1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 /* 116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 118 ** 119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 122 ** with the page number and filename associated with the (MemPage*). 123 */ 124 #ifdef SQLITE_DEBUG 125 int corruptPageError(int lineno, MemPage *p){ 126 char *zMsg; 127 sqlite3BeginBenignMalloc(); 128 zMsg = sqlite3_mprintf("database corruption page %d of %s", 129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 130 ); 131 sqlite3EndBenignMalloc(); 132 if( zMsg ){ 133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 134 } 135 sqlite3_free(zMsg); 136 return SQLITE_CORRUPT_BKPT; 137 } 138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 139 #else 140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 141 #endif 142 143 #ifndef SQLITE_OMIT_SHARED_CACHE 144 145 #ifdef SQLITE_DEBUG 146 /* 147 **** This function is only used as part of an assert() statement. *** 148 ** 149 ** Check to see if pBtree holds the required locks to read or write to the 150 ** table with root page iRoot. Return 1 if it does and 0 if not. 151 ** 152 ** For example, when writing to a table with root-page iRoot via 153 ** Btree connection pBtree: 154 ** 155 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 156 ** 157 ** When writing to an index that resides in a sharable database, the 158 ** caller should have first obtained a lock specifying the root page of 159 ** the corresponding table. This makes things a bit more complicated, 160 ** as this module treats each table as a separate structure. To determine 161 ** the table corresponding to the index being written, this 162 ** function has to search through the database schema. 163 ** 164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 165 ** hold a write-lock on the schema table (root page 1). This is also 166 ** acceptable. 167 */ 168 static int hasSharedCacheTableLock( 169 Btree *pBtree, /* Handle that must hold lock */ 170 Pgno iRoot, /* Root page of b-tree */ 171 int isIndex, /* True if iRoot is the root of an index b-tree */ 172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 173 ){ 174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 175 Pgno iTab = 0; 176 BtLock *pLock; 177 178 /* If this database is not shareable, or if the client is reading 179 ** and has the read-uncommitted flag set, then no lock is required. 180 ** Return true immediately. 181 */ 182 if( (pBtree->sharable==0) 183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 184 ){ 185 return 1; 186 } 187 188 /* If the client is reading or writing an index and the schema is 189 ** not loaded, then it is too difficult to actually check to see if 190 ** the correct locks are held. So do not bother - just return true. 191 ** This case does not come up very often anyhow. 192 */ 193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 194 return 1; 195 } 196 197 /* Figure out the root-page that the lock should be held on. For table 198 ** b-trees, this is just the root page of the b-tree being read or 199 ** written. For index b-trees, it is the root page of the associated 200 ** table. */ 201 if( isIndex ){ 202 HashElem *p; 203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 204 Index *pIdx = (Index *)sqliteHashData(p); 205 if( pIdx->tnum==(int)iRoot ){ 206 if( iTab ){ 207 /* Two or more indexes share the same root page. There must 208 ** be imposter tables. So just return true. The assert is not 209 ** useful in that case. */ 210 return 1; 211 } 212 iTab = pIdx->pTable->tnum; 213 } 214 } 215 }else{ 216 iTab = iRoot; 217 } 218 219 /* Search for the required lock. Either a write-lock on root-page iTab, a 220 ** write-lock on the schema table, or (if the client is reading) a 221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 223 if( pLock->pBtree==pBtree 224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 225 && pLock->eLock>=eLockType 226 ){ 227 return 1; 228 } 229 } 230 231 /* Failed to find the required lock. */ 232 return 0; 233 } 234 #endif /* SQLITE_DEBUG */ 235 236 #ifdef SQLITE_DEBUG 237 /* 238 **** This function may be used as part of assert() statements only. **** 239 ** 240 ** Return true if it would be illegal for pBtree to write into the 241 ** table or index rooted at iRoot because other shared connections are 242 ** simultaneously reading that same table or index. 243 ** 244 ** It is illegal for pBtree to write if some other Btree object that 245 ** shares the same BtShared object is currently reading or writing 246 ** the iRoot table. Except, if the other Btree object has the 247 ** read-uncommitted flag set, then it is OK for the other object to 248 ** have a read cursor. 249 ** 250 ** For example, before writing to any part of the table or index 251 ** rooted at page iRoot, one should call: 252 ** 253 ** assert( !hasReadConflicts(pBtree, iRoot) ); 254 */ 255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 256 BtCursor *p; 257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 258 if( p->pgnoRoot==iRoot 259 && p->pBtree!=pBtree 260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 261 ){ 262 return 1; 263 } 264 } 265 return 0; 266 } 267 #endif /* #ifdef SQLITE_DEBUG */ 268 269 /* 270 ** Query to see if Btree handle p may obtain a lock of type eLock 271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 272 ** SQLITE_OK if the lock may be obtained (by calling 273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 274 */ 275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 276 BtShared *pBt = p->pBt; 277 BtLock *pIter; 278 279 assert( sqlite3BtreeHoldsMutex(p) ); 280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 281 assert( p->db!=0 ); 282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 283 284 /* If requesting a write-lock, then the Btree must have an open write 285 ** transaction on this file. And, obviously, for this to be so there 286 ** must be an open write transaction on the file itself. 287 */ 288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 290 291 /* This routine is a no-op if the shared-cache is not enabled */ 292 if( !p->sharable ){ 293 return SQLITE_OK; 294 } 295 296 /* If some other connection is holding an exclusive lock, the 297 ** requested lock may not be obtained. 298 */ 299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 301 return SQLITE_LOCKED_SHAREDCACHE; 302 } 303 304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 305 /* The condition (pIter->eLock!=eLock) in the following if(...) 306 ** statement is a simplification of: 307 ** 308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 309 ** 310 ** since we know that if eLock==WRITE_LOCK, then no other connection 311 ** may hold a WRITE_LOCK on any table in this file (since there can 312 ** only be a single writer). 313 */ 314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 318 if( eLock==WRITE_LOCK ){ 319 assert( p==pBt->pWriter ); 320 pBt->btsFlags |= BTS_PENDING; 321 } 322 return SQLITE_LOCKED_SHAREDCACHE; 323 } 324 } 325 return SQLITE_OK; 326 } 327 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 328 329 #ifndef SQLITE_OMIT_SHARED_CACHE 330 /* 331 ** Add a lock on the table with root-page iTable to the shared-btree used 332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 333 ** WRITE_LOCK. 334 ** 335 ** This function assumes the following: 336 ** 337 ** (a) The specified Btree object p is connected to a sharable 338 ** database (one with the BtShared.sharable flag set), and 339 ** 340 ** (b) No other Btree objects hold a lock that conflicts 341 ** with the requested lock (i.e. querySharedCacheTableLock() has 342 ** already been called and returned SQLITE_OK). 343 ** 344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 345 ** is returned if a malloc attempt fails. 346 */ 347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 348 BtShared *pBt = p->pBt; 349 BtLock *pLock = 0; 350 BtLock *pIter; 351 352 assert( sqlite3BtreeHoldsMutex(p) ); 353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 354 assert( p->db!=0 ); 355 356 /* A connection with the read-uncommitted flag set will never try to 357 ** obtain a read-lock using this function. The only read-lock obtained 358 ** by a connection in read-uncommitted mode is on the sqlite_master 359 ** table, and that lock is obtained in BtreeBeginTrans(). */ 360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 361 362 /* This function should only be called on a sharable b-tree after it 363 ** has been determined that no other b-tree holds a conflicting lock. */ 364 assert( p->sharable ); 365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 366 367 /* First search the list for an existing lock on this table. */ 368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 369 if( pIter->iTable==iTable && pIter->pBtree==p ){ 370 pLock = pIter; 371 break; 372 } 373 } 374 375 /* If the above search did not find a BtLock struct associating Btree p 376 ** with table iTable, allocate one and link it into the list. 377 */ 378 if( !pLock ){ 379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 380 if( !pLock ){ 381 return SQLITE_NOMEM_BKPT; 382 } 383 pLock->iTable = iTable; 384 pLock->pBtree = p; 385 pLock->pNext = pBt->pLock; 386 pBt->pLock = pLock; 387 } 388 389 /* Set the BtLock.eLock variable to the maximum of the current lock 390 ** and the requested lock. This means if a write-lock was already held 391 ** and a read-lock requested, we don't incorrectly downgrade the lock. 392 */ 393 assert( WRITE_LOCK>READ_LOCK ); 394 if( eLock>pLock->eLock ){ 395 pLock->eLock = eLock; 396 } 397 398 return SQLITE_OK; 399 } 400 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 401 402 #ifndef SQLITE_OMIT_SHARED_CACHE 403 /* 404 ** Release all the table locks (locks obtained via calls to 405 ** the setSharedCacheTableLock() procedure) held by Btree object p. 406 ** 407 ** This function assumes that Btree p has an open read or write 408 ** transaction. If it does not, then the BTS_PENDING flag 409 ** may be incorrectly cleared. 410 */ 411 static void clearAllSharedCacheTableLocks(Btree *p){ 412 BtShared *pBt = p->pBt; 413 BtLock **ppIter = &pBt->pLock; 414 415 assert( sqlite3BtreeHoldsMutex(p) ); 416 assert( p->sharable || 0==*ppIter ); 417 assert( p->inTrans>0 ); 418 419 while( *ppIter ){ 420 BtLock *pLock = *ppIter; 421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 422 assert( pLock->pBtree->inTrans>=pLock->eLock ); 423 if( pLock->pBtree==p ){ 424 *ppIter = pLock->pNext; 425 assert( pLock->iTable!=1 || pLock==&p->lock ); 426 if( pLock->iTable!=1 ){ 427 sqlite3_free(pLock); 428 } 429 }else{ 430 ppIter = &pLock->pNext; 431 } 432 } 433 434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 435 if( pBt->pWriter==p ){ 436 pBt->pWriter = 0; 437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 438 }else if( pBt->nTransaction==2 ){ 439 /* This function is called when Btree p is concluding its 440 ** transaction. If there currently exists a writer, and p is not 441 ** that writer, then the number of locks held by connections other 442 ** than the writer must be about to drop to zero. In this case 443 ** set the BTS_PENDING flag to 0. 444 ** 445 ** If there is not currently a writer, then BTS_PENDING must 446 ** be zero already. So this next line is harmless in that case. 447 */ 448 pBt->btsFlags &= ~BTS_PENDING; 449 } 450 } 451 452 /* 453 ** This function changes all write-locks held by Btree p into read-locks. 454 */ 455 static void downgradeAllSharedCacheTableLocks(Btree *p){ 456 BtShared *pBt = p->pBt; 457 if( pBt->pWriter==p ){ 458 BtLock *pLock; 459 pBt->pWriter = 0; 460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 463 pLock->eLock = READ_LOCK; 464 } 465 } 466 } 467 468 #endif /* SQLITE_OMIT_SHARED_CACHE */ 469 470 static void releasePage(MemPage *pPage); /* Forward reference */ 471 static void releasePageOne(MemPage *pPage); /* Forward reference */ 472 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 473 474 /* 475 ***** This routine is used inside of assert() only **** 476 ** 477 ** Verify that the cursor holds the mutex on its BtShared 478 */ 479 #ifdef SQLITE_DEBUG 480 static int cursorHoldsMutex(BtCursor *p){ 481 return sqlite3_mutex_held(p->pBt->mutex); 482 } 483 484 /* Verify that the cursor and the BtShared agree about what is the current 485 ** database connetion. This is important in shared-cache mode. If the database 486 ** connection pointers get out-of-sync, it is possible for routines like 487 ** btreeInitPage() to reference an stale connection pointer that references a 488 ** a connection that has already closed. This routine is used inside assert() 489 ** statements only and for the purpose of double-checking that the btree code 490 ** does keep the database connection pointers up-to-date. 491 */ 492 static int cursorOwnsBtShared(BtCursor *p){ 493 assert( cursorHoldsMutex(p) ); 494 return (p->pBtree->db==p->pBt->db); 495 } 496 #endif 497 498 /* 499 ** Invalidate the overflow cache of the cursor passed as the first argument. 500 ** on the shared btree structure pBt. 501 */ 502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 503 504 /* 505 ** Invalidate the overflow page-list cache for all cursors opened 506 ** on the shared btree structure pBt. 507 */ 508 static void invalidateAllOverflowCache(BtShared *pBt){ 509 BtCursor *p; 510 assert( sqlite3_mutex_held(pBt->mutex) ); 511 for(p=pBt->pCursor; p; p=p->pNext){ 512 invalidateOverflowCache(p); 513 } 514 } 515 516 #ifndef SQLITE_OMIT_INCRBLOB 517 /* 518 ** This function is called before modifying the contents of a table 519 ** to invalidate any incrblob cursors that are open on the 520 ** row or one of the rows being modified. 521 ** 522 ** If argument isClearTable is true, then the entire contents of the 523 ** table is about to be deleted. In this case invalidate all incrblob 524 ** cursors open on any row within the table with root-page pgnoRoot. 525 ** 526 ** Otherwise, if argument isClearTable is false, then the row with 527 ** rowid iRow is being replaced or deleted. In this case invalidate 528 ** only those incrblob cursors open on that specific row. 529 */ 530 static void invalidateIncrblobCursors( 531 Btree *pBtree, /* The database file to check */ 532 Pgno pgnoRoot, /* The table that might be changing */ 533 i64 iRow, /* The rowid that might be changing */ 534 int isClearTable /* True if all rows are being deleted */ 535 ){ 536 BtCursor *p; 537 if( pBtree->hasIncrblobCur==0 ) return; 538 assert( sqlite3BtreeHoldsMutex(pBtree) ); 539 pBtree->hasIncrblobCur = 0; 540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 541 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 542 pBtree->hasIncrblobCur = 1; 543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 544 p->eState = CURSOR_INVALID; 545 } 546 } 547 } 548 } 549 550 #else 551 /* Stub function when INCRBLOB is omitted */ 552 #define invalidateIncrblobCursors(w,x,y,z) 553 #endif /* SQLITE_OMIT_INCRBLOB */ 554 555 /* 556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 557 ** when a page that previously contained data becomes a free-list leaf 558 ** page. 559 ** 560 ** The BtShared.pHasContent bitvec exists to work around an obscure 561 ** bug caused by the interaction of two useful IO optimizations surrounding 562 ** free-list leaf pages: 563 ** 564 ** 1) When all data is deleted from a page and the page becomes 565 ** a free-list leaf page, the page is not written to the database 566 ** (as free-list leaf pages contain no meaningful data). Sometimes 567 ** such a page is not even journalled (as it will not be modified, 568 ** why bother journalling it?). 569 ** 570 ** 2) When a free-list leaf page is reused, its content is not read 571 ** from the database or written to the journal file (why should it 572 ** be, if it is not at all meaningful?). 573 ** 574 ** By themselves, these optimizations work fine and provide a handy 575 ** performance boost to bulk delete or insert operations. However, if 576 ** a page is moved to the free-list and then reused within the same 577 ** transaction, a problem comes up. If the page is not journalled when 578 ** it is moved to the free-list and it is also not journalled when it 579 ** is extracted from the free-list and reused, then the original data 580 ** may be lost. In the event of a rollback, it may not be possible 581 ** to restore the database to its original configuration. 582 ** 583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 584 ** moved to become a free-list leaf page, the corresponding bit is 585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 586 ** optimization 2 above is omitted if the corresponding bit is already 587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 588 ** at the end of every transaction. 589 */ 590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 591 int rc = SQLITE_OK; 592 if( !pBt->pHasContent ){ 593 assert( pgno<=pBt->nPage ); 594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 595 if( !pBt->pHasContent ){ 596 rc = SQLITE_NOMEM_BKPT; 597 } 598 } 599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 601 } 602 return rc; 603 } 604 605 /* 606 ** Query the BtShared.pHasContent vector. 607 ** 608 ** This function is called when a free-list leaf page is removed from the 609 ** free-list for reuse. It returns false if it is safe to retrieve the 610 ** page from the pager layer with the 'no-content' flag set. True otherwise. 611 */ 612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 613 Bitvec *p = pBt->pHasContent; 614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); 615 } 616 617 /* 618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 619 ** invoked at the conclusion of each write-transaction. 620 */ 621 static void btreeClearHasContent(BtShared *pBt){ 622 sqlite3BitvecDestroy(pBt->pHasContent); 623 pBt->pHasContent = 0; 624 } 625 626 /* 627 ** Release all of the apPage[] pages for a cursor. 628 */ 629 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 630 int i; 631 if( pCur->iPage>=0 ){ 632 for(i=0; i<pCur->iPage; i++){ 633 releasePageNotNull(pCur->apPage[i]); 634 } 635 releasePageNotNull(pCur->pPage); 636 pCur->iPage = -1; 637 } 638 } 639 640 /* 641 ** The cursor passed as the only argument must point to a valid entry 642 ** when this function is called (i.e. have eState==CURSOR_VALID). This 643 ** function saves the current cursor key in variables pCur->nKey and 644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 645 ** code otherwise. 646 ** 647 ** If the cursor is open on an intkey table, then the integer key 648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 650 ** set to point to a malloced buffer pCur->nKey bytes in size containing 651 ** the key. 652 */ 653 static int saveCursorKey(BtCursor *pCur){ 654 int rc = SQLITE_OK; 655 assert( CURSOR_VALID==pCur->eState ); 656 assert( 0==pCur->pKey ); 657 assert( cursorHoldsMutex(pCur) ); 658 659 if( pCur->curIntKey ){ 660 /* Only the rowid is required for a table btree */ 661 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 662 }else{ 663 /* For an index btree, save the complete key content. It is possible 664 ** that the current key is corrupt. In that case, it is possible that 665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 666 ** up to the size of 1 varint plus 1 8-byte value when the cursor 667 ** position is restored. Hence the 17 bytes of padding allocated 668 ** below. */ 669 void *pKey; 670 pCur->nKey = sqlite3BtreePayloadSize(pCur); 671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 672 if( pKey ){ 673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 674 if( rc==SQLITE_OK ){ 675 pCur->pKey = pKey; 676 }else{ 677 sqlite3_free(pKey); 678 } 679 }else{ 680 rc = SQLITE_NOMEM_BKPT; 681 } 682 } 683 assert( !pCur->curIntKey || !pCur->pKey ); 684 return rc; 685 } 686 687 /* 688 ** Save the current cursor position in the variables BtCursor.nKey 689 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 690 ** 691 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 692 ** prior to calling this routine. 693 */ 694 static int saveCursorPosition(BtCursor *pCur){ 695 int rc; 696 697 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 698 assert( 0==pCur->pKey ); 699 assert( cursorHoldsMutex(pCur) ); 700 701 if( pCur->eState==CURSOR_SKIPNEXT ){ 702 pCur->eState = CURSOR_VALID; 703 }else{ 704 pCur->skipNext = 0; 705 } 706 707 rc = saveCursorKey(pCur); 708 if( rc==SQLITE_OK ){ 709 btreeReleaseAllCursorPages(pCur); 710 pCur->eState = CURSOR_REQUIRESEEK; 711 } 712 713 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 714 return rc; 715 } 716 717 /* Forward reference */ 718 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 719 720 /* 721 ** Save the positions of all cursors (except pExcept) that are open on 722 ** the table with root-page iRoot. "Saving the cursor position" means that 723 ** the location in the btree is remembered in such a way that it can be 724 ** moved back to the same spot after the btree has been modified. This 725 ** routine is called just before cursor pExcept is used to modify the 726 ** table, for example in BtreeDelete() or BtreeInsert(). 727 ** 728 ** If there are two or more cursors on the same btree, then all such 729 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 730 ** routine enforces that rule. This routine only needs to be called in 731 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 732 ** 733 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 734 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 735 ** pointless call to this routine. 736 ** 737 ** Implementation note: This routine merely checks to see if any cursors 738 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 739 ** event that cursors are in need to being saved. 740 */ 741 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 742 BtCursor *p; 743 assert( sqlite3_mutex_held(pBt->mutex) ); 744 assert( pExcept==0 || pExcept->pBt==pBt ); 745 for(p=pBt->pCursor; p; p=p->pNext){ 746 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 747 } 748 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 749 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 750 return SQLITE_OK; 751 } 752 753 /* This helper routine to saveAllCursors does the actual work of saving 754 ** the cursors if and when a cursor is found that actually requires saving. 755 ** The common case is that no cursors need to be saved, so this routine is 756 ** broken out from its caller to avoid unnecessary stack pointer movement. 757 */ 758 static int SQLITE_NOINLINE saveCursorsOnList( 759 BtCursor *p, /* The first cursor that needs saving */ 760 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 761 BtCursor *pExcept /* Do not save this cursor */ 762 ){ 763 do{ 764 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 765 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 766 int rc = saveCursorPosition(p); 767 if( SQLITE_OK!=rc ){ 768 return rc; 769 } 770 }else{ 771 testcase( p->iPage>=0 ); 772 btreeReleaseAllCursorPages(p); 773 } 774 } 775 p = p->pNext; 776 }while( p ); 777 return SQLITE_OK; 778 } 779 780 /* 781 ** Clear the current cursor position. 782 */ 783 void sqlite3BtreeClearCursor(BtCursor *pCur){ 784 assert( cursorHoldsMutex(pCur) ); 785 sqlite3_free(pCur->pKey); 786 pCur->pKey = 0; 787 pCur->eState = CURSOR_INVALID; 788 } 789 790 /* 791 ** In this version of BtreeMoveto, pKey is a packed index record 792 ** such as is generated by the OP_MakeRecord opcode. Unpack the 793 ** record and then call BtreeMovetoUnpacked() to do the work. 794 */ 795 static int btreeMoveto( 796 BtCursor *pCur, /* Cursor open on the btree to be searched */ 797 const void *pKey, /* Packed key if the btree is an index */ 798 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 799 int bias, /* Bias search to the high end */ 800 int *pRes /* Write search results here */ 801 ){ 802 int rc; /* Status code */ 803 UnpackedRecord *pIdxKey; /* Unpacked index key */ 804 805 if( pKey ){ 806 assert( nKey==(i64)(int)nKey ); 807 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo); 808 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 809 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); 810 if( pIdxKey->nField==0 ){ 811 rc = SQLITE_CORRUPT_BKPT; 812 goto moveto_done; 813 } 814 }else{ 815 pIdxKey = 0; 816 } 817 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); 818 moveto_done: 819 if( pIdxKey ){ 820 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 821 } 822 return rc; 823 } 824 825 /* 826 ** Restore the cursor to the position it was in (or as close to as possible) 827 ** when saveCursorPosition() was called. Note that this call deletes the 828 ** saved position info stored by saveCursorPosition(), so there can be 829 ** at most one effective restoreCursorPosition() call after each 830 ** saveCursorPosition(). 831 */ 832 static int btreeRestoreCursorPosition(BtCursor *pCur){ 833 int rc; 834 int skipNext; 835 assert( cursorOwnsBtShared(pCur) ); 836 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 837 if( pCur->eState==CURSOR_FAULT ){ 838 return pCur->skipNext; 839 } 840 pCur->eState = CURSOR_INVALID; 841 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 842 if( rc==SQLITE_OK ){ 843 sqlite3_free(pCur->pKey); 844 pCur->pKey = 0; 845 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 846 pCur->skipNext |= skipNext; 847 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 848 pCur->eState = CURSOR_SKIPNEXT; 849 } 850 } 851 return rc; 852 } 853 854 #define restoreCursorPosition(p) \ 855 (p->eState>=CURSOR_REQUIRESEEK ? \ 856 btreeRestoreCursorPosition(p) : \ 857 SQLITE_OK) 858 859 /* 860 ** Determine whether or not a cursor has moved from the position where 861 ** it was last placed, or has been invalidated for any other reason. 862 ** Cursors can move when the row they are pointing at is deleted out 863 ** from under them, for example. Cursor might also move if a btree 864 ** is rebalanced. 865 ** 866 ** Calling this routine with a NULL cursor pointer returns false. 867 ** 868 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 869 ** back to where it ought to be if this routine returns true. 870 */ 871 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 872 assert( EIGHT_BYTE_ALIGNMENT(pCur) 873 || pCur==sqlite3BtreeFakeValidCursor() ); 874 assert( offsetof(BtCursor, eState)==0 ); 875 assert( sizeof(pCur->eState)==1 ); 876 return CURSOR_VALID != *(u8*)pCur; 877 } 878 879 /* 880 ** Return a pointer to a fake BtCursor object that will always answer 881 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 882 ** cursor returned must not be used with any other Btree interface. 883 */ 884 BtCursor *sqlite3BtreeFakeValidCursor(void){ 885 static u8 fakeCursor = CURSOR_VALID; 886 assert( offsetof(BtCursor, eState)==0 ); 887 return (BtCursor*)&fakeCursor; 888 } 889 890 /* 891 ** This routine restores a cursor back to its original position after it 892 ** has been moved by some outside activity (such as a btree rebalance or 893 ** a row having been deleted out from under the cursor). 894 ** 895 ** On success, the *pDifferentRow parameter is false if the cursor is left 896 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 897 ** was pointing to has been deleted, forcing the cursor to point to some 898 ** nearby row. 899 ** 900 ** This routine should only be called for a cursor that just returned 901 ** TRUE from sqlite3BtreeCursorHasMoved(). 902 */ 903 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 904 int rc; 905 906 assert( pCur!=0 ); 907 assert( pCur->eState!=CURSOR_VALID ); 908 rc = restoreCursorPosition(pCur); 909 if( rc ){ 910 *pDifferentRow = 1; 911 return rc; 912 } 913 if( pCur->eState!=CURSOR_VALID ){ 914 *pDifferentRow = 1; 915 }else{ 916 assert( pCur->skipNext==0 ); 917 *pDifferentRow = 0; 918 } 919 return SQLITE_OK; 920 } 921 922 #ifdef SQLITE_ENABLE_CURSOR_HINTS 923 /* 924 ** Provide hints to the cursor. The particular hint given (and the type 925 ** and number of the varargs parameters) is determined by the eHintType 926 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 927 */ 928 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 929 /* Used only by system that substitute their own storage engine */ 930 } 931 #endif 932 933 /* 934 ** Provide flag hints to the cursor. 935 */ 936 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 937 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 938 pCur->hints = x; 939 } 940 941 942 #ifndef SQLITE_OMIT_AUTOVACUUM 943 /* 944 ** Given a page number of a regular database page, return the page 945 ** number for the pointer-map page that contains the entry for the 946 ** input page number. 947 ** 948 ** Return 0 (not a valid page) for pgno==1 since there is 949 ** no pointer map associated with page 1. The integrity_check logic 950 ** requires that ptrmapPageno(*,1)!=1. 951 */ 952 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 953 int nPagesPerMapPage; 954 Pgno iPtrMap, ret; 955 assert( sqlite3_mutex_held(pBt->mutex) ); 956 if( pgno<2 ) return 0; 957 nPagesPerMapPage = (pBt->usableSize/5)+1; 958 iPtrMap = (pgno-2)/nPagesPerMapPage; 959 ret = (iPtrMap*nPagesPerMapPage) + 2; 960 if( ret==PENDING_BYTE_PAGE(pBt) ){ 961 ret++; 962 } 963 return ret; 964 } 965 966 /* 967 ** Write an entry into the pointer map. 968 ** 969 ** This routine updates the pointer map entry for page number 'key' 970 ** so that it maps to type 'eType' and parent page number 'pgno'. 971 ** 972 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 973 ** a no-op. If an error occurs, the appropriate error code is written 974 ** into *pRC. 975 */ 976 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 977 DbPage *pDbPage; /* The pointer map page */ 978 u8 *pPtrmap; /* The pointer map data */ 979 Pgno iPtrmap; /* The pointer map page number */ 980 int offset; /* Offset in pointer map page */ 981 int rc; /* Return code from subfunctions */ 982 983 if( *pRC ) return; 984 985 assert( sqlite3_mutex_held(pBt->mutex) ); 986 /* The master-journal page number must never be used as a pointer map page */ 987 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 988 989 assert( pBt->autoVacuum ); 990 if( key==0 ){ 991 *pRC = SQLITE_CORRUPT_BKPT; 992 return; 993 } 994 iPtrmap = PTRMAP_PAGENO(pBt, key); 995 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 996 if( rc!=SQLITE_OK ){ 997 *pRC = rc; 998 return; 999 } 1000 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1001 /* The first byte of the extra data is the MemPage.isInit byte. 1002 ** If that byte is set, it means this page is also being used 1003 ** as a btree page. */ 1004 *pRC = SQLITE_CORRUPT_BKPT; 1005 goto ptrmap_exit; 1006 } 1007 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1008 if( offset<0 ){ 1009 *pRC = SQLITE_CORRUPT_BKPT; 1010 goto ptrmap_exit; 1011 } 1012 assert( offset <= (int)pBt->usableSize-5 ); 1013 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1014 1015 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1016 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1017 *pRC= rc = sqlite3PagerWrite(pDbPage); 1018 if( rc==SQLITE_OK ){ 1019 pPtrmap[offset] = eType; 1020 put4byte(&pPtrmap[offset+1], parent); 1021 } 1022 } 1023 1024 ptrmap_exit: 1025 sqlite3PagerUnref(pDbPage); 1026 } 1027 1028 /* 1029 ** Read an entry from the pointer map. 1030 ** 1031 ** This routine retrieves the pointer map entry for page 'key', writing 1032 ** the type and parent page number to *pEType and *pPgno respectively. 1033 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1034 */ 1035 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1036 DbPage *pDbPage; /* The pointer map page */ 1037 int iPtrmap; /* Pointer map page index */ 1038 u8 *pPtrmap; /* Pointer map page data */ 1039 int offset; /* Offset of entry in pointer map */ 1040 int rc; 1041 1042 assert( sqlite3_mutex_held(pBt->mutex) ); 1043 1044 iPtrmap = PTRMAP_PAGENO(pBt, key); 1045 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1046 if( rc!=0 ){ 1047 return rc; 1048 } 1049 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1050 1051 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1052 if( offset<0 ){ 1053 sqlite3PagerUnref(pDbPage); 1054 return SQLITE_CORRUPT_BKPT; 1055 } 1056 assert( offset <= (int)pBt->usableSize-5 ); 1057 assert( pEType!=0 ); 1058 *pEType = pPtrmap[offset]; 1059 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1060 1061 sqlite3PagerUnref(pDbPage); 1062 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1063 return SQLITE_OK; 1064 } 1065 1066 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1067 #define ptrmapPut(w,x,y,z,rc) 1068 #define ptrmapGet(w,x,y,z) SQLITE_OK 1069 #define ptrmapPutOvflPtr(x, y, rc) 1070 #endif 1071 1072 /* 1073 ** Given a btree page and a cell index (0 means the first cell on 1074 ** the page, 1 means the second cell, and so forth) return a pointer 1075 ** to the cell content. 1076 ** 1077 ** findCellPastPtr() does the same except it skips past the initial 1078 ** 4-byte child pointer found on interior pages, if there is one. 1079 ** 1080 ** This routine works only for pages that do not contain overflow cells. 1081 */ 1082 #define findCell(P,I) \ 1083 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1084 #define findCellPastPtr(P,I) \ 1085 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1086 1087 1088 /* 1089 ** This is common tail processing for btreeParseCellPtr() and 1090 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1091 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1092 ** structure. 1093 */ 1094 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1095 MemPage *pPage, /* Page containing the cell */ 1096 u8 *pCell, /* Pointer to the cell text. */ 1097 CellInfo *pInfo /* Fill in this structure */ 1098 ){ 1099 /* If the payload will not fit completely on the local page, we have 1100 ** to decide how much to store locally and how much to spill onto 1101 ** overflow pages. The strategy is to minimize the amount of unused 1102 ** space on overflow pages while keeping the amount of local storage 1103 ** in between minLocal and maxLocal. 1104 ** 1105 ** Warning: changing the way overflow payload is distributed in any 1106 ** way will result in an incompatible file format. 1107 */ 1108 int minLocal; /* Minimum amount of payload held locally */ 1109 int maxLocal; /* Maximum amount of payload held locally */ 1110 int surplus; /* Overflow payload available for local storage */ 1111 1112 minLocal = pPage->minLocal; 1113 maxLocal = pPage->maxLocal; 1114 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1115 testcase( surplus==maxLocal ); 1116 testcase( surplus==maxLocal+1 ); 1117 if( surplus <= maxLocal ){ 1118 pInfo->nLocal = (u16)surplus; 1119 }else{ 1120 pInfo->nLocal = (u16)minLocal; 1121 } 1122 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1123 } 1124 1125 /* 1126 ** The following routines are implementations of the MemPage.xParseCell() 1127 ** method. 1128 ** 1129 ** Parse a cell content block and fill in the CellInfo structure. 1130 ** 1131 ** btreeParseCellPtr() => table btree leaf nodes 1132 ** btreeParseCellNoPayload() => table btree internal nodes 1133 ** btreeParseCellPtrIndex() => index btree nodes 1134 ** 1135 ** There is also a wrapper function btreeParseCell() that works for 1136 ** all MemPage types and that references the cell by index rather than 1137 ** by pointer. 1138 */ 1139 static void btreeParseCellPtrNoPayload( 1140 MemPage *pPage, /* Page containing the cell */ 1141 u8 *pCell, /* Pointer to the cell text. */ 1142 CellInfo *pInfo /* Fill in this structure */ 1143 ){ 1144 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1145 assert( pPage->leaf==0 ); 1146 assert( pPage->childPtrSize==4 ); 1147 #ifndef SQLITE_DEBUG 1148 UNUSED_PARAMETER(pPage); 1149 #endif 1150 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1151 pInfo->nPayload = 0; 1152 pInfo->nLocal = 0; 1153 pInfo->pPayload = 0; 1154 return; 1155 } 1156 static void btreeParseCellPtr( 1157 MemPage *pPage, /* Page containing the cell */ 1158 u8 *pCell, /* Pointer to the cell text. */ 1159 CellInfo *pInfo /* Fill in this structure */ 1160 ){ 1161 u8 *pIter; /* For scanning through pCell */ 1162 u32 nPayload; /* Number of bytes of cell payload */ 1163 u64 iKey; /* Extracted Key value */ 1164 1165 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1166 assert( pPage->leaf==0 || pPage->leaf==1 ); 1167 assert( pPage->intKeyLeaf ); 1168 assert( pPage->childPtrSize==0 ); 1169 pIter = pCell; 1170 1171 /* The next block of code is equivalent to: 1172 ** 1173 ** pIter += getVarint32(pIter, nPayload); 1174 ** 1175 ** The code is inlined to avoid a function call. 1176 */ 1177 nPayload = *pIter; 1178 if( nPayload>=0x80 ){ 1179 u8 *pEnd = &pIter[8]; 1180 nPayload &= 0x7f; 1181 do{ 1182 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1183 }while( (*pIter)>=0x80 && pIter<pEnd ); 1184 } 1185 pIter++; 1186 1187 /* The next block of code is equivalent to: 1188 ** 1189 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1190 ** 1191 ** The code is inlined to avoid a function call. 1192 */ 1193 iKey = *pIter; 1194 if( iKey>=0x80 ){ 1195 u8 *pEnd = &pIter[7]; 1196 iKey &= 0x7f; 1197 while(1){ 1198 iKey = (iKey<<7) | (*++pIter & 0x7f); 1199 if( (*pIter)<0x80 ) break; 1200 if( pIter>=pEnd ){ 1201 iKey = (iKey<<8) | *++pIter; 1202 break; 1203 } 1204 } 1205 } 1206 pIter++; 1207 1208 pInfo->nKey = *(i64*)&iKey; 1209 pInfo->nPayload = nPayload; 1210 pInfo->pPayload = pIter; 1211 testcase( nPayload==pPage->maxLocal ); 1212 testcase( nPayload==pPage->maxLocal+1 ); 1213 if( nPayload<=pPage->maxLocal ){ 1214 /* This is the (easy) common case where the entire payload fits 1215 ** on the local page. No overflow is required. 1216 */ 1217 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1218 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1219 pInfo->nLocal = (u16)nPayload; 1220 }else{ 1221 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1222 } 1223 } 1224 static void btreeParseCellPtrIndex( 1225 MemPage *pPage, /* Page containing the cell */ 1226 u8 *pCell, /* Pointer to the cell text. */ 1227 CellInfo *pInfo /* Fill in this structure */ 1228 ){ 1229 u8 *pIter; /* For scanning through pCell */ 1230 u32 nPayload; /* Number of bytes of cell payload */ 1231 1232 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1233 assert( pPage->leaf==0 || pPage->leaf==1 ); 1234 assert( pPage->intKeyLeaf==0 ); 1235 pIter = pCell + pPage->childPtrSize; 1236 nPayload = *pIter; 1237 if( nPayload>=0x80 ){ 1238 u8 *pEnd = &pIter[8]; 1239 nPayload &= 0x7f; 1240 do{ 1241 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1242 }while( *(pIter)>=0x80 && pIter<pEnd ); 1243 } 1244 pIter++; 1245 pInfo->nKey = nPayload; 1246 pInfo->nPayload = nPayload; 1247 pInfo->pPayload = pIter; 1248 testcase( nPayload==pPage->maxLocal ); 1249 testcase( nPayload==pPage->maxLocal+1 ); 1250 if( nPayload<=pPage->maxLocal ){ 1251 /* This is the (easy) common case where the entire payload fits 1252 ** on the local page. No overflow is required. 1253 */ 1254 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1255 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1256 pInfo->nLocal = (u16)nPayload; 1257 }else{ 1258 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1259 } 1260 } 1261 static void btreeParseCell( 1262 MemPage *pPage, /* Page containing the cell */ 1263 int iCell, /* The cell index. First cell is 0 */ 1264 CellInfo *pInfo /* Fill in this structure */ 1265 ){ 1266 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1267 } 1268 1269 /* 1270 ** The following routines are implementations of the MemPage.xCellSize 1271 ** method. 1272 ** 1273 ** Compute the total number of bytes that a Cell needs in the cell 1274 ** data area of the btree-page. The return number includes the cell 1275 ** data header and the local payload, but not any overflow page or 1276 ** the space used by the cell pointer. 1277 ** 1278 ** cellSizePtrNoPayload() => table internal nodes 1279 ** cellSizePtr() => all index nodes & table leaf nodes 1280 */ 1281 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1282 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1283 u8 *pEnd; /* End mark for a varint */ 1284 u32 nSize; /* Size value to return */ 1285 1286 #ifdef SQLITE_DEBUG 1287 /* The value returned by this function should always be the same as 1288 ** the (CellInfo.nSize) value found by doing a full parse of the 1289 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1290 ** this function verifies that this invariant is not violated. */ 1291 CellInfo debuginfo; 1292 pPage->xParseCell(pPage, pCell, &debuginfo); 1293 #endif 1294 1295 nSize = *pIter; 1296 if( nSize>=0x80 ){ 1297 pEnd = &pIter[8]; 1298 nSize &= 0x7f; 1299 do{ 1300 nSize = (nSize<<7) | (*++pIter & 0x7f); 1301 }while( *(pIter)>=0x80 && pIter<pEnd ); 1302 } 1303 pIter++; 1304 if( pPage->intKey ){ 1305 /* pIter now points at the 64-bit integer key value, a variable length 1306 ** integer. The following block moves pIter to point at the first byte 1307 ** past the end of the key value. */ 1308 pEnd = &pIter[9]; 1309 while( (*pIter++)&0x80 && pIter<pEnd ); 1310 } 1311 testcase( nSize==pPage->maxLocal ); 1312 testcase( nSize==pPage->maxLocal+1 ); 1313 if( nSize<=pPage->maxLocal ){ 1314 nSize += (u32)(pIter - pCell); 1315 if( nSize<4 ) nSize = 4; 1316 }else{ 1317 int minLocal = pPage->minLocal; 1318 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1319 testcase( nSize==pPage->maxLocal ); 1320 testcase( nSize==pPage->maxLocal+1 ); 1321 if( nSize>pPage->maxLocal ){ 1322 nSize = minLocal; 1323 } 1324 nSize += 4 + (u16)(pIter - pCell); 1325 } 1326 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1327 return (u16)nSize; 1328 } 1329 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1330 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1331 u8 *pEnd; /* End mark for a varint */ 1332 1333 #ifdef SQLITE_DEBUG 1334 /* The value returned by this function should always be the same as 1335 ** the (CellInfo.nSize) value found by doing a full parse of the 1336 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1337 ** this function verifies that this invariant is not violated. */ 1338 CellInfo debuginfo; 1339 pPage->xParseCell(pPage, pCell, &debuginfo); 1340 #else 1341 UNUSED_PARAMETER(pPage); 1342 #endif 1343 1344 assert( pPage->childPtrSize==4 ); 1345 pEnd = pIter + 9; 1346 while( (*pIter++)&0x80 && pIter<pEnd ); 1347 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1348 return (u16)(pIter - pCell); 1349 } 1350 1351 1352 #ifdef SQLITE_DEBUG 1353 /* This variation on cellSizePtr() is used inside of assert() statements 1354 ** only. */ 1355 static u16 cellSize(MemPage *pPage, int iCell){ 1356 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1357 } 1358 #endif 1359 1360 #ifndef SQLITE_OMIT_AUTOVACUUM 1361 /* 1362 ** If the cell pCell, part of page pPage contains a pointer 1363 ** to an overflow page, insert an entry into the pointer-map 1364 ** for the overflow page. 1365 */ 1366 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ 1367 CellInfo info; 1368 if( *pRC ) return; 1369 assert( pCell!=0 ); 1370 pPage->xParseCell(pPage, pCell, &info); 1371 if( info.nLocal<info.nPayload ){ 1372 Pgno ovfl; 1373 if( SQLITE_WITHIN(pPage->aDataEnd, pCell, pCell+info.nLocal) ){ 1374 *pRC = SQLITE_CORRUPT_BKPT; 1375 return; 1376 } 1377 ovfl = get4byte(&pCell[info.nSize-4]); 1378 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1379 } 1380 } 1381 #endif 1382 1383 1384 /* 1385 ** Defragment the page given. This routine reorganizes cells within the 1386 ** page so that there are no free-blocks on the free-block list. 1387 ** 1388 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1389 ** present in the page after this routine returns. 1390 ** 1391 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1392 ** b-tree page so that there are no freeblocks or fragment bytes, all 1393 ** unused bytes are contained in the unallocated space region, and all 1394 ** cells are packed tightly at the end of the page. 1395 */ 1396 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1397 int i; /* Loop counter */ 1398 int pc; /* Address of the i-th cell */ 1399 int hdr; /* Offset to the page header */ 1400 int size; /* Size of a cell */ 1401 int usableSize; /* Number of usable bytes on a page */ 1402 int cellOffset; /* Offset to the cell pointer array */ 1403 int cbrk; /* Offset to the cell content area */ 1404 int nCell; /* Number of cells on the page */ 1405 unsigned char *data; /* The page data */ 1406 unsigned char *temp; /* Temp area for cell content */ 1407 unsigned char *src; /* Source of content */ 1408 int iCellFirst; /* First allowable cell index */ 1409 int iCellLast; /* Last possible cell index */ 1410 1411 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1412 assert( pPage->pBt!