase( pc==iCellLast );
1798         if( pc<iCellFirst || pc>iCellLast ){
1799           return SQLITE_CORRUPT_BKPT;
1800         }
1801         sz = pPage->xCellSize(pPage, &data[pc]);
1802         testcase( pc+sz==usableSize );
1803         if( pc+sz>usableSize ){
1804           return SQLITE_CORRUPT_BKPT;
1805         }
1806       }
1807       if( !pPage->leaf ) iCellLast++;
1808     }
1809 
1810     /* Compute the total free space on the page
1811     ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1812     ** start of the first freeblock on the page, or is zero if there are no
1813     ** freeblocks. */
1814     pc = get2byte(&data[hdr+1]);
1815     nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1816     while( pc>0 ){
1817       u16 next, size;
1818       if( pc<iCellFirst || pc>iCellLast ){
1819         /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1820         ** always be at least one cell before the first freeblock.
1821         **
1822         ** Or, the freeblock is off the end of the page
1823         */
1824         return SQLITE_CORRUPT_BKPT;
1825       }
1826       next = get2byte(&data[pc]);
1827       size = get2byte(&data[pc+2]);
1828       if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1829         /* Free blocks must be in ascending order. And the last byte of
1830         ** the free-block must lie on the database page.  */
1831         return SQLITE_CORRUPT_BKPT;
1832       }
1833       nFree = nFree + size;
1834       pc = next;
1835     }
1836 
1837     /* At this point, nFree contains the sum of the offset to the start
1838     ** of the cell-content area plus the number of free bytes within
1839     ** the cell-content area. If this is greater than the usable-size
1840     ** of the page, then the page must be corrupted. This check also
1841     ** serves to verify that the offset to the start of the cell-content
1842     ** area, according to the page header, lies within the page.
1843     */
1844     if( nFree>usableSize ){
1845       return SQLITE_CORRUPT_BKPT;
1846     }
1847     pPage->nFree = (u16)(nFree - iCellFirst);
1848     pPage->isInit = 1;
1849   }
1850   return SQLITE_OK;
1851 }
1852 
1853 /*
1854 ** Set up a raw page so that it looks like a database page holding
1855 ** no entries.
1856 */
1857 static void zeroPage(MemPage *pPage, int flags){
1858   unsigned char *data = pPage->aData;
1859   BtShared *pBt = pPage->pBt;
1860   u8 hdr = pPage->hdrOffset;
1861   u16 first;
1862 
1863   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1864   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1865   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1866   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1867   assert( sqlite3_mutex_held(pBt->mutex) );
1868   if( pBt->btsFlags & BTS_SECURE_DELETE ){
1869     memset(&data[hdr], 0, pBt->usableSize - hdr);
1870   }
1871   data[hdr] = (char)flags;
1872   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1873   memset(&data[hdr+1], 0, 4);
1874   data[hdr+7] = 0;
1875   put2byte(&data[hdr+5], pBt->usableSize);
1876   pPage->nFree = (u16)(pBt->usableSize - first);
1877   decodeFlags(pPage, flags);
1878   pPage->cellOffset = first;
1879   pPage->aDataEnd = &data[pBt->usableSize];
1880   pPage->aCellIdx = &data[first];
1881   pPage->aDataOfst = &data[pPage->childPtrSize];
1882   pPage->nOverflow = 0;
1883   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1884   pPage->maskPage = (u16)(pBt->pageSize - 1);
1885   pPage->nCell = 0;
1886   pPage->isInit = 1;
1887 }
1888 
1889 
1890 /*
1891 ** Convert a DbPage obtained from the pager into a MemPage used by
1892 ** the btree layer.
1893 */
1894 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1895   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1896   if( pgno!=pPage->pgno ){
1897     pPage->aData = sqlite3PagerGetData(pDbPage);
1898     pPage->pDbPage = pDbPage;
1899     pPage->pBt = pBt;
1900     pPage->pgno = pgno;
1901     pPage->hdrOffset = pgno==1 ? 100 : 0;
1902   }
1903   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
1904   return pPage;
1905 }
1906 
1907 /*
1908 ** Get a page from the pager.  Initialize the MemPage.pBt and
1909 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
1910 **
1911 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1912 ** about the content of the page at this time.  So do not go to the disk
1913 ** to fetch the content.  Just fill in the content with zeros for now.
1914 ** If in the future we call sqlite3PagerWrite() on this page, that
1915 ** means we have started to be concerned about content and the disk
1916 ** read should occur at that point.
1917 */
1918 static int btreeGetPage(
1919   BtShared *pBt,       /* The btree */
1920   Pgno pgno,           /* Number of the page to fetch */
1921   MemPage **ppPage,    /* Return the page in this parameter */
1922   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1923 ){
1924   int rc;
1925   DbPage *pDbPage;
1926 
1927   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
1928   assert( sqlite3_mutex_held(pBt->mutex) );
1929   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
1930   if( rc ) return rc;
1931   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1932   return SQLITE_OK;
1933 }
1934 
1935 /*
1936 ** Retrieve a page from the pager cache. If the requested page is not
1937 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
1938 ** MemPage.aData elements if needed.
1939 */
1940 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1941   DbPage *pDbPage;
1942   assert( sqlite3_mutex_held(pBt->mutex) );
1943   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1944   if( pDbPage ){
1945     return btreePageFromDbPage(pDbPage, pgno, pBt);
1946   }
1947   return 0;
1948 }
1949 
1950 /*
1951 ** Return the size of the database file in pages. If there is any kind of
1952 ** error, return ((unsigned int)-1).
1953 */
1954 static Pgno btreePagecount(BtShared *pBt){
1955   return pBt->nPage;
1956 }
1957 u32 sqlite3BtreeLastPage(Btree *p){
1958   assert( sqlite3BtreeHoldsMutex(p) );
1959   assert( ((p->pBt->nPage)&0x8000000)==0 );
1960   return btreePagecount(p->pBt);
1961 }
1962 
1963 /*
1964 ** Get a page from the pager and initialize it.
1965 **
1966 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
1967 ** call.  Do additional sanity checking on the page in this case.
1968 ** And if the fetch fails, this routine must decrement pCur->iPage.
1969 **
1970 ** The page is fetched as read-write unless pCur is not NULL and is
1971 ** a read-only cursor.
1972 **
1973 ** If an error occurs, then *ppPage is undefined. It
1974 ** may remain unchanged, or it may be set to an invalid value.
1975 */
1976 static int getAndInitPage(
1977   BtShared *pBt,                  /* The database file */
1978   Pgno pgno,                      /* Number of the page to get */
1979   MemPage **ppPage,               /* Write the page pointer here */
1980   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
1981   int bReadOnly                   /* True for a read-only page */
1982 ){
1983   int rc;
1984   DbPage *pDbPage;
1985   assert( sqlite3_mutex_held(pBt->mutex) );
1986   assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1987   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
1988   assert( pCur==0 || pCur->iPage>0 );
1989 
1990   if( pgno>btreePagecount(pBt) ){
1991     rc = SQLITE_CORRUPT_BKPT;
1992     goto getAndInitPage_error;
1993   }
1994   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
1995   if( rc ){
1996     goto getAndInitPage_error;
1997   }
1998   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1999   if( (*ppPage)->isInit==0 ){
2000     btreePageFromDbPage(pDbPage, pgno, pBt);
2001     rc = btreeInitPage(*ppPage);
2002     if( rc!=SQLITE_OK ){
2003       releasePage(*ppPage);
2004       goto getAndInitPage_error;
2005     }
2006   }
2007   assert( (*ppPage)->pgno==pgno );
2008   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2009 
2010   /* If obtaining a child page for a cursor, we must verify that the page is
2011   ** compatible with the root page. */
2012   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2013     rc = SQLITE_CORRUPT_BKPT;
2014     releasePage(*ppPage);
2015     goto getAndInitPage_error;
2016   }
2017   return SQLITE_OK;
2018 
2019 getAndInitPage_error:
2020   if( pCur ) pCur->iPage--;
2021   testcase( pgno==0 );
2022   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2023   return rc;
2024 }
2025 
2026 /*
2027 ** Release a MemPage.  This should be called once for each prior
2028 ** call to btreeGetPage.
2029 */
2030 static void releasePageNotNull(MemPage *pPage){
2031   assert( pPage->aData );
2032   assert( pPage->pBt );
2033   assert( pPage->pDbPage!=0 );
2034   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2035   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2036   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2037   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2038 }
2039 static void releasePage(MemPage *pPage){
2040   if( pPage ) releasePageNotNull(pPage);
2041 }
2042 
2043 /*
2044 ** Get an unused page.
2045 **
2046 ** This works just like btreeGetPage() with the addition:
2047 **
2048 **   *  If the page is already in use for some other purpose, immediately
2049 **      release it and return an SQLITE_CURRUPT error.
2050 **   *  Make sure the isInit flag is clear
2051 */
2052 static int btreeGetUnusedPage(
2053   BtShared *pBt,       /* The btree */
2054   Pgno pgno,           /* Number of the page to fetch */
2055   MemPage **ppPage,    /* Return the page in this parameter */
2056   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2057 ){
2058   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2059   if( rc==SQLITE_OK ){
2060     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2061       releasePage(*ppPage);
2062       *ppPage = 0;
2063       return SQLITE_CORRUPT_BKPT;
2064     }
2065     (*ppPage)->isInit = 0;
2066   }else{
2067     *ppPage = 0;
2068   }
2069   return rc;
2070 }
2071 
2072 
2073 /*
2074 ** During a rollback, when the pager reloads information into the cache
2075 ** so that the cache is restored to its original state at the start of
2076 ** the transaction, for each page restored this routine is called.
2077 **
2078 ** This routine needs to reset the extra data section at the end of the
2079 ** page to agree with the restored data.
2080 */
2081 static void pageReinit(DbPage *pData){
2082   MemPage *pPage;
2083   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2084   assert( sqlite3PagerPageRefcount(pData)>0 );
2085   if( pPage->isInit ){
2086     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2087     pPage->isInit = 0;
2088     if( sqlite3PagerPageRefcount(pData)>1 ){
2089       /* pPage might not be a btree page;  it might be an overflow page
2090       ** or ptrmap page or a free page.  In those cases, the following
2091       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2092       ** But no harm is done by this.  And it is very important that
2093       ** btreeInitPage() be called on every btree page so we make
2094       ** the call for every page that comes in for re-initing. */
2095       btreeInitPage(pPage);
2096     }
2097   }
2098 }
2099 
2100 /*
2101 ** Invoke the busy handler for a btree.
2102 */
2103 static int btreeInvokeBusyHandler(void *pArg){
2104   BtShared *pBt = (BtShared*)pArg;
2105   assert( pBt->db );
2106   assert( sqlite3_mutex_held(pBt->db->mutex) );
2107   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2108 }
2109 
2110 /*
2111 ** Open a database file.
2112 **
2113 ** zFilename is the name of the database file.  If zFilename is NULL
2114 ** then an ephemeral database is created.  The ephemeral database might
2115 ** be exclusively in memory, or it might use a disk-based memory cache.
2116 ** Either way, the ephemeral database will be automatically deleted
2117 ** when sqlite3BtreeClose() is called.
2118 **
2119 ** If zFilename is ":memory:" then an in-memory database is created
2120 ** that is automatically destroyed when it is closed.
2121 **
2122 ** The "flags" parameter is a bitmask that might contain bits like
2123 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2124 **
2125 ** If the database is already opened in the same database connection
2126 ** and we are in shared cache mode, then the open will fail with an
2127 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2128 ** objects in the same database connection since doing so will lead
2129 ** to problems with locking.
2130 */
2131 int sqlite3BtreeOpen(
2132   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2133   const char *zFilename,  /* Name of the file containing the BTree database */
2134   sqlite3 *db,            /* Associated database handle */
2135   Btree **ppBtree,        /* Pointer to new Btree object written here */
2136   int flags,              /* Options */
2137   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2138 ){
2139   BtShared *pBt = 0;             /* Shared part of btree structure */
2140   Btree *p;                      /* Handle to return */
2141   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2142   int rc = SQLITE_OK;            /* Result code from this function */
2143   u8 nReserve;                   /* Byte of unused space on each page */
2144   unsigned char zDbHeader[100];  /* Database header content */
2145 
2146   /* True if opening an ephemeral, temporary database */
2147   const int isTempDb = zFilename==0 || zFilename[0]==0;
2148 
2149   /* Set the variable isMemdb to true for an in-memory database, or
2150   ** false for a file-based database.
2151   */
2152 #ifdef SQLITE_OMIT_MEMORYDB
2153   const int isMemdb = 0;
2154 #else
2155   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2156                        || (isTempDb && sqlite3TempInMemory(db))
2157                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2158 #endif
2159 
2160   assert( db!=0 );
2161   assert( pVfs!=0 );
2162   assert( sqlite3_mutex_held(db->mutex) );
2163   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2164 
2165   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2166   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2167 
2168   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2169   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2170 
2171   if( isMemdb ){
2172     flags |= BTREE_MEMORY;
2173   }
2174   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2175     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2176   }
2177   p = sqlite3MallocZero(sizeof(Btree));
2178   if( !p ){
2179     return SQLITE_NOMEM;
2180   }
2181   p->inTrans = TRANS_NONE;
2182   p->db = db;
2183 #ifndef SQLITE_OMIT_SHARED_CACHE
2184   p->lock.pBtree = p;
2185   p->lock.iTable = 1;
2186 #endif
2187 
2188 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2189   /*
2190   ** If this Btree is a candidate for shared cache, try to find an
2191   ** existing BtShared object that we can share with
2192   */
2193   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2194     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2195       int nFilename = sqlite3Strlen30(zFilename)+1;
2196       int nFullPathname = pVfs->mxPathname+1;
2197       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2198       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2199 
2200       p->sharable = 1;
2201       if( !zFullPathname ){
2202         sqlite3_free(p);
2203         return SQLITE_NOMEM;
2204       }
2205       if( isMemdb ){
2206         memcpy(zFullPathname, zFilename, nFilename);
2207       }else{
2208         rc = sqlite3OsFullPathname(pVfs, zFilename,
2209                                    nFullPathname, zFullPathname);
2210         if( rc ){
2211           sqlite3_free(zFullPathname);
2212           sqlite3_free(p);
2213           return rc;
2214         }
2215       }
2216 #if SQLITE_THREADSAFE
2217       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2218       sqlite3_mutex_enter(mutexOpen);
2219       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2220       sqlite3_mutex_enter(mutexShared);
2221 #endif
2222       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2223         assert( pBt->nRef>0 );
2224         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2225                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2226           int iDb;
2227           for(iDb=db->nDb-1; iDb>=0; iDb--){
2228             Btree *pExisting = db->aDb[iDb].pBt;
2229             if( pExisting && pExisting->pBt==pBt ){
2230               sqlite3_mutex_leave(mutexShared);
2231               sqlite3_mutex_leave(mutexOpen);
2232               sqlite3_free(zFullPathname);
2233               sqlite3_free(p);
2234               return SQLITE_CONSTRAINT;
2235             }
2236           }
2237           p->pBt = pBt;
2238           pBt->nRef++;
2239           break;
2240         }
2241       }
2242       sqlite3_mutex_leave(mutexShared);
2243       sqlite3_free(zFullPathname);
2244     }
2245 #ifdef SQLITE_DEBUG
2246     else{
2247       /* In debug mode, we mark all persistent databases as sharable
2248       ** even when they are not.  This exercises the locking code and
2249       ** gives more opportunity for asserts(sqlite3_mutex_held())
2250       ** statements to find locking problems.
2251       */
2252       p->sharable = 1;
2253     }
2254 #endif
2255   }
2256 #endif
2257   if( pBt==0 ){
2258     /*
2259     ** The following asserts make sure that structures used by the btree are
2260     ** the right size.  This is to guard against size changes that result
2261     ** when compiling on a different architecture.
2262     */
2263     assert( sizeof(i64)==8 );
2264     assert( sizeof(u64)==8 );
2265     assert( sizeof(u32)==4 );
2266     assert( sizeof(u16)==2 );
2267     assert( sizeof(Pgno)==4 );
2268 
2269     pBt = sqlite3MallocZero( sizeof(*pBt) );
2270     if( pBt==0 ){
2271       rc = SQLITE_NOMEM;
2272       goto btree_open_out;
2273     }
2274     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2275                           EXTRA_SIZE, flags, vfsFlags, pageReinit);
2276     if( rc==SQLITE_OK ){
2277       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2278       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2279     }
2280     if( rc!=SQLITE_OK ){
2281       goto btree_open_out;
2282     }
2283     pBt->openFlags = (u8)flags;
2284     pBt->db = db;
2285     sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2286     p->pBt = pBt;
2287 
2288     pBt->pCursor = 0;
2289     pBt->pPage1 = 0;
2290     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2291 #ifdef SQLITE_SECURE_DELETE
2292     pBt->btsFlags |= BTS_SECURE_DELETE;
2293 #endif
2294     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2295     ** determined by the 2-byte integer located at an offset of 16 bytes from
2296     ** the beginning of the database file. */
2297     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2298     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2299          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2300       pBt->pageSize = 0;
2301 #ifndef SQLITE_OMIT_AUTOVACUUM
2302       /* If the magic name ":memory:" will create an in-memory database, then
2303       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2304       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2305       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2306       ** regular file-name. In this case the auto-vacuum applies as per normal.
2307       */
2308       if( zFilename && !isMemdb ){
2309         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2310         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2311       }
2312 #endif
2313       nReserve = 0;
2314     }else{
2315       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2316       ** determined by the one-byte unsigned integer found at an offset of 20
2317       ** into the database file header. */
2318       nReserve = zDbHeader[20];
2319       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2320 #ifndef SQLITE_OMIT_AUTOVACUUM
2321       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2322       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2323 #endif
2324     }
2325     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2326     if( rc ) goto btree_open_out;
2327     pBt->usableSize = pBt->pageSize - nReserve;
2328     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2329 
2330 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2331     /* Add the new BtShared object to the linked list sharable BtShareds.
2332     */
2333     if( p->sharable ){
2334       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2335       pBt->nRef = 1;
2336       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2337       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2338         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2339         if( pBt->mutex==0 ){
2340           rc = SQLITE_NOMEM;
2341           db->mallocFailed = 0;
2342           goto btree_open_out;
2343         }
2344       }
2345       sqlite3_mutex_enter(mutexShared);
2346       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2347       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2348       sqlite3_mutex_leave(mutexShared);
2349     }
2350 #endif
2351   }
2352 
2353 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2354   /* If the new Btree uses a sharable pBtShared, then link the new
2355   ** Btree into the list of all sharable Btrees for the same connection.
2356   ** The list is kept in ascending order by pBt address.
2357   */
2358   if( p->sharable ){
2359     int i;
2360     Btree *pSib;
2361     for(i=0; i<db->nDb; i++){
2362       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2363         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2364         if( p->pBt<pSib->pBt ){
2365           p->pNext = pSib;
2366           p->pPrev = 0;
2367           pSib->pPrev = p;
2368         }else{
2369           while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
2370             pSib = pSib->pNext;
2371           }
2372           p->pNext = pSib->pNext;
2373           p->pPrev = pSib;
2374           if( p->pNext ){
2375             p->pNext->pPrev = p;
2376           }
2377           pSib->pNext = p;
2378         }
2379         break;
2380       }
2381     }
2382   }
2383 #endif
2384   *ppBtree = p;
2385 
2386 btree_open_out:
2387   if( rc!=SQLITE_OK ){
2388     if( pBt && pBt->pPager ){
2389       sqlite3PagerClose(pBt->pPager);
2390     }
2391     sqlite3_free(pBt);
2392     sqlite3_free(p);
2393     *ppBtree = 0;
2394   }else{
2395     /* If the B-Tree was successfully opened, set the pager-cache size to the
2396     ** default value. Except, when opening on an existing shared pager-cache,
2397     ** do not change the pager-cache size.
2398     */
2399     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2400       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2401     }
2402   }
2403   if( mutexOpen ){
2404     assert( sqlite3_mutex_held(mutexOpen) );
2405     sqlite3_mutex_leave(mutexOpen);
2406   }
2407   return rc;
2408 }
2409 
2410 /*
2411 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2412 ** remove the BtShared structure from the sharing list.  Return
2413 ** true if the BtShared.nRef counter reaches zero and return
2414 ** false if it is still positive.
2415 */
2416 static int removeFromSharingList(BtShared *pBt){
2417 #ifndef SQLITE_OMIT_SHARED_CACHE
2418   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2419   BtShared *pList;
2420   int removed = 0;
2421 
2422   assert( sqlite3_mutex_notheld(pBt->mutex) );
2423   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2424   sqlite3_mutex_enter(pMaster);
2425   pBt->nRef--;
2426   if( pBt->nRef<=0 ){
2427     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2428       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2429     }else{
2430       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2431       while( ALWAYS(pList) && pList->pNext!=pBt ){
2432         pList=pList->pNext;
2433       }
2434       if( ALWAYS(pList) ){
2435         pList->pNext = pBt->pNext;
2436       }
2437     }
2438     if( SQLITE_THREADSAFE ){
2439       sqlite3_mutex_free(pBt->mutex);
2440     }
2441     removed = 1;
2442   }
2443   sqlite3_mutex_leave(pMaster);
2444   return removed;
2445 #else
2446   return 1;
2447 #endif
2448 }
2449 
2450 /*
2451 ** Make sure pBt->pTmpSpace points to an allocation of
2452 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2453 ** pointer.
2454 */
2455 static void allocateTempSpace(BtShared *pBt){
2456   if( !pBt->pTmpSpace ){
2457     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2458 
2459     /* One of the uses of pBt->pTmpSpace is to format cells before
2460     ** inserting them into a leaf page (function fillInCell()). If
2461     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2462     ** by the various routines that manipulate binary cells. Which
2463     ** can mean that fillInCell() only initializes the first 2 or 3
2464     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2465     ** it into a database page. This is not actually a problem, but it
2466     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2467     ** data is passed to system call write(). So to avoid this error,
2468     ** zero the first 4 bytes of temp space here.
2469     **
2470     ** Also:  Provide four bytes of initialized space before the
2471     ** beginning of pTmpSpace as an area available to prepend the
2472     ** left-child pointer to the beginning of a cell.
2473     */
2474     if( pBt->pTmpSpace ){
2475       memset(pBt->pTmpSpace, 0, 8);
2476       pBt->pTmpSpace += 4;
2477     }
2478   }
2479 }
2480 
2481 /*
2482 ** Free the pBt->pTmpSpace allocation
2483 */
2484 static void freeTempSpace(BtShared *pBt){
2485   if( pBt->pTmpSpace ){
2486     pBt->pTmpSpace -= 4;
2487     sqlite3PageFree(pBt->pTmpSpace);
2488     pBt->pTmpSpace = 0;
2489   }
2490 }
2491 
2492 /*
2493 ** Close an open database and invalidate all cursors.
2494 */
2495 int sqlite3BtreeClose(Btree *p){
2496   BtShared *pBt = p->pBt;
2497   BtCursor *pCur;
2498 
2499   /* Close all cursors opened via this handle.  */
2500   assert( sqlite3_mutex_held(p->db->mutex) );
2501   sqlite3BtreeEnter(p);
2502   pCur = pBt->pCursor;
2503   while( pCur ){
2504     BtCursor *pTmp = pCur;
2505     pCur = pCur->pNext;
2506     if( pTmp->pBtree==p ){
2507       sqlite3BtreeCloseCursor(pTmp);
2508     }
2509   }
2510 
2511   /* Rollback any active transaction and free the handle structure.
2512   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2513   ** this handle.
2514   */
2515   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2516   sqlite3BtreeLeave(p);
2517 
2518   /* If there are still other outstanding references to the shared-btree
2519   ** structure, return now. The remainder of this procedure cleans
2520   ** up the shared-btree.
2521   */
2522   assert( p->wantToLock==0 && p->locked==0 );
2523   if( !p->sharable || removeFromSharingList(pBt) ){
2524     /* The pBt is no longer on the sharing list, so we can access
2525     ** it without having to hold the mutex.
2526     **
2527     ** Clean out and delete the BtShared object.
2528     */
2529     assert( !pBt->pCursor );
2530     sqlite3PagerClose(pBt->pPager);
2531     if( pBt->xFreeSchema && pBt->pSchema ){
2532       pBt->xFreeSchema(pBt->pSchema);
2533     }
2534     sqlite3DbFree(0, pBt->pSchema);
2535     freeTempSpace(pBt);
2536     sqlite3_free(pBt);
2537   }
2538 
2539 #ifndef SQLITE_OMIT_SHARED_CACHE
2540   assert( p->wantToLock==0 );
2541   assert( p->locked==0 );
2542   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2543   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2544 #endif
2545 
2546   sqlite3_free(p);
2547   return SQLITE_OK;
2548 }
2549 
2550 /*
2551 ** Change the "soft" limit on the number of pages in the cache.
2552 ** Unused and unmodified pages will be recycled when the number of
2553 ** pages in the cache exceeds this soft limit.  But the size of the
2554 ** cache is allowed to grow larger than this limit if it contains
2555 ** dirty pages or pages still in active use.
2556 */
2557 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2558   BtShared *pBt = p->pBt;
2559   assert( sqlite3_mutex_held(p->db->mutex) );
2560   sqlite3BtreeEnter(p);
2561   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2562   sqlite3BtreeLeave(p);
2563   return SQLITE_OK;
2564 }
2565 
2566 /*
2567 ** Change the "spill" limit on the number of pages in the cache.
2568 ** If the number of pages exceeds this limit during a write transaction,
2569 ** the pager might attempt to "spill" pages to the journal early in
2570 ** order to free up memory.
2571 **
2572 ** The value returned is the current spill size.  If zero is passed
2573 ** as an argument, no changes are made to the spill size setting, so
2574 ** using mxPage of 0 is a way to query the current spill size.
2575 */
2576 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2577   BtShared *pBt = p->pBt;
2578   int res;
2579   assert( sqlite3_mutex_held(p->db->mutex) );
2580   sqlite3BtreeEnter(p);
2581   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2582   sqlite3BtreeLeave(p);
2583   return res;
2584 }
2585 
2586 #if SQLITE_MAX_MMAP_SIZE>0
2587 /*
2588 ** Change the limit on the amount of the database file that may be
2589 ** memory mapped.
2590 */
2591 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2592   BtShared *pBt = p->pBt;
2593   assert( sqlite3_mutex_held(p->db->mutex) );
2594   sqlite3BtreeEnter(p);
2595   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2596   sqlite3BtreeLeave(p);
2597   return SQLITE_OK;
2598 }
2599 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2600 
2601 /*
2602 ** Change the way data is synced to disk in order to increase or decrease
2603 ** how well the database resists damage due to OS crashes and power
2604 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2605 ** there is a high probability of damage)  Level 2 is the default.  There
2606 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2607 ** probability of damage to near zero but with a write performance reduction.
2608 */
2609 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2610 int sqlite3BtreeSetPagerFlags(
2611   Btree *p,              /* The btree to set the safety level on */
2612   unsigned pgFlags       /* Various PAGER_* flags */
2613 ){
2614   BtShared *pBt = p->pBt;
2615   assert( sqlite3_mutex_held(p->db->mutex) );
2616   sqlite3BtreeEnter(p);
2617   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2618   sqlite3BtreeLeave(p);
2619   return SQLITE_OK;
2620 }
2621 #endif
2622 
2623 /*
2624 ** Return TRUE if the given btree is set to safety level 1.  In other
2625 ** words, return TRUE if no sync() occurs on the disk files.
2626 */
2627 int sqlite3BtreeSyncDisabled(Btree *p){
2628   BtShared *pBt = p->pBt;
2629   int rc;
2630   assert( sqlite3_mutex_held(p->db->mutex) );
2631   sqlite3BtreeEnter(p);
2632   assert( pBt && pBt->pPager );
2633   rc = sqlite3PagerNosync(pBt->pPager);
2634   sqlite3BtreeLeave(p);
2635   return rc;
2636 }
2637 
2638 /*
2639 ** Change the default pages size and the number of reserved bytes per page.
2640 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2641 ** without changing anything.
2642 **
2643 ** The page size must be a power of 2 between 512 and 65536.  If the page
2644 ** size supplied does not meet this constraint then the page size is not
2645 ** changed.
2646 **
2647 ** Page sizes are constrained to be a power of two so that the region
2648 ** of the database file used for locking (beginning at PENDING_BYTE,
2649 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2650 ** at the beginning of a page.
2651 **
2652 ** If parameter nReserve is less than zero, then the number of reserved
2653 ** bytes per page is left unchanged.
2654 **
2655 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2656 ** and autovacuum mode can no longer be changed.
2657 */
2658 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2659   int rc = SQLITE_OK;
2660   BtShared *pBt = p->pBt;
2661   assert( nReserve>=-1 && nReserve<=255 );
2662   sqlite3BtreeEnter(p);
2663 #if SQLITE_HAS_CODEC
2664   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2665 #endif
2666   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2667     sqlite3BtreeLeave(p);
2668     return SQLITE_READONLY;
2669   }
2670   if( nReserve<0 ){
2671     nReserve = pBt->pageSize - pBt->usableSize;
2672   }
2673   assert( nReserve>=0 && nReserve<=255 );
2674   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2675         ((pageSize-1)&pageSize)==0 ){
2676     assert( (pageSize & 7)==0 );
2677     assert( !pBt->pCursor );
2678     pBt->pageSize = (u32)pageSize;
2679     freeTempSpace(pBt);
2680   }
2681   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2682   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2683   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2684   sqlite3BtreeLeave(p);
2685   return rc;
2686 }
2687 
2688 /*
2689 ** Return the currently defined page size
2690 */
2691 int sqlite3BtreeGetPageSize(Btree *p){
2692   return p->pBt->pageSize;
2693 }
2694 
2695 /*
2696 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2697 ** may only be called if it is guaranteed that the b-tree mutex is already
2698 ** held.
2699 **
2700 ** This is useful in one special case in the backup API code where it is
2701 ** known that the shared b-tree mutex is held, but the mutex on the
2702 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2703 ** were to be called, it might collide with some other operation on the
2704 ** database handle that owns *p, causing undefined behavior.
2705 */
2706 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2707   int n;
2708   assert( sqlite3_mutex_held(p->pBt->mutex) );
2709   n = p->pBt->pageSize - p->pBt->usableSize;
2710   return n;
2711 }
2712 
2713 /*
2714 ** Return the number of bytes of space at the end of every page that
2715 ** are intentually left unused.  This is the "reserved" space that is
2716 ** sometimes used by extensions.
2717 **
2718 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2719 ** greater of the current reserved space and the maximum requested
2720 ** reserve space.
2721 */
2722 int sqlite3BtreeGetOptimalReserve(Btree *p){
2723   int n;
2724   sqlite3BtreeEnter(p);
2725   n = sqlite3BtreeGetReserveNoMutex(p);
2726 #ifdef SQLITE_HAS_CODEC
2727   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2728 #endif
2729   sqlite3BtreeLeave(p);
2730   return n;
2731 }
2732 
2733 
2734 /*
2735 ** Set the maximum page count for a database if mxPage is positive.
2736 ** No changes are made if mxPage is 0 or negative.
2737 ** Regardless of the value of mxPage, return the maximum page count.
2738 */
2739 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2740   int n;
2741   sqlite3BtreeEnter(p);
2742   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2743   sqlite3BtreeLeave(p);
2744   return n;
2745 }
2746 
2747 /*
2748 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1.  If newFlag is -1,
2749 ** then make no changes.  Always return the value of the BTS_SECURE_DELETE
2750 ** setting after the change.
2751 */
2752 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2753   int b;
2754   if( p==0 ) return 0;
2755   sqlite3BtreeEnter(p);
2756   if( newFlag>=0 ){
2757     p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2758     if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
2759   }
2760   b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
2761   sqlite3BtreeLeave(p);
2762   return b;
2763 }
2764 
2765 /*
2766 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2767 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2768 ** is disabled. The default value for the auto-vacuum property is
2769 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2770 */
2771 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2772 #ifdef SQLITE_OMIT_AUTOVACUUM
2773   return SQLITE_READONLY;
2774 #else
2775   BtShared *pBt = p->pBt;
2776   int rc = SQLITE_OK;
2777   u8 av = (u8)autoVacuum;
2778 
2779   sqlite3BtreeEnter(p);
2780   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2781     rc = SQLITE_READONLY;
2782   }else{
2783     pBt->autoVacuum = av ?1:0;
2784     pBt->incrVacuum = av==2 ?1:0;
2785   }
2786   sqlite3BtreeLeave(p);
2787   return rc;
2788 #endif
2789 }
2790 
2791 /*
2792 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2793 ** enabled 1 is returned. Otherwise 0.
2794 */
2795 int sqlite3BtreeGetAutoVacuum(Btree *p){
2796 #ifdef SQLITE_OMIT_AUTOVACUUM
2797   return BTREE_AUTOVACUUM_NONE;
2798 #else
2799   int rc;
2800   sqlite3BtreeEnter(p);
2801   rc = (
2802     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2803     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2804     BTREE_AUTOVACUUM_INCR
2805   );
2806   sqlite3BtreeLeave(p);
2807   return rc;
2808 #endif
2809 }
2810 
2811 
2812 /*
2813 ** Get a reference to pPage1 of the database file.  This will
2814 ** also acquire a readlock on that file.
2815 **
2816 ** SQLITE_OK is returned on success.  If the file is not a
2817 ** well-formed database file, then SQLITE_CORRUPT is returned.
2818 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
2819 ** is returned if we run out of memory.
2820 */
2821 static int lockBtree(BtShared *pBt){
2822   int rc;              /* Result code from subfunctions */
2823   MemPage *pPage1;     /* Page 1 of the database file */
2824   int nPage;           /* Number of pages in the database */
2825   int nPageFile = 0;   /* Number of pages in the database file */
2826   int nPageHeader;     /* Number of pages in the database according to hdr */
2827 
2828   assert( sqlite3_mutex_held(pBt->mutex) );
2829   assert( pBt->pPage1==0 );
2830   rc = sqlite3PagerSharedLock(pBt->pPager);
2831   if( rc!=SQLITE_OK ) return rc;
2832   rc = btreeGetPage(pBt, 1, &pPage1, 0);
2833   if( rc!=SQLITE_OK ) return rc;
2834 
2835   /* Do some checking to help insure the file we opened really is
2836   ** a valid database file.
