xref: /sqlite-3.40.0/src/btree.c (revision bd462bcc)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 /*
116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118 **
119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122 ** with the page number and filename associated with the (MemPage*).
123 */
124 #ifdef SQLITE_DEBUG
125 int corruptPageError(int lineno, MemPage *p){
126   char *zMsg;
127   sqlite3BeginBenignMalloc();
128   zMsg = sqlite3_mprintf("database corruption page %d of %s",
129       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130   );
131   sqlite3EndBenignMalloc();
132   if( zMsg ){
133     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134   }
135   sqlite3_free(zMsg);
136   return SQLITE_CORRUPT_BKPT;
137 }
138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139 #else
140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141 #endif
142 
143 #ifndef SQLITE_OMIT_SHARED_CACHE
144 
145 #ifdef SQLITE_DEBUG
146 /*
147 **** This function is only used as part of an assert() statement. ***
148 **
149 ** Check to see if pBtree holds the required locks to read or write to the
150 ** table with root page iRoot.   Return 1 if it does and 0 if not.
151 **
152 ** For example, when writing to a table with root-page iRoot via
153 ** Btree connection pBtree:
154 **
155 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156 **
157 ** When writing to an index that resides in a sharable database, the
158 ** caller should have first obtained a lock specifying the root page of
159 ** the corresponding table. This makes things a bit more complicated,
160 ** as this module treats each table as a separate structure. To determine
161 ** the table corresponding to the index being written, this
162 ** function has to search through the database schema.
163 **
164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
165 ** hold a write-lock on the schema table (root page 1). This is also
166 ** acceptable.
167 */
168 static int hasSharedCacheTableLock(
169   Btree *pBtree,         /* Handle that must hold lock */
170   Pgno iRoot,            /* Root page of b-tree */
171   int isIndex,           /* True if iRoot is the root of an index b-tree */
172   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
173 ){
174   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175   Pgno iTab = 0;
176   BtLock *pLock;
177 
178   /* If this database is not shareable, or if the client is reading
179   ** and has the read-uncommitted flag set, then no lock is required.
180   ** Return true immediately.
181   */
182   if( (pBtree->sharable==0)
183    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
184   ){
185     return 1;
186   }
187 
188   /* If the client is reading  or writing an index and the schema is
189   ** not loaded, then it is too difficult to actually check to see if
190   ** the correct locks are held.  So do not bother - just return true.
191   ** This case does not come up very often anyhow.
192   */
193   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
194     return 1;
195   }
196 
197   /* Figure out the root-page that the lock should be held on. For table
198   ** b-trees, this is just the root page of the b-tree being read or
199   ** written. For index b-trees, it is the root page of the associated
200   ** table.  */
201   if( isIndex ){
202     HashElem *p;
203     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204       Index *pIdx = (Index *)sqliteHashData(p);
205       if( pIdx->tnum==(int)iRoot ){
206         if( iTab ){
207           /* Two or more indexes share the same root page.  There must
208           ** be imposter tables.  So just return true.  The assert is not
209           ** useful in that case. */
210           return 1;
211         }
212         iTab = pIdx->pTable->tnum;
213       }
214     }
215   }else{
216     iTab = iRoot;
217   }
218 
219   /* Search for the required lock. Either a write-lock on root-page iTab, a
220   ** write-lock on the schema table, or (if the client is reading) a
221   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
222   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223     if( pLock->pBtree==pBtree
224      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225      && pLock->eLock>=eLockType
226     ){
227       return 1;
228     }
229   }
230 
231   /* Failed to find the required lock. */
232   return 0;
233 }
234 #endif /* SQLITE_DEBUG */
235 
236 #ifdef SQLITE_DEBUG
237 /*
238 **** This function may be used as part of assert() statements only. ****
239 **
240 ** Return true if it would be illegal for pBtree to write into the
241 ** table or index rooted at iRoot because other shared connections are
242 ** simultaneously reading that same table or index.
243 **
244 ** It is illegal for pBtree to write if some other Btree object that
245 ** shares the same BtShared object is currently reading or writing
246 ** the iRoot table.  Except, if the other Btree object has the
247 ** read-uncommitted flag set, then it is OK for the other object to
248 ** have a read cursor.