=0 ); 1413 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1414 assert( pPage->nOverflow==0 ); 1415 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1416 temp = 0; 1417 src = data = pPage->aData; 1418 hdr = pPage->hdrOffset; 1419 cellOffset = pPage->cellOffset; 1420 nCell = pPage->nCell; 1421 assert( nCell==get2byte(&data[hdr+3]) ); 1422 iCellFirst = cellOffset + 2*nCell; 1423 usableSize = pPage->pBt->usableSize; 1424 1425 /* This block handles pages with two or fewer free blocks and nMaxFrag 1426 ** or fewer fragmented bytes. In this case it is faster to move the 1427 ** two (or one) blocks of cells using memmove() and add the required 1428 ** offsets to each pointer in the cell-pointer array than it is to 1429 ** reconstruct the entire page. */ 1430 if( (int)data[hdr+7]<=nMaxFrag ){ 1431 int iFree = get2byte(&data[hdr+1]); 1432 1433 /* If the initial freeblock offset were out of bounds, that would 1434 ** have been detected by btreeInitPage() when it was computing the 1435 ** number of free bytes on the page. */ 1436 assert( iFree<=usableSize-4 ); 1437 if( iFree ){ 1438 int iFree2 = get2byte(&data[iFree]); 1439 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1440 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1441 u8 *pEnd = &data[cellOffset + nCell*2]; 1442 u8 *pAddr; 1443 int sz2 = 0; 1444 int sz = get2byte(&data[iFree+2]); 1445 int top = get2byte(&data[hdr+5]); 1446 if( top>=iFree ){ 1447 return SQLITE_CORRUPT_PAGE(pPage); 1448 } 1449 if( iFree2 ){ 1450 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1451 sz2 = get2byte(&data[iFree2+2]); 1452 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1453 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1454 sz += sz2; 1455 } 1456 cbrk = top+sz; 1457 assert( cbrk+(iFree-top) <= usableSize ); 1458 memmove(&data[cbrk], &data[top], iFree-top); 1459 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1460 pc = get2byte(pAddr); 1461 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1462 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1463 } 1464 goto defragment_out; 1465 } 1466 } 1467 } 1468 1469 cbrk = usableSize; 1470 iCellLast = usableSize - 4; 1471 for(i=0; i<nCell; i++){ 1472 u8 *pAddr; /* The i-th cell pointer */ 1473 pAddr = &data[cellOffset + i*2]; 1474 pc = get2byte(pAddr); 1475 testcase( pc==iCellFirst ); 1476 testcase( pc==iCellLast ); 1477 /* These conditions have already been verified in btreeInitPage() 1478 ** if PRAGMA cell_size_check=ON. 1479 */ 1480 if( pc<iCellFirst || pc>iCellLast ){ 1481 return SQLITE_CORRUPT_PAGE(pPage); 1482 } 1483 assert( pc>=iCellFirst && pc<=iCellLast ); 1484 size = pPage->xCellSize(pPage, &src[pc]); 1485 cbrk -= size; 1486 if( cbrk<iCellFirst || pc+size>usableSize ){ 1487 return SQLITE_CORRUPT_PAGE(pPage); 1488 } 1489 assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); 1490 testcase( cbrk+size==usableSize ); 1491 testcase( pc+size==usableSize ); 1492 put2byte(pAddr, cbrk); 1493 if( temp==0 ){ 1494 int x; 1495 if( cbrk==pc ) continue; 1496 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1497 x = get2byte(&data[hdr+5]); 1498 memcpy(&temp[x], &data[x], (cbrk+size) - x); 1499 src = temp; 1500 } 1501 memcpy(&data[cbrk], &src[pc], size); 1502 } 1503 data[hdr+7] = 0; 1504 1505 defragment_out: 1506 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1507 return SQLITE_CORRUPT_PAGE(pPage); 1508 } 1509 assert( cbrk>=iCellFirst ); 1510 put2byte(&data[hdr+5], cbrk); 1511 data[hdr+1] = 0; 1512 data[hdr+2] = 0; 1513 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1514 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1515 return SQLITE_OK; 1516 } 1517 1518 /* 1519 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1520 ** size. If one can be found, return a pointer to the space and remove it 1521 ** from the free-list. 1522 ** 1523 ** If no suitable space can be found on the free-list, return NULL. 1524 ** 1525 ** This function may detect corruption within pPg. If corruption is 1526 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1527 ** 1528 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1529 ** will be ignored if adding the extra space to the fragmentation count 1530 ** causes the fragmentation count to exceed 60. 1531 */ 1532 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1533 const int hdr = pPg->hdrOffset; 1534 u8 * const aData = pPg->aData; 1535 int iAddr = hdr + 1; 1536 int pc = get2byte(&aData[iAddr]); 1537 int x; 1538 int usableSize = pPg->pBt->usableSize; 1539 int size; /* Size of the free slot */ 1540 1541 assert( pc>0 ); 1542 while( pc<=usableSize-4 ){ 1543 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1544 ** freeblock form a big-endian integer which is the size of the freeblock 1545 ** in bytes, including the 4-byte header. */ 1546 size = get2byte(&aData[pc+2]); 1547 if( (x = size - nByte)>=0 ){ 1548 testcase( x==4 ); 1549 testcase( x==3 ); 1550 if( size+pc > usableSize ){ 1551 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1552 return 0; 1553 }else if( x<4 ){ 1554 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1555 ** number of bytes in fragments may not exceed 60. */ 1556 if( aData[hdr+7]>57 ) return 0; 1557 1558 /* Remove the slot from the free-list. Update the number of 1559 ** fragmented bytes within the page. */ 1560 memcpy(&aData[iAddr], &aData[pc], 2); 1561 aData[hdr+7] += (u8)x; 1562 }else{ 1563 /* The slot remains on the free-list. Reduce its size to account 1564 ** for the portion used by the new allocation. */ 1565 put2byte(&aData[pc+2], x); 1566 } 1567 return &aData[pc + x]; 1568 } 1569 iAddr = pc; 1570 pc = get2byte(&aData[pc]); 1571 if( pc<iAddr+size ) break; 1572 } 1573 if( pc ){ 1574 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1575 } 1576 1577 return 0; 1578 } 1579 1580 /* 1581 ** Allocate nByte bytes of space from within the B-Tree page passed 1582 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1583 ** of the first byte of allocated space. Return either SQLITE_OK or 1584 ** an error code (usually SQLITE_CORRUPT). 1585 ** 1586 ** The caller guarantees that there is sufficient space to make the 1587 ** allocation. This routine might need to defragment in order to bring 1588 ** all the space together, however. This routine will avoid using 1589 ** the first two bytes past the cell pointer area since presumably this 1590 ** allocation is being made in order to insert a new cell, so we will 1591 ** also end up needing a new cell pointer. 1592 */ 1593 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1594 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1595 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1596 int top; /* First byte of cell content area */ 1597 int rc = SQLITE_OK; /* Integer return code */ 1598 int gap; /* First byte of gap between cell pointers and cell content */ 1599 1600 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1601 assert( pPage->pBt ); 1602 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1603 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1604 assert( pPage->nFree>=nByte ); 1605 assert( pPage->nOverflow==0 ); 1606 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1607 1608 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1609 gap = pPage->cellOffset + 2*pPage->nCell; 1610 assert( gap<=65536 ); 1611 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1612 ** and the reserved space is zero (the usual value for reserved space) 1613 ** then the cell content offset of an empty page wants to be 65536. 1614 ** However, that integer is too large to be stored in a 2-byte unsigned 1615 ** integer, so a value of 0 is used in its place. */ 1616 top = get2byte(&data[hdr+5]); 1617 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */ 1618 if( gap>top ){ 1619 if( top==0 && pPage->pBt->usableSize==65536 ){ 1620 top = 65536; 1621 }else{ 1622 return SQLITE_CORRUPT_PAGE(pPage); 1623 } 1624 } 1625 1626 /* If there is enough space between gap and top for one more cell pointer 1627 ** array entry offset, and if the freelist is not empty, then search the 1628 ** freelist looking for a free slot big enough to satisfy the request. 1629 */ 1630 testcase( gap+2==top ); 1631 testcase( gap+1==top ); 1632 testcase( gap==top ); 1633 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1634 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1635 if( pSpace ){ 1636 assert( pSpace>=data && (pSpace - data)<65536 ); 1637 *pIdx = (int)(pSpace - data); 1638 return SQLITE_OK; 1639 }else if( rc ){ 1640 return rc; 1641 } 1642 } 1643 1644 /* The request could not be fulfilled using a freelist slot. Check 1645 ** to see if defragmentation is necessary. 1646 */ 1647 testcase( gap+2+nByte==top ); 1648 if( gap+2+nByte>top ){ 1649 assert( pPage->nCell>0 || CORRUPT_DB ); 1650 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1651 if( rc ) return rc; 1652 top = get2byteNotZero(&data[hdr+5]); 1653 assert( gap+2+nByte<=top ); 1654 } 1655 1656 1657 /* Allocate memory from the gap in between the cell pointer array 1658 ** and the cell content area. The btreeInitPage() call has already 1659 ** validated the freelist. Given that the freelist is valid, there 1660 ** is no way that the allocation can extend off the end of the page. 1661 ** The assert() below verifies the previous sentence. 1662 */ 1663 top -= nByte; 1664 put2byte(&data[hdr+5], top); 1665 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1666 *pIdx = top; 1667 return SQLITE_OK; 1668 } 1669 1670 /* 1671 ** Return a section of the pPage->aData to the freelist. 1672 ** The first byte of the new free block is pPage->aData[iStart] 1673 ** and the size of the block is iSize bytes. 1674 ** 1675 ** Adjacent freeblocks are coalesced. 1676 ** 1677 ** Note that even though the freeblock list was checked by btreeInitPage(), 1678 ** that routine will not detect overlap between cells or freeblocks. Nor 1679 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1680 ** at the end of the page. So do additional corruption checks inside this 1681 ** routine and return SQLITE_CORRUPT if any problems are found. 1682 */ 1683 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1684 u16 iPtr; /* Address of ptr to next freeblock */ 1685 u16 iFreeBlk; /* Address of the next freeblock */ 1686 u8 hdr; /* Page header size. 0 or 100 */ 1687 u8 nFrag = 0; /* Reduction in fragmentation */ 1688 u16 iOrigSize = iSize; /* Original value of iSize */ 1689 u16 x; /* Offset to cell content area */ 1690 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1691 unsigned char *data = pPage->aData; /* Page content */ 1692 1693 assert( pPage->pBt!=0 ); 1694 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1695 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1696 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1697 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1698 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1699 assert( iStart<=pPage->pBt->usableSize-4 ); 1700 1701 /* The list of freeblocks must be in ascending order. Find the 1702 ** spot on the list where iStart should be inserted. 1703 */ 1704 hdr = pPage->hdrOffset; 1705 iPtr = hdr + 1; 1706 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1707 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1708 }else{ 1709 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1710 if( iFreeBlk<iPtr+4 ){ 1711 if( iFreeBlk==0 ) break; 1712 return SQLITE_CORRUPT_PAGE(pPage); 1713 } 1714 iPtr = iFreeBlk; 1715 } 1716 if( iFreeBlk>pPage->pBt->usableSize-4 ){ 1717 return SQLITE_CORRUPT_PAGE(pPage); 1718 } 1719 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1720 1721 /* At this point: 1722 ** iFreeBlk: First freeblock after iStart, or zero if none 1723 ** iPtr: The address of a pointer to iFreeBlk 1724 ** 1725 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1726 */ 1727 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1728 nFrag = iFreeBlk - iEnd; 1729 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1730 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1731 if( iEnd > pPage->pBt->usableSize ){ 1732 return SQLITE_CORRUPT_PAGE(pPage); 1733 } 1734 iSize = iEnd - iStart; 1735 iFreeBlk = get2byte(&data[iFreeBlk]); 1736 } 1737 1738 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1739 ** pointer in the page header) then check to see if iStart should be 1740 ** coalesced onto the end of iPtr. 1741 */ 1742 if( iPtr>hdr+1 ){ 1743 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1744 if( iPtrEnd+3>=iStart ){ 1745 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1746 nFrag += iStart - iPtrEnd; 1747 iSize = iEnd - iPtr; 1748 iStart = iPtr; 1749 } 1750 } 1751 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1752 data[hdr+7] -= nFrag; 1753 } 1754 x = get2byte(&data[hdr+5]); 1755 if( iStart<=x ){ 1756 /* The new freeblock is at the beginning of the cell content area, 1757 ** so just extend the cell content area rather than create another 1758 ** freelist entry */ 1759 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1760 put2byte(&data[hdr+1], iFreeBlk); 1761 put2byte(&data[hdr+5], iEnd); 1762 }else{ 1763 /* Insert the new freeblock into the freelist */ 1764 put2byte(&data[iPtr], iStart); 1765 } 1766 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1767 /* Overwrite deleted information with zeros when the secure_delete 1768 ** option is enabled */ 1769 memset(&data[iStart], 0, iSize); 1770 } 1771 put2byte(&data[iStart], iFreeBlk); 1772 put2byte(&data[iStart+2], iSize); 1773 pPage->nFree += iOrigSize; 1774 return SQLITE_OK; 1775 } 1776 1777 /* 1778 ** Decode the flags byte (the first byte of the header) for a page 1779 ** and initialize fields of the MemPage structure accordingly. 1780 ** 1781 ** Only the following combinations are supported. Anything different 1782 ** indicates a corrupt database files: 1783 ** 1784 ** PTF_ZERODATA 1785 ** PTF_ZERODATA | PTF_LEAF 1786 ** PTF_LEAFDATA | PTF_INTKEY 1787 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1788 */ 1789 static int decodeFlags(MemPage *pPage, int flagByte){ 1790 BtShared *pBt; /* A copy of pPage->pBt */ 1791 1792 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1793 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1794 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1795 flagByte &= ~PTF_LEAF; 1796 pPage->childPtrSize = 4-4*pPage->leaf; 1797 pPage->xCellSize = cellSizePtr; 1798 pBt = pPage->pBt; 1799 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1800 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1801 ** interior table b-tree page. */ 1802 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1803 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1804 ** leaf table b-tree page. */ 1805 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1806 pPage->intKey = 1; 1807 if( pPage->leaf ){ 1808 pPage->intKeyLeaf = 1; 1809 pPage->xParseCell = btreeParseCellPtr; 1810 }else{ 1811 pPage->intKeyLeaf = 0; 1812 pPage->xCellSize = cellSizePtrNoPayload; 1813 pPage->xParseCell = btreeParseCellPtrNoPayload; 1814 } 1815 pPage->maxLocal = pBt->maxLeaf; 1816 pPage->minLocal = pBt->minLeaf; 1817 }else if( flagByte==PTF_ZERODATA ){ 1818 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1819 ** interior index b-tree page. */ 1820 assert( (PTF_ZERODATA)==2 ); 1821 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1822 ** leaf index b-tree page. */ 1823 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1824 pPage->intKey = 0; 1825 pPage->intKeyLeaf = 0; 1826 pPage->xParseCell = btreeParseCellPtrIndex; 1827 pPage->maxLocal = pBt->maxLocal; 1828 pPage->minLocal = pBt->minLocal; 1829 }else{ 1830 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1831 ** an error. */ 1832 return SQLITE_CORRUPT_PAGE(pPage); 1833 } 1834 pPage->max1bytePayload = pBt->max1bytePayload; 1835 return SQLITE_OK; 1836 } 1837 1838 /* 1839 ** Initialize the auxiliary information for a disk block. 1840 ** 1841 ** Return SQLITE_OK on success. If we see that the page does 1842 ** not contain a well-formed database page, then return 1843 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 1844 ** guarantee that the page is well-formed. It only shows that 1845 ** we failed to detect any corruption. 1846 */ 1847 static int btreeInitPage(MemPage *pPage){ 1848 int pc; /* Address of a freeblock within pPage->aData[] */ 1849 u8 hdr; /* Offset to beginning of page header */ 1850 u8 *data; /* Equal to pPage->aData */ 1851 BtShared *pBt; /* The main btree structure */ 1852 int usableSize; /* Amount of usable space on each page */ 1853 u16 cellOffset; /* Offset from start of page to first cell pointer */ 1854 int nFree; /* Number of unused bytes on the page */ 1855 int top; /* First byte of the cell content area */ 1856 int iCellFirst; /* First allowable cell or freeblock offset */ 1857 int iCellLast; /* Last possible cell or freeblock offset */ 1858 1859 assert( pPage->pBt!=0 ); 1860 assert( pPage->pBt->db!=0 ); 1861 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1862 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1863 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1864 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1865 assert( pPage->isInit==0 ); 1866 1867 pBt = pPage->pBt; 1868 hdr = pPage->hdrOffset; 1869 data = pPage->aData; 1870 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 1871 ** the b-tree page type. */ 1872 if( decodeFlags(pPage, data[hdr]) ){ 1873 return SQLITE_CORRUPT_PAGE(pPage); 1874 } 1875 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 1876 pPage->maskPage = (u16)(pBt->pageSize - 1); 1877 pPage->nOverflow = 0; 1878 usableSize = pBt->usableSize; 1879 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; 1880 pPage->aDataEnd = &data[usableSize]; 1881 pPage->aCellIdx = &data[cellOffset]; 1882 pPage->aDataOfst = &data[pPage->childPtrSize]; 1883 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1884 ** the start of the cell content area. A zero value for this integer is 1885 ** interpreted as 65536. */ 1886 top = get2byteNotZero(&data[hdr+5]); 1887 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 1888 ** number of cells on the page. */ 1889 pPage->nCell = get2byte(&data[hdr+3]); 1890 if( pPage->nCell>MX_CELL(pBt) ){ 1891 /* To many cells for a single page. The page must be corrupt */ 1892 return SQLITE_CORRUPT_PAGE(pPage); 1893 } 1894 testcase( pPage->nCell==MX_CELL(pBt) ); 1895 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 1896 ** possible for a root page of a table that contains no rows) then the 1897 ** offset to the cell content area will equal the page size minus the 1898 ** bytes of reserved space. */ 1899 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB ); 1900 1901 /* A malformed database page might cause us to read past the end 1902 ** of page when parsing a cell. 1903 ** 1904 ** The following block of code checks early to see if a cell extends 1905 ** past the end of a page boundary and causes SQLITE_CORRUPT to be 1906 ** returned if it does. 1907 */ 1908 iCellFirst = cellOffset + 2*pPage->nCell; 1909 iCellLast = usableSize - 4; 1910 if( pBt->db->flags & SQLITE_CellSizeCk ){ 1911 int i; /* Index into the cell pointer array */ 1912 int sz; /* Size of a cell */ 1913 1914 if( !pPage->leaf ) iCellLast--; 1915 for(i=0; i<pPage->nCell; i++){ 1916 pc = get2byteAligned(&data[cellOffset+i*2]); 1917 testcase( pc==iCellFirst ); 1918 testcase( pc==iCellLast ); 1919 if( pc<iCellFirst || pc>iCellLast ){ 1920 return SQLITE_CORRUPT_PAGE(pPage); 1921 } 1922 sz = pPage->xCellSize(pPage, &data[pc]); 1923 testcase( pc+sz==usableSize ); 1924 if( pc+sz>usableSize ){ 1925 return SQLITE_CORRUPT_PAGE(pPage); 1926 } 1927 } 1928 if( !pPage->leaf ) iCellLast++; 1929 } 1930 1931 /* Compute the total free space on the page 1932 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1933 ** start of the first freeblock on the page, or is zero if there are no 1934 ** freeblocks. */ 1935 pc = get2byte(&data[hdr+1]); 1936 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1937 if( pc>0 ){ 1938 u32 next, size; 1939 if( pc<iCellFirst ){ 1940 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1941 ** always be at least one cell before the first freeblock. 1942 */ 1943 return SQLITE_CORRUPT_PAGE(pPage); 1944 } 1945 while( 1 ){ 1946 if( pc>iCellLast ){ 1947 /* Freeblock off the end of the page */ 1948 return SQLITE_CORRUPT_PAGE(pPage); 1949 } 1950 next = get2byte(&data[pc]); 1951 size = get2byte(&data[pc+2]); 1952 nFree = nFree + size; 1953 if( next<=pc+size+3 ) break; 1954 pc = next; 1955 } 1956 if( next>0 ){ 1957 /* Freeblock not in ascending order */ 1958 return SQLITE_CORRUPT_PAGE(pPage); 1959 } 1960 if( pc+size>(unsigned int)usableSize ){ 1961 /* Last freeblock extends past page end */ 1962 return SQLITE_CORRUPT_PAGE(pPage); 1963 } 1964 } 1965 1966 /* At this point, nFree contains the sum of the offset to the start 1967 ** of the cell-content area plus the number of free bytes within 1968 ** the cell-content area. If this is greater than the usable-size 1969 ** of the page, then the page must be corrupted. This check also 1970 ** serves to verify that the offset to the start of the cell-content 1971 ** area, according to the page header, lies within the page. 1972 */ 1973 if( nFree>usableSize ){ 1974 return SQLITE_CORRUPT_PAGE(pPage); 1975 } 1976 pPage->nFree = (u16)(nFree - iCellFirst); 1977 pPage->isInit = 1; 1978 return SQLITE_OK; 1979 } 1980 1981 /* 1982 ** Set up a raw page so that it looks like a database page holding 1983 ** no entries. 1984 */ 1985 static void zeroPage(MemPage *pPage, int flags){ 1986 unsigned char *data = pPage->aData; 1987 BtShared *pBt = pPage->pBt; 1988 u8 hdr = pPage->hdrOffset; 1989 u16 first; 1990 1991 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 1992 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 1993 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 1994 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1995 assert( sqlite3_mutex_held(pBt->mutex) ); 1996 if( pBt->btsFlags & BTS_FAST_SECURE ){ 1997 memset(&data[hdr], 0, pBt->usableSize - hdr); 1998 } 1999 data[hdr] = (char)flags; 2000 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2001 memset(&data[hdr+1], 0, 4); 2002 data[hdr+7] = 0; 2003 put2byte(&data[hdr+5], pBt->usableSize); 2004 pPage->nFree = (u16)(pBt->usableSize - first); 2005 decodeFlags(pPage, flags); 2006 pPage->cellOffset = first; 2007 pPage->aDataEnd = &data[pBt->usableSize]; 2008 pPage->aCellIdx = &data[first]; 2009 pPage->aDataOfst = &data[pPage->childPtrSize]; 2010 pPage->nOverflow = 0; 2011 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2012 pPage->maskPage = (u16)(pBt->pageSize - 1); 2013 pPage->nCell = 0; 2014 pPage->isInit = 1; 2015 } 2016 2017 2018 /* 2019 ** Convert a DbPage obtained from the pager into a MemPage used by 2020 ** the btree layer. 2021 */ 2022 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2023 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2024 if( pgno!=pPage->pgno ){ 2025 pPage->aData = sqlite3PagerGetData(pDbPage); 2026 pPage->pDbPage = pDbPage; 2027 pPage->pBt = pBt; 2028 pPage->pgno = pgno; 2029 pPage->hdrOffset = pgno==1 ? 100 : 0; 2030 } 2031 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2032 return pPage; 2033 } 2034 2035 /* 2036 ** Get a page from the pager. Initialize the MemPage.pBt and 2037 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2038 ** 2039 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2040 ** about the content of the page at this time. So do not go to the disk 2041 ** to fetch the content. Just fill in the content with zeros for now. 2042 ** If in the future we call sqlite3PagerWrite() on this page, that 2043 ** means we have started to be concerned about content and the disk 2044 ** read should occur at that point. 2045 */ 2046 static int btreeGetPage( 2047 BtShared *pBt, /* The btree */ 2048 Pgno pgno, /* Number of the page to fetch */ 2049 MemPage **ppPage, /* Return the page in this parameter */ 2050 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2051 ){ 2052 int rc; 2053 DbPage *pDbPage; 2054 2055 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2056 assert( sqlite3_mutex_held(pBt->mutex) ); 2057 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2058 if( rc ) return rc; 2059 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2060 return SQLITE_OK; 2061 } 2062 2063 /* 2064 ** Retrieve a page from the pager cache. If the requested page is not 2065 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2066 ** MemPage.aData elements if needed. 2067 */ 2068 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2069 DbPage *pDbPage; 2070 assert( sqlite3_mutex_held(pBt->mutex) ); 2071 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2072 if( pDbPage ){ 2073 return btreePageFromDbPage(pDbPage, pgno, pBt); 2074 } 2075 return 0; 2076 } 2077 2078 /* 2079 ** Return the size of the database file in pages. If there is any kind of 2080 ** error, return ((unsigned int)-1). 2081 */ 2082 static Pgno btreePagecount(BtShared *pBt){ 2083 return pBt->nPage; 2084 } 2085 u32 sqlite3BtreeLastPage(Btree *p){ 2086 assert( sqlite3BtreeHoldsMutex(p) ); 2087 assert( ((p->pBt->nPage)&0x80000000)==0 ); 2088 return btreePagecount(p->pBt); 2089 } 2090 2091 /* 2092 ** Get a page from the pager and initialize it. 2093 ** 2094 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2095 ** call. Do additional sanity checking on the page in this case. 2096 ** And if the fetch fails, this routine must decrement pCur->iPage. 2097 ** 2098 ** The page is fetched as read-write unless pCur is not NULL and is 2099 ** a read-only cursor. 2100 ** 2101 ** If an error occurs, then *ppPage is undefined. It 2102 ** may remain unchanged, or it may be set to an invalid value. 2103 */ 2104 static int getAndInitPage( 2105 BtShared *pBt, /* The database file */ 2106 Pgno pgno, /* Number of the page to get */ 2107 MemPage **ppPage, /* Write the page pointer here */ 2108 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2109 int bReadOnly /* True for a read-only page */ 2110 ){ 2111 int rc; 2112 DbPage *pDbPage; 2113 assert( sqlite3_mutex_held(pBt->mutex) ); 2114 assert( pCur==0 || ppPage==&pCur->pPage ); 2115 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2116 assert( pCur==0 || pCur->iPage>0 ); 2117 2118 if( pgno>btreePagecount(pBt) ){ 2119 rc = SQLITE_CORRUPT_BKPT; 2120 goto getAndInitPage_error; 2121 } 2122 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2123 if( rc ){ 2124 goto getAndInitPage_error; 2125 } 2126 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2127 if( (*ppPage)->isInit==0 ){ 2128 btreePageFromDbPage(pDbPage, pgno, pBt); 2129 rc = btreeInitPage(*ppPage); 2130 if( rc!=SQLITE_OK ){ 2131 releasePage(*ppPage); 2132 goto getAndInitPage_error; 2133 } 2134 } 2135 assert( (*ppPage)->pgno==pgno ); 2136 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2137 2138 /* If obtaining a child page for a cursor, we must verify that the page is 2139 ** compatible with the root page. */ 2140 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2141 rc = SQLITE_CORRUPT_PGNO(pgno); 2142 releasePage(*ppPage); 2143 goto getAndInitPage_error; 2144 } 2145 return SQLITE_OK; 2146 2147 getAndInitPage_error: 2148 if( pCur ){ 2149 pCur->iPage--; 2150 pCur->pPage = pCur->apPage[pCur->iPage]; 2151 } 2152 testcase( pgno==0 ); 2153 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 2154 return rc; 2155 } 2156 2157 /* 2158 ** Release a MemPage. This should be called once for each prior 2159 ** call to btreeGetPage. 2160 ** 2161 ** Page1 is a special case and must be released using releasePageOne(). 2162 */ 2163 static void releasePageNotNull(MemPage *pPage){ 2164 assert( pPage->aData ); 2165 assert( pPage->pBt ); 2166 assert( pPage->pDbPage!=0 ); 2167 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2168 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2169 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2170 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2171 } 2172 static void releasePage(MemPage *pPage){ 2173 if( pPage ) releasePageNotNull(pPage); 2174 } 2175 static void releasePageOne(MemPage *pPage){ 2176 assert( pPage!=0 ); 2177 assert( pPage->aData ); 2178 assert( pPage->pBt ); 2179 assert( pPage->pDbPage!=0 ); 2180 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2181 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2182 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2183 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2184 } 2185 2186 /* 2187 ** Get an unused page. 2188 ** 2189 ** This works just like btreeGetPage() with the addition: 2190 ** 2191 ** * If the page is already in use for some other purpose, immediately 2192 ** release it and return an SQLITE_CURRUPT error. 2193 ** * Make sure the isInit flag is clear 2194 */ 2195 static int btreeGetUnusedPage( 2196 BtShared *pBt, /* The btree */ 2197 Pgno pgno, /* Number of the page to fetch */ 2198 MemPage **ppPage, /* Return the page in this parameter */ 2199 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2200 ){ 2201 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2202 if( rc==SQLITE_OK ){ 2203 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2204 releasePage(*ppPage); 2205 *ppPage = 0; 2206 return SQLITE_CORRUPT_BKPT; 2207 } 2208 (*ppPage)->isInit = 0; 2209 }else{ 2210 *ppPage = 0; 2211 } 2212 return rc; 2213 } 2214 2215 2216 /* 2217 ** During a rollback, when the pager reloads information into the cache 2218 ** so that the cache is restored to its original state at the start of 2219 ** the transaction, for each page restored this routine is called. 2220 ** 2221 ** This routine needs to reset the extra data section at the end of the 2222 ** page to agree with the restored data. 2223 */ 2224 static void pageReinit(DbPage *pData){ 2225 MemPage *pPage; 2226 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2227 assert( sqlite3PagerPageRefcount(pData)>0 ); 2228 if( pPage->isInit ){ 2229 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2230 pPage->isInit = 0; 2231 if( sqlite3PagerPageRefcount(pData)>1 ){ 2232 /* pPage might not be a btree page; it might be an overflow page 2233 ** or ptrmap page or a free page. In those cases, the following 2234 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2235 ** But no harm is done by this. And it is very important that 2236 ** btreeInitPage() be called on every btree page so we make 2237 ** the call for every page that comes in for re-initing. */ 2238 btreeInitPage(pPage); 2239 } 2240 } 2241 } 2242 2243 /* 2244 ** Invoke the busy handler for a btree. 2245 */ 2246 static int btreeInvokeBusyHandler(void *pArg){ 2247 BtShared *pBt = (BtShared*)pArg; 2248 assert( pBt->db ); 2249 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2250 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler, 2251 sqlite3PagerFile(pBt->pPager)); 2252 } 2253 2254 /* 2255 ** Open a database file. 2256 ** 2257 ** zFilename is the name of the database file. If zFilename is NULL 2258 ** then an ephemeral database is created. The ephemeral database might 2259 ** be exclusively in memory, or it might use a disk-based memory cache. 2260 ** Either way, the ephemeral database will be automatically deleted 2261 ** when sqlite3BtreeClose() is called. 2262 ** 2263 ** If zFilename is ":memory:" then an in-memory database is created 2264 ** that is automatically destroyed when it is closed. 2265 ** 2266 ** The "flags" parameter is a bitmask that might contain bits like 2267 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2268 ** 2269 ** If the database is already opened in the same database connection 2270 ** and we are in shared cache mode, then the open will fail with an 2271 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2272 ** objects in the same database connection since doing so will lead 2273 ** to problems with locking. 2274 */ 2275 int sqlite3BtreeOpen( 2276 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2277 const char *zFilename, /* Name of the file containing the BTree database */ 2278 sqlite3 *db, /* Associated database handle */ 2279 Btree **ppBtree, /* Pointer to new Btree object written here */ 2280 int flags, /* Options */ 2281 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2282 ){ 2283 BtShared *pBt = 0; /* Shared part of btree structure */ 2284 Btree *p; /* Handle to return */ 2285 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2286 int rc = SQLITE_OK; /* Result code from this function */ 2287 u8 nReserve; /* Byte of unused space on each page */ 2288 unsigned char zDbHeader[100]; /* Database header content */ 2289 2290 /* True if opening an ephemeral, temporary database */ 2291 const int isTempDb = zFilename==0 || zFilename[0]==0; 2292 2293 /* Set the variable isMemdb to true for an in-memory database, or 2294 ** false for a file-based database. 2295 */ 2296 #ifdef SQLITE_OMIT_MEMORYDB 2297 const int isMemdb = 0; 2298 #else 2299 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2300 || (isTempDb && sqlite3TempInMemory(db)) 2301 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2302 #endif 2303 2304 assert( db!=0 ); 2305 assert( pVfs!=0 ); 2306 assert( sqlite3_mutex_held(db->mutex) ); 2307 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2308 2309 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2310 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2311 2312 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2313 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2314 2315 if( isMemdb ){ 2316 flags |= BTREE_MEMORY; 2317 } 2318 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2319 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2320 } 2321 p = sqlite3MallocZero(sizeof(Btree)); 2322 if( !p ){ 2323 return SQLITE_NOMEM_BKPT; 2324 } 2325 p->inTrans = TRANS_NONE; 2326 p->db = db; 2327 #ifndef SQLITE_OMIT_SHARED_CACHE 2328 p->lock.pBtree = p; 2329 p->lock.iTable = 1; 2330 #endif 2331 2332 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2333 /* 2334 ** If this Btree is a candidate for shared cache, try to find an 2335 ** existing BtShared object that we can share with 2336 */ 2337 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2338 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2339 int nFilename = sqlite3Strlen30(zFilename)+1; 2340 int nFullPathname = pVfs->mxPathname+1; 2341 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2342 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2343 2344 p->sharable = 1; 2345 if( !zFullPathname ){ 2346 sqlite3_free(p); 2347 return SQLITE_NOMEM_BKPT; 2348 } 2349 if( isMemdb ){ 2350 memcpy(zFullPathname, zFilename, nFilename); 2351 }else{ 2352 rc = sqlite3OsFullPathname(pVfs, zFilename, 2353 nFullPathname, zFullPathname); 2354 if( rc ){ 2355 sqlite3_free(zFullPathname); 2356 sqlite3_free(p); 2357 return rc; 2358 } 2359 } 2360 #if SQLITE_THREADSAFE 2361 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2362 sqlite3_mutex_enter(mutexOpen); 2363 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 2364 sqlite3_mutex_enter(mutexShared); 2365 #endif 2366 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2367 assert( pBt->nRef>0 ); 2368 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2369 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2370 int iDb; 2371 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2372 Btree *pExisting = db->aDb[iDb].pBt; 2373 if( pExisting && pExisting->pBt==pBt ){ 2374 sqlite3_mutex_leave(mutexShared); 2375 sqlite3_mutex_leave(mutexOpen); 2376 sqlite3_free(zFullPathname); 2377 sqlite3_free(p); 2378 return SQLITE_CONSTRAINT; 2379 } 2380 } 2381 p->pBt = pBt; 2382 pBt->nRef++; 2383 break; 2384 } 2385 } 2386 sqlite3_mutex_leave(mutexShared); 2387 sqlite3_free(zFullPathname); 2388 } 2389 #ifdef SQLITE_DEBUG 2390 else{ 2391 /* In debug mode, we mark all persistent databases as sharable 2392 ** even when they are not. This exercises the locking code and 2393 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2394 ** statements to find locking problems. 2395 */ 2396 p->sharable = 1; 2397 } 2398 #endif 2399 } 2400 #endif 2401 if( pBt==0 ){ 2402 /* 2403 ** The following asserts make sure that structures used by the btree are 2404 ** the right size. This is to guard against size changes that result 2405 ** when compiling on a different architecture. 2406 */ 2407 assert( sizeof(i64)==8 ); 2408 assert( sizeof(u64)==8 ); 2409 assert( sizeof(u32)==4 ); 2410 assert( sizeof(u16)==2 ); 2411 assert( sizeof(Pgno)==4 ); 2412 2413 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2414 if( pBt==0 ){ 2415 rc = SQLITE_NOMEM_BKPT; 2416 goto btree_open_out; 2417 } 2418 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2419 sizeof(MemPage), flags, vfsFlags, pageReinit); 2420 if( rc==SQLITE_OK ){ 2421 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2422 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2423 } 2424 if( rc!=SQLITE_OK ){ 2425 goto btree_open_out; 2426 } 2427 pBt->openFlags = (u8)flags; 2428 pBt->db = db; 2429 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2430 p->pBt = pBt; 2431 2432 pBt->pCursor = 0; 2433 pBt->pPage1 = 0; 2434 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2435 #if defined(SQLITE_SECURE_DELETE) 2436 pBt->btsFlags |= BTS_SECURE_DELETE; 2437 #elif defined(SQLITE_FAST_SECURE_DELETE) 2438 pBt->btsFlags |= BTS_OVERWRITE; 2439 #endif 2440 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2441 ** determined by the 2-byte integer located at an offset of 16 bytes from 2442 ** the beginning of the database file. */ 2443 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2444 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2445 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2446 pBt->pageSize = 0; 2447 #ifndef SQLITE_OMIT_AUTOVACUUM 2448 /* If the magic name ":memory:" will create an in-memory database, then 2449 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2450 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2451 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2452 ** regular file-name. In this case the auto-vacuum applies as per normal. 2453 */ 2454 if( zFilename && !isMemdb ){ 2455 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2456 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2457 } 2458 #endif 2459 nReserve = 0; 2460 }else{ 2461 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2462 ** determined by the one-byte unsigned integer found at an offset of 20 2463 ** into the database file header. */ 2464 nReserve = zDbHeader[20]; 2465 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2466 #ifndef SQLITE_OMIT_AUTOVACUUM 2467 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2468 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2469 #endif 2470 } 2471 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2472 if( rc ) goto btree_open_out; 2473 pBt->usableSize = pBt->pageSize - nReserve; 2474 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2475 2476 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2477 /* Add the new BtShared object to the linked list sharable BtShareds. 2478 */ 2479 pBt->nRef = 1; 2480 if( p->sharable ){ 2481 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2482 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) 2483 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2484 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2485 if( pBt->mutex==0 ){ 2486 rc = SQLITE_NOMEM_BKPT; 2487 goto btree_open_out; 2488 } 2489 } 2490 sqlite3_mutex_enter(mutexShared); 2491 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2492 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2493 sqlite3_mutex_leave(mutexShared); 2494 } 2495 #endif 2496 } 2497 2498 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2499 /* If the new Btree uses a sharable pBtShared, then link the new 2500 ** Btree into the list of all sharable Btrees for the same connection. 2501 ** The list is kept in ascending order by pBt address. 2502 */ 2503 if( p->sharable ){ 2504 int i; 2505 Btree *pSib; 2506 for(i=0; i<db->nDb; i++){ 2507 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2508 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2509 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2510 p->pNext = pSib; 2511 p->pPrev = 0; 2512 pSib->pPrev = p; 2513 }else{ 2514 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2515 pSib = pSib->pNext; 2516 } 2517 p->pNext = pSib->pNext; 2518 p->pPrev = pSib; 2519 if( p->pNext ){ 2520 p->pNext->pPrev = p; 2521 } 2522 pSib->pNext = p; 2523 } 2524 break; 2525 } 2526 } 2527 } 2528 #endif 2529 *ppBtree = p; 2530 2531 btree_open_out: 2532 if( rc!=SQLITE_OK ){ 2533 if( pBt && pBt->pPager ){ 2534 sqlite3PagerClose(pBt->pPager, 0); 2535 } 2536 sqlite3_free(pBt); 2537 sqlite3_free(p); 2538 *ppBtree = 0; 2539 }else{ 2540 sqlite3_file *pFile; 2541 2542 /* If the B-Tree was successfully opened, set the pager-cache size to the 2543 ** default value. Except, when opening on an existing shared pager-cache, 2544 ** do not change the pager-cache size. 2545 */ 2546 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2547 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); 2548 } 2549 2550 pFile = sqlite3PagerFile(pBt->pPager); 2551 if( pFile->pMethods ){ 2552 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2553 } 2554 } 2555 if( mutexOpen ){ 2556 assert( sqlite3_mutex_held(mutexOpen) ); 2557 sqlite3_mutex_leave(mutexOpen); 2558 } 2559 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2560 return rc; 2561 } 2562 2563 /* 2564 ** Decrement the BtShared.nRef counter. When it reaches zero, 2565 ** remove the BtShared structure from the sharing list. Return 2566 ** true if the BtShared.nRef counter reaches zero and return 2567 ** false if it is still positive. 2568 */ 2569 static int removeFromSharingList(BtShared *pBt){ 2570 #ifndef SQLITE_OMIT_SHARED_CACHE 2571 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) 2572 BtShared *pList; 2573 int removed = 0; 2574 2575 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2576 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 2577 sqlite3_mutex_enter(pMaster); 2578 pBt->nRef--; 2579 if( pBt->nRef<=0 ){ 2580 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2581 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2582 }else{ 2583 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2584 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2585 pList=pList->pNext; 2586 } 2587 if( ALWAYS(pList) ){ 2588 pList->pNext = pBt->pNext; 2589 } 2590 } 2591 if( SQLITE_THREADSAFE ){ 2592 sqlite3_mutex_free(pBt->mutex); 2593 } 2594 removed = 1; 2595 } 2596 sqlite3_mutex_leave(pMaster); 2597 return removed; 2598 #else 2599 return 1; 2600 #endif 2601 } 2602 2603 /* 2604 ** Make sure pBt->pTmpSpace points to an allocation of 2605 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2606 ** pointer. 2607 */ 2608 static void allocateTempSpace(BtShared *pBt){ 2609 if( !pBt->pTmpSpace ){ 2610 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2611 2612 /* One of the uses of pBt->pTmpSpace is to format cells before 2613 ** inserting them into a leaf page (function fillInCell()). If 2614 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2615 ** by the various routines that manipulate binary cells. Which 2616 ** can mean that fillInCell() only initializes the first 2 or 3 2617 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2618 ** it into a database page. This is not actually a problem, but it 2619 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2620 ** data is passed to system call write(). So to avoid this error, 2621 ** zero the first 4 bytes of temp space here. 2622 ** 2623 ** Also: Provide four bytes of initialized space before the 2624 ** beginning of pTmpSpace as an area available to prepend the 2625 ** left-child pointer to the beginning of a cell. 2626 */ 2627 if( pBt->pTmpSpace ){ 2628 memset(pBt->pTmpSpace, 0, 8); 2629 pBt->pTmpSpace += 4; 2630 } 2631 } 2632 } 2633 2634 /* 2635 ** Free the pBt->pTmpSpace allocation 2636 */ 2637 static void freeTempSpace(BtShared *pBt){ 2638 if( pBt->pTmpSpace ){ 2639 pBt->pTmpSpace -= 4; 2640 sqlite3PageFree(pBt->pTmpSpace); 2641 pBt->pTmpSpace = 0; 2642 } 2643 } 2644 2645 /* 2646 ** Close an open database and invalidate all cursors. 2647 */ 2648 int sqlite3BtreeClose(Btree *p){ 2649 BtShared *pBt = p->pBt; 2650 BtCursor *pCur; 2651 2652 /* Close all cursors opened via this handle. */ 2653 assert( sqlite3_mutex_held(p->db->mutex) ); 2654 sqlite3BtreeEnter(p); 2655 pCur = pBt->pCursor; 2656 while( pCur ){ 2657 BtCursor *pTmp = pCur; 2658 pCur = pCur->pNext; 2659 if( pTmp->pBtree==p ){ 2660 sqlite3BtreeCloseCursor(pTmp); 2661 } 2662 } 2663 2664 /* Rollback any active transaction and free the handle structure. 2665 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2666 ** this handle. 2667 */ 2668 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2669 sqlite3BtreeLeave(p); 2670 2671 /* If there are still other outstanding references to the shared-btree 2672 ** structure, return now. The remainder of this procedure cleans 2673 ** up the shared-btree. 