2837   */
2838   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2839   sqlite3PagerPagecount(pBt->pPager, &nPageFile);
2840   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
2841     nPage = nPageFile;
2842   }
2843   if( nPage>0 ){
2844     u32 pageSize;
2845     u32 usableSize;
2846     u8 *page1 = pPage1->aData;
2847     rc = SQLITE_NOTADB;
2848     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2849     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2850     ** 61 74 20 33 00. */
2851     if( memcmp(page1, zMagicHeader, 16)!=0 ){
2852       goto page1_init_failed;
2853     }
2854 
2855 #ifdef SQLITE_OMIT_WAL
2856     if( page1[18]>1 ){
2857       pBt->btsFlags |= BTS_READ_ONLY;
2858     }
2859     if( page1[19]>1 ){
2860       goto page1_init_failed;
2861     }
2862 #else
2863     if( page1[18]>2 ){
2864       pBt->btsFlags |= BTS_READ_ONLY;
2865     }
2866     if( page1[19]>2 ){
2867       goto page1_init_failed;
2868     }
2869 
2870     /* If the write version is set to 2, this database should be accessed
2871     ** in WAL mode. If the log is not already open, open it now. Then
2872     ** return SQLITE_OK and return without populating BtShared.pPage1.
2873     ** The caller detects this and calls this function again. This is
2874     ** required as the version of page 1 currently in the page1 buffer
2875     ** may not be the latest version - there may be a newer one in the log
2876     ** file.
2877     */
2878     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
2879       int isOpen = 0;
2880       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
2881       if( rc!=SQLITE_OK ){
2882         goto page1_init_failed;
2883       }else if( isOpen==0 ){
2884         releasePage(pPage1);
2885         return SQLITE_OK;
2886       }
2887       rc = SQLITE_NOTADB;
2888     }
2889 #endif
2890 
2891     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2892     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2893     **
2894     ** The original design allowed these amounts to vary, but as of
2895     ** version 3.6.0, we require them to be fixed.
2896     */
2897     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2898       goto page1_init_failed;
2899     }
2900     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2901     ** determined by the 2-byte integer located at an offset of 16 bytes from
2902     ** the beginning of the database file. */
2903     pageSize = (page1[16]<<8) | (page1[17]<<16);
2904     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2905     ** between 512 and 65536 inclusive. */
2906     if( ((pageSize-1)&pageSize)!=0
2907      || pageSize>SQLITE_MAX_PAGE_SIZE
2908      || pageSize<=256
2909     ){
2910       goto page1_init_failed;
2911     }
2912     assert( (pageSize & 7)==0 );
2913     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2914     ** integer at offset 20 is the number of bytes of space at the end of
2915     ** each page to reserve for extensions.
2916     **
2917     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2918     ** determined by the one-byte unsigned integer found at an offset of 20
2919     ** into the database file header. */
2920     usableSize = pageSize - page1[20];
2921     if( (u32)pageSize!=pBt->pageSize ){
2922       /* After reading the first page of the database assuming a page size
2923       ** of BtShared.pageSize, we have discovered that the page-size is
2924       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2925       ** zero and return SQLITE_OK. The caller will call this function
2926       ** again with the correct page-size.
2927       */
2928       releasePage(pPage1);
2929       pBt->usableSize = usableSize;
2930       pBt->pageSize = pageSize;
2931       freeTempSpace(pBt);
2932       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2933                                    pageSize-usableSize);
2934       return rc;
2935     }
2936     if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
2937       rc = SQLITE_CORRUPT_BKPT;
2938       goto page1_init_failed;
2939     }
2940     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2941     ** be less than 480. In other words, if the page size is 512, then the
2942     ** reserved space size cannot exceed 32. */
2943     if( usableSize<480 ){
2944       goto page1_init_failed;
2945     }
2946     pBt->pageSize = pageSize;
2947     pBt->usableSize = usableSize;
2948 #ifndef SQLITE_OMIT_AUTOVACUUM
2949     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
2950     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
2951 #endif
2952   }
2953 
2954   /* maxLocal is the maximum amount of payload to store locally for
2955   ** a cell.  Make sure it is small enough so that at least minFanout
2956   ** cells can will fit on one page.  We assume a 10-byte page header.
2957   ** Besides the payload, the cell must store:
2958   **     2-byte pointer to the cell
2959   **     4-byte child pointer
2960   **     9-byte nKey value
2961   **     4-byte nData value
2962   **     4-byte overflow page pointer
2963   ** So a cell consists of a 2-byte pointer, a header which is as much as
2964   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2965   ** page pointer.
2966   */
2967   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2968   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2969   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2970   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
2971   if( pBt->maxLocal>127 ){
2972     pBt->max1bytePayload = 127;
2973   }else{
2974     pBt->max1bytePayload = (u8)pBt->maxLocal;
2975   }
2976   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
2977   pBt->pPage1 = pPage1;
2978   pBt->nPage = nPage;
2979   return SQLITE_OK;
2980 
2981 page1_init_failed:
2982   releasePage(pPage1);
2983   pBt->pPage1 = 0;
2984   return rc;
2985 }
2986 
2987 #ifndef NDEBUG
2988 /*
2989 ** Return the number of cursors open on pBt. This is for use
2990 ** in assert() expressions, so it is only compiled if NDEBUG is not
2991 ** defined.
2992 **
2993 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
2994 ** false then all cursors are counted.
2995 **
2996 ** For the purposes of this routine, a cursor is any cursor that
2997 ** is capable of reading or writing to the database.  Cursors that
2998 ** have been tripped into the CURSOR_FAULT state are not counted.
2999 */
3000 static int countValidCursors(BtShared *pBt, int wrOnly){
3001   BtCursor *pCur;
3002   int r = 0;
3003   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3004     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3005      && pCur->eState!=CURSOR_FAULT ) r++;
3006   }
3007   return r;
3008 }
3009 #endif
3010 
3011 /*
3012 ** If there are no outstanding cursors and we are not in the middle
3013 ** of a transaction but there is a read lock on the database, then
3014 ** this routine unrefs the first page of the database file which
3015 ** has the effect of releasing the read lock.
3016 **
3017 ** If there is a transaction in progress, this routine is a no-op.
3018 */
3019 static void unlockBtreeIfUnused(BtShared *pBt){
3020   assert( sqlite3_mutex_held(pBt->mutex) );
3021   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3022   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3023     MemPage *pPage1 = pBt->pPage1;
3024     assert( pPage1->aData );
3025     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3026     pBt->pPage1 = 0;
3027     releasePageNotNull(pPage1);
3028   }
3029 }
3030 
3031 /*
3032 ** If pBt points to an empty file then convert that empty file
3033 ** into a new empty database by initializing the first page of
3034 ** the database.
3035 */
3036 static int newDatabase(BtShared *pBt){
3037   MemPage *pP1;
3038   unsigned char *data;
3039   int rc;
3040 
3041   assert( sqlite3_mutex_held(pBt->mutex) );
3042   if( pBt->nPage>0 ){
3043     return SQLITE_OK;
3044   }
3045   pP1 = pBt->pPage1;
3046   assert( pP1!=0 );
3047   data = pP1->aData;
3048   rc = sqlite3PagerWrite(pP1->pDbPage);
3049   if( rc ) return rc;
3050   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3051   assert( sizeof(zMagicHeader)==16 );
3052   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3053   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3054   data[18] = 1;
3055   data[19] = 1;
3056   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3057   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3058   data[21] = 64;
3059   data[22] = 32;
3060   data[23] = 32;
3061   memset(&data[24], 0, 100-24);
3062   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3063   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3064 #ifndef SQLITE_OMIT_AUTOVACUUM
3065   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3066   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3067   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3068   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3069 #endif
3070   pBt->nPage = 1;
3071   data[31] = 1;
3072   return SQLITE_OK;
3073 }
3074 
3075 /*
3076 ** Initialize the first page of the database file (creating a database
3077 ** consisting of a single page and no schema objects). Return SQLITE_OK
3078 ** if successful, or an SQLite error code otherwise.
3079 */
3080 int sqlite3BtreeNewDb(Btree *p){
3081   int rc;
3082   sqlite3BtreeEnter(p);
3083   p->pBt->nPage = 0;
3084   rc = newDatabase(p->pBt);
3085   sqlite3BtreeLeave(p);
3086   return rc;
3087 }
3088 
3089 /*
3090 ** Attempt to start a new transaction. A write-transaction
3091 ** is started if the second argument is nonzero, otherwise a read-
3092 ** transaction.  If the second argument is 2 or more and exclusive
3093 ** transaction is started, meaning that no other process is allowed
3094 ** to access the database.  A preexisting transaction may not be
3095 ** upgraded to exclusive by calling this routine a second time - the
3096 ** exclusivity flag only works for a new transaction.
3097 **
3098 ** A write-transaction must be started before attempting any
3099 ** changes to the database.  None of the following routines
3100 ** will work unless a transaction is started first:
3101 **
3102 **      sqlite3BtreeCreateTable()
3103 **      sqlite3BtreeCreateIndex()
3104 **      sqlite3BtreeClearTable()
3105 **      sqlite3BtreeDropTable()
3106 **      sqlite3BtreeInsert()
3107 **      sqlite3BtreeDelete()
3108 **      sqlite3BtreeUpdateMeta()
3109 **
3110 ** If an initial attempt to acquire the lock fails because of lock contention
3111 ** and the database was previously unlocked, then invoke the busy handler
3112 ** if there is one.  But if there was previously a read-lock, do not
3113 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3114 ** returned when there is already a read-lock in order to avoid a deadlock.
3115 **
3116 ** Suppose there are two processes A and B.  A has a read lock and B has
3117 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3118 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3119 ** One or the other of the two processes must give way or there can be
3120 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3121 ** when A already has a read lock, we encourage A to give up and let B
3122 ** proceed.
3123 */
3124 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3125   BtShared *pBt = p->pBt;
3126   int rc = SQLITE_OK;
3127 
3128   sqlite3BtreeEnter(p);
3129   btreeIntegrity(p);
3130 
3131   /* If the btree is already in a write-transaction, or it
3132   ** is already in a read-transaction and a read-transaction
3133   ** is requested, this is a no-op.
3134   */
3135   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3136     goto trans_begun;
3137   }
3138   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3139 
3140   /* Write transactions are not possible on a read-only database */
3141   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3142     rc = SQLITE_READONLY;
3143     goto trans_begun;
3144   }
3145 
3146 #ifndef SQLITE_OMIT_SHARED_CACHE
3147   {
3148     sqlite3 *pBlock = 0;
3149     /* If another database handle has already opened a write transaction
3150     ** on this shared-btree structure and a second write transaction is
3151     ** requested, return SQLITE_LOCKED.
3152     */
3153     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3154      || (pBt->btsFlags & BTS_PENDING)!=0
3155     ){
3156       pBlock = pBt->pWriter->db;
3157     }else if( wrflag>1 ){
3158       BtLock *pIter;
3159       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3160         if( pIter->pBtree!=p ){
3161           pBlock = pIter->pBtree->db;
3162           break;
3163         }
3164       }
3165     }
3166     if( pBlock ){
3167       sqlite3ConnectionBlocked(p->db, pBlock);
3168       rc = SQLITE_LOCKED_SHAREDCACHE;
3169       goto trans_begun;
3170     }
3171   }
3172 #endif
3173 
3174   /* Any read-only or read-write transaction implies a read-lock on
3175   ** page 1. So if some other shared-cache client already has a write-lock
3176   ** on page 1, the transaction cannot be opened. */
3177   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3178   if( SQLITE_OK!=rc ) goto trans_begun;
3179 
3180   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3181   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3182   do {
3183     /* Call lockBtree() until either pBt->pPage1 is populated or
3184     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3185     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3186     ** reading page 1 it discovers that the page-size of the database
3187     ** file is not pBt->pageSize. In this case lockBtree() will update
3188     ** pBt->pageSize to the page-size of the file on disk.
3189     */
3190     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3191 
3192     if( rc==SQLITE_OK && wrflag ){
3193       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3194         rc = SQLITE_READONLY;
3195       }else{
3196         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3197         if( rc==SQLITE_OK ){
3198           rc = newDatabase(pBt);
3199         }
3200       }
3201     }
3202 
3203     if( rc!=SQLITE_OK ){
3204       unlockBtreeIfUnused(pBt);
3205     }
3206   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3207           btreeInvokeBusyHandler(pBt) );
3208 
3209   if( rc==SQLITE_OK ){
3210     if( p->inTrans==TRANS_NONE ){
3211       pBt->nTransaction++;
3212 #ifndef SQLITE_OMIT_SHARED_CACHE
3213       if( p->sharable ){
3214         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3215         p->lock.eLock = READ_LOCK;
3216         p->lock.pNext = pBt->pLock;
3217         pBt->pLock = &p->lock;
3218       }
3219 #endif
3220     }
3221     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3222     if( p->inTrans>pBt->inTransaction ){
3223       pBt->inTransaction = p->inTrans;
3224     }
3225     if( wrflag ){
3226       MemPage *pPage1 = pBt->pPage1;
3227 #ifndef SQLITE_OMIT_SHARED_CACHE
3228       assert( !pBt->pWriter );
3229       pBt->pWriter = p;
3230       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3231       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3232 #endif
3233 
3234       /* If the db-size header field is incorrect (as it may be if an old
3235       ** client has been writing the database file), update it now. Doing
3236       ** this sooner rather than later means the database size can safely
3237       ** re-read the database size from page 1 if a savepoint or transaction
3238       ** rollback occurs within the transaction.
3239       */
3240       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3241         rc = sqlite3PagerWrite(pPage1->pDbPage);
3242         if( rc==SQLITE_OK ){
3243           put4byte(&pPage1->aData[28], pBt->nPage);
3244         }
3245       }
3246     }
3247   }
3248 
3249 
3250 trans_begun:
3251   if( rc==SQLITE_OK && wrflag ){
3252     /* This call makes sure that the pager has the correct number of
3253     ** open savepoints. If the second parameter is greater than 0 and
3254     ** the sub-journal is not already open, then it will be opened here.
3255     */
3256     rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3257   }
3258 
3259   btreeIntegrity(p);
3260   sqlite3BtreeLeave(p);
3261   return rc;
3262 }
3263 
3264 #ifndef SQLITE_OMIT_AUTOVACUUM
3265 
3266 /*
3267 ** Set the pointer-map entries for all children of page pPage. Also, if
3268 ** pPage contains cells that point to overflow pages, set the pointer
3269 ** map entries for the overflow pages as well.
3270 */
3271 static int setChildPtrmaps(MemPage *pPage){
3272   int i;                             /* Counter variable */
3273   int nCell;                         /* Number of cells in page pPage */
3274   int rc;                            /* Return code */
3275   BtShared *pBt = pPage->pBt;
3276   u8 isInitOrig = pPage->isInit;
3277   Pgno pgno = pPage->pgno;
3278 
3279   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3280   rc = btreeInitPage(pPage);
3281   if( rc!=SQLITE_OK ){
3282     goto set_child_ptrmaps_out;
3283   }
3284   nCell = pPage->nCell;
3285 
3286   for(i=0; i<nCell; i++){
3287     u8 *pCell = findCell(pPage, i);
3288 
3289     ptrmapPutOvflPtr(pPage, pCell, &rc);
3290 
3291     if( !pPage->leaf ){
3292       Pgno childPgno = get4byte(pCell);
3293       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3294     }
3295   }
3296 
3297   if( !pPage->leaf ){
3298     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3299     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3300   }
3301 
3302 set_child_ptrmaps_out:
3303   pPage->isInit = isInitOrig;
3304   return rc;
3305 }
3306 
3307 /*
3308 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3309 ** that it points to iTo. Parameter eType describes the type of pointer to
3310 ** be modified, as  follows:
3311 **
3312 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3313 **                   page of pPage.
3314 **
3315 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3316 **                   page pointed to by one of the cells on pPage.
3317 **
3318 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3319 **                   overflow page in the list.
3320 */
3321 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3322   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3323   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3324   if( eType==PTRMAP_OVERFLOW2 ){
3325     /* The pointer is always the first 4 bytes of the page in this case.  */
3326     if( get4byte(pPage->aData)!=iFrom ){
3327       return SQLITE_CORRUPT_BKPT;
3328     }
3329     put4byte(pPage->aData, iTo);
3330   }else{
3331     u8 isInitOrig = pPage->isInit;
3332     int i;
3333     int nCell;
3334     int rc;
3335 
3336     rc = btreeInitPage(pPage);
3337     if( rc ) return rc;
3338     nCell = pPage->nCell;
3339 
3340     for(i=0; i<nCell; i++){
3341       u8 *pCell = findCell(pPage, i);
3342       if( eType==PTRMAP_OVERFLOW1 ){
3343         CellInfo info;
3344         pPage->xParseCell(pPage, pCell, &info);
3345         if( info.nLocal<info.nPayload
3346          && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
3347          && iFrom==get4byte(pCell+info.nSize-4)
3348         ){
3349           put4byte(pCell+info.nSize-4, iTo);
3350           break;
3351         }
3352       }else{
3353         if( get4byte(pCell)==iFrom ){
3354           put4byte(pCell, iTo);
3355           break;
3356         }
3357       }
3358     }
3359 
3360     if( i==nCell ){
3361       if( eType!=PTRMAP_BTREE ||
3362           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3363         return SQLITE_CORRUPT_BKPT;
3364       }
3365       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3366     }
3367 
3368     pPage->isInit = isInitOrig;
3369   }
3370   return SQLITE_OK;
3371 }
3372 
3373 
3374 /*
3375 ** Move the open database page pDbPage to location iFreePage in the
3376 ** database. The pDbPage reference remains valid.
3377 **
3378 ** The isCommit flag indicates that there is no need to remember that
3379 ** the journal needs to be sync()ed before database page pDbPage->pgno
3380 ** can be written to. The caller has already promised not to write to that
3381 ** page.
3382 */
3383 static int relocatePage(
3384   BtShared *pBt,           /* Btree */
3385   MemPage *pDbPage,        /* Open page to move */
3386   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3387   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3388   Pgno iFreePage,          /* The location to move pDbPage to */
3389   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3390 ){
3391   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3392   Pgno iDbPage = pDbPage->pgno;
3393   Pager *pPager = pBt->pPager;
3394   int rc;
3395 
3396   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3397       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3398   assert( sqlite3_mutex_held(pBt->mutex) );
3399   assert( pDbPage->pBt==pBt );
3400 
3401   /* Move page iDbPage from its current location to page number iFreePage */
3402   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3403       iDbPage, iFreePage, iPtrPage, eType));
3404   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3405   if( rc!=SQLITE_OK ){
3406     return rc;
3407   }
3408   pDbPage->pgno = iFreePage;
3409 
3410   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3411   ** that point to overflow pages. The pointer map entries for all these
3412   ** pages need to be changed.
3413   **
3414   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3415   ** pointer to a subsequent overflow page. If this is the case, then
3416   ** the pointer map needs to be updated for the subsequent overflow page.
3417   */
3418   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3419     rc = setChildPtrmaps(pDbPage);
3420     if( rc!=SQLITE_OK ){
3421       return rc;
3422     }
3423   }else{
3424     Pgno nextOvfl = get4byte(pDbPage->aData);
3425     if( nextOvfl!=0 ){
3426       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3427       if( rc!=SQLITE_OK ){
3428         return rc;
3429       }
3430     }
3431   }
3432 
3433   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3434   ** that it points at iFreePage. Also fix the pointer map entry for
3435   ** iPtrPage.
3436   */
3437   if( eType!=PTRMAP_ROOTPAGE ){
3438     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3439     if( rc!=SQLITE_OK ){
3440       return rc;
3441     }
3442     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3443     if( rc!=SQLITE_OK ){
3444       releasePage(pPtrPage);
3445       return rc;
3446     }
3447     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3448     releasePage(pPtrPage);
3449     if( rc==SQLITE_OK ){
3450       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3451     }
3452   }
3453   return rc;
3454 }
3455 
3456 /* Forward declaration required by incrVacuumStep(). */
3457 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3458 
3459 /*
3460 ** Perform a single step of an incremental-vacuum. If successful, return
3461 ** SQLITE_OK. If there is no work to do (and therefore no point in
3462 ** calling this function again), return SQLITE_DONE. Or, if an error
3463 ** occurs, return some other error code.
3464 **
3465 ** More specifically, this function attempts to re-organize the database so
3466 ** that the last page of the file currently in use is no longer in use.
3467 **
3468 ** Parameter nFin is the number of pages that this database would contain
3469 ** were this function called until it returns SQLITE_DONE.
3470 **
3471 ** If the bCommit parameter is non-zero, this function assumes that the
3472 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3473 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3474 ** operation, or false for an incremental vacuum.
3475 */
3476 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3477   Pgno nFreeList;           /* Number of pages still on the free-list */
3478   int rc;
3479 
3480   assert( sqlite3_mutex_held(pBt->mutex) );
3481   assert( iLastPg>nFin );
3482 
3483   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3484     u8 eType;
3485     Pgno iPtrPage;
3486 
3487     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3488     if( nFreeList==0 ){
3489       return SQLITE_DONE;
3490     }
3491 
3492     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3493     if( rc!=SQLITE_OK ){
3494       return rc;
3495     }
3496     if( eType==PTRMAP_ROOTPAGE ){
3497       return SQLITE_CORRUPT_BKPT;
3498     }
3499 
3500     if( eType==PTRMAP_FREEPAGE ){
3501       if( bCommit==0 ){
3502         /* Remove the page from the files free-list. This is not required
3503         ** if bCommit is non-zero. In that case, the free-list will be
3504         ** truncated to zero after this function returns, so it doesn't
3505         ** matter if it still contains some garbage entries.
3506         */
3507         Pgno iFreePg;
3508         MemPage *pFreePg;
3509         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3510         if( rc!=SQLITE_OK ){
3511           return rc;
3512         }
3513         assert( iFreePg==iLastPg );
3514         releasePage(pFreePg);
3515       }
3516     } else {
3517       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3518       MemPage *pLastPg;
3519       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3520       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3521 
3522       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3523       if( rc!=SQLITE_OK ){
3524         return rc;
3525       }
3526 
3527       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3528       ** is swapped with the first free page pulled off the free list.
3529       **
3530       ** On the other hand, if bCommit is greater than zero, then keep
3531       ** looping until a free-page located within the first nFin pages
3532       ** of the file is found.
3533       */
3534       if( bCommit==0 ){
3535         eMode = BTALLOC_LE;
3536         iNear = nFin;
3537       }
3538       do {
3539         MemPage *pFreePg;
3540         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3541         if( rc!=SQLITE_OK ){
3542           releasePage(pLastPg);
3543           return rc;
3544         }
3545         releasePage(pFreePg);
3546       }while( bCommit && iFreePg>nFin );
3547       assert( iFreePg<iLastPg );
3548 
3549       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3550       releasePage(pLastPg);
3551       if( rc!=SQLITE_OK ){
3552         return rc;
3553       }
3554     }
3555   }
3556 
3557   if( bCommit==0 ){
3558     do {
3559       iLastPg--;
3560     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3561     pBt->bDoTruncate = 1;
3562     pBt->nPage = iLastPg;
3563   }
3564   return SQLITE_OK;
3565 }
3566 
3567 /*
3568 ** The database opened by the first argument is an auto-vacuum database
3569 ** nOrig pages in size containing nFree free pages. Return the expected
3570 ** size of the database in pages following an auto-vacuum operation.
3571 */
3572 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3573   int nEntry;                     /* Number of entries on one ptrmap page */
3574   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3575   Pgno nFin;                      /* Return value */
3576 
3577   nEntry = pBt->usableSize/5;
3578   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3579   nFin = nOrig - nFree - nPtrmap;
3580   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3581     nFin--;
3582   }
3583   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3584     nFin--;
3585   }
3586 
3587   return nFin;
3588 }
3589 
3590 /*
3591 ** A write-transaction must be opened before calling this function.
3592 ** It performs a single unit of work towards an incremental vacuum.
3593 **
3594 ** If the incremental vacuum is finished after this function has run,
3595 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3596 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3597 */
3598 int sqlite3BtreeIncrVacuum(Btree *p){
3599   int rc;
3600   BtShared *pBt = p->pBt;
3601 
3602   sqlite3BtreeEnter(p);
3603   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3604   if( !pBt->autoVacuum ){
3605     rc = SQLITE_DONE;
3606   }else{
3607     Pgno nOrig = btreePagecount(pBt);
3608     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3609     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3610 
3611     if( nOrig<nFin ){
3612       rc = SQLITE_CORRUPT_BKPT;
3613     }else if( nFree>0 ){
3614       rc = saveAllCursors(pBt, 0, 0);
3615       if( rc==SQLITE_OK ){
3616         invalidateAllOverflowCache(pBt);
3617         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3618       }
3619       if( rc==SQLITE_OK ){
3620         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3621         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3622       }
3623     }else{
3624       rc = SQLITE_DONE;
3625     }
3626   }
3627   sqlite3BtreeLeave(p);
3628   return rc;
3629 }
3630 
3631 /*
3632 ** This routine is called prior to sqlite3PagerCommit when a transaction
3633 ** is committed for an auto-vacuum database.
3634 **
3635 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3636 ** the database file should be truncated to during the commit process.
3637 ** i.e. the database has been reorganized so that only the first *pnTrunc
3638 ** pages are in use.
3639 */
3640 static int autoVacuumCommit(BtShared *pBt){
3641   int rc = SQLITE_OK;
3642   Pager *pPager = pBt->pPager;
3643   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3644 
3645   assert( sqlite3_mutex_held(pBt->mutex) );
3646   invalidateAllOverflowCache(pBt);
3647   assert(pBt->autoVacuum);
3648   if( !pBt->incrVacuum ){
3649     Pgno nFin;         /* Number of pages in database after autovacuuming */
3650     Pgno nFree;        /* Number of pages on the freelist initially */
3651     Pgno iFree;        /* The next page to be freed */
3652     Pgno nOrig;        /* Database size before freeing */
3653 
3654     nOrig = btreePagecount(pBt);
3655     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3656       /* It is not possible to create a database for which the final page
3657       ** is either a pointer-map page or the pending-byte page. If one
3658       ** is encountered, this indicates corruption.
3659       */
3660       return SQLITE_CORRUPT_BKPT;
3661     }
3662 
3663     nFree = get4byte(&pBt->pPage1->aData[36]);
3664     nFin = finalDbSize(pBt, nOrig, nFree);
3665     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3666     if( nFin<nOrig ){
3667       rc = saveAllCursors(pBt, 0, 0);
3668     }
3669     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3670       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3671     }
3672     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3673       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3674       put4byte(&pBt->pPage1->aData[32], 0);
3675       put4byte(&pBt->pPage1->aData[36], 0);
3676       put4byte(&pBt->pPage1->aData[28], nFin);
3677       pBt->bDoTruncate = 1;
3678       pBt->nPage = nFin;
3679     }
3680     if( rc!=SQLITE_OK ){
3681       sqlite3PagerRollback(pPager);
3682     }
3683   }
3684 
3685   assert( nRef>=sqlite3PagerRefcount(pPager) );
3686   return rc;
3687 }
3688 
3689 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3690 # define setChildPtrmaps(x) SQLITE_OK
3691 #endif
3692 
3693 /*
3694 ** This routine does the first phase of a two-phase commit.  This routine
3695 ** causes a rollback journal to be created (if it does not already exist)
3696 ** and populated with enough information so that if a power loss occurs
3697 ** the database can be restored to its original state by playing back
3698 ** the journal.  Then the contents of the journal are flushed out to
3699 ** the disk.  After the journal is safely on oxide, the changes to the
3700 ** database are written into the database file and flushed to oxide.
3701 ** At the end of this call, the rollback journal still exists on the
3702 ** disk and we are still holding all locks, so the transaction has not
3703 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3704 ** commit process.
3705 **
3706 ** This call is a no-op if no write-transaction is currently active on pBt.
3707 **
3708 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3709 ** the name of a master journal file that should be written into the
3710 ** individual journal file, or is NULL, indicating no master journal file
3711 ** (single database transaction).
3712 **
3713 ** When this is called, the master journal should already have been
3714 ** created, populated with this journal pointer and synced to disk.
3715 **
3716 ** Once this is routine has returned, the only thing required to commit
3717 ** the write-transaction for this database file is to delete the journal.
3718 */
3719 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3720   int rc = SQLITE_OK;
3721   if( p->inTrans==TRANS_WRITE ){
3722     BtShared *pBt = p->pBt;
3723     sqlite3BtreeEnter(p);
3724 #ifndef SQLITE_OMIT_AUTOVACUUM
3725     if( pBt->autoVacuum ){
3726       rc = autoVacuumCommit(pBt);
3727       if( rc!=SQLITE_OK ){
3728         sqlite3BtreeLeave(p);
3729         return rc;
3730       }
3731     }
3732     if( pBt->bDoTruncate ){
3733       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3734     }
3735 #endif
3736     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3737     sqlite3BtreeLeave(p);
3738   }
3739   return rc;
3740 }
3741 
3742 /*
3743 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3744 ** at the conclusion of a transaction.
3745 */
3746 static void btreeEndTransaction(Btree *p){
3747   BtShared *pBt = p->pBt;
3748   sqlite3 *db = p->db;
3749   assert( sqlite3BtreeHoldsMutex(p) );
3750 
3751 #ifndef SQLITE_OMIT_AUTOVACUUM
3752   pBt->bDoTruncate = 0;
3753 #endif
3754   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3755     /* If there are other active statements that belong to this database
3756     ** handle, downgrade to a read-only transaction. The other statements
3757     ** may still be reading from the database.  */
3758     downgradeAllSharedCacheTableLocks(p);
3759     p->inTrans = TRANS_READ;
3760   }else{
3761     /* If the handle had any kind of transaction open, decrement the
3762     ** transaction count of the shared btree. If the transaction count
3763     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3764     ** call below will unlock the pager.  */
3765     if( p->inTrans!=TRANS_NONE ){
3766       clearAllSharedCacheTableLocks(p);
3767       pBt->nTransaction--;
3768       if( 0==pBt->nTransaction ){
3769         pBt->inTransaction = TRANS_NONE;
3770       }
3771     }
3772 
3773     /* Set the current transaction state to TRANS_NONE and unlock the
3774     ** pager if this call closed the only read or write transaction.  */
3775     p->inTrans = TRANS_NONE;
3776     unlockBtreeIfUnused(pBt);
3777   }
3778 
3779   btreeIntegrity(p);
3780 }
3781 
3782 /*
3783 ** Commit the transaction currently in progress.
3784 **
3785 ** This routine implements the second phase of a 2-phase commit.  The
3786 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3787 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
3788 ** routine did all the work of writing information out to disk and flushing the
3789 ** contents so that they are written onto the disk platter.  All this
3790 ** routine has to do is delete or truncate or zero the header in the
3791 ** the rollback journal (which causes the transaction to commit) and
3792 ** drop locks.
3793 **
3794 ** Normally, if an error occurs while the pager layer is attempting to
3795 ** finalize the underlying journal file, this function returns an error and
3796 ** the upper layer will attempt a rollback. However, if the second argument
3797 ** is non-zero then this b-tree transaction is part of a multi-file
3798 ** transaction. In this case, the transaction has already been committed
3799 ** (by deleting a master journal file) and the caller will ignore this
3800 ** functions return code. So, even if an error occurs in the pager layer,
3801 ** reset the b-tree objects internal state to indicate that the write
3802 ** transaction has been closed. This is quite safe, as the pager will have
3803 ** transitioned to the error state.
3804 **
3805 ** This will release the write lock on the database file.  If there
3806 ** are no active cursors, it also releases the read lock.
3807 */
3808 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3809 
3810   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3811   sqlite3BtreeEnter(p);
3812   btreeIntegrity(p);
3813 
3814   /* If the handle has a write-transaction open, commit the shared-btrees
3815   ** transaction and set the shared state to TRANS_READ.
3816   */
3817   if( p->inTrans==TRANS_WRITE ){
3818     int rc;
3819     BtShared *pBt = p->pBt;
3820     assert( pBt->inTransaction==TRANS_WRITE );
3821     assert( pBt->nTransaction>0 );
3822     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3823     if( rc!=SQLITE_OK && bCleanup==0 ){
3824       sqlite3BtreeLeave(p);
3825       return rc;
3826     }
3827     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
3828     pBt->inTransaction = TRANS_READ;
3829     btreeClearHasContent(pBt);
3830   }
3831 
3832   btreeEndTransaction(p);
3833   sqlite3BtreeLeave(p);
3834   return SQLITE_OK;
3835 }
3836 
3837 /*
3838 ** Do both phases of a commit.
3839 */
3840 int sqlite3BtreeCommit(Btree *p){
3841   int rc;
3842   sqlite3BtreeEnter(p);
3843   rc = sqlite3BtreeCommitPhaseOne(p, 0);
3844   if( rc==SQLITE_OK ){
3845     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
3846   }
3847   sqlite3BtreeLeave(p);
3848   return rc;
3849 }
3850 
3851 /*
3852 ** This routine sets the state to CURSOR_FAULT and the error
3853 ** code to errCode for every cursor on any BtShared that pBtree
3854 ** references.  Or if the writeOnly flag is set to 1, then only
3855 ** trip write cursors and leave read cursors unchanged.
3856 **
3857 ** Every cursor is a candidate to be tripped, including cursors
3858 ** that belong to other database connections that happen to be
3859 ** sharing the cache with pBtree.
3860 **
3861 ** This routine gets called when a rollback occurs. If the writeOnly
3862 ** flag is true, then only write-cursors need be tripped - read-only
3863 ** cursors save their current positions so that they may continue
3864 ** following the rollback. Or, if writeOnly is false, all cursors are
3865 ** tripped. In general, writeOnly is false if the transaction being
3866 ** rolled back modified the database schema. In this case b-tree root
3867 ** pages may be moved or deleted from the database altogether, making
3868 ** it unsafe for read cursors to continue.