249 **
250 ** For example, before writing to any part of the table or index
251 ** rooted at page iRoot, one should call:
252 **
253 **    assert( !hasReadConflicts(pBtree, iRoot) );
254 */
255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256   BtCursor *p;
257   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258     if( p->pgnoRoot==iRoot
259      && p->pBtree!=pBtree
260      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
261     ){
262       return 1;
263     }
264   }
265   return 0;
266 }
267 #endif    /* #ifdef SQLITE_DEBUG */
268 
269 /*
270 ** Query to see if Btree handle p may obtain a lock of type eLock
271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
272 ** SQLITE_OK if the lock may be obtained (by calling
273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
274 */
275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
276   BtShared *pBt = p->pBt;
277   BtLock *pIter;
278 
279   assert( sqlite3BtreeHoldsMutex(p) );
280   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281   assert( p->db!=0 );
282   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
283 
284   /* If requesting a write-lock, then the Btree must have an open write
285   ** transaction on this file. And, obviously, for this to be so there
286   ** must be an open write transaction on the file itself.
287   */
288   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290 
291   /* This routine is a no-op if the shared-cache is not enabled */
292   if( !p->sharable ){
293     return SQLITE_OK;
294   }
295 
296   /* If some other connection is holding an exclusive lock, the
297   ** requested lock may not be obtained.
298   */
299   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
300     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301     return SQLITE_LOCKED_SHAREDCACHE;
302   }
303 
304   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305     /* The condition (pIter->eLock!=eLock) in the following if(...)
306     ** statement is a simplification of:
307     **
308     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309     **
310     ** since we know that if eLock==WRITE_LOCK, then no other connection
311     ** may hold a WRITE_LOCK on any table in this file (since there can
312     ** only be a single writer).
313     */
314     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318       if( eLock==WRITE_LOCK ){
319         assert( p==pBt->pWriter );
320         pBt->btsFlags |= BTS_PENDING;
321       }
322       return SQLITE_LOCKED_SHAREDCACHE;
323     }
324   }
325   return SQLITE_OK;
326 }
327 #endif /* !SQLITE_OMIT_SHARED_CACHE */
328 
329 #ifndef SQLITE_OMIT_SHARED_CACHE
330 /*
331 ** Add a lock on the table with root-page iTable to the shared-btree used
332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
333 ** WRITE_LOCK.
334 **
335 ** This function assumes the following:
336 **
337 **   (a) The specified Btree object p is connected to a sharable
338 **       database (one with the BtShared.sharable flag set), and
339 **
340 **   (b) No other Btree objects hold a lock that conflicts
341 **       with the requested lock (i.e. querySharedCacheTableLock() has
342 **       already been called and returned SQLITE_OK).
343 **
344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345 ** is returned if a malloc attempt fails.
346 */
347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
348   BtShared *pBt = p->pBt;
349   BtLock *pLock = 0;
350   BtLock *pIter;
351 
352   assert( sqlite3BtreeHoldsMutex(p) );
353   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354   assert( p->db!=0 );
355 
356   /* A connection with the read-uncommitted flag set will never try to
357   ** obtain a read-lock using this function. The only read-lock obtained
358   ** by a connection in read-uncommitted mode is on the sqlite_master
359   ** table, and that lock is obtained in BtreeBeginTrans().  */
360   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
361 
362   /* This function should only be called on a sharable b-tree after it
363   ** has been determined that no other b-tree holds a conflicting lock.  */
364   assert( p->sharable );
365   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
366 
367   /* First search the list for an existing lock on this table. */
368   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369     if( pIter->iTable==iTable && pIter->pBtree==p ){
370       pLock = pIter;
371       break;
372     }
373   }
374 
375   /* If the above search did not find a BtLock struct associating Btree p
376   ** with table iTable, allocate one and link it into the list.