2674 */ 2675 assert( p->wantToLock==0 && p->locked==0 ); 2676 if( !p->sharable || removeFromSharingList(pBt) ){ 2677 /* The pBt is no longer on the sharing list, so we can access 2678 ** it without having to hold the mutex. 2679 ** 2680 ** Clean out and delete the BtShared object. 2681 */ 2682 assert( !pBt->pCursor ); 2683 sqlite3PagerClose(pBt->pPager, p->db); 2684 if( pBt->xFreeSchema && pBt->pSchema ){ 2685 pBt->xFreeSchema(pBt->pSchema); 2686 } 2687 sqlite3DbFree(0, pBt->pSchema); 2688 freeTempSpace(pBt); 2689 sqlite3_free(pBt); 2690 } 2691 2692 #ifndef SQLITE_OMIT_SHARED_CACHE 2693 assert( p->wantToLock==0 ); 2694 assert( p->locked==0 ); 2695 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2696 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2697 #endif 2698 2699 sqlite3_free(p); 2700 return SQLITE_OK; 2701 } 2702 2703 /* 2704 ** Change the "soft" limit on the number of pages in the cache. 2705 ** Unused and unmodified pages will be recycled when the number of 2706 ** pages in the cache exceeds this soft limit. But the size of the 2707 ** cache is allowed to grow larger than this limit if it contains 2708 ** dirty pages or pages still in active use. 2709 */ 2710 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2711 BtShared *pBt = p->pBt; 2712 assert( sqlite3_mutex_held(p->db->mutex) ); 2713 sqlite3BtreeEnter(p); 2714 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2715 sqlite3BtreeLeave(p); 2716 return SQLITE_OK; 2717 } 2718 2719 /* 2720 ** Change the "spill" limit on the number of pages in the cache. 2721 ** If the number of pages exceeds this limit during a write transaction, 2722 ** the pager might attempt to "spill" pages to the journal early in 2723 ** order to free up memory. 2724 ** 2725 ** The value returned is the current spill size. If zero is passed 2726 ** as an argument, no changes are made to the spill size setting, so 2727 ** using mxPage of 0 is a way to query the current spill size. 2728 */ 2729 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2730 BtShared *pBt = p->pBt; 2731 int res; 2732 assert( sqlite3_mutex_held(p->db->mutex) ); 2733 sqlite3BtreeEnter(p); 2734 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2735 sqlite3BtreeLeave(p); 2736 return res; 2737 } 2738 2739 #if SQLITE_MAX_MMAP_SIZE>0 2740 /* 2741 ** Change the limit on the amount of the database file that may be 2742 ** memory mapped. 2743 */ 2744 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2745 BtShared *pBt = p->pBt; 2746 assert( sqlite3_mutex_held(p->db->mutex) ); 2747 sqlite3BtreeEnter(p); 2748 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2749 sqlite3BtreeLeave(p); 2750 return SQLITE_OK; 2751 } 2752 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2753 2754 /* 2755 ** Change the way data is synced to disk in order to increase or decrease 2756 ** how well the database resists damage due to OS crashes and power 2757 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2758 ** there is a high probability of damage) Level 2 is the default. There 2759 ** is a very low but non-zero probability of damage. Level 3 reduces the 2760 ** probability of damage to near zero but with a write performance reduction. 2761 */ 2762 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2763 int sqlite3BtreeSetPagerFlags( 2764 Btree *p, /* The btree to set the safety level on */ 2765 unsigned pgFlags /* Various PAGER_* flags */ 2766 ){ 2767 BtShared *pBt = p->pBt; 2768 assert( sqlite3_mutex_held(p->db->mutex) ); 2769 sqlite3BtreeEnter(p); 2770 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2771 sqlite3BtreeLeave(p); 2772 return SQLITE_OK; 2773 } 2774 #endif 2775 2776 /* 2777 ** Change the default pages size and the number of reserved bytes per page. 2778 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2779 ** without changing anything. 2780 ** 2781 ** The page size must be a power of 2 between 512 and 65536. If the page 2782 ** size supplied does not meet this constraint then the page size is not 2783 ** changed. 2784 ** 2785 ** Page sizes are constrained to be a power of two so that the region 2786 ** of the database file used for locking (beginning at PENDING_BYTE, 2787 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2788 ** at the beginning of a page. 2789 ** 2790 ** If parameter nReserve is less than zero, then the number of reserved 2791 ** bytes per page is left unchanged. 2792 ** 2793 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2794 ** and autovacuum mode can no longer be changed. 2795 */ 2796 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2797 int rc = SQLITE_OK; 2798 BtShared *pBt = p->pBt; 2799 assert( nReserve>=-1 && nReserve<=255 ); 2800 sqlite3BtreeEnter(p); 2801 #if SQLITE_HAS_CODEC 2802 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve; 2803 #endif 2804 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2805 sqlite3BtreeLeave(p); 2806 return SQLITE_READONLY; 2807 } 2808 if( nReserve<0 ){ 2809 nReserve = pBt->pageSize - pBt->usableSize; 2810 } 2811 assert( nReserve>=0 && nReserve<=255 ); 2812 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2813 ((pageSize-1)&pageSize)==0 ){ 2814 assert( (pageSize & 7)==0 ); 2815 assert( !pBt->pCursor ); 2816 pBt->pageSize = (u32)pageSize; 2817 freeTempSpace(pBt); 2818 } 2819 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2820 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2821 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2822 sqlite3BtreeLeave(p); 2823 return rc; 2824 } 2825 2826 /* 2827 ** Return the currently defined page size 2828 */ 2829 int sqlite3BtreeGetPageSize(Btree *p){ 2830 return p->pBt->pageSize; 2831 } 2832 2833 /* 2834 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2835 ** may only be called if it is guaranteed that the b-tree mutex is already 2836 ** held. 2837 ** 2838 ** This is useful in one special case in the backup API code where it is 2839 ** known that the shared b-tree mutex is held, but the mutex on the 2840 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2841 ** were to be called, it might collide with some other operation on the 2842 ** database handle that owns *p, causing undefined behavior. 2843 */ 2844 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2845 int n; 2846 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2847 n = p->pBt->pageSize - p->pBt->usableSize; 2848 return n; 2849 } 2850 2851 /* 2852 ** Return the number of bytes of space at the end of every page that 2853 ** are intentually left unused. This is the "reserved" space that is 2854 ** sometimes used by extensions. 2855 ** 2856 ** If SQLITE_HAS_MUTEX is defined then the number returned is the 2857 ** greater of the current reserved space and the maximum requested 2858 ** reserve space. 2859 */ 2860 int sqlite3BtreeGetOptimalReserve(Btree *p){ 2861 int n; 2862 sqlite3BtreeEnter(p); 2863 n = sqlite3BtreeGetReserveNoMutex(p); 2864 #ifdef SQLITE_HAS_CODEC 2865 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve; 2866 #endif 2867 sqlite3BtreeLeave(p); 2868 return n; 2869 } 2870 2871 2872 /* 2873 ** Set the maximum page count for a database if mxPage is positive. 2874 ** No changes are made if mxPage is 0 or negative. 2875 ** Regardless of the value of mxPage, return the maximum page count. 2876 */ 2877 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ 2878 int n; 2879 sqlite3BtreeEnter(p); 2880 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2881 sqlite3BtreeLeave(p); 2882 return n; 2883 } 2884 2885 /* 2886 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 2887 ** 2888 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 2889 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 2890 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 2891 ** newFlag==(-1) No changes 2892 ** 2893 ** This routine acts as a query if newFlag is less than zero 2894 ** 2895 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 2896 ** freelist leaf pages are not written back to the database. Thus in-page 2897 ** deleted content is cleared, but freelist deleted content is not. 2898 ** 2899 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 2900 ** that freelist leaf pages are written back into the database, increasing 2901 ** the amount of disk I/O. 2902 */ 2903 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 2904 int b; 2905 if( p==0 ) return 0; 2906 sqlite3BtreeEnter(p); 2907 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 2908 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 2909 if( newFlag>=0 ){ 2910 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 2911 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 2912 } 2913 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 2914 sqlite3BtreeLeave(p); 2915 return b; 2916 } 2917 2918 /* 2919 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 2920 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 2921 ** is disabled. The default value for the auto-vacuum property is 2922 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 2923 */ 2924 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 2925 #ifdef SQLITE_OMIT_AUTOVACUUM 2926 return SQLITE_READONLY; 2927 #else 2928 BtShared *pBt = p->pBt; 2929 int rc = SQLITE_OK; 2930 u8 av = (u8)autoVacuum; 2931 2932 sqlite3BtreeEnter(p); 2933 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 2934 rc = SQLITE_READONLY; 2935 }else{ 2936 pBt->autoVacuum = av ?1:0; 2937 pBt->incrVacuum = av==2 ?1:0; 2938 } 2939 sqlite3BtreeLeave(p); 2940 return rc; 2941 #endif 2942 } 2943 2944 /* 2945 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 2946 ** enabled 1 is returned. Otherwise 0. 2947 */ 2948 int sqlite3BtreeGetAutoVacuum(Btree *p){ 2949 #ifdef SQLITE_OMIT_AUTOVACUUM 2950 return BTREE_AUTOVACUUM_NONE; 2951 #else 2952 int rc; 2953 sqlite3BtreeEnter(p); 2954 rc = ( 2955 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 2956 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 2957 BTREE_AUTOVACUUM_INCR 2958 ); 2959 sqlite3BtreeLeave(p); 2960 return rc; 2961 #endif 2962 } 2963 2964 /* 2965 ** If the user has not set the safety-level for this database connection 2966 ** using "PRAGMA synchronous", and if the safety-level is not already 2967 ** set to the value passed to this function as the second parameter, 2968 ** set it so. 2969 */ 2970 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 2971 && !defined(SQLITE_OMIT_WAL) 2972 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 2973 sqlite3 *db; 2974 Db *pDb; 2975 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 2976 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 2977 if( pDb->bSyncSet==0 2978 && pDb->safety_level!=safety_level 2979 && pDb!=&db->aDb[1] 2980 ){ 2981 pDb->safety_level = safety_level; 2982 sqlite3PagerSetFlags(pBt->pPager, 2983 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 2984 } 2985 } 2986 } 2987 #else 2988 # define setDefaultSyncFlag(pBt,safety_level) 2989 #endif 2990 2991 /* Forward declaration */ 2992 static int newDatabase(BtShared*); 2993 2994 2995 /* 2996 ** Get a reference to pPage1 of the database file. This will 2997 ** also acquire a readlock on that file. 2998 ** 2999 ** SQLITE_OK is returned on success. If the file is not a 3000 ** well-formed database file, then SQLITE_CORRUPT is returned. 3001 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3002 ** is returned if we run out of memory. 3003 */ 3004 static int lockBtree(BtShared *pBt){ 3005 int rc; /* Result code from subfunctions */ 3006 MemPage *pPage1; /* Page 1 of the database file */ 3007 int nPage; /* Number of pages in the database */ 3008 int nPageFile = 0; /* Number of pages in the database file */ 3009 int nPageHeader; /* Number of pages in the database according to hdr */ 3010 3011 assert( sqlite3_mutex_held(pBt->mutex) ); 3012 assert( pBt->pPage1==0 ); 3013 rc = sqlite3PagerSharedLock(pBt->pPager); 3014 if( rc!=SQLITE_OK ) return rc; 3015 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3016 if( rc!=SQLITE_OK ) return rc; 3017 3018 /* Do some checking to help insure the file we opened really is 3019 ** a valid database file. 3020 */ 3021 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); 3022 sqlite3PagerPagecount(pBt->pPager, &nPageFile); 3023 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3024 nPage = nPageFile; 3025 } 3026 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3027 nPage = 0; 3028 } 3029 if( nPage>0 ){ 3030 u32 pageSize; 3031 u32 usableSize; 3032 u8 *page1 = pPage1->aData; 3033 rc = SQLITE_NOTADB; 3034 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3035 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3036 ** 61 74 20 33 00. */ 3037 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3038 goto page1_init_failed; 3039 } 3040 3041 #ifdef SQLITE_OMIT_WAL 3042 if( page1[18]>1 ){ 3043 pBt->btsFlags |= BTS_READ_ONLY; 3044 } 3045 if( page1[19]>1 ){ 3046 goto page1_init_failed; 3047 } 3048 #else 3049 if( page1[18]>2 ){ 3050 pBt->btsFlags |= BTS_READ_ONLY; 3051 } 3052 if( page1[19]>2 ){ 3053 goto page1_init_failed; 3054 } 3055 3056 /* If the write version is set to 2, this database should be accessed 3057 ** in WAL mode. If the log is not already open, open it now. Then 3058 ** return SQLITE_OK and return without populating BtShared.pPage1. 3059 ** The caller detects this and calls this function again. This is 3060 ** required as the version of page 1 currently in the page1 buffer 3061 ** may not be the latest version - there may be a newer one in the log 3062 ** file. 3063 */ 3064 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3065 int isOpen = 0; 3066 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3067 if( rc!=SQLITE_OK ){ 3068 goto page1_init_failed; 3069 }else{ 3070 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3071 if( isOpen==0 ){ 3072 releasePageOne(pPage1); 3073 return SQLITE_OK; 3074 } 3075 } 3076 rc = SQLITE_NOTADB; 3077 }else{ 3078 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3079 } 3080 #endif 3081 3082 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3083 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3084 ** 3085 ** The original design allowed these amounts to vary, but as of 3086 ** version 3.6.0, we require them to be fixed. 3087 */ 3088 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3089 goto page1_init_failed; 3090 } 3091 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3092 ** determined by the 2-byte integer located at an offset of 16 bytes from 3093 ** the beginning of the database file. */ 3094 pageSize = (page1[16]<<8) | (page1[17]<<16); 3095 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3096 ** between 512 and 65536 inclusive. */ 3097 if( ((pageSize-1)&pageSize)!=0 3098 || pageSize>SQLITE_MAX_PAGE_SIZE 3099 || pageSize<=256 3100 ){ 3101 goto page1_init_failed; 3102 } 3103 assert( (pageSize & 7)==0 ); 3104 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3105 ** integer at offset 20 is the number of bytes of space at the end of 3106 ** each page to reserve for extensions. 3107 ** 3108 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3109 ** determined by the one-byte unsigned integer found at an offset of 20 3110 ** into the database file header. */ 3111 usableSize = pageSize - page1[20]; 3112 if( (u32)pageSize!=pBt->pageSize ){ 3113 /* After reading the first page of the database assuming a page size 3114 ** of BtShared.pageSize, we have discovered that the page-size is 3115 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3116 ** zero and return SQLITE_OK. The caller will call this function 3117 ** again with the correct page-size. 3118 */ 3119 releasePageOne(pPage1); 3120 pBt->usableSize = usableSize; 3121 pBt->pageSize = pageSize; 3122 freeTempSpace(pBt); 3123 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3124 pageSize-usableSize); 3125 return rc; 3126 } 3127 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){ 3128 rc = SQLITE_CORRUPT_BKPT; 3129 goto page1_init_failed; 3130 } 3131 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3132 ** be less than 480. In other words, if the page size is 512, then the 3133 ** reserved space size cannot exceed 32. */ 3134 if( usableSize<480 ){ 3135 goto page1_init_failed; 3136 } 3137 pBt->pageSize = pageSize; 3138 pBt->usableSize = usableSize; 3139 #ifndef SQLITE_OMIT_AUTOVACUUM 3140 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3141 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3142 #endif 3143 } 3144 3145 /* maxLocal is the maximum amount of payload to store locally for 3146 ** a cell. Make sure it is small enough so that at least minFanout 3147 ** cells can will fit on one page. We assume a 10-byte page header. 3148 ** Besides the payload, the cell must store: 3149 ** 2-byte pointer to the cell 3150 ** 4-byte child pointer 3151 ** 9-byte nKey value 3152 ** 4-byte nData value 3153 ** 4-byte overflow page pointer 3154 ** So a cell consists of a 2-byte pointer, a header which is as much as 3155 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3156 ** page pointer. 3157 */ 3158 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3159 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3160 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3161 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3162 if( pBt->maxLocal>127 ){ 3163 pBt->max1bytePayload = 127; 3164 }else{ 3165 pBt->max1bytePayload = (u8)pBt->maxLocal; 3166 } 3167 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3168 pBt->pPage1 = pPage1; 3169 pBt->nPage = nPage; 3170 return SQLITE_OK; 3171 3172 page1_init_failed: 3173 releasePageOne(pPage1); 3174 pBt->pPage1 = 0; 3175 return rc; 3176 } 3177 3178 #ifndef NDEBUG 3179 /* 3180 ** Return the number of cursors open on pBt. This is for use 3181 ** in assert() expressions, so it is only compiled if NDEBUG is not 3182 ** defined. 3183 ** 3184 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3185 ** false then all cursors are counted. 3186 ** 3187 ** For the purposes of this routine, a cursor is any cursor that 3188 ** is capable of reading or writing to the database. Cursors that 3189 ** have been tripped into the CURSOR_FAULT state are not counted. 3190 */ 3191 static int countValidCursors(BtShared *pBt, int wrOnly){ 3192 BtCursor *pCur; 3193 int r = 0; 3194 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3195 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3196 && pCur->eState!=CURSOR_FAULT ) r++; 3197 } 3198 return r; 3199 } 3200 #endif 3201 3202 /* 3203 ** If there are no outstanding cursors and we are not in the middle 3204 ** of a transaction but there is a read lock on the database, then 3205 ** this routine unrefs the first page of the database file which 3206 ** has the effect of releasing the read lock. 3207 ** 3208 ** If there is a transaction in progress, this routine is a no-op. 3209 */ 3210 static void unlockBtreeIfUnused(BtShared *pBt){ 3211 assert( sqlite3_mutex_held(pBt->mutex) ); 3212 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3213 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3214 MemPage *pPage1 = pBt->pPage1; 3215 assert( pPage1->aData ); 3216 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3217 pBt->pPage1 = 0; 3218 releasePageOne(pPage1); 3219 } 3220 } 3221 3222 /* 3223 ** If pBt points to an empty file then convert that empty file 3224 ** into a new empty database by initializing the first page of 3225 ** the database. 3226 */ 3227 static int newDatabase(BtShared *pBt){ 3228 MemPage *pP1; 3229 unsigned char *data; 3230 int rc; 3231 3232 assert( sqlite3_mutex_held(pBt->mutex) ); 3233 if( pBt->nPage>0 ){ 3234 return SQLITE_OK; 3235 } 3236 pP1 = pBt->pPage1; 3237 assert( pP1!=0 ); 3238 data = pP1->aData; 3239 rc = sqlite3PagerWrite(pP1->pDbPage); 3240 if( rc ) return rc; 3241 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3242 assert( sizeof(zMagicHeader)==16 ); 3243 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3244 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3245 data[18] = 1; 3246 data[19] = 1; 3247 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3248 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3249 data[21] = 64; 3250 data[22] = 32; 3251 data[23] = 32; 3252 memset(&data[24], 0, 100-24); 3253 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3254 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3255 #ifndef SQLITE_OMIT_AUTOVACUUM 3256 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3257 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3258 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3259 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3260 #endif 3261 pBt->nPage = 1; 3262 data[31] = 1; 3263 return SQLITE_OK; 3264 } 3265 3266 /* 3267 ** Initialize the first page of the database file (creating a database 3268 ** consisting of a single page and no schema objects). Return SQLITE_OK 3269 ** if successful, or an SQLite error code otherwise. 3270 */ 3271 int sqlite3BtreeNewDb(Btree *p){ 3272 int rc; 3273 sqlite3BtreeEnter(p); 3274 p->pBt->nPage = 0; 3275 rc = newDatabase(p->pBt); 3276 sqlite3BtreeLeave(p); 3277 return rc; 3278 } 3279 3280 /* 3281 ** Attempt to start a new transaction. A write-transaction 3282 ** is started if the second argument is nonzero, otherwise a read- 3283 ** transaction. If the second argument is 2 or more and exclusive 3284 ** transaction is started, meaning that no other process is allowed 3285 ** to access the database. A preexisting transaction may not be 3286 ** upgraded to exclusive by calling this routine a second time - the 3287 ** exclusivity flag only works for a new transaction. 3288 ** 3289 ** A write-transaction must be started before attempting any 3290 ** changes to the database. None of the following routines 3291 ** will work unless a transaction is started first: 3292 ** 3293 ** sqlite3BtreeCreateTable() 3294 ** sqlite3BtreeCreateIndex() 3295 ** sqlite3BtreeClearTable() 3296 ** sqlite3BtreeDropTable() 3297 ** sqlite3BtreeInsert() 3298 ** sqlite3BtreeDelete() 3299 ** sqlite3BtreeUpdateMeta() 3300 ** 3301 ** If an initial attempt to acquire the lock fails because of lock contention 3302 ** and the database was previously unlocked, then invoke the busy handler 3303 ** if there is one. But if there was previously a read-lock, do not 3304 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3305 ** returned when there is already a read-lock in order to avoid a deadlock. 3306 ** 3307 ** Suppose there are two processes A and B. A has a read lock and B has 3308 ** a reserved lock. B tries to promote to exclusive but is blocked because 3309 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3310 ** One or the other of the two processes must give way or there can be 3311 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3312 ** when A already has a read lock, we encourage A to give up and let B 3313 ** proceed. 3314 */ 3315 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3316 BtShared *pBt = p->pBt; 3317 int rc = SQLITE_OK; 3318 3319 sqlite3BtreeEnter(p); 3320 btreeIntegrity(p); 3321 3322 /* If the btree is already in a write-transaction, or it 3323 ** is already in a read-transaction and a read-transaction 3324 ** is requested, this is a no-op. 3325 */ 3326 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3327 goto trans_begun; 3328 } 3329 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3330 3331 if( (p->db->flags & SQLITE_ResetDatabase) 3332 && sqlite3PagerIsreadonly(pBt->pPager)==0 3333 ){ 3334 pBt->btsFlags &= ~BTS_READ_ONLY; 3335 } 3336 3337 /* Write transactions are not possible on a read-only database */ 3338 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3339 rc = SQLITE_READONLY; 3340 goto trans_begun; 3341 } 3342 3343 #ifndef SQLITE_OMIT_SHARED_CACHE 3344 { 3345 sqlite3 *pBlock = 0; 3346 /* If another database handle has already opened a write transaction 3347 ** on this shared-btree structure and a second write transaction is 3348 ** requested, return SQLITE_LOCKED. 3349 */ 3350 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3351 || (pBt->btsFlags & BTS_PENDING)!=0 3352 ){ 3353 pBlock = pBt->pWriter->db; 3354 }else if( wrflag>1 ){ 3355 BtLock *pIter; 3356 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3357 if( pIter->pBtree!=p ){ 3358 pBlock = pIter->pBtree->db; 3359 break; 3360 } 3361 } 3362 } 3363 if( pBlock ){ 3364 sqlite3ConnectionBlocked(p->db, pBlock); 3365 rc = SQLITE_LOCKED_SHAREDCACHE; 3366 goto trans_begun; 3367 } 3368 } 3369 #endif 3370 3371 /* Any read-only or read-write transaction implies a read-lock on 3372 ** page 1. So if some other shared-cache client already has a write-lock 3373 ** on page 1, the transaction cannot be opened. */ 3374 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 3375 if( SQLITE_OK!=rc ) goto trans_begun; 3376 3377 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3378 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3379 do { 3380 /* Call lockBtree() until either pBt->pPage1 is populated or 3381 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3382 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3383 ** reading page 1 it discovers that the page-size of the database 3384 ** file is not pBt->pageSize. In this case lockBtree() will update 3385 ** pBt->pageSize to the page-size of the file on disk. 3386 */ 3387 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3388 3389 if( rc==SQLITE_OK && wrflag ){ 3390 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3391 rc = SQLITE_READONLY; 3392 }else{ 3393 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); 3394 if( rc==SQLITE_OK ){ 3395 rc = newDatabase(pBt); 3396 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3397 /* if there was no transaction opened when this function was 3398 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3399 ** code to SQLITE_BUSY. */ 3400 rc = SQLITE_BUSY; 3401 } 3402 } 3403 } 3404 3405 if( rc!=SQLITE_OK ){ 3406 unlockBtreeIfUnused(pBt); 3407 } 3408 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3409 btreeInvokeBusyHandler(pBt) ); 3410 sqlite3PagerResetLockTimeout(pBt->pPager); 3411 3412 if( rc==SQLITE_OK ){ 3413 if( p->inTrans==TRANS_NONE ){ 3414 pBt->nTransaction++; 3415 #ifndef SQLITE_OMIT_SHARED_CACHE 3416 if( p->sharable ){ 3417 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3418 p->lock.eLock = READ_LOCK; 3419 p->lock.pNext = pBt->pLock; 3420 pBt->pLock = &p->lock; 3421 } 3422 #endif 3423 } 3424 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3425 if( p->inTrans>pBt->inTransaction ){ 3426 pBt->inTransaction = p->inTrans; 3427 } 3428 if( wrflag ){ 3429 MemPage *pPage1 = pBt->pPage1; 3430 #ifndef SQLITE_OMIT_SHARED_CACHE 3431 assert( !pBt->pWriter ); 3432 pBt->pWriter = p; 3433 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3434 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3435 #endif 3436 3437 /* If the db-size header field is incorrect (as it may be if an old 3438 ** client has been writing the database file), update it now. Doing 3439 ** this sooner rather than later means the database size can safely 3440 ** re-read the database size from page 1 if a savepoint or transaction 3441 ** rollback occurs within the transaction. 3442 */ 3443 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3444 rc = sqlite3PagerWrite(pPage1->pDbPage); 3445 if( rc==SQLITE_OK ){ 3446 put4byte(&pPage1->aData[28], pBt->nPage); 3447 } 3448 } 3449 } 3450 } 3451 3452 trans_begun: 3453 if( rc==SQLITE_OK ){ 3454 if( pSchemaVersion ){ 3455 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3456 } 3457 if( wrflag ){ 3458 /* This call makes sure that the pager has the correct number of 3459 ** open savepoints. If the second parameter is greater than 0 and 3460 ** the sub-journal is not already open, then it will be opened here. 3461 */ 3462 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); 3463 } 3464 } 3465 3466 btreeIntegrity(p); 3467 sqlite3BtreeLeave(p); 3468 return rc; 3469 } 3470 3471 #ifndef SQLITE_OMIT_AUTOVACUUM 3472 3473 /* 3474 ** Set the pointer-map entries for all children of page pPage. Also, if 3475 ** pPage contains cells that point to overflow pages, set the pointer 3476 ** map entries for the overflow pages as well. 3477 */ 3478 static int setChildPtrmaps(MemPage *pPage){ 3479 int i; /* Counter variable */ 3480 int nCell; /* Number of cells in page pPage */ 3481 int rc; /* Return code */ 3482 BtShared *pBt = pPage->pBt; 3483 Pgno pgno = pPage->pgno; 3484 3485 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3486 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3487 if( rc!=SQLITE_OK ) return rc; 3488 nCell = pPage->nCell; 3489 3490 for(i=0; i<nCell; i++){ 3491 u8 *pCell = findCell(pPage, i); 3492 3493 ptrmapPutOvflPtr(pPage, pCell, &rc); 3494 3495 if( !pPage->leaf ){ 3496 Pgno childPgno = get4byte(pCell); 3497 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3498 } 3499 } 3500 3501 if( !pPage->leaf ){ 3502 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3503 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3504 } 3505 3506 return rc; 3507 } 3508 3509 /* 3510 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3511 ** that it points to iTo. Parameter eType describes the type of pointer to 3512 ** be modified, as follows: 3513 ** 3514 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3515 ** page of pPage. 3516 ** 3517 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3518 ** page pointed to by one of the cells on pPage. 3519 ** 3520 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3521 ** overflow page in the list. 3522 */ 3523 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3524 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3525 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3526 if( eType==PTRMAP_OVERFLOW2 ){ 3527 /* The pointer is always the first 4 bytes of the page in this case. */ 3528 if( get4byte(pPage->aData)!=iFrom ){ 3529 return SQLITE_CORRUPT_PAGE(pPage); 3530 } 3531 put4byte(pPage->aData, iTo); 3532 }else{ 3533 int i; 3534 int nCell; 3535 int rc; 3536 3537 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3538 if( rc ) return rc; 3539 nCell = pPage->nCell; 3540 3541 for(i=0; i<nCell; i++){ 3542 u8 *pCell = findCell(pPage, i); 3543 if( eType==PTRMAP_OVERFLOW1 ){ 3544 CellInfo info; 3545 pPage->xParseCell(pPage, pCell, &info); 3546 if( info.nLocal<info.nPayload ){ 3547 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3548 return SQLITE_CORRUPT_PAGE(pPage); 3549 } 3550 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3551 put4byte(pCell+info.nSize-4, iTo); 3552 break; 3553 } 3554 } 3555 }else{ 3556 if( get4byte(pCell)==iFrom ){ 3557 put4byte(pCell, iTo); 3558 break; 3559 } 3560 } 3561 } 3562 3563 if( i==nCell ){ 3564 if( eType!=PTRMAP_BTREE || 3565 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3566 return SQLITE_CORRUPT_PAGE(pPage); 3567 } 3568 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3569 } 3570 } 3571 return SQLITE_OK; 3572 } 3573 3574 3575 /* 3576 ** Move the open database page pDbPage to location iFreePage in the 3577 ** database. The pDbPage reference remains valid. 3578 ** 3579 ** The isCommit flag indicates that there is no need to remember that 3580 ** the journal needs to be sync()ed before database page pDbPage->pgno 3581 ** can be written to. The caller has already promised not to write to that 3582 ** page. 3583 */ 3584 static int relocatePage( 3585 BtShared *pBt, /* Btree */ 3586 MemPage *pDbPage, /* Open page to move */ 3587 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3588 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3589 Pgno iFreePage, /* The location to move pDbPage to */ 3590 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3591 ){ 3592 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3593 Pgno iDbPage = pDbPage->pgno; 3594 Pager *pPager = pBt->pPager; 3595 int rc; 3596 3597 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3598 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3599 assert( sqlite3_mutex_held(pBt->mutex) ); 3600 assert( pDbPage->pBt==pBt ); 3601 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3602 3603 /* Move page iDbPage from its current location to page number iFreePage */ 3604 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3605 iDbPage, iFreePage, iPtrPage, eType)); 3606 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3607 if( rc!=SQLITE_OK ){ 3608 return rc; 3609 } 3610 pDbPage->pgno = iFreePage; 3611 3612 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3613 ** that point to overflow pages. The pointer map entries for all these 3614 ** pages need to be changed. 3615 ** 3616 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3617 ** pointer to a subsequent overflow page. If this is the case, then 3618 ** the pointer map needs to be updated for the subsequent overflow page. 3619 */ 3620 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3621 rc = setChildPtrmaps(pDbPage); 3622 if( rc!=SQLITE_OK ){ 3623 return rc; 3624 } 3625 }else{ 3626 Pgno nextOvfl = get4byte(pDbPage->aData); 3627 if( nextOvfl!=0 ){ 3628 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3629 if( rc!=SQLITE_OK ){ 3630 return rc; 3631 } 3632 } 3633 } 3634 3635 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3636 ** that it points at iFreePage. Also fix the pointer map entry for 3637 ** iPtrPage. 3638 */ 3639 if( eType!=PTRMAP_ROOTPAGE ){ 3640 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3641 if( rc!=SQLITE_OK ){ 3642 return rc; 3643 } 3644 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3645 if( rc!=SQLITE_OK ){ 3646 releasePage(pPtrPage); 3647 return rc; 3648 } 3649 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3650 releasePage(pPtrPage); 3651 if( rc==SQLITE_OK ){ 3652 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3653 } 3654 } 3655 return rc; 3656 } 3657 3658 /* Forward declaration required by incrVacuumStep(). */ 3659 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3660 3661 /* 3662 ** Perform a single step of an incremental-vacuum. If successful, return 3663 ** SQLITE_OK. If there is no work to do (and therefore no point in 3664 ** calling this function again), return SQLITE_DONE. Or, if an error 3665 ** occurs, return some other error code. 3666 ** 3667 ** More specifically, this function attempts to re-organize the database so 3668 ** that the last page of the file currently in use is no longer in use. 3669 ** 3670 ** Parameter nFin is the number of pages that this database would contain 3671 ** were this function called until it returns SQLITE_DONE. 3672 ** 3673 ** If the bCommit parameter is non-zero, this function assumes that the 3674 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3675 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3676 ** operation, or false for an incremental vacuum. 3677 */ 3678 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3679 Pgno nFreeList; /* Number of pages still on the free-list */ 3680 int rc; 3681 3682 assert( sqlite3_mutex_held(pBt->mutex) ); 3683 assert( iLastPg>nFin ); 3684 3685 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3686 u8 eType; 3687 Pgno iPtrPage; 3688 3689 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3690 if( nFreeList==0 ){ 3691 return SQLITE_DONE; 3692 } 3693 3694 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3695 if( rc!=SQLITE_OK ){ 3696 return rc; 3697 } 3698 if( eType==PTRMAP_ROOTPAGE ){ 3699 return SQLITE_CORRUPT_BKPT; 3700 } 3701 3702 if( eType==PTRMAP_FREEPAGE ){ 3703 if( bCommit==0 ){ 3704 /* Remove the page from the files free-list. This is not required 3705 ** if bCommit is non-zero. In that case, the free-list will be 3706 ** truncated to zero after this function returns, so it doesn't 3707 ** matter if it still contains some garbage entries. 3708 */ 3709 Pgno iFreePg; 3710 MemPage *pFreePg; 3711 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3712 if( rc!=SQLITE_OK ){ 3713 return rc; 3714 } 3715 assert( iFreePg==iLastPg ); 3716 releasePage(pFreePg); 3717 } 3718 } else { 3719 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3720 MemPage *pLastPg; 3721 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3722 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3723 3724 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3725 if( rc!=SQLITE_OK ){ 3726 return rc; 3727 } 3728 3729 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3730 ** is swapped with the first free page pulled off the free list. 3731 ** 3732 ** On the other hand, if bCommit is greater than zero, then keep 3733 ** looping until a free-page located within the first nFin pages 3734 ** of the file is found. 3735 */ 3736 if( bCommit==0 ){ 3737 eMode = BTALLOC_LE; 3738 iNear = nFin; 3739 } 3740 do { 3741 MemPage *pFreePg; 3742 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3743 if( rc!=SQLITE_OK ){ 3744 releasePage(pLastPg); 3745 return rc; 3746 } 3747 releasePage(pFreePg); 3748 }while( bCommit && iFreePg>nFin ); 3749 assert( iFreePg<iLastPg ); 3750 3751 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3752 releasePage(pLastPg); 3753 if( rc!=SQLITE_OK ){ 3754 return rc; 3755 } 3756 } 3757 } 3758 3759 if( bCommit==0 ){ 3760 do { 3761 iLastPg--; 3762 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3763 pBt->bDoTruncate = 1; 3764 pBt->nPage = iLastPg; 3765 } 3766 return SQLITE_OK; 3767 } 3768 3769 /* 3770 ** The database opened by the first argument is an auto-vacuum database 3771 ** nOrig pages in size containing nFree free pages. Return the expected 3772 ** size of the database in pages following an auto-vacuum operation. 3773 */ 3774 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3775 int nEntry; /* Number of entries on one ptrmap page */ 3776 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3777 Pgno nFin; /* Return value */ 3778 3779 nEntry = pBt->usableSize/5; 3780 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3781 nFin = nOrig - nFree - nPtrmap; 3782 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3783 nFin--; 3784 } 3785 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3786 nFin--; 3787 } 3788 3789 return nFin; 3790 } 3791 3792 /* 3793 ** A write-transaction must be opened before calling this function. 3794 ** It performs a single unit of work towards an incremental vacuum. 3795 ** 3796 ** If the incremental vacuum is finished after this function has run, 3797 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3798 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3799 */ 3800 int sqlite3BtreeIncrVacuum(Btree *p){ 3801 int rc; 3802 BtShared *pBt = p->pBt; 3803 3804 sqlite3BtreeEnter(p); 3805 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3806 if( !pBt->autoVacuum ){ 3807 rc = SQLITE_DONE; 3808 }else{ 3809 Pgno nOrig = btreePagecount(pBt); 3810 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3811 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3812 3813 if( nOrig<nFin ){ 3814 rc = SQLITE_CORRUPT_BKPT; 3815 }else if( nFree>0 ){ 3816 rc = saveAllCursors(pBt, 0, 0); 3817 if( rc==SQLITE_OK ){ 3818 invalidateAllOverflowCache(pBt); 3819 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3820 } 3821 if( rc==SQLITE_OK ){ 3822 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3823 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3824 } 3825 }else{ 3826 rc = SQLITE_DONE; 3827 } 3828 } 3829 sqlite3BtreeLeave(p); 3830 return rc; 3831 } 3832 3833 /* 3834 ** This routine is called prior to sqlite3PagerCommit when a transaction 3835 ** is committed for an auto-vacuum database. 3836 ** 3837 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages 3838 ** the database file should be truncated to during the commit process. 3839 ** i.e. the database has been reorganized so that only the first *pnTrunc 3840 ** pages are in use. 3841 */ 3842 static int autoVacuumCommit(BtShared *pBt){ 3843 int rc = SQLITE_OK; 3844 Pager *pPager = pBt->pPager; 3845 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) 3846 3847 assert( sqlite3_mutex_held(pBt->mutex) ); 3848 invalidateAllOverflowCache(pBt); 3849 assert(pBt->autoVacuum); 3850 if( !pBt->incrVacuum ){ 3851 Pgno nFin; /* Number of pages in database after autovacuuming */ 3852 Pgno nFree; /* Number of pages on the freelist initially */ 3853 Pgno iFree; /* The next page to be freed */ 3854 Pgno nOrig; /* Database size before freeing */ 3855 3856 nOrig = btreePagecount(pBt); 3857 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3858 /* It is not possible to create a database for which the final page 3859 ** is either a pointer-map page or the pending-byte page. If one 3860 ** is encountered, this indicates corruption. 3861 */ 3862 return SQLITE_CORRUPT_BKPT; 3863 } 3864 3865 nFree = get4byte(&pBt->pPage1->aData[36]); 3866 nFin = finalDbSize(pBt, nOrig, nFree); 3867 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 3868 if( nFin<nOrig ){ 3869 rc = saveAllCursors(pBt, 0, 0); 3870 } 3871 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 3872 rc = incrVacuumStep(pBt, nFin, iFree, 1); 3873 } 3874 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 3875 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3876 put4byte(&pBt->pPage1->aData[32], 0); 3877 put4byte(&pBt->pPage1->aData[36], 0); 3878 put4byte(&pBt->pPage1->aData[28], nFin); 3879 pBt->bDoTruncate = 1; 3880 pBt->nPage = nFin; 3881 } 3882 if( rc!=SQLITE_OK ){ 3883 sqlite3PagerRollback(pPager); 3884 } 3885 } 3886 3887 assert( nRef>=sqlite3PagerRefcount(pPager) ); 3888 return rc; 3889 } 3890 3891 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 3892 # define setChildPtrmaps(x) SQLITE_OK 3893 #endif 3894 3895 /* 3896 ** This routine does the first phase of a two-phase commit. This routine 3897 ** causes a rollback journal to be created (if it does not already exist) 3898 ** and populated with enough information so that if a power loss occurs 3899 ** the database can be restored to its original state by playing back 3900 ** the journal. Then the contents of the journal are flushed out to 3901 ** the disk. After the journal is safely on oxide, the changes to the 3902 ** database are written into the database file and flushed to oxide. 3903 ** At the end of this call, the rollback journal still exists on the 3904 ** disk and we are still holding all locks, so the transaction has not 3905 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 3906 ** commit process. 3907 ** 3908 ** This call is a no-op if no write-transaction is currently active on pBt. 3909 ** 3910 ** Otherwise, sync the database file for the btree pBt. zMaster points to 3911 ** the name of a master journal file that should be written into the 3912 ** individual journal file, or is NULL, indicating no master journal file 3913 ** (single database transaction). 3914 ** 3915 ** When this is called, the master journal should already have been 3916 ** created, populated with this journal pointer and synced to disk. 3917 ** 3918 ** Once this is routine has returned, the only thing required to commit 3919 ** the write-transaction for this database file is to delete the journal. 3920 */ 3921 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ 3922 int rc = SQLITE_OK; 3923 if( p->inTrans==TRANS_WRITE ){ 3924 BtShared *pBt = p->pBt; 3925 sqlite3BtreeEnter(p); 3926 #ifndef SQLITE_OMIT_AUTOVACUUM 3927 if( pBt->autoVacuum ){ 3928 rc = autoVacuumCommit(pBt); 3929 if( rc!=SQLITE_OK ){ 3930 sqlite3BtreeLeave(p); 3931 return rc; 3932 } 3933 } 3934 if( pBt->bDoTruncate ){ 3935 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 3936 } 3937 #endif 3938 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); 3939 sqlite3BtreeLeave(p); 3940 } 3941 return rc; 3942 } 3943 3944 /* 3945 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 3946 ** at the conclusion of a transaction. 3947 */ 3948 static void btreeEndTransaction(Btree *p){ 3949 BtShared *pBt = p->pBt; 3950 sqlite3 *db = p->db; 3951 assert( sqlite3BtreeHoldsMutex(p) ); 3952 3953 #ifndef SQLITE_OMIT_AUTOVACUUM 3954 pBt->bDoTruncate = 0; 3955 #endif 3956 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 3957 /* If there are other active statements that belong to this database 3958 ** handle, downgrade to a read-only transaction. The other statements 3959 ** may still be reading from the database. */ 3960 downgradeAllSharedCacheTableLocks(p); 3961 p->inTrans = TRANS_READ; 3962 }else{ 3963 /* If the handle had any kind of transaction open, decrement the 3964 ** transaction count of the shared btree. If the transaction count 3965 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 3966 ** call below will unlock the pager. */ 3967 if( p->inTrans!=TRANS_NONE ){ 3968 clearAllSharedCacheTableLocks(p); 3969 pBt->nTransaction--; 3970 if( 0==pBt->nTransaction ){ 3971 pBt->inTransaction = TRANS_NONE; 3972 } 3973 } 3974 3975 /* Set the current transaction state to TRANS_NONE and unlock the 3976 ** pager if this call closed the only read or write transaction. */ 3977 p->inTrans = TRANS_NONE; 3978 unlockBtreeIfUnused(pBt); 3979 } 3980 3981 btreeIntegrity(p); 3982 } 3983 3984 /* 3985 ** Commit the transaction currently in progress. 