3869 **
3870 ** If the writeOnly flag is true and an error is encountered while
3871 ** saving the current position of a read-only cursor, all cursors,
3872 ** including all read-cursors are tripped.
3873 **
3874 ** SQLITE_OK is returned if successful, or if an error occurs while
3875 ** saving a cursor position, an SQLite error code.
3876 */
3877 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
3878   BtCursor *p;
3879   int rc = SQLITE_OK;
3880 
3881   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
3882   if( pBtree ){
3883     sqlite3BtreeEnter(pBtree);
3884     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3885       int i;
3886       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
3887         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
3888           rc = saveCursorPosition(p);
3889           if( rc!=SQLITE_OK ){
3890             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3891             break;
3892           }
3893         }
3894       }else{
3895         sqlite3BtreeClearCursor(p);
3896         p->eState = CURSOR_FAULT;
3897         p->skipNext = errCode;
3898       }
3899       for(i=0; i<=p->iPage; i++){
3900         releasePage(p->apPage[i]);
3901         p->apPage[i] = 0;
3902       }
3903     }
3904     sqlite3BtreeLeave(pBtree);
3905   }
3906   return rc;
3907 }
3908 
3909 /*
3910 ** Rollback the transaction in progress.
3911 **
3912 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3913 ** Only write cursors are tripped if writeOnly is true but all cursors are
3914 ** tripped if writeOnly is false.  Any attempt to use
3915 ** a tripped cursor will result in an error.
3916 **
3917 ** This will release the write lock on the database file.  If there
3918 ** are no active cursors, it also releases the read lock.
3919 */
3920 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
3921   int rc;
3922   BtShared *pBt = p->pBt;
3923   MemPage *pPage1;
3924 
3925   assert( writeOnly==1 || writeOnly==0 );
3926   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
3927   sqlite3BtreeEnter(p);
3928   if( tripCode==SQLITE_OK ){
3929     rc = tripCode = saveAllCursors(pBt, 0, 0);
3930     if( rc ) writeOnly = 0;
3931   }else{
3932     rc = SQLITE_OK;
3933   }
3934   if( tripCode ){
3935     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3936     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3937     if( rc2!=SQLITE_OK ) rc = rc2;
3938   }
3939   btreeIntegrity(p);
3940 
3941   if( p->inTrans==TRANS_WRITE ){
3942     int rc2;
3943 
3944     assert( TRANS_WRITE==pBt->inTransaction );
3945     rc2 = sqlite3PagerRollback(pBt->pPager);
3946     if( rc2!=SQLITE_OK ){
3947       rc = rc2;
3948     }
3949 
3950     /* The rollback may have destroyed the pPage1->aData value.  So
3951     ** call btreeGetPage() on page 1 again to make
3952     ** sure pPage1->aData is set correctly. */
3953     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
3954       int nPage = get4byte(28+(u8*)pPage1->aData);
3955       testcase( nPage==0 );
3956       if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3957       testcase( pBt->nPage!=nPage );
3958       pBt->nPage = nPage;
3959       releasePage(pPage1);
3960     }
3961     assert( countValidCursors(pBt, 1)==0 );
3962     pBt->inTransaction = TRANS_READ;
3963     btreeClearHasContent(pBt);
3964   }
3965 
3966   btreeEndTransaction(p);
3967   sqlite3BtreeLeave(p);
3968   return rc;
3969 }
3970 
3971 /*
3972 ** Start a statement subtransaction. The subtransaction can be rolled
3973 ** back independently of the main transaction. You must start a transaction
3974 ** before starting a subtransaction. The subtransaction is ended automatically
3975 ** if the main transaction commits or rolls back.
3976 **
3977 ** Statement subtransactions are used around individual SQL statements
3978 ** that are contained within a BEGIN...COMMIT block.  If a constraint
3979 ** error occurs within the statement, the effect of that one statement
3980 ** can be rolled back without having to rollback the entire transaction.
3981 **
3982 ** A statement sub-transaction is implemented as an anonymous savepoint. The
3983 ** value passed as the second parameter is the total number of savepoints,
3984 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3985 ** are no active savepoints and no other statement-transactions open,
3986 ** iStatement is 1. This anonymous savepoint can be released or rolled back
3987 ** using the sqlite3BtreeSavepoint() function.
3988 */
3989 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
3990   int rc;
3991   BtShared *pBt = p->pBt;
3992   sqlite3BtreeEnter(p);
3993   assert( p->inTrans==TRANS_WRITE );
3994   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
3995   assert( iStatement>0 );
3996   assert( iStatement>p->db->nSavepoint );
3997   assert( pBt->inTransaction==TRANS_WRITE );
3998   /* At the pager level, a statement transaction is a savepoint with
3999   ** an index greater than all savepoints created explicitly using
4000   ** SQL statements. It is illegal to open, release or rollback any
4001   ** such savepoints while the statement transaction savepoint is active.
4002   */
4003   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4004   sqlite3BtreeLeave(p);
4005   return rc;
4006 }
4007 
4008 /*
4009 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4010 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4011 ** savepoint identified by parameter iSavepoint, depending on the value
4012 ** of op.
4013 **
4014 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4015 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4016 ** contents of the entire transaction are rolled back. This is different
4017 ** from a normal transaction rollback, as no locks are released and the
4018 ** transaction remains open.
4019 */
4020 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4021   int rc = SQLITE_OK;
4022   if( p && p->inTrans==TRANS_WRITE ){
4023     BtShared *pBt = p->pBt;
4024     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4025     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4026     sqlite3BtreeEnter(p);
4027     rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4028     if( rc==SQLITE_OK ){
4029       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4030         pBt->nPage = 0;
4031       }
4032       rc = newDatabase(pBt);
4033       pBt->nPage = get4byte(28 + pBt->pPage1->aData);
4034 
4035       /* The database size was written into the offset 28 of the header
4036       ** when the transaction started, so we know that the value at offset
4037       ** 28 is nonzero. */
4038       assert( pBt->nPage>0 );
4039     }
4040     sqlite3BtreeLeave(p);
4041   }
4042   return rc;
4043 }
4044 
4045 /*
4046 ** Create a new cursor for the BTree whose root is on the page
4047 ** iTable. If a read-only cursor is requested, it is assumed that
4048 ** the caller already has at least a read-only transaction open
4049 ** on the database already. If a write-cursor is requested, then
4050 ** the caller is assumed to have an open write transaction.
4051 **
4052 ** If wrFlag==0, then the cursor can only be used for reading.
4053 ** If wrFlag==1, then the cursor can be used for reading or for
4054 ** writing if other conditions for writing are also met.  These
4055 ** are the conditions that must be met in order for writing to
4056 ** be allowed:
4057 **
4058 ** 1:  The cursor must have been opened with wrFlag==1
4059 **
4060 ** 2:  Other database connections that share the same pager cache
4061 **     but which are not in the READ_UNCOMMITTED state may not have
4062 **     cursors open with wrFlag==0 on the same table.  Otherwise
4063 **     the changes made by this write cursor would be visible to
4064 **     the read cursors in the other database connection.
4065 **
4066 ** 3:  The database must be writable (not on read-only media)
4067 **
4068 ** 4:  There must be an active transaction.
4069 **
4070 ** No checking is done to make sure that page iTable really is the
4071 ** root page of a b-tree.  If it is not, then the cursor acquired
4072 ** will not work correctly.
4073 **
4074 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4075 ** on pCur to initialize the memory space prior to invoking this routine.
4076 */
4077 static int btreeCursor(
4078   Btree *p,                              /* The btree */
4079   int iTable,                            /* Root page of table to open */
4080   int wrFlag,                            /* 1 to write. 0 read-only */
4081   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4082   BtCursor *pCur                         /* Space for new cursor */
4083 ){
4084   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4085   BtCursor *pX;                          /* Looping over other all cursors */
4086 
4087   assert( sqlite3BtreeHoldsMutex(p) );
4088   assert( wrFlag==0
4089        || wrFlag==BTREE_WRCSR
4090        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4091   );
4092 
4093   /* The following assert statements verify that if this is a sharable
4094   ** b-tree database, the connection is holding the required table locks,
4095   ** and that no other connection has any open cursor that conflicts with
4096   ** this lock.  */
4097   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4098   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4099 
4100   /* Assert that the caller has opened the required transaction. */
4101   assert( p->inTrans>TRANS_NONE );
4102   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4103   assert( pBt->pPage1 && pBt->pPage1->aData );
4104   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4105 
4106   if( wrFlag ){
4107     allocateTempSpace(pBt);
4108     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
4109   }
4110   if( iTable==1 && btreePagecount(pBt)==0 ){
4111     assert( wrFlag==0 );
4112     iTable = 0;
4113   }
4114 
4115   /* Now that no other errors can occur, finish filling in the BtCursor
4116   ** variables and link the cursor into the BtShared list.  */
4117   pCur->pgnoRoot = (Pgno)iTable;
4118   pCur->iPage = -1;
4119   pCur->pKeyInfo = pKeyInfo;
4120   pCur->pBtree = p;
4121   pCur->pBt = pBt;
4122   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4123   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4124   /* If there are two or more cursors on the same btree, then all such
4125   ** cursors *must* have the BTCF_Multiple flag set. */
4126   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4127     if( pX->pgnoRoot==(Pgno)iTable ){
4128       pX->curFlags |= BTCF_Multiple;
4129       pCur->curFlags |= BTCF_Multiple;
4130     }
4131   }
4132   pCur->pNext = pBt->pCursor;
4133   pBt->pCursor = pCur;
4134   pCur->eState = CURSOR_INVALID;
4135   return SQLITE_OK;
4136 }
4137 int sqlite3BtreeCursor(
4138   Btree *p,                                   /* The btree */
4139   int iTable,                                 /* Root page of table to open */
4140   int wrFlag,                                 /* 1 to write. 0 read-only */
4141   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4142   BtCursor *pCur                              /* Write new cursor here */
4143 ){
4144   int rc;
4145   if( iTable<1 ){
4146     rc = SQLITE_CORRUPT_BKPT;
4147   }else{
4148     sqlite3BtreeEnter(p);
4149     rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4150     sqlite3BtreeLeave(p);
4151   }
4152   return rc;
4153 }
4154 
4155 /*
4156 ** Return the size of a BtCursor object in bytes.
4157 **
4158 ** This interfaces is needed so that users of cursors can preallocate
4159 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4160 ** to users so they cannot do the sizeof() themselves - they must call
4161 ** this routine.
4162 */
4163 int sqlite3BtreeCursorSize(void){
4164   return ROUND8(sizeof(BtCursor));
4165 }
4166 
4167 /*
4168 ** Initialize memory that will be converted into a BtCursor object.
4169 **
4170 ** The simple approach here would be to memset() the entire object
4171 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4172 ** do not need to be zeroed and they are large, so we can save a lot
4173 ** of run-time by skipping the initialization of those elements.
4174 */
4175 void sqlite3BtreeCursorZero(BtCursor *p){
4176   memset(p, 0, offsetof(BtCursor, iPage));
4177 }
4178 
4179 /*
4180 ** Close a cursor.  The read lock on the database file is released
4181 ** when the last cursor is closed.
4182 */
4183 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4184   Btree *pBtree = pCur->pBtree;
4185   if( pBtree ){
4186     int i;
4187     BtShared *pBt = pCur->pBt;
4188     sqlite3BtreeEnter(pBtree);
4189     sqlite3BtreeClearCursor(pCur);
4190     assert( pBt->pCursor!=0 );
4191     if( pBt->pCursor==pCur ){
4192       pBt->pCursor = pCur->pNext;
4193     }else{
4194       BtCursor *pPrev = pBt->pCursor;
4195       do{
4196         if( pPrev->pNext==pCur ){
4197           pPrev->pNext = pCur->pNext;
4198           break;
4199         }
4200         pPrev = pPrev->pNext;
4201       }while( ALWAYS(pPrev) );
4202     }
4203     for(i=0; i<=pCur->iPage; i++){
4204       releasePage(pCur->apPage[i]);
4205     }
4206     unlockBtreeIfUnused(pBt);
4207     sqlite3_free(pCur->aOverflow);
4208     /* sqlite3_free(pCur); */
4209     sqlite3BtreeLeave(pBtree);
4210   }
4211   return SQLITE_OK;
4212 }
4213 
4214 /*
4215 ** Make sure the BtCursor* given in the argument has a valid
4216 ** BtCursor.info structure.  If it is not already valid, call
4217 ** btreeParseCell() to fill it in.
4218 **
4219 ** BtCursor.info is a cache of the information in the current cell.
4220 ** Using this cache reduces the number of calls to btreeParseCell().
4221 */
4222 #ifndef NDEBUG
4223   static void assertCellInfo(BtCursor *pCur){
4224     CellInfo info;
4225     int iPage = pCur->iPage;
4226     memset(&info, 0, sizeof(info));
4227     btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
4228     assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
4229   }
4230 #else
4231   #define assertCellInfo(x)
4232 #endif
4233 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4234   if( pCur->info.nSize==0 ){
4235     int iPage = pCur->iPage;
4236     pCur->curFlags |= BTCF_ValidNKey;
4237     btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4238   }else{
4239     assertCellInfo(pCur);
4240   }
4241 }
4242 
4243 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4244 /*
4245 ** Return true if the given BtCursor is valid.  A valid cursor is one
4246 ** that is currently pointing to a row in a (non-empty) table.
4247 ** This is a verification routine is used only within assert() statements.
4248 */
4249 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4250   return pCur && pCur->eState==CURSOR_VALID;
4251 }
4252 #endif /* NDEBUG */
4253 
4254 /*
4255 ** Set *pSize to the size of the buffer needed to hold the value of
4256 ** the key for the current entry.  If the cursor is not pointing
4257 ** to a valid entry, *pSize is set to 0.
4258 **
4259 ** For a table with the INTKEY flag set, this routine returns the key
4260 ** itself, not the number of bytes in the key.
4261 **
4262 ** The caller must position the cursor prior to invoking this routine.
4263 **
4264 ** This routine cannot fail.  It always returns SQLITE_OK.
4265 */
4266 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
4267   assert( cursorHoldsMutex(pCur) );
4268   assert( pCur->eState==CURSOR_VALID );
4269   getCellInfo(pCur);
4270   *pSize = pCur->info.nKey;
4271   return SQLITE_OK;
4272 }
4273 
4274 /*
4275 ** Set *pSize to the number of bytes of data in the entry the
4276 ** cursor currently points to.
4277 **
4278 ** The caller must guarantee that the cursor is pointing to a non-NULL
4279 ** valid entry.  In other words, the calling procedure must guarantee
4280 ** that the cursor has Cursor.eState==CURSOR_VALID.
4281 **
4282 ** Failure is not possible.  This function always returns SQLITE_OK.
4283 ** It might just as well be a procedure (returning void) but we continue
4284 ** to return an integer result code for historical reasons.
4285 */
4286 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
4287   assert( cursorOwnsBtShared(pCur) );
4288   assert( pCur->eState==CURSOR_VALID );
4289   assert( pCur->iPage>=0 );
4290   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4291   assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
4292   getCellInfo(pCur);
4293   *pSize = pCur->info.nPayload;
4294   return SQLITE_OK;
4295 }
4296 
4297 /*
4298 ** Given the page number of an overflow page in the database (parameter
4299 ** ovfl), this function finds the page number of the next page in the
4300 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4301 ** pointer-map data instead of reading the content of page ovfl to do so.
4302 **
4303 ** If an error occurs an SQLite error code is returned. Otherwise:
4304 **
4305 ** The page number of the next overflow page in the linked list is
4306 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4307 ** list, *pPgnoNext is set to zero.
4308 **
4309 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4310 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4311 ** reference. It is the responsibility of the caller to call releasePage()
4312 ** on *ppPage to free the reference. In no reference was obtained (because
4313 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4314 ** *ppPage is set to zero.
4315 */
4316 static int getOverflowPage(
4317   BtShared *pBt,               /* The database file */
4318   Pgno ovfl,                   /* Current overflow page number */
4319   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4320   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4321 ){
4322   Pgno next = 0;
4323   MemPage *pPage = 0;
4324   int rc = SQLITE_OK;
4325 
4326   assert( sqlite3_mutex_held(pBt->mutex) );
4327   assert(pPgnoNext);
4328 
4329 #ifndef SQLITE_OMIT_AUTOVACUUM
4330   /* Try to find the next page in the overflow list using the
4331   ** autovacuum pointer-map pages. Guess that the next page in
4332   ** the overflow list is page number (ovfl+1). If that guess turns
4333   ** out to be wrong, fall back to loading the data of page
4334   ** number ovfl to determine the next page number.
4335   */
4336   if( pBt->autoVacuum ){
4337     Pgno pgno;
4338     Pgno iGuess = ovfl+1;
4339     u8 eType;
4340 
4341     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4342       iGuess++;
4343     }
4344 
4345     if( iGuess<=btreePagecount(pBt) ){
4346       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4347       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4348         next = iGuess;
4349         rc = SQLITE_DONE;
4350       }
4351     }
4352   }
4353 #endif
4354 
4355   assert( next==0 || rc==SQLITE_DONE );
4356   if( rc==SQLITE_OK ){
4357     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4358     assert( rc==SQLITE_OK || pPage==0 );
4359     if( rc==SQLITE_OK ){
4360       next = get4byte(pPage->aData);
4361     }
4362   }
4363 
4364   *pPgnoNext = next;
4365   if( ppPage ){
4366     *ppPage = pPage;
4367   }else{
4368     releasePage(pPage);
4369   }
4370   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4371 }
4372 
4373 /*
4374 ** Copy data from a buffer to a page, or from a page to a buffer.
4375 **
4376 ** pPayload is a pointer to data stored on database page pDbPage.
4377 ** If argument eOp is false, then nByte bytes of data are copied
4378 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4379 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4380 ** of data are copied from the buffer pBuf to pPayload.
4381 **
4382 ** SQLITE_OK is returned on success, otherwise an error code.
4383 */
4384 static int copyPayload(
4385   void *pPayload,           /* Pointer to page data */
4386   void *pBuf,               /* Pointer to buffer */
4387   int nByte,                /* Number of bytes to copy */
4388   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4389   DbPage *pDbPage           /* Page containing pPayload */
4390 ){
4391   if( eOp ){
4392     /* Copy data from buffer to page (a write operation) */
4393     int rc = sqlite3PagerWrite(pDbPage);
4394     if( rc!=SQLITE_OK ){
4395       return rc;
4396     }
4397     memcpy(pPayload, pBuf, nByte);
4398   }else{
4399     /* Copy data from page to buffer (a read operation) */
4400     memcpy(pBuf, pPayload, nByte);
4401   }
4402   return SQLITE_OK;
4403 }
4404 
4405 /*
4406 ** This function is used to read or overwrite payload information
4407 ** for the entry that the pCur cursor is pointing to. The eOp
4408 ** argument is interpreted as follows:
4409 **
4410 **   0: The operation is a read. Populate the overflow cache.
4411 **   1: The operation is a write. Populate the overflow cache.
4412 **   2: The operation is a read. Do not populate the overflow cache.
4413 **
4414 ** A total of "amt" bytes are read or written beginning at "offset".
4415 ** Data is read to or from the buffer pBuf.
4416 **
4417 ** The content being read or written might appear on the main page
4418 ** or be scattered out on multiple overflow pages.
4419 **
4420 ** If the current cursor entry uses one or more overflow pages and the
4421 ** eOp argument is not 2, this function may allocate space for and lazily
4422 ** populates the overflow page-list cache array (BtCursor.aOverflow).
4423 ** Subsequent calls use this cache to make seeking to the supplied offset
4424 ** more efficient.
4425 **
4426 ** Once an overflow page-list cache has been allocated, it may be
4427 ** invalidated if some other cursor writes to the same table, or if
4428 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4429 ** mode, the following events may invalidate an overflow page-list cache.
4430 **
4431 **   * An incremental vacuum,
4432 **   * A commit in auto_vacuum="full" mode,
4433 **   * Creating a table (may require moving an overflow page).
4434 */
4435 static int accessPayload(
4436   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4437   u32 offset,          /* Begin reading this far into payload */
4438   u32 amt,             /* Read this many bytes */
4439   unsigned char *pBuf, /* Write the bytes into this buffer */
4440   int eOp              /* zero to read. non-zero to write. */
4441 ){
4442   unsigned char *aPayload;
4443   int rc = SQLITE_OK;
4444   int iIdx = 0;
4445   MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
4446   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4447 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4448   unsigned char * const pBufStart = pBuf;
4449   int bEnd;                                 /* True if reading to end of data */
4450 #endif
4451 
4452   assert( pPage );
4453   assert( pCur->eState==CURSOR_VALID );
4454   assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4455   assert( cursorHoldsMutex(pCur) );
4456   assert( eOp!=2 || offset==0 );    /* Always start from beginning for eOp==2 */
4457 
4458   getCellInfo(pCur);
4459   aPayload = pCur->info.pPayload;
4460 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4461   bEnd = offset+amt==pCur->info.nPayload;
4462 #endif
4463   assert( offset+amt <= pCur->info.nPayload );
4464 
4465   if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
4466     /* Trying to read or write past the end of the data is an error */
4467     return SQLITE_CORRUPT_BKPT;
4468   }
4469 
4470   /* Check if data must be read/written to/from the btree page itself. */
4471   if( offset<pCur->info.nLocal ){
4472     int a = amt;
4473     if( a+offset>pCur->info.nLocal ){
4474       a = pCur->info.nLocal - offset;
4475     }
4476     rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
4477     offset = 0;
4478     pBuf += a;
4479     amt -= a;
4480   }else{
4481     offset -= pCur->info.nLocal;
4482   }
4483 
4484 
4485   if( rc==SQLITE_OK && amt>0 ){
4486     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4487     Pgno nextPage;
4488 
4489     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4490 
4491     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4492     ** Except, do not allocate aOverflow[] for eOp==2.
4493     **
4494     ** The aOverflow[] array is sized at one entry for each overflow page
4495     ** in the overflow chain. The page number of the first overflow page is
4496     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4497     ** means "not yet known" (the cache is lazily populated).
4498     */
4499     if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4500       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4501       if( nOvfl>pCur->nOvflAlloc ){
4502         Pgno *aNew = (Pgno*)sqlite3Realloc(
4503             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4504         );
4505         if( aNew==0 ){
4506           rc = SQLITE_NOMEM;
4507         }else{
4508           pCur->nOvflAlloc = nOvfl*2;
4509           pCur->aOverflow = aNew;
4510         }
4511       }
4512       if( rc==SQLITE_OK ){
4513         memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4514         pCur->curFlags |= BTCF_ValidOvfl;
4515       }
4516     }
4517 
4518     /* If the overflow page-list cache has been allocated and the
4519     ** entry for the first required overflow page is valid, skip
4520     ** directly to it.
4521     */
4522     if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4523      && pCur->aOverflow[offset/ovflSize]
4524     ){
4525       iIdx = (offset/ovflSize);
4526       nextPage = pCur->aOverflow[iIdx];
4527       offset = (offset%ovflSize);
4528     }
4529 
4530     for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4531 
4532       /* If required, populate the overflow page-list cache. */
4533       if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
4534         assert( pCur->aOverflow[iIdx]==0
4535                 || pCur->aOverflow[iIdx]==nextPage
4536                 || CORRUPT_DB );
4537         pCur->aOverflow[iIdx] = nextPage;
4538       }
4539 
4540       if( offset>=ovflSize ){
4541         /* The only reason to read this page is to obtain the page
4542         ** number for the next page in the overflow chain. The page
4543         ** data is not required. So first try to lookup the overflow
4544         ** page-list cache, if any, then fall back to the getOverflowPage()
4545         ** function.
4546         **
4547         ** Note that the aOverflow[] array must be allocated because eOp!=2
4548         ** here.  If eOp==2, then offset==0 and this branch is never taken.
4549         */
4550         assert( eOp!=2 );
4551         assert( pCur->curFlags & BTCF_ValidOvfl );
4552         assert( pCur->pBtree->db==pBt->db );
4553         if( pCur->aOverflow[iIdx+1] ){
4554           nextPage = pCur->aOverflow[iIdx+1];
4555         }else{
4556           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4557         }
4558         offset -= ovflSize;
4559       }else{
4560         /* Need to read this page properly. It contains some of the
4561         ** range of data that is being read (eOp==0) or written (eOp!=0).
4562         */
4563 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4564         sqlite3_file *fd;
4565 #endif
4566         int a = amt;
4567         if( a + offset > ovflSize ){
4568           a = ovflSize - offset;
4569         }
4570 
4571 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4572         /* If all the following are true:
4573         **
4574         **   1) this is a read operation, and
4575         **   2) data is required from the start of this overflow page, and
4576         **   3) the database is file-backed, and
4577         **   4) there is no open write-transaction, and
4578         **   5) the database is not a WAL database,
4579         **   6) all data from the page is being read.
4580         **   7) at least 4 bytes have already been read into the output buffer
4581         **
4582         ** then data can be read directly from the database file into the
4583         ** output buffer, bypassing the page-cache altogether. This speeds
4584         ** up loading large records that span many overflow pages.
4585         */
4586         if( (eOp&0x01)==0                                      /* (1) */
4587          && offset==0                                          /* (2) */
4588          && (bEnd || a==ovflSize)                              /* (6) */
4589          && pBt->inTransaction==TRANS_READ                     /* (4) */
4590          && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (3) */
4591          && pBt->pPage1->aData[19]==0x01                       /* (5) */
4592          && &pBuf[-4]>=pBufStart                               /* (7) */
4593         ){
4594           u8 aSave[4];
4595           u8 *aWrite = &pBuf[-4];
4596           assert( aWrite>=pBufStart );                         /* hence (7) */
4597           memcpy(aSave, aWrite, 4);
4598           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4599           nextPage = get4byte(aWrite);
4600           memcpy(aWrite, aSave, 4);
4601         }else
4602 #endif
4603 
4604         {
4605           DbPage *pDbPage;
4606           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4607               ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
4608           );
4609           if( rc==SQLITE_OK ){
4610             aPayload = sqlite3PagerGetData(pDbPage);
4611             nextPage = get4byte(aPayload);
4612             rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
4613             sqlite3PagerUnref(pDbPage);
4614             offset = 0;
4615           }
4616         }
4617         amt -= a;
4618         pBuf += a;
4619       }
4620     }
4621   }
4622 
4623   if( rc==SQLITE_OK && amt>0 ){
4624     return SQLITE_CORRUPT_BKPT;
4625   }
4626   return rc;
4627 }
4628 
4629 /*
4630 ** Read part of the key associated with cursor pCur.  Exactly
4631 ** "amt" bytes will be transferred into pBuf[].  The transfer
4632 ** begins at "offset".
4633 **
4634 ** The caller must ensure that pCur is pointing to a valid row
4635 ** in the table.
4636 **
4637 ** Return SQLITE_OK on success or an error code if anything goes
4638 ** wrong.  An error is returned if "offset+amt" is larger than
4639 ** the available payload.
4640 */
4641 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4642   assert( cursorHoldsMutex(pCur) );
4643   assert( pCur->eState==CURSOR_VALID );
4644   assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4645   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4646   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4647 }
4648 
4649 /*
4650 ** Read part of the data associated with cursor pCur.  Exactly
4651 ** "amt" bytes will be transfered into pBuf[].  The transfer
4652 ** begins at "offset".
4653 **
4654 ** Return SQLITE_OK on success or an error code if anything goes
4655 ** wrong.  An error is returned if "offset+amt" is larger than
4656 ** the available payload.
4657 */
4658 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4659   int rc;
4660 
4661 #ifndef SQLITE_OMIT_INCRBLOB
4662   if ( pCur->eState==CURSOR_INVALID ){
4663     return SQLITE_ABORT;
4664   }
4665 #endif
4666 
4667   assert( cursorOwnsBtShared(pCur) );
4668   rc = restoreCursorPosition(pCur);
4669   if( rc==SQLITE_OK ){
4670     assert( pCur->eState==CURSOR_VALID );
4671     assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4672     assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4673     rc = accessPayload(pCur, offset, amt, pBuf, 0);
4674   }
4675   return rc;
4676 }
4677 
4678 /*
4679 ** Return a pointer to payload information from the entry that the
4680 ** pCur cursor is pointing to.  The pointer is to the beginning of
4681 ** the key if index btrees (pPage->intKey==0) and is the data for
4682 ** table btrees (pPage->intKey==1). The number of bytes of available
4683 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4684 ** returned will not be a valid pointer.
4685 **
4686 ** This routine is an optimization.  It is common for the entire key
4687 ** and data to fit on the local page and for there to be no overflow
4688 ** pages.  When that is so, this routine can be used to access the
4689 ** key and data without making a copy.  If the key and/or data spills
4690 ** onto overflow pages, then accessPayload() must be used to reassemble
4691 ** the key/data and copy it into a preallocated buffer.
4692 **
4693 ** The pointer returned by this routine looks directly into the cached
4694 ** page of the database.  The data might change or move the next time
4695 ** any btree routine is called.
4696 */
4697 static const void *fetchPayload(
4698   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4699   u32 *pAmt            /* Write the number of available bytes here */
4700 ){
4701   u32 amt;
4702   assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
4703   assert( pCur->eState==CURSOR_VALID );
4704   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4705   assert( cursorOwnsBtShared(pCur) );
4706   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4707   assert( pCur->info.nSize>0 );
4708   assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4709   assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4710   amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4711   if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4712   *pAmt = amt;
4713   return (void*)pCur->info.pPayload;
4714 }
4715 
4716 
4717 /*
4718 ** For the entry that cursor pCur is point to, return as
4719 ** many bytes of the key or data as are available on the local
4720 ** b-tree page.  Write the number of available bytes into *pAmt.
4721 **
4722 ** The pointer returned is ephemeral.  The key/data may move
4723 ** or be destroyed on the next call to any Btree routine,
4724 ** including calls from other threads against the same cache.
4725 ** Hence, a mutex on the BtShared should be held prior to calling
4726 ** this routine.
4727 **
4728 ** These routines is used to get quick access to key and data
4729 ** in the common case where no overflow pages are used.
4730 */
4731 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
4732   return fetchPayload(pCur, pAmt);
4733 }
4734 const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
4735   return fetchPayload(pCur, pAmt);
4736 }
4737 
4738 
4739 /*
4740 ** Move the cursor down to a new child page.  The newPgno argument is the
4741 ** page number of the child page to move to.
4742 **
4743 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4744 ** the new child page does not match the flags field of the parent (i.e.
4745 ** if an intkey page appears to be the parent of a non-intkey page, or
4746 ** vice-versa).
4747 */
4748 static int moveToChild(BtCursor *pCur, u32 newPgno){
4749   BtShared *pBt = pCur->pBt;
4750 
4751   assert( cursorOwnsBtShared(pCur) );
4752   assert( pCur->eState==CURSOR_VALID );
4753   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4754   assert( pCur->iPage>=0 );
4755   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4756     return SQLITE_CORRUPT_BKPT;
4757   }
4758   pCur->info.nSize = 0;
4759   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4760   pCur->iPage++;
4761   pCur->aiIdx[pCur->iPage] = 0;
4762   return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4763                         pCur, pCur->curPagerFlags);
4764 }
4765 
4766 #if SQLITE_DEBUG
4767 /*
4768 ** Page pParent is an internal (non-leaf) tree page. This function
4769 ** asserts that page number iChild is the left-child if the iIdx'th
4770 ** cell in page pParent. Or, if iIdx is equal to the total number of
4771 ** cells in pParent, that page number iChild is the right-child of
4772 ** the page.
4773 */
4774 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4775   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
4776                             ** in a corrupt database */
4777   assert( iIdx<=pParent->nCell );
4778   if( iIdx==pParent->nCell ){
4779     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4780   }else{
4781     assert( get4byte(findCell(pParent, iIdx))==iChild );
4782   }
4783 }
4784 #else
4785 #  define assertParentIndex(x,y,z)
4786 #endif
4787 
4788 /*
4789 ** Move the cursor up to the parent page.
4790 **
4791 ** pCur->idx is set to the cell index that contains the pointer
4792 ** to the page we are coming from.  If we are coming from the
4793 ** right-most child page then pCur->idx is set to one more than
4794 ** the largest cell index.
4795 */
4796 static void moveToParent(BtCursor *pCur){
4797   assert( cursorOwnsBtShared(pCur) );
4798   assert( pCur->eState==CURSOR_VALID );
4799   assert( pCur->iPage>0 );
4800   assert( pCur->apPage[pCur->iPage] );
4801   assertParentIndex(
4802     pCur->apPage[pCur->iPage-1],
4803     pCur->aiIdx[pCur->iPage-1],
4804     pCur->apPage[pCur->iPage]->pgno
4805   );
4806   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4807   pCur->info.nSize = 0;
4808   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4809   releasePageNotNull(pCur->apPage[pCur->iPage--]);
4810 }
4811 
4812 /*
4813 ** Move the cursor to point to the root page of its b-tree structure.
4814 **
4815 ** If the table has a virtual root page, then the cursor is moved to point
4816 ** to the virtual root page instead of the actual root page. A table has a
4817 ** virtual root page when the actual root page contains no cells and a
4818 ** single child page. This can only happen with the table rooted at page 1.
4819 **
4820 ** If the b-tree structure is empty, the cursor state is set to
4821 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4822 ** cell located on the root (or virtual root) page and the cursor state
4823 ** is set to CURSOR_VALID.
4824 **
4825 ** If this function returns successfully, it may be assumed that the
4826 ** page-header flags indicate that the [virtual] root-page is the expected
4827 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4828 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4829 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4830 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4831 ** b-tree).