377   */
378   if( !pLock ){
379     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
380     if( !pLock ){
381       return SQLITE_NOMEM_BKPT;
382     }
383     pLock->iTable = iTable;
384     pLock->pBtree = p;
385     pLock->pNext = pBt->pLock;
386     pBt->pLock = pLock;
387   }
388 
389   /* Set the BtLock.eLock variable to the maximum of the current lock
390   ** and the requested lock. This means if a write-lock was already held
391   ** and a read-lock requested, we don't incorrectly downgrade the lock.
392   */
393   assert( WRITE_LOCK>READ_LOCK );
394   if( eLock>pLock->eLock ){
395     pLock->eLock = eLock;
396   }
397 
398   return SQLITE_OK;
399 }
400 #endif /* !SQLITE_OMIT_SHARED_CACHE */
401 
402 #ifndef SQLITE_OMIT_SHARED_CACHE
403 /*
404 ** Release all the table locks (locks obtained via calls to
405 ** the setSharedCacheTableLock() procedure) held by Btree object p.
406 **
407 ** This function assumes that Btree p has an open read or write
408 ** transaction. If it does not, then the BTS_PENDING flag
409 ** may be incorrectly cleared.
410 */
411 static void clearAllSharedCacheTableLocks(Btree *p){
412   BtShared *pBt = p->pBt;
413   BtLock **ppIter = &pBt->pLock;
414 
415   assert( sqlite3BtreeHoldsMutex(p) );
416   assert( p->sharable || 0==*ppIter );
417   assert( p->inTrans>0 );
418 
419   while( *ppIter ){
420     BtLock *pLock = *ppIter;
421     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
422     assert( pLock->pBtree->inTrans>=pLock->eLock );
423     if( pLock->pBtree==p ){
424       *ppIter = pLock->pNext;
425       assert( pLock->iTable!=1 || pLock==&p->lock );
426       if( pLock->iTable!=1 ){
427         sqlite3_free(pLock);
428       }
429     }else{
430       ppIter = &pLock->pNext;
431     }
432   }
433 
434   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
435   if( pBt->pWriter==p ){
436     pBt->pWriter = 0;
437     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
438   }else if( pBt->nTransaction==2 ){
439     /* This function is called when Btree p is concluding its
440     ** transaction. If there currently exists a writer, and p is not
441     ** that writer, then the number of locks held by connections other
442     ** than the writer must be about to drop to zero. In this case
443     ** set the BTS_PENDING flag to 0.
444     **
445     ** If there is not currently a writer, then BTS_PENDING must
446     ** be zero already. So this next line is harmless in that case.
447     */
448     pBt->btsFlags &= ~BTS_PENDING;
449   }
450 }
451 
452 /*
453 ** This function changes all write-locks held by Btree p into read-locks.
454 */
455 static void downgradeAllSharedCacheTableLocks(Btree *p){
456   BtShared *pBt = p->pBt;
457   if( pBt->pWriter==p ){
458     BtLock *pLock;
459     pBt->pWriter = 0;
460     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
461     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463       pLock->eLock = READ_LOCK;
464     }
465   }
466 }
467 
468 #endif /* SQLITE_OMIT_SHARED_CACHE */
469 
470 static void releasePage(MemPage *pPage);         /* Forward reference */
471 static void releasePageOne(MemPage *pPage);      /* Forward reference */
472 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
473 
474 /*
475 ***** This routine is used inside of assert() only ****
476 **
477 ** Verify that the cursor holds the mutex on its BtShared
478 */
479 #ifdef SQLITE_DEBUG
480 static int cursorHoldsMutex(BtCursor *p){
481   return sqlite3_mutex_held(p->pBt->mutex);
482 }
483 
484 /* Verify that the cursor and the BtShared agree about what is the current
485 ** database connetion. This is important in shared-cache mode. If the database
486 ** connection pointers get out-of-sync, it is possible for routines like
487 ** btreeInitPage() to reference an stale connection pointer that references a
488 ** a connection that has already closed.  This routine is used inside assert()
489 ** statements only and for the purpose of double-checking that the btree code
490 ** does keep the database connection pointers up-to-date.
491 */
492 static int cursorOwnsBtShared(BtCursor *p){
493   assert( cursorHoldsMutex(p) );
494   return (p->pBtree->db==p->pBt->db);
495 }
496 #endif
497 
498 /*
499 ** Invalidate the overflow cache of the cursor passed as the first argument.