3986 ** 3987 ** This routine implements the second phase of a 2-phase commit. The 3988 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 3989 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 3990 ** routine did all the work of writing information out to disk and flushing the 3991 ** contents so that they are written onto the disk platter. All this 3992 ** routine has to do is delete or truncate or zero the header in the 3993 ** the rollback journal (which causes the transaction to commit) and 3994 ** drop locks. 3995 ** 3996 ** Normally, if an error occurs while the pager layer is attempting to 3997 ** finalize the underlying journal file, this function returns an error and 3998 ** the upper layer will attempt a rollback. However, if the second argument 3999 ** is non-zero then this b-tree transaction is part of a multi-file 4000 ** transaction. In this case, the transaction has already been committed 4001 ** (by deleting a master journal file) and the caller will ignore this 4002 ** functions return code. So, even if an error occurs in the pager layer, 4003 ** reset the b-tree objects internal state to indicate that the write 4004 ** transaction has been closed. This is quite safe, as the pager will have 4005 ** transitioned to the error state. 4006 ** 4007 ** This will release the write lock on the database file. If there 4008 ** are no active cursors, it also releases the read lock. 4009 */ 4010 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4011 4012 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4013 sqlite3BtreeEnter(p); 4014 btreeIntegrity(p); 4015 4016 /* If the handle has a write-transaction open, commit the shared-btrees 4017 ** transaction and set the shared state to TRANS_READ. 4018 */ 4019 if( p->inTrans==TRANS_WRITE ){ 4020 int rc; 4021 BtShared *pBt = p->pBt; 4022 assert( pBt->inTransaction==TRANS_WRITE ); 4023 assert( pBt->nTransaction>0 ); 4024 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4025 if( rc!=SQLITE_OK && bCleanup==0 ){ 4026 sqlite3BtreeLeave(p); 4027 return rc; 4028 } 4029 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4030 pBt->inTransaction = TRANS_READ; 4031 btreeClearHasContent(pBt); 4032 } 4033 4034 btreeEndTransaction(p); 4035 sqlite3BtreeLeave(p); 4036 return SQLITE_OK; 4037 } 4038 4039 /* 4040 ** Do both phases of a commit. 4041 */ 4042 int sqlite3BtreeCommit(Btree *p){ 4043 int rc; 4044 sqlite3BtreeEnter(p); 4045 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4046 if( rc==SQLITE_OK ){ 4047 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4048 } 4049 sqlite3BtreeLeave(p); 4050 return rc; 4051 } 4052 4053 /* 4054 ** This routine sets the state to CURSOR_FAULT and the error 4055 ** code to errCode for every cursor on any BtShared that pBtree 4056 ** references. Or if the writeOnly flag is set to 1, then only 4057 ** trip write cursors and leave read cursors unchanged. 4058 ** 4059 ** Every cursor is a candidate to be tripped, including cursors 4060 ** that belong to other database connections that happen to be 4061 ** sharing the cache with pBtree. 4062 ** 4063 ** This routine gets called when a rollback occurs. If the writeOnly 4064 ** flag is true, then only write-cursors need be tripped - read-only 4065 ** cursors save their current positions so that they may continue 4066 ** following the rollback. Or, if writeOnly is false, all cursors are 4067 ** tripped. In general, writeOnly is false if the transaction being 4068 ** rolled back modified the database schema. In this case b-tree root 4069 ** pages may be moved or deleted from the database altogether, making 4070 ** it unsafe for read cursors to continue. 4071 ** 4072 ** If the writeOnly flag is true and an error is encountered while 4073 ** saving the current position of a read-only cursor, all cursors, 4074 ** including all read-cursors are tripped. 4075 ** 4076 ** SQLITE_OK is returned if successful, or if an error occurs while 4077 ** saving a cursor position, an SQLite error code. 4078 */ 4079 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4080 BtCursor *p; 4081 int rc = SQLITE_OK; 4082 4083 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4084 if( pBtree ){ 4085 sqlite3BtreeEnter(pBtree); 4086 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4087 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4088 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4089 rc = saveCursorPosition(p); 4090 if( rc!=SQLITE_OK ){ 4091 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4092 break; 4093 } 4094 } 4095 }else{ 4096 sqlite3BtreeClearCursor(p); 4097 p->eState = CURSOR_FAULT; 4098 p->skipNext = errCode; 4099 } 4100 btreeReleaseAllCursorPages(p); 4101 } 4102 sqlite3BtreeLeave(pBtree); 4103 } 4104 return rc; 4105 } 4106 4107 /* 4108 ** Rollback the transaction in progress. 4109 ** 4110 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4111 ** Only write cursors are tripped if writeOnly is true but all cursors are 4112 ** tripped if writeOnly is false. Any attempt to use 4113 ** a tripped cursor will result in an error. 4114 ** 4115 ** This will release the write lock on the database file. If there 4116 ** are no active cursors, it also releases the read lock. 4117 */ 4118 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4119 int rc; 4120 BtShared *pBt = p->pBt; 4121 MemPage *pPage1; 4122 4123 assert( writeOnly==1 || writeOnly==0 ); 4124 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4125 sqlite3BtreeEnter(p); 4126 if( tripCode==SQLITE_OK ){ 4127 rc = tripCode = saveAllCursors(pBt, 0, 0); 4128 if( rc ) writeOnly = 0; 4129 }else{ 4130 rc = SQLITE_OK; 4131 } 4132 if( tripCode ){ 4133 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4134 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4135 if( rc2!=SQLITE_OK ) rc = rc2; 4136 } 4137 btreeIntegrity(p); 4138 4139 if( p->inTrans==TRANS_WRITE ){ 4140 int rc2; 4141 4142 assert( TRANS_WRITE==pBt->inTransaction ); 4143 rc2 = sqlite3PagerRollback(pBt->pPager); 4144 if( rc2!=SQLITE_OK ){ 4145 rc = rc2; 4146 } 4147 4148 /* The rollback may have destroyed the pPage1->aData value. So 4149 ** call btreeGetPage() on page 1 again to make 4150 ** sure pPage1->aData is set correctly. */ 4151 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4152 int nPage = get4byte(28+(u8*)pPage1->aData); 4153 testcase( nPage==0 ); 4154 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4155 testcase( pBt->nPage!=nPage ); 4156 pBt->nPage = nPage; 4157 releasePageOne(pPage1); 4158 } 4159 assert( countValidCursors(pBt, 1)==0 ); 4160 pBt->inTransaction = TRANS_READ; 4161 btreeClearHasContent(pBt); 4162 } 4163 4164 btreeEndTransaction(p); 4165 sqlite3BtreeLeave(p); 4166 return rc; 4167 } 4168 4169 /* 4170 ** Start a statement subtransaction. The subtransaction can be rolled 4171 ** back independently of the main transaction. You must start a transaction 4172 ** before starting a subtransaction. The subtransaction is ended automatically 4173 ** if the main transaction commits or rolls back. 4174 ** 4175 ** Statement subtransactions are used around individual SQL statements 4176 ** that are contained within a BEGIN...COMMIT block. If a constraint 4177 ** error occurs within the statement, the effect of that one statement 4178 ** can be rolled back without having to rollback the entire transaction. 4179 ** 4180 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4181 ** value passed as the second parameter is the total number of savepoints, 4182 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4183 ** are no active savepoints and no other statement-transactions open, 4184 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4185 ** using the sqlite3BtreeSavepoint() function. 4186 */ 4187 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4188 int rc; 4189 BtShared *pBt = p->pBt; 4190 sqlite3BtreeEnter(p); 4191 assert( p->inTrans==TRANS_WRITE ); 4192 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4193 assert( iStatement>0 ); 4194 assert( iStatement>p->db->nSavepoint ); 4195 assert( pBt->inTransaction==TRANS_WRITE ); 4196 /* At the pager level, a statement transaction is a savepoint with 4197 ** an index greater than all savepoints created explicitly using 4198 ** SQL statements. It is illegal to open, release or rollback any 4199 ** such savepoints while the statement transaction savepoint is active. 4200 */ 4201 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4202 sqlite3BtreeLeave(p); 4203 return rc; 4204 } 4205 4206 /* 4207 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4208 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4209 ** savepoint identified by parameter iSavepoint, depending on the value 4210 ** of op. 4211 ** 4212 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4213 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4214 ** contents of the entire transaction are rolled back. This is different 4215 ** from a normal transaction rollback, as no locks are released and the 4216 ** transaction remains open. 4217 */ 4218 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4219 int rc = SQLITE_OK; 4220 if( p && p->inTrans==TRANS_WRITE ){ 4221 BtShared *pBt = p->pBt; 4222 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4223 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4224 sqlite3BtreeEnter(p); 4225 if( op==SAVEPOINT_ROLLBACK ){ 4226 rc = saveAllCursors(pBt, 0, 0); 4227 } 4228 if( rc==SQLITE_OK ){ 4229 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4230 } 4231 if( rc==SQLITE_OK ){ 4232 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4233 pBt->nPage = 0; 4234 } 4235 rc = newDatabase(pBt); 4236 pBt->nPage = get4byte(28 + pBt->pPage1->aData); 4237 4238 /* The database size was written into the offset 28 of the header 4239 ** when the transaction started, so we know that the value at offset 4240 ** 28 is nonzero. */ 4241 assert( pBt->nPage>0 ); 4242 } 4243 sqlite3BtreeLeave(p); 4244 } 4245 return rc; 4246 } 4247 4248 /* 4249 ** Create a new cursor for the BTree whose root is on the page 4250 ** iTable. If a read-only cursor is requested, it is assumed that 4251 ** the caller already has at least a read-only transaction open 4252 ** on the database already. If a write-cursor is requested, then 4253 ** the caller is assumed to have an open write transaction. 4254 ** 4255 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4256 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4257 ** can be used for reading or for writing if other conditions for writing 4258 ** are also met. These are the conditions that must be met in order 4259 ** for writing to be allowed: 4260 ** 4261 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4262 ** 4263 ** 2: Other database connections that share the same pager cache 4264 ** but which are not in the READ_UNCOMMITTED state may not have 4265 ** cursors open with wrFlag==0 on the same table. Otherwise 4266 ** the changes made by this write cursor would be visible to 4267 ** the read cursors in the other database connection. 4268 ** 4269 ** 3: The database must be writable (not on read-only media) 4270 ** 4271 ** 4: There must be an active transaction. 4272 ** 4273 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4274 ** is set. If FORDELETE is set, that is a hint to the implementation that 4275 ** this cursor will only be used to seek to and delete entries of an index 4276 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4277 ** this implementation. But in a hypothetical alternative storage engine 4278 ** in which index entries are automatically deleted when corresponding table 4279 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4280 ** operations on this cursor can be no-ops and all READ operations can 4281 ** return a null row (2-bytes: 0x01 0x00). 4282 ** 4283 ** No checking is done to make sure that page iTable really is the 4284 ** root page of a b-tree. If it is not, then the cursor acquired 4285 ** will not work correctly. 4286 ** 4287 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4288 ** on pCur to initialize the memory space prior to invoking this routine. 4289 */ 4290 static int btreeCursor( 4291 Btree *p, /* The btree */ 4292 int iTable, /* Root page of table to open */ 4293 int wrFlag, /* 1 to write. 0 read-only */ 4294 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4295 BtCursor *pCur /* Space for new cursor */ 4296 ){ 4297 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4298 BtCursor *pX; /* Looping over other all cursors */ 4299 4300 assert( sqlite3BtreeHoldsMutex(p) ); 4301 assert( wrFlag==0 4302 || wrFlag==BTREE_WRCSR 4303 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4304 ); 4305 4306 /* The following assert statements verify that if this is a sharable 4307 ** b-tree database, the connection is holding the required table locks, 4308 ** and that no other connection has any open cursor that conflicts with 4309 ** this lock. */ 4310 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) ); 4311 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4312 4313 /* Assert that the caller has opened the required transaction. */ 4314 assert( p->inTrans>TRANS_NONE ); 4315 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4316 assert( pBt->pPage1 && pBt->pPage1->aData ); 4317 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4318 4319 if( wrFlag ){ 4320 allocateTempSpace(pBt); 4321 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT; 4322 } 4323 if( iTable==1 && btreePagecount(pBt)==0 ){ 4324 assert( wrFlag==0 ); 4325 iTable = 0; 4326 } 4327 4328 /* Now that no other errors can occur, finish filling in the BtCursor 4329 ** variables and link the cursor into the BtShared list. */ 4330 pCur->pgnoRoot = (Pgno)iTable; 4331 pCur->iPage = -1; 4332 pCur->pKeyInfo = pKeyInfo; 4333 pCur->pBtree = p; 4334 pCur->pBt = pBt; 4335 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; 4336 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; 4337 /* If there are two or more cursors on the same btree, then all such 4338 ** cursors *must* have the BTCF_Multiple flag set. */ 4339 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4340 if( pX->pgnoRoot==(Pgno)iTable ){ 4341 pX->curFlags |= BTCF_Multiple; 4342 pCur->curFlags |= BTCF_Multiple; 4343 } 4344 } 4345 pCur->pNext = pBt->pCursor; 4346 pBt->pCursor = pCur; 4347 pCur->eState = CURSOR_INVALID; 4348 return SQLITE_OK; 4349 } 4350 int sqlite3BtreeCursor( 4351 Btree *p, /* The btree */ 4352 int iTable, /* Root page of table to open */ 4353 int wrFlag, /* 1 to write. 0 read-only */ 4354 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4355 BtCursor *pCur /* Write new cursor here */ 4356 ){ 4357 int rc; 4358 if( iTable<1 ){ 4359 rc = SQLITE_CORRUPT_BKPT; 4360 }else{ 4361 sqlite3BtreeEnter(p); 4362 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4363 sqlite3BtreeLeave(p); 4364 } 4365 return rc; 4366 } 4367 4368 /* 4369 ** Return the size of a BtCursor object in bytes. 4370 ** 4371 ** This interfaces is needed so that users of cursors can preallocate 4372 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4373 ** to users so they cannot do the sizeof() themselves - they must call 4374 ** this routine. 4375 */ 4376 int sqlite3BtreeCursorSize(void){ 4377 return ROUND8(sizeof(BtCursor)); 4378 } 4379 4380 /* 4381 ** Initialize memory that will be converted into a BtCursor object. 4382 ** 4383 ** The simple approach here would be to memset() the entire object 4384 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4385 ** do not need to be zeroed and they are large, so we can save a lot 4386 ** of run-time by skipping the initialization of those elements. 4387 */ 4388 void sqlite3BtreeCursorZero(BtCursor *p){ 4389 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4390 } 4391 4392 /* 4393 ** Close a cursor. The read lock on the database file is released 4394 ** when the last cursor is closed. 4395 */ 4396 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4397 Btree *pBtree = pCur->pBtree; 4398 if( pBtree ){ 4399 BtShared *pBt = pCur->pBt; 4400 sqlite3BtreeEnter(pBtree); 4401 assert( pBt->pCursor!=0 ); 4402 if( pBt->pCursor==pCur ){ 4403 pBt->pCursor = pCur->pNext; 4404 }else{ 4405 BtCursor *pPrev = pBt->pCursor; 4406 do{ 4407 if( pPrev->pNext==pCur ){ 4408 pPrev->pNext = pCur->pNext; 4409 break; 4410 } 4411 pPrev = pPrev->pNext; 4412 }while( ALWAYS(pPrev) ); 4413 } 4414 btreeReleaseAllCursorPages(pCur); 4415 unlockBtreeIfUnused(pBt); 4416 sqlite3_free(pCur->aOverflow); 4417 sqlite3_free(pCur->pKey); 4418 sqlite3BtreeLeave(pBtree); 4419 } 4420 return SQLITE_OK; 4421 } 4422 4423 /* 4424 ** Make sure the BtCursor* given in the argument has a valid 4425 ** BtCursor.info structure. If it is not already valid, call 4426 ** btreeParseCell() to fill it in. 4427 ** 4428 ** BtCursor.info is a cache of the information in the current cell. 4429 ** Using this cache reduces the number of calls to btreeParseCell(). 4430 */ 4431 #ifndef NDEBUG 4432 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4433 if( a->nKey!=b->nKey ) return 0; 4434 if( a->pPayload!=b->pPayload ) return 0; 4435 if( a->nPayload!=b->nPayload ) return 0; 4436 if( a->nLocal!=b->nLocal ) return 0; 4437 if( a->nSize!=b->nSize ) return 0; 4438 return 1; 4439 } 4440 static void assertCellInfo(BtCursor *pCur){ 4441 CellInfo info; 4442 memset(&info, 0, sizeof(info)); 4443 btreeParseCell(pCur->pPage, pCur->ix, &info); 4444 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4445 } 4446 #else 4447 #define assertCellInfo(x) 4448 #endif 4449 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4450 if( pCur->info.nSize==0 ){ 4451 pCur->curFlags |= BTCF_ValidNKey; 4452 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4453 }else{ 4454 assertCellInfo(pCur); 4455 } 4456 } 4457 4458 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4459 /* 4460 ** Return true if the given BtCursor is valid. A valid cursor is one 4461 ** that is currently pointing to a row in a (non-empty) table. 4462 ** This is a verification routine is used only within assert() statements. 4463 */ 4464 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4465 return pCur && pCur->eState==CURSOR_VALID; 4466 } 4467 #endif /* NDEBUG */ 4468 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4469 assert( pCur!=0 ); 4470 return pCur->eState==CURSOR_VALID; 4471 } 4472 4473 /* 4474 ** Return the value of the integer key or "rowid" for a table btree. 4475 ** This routine is only valid for a cursor that is pointing into a 4476 ** ordinary table btree. If the cursor points to an index btree or 4477 ** is invalid, the result of this routine is undefined. 4478 */ 4479 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4480 assert( cursorHoldsMutex(pCur) ); 4481 assert( pCur->eState==CURSOR_VALID ); 4482 assert( pCur->curIntKey ); 4483 getCellInfo(pCur); 4484 return pCur->info.nKey; 4485 } 4486 4487 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4488 /* 4489 ** Return the offset into the database file for the start of the 4490 ** payload to which the cursor is pointing. 4491 */ 4492 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4493 assert( cursorHoldsMutex(pCur) ); 4494 assert( pCur->eState==CURSOR_VALID ); 4495 getCellInfo(pCur); 4496 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4497 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4498 } 4499 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4500 4501 /* 4502 ** Return the number of bytes of payload for the entry that pCur is 4503 ** currently pointing to. For table btrees, this will be the amount 4504 ** of data. For index btrees, this will be the size of the key. 4505 ** 4506 ** The caller must guarantee that the cursor is pointing to a non-NULL 4507 ** valid entry. In other words, the calling procedure must guarantee 4508 ** that the cursor has Cursor.eState==CURSOR_VALID. 4509 */ 4510 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4511 assert( cursorHoldsMutex(pCur) ); 4512 assert( pCur->eState==CURSOR_VALID ); 4513 getCellInfo(pCur); 4514 return pCur->info.nPayload; 4515 } 4516 4517 /* 4518 ** Given the page number of an overflow page in the database (parameter 4519 ** ovfl), this function finds the page number of the next page in the 4520 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4521 ** pointer-map data instead of reading the content of page ovfl to do so. 4522 ** 4523 ** If an error occurs an SQLite error code is returned. Otherwise: 4524 ** 4525 ** The page number of the next overflow page in the linked list is 4526 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4527 ** list, *pPgnoNext is set to zero. 4528 ** 4529 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4530 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4531 ** reference. It is the responsibility of the caller to call releasePage() 4532 ** on *ppPage to free the reference. In no reference was obtained (because 4533 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4534 ** *ppPage is set to zero. 4535 */ 4536 static int getOverflowPage( 4537 BtShared *pBt, /* The database file */ 4538 Pgno ovfl, /* Current overflow page number */ 4539 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4540 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4541 ){ 4542 Pgno next = 0; 4543 MemPage *pPage = 0; 4544 int rc = SQLITE_OK; 4545 4546 assert( sqlite3_mutex_held(pBt->mutex) ); 4547 assert(pPgnoNext); 4548 4549 #ifndef SQLITE_OMIT_AUTOVACUUM 4550 /* Try to find the next page in the overflow list using the 4551 ** autovacuum pointer-map pages. Guess that the next page in 4552 ** the overflow list is page number (ovfl+1). If that guess turns 4553 ** out to be wrong, fall back to loading the data of page 4554 ** number ovfl to determine the next page number. 4555 */ 4556 if( pBt->autoVacuum ){ 4557 Pgno pgno; 4558 Pgno iGuess = ovfl+1; 4559 u8 eType; 4560 4561 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4562 iGuess++; 4563 } 4564 4565 if( iGuess<=btreePagecount(pBt) ){ 4566 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4567 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4568 next = iGuess; 4569 rc = SQLITE_DONE; 4570 } 4571 } 4572 } 4573 #endif 4574 4575 assert( next==0 || rc==SQLITE_DONE ); 4576 if( rc==SQLITE_OK ){ 4577 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4578 assert( rc==SQLITE_OK || pPage==0 ); 4579 if( rc==SQLITE_OK ){ 4580 next = get4byte(pPage->aData); 4581 } 4582 } 4583 4584 *pPgnoNext = next; 4585 if( ppPage ){ 4586 *ppPage = pPage; 4587 }else{ 4588 releasePage(pPage); 4589 } 4590 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4591 } 4592 4593 /* 4594 ** Copy data from a buffer to a page, or from a page to a buffer. 4595 ** 4596 ** pPayload is a pointer to data stored on database page pDbPage. 4597 ** If argument eOp is false, then nByte bytes of data are copied 4598 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4599 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4600 ** of data are copied from the buffer pBuf to pPayload. 4601 ** 4602 ** SQLITE_OK is returned on success, otherwise an error code. 4603 */ 4604 static int copyPayload( 4605 void *pPayload, /* Pointer to page data */ 4606 void *pBuf, /* Pointer to buffer */ 4607 int nByte, /* Number of bytes to copy */ 4608 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4609 DbPage *pDbPage /* Page containing pPayload */ 4610 ){ 4611 if( eOp ){ 4612 /* Copy data from buffer to page (a write operation) */ 4613 int rc = sqlite3PagerWrite(pDbPage); 4614 if( rc!=SQLITE_OK ){ 4615 return rc; 4616 } 4617 memcpy(pPayload, pBuf, nByte); 4618 }else{ 4619 /* Copy data from page to buffer (a read operation) */ 4620 memcpy(pBuf, pPayload, nByte); 4621 } 4622 return SQLITE_OK; 4623 } 4624 4625 /* 4626 ** This function is used to read or overwrite payload information 4627 ** for the entry that the pCur cursor is pointing to. The eOp 4628 ** argument is interpreted as follows: 4629 ** 4630 ** 0: The operation is a read. Populate the overflow cache. 4631 ** 1: The operation is a write. Populate the overflow cache. 4632 ** 4633 ** A total of "amt" bytes are read or written beginning at "offset". 4634 ** Data is read to or from the buffer pBuf. 4635 ** 4636 ** The content being read or written might appear on the main page 4637 ** or be scattered out on multiple overflow pages. 4638 ** 4639 ** If the current cursor entry uses one or more overflow pages 4640 ** this function may allocate space for and lazily populate 4641 ** the overflow page-list cache array (BtCursor.aOverflow). 4642 ** Subsequent calls use this cache to make seeking to the supplied offset 4643 ** more efficient. 4644 ** 4645 ** Once an overflow page-list cache has been allocated, it must be 4646 ** invalidated if some other cursor writes to the same table, or if 4647 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4648 ** mode, the following events may invalidate an overflow page-list cache. 4649 ** 4650 ** * An incremental vacuum, 4651 ** * A commit in auto_vacuum="full" mode, 4652 ** * Creating a table (may require moving an overflow page). 4653 */ 4654 static int accessPayload( 4655 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4656 u32 offset, /* Begin reading this far into payload */ 4657 u32 amt, /* Read this many bytes */ 4658 unsigned char *pBuf, /* Write the bytes into this buffer */ 4659 int eOp /* zero to read. non-zero to write. */ 4660 ){ 4661 unsigned char *aPayload; 4662 int rc = SQLITE_OK; 4663 int iIdx = 0; 4664 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4665 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4666 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4667 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4668 #endif 4669 4670 assert( pPage ); 4671 assert( eOp==0 || eOp==1 ); 4672 assert( pCur->eState==CURSOR_VALID ); 4673 assert( pCur->ix<pPage->nCell ); 4674 assert( cursorHoldsMutex(pCur) ); 4675 4676 getCellInfo(pCur); 4677 aPayload = pCur->info.pPayload; 4678 assert( offset+amt <= pCur->info.nPayload ); 4679 4680 assert( aPayload > pPage->aData ); 4681 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4682 /* Trying to read or write past the end of the data is an error. The 4683 ** conditional above is really: 4684 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4685 ** but is recast into its current form to avoid integer overflow problems 4686 */ 4687 return SQLITE_CORRUPT_PAGE(pPage); 4688 } 4689 4690 /* Check if data must be read/written to/from the btree page itself. */ 4691 if( offset<pCur->info.nLocal ){ 4692 int a = amt; 4693 if( a+offset>pCur->info.nLocal ){ 4694 a = pCur->info.nLocal - offset; 4695 } 4696 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4697 offset = 0; 4698 pBuf += a; 4699 amt -= a; 4700 }else{ 4701 offset -= pCur->info.nLocal; 4702 } 4703 4704 4705 if( rc==SQLITE_OK && amt>0 ){ 4706 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4707 Pgno nextPage; 4708 4709 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4710 4711 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4712 ** 4713 ** The aOverflow[] array is sized at one entry for each overflow page 4714 ** in the overflow chain. The page number of the first overflow page is 4715 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4716 ** means "not yet known" (the cache is lazily populated). 4717 */ 4718 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4719 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4720 if( pCur->aOverflow==0 4721 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 4722 ){ 4723 Pgno *aNew = (Pgno*)sqlite3Realloc( 4724 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4725 ); 4726 if( aNew==0 ){ 4727 return SQLITE_NOMEM_BKPT; 4728 }else{ 4729 pCur->aOverflow = aNew; 4730 } 4731 } 4732 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4733 pCur->curFlags |= BTCF_ValidOvfl; 4734 }else{ 4735 /* If the overflow page-list cache has been allocated and the 4736 ** entry for the first required overflow page is valid, skip 4737 ** directly to it. 4738 */ 4739 if( pCur->aOverflow[offset/ovflSize] ){ 4740 iIdx = (offset/ovflSize); 4741 nextPage = pCur->aOverflow[iIdx]; 4742 offset = (offset%ovflSize); 4743 } 4744 } 4745 4746 assert( rc==SQLITE_OK && amt>0 ); 4747 while( nextPage ){ 4748 /* If required, populate the overflow page-list cache. */ 4749 assert( pCur->aOverflow[iIdx]==0 4750 || pCur->aOverflow[iIdx]==nextPage 4751 || CORRUPT_DB ); 4752 pCur->aOverflow[iIdx] = nextPage; 4753 4754 if( offset>=ovflSize ){ 4755 /* The only reason to read this page is to obtain the page 4756 ** number for the next page in the overflow chain. The page 4757 ** data is not required. So first try to lookup the overflow 4758 ** page-list cache, if any, then fall back to the getOverflowPage() 4759 ** function. 4760 */ 4761 assert( pCur->curFlags & BTCF_ValidOvfl ); 4762 assert( pCur->pBtree->db==pBt->db ); 4763 if( pCur->aOverflow[iIdx+1] ){ 4764 nextPage = pCur->aOverflow[iIdx+1]; 4765 }else{ 4766 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4767 } 4768 offset -= ovflSize; 4769 }else{ 4770 /* Need to read this page properly. It contains some of the 4771 ** range of data that is being read (eOp==0) or written (eOp!=0). 4772 */ 4773 int a = amt; 4774 if( a + offset > ovflSize ){ 4775 a = ovflSize - offset; 4776 } 4777 4778 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4779 /* If all the following are true: 4780 ** 4781 ** 1) this is a read operation, and 4782 ** 2) data is required from the start of this overflow page, and 4783 ** 3) there are no dirty pages in the page-cache 4784 ** 4) the database is file-backed, and 4785 ** 5) the page is not in the WAL file 4786 ** 6) at least 4 bytes have already been read into the output buffer 4787 ** 4788 ** then data can be read directly from the database file into the 4789 ** output buffer, bypassing the page-cache altogether. This speeds 4790 ** up loading large records that span many overflow pages. 4791 */ 4792 if( eOp==0 /* (1) */ 4793 && offset==0 /* (2) */ 4794 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 4795 && &pBuf[-4]>=pBufStart /* (6) */ 4796 ){ 4797 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 4798 u8 aSave[4]; 4799 u8 *aWrite = &pBuf[-4]; 4800 assert( aWrite>=pBufStart ); /* due to (6) */ 4801 memcpy(aSave, aWrite, 4); 4802 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 4803 nextPage = get4byte(aWrite); 4804 memcpy(aWrite, aSave, 4); 4805 }else 4806 #endif 4807 4808 { 4809 DbPage *pDbPage; 4810 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 4811 (eOp==0 ? PAGER_GET_READONLY : 0) 4812 ); 4813 if( rc==SQLITE_OK ){ 4814 aPayload = sqlite3PagerGetData(pDbPage); 4815 nextPage = get4byte(aPayload); 4816 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 4817 sqlite3PagerUnref(pDbPage); 4818 offset = 0; 4819 } 4820 } 4821 amt -= a; 4822 if( amt==0 ) return rc; 4823 pBuf += a; 4824 } 4825 if( rc ) break; 4826 iIdx++; 4827 } 4828 } 4829 4830 if( rc==SQLITE_OK && amt>0 ){ 4831 /* Overflow chain ends prematurely */ 4832 return SQLITE_CORRUPT_PAGE(pPage); 4833 } 4834 return rc; 4835 } 4836 4837 /* 4838 ** Read part of the payload for the row at which that cursor pCur is currently 4839 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 4840 ** begins at "offset". 4841 ** 4842 ** pCur can be pointing to either a table or an index b-tree. 4843 ** If pointing to a table btree, then the content section is read. If 4844 ** pCur is pointing to an index b-tree then the key section is read. 4845 ** 4846 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 4847 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 4848 ** cursor might be invalid or might need to be restored before being read. 4849 ** 4850 ** Return SQLITE_OK on success or an error code if anything goes 4851 ** wrong. An error is returned if "offset+amt" is larger than 4852 ** the available payload. 4853 */ 4854 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4855 assert( cursorHoldsMutex(pCur) ); 4856 assert( pCur->eState==CURSOR_VALID ); 4857 assert( pCur->iPage>=0 && pCur->pPage ); 4858 assert( pCur->ix<pCur->pPage->nCell ); 4859 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 4860 } 4861 4862 /* 4863 ** This variant of sqlite3BtreePayload() works even if the cursor has not 4864 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 4865 ** interface. 4866 */ 4867 #ifndef SQLITE_OMIT_INCRBLOB 4868 static SQLITE_NOINLINE int accessPayloadChecked( 4869 BtCursor *pCur, 4870 u32 offset, 4871 u32 amt, 4872 void *pBuf 4873 ){ 4874 int rc; 4875 if ( pCur->eState==CURSOR_INVALID ){ 4876 return SQLITE_ABORT; 4877 } 4878 assert( cursorOwnsBtShared(pCur) ); 4879 rc = btreeRestoreCursorPosition(pCur); 4880 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 4881 } 4882 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4883 if( pCur->eState==CURSOR_VALID ){ 4884 assert( cursorOwnsBtShared(pCur) ); 4885 return accessPayload(pCur, offset, amt, pBuf, 0); 4886 }else{ 4887 return accessPayloadChecked(pCur, offset, amt, pBuf); 4888 } 4889 } 4890 #endif /* SQLITE_OMIT_INCRBLOB */ 4891 4892 /* 4893 ** Return a pointer to payload information from the entry that the 4894 ** pCur cursor is pointing to. The pointer is to the beginning of 4895 ** the key if index btrees (pPage->intKey==0) and is the data for 4896 ** table btrees (pPage->intKey==1). The number of bytes of available 4897 ** key/data is written into *pAmt. If *pAmt==0, then the value 4898 ** returned will not be a valid pointer. 4899 ** 4900 ** This routine is an optimization. It is common for the entire key 4901 ** and data to fit on the local page and for there to be no overflow 4902 ** pages. When that is so, this routine can be used to access the 4903 ** key and data without making a copy. If the key and/or data spills 4904 ** onto overflow pages, then accessPayload() must be used to reassemble 4905 ** the key/data and copy it into a preallocated buffer. 4906 ** 4907 ** The pointer returned by this routine looks directly into the cached 4908 ** page of the database. The data might change or move the next time 4909 ** any btree routine is called. 4910 */ 4911 static const void *fetchPayload( 4912 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4913 u32 *pAmt /* Write the number of available bytes here */ 4914 ){ 4915 int amt; 4916 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 4917 assert( pCur->eState==CURSOR_VALID ); 4918 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4919 assert( cursorOwnsBtShared(pCur) ); 4920 assert( pCur->ix<pCur->pPage->nCell ); 4921 assert( pCur->info.nSize>0 ); 4922 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 4923 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 4924 amt = pCur->info.nLocal; 4925 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 4926 /* There is too little space on the page for the expected amount 4927 ** of local content. Database must be corrupt. */ 4928 assert( CORRUPT_DB ); 4929 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 4930 } 4931 *pAmt = (u32)amt; 4932 return (void*)pCur->info.pPayload; 4933 } 4934 4935 4936 /* 4937 ** For the entry that cursor pCur is point to, return as 4938 ** many bytes of the key or data as are available on the local 4939 ** b-tree page. Write the number of available bytes into *pAmt. 4940 ** 4941 ** The pointer returned is ephemeral. The key/data may move 4942 ** or be destroyed on the next call to any Btree routine, 4943 ** including calls from other threads against the same cache. 4944 ** Hence, a mutex on the BtShared should be held prior to calling 4945 ** this routine. 4946 ** 4947 ** These routines is used to get quick access to key and data 4948 ** in the common case where no overflow pages are used. 4949 */ 4950 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 4951 return fetchPayload(pCur, pAmt); 4952 } 4953 4954 4955 /* 4956 ** Move the cursor down to a new child page. The newPgno argument is the 4957 ** page number of the child page to move to. 4958 ** 4959 ** This function returns SQLITE_CORRUPT if the page-header flags field of 4960 ** the new child page does not match the flags field of the parent (i.e. 4961 ** if an intkey page appears to be the parent of a non-intkey page, or 4962 ** vice-versa). 4963 */ 4964 static int moveToChild(BtCursor *pCur, u32 newPgno){ 4965 BtShared *pBt = pCur->pBt; 4966 4967 assert( cursorOwnsBtShared(pCur) ); 4968 assert( pCur->eState==CURSOR_VALID ); 4969 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 4970 assert( pCur->iPage>=0 ); 4971 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 4972 return SQLITE_CORRUPT_BKPT; 4973 } 4974 pCur->info.nSize = 0; 4975 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 4976 pCur->aiIdx[pCur->iPage] = pCur->ix; 4977 pCur->apPage[pCur->iPage] = pCur->pPage; 4978 pCur->ix = 0; 4979 pCur->iPage++; 4980 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 4981 } 4982 4983 #ifdef SQLITE_DEBUG 4984 /* 4985 ** Page pParent is an internal (non-leaf) tree page. This function 4986 ** asserts that page number iChild is the left-child if the iIdx'th 4987 ** cell in page pParent. Or, if iIdx is equal to the total number of 4988 ** cells in pParent, that page number iChild is the right-child of 4989 ** the page. 4990 */ 4991 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 4992 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 4993 ** in a corrupt database */ 4994 assert( iIdx<=pParent->nCell ); 4995 if( iIdx==pParent->nCell ){ 4996 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 4997 }else{ 4998 assert( get4byte(findCell(pParent, iIdx))==iChild ); 4999 } 5000 } 5001 #else 5002 # define assertParentIndex(x,y,z) 5003 #endif 5004 5005 /* 5006 ** Move the cursor up to the parent page. 5007 ** 5008 ** pCur->idx is set to the cell index that contains the pointer 5009 ** to the page we are coming from. If we are coming from the 5010 ** right-most child page then pCur->idx is set to one more than 5011 ** the largest cell index. 5012 */ 5013 static void moveToParent(BtCursor *pCur){ 5014 MemPage *pLeaf; 5015 assert( cursorOwnsBtShared(pCur) ); 5016 assert( pCur->eState==CURSOR_VALID ); 5017 assert( pCur->iPage>0 ); 5018 assert( pCur->pPage ); 5019 assertParentIndex( 5020 pCur->apPage[pCur->iPage-1], 5021 pCur->aiIdx[pCur->iPage-1], 5022 pCur->pPage->pgno 5023 ); 5024 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5025 pCur->info.nSize = 0; 5026 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5027 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5028 pLeaf = pCur->pPage; 5029 pCur->pPage = pCur->apPage[--pCur->iPage]; 5030 releasePageNotNull(pLeaf); 5031 } 5032 5033 /* 5034 ** Move the cursor to point to the root page of its b-tree structure. 5035 ** 5036 ** If the table has a virtual root page, then the cursor is moved to point 5037 ** to the virtual root page instead of the actual root page. A table has a 5038 ** virtual root page when the actual root page contains no cells and a 5039 ** single child page. This can only happen with the table rooted at page 1. 5040 ** 5041 ** If the b-tree structure is empty, the cursor state is set to 5042 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5043 ** the cursor is set to point to the first cell located on the root 5044 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5045 ** 5046 ** If this function returns successfully, it may be assumed that the 5047 ** page-header flags indicate that the [virtual] root-page is the expected 5048 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5049 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5050 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5051 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5052 ** b-tree). 5053 */ 5054 static int moveToRoot(BtCursor *pCur){ 5055 MemPage *pRoot; 5056 int rc = SQLITE_OK; 5057 5058 assert( cursorOwnsBtShared(pCur) ); 5059 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5060 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5061 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5062 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5063 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5064 5065 if( pCur->iPage>=0 ){ 5066 if( pCur->iPage ){ 5067 releasePageNotNull(pCur->pPage); 5068 while( --pCur->iPage ){ 5069 releasePageNotNull(pCur->apPage[pCur->iPage]); 5070 } 5071 pCur->pPage = pCur->apPage[0]; 5072 goto skip_init; 5073 } 5074 }else if( pCur->pgnoRoot==0 ){ 5075 pCur->eState = CURSOR_INVALID; 5076 return SQLITE_EMPTY; 5077 }else{ 5078 assert( pCur->iPage==(-1) ); 5079 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5080 if( pCur->eState==CURSOR_FAULT ){ 5081 assert( pCur->skipNext!=SQLITE_OK ); 5082 return pCur->skipNext; 5083 } 5084 sqlite3BtreeClearCursor(pCur); 5085 } 5086 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5087 0, pCur->curPagerFlags); 5088 if( rc!=SQLITE_OK ){ 5089 pCur->eState = CURSOR_INVALID; 5090 return rc; 5091 } 5092 pCur->iPage = 0; 5093 pCur->curIntKey = pCur->pPage->intKey; 5094 } 5095 pRoot = pCur->pPage; 5096 assert( pRoot->pgno==pCur->pgnoRoot ); 5097 5098 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5099 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5100 ** NULL, the caller expects a table b-tree. If this is not the case, 5101 ** return an SQLITE_CORRUPT error. 5102 ** 5103 ** Earlier versions of SQLite assumed that this test could not fail 5104 ** if the root page was already loaded when this function was called (i.e. 5105 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5106 ** in such a way that page pRoot is linked into a second b-tree table 5107 ** (or the freelist). */ 5108 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5109 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5110 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5111 } 5112 5113 skip_init: 5114 pCur->ix = 0; 5115 pCur->info.nSize = 0; 5116 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5117 5118 pRoot = pCur->pPage; 5119 if( pRoot->nCell>0 ){ 5120 pCur->eState = CURSOR_VALID; 5121 }else if( !pRoot->leaf ){ 5122 Pgno subpage; 5123 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5124 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5125 pCur->eState = CURSOR_VALID; 5126 rc = moveToChild(pCur, subpage); 5127 }else{ 5128 pCur->eState = CURSOR_INVALID; 5129 rc = SQLITE_EMPTY; 5130 } 5131 return rc; 5132 } 5133 5134 /* 5135 ** Move the cursor down to the left-most leaf entry beneath the 5136 ** entry to which it is currently pointing. 5137 ** 5138 ** The left-most leaf is the one with the smallest key - the first 5139 ** in ascending order. 5140 */ 5141 static int moveToLeftmost(BtCursor *pCur){ 5142 Pgno pgno; 5143 int rc = SQLITE_OK; 5144 MemPage *pPage; 5145 5146 assert( cursorOwnsBtShared(pCur) ); 5147 assert( pCur->eState==CURSOR_VALID ); 5148 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5149 assert( pCur->ix<pPage->nCell ); 5150 pgno = get4byte(findCell(pPage, pCur->ix)); 5151 rc = moveToChild(pCur, pgno); 5152 } 5153 return rc; 5154 } 5155 5156 /* 5157 ** Move the cursor down to the right-most leaf entry beneath the 5158 ** page to which it is currently pointing. Notice the difference 5159 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5160 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5161 ** finds the right-most entry beneath the *page*. 5162 ** 5163 ** The right-most entry is the one with the largest key - the last 5164 ** key in ascending order. 5165 */ 5166 static int moveToRightmost(BtCursor *pCur){ 5167 Pgno pgno; 5168 int rc = SQLITE_OK; 5169 MemPage *pPage = 0; 5170 5171 assert( cursorOwnsBtShared(pCur) ); 5172 assert( pCur->eState==CURSOR_VALID ); 5173 while( !(pPage = pCur->pPage)->leaf ){ 5174 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5175 pCur->ix = pPage->nCell; 5176 rc = moveToChild(pCur, pgno); 5177 if( rc ) return rc; 5178 } 5179 pCur->ix = pPage->nCell-1; 5180 assert( pCur->info.nSize==0 ); 5181 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5182 return SQLITE_OK; 5183 } 5184 5185 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5186 ** on success. Set *pRes to 0 if the cursor actually points to something 5187 ** or set *pRes to 1 if the table is empty. 5188 */ 5189 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5190 int rc; 5191 5192 assert( cursorOwnsBtShared(pCur) ); 5193 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5194 rc = moveToRoot(pCur); 5195 if( rc==SQLITE_OK ){ 5196 assert( pCur->pPage->nCell>0 ); 5197 *pRes = 0; 5198 rc = moveToLeftmost(pCur); 5199 }else if( rc==SQLITE_EMPTY ){ 5200 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5201 *pRes = 1; 5202 rc = SQLITE_OK; 5203 } 5204 return rc; 5205 } 5206 5207 /* 5208 ** This function is a no-op if cursor pCur does not point to a valid row. 5209 ** Otherwise, if pCur is valid, configure it so that the next call to 5210 ** sqlite3BtreeNext() is a no-op. 5211 */ 5212 #ifndef SQLITE_OMIT_WINDOWFUNC 5213 void sqlite3BtreeSkipNext(BtCursor *pCur){ 5214 /* We believe that the cursor must always be in the valid state when 5215 ** this routine is called, but the proof is difficult, so we add an 5216 ** ALWaYS() test just in case we are wrong. */ 5217 if( ALWAYS(pCur->eState==CURSOR_VALID) ){ 5218 pCur->eState = CURSOR_SKIPNEXT; 5219 pCur->skipNext = 1; 5220 } 5221 } 5222 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5223 5224 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5225 ** on success. Set *pRes to 0 if the cursor actually points to something 5226 ** or set *pRes to 1 if the table is empty. 