4832 */
4833 static int moveToRoot(BtCursor *pCur){
4834   MemPage *pRoot;
4835   int rc = SQLITE_OK;
4836 
4837   assert( cursorOwnsBtShared(pCur) );
4838   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4839   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
4840   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
4841   if( pCur->eState>=CURSOR_REQUIRESEEK ){
4842     if( pCur->eState==CURSOR_FAULT ){
4843       assert( pCur->skipNext!=SQLITE_OK );
4844       return pCur->skipNext;
4845     }
4846     sqlite3BtreeClearCursor(pCur);
4847   }
4848 
4849   if( pCur->iPage>=0 ){
4850     while( pCur->iPage ){
4851       assert( pCur->apPage[pCur->iPage]!=0 );
4852       releasePageNotNull(pCur->apPage[pCur->iPage--]);
4853     }
4854   }else if( pCur->pgnoRoot==0 ){
4855     pCur->eState = CURSOR_INVALID;
4856     return SQLITE_OK;
4857   }else{
4858     assert( pCur->iPage==(-1) );
4859     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
4860                         0, pCur->curPagerFlags);
4861     if( rc!=SQLITE_OK ){
4862       pCur->eState = CURSOR_INVALID;
4863       return rc;
4864     }
4865     pCur->iPage = 0;
4866     pCur->curIntKey = pCur->apPage[0]->intKey;
4867   }
4868   pRoot = pCur->apPage[0];
4869   assert( pRoot->pgno==pCur->pgnoRoot );
4870 
4871   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4872   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4873   ** NULL, the caller expects a table b-tree. If this is not the case,
4874   ** return an SQLITE_CORRUPT error.
4875   **
4876   ** Earlier versions of SQLite assumed that this test could not fail
4877   ** if the root page was already loaded when this function was called (i.e.
4878   ** if pCur->iPage>=0). But this is not so if the database is corrupted
4879   ** in such a way that page pRoot is linked into a second b-tree table
4880   ** (or the freelist).  */
4881   assert( pRoot->intKey==1 || pRoot->intKey==0 );
4882   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4883     return SQLITE_CORRUPT_BKPT;
4884   }
4885 
4886   pCur->aiIdx[0] = 0;
4887   pCur->info.nSize = 0;
4888   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
4889 
4890   if( pRoot->nCell>0 ){
4891     pCur->eState = CURSOR_VALID;
4892   }else if( !pRoot->leaf ){
4893     Pgno subpage;
4894     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
4895     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
4896     pCur->eState = CURSOR_VALID;
4897     rc = moveToChild(pCur, subpage);
4898   }else{
4899     pCur->eState = CURSOR_INVALID;
4900   }
4901   return rc;
4902 }
4903 
4904 /*
4905 ** Move the cursor down to the left-most leaf entry beneath the
4906 ** entry to which it is currently pointing.
4907 **
4908 ** The left-most leaf is the one with the smallest key - the first
4909 ** in ascending order.
4910 */
4911 static int moveToLeftmost(BtCursor *pCur){
4912   Pgno pgno;
4913   int rc = SQLITE_OK;
4914   MemPage *pPage;
4915 
4916   assert( cursorOwnsBtShared(pCur) );
4917   assert( pCur->eState==CURSOR_VALID );
4918   while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4919     assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4920     pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
4921     rc = moveToChild(pCur, pgno);
4922   }
4923   return rc;
4924 }
4925 
4926 /*
4927 ** Move the cursor down to the right-most leaf entry beneath the
4928 ** page to which it is currently pointing.  Notice the difference
4929 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
4930 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4931 ** finds the right-most entry beneath the *page*.
4932 **
4933 ** The right-most entry is the one with the largest key - the last
4934 ** key in ascending order.
4935 */
4936 static int moveToRightmost(BtCursor *pCur){
4937   Pgno pgno;
4938   int rc = SQLITE_OK;
4939   MemPage *pPage = 0;
4940 
4941   assert( cursorOwnsBtShared(pCur) );
4942   assert( pCur->eState==CURSOR_VALID );
4943   while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4944     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4945     pCur->aiIdx[pCur->iPage] = pPage->nCell;
4946     rc = moveToChild(pCur, pgno);
4947     if( rc ) return rc;
4948   }
4949   pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4950   assert( pCur->info.nSize==0 );
4951   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4952   return SQLITE_OK;
4953 }
4954 
4955 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
4956 ** on success.  Set *pRes to 0 if the cursor actually points to something
4957 ** or set *pRes to 1 if the table is empty.
4958 */
4959 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
4960   int rc;
4961 
4962   assert( cursorOwnsBtShared(pCur) );
4963   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4964   rc = moveToRoot(pCur);
4965   if( rc==SQLITE_OK ){
4966     if( pCur->eState==CURSOR_INVALID ){
4967       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4968       *pRes = 1;
4969     }else{
4970       assert( pCur->apPage[pCur->iPage]->nCell>0 );
4971       *pRes = 0;
4972       rc = moveToLeftmost(pCur);
4973     }
4974   }
4975   return rc;
4976 }
4977 
4978 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
4979 ** on success.  Set *pRes to 0 if the cursor actually points to something
4980 ** or set *pRes to 1 if the table is empty.
4981 */
4982 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
4983   int rc;
4984 
4985   assert( cursorOwnsBtShared(pCur) );
4986   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4987 
4988   /* If the cursor already points to the last entry, this is a no-op. */
4989   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
4990 #ifdef SQLITE_DEBUG
4991     /* This block serves to assert() that the cursor really does point
4992     ** to the last entry in the b-tree. */
4993     int ii;
4994     for(ii=0; ii<pCur->iPage; ii++){
4995       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4996     }
4997     assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4998     assert( pCur->apPage[pCur->iPage]->leaf );
4999 #endif
5000     return SQLITE_OK;
5001   }
5002 
5003   rc = moveToRoot(pCur);
5004   if( rc==SQLITE_OK ){
5005     if( CURSOR_INVALID==pCur->eState ){
5006       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
5007       *pRes = 1;
5008     }else{
5009       assert( pCur->eState==CURSOR_VALID );
5010       *pRes = 0;
5011       rc = moveToRightmost(pCur);
5012       if( rc==SQLITE_OK ){
5013         pCur->curFlags |= BTCF_AtLast;
5014       }else{
5015         pCur->curFlags &= ~BTCF_AtLast;
5016       }
5017 
5018     }
5019   }
5020   return rc;
5021 }
5022 
5023 /* Move the cursor so that it points to an entry near the key
5024 ** specified by pIdxKey or intKey.   Return a success code.
5025 **
5026 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5027 ** must be NULL.  For index tables, pIdxKey is used and intKey
5028 ** is ignored.
5029 **
5030 ** If an exact match is not found, then the cursor is always
5031 ** left pointing at a leaf page which would hold the entry if it
5032 ** were present.  The cursor might point to an entry that comes
5033 ** before or after the key.
5034 **
5035 ** An integer is written into *pRes which is the result of
5036 ** comparing the key with the entry to which the cursor is
5037 ** pointing.  The meaning of the integer written into
5038 ** *pRes is as follows:
5039 **
5040 **     *pRes<0      The cursor is left pointing at an entry that
5041 **                  is smaller than intKey/pIdxKey or if the table is empty
5042 **                  and the cursor is therefore left point to nothing.
5043 **
5044 **     *pRes==0     The cursor is left pointing at an entry that
5045 **                  exactly matches intKey/pIdxKey.
5046 **
5047 **     *pRes>0      The cursor is left pointing at an entry that
5048 **                  is larger than intKey/pIdxKey.
5049 **
5050 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5051 ** exists an entry in the table that exactly matches pIdxKey.
5052 */
5053 int sqlite3BtreeMovetoUnpacked(
5054   BtCursor *pCur,          /* The cursor to be moved */
5055   UnpackedRecord *pIdxKey, /* Unpacked index key */
5056   i64 intKey,              /* The table key */
5057   int biasRight,           /* If true, bias the search to the high end */
5058   int *pRes                /* Write search results here */
5059 ){
5060   int rc;
5061   RecordCompare xRecordCompare;
5062 
5063   assert( cursorOwnsBtShared(pCur) );
5064   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5065   assert( pRes );
5066   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5067 
5068   /* If the cursor is already positioned at the point we are trying
5069   ** to move to, then just return without doing any work */
5070   if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5071    && pCur->curIntKey
5072   ){
5073     if( pCur->info.nKey==intKey ){
5074       *pRes = 0;
5075       return SQLITE_OK;
5076     }
5077     if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
5078       *pRes = -1;
5079       return SQLITE_OK;
5080     }
5081   }
5082 
5083   if( pIdxKey ){
5084     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5085     pIdxKey->errCode = 0;
5086     assert( pIdxKey->default_rc==1
5087          || pIdxKey->default_rc==0
5088          || pIdxKey->default_rc==-1
5089     );
5090   }else{
5091     xRecordCompare = 0; /* All keys are integers */
5092   }
5093 
5094   rc = moveToRoot(pCur);
5095   if( rc ){
5096     return rc;
5097   }
5098   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5099   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5100   assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
5101   if( pCur->eState==CURSOR_INVALID ){
5102     *pRes = -1;
5103     assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
5104     return SQLITE_OK;
5105   }
5106   assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5107   assert( pCur->curIntKey || pIdxKey );
5108   for(;;){
5109     int lwr, upr, idx, c;
5110     Pgno chldPg;
5111     MemPage *pPage = pCur->apPage[pCur->iPage];
5112     u8 *pCell;                          /* Pointer to current cell in pPage */
5113 
5114     /* pPage->nCell must be greater than zero. If this is the root-page
5115     ** the cursor would have been INVALID above and this for(;;) loop
5116     ** not run. If this is not the root-page, then the moveToChild() routine
5117     ** would have already detected db corruption. Similarly, pPage must
5118     ** be the right kind (index or table) of b-tree page. Otherwise
5119     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5120     assert( pPage->nCell>0 );
5121     assert( pPage->intKey==(pIdxKey==0) );
5122     lwr = 0;
5123     upr = pPage->nCell-1;
5124     assert( biasRight==0 || biasRight==1 );
5125     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5126     pCur->aiIdx[pCur->iPage] = (u16)idx;
5127     if( xRecordCompare==0 ){
5128       for(;;){
5129         i64 nCellKey;
5130         pCell = findCellPastPtr(pPage, idx);
5131         if( pPage->intKeyLeaf ){
5132           while( 0x80 <= *(pCell++) ){
5133             if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5134           }
5135         }
5136         getVarint(pCell, (u64*)&nCellKey);
5137         if( nCellKey<intKey ){
5138           lwr = idx+1;
5139           if( lwr>upr ){ c = -1; break; }
5140         }else if( nCellKey>intKey ){
5141           upr = idx-1;
5142           if( lwr>upr ){ c = +1; break; }
5143         }else{
5144           assert( nCellKey==intKey );
5145           pCur->curFlags |= BTCF_ValidNKey;
5146           pCur->info.nKey = nCellKey;
5147           pCur->aiIdx[pCur->iPage] = (u16)idx;
5148           if( !pPage->leaf ){
5149             lwr = idx;
5150             goto moveto_next_layer;
5151           }else{
5152             *pRes = 0;
5153             rc = SQLITE_OK;
5154             goto moveto_finish;
5155           }
5156         }
5157         assert( lwr+upr>=0 );
5158         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5159       }
5160     }else{
5161       for(;;){
5162         int nCell;  /* Size of the pCell cell in bytes */
5163         pCell = findCellPastPtr(pPage, idx);
5164 
5165         /* The maximum supported page-size is 65536 bytes. This means that
5166         ** the maximum number of record bytes stored on an index B-Tree
5167         ** page is less than 16384 bytes and may be stored as a 2-byte
5168         ** varint. This information is used to attempt to avoid parsing
5169         ** the entire cell by checking for the cases where the record is
5170         ** stored entirely within the b-tree page by inspecting the first
5171         ** 2 bytes of the cell.
5172         */
5173         nCell = pCell[0];
5174         if( nCell<=pPage->max1bytePayload ){
5175           /* This branch runs if the record-size field of the cell is a
5176           ** single byte varint and the record fits entirely on the main
5177           ** b-tree page.  */
5178           testcase( pCell+nCell+1==pPage->aDataEnd );
5179           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5180         }else if( !(pCell[1] & 0x80)
5181           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5182         ){
5183           /* The record-size field is a 2 byte varint and the record
5184           ** fits entirely on the main b-tree page.  */
5185           testcase( pCell+nCell+2==pPage->aDataEnd );
5186           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5187         }else{
5188           /* The record flows over onto one or more overflow pages. In
5189           ** this case the whole cell needs to be parsed, a buffer allocated
5190           ** and accessPayload() used to retrieve the record into the
5191           ** buffer before VdbeRecordCompare() can be called.
5192           **
5193           ** If the record is corrupt, the xRecordCompare routine may read
5194           ** up to two varints past the end of the buffer. An extra 18
5195           ** bytes of padding is allocated at the end of the buffer in
5196           ** case this happens.  */
5197           void *pCellKey;
5198           u8 * const pCellBody = pCell - pPage->childPtrSize;
5199           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5200           nCell = (int)pCur->info.nKey;
5201           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5202           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5203           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5204           testcase( nCell==2 );  /* Minimum legal index key size */
5205           if( nCell<2 ){
5206             rc = SQLITE_CORRUPT_BKPT;
5207             goto moveto_finish;
5208           }
5209           pCellKey = sqlite3Malloc( nCell+18 );
5210           if( pCellKey==0 ){
5211             rc = SQLITE_NOMEM;
5212             goto moveto_finish;
5213           }
5214           pCur->aiIdx[pCur->iPage] = (u16)idx;
5215           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
5216           if( rc ){
5217             sqlite3_free(pCellKey);
5218             goto moveto_finish;
5219           }
5220           c = xRecordCompare(nCell, pCellKey, pIdxKey);
5221           sqlite3_free(pCellKey);
5222         }
5223         assert(
5224             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5225          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5226         );
5227         if( c<0 ){
5228           lwr = idx+1;
5229         }else if( c>0 ){
5230           upr = idx-1;
5231         }else{
5232           assert( c==0 );
5233           *pRes = 0;
5234           rc = SQLITE_OK;
5235           pCur->aiIdx[pCur->iPage] = (u16)idx;
5236           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
5237           goto moveto_finish;
5238         }
5239         if( lwr>upr ) break;
5240         assert( lwr+upr>=0 );
5241         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5242       }
5243     }
5244     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5245     assert( pPage->isInit );
5246     if( pPage->leaf ){
5247       assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
5248       pCur->aiIdx[pCur->iPage] = (u16)idx;
5249       *pRes = c;
5250       rc = SQLITE_OK;
5251       goto moveto_finish;
5252     }
5253 moveto_next_layer:
5254     if( lwr>=pPage->nCell ){
5255       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5256     }else{
5257       chldPg = get4byte(findCell(pPage, lwr));
5258     }
5259     pCur->aiIdx[pCur->iPage] = (u16)lwr;
5260     rc = moveToChild(pCur, chldPg);
5261     if( rc ) break;
5262   }
5263 moveto_finish:
5264   pCur->info.nSize = 0;
5265   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5266   return rc;
5267 }
5268 
5269 
5270 /*
5271 ** Return TRUE if the cursor is not pointing at an entry of the table.
5272 **
5273 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5274 ** past the last entry in the table or sqlite3BtreePrev() moves past
5275 ** the first entry.  TRUE is also returned if the table is empty.
5276 */
5277 int sqlite3BtreeEof(BtCursor *pCur){
5278   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5279   ** have been deleted? This API will need to change to return an error code
5280   ** as well as the boolean result value.
5281   */
5282   return (CURSOR_VALID!=pCur->eState);
5283 }
5284 
5285 /*
5286 ** Advance the cursor to the next entry in the database.  If
5287 ** successful then set *pRes=0.  If the cursor
5288 ** was already pointing to the last entry in the database before
5289 ** this routine was called, then set *pRes=1.
5290 **
5291 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5292 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5293 ** to the next cell on the current page.  The (slower) btreeNext() helper
5294 ** routine is called when it is necessary to move to a different page or
5295 ** to restore the cursor.
5296 **
5297 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
5298 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5299 ** if this routine could have been skipped if that SQL index had been
5300 ** a unique index.  Otherwise the caller will have set *pRes to zero.
5301 ** Zero is the common case. The btree implementation is free to use the
5302 ** initial *pRes value as a hint to improve performance, but the current
5303 ** SQLite btree implementation does not. (Note that the comdb2 btree
5304 ** implementation does use this hint, however.)
5305 */
5306 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
5307   int rc;
5308   int idx;
5309   MemPage *pPage;
5310 
5311   assert( cursorOwnsBtShared(pCur) );
5312   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5313   assert( *pRes==0 );
5314   if( pCur->eState!=CURSOR_VALID ){
5315     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5316     rc = restoreCursorPosition(pCur);
5317     if( rc!=SQLITE_OK ){
5318       return rc;
5319     }
5320     if( CURSOR_INVALID==pCur->eState ){
5321       *pRes = 1;
5322       return SQLITE_OK;
5323     }
5324     if( pCur->skipNext ){
5325       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5326       pCur->eState = CURSOR_VALID;
5327       if( pCur->skipNext>0 ){
5328         pCur->skipNext = 0;
5329         return SQLITE_OK;
5330       }
5331       pCur->skipNext = 0;
5332     }
5333   }
5334 
5335   pPage = pCur->apPage[pCur->iPage];
5336   idx = ++pCur->aiIdx[pCur->iPage];
5337   assert( pPage->isInit );
5338 
5339   /* If the database file is corrupt, it is possible for the value of idx
5340   ** to be invalid here. This can only occur if a second cursor modifies
5341   ** the page while cursor pCur is holding a reference to it. Which can
5342   ** only happen if the database is corrupt in such a way as to link the
5343   ** page into more than one b-tree structure. */
5344   testcase( idx>pPage->nCell );
5345 
5346   if( idx>=pPage->nCell ){
5347     if( !pPage->leaf ){
5348       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5349       if( rc ) return rc;
5350       return moveToLeftmost(pCur);
5351     }
5352     do{
5353       if( pCur->iPage==0 ){
5354         *pRes = 1;
5355         pCur->eState = CURSOR_INVALID;
5356         return SQLITE_OK;
5357       }
5358       moveToParent(pCur);
5359       pPage = pCur->apPage[pCur->iPage];
5360     }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
5361     if( pPage->intKey ){
5362       return sqlite3BtreeNext(pCur, pRes);
5363     }else{
5364       return SQLITE_OK;
5365     }
5366   }
5367   if( pPage->leaf ){
5368     return SQLITE_OK;
5369   }else{
5370     return moveToLeftmost(pCur);
5371   }
5372 }
5373 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5374   MemPage *pPage;
5375   assert( cursorOwnsBtShared(pCur) );
5376   assert( pRes!=0 );
5377   assert( *pRes==0 || *pRes==1 );
5378   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5379   pCur->info.nSize = 0;
5380   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5381   *pRes = 0;
5382   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5383   pPage = pCur->apPage[pCur->iPage];
5384   if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5385     pCur->aiIdx[pCur->iPage]--;
5386     return btreeNext(pCur, pRes);
5387   }
5388   if( pPage->leaf ){
5389     return SQLITE_OK;
5390   }else{
5391     return moveToLeftmost(pCur);
5392   }
5393 }
5394 
5395 /*
5396 ** Step the cursor to the back to the previous entry in the database.  If
5397 ** successful then set *pRes=0.  If the cursor
5398 ** was already pointing to the first entry in the database before
5399 ** this routine was called, then set *pRes=1.
5400 **
5401 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5402 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5403 ** to the previous cell on the current page.  The (slower) btreePrevious()
5404 ** helper routine is called when it is necessary to move to a different page
5405 ** or to restore the cursor.
5406 **
5407 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
5408 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5409 ** if this routine could have been skipped if that SQL index had been
5410 ** a unique index.  Otherwise the caller will have set *pRes to zero.
5411 ** Zero is the common case. The btree implementation is free to use the
5412 ** initial *pRes value as a hint to improve performance, but the current
5413 ** SQLite btree implementation does not. (Note that the comdb2 btree
5414 ** implementation does use this hint, however.)
5415 */
5416 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
5417   int rc;
5418   MemPage *pPage;
5419 
5420   assert( cursorOwnsBtShared(pCur) );
5421   assert( pRes!=0 );
5422   assert( *pRes==0 );
5423   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5424   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5425   assert( pCur->info.nSize==0 );
5426   if( pCur->eState!=CURSOR_VALID ){
5427     rc = restoreCursorPosition(pCur);
5428     if( rc!=SQLITE_OK ){
5429       return rc;
5430     }
5431     if( CURSOR_INVALID==pCur->eState ){
5432       *pRes = 1;
5433       return SQLITE_OK;
5434     }
5435     if( pCur->skipNext ){
5436       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5437       pCur->eState = CURSOR_VALID;
5438       if( pCur->skipNext<0 ){
5439         pCur->skipNext = 0;
5440         return SQLITE_OK;
5441       }
5442       pCur->skipNext = 0;
5443     }
5444   }
5445 
5446   pPage = pCur->apPage[pCur->iPage];
5447   assert( pPage->isInit );
5448   if( !pPage->leaf ){
5449     int idx = pCur->aiIdx[pCur->iPage];
5450     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5451     if( rc ) return rc;
5452     rc = moveToRightmost(pCur);
5453   }else{
5454     while( pCur->aiIdx[pCur->iPage]==0 ){
5455       if( pCur->iPage==0 ){
5456         pCur->eState = CURSOR_INVALID;
5457         *pRes = 1;
5458         return SQLITE_OK;
5459       }
5460       moveToParent(pCur);
5461     }
5462     assert( pCur->info.nSize==0 );
5463     assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
5464 
5465     pCur->aiIdx[pCur->iPage]--;
5466     pPage = pCur->apPage[pCur->iPage];
5467     if( pPage->intKey && !pPage->leaf ){
5468       rc = sqlite3BtreePrevious(pCur, pRes);
5469     }else{
5470       rc = SQLITE_OK;
5471     }
5472   }
5473   return rc;
5474 }
5475 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5476   assert( cursorOwnsBtShared(pCur) );
5477   assert( pRes!=0 );
5478   assert( *pRes==0 || *pRes==1 );
5479   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5480   *pRes = 0;
5481   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5482   pCur->info.nSize = 0;
5483   if( pCur->eState!=CURSOR_VALID
5484    || pCur->aiIdx[pCur->iPage]==0
5485    || pCur->apPage[pCur->iPage]->leaf==0
5486   ){
5487     return btreePrevious(pCur, pRes);
5488   }
5489   pCur->aiIdx[pCur->iPage]--;
5490   return SQLITE_OK;
5491 }
5492 
5493 /*
5494 ** Allocate a new page from the database file.
5495 **
5496 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5497 ** has already been called on the new page.)  The new page has also
5498 ** been referenced and the calling routine is responsible for calling
5499 ** sqlite3PagerUnref() on the new page when it is done.
5500 **
5501 ** SQLITE_OK is returned on success.  Any other return value indicates
5502 ** an error.  *ppPage is set to NULL in the event of an error.
5503 **
5504 ** If the "nearby" parameter is not 0, then an effort is made to
5505 ** locate a page close to the page number "nearby".  This can be used in an
5506 ** attempt to keep related pages close to each other in the database file,
5507 ** which in turn can make database access faster.
5508 **
5509 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5510 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5511 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5512 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5513 ** are no restrictions on which page is returned.
5514 */
5515 static int allocateBtreePage(
5516   BtShared *pBt,         /* The btree */
5517   MemPage **ppPage,      /* Store pointer to the allocated page here */
5518   Pgno *pPgno,           /* Store the page number here */
5519   Pgno nearby,           /* Search for a page near this one */
5520   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5521 ){
5522   MemPage *pPage1;
5523   int rc;
5524   u32 n;     /* Number of pages on the freelist */
5525   u32 k;     /* Number of leaves on the trunk of the freelist */
5526   MemPage *pTrunk = 0;
5527   MemPage *pPrevTrunk = 0;
5528   Pgno mxPage;     /* Total size of the database file */
5529 
5530   assert( sqlite3_mutex_held(pBt->mutex) );
5531   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5532   pPage1 = pBt->pPage1;
5533   mxPage = btreePagecount(pBt);
5534   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5535   ** stores stores the total number of pages on the freelist. */
5536   n = get4byte(&pPage1->aData[36]);
5537   testcase( n==mxPage-1 );
5538   if( n>=mxPage ){
5539     return SQLITE_CORRUPT_BKPT;
5540   }
5541   if( n>0 ){
5542     /* There are pages on the freelist.  Reuse one of those pages. */
5543     Pgno iTrunk;
5544     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5545     u32 nSearch = 0;   /* Count of the number of search attempts */
5546 
5547     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5548     ** shows that the page 'nearby' is somewhere on the free-list, then
5549     ** the entire-list will be searched for that page.
5550     */
5551 #ifndef SQLITE_OMIT_AUTOVACUUM
5552     if( eMode==BTALLOC_EXACT ){
5553       if( nearby<=mxPage ){
5554         u8 eType;
5555         assert( nearby>0 );
5556         assert( pBt->autoVacuum );
5557         rc = ptrmapGet(pBt, nearby, &eType, 0);
5558         if( rc ) return rc;
5559         if( eType==PTRMAP_FREEPAGE ){
5560           searchList = 1;
5561         }
5562       }
5563     }else if( eMode==BTALLOC_LE ){
5564       searchList = 1;
5565     }
5566 #endif
5567 
5568     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5569     ** first free-list trunk page. iPrevTrunk is initially 1.
5570     */
5571     rc = sqlite3PagerWrite(pPage1->pDbPage);
5572     if( rc ) return rc;
5573     put4byte(&pPage1->aData[36], n-1);
5574 
5575     /* The code within this loop is run only once if the 'searchList' variable
5576     ** is not true. Otherwise, it runs once for each trunk-page on the
5577     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5578     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5579     */
5580     do {
5581       pPrevTrunk = pTrunk;
5582       if( pPrevTrunk ){
5583         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5584         ** is the page number of the next freelist trunk page in the list or
5585         ** zero if this is the last freelist trunk page. */
5586         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5587       }else{
5588         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5589         ** stores the page number of the first page of the freelist, or zero if
5590         ** the freelist is empty. */
5591         iTrunk = get4byte(&pPage1->aData[32]);
5592       }
5593       testcase( iTrunk==mxPage );
5594       if( iTrunk>mxPage || nSearch++ > n ){
5595         rc = SQLITE_CORRUPT_BKPT;
5596       }else{
5597         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5598       }
5599       if( rc ){
5600         pTrunk = 0;
5601         goto end_allocate_page;
5602       }
5603       assert( pTrunk!=0 );
5604       assert( pTrunk->aData!=0 );
5605       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5606       ** is the number of leaf page pointers to follow. */
5607       k = get4byte(&pTrunk->aData[4]);
5608       if( k==0 && !searchList ){
5609         /* The trunk has no leaves and the list is not being searched.
5610         ** So extract the trunk page itself and use it as the newly
5611         ** allocated page */
5612         assert( pPrevTrunk==0 );
5613         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5614         if( rc ){
5615           goto end_allocate_page;
5616         }
5617         *pPgno = iTrunk;
5618         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5619         *ppPage = pTrunk;
5620         pTrunk = 0;
5621         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5622       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5623         /* Value of k is out of range.  Database corruption */
5624         rc = SQLITE_CORRUPT_BKPT;
5625         goto end_allocate_page;
5626 #ifndef SQLITE_OMIT_AUTOVACUUM
5627       }else if( searchList
5628             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5629       ){
5630         /* The list is being searched and this trunk page is the page
5631         ** to allocate, regardless of whether it has leaves.
5632         */
5633         *pPgno = iTrunk;
5634         *ppPage = pTrunk;
5635         searchList = 0;
5636         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5637         if( rc ){
5638           goto end_allocate_page;
5639         }
5640         if( k==0 ){
5641           if( !pPrevTrunk ){
5642             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5643           }else{
5644             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5645             if( rc!=SQLITE_OK ){
5646               goto end_allocate_page;
5647             }
5648             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5649           }
5650         }else{
5651           /* The trunk page is required by the caller but it contains
5652           ** pointers to free-list leaves. The first leaf becomes a trunk
5653           ** page in this case.
5654           */
5655           MemPage *pNewTrunk;
5656           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5657           if( iNewTrunk>mxPage ){
5658             rc = SQLITE_CORRUPT_BKPT;
5659             goto end_allocate_page;
5660           }
5661           testcase( iNewTrunk==mxPage );
5662           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
5663           if( rc!=SQLITE_OK ){
5664             goto end_allocate_page;
5665           }
5666           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5667           if( rc!=SQLITE_OK ){
5668             releasePage(pNewTrunk);
5669             goto end_allocate_page;
5670           }
5671           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5672           put4byte(&pNewTrunk->aData[4], k-1);
5673           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5674           releasePage(pNewTrunk);
5675           if( !pPrevTrunk ){
5676             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5677             put4byte(&pPage1->aData[32], iNewTrunk);
5678           }else{
5679             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5680             if( rc ){
5681               goto end_allocate_page;
5682             }
5683             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5684           }
5685         }
5686         pTrunk = 0;
5687         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5688 #endif
5689       }else if( k>0 ){
5690         /* Extract a leaf from the trunk */
5691         u32 closest;
5692         Pgno iPage;
5693         unsigned char *aData = pTrunk->aData;
5694         if( nearby>0 ){
5695           u32 i;
5696           closest = 0;
5697           if( eMode==BTALLOC_LE ){
5698             for(i=0; i<k; i++){
5699               iPage = get4byte(&aData[8+i*4]);
5700               if( iPage<=nearby ){
5701                 closest = i;
5702                 break;
5703               }
5704             }
5705           }else{
5706             int dist;
5707             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5708             for(i=1; i<k; i++){
5709               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5710               if( d2<dist ){
5711                 closest = i;
5712                 dist = d2;
5713               }
5714             }
5715           }
5716         }else{
5717           closest = 0;
5718         }
5719 
5720         iPage = get4byte(&aData[8+closest*4]);
5721         testcase( iPage==mxPage );
5722         if( iPage>mxPage ){
5723           rc = SQLITE_CORRUPT_BKPT;
5724           goto end_allocate_page;
5725         }
5726         testcase( iPage==mxPage );
5727         if( !searchList
5728          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5729         ){
5730           int noContent;
5731           *pPgno = iPage;
5732           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5733                  ": %d more free pages\n",
5734                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
5735           rc = sqlite3PagerWrite(pTrunk->pDbPage);
5736           if( rc ) goto end_allocate_page;
5737           if( closest<k-1 ){
5738             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5739           }
5740           put4byte(&aData[4], k-1);
5741           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
5742           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
5743           if( rc==SQLITE_OK ){
5744             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5745             if( rc!=SQLITE_OK ){
5746               releasePage(*ppPage);
5747               *ppPage = 0;
5748             }
5749           }
5750           searchList = 0;
5751         }
5752       }
5753       releasePage(pPrevTrunk);
5754       pPrevTrunk = 0;
5755     }while( searchList );
5756   }else{
5757     /* There are no pages on the freelist, so append a new page to the
5758     ** database image.
5759     **
5760     ** Normally, new pages allocated by this block can be requested from the
5761     ** pager layer with the 'no-content' flag set. This prevents the pager
5762     ** from trying to read the pages content from disk. However, if the
5763     ** current transaction has already run one or more incremental-vacuum
5764     ** steps, then the page we are about to allocate may contain content
5765     ** that is required in the event of a rollback. In this case, do
5766     ** not set the no-content flag. This causes the pager to load and journal
5767     ** the current page content before overwriting it.
5768     **
5769     ** Note that the pager will not actually attempt to load or journal
5770     ** content for any page that really does lie past the end of the database
5771     ** file on disk. So the effects of disabling the no-content optimization
5772     ** here are confined to those pages that lie between the end of the
5773     ** database image and the end of the database file.
5774     */
5775     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
5776 
5777     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5778     if( rc ) return rc;
5779     pBt->nPage++;
5780     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
5781 
5782 #ifndef SQLITE_OMIT_AUTOVACUUM
5783     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
5784       /* If *pPgno refers to a pointer-map page, allocate two new pages
5785       ** at the end of the file instead of one. The first allocated page
5786       ** becomes a new pointer-map page, the second is used by the caller.
5787       */
5788       MemPage *pPg = 0;
5789       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5790       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
5791       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
5792       if( rc==SQLITE_OK ){
5793         rc = sqlite3PagerWrite(pPg->pDbPage);
5794         releasePage(pPg);
5795       }
5796       if( rc ) return rc;
5797       pBt->nPage++;
5798       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
5799     }
5800 #endif
5801     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5802     *pPgno = pBt->nPage;
5803 
5804     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5805     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
5806     if( rc ) return rc;
5807     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5808     if( rc!=SQLITE_OK ){
5809       releasePage(*ppPage);
5810       *ppPage = 0;
5811     }
5812     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
5813   }
5814 
5815   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5816 
5817 end_allocate_page:
5818   releasePage(pTrunk);
5819   releasePage(pPrevTrunk);
5820   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5821   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
5822   return rc;
5823 }
5824 
5825 /*
5826 ** This function is used to add page iPage to the database file free-list.
5827 ** It is assumed that the page is not already a part of the free-list.
5828 **
5829 ** The value passed as the second argument to this function is optional.
5830 ** If the caller happens to have a pointer to the MemPage object
5831 ** corresponding to page iPage handy, it may pass it as the second value.
5832 ** Otherwise, it may pass NULL.
5833 **
5834 ** If a pointer to a MemPage object is passed as the second argument,
5835 ** its reference count is not altered by this function.
5836 */
5837 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5838   MemPage *pTrunk = 0;                /* Free-list trunk page */
5839   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
5840   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
5841   MemPage *pPage;                     /* Page being freed. May be NULL. */
5842   int rc;                             /* Return Code */
5843   int nFree;                          /* Initial number of pages on free-list */
5844 
5845   assert( sqlite3_mutex_held(pBt->mutex) );
5846   assert( CORRUPT_DB || iPage>1 );
5847   assert( !pMemPage || pMemPage->pgno==iPage );
5848 
5849   if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
5850   if( pMemPage ){
5851     pPage = pMemPage;
5852     sqlite3PagerRef(pPage->pDbPage);
5853   }else{
5854     pPage = btreePageLookup(pBt, iPage);
5855   }
5856 
5857   /* Increment the free page count on pPage1 */
5858   rc = sqlite3PagerWrite(pPage1->pDbPage);
5859   if( rc ) goto freepage_out;
5860   nFree = get4byte(&pPage1->aData[36]);
5861   put4byte(&pPage1->aData[36], nFree+1);
5862 
5863   if( pBt->btsFlags & BTS_SECURE_DELETE ){
5864     /* If the secure_delete option is enabled, then
5865     ** always fully overwrite deleted information with zeros.