500 ** on the shared btree structure pBt.
501 */
502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
503 
504 /*
505 ** Invalidate the overflow page-list cache for all cursors opened
506 ** on the shared btree structure pBt.
507 */
508 static void invalidateAllOverflowCache(BtShared *pBt){
509   BtCursor *p;
510   assert( sqlite3_mutex_held(pBt->mutex) );
511   for(p=pBt->pCursor; p; p=p->pNext){
512     invalidateOverflowCache(p);
513   }
514 }
515 
516 #ifndef SQLITE_OMIT_INCRBLOB
517 /*
518 ** This function is called before modifying the contents of a table
519 ** to invalidate any incrblob cursors that are open on the
520 ** row or one of the rows being modified.
521 **
522 ** If argument isClearTable is true, then the entire contents of the
523 ** table is about to be deleted. In this case invalidate all incrblob
524 ** cursors open on any row within the table with root-page pgnoRoot.
525 **
526 ** Otherwise, if argument isClearTable is false, then the row with
527 ** rowid iRow is being replaced or deleted. In this case invalidate
528 ** only those incrblob cursors open on that specific row.
529 */
530 static void invalidateIncrblobCursors(
531   Btree *pBtree,          /* The database file to check */
532   Pgno pgnoRoot,          /* The table that might be changing */
533   i64 iRow,               /* The rowid that might be changing */
534   int isClearTable        /* True if all rows are being deleted */
535 ){
536   BtCursor *p;
537   if( pBtree->hasIncrblobCur==0 ) return;
538   assert( sqlite3BtreeHoldsMutex(pBtree) );
539   pBtree->hasIncrblobCur = 0;
540   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541     if( (p->curFlags & BTCF_Incrblob)!=0 ){
542       pBtree->hasIncrblobCur = 1;
543       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
544         p->eState = CURSOR_INVALID;
545       }
546     }
547   }
548 }
549 
550 #else
551   /* Stub function when INCRBLOB is omitted */
552   #define invalidateIncrblobCursors(w,x,y,z)
553 #endif /* SQLITE_OMIT_INCRBLOB */
554 
555 /*
556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557 ** when a page that previously contained data becomes a free-list leaf
558 ** page.
559 **
560 ** The BtShared.pHasContent bitvec exists to work around an obscure
561 ** bug caused by the interaction of two useful IO optimizations surrounding
562 ** free-list leaf pages:
563 **
564 **   1) When all data is deleted from a page and the page becomes
565 **      a free-list leaf page, the page is not written to the database
566 **      (as free-list leaf pages contain no meaningful data). Sometimes
567 **      such a page is not even journalled (as it will not be modified,
568 **      why bother journalling it?).
569 **
570 **   2) When a free-list leaf page is reused, its content is not read
571 **      from the database or written to the journal file (why should it
572 **      be, if it is not at all meaningful?).
573 **
574 ** By themselves, these optimizations work fine and provide a handy
575 ** performance boost to bulk delete or insert operations. However, if
576 ** a page is moved to the free-list and then reused within the same
577 ** transaction, a problem comes up. If the page is not journalled when
578 ** it is moved to the free-list and it is also not journalled when it
579 ** is extracted from the free-list and reused, then the original data
580 ** may be lost. In the event of a rollback, it may not be possible
581 ** to restore the database to its original configuration.
582 **
583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584 ** moved to become a free-list leaf page, the corresponding bit is
585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
586 ** optimization 2 above is omitted if the corresponding bit is already
587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
588 ** at the end of every transaction.
589 */
590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591   int rc = SQLITE_OK;
592   if( !pBt->pHasContent ){
593     assert( pgno<=pBt->nPage );
594     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
595     if( !pBt->pHasContent ){
596       rc = SQLITE_NOMEM_BKPT;
597     }
598   }
599   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601   }
602   return rc;
603 }
604 
605 /*
606 ** Query the BtShared.pHasContent vector.
607 **
608 ** This function is called when a free-list leaf page is removed from the
609 ** free-list for reuse. It returns false if it is safe to retrieve the
610 ** page from the pager layer with the 'no-content' flag set. True otherwise.