5227 */ 5228 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5229 int rc; 5230 5231 assert( cursorOwnsBtShared(pCur) ); 5232 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5233 5234 /* If the cursor already points to the last entry, this is a no-op. */ 5235 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5236 #ifdef SQLITE_DEBUG 5237 /* This block serves to assert() that the cursor really does point 5238 ** to the last entry in the b-tree. */ 5239 int ii; 5240 for(ii=0; ii<pCur->iPage; ii++){ 5241 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5242 } 5243 assert( pCur->ix==pCur->pPage->nCell-1 ); 5244 assert( pCur->pPage->leaf ); 5245 #endif 5246 return SQLITE_OK; 5247 } 5248 5249 rc = moveToRoot(pCur); 5250 if( rc==SQLITE_OK ){ 5251 assert( pCur->eState==CURSOR_VALID ); 5252 *pRes = 0; 5253 rc = moveToRightmost(pCur); 5254 if( rc==SQLITE_OK ){ 5255 pCur->curFlags |= BTCF_AtLast; 5256 }else{ 5257 pCur->curFlags &= ~BTCF_AtLast; 5258 } 5259 }else if( rc==SQLITE_EMPTY ){ 5260 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5261 *pRes = 1; 5262 rc = SQLITE_OK; 5263 } 5264 return rc; 5265 } 5266 5267 /* Move the cursor so that it points to an entry near the key 5268 ** specified by pIdxKey or intKey. Return a success code. 5269 ** 5270 ** For INTKEY tables, the intKey parameter is used. pIdxKey 5271 ** must be NULL. For index tables, pIdxKey is used and intKey 5272 ** is ignored. 5273 ** 5274 ** If an exact match is not found, then the cursor is always 5275 ** left pointing at a leaf page which would hold the entry if it 5276 ** were present. The cursor might point to an entry that comes 5277 ** before or after the key. 5278 ** 5279 ** An integer is written into *pRes which is the result of 5280 ** comparing the key with the entry to which the cursor is 5281 ** pointing. The meaning of the integer written into 5282 ** *pRes is as follows: 5283 ** 5284 ** *pRes<0 The cursor is left pointing at an entry that 5285 ** is smaller than intKey/pIdxKey or if the table is empty 5286 ** and the cursor is therefore left point to nothing. 5287 ** 5288 ** *pRes==0 The cursor is left pointing at an entry that 5289 ** exactly matches intKey/pIdxKey. 5290 ** 5291 ** *pRes>0 The cursor is left pointing at an entry that 5292 ** is larger than intKey/pIdxKey. 5293 ** 5294 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there 5295 ** exists an entry in the table that exactly matches pIdxKey. 5296 */ 5297 int sqlite3BtreeMovetoUnpacked( 5298 BtCursor *pCur, /* The cursor to be moved */ 5299 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5300 i64 intKey, /* The table key */ 5301 int biasRight, /* If true, bias the search to the high end */ 5302 int *pRes /* Write search results here */ 5303 ){ 5304 int rc; 5305 RecordCompare xRecordCompare; 5306 5307 assert( cursorOwnsBtShared(pCur) ); 5308 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5309 assert( pRes ); 5310 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); 5311 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) ); 5312 5313 /* If the cursor is already positioned at the point we are trying 5314 ** to move to, then just return without doing any work */ 5315 if( pIdxKey==0 5316 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 5317 ){ 5318 if( pCur->info.nKey==intKey ){ 5319 *pRes = 0; 5320 return SQLITE_OK; 5321 } 5322 if( pCur->info.nKey<intKey ){ 5323 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5324 *pRes = -1; 5325 return SQLITE_OK; 5326 } 5327 /* If the requested key is one more than the previous key, then 5328 ** try to get there using sqlite3BtreeNext() rather than a full 5329 ** binary search. This is an optimization only. The correct answer 5330 ** is still obtained without this case, only a little more slowely */ 5331 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){ 5332 *pRes = 0; 5333 rc = sqlite3BtreeNext(pCur, 0); 5334 if( rc==SQLITE_OK ){ 5335 getCellInfo(pCur); 5336 if( pCur->info.nKey==intKey ){ 5337 return SQLITE_OK; 5338 } 5339 }else if( rc==SQLITE_DONE ){ 5340 rc = SQLITE_OK; 5341 }else{ 5342 return rc; 5343 } 5344 } 5345 } 5346 } 5347 5348 if( pIdxKey ){ 5349 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5350 pIdxKey->errCode = 0; 5351 assert( pIdxKey->default_rc==1 5352 || pIdxKey->default_rc==0 5353 || pIdxKey->default_rc==-1 5354 ); 5355 }else{ 5356 xRecordCompare = 0; /* All keys are integers */ 5357 } 5358 5359 rc = moveToRoot(pCur); 5360 if( rc ){ 5361 if( rc==SQLITE_EMPTY ){ 5362 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5363 *pRes = -1; 5364 return SQLITE_OK; 5365 } 5366 return rc; 5367 } 5368 assert( pCur->pPage ); 5369 assert( pCur->pPage->isInit ); 5370 assert( pCur->eState==CURSOR_VALID ); 5371 assert( pCur->pPage->nCell > 0 ); 5372 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5373 assert( pCur->curIntKey || pIdxKey ); 5374 for(;;){ 5375 int lwr, upr, idx, c; 5376 Pgno chldPg; 5377 MemPage *pPage = pCur->pPage; 5378 u8 *pCell; /* Pointer to current cell in pPage */ 5379 5380 /* pPage->nCell must be greater than zero. If this is the root-page 5381 ** the cursor would have been INVALID above and this for(;;) loop 5382 ** not run. If this is not the root-page, then the moveToChild() routine 5383 ** would have already detected db corruption. Similarly, pPage must 5384 ** be the right kind (index or table) of b-tree page. Otherwise 5385 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5386 assert( pPage->nCell>0 ); 5387 assert( pPage->intKey==(pIdxKey==0) ); 5388 lwr = 0; 5389 upr = pPage->nCell-1; 5390 assert( biasRight==0 || biasRight==1 ); 5391 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5392 pCur->ix = (u16)idx; 5393 if( xRecordCompare==0 ){ 5394 for(;;){ 5395 i64 nCellKey; 5396 pCell = findCellPastPtr(pPage, idx); 5397 if( pPage->intKeyLeaf ){ 5398 while( 0x80 <= *(pCell++) ){ 5399 if( pCell>=pPage->aDataEnd ){ 5400 return SQLITE_CORRUPT_PAGE(pPage); 5401 } 5402 } 5403 } 5404 getVarint(pCell, (u64*)&nCellKey); 5405 if( nCellKey<intKey ){ 5406 lwr = idx+1; 5407 if( lwr>upr ){ c = -1; break; } 5408 }else if( nCellKey>intKey ){ 5409 upr = idx-1; 5410 if( lwr>upr ){ c = +1; break; } 5411 }else{ 5412 assert( nCellKey==intKey ); 5413 pCur->ix = (u16)idx; 5414 if( !pPage->leaf ){ 5415 lwr = idx; 5416 goto moveto_next_layer; 5417 }else{ 5418 pCur->curFlags |= BTCF_ValidNKey; 5419 pCur->info.nKey = nCellKey; 5420 pCur->info.nSize = 0; 5421 *pRes = 0; 5422 return SQLITE_OK; 5423 } 5424 } 5425 assert( lwr+upr>=0 ); 5426 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5427 } 5428 }else{ 5429 for(;;){ 5430 int nCell; /* Size of the pCell cell in bytes */ 5431 pCell = findCellPastPtr(pPage, idx); 5432 5433 /* The maximum supported page-size is 65536 bytes. This means that 5434 ** the maximum number of record bytes stored on an index B-Tree 5435 ** page is less than 16384 bytes and may be stored as a 2-byte 5436 ** varint. This information is used to attempt to avoid parsing 5437 ** the entire cell by checking for the cases where the record is 5438 ** stored entirely within the b-tree page by inspecting the first 5439 ** 2 bytes of the cell. 5440 */ 5441 nCell = pCell[0]; 5442 if( nCell<=pPage->max1bytePayload ){ 5443 /* This branch runs if the record-size field of the cell is a 5444 ** single byte varint and the record fits entirely on the main 5445 ** b-tree page. */ 5446 testcase( pCell+nCell+1==pPage->aDataEnd ); 5447 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5448 }else if( !(pCell[1] & 0x80) 5449 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5450 ){ 5451 /* The record-size field is a 2 byte varint and the record 5452 ** fits entirely on the main b-tree page. */ 5453 testcase( pCell+nCell+2==pPage->aDataEnd ); 5454 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5455 }else{ 5456 /* The record flows over onto one or more overflow pages. In 5457 ** this case the whole cell needs to be parsed, a buffer allocated 5458 ** and accessPayload() used to retrieve the record into the 5459 ** buffer before VdbeRecordCompare() can be called. 5460 ** 5461 ** If the record is corrupt, the xRecordCompare routine may read 5462 ** up to two varints past the end of the buffer. An extra 18 5463 ** bytes of padding is allocated at the end of the buffer in 5464 ** case this happens. */ 5465 void *pCellKey; 5466 u8 * const pCellBody = pCell - pPage->childPtrSize; 5467 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5468 nCell = (int)pCur->info.nKey; 5469 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5470 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5471 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5472 testcase( nCell==2 ); /* Minimum legal index key size */ 5473 if( nCell<2 ){ 5474 rc = SQLITE_CORRUPT_PAGE(pPage); 5475 goto moveto_finish; 5476 } 5477 pCellKey = sqlite3Malloc( nCell+18 ); 5478 if( pCellKey==0 ){ 5479 rc = SQLITE_NOMEM_BKPT; 5480 goto moveto_finish; 5481 } 5482 pCur->ix = (u16)idx; 5483 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5484 pCur->curFlags &= ~BTCF_ValidOvfl; 5485 if( rc ){ 5486 sqlite3_free(pCellKey); 5487 goto moveto_finish; 5488 } 5489 c = xRecordCompare(nCell, pCellKey, pIdxKey); 5490 sqlite3_free(pCellKey); 5491 } 5492 assert( 5493 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5494 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5495 ); 5496 if( c<0 ){ 5497 lwr = idx+1; 5498 }else if( c>0 ){ 5499 upr = idx-1; 5500 }else{ 5501 assert( c==0 ); 5502 *pRes = 0; 5503 rc = SQLITE_OK; 5504 pCur->ix = (u16)idx; 5505 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5506 goto moveto_finish; 5507 } 5508 if( lwr>upr ) break; 5509 assert( lwr+upr>=0 ); 5510 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5511 } 5512 } 5513 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5514 assert( pPage->isInit ); 5515 if( pPage->leaf ){ 5516 assert( pCur->ix<pCur->pPage->nCell ); 5517 pCur->ix = (u16)idx; 5518 *pRes = c; 5519 rc = SQLITE_OK; 5520 goto moveto_finish; 5521 } 5522 moveto_next_layer: 5523 if( lwr>=pPage->nCell ){ 5524 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5525 }else{ 5526 chldPg = get4byte(findCell(pPage, lwr)); 5527 } 5528 pCur->ix = (u16)lwr; 5529 rc = moveToChild(pCur, chldPg); 5530 if( rc ) break; 5531 } 5532 moveto_finish: 5533 pCur->info.nSize = 0; 5534 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5535 return rc; 5536 } 5537 5538 5539 /* 5540 ** Return TRUE if the cursor is not pointing at an entry of the table. 5541 ** 5542 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5543 ** past the last entry in the table or sqlite3BtreePrev() moves past 5544 ** the first entry. TRUE is also returned if the table is empty. 5545 */ 5546 int sqlite3BtreeEof(BtCursor *pCur){ 5547 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5548 ** have been deleted? This API will need to change to return an error code 5549 ** as well as the boolean result value. 5550 */ 5551 return (CURSOR_VALID!=pCur->eState); 5552 } 5553 5554 /* 5555 ** Return an estimate for the number of rows in the table that pCur is 5556 ** pointing to. Return a negative number if no estimate is currently 5557 ** available. 5558 */ 5559 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 5560 i64 n; 5561 u8 i; 5562 5563 assert( cursorOwnsBtShared(pCur) ); 5564 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5565 5566 /* Currently this interface is only called by the OP_IfSmaller 5567 ** opcode, and it that case the cursor will always be valid and 5568 ** will always point to a leaf node. */ 5569 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 5570 if( NEVER(pCur->pPage->leaf==0) ) return -1; 5571 5572 n = pCur->pPage->nCell; 5573 for(i=0; i<pCur->iPage; i++){ 5574 n *= pCur->apPage[i]->nCell; 5575 } 5576 return n; 5577 } 5578 5579 /* 5580 ** Advance the cursor to the next entry in the database. 5581 ** Return value: 5582 ** 5583 ** SQLITE_OK success 5584 ** SQLITE_DONE cursor is already pointing at the last element 5585 ** otherwise some kind of error occurred 5586 ** 5587 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5588 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5589 ** to the next cell on the current page. The (slower) btreeNext() helper 5590 ** routine is called when it is necessary to move to a different page or 5591 ** to restore the cursor. 5592 ** 5593 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 5594 ** cursor corresponds to an SQL index and this routine could have been 5595 ** skipped if the SQL index had been a unique index. The F argument 5596 ** is a hint to the implement. SQLite btree implementation does not use 5597 ** this hint, but COMDB2 does. 5598 */ 5599 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 5600 int rc; 5601 int idx; 5602 MemPage *pPage; 5603 5604 assert( cursorOwnsBtShared(pCur) ); 5605 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5606 if( pCur->eState!=CURSOR_VALID ){ 5607 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5608 rc = restoreCursorPosition(pCur); 5609 if( rc!=SQLITE_OK ){ 5610 return rc; 5611 } 5612 if( CURSOR_INVALID==pCur->eState ){ 5613 return SQLITE_DONE; 5614 } 5615 if( pCur->skipNext ){ 5616 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); 5617 pCur->eState = CURSOR_VALID; 5618 if( pCur->skipNext>0 ){ 5619 pCur->skipNext = 0; 5620 return SQLITE_OK; 5621 } 5622 pCur->skipNext = 0; 5623 } 5624 } 5625 5626 pPage = pCur->pPage; 5627 idx = ++pCur->ix; 5628 if( !pPage->isInit ){ 5629 /* The only known way for this to happen is for there to be a 5630 ** recursive SQL function that does a DELETE operation as part of a 5631 ** SELECT which deletes content out from under an active cursor 5632 ** in a corrupt database file where the table being DELETE-ed from 5633 ** has pages in common with the table being queried. See TH3 5634 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 5635 ** example. */ 5636 return SQLITE_CORRUPT_BKPT; 5637 } 5638 5639 /* If the database file is corrupt, it is possible for the value of idx 5640 ** to be invalid here. This can only occur if a second cursor modifies 5641 ** the page while cursor pCur is holding a reference to it. Which can 5642 ** only happen if the database is corrupt in such a way as to link the 5643 ** page into more than one b-tree structure. */ 5644 testcase( idx>pPage->nCell ); 5645 5646 if( idx>=pPage->nCell ){ 5647 if( !pPage->leaf ){ 5648 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5649 if( rc ) return rc; 5650 return moveToLeftmost(pCur); 5651 } 5652 do{ 5653 if( pCur->iPage==0 ){ 5654 pCur->eState = CURSOR_INVALID; 5655 return SQLITE_DONE; 5656 } 5657 moveToParent(pCur); 5658 pPage = pCur->pPage; 5659 }while( pCur->ix>=pPage->nCell ); 5660 if( pPage->intKey ){ 5661 return sqlite3BtreeNext(pCur, 0); 5662 }else{ 5663 return SQLITE_OK; 5664 } 5665 } 5666 if( pPage->leaf ){ 5667 return SQLITE_OK; 5668 }else{ 5669 return moveToLeftmost(pCur); 5670 } 5671 } 5672 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 5673 MemPage *pPage; 5674 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5675 assert( cursorOwnsBtShared(pCur) ); 5676 assert( flags==0 || flags==1 ); 5677 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5678 pCur->info.nSize = 0; 5679 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5680 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 5681 pPage = pCur->pPage; 5682 if( (++pCur->ix)>=pPage->nCell ){ 5683 pCur->ix--; 5684 return btreeNext(pCur); 5685 } 5686 if( pPage->leaf ){ 5687 return SQLITE_OK; 5688 }else{ 5689 return moveToLeftmost(pCur); 5690 } 5691 } 5692 5693 /* 5694 ** Step the cursor to the back to the previous entry in the database. 5695 ** Return values: 5696 ** 5697 ** SQLITE_OK success 5698 ** SQLITE_DONE the cursor is already on the first element of the table 5699 ** otherwise some kind of error occurred 5700 ** 5701 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5702 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5703 ** to the previous cell on the current page. The (slower) btreePrevious() 5704 ** helper routine is called when it is necessary to move to a different page 5705 ** or to restore the cursor. 5706 ** 5707 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 5708 ** the cursor corresponds to an SQL index and this routine could have been 5709 ** skipped if the SQL index had been a unique index. The F argument is a 5710 ** hint to the implement. The native SQLite btree implementation does not 5711 ** use this hint, but COMDB2 does. 5712 */ 5713 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 5714 int rc; 5715 MemPage *pPage; 5716 5717 assert( cursorOwnsBtShared(pCur) ); 5718 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5719 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5720 assert( pCur->info.nSize==0 ); 5721 if( pCur->eState!=CURSOR_VALID ){ 5722 rc = restoreCursorPosition(pCur); 5723 if( rc!=SQLITE_OK ){ 5724 return rc; 5725 } 5726 if( CURSOR_INVALID==pCur->eState ){ 5727 return SQLITE_DONE; 5728 } 5729 if( pCur->skipNext ){ 5730 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); 5731 pCur->eState = CURSOR_VALID; 5732 if( pCur->skipNext<0 ){ 5733 pCur->skipNext = 0; 5734 return SQLITE_OK; 5735 } 5736 pCur->skipNext = 0; 5737 } 5738 } 5739 5740 pPage = pCur->pPage; 5741 assert( pPage->isInit ); 5742 if( !pPage->leaf ){ 5743 int idx = pCur->ix; 5744 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 5745 if( rc ) return rc; 5746 rc = moveToRightmost(pCur); 5747 }else{ 5748 while( pCur->ix==0 ){ 5749 if( pCur->iPage==0 ){ 5750 pCur->eState = CURSOR_INVALID; 5751 return SQLITE_DONE; 5752 } 5753 moveToParent(pCur); 5754 } 5755 assert( pCur->info.nSize==0 ); 5756 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 5757 5758 pCur->ix--; 5759 pPage = pCur->pPage; 5760 if( pPage->intKey && !pPage->leaf ){ 5761 rc = sqlite3BtreePrevious(pCur, 0); 5762 }else{ 5763 rc = SQLITE_OK; 5764 } 5765 } 5766 return rc; 5767 } 5768 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 5769 assert( cursorOwnsBtShared(pCur) ); 5770 assert( flags==0 || flags==1 ); 5771 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5772 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5773 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 5774 pCur->info.nSize = 0; 5775 if( pCur->eState!=CURSOR_VALID 5776 || pCur->ix==0 5777 || pCur->pPage->leaf==0 5778 ){ 5779 return btreePrevious(pCur); 5780 } 5781 pCur->ix--; 5782 return SQLITE_OK; 5783 } 5784 5785 /* 5786 ** Allocate a new page from the database file. 5787 ** 5788 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 5789 ** has already been called on the new page.) The new page has also 5790 ** been referenced and the calling routine is responsible for calling 5791 ** sqlite3PagerUnref() on the new page when it is done. 5792 ** 5793 ** SQLITE_OK is returned on success. Any other return value indicates 5794 ** an error. *ppPage is set to NULL in the event of an error. 5795 ** 5796 ** If the "nearby" parameter is not 0, then an effort is made to 5797 ** locate a page close to the page number "nearby". This can be used in an 5798 ** attempt to keep related pages close to each other in the database file, 5799 ** which in turn can make database access faster. 5800 ** 5801 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 5802 ** anywhere on the free-list, then it is guaranteed to be returned. If 5803 ** eMode is BTALLOC_LT then the page returned will be less than or equal 5804 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 5805 ** are no restrictions on which page is returned. 5806 */ 5807 static int allocateBtreePage( 5808 BtShared *pBt, /* The btree */ 5809 MemPage **ppPage, /* Store pointer to the allocated page here */ 5810 Pgno *pPgno, /* Store the page number here */ 5811 Pgno nearby, /* Search for a page near this one */ 5812 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 5813 ){ 5814 MemPage *pPage1; 5815 int rc; 5816 u32 n; /* Number of pages on the freelist */ 5817 u32 k; /* Number of leaves on the trunk of the freelist */ 5818 MemPage *pTrunk = 0; 5819 MemPage *pPrevTrunk = 0; 5820 Pgno mxPage; /* Total size of the database file */ 5821 5822 assert( sqlite3_mutex_held(pBt->mutex) ); 5823 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 5824 pPage1 = pBt->pPage1; 5825 mxPage = btreePagecount(pBt); 5826 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 5827 ** stores stores the total number of pages on the freelist. */ 5828 n = get4byte(&pPage1->aData[36]); 5829 testcase( n==mxPage-1 ); 5830 if( n>=mxPage ){ 5831 return SQLITE_CORRUPT_BKPT; 5832 } 5833 if( n>0 ){ 5834 /* There are pages on the freelist. Reuse one of those pages. */ 5835 Pgno iTrunk; 5836 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 5837 u32 nSearch = 0; /* Count of the number of search attempts */ 5838 5839 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 5840 ** shows that the page 'nearby' is somewhere on the free-list, then 5841 ** the entire-list will be searched for that page. 5842 */ 5843 #ifndef SQLITE_OMIT_AUTOVACUUM 5844 if( eMode==BTALLOC_EXACT ){ 5845 if( nearby<=mxPage ){ 5846 u8 eType; 5847 assert( nearby>0 ); 5848 assert( pBt->autoVacuum ); 5849 rc = ptrmapGet(pBt, nearby, &eType, 0); 5850 if( rc ) return rc; 5851 if( eType==PTRMAP_FREEPAGE ){ 5852 searchList = 1; 5853 } 5854 } 5855 }else if( eMode==BTALLOC_LE ){ 5856 searchList = 1; 5857 } 5858 #endif 5859 5860 /* Decrement the free-list count by 1. Set iTrunk to the index of the 5861 ** first free-list trunk page. iPrevTrunk is initially 1. 5862 */ 5863 rc = sqlite3PagerWrite(pPage1->pDbPage); 5864 if( rc ) return rc; 5865 put4byte(&pPage1->aData[36], n-1); 5866 5867 /* The code within this loop is run only once if the 'searchList' variable 5868 ** is not true. Otherwise, it runs once for each trunk-page on the 5869 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 5870 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 5871 */ 5872 do { 5873 pPrevTrunk = pTrunk; 5874 if( pPrevTrunk ){ 5875 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 5876 ** is the page number of the next freelist trunk page in the list or 5877 ** zero if this is the last freelist trunk page. */ 5878 iTrunk = get4byte(&pPrevTrunk->aData[0]); 5879 }else{ 5880 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 5881 ** stores the page number of the first page of the freelist, or zero if 5882 ** the freelist is empty. */ 5883 iTrunk = get4byte(&pPage1->aData[32]); 5884 } 5885 testcase( iTrunk==mxPage ); 5886 if( iTrunk>mxPage || nSearch++ > n ){ 5887 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 5888 }else{ 5889 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 5890 } 5891 if( rc ){ 5892 pTrunk = 0; 5893 goto end_allocate_page; 5894 } 5895 assert( pTrunk!=0 ); 5896 assert( pTrunk->aData!=0 ); 5897 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 5898 ** is the number of leaf page pointers to follow. */ 5899 k = get4byte(&pTrunk->aData[4]); 5900 if( k==0 && !searchList ){ 5901 /* The trunk has no leaves and the list is not being searched. 5902 ** So extract the trunk page itself and use it as the newly 5903 ** allocated page */ 5904 assert( pPrevTrunk==0 ); 5905 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5906 if( rc ){ 5907 goto end_allocate_page; 5908 } 5909 *pPgno = iTrunk; 5910 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5911 *ppPage = pTrunk; 5912 pTrunk = 0; 5913 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5914 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 5915 /* Value of k is out of range. Database corruption */ 5916 rc = SQLITE_CORRUPT_PGNO(iTrunk); 5917 goto end_allocate_page; 5918 #ifndef SQLITE_OMIT_AUTOVACUUM 5919 }else if( searchList 5920 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 5921 ){ 5922 /* The list is being searched and this trunk page is the page 5923 ** to allocate, regardless of whether it has leaves. 5924 */ 5925 *pPgno = iTrunk; 5926 *ppPage = pTrunk; 5927 searchList = 0; 5928 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5929 if( rc ){ 5930 goto end_allocate_page; 5931 } 5932 if( k==0 ){ 5933 if( !pPrevTrunk ){ 5934 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5935 }else{ 5936 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 5937 if( rc!=SQLITE_OK ){ 5938 goto end_allocate_page; 5939 } 5940 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 5941 } 5942 }else{ 5943 /* The trunk page is required by the caller but it contains 5944 ** pointers to free-list leaves. The first leaf becomes a trunk 5945 ** page in this case. 5946 */ 5947 MemPage *pNewTrunk; 5948 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 5949 if( iNewTrunk>mxPage ){ 5950 rc = SQLITE_CORRUPT_PGNO(iTrunk); 5951 goto end_allocate_page; 5952 } 5953 testcase( iNewTrunk==mxPage ); 5954 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 5955 if( rc!=SQLITE_OK ){ 5956 goto end_allocate_page; 5957 } 5958 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 5959 if( rc!=SQLITE_OK ){ 5960 releasePage(pNewTrunk); 5961 goto end_allocate_page; 5962 } 5963 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 5964 put4byte(&pNewTrunk->aData[4], k-1); 5965 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 5966 releasePage(pNewTrunk); 5967 if( !pPrevTrunk ){ 5968 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 5969 put4byte(&pPage1->aData[32], iNewTrunk); 5970 }else{ 5971 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 5972 if( rc ){ 5973 goto end_allocate_page; 5974 } 5975 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 5976 } 5977 } 5978 pTrunk = 0; 5979 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5980 #endif 5981 }else if( k>0 ){ 5982 /* Extract a leaf from the trunk */ 5983 u32 closest; 5984 Pgno iPage; 5985 unsigned char *aData = pTrunk->aData; 5986 if( nearby>0 ){ 5987 u32 i; 5988 closest = 0; 5989 if( eMode==BTALLOC_LE ){ 5990 for(i=0; i<k; i++){ 5991 iPage = get4byte(&aData[8+i*4]); 5992 if( iPage<=nearby ){ 5993 closest = i; 5994 break; 5995 } 5996 } 5997 }else{ 5998 int dist; 5999 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6000 for(i=1; i<k; i++){ 6001 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6002 if( d2<dist ){ 6003 closest = i; 6004 dist = d2; 6005 } 6006 } 6007 } 6008 }else{ 6009 closest = 0; 6010 } 6011 6012 iPage = get4byte(&aData[8+closest*4]); 6013 testcase( iPage==mxPage ); 6014 if( iPage>mxPage ){ 6015 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6016 goto end_allocate_page; 6017 } 6018 testcase( iPage==mxPage ); 6019 if( !searchList 6020 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6021 ){ 6022 int noContent; 6023 *pPgno = iPage; 6024 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6025 ": %d more free pages\n", 6026 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6027 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6028 if( rc ) goto end_allocate_page; 6029 if( closest<k-1 ){ 6030 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6031 } 6032 put4byte(&aData[4], k-1); 6033 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6034 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6035 if( rc==SQLITE_OK ){ 6036 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6037 if( rc!=SQLITE_OK ){ 6038 releasePage(*ppPage); 6039 *ppPage = 0; 6040 } 6041 } 6042 searchList = 0; 6043 } 6044 } 6045 releasePage(pPrevTrunk); 6046 pPrevTrunk = 0; 6047 }while( searchList ); 6048 }else{ 6049 /* There are no pages on the freelist, so append a new page to the 6050 ** database image. 6051 ** 6052 ** Normally, new pages allocated by this block can be requested from the 6053 ** pager layer with the 'no-content' flag set. This prevents the pager 6054 ** from trying to read the pages content from disk. However, if the 6055 ** current transaction has already run one or more incremental-vacuum 6056 ** steps, then the page we are about to allocate may contain content 6057 ** that is required in the event of a rollback. In this case, do 6058 ** not set the no-content flag. This causes the pager to load and journal 6059 ** the current page content before overwriting it. 6060 ** 6061 ** Note that the pager will not actually attempt to load or journal 6062 ** content for any page that really does lie past the end of the database 6063 ** file on disk. So the effects of disabling the no-content optimization 6064 ** here are confined to those pages that lie between the end of the 6065 ** database image and the end of the database file. 6066 */ 6067 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6068 6069 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6070 if( rc ) return rc; 6071 pBt->nPage++; 6072 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6073 6074 #ifndef SQLITE_OMIT_AUTOVACUUM 6075 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6076 /* If *pPgno refers to a pointer-map page, allocate two new pages 6077 ** at the end of the file instead of one. The first allocated page 6078 ** becomes a new pointer-map page, the second is used by the caller. 6079 */ 6080 MemPage *pPg = 0; 6081 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6082 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6083 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6084 if( rc==SQLITE_OK ){ 6085 rc = sqlite3PagerWrite(pPg->pDbPage); 6086 releasePage(pPg); 6087 } 6088 if( rc ) return rc; 6089 pBt->nPage++; 6090 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6091 } 6092 #endif 6093 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6094 *pPgno = pBt->nPage; 6095 6096 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6097 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6098 if( rc ) return rc; 6099 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6100 if( rc!=SQLITE_OK ){ 6101 releasePage(*ppPage); 6102 *ppPage = 0; 6103 } 6104 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6105 } 6106 6107 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6108 6109 end_allocate_page: 6110 releasePage(pTrunk); 6111 releasePage(pPrevTrunk); 6112 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6113 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6114 return rc; 6115 } 6116 6117 /* 6118 ** This function is used to add page iPage to the database file free-list. 6119 ** It is assumed that the page is not already a part of the free-list. 6120 ** 6121 ** The value passed as the second argument to this function is optional. 6122 ** If the caller happens to have a pointer to the MemPage object 6123 ** corresponding to page iPage handy, it may pass it as the second value. 6124 ** Otherwise, it may pass NULL. 6125 ** 6126 ** If a pointer to a MemPage object is passed as the second argument, 6127 ** its reference count is not altered by this function. 6128 */ 6129 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6130 MemPage *pTrunk = 0; /* Free-list trunk page */ 6131 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6132 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6133 MemPage *pPage; /* Page being freed. May be NULL. */ 6134 int rc; /* Return Code */ 6135 int nFree; /* Initial number of pages on free-list */ 6136 6137 assert( sqlite3_mutex_held(pBt->mutex) ); 6138 assert( CORRUPT_DB || iPage>1 ); 6139 assert( !pMemPage || pMemPage->pgno==iPage ); 6140 6141 if( iPage<2 ) return SQLITE_CORRUPT_BKPT; 6142 if( pMemPage ){ 6143 pPage = pMemPage; 6144 sqlite3PagerRef(pPage->pDbPage); 6145 }else{ 6146 pPage = btreePageLookup(pBt, iPage); 6147 } 6148 6149 /* Increment the free page count on pPage1 */ 6150 rc = sqlite3PagerWrite(pPage1->pDbPage); 6151 if( rc ) goto freepage_out; 6152 nFree = get4byte(&pPage1->aData[36]); 6153 put4byte(&pPage1->aData[36], nFree+1); 6154 6155 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6156 /* If the secure_delete option is enabled, then 6157 ** always fully overwrite deleted information with zeros. 6158 */ 6159 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6160 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6161 ){ 6162 goto freepage_out; 6163 } 6164 memset(pPage->aData, 0, pPage->pBt->pageSize); 6165 } 6166 6167 /* If the database supports auto-vacuum, write an entry in the pointer-map 6168 ** to indicate that the page is free. 6169 */ 6170 if( ISAUTOVACUUM ){ 6171 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6172 if( rc ) goto freepage_out; 6173 } 6174 6175 /* Now manipulate the actual database free-list structure. There are two 6176 ** possibilities. If the free-list is currently empty, or if the first 6177 ** trunk page in the free-list is full, then this page will become a 6178 ** new free-list trunk page. Otherwise, it will become a leaf of the 6179 ** first trunk page in the current free-list. This block tests if it 6180 ** is possible to add the page as a new free-list leaf. 6181 */ 6182 if( nFree!=0 ){ 6183 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6184 6185 iTrunk = get4byte(&pPage1->aData[32]); 6186 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6187 if( rc!=SQLITE_OK ){ 6188 goto freepage_out; 6189 } 6190 6191 nLeaf = get4byte(&pTrunk->aData[4]); 6192 assert( pBt->usableSize>32 ); 6193 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6194 rc = SQLITE_CORRUPT_BKPT; 6195 goto freepage_out; 6196 } 6197 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6198 /* In this case there is room on the trunk page to insert the page 6199 ** being freed as a new leaf. 6200 ** 6201 ** Note that the trunk page is not really full until it contains 6202 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6203 ** coded. But due to a coding error in versions of SQLite prior to 6204 ** 3.6.0, databases with freelist trunk pages holding more than 6205 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6206 ** to maintain backwards compatibility with older versions of SQLite, 6207 ** we will continue to restrict the number of entries to usableSize/4 - 8 6208 ** for now. At some point in the future (once everyone has upgraded 6209 ** to 3.6.0 or later) we should consider fixing the conditional above 6210 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6211 ** 6212 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6213 ** avoid using the last six entries in the freelist trunk page array in 6214 ** order that database files created by newer versions of SQLite can be 6215 ** read by older versions of SQLite. 6216 */ 6217 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6218 if( rc==SQLITE_OK ){ 6219 put4byte(&pTrunk->aData[4], nLeaf+1); 6220 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6221 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6222 sqlite3PagerDontWrite(pPage->pDbPage); 6223 } 6224 rc = btreeSetHasContent(pBt, iPage); 6225 } 6226 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6227 goto freepage_out; 6228 } 6229 } 6230 6231 /* If control flows to this point, then it was not possible to add the 6232 ** the page being freed as a leaf page of the first trunk in the free-list. 6233 ** Possibly because the free-list is empty, or possibly because the 6234 ** first trunk in the free-list is full. Either way, the page being freed 6235 ** will become the new first trunk page in the free-list. 6236 */ 6237 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6238 goto freepage_out; 6239 } 6240 rc = sqlite3PagerWrite(pPage->pDbPage); 6241 if( rc!=SQLITE_OK ){ 6242 goto freepage_out; 6243 } 6244 put4byte(pPage->aData, iTrunk); 6245 put4byte(&pPage->aData[4], 0); 6246 put4byte(&pPage1->aData[32], iPage); 6247 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6248 6249 freepage_out: 6250 if( pPage ){ 6251 pPage->isInit = 0; 6252 } 6253 releasePage(pPage); 6254 releasePage(pTrunk); 6255 return rc; 6256 } 6257 static void freePage(MemPage *pPage, int *pRC){ 6258 if( (*pRC)==SQLITE_OK ){ 6259 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6260 } 6261 } 6262 6263 /* 6264 ** Free any overflow pages associated with the given Cell. Store 6265 ** size information about the cell in pInfo. 6266 */ 6267 static int clearCell( 6268 MemPage *pPage, /* The page that contains the Cell */ 6269 unsigned char *pCell, /* First byte of the Cell */ 6270 CellInfo *pInfo /* Size information about the cell */ 6271 ){ 6272 BtShared *pBt; 6273 Pgno ovflPgno; 6274 int rc; 6275 int nOvfl; 6276 u32 ovflPageSize; 6277 6278 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6279 pPage->xParseCell(pPage, pCell, pInfo); 6280 if( pInfo->nLocal==pInfo->nPayload ){ 6281 return SQLITE_OK; /* No overflow pages. Return without doing anything */ 6282 } 6283 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6284 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6285 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6286 /* Cell extends past end of page */ 6287 return SQLITE_CORRUPT_PAGE(pPage); 6288 } 6289 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6290 pBt = pPage->pBt; 6291 assert( pBt->usableSize > 4 ); 6292 ovflPageSize = pBt->usableSize - 4; 6293 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6294 assert( nOvfl>0 || 6295 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6296 ); 6297 while( nOvfl-- ){ 6298 Pgno iNext = 0; 6299 MemPage *pOvfl = 0; 6300 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6301 /* 0 is not a legal page number and page 1 cannot be an 6302 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6303 ** file the database must be corrupt. */ 6304 return SQLITE_CORRUPT_BKPT; 6305 } 6306 if( nOvfl ){ 6307 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6308 if( rc ) return rc; 6309 } 6310 6311 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6312 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6313 ){ 6314 /* There is no reason any cursor should have an outstanding reference 6315 ** to an overflow page belonging to a cell that is being deleted/updated. 6316 ** So if there exists more than one reference to this page, then it 6317 ** must not really be an overflow page and the database must be corrupt. 6318 ** It is helpful to detect this before calling freePage2(), as 6319 ** freePage2() may zero the page contents if secure-delete mode is 6320 ** enabled. If this 'overflow' page happens to be a page that the 6321 ** caller is iterating through or using in some other way, this 6322 ** can be problematic. 6323 */ 6324 rc = SQLITE_CORRUPT_BKPT; 6325 }else{ 6326 rc = freePage2(pBt, pOvfl, ovflPgno); 6327 } 6328 6329 if( pOvfl ){ 6330 sqlite3PagerUnref(pOvfl->pDbPage); 6331 } 6332 if( rc ) return rc; 6333 ovflPgno = iNext; 6334 } 6335 return SQLITE_OK; 6336 } 6337 6338 /* 6339 ** Create the byte sequence used to represent a cell on page pPage 6340 ** and write that byte sequence into pCell[]. Overflow pages are 6341 ** allocated and filled in as necessary. The calling procedure 6342 ** is responsible for making sure sufficient space has been allocated 6343 ** for pCell[]. 6344 ** 6345 ** Note that pCell does not necessary need to point to the pPage->aData 6346 ** area. pCell might point to some temporary storage. The cell will 6347 ** be constructed in this temporary area then copied into pPage->aData 6348 ** later. 6349 */ 6350 static int fillInCell( 6351 MemPage *pPage, /* The page that contains the cell */ 6352 unsigned char *pCell, /* Complete text of the cell */ 6353 const BtreePayload *pX, /* Payload with which to construct the cell */ 6354 int *pnSize /* Write cell size here */ 6355 ){ 6356 int nPayload; 6357 const u8 *pSrc; 6358 int nSrc, n, rc, mn; 6359 int spaceLeft; 6360 MemPage *pToRelease; 6361 unsigned char *pPrior; 6362 unsigned char *pPayload; 6363 BtShared *pBt; 6364 Pgno pgnoOvfl; 6365 int nHeader; 6366 6367 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6368 6369 /* pPage is not necessarily writeable since pCell might be auxiliary 6370 ** buffer space that is separate from the pPage buffer area */ 6371 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6372 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6373 6374 /* Fill in the header. */ 6375 nHeader = pPage->childPtrSize; 6376 if( pPage->intKey ){ 6377 nPayload = pX->nData + pX->nZero; 6378 pSrc = pX->pData; 6379 nSrc = pX->nData; 6380 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6381 nHeader += putVarint32(&pCell[nHeader], nPayload); 6382 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6383 }else{ 6384 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6385 nSrc = nPayload = (int)pX->nKey; 6386 pSrc = pX->pKey; 6387 nHeader += putVarint32(&pCell[nHeader], nPayload); 6388 } 6389 6390 /* Fill in the payload */ 6391 pPayload = &pCell[nHeader]; 6392 if( nPayload<=pPage->maxLocal ){ 6393 /* This is the common case where everything fits on the btree page 6394 ** and no overflow pages are required. */ 6395 n = nHeader + nPayload; 6396 testcase( n==3 ); 6397 testcase( n==4 ); 6398 if( n<4 ) n = 4; 6399 *pnSize = n; 6400 assert( nSrc<=nPayload ); 6401 testcase( nSrc<nPayload ); 6402 memcpy(pPayload, pSrc, nSrc); 6403 memset(pPayload+nSrc, 0, nPayload-nSrc); 6404 return SQLITE_OK; 6405 } 6406 6407 /* If we reach this point, it means that some of the content will need 6408 ** to spill onto overflow pages. 6409 */ 6410 mn = pPage->minLocal; 6411 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6412 testcase( n==pPage->maxLocal ); 6413 testcase( n==pPage->maxLocal+1 ); 6414 if( n > pPage->maxLocal ) n = mn; 6415 spaceLeft = n; 6416 *pnSize = n + nHeader + 4; 6417 pPrior = &pCell[nHeader+n]; 6418 pToRelease = 0; 6419 pgnoOvfl = 0; 6420 pBt = pPage->pBt; 6421 6422 /* At this point variables should be set as follows: 6423 ** 6424 ** nPayload Total payload size in bytes 6425 ** pPayload Begin writing payload here 6426 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6427 ** that means content must spill into overflow pages. 6428 ** *pnSize Size of the local cell (not counting overflow pages) 6429 ** pPrior Where to write the pgno of the first overflow page 6430 ** 6431 ** Use a call to btreeParseCellPtr() to verify that the values above 6432 ** were computed correctly. 6433 */ 6434 #ifdef SQLITE_DEBUG 6435 { 6436 CellInfo info; 6437 pPage->xParseCell(pPage, pCell, &info); 6438 assert( nHeader==(int)(info.pPayload - pCell) ); 6439 assert( info.nKey==pX->nKey ); 6440 assert( *pnSize == info.nSize ); 6441 assert( spaceLeft == info.nLocal ); 6442 } 6443 #endif 6444 6445 /* Write the payload into the local Cell and any extra into overflow pages */ 6446 while( 1 ){ 6447 n = nPayload; 6448 if( n>spaceLeft ) n = spaceLeft; 6449 6450 /* If pToRelease is not zero than pPayload points into the data area 6451 ** of pToRelease. Make sure pToRelease is still writeable. */ 6452 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6453 6454 /* If pPayload is part of the data area of pPage, then make sure pPage 6455 ** is still writeable */ 6456 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6457 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6458 6459 if( nSrc>=n ){ 6460 memcpy(pPayload, pSrc, n); 6461 }else if( nSrc>0 ){ 6462 n = nSrc; 6463 memcpy(pPayload, pSrc, n); 6464 }else{ 6465 memset(pPayload, 0, n); 6466 } 6467 nPayload -= n; 6468 if( nPayload<=0 ) break; 6469 pPayload += n; 6470 pSrc += n; 6471 nSrc -= n; 6472 spaceLeft -= n; 6473 if( spaceLeft==0 ){ 6474 MemPage *pOvfl = 0; 6475 #ifndef SQLITE_OMIT_AUTOVACUUM 6476 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6477 if( pBt->autoVacuum ){ 6478 do{ 6479 pgnoOvfl++; 6480 } while( 6481 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6482 ); 6483 } 6484 #endif 6485 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6486 #ifndef SQLITE_OMIT_AUTOVACUUM 6487 /* If the database supports auto-vacuum, and the second or subsequent 6488 ** overflow page is being allocated, add an entry to the pointer-map 6489 ** for that page now. 6490 ** 6491 ** If this is the first overflow page, then write a partial entry 6492 ** to the pointer-map. If we write nothing to this pointer-map slot, 6493 ** then the optimistic overflow chain processing in clearCell() 6494 ** may misinterpret the uninitialized values and delete the 6495 ** wrong pages from the database. 