5866     */
5867     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5868      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
5869     ){
5870       goto freepage_out;
5871     }
5872     memset(pPage->aData, 0, pPage->pBt->pageSize);
5873   }
5874 
5875   /* If the database supports auto-vacuum, write an entry in the pointer-map
5876   ** to indicate that the page is free.
5877   */
5878   if( ISAUTOVACUUM ){
5879     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
5880     if( rc ) goto freepage_out;
5881   }
5882 
5883   /* Now manipulate the actual database free-list structure. There are two
5884   ** possibilities. If the free-list is currently empty, or if the first
5885   ** trunk page in the free-list is full, then this page will become a
5886   ** new free-list trunk page. Otherwise, it will become a leaf of the
5887   ** first trunk page in the current free-list. This block tests if it
5888   ** is possible to add the page as a new free-list leaf.
5889   */
5890   if( nFree!=0 ){
5891     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
5892 
5893     iTrunk = get4byte(&pPage1->aData[32]);
5894     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
5895     if( rc!=SQLITE_OK ){
5896       goto freepage_out;
5897     }
5898 
5899     nLeaf = get4byte(&pTrunk->aData[4]);
5900     assert( pBt->usableSize>32 );
5901     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
5902       rc = SQLITE_CORRUPT_BKPT;
5903       goto freepage_out;
5904     }
5905     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
5906       /* In this case there is room on the trunk page to insert the page
5907       ** being freed as a new leaf.
5908       **
5909       ** Note that the trunk page is not really full until it contains
5910       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5911       ** coded.  But due to a coding error in versions of SQLite prior to
5912       ** 3.6.0, databases with freelist trunk pages holding more than
5913       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
5914       ** to maintain backwards compatibility with older versions of SQLite,
5915       ** we will continue to restrict the number of entries to usableSize/4 - 8
5916       ** for now.  At some point in the future (once everyone has upgraded
5917       ** to 3.6.0 or later) we should consider fixing the conditional above
5918       ** to read "usableSize/4-2" instead of "usableSize/4-8".
5919       **
5920       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5921       ** avoid using the last six entries in the freelist trunk page array in
5922       ** order that database files created by newer versions of SQLite can be
5923       ** read by older versions of SQLite.
5924       */
5925       rc = sqlite3PagerWrite(pTrunk->pDbPage);
5926       if( rc==SQLITE_OK ){
5927         put4byte(&pTrunk->aData[4], nLeaf+1);
5928         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
5929         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
5930           sqlite3PagerDontWrite(pPage->pDbPage);
5931         }
5932         rc = btreeSetHasContent(pBt, iPage);
5933       }
5934       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
5935       goto freepage_out;
5936     }
5937   }
5938 
5939   /* If control flows to this point, then it was not possible to add the
5940   ** the page being freed as a leaf page of the first trunk in the free-list.
5941   ** Possibly because the free-list is empty, or possibly because the
5942   ** first trunk in the free-list is full. Either way, the page being freed
5943   ** will become the new first trunk page in the free-list.
5944   */
5945   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5946     goto freepage_out;
5947   }
5948   rc = sqlite3PagerWrite(pPage->pDbPage);
5949   if( rc!=SQLITE_OK ){
5950     goto freepage_out;
5951   }
5952   put4byte(pPage->aData, iTrunk);
5953   put4byte(&pPage->aData[4], 0);
5954   put4byte(&pPage1->aData[32], iPage);
5955   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5956 
5957 freepage_out:
5958   if( pPage ){
5959     pPage->isInit = 0;
5960   }
5961   releasePage(pPage);
5962   releasePage(pTrunk);
5963   return rc;
5964 }
5965 static void freePage(MemPage *pPage, int *pRC){
5966   if( (*pRC)==SQLITE_OK ){
5967     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5968   }
5969 }
5970 
5971 /*
5972 ** Free any overflow pages associated with the given Cell.  Write the
5973 ** local Cell size (the number of bytes on the original page, omitting
5974 ** overflow) into *pnSize.
5975 */
5976 static int clearCell(
5977   MemPage *pPage,          /* The page that contains the Cell */
5978   unsigned char *pCell,    /* First byte of the Cell */
5979   u16 *pnSize              /* Write the size of the Cell here */
5980 ){
5981   BtShared *pBt = pPage->pBt;
5982   CellInfo info;
5983   Pgno ovflPgno;
5984   int rc;
5985   int nOvfl;
5986   u32 ovflPageSize;
5987 
5988   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5989   pPage->xParseCell(pPage, pCell, &info);
5990   *pnSize = info.nSize;
5991   if( info.nLocal==info.nPayload ){
5992     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
5993   }
5994   if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){
5995     return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
5996   }
5997   ovflPgno = get4byte(pCell + info.nSize - 4);
5998   assert( pBt->usableSize > 4 );
5999   ovflPageSize = pBt->usableSize - 4;
6000   nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
6001   assert( nOvfl>0 ||
6002     (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
6003   );
6004   while( nOvfl-- ){
6005     Pgno iNext = 0;
6006     MemPage *pOvfl = 0;
6007     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6008       /* 0 is not a legal page number and page 1 cannot be an
6009       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6010       ** file the database must be corrupt. */
6011       return SQLITE_CORRUPT_BKPT;
6012     }
6013     if( nOvfl ){
6014       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6015       if( rc ) return rc;
6016     }
6017 
6018     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6019      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6020     ){
6021       /* There is no reason any cursor should have an outstanding reference
6022       ** to an overflow page belonging to a cell that is being deleted/updated.
6023       ** So if there exists more than one reference to this page, then it
6024       ** must not really be an overflow page and the database must be corrupt.
6025       ** It is helpful to detect this before calling freePage2(), as
6026       ** freePage2() may zero the page contents if secure-delete mode is
6027       ** enabled. If this 'overflow' page happens to be a page that the
6028       ** caller is iterating through or using in some other way, this
6029       ** can be problematic.
6030       */
6031       rc = SQLITE_CORRUPT_BKPT;
6032     }else{
6033       rc = freePage2(pBt, pOvfl, ovflPgno);
6034     }
6035 
6036     if( pOvfl ){
6037       sqlite3PagerUnref(pOvfl->pDbPage);
6038     }
6039     if( rc ) return rc;
6040     ovflPgno = iNext;
6041   }
6042   return SQLITE_OK;
6043 }
6044 
6045 /*
6046 ** Create the byte sequence used to represent a cell on page pPage
6047 ** and write that byte sequence into pCell[].  Overflow pages are
6048 ** allocated and filled in as necessary.  The calling procedure
6049 ** is responsible for making sure sufficient space has been allocated
6050 ** for pCell[].
6051 **
6052 ** Note that pCell does not necessary need to point to the pPage->aData
6053 ** area.  pCell might point to some temporary storage.  The cell will
6054 ** be constructed in this temporary area then copied into pPage->aData
6055 ** later.
6056 */
6057 static int fillInCell(
6058   MemPage *pPage,                /* The page that contains the cell */
6059   unsigned char *pCell,          /* Complete text of the cell */
6060   const void *pKey, i64 nKey,    /* The key */
6061   const void *pData,int nData,   /* The data */
6062   int nZero,                     /* Extra zero bytes to append to pData */
6063   int *pnSize                    /* Write cell size here */
6064 ){
6065   int nPayload;
6066   const u8 *pSrc;
6067   int nSrc, n, rc;
6068   int spaceLeft;
6069   MemPage *pOvfl = 0;
6070   MemPage *pToRelease = 0;
6071   unsigned char *pPrior;
6072   unsigned char *pPayload;
6073   BtShared *pBt = pPage->pBt;
6074   Pgno pgnoOvfl = 0;
6075   int nHeader;
6076 
6077   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6078 
6079   /* pPage is not necessarily writeable since pCell might be auxiliary
6080   ** buffer space that is separate from the pPage buffer area */
6081   assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6082             || sqlite3PagerIswriteable(pPage->pDbPage) );
6083 
6084   /* Fill in the header. */
6085   nHeader = pPage->childPtrSize;
6086   nPayload = nData + nZero;
6087   if( pPage->intKeyLeaf ){
6088     nHeader += putVarint32(&pCell[nHeader], nPayload);
6089   }else{
6090     assert( nData==0 );
6091     assert( nZero==0 );
6092   }
6093   nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
6094 
6095   /* Fill in the payload size */
6096   if( pPage->intKey ){
6097     pSrc = pData;
6098     nSrc = nData;
6099     nData = 0;
6100   }else{
6101     assert( nKey<=0x7fffffff && pKey!=0 );
6102     nPayload = (int)nKey;
6103     pSrc = pKey;
6104     nSrc = (int)nKey;
6105   }
6106   if( nPayload<=pPage->maxLocal ){
6107     n = nHeader + nPayload;
6108     testcase( n==3 );
6109     testcase( n==4 );
6110     if( n<4 ) n = 4;
6111     *pnSize = n;
6112     spaceLeft = nPayload;
6113     pPrior = pCell;
6114   }else{
6115     int mn = pPage->minLocal;
6116     n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6117     testcase( n==pPage->maxLocal );
6118     testcase( n==pPage->maxLocal+1 );
6119     if( n > pPage->maxLocal ) n = mn;
6120     spaceLeft = n;
6121     *pnSize = n + nHeader + 4;
6122     pPrior = &pCell[nHeader+n];
6123   }
6124   pPayload = &pCell[nHeader];
6125 
6126   /* At this point variables should be set as follows:
6127   **
6128   **   nPayload           Total payload size in bytes
6129   **   pPayload           Begin writing payload here
6130   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6131   **                      that means content must spill into overflow pages.
6132   **   *pnSize            Size of the local cell (not counting overflow pages)
6133   **   pPrior             Where to write the pgno of the first overflow page
6134   **
6135   ** Use a call to btreeParseCellPtr() to verify that the values above
6136   ** were computed correctly.
6137   */
6138 #if SQLITE_DEBUG
6139   {
6140     CellInfo info;
6141     pPage->xParseCell(pPage, pCell, &info);
6142     assert( nHeader=(int)(info.pPayload - pCell) );
6143     assert( info.nKey==nKey );
6144     assert( *pnSize == info.nSize );
6145     assert( spaceLeft == info.nLocal );
6146   }
6147 #endif
6148 
6149   /* Write the payload into the local Cell and any extra into overflow pages */
6150   while( nPayload>0 ){
6151     if( spaceLeft==0 ){
6152 #ifndef SQLITE_OMIT_AUTOVACUUM
6153       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6154       if( pBt->autoVacuum ){
6155         do{
6156           pgnoOvfl++;
6157         } while(
6158           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6159         );
6160       }
6161 #endif
6162       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6163 #ifndef SQLITE_OMIT_AUTOVACUUM
6164       /* If the database supports auto-vacuum, and the second or subsequent
6165       ** overflow page is being allocated, add an entry to the pointer-map
6166       ** for that page now.
6167       **
6168       ** If this is the first overflow page, then write a partial entry
6169       ** to the pointer-map. If we write nothing to this pointer-map slot,
6170       ** then the optimistic overflow chain processing in clearCell()
6171       ** may misinterpret the uninitialized values and delete the
6172       ** wrong pages from the database.
6173       */
6174       if( pBt->autoVacuum && rc==SQLITE_OK ){
6175         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6176         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6177         if( rc ){
6178           releasePage(pOvfl);
6179         }
6180       }
6181 #endif
6182       if( rc ){
6183         releasePage(pToRelease);
6184         return rc;
6185       }
6186 
6187       /* If pToRelease is not zero than pPrior points into the data area
6188       ** of pToRelease.  Make sure pToRelease is still writeable. */
6189       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6190 
6191       /* If pPrior is part of the data area of pPage, then make sure pPage
6192       ** is still writeable */
6193       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6194             || sqlite3PagerIswriteable(pPage->pDbPage) );
6195 
6196       put4byte(pPrior, pgnoOvfl);
6197       releasePage(pToRelease);
6198       pToRelease = pOvfl;
6199       pPrior = pOvfl->aData;
6200       put4byte(pPrior, 0);
6201       pPayload = &pOvfl->aData[4];
6202       spaceLeft = pBt->usableSize - 4;
6203     }
6204     n = nPayload;
6205     if( n>spaceLeft ) n = spaceLeft;
6206 
6207     /* If pToRelease is not zero than pPayload points into the data area
6208     ** of pToRelease.  Make sure pToRelease is still writeable. */
6209     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6210 
6211     /* If pPayload is part of the data area of pPage, then make sure pPage
6212     ** is still writeable */
6213     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6214             || sqlite3PagerIswriteable(pPage->pDbPage) );
6215 
6216     if( nSrc>0 ){
6217       if( n>nSrc ) n = nSrc;
6218       assert( pSrc );
6219       memcpy(pPayload, pSrc, n);
6220     }else{
6221       memset(pPayload, 0, n);
6222     }
6223     nPayload -= n;
6224     pPayload += n;
6225     pSrc += n;
6226     nSrc -= n;
6227     spaceLeft -= n;
6228     if( nSrc==0 ){
6229       nSrc = nData;
6230       pSrc = pData;
6231     }
6232   }
6233   releasePage(pToRelease);
6234   return SQLITE_OK;
6235 }
6236 
6237 /*
6238 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6239 ** The cell content is not freed or deallocated.  It is assumed that
6240 ** the cell content has been copied someplace else.  This routine just
6241 ** removes the reference to the cell from pPage.
6242 **
6243 ** "sz" must be the number of bytes in the cell.
6244 */
6245 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6246   u32 pc;         /* Offset to cell content of cell being deleted */
6247   u8 *data;       /* pPage->aData */
6248   u8 *ptr;        /* Used to move bytes around within data[] */
6249   int rc;         /* The return code */
6250   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6251 
6252   if( *pRC ) return;
6253 
6254   assert( idx>=0 && idx<pPage->nCell );
6255   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6256   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6257   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6258   data = pPage->aData;
6259   ptr = &pPage->aCellIdx[2*idx];
6260   pc = get2byte(ptr);
6261   hdr = pPage->hdrOffset;
6262   testcase( pc==get2byte(&data[hdr+5]) );
6263   testcase( pc+sz==pPage->pBt->usableSize );
6264   if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
6265     *pRC = SQLITE_CORRUPT_BKPT;
6266     return;
6267   }
6268   rc = freeSpace(pPage, pc, sz);
6269   if( rc ){
6270     *pRC = rc;
6271     return;
6272   }
6273   pPage->nCell--;
6274   if( pPage->nCell==0 ){
6275     memset(&data[hdr+1], 0, 4);
6276     data[hdr+7] = 0;
6277     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6278     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6279                        - pPage->childPtrSize - 8;
6280   }else{
6281     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6282     put2byte(&data[hdr+3], pPage->nCell);
6283     pPage->nFree += 2;
6284   }
6285 }
6286 
6287 /*
6288 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6289 ** content of the cell.
6290 **
6291 ** If the cell content will fit on the page, then put it there.  If it
6292 ** will not fit, then make a copy of the cell content into pTemp if
6293 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6294 ** in pPage->apOvfl[] and make it point to the cell content (either
6295 ** in pTemp or the original pCell) and also record its index.
6296 ** Allocating a new entry in pPage->aCell[] implies that
6297 ** pPage->nOverflow is incremented.
6298 */
6299 static void insertCell(
6300   MemPage *pPage,   /* Page into which we are copying */
6301   int i,            /* New cell becomes the i-th cell of the page */
6302   u8 *pCell,        /* Content of the new cell */
6303   int sz,           /* Bytes of content in pCell */
6304   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6305   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6306   int *pRC          /* Read and write return code from here */
6307 ){
6308   int idx = 0;      /* Where to write new cell content in data[] */
6309   int j;            /* Loop counter */
6310   u8 *data;         /* The content of the whole page */
6311   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6312 
6313   if( *pRC ) return;
6314 
6315   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6316   assert( MX_CELL(pPage->pBt)<=10921 );
6317   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6318   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6319   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6320   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6321   /* The cell should normally be sized correctly.  However, when moving a
6322   ** malformed cell from a leaf page to an interior page, if the cell size
6323   ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6324   ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
6325   ** the term after the || in the following assert(). */
6326   assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
6327   if( pPage->nOverflow || sz+2>pPage->nFree ){
6328     if( pTemp ){
6329       memcpy(pTemp, pCell, sz);
6330       pCell = pTemp;
6331     }
6332     if( iChild ){
6333       put4byte(pCell, iChild);
6334     }
6335     j = pPage->nOverflow++;
6336     assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6337     pPage->apOvfl[j] = pCell;
6338     pPage->aiOvfl[j] = (u16)i;
6339 
6340     /* When multiple overflows occur, they are always sequential and in
6341     ** sorted order.  This invariants arise because multiple overflows can
6342     ** only occur when inserting divider cells into the parent page during
6343     ** balancing, and the dividers are adjacent and sorted.
6344     */
6345     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6346     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6347   }else{
6348     int rc = sqlite3PagerWrite(pPage->pDbPage);
6349     if( rc!=SQLITE_OK ){
6350       *pRC = rc;
6351       return;
6352     }
6353     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6354     data = pPage->aData;
6355     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6356     rc = allocateSpace(pPage, sz, &idx);
6357     if( rc ){ *pRC = rc; return; }
6358     /* The allocateSpace() routine guarantees the following properties
6359     ** if it returns successfully */
6360     assert( idx >= 0 );
6361     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6362     assert( idx+sz <= (int)pPage->pBt->usableSize );
6363     pPage->nFree -= (u16)(2 + sz);
6364     memcpy(&data[idx], pCell, sz);
6365     if( iChild ){
6366       put4byte(&data[idx], iChild);
6367     }
6368     pIns = pPage->aCellIdx + i*2;
6369     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6370     put2byte(pIns, idx);
6371     pPage->nCell++;
6372     /* increment the cell count */
6373     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6374     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
6375 #ifndef SQLITE_OMIT_AUTOVACUUM
6376     if( pPage->pBt->autoVacuum ){
6377       /* The cell may contain a pointer to an overflow page. If so, write
6378       ** the entry for the overflow page into the pointer map.
6379       */
6380       ptrmapPutOvflPtr(pPage, pCell, pRC);
6381     }
6382 #endif
6383   }
6384 }
6385 
6386 /*
6387 ** A CellArray object contains a cache of pointers and sizes for a
6388 ** consecutive sequence of cells that might be held multiple pages.
6389 */
6390 typedef struct CellArray CellArray;
6391 struct CellArray {
6392   int nCell;              /* Number of cells in apCell[] */
6393   MemPage *pRef;          /* Reference page */
6394   u8 **apCell;            /* All cells begin balanced */
6395   u16 *szCell;            /* Local size of all cells in apCell[] */
6396 };
6397 
6398 /*
6399 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6400 ** computed.
6401 */
6402 static void populateCellCache(CellArray *p, int idx, int N){
6403   assert( idx>=0 && idx+N<=p->nCell );
6404   while( N>0 ){
6405     assert( p->apCell[idx]!=0 );
6406     if( p->szCell[idx]==0 ){
6407       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6408     }else{
6409       assert( CORRUPT_DB ||
6410               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6411     }
6412     idx++;
6413     N--;
6414   }
6415 }
6416 
6417 /*
6418 ** Return the size of the Nth element of the cell array
6419 */
6420 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6421   assert( N>=0 && N<p->nCell );
6422   assert( p->szCell[N]==0 );
6423   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6424   return p->szCell[N];
6425 }
6426 static u16 cachedCellSize(CellArray *p, int N){
6427   assert( N>=0 && N<p->nCell );
6428   if( p->szCell[N] ) return p->szCell[N];
6429   return computeCellSize(p, N);
6430 }
6431 
6432 /*
6433 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6434 ** szCell[] array contains the size in bytes of each cell. This function
6435 ** replaces the current contents of page pPg with the contents of the cell
6436 ** array.
6437 **
6438 ** Some of the cells in apCell[] may currently be stored in pPg. This
6439 ** function works around problems caused by this by making a copy of any
6440 ** such cells before overwriting the page data.
6441 **
6442 ** The MemPage.nFree field is invalidated by this function. It is the
6443 ** responsibility of the caller to set it correctly.
6444 */
6445 static int rebuildPage(
6446   MemPage *pPg,                   /* Edit this page */
6447   int nCell,                      /* Final number of cells on page */
6448   u8 **apCell,                    /* Array of cells */
6449   u16 *szCell                     /* Array of cell sizes */
6450 ){
6451   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6452   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6453   const int usableSize = pPg->pBt->usableSize;
6454   u8 * const pEnd = &aData[usableSize];
6455   int i;
6456   u8 *pCellptr = pPg->aCellIdx;
6457   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6458   u8 *pData;
6459 
6460   i = get2byte(&aData[hdr+5]);
6461   memcpy(&pTmp[i], &aData[i], usableSize - i);
6462 
6463   pData = pEnd;
6464   for(i=0; i<nCell; i++){
6465     u8 *pCell = apCell[i];
6466     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6467       pCell = &pTmp[pCell - aData];
6468     }
6469     pData -= szCell[i];
6470     put2byte(pCellptr, (pData - aData));
6471     pCellptr += 2;
6472     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6473     memcpy(pData, pCell, szCell[i]);
6474     assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6475     testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
6476   }
6477 
6478   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6479   pPg->nCell = nCell;
6480   pPg->nOverflow = 0;
6481 
6482   put2byte(&aData[hdr+1], 0);
6483   put2byte(&aData[hdr+3], pPg->nCell);
6484   put2byte(&aData[hdr+5], pData - aData);
6485   aData[hdr+7] = 0x00;
6486   return SQLITE_OK;
6487 }
6488 
6489 /*
6490 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6491 ** contains the size in bytes of each such cell. This function attempts to
6492 ** add the cells stored in the array to page pPg. If it cannot (because
6493 ** the page needs to be defragmented before the cells will fit), non-zero
6494 ** is returned. Otherwise, if the cells are added successfully, zero is
6495 ** returned.
6496 **
6497 ** Argument pCellptr points to the first entry in the cell-pointer array
6498 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6499 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6500 ** cell in the array. It is the responsibility of the caller to ensure
6501 ** that it is safe to overwrite this part of the cell-pointer array.
6502 **
6503 ** When this function is called, *ppData points to the start of the
6504 ** content area on page pPg. If the size of the content area is extended,
6505 ** *ppData is updated to point to the new start of the content area
6506 ** before returning.
6507 **
6508 ** Finally, argument pBegin points to the byte immediately following the
6509 ** end of the space required by this page for the cell-pointer area (for
6510 ** all cells - not just those inserted by the current call). If the content
6511 ** area must be extended to before this point in order to accomodate all
6512 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6513 */
6514 static int pageInsertArray(
6515   MemPage *pPg,                   /* Page to add cells to */
6516   u8 *pBegin,                     /* End of cell-pointer array */
6517   u8 **ppData,                    /* IN/OUT: Page content -area pointer */
6518   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6519   int iFirst,                     /* Index of first cell to add */
6520   int nCell,                      /* Number of cells to add to pPg */
6521   CellArray *pCArray              /* Array of cells */
6522 ){
6523   int i;
6524   u8 *aData = pPg->aData;
6525   u8 *pData = *ppData;
6526   int iEnd = iFirst + nCell;
6527   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
6528   for(i=iFirst; i<iEnd; i++){
6529     int sz, rc;
6530     u8 *pSlot;
6531     sz = cachedCellSize(pCArray, i);
6532     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6533       pData -= sz;
6534       if( pData<pBegin ) return 1;
6535       pSlot = pData;
6536     }
6537     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6538     ** database.  But they might for a corrupt database.  Hence use memmove()
6539     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6540     assert( (pSlot+sz)<=pCArray->apCell[i]
6541          || pSlot>=(pCArray->apCell[i]+sz)
6542          || CORRUPT_DB );
6543     memmove(pSlot, pCArray->apCell[i], sz);
6544     put2byte(pCellptr, (pSlot - aData));
6545     pCellptr += 2;
6546   }
6547   *ppData = pData;
6548   return 0;
6549 }
6550 
6551 /*
6552 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6553 ** contains the size in bytes of each such cell. This function adds the
6554 ** space associated with each cell in the array that is currently stored
6555 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6556 ** fields of the page are not updated.
6557 **
6558 ** This function returns the total number of cells added to the free-list.
6559 */
6560 static int pageFreeArray(
6561   MemPage *pPg,                   /* Page to edit */
6562   int iFirst,                     /* First cell to delete */
6563   int nCell,                      /* Cells to delete */
6564   CellArray *pCArray              /* Array of cells */
6565 ){
6566   u8 * const aData = pPg->aData;
6567   u8 * const pEnd = &aData[pPg->pBt->usableSize];
6568   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
6569   int nRet = 0;
6570   int i;
6571   int iEnd = iFirst + nCell;
6572   u8 *pFree = 0;
6573   int szFree = 0;
6574 
6575   for(i=iFirst; i<iEnd; i++){
6576     u8 *pCell = pCArray->apCell[i];
6577     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
6578       int sz;
6579       /* No need to use cachedCellSize() here.  The sizes of all cells that
6580       ** are to be freed have already been computing while deciding which
6581       ** cells need freeing */
6582       sz = pCArray->szCell[i];  assert( sz>0 );
6583       if( pFree!=(pCell + sz) ){
6584         if( pFree ){
6585           assert( pFree>aData && (pFree - aData)<65536 );
6586           freeSpace(pPg, (u16)(pFree - aData), szFree);
6587         }
6588         pFree = pCell;
6589         szFree = sz;
6590         if( pFree+sz>pEnd ) return 0;
6591       }else{
6592         pFree = pCell;
6593         szFree += sz;
6594       }
6595       nRet++;
6596     }
6597   }
6598   if( pFree ){
6599     assert( pFree>aData && (pFree - aData)<65536 );
6600     freeSpace(pPg, (u16)(pFree - aData), szFree);
6601   }
6602   return nRet;
6603 }
6604 
6605 /*
6606 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6607 ** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
6608 ** with apCell[iOld].  After balancing, this page should hold nNew cells
6609 ** starting at apCell[iNew].
6610 **
6611 ** This routine makes the necessary adjustments to pPg so that it contains
6612 ** the correct cells after being balanced.
6613 **
6614 ** The pPg->nFree field is invalid when this function returns. It is the
6615 ** responsibility of the caller to set it correctly.
6616 */
6617 static int editPage(
6618   MemPage *pPg,                   /* Edit this page */
6619   int iOld,                       /* Index of first cell currently on page */
6620   int iNew,                       /* Index of new first cell on page */
6621   int nNew,                       /* Final number of cells on page */
6622   CellArray *pCArray              /* Array of cells and sizes */
6623 ){
6624   u8 * const aData = pPg->aData;
6625   const int hdr = pPg->hdrOffset;
6626   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6627   int nCell = pPg->nCell;       /* Cells stored on pPg */
6628   u8 *pData;
6629   u8 *pCellptr;
6630   int i;
6631   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6632   int iNewEnd = iNew + nNew;
6633 
6634 #ifdef SQLITE_DEBUG
6635   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6636   memcpy(pTmp, aData, pPg->pBt->usableSize);
6637 #endif
6638 
6639   /* Remove cells from the start and end of the page */
6640   if( iOld<iNew ){
6641     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
6642     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6643     nCell -= nShift;
6644   }
6645   if( iNewEnd < iOldEnd ){
6646     nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
6647   }
6648 
6649   pData = &aData[get2byteNotZero(&aData[hdr+5])];
6650   if( pData<pBegin ) goto editpage_fail;
6651 
6652   /* Add cells to the start of the page */
6653   if( iNew<iOld ){
6654     int nAdd = MIN(nNew,iOld-iNew);
6655     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
6656     pCellptr = pPg->aCellIdx;
6657     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6658     if( pageInsertArray(
6659           pPg, pBegin, &pData, pCellptr,
6660           iNew, nAdd, pCArray
6661     ) ) goto editpage_fail;
6662     nCell += nAdd;
6663   }
6664 
6665   /* Add any overflow cells */
6666   for(i=0; i<pPg->nOverflow; i++){
6667     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6668     if( iCell>=0 && iCell<nNew ){
6669       pCellptr = &pPg->aCellIdx[iCell * 2];
6670       memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6671       nCell++;
6672       if( pageInsertArray(
6673             pPg, pBegin, &pData, pCellptr,
6674             iCell+iNew, 1, pCArray
6675       ) ) goto editpage_fail;
6676     }
6677   }
6678 
6679   /* Append cells to the end of the page */
6680   pCellptr = &pPg->aCellIdx[nCell*2];
6681   if( pageInsertArray(
6682         pPg, pBegin, &pData, pCellptr,
6683         iNew+nCell, nNew-nCell, pCArray
6684   ) ) goto editpage_fail;
6685 
6686   pPg->nCell = nNew;
6687   pPg->nOverflow = 0;
6688 
6689   put2byte(&aData[hdr+3], pPg->nCell);
6690   put2byte(&aData[hdr+5], pData - aData);
6691 
6692 #ifdef SQLITE_DEBUG
6693   for(i=0; i<nNew && !CORRUPT_DB; i++){
6694     u8 *pCell = pCArray->apCell[i+iNew];
6695     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
6696     if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6697       pCell = &pTmp[pCell - aData];
6698     }
6699     assert( 0==memcmp(pCell, &aData[iOff],
6700             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
6701   }
6702 #endif
6703 
6704   return SQLITE_OK;
6705  editpage_fail:
6706   /* Unable to edit this page. Rebuild it from scratch instead. */
6707   populateCellCache(pCArray, iNew, nNew);
6708   return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
6709 }
6710 
6711 /*
6712 ** The following parameters determine how many adjacent pages get involved
6713 ** in a balancing operation.  NN is the number of neighbors on either side
6714 ** of the page that participate in the balancing operation.  NB is the
6715 ** total number of pages that participate, including the target page and
6716 ** NN neighbors on either side.
6717 **
6718 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6719 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6720 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6721 ** The value of NN appears to give the best results overall.
6722 */
6723 #define NN 1             /* Number of neighbors on either side of pPage */
6724 #define NB (NN*2+1)      /* Total pages involved in the balance */
6725 
6726 
6727 #ifndef SQLITE_OMIT_QUICKBALANCE
6728 /*
6729 ** This version of balance() handles the common special case where
6730 ** a new entry is being inserted on the extreme right-end of the
6731 ** tree, in other words, when the new entry will become the largest
6732 ** entry in the tree.
6733 **
6734 ** Instead of trying to balance the 3 right-most leaf pages, just add
6735 ** a new page to the right-hand side and put the one new entry in
6736 ** that page.  This leaves the right side of the tree somewhat
6737 ** unbalanced.  But odds are that we will be inserting new entries
6738 ** at the end soon afterwards so the nearly empty page will quickly
6739 ** fill up.  On average.
6740 **
6741 ** pPage is the leaf page which is the right-most page in the tree.
6742 ** pParent is its parent.  pPage must have a single overflow entry
6743 ** which is also the right-most entry on the page.
6744 **
6745 ** The pSpace buffer is used to store a temporary copy of the divider
6746 ** cell that will be inserted into pParent. Such a cell consists of a 4
6747 ** byte page number followed by a variable length integer. In other
6748 ** words, at most 13 bytes. Hence the pSpace buffer must be at
6749 ** least 13 bytes in size.
6750 */
6751 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6752   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
6753   MemPage *pNew;                       /* Newly allocated page */
6754   int rc;                              /* Return Code */
6755   Pgno pgnoNew;                        /* Page number of pNew */
6756 
6757   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6758   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6759   assert( pPage->nOverflow==1 );
6760 
6761   /* This error condition is now caught prior to reaching this function */
6762   if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
6763 
6764   /* Allocate a new page. This page will become the right-sibling of
6765   ** pPage. Make the parent page writable, so that the new divider cell
6766   ** may be inserted. If both these operations are successful, proceed.
6767   */
6768   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
6769 
6770   if( rc==SQLITE_OK ){
6771 
6772     u8 *pOut = &pSpace[4];
6773     u8 *pCell = pPage->apOvfl[0];
6774     u16 szCell = pPage->xCellSize(pPage, pCell);
6775     u8 *pStop;
6776 
6777     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
6778     assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6779     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
6780     rc = rebuildPage(pNew, 1, &pCell, &szCell);
6781     if( NEVER(rc) ) return rc;
6782     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
6783 
6784     /* If this is an auto-vacuum database, update the pointer map
6785     ** with entries for the new page, and any pointer from the
6786     ** cell on the page to an overflow page. If either of these
6787     ** operations fails, the return code is set, but the contents
6788     ** of the parent page are still manipulated by thh code below.
6789     ** That is Ok, at this point the parent page is guaranteed to
6790     ** be marked as dirty. Returning an error code will cause a
6791     ** rollback, undoing any changes made to the parent page.
6792     */
6793     if( ISAUTOVACUUM ){
6794       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6795       if( szCell>pNew->minLocal ){
6796         ptrmapPutOvflPtr(pNew, pCell, &rc);
6797       }
6798     }
6799 
6800     /* Create a divider cell to insert into pParent. The divider cell
6801     ** consists of a 4-byte page number (the page number of pPage) and
6802     ** a variable length key value (which must be the same value as the
6803     ** largest key on pPage).
6804     **
6805     ** To find the largest key value on pPage, first find the right-most
6806     ** cell on pPage. The first two fields of this cell are the
6807     ** record-length (a variable length integer at most 32-bits in size)
6808     ** and the key value (a variable length integer, may have any value).
6809     ** The first of the while(...) loops below skips over the record-length
6810     ** field. The second while(...) loop copies the key value from the
6811     ** cell on pPage into the pSpace buffer.
6812     */
6813     pCell = findCell(pPage, pPage->nCell-1);
6814     pStop = &pCell[9];
6815     while( (*(pCell++)&0x80) && pCell<pStop );
6816     pStop = &pCell[9];
6817     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6818 
6819     /* Insert the new divider cell into pParent. */
6820     insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6821                0, pPage->pgno, &rc);
6822 
6823     /* Set the right-child pointer of pParent to point to the new page. */
6824     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6825 
6826     /* Release the reference to the new page. */
6827     releasePage(pNew);
6828   }
6829 
6830   return rc;
6831 }
6832 #endif /* SQLITE_OMIT_QUICKBALANCE */
6833 
6834 #if 0
6835 /*
6836 ** This function does not contribute anything to the operation of SQLite.
6837 ** it is sometimes activated temporarily while debugging code responsible
6838 ** for setting pointer-map entries.
6839 */
6840 static int ptrmapCheckPages(MemPage **apPage, int nPage){
6841   int i, j;
6842   for(i=0; i<nPage; i++){
6843     Pgno n;
6844     u8 e;
6845     MemPage *pPage = apPage[i];
6846     BtShared *pBt = pPage->pBt;
6847     assert( pPage->isInit );
6848 
6849     for(j=0; j<pPage->nCell; j++){
6850       CellInfo info;
6851       u8 *z;
6852 
6853       z = findCell(pPage, j);
6854       pPage->xParseCell(pPage, z, &info);
6855       if( info.nLocal<info.nPayload ){
6856         Pgno ovfl = get4byte(&z[info.nSize-4]);
6857         ptrmapGet(pBt, ovfl, &e, &n);
6858         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6859       }
6860       if( !pPage->leaf ){
6861         Pgno child = get4byte(z);
6862         ptrmapGet(pBt, child, &e, &n);
6863         assert( n==pPage->pgno && e==PTRMAP_BTREE );
6864       }
6865     }
6866     if( !pPage->leaf ){
6867       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6868       ptrmapGet(pBt, child, &e, &n);
6869       assert( n==pPage->pgno && e==PTRMAP_BTREE );
6870     }
6871   }
6872   return 1;
6873 }
6874 #endif
6875 
6876 /*
6877 ** This function is used to copy the contents of the b-tree node stored
6878 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6879 ** the pointer-map entries for each child page are updated so that the
6880 ** parent page stored in the pointer map is page pTo. If pFrom contained
6881 ** any cells with overflow page pointers, then the corresponding pointer
6882 ** map entries are also updated so that the parent page is page pTo.
6883 **
6884 ** If pFrom is currently carrying any overflow cells (entries in the
6885 ** MemPage.apOvfl[] array), they are not copied to pTo.
6886 **
6887 ** Before returning, page pTo is reinitialized using btreeInitPage().
6888 **
6889 ** The performance of this function is not critical. It is only used by
6890 ** the balance_shallower() and balance_deeper() procedures, neither of
6891 ** which are called often under normal circumstances.
6892 */
6893 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6894   if( (*pRC)==SQLITE_OK ){
6895     BtShared * const pBt = pFrom->pBt;
6896     u8 * const aFrom = pFrom->aData;
6897     u8 * const aTo = pTo->aData;
6898     int const iFromHdr = pFrom->hdrOffset;
6899     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
6900     int rc;
6901     int iData;
6902 
6903 
6904     assert( pFrom->isInit );
6905     assert( pFrom->nFree>=iToHdr );
6906     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
6907 
6908     /* Copy the b-tree node content from page pFrom to page pTo. */
6909     iData = get2byte(&aFrom[iFromHdr+5]);
6910     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6911     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6912 
6913     /* Reinitialize page pTo so that the contents of the MemPage structure
6914     ** match the new data. The initialization of pTo can actually fail under
6915     ** fairly obscure circumstances, even though it is a copy of initialized
6916     ** page pFrom.
6917     */
6918     pTo->isInit = 0;
6919     rc = btreeInitPage(pTo);
6920     if( rc!=SQLITE_OK ){
6921       *pRC = rc;
6922       return;
6923     }
6924 
6925     /* If this is an auto-vacuum database, update the pointer-map entries
6926     ** for any b-tree or overflow pages that pTo now contains the pointers to.
6927     */
6928     if( ISAUTOVACUUM ){
6929       *pRC = setChildPtrmaps(pTo);
6930     }
6931   }
6932 }
6933 
6934 /*
6935 ** This routine redistributes cells on the iParentIdx'th child of pParent
6936 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
6937 ** same amount of free space. Usually a single sibling on either side of the
6938 ** page are used in the balancing, though both siblings might come from one
6939 ** side if the page is the first or last child of its parent. If the page
6940 ** has fewer than 2 siblings (something which can only happen if the page
6941 ** is a root page or a child of a root page) then all available siblings
6942 ** participate in the balancing.
6943 **
6944 ** The number of siblings of the page might be increased or decreased by
6945 ** one or two in an effort to keep pages nearly full but not over full.
6946 **
6947 ** Note that when this routine is called, some of the cells on the page
6948 ** might not actually be stored in MemPage.aData[]. This can happen
6949 ** if the page is overfull. This routine ensures that all cells allocated
6950 ** to the page and its siblings fit into MemPage.aData[] before returning.
6951 **
6952 ** In the course of balancing the page and its siblings, cells may be
6953 ** inserted into or removed from the parent page (pParent). Doing so
6954 ** may cause the parent page to become overfull or underfull. If this
6955 ** happens, it is the responsibility of the caller to invoke the correct
6956 ** balancing routine to fix this problem (see the balance() routine).
6957 **
6958 ** If this routine fails for any reason, it might leave the database
6959 ** in a corrupted state. So if this routine fails, the database should
6960 ** be rolled back.
6961 **
6962 ** The third argument to this function, aOvflSpace, is a pointer to a
6963 ** buffer big enough to hold one page. If while inserting cells into the parent
6964 ** page (pParent) the parent page becomes overfull, this buffer is
6965 ** used to store the parent's overflow cells. Because this function inserts
6966 ** a maximum of four divider cells into the parent page, and the maximum
6967 ** size of a cell stored within an internal node is always less than 1/4
6968 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6969 ** enough for all overflow cells.
6970 **
6971 ** If aOvflSpace is set to a null pointer, this function returns
6972 ** SQLITE_NOMEM.
6973 */
6974 static int balance_nonroot(
6975   MemPage *pParent,               /* Parent page of siblings being balanced */
6976   int iParentIdx,                 /* Index of "the page" in pParent */
6977   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
6978   int isRoot,                     /* True if pParent is a root-page */
6979   int bBulk                       /* True if this call is part of a bulk load */
6980 ){
6981   BtShared *pBt;               /* The whole database */
6982   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
6983   int nNew = 0;                /* Number of pages in apNew[] */
6984   int nOld;                    /* Number of pages in apOld[] */
6985   int i, j, k;                 /* Loop counters */
6986   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
6987   int rc = SQLITE_OK;          /* The return code */
6988   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
6989   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
6990   int usableSpace;             /* Bytes in pPage beyond the header */
6991   int pageFlags;               /* Value of pPage->aData[0] */
6992   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
6993   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
6994   int szScratch;               /* Size of scratch memory requested */
6995   MemPage *apOld[NB];          /* pPage and up to two siblings */
6996   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
6997   u8 *pRight;                  /* Location in parent of right-sibling pointer */
6998   u8 *apDiv[NB-1];             /* Divider cells in pParent */
6999   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7000   int cntOld[NB+2];            /* Old index in b.apCell[] */
7001   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7002   u8 *aSpace1;                 /* Space for copies of dividers cells */
7003   Pgno pgno;                   /* Temp var to store a page number in */
7004   u8 abDone[NB+2];             /* True after i'th new page is populated */
7005   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7006   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7007   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7008   CellArray b;                  /* Parsed information on cells being balanced */
7009 
7010   memset(abDone, 0, sizeof(abDone));
7011   b.nCell = 0;
7012   b.apCell = 0;
7013   pBt = pParent->pBt;
7014   assert( sqlite3_mutex_held(pBt->mutex) );
7015   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7016 
7017 #if 0
7018   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
7019 #endif
7020 
7021   /* At this point pParent may have at most one overflow cell. And if
7022   ** this overflow cell is present, it must be the cell with
7023   ** index iParentIdx. This scenario comes about when this function
7024   ** is called (indirectly) from sqlite3BtreeDelete().
7025   */
7026   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7027   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7028 
7029   if( !aOvflSpace ){
7030     return SQLITE_NOMEM;
7031   }
7032 
7033   /* Find the sibling pages to balance. Also locate the cells in pParent
7034   ** that divide the siblings. An attempt is made to find NN siblings on
7035   ** either side of pPage. More siblings are taken from one side, however,
7036   ** if there are fewer than NN siblings on the other side. If pParent
7037   ** has NB or fewer children then all children of pParent are taken.
7038   **
7039   ** This loop also drops the divider cells from the parent page. This
7040   ** way, the remainder of the function does not have to deal with any
7041   ** overflow cells in the parent page, since if any existed they will
7042   ** have already been removed.
7043   */
7044   i = pParent->nOverflow + pParent->nCell;
7045   if( i<2 ){
7046     nxDiv = 0;
7047   }else{
7048     assert( bBulk==0 || bBulk==1 );
7049     if( iParentIdx==0 ){
7050       nxDiv = 0;
7051     }else if( iParentIdx==i ){
7052       nxDiv = i-2+bBulk;
7053     }else{
7054       nxDiv = iParentIdx-1;
7055     }
7056     i = 2-bBulk;
7057   }
7058   nOld = i+1;
7059   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7060     pRight = &pParent->aData[pParent->hdrOffset+8];
7061   }else{
7062     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7063   }
7064   pgno = get4byte(pRight);
7065   while( 1 ){
7066     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7067     if( rc ){
7068       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7069       goto balance_cleanup;
7070     }
7071     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
7072     if( (i--)==0 ) break;
7073 
7074     if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7075       apDiv[i] = pParent->apOvfl[0];
7076       pgno = get4byte(apDiv[i]);
7077       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7078       pParent->nOverflow = 0;
7079     }else{
7080       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7081       pgno = get4byte(apDiv[i]);
7082       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7083 
7084       /* Drop the cell from the parent page. apDiv[i] still points to
7085       ** the cell within the parent, even though it has been dropped.
7086       ** This is safe because dropping a cell only overwrites the first
7087       ** four bytes of it, and this function does not need the first
7088       ** four bytes of the divider cell. So the pointer is safe to use
7089       ** later on.
7090       **
7091       ** But not if we are in secure-delete mode. In secure-delete mode,
7092       ** the dropCell() routine will overwrite the entire cell with zeroes.
7093       ** In this case, temporarily copy the cell into the aOvflSpace[]
7094       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7095       ** is allocated.  */
7096       if( pBt->btsFlags & BTS_SECURE_DELETE ){
7097         int iOff;
7098 
7099         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7100         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7101           rc = SQLITE_CORRUPT_BKPT;
7102           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7103           goto balance_cleanup;
7104         }else{
7105           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7106           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7107         }
7108       }
7109       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7110     }
7111   }
7112 
7113   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7114   ** alignment */
7115   nMaxCells = (nMaxCells + 3)&~3;
7116 
7117   /*
7118   ** Allocate space for memory structures
7119   */
7120   szScratch =
7121        nMaxCells*sizeof(u8*)                       /* b.apCell */
7122      + nMaxCells*sizeof(u16)                       /* b.szCell */
7123      + pBt->pageSize;                              /* aSpace1 */
7124 
7125   /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7126   ** that is more than 6 times the database page size. */
7127   assert( szScratch<=6*(int)pBt->pageSize );
7128   b.apCell = sqlite3ScratchMalloc( szScratch );
7129   if( b.apCell==0 ){
7130     rc = SQLITE_NOMEM;
7131     goto balance_cleanup;
7132   }
7133   b.szCell = (u16*)&b.apCell[nMaxCells];
7134   aSpace1 = (u8*)&b.szCell[nMaxCells];
7135   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7136 
7137   /*
7138   ** Load pointers to all cells on sibling pages and the divider cells
7139   ** into the local b.apCell[] array.  Make copies of the divider cells
7140   ** into space obtained from aSpace1[]. The divider cells have already
7141   ** been removed from pParent.
7142   **
7143   ** If the siblings are on leaf pages, then the child pointers of the
7144   ** divider cells are stripped from the cells before they are copied
7145   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7146   ** child pointers.  If siblings are not leaves, then all cell in
7147   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7148   ** are alike.
7149   **
7150   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7151   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7152   */
7153   b.pRef = apOld[0];
7154   leafCorrection = b.pRef->leaf*4;
7155   leafData = b.pRef->intKeyLeaf;
7156   for(i=0; i<nOld; i++){
7157     MemPage *pOld = apOld[i];
7158     int limit = pOld->nCell;
7159     u8 *aData = pOld->aData;
7160     u16 maskPage = pOld->maskPage;
7161     u8 *piCell = aData + pOld->cellOffset;
7162     u8 *piEnd;
7163 
7164     /* Verify that all sibling pages are of the same "type" (table-leaf,
7165     ** table-interior, index-leaf, or index-interior).
7166     */
7167     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7168       rc = SQLITE_CORRUPT_BKPT;
7169       goto balance_cleanup;
7170     }
7171 
7172     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7173     ** constains overflow cells, include them in the b.apCell[] array
7174     ** in the correct spot.
7175     **
7176     ** Note that when there are multiple overflow cells, it is always the
7177     ** case that they are sequential and adjacent.  This invariant arises
7178     ** because multiple overflows can only occurs when inserting divider
7179     ** cells into a parent on a prior balance, and divider cells are always
7180     ** adjacent and are inserted in order.  There is an assert() tagged
7181     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7182     ** invariant.
7183     **
7184     ** This must be done in advance.  Once the balance starts, the cell
7185     ** offset section of the btree page will be overwritten and we will no
7186     ** long be able to find the cells if a pointer to each cell is not saved
7187     ** first.
7188     */
7189     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7190     if( pOld->nOverflow>0 ){
7191       limit = pOld->aiOvfl[0];
7192       for(j=0; j<limit; j++){
7193         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7194         piCell += 2;
7195         b.nCell++;
7196       }
7197       for(k=0; k<pOld->nOverflow; k++){
7198         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7199         b.apCell[b.nCell] = pOld->apOvfl[k];
7200         b.nCell++;
7201       }
7202     }
7203     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7204     while( piCell<piEnd ){
7205       assert( b.nCell<nMaxCells );
7206       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7207       piCell += 2;
7208       b.nCell++;
7209     }
7210 
7211     cntOld[i] = b.nCell;
7212     if( i<nOld-1 && !leafData){
7213       u16 sz = (u16)szNew[i];
7214       u8 *pTemp;
7215       assert( b.nCell<nMaxCells );
7216       b.szCell[b.nCell] = sz;
7217       pTemp = &aSpace1[iSpace1];
7218       iSpace1 += sz;
7219       assert( sz<=pBt->maxLocal+23 );
7220       assert( iSpace1 <= (int)pBt->pageSize );
7221       memcpy(pTemp, apDiv[i], sz);
7222       b.apCell[b.nCell] = pTemp+leafCorrection;
7223       assert( leafCorrection==0 || leafCorrection==4 );
7224       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7225       if( !pOld->leaf ){
7226         assert( leafCorrection==0 );
7227         assert( pOld->hdrOffset==0 );
7228         /* The right pointer of the child page pOld becomes the left
7229         ** pointer of the divider cell */
7230         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7231       }else{
7232         assert( leafCorrection==4 );
7233         while( b.szCell[b.nCell]<4 ){
7234           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7235           ** does exist, pad it with 0x00 bytes. */
7236           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7237           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7238           aSpace1[iSpace1++] = 0x00;
7239           b.szCell[b.nCell]++;
7240         }
7241       }
7242       b.nCell++;
7243     }
7244   }
7245 
7246   /*
7247   ** Figure out the number of pages needed to hold all b.nCell cells.
7248   ** Store this number in "k".  Also compute szNew[] which is the total
7249   ** size of all cells on the i-th page and cntNew[] which is the index
7250   ** in b.apCell[] of the cell that divides page i from page i+1.
7251   ** cntNew[k] should equal b.nCell.
7252   **
7253   ** Values computed by this block:
7254   **
7255   **           k: The total number of sibling pages
7256   **    szNew[i]: Spaced used on the i-th sibling page.
7257   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7258   **              the right of the i-th sibling page.
7259   ** usableSpace: Number of bytes of space available on each sibling.
7260   **
7261   */
7262   usableSpace = pBt->usableSize - 12 + leafCorrection;
7263   for(i=0; i<nOld; i++){
7264     MemPage *p = apOld[i];
7265     szNew[i] = usableSpace - p->nFree;
7266     if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7267     for(j=0; j<p->nOverflow; j++){
7268       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7269     }
7270     cntNew[i] = cntOld[i];
7271   }
7272   k = nOld;
7273   for(i=0; i<k; i++){
7274     int sz;
7275     while( szNew[i]>usableSpace ){
7276       if( i+1>=k ){
7277         k = i+2;
7278         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7279         szNew[k-1] = 0;
7280         cntNew[k-1] = b.nCell;
7281       }
7282       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7283       szNew[i] -= sz;
7284       if( !leafData ){
7285         if( cntNew[i]<b.nCell ){
7286           sz = 2 + cachedCellSize(&b, cntNew[i]);
7287         }else{
7288           sz = 0;
7289         }
7290       }
7291       szNew[i+1] += sz;
7292       cntNew[i]--;
7293     }
7294     while( cntNew[i]<b.nCell ){
7295       sz = 2 + cachedCellSize(&b, cntNew[i]);
7296       if( szNew[i]+sz>usableSpace ) break;
7297       szNew[i] += sz;
7298       cntNew[i]++;
7299       if( !leafData ){
7300         if( cntNew[i]<b.nCell ){
7301           sz = 2 + cachedCellSize(&b, cntNew[i]);
7302         }else{
7303           sz = 0;
7304         }
7305       }
7306       szNew[i+1] -= sz;
7307     }
7308     if( cntNew[i]>=b.nCell ){
7309       k = i+1;
7310     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7311       rc = SQLITE_CORRUPT_BKPT;
7312       goto balance_cleanup;
7313     }
7314   }
7315 
7316   /*
7317   ** The packing computed by the previous block is biased toward the siblings
7318   ** on the left side (siblings with smaller keys). The left siblings are
7319   ** always nearly full, while the right-most sibling might be nearly empty.
7320   ** The next block of code attempts to adjust the packing of siblings to
7321   ** get a better balance.
7322   **
7323   ** This adjustment is more than an optimization.  The packing above might
7324   ** be so out of balance as to be illegal.  For example, the right-most
7325   ** sibling might be completely empty.  This adjustment is not optional.
7326   */
7327   for(i=k-1; i>0; i--){
7328     int szRight = szNew[i];  /* Size of sibling on the right */
7329     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7330     int r;              /* Index of right-most cell in left sibling */
7331     int d;              /* Index of first cell to the left of right sibling */
7332 
7333     r = cntNew[i-1] - 1;
7334     d = r + 1 - leafData;
7335     (void)cachedCellSize(&b, d);
7336     do{
7337       assert( d<nMaxCells );
7338       assert( r<nMaxCells );
7339       (void)cachedCellSize(&b, r);
7340       if( szRight!=0
7341        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7342         break;
7343       }
7344       szRight += b.szCell[d] + 2;
7345       szLeft -= b.szCell[r] + 2;
7346       cntNew[i-1] = r;
7347       r--;
7348       d--;
7349     }while( r>=0 );
7350     szNew[i] = szRight;
7351     szNew[i-1] = szLeft;
7352     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7353       rc = SQLITE_CORRUPT_BKPT;
7354       goto balance_cleanup;
7355     }
7356   }
7357 
7358   /* Sanity check:  For a non-corrupt database file one of the follwing
7359   ** must be true:
7360   **    (1) We found one or more cells (cntNew[0])>0), or
7361   **    (2) pPage is a virtual root page.  A virtual root page is when
7362   **        the real root page is page 1 and we are the only child of
7363   **        that page.
7364   */
7365   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7366   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7367     apOld[0]->pgno, apOld[0]->nCell,
7368     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7369     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7370   ));
7371 
7372   /*
7373   ** Allocate k new pages.  Reuse old pages where possible.
7374   */
7375   pageFlags = apOld[0]->aData[0];
7376   for(i=0; i<k; i++){
7377     MemPage *pNew;
7378     if( i<nOld ){
7379       pNew = apNew[i] = apOld[i];
7380       apOld[i] = 0;
7381       rc = sqlite3PagerWrite(pNew->pDbPage);
7382       nNew++;
7383       if( rc ) goto balance_cleanup;
7384     }else{
7385       assert( i>0 );
7386       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7387       if( rc ) goto balance_cleanup;
7388       zeroPage(pNew, pageFlags);
7389       apNew[i] = pNew;
7390       nNew++;
7391       cntOld[i] = b.nCell;
7392 
7393       /* Set the pointer-map entry for the new sibling page. */
7394       if( ISAUTOVACUUM ){
7395         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7396         if( rc!=SQLITE_OK ){
7397           goto balance_cleanup;
7398         }
7399       }
7400     }
7401   }
7402 
7403   /*
7404   ** Reassign page numbers so that the new pages are in ascending order.
7405   ** This helps to keep entries in the disk file in order so that a scan
7406   ** of the table is closer to a linear scan through the file. That in turn
7407   ** helps the operating system to deliver pages from the disk more rapidly.
7408   **
7409   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7410   ** than (NB+2) (a small constant), that should not be a problem.
7411   **
7412   ** When NB==3, this one optimization makes the database about 25% faster
7413   ** for large insertions and deletions.
7414   */
7415   for(i=0; i<nNew; i++){
7416     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7417     aPgFlags[i] = apNew[i]->pDbPage->flags;
7418     for(j=0; j<i; j++){
7419       if( aPgno[j]==aPgno[i] ){
7420         /* This branch is taken if the set of sibling pages somehow contains
7421         ** duplicate entries. This can happen if the database is corrupt.
7422         ** It would be simpler to detect this as part of the loop below, but
7423         ** we do the detection here in order to avoid populating the pager
7424         ** cache with two separate objects associated with the same
7425         ** page number.  */
7426         assert( CORRUPT_DB );
7427         rc = SQLITE_CORRUPT_BKPT;
7428         goto balance_cleanup;
7429       }
7430     }
7431   }
7432   for(i=0; i<nNew; i++){
7433     int iBest = 0;                /* aPgno[] index of page number to use */
7434     for(j=1; j<nNew; j++){
7435       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7436     }
7437     pgno = aPgOrder[iBest];
7438     aPgOrder[iBest] = 0xffffffff;
7439     if( iBest!=i ){
7440       if( iBest>i ){
7441         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7442       }
7443       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7444       apNew[i]->pgno = pgno;
7445     }
7446   }
7447 
7448   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7449          "%d(%d nc=%d) %d(%d nc=%d)\n",
7450     apNew[0]->pgno, szNew[0], cntNew[0],
7451     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7452     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7453     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7454     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7455     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7456     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7457     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7458     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7459   ));
7460 
7461   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7462   put4byte(pRight, apNew[nNew-1]->pgno);
7463 
7464   /* If the sibling pages are not leaves, ensure that the right-child pointer
7465   ** of the right-most new sibling page is set to the value that was
7466   ** originally in the same field of the right-most old sibling page. */
7467   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7468     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7469     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7470   }
7471 
7472   /* Make any required updates to pointer map entries associated with
7473   ** cells stored on sibling pages following the balance operation. Pointer
7474   ** map entries associated with divider cells are set by the insertCell()
7475   ** routine. The associated pointer map entries are:
7476   **
7477   **   a) if the cell contains a reference to an overflow chain, the
7478   **      entry associated with the first page in the overflow chain, and
7479   **
7480   **   b) if the sibling pages are not leaves, the child page associated
7481   **      with the cell.
7482   **
7483   ** If the sibling pages are not leaves, then the pointer map entry
7484   ** associated with the right-child of each sibling may also need to be
7485   ** updated. This happens below, after the sibling pages have been
7486   ** populated, not here.
7487   */
7488   if( ISAUTOVACUUM ){
7489     MemPage *pNew = apNew[0];
7490     u8 *aOld = pNew->aData;
7491     int cntOldNext = pNew->nCell + pNew->nOverflow;
7492     int usableSize = pBt->usableSize;
7493     int iNew = 0;
7494     int iOld = 0;
7495 
7496     for(i=0; i<b.nCell; i++){
7497       u8 *pCell = b.apCell[i];
7498       if( i==cntOldNext ){
7499         MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7500         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7501         aOld = pOld->aData;
7502       }
7503       if( i==cntNew[iNew] ){
7504         pNew = apNew[++iNew];
7505         if( !leafData ) continue;
7506       }
7507 
7508       /* Cell pCell is destined for new sibling page pNew. Originally, it
7509       ** was either part of sibling page iOld (possibly an overflow cell),
7510       ** or else the divider cell to the left of sibling page iOld. So,
7511       ** if sibling page iOld had the same page number as pNew, and if
7512       ** pCell really was a part of sibling page iOld (not a divider or
7513       ** overflow cell), we can skip updating the pointer map entries.  */
7514       if( iOld>=nNew
7515        || pNew->pgno!=aPgno[iOld]
7516        || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
7517       ){
7518         if( !leafCorrection ){
7519           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7520         }
7521         if( cachedCellSize(&b,i)>pNew->minLocal ){
7522           ptrmapPutOvflPtr(pNew, pCell, &rc);
7523         }
7524         if( rc ) goto balance_cleanup;
7525       }
7526     }
7527   }
7528 
7529   /* Insert new divider cells into pParent. */
7530   for(i=0; i<nNew-1; i++){
7531     u8 *pCell;
7532     u8 *pTemp;
7533     int sz;
7534     MemPage *pNew = apNew[i];
7535     j = cntNew[i];
7536 
7537     assert( j<nMaxCells );
7538     assert( b.apCell[j]!=0 );
7539     pCell = b.apCell[j];
7540     sz = b.szCell[j] + leafCorrection;
7541     pTemp = &aOvflSpace[iOvflSpace];
7542     if( !pNew->leaf ){
7543       memcpy(&pNew->aData[8], pCell, 4);
7544     }else if( leafData ){
7545       /* If the tree is a leaf-data tree, and the siblings are leaves,
7546       ** then there is no divider cell in b.apCell[]. Instead, the divider
7547       ** cell consists of the integer key for the right-most cell of
7548       ** the sibling-page assembled above only.
7549       */
7550       CellInfo info;
7551       j--;
7552       pNew->xParseCell(pNew, b.apCell[j], &info);
7553       pCell = pTemp;
7554       sz = 4 + putVarint(&pCell[4], info.nKey);
7555       pTemp = 0;
7556     }else{
7557       pCell -= 4;
7558       /* Obscure case for non-leaf-data trees: If the cell at pCell was
7559       ** previously stored on a leaf node, and its reported size was 4
7560       ** bytes, then it may actually be smaller than this
7561       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7562       ** any cell). But it is important to pass the correct size to
7563       ** insertCell(), so reparse the cell now.
7564       **
7565       ** Note that this can never happen in an SQLite data file, as all
7566       ** cells are at least 4 bytes. It only happens in b-trees used
7567       ** to evaluate "IN (SELECT ...)" and similar clauses.
7568       */
7569       if( b.szCell[j]==4 ){
7570         assert(leafCorrection==4);
7571         sz = pParent->xCellSize(pParent, pCell);
7572       }
7573     }
7574     iOvflSpace += sz;
7575     assert( sz<=pBt->maxLocal+23 );
7576     assert( iOvflSpace <= (int)pBt->pageSize );
7577     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7578     if( rc!=SQLITE_OK ) goto balance_cleanup;
7579     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7580   }
7581 
7582   /* Now update the actual sibling pages. The order in which they are updated
7583   ** is important, as this code needs to avoid disrupting any page from which
7584   ** cells may still to be read. In practice, this means:
7585   **
7586   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7587   **      then it is not safe to update page apNew[iPg] until after
7588   **      the left-hand sibling apNew[iPg-1] has been updated.
7589   **
7590   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7591   **      then it is not safe to update page apNew[iPg] until after
7592   **      the right-hand sibling apNew[iPg+1] has been updated.
7593   **
7594   ** If neither of the above apply, the page is safe to update.
7595   **
7596   ** The iPg value in the following loop starts at nNew-1 goes down
7597   ** to 0, then back up to nNew-1 again, thus making two passes over
7598   ** the pages.  On the initial downward pass, only condition (1) above
7599   ** needs to be tested because (2) will always be true from the previous
7600   ** step.  On the upward pass, both conditions are always true, so the
7601   ** upwards pass simply processes pages that were missed on the downward
7602   ** pass.
7603   */
7604   for(i=1-nNew; i<nNew; i++){
7605     int iPg = i<0 ? -i : i;
7606     assert( iPg>=0 && iPg<nNew );
7607     if( abDone[iPg] ) continue;         /* Skip pages already processed */
7608     if( i>=0                            /* On the upwards pass, or... */
7609      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
7610     ){
7611       int iNew;
7612       int iOld;
7613       int nNewCell;
7614 
7615       /* Verify condition (1):  If cells are moving left, update iPg
7616       ** only after iPg-1 has already been updated. */
7617       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7618 
7619       /* Verify condition (2):  If cells are moving right, update iPg
7620       ** only after iPg+1 has already been updated. */
7621       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7622 
7623       if( iPg==0 ){
7624         iNew = iOld = 0;
7625         nNewCell = cntNew[0];
7626       }else{
7627         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
7628         iNew = cntNew[iPg-1] + !leafData;
7629         nNewCell = cntNew[iPg] - iNew;
7630       }
7631 
7632       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
7633       if( rc ) goto balance_cleanup;
7634       abDone[iPg]++;
7635       apNew[iPg]->nFree = usableSpace-szNew[iPg];
7636       assert( apNew[iPg]->nOverflow==0 );
7637       assert( apNew[iPg]->nCell==nNewCell );
7638     }
7639   }
7640 
7641   /* All pages have been processed exactly once */
7642   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7643 
7644   assert( nOld>0 );
7645   assert( nNew>0 );
7646 
7647   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7648     /* The root page of the b-tree now contains no cells. The only sibling
7649     ** page is the right-child of the parent. Copy the contents of the
7650     ** child page into the parent, decreasing the overall height of the
7651     ** b-tree structure by one. This is described as the "balance-shallower"
7652     ** sub-algorithm in some documentation.
7653     **
7654     ** If this is an auto-vacuum database, the call to copyNodeContent()
7655     ** sets all pointer-map entries corresponding to database image pages
7656     ** for which the pointer is stored within the content being copied.
7657     **
7658     ** It is critical that the child page be defragmented before being
7659     ** copied into the parent, because if the parent is page 1 then it will
7660     ** by smaller than the child due to the database header, and so all the
7661     ** free space needs to be up front.
7662     */
7663     assert( nNew==1 || CORRUPT_DB );
7664     rc = defragmentPage(apNew[0]);
7665     testcase( rc!=SQLITE_OK );
7666     assert( apNew[0]->nFree ==
7667         (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7668       || rc!=SQLITE_OK
7669     );
7670     copyNodeContent(apNew[0], pParent, &rc);
7671     freePage(apNew[0], &rc);
7672   }else if( ISAUTOVACUUM && !leafCorrection ){
7673     /* Fix the pointer map entries associated with the right-child of each
7674     ** sibling page. All other pointer map entries have already been taken
7675     ** care of.  */
7676     for(i=0; i<nNew; i++){
7677       u32 key = get4byte(&apNew[i]->aData[8]);
7678       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
7679     }
7680   }
7681 
7682   assert( pParent->isInit );
7683   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7684           nOld, nNew, b.nCell));
7685 
7686   /* Free any old pages that were not reused as new pages.
7687   */
7688   for(i=nNew; i<nOld; i++){
7689     freePage(apOld[i], &rc);
7690   }
7691 
7692 #if 0
7693   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
7694     /* The ptrmapCheckPages() contains assert() statements that verify that
7695     ** all pointer map pages are set correctly. This is helpful while
7696     ** debugging. This is usually disabled because a corrupt database may
7697     ** cause an assert() statement to fail.  */
7698     ptrmapCheckPages(apNew, nNew);
7699     ptrmapCheckPages(&pParent, 1);
7700   }
7701 #endif
7702 
7703   /*
7704   ** Cleanup before returning.
7705   */
7706 balance_cleanup:
7707   sqlite3ScratchFree(b.apCell);
7708   for(i=0; i<nOld; i++){
7709     releasePage(apOld[i]);
7710   }
7711   for(i=0; i<nNew; i++){
7712     releasePage(apNew[i]);
7713   }
7714 
7715   return rc;
7716 }
7717 
7718 
7719 /*
7720 ** This function is called when the root page of a b-tree structure is
7721 ** overfull (has one or more overflow pages).
7722 **
7723 ** A new child page is allocated and the contents of the current root
7724 ** page, including overflow cells, are copied into the child. The root
7725 ** page is then overwritten to make it an empty page with the right-child
7726 ** pointer pointing to the new page.
7727 **
7728 ** Before returning, all pointer-map entries corresponding to pages
7729 ** that the new child-page now contains pointers to are updated. The
7730 ** entry corresponding to the new right-child pointer of the root
7731 ** page is also updated.
7732 **
7733 ** If successful, *ppChild is set to contain a reference to the child
7734 ** page and SQLITE_OK is returned. In this case the caller is required
7735 ** to call releasePage() on *ppChild exactly once. If an error occurs,
7736 ** an error code is returned and *ppChild is set to 0.
7737 */
7738 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7739   int rc;                        /* Return value from subprocedures */
7740   MemPage *pChild = 0;           /* Pointer to a new child page */
7741   Pgno pgnoChild = 0;            /* Page number of the new child page */
7742   BtShared *pBt = pRoot->pBt;    /* The BTree */
7743 
7744   assert( pRoot->nOverflow>0 );
7745   assert( sqlite3_mutex_held(pBt->mutex) );
7746 
7747   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7748   ** page that will become the new right-child of pPage. Copy the contents
7749   ** of the node stored on pRoot into the new child page.