6496 */ 6497 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6498 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6499 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6500 if( rc ){ 6501 releasePage(pOvfl); 6502 } 6503 } 6504 #endif 6505 if( rc ){ 6506 releasePage(pToRelease); 6507 return rc; 6508 } 6509 6510 /* If pToRelease is not zero than pPrior points into the data area 6511 ** of pToRelease. Make sure pToRelease is still writeable. */ 6512 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6513 6514 /* If pPrior is part of the data area of pPage, then make sure pPage 6515 ** is still writeable */ 6516 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6517 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6518 6519 put4byte(pPrior, pgnoOvfl); 6520 releasePage(pToRelease); 6521 pToRelease = pOvfl; 6522 pPrior = pOvfl->aData; 6523 put4byte(pPrior, 0); 6524 pPayload = &pOvfl->aData[4]; 6525 spaceLeft = pBt->usableSize - 4; 6526 } 6527 } 6528 releasePage(pToRelease); 6529 return SQLITE_OK; 6530 } 6531 6532 /* 6533 ** Remove the i-th cell from pPage. This routine effects pPage only. 6534 ** The cell content is not freed or deallocated. It is assumed that 6535 ** the cell content has been copied someplace else. This routine just 6536 ** removes the reference to the cell from pPage. 6537 ** 6538 ** "sz" must be the number of bytes in the cell. 6539 */ 6540 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6541 u32 pc; /* Offset to cell content of cell being deleted */ 6542 u8 *data; /* pPage->aData */ 6543 u8 *ptr; /* Used to move bytes around within data[] */ 6544 int rc; /* The return code */ 6545 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6546 6547 if( *pRC ) return; 6548 assert( idx>=0 && idx<pPage->nCell ); 6549 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6550 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6551 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6552 data = pPage->aData; 6553 ptr = &pPage->aCellIdx[2*idx]; 6554 pc = get2byte(ptr); 6555 hdr = pPage->hdrOffset; 6556 testcase( pc==get2byte(&data[hdr+5]) ); 6557 testcase( pc+sz==pPage->pBt->usableSize ); 6558 if( pc+sz > pPage->pBt->usableSize ){ 6559 *pRC = SQLITE_CORRUPT_BKPT; 6560 return; 6561 } 6562 rc = freeSpace(pPage, pc, sz); 6563 if( rc ){ 6564 *pRC = rc; 6565 return; 6566 } 6567 pPage->nCell--; 6568 if( pPage->nCell==0 ){ 6569 memset(&data[hdr+1], 0, 4); 6570 data[hdr+7] = 0; 6571 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6572 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6573 - pPage->childPtrSize - 8; 6574 }else{ 6575 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6576 put2byte(&data[hdr+3], pPage->nCell); 6577 pPage->nFree += 2; 6578 } 6579 } 6580 6581 /* 6582 ** Insert a new cell on pPage at cell index "i". pCell points to the 6583 ** content of the cell. 6584 ** 6585 ** If the cell content will fit on the page, then put it there. If it 6586 ** will not fit, then make a copy of the cell content into pTemp if 6587 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6588 ** in pPage->apOvfl[] and make it point to the cell content (either 6589 ** in pTemp or the original pCell) and also record its index. 6590 ** Allocating a new entry in pPage->aCell[] implies that 6591 ** pPage->nOverflow is incremented. 6592 ** 6593 ** *pRC must be SQLITE_OK when this routine is called. 6594 */ 6595 static void insertCell( 6596 MemPage *pPage, /* Page into which we are copying */ 6597 int i, /* New cell becomes the i-th cell of the page */ 6598 u8 *pCell, /* Content of the new cell */ 6599 int sz, /* Bytes of content in pCell */ 6600 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6601 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6602 int *pRC /* Read and write return code from here */ 6603 ){ 6604 int idx = 0; /* Where to write new cell content in data[] */ 6605 int j; /* Loop counter */ 6606 u8 *data; /* The content of the whole page */ 6607 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 6608 6609 assert( *pRC==SQLITE_OK ); 6610 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6611 assert( MX_CELL(pPage->pBt)<=10921 ); 6612 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6613 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6614 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6615 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6616 /* The cell should normally be sized correctly. However, when moving a 6617 ** malformed cell from a leaf page to an interior page, if the cell size 6618 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size 6619 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence 6620 ** the term after the || in the following assert(). */ 6621 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) ); 6622 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6623 if( pTemp ){ 6624 memcpy(pTemp, pCell, sz); 6625 pCell = pTemp; 6626 } 6627 if( iChild ){ 6628 put4byte(pCell, iChild); 6629 } 6630 j = pPage->nOverflow++; 6631 /* Comparison against ArraySize-1 since we hold back one extra slot 6632 ** as a contingency. In other words, never need more than 3 overflow 6633 ** slots but 4 are allocated, just to be safe. */ 6634 assert( j < ArraySize(pPage->apOvfl)-1 ); 6635 pPage->apOvfl[j] = pCell; 6636 pPage->aiOvfl[j] = (u16)i; 6637 6638 /* When multiple overflows occur, they are always sequential and in 6639 ** sorted order. This invariants arise because multiple overflows can 6640 ** only occur when inserting divider cells into the parent page during 6641 ** balancing, and the dividers are adjacent and sorted. 6642 */ 6643 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 6644 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 6645 }else{ 6646 int rc = sqlite3PagerWrite(pPage->pDbPage); 6647 if( rc!=SQLITE_OK ){ 6648 *pRC = rc; 6649 return; 6650 } 6651 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6652 data = pPage->aData; 6653 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 6654 rc = allocateSpace(pPage, sz, &idx); 6655 if( rc ){ *pRC = rc; return; } 6656 /* The allocateSpace() routine guarantees the following properties 6657 ** if it returns successfully */ 6658 assert( idx >= 0 ); 6659 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 6660 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6661 pPage->nFree -= (u16)(2 + sz); 6662 memcpy(&data[idx], pCell, sz); 6663 if( iChild ){ 6664 put4byte(&data[idx], iChild); 6665 } 6666 pIns = pPage->aCellIdx + i*2; 6667 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 6668 put2byte(pIns, idx); 6669 pPage->nCell++; 6670 /* increment the cell count */ 6671 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 6672 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell ); 6673 #ifndef SQLITE_OMIT_AUTOVACUUM 6674 if( pPage->pBt->autoVacuum ){ 6675 /* The cell may contain a pointer to an overflow page. If so, write 6676 ** the entry for the overflow page into the pointer map. 6677 */ 6678 ptrmapPutOvflPtr(pPage, pCell, pRC); 6679 } 6680 #endif 6681 } 6682 } 6683 6684 /* 6685 ** A CellArray object contains a cache of pointers and sizes for a 6686 ** consecutive sequence of cells that might be held on multiple pages. 6687 */ 6688 typedef struct CellArray CellArray; 6689 struct CellArray { 6690 int nCell; /* Number of cells in apCell[] */ 6691 MemPage *pRef; /* Reference page */ 6692 u8 **apCell; /* All cells begin balanced */ 6693 u16 *szCell; /* Local size of all cells in apCell[] */ 6694 }; 6695 6696 /* 6697 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 6698 ** computed. 6699 */ 6700 static void populateCellCache(CellArray *p, int idx, int N){ 6701 assert( idx>=0 && idx+N<=p->nCell ); 6702 while( N>0 ){ 6703 assert( p->apCell[idx]!=0 ); 6704 if( p->szCell[idx]==0 ){ 6705 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 6706 }else{ 6707 assert( CORRUPT_DB || 6708 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 6709 } 6710 idx++; 6711 N--; 6712 } 6713 } 6714 6715 /* 6716 ** Return the size of the Nth element of the cell array 6717 */ 6718 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 6719 assert( N>=0 && N<p->nCell ); 6720 assert( p->szCell[N]==0 ); 6721 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 6722 return p->szCell[N]; 6723 } 6724 static u16 cachedCellSize(CellArray *p, int N){ 6725 assert( N>=0 && N<p->nCell ); 6726 if( p->szCell[N] ) return p->szCell[N]; 6727 return computeCellSize(p, N); 6728 } 6729 6730 /* 6731 ** Array apCell[] contains pointers to nCell b-tree page cells. The 6732 ** szCell[] array contains the size in bytes of each cell. This function 6733 ** replaces the current contents of page pPg with the contents of the cell 6734 ** array. 6735 ** 6736 ** Some of the cells in apCell[] may currently be stored in pPg. This 6737 ** function works around problems caused by this by making a copy of any 6738 ** such cells before overwriting the page data. 6739 ** 6740 ** The MemPage.nFree field is invalidated by this function. It is the 6741 ** responsibility of the caller to set it correctly. 6742 */ 6743 static int rebuildPage( 6744 MemPage *pPg, /* Edit this page */ 6745 int nCell, /* Final number of cells on page */ 6746 u8 **apCell, /* Array of cells */ 6747 u16 *szCell /* Array of cell sizes */ 6748 ){ 6749 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 6750 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 6751 const int usableSize = pPg->pBt->usableSize; 6752 u8 * const pEnd = &aData[usableSize]; 6753 int i; 6754 u8 *pCellptr = pPg->aCellIdx; 6755 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6756 u8 *pData; 6757 6758 i = get2byte(&aData[hdr+5]); 6759 memcpy(&pTmp[i], &aData[i], usableSize - i); 6760 6761 pData = pEnd; 6762 for(i=0; i<nCell; i++){ 6763 u8 *pCell = apCell[i]; 6764 if( SQLITE_WITHIN(pCell,aData,pEnd) ){ 6765 if( ((uptr)(pCell+szCell[i]))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 6766 pCell = &pTmp[pCell - aData]; 6767 } 6768 pData -= szCell[i]; 6769 put2byte(pCellptr, (pData - aData)); 6770 pCellptr += 2; 6771 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 6772 memcpy(pData, pCell, szCell[i]); 6773 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 6774 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) ); 6775 } 6776 6777 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 6778 pPg->nCell = nCell; 6779 pPg->nOverflow = 0; 6780 6781 put2byte(&aData[hdr+1], 0); 6782 put2byte(&aData[hdr+3], pPg->nCell); 6783 put2byte(&aData[hdr+5], pData - aData); 6784 aData[hdr+7] = 0x00; 6785 return SQLITE_OK; 6786 } 6787 6788 /* 6789 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 6790 ** contains the size in bytes of each such cell. This function attempts to 6791 ** add the cells stored in the array to page pPg. If it cannot (because 6792 ** the page needs to be defragmented before the cells will fit), non-zero 6793 ** is returned. Otherwise, if the cells are added successfully, zero is 6794 ** returned. 6795 ** 6796 ** Argument pCellptr points to the first entry in the cell-pointer array 6797 ** (part of page pPg) to populate. After cell apCell[0] is written to the 6798 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 6799 ** cell in the array. It is the responsibility of the caller to ensure 6800 ** that it is safe to overwrite this part of the cell-pointer array. 6801 ** 6802 ** When this function is called, *ppData points to the start of the 6803 ** content area on page pPg. If the size of the content area is extended, 6804 ** *ppData is updated to point to the new start of the content area 6805 ** before returning. 6806 ** 6807 ** Finally, argument pBegin points to the byte immediately following the 6808 ** end of the space required by this page for the cell-pointer area (for 6809 ** all cells - not just those inserted by the current call). If the content 6810 ** area must be extended to before this point in order to accomodate all 6811 ** cells in apCell[], then the cells do not fit and non-zero is returned. 6812 */ 6813 static int pageInsertArray( 6814 MemPage *pPg, /* Page to add cells to */ 6815 u8 *pBegin, /* End of cell-pointer array */ 6816 u8 **ppData, /* IN/OUT: Page content -area pointer */ 6817 u8 *pCellptr, /* Pointer to cell-pointer area */ 6818 int iFirst, /* Index of first cell to add */ 6819 int nCell, /* Number of cells to add to pPg */ 6820 CellArray *pCArray /* Array of cells */ 6821 ){ 6822 int i; 6823 u8 *aData = pPg->aData; 6824 u8 *pData = *ppData; 6825 int iEnd = iFirst + nCell; 6826 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 6827 for(i=iFirst; i<iEnd; i++){ 6828 int sz, rc; 6829 u8 *pSlot; 6830 sz = cachedCellSize(pCArray, i); 6831 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 6832 if( (pData - pBegin)<sz ) return 1; 6833 pData -= sz; 6834 pSlot = pData; 6835 } 6836 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 6837 ** database. But they might for a corrupt database. Hence use memmove() 6838 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 6839 assert( (pSlot+sz)<=pCArray->apCell[i] 6840 || pSlot>=(pCArray->apCell[i]+sz) 6841 || CORRUPT_DB ); 6842 memmove(pSlot, pCArray->apCell[i], sz); 6843 put2byte(pCellptr, (pSlot - aData)); 6844 pCellptr += 2; 6845 } 6846 *ppData = pData; 6847 return 0; 6848 } 6849 6850 /* 6851 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 6852 ** contains the size in bytes of each such cell. This function adds the 6853 ** space associated with each cell in the array that is currently stored 6854 ** within the body of pPg to the pPg free-list. The cell-pointers and other 6855 ** fields of the page are not updated. 6856 ** 6857 ** This function returns the total number of cells added to the free-list. 6858 */ 6859 static int pageFreeArray( 6860 MemPage *pPg, /* Page to edit */ 6861 int iFirst, /* First cell to delete */ 6862 int nCell, /* Cells to delete */ 6863 CellArray *pCArray /* Array of cells */ 6864 ){ 6865 u8 * const aData = pPg->aData; 6866 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 6867 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 6868 int nRet = 0; 6869 int i; 6870 int iEnd = iFirst + nCell; 6871 u8 *pFree = 0; 6872 int szFree = 0; 6873 6874 for(i=iFirst; i<iEnd; i++){ 6875 u8 *pCell = pCArray->apCell[i]; 6876 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 6877 int sz; 6878 /* No need to use cachedCellSize() here. The sizes of all cells that 6879 ** are to be freed have already been computing while deciding which 6880 ** cells need freeing */ 6881 sz = pCArray->szCell[i]; assert( sz>0 ); 6882 if( pFree!=(pCell + sz) ){ 6883 if( pFree ){ 6884 assert( pFree>aData && (pFree - aData)<65536 ); 6885 freeSpace(pPg, (u16)(pFree - aData), szFree); 6886 } 6887 pFree = pCell; 6888 szFree = sz; 6889 if( pFree+sz>pEnd ) return 0; 6890 }else{ 6891 pFree = pCell; 6892 szFree += sz; 6893 } 6894 nRet++; 6895 } 6896 } 6897 if( pFree ){ 6898 assert( pFree>aData && (pFree - aData)<65536 ); 6899 freeSpace(pPg, (u16)(pFree - aData), szFree); 6900 } 6901 return nRet; 6902 } 6903 6904 /* 6905 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the 6906 ** pages being balanced. The current page, pPg, has pPg->nCell cells starting 6907 ** with apCell[iOld]. After balancing, this page should hold nNew cells 6908 ** starting at apCell[iNew]. 6909 ** 6910 ** This routine makes the necessary adjustments to pPg so that it contains 6911 ** the correct cells after being balanced. 6912 ** 6913 ** The pPg->nFree field is invalid when this function returns. It is the 6914 ** responsibility of the caller to set it correctly. 6915 */ 6916 static int editPage( 6917 MemPage *pPg, /* Edit this page */ 6918 int iOld, /* Index of first cell currently on page */ 6919 int iNew, /* Index of new first cell on page */ 6920 int nNew, /* Final number of cells on page */ 6921 CellArray *pCArray /* Array of cells and sizes */ 6922 ){ 6923 u8 * const aData = pPg->aData; 6924 const int hdr = pPg->hdrOffset; 6925 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 6926 int nCell = pPg->nCell; /* Cells stored on pPg */ 6927 u8 *pData; 6928 u8 *pCellptr; 6929 int i; 6930 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 6931 int iNewEnd = iNew + nNew; 6932 6933 #ifdef SQLITE_DEBUG 6934 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6935 memcpy(pTmp, aData, pPg->pBt->usableSize); 6936 #endif 6937 6938 /* Remove cells from the start and end of the page */ 6939 if( iOld<iNew ){ 6940 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 6941 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 6942 nCell -= nShift; 6943 } 6944 if( iNewEnd < iOldEnd ){ 6945 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 6946 } 6947 6948 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 6949 if( pData<pBegin ) goto editpage_fail; 6950 6951 /* Add cells to the start of the page */ 6952 if( iNew<iOld ){ 6953 int nAdd = MIN(nNew,iOld-iNew); 6954 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 6955 pCellptr = pPg->aCellIdx; 6956 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 6957 if( pageInsertArray( 6958 pPg, pBegin, &pData, pCellptr, 6959 iNew, nAdd, pCArray 6960 ) ) goto editpage_fail; 6961 nCell += nAdd; 6962 } 6963 6964 /* Add any overflow cells */ 6965 for(i=0; i<pPg->nOverflow; i++){ 6966 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 6967 if( iCell>=0 && iCell<nNew ){ 6968 pCellptr = &pPg->aCellIdx[iCell * 2]; 6969 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 6970 nCell++; 6971 if( pageInsertArray( 6972 pPg, pBegin, &pData, pCellptr, 6973 iCell+iNew, 1, pCArray 6974 ) ) goto editpage_fail; 6975 } 6976 } 6977 6978 /* Append cells to the end of the page */ 6979 pCellptr = &pPg->aCellIdx[nCell*2]; 6980 if( pageInsertArray( 6981 pPg, pBegin, &pData, pCellptr, 6982 iNew+nCell, nNew-nCell, pCArray 6983 ) ) goto editpage_fail; 6984 6985 pPg->nCell = nNew; 6986 pPg->nOverflow = 0; 6987 6988 put2byte(&aData[hdr+3], pPg->nCell); 6989 put2byte(&aData[hdr+5], pData - aData); 6990 6991 #ifdef SQLITE_DEBUG 6992 for(i=0; i<nNew && !CORRUPT_DB; i++){ 6993 u8 *pCell = pCArray->apCell[i+iNew]; 6994 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 6995 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 6996 pCell = &pTmp[pCell - aData]; 6997 } 6998 assert( 0==memcmp(pCell, &aData[iOff], 6999 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7000 } 7001 #endif 7002 7003 return SQLITE_OK; 7004 editpage_fail: 7005 /* Unable to edit this page. Rebuild it from scratch instead. */ 7006 populateCellCache(pCArray, iNew, nNew); 7007 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]); 7008 } 7009 7010 /* 7011 ** The following parameters determine how many adjacent pages get involved 7012 ** in a balancing operation. NN is the number of neighbors on either side 7013 ** of the page that participate in the balancing operation. NB is the 7014 ** total number of pages that participate, including the target page and 7015 ** NN neighbors on either side. 7016 ** 7017 ** The minimum value of NN is 1 (of course). Increasing NN above 1 7018 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 7019 ** in exchange for a larger degradation in INSERT and UPDATE performance. 7020 ** The value of NN appears to give the best results overall. 7021 */ 7022 #define NN 1 /* Number of neighbors on either side of pPage */ 7023 #define NB (NN*2+1) /* Total pages involved in the balance */ 7024 7025 7026 #ifndef SQLITE_OMIT_QUICKBALANCE 7027 /* 7028 ** This version of balance() handles the common special case where 7029 ** a new entry is being inserted on the extreme right-end of the 7030 ** tree, in other words, when the new entry will become the largest 7031 ** entry in the tree. 7032 ** 7033 ** Instead of trying to balance the 3 right-most leaf pages, just add 7034 ** a new page to the right-hand side and put the one new entry in 7035 ** that page. This leaves the right side of the tree somewhat 7036 ** unbalanced. But odds are that we will be inserting new entries 7037 ** at the end soon afterwards so the nearly empty page will quickly 7038 ** fill up. On average. 7039 ** 7040 ** pPage is the leaf page which is the right-most page in the tree. 7041 ** pParent is its parent. pPage must have a single overflow entry 7042 ** which is also the right-most entry on the page. 7043 ** 7044 ** The pSpace buffer is used to store a temporary copy of the divider 7045 ** cell that will be inserted into pParent. Such a cell consists of a 4 7046 ** byte page number followed by a variable length integer. In other 7047 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7048 ** least 13 bytes in size. 7049 */ 7050 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7051 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7052 MemPage *pNew; /* Newly allocated page */ 7053 int rc; /* Return Code */ 7054 Pgno pgnoNew; /* Page number of pNew */ 7055 7056 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7057 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7058 assert( pPage->nOverflow==1 ); 7059 7060 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7061 7062 /* Allocate a new page. This page will become the right-sibling of 7063 ** pPage. Make the parent page writable, so that the new divider cell 7064 ** may be inserted. If both these operations are successful, proceed. 7065 */ 7066 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7067 7068 if( rc==SQLITE_OK ){ 7069 7070 u8 *pOut = &pSpace[4]; 7071 u8 *pCell = pPage->apOvfl[0]; 7072 u16 szCell = pPage->xCellSize(pPage, pCell); 7073 u8 *pStop; 7074 7075 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7076 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7077 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7078 rc = rebuildPage(pNew, 1, &pCell, &szCell); 7079 if( NEVER(rc) ) return rc; 7080 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7081 7082 /* If this is an auto-vacuum database, update the pointer map 7083 ** with entries for the new page, and any pointer from the 7084 ** cell on the page to an overflow page. If either of these 7085 ** operations fails, the return code is set, but the contents 7086 ** of the parent page are still manipulated by thh code below. 7087 ** That is Ok, at this point the parent page is guaranteed to 7088 ** be marked as dirty. Returning an error code will cause a 7089 ** rollback, undoing any changes made to the parent page. 7090 */ 7091 if( ISAUTOVACUUM ){ 7092 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7093 if( szCell>pNew->minLocal ){ 7094 ptrmapPutOvflPtr(pNew, pCell, &rc); 7095 } 7096 } 7097 7098 /* Create a divider cell to insert into pParent. The divider cell 7099 ** consists of a 4-byte page number (the page number of pPage) and 7100 ** a variable length key value (which must be the same value as the 7101 ** largest key on pPage). 7102 ** 7103 ** To find the largest key value on pPage, first find the right-most 7104 ** cell on pPage. The first two fields of this cell are the 7105 ** record-length (a variable length integer at most 32-bits in size) 7106 ** and the key value (a variable length integer, may have any value). 7107 ** The first of the while(...) loops below skips over the record-length 7108 ** field. The second while(...) loop copies the key value from the 7109 ** cell on pPage into the pSpace buffer. 7110 */ 7111 pCell = findCell(pPage, pPage->nCell-1); 7112 pStop = &pCell[9]; 7113 while( (*(pCell++)&0x80) && pCell<pStop ); 7114 pStop = &pCell[9]; 7115 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7116 7117 /* Insert the new divider cell into pParent. */ 7118 if( rc==SQLITE_OK ){ 7119 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7120 0, pPage->pgno, &rc); 7121 } 7122 7123 /* Set the right-child pointer of pParent to point to the new page. */ 7124 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7125 7126 /* Release the reference to the new page. */ 7127 releasePage(pNew); 7128 } 7129 7130 return rc; 7131 } 7132 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7133 7134 #if 0 7135 /* 7136 ** This function does not contribute anything to the operation of SQLite. 7137 ** it is sometimes activated temporarily while debugging code responsible 7138 ** for setting pointer-map entries. 7139 */ 7140 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7141 int i, j; 7142 for(i=0; i<nPage; i++){ 7143 Pgno n; 7144 u8 e; 7145 MemPage *pPage = apPage[i]; 7146 BtShared *pBt = pPage->pBt; 7147 assert( pPage->isInit ); 7148 7149 for(j=0; j<pPage->nCell; j++){ 7150 CellInfo info; 7151 u8 *z; 7152 7153 z = findCell(pPage, j); 7154 pPage->xParseCell(pPage, z, &info); 7155 if( info.nLocal<info.nPayload ){ 7156 Pgno ovfl = get4byte(&z[info.nSize-4]); 7157 ptrmapGet(pBt, ovfl, &e, &n); 7158 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7159 } 7160 if( !pPage->leaf ){ 7161 Pgno child = get4byte(z); 7162 ptrmapGet(pBt, child, &e, &n); 7163 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7164 } 7165 } 7166 if( !pPage->leaf ){ 7167 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7168 ptrmapGet(pBt, child, &e, &n); 7169 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7170 } 7171 } 7172 return 1; 7173 } 7174 #endif 7175 7176 /* 7177 ** This function is used to copy the contents of the b-tree node stored 7178 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7179 ** the pointer-map entries for each child page are updated so that the 7180 ** parent page stored in the pointer map is page pTo. If pFrom contained 7181 ** any cells with overflow page pointers, then the corresponding pointer 7182 ** map entries are also updated so that the parent page is page pTo. 7183 ** 7184 ** If pFrom is currently carrying any overflow cells (entries in the 7185 ** MemPage.apOvfl[] array), they are not copied to pTo. 7186 ** 7187 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7188 ** 7189 ** The performance of this function is not critical. It is only used by 7190 ** the balance_shallower() and balance_deeper() procedures, neither of 7191 ** which are called often under normal circumstances. 7192 */ 7193 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7194 if( (*pRC)==SQLITE_OK ){ 7195 BtShared * const pBt = pFrom->pBt; 7196 u8 * const aFrom = pFrom->aData; 7197 u8 * const aTo = pTo->aData; 7198 int const iFromHdr = pFrom->hdrOffset; 7199 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7200 int rc; 7201 int iData; 7202 7203 7204 assert( pFrom->isInit ); 7205 assert( pFrom->nFree>=iToHdr ); 7206 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7207 7208 /* Copy the b-tree node content from page pFrom to page pTo. */ 7209 iData = get2byte(&aFrom[iFromHdr+5]); 7210 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7211 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7212 7213 /* Reinitialize page pTo so that the contents of the MemPage structure 7214 ** match the new data. The initialization of pTo can actually fail under 7215 ** fairly obscure circumstances, even though it is a copy of initialized 7216 ** page pFrom. 7217 */ 7218 pTo->isInit = 0; 7219 rc = btreeInitPage(pTo); 7220 if( rc!=SQLITE_OK ){ 7221 *pRC = rc; 7222 return; 7223 } 7224 7225 /* If this is an auto-vacuum database, update the pointer-map entries 7226 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7227 */ 7228 if( ISAUTOVACUUM ){ 7229 *pRC = setChildPtrmaps(pTo); 7230 } 7231 } 7232 } 7233 7234 /* 7235 ** This routine redistributes cells on the iParentIdx'th child of pParent 7236 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7237 ** same amount of free space. Usually a single sibling on either side of the 7238 ** page are used in the balancing, though both siblings might come from one 7239 ** side if the page is the first or last child of its parent. If the page 7240 ** has fewer than 2 siblings (something which can only happen if the page 7241 ** is a root page or a child of a root page) then all available siblings 7242 ** participate in the balancing. 7243 ** 7244 ** The number of siblings of the page might be increased or decreased by 7245 ** one or two in an effort to keep pages nearly full but not over full. 7246 ** 7247 ** Note that when this routine is called, some of the cells on the page 7248 ** might not actually be stored in MemPage.aData[]. This can happen 7249 ** if the page is overfull. This routine ensures that all cells allocated 7250 ** to the page and its siblings fit into MemPage.aData[] before returning. 7251 ** 7252 ** In the course of balancing the page and its siblings, cells may be 7253 ** inserted into or removed from the parent page (pParent). Doing so 7254 ** may cause the parent page to become overfull or underfull. If this 7255 ** happens, it is the responsibility of the caller to invoke the correct 7256 ** balancing routine to fix this problem (see the balance() routine). 7257 ** 7258 ** If this routine fails for any reason, it might leave the database 7259 ** in a corrupted state. So if this routine fails, the database should 7260 ** be rolled back. 7261 ** 7262 ** The third argument to this function, aOvflSpace, is a pointer to a 7263 ** buffer big enough to hold one page. If while inserting cells into the parent 7264 ** page (pParent) the parent page becomes overfull, this buffer is 7265 ** used to store the parent's overflow cells. Because this function inserts 7266 ** a maximum of four divider cells into the parent page, and the maximum 7267 ** size of a cell stored within an internal node is always less than 1/4 7268 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7269 ** enough for all overflow cells. 7270 ** 7271 ** If aOvflSpace is set to a null pointer, this function returns 7272 ** SQLITE_NOMEM. 7273 */ 7274 static int balance_nonroot( 7275 MemPage *pParent, /* Parent page of siblings being balanced */ 7276 int iParentIdx, /* Index of "the page" in pParent */ 7277 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7278 int isRoot, /* True if pParent is a root-page */ 7279 int bBulk /* True if this call is part of a bulk load */ 7280 ){ 7281 BtShared *pBt; /* The whole database */ 7282 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7283 int nNew = 0; /* Number of pages in apNew[] */ 7284 int nOld; /* Number of pages in apOld[] */ 7285 int i, j, k; /* Loop counters */ 7286 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7287 int rc = SQLITE_OK; /* The return code */ 7288 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7289 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7290 int usableSpace; /* Bytes in pPage beyond the header */ 7291 int pageFlags; /* Value of pPage->aData[0] */ 7292 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7293 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7294 int szScratch; /* Size of scratch memory requested */ 7295 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7296 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7297 u8 *pRight; /* Location in parent of right-sibling pointer */ 7298 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7299 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7300 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7301 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7302 u8 *aSpace1; /* Space for copies of dividers cells */ 7303 Pgno pgno; /* Temp var to store a page number in */ 7304 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7305 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7306 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7307 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7308 CellArray b; /* Parsed information on cells being balanced */ 7309 7310 memset(abDone, 0, sizeof(abDone)); 7311 b.nCell = 0; 7312 b.apCell = 0; 7313 pBt = pParent->pBt; 7314 assert( sqlite3_mutex_held(pBt->mutex) ); 7315 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7316 7317 #if 0 7318 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); 7319 #endif 7320 7321 /* At this point pParent may have at most one overflow cell. And if 7322 ** this overflow cell is present, it must be the cell with 7323 ** index iParentIdx. This scenario comes about when this function 7324 ** is called (indirectly) from sqlite3BtreeDelete(). 7325 */ 7326 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7327 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7328 7329 if( !aOvflSpace ){ 7330 return SQLITE_NOMEM_BKPT; 7331 } 7332 7333 /* Find the sibling pages to balance. Also locate the cells in pParent 7334 ** that divide the siblings. An attempt is made to find NN siblings on 7335 ** either side of pPage. More siblings are taken from one side, however, 7336 ** if there are fewer than NN siblings on the other side. If pParent 7337 ** has NB or fewer children then all children of pParent are taken. 7338 ** 7339 ** This loop also drops the divider cells from the parent page. This 7340 ** way, the remainder of the function does not have to deal with any 7341 ** overflow cells in the parent page, since if any existed they will 7342 ** have already been removed. 7343 */ 7344 i = pParent->nOverflow + pParent->nCell; 7345 if( i<2 ){ 7346 nxDiv = 0; 7347 }else{ 7348 assert( bBulk==0 || bBulk==1 ); 7349 if( iParentIdx==0 ){ 7350 nxDiv = 0; 7351 }else if( iParentIdx==i ){ 7352 nxDiv = i-2+bBulk; 7353 }else{ 7354 nxDiv = iParentIdx-1; 7355 } 7356 i = 2-bBulk; 7357 } 7358 nOld = i+1; 7359 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7360 pRight = &pParent->aData[pParent->hdrOffset+8]; 7361 }else{ 7362 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7363 } 7364 pgno = get4byte(pRight); 7365 while( 1 ){ 7366 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7367 if( rc ){ 7368 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7369 goto balance_cleanup; 7370 } 7371 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; 7372 if( (i--)==0 ) break; 7373 7374 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7375 apDiv[i] = pParent->apOvfl[0]; 7376 pgno = get4byte(apDiv[i]); 7377 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7378 pParent->nOverflow = 0; 7379 }else{ 7380 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7381 pgno = get4byte(apDiv[i]); 7382 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7383 7384 /* Drop the cell from the parent page. apDiv[i] still points to 7385 ** the cell within the parent, even though it has been dropped. 7386 ** This is safe because dropping a cell only overwrites the first 7387 ** four bytes of it, and this function does not need the first 7388 ** four bytes of the divider cell. So the pointer is safe to use 7389 ** later on. 7390 ** 7391 ** But not if we are in secure-delete mode. In secure-delete mode, 7392 ** the dropCell() routine will overwrite the entire cell with zeroes. 7393 ** In this case, temporarily copy the cell into the aOvflSpace[] 7394 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7395 ** is allocated. */ 7396 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7397 int iOff; 7398 7399 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7400 if( (iOff+szNew[i])>(int)pBt->usableSize ){ 7401 rc = SQLITE_CORRUPT_BKPT; 7402 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7403 goto balance_cleanup; 7404 }else{ 7405 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7406 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7407 } 7408 } 7409 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7410 } 7411 } 7412 7413 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7414 ** alignment */ 7415 nMaxCells = (nMaxCells + 3)&~3; 7416 7417 /* 7418 ** Allocate space for memory structures 7419 */ 7420 szScratch = 7421 nMaxCells*sizeof(u8*) /* b.apCell */ 7422 + nMaxCells*sizeof(u16) /* b.szCell */ 7423 + pBt->pageSize; /* aSpace1 */ 7424 7425 assert( szScratch<=6*(int)pBt->pageSize ); 7426 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 7427 if( b.apCell==0 ){ 7428 rc = SQLITE_NOMEM_BKPT; 7429 goto balance_cleanup; 7430 } 7431 b.szCell = (u16*)&b.apCell[nMaxCells]; 7432 aSpace1 = (u8*)&b.szCell[nMaxCells]; 7433 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 7434 7435 /* 7436 ** Load pointers to all cells on sibling pages and the divider cells 7437 ** into the local b.apCell[] array. Make copies of the divider cells 7438 ** into space obtained from aSpace1[]. The divider cells have already 7439 ** been removed from pParent. 7440 ** 7441 ** If the siblings are on leaf pages, then the child pointers of the 7442 ** divider cells are stripped from the cells before they are copied 7443 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 7444 ** child pointers. If siblings are not leaves, then all cell in 7445 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 7446 ** are alike. 7447 ** 7448 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 7449 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 7450 */ 7451 b.pRef = apOld[0]; 7452 leafCorrection = b.pRef->leaf*4; 7453 leafData = b.pRef->intKeyLeaf; 7454 for(i=0; i<nOld; i++){ 7455 MemPage *pOld = apOld[i]; 7456 int limit = pOld->nCell; 7457 u8 *aData = pOld->aData; 7458 u16 maskPage = pOld->maskPage; 7459 u8 *piCell = aData + pOld->cellOffset; 7460 u8 *piEnd; 7461 7462 /* Verify that all sibling pages are of the same "type" (table-leaf, 7463 ** table-interior, index-leaf, or index-interior). 7464 */ 7465 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 7466 rc = SQLITE_CORRUPT_BKPT; 7467 goto balance_cleanup; 7468 } 7469 7470 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 7471 ** contains overflow cells, include them in the b.apCell[] array 7472 ** in the correct spot. 7473 ** 7474 ** Note that when there are multiple overflow cells, it is always the 7475 ** case that they are sequential and adjacent. This invariant arises 7476 ** because multiple overflows can only occurs when inserting divider 7477 ** cells into a parent on a prior balance, and divider cells are always 7478 ** adjacent and are inserted in order. There is an assert() tagged 7479 ** with "NOTE 1" in the overflow cell insertion loop to prove this 7480 ** invariant. 7481 ** 7482 ** This must be done in advance. Once the balance starts, the cell 7483 ** offset section of the btree page will be overwritten and we will no 7484 ** long be able to find the cells if a pointer to each cell is not saved 7485 ** first. 7486 */ 7487 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 7488 if( pOld->nOverflow>0 ){ 7489 limit = pOld->aiOvfl[0]; 7490 for(j=0; j<limit; j++){ 7491 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7492 piCell += 2; 7493 b.nCell++; 7494 } 7495 for(k=0; k<pOld->nOverflow; k++){ 7496 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 7497 b.apCell[b.nCell] = pOld->apOvfl[k]; 7498 b.nCell++; 7499 } 7500 } 7501 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 7502 while( piCell<piEnd ){ 7503 assert( b.nCell<nMaxCells ); 7504 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7505 piCell += 2; 7506 b.nCell++; 7507 } 7508 7509 cntOld[i] = b.nCell; 7510 if( i<nOld-1 && !leafData){ 7511 u16 sz = (u16)szNew[i]; 7512 u8 *pTemp; 7513 assert( b.nCell<nMaxCells ); 7514 b.szCell[b.nCell] = sz; 7515 pTemp = &aSpace1[iSpace1]; 7516 iSpace1 += sz; 7517 assert( sz<=pBt->maxLocal+23 ); 7518 assert( iSpace1 <= (int)pBt->pageSize ); 7519 memcpy(pTemp, apDiv[i], sz); 7520 b.apCell[b.nCell] = pTemp+leafCorrection; 7521 assert( leafCorrection==0 || leafCorrection==4 ); 7522 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 7523 if( !pOld->leaf ){ 7524 assert( leafCorrection==0 ); 7525 assert( pOld->hdrOffset==0 ); 7526 /* The right pointer of the child page pOld becomes the left 7527 ** pointer of the divider cell */ 7528 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 7529 }else{ 7530 assert( leafCorrection==4 ); 7531 while( b.szCell[b.nCell]<4 ){ 7532 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 7533 ** does exist, pad it with 0x00 bytes. */ 7534 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 7535 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 7536 aSpace1[iSpace1++] = 0x00; 7537 b.szCell[b.nCell]++; 7538 } 7539 } 7540 b.nCell++; 7541 } 7542 } 7543 7544 /* 7545 ** Figure out the number of pages needed to hold all b.nCell cells. 7546 ** Store this number in "k". Also compute szNew[] which is the total 7547 ** size of all cells on the i-th page and cntNew[] which is the index 7548 ** in b.apCell[] of the cell that divides page i from page i+1. 7549 ** cntNew[k] should equal b.nCell. 7550 ** 7551 ** Values computed by this block: 7552 ** 7553 ** k: The total number of sibling pages 7554 ** szNew[i]: Spaced used on the i-th sibling page. 7555 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 7556 ** the right of the i-th sibling page. 7557 ** usableSpace: Number of bytes of space available on each sibling. 7558 ** 7559 */ 7560 usableSpace = pBt->usableSize - 12 + leafCorrection; 7561 for(i=0; i<nOld; i++){ 7562 MemPage *p = apOld[i]; 7563 szNew[i] = usableSpace - p->nFree; 7564 for(j=0; j<p->nOverflow; j++){ 7565 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 7566 } 7567 cntNew[i] = cntOld[i]; 7568 } 7569 k = nOld; 7570 for(i=0; i<k; i++){ 7571 int sz; 7572 while( szNew[i]>usableSpace ){ 7573 if( i+1>=k ){ 7574 k = i+2; 7575 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 7576 szNew[k-1] = 0; 7577 cntNew[k-1] = b.nCell; 7578 } 7579 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 7580 szNew[i] -= sz; 7581 if( !leafData ){ 7582 if( cntNew[i]<b.nCell ){ 7583 sz = 2 + cachedCellSize(&b, cntNew[i]); 7584 }else{ 7585 sz = 0; 7586 } 7587 } 7588 szNew[i+1] += sz; 7589 cntNew[i]--; 7590 } 7591 while( cntNew[i]<b.nCell ){ 7592 sz = 2 + cachedCellSize(&b, cntNew[i]); 7593 if( szNew[i]+sz>usableSpace ) break; 7594 szNew[i] += sz; 7595 cntNew[i]++; 7596 if( !leafData ){ 7597 if( cntNew[i]<b.nCell ){ 7598 sz = 2 + cachedCellSize(&b, cntNew[i]); 7599 }else{ 7600 sz = 0; 7601 } 7602 } 7603 szNew[i+1] -= sz; 7604 } 7605 if( cntNew[i]>=b.nCell ){ 7606 k = i+1; 7607 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 7608 rc = SQLITE_CORRUPT_BKPT; 7609 goto balance_cleanup; 7610 } 7611 } 7612 7613 /* 7614 ** The packing computed by the previous block is biased toward the siblings 7615 ** on the left side (siblings with smaller keys). The left siblings are 7616 ** always nearly full, while the right-most sibling might be nearly empty. 7617 ** The next block of code attempts to adjust the packing of siblings to 7618 ** get a better balance. 7619 ** 7620 ** This adjustment is more than an optimization. The packing above might 7621 ** be so out of balance as to be illegal. For example, the right-most 7622 ** sibling might be completely empty. This adjustment is not optional. 7623 */ 7624 for(i=k-1; i>0; i--){ 7625 int szRight = szNew[i]; /* Size of sibling on the right */ 7626 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 7627 int r; /* Index of right-most cell in left sibling */ 7628 int d; /* Index of first cell to the left of right sibling */ 7629 7630 r = cntNew[i-1] - 1; 7631 d = r + 1 - leafData; 7632 (void)cachedCellSize(&b, d); 7633 do{ 7634 assert( d<nMaxCells ); 7635 assert( r<nMaxCells ); 7636 (void)cachedCellSize(&b, r); 7637 if( szRight!=0 7638 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 7639 break; 7640 } 7641 szRight += b.szCell[d] + 2; 7642 szLeft -= b.szCell[r] + 2; 7643 cntNew[i-1] = r; 7644 r--; 7645 d--; 7646 }while( r>=0 ); 7647 szNew[i] = szRight; 7648 szNew[i-1] = szLeft; 7649 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 7650 rc = SQLITE_CORRUPT_BKPT; 7651 goto balance_cleanup; 7652 } 7653 } 7654 7655 /* Sanity check: For a non-corrupt database file one of the follwing 7656 ** must be true: 7657 ** (1) We found one or more cells (cntNew[0])>0), or 7658 ** (2) pPage is a virtual root page. A virtual root page is when 7659 ** the real root page is page 1 and we are the only child of 7660 ** that page. 7661 */ 7662 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 7663 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 7664 apOld[0]->pgno, apOld[0]->nCell, 7665 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 7666 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 7667 )); 7668 7669 /* 7670 ** Allocate k new pages. Reuse old pages where possible. 7671 */ 7672 pageFlags = apOld[0]->aData[0]; 7673 for(i=0; i<k; i++){ 7674 MemPage *pNew; 7675 if( i<nOld ){ 7676 pNew = apNew[i] = apOld[i]; 7677 apOld[i] = 0; 7678 rc = sqlite3PagerWrite(pNew->pDbPage); 7679 nNew++; 7680 if( rc ) goto balance_cleanup; 7681 }else{ 7682 assert( i>0 ); 7683 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 7684 if( rc ) goto balance_cleanup; 7685 zeroPage(pNew, pageFlags); 7686 apNew[i] = pNew; 7687 nNew++; 7688 cntOld[i] = b.nCell; 7689 7690 /* Set the pointer-map entry for the new sibling page. */ 7691 if( ISAUTOVACUUM ){ 7692 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 7693 if( rc!=SQLITE_OK ){ 7694 goto balance_cleanup; 7695 } 7696 } 7697 } 7698 } 7699 7700 /* 7701 ** Reassign page numbers so that the new pages are in ascending order. 7702 ** This helps to keep entries in the disk file in order so that a scan 7703 ** of the table is closer to a linear scan through the file. That in turn 7704 ** helps the operating system to deliver pages from the disk more rapidly. 