7750   */
7751   rc = sqlite3PagerWrite(pRoot->pDbPage);
7752   if( rc==SQLITE_OK ){
7753     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
7754     copyNodeContent(pRoot, pChild, &rc);
7755     if( ISAUTOVACUUM ){
7756       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
7757     }
7758   }
7759   if( rc ){
7760     *ppChild = 0;
7761     releasePage(pChild);
7762     return rc;
7763   }
7764   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7765   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7766   assert( pChild->nCell==pRoot->nCell );
7767 
7768   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7769 
7770   /* Copy the overflow cells from pRoot to pChild */
7771   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7772          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7773   memcpy(pChild->apOvfl, pRoot->apOvfl,
7774          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
7775   pChild->nOverflow = pRoot->nOverflow;
7776 
7777   /* Zero the contents of pRoot. Then install pChild as the right-child. */
7778   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7779   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7780 
7781   *ppChild = pChild;
7782   return SQLITE_OK;
7783 }
7784 
7785 /*
7786 ** The page that pCur currently points to has just been modified in
7787 ** some way. This function figures out if this modification means the
7788 ** tree needs to be balanced, and if so calls the appropriate balancing
7789 ** routine. Balancing routines are:
7790 **
7791 **   balance_quick()
7792 **   balance_deeper()
7793 **   balance_nonroot()
7794 */
7795 static int balance(BtCursor *pCur){
7796   int rc = SQLITE_OK;
7797   const int nMin = pCur->pBt->usableSize * 2 / 3;
7798   u8 aBalanceQuickSpace[13];
7799   u8 *pFree = 0;
7800 
7801   TESTONLY( int balance_quick_called = 0 );
7802   TESTONLY( int balance_deeper_called = 0 );
7803 
7804   do {
7805     int iPage = pCur->iPage;
7806     MemPage *pPage = pCur->apPage[iPage];
7807 
7808     if( iPage==0 ){
7809       if( pPage->nOverflow ){
7810         /* The root page of the b-tree is overfull. In this case call the
7811         ** balance_deeper() function to create a new child for the root-page
7812         ** and copy the current contents of the root-page to it. The
7813         ** next iteration of the do-loop will balance the child page.
7814         */
7815         assert( (balance_deeper_called++)==0 );
7816         rc = balance_deeper(pPage, &pCur->apPage[1]);
7817         if( rc==SQLITE_OK ){
7818           pCur->iPage = 1;
7819           pCur->aiIdx[0] = 0;
7820           pCur->aiIdx[1] = 0;
7821           assert( pCur->apPage[1]->nOverflow );
7822         }
7823       }else{
7824         break;
7825       }
7826     }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7827       break;
7828     }else{
7829       MemPage * const pParent = pCur->apPage[iPage-1];
7830       int const iIdx = pCur->aiIdx[iPage-1];
7831 
7832       rc = sqlite3PagerWrite(pParent->pDbPage);
7833       if( rc==SQLITE_OK ){
7834 #ifndef SQLITE_OMIT_QUICKBALANCE
7835         if( pPage->intKeyLeaf
7836          && pPage->nOverflow==1
7837          && pPage->aiOvfl[0]==pPage->nCell
7838          && pParent->pgno!=1
7839          && pParent->nCell==iIdx
7840         ){
7841           /* Call balance_quick() to create a new sibling of pPage on which
7842           ** to store the overflow cell. balance_quick() inserts a new cell
7843           ** into pParent, which may cause pParent overflow. If this
7844           ** happens, the next iteration of the do-loop will balance pParent
7845           ** use either balance_nonroot() or balance_deeper(). Until this
7846           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7847           ** buffer.
7848           **
7849           ** The purpose of the following assert() is to check that only a
7850           ** single call to balance_quick() is made for each call to this
7851           ** function. If this were not verified, a subtle bug involving reuse
7852           ** of the aBalanceQuickSpace[] might sneak in.
7853           */
7854           assert( (balance_quick_called++)==0 );
7855           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7856         }else
7857 #endif
7858         {
7859           /* In this case, call balance_nonroot() to redistribute cells
7860           ** between pPage and up to 2 of its sibling pages. This involves
7861           ** modifying the contents of pParent, which may cause pParent to
7862           ** become overfull or underfull. The next iteration of the do-loop
7863           ** will balance the parent page to correct this.
7864           **
7865           ** If the parent page becomes overfull, the overflow cell or cells
7866           ** are stored in the pSpace buffer allocated immediately below.
7867           ** A subsequent iteration of the do-loop will deal with this by
7868           ** calling balance_nonroot() (balance_deeper() may be called first,
7869           ** but it doesn't deal with overflow cells - just moves them to a
7870           ** different page). Once this subsequent call to balance_nonroot()
7871           ** has completed, it is safe to release the pSpace buffer used by
7872           ** the previous call, as the overflow cell data will have been
7873           ** copied either into the body of a database page or into the new
7874           ** pSpace buffer passed to the latter call to balance_nonroot().
7875           */
7876           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
7877           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7878                                pCur->hints&BTREE_BULKLOAD);
7879           if( pFree ){
7880             /* If pFree is not NULL, it points to the pSpace buffer used
7881             ** by a previous call to balance_nonroot(). Its contents are
7882             ** now stored either on real database pages or within the
7883             ** new pSpace buffer, so it may be safely freed here. */
7884             sqlite3PageFree(pFree);
7885           }
7886 
7887           /* The pSpace buffer will be freed after the next call to
7888           ** balance_nonroot(), or just before this function returns, whichever
7889           ** comes first. */
7890           pFree = pSpace;
7891         }
7892       }
7893 
7894       pPage->nOverflow = 0;
7895 
7896       /* The next iteration of the do-loop balances the parent page. */
7897       releasePage(pPage);
7898       pCur->iPage--;
7899       assert( pCur->iPage>=0 );
7900     }
7901   }while( rc==SQLITE_OK );
7902 
7903   if( pFree ){
7904     sqlite3PageFree(pFree);
7905   }
7906   return rc;
7907 }
7908 
7909 
7910 /*
7911 ** Insert a new record into the BTree.  The key is given by (pKey,nKey)
7912 ** and the data is given by (pData,nData).  The cursor is used only to
7913 ** define what table the record should be inserted into.  The cursor
7914 ** is left pointing at a random location.
7915 **
7916 ** For an INTKEY table, only the nKey value of the key is used.  pKey is
7917 ** ignored.  For a ZERODATA table, the pData and nData are both ignored.
7918 **
7919 ** If the seekResult parameter is non-zero, then a successful call to
7920 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
7921 ** been performed. seekResult is the search result returned (a negative
7922 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
7923 ** a positive value if pCur points at an entry that is larger than
7924 ** (pKey, nKey)).
7925 **
7926 ** If the seekResult parameter is non-zero, then the caller guarantees that
7927 ** cursor pCur is pointing at the existing copy of a row that is to be
7928 ** overwritten.  If the seekResult parameter is 0, then cursor pCur may
7929 ** point to any entry or to no entry at all and so this function has to seek
7930 ** the cursor before the new key can be inserted.
7931 */
7932 int sqlite3BtreeInsert(
7933   BtCursor *pCur,                /* Insert data into the table of this cursor */
7934   const void *pKey, i64 nKey,    /* The key of the new record */
7935   const void *pData, int nData,  /* The data of the new record */
7936   int nZero,                     /* Number of extra 0 bytes to append to data */
7937   int appendBias,                /* True if this is likely an append */
7938   int seekResult                 /* Result of prior MovetoUnpacked() call */
7939 ){
7940   int rc;
7941   int loc = seekResult;          /* -1: before desired location  +1: after */
7942   int szNew = 0;
7943   int idx;
7944   MemPage *pPage;
7945   Btree *p = pCur->pBtree;
7946   BtShared *pBt = p->pBt;
7947   unsigned char *oldCell;
7948   unsigned char *newCell = 0;
7949 
7950   if( pCur->eState==CURSOR_FAULT ){
7951     assert( pCur->skipNext!=SQLITE_OK );
7952     return pCur->skipNext;
7953   }
7954 
7955   assert( cursorOwnsBtShared(pCur) );
7956   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7957               && pBt->inTransaction==TRANS_WRITE
7958               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
7959   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7960 
7961   /* Assert that the caller has been consistent. If this cursor was opened
7962   ** expecting an index b-tree, then the caller should be inserting blob
7963   ** keys with no associated data. If the cursor was opened expecting an
7964   ** intkey table, the caller should be inserting integer keys with a
7965   ** blob of associated data.  */
7966   assert( (pKey==0)==(pCur->pKeyInfo==0) );
7967 
7968   /* Save the positions of any other cursors open on this table.
7969   **
7970   ** In some cases, the call to btreeMoveto() below is a no-op. For
7971   ** example, when inserting data into a table with auto-generated integer
7972   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7973   ** integer key to use. It then calls this function to actually insert the
7974   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
7975   ** that the cursor is already where it needs to be and returns without
7976   ** doing any work. To avoid thwarting these optimizations, it is important
7977   ** not to clear the cursor here.
7978   */
7979   if( pCur->curFlags & BTCF_Multiple ){
7980     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7981     if( rc ) return rc;
7982   }
7983 
7984   if( pCur->pKeyInfo==0 ){
7985     assert( pKey==0 );
7986     /* If this is an insert into a table b-tree, invalidate any incrblob
7987     ** cursors open on the row being replaced */
7988     invalidateIncrblobCursors(p, nKey, 0);
7989 
7990     /* If the cursor is currently on the last row and we are appending a
7991     ** new row onto the end, set the "loc" to avoid an unnecessary
7992     ** btreeMoveto() call */
7993     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7994       && pCur->info.nKey==nKey-1 ){
7995        loc = -1;
7996     }else if( loc==0 ){
7997       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
7998       if( rc ) return rc;
7999     }
8000   }else if( loc==0 ){
8001     rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
8002     if( rc ) return rc;
8003   }
8004   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8005 
8006   pPage = pCur->apPage[pCur->iPage];
8007   assert( pPage->intKey || nKey>=0 );
8008   assert( pPage->leaf || !pPage->intKey );
8009 
8010   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8011           pCur->pgnoRoot, nKey, nData, pPage->pgno,
8012           loc==0 ? "overwrite" : "new entry"));
8013   assert( pPage->isInit );
8014   newCell = pBt->pTmpSpace;
8015   assert( newCell!=0 );
8016   rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
8017   if( rc ) goto end_insert;
8018   assert( szNew==pPage->xCellSize(pPage, newCell) );
8019   assert( szNew <= MX_CELL_SIZE(pBt) );
8020   idx = pCur->aiIdx[pCur->iPage];
8021   if( loc==0 ){
8022     u16 szOld;
8023     assert( idx<pPage->nCell );
8024     rc = sqlite3PagerWrite(pPage->pDbPage);
8025     if( rc ){
8026       goto end_insert;
8027     }
8028     oldCell = findCell(pPage, idx);
8029     if( !pPage->leaf ){
8030       memcpy(newCell, oldCell, 4);
8031     }
8032     rc = clearCell(pPage, oldCell, &szOld);
8033     dropCell(pPage, idx, szOld, &rc);
8034     if( rc ) goto end_insert;
8035   }else if( loc<0 && pPage->nCell>0 ){
8036     assert( pPage->leaf );
8037     idx = ++pCur->aiIdx[pCur->iPage];
8038   }else{
8039     assert( pPage->leaf );
8040   }
8041   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8042   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8043 
8044   /* If no error has occurred and pPage has an overflow cell, call balance()
8045   ** to redistribute the cells within the tree. Since balance() may move
8046   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8047   ** variables.
8048   **
8049   ** Previous versions of SQLite called moveToRoot() to move the cursor
8050   ** back to the root page as balance() used to invalidate the contents
8051   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8052   ** set the cursor state to "invalid". This makes common insert operations
8053   ** slightly faster.
8054   **
8055   ** There is a subtle but important optimization here too. When inserting
8056   ** multiple records into an intkey b-tree using a single cursor (as can
8057   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8058   ** is advantageous to leave the cursor pointing to the last entry in
8059   ** the b-tree if possible. If the cursor is left pointing to the last
8060   ** entry in the table, and the next row inserted has an integer key
8061   ** larger than the largest existing key, it is possible to insert the
8062   ** row without seeking the cursor. This can be a big performance boost.
8063   */
8064   pCur->info.nSize = 0;
8065   if( rc==SQLITE_OK && pPage->nOverflow ){
8066     pCur->curFlags &= ~(BTCF_ValidNKey);
8067     rc = balance(pCur);
8068 
8069     /* Must make sure nOverflow is reset to zero even if the balance()
8070     ** fails. Internal data structure corruption will result otherwise.
8071     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8072     ** from trying to save the current position of the cursor.  */
8073     pCur->apPage[pCur->iPage]->nOverflow = 0;
8074     pCur->eState = CURSOR_INVALID;
8075   }
8076   assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
8077 
8078 end_insert:
8079   return rc;
8080 }
8081 
8082 /*
8083 ** Delete the entry that the cursor is pointing to.
8084 **
8085 ** If the second parameter is zero, then the cursor is left pointing at an
8086 ** arbitrary location after the delete. If it is non-zero, then the cursor
8087 ** is left in a state such that the next call to BtreeNext() or BtreePrev()
8088 ** moves it to the same row as it would if the call to BtreeDelete() had
8089 ** been omitted.
8090 */
8091 int sqlite3BtreeDelete(BtCursor *pCur, int bPreserve){
8092   Btree *p = pCur->pBtree;
8093   BtShared *pBt = p->pBt;
8094   int rc;                              /* Return code */
8095   MemPage *pPage;                      /* Page to delete cell from */
8096   unsigned char *pCell;                /* Pointer to cell to delete */
8097   int iCellIdx;                        /* Index of cell to delete */
8098   int iCellDepth;                      /* Depth of node containing pCell */
8099   u16 szCell;                          /* Size of the cell being deleted */
8100   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8101 
8102   assert( cursorOwnsBtShared(pCur) );
8103   assert( pBt->inTransaction==TRANS_WRITE );
8104   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8105   assert( pCur->curFlags & BTCF_WriteFlag );
8106   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8107   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8108   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8109   assert( pCur->eState==CURSOR_VALID );
8110 
8111   iCellDepth = pCur->iPage;
8112   iCellIdx = pCur->aiIdx[iCellDepth];
8113   pPage = pCur->apPage[iCellDepth];
8114   pCell = findCell(pPage, iCellIdx);
8115 
8116   /* If the page containing the entry to delete is not a leaf page, move
8117   ** the cursor to the largest entry in the tree that is smaller than
8118   ** the entry being deleted. This cell will replace the cell being deleted
8119   ** from the internal node. The 'previous' entry is used for this instead
8120   ** of the 'next' entry, as the previous entry is always a part of the
8121   ** sub-tree headed by the child page of the cell being deleted. This makes
8122   ** balancing the tree following the delete operation easier.  */
8123   if( !pPage->leaf ){
8124     int notUsed = 0;
8125     rc = sqlite3BtreePrevious(pCur, &notUsed);
8126     if( rc ) return rc;
8127   }
8128 
8129   /* Save the positions of any other cursors open on this table before
8130   ** making any modifications.  */
8131   if( pCur->curFlags & BTCF_Multiple ){
8132     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8133     if( rc ) return rc;
8134   }
8135 
8136   /* If this is a delete operation to remove a row from a table b-tree,
8137   ** invalidate any incrblob cursors open on the row being deleted.  */
8138   if( pCur->pKeyInfo==0 ){
8139     invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8140   }
8141 
8142   /* If the bPreserve flag is set to true, then the cursor position must
8143   ** be preserved following this delete operation. If the current delete
8144   ** will cause a b-tree rebalance, then this is done by saving the cursor
8145   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8146   ** returning.
8147   **
8148   ** Or, if the current delete will not cause a rebalance, then the cursor
8149   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8150   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8151   if( bPreserve ){
8152     if( !pPage->leaf
8153      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8154     ){
8155       /* A b-tree rebalance will be required after deleting this entry.
8156       ** Save the cursor key.  */
8157       rc = saveCursorKey(pCur);
8158       if( rc ) return rc;
8159     }else{
8160       bSkipnext = 1;
8161     }
8162   }
8163 
8164   /* Make the page containing the entry to be deleted writable. Then free any
8165   ** overflow pages associated with the entry and finally remove the cell
8166   ** itself from within the page.  */
8167   rc = sqlite3PagerWrite(pPage->pDbPage);
8168   if( rc ) return rc;
8169   rc = clearCell(pPage, pCell, &szCell);
8170   dropCell(pPage, iCellIdx, szCell, &rc);
8171   if( rc ) return rc;
8172 
8173   /* If the cell deleted was not located on a leaf page, then the cursor
8174   ** is currently pointing to the largest entry in the sub-tree headed
8175   ** by the child-page of the cell that was just deleted from an internal
8176   ** node. The cell from the leaf node needs to be moved to the internal
8177   ** node to replace the deleted cell.  */
8178   if( !pPage->leaf ){
8179     MemPage *pLeaf = pCur->apPage[pCur->iPage];
8180     int nCell;
8181     Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8182     unsigned char *pTmp;
8183 
8184     pCell = findCell(pLeaf, pLeaf->nCell-1);
8185     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8186     nCell = pLeaf->xCellSize(pLeaf, pCell);
8187     assert( MX_CELL_SIZE(pBt) >= nCell );
8188     pTmp = pBt->pTmpSpace;
8189     assert( pTmp!=0 );
8190     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8191     insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8192     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8193     if( rc ) return rc;
8194   }
8195 
8196   /* Balance the tree. If the entry deleted was located on a leaf page,
8197   ** then the cursor still points to that page. In this case the first
8198   ** call to balance() repairs the tree, and the if(...) condition is
8199   ** never true.
8200   **
8201   ** Otherwise, if the entry deleted was on an internal node page, then
8202   ** pCur is pointing to the leaf page from which a cell was removed to
8203   ** replace the cell deleted from the internal node. This is slightly
8204   ** tricky as the leaf node may be underfull, and the internal node may
8205   ** be either under or overfull. In this case run the balancing algorithm
8206   ** on the leaf node first. If the balance proceeds far enough up the
8207   ** tree that we can be sure that any problem in the internal node has
8208   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8209   ** walk the cursor up the tree to the internal node and balance it as
8210   ** well.  */
8211   rc = balance(pCur);
8212   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8213     while( pCur->iPage>iCellDepth ){
8214       releasePage(pCur->apPage[pCur->iPage--]);
8215     }
8216     rc = balance(pCur);
8217   }
8218 
8219   if( rc==SQLITE_OK ){
8220     if( bSkipnext ){
8221       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8222       assert( pPage==pCur->apPage[pCur->iPage] );
8223       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8224       pCur->eState = CURSOR_SKIPNEXT;
8225       if( iCellIdx>=pPage->nCell ){
8226         pCur->skipNext = -1;
8227         pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8228       }else{
8229         pCur->skipNext = 1;
8230       }
8231     }else{
8232       rc = moveToRoot(pCur);
8233       if( bPreserve ){
8234         pCur->eState = CURSOR_REQUIRESEEK;
8235       }
8236     }
8237   }
8238   return rc;
8239 }
8240 
8241 /*
8242 ** Create a new BTree table.  Write into *piTable the page
8243 ** number for the root page of the new table.
8244 **
8245 ** The type of type is determined by the flags parameter.  Only the
8246 ** following values of flags are currently in use.  Other values for
8247 ** flags might not work:
8248 **
8249 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
8250 **     BTREE_ZERODATA                  Used for SQL indices
8251 */
8252 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
8253   BtShared *pBt = p->pBt;
8254   MemPage *pRoot;
8255   Pgno pgnoRoot;
8256   int rc;
8257   int ptfFlags;          /* Page-type flage for the root page of new table */
8258 
8259   assert( sqlite3BtreeHoldsMutex(p) );
8260   assert( pBt->inTransaction==TRANS_WRITE );
8261   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8262 
8263 #ifdef SQLITE_OMIT_AUTOVACUUM
8264   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8265   if( rc ){
8266     return rc;
8267   }
8268 #else
8269   if( pBt->autoVacuum ){
8270     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
8271     MemPage *pPageMove; /* The page to move to. */
8272 
8273     /* Creating a new table may probably require moving an existing database
8274     ** to make room for the new tables root page. In case this page turns
8275     ** out to be an overflow page, delete all overflow page-map caches
8276     ** held by open cursors.
8277     */
8278     invalidateAllOverflowCache(pBt);
8279 
8280     /* Read the value of meta[3] from the database to determine where the
8281     ** root page of the new table should go. meta[3] is the largest root-page
8282     ** created so far, so the new root-page is (meta[3]+1).
8283     */
8284     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
8285     pgnoRoot++;
8286 
8287     /* The new root-page may not be allocated on a pointer-map page, or the
8288     ** PENDING_BYTE page.
8289     */
8290     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
8291         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
8292       pgnoRoot++;
8293     }
8294     assert( pgnoRoot>=3 || CORRUPT_DB );
8295     testcase( pgnoRoot<3 );
8296 
8297     /* Allocate a page. The page that currently resides at pgnoRoot will
8298     ** be moved to the allocated page (unless the allocated page happens
8299     ** to reside at pgnoRoot).
8300     */
8301     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
8302     if( rc!=SQLITE_OK ){
8303       return rc;
8304     }
8305 
8306     if( pgnoMove!=pgnoRoot ){
8307       /* pgnoRoot is the page that will be used for the root-page of
8308       ** the new table (assuming an error did not occur). But we were
8309       ** allocated pgnoMove. If required (i.e. if it was not allocated
8310       ** by extending the file), the current page at position pgnoMove
8311       ** is already journaled.
8312       */
8313       u8 eType = 0;
8314       Pgno iPtrPage = 0;
8315 
8316       /* Save the positions of any open cursors. This is required in
8317       ** case they are holding a reference to an xFetch reference
8318       ** corresponding to page pgnoRoot.  */
8319       rc = saveAllCursors(pBt, 0, 0);
8320       releasePage(pPageMove);
8321       if( rc!=SQLITE_OK ){
8322         return rc;
8323       }
8324 
8325       /* Move the page currently at pgnoRoot to pgnoMove. */
8326       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8327       if( rc!=SQLITE_OK ){
8328         return rc;
8329       }
8330       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
8331       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8332         rc = SQLITE_CORRUPT_BKPT;
8333       }
8334       if( rc!=SQLITE_OK ){
8335         releasePage(pRoot);
8336         return rc;
8337       }
8338       assert( eType!=PTRMAP_ROOTPAGE );
8339       assert( eType!=PTRMAP_FREEPAGE );
8340       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
8341       releasePage(pRoot);
8342 
8343       /* Obtain the page at pgnoRoot */
8344       if( rc!=SQLITE_OK ){
8345         return rc;
8346       }
8347       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8348       if( rc!=SQLITE_OK ){
8349         return rc;
8350       }
8351       rc = sqlite3PagerWrite(pRoot->pDbPage);
8352       if( rc!=SQLITE_OK ){
8353         releasePage(pRoot);
8354         return rc;
8355       }
8356     }else{
8357       pRoot = pPageMove;
8358     }
8359 
8360     /* Update the pointer-map and meta-data with the new root-page number. */
8361     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
8362     if( rc ){
8363       releasePage(pRoot);
8364       return rc;
8365     }
8366 
8367     /* When the new root page was allocated, page 1 was made writable in
8368     ** order either to increase the database filesize, or to decrement the
8369     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8370     */
8371     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
8372     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
8373     if( NEVER(rc) ){
8374       releasePage(pRoot);
8375       return rc;
8376     }
8377 
8378   }else{
8379     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8380     if( rc ) return rc;
8381   }
8382 #endif
8383   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8384   if( createTabFlags & BTREE_INTKEY ){
8385     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8386   }else{
8387     ptfFlags = PTF_ZERODATA | PTF_LEAF;
8388   }
8389   zeroPage(pRoot, ptfFlags);
8390   sqlite3PagerUnref(pRoot->pDbPage);
8391   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
8392   *piTable = (int)pgnoRoot;
8393   return SQLITE_OK;
8394 }
8395 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8396   int rc;
8397   sqlite3BtreeEnter(p);
8398   rc = btreeCreateTable(p, piTable, flags);
8399   sqlite3BtreeLeave(p);
8400   return rc;
8401 }
8402 
8403 /*
8404 ** Erase the given database page and all its children.  Return
8405 ** the page to the freelist.
8406 */
8407 static int clearDatabasePage(
8408   BtShared *pBt,           /* The BTree that contains the table */
8409   Pgno pgno,               /* Page number to clear */
8410   int freePageFlag,        /* Deallocate page if true */
8411   int *pnChange            /* Add number of Cells freed to this counter */
8412 ){
8413   MemPage *pPage;
8414   int rc;
8415   unsigned char *pCell;
8416   int i;
8417   int hdr;
8418   u16 szCell;
8419 
8420   assert( sqlite3_mutex_held(pBt->mutex) );
8421   if( pgno>btreePagecount(pBt) ){
8422     return SQLITE_CORRUPT_BKPT;
8423   }
8424   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
8425   if( rc ) return rc;
8426   if( pPage->bBusy ){
8427     rc = SQLITE_CORRUPT_BKPT;
8428     goto cleardatabasepage_out;
8429   }
8430   pPage->bBusy = 1;
8431   hdr = pPage->hdrOffset;
8432   for(i=0; i<pPage->nCell; i++){
8433     pCell = findCell(pPage, i);
8434     if( !pPage->leaf ){
8435       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
8436       if( rc ) goto cleardatabasepage_out;
8437     }
8438     rc = clearCell(pPage, pCell, &szCell);
8439     if( rc ) goto cleardatabasepage_out;
8440   }
8441   if( !pPage->leaf ){
8442     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
8443     if( rc ) goto cleardatabasepage_out;
8444   }else if( pnChange ){
8445     assert( pPage->intKey || CORRUPT_DB );
8446     testcase( !pPage->intKey );
8447     *pnChange += pPage->nCell;
8448   }
8449   if( freePageFlag ){
8450     freePage(pPage, &rc);
8451   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
8452     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
8453   }
8454 
8455 cleardatabasepage_out:
8456   pPage->bBusy = 0;
8457   releasePage(pPage);
8458   return rc;
8459 }
8460 
8461 /*
8462 ** Delete all information from a single table in the database.  iTable is
8463 ** the page number of the root of the table.  After this routine returns,
8464 ** the root page is empty, but still exists.
8465 **
8466 ** This routine will fail with SQLITE_LOCKED if there are any open
8467 ** read cursors on the table.  Open write cursors are moved to the
8468 ** root of the table.
8469 **
8470 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8471 ** integer value pointed to by pnChange is incremented by the number of
8472 ** entries in the table.
8473 */
8474 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
8475   int rc;
8476   BtShared *pBt = p->pBt;
8477   sqlite3BtreeEnter(p);
8478   assert( p->inTrans==TRANS_WRITE );
8479 
8480   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
8481 
8482   if( SQLITE_OK==rc ){
8483     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8484     ** is the root of a table b-tree - if it is not, the following call is
8485     ** a no-op).  */
8486     invalidateIncrblobCursors(p, 0, 1);
8487     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
8488   }
8489   sqlite3BtreeLeave(p);
8490   return rc;
8491 }
8492 
8493 /*
8494 ** Delete all information from the single table that pCur is open on.
8495 **
8496 ** This routine only work for pCur on an ephemeral table.
8497 */
8498 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8499   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8500 }
8501 
8502 /*
8503 ** Erase all information in a table and add the root of the table to
8504 ** the freelist.  Except, the root of the principle table (the one on
8505 ** page 1) is never added to the freelist.
8506 **
8507 ** This routine will fail with SQLITE_LOCKED if there are any open
8508 ** cursors on the table.
8509 **
8510 ** If AUTOVACUUM is enabled and the page at iTable is not the last
8511 ** root page in the database file, then the last root page
8512 ** in the database file is moved into the slot formerly occupied by
8513 ** iTable and that last slot formerly occupied by the last root page
8514 ** is added to the freelist instead of iTable.  In this say, all
8515 ** root pages are kept at the beginning of the database file, which
8516 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
8517 ** page number that used to be the last root page in the file before
8518 ** the move.  If no page gets moved, *piMoved is set to 0.
8519 ** The last root page is recorded in meta[3] and the value of
8520 ** meta[3] is updated by this procedure.
8521 */
8522 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
8523   int rc;
8524   MemPage *pPage = 0;
8525   BtShared *pBt = p->pBt;
8526 
8527   assert( sqlite3BtreeHoldsMutex(p) );
8528   assert( p->inTrans==TRANS_WRITE );
8529 
8530   /* It is illegal to drop a table if any cursors are open on the
8531   ** database. This is because in auto-vacuum mode the backend may
8532   ** need to move another root-page to fill a gap left by the deleted
8533   ** root page. If an open cursor was using this page a problem would
8534   ** occur.
8535   **
8536   ** This error is caught long before control reaches this point.
8537   */
8538   if( NEVER(pBt->pCursor) ){
8539     sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8540     return SQLITE_LOCKED_SHAREDCACHE;
8541   }
8542 
8543   /*
8544   ** It is illegal to drop the sqlite_master table on page 1.  But again,
8545   ** this error is caught long before reaching this point.
8546   */
8547   if( NEVER(iTable<2) ){
8548     return SQLITE_CORRUPT_BKPT;
8549   }
8550 
8551   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
8552   if( rc ) return rc;
8553   rc = sqlite3BtreeClearTable(p, iTable, 0);
8554   if( rc ){
8555     releasePage(pPage);
8556     return rc;
8557   }
8558 
8559   *piMoved = 0;
8560 
8561 #ifdef SQLITE_OMIT_AUTOVACUUM
8562   freePage(pPage, &rc);
8563   releasePage(pPage);
8564 #else
8565   if( pBt->autoVacuum ){
8566     Pgno maxRootPgno;
8567     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
8568 
8569     if( iTable==maxRootPgno ){
8570       /* If the table being dropped is the table with the largest root-page
8571       ** number in the database, put the root page on the free list.
8572       */
8573       freePage(pPage, &rc);
8574       releasePage(pPage);
8575       if( rc!=SQLITE_OK ){
8576         return rc;
8577       }
8578     }else{
8579       /* The table being dropped does not have the largest root-page
8580       ** number in the database. So move the page that does into the
8581       ** gap left by the deleted root-page.
8582       */
8583       MemPage *pMove;
8584       releasePage(pPage);
8585       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8586       if( rc!=SQLITE_OK ){
8587         return rc;
8588       }
8589       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8590       releasePage(pMove);
8591       if( rc!=SQLITE_OK ){
8592         return rc;
8593       }
8594       pMove = 0;
8595       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8596       freePage(pMove, &rc);
8597       releasePage(pMove);
8598       if( rc!=SQLITE_OK ){
8599         return rc;
8600       }
8601       *piMoved = maxRootPgno;
8602     }
8603 
8604     /* Set the new 'max-root-page' value in the database header. This
8605     ** is the old value less one, less one more if that happens to
8606     ** be a root-page number, less one again if that is the
8607     ** PENDING_BYTE_PAGE.
8608     */
8609     maxRootPgno--;
8610     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8611            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8612       maxRootPgno--;
8613     }
8614     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8615 
8616     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8617   }else{
8618     freePage(pPage, &rc);
8619     releasePage(pPage);
8620   }
8621 #endif
8622   return rc;
8623 }
8624 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8625   int rc;
8626   sqlite3BtreeEnter(p);
8627   rc = btreeDropTable(p, iTable, piMoved);
8628   sqlite3BtreeLeave(p);
8629   return rc;
8630 }
8631 
8632 
8633 /*
8634 ** This function may only be called if the b-tree connection already
8635 ** has a read or write transaction open on the database.
8636 **
8637 ** Read the meta-information out of a database file.  Meta[0]
8638 ** is the number of free pages currently in the database.  Meta[1]
8639 ** through meta[15] are available for use by higher layers.  Meta[0]
8640 ** is read-only, the others are read/write.
8641 **
8642 ** The schema layer numbers meta values differently.  At the schema
8643 ** layer (and the SetCookie and ReadCookie opcodes) the number of
8644 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
8645 **
8646 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
8647 ** of reading the value out of the header, it instead loads the "DataVersion"
8648 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
8649 ** database file.  It is a number computed by the pager.  But its access
8650 ** pattern is the same as header meta values, and so it is convenient to
8651 ** read it from this routine.
8652 */
8653 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
8654   BtShared *pBt = p->pBt;
8655 
8656   sqlite3BtreeEnter(p);
8657   assert( p->inTrans>TRANS_NONE );
8658   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
8659   assert( pBt->pPage1 );
8660   assert( idx>=0 && idx<=15 );
8661 
8662   if( idx==BTREE_DATA_VERSION ){
8663     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
8664   }else{
8665     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8666   }
8667 
8668   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8669   ** database, mark the database as read-only.  */
8670 #ifdef SQLITE_OMIT_AUTOVACUUM
8671   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8672     pBt->btsFlags |= BTS_READ_ONLY;
8673   }
8674 #endif
8675 
8676   sqlite3BtreeLeave(p);
8677 }
8678 
8679 /*
8680 ** Write meta-information back into the database.  Meta[0] is
8681 ** read-only and may not be written.
8682 */
8683 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8684   BtShared *pBt = p->pBt;
8685   unsigned char *pP1;
8686   int rc;
8687   assert( idx>=1 && idx<=15 );
8688   sqlite3BtreeEnter(p);
8689   assert( p->inTrans==TRANS_WRITE );
8690   assert( pBt->pPage1!=0 );
8691   pP1 = pBt->pPage1->aData;
8692   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8693   if( rc==SQLITE_OK ){
8694     put4byte(&pP1[36 + idx*4], iMeta);
8695 #ifndef SQLITE_OMIT_AUTOVACUUM
8696     if( idx==BTREE_INCR_VACUUM ){
8697       assert( pBt->autoVacuum || iMeta==0 );
8698       assert( iMeta==0 || iMeta==1 );
8699       pBt->incrVacuum = (u8)iMeta;
8700     }
8701 #endif
8702   }
8703   sqlite3BtreeLeave(p);
8704   return rc;
8705 }
8706 
8707 #ifndef SQLITE_OMIT_BTREECOUNT
8708 /*
8709 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
8710 ** number of entries in the b-tree and write the result to *pnEntry.