7705 ** 7706 ** An O(n^2) insertion sort algorithm is used, but since n is never more 7707 ** than (NB+2) (a small constant), that should not be a problem. 7708 ** 7709 ** When NB==3, this one optimization makes the database about 25% faster 7710 ** for large insertions and deletions. 7711 */ 7712 for(i=0; i<nNew; i++){ 7713 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 7714 aPgFlags[i] = apNew[i]->pDbPage->flags; 7715 for(j=0; j<i; j++){ 7716 if( aPgno[j]==aPgno[i] ){ 7717 /* This branch is taken if the set of sibling pages somehow contains 7718 ** duplicate entries. This can happen if the database is corrupt. 7719 ** It would be simpler to detect this as part of the loop below, but 7720 ** we do the detection here in order to avoid populating the pager 7721 ** cache with two separate objects associated with the same 7722 ** page number. */ 7723 assert( CORRUPT_DB ); 7724 rc = SQLITE_CORRUPT_BKPT; 7725 goto balance_cleanup; 7726 } 7727 } 7728 } 7729 for(i=0; i<nNew; i++){ 7730 int iBest = 0; /* aPgno[] index of page number to use */ 7731 for(j=1; j<nNew; j++){ 7732 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 7733 } 7734 pgno = aPgOrder[iBest]; 7735 aPgOrder[iBest] = 0xffffffff; 7736 if( iBest!=i ){ 7737 if( iBest>i ){ 7738 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 7739 } 7740 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 7741 apNew[i]->pgno = pgno; 7742 } 7743 } 7744 7745 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 7746 "%d(%d nc=%d) %d(%d nc=%d)\n", 7747 apNew[0]->pgno, szNew[0], cntNew[0], 7748 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 7749 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 7750 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 7751 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 7752 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 7753 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 7754 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 7755 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 7756 )); 7757 7758 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7759 put4byte(pRight, apNew[nNew-1]->pgno); 7760 7761 /* If the sibling pages are not leaves, ensure that the right-child pointer 7762 ** of the right-most new sibling page is set to the value that was 7763 ** originally in the same field of the right-most old sibling page. */ 7764 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 7765 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 7766 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 7767 } 7768 7769 /* Make any required updates to pointer map entries associated with 7770 ** cells stored on sibling pages following the balance operation. Pointer 7771 ** map entries associated with divider cells are set by the insertCell() 7772 ** routine. The associated pointer map entries are: 7773 ** 7774 ** a) if the cell contains a reference to an overflow chain, the 7775 ** entry associated with the first page in the overflow chain, and 7776 ** 7777 ** b) if the sibling pages are not leaves, the child page associated 7778 ** with the cell. 7779 ** 7780 ** If the sibling pages are not leaves, then the pointer map entry 7781 ** associated with the right-child of each sibling may also need to be 7782 ** updated. This happens below, after the sibling pages have been 7783 ** populated, not here. 7784 */ 7785 if( ISAUTOVACUUM ){ 7786 MemPage *pNew = apNew[0]; 7787 u8 *aOld = pNew->aData; 7788 int cntOldNext = pNew->nCell + pNew->nOverflow; 7789 int usableSize = pBt->usableSize; 7790 int iNew = 0; 7791 int iOld = 0; 7792 7793 for(i=0; i<b.nCell; i++){ 7794 u8 *pCell = b.apCell[i]; 7795 if( i==cntOldNext ){ 7796 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld]; 7797 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 7798 aOld = pOld->aData; 7799 } 7800 if( i==cntNew[iNew] ){ 7801 pNew = apNew[++iNew]; 7802 if( !leafData ) continue; 7803 } 7804 7805 /* Cell pCell is destined for new sibling page pNew. Originally, it 7806 ** was either part of sibling page iOld (possibly an overflow cell), 7807 ** or else the divider cell to the left of sibling page iOld. So, 7808 ** if sibling page iOld had the same page number as pNew, and if 7809 ** pCell really was a part of sibling page iOld (not a divider or 7810 ** overflow cell), we can skip updating the pointer map entries. */ 7811 if( iOld>=nNew 7812 || pNew->pgno!=aPgno[iOld] 7813 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize]) 7814 ){ 7815 if( !leafCorrection ){ 7816 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 7817 } 7818 if( cachedCellSize(&b,i)>pNew->minLocal ){ 7819 ptrmapPutOvflPtr(pNew, pCell, &rc); 7820 } 7821 if( rc ) goto balance_cleanup; 7822 } 7823 } 7824 } 7825 7826 /* Insert new divider cells into pParent. */ 7827 for(i=0; i<nNew-1; i++){ 7828 u8 *pCell; 7829 u8 *pTemp; 7830 int sz; 7831 MemPage *pNew = apNew[i]; 7832 j = cntNew[i]; 7833 7834 assert( j<nMaxCells ); 7835 assert( b.apCell[j]!=0 ); 7836 pCell = b.apCell[j]; 7837 sz = b.szCell[j] + leafCorrection; 7838 pTemp = &aOvflSpace[iOvflSpace]; 7839 if( !pNew->leaf ){ 7840 memcpy(&pNew->aData[8], pCell, 4); 7841 }else if( leafData ){ 7842 /* If the tree is a leaf-data tree, and the siblings are leaves, 7843 ** then there is no divider cell in b.apCell[]. Instead, the divider 7844 ** cell consists of the integer key for the right-most cell of 7845 ** the sibling-page assembled above only. 7846 */ 7847 CellInfo info; 7848 j--; 7849 pNew->xParseCell(pNew, b.apCell[j], &info); 7850 pCell = pTemp; 7851 sz = 4 + putVarint(&pCell[4], info.nKey); 7852 pTemp = 0; 7853 }else{ 7854 pCell -= 4; 7855 /* Obscure case for non-leaf-data trees: If the cell at pCell was 7856 ** previously stored on a leaf node, and its reported size was 4 7857 ** bytes, then it may actually be smaller than this 7858 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 7859 ** any cell). But it is important to pass the correct size to 7860 ** insertCell(), so reparse the cell now. 7861 ** 7862 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 7863 ** and WITHOUT ROWID tables with exactly one column which is the 7864 ** primary key. 7865 */ 7866 if( b.szCell[j]==4 ){ 7867 assert(leafCorrection==4); 7868 sz = pParent->xCellSize(pParent, pCell); 7869 } 7870 } 7871 iOvflSpace += sz; 7872 assert( sz<=pBt->maxLocal+23 ); 7873 assert( iOvflSpace <= (int)pBt->pageSize ); 7874 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 7875 if( rc!=SQLITE_OK ) goto balance_cleanup; 7876 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7877 } 7878 7879 /* Now update the actual sibling pages. The order in which they are updated 7880 ** is important, as this code needs to avoid disrupting any page from which 7881 ** cells may still to be read. In practice, this means: 7882 ** 7883 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 7884 ** then it is not safe to update page apNew[iPg] until after 7885 ** the left-hand sibling apNew[iPg-1] has been updated. 7886 ** 7887 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 7888 ** then it is not safe to update page apNew[iPg] until after 7889 ** the right-hand sibling apNew[iPg+1] has been updated. 7890 ** 7891 ** If neither of the above apply, the page is safe to update. 7892 ** 7893 ** The iPg value in the following loop starts at nNew-1 goes down 7894 ** to 0, then back up to nNew-1 again, thus making two passes over 7895 ** the pages. On the initial downward pass, only condition (1) above 7896 ** needs to be tested because (2) will always be true from the previous 7897 ** step. On the upward pass, both conditions are always true, so the 7898 ** upwards pass simply processes pages that were missed on the downward 7899 ** pass. 7900 */ 7901 for(i=1-nNew; i<nNew; i++){ 7902 int iPg = i<0 ? -i : i; 7903 assert( iPg>=0 && iPg<nNew ); 7904 if( abDone[iPg] ) continue; /* Skip pages already processed */ 7905 if( i>=0 /* On the upwards pass, or... */ 7906 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 7907 ){ 7908 int iNew; 7909 int iOld; 7910 int nNewCell; 7911 7912 /* Verify condition (1): If cells are moving left, update iPg 7913 ** only after iPg-1 has already been updated. */ 7914 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 7915 7916 /* Verify condition (2): If cells are moving right, update iPg 7917 ** only after iPg+1 has already been updated. */ 7918 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 7919 7920 if( iPg==0 ){ 7921 iNew = iOld = 0; 7922 nNewCell = cntNew[0]; 7923 }else{ 7924 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 7925 iNew = cntNew[iPg-1] + !leafData; 7926 nNewCell = cntNew[iPg] - iNew; 7927 } 7928 7929 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 7930 if( rc ) goto balance_cleanup; 7931 abDone[iPg]++; 7932 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 7933 assert( apNew[iPg]->nOverflow==0 ); 7934 assert( apNew[iPg]->nCell==nNewCell ); 7935 } 7936 } 7937 7938 /* All pages have been processed exactly once */ 7939 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 7940 7941 assert( nOld>0 ); 7942 assert( nNew>0 ); 7943 7944 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 7945 /* The root page of the b-tree now contains no cells. The only sibling 7946 ** page is the right-child of the parent. Copy the contents of the 7947 ** child page into the parent, decreasing the overall height of the 7948 ** b-tree structure by one. This is described as the "balance-shallower" 7949 ** sub-algorithm in some documentation. 7950 ** 7951 ** If this is an auto-vacuum database, the call to copyNodeContent() 7952 ** sets all pointer-map entries corresponding to database image pages 7953 ** for which the pointer is stored within the content being copied. 7954 ** 7955 ** It is critical that the child page be defragmented before being 7956 ** copied into the parent, because if the parent is page 1 then it will 7957 ** by smaller than the child due to the database header, and so all the 7958 ** free space needs to be up front. 7959 */ 7960 assert( nNew==1 || CORRUPT_DB ); 7961 rc = defragmentPage(apNew[0], -1); 7962 testcase( rc!=SQLITE_OK ); 7963 assert( apNew[0]->nFree == 7964 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) 7965 || rc!=SQLITE_OK 7966 ); 7967 copyNodeContent(apNew[0], pParent, &rc); 7968 freePage(apNew[0], &rc); 7969 }else if( ISAUTOVACUUM && !leafCorrection ){ 7970 /* Fix the pointer map entries associated with the right-child of each 7971 ** sibling page. All other pointer map entries have already been taken 7972 ** care of. */ 7973 for(i=0; i<nNew; i++){ 7974 u32 key = get4byte(&apNew[i]->aData[8]); 7975 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 7976 } 7977 } 7978 7979 assert( pParent->isInit ); 7980 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 7981 nOld, nNew, b.nCell)); 7982 7983 /* Free any old pages that were not reused as new pages. 7984 */ 7985 for(i=nNew; i<nOld; i++){ 7986 freePage(apOld[i], &rc); 7987 } 7988 7989 #if 0 7990 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 7991 /* The ptrmapCheckPages() contains assert() statements that verify that 7992 ** all pointer map pages are set correctly. This is helpful while 7993 ** debugging. This is usually disabled because a corrupt database may 7994 ** cause an assert() statement to fail. */ 7995 ptrmapCheckPages(apNew, nNew); 7996 ptrmapCheckPages(&pParent, 1); 7997 } 7998 #endif 7999 8000 /* 8001 ** Cleanup before returning. 8002 */ 8003 balance_cleanup: 8004 sqlite3StackFree(0, b.apCell); 8005 for(i=0; i<nOld; i++){ 8006 releasePage(apOld[i]); 8007 } 8008 for(i=0; i<nNew; i++){ 8009 releasePage(apNew[i]); 8010 } 8011 8012 return rc; 8013 } 8014 8015 8016 /* 8017 ** This function is called when the root page of a b-tree structure is 8018 ** overfull (has one or more overflow pages). 8019 ** 8020 ** A new child page is allocated and the contents of the current root 8021 ** page, including overflow cells, are copied into the child. The root 8022 ** page is then overwritten to make it an empty page with the right-child 8023 ** pointer pointing to the new page. 8024 ** 8025 ** Before returning, all pointer-map entries corresponding to pages 8026 ** that the new child-page now contains pointers to are updated. The 8027 ** entry corresponding to the new right-child pointer of the root 8028 ** page is also updated. 8029 ** 8030 ** If successful, *ppChild is set to contain a reference to the child 8031 ** page and SQLITE_OK is returned. In this case the caller is required 8032 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8033 ** an error code is returned and *ppChild is set to 0. 8034 */ 8035 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8036 int rc; /* Return value from subprocedures */ 8037 MemPage *pChild = 0; /* Pointer to a new child page */ 8038 Pgno pgnoChild = 0; /* Page number of the new child page */ 8039 BtShared *pBt = pRoot->pBt; /* The BTree */ 8040 8041 assert( pRoot->nOverflow>0 ); 8042 assert( sqlite3_mutex_held(pBt->mutex) ); 8043 8044 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8045 ** page that will become the new right-child of pPage. Copy the contents 8046 ** of the node stored on pRoot into the new child page. 8047 */ 8048 rc = sqlite3PagerWrite(pRoot->pDbPage); 8049 if( rc==SQLITE_OK ){ 8050 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8051 copyNodeContent(pRoot, pChild, &rc); 8052 if( ISAUTOVACUUM ){ 8053 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8054 } 8055 } 8056 if( rc ){ 8057 *ppChild = 0; 8058 releasePage(pChild); 8059 return rc; 8060 } 8061 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8062 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8063 assert( pChild->nCell==pRoot->nCell ); 8064 8065 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8066 8067 /* Copy the overflow cells from pRoot to pChild */ 8068 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8069 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8070 memcpy(pChild->apOvfl, pRoot->apOvfl, 8071 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8072 pChild->nOverflow = pRoot->nOverflow; 8073 8074 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8075 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8076 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8077 8078 *ppChild = pChild; 8079 return SQLITE_OK; 8080 } 8081 8082 /* 8083 ** The page that pCur currently points to has just been modified in 8084 ** some way. This function figures out if this modification means the 8085 ** tree needs to be balanced, and if so calls the appropriate balancing 8086 ** routine. Balancing routines are: 8087 ** 8088 ** balance_quick() 8089 ** balance_deeper() 8090 ** balance_nonroot() 8091 */ 8092 static int balance(BtCursor *pCur){ 8093 int rc = SQLITE_OK; 8094 const int nMin = pCur->pBt->usableSize * 2 / 3; 8095 u8 aBalanceQuickSpace[13]; 8096 u8 *pFree = 0; 8097 8098 VVA_ONLY( int balance_quick_called = 0 ); 8099 VVA_ONLY( int balance_deeper_called = 0 ); 8100 8101 do { 8102 int iPage = pCur->iPage; 8103 MemPage *pPage = pCur->pPage; 8104 8105 if( iPage==0 ){ 8106 if( pPage->nOverflow ){ 8107 /* The root page of the b-tree is overfull. In this case call the 8108 ** balance_deeper() function to create a new child for the root-page 8109 ** and copy the current contents of the root-page to it. The 8110 ** next iteration of the do-loop will balance the child page. 8111 */ 8112 assert( balance_deeper_called==0 ); 8113 VVA_ONLY( balance_deeper_called++ ); 8114 rc = balance_deeper(pPage, &pCur->apPage[1]); 8115 if( rc==SQLITE_OK ){ 8116 pCur->iPage = 1; 8117 pCur->ix = 0; 8118 pCur->aiIdx[0] = 0; 8119 pCur->apPage[0] = pPage; 8120 pCur->pPage = pCur->apPage[1]; 8121 assert( pCur->pPage->nOverflow ); 8122 } 8123 }else{ 8124 break; 8125 } 8126 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8127 break; 8128 }else{ 8129 MemPage * const pParent = pCur->apPage[iPage-1]; 8130 int const iIdx = pCur->aiIdx[iPage-1]; 8131 8132 rc = sqlite3PagerWrite(pParent->pDbPage); 8133 if( rc==SQLITE_OK ){ 8134 #ifndef SQLITE_OMIT_QUICKBALANCE 8135 if( pPage->intKeyLeaf 8136 && pPage->nOverflow==1 8137 && pPage->aiOvfl[0]==pPage->nCell 8138 && pParent->pgno!=1 8139 && pParent->nCell==iIdx 8140 ){ 8141 /* Call balance_quick() to create a new sibling of pPage on which 8142 ** to store the overflow cell. balance_quick() inserts a new cell 8143 ** into pParent, which may cause pParent overflow. If this 8144 ** happens, the next iteration of the do-loop will balance pParent 8145 ** use either balance_nonroot() or balance_deeper(). Until this 8146 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8147 ** buffer. 8148 ** 8149 ** The purpose of the following assert() is to check that only a 8150 ** single call to balance_quick() is made for each call to this 8151 ** function. If this were not verified, a subtle bug involving reuse 8152 ** of the aBalanceQuickSpace[] might sneak in. 8153 */ 8154 assert( balance_quick_called==0 ); 8155 VVA_ONLY( balance_quick_called++ ); 8156 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8157 }else 8158 #endif 8159 { 8160 /* In this case, call balance_nonroot() to redistribute cells 8161 ** between pPage and up to 2 of its sibling pages. This involves 8162 ** modifying the contents of pParent, which may cause pParent to 8163 ** become overfull or underfull. The next iteration of the do-loop 8164 ** will balance the parent page to correct this. 8165 ** 8166 ** If the parent page becomes overfull, the overflow cell or cells 8167 ** are stored in the pSpace buffer allocated immediately below. 8168 ** A subsequent iteration of the do-loop will deal with this by 8169 ** calling balance_nonroot() (balance_deeper() may be called first, 8170 ** but it doesn't deal with overflow cells - just moves them to a 8171 ** different page). Once this subsequent call to balance_nonroot() 8172 ** has completed, it is safe to release the pSpace buffer used by 8173 ** the previous call, as the overflow cell data will have been 8174 ** copied either into the body of a database page or into the new 8175 ** pSpace buffer passed to the latter call to balance_nonroot(). 8176 */ 8177 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8178 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8179 pCur->hints&BTREE_BULKLOAD); 8180 if( pFree ){ 8181 /* If pFree is not NULL, it points to the pSpace buffer used 8182 ** by a previous call to balance_nonroot(). Its contents are 8183 ** now stored either on real database pages or within the 8184 ** new pSpace buffer, so it may be safely freed here. */ 8185 sqlite3PageFree(pFree); 8186 } 8187 8188 /* The pSpace buffer will be freed after the next call to 8189 ** balance_nonroot(), or just before this function returns, whichever 8190 ** comes first. */ 8191 pFree = pSpace; 8192 } 8193 } 8194 8195 pPage->nOverflow = 0; 8196 8197 /* The next iteration of the do-loop balances the parent page. */ 8198 releasePage(pPage); 8199 pCur->iPage--; 8200 assert( pCur->iPage>=0 ); 8201 pCur->pPage = pCur->apPage[pCur->iPage]; 8202 } 8203 }while( rc==SQLITE_OK ); 8204 8205 if( pFree ){ 8206 sqlite3PageFree(pFree); 8207 } 8208 return rc; 8209 } 8210 8211 /* Overwrite content from pX into pDest. Only do the write if the 8212 ** content is different from what is already there. 8213 */ 8214 static int btreeOverwriteContent( 8215 MemPage *pPage, /* MemPage on which writing will occur */ 8216 u8 *pDest, /* Pointer to the place to start writing */ 8217 const BtreePayload *pX, /* Source of data to write */ 8218 int iOffset, /* Offset of first byte to write */ 8219 int iAmt /* Number of bytes to be written */ 8220 ){ 8221 int nData = pX->nData - iOffset; 8222 if( nData<=0 ){ 8223 /* Overwritting with zeros */ 8224 int i; 8225 for(i=0; i<iAmt && pDest[i]==0; i++){} 8226 if( i<iAmt ){ 8227 int rc = sqlite3PagerWrite(pPage->pDbPage); 8228 if( rc ) return rc; 8229 memset(pDest + i, 0, iAmt - i); 8230 } 8231 }else{ 8232 if( nData<iAmt ){ 8233 /* Mixed read data and zeros at the end. Make a recursive call 8234 ** to write the zeros then fall through to write the real data */ 8235 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8236 iAmt-nData); 8237 if( rc ) return rc; 8238 iAmt = nData; 8239 } 8240 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8241 int rc = sqlite3PagerWrite(pPage->pDbPage); 8242 if( rc ) return rc; 8243 memcpy(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8244 } 8245 } 8246 return SQLITE_OK; 8247 } 8248 8249 /* 8250 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8251 ** contained in pX. 8252 */ 8253 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8254 int iOffset; /* Next byte of pX->pData to write */ 8255 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8256 int rc; /* Return code */ 8257 MemPage *pPage = pCur->pPage; /* Page being written */ 8258 BtShared *pBt; /* Btree */ 8259 Pgno ovflPgno; /* Next overflow page to write */ 8260 u32 ovflPageSize; /* Size to write on overflow page */ 8261 8262 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){ 8263 return SQLITE_CORRUPT_BKPT; 8264 } 8265 /* Overwrite the local portion first */ 8266 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8267 0, pCur->info.nLocal); 8268 if( rc ) return rc; 8269 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8270 8271 /* Now overwrite the overflow pages */ 8272 iOffset = pCur->info.nLocal; 8273 assert( nTotal>=0 ); 8274 assert( iOffset>=0 ); 8275 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8276 pBt = pPage->pBt; 8277 ovflPageSize = pBt->usableSize - 4; 8278 do{ 8279 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8280 if( rc ) return rc; 8281 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){ 8282 rc = SQLITE_CORRUPT_BKPT; 8283 }else{ 8284 if( iOffset+ovflPageSize<(u32)nTotal ){ 8285 ovflPgno = get4byte(pPage->aData); 8286 }else{ 8287 ovflPageSize = nTotal - iOffset; 8288 } 8289 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8290 iOffset, ovflPageSize); 8291 } 8292 sqlite3PagerUnref(pPage->pDbPage); 8293 if( rc ) return rc; 8294 iOffset += ovflPageSize; 8295 }while( iOffset<nTotal ); 8296 return SQLITE_OK; 8297 } 8298 8299 8300 /* 8301 ** Insert a new record into the BTree. The content of the new record 8302 ** is described by the pX object. The pCur cursor is used only to 8303 ** define what table the record should be inserted into, and is left 8304 ** pointing at a random location. 8305 ** 8306 ** For a table btree (used for rowid tables), only the pX.nKey value of 8307 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8308 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8309 ** hold the content of the row. 8310 ** 8311 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8312 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8313 ** pX.pData,nData,nZero fields must be zero. 8314 ** 8315 ** If the seekResult parameter is non-zero, then a successful call to 8316 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 8317 ** been performed. In other words, if seekResult!=0 then the cursor 8318 ** is currently pointing to a cell that will be adjacent to the cell 8319 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8320 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8321 ** that is larger than (pKey,nKey). 8322 ** 8323 ** If seekResult==0, that means pCur is pointing at some unknown location. 8324 ** In that case, this routine must seek the cursor to the correct insertion 8325 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8326 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8327 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8328 ** to decode the key. 8329 */ 8330 int sqlite3BtreeInsert( 8331 BtCursor *pCur, /* Insert data into the table of this cursor */ 8332 const BtreePayload *pX, /* Content of the row to be inserted */ 8333 int flags, /* True if this is likely an append */ 8334 int seekResult /* Result of prior MovetoUnpacked() call */ 8335 ){ 8336 int rc; 8337 int loc = seekResult; /* -1: before desired location +1: after */ 8338 int szNew = 0; 8339 int idx; 8340 MemPage *pPage; 8341 Btree *p = pCur->pBtree; 8342 BtShared *pBt = p->pBt; 8343 unsigned char *oldCell; 8344 unsigned char *newCell = 0; 8345 8346 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags ); 8347 8348 if( pCur->eState==CURSOR_FAULT ){ 8349 assert( pCur->skipNext!=SQLITE_OK ); 8350 return pCur->skipNext; 8351 } 8352 8353 assert( cursorOwnsBtShared(pCur) ); 8354 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 8355 && pBt->inTransaction==TRANS_WRITE 8356 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8357 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8358 8359 /* Assert that the caller has been consistent. If this cursor was opened 8360 ** expecting an index b-tree, then the caller should be inserting blob 8361 ** keys with no associated data. If the cursor was opened expecting an 8362 ** intkey table, the caller should be inserting integer keys with a 8363 ** blob of associated data. */ 8364 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) ); 8365 8366 /* Save the positions of any other cursors open on this table. 8367 ** 8368 ** In some cases, the call to btreeMoveto() below is a no-op. For 8369 ** example, when inserting data into a table with auto-generated integer 8370 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 8371 ** integer key to use. It then calls this function to actually insert the 8372 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 8373 ** that the cursor is already where it needs to be and returns without 8374 ** doing any work. To avoid thwarting these optimizations, it is important 8375 ** not to clear the cursor here. 8376 */ 8377 if( pCur->curFlags & BTCF_Multiple ){ 8378 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8379 if( rc ) return rc; 8380 } 8381 8382 if( pCur->pKeyInfo==0 ){ 8383 assert( pX->pKey==0 ); 8384 /* If this is an insert into a table b-tree, invalidate any incrblob 8385 ** cursors open on the row being replaced */ 8386 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 8387 8388 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8389 ** to a row with the same key as the new entry being inserted. 8390 */ 8391 #ifdef SQLITE_DEBUG 8392 if( flags & BTREE_SAVEPOSITION ){ 8393 assert( pCur->curFlags & BTCF_ValidNKey ); 8394 assert( pX->nKey==pCur->info.nKey ); 8395 assert( pCur->info.nSize!=0 ); 8396 assert( loc==0 ); 8397 } 8398 #endif 8399 8400 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 8401 ** that the cursor is not pointing to a row to be overwritten. 8402 ** So do a complete check. 8403 */ 8404 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 8405 /* The cursor is pointing to the entry that is to be 8406 ** overwritten */ 8407 assert( pX->nData>=0 && pX->nZero>=0 ); 8408 if( pCur->info.nSize!=0 8409 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 8410 ){ 8411 /* New entry is the same size as the old. Do an overwrite */ 8412 return btreeOverwriteCell(pCur, pX); 8413 } 8414 assert( loc==0 ); 8415 }else if( loc==0 ){ 8416 /* The cursor is *not* pointing to the cell to be overwritten, nor 8417 ** to an adjacent cell. Move the cursor so that it is pointing either 8418 ** to the cell to be overwritten or an adjacent cell. 8419 */ 8420 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc); 8421 if( rc ) return rc; 8422 } 8423 }else{ 8424 /* This is an index or a WITHOUT ROWID table */ 8425 8426 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8427 ** to a row with the same key as the new entry being inserted. 8428 */ 8429 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 8430 8431 /* If the cursor is not already pointing either to the cell to be 8432 ** overwritten, or if a new cell is being inserted, if the cursor is 8433 ** not pointing to an immediately adjacent cell, then move the cursor 8434 ** so that it does. 8435 */ 8436 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 8437 if( pX->nMem ){ 8438 UnpackedRecord r; 8439 r.pKeyInfo = pCur->pKeyInfo; 8440 r.aMem = pX->aMem; 8441 r.nField = pX->nMem; 8442 r.default_rc = 0; 8443 r.errCode = 0; 8444 r.r1 = 0; 8445 r.r2 = 0; 8446 r.eqSeen = 0; 8447 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc); 8448 }else{ 8449 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); 8450 } 8451 if( rc ) return rc; 8452 } 8453 8454 /* If the cursor is currently pointing to an entry to be overwritten 8455 ** and the new content is the same as as the old, then use the 8456 ** overwrite optimization. 8457 */ 8458 if( loc==0 ){ 8459 getCellInfo(pCur); 8460 if( pCur->info.nKey==pX->nKey ){ 8461 BtreePayload x2; 8462 x2.pData = pX->pKey; 8463 x2.nData = pX->nKey; 8464 x2.nZero = 0; 8465 return btreeOverwriteCell(pCur, &x2); 8466 } 8467 } 8468 8469 } 8470 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); 8471 8472 pPage = pCur->pPage; 8473 assert( pPage->intKey || pX->nKey>=0 ); 8474 assert( pPage->leaf || !pPage->intKey ); 8475 8476 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 8477 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 8478 loc==0 ? "overwrite" : "new entry")); 8479 assert( pPage->isInit ); 8480 newCell = pBt->pTmpSpace; 8481 assert( newCell!=0 ); 8482 rc = fillInCell(pPage, newCell, pX, &szNew); 8483 if( rc ) goto end_insert; 8484 assert( szNew==pPage->xCellSize(pPage, newCell) ); 8485 assert( szNew <= MX_CELL_SIZE(pBt) ); 8486 idx = pCur->ix; 8487 if( loc==0 ){ 8488 CellInfo info; 8489 assert( idx<pPage->nCell ); 8490 rc = sqlite3PagerWrite(pPage->pDbPage); 8491 if( rc ){ 8492 goto end_insert; 8493 } 8494 oldCell = findCell(pPage, idx); 8495 if( !pPage->leaf ){ 8496 memcpy(newCell, oldCell, 4); 8497 } 8498 rc = clearCell(pPage, oldCell, &info); 8499 if( info.nSize==szNew && info.nLocal==info.nPayload 8500 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 8501 ){ 8502 /* Overwrite the old cell with the new if they are the same size. 8503 ** We could also try to do this if the old cell is smaller, then add 8504 ** the leftover space to the free list. But experiments show that 8505 ** doing that is no faster then skipping this optimization and just 8506 ** calling dropCell() and insertCell(). 8507 ** 8508 ** This optimization cannot be used on an autovacuum database if the 8509 ** new entry uses overflow pages, as the insertCell() call below is 8510 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 8511 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 8512 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; 8513 memcpy(oldCell, newCell, szNew); 8514 return SQLITE_OK; 8515 } 8516 dropCell(pPage, idx, info.nSize, &rc); 8517 if( rc ) goto end_insert; 8518 }else if( loc<0 && pPage->nCell>0 ){ 8519 assert( pPage->leaf ); 8520 idx = ++pCur->ix; 8521 pCur->curFlags &= ~BTCF_ValidNKey; 8522 }else{ 8523 assert( pPage->leaf ); 8524 } 8525 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 8526 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 8527 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 8528 8529 /* If no error has occurred and pPage has an overflow cell, call balance() 8530 ** to redistribute the cells within the tree. Since balance() may move 8531 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 8532 ** variables. 8533 ** 8534 ** Previous versions of SQLite called moveToRoot() to move the cursor 8535 ** back to the root page as balance() used to invalidate the contents 8536 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 8537 ** set the cursor state to "invalid". This makes common insert operations 8538 ** slightly faster. 8539 ** 8540 ** There is a subtle but important optimization here too. When inserting 8541 ** multiple records into an intkey b-tree using a single cursor (as can 8542 ** happen while processing an "INSERT INTO ... SELECT" statement), it 8543 ** is advantageous to leave the cursor pointing to the last entry in 8544 ** the b-tree if possible. If the cursor is left pointing to the last 8545 ** entry in the table, and the next row inserted has an integer key 8546 ** larger than the largest existing key, it is possible to insert the 8547 ** row without seeking the cursor. This can be a big performance boost. 8548 */ 8549 pCur->info.nSize = 0; 8550 if( pPage->nOverflow ){ 8551 assert( rc==SQLITE_OK ); 8552 pCur->curFlags &= ~(BTCF_ValidNKey); 8553 rc = balance(pCur); 8554 8555 /* Must make sure nOverflow is reset to zero even if the balance() 8556 ** fails. Internal data structure corruption will result otherwise. 8557 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 8558 ** from trying to save the current position of the cursor. */ 8559 pCur->pPage->nOverflow = 0; 8560 pCur->eState = CURSOR_INVALID; 8561 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 8562 btreeReleaseAllCursorPages(pCur); 8563 if( pCur->pKeyInfo ){ 8564 assert( pCur->pKey==0 ); 8565 pCur->pKey = sqlite3Malloc( pX->nKey ); 8566 if( pCur->pKey==0 ){ 8567 rc = SQLITE_NOMEM; 8568 }else{ 8569 memcpy(pCur->pKey, pX->pKey, pX->nKey); 8570 } 8571 } 8572 pCur->eState = CURSOR_REQUIRESEEK; 8573 pCur->nKey = pX->nKey; 8574 } 8575 } 8576 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 8577 8578 end_insert: 8579 return rc; 8580 } 8581 8582 /* 8583 ** Delete the entry that the cursor is pointing to. 8584 ** 8585 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 8586 ** the cursor is left pointing at an arbitrary location after the delete. 8587 ** But if that bit is set, then the cursor is left in a state such that 8588 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 8589 ** as it would have been on if the call to BtreeDelete() had been omitted. 8590 ** 8591 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 8592 ** associated with a single table entry and its indexes. Only one of those 8593 ** deletes is considered the "primary" delete. The primary delete occurs 8594 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 8595 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 8596 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 8597 ** but which might be used by alternative storage engines. 8598 */ 8599 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 8600 Btree *p = pCur->pBtree; 8601 BtShared *pBt = p->pBt; 8602 int rc; /* Return code */ 8603 MemPage *pPage; /* Page to delete cell from */ 8604 unsigned char *pCell; /* Pointer to cell to delete */ 8605 int iCellIdx; /* Index of cell to delete */ 8606 int iCellDepth; /* Depth of node containing pCell */ 8607 CellInfo info; /* Size of the cell being deleted */ 8608 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ 8609 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */ 8610 8611 assert( cursorOwnsBtShared(pCur) ); 8612 assert( pBt->inTransaction==TRANS_WRITE ); 8613 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8614 assert( pCur->curFlags & BTCF_WriteFlag ); 8615 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8616 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 8617 assert( pCur->ix<pCur->pPage->nCell ); 8618 assert( pCur->eState==CURSOR_VALID ); 8619 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 8620 8621 iCellDepth = pCur->iPage; 8622 iCellIdx = pCur->ix; 8623 pPage = pCur->pPage; 8624 pCell = findCell(pPage, iCellIdx); 8625 8626 /* If the bPreserve flag is set to true, then the cursor position must 8627 ** be preserved following this delete operation. If the current delete 8628 ** will cause a b-tree rebalance, then this is done by saving the cursor 8629 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 8630 ** returning. 8631 ** 8632 ** Or, if the current delete will not cause a rebalance, then the cursor 8633 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 8634 ** before or after the deleted entry. In this case set bSkipnext to true. */ 8635 if( bPreserve ){ 8636 if( !pPage->leaf 8637 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 8638 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 8639 ){ 8640 /* A b-tree rebalance will be required after deleting this entry. 8641 ** Save the cursor key. */ 8642 rc = saveCursorKey(pCur); 8643 if( rc ) return rc; 8644 }else{ 8645 bSkipnext = 1; 8646 } 8647 } 8648 8649 /* If the page containing the entry to delete is not a leaf page, move 8650 ** the cursor to the largest entry in the tree that is smaller than 8651 ** the entry being deleted. This cell will replace the cell being deleted 8652 ** from the internal node. The 'previous' entry is used for this instead 8653 ** of the 'next' entry, as the previous entry is always a part of the 8654 ** sub-tree headed by the child page of the cell being deleted. This makes 8655 ** balancing the tree following the delete operation easier. */ 8656 if( !pPage->leaf ){ 8657 rc = sqlite3BtreePrevious(pCur, 0); 8658 assert( rc!=SQLITE_DONE ); 8659 if( rc ) return rc; 8660 } 8661 8662 /* Save the positions of any other cursors open on this table before 8663 ** making any modifications. */ 8664 if( pCur->curFlags & BTCF_Multiple ){ 8665 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8666 if( rc ) return rc; 8667 } 8668 8669 /* If this is a delete operation to remove a row from a table b-tree, 8670 ** invalidate any incrblob cursors open on the row being deleted. */ 8671 if( pCur->pKeyInfo==0 ){ 8672 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 8673 } 8674 8675 /* Make the page containing the entry to be deleted writable. Then free any 8676 ** overflow pages associated with the entry and finally remove the cell 8677 ** itself from within the page. */ 8678 rc = sqlite3PagerWrite(pPage->pDbPage); 8679 if( rc ) return rc; 8680 rc = clearCell(pPage, pCell, &info); 8681 dropCell(pPage, iCellIdx, info.nSize, &rc); 8682 if( rc ) return rc; 8683 8684 /* If the cell deleted was not located on a leaf page, then the cursor 8685 ** is currently pointing to the largest entry in the sub-tree headed 8686 ** by the child-page of the cell that was just deleted from an internal 8687 ** node. The cell from the leaf node needs to be moved to the internal 8688 ** node to replace the deleted cell. */ 8689 if( !pPage->leaf ){ 8690 MemPage *pLeaf = pCur->pPage; 8691 int nCell; 8692 Pgno n; 8693 unsigned char *pTmp; 8694 8695 if( iCellDepth<pCur->iPage-1 ){ 8696 n = pCur->apPage[iCellDepth+1]->pgno; 8697 }else{ 8698 n = pCur->pPage->pgno; 8699 } 8700 pCell = findCell(pLeaf, pLeaf->nCell-1); 8701 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 8702 nCell = pLeaf->xCellSize(pLeaf, pCell); 8703 assert( MX_CELL_SIZE(pBt) >= nCell ); 8704 pTmp = pBt->pTmpSpace; 8705 assert( pTmp!=0 ); 8706 rc = sqlite3PagerWrite(pLeaf->pDbPage); 8707 if( rc==SQLITE_OK ){ 8708 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 8709 } 8710 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 8711 if( rc ) return rc; 8712 } 8713 8714 /* Balance the tree. If the entry deleted was located on a leaf page, 8715 ** then the cursor still points to that page. In this case the first 8716 ** call to balance() repairs the tree, and the if(...) condition is 8717 ** never true. 8718 ** 8719 ** Otherwise, if the entry deleted was on an internal node page, then 8720 ** pCur is pointing to the leaf page from which a cell was removed to 8721 ** replace the cell deleted from the internal node. This is slightly 8722 ** tricky as the leaf node may be underfull, and the internal node may 8723 ** be either under or overfull. In this case run the balancing algorithm 8724 ** on the leaf node first. If the balance proceeds far enough up the 8725 ** tree that we can be sure that any problem in the internal node has 8726 ** been corrected, so be it. Otherwise, after balancing the leaf node, 8727 ** walk the cursor up the tree to the internal node and balance it as 8728 ** well. */ 8729 rc = balance(pCur); 8730 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 8731 releasePageNotNull(pCur->pPage); 8732 pCur->iPage--; 8733 while( pCur->iPage>iCellDepth ){ 8734 releasePage(pCur->apPage[pCur->iPage--]); 8735 } 8736 pCur->pPage = pCur->apPage[pCur->iPage]; 8737 rc = balance(pCur); 8738 } 8739 8740 if( rc==SQLITE_OK ){ 8741 if( bSkipnext ){ 8742 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); 8743 assert( pPage==pCur->pPage || CORRUPT_DB ); 8744 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 8745 pCur->eState = CURSOR_SKIPNEXT; 8746 if( iCellIdx>=pPage->nCell ){ 8747 pCur->skipNext = -1; 8748 pCur->ix = pPage->nCell-1; 8749 }else{ 8750 pCur->skipNext = 1; 8751 } 8752 }else{ 8753 rc = moveToRoot(pCur); 8754 if( bPreserve ){ 8755 btreeReleaseAllCursorPages(pCur); 8756 pCur->eState = CURSOR_REQUIRESEEK; 8757 } 8758 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 8759 } 8760 } 8761 return rc; 8762 } 8763 8764 /* 8765 ** Create a new BTree table. Write into *piTable the page 8766 ** number for the root page of the new table. 8767 ** 8768 ** The type of type is determined by the flags parameter. Only the 8769 ** following values of flags are currently in use. Other values for 8770 ** flags might not work: 8771 ** 8772 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 8773 ** BTREE_ZERODATA Used for SQL indices 8774 */ 8775 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ 8776 BtShared *pBt = p->pBt; 8777 MemPage *pRoot; 8778 Pgno pgnoRoot; 8779 int rc; 8780 int ptfFlags; /* Page-type flage for the root page of new table */ 8781 8782 assert( sqlite3BtreeHoldsMutex(p) ); 8783 assert( pBt->inTransaction==TRANS_WRITE ); 8784 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8785 8786 #ifdef SQLITE_OMIT_AUTOVACUUM 8787 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 8788 if( rc ){ 8789 return rc; 8790 } 8791 #else 8792 if( pBt->autoVacuum ){ 8793 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 8794 MemPage *pPageMove; /* The page to move to. */ 8795 8796 /* Creating a new table may probably require moving an existing database 8797 ** to make room for the new tables root page. In case this page turns 8798 ** out to be an overflow page, delete all overflow page-map caches 8799 ** held by open cursors. 8800 */ 8801 invalidateAllOverflowCache(pBt); 8802 8803 /* Read the value of meta[3] from the database to determine where the 8804 ** root page of the new table should go. meta[3] is the largest root-page 8805 ** created so far, so the new root-page is (meta[3]+1). 8806 */ 8807 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 8808 pgnoRoot++; 8809 8810 /* The new root-page may not be allocated on a pointer-map page, or the 8811 ** PENDING_BYTE page. 8812 */ 8813 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 8814 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 8815 pgnoRoot++; 8816 } 8817 assert( pgnoRoot>=3 || CORRUPT_DB ); 8818 testcase( pgnoRoot<3 ); 8819 8820 /* Allocate a page. The page that currently resides at pgnoRoot will 8821 ** be moved to the allocated page (unless the allocated page happens 8822 ** to reside at pgnoRoot). 8823 */ 8824 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 8825 if( rc!=SQLITE_OK ){ 8826 return rc; 8827 } 8828 8829 if( pgnoMove!=pgnoRoot ){ 8830 /* pgnoRoot is the page that will be used for the root-page of 8831 ** the new table (assuming an error did not occur). But we were 8832 ** allocated pgnoMove. If required (i.e. if it was not allocated 8833 ** by extending the file), the current page at position pgnoMove 8834 ** is already journaled. 8835 */ 8836 u8 eType = 0; 8837 Pgno iPtrPage = 0; 8838 8839 /* Save the positions of any open cursors. This is required in 8840 ** case they are holding a reference to an xFetch reference 8841 ** corresponding to page pgnoRoot. */ 8842 rc = saveAllCursors(pBt, 0, 0); 8843 releasePage(pPageMove); 8844 if( rc!=SQLITE_OK ){ 8845 return rc; 8846 } 8847 8848 /* Move the page currently at pgnoRoot to pgnoMove. */ 8849 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 8850 if( rc!=SQLITE_OK ){ 8851 return rc; 8852 } 8853 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 8854 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 8855 rc = SQLITE_CORRUPT_BKPT; 8856 } 8857 if( rc!=SQLITE_OK ){ 8858 releasePage(pRoot); 8859 return rc; 8860 } 8861 assert( eType!=PTRMAP_ROOTPAGE ); 8862 assert( eType!=PTRMAP_FREEPAGE ); 8863 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 8864 releasePage(pRoot); 8865 8866 /* Obtain the page at pgnoRoot */ 8867 if( rc!=SQLITE_OK ){ 8868 return rc; 8869 } 8870 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 8871 if( rc!=SQLITE_OK ){ 8872 return rc; 8873 } 8874 rc = sqlite3PagerWrite(pRoot->pDbPage); 8875 if( rc!=SQLITE_OK ){ 8876 releasePage(pRoot); 8877 return rc; 8878 } 8879 }else{ 8880 pRoot = pPageMove; 8881 } 8882 8883 /* Update the pointer-map and meta-data with the new root-page number. */ 8884 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 8885 if( rc ){ 8886 releasePage(pRoot); 8887 return rc; 8888 } 8889 8890 /* When the new root page was allocated, page 1 was made writable in 8891 ** order either to increase the database filesize, or to decrement the 8892 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 8893 */ 8894 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 8895 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 8896 if( NEVER(rc) ){ 8897 releasePage(pRoot); 8898 return rc; 8899 } 8900 8901 }else{ 8902 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 8903 if( rc ) return rc; 8904 } 8905 #endif 8906 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8907 if( createTabFlags & BTREE_INTKEY ){ 8908 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 8909 }else{ 8910 ptfFlags = PTF_ZERODATA | PTF_LEAF; 8911 } 8912 zeroPage(pRoot, ptfFlags); 8913 sqlite3PagerUnref(pRoot->pDbPage); 8914 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 8915 *piTable = (int)pgnoRoot; 8916 return SQLITE_OK; 8917 } 8918 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ 8919 int rc; 8920 sqlite3BtreeEnter(p); 8921 rc = btreeCreateTable(p, piTable, flags); 8922 sqlite3BtreeLeave(p); 8923 return rc; 8924 } 8925 8926 /* 8927 ** Erase the given database page and all its children. Return 8928 ** the page to the freelist. 8929 */ 8930 static int clearDatabasePage( 8931 BtShared *pBt, /* The BTree that contains the table */ 8932 Pgno pgno, /* Page number to clear */ 8933 int freePageFlag, /* Deallocate page if true */ 8934 int *pnChange /* Add number of Cells freed to this counter */ 8935 ){ 8936 MemPage *pPage; 8937 int rc; 8938 unsigned char *pCell; 8939 int i; 8940 int hdr; 8941 CellInfo info; 8942 8943 assert( sqlite3_mutex_held(pBt->mutex) ); 8944 if( pgno>btreePagecount(pBt) ){ 8945 return SQLITE_CORRUPT_BKPT; 8946 } 8947 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 8948 if( rc ) return rc; 8949 if( pPage->bBusy ){ 8950 rc = SQLITE_CORRUPT_BKPT; 8951 goto cleardatabasepage_out; 8952 } 8953 pPage->bBusy = 1; 8954 hdr = pPage->hdrOffset; 8955 for(i=0; i<pPage->nCell; i++){ 8956 pCell = findCell(pPage, i); 8957 if( !pPage->leaf ){ 8958 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 8959 if( rc ) goto cleardatabasepage_out; 8960 } 8961 rc = clearCell(pPage, pCell, &info); 8962 if( rc ) goto cleardatabasepage_out; 8963 } 8964 if( !pPage->leaf ){ 8965 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 8966 if( rc ) goto cleardatabasepage_out; 8967 }else if( pnChange ){ 8968 assert( pPage->intKey || CORRUPT_DB ); 8969 testcase( !pPage->intKey ); 8970 *pnChange += pPage->nCell; 8971 } 8972 if( freePageFlag ){ 8973 freePage(pPage, &rc); 8974 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 8975 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 8976 } 8977 8978 cleardatabasepage_out: 8979 pPage->bBusy = 0; 8980 releasePage(pPage); 8981 return rc; 8982 } 8983 8984 /* 8985 ** Delete all information from a single table in the database. iTable is 8986 ** the page number of the root of the table. After this routine returns, 8987 ** the root page is empty, but still exists. 8988 ** 8989 ** This routine will fail with SQLITE_LOCKED if there are any open 8990 ** read cursors on the table. Open write cursors are moved to the 8991 ** root of the table. 8992 ** 8993 ** If pnChange is not NULL, then table iTable must be an intkey table. The 8994 ** integer value pointed to by pnChange is incremented by the number of 8995 ** entries in the table. 8996 */ 8997 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ 8998 int rc; 8999 BtShared *pBt = p->pBt; 9000 sqlite3BtreeEnter(p); 9001 assert( p->inTrans==TRANS_WRITE ); 9002 9003 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9004 9005 if( SQLITE_OK==rc ){ 9006 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9007 ** is the root of a table b-tree - if it is not, the following call is 9008 ** a no-op). */ 9009 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9010 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9011 } 9012 sqlite3BtreeLeave(p); 9013 return rc; 9014 } 9015 9016 /* 9017 ** Delete all information from the single table that pCur is open on. 9018 ** 9019 ** This routine only work for pCur on an ephemeral table. 9020 */ 9021 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9022 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9023 } 9024 9025 /* 9026 ** Erase all information in a table and add the root of the table to 9027 ** the freelist. Except, the root of the principle table (the one on 9028 ** page 1) is never added to the freelist. 9029 ** 9030 ** This routine will fail with SQLITE_LOCKED if there are any open 9031 ** cursors on the table. 9032 ** 9033 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9034 ** root page in the database file, then the last root page 9035 ** in the database file is moved into the slot formerly occupied by 9036 ** iTable and that last slot formerly occupied by the last root page 9037 ** is added to the freelist instead of iTable. In this say, all 9038 ** root pages are kept at the beginning of the database file, which 9039 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9040 ** page number that used to be the last root page in the file before 9041 ** the move. If no page gets moved, *piMoved is set to 0. 9042 ** The last root page is recorded in meta[3] and the value of 9043 ** meta[3] is updated by this procedure. 9044 */ 9045 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9046 int rc; 9047 MemPage *pPage = 0; 9048 BtShared *pBt = p->pBt; 9049 9050 assert( sqlite3BtreeHoldsMutex(p) ); 9051 assert( p->inTrans==TRANS_WRITE ); 9052 assert( iTable>=2 ); 9053 9054 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9055 if( rc ) return rc; 9056 rc = sqlite3BtreeClearTable(p, iTable, 0); 9057 if( rc ){ 9058 releasePage(pPage); 9059 return rc; 9060 } 9061 9062 *piMoved = 0; 9063 9064 #ifdef SQLITE_OMIT_AUTOVACUUM 9065 freePage(pPage, &rc); 9066 releasePage(pPage); 9067 #else 9068 if( pBt->autoVacuum ){ 9069 Pgno maxRootPgno; 9070 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9071 9072 if( iTable==maxRootPgno ){ 9073 /* If the table being dropped is the table with the largest root-page 9074 ** number in the database, put the root page on the free list. 9075 */ 9076 freePage(pPage, &rc); 9077 releasePage(pPage); 9078 if( rc!=SQLITE_OK ){ 9079 return rc; 9080 } 9081 }else{ 9082 /* The table being dropped does not have the largest root-page 9083 ** number in the database. So move the page that does into the 9084 ** gap left by the deleted root-page. 9085 */ 9086 MemPage *pMove; 9087 releasePage(pPage); 9088 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9089 if( rc!=SQLITE_OK ){ 9090 return rc; 9091 } 9092 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9093 releasePage(pMove); 9094 if( rc!=SQLITE_OK ){ 9095 return rc; 9096 } 9097 pMove = 0; 9098 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9099 freePage(pMove, &rc); 9100 releasePage(pMove); 9101 if( rc!=SQLITE_OK ){ 9102 return rc; 9103 } 9104 *piMoved = maxRootPgno; 9105 } 9106 9107 /* Set the new 'max-root-page' value in the database header. This 9108 ** is the old value less one, less one more if that happens to 9109 ** be a root-page number, less one again if that is the 9110 ** PENDING_BYTE_PAGE. 9111 */ 9112 maxRootPgno--; 9113 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9114 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9115 maxRootPgno--; 9116 } 9117 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9118 9119 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9120 }else{ 9121 freePage(pPage, &rc); 9122 releasePage(pPage); 9123 } 9124 #endif 9125 return rc; 9126 } 9127 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9128 int rc; 9129 sqlite3BtreeEnter(p); 9130 rc = btreeDropTable(p, iTable, piMoved); 9131 sqlite3BtreeLeave(p); 9132 return rc; 9133 } 9134 9135 9136 /* 9137 ** This function may only be called if the b-tree connection already 9138 ** has a read or write transaction open on the database. 9139 ** 9140 ** Read the meta-information out of a database file. Meta[0] 9141 ** is the number of free pages currently in the database. Meta[1] 9142 ** through meta[15] are available for use by higher layers. Meta[0] 9143 ** is read-only, the others are read/write. 9144 ** 9145 ** The schema layer numbers meta values differently. At the schema 9146 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9147 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9148 ** 9149 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9150 ** of reading the value out of the header, it instead loads the "DataVersion" 9151 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9152 ** database file. It is a number computed by the pager. But its access 9153 ** pattern is the same as header meta values, and so it is convenient to 9154 ** read it from this routine. 9155 */ 9156 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9157 BtShared *pBt = p->pBt; 9158 9159 sqlite3BtreeEnter(p); 9160 assert( p->inTrans>TRANS_NONE ); 9161 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); 9162 assert( pBt->pPage1 ); 9163 assert( idx>=0 && idx<=15 ); 9164 9165 if( idx==BTREE_DATA_VERSION ){ 9166 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion; 9167 }else{ 9168 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 9169 } 9170 9171 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 9172 ** database, mark the database as read-only. */ 9173 #ifdef SQLITE_OMIT_AUTOVACUUM 9174 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 9175 pBt->btsFlags |= BTS_READ_ONLY; 9176 } 9177 #endif 9178 9179 sqlite3BtreeLeave(p); 9180 } 9181 9182 /* 9183 ** Write meta-information back into the database. Meta[0] is 9184 ** read-only and may not be written. 9185 */ 9186 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 9187 BtShared *pBt = p->pBt; 9188 unsigned char *pP1; 9189 int rc; 9190 assert( idx>=1 && idx<=15 ); 9191 sqlite3BtreeEnter(p); 9192 assert( p->inTrans==TRANS_WRITE ); 9193 assert( pBt->pPage1!=0 ); 9194 pP1 = pBt->pPage1->aData; 9195 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9196 if( rc==SQLITE_OK ){ 9197 put4byte(&pP1[36 + idx*4], iMeta); 9198 #ifndef SQLITE_OMIT_AUTOVACUUM 9199 if( idx==BTREE_INCR_VACUUM ){ 9200 assert( pBt->autoVacuum || iMeta==0 ); 9201 assert( iMeta==0 || iMeta==1 ); 9202 pBt->incrVacuum = (u8)iMeta; 9203 } 9204 #endif 9205 } 9206 sqlite3BtreeLeave(p); 9207 return rc; 9208 } 9209 9210 #ifndef SQLITE_OMIT_BTREECOUNT 9211 /* 9212 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 9213 ** number of entries in the b-tree and write the result to *pnEntry. 9214 ** 9215 ** SQLITE_OK is returned if the operation is successfully executed. 9216 ** Otherwise, if an error is encountered (i.e. an IO error or database 9217 ** corruption) an SQLite error code is returned. 9218 */ 9219 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ 9220 i64 nEntry = 0; /* Value to return in *pnEntry */ 9221 int rc; /* Return code */ 9222 9223 rc = moveToRoot(pCur); 9224 if( rc==SQLITE_EMPTY ){ 9225 *pnEntry = 0; 9226 return SQLITE_OK; 9227 } 9228 9229 /* Unless an error occurs, the following loop runs one iteration for each 9230 ** page in the B-Tree structure (not including overflow pages). 9231 */ 9232 while( rc==SQLITE_OK ){ 9233 int iIdx; /* Index of child node in parent */ 9234 MemPage *pPage; /* Current page of the b-tree */ 9235 9236 /* If this is a leaf page or the tree is not an int-key tree, then 9237 ** this page contains countable entries. Increment the entry counter 9238 ** accordingly. 9239 */ 9240 pPage = pCur->pPage; 9241 if( pPage->leaf || !pPage->intKey ){ 9242 nEntry += pPage->nCell; 9243 } 9244 9245 /* pPage is a leaf node. This loop navigates the cursor so that it 9246 ** points to the first interior cell that it points to the parent of 9247 ** the next page in the tree that has not yet been visited. The 9248 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 9249 ** of the page, or to the number of cells in the page if the next page 9250 ** to visit is the right-child of its parent. 9251 ** 9252 ** If all pages in the tree have been visited, return SQLITE_OK to the 9253 ** caller. 9254 */ 9255 if( pPage->leaf ){ 9256 do { 9257 if( pCur->iPage==0 ){ 9258 /* All pages of the b-tree have been visited. Return successfully. */ 9259 *pnEntry = nEntry; 9260 return moveToRoot(pCur); 9261 } 9262 moveToParent(pCur); 9263 }while ( pCur->ix>=pCur->pPage->nCell ); 9264 9265 pCur->ix++; 9266 pPage = pCur->pPage; 9267 } 9268 9269 /* Descend to the child node of the cell that the cursor currently 9270 ** points at. This is the right-child if (iIdx==pPage->nCell). 9271 */ 9272 iIdx = pCur->ix; 9273 if( iIdx==pPage->nCell ){ 9274 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 9275 }else{ 9276 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 9277 } 9278 } 9279 9280 /* An error has occurred. Return an error code. */ 9281 return rc; 9282 } 9283 #endif 9284 9285 /* 9286 ** Return the pager associated with a BTree. This routine is used for 9287 ** testing and debugging only. 9288 */ 9289 Pager *sqlite3BtreePager(Btree *p){ 9290 return p->pBt->pPager; 9291 } 9292 9293 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9294 /* 9295 ** Append a message to the error message string. 9296 */ 9297 static void checkAppendMsg( 9298 IntegrityCk *pCheck, 9299 const char *zFormat, 9300 ... 9301 ){ 9302 va_list ap; 9303 if( !pCheck->mxErr ) return; 9304 pCheck->mxErr--; 9305 pCheck->nErr++; 9306 va_start(ap, zFormat); 9307 if( pCheck->errMsg.nChar ){ 9308 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 9309 } 9310 if( pCheck->zPfx ){ 9311 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 9312 } 9313 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 9314 va_end(ap); 9315 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 9316 pCheck->mallocFailed = 1; 9317 } 9318 } 9319 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9320 9321 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9322 9323 /* 9324 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 9325 ** corresponds to page iPg is already set. 9326 */ 9327 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9328 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9329 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 9330 } 9331 9332 /* 9333 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 9334 */ 9335 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9336 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9337 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 9338 } 9339 9340 9341 /* 9342 ** Add 1 to the reference count for page iPage. If this is the second 9343 ** reference to the page, add an error message to pCheck->zErrMsg. 9344 ** Return 1 if there are 2 or more references to the page and 0 if 9345 ** if this is the first reference to the page. 9346 ** 9347 ** Also check that the page number is in bounds. 9348 */ 9349 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 9350 if( iPage>pCheck->nPage || iPage==0 ){ 9351 checkAppendMsg(pCheck, "invalid page number %d", iPage); 9352 return 1; 9353 } 9354 if( getPageReferenced(pCheck, iPage) ){ 9355 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 9356 return 1; 9357 } 9358 setPageReferenced(pCheck, iPage); 9359 return 0; 9360 } 9361 9362 #ifndef SQLITE_OMIT_AUTOVACUUM 9363 /* 9364 ** Check that the entry in the pointer-map for page iChild maps to 9365 ** page iParent, pointer type ptrType. If not, append an error message 9366 ** to pCheck. 9367 */ 9368 static void checkPtrmap( 9369 IntegrityCk *pCheck, /* Integrity check context */ 9370 Pgno iChild, /* Child page number */ 9371 u8 eType, /* Expected pointer map type */ 9372 Pgno iParent /* Expected pointer map parent page number */ 9373 ){ 9374 int rc; 9375 u8 ePtrmapType; 9376 Pgno iPtrmapParent; 9377 9378 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 9379 if( rc!=SQLITE_OK ){ 9380 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; 9381 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 9382 return; 9383 } 9384 9385 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 9386 checkAppendMsg(pCheck, 9387 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 9388 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 9389 } 9390 } 9391 #endif 9392 9393 /* 9394 ** Check the integrity of the freelist or of an overflow page list. 9395 ** Verify that the number of pages on the list is N. 9396 */ 9397 static void checkList( 9398 IntegrityCk *pCheck, /* Integrity checking context */ 9399 int isFreeList, /* True for a freelist. False for overflow page list */ 9400 int iPage, /* Page number for first page in the list */ 9401 int N /* Expected number of pages in the list */ 9402 ){ 9403 int i; 9404 int expected = N; 9405 int nErrAtStart = pCheck->nErr; 9406 while( iPage!=0 && pCheck->mxErr ){ 9407 DbPage *pOvflPage; 9408 unsigned char *pOvflData; 9409 if( checkRef(pCheck, iPage) ) break; 9410 N--; 9411 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 9412 checkAppendMsg(pCheck, "failed to get page %d", iPage); 9413 break; 9414 } 9415 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 9416 if( isFreeList ){ 9417 u32 n = (u32)get4byte(&pOvflData[4]); 9418 #ifndef SQLITE_OMIT_AUTOVACUUM 9419 if( pCheck->pBt->autoVacuum ){ 9420 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 9421 } 9422 #endif 9423 if( n>pCheck->pBt->usableSize/4-2 ){ 9424 checkAppendMsg(pCheck, 9425 "freelist leaf count too big on page %d", iPage); 9426 N--; 9427 }else{ 9428 for(i=0; i<(int)n; i++){ 9429 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 9430 #ifndef SQLITE_OMIT_AUTOVACUUM 9431 if( pCheck->pBt->autoVacuum ){ 9432 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 9433 } 9434 #endif 9435 checkRef(pCheck, iFreePage); 9436 } 9437 N -= n; 9438 } 9439 } 9440 #ifndef SQLITE_OMIT_AUTOVACUUM 9441 else{ 9442 /* If this database supports auto-vacuum and iPage is not the last 9443 ** page in this overflow list, check that the pointer-map entry for 9444 ** the following page matches iPage. 9445 */ 9446 if( pCheck->pBt->autoVacuum && N>0 ){ 9447 i = get4byte(pOvflData); 9448 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 9449 } 9450 } 9451 #endif 9452 iPage = get4byte(pOvflData); 9453 sqlite3PagerUnref(pOvflPage); 9454 } 9455 if( N && nErrAtStart==pCheck->nErr ){ 9456 checkAppendMsg(pCheck, 9457 "%s is %d but should be %d", 9458 isFreeList ? "size" : "overflow list length", 9459 expected-N, expected); 9460 } 9461 } 9462 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9463 9464 /* 9465 ** An implementation of a min-heap. 9466 ** 9467 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 9468 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 9469 ** and aHeap[N*2+1]. 9470 ** 9471 ** The heap property is this: Every node is less than or equal to both 9472 ** of its daughter nodes. A consequence of the heap property is that the 9473 ** root node aHeap[1] is always the minimum value currently in the heap. 9474 ** 9475 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 9476 ** the heap, preserving the heap property. The btreeHeapPull() routine 9477 ** removes the root element from the heap (the minimum value in the heap) 9478 ** and then moves other nodes around as necessary to preserve the heap 9479 ** property. 9480 ** 9481 ** This heap is used for cell overlap and coverage testing. Each u32 9482 ** entry represents the span of a cell or freeblock on a btree page. 9483 ** The upper 16 bits are the index of the first byte of a range and the 9484 ** lower 16 bits are the index of the last byte of that range. 9485 */ 9486 static void btreeHeapInsert(u32 *aHeap, u32 x){ 9487 u32 j, i = ++aHeap[0]; 9488 aHeap[i] = x; 9489 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 9490 x = aHeap[j]; 9491 aHeap[j] = aHeap[i]; 9492 aHeap[i] = x; 9493 i = j; 9494 } 9495 } 9496 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 9497 u32 j, i, x; 9498 if( (x = aHeap[0])==0 ) return 0; 9499 *pOut = aHeap[1]; 9500 aHeap[1] = aHeap[x]; 9501 aHeap[x] = 0xffffffff; 9502 aHeap[0]--; 9503 i = 1; 9504 while( (j = i*2)<=aHeap[0] ){ 9505 if( aHeap[j]>aHeap[j+1] ) j++; 9506 if( aHeap[i]<aHeap[j] ) break; 9507 x = aHeap[i]; 9508 aHeap[i] = aHeap[j]; 9509 aHeap[j] = x; 9510 i = j; 9511 } 9512 return 1; 9513 } 9514 9515 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9516 /* 9517 ** Do various sanity checks on a single page of a tree. Return 9518 ** the tree depth. Root pages return 0. Parents of root pages 9519 ** return 1, and so forth. 9520 ** 9521 ** These checks are done: 9522 ** 9523 ** 1. Make sure that cells and freeblocks do not overlap 9524 ** but combine to completely cover the page. 9525 ** 2. Make sure integer cell keys are in order. 9526 ** 3. Check the integrity of overflow pages. 9527 ** 4. Recursively call checkTreePage on all children. 9528 ** 5. Verify that the depth of all children is the same. 9529 */ 9530 static int checkTreePage( 9531 IntegrityCk *pCheck, /* Context for the sanity check */ 9532 int iPage, /* Page number of the page to check */ 9533 i64 *piMinKey, /* Write minimum integer primary key here */ 9534 i64 maxKey /* Error if integer primary key greater than this */ 9535 ){ 9536 MemPage *pPage = 0; /* The page being analyzed */ 9537 int i; /* Loop counter */ 9538 int rc; /* Result code from subroutine call */ 9539 int depth = -1, d2; /* Depth of a subtree */ 9540 int pgno; /* Page number */ 9541 int nFrag; /* Number of fragmented bytes on the page */ 9542 int hdr; /* Offset to the page header */ 9543 int cellStart; /* Offset to the start of the cell pointer array */ 9544 int nCell; /* Number of cells */ 9545 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 9546 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 9547 ** False if IPK must be strictly less than maxKey */ 9548 u8 *data; /* Page content */ 9549 u8 *pCell; /* Cell content */ 9550 u8 *pCellIdx; /* Next element of the cell pointer array */ 9551 BtShared *pBt; /* The BtShared object that owns pPage */ 9552 u32 pc; /* Address of a cell */ 9553 u32 usableSize; /* Usable size of the page */ 9554 u32 contentOffset; /* Offset to the start of the cell content area */ 9555 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 9556 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 9557 const char *saved_zPfx = pCheck->zPfx; 9558 int saved_v1 = pCheck->v1; 9559 int saved_v2 = pCheck->v2; 9560 u8 savedIsInit = 0; 9561 9562 /* Check that the page exists 9563 */ 9564 pBt = pCheck->pBt; 9565 usableSize = pBt->usableSize; 9566 if( iPage==0 ) return 0; 9567 if( checkRef(pCheck, iPage) ) return 0; 9568 pCheck->zPfx = "Page %d: "; 9569 pCheck->v1 = iPage; 9570 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ 9571 checkAppendMsg(pCheck, 9572 "unable to get the page. error code=%d", rc); 9573 goto end_of_check; 9574 } 9575 9576 /* Clear MemPage.isInit to make sure the corruption detection code in 9577 ** btreeInitPage() is executed. */ 9578 savedIsInit = pPage->isInit; 9579 pPage->isInit = 0; 9580 if( (rc = btreeInitPage(pPage))!=0 ){ 9581 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 9582 checkAppendMsg(pCheck, 9583 "btreeInitPage() returns error code %d", rc); 9584 goto end_of_check; 9585 } 9586 data = pPage->aData; 9587 hdr = pPage->hdrOffset; 9588 9589 /* Set up for cell analysis */ 9590 pCheck->zPfx = "On tree page %d cell %d: "; 9591 contentOffset = get2byteNotZero(&data[hdr+5]); 9592 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 9593 9594 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 9595 ** number of cells on the page. */ 9596 nCell = get2byte(&data[hdr+3]); 9597 assert( pPage->nCell==nCell ); 9598 9599 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 9600 ** immediately follows the b-tree page header. */ 9601 cellStart = hdr + 12 - 4*pPage->leaf; 9602 assert( pPage->aCellIdx==&data[cellStart] ); 9603 pCellIdx = &data[cellStart + 2*(nCell-1)]; 9604 9605 if( !pPage->leaf ){ 9606 /* Analyze the right-child page of internal pages */ 9607 pgno = get4byte(&data[hdr+8]); 9608 #ifndef SQLITE_OMIT_AUTOVACUUM 9609 if( pBt->autoVacuum ){ 9610 pCheck->zPfx = "On page %d at right child: "; 9611 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9612 } 9613 #endif 9614 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9615 keyCanBeEqual = 0; 9616 }else{ 9617 /* For leaf pages, the coverage check will occur in the same loop 9618 ** as the other cell checks, so initialize the heap. */ 9619 heap = pCheck->heap; 9620 heap[0] = 0; 9621 } 9622 9623 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 9624 ** integer offsets to the cell contents. */ 9625 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 9626 CellInfo info; 9627 9628 /* Check cell size */ 9629 pCheck->v2 = i; 9630 assert( pCellIdx==&data[cellStart + i*2] ); 9631 pc = get2byteAligned(pCellIdx); 9632 pCellIdx -= 2; 9633 if( pc<contentOffset || pc>usableSize-4 ){ 9634 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 9635 pc, contentOffset, usableSize-4); 9636 doCoverageCheck = 0; 9637 continue; 9638 } 9639 pCell = &data[pc]; 9640 pPage->xParseCell(pPage, pCell, &info); 9641 if( pc+info.nSize>usableSize ){ 9642 checkAppendMsg(pCheck, "Extends off end of page"); 9643 doCoverageCheck = 0; 9644 continue; 9645 } 9646 9647 /* Check for integer primary key out of range */ 9648 if( pPage->intKey ){ 9649 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 9650 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 9651 } 9652 maxKey = info.nKey; 9653 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 9654 } 9655 9656 /* Check the content overflow list */ 9657 if( info.nPayload>info.nLocal ){ 9658 int nPage; /* Number of pages on the overflow chain */ 9659 Pgno pgnoOvfl; /* First page of the overflow chain */ 9660 assert( pc + info.nSize - 4 <= usableSize ); 9661 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 9662 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 9663 #ifndef SQLITE_OMIT_AUTOVACUUM 9664 if( pBt->autoVacuum ){ 9665 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 9666 } 9667 #endif 9668 checkList(pCheck, 0, pgnoOvfl, nPage); 9669 } 9670 9671 if( !pPage->leaf ){ 9672 /* Check sanity of left child page for internal pages */ 9673 pgno = get4byte(pCell); 9674 #ifndef SQLITE_OMIT_AUTOVACUUM 9675 if( pBt->autoVacuum ){ 9676 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9677 } 9678 #endif 9679 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9680 keyCanBeEqual = 0; 9681 if( d2!=depth ){ 9682 checkAppendMsg(pCheck, "Child page depth differs"); 9683 depth = d2; 9684 } 9685 }else{ 9686 /* Populate the coverage-checking heap for leaf pages */ 9687 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 9688 } 9689 } 9690 *piMinKey = maxKey; 9691 9692 /* Check for complete coverage of the page 9693 */ 9694 pCheck->zPfx = 0; 9695 if( doCoverageCheck && pCheck->mxErr>0 ){ 9696 /* For leaf pages, the min-heap has already been initialized and the 9697 ** cells have already been inserted. But for internal pages, that has 9698 ** not yet been done, so do it now */ 9699 if( !pPage->leaf ){ 9700 heap = pCheck->heap; 9701 heap[0] = 0; 9702 for(i=nCell-1; i>=0; i--){ 9703 u32 size; 9704 pc = get2byteAligned(&data[cellStart+i*2]); 9705 size = pPage->xCellSize(pPage, &data[pc]); 9706 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 9707 } 9708 } 9709 /* Add the freeblocks to the min-heap 9710 ** 9711 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 9712 ** is the offset of the first freeblock, or zero if there are no 9713 ** freeblocks on the page. 9714 */ 9715 i = get2byte(&data[hdr+1]); 9716 while( i>0 ){ 9717 int size, j; 9718 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */ 9719 size = get2byte(&data[i+2]); 9720 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */ 9721 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 9722 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 9723 ** big-endian integer which is the offset in the b-tree page of the next 9724 ** freeblock in the chain, or zero if the freeblock is the last on the 9725 ** chain. */ 9726 j = get2byte(&data[i]); 9727 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 9728 ** increasing offset. */ 9729 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ 9730 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */ 9731 i = j; 9732 } 9733 /* Analyze the min-heap looking for overlap between cells and/or 9734 ** freeblocks, and counting the number of untracked bytes in nFrag. 9735 ** 9736 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 9737 ** There is an implied first entry the covers the page header, the cell 9738 ** pointer index, and the gap between the cell pointer index and the start 9739 ** of cell content. 9740 ** 9741 ** The loop below pulls entries from the min-heap in order and compares 9742 ** the start_address against the previous end_address. If there is an 9743 ** overlap, that means bytes are used multiple times. If there is a gap, 9744 ** that gap is added to the fragmentation count. 9745 */ 9746 nFrag = 0; 9747 prev = contentOffset - 1; /* Implied first min-heap entry */ 9748 while( btreeHeapPull(heap,&x) ){ 9749 if( (prev&0xffff)>=(x>>16) ){ 9750 checkAppendMsg(pCheck, 9751 "Multiple uses for byte %u of page %d", x>>16, iPage); 9752 break; 9753 }else{ 9754 nFrag += (x>>16) - (prev&0xffff) - 1; 9755 prev = x; 9756 } 9757 } 9758 nFrag += usableSize - (prev&0xffff) - 1; 9759 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 9760 ** is stored in the fifth field of the b-tree page header. 9761 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 9762 ** number of fragmented free bytes within the cell content area. 9763 */ 9764 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 9765 checkAppendMsg(pCheck, 9766 "Fragmentation of %d bytes reported as %d on page %d", 9767 nFrag, data[hdr+7], iPage); 9768 } 9769 } 9770 9771 end_of_check: 9772 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 9773 releasePage(pPage); 9774 pCheck->zPfx = saved_zPfx; 9775 pCheck->v1 = saved_v1; 9776 pCheck->v2 = saved_v2; 9777 return depth+1; 9778 } 9779 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9780 9781 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9782 /* 9783 ** This routine does a complete check of the given BTree file. aRoot[] is 9784 ** an array of pages numbers were each page number is the root page of 9785 ** a table. nRoot is the number of entries in aRoot. 9786 ** 9787 ** A read-only or read-write transaction must be opened before calling 9788 ** this function. 9789 ** 9790 ** Write the number of error seen in *pnErr. Except for some memory 9791 ** allocation errors, an error message held in memory obtained from 9792 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 9793 ** returned. If a memory allocation error occurs, NULL is returned. 9794 */ 9795 char *sqlite3BtreeIntegrityCheck( 9796 Btree *p, /* The btree to be checked */ 9797 int *aRoot, /* An array of root pages numbers for individual trees */ 9798 int nRoot, /* Number of entries in aRoot[] */ 9799 int mxErr, /* Stop reporting errors after this many */ 9800 int *pnErr /* Write number of errors seen to this variable */ 9801 ){ 9802 Pgno i; 9803 IntegrityCk sCheck; 9804 BtShared *pBt = p->pBt; 9805 int savedDbFlags = pBt->db->flags; 9806 char zErr[100]; 9807 VVA_ONLY( int nRef ); 9808 9809 sqlite3BtreeEnter(p); 9810 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 9811 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 9812 assert( nRef>=0 ); 9813 sCheck.pBt = pBt; 9814 sCheck.pPager = pBt->pPager; 9815 sCheck.nPage = btreePagecount(sCheck.pBt); 9816 sCheck.mxErr = mxErr; 9817 sCheck.nErr = 0; 9818 sCheck.mallocFailed = 0; 9819 sCheck.zPfx = 0; 9820 sCheck.v1 = 0; 9821 sCheck.v2 = 0; 9822 sCheck.aPgRef = 0; 9823 sCheck.heap = 0; 9824 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 9825 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 9826 if( sCheck.nPage==0 ){ 9827 goto integrity_ck_cleanup; 9828 } 9829 9830 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 9831 if( !sCheck.aPgRef ){ 9832 sCheck.mallocFailed = 1; 9833 goto integrity_ck_cleanup; 9834 } 9835 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 9836 if( sCheck.heap==0 ){ 9837 sCheck.mallocFailed = 1; 9838 goto integrity_ck_cleanup; 9839 } 9840 9841 i = PENDING_BYTE_PAGE(pBt); 9842 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 9843 9844 /* Check the integrity of the freelist 9845 */ 9846 sCheck.zPfx = "Main freelist: "; 9847 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 9848 get4byte(&pBt->pPage1->aData[36])); 9849 sCheck.zPfx = 0; 9850 9851 /* Check all the tables. 9852 */ 9853 #ifndef SQLITE_OMIT_AUTOVACUUM 9854 if( pBt->autoVacuum ){ 9855 int mx = 0; 9856 int mxInHdr; 9857 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 9858 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 9859 if( mx!=mxInHdr ){ 9860 checkAppendMsg(&sCheck, 9861 "max rootpage (%d) disagrees with header (%d)", 9862 mx, mxInHdr 9863 ); 9864 } 9865 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 9866 checkAppendMsg(&sCheck, 9867 "incremental_vacuum enabled with a max rootpage of zero" 9868 ); 9869 } 9870 #endif 9871 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 9872 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 9873 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 9874 i64 notUsed; 9875 if( aRoot[i]==0 ) continue; 9876 #ifndef SQLITE_OMIT_AUTOVACUUM 9877 if( pBt->autoVacuum && aRoot[i]>1 ){ 9878 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 9879 } 9880 #endif 9881 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 9882 } 9883 pBt->db->flags = savedDbFlags; 9884 9885 /* Make sure every page in the file is referenced 9886 */ 9887 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 9888 #ifdef SQLITE_OMIT_AUTOVACUUM 9889 if( getPageReferenced(&sCheck, i)==0 ){ 9890 checkAppendMsg(&sCheck, "Page %d is never used", i); 9891 } 9892 #else 9893 /* If the database supports auto-vacuum, make sure no tables contain 9894 ** references to pointer-map pages. 9895 */ 9896 if( getPageReferenced(&sCheck, i)==0 && 9897 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 9898 checkAppendMsg(&sCheck, "Page %d is never used", i); 9899 } 9900 if( getPageReferenced(&sCheck, i)!=0 && 9901 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 9902 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 9903 } 9904 #endif 9905 } 9906 9907 /* Clean up and report errors. 9908 */ 9909 integrity_ck_cleanup: 9910 sqlite3PageFree(sCheck.heap); 9911 sqlite3_free(sCheck.aPgRef); 9912 if( sCheck.mallocFailed ){ 9913 sqlite3_str_reset(&sCheck.errMsg); 9914 sCheck.nErr++; 9915 } 9916 *pnErr = sCheck.nErr; 9917 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 9918 /* Make sure this analysis did not leave any unref() pages. */ 9919 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 9920 sqlite3BtreeLeave(p); 9921 return sqlite3StrAccumFinish(&sCheck.errMsg); 9922 } 9923 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9924 9925 /* 9926 ** Return the full pathname of the underlying database file. Return 9927 ** an empty string if the database is in-memory or a TEMP database. 9928 ** 9929 ** The pager filename is invariant as long as the pager is 9930 ** open so it is safe to access without the BtShared mutex. 9931 */ 9932 const char *sqlite3BtreeGetFilename(Btree *p){ 9933 assert( p->pBt->pPager!=0 ); 9934 return sqlite3PagerFilename(p->pBt->pPager, 1); 9935 } 9936 9937 /* 9938 ** Return the pathname of the journal file for this database. The return 9939 ** value of this routine is the same regardless of whether the journal file 9940 ** has been created or not. 9941 ** 9942 ** The pager journal filename is invariant as long as the pager is 9943 ** open so it is safe to access without the BtShared mutex. 9944 */ 9945 const char *sqlite3BtreeGetJournalname(Btree *p){ 9946 assert( p->pBt->pPager!=0 ); 9947 return sqlite3PagerJournalname(p->pBt->pPager); 9948 } 9949 9950 /* 9951 ** Return non-zero if a transaction is active. 9952 */ 9953 int sqlite3BtreeIsInTrans(Btree *p){ 9954 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 9955 return (p && (p->inTrans==TRANS_WRITE)); 9956 } 9957 9958 #ifndef SQLITE_OMIT_WAL 9959 /* 9960 ** Run a checkpoint on the Btree passed as the first argument. 9961 ** 9962 ** Return SQLITE_LOCKED if this or any other connection has an open 9963 ** transaction on the shared-cache the argument Btree is connected to. 9964 ** 9965 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 9966 */ 9967 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 9968 int rc = SQLITE_OK; 9969 if( p ){ 9970 BtShared *pBt = p->pBt; 9971 sqlite3BtreeEnter(p); 9972 if( pBt->inTransaction!=TRANS_NONE ){ 9973 rc = SQLITE_LOCKED; 9974 }else{ 9975 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 9976 } 9977 sqlite3BtreeLeave(p); 9978 } 9979 return rc; 9980 } 9981 #endif 9982 9983 /* 9984 ** Return non-zero if a read (or write) transaction is active. 9985 */ 9986 int sqlite3BtreeIsInReadTrans(Btree *p){ 9987 assert( p ); 9988 assert( sqlite3_mutex_held(p->db->mutex) ); 9989 return p->inTrans!=TRANS_NONE; 9990 } 9991 9992 int sqlite3BtreeIsInBackup(Btree *p){ 9993 assert( p ); 9994 assert( sqlite3_mutex_held(p->db->mutex) ); 9995 return p->nBackup!=0; 9996 } 9997 9998 /* 9999 ** This function returns a pointer to a blob of memory associated with 10000 ** a single shared-btree. The memory is used by client code for its own 10001 ** purposes (for example, to store a high-level schema associated with 10002 ** the shared-btree). The btree layer manages reference counting issues. 10003 ** 10004 ** The first time this is called on a shared-btree, nBytes bytes of memory 10005 ** are allocated, zeroed, and returned to the caller. For each subsequent 10006 ** call the nBytes parameter is ignored and a pointer to the same blob 10007 ** of memory returned. 10008 ** 10009 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10010 ** allocated, a null pointer is returned. If the blob has already been 10011 ** allocated, it is returned as normal. 10012 ** 10013 ** Just before the shared-btree is closed, the function passed as the 10014 ** xFree argument when the memory allocation was made is invoked on the 10015 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10016 ** on the memory, the btree layer does that. 10017 */ 10018 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10019 BtShared *pBt = p->pBt; 10020 sqlite3BtreeEnter(p); 10021 if( !pBt->pSchema && nBytes ){ 10022 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10023 pBt->xFreeSchema = xFree; 10024 } 10025 sqlite3BtreeLeave(p); 10026 return pBt->pSchema; 10027 } 10028 10029 /* 10030 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10031 ** btree as the argument handle holds an exclusive lock on the 10032 ** sqlite_master table. Otherwise SQLITE_OK. 10033 */ 10034 int sqlite3BtreeSchemaLocked(Btree *p){ 10035 int rc; 10036 assert( sqlite3_mutex_held(p->db->mutex) ); 10037 sqlite3BtreeEnter(p); 10038 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 10039 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10040 sqlite3BtreeLeave(p); 10041 return rc; 10042 } 10043 10044 10045 #ifndef SQLITE_OMIT_SHARED_CACHE 10046 /* 10047 ** Obtain a lock on the table whose root page is iTab. The 10048 ** lock is a write lock if isWritelock is true or a read lock 10049 ** if it is false. 10050 */ 10051 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10052 int rc = SQLITE_OK; 10053 assert( p->inTrans!=TRANS_NONE ); 10054 if( p->sharable ){ 10055 u8 lockType = READ_LOCK + isWriteLock; 10056 assert( READ_LOCK+1==WRITE_LOCK ); 10057 assert( isWriteLock==0 || isWriteLock==1 ); 10058 10059 sqlite3BtreeEnter(p); 10060 rc = querySharedCacheTableLock(p, iTab, lockType); 10061 if( rc==SQLITE_OK ){ 10062 rc = setSharedCacheTableLock(p, iTab, lockType); 10063 } 10064 sqlite3BtreeLeave(p); 10065 } 10066 return rc; 10067 } 10068 #endif 10069 10070 #ifndef SQLITE_OMIT_INCRBLOB 10071 /* 10072 ** Argument pCsr must be a cursor opened for writing on an 10073 ** INTKEY table currently pointing at a valid table entry. 10074 ** This function modifies the data stored as part of that entry. 10075 ** 10076 ** Only the data content may only be modified, it is not possible to 10077 ** change the length of the data stored. If this function is called with 10078 ** parameters that attempt to write past the end of the existing data, 10079 ** no modifications are made and SQLITE_CORRUPT is returned. 10080 */ 10081 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10082 int rc; 10083 assert( cursorOwnsBtShared(pCsr) ); 10084 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10085 assert( pCsr->curFlags & BTCF_Incrblob ); 10086 10087 rc = restoreCursorPosition(pCsr); 10088 if( rc!=SQLITE_OK ){ 10089 return rc; 10090 } 10091 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10092 if( pCsr->eState!=CURSOR_VALID ){ 10093 return SQLITE_ABORT; 10094 } 10095 10096 /* Save the positions of all other cursors open on this table. This is 10097 ** required in case any of them are holding references to an xFetch 10098 ** version of the b-tree page modified by the accessPayload call below. 10099 ** 10100 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10101 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10102 ** saveAllCursors can only return SQLITE_OK. 10103 */ 10104 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10105 assert( rc==SQLITE_OK ); 10106 10107 /* Check some assumptions: 10108 ** (a) the cursor is open for writing, 10109 ** (b) there is a read/write transaction open, 10110 ** (c) the connection holds a write-lock on the table (if required), 10111 ** (d) there are no conflicting read-locks, and 10112 ** (e) the cursor points at a valid row of an intKey table. 10113 */ 10114 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10115 return SQLITE_READONLY; 10116 } 10117 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10118 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10119 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10120 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10121 assert( pCsr->pPage->intKey ); 10122 10123 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10124 } 10125 10126 /* 10127 ** Mark this cursor as an incremental blob cursor. 10128 */ 10129 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10130 pCur->curFlags |= BTCF_Incrblob; 10131 pCur->pBtree->hasIncrblobCur = 1; 10132 } 10133 #endif 10134 10135 /* 10136 ** Set both the "read version" (single byte at byte offset 18) and 10137 ** "write version" (single byte at byte offset 19) fields in the database 10138 ** header to iVersion. 10139 */ 10140 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 10141 BtShared *pBt = pBtree->pBt; 10142 int rc; /* Return code */ 10143 10144 assert( iVersion==1 || iVersion==2 ); 10145 10146 /* If setting the version fields to 1, do not automatically open the 10147 ** WAL connection, even if the version fields are currently set to 2. 10148 */ 10149 pBt->btsFlags &= ~BTS_NO_WAL; 10150 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 10151 10152 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 10153 if( rc==SQLITE_OK ){ 10154 u8 *aData = pBt->pPage1->aData; 10155 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 10156 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 10157 if( rc==SQLITE_OK ){ 10158 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10159 if( rc==SQLITE_OK ){ 10160 aData[18] = (u8)iVersion; 10161 aData[19] = (u8)iVersion; 10162 } 10163 } 10164 } 10165 } 10166 10167 pBt->btsFlags &= ~BTS_NO_WAL; 10168 return rc; 10169 } 10170 10171 /* 10172 ** Return true if the cursor has a hint specified. This routine is 10173 ** only used from within assert() statements 10174 */ 10175 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 10176 return (pCsr->hints & mask)!=0; 10177 } 10178 10179 /* 10180 ** Return true if the given Btree is read-only. 10181 */ 10182 int sqlite3BtreeIsReadonly(Btree *p){ 10183 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 10184 } 10185 10186 /* 10187 ** Return the size of the header added to each page by this module. 10188 */ 10189 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 10190 10191 #if !defined(SQLITE_OMIT_SHARED_CACHE) 10192 /* 10193 ** Return true if the Btree passed as the only argument is sharable. 10194 */ 10195 int sqlite3BtreeSharable(Btree *p){ 10196 return p->sharable; 10197 } 10198 10199 /* 10200 ** Return the number of connections to the BtShared object accessed by 10201 ** the Btree handle passed as the only argument. For private caches 10202 ** this is always 1. For shared caches it may be 1 or greater. 10203 */ 10204 int sqlite3BtreeConnectionCount(Btree *p){ 10205 testcase( p->sharable ); 10206 return p->pBt->nRef; 10207 } 10208 #endif 10209