8711 **
8712 ** SQLITE_OK is returned if the operation is successfully executed.
8713 ** Otherwise, if an error is encountered (i.e. an IO error or database
8714 ** corruption) an SQLite error code is returned.
8715 */
8716 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8717   i64 nEntry = 0;                      /* Value to return in *pnEntry */
8718   int rc;                              /* Return code */
8719 
8720   if( pCur->pgnoRoot==0 ){
8721     *pnEntry = 0;
8722     return SQLITE_OK;
8723   }
8724   rc = moveToRoot(pCur);
8725 
8726   /* Unless an error occurs, the following loop runs one iteration for each
8727   ** page in the B-Tree structure (not including overflow pages).
8728   */
8729   while( rc==SQLITE_OK ){
8730     int iIdx;                          /* Index of child node in parent */
8731     MemPage *pPage;                    /* Current page of the b-tree */
8732 
8733     /* If this is a leaf page or the tree is not an int-key tree, then
8734     ** this page contains countable entries. Increment the entry counter
8735     ** accordingly.
8736     */
8737     pPage = pCur->apPage[pCur->iPage];
8738     if( pPage->leaf || !pPage->intKey ){
8739       nEntry += pPage->nCell;
8740     }
8741 
8742     /* pPage is a leaf node. This loop navigates the cursor so that it
8743     ** points to the first interior cell that it points to the parent of
8744     ** the next page in the tree that has not yet been visited. The
8745     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8746     ** of the page, or to the number of cells in the page if the next page
8747     ** to visit is the right-child of its parent.
8748     **
8749     ** If all pages in the tree have been visited, return SQLITE_OK to the
8750     ** caller.
8751     */
8752     if( pPage->leaf ){
8753       do {
8754         if( pCur->iPage==0 ){
8755           /* All pages of the b-tree have been visited. Return successfully. */
8756           *pnEntry = nEntry;
8757           return moveToRoot(pCur);
8758         }
8759         moveToParent(pCur);
8760       }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8761 
8762       pCur->aiIdx[pCur->iPage]++;
8763       pPage = pCur->apPage[pCur->iPage];
8764     }
8765 
8766     /* Descend to the child node of the cell that the cursor currently
8767     ** points at. This is the right-child if (iIdx==pPage->nCell).
8768     */
8769     iIdx = pCur->aiIdx[pCur->iPage];
8770     if( iIdx==pPage->nCell ){
8771       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8772     }else{
8773       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8774     }
8775   }
8776 
8777   /* An error has occurred. Return an error code. */
8778   return rc;
8779 }
8780 #endif
8781 
8782 /*
8783 ** Return the pager associated with a BTree.  This routine is used for
8784 ** testing and debugging only.
8785 */
8786 Pager *sqlite3BtreePager(Btree *p){
8787   return p->pBt->pPager;
8788 }
8789 
8790 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8791 /*
8792 ** Append a message to the error message string.
8793 */
8794 static void checkAppendMsg(
8795   IntegrityCk *pCheck,
8796   const char *zFormat,
8797   ...
8798 ){
8799   va_list ap;
8800   if( !pCheck->mxErr ) return;
8801   pCheck->mxErr--;
8802   pCheck->nErr++;
8803   va_start(ap, zFormat);
8804   if( pCheck->errMsg.nChar ){
8805     sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
8806   }
8807   if( pCheck->zPfx ){
8808     sqlite3XPrintf(&pCheck->errMsg, 0, pCheck->zPfx, pCheck->v1, pCheck->v2);
8809   }
8810   sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8811   va_end(ap);
8812   if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
8813     pCheck->mallocFailed = 1;
8814   }
8815 }
8816 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8817 
8818 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8819 
8820 /*
8821 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8822 ** corresponds to page iPg is already set.
8823 */
8824 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8825   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8826   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8827 }
8828 
8829 /*
8830 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8831 */
8832 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8833   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8834   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8835 }
8836 
8837 
8838 /*
8839 ** Add 1 to the reference count for page iPage.  If this is the second
8840 ** reference to the page, add an error message to pCheck->zErrMsg.
8841 ** Return 1 if there are 2 or more references to the page and 0 if
8842 ** if this is the first reference to the page.
8843 **
8844 ** Also check that the page number is in bounds.
8845 */
8846 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
8847   if( iPage==0 ) return 1;
8848   if( iPage>pCheck->nPage ){
8849     checkAppendMsg(pCheck, "invalid page number %d", iPage);
8850     return 1;
8851   }
8852   if( getPageReferenced(pCheck, iPage) ){
8853     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
8854     return 1;
8855   }
8856   setPageReferenced(pCheck, iPage);
8857   return 0;
8858 }
8859 
8860 #ifndef SQLITE_OMIT_AUTOVACUUM
8861 /*
8862 ** Check that the entry in the pointer-map for page iChild maps to
8863 ** page iParent, pointer type ptrType. If not, append an error message
8864 ** to pCheck.
8865 */
8866 static void checkPtrmap(
8867   IntegrityCk *pCheck,   /* Integrity check context */
8868   Pgno iChild,           /* Child page number */
8869   u8 eType,              /* Expected pointer map type */
8870   Pgno iParent           /* Expected pointer map parent page number */
8871 ){
8872   int rc;
8873   u8 ePtrmapType;
8874   Pgno iPtrmapParent;
8875 
8876   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8877   if( rc!=SQLITE_OK ){
8878     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
8879     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
8880     return;
8881   }
8882 
8883   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
8884     checkAppendMsg(pCheck,
8885       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8886       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8887   }
8888 }
8889 #endif
8890 
8891 /*
8892 ** Check the integrity of the freelist or of an overflow page list.
8893 ** Verify that the number of pages on the list is N.
8894 */
8895 static void checkList(
8896   IntegrityCk *pCheck,  /* Integrity checking context */
8897   int isFreeList,       /* True for a freelist.  False for overflow page list */
8898   int iPage,            /* Page number for first page in the list */
8899   int N                 /* Expected number of pages in the list */
8900 ){
8901   int i;
8902   int expected = N;
8903   int iFirst = iPage;
8904   while( N-- > 0 && pCheck->mxErr ){
8905     DbPage *pOvflPage;
8906     unsigned char *pOvflData;
8907     if( iPage<1 ){
8908       checkAppendMsg(pCheck,
8909          "%d of %d pages missing from overflow list starting at %d",
8910           N+1, expected, iFirst);
8911       break;
8912     }
8913     if( checkRef(pCheck, iPage) ) break;
8914     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
8915       checkAppendMsg(pCheck, "failed to get page %d", iPage);
8916       break;
8917     }
8918     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
8919     if( isFreeList ){
8920       int n = get4byte(&pOvflData[4]);
8921 #ifndef SQLITE_OMIT_AUTOVACUUM
8922       if( pCheck->pBt->autoVacuum ){
8923         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
8924       }
8925 #endif
8926       if( n>(int)pCheck->pBt->usableSize/4-2 ){
8927         checkAppendMsg(pCheck,
8928            "freelist leaf count too big on page %d", iPage);
8929         N--;
8930       }else{
8931         for(i=0; i<n; i++){
8932           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
8933 #ifndef SQLITE_OMIT_AUTOVACUUM
8934           if( pCheck->pBt->autoVacuum ){
8935             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
8936           }
8937 #endif
8938           checkRef(pCheck, iFreePage);
8939         }
8940         N -= n;
8941       }
8942     }
8943 #ifndef SQLITE_OMIT_AUTOVACUUM
8944     else{
8945       /* If this database supports auto-vacuum and iPage is not the last
8946       ** page in this overflow list, check that the pointer-map entry for
8947       ** the following page matches iPage.
8948       */
8949       if( pCheck->pBt->autoVacuum && N>0 ){
8950         i = get4byte(pOvflData);
8951         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
8952       }
8953     }
8954 #endif
8955     iPage = get4byte(pOvflData);
8956     sqlite3PagerUnref(pOvflPage);
8957 
8958     if( isFreeList && N<(iPage!=0) ){
8959       checkAppendMsg(pCheck, "free-page count in header is too small");
8960     }
8961   }
8962 }
8963 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8964 
8965 /*
8966 ** An implementation of a min-heap.
8967 **
8968 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
8969 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
8970 ** and aHeap[N*2+1].
8971 **
8972 ** The heap property is this:  Every node is less than or equal to both
8973 ** of its daughter nodes.  A consequence of the heap property is that the
8974 ** root node aHeap[1] is always the minimum value currently in the heap.
8975 **
8976 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8977 ** the heap, preserving the heap property.  The btreeHeapPull() routine
8978 ** removes the root element from the heap (the minimum value in the heap)
8979 ** and then moves other nodes around as necessary to preserve the heap
8980 ** property.
8981 **
8982 ** This heap is used for cell overlap and coverage testing.  Each u32
8983 ** entry represents the span of a cell or freeblock on a btree page.
8984 ** The upper 16 bits are the index of the first byte of a range and the
8985 ** lower 16 bits are the index of the last byte of that range.
8986 */
8987 static void btreeHeapInsert(u32 *aHeap, u32 x){
8988   u32 j, i = ++aHeap[0];
8989   aHeap[i] = x;
8990   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
8991     x = aHeap[j];
8992     aHeap[j] = aHeap[i];
8993     aHeap[i] = x;
8994     i = j;
8995   }
8996 }
8997 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
8998   u32 j, i, x;
8999   if( (x = aHeap[0])==0 ) return 0;
9000   *pOut = aHeap[1];
9001   aHeap[1] = aHeap[x];
9002   aHeap[x] = 0xffffffff;
9003   aHeap[0]--;
9004   i = 1;
9005   while( (j = i*2)<=aHeap[0] ){
9006     if( aHeap[j]>aHeap[j+1] ) j++;
9007     if( aHeap[i]<aHeap[j] ) break;
9008     x = aHeap[i];
9009     aHeap[i] = aHeap[j];
9010     aHeap[j] = x;
9011     i = j;
9012   }
9013   return 1;
9014 }
9015 
9016 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9017 /*
9018 ** Do various sanity checks on a single page of a tree.  Return
9019 ** the tree depth.  Root pages return 0.  Parents of root pages
9020 ** return 1, and so forth.
9021 **
9022 ** These checks are done:
9023 **
9024 **      1.  Make sure that cells and freeblocks do not overlap
9025 **          but combine to completely cover the page.
9026 **      2.  Make sure integer cell keys are in order.
9027 **      3.  Check the integrity of overflow pages.
9028 **      4.  Recursively call checkTreePage on all children.
9029 **      5.  Verify that the depth of all children is the same.
9030 */
9031 static int checkTreePage(
9032   IntegrityCk *pCheck,  /* Context for the sanity check */
9033   int iPage,            /* Page number of the page to check */
9034   i64 *piMinKey,        /* Write minimum integer primary key here */
9035   i64 maxKey            /* Error if integer primary key greater than this */
9036 ){
9037   MemPage *pPage = 0;      /* The page being analyzed */
9038   int i;                   /* Loop counter */
9039   int rc;                  /* Result code from subroutine call */
9040   int depth = -1, d2;      /* Depth of a subtree */
9041   int pgno;                /* Page number */
9042   int nFrag;               /* Number of fragmented bytes on the page */
9043   int hdr;                 /* Offset to the page header */
9044   int cellStart;           /* Offset to the start of the cell pointer array */
9045   int nCell;               /* Number of cells */
9046   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9047   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9048                            ** False if IPK must be strictly less than maxKey */
9049   u8 *data;                /* Page content */
9050   u8 *pCell;               /* Cell content */
9051   u8 *pCellIdx;            /* Next element of the cell pointer array */
9052   BtShared *pBt;           /* The BtShared object that owns pPage */
9053   u32 pc;                  /* Address of a cell */
9054   u32 usableSize;          /* Usable size of the page */
9055   u32 contentOffset;       /* Offset to the start of the cell content area */
9056   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9057   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9058   const char *saved_zPfx = pCheck->zPfx;
9059   int saved_v1 = pCheck->v1;
9060   int saved_v2 = pCheck->v2;
9061   u8 savedIsInit = 0;
9062 
9063   /* Check that the page exists
9064   */
9065   pBt = pCheck->pBt;
9066   usableSize = pBt->usableSize;
9067   if( iPage==0 ) return 0;
9068   if( checkRef(pCheck, iPage) ) return 0;
9069   pCheck->zPfx = "Page %d: ";
9070   pCheck->v1 = iPage;
9071   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9072     checkAppendMsg(pCheck,
9073        "unable to get the page. error code=%d", rc);
9074     goto end_of_check;
9075   }
9076 
9077   /* Clear MemPage.isInit to make sure the corruption detection code in
9078   ** btreeInitPage() is executed.  */
9079   savedIsInit = pPage->isInit;
9080   pPage->isInit = 0;
9081   if( (rc = btreeInitPage(pPage))!=0 ){
9082     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9083     checkAppendMsg(pCheck,
9084                    "btreeInitPage() returns error code %d", rc);
9085     goto end_of_check;
9086   }
9087   data = pPage->aData;
9088   hdr = pPage->hdrOffset;
9089 
9090   /* Set up for cell analysis */
9091   pCheck->zPfx = "On tree page %d cell %d: ";
9092   contentOffset = get2byteNotZero(&data[hdr+5]);
9093   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9094 
9095   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9096   ** number of cells on the page. */
9097   nCell = get2byte(&data[hdr+3]);
9098   assert( pPage->nCell==nCell );
9099 
9100   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9101   ** immediately follows the b-tree page header. */
9102   cellStart = hdr + 12 - 4*pPage->leaf;
9103   assert( pPage->aCellIdx==&data[cellStart] );
9104   pCellIdx = &data[cellStart + 2*(nCell-1)];
9105 
9106   if( !pPage->leaf ){
9107     /* Analyze the right-child page of internal pages */
9108     pgno = get4byte(&data[hdr+8]);
9109 #ifndef SQLITE_OMIT_AUTOVACUUM
9110     if( pBt->autoVacuum ){
9111       pCheck->zPfx = "On page %d at right child: ";
9112       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9113     }
9114 #endif
9115     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9116     keyCanBeEqual = 0;
9117   }else{
9118     /* For leaf pages, the coverage check will occur in the same loop
9119     ** as the other cell checks, so initialize the heap.  */
9120     heap = pCheck->heap;
9121     heap[0] = 0;
9122   }
9123 
9124   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9125   ** integer offsets to the cell contents. */
9126   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9127     CellInfo info;
9128 
9129     /* Check cell size */
9130     pCheck->v2 = i;
9131     assert( pCellIdx==&data[cellStart + i*2] );
9132     pc = get2byteAligned(pCellIdx);
9133     pCellIdx -= 2;
9134     if( pc<contentOffset || pc>usableSize-4 ){
9135       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9136                              pc, contentOffset, usableSize-4);
9137       doCoverageCheck = 0;
9138       continue;
9139     }
9140     pCell = &data[pc];
9141     pPage->xParseCell(pPage, pCell, &info);
9142     if( pc+info.nSize>usableSize ){
9143       checkAppendMsg(pCheck, "Extends off end of page");
9144       doCoverageCheck = 0;
9145       continue;
9146     }
9147 
9148     /* Check for integer primary key out of range */
9149     if( pPage->intKey ){
9150       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9151         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9152       }
9153       maxKey = info.nKey;
9154     }
9155 
9156     /* Check the content overflow list */
9157     if( info.nPayload>info.nLocal ){
9158       int nPage;       /* Number of pages on the overflow chain */
9159       Pgno pgnoOvfl;   /* First page of the overflow chain */
9160       assert( pc + info.nSize - 4 <= usableSize );
9161       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9162       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9163 #ifndef SQLITE_OMIT_AUTOVACUUM
9164       if( pBt->autoVacuum ){
9165         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9166       }
9167 #endif
9168       checkList(pCheck, 0, pgnoOvfl, nPage);
9169     }
9170 
9171     if( !pPage->leaf ){
9172       /* Check sanity of left child page for internal pages */
9173       pgno = get4byte(pCell);
9174 #ifndef SQLITE_OMIT_AUTOVACUUM
9175       if( pBt->autoVacuum ){
9176         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9177       }
9178 #endif
9179       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9180       keyCanBeEqual = 0;
9181       if( d2!=depth ){
9182         checkAppendMsg(pCheck, "Child page depth differs");
9183         depth = d2;
9184       }
9185     }else{
9186       /* Populate the coverage-checking heap for leaf pages */
9187       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9188     }
9189   }
9190   *piMinKey = maxKey;
9191 
9192   /* Check for complete coverage of the page
9193   */
9194   pCheck->zPfx = 0;
9195   if( doCoverageCheck && pCheck->mxErr>0 ){
9196     /* For leaf pages, the min-heap has already been initialized and the
9197     ** cells have already been inserted.  But for internal pages, that has
9198     ** not yet been done, so do it now */
9199     if( !pPage->leaf ){
9200       heap = pCheck->heap;
9201       heap[0] = 0;
9202       for(i=nCell-1; i>=0; i--){
9203         u32 size;
9204         pc = get2byteAligned(&data[cellStart+i*2]);
9205         size = pPage->xCellSize(pPage, &data[pc]);
9206         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9207       }
9208     }
9209     /* Add the freeblocks to the min-heap
9210     **
9211     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9212     ** is the offset of the first freeblock, or zero if there are no
9213     ** freeblocks on the page.
9214     */
9215     i = get2byte(&data[hdr+1]);
9216     while( i>0 ){
9217       int size, j;
9218       assert( (u32)i<=usableSize-4 );     /* Enforced by btreeInitPage() */
9219       size = get2byte(&data[i+2]);
9220       assert( (u32)(i+size)<=usableSize );  /* Enforced by btreeInitPage() */
9221       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9222       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9223       ** big-endian integer which is the offset in the b-tree page of the next
9224       ** freeblock in the chain, or zero if the freeblock is the last on the
9225       ** chain. */
9226       j = get2byte(&data[i]);
9227       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9228       ** increasing offset. */
9229       assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
9230       assert( (u32)j<=usableSize-4 );   /* Enforced by btreeInitPage() */
9231       i = j;
9232     }
9233     /* Analyze the min-heap looking for overlap between cells and/or
9234     ** freeblocks, and counting the number of untracked bytes in nFrag.
9235     **
9236     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
9237     ** There is an implied first entry the covers the page header, the cell
9238     ** pointer index, and the gap between the cell pointer index and the start
9239     ** of cell content.
9240     **
9241     ** The loop below pulls entries from the min-heap in order and compares
9242     ** the start_address against the previous end_address.  If there is an
9243     ** overlap, that means bytes are used multiple times.  If there is a gap,
9244     ** that gap is added to the fragmentation count.
9245     */
9246     nFrag = 0;
9247     prev = contentOffset - 1;   /* Implied first min-heap entry */
9248     while( btreeHeapPull(heap,&x) ){
9249       if( (prev&0xffff)>=(x>>16) ){
9250         checkAppendMsg(pCheck,
9251           "Multiple uses for byte %u of page %d", x>>16, iPage);
9252         break;
9253       }else{
9254         nFrag += (x>>16) - (prev&0xffff) - 1;
9255         prev = x;
9256       }
9257     }
9258     nFrag += usableSize - (prev&0xffff) - 1;
9259     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9260     ** is stored in the fifth field of the b-tree page header.
9261     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9262     ** number of fragmented free bytes within the cell content area.
9263     */
9264     if( heap[0]==0 && nFrag!=data[hdr+7] ){
9265       checkAppendMsg(pCheck,
9266           "Fragmentation of %d bytes reported as %d on page %d",
9267           nFrag, data[hdr+7], iPage);
9268     }
9269   }
9270 
9271 end_of_check:
9272   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
9273   releasePage(pPage);
9274   pCheck->zPfx = saved_zPfx;
9275   pCheck->v1 = saved_v1;
9276   pCheck->v2 = saved_v2;
9277   return depth+1;
9278 }
9279 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9280 
9281 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9282 /*
9283 ** This routine does a complete check of the given BTree file.  aRoot[] is
9284 ** an array of pages numbers were each page number is the root page of
9285 ** a table.  nRoot is the number of entries in aRoot.
9286 **
9287 ** A read-only or read-write transaction must be opened before calling
9288 ** this function.
9289 **
9290 ** Write the number of error seen in *pnErr.  Except for some memory
9291 ** allocation errors,  an error message held in memory obtained from
9292 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
9293 ** returned.  If a memory allocation error occurs, NULL is returned.
9294 */
9295 char *sqlite3BtreeIntegrityCheck(
9296   Btree *p,     /* The btree to be checked */
9297   int *aRoot,   /* An array of root pages numbers for individual trees */
9298   int nRoot,    /* Number of entries in aRoot[] */
9299   int mxErr,    /* Stop reporting errors after this many */
9300   int *pnErr    /* Write number of errors seen to this variable */
9301 ){
9302   Pgno i;
9303   IntegrityCk sCheck;
9304   BtShared *pBt = p->pBt;
9305   int savedDbFlags = pBt->db->flags;
9306   char zErr[100];
9307   VVA_ONLY( int nRef );
9308 
9309   sqlite3BtreeEnter(p);
9310   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
9311   assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );
9312   sCheck.pBt = pBt;
9313   sCheck.pPager = pBt->pPager;
9314   sCheck.nPage = btreePagecount(sCheck.pBt);
9315   sCheck.mxErr = mxErr;
9316   sCheck.nErr = 0;
9317   sCheck.mallocFailed = 0;
9318   sCheck.zPfx = 0;
9319   sCheck.v1 = 0;
9320   sCheck.v2 = 0;
9321   sCheck.aPgRef = 0;
9322   sCheck.heap = 0;
9323   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
9324   if( sCheck.nPage==0 ){
9325     goto integrity_ck_cleanup;
9326   }
9327 
9328   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9329   if( !sCheck.aPgRef ){
9330     sCheck.mallocFailed = 1;
9331     goto integrity_ck_cleanup;
9332   }
9333   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9334   if( sCheck.heap==0 ){
9335     sCheck.mallocFailed = 1;
9336     goto integrity_ck_cleanup;
9337   }
9338 
9339   i = PENDING_BYTE_PAGE(pBt);
9340   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
9341 
9342   /* Check the integrity of the freelist
9343   */
9344   sCheck.zPfx = "Main freelist: ";
9345   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
9346             get4byte(&pBt->pPage1->aData[36]));
9347   sCheck.zPfx = 0;
9348 
9349   /* Check all the tables.
9350   */
9351   testcase( pBt->db->flags & SQLITE_CellSizeCk );
9352   pBt->db->flags &= ~SQLITE_CellSizeCk;
9353   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
9354     i64 notUsed;
9355     if( aRoot[i]==0 ) continue;
9356 #ifndef SQLITE_OMIT_AUTOVACUUM
9357     if( pBt->autoVacuum && aRoot[i]>1 ){
9358       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
9359     }
9360 #endif
9361     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
9362   }
9363   pBt->db->flags = savedDbFlags;
9364 
9365   /* Make sure every page in the file is referenced
9366   */
9367   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
9368 #ifdef SQLITE_OMIT_AUTOVACUUM
9369     if( getPageReferenced(&sCheck, i)==0 ){
9370       checkAppendMsg(&sCheck, "Page %d is never used", i);
9371     }
9372 #else
9373     /* If the database supports auto-vacuum, make sure no tables contain
9374     ** references to pointer-map pages.
9375     */
9376     if( getPageReferenced(&sCheck, i)==0 &&
9377        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
9378       checkAppendMsg(&sCheck, "Page %d is never used", i);
9379     }
9380     if( getPageReferenced(&sCheck, i)!=0 &&
9381        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
9382       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
9383     }
9384 #endif
9385   }
9386 
9387   /* Clean  up and report errors.
9388   */
9389 integrity_ck_cleanup:
9390   sqlite3PageFree(sCheck.heap);
9391   sqlite3_free(sCheck.aPgRef);
9392   if( sCheck.mallocFailed ){
9393     sqlite3StrAccumReset(&sCheck.errMsg);
9394     sCheck.nErr++;
9395   }
9396   *pnErr = sCheck.nErr;
9397   if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9398   /* Make sure this analysis did not leave any unref() pages. */
9399   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9400   sqlite3BtreeLeave(p);
9401   return sqlite3StrAccumFinish(&sCheck.errMsg);
9402 }
9403 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9404 
9405 /*
9406 ** Return the full pathname of the underlying database file.  Return
9407 ** an empty string if the database is in-memory or a TEMP database.
9408 **
9409 ** The pager filename is invariant as long as the pager is
9410 ** open so it is safe to access without the BtShared mutex.
9411 */
9412 const char *sqlite3BtreeGetFilename(Btree *p){
9413   assert( p->pBt->pPager!=0 );
9414   return sqlite3PagerFilename(p->pBt->pPager, 1);
9415 }
9416 
9417 /*
9418 ** Return the pathname of the journal file for this database. The return
9419 ** value of this routine is the same regardless of whether the journal file
9420 ** has been created or not.
9421 **
9422 ** The pager journal filename is invariant as long as the pager is
9423 ** open so it is safe to access without the BtShared mutex.
9424 */
9425 const char *sqlite3BtreeGetJournalname(Btree *p){
9426   assert( p->pBt->pPager!=0 );
9427   return sqlite3PagerJournalname(p->pBt->pPager);
9428 }
9429 
9430 /*
9431 ** Return non-zero if a transaction is active.
9432 */
9433 int sqlite3BtreeIsInTrans(Btree *p){
9434   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
9435   return (p && (p->inTrans==TRANS_WRITE));
9436 }
9437 
9438 #ifndef SQLITE_OMIT_WAL
9439 /*
9440 ** Run a checkpoint on the Btree passed as the first argument.
9441 **
9442 ** Return SQLITE_LOCKED if this or any other connection has an open
9443 ** transaction on the shared-cache the argument Btree is connected to.
9444 **
9445 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9446 */
9447 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
9448   int rc = SQLITE_OK;
9449   if( p ){
9450     BtShared *pBt = p->pBt;
9451     sqlite3BtreeEnter(p);
9452     if( pBt->inTransaction!=TRANS_NONE ){
9453       rc = SQLITE_LOCKED;
9454     }else{
9455       rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
9456     }
9457     sqlite3BtreeLeave(p);
9458   }
9459   return rc;
9460 }
9461 #endif
9462 
9463 /*
9464 ** Return non-zero if a read (or write) transaction is active.
9465 */
9466 int sqlite3BtreeIsInReadTrans(Btree *p){
9467   assert( p );
9468   assert( sqlite3_mutex_held(p->db->mutex) );
9469   return p->inTrans!=TRANS_NONE;
9470 }
9471 
9472 int sqlite3BtreeIsInBackup(Btree *p){
9473   assert( p );
9474   assert( sqlite3_mutex_held(p->db->mutex) );
9475   return p->nBackup!=0;
9476 }
9477 
9478 /*
9479 ** This function returns a pointer to a blob of memory associated with
9480 ** a single shared-btree. The memory is used by client code for its own
9481 ** purposes (for example, to store a high-level schema associated with
9482 ** the shared-btree). The btree layer manages reference counting issues.
9483 **
9484 ** The first time this is called on a shared-btree, nBytes bytes of memory
9485 ** are allocated, zeroed, and returned to the caller. For each subsequent
9486 ** call the nBytes parameter is ignored and a pointer to the same blob
9487 ** of memory returned.
9488 **
9489 ** If the nBytes parameter is 0 and the blob of memory has not yet been
9490 ** allocated, a null pointer is returned. If the blob has already been
9491 ** allocated, it is returned as normal.
9492 **
9493 ** Just before the shared-btree is closed, the function passed as the
9494 ** xFree argument when the memory allocation was made is invoked on the
9495 ** blob of allocated memory. The xFree function should not call sqlite3_free()
9496 ** on the memory, the btree layer does that.
9497 */
9498 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9499   BtShared *pBt = p->pBt;
9500   sqlite3BtreeEnter(p);
9501   if( !pBt->pSchema && nBytes ){
9502     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
9503     pBt->xFreeSchema = xFree;
9504   }
9505   sqlite3BtreeLeave(p);
9506   return pBt->pSchema;
9507 }
9508 
9509 /*
9510 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9511 ** btree as the argument handle holds an exclusive lock on the
9512 ** sqlite_master table. Otherwise SQLITE_OK.
9513 */
9514 int sqlite3BtreeSchemaLocked(Btree *p){
9515   int rc;
9516   assert( sqlite3_mutex_held(p->db->mutex) );
9517   sqlite3BtreeEnter(p);
9518   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9519   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
9520   sqlite3BtreeLeave(p);
9521   return rc;
9522 }
9523 
9524 
9525 #ifndef SQLITE_OMIT_SHARED_CACHE
9526 /*
9527 ** Obtain a lock on the table whose root page is iTab.  The
9528 ** lock is a write lock if isWritelock is true or a read lock
9529 ** if it is false.
9530 */
9531 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
9532   int rc = SQLITE_OK;
9533   assert( p->inTrans!=TRANS_NONE );
9534   if( p->sharable ){
9535     u8 lockType = READ_LOCK + isWriteLock;
9536     assert( READ_LOCK+1==WRITE_LOCK );
9537     assert( isWriteLock==0 || isWriteLock==1 );
9538 
9539     sqlite3BtreeEnter(p);
9540     rc = querySharedCacheTableLock(p, iTab, lockType);
9541     if( rc==SQLITE_OK ){
9542       rc = setSharedCacheTableLock(p, iTab, lockType);
9543     }
9544     sqlite3BtreeLeave(p);
9545   }
9546   return rc;
9547 }
9548 #endif
9549 
9550 #ifndef SQLITE_OMIT_INCRBLOB
9551 /*
9552 ** Argument pCsr must be a cursor opened for writing on an
9553 ** INTKEY table currently pointing at a valid table entry.
9554 ** This function modifies the data stored as part of that entry.
9555 **
9556 ** Only the data content may only be modified, it is not possible to
9557 ** change the length of the data stored. If this function is called with
9558 ** parameters that attempt to write past the end of the existing data,
9559 ** no modifications are made and SQLITE_CORRUPT is returned.
9560 */
9561 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
9562   int rc;
9563   assert( cursorOwnsBtShared(pCsr) );
9564   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
9565   assert( pCsr->curFlags & BTCF_Incrblob );
9566 
9567   rc = restoreCursorPosition(pCsr);
9568   if( rc!=SQLITE_OK ){
9569     return rc;
9570   }
9571   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9572   if( pCsr->eState!=CURSOR_VALID ){
9573     return SQLITE_ABORT;
9574   }
9575 
9576   /* Save the positions of all other cursors open on this table. This is
9577   ** required in case any of them are holding references to an xFetch
9578   ** version of the b-tree page modified by the accessPayload call below.
9579   **
9580   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
9581   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9582   ** saveAllCursors can only return SQLITE_OK.
9583   */
9584   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9585   assert( rc==SQLITE_OK );
9586 
9587   /* Check some assumptions:
9588   **   (a) the cursor is open for writing,
9589   **   (b) there is a read/write transaction open,
9590   **   (c) the connection holds a write-lock on the table (if required),
9591   **   (d) there are no conflicting read-locks, and
9592   **   (e) the cursor points at a valid row of an intKey table.
9593   */
9594   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
9595     return SQLITE_READONLY;
9596   }
9597   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9598               && pCsr->pBt->inTransaction==TRANS_WRITE );
9599   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9600   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
9601   assert( pCsr->apPage[pCsr->iPage]->intKey );
9602 
9603   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
9604 }
9605 
9606 /*
9607 ** Mark this cursor as an incremental blob cursor.
9608 */
9609 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
9610   pCur->curFlags |= BTCF_Incrblob;
9611   pCur->pBtree->hasIncrblobCur = 1;
9612 }
9613 #endif
9614 
9615 /*
9616 ** Set both the "read version" (single byte at byte offset 18) and
9617 ** "write version" (single byte at byte offset 19) fields in the database
9618 ** header to iVersion.
9619 */
9620 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9621   BtShared *pBt = pBtree->pBt;
9622   int rc;                         /* Return code */
9623 
9624   assert( iVersion==1 || iVersion==2 );
9625 
9626   /* If setting the version fields to 1, do not automatically open the
9627   ** WAL connection, even if the version fields are currently set to 2.
9628   */
9629   pBt->btsFlags &= ~BTS_NO_WAL;
9630   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
9631 
9632   rc = sqlite3BtreeBeginTrans(pBtree, 0);
9633   if( rc==SQLITE_OK ){
9634     u8 *aData = pBt->pPage1->aData;
9635     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
9636       rc = sqlite3BtreeBeginTrans(pBtree, 2);
9637       if( rc==SQLITE_OK ){
9638         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9639         if( rc==SQLITE_OK ){
9640           aData[18] = (u8)iVersion;
9641           aData[19] = (u8)iVersion;
9642         }
9643       }
9644     }
9645   }
9646 
9647   pBt->btsFlags &= ~BTS_NO_WAL;
9648   return rc;
9649 }
9650 
9651 /*
9652 ** Return true if the cursor has a hint specified.  This routine is
9653 ** only used from within assert() statements
9654 */
9655 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9656   return (pCsr->hints & mask)!=0;
9657 }
9658 
9659 /*
9660 ** Return true if the given Btree is read-only.
9661 */
9662 int sqlite3BtreeIsReadonly(Btree *p){
9663   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9664 }
9665 
9666 /*
9667 ** Return the size of the header added to each page by this module.
9668 */
9669 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
9670 
9671 #if !defined(SQLITE_OMIT_SHARED_CACHE)
9672 /*
9673 ** Return true if the Btree passed as the only argument is sharable.
9674 */
9675 int sqlite3BtreeSharable(Btree *p){
9676   return p->sharable;
9677 }
9678 #endif
9679