611 */
612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613   Bitvec *p = pBt->pHasContent;
614   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615 }
616 
617 /*
618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619 ** invoked at the conclusion of each write-transaction.
620 */
621 static void btreeClearHasContent(BtShared *pBt){
622   sqlite3BitvecDestroy(pBt->pHasContent);
623   pBt->pHasContent = 0;
624 }
625 
626 /*
627 ** Release all of the apPage[] pages for a cursor.
628 */
629 static void btreeReleaseAllCursorPages(BtCursor *pCur){
630   int i;
631   if( pCur->iPage>=0 ){
632     for(i=0; i<pCur->iPage; i++){
633       releasePageNotNull(pCur->apPage[i]);
634     }
635     releasePageNotNull(pCur->pPage);
636     pCur->iPage = -1;
637   }
638 }
639 
640 /*
641 ** The cursor passed as the only argument must point to a valid entry
642 ** when this function is called (i.e. have eState==CURSOR_VALID). This
643 ** function saves the current cursor key in variables pCur->nKey and
644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645 ** code otherwise.
646 **
647 ** If the cursor is open on an intkey table, then the integer key
648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650 ** set to point to a malloced buffer pCur->nKey bytes in size containing
651 ** the key.
652 */
653 static int saveCursorKey(BtCursor *pCur){
654   int rc = SQLITE_OK;
655   assert( CURSOR_VALID==pCur->eState );
656   assert( 0==pCur->pKey );
657   assert( cursorHoldsMutex(pCur) );
658 
659   if( pCur->curIntKey ){
660     /* Only the rowid is required for a table btree */
661     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662   }else{
663     /* For an index btree, save the complete key content. It is possible
664     ** that the current key is corrupt. In that case, it is possible that
665     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666     ** up to the size of 1 varint plus 1 8-byte value when the cursor
667     ** position is restored. Hence the 17 bytes of padding allocated
668     ** below. */
669     void *pKey;
670     pCur->nKey = sqlite3BtreePayloadSize(pCur);
671     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
672     if( pKey ){
673       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
674       if( rc==SQLITE_OK ){
675         pCur->pKey = pKey;
676       }else{
677         sqlite3_free(pKey);
678       }
679     }else{
680       rc = SQLITE_NOMEM_BKPT;
681     }
682   }
683   assert( !pCur->curIntKey || !pCur->pKey );
684   return rc;
685 }
686 
687 /*
688 ** Save the current cursor position in the variables BtCursor.nKey
689 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
690 **
691 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
692 ** prior to calling this routine.
693 */
694 static int saveCursorPosition(BtCursor *pCur){
695   int rc;
696 
697   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
698   assert( 0==pCur->pKey );
699   assert( cursorHoldsMutex(pCur) );
700 
701   if( pCur->eState==CURSOR_SKIPNEXT ){
702     pCur->eState = CURSOR_VALID;
703   }else{
704     pCur->skipNext = 0;
705   }
706 
707   rc = saveCursorKey(pCur);
708   if( rc==SQLITE_OK ){
709     btreeReleaseAllCursorPages(pCur);
710     pCur->eState = CURSOR_REQUIRESEEK;
711   }
712 
713   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
714   return rc;
715 }
716 
717 /* Forward reference */
718 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
719 
720 /*
721 ** Save the positions of all cursors (except pExcept) that are open on
722 ** the table with root-page iRoot.  "Saving the cursor position" means that
723 ** the location in the btree is remembered in such a way that it can be
724 ** moved back to the same spot after the btree has been modified.  This
725 ** routine is called just before cursor pExcept is used to modify the
726 ** table, for example in BtreeDelete() or BtreeInsert().
727 **
728 ** If there are two or more cursors on the same btree, then all such
729 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
730 ** routine enforces that rule.  This routine only needs to be called in
731 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
732 **
733 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
734 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
735 ** pointless call to this routine.
736 **
737 ** Implementation note:  This routine merely checks to see if any cursors
738 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
739 ** event that cursors are in need to being saved.
740 */
741 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
742   BtCursor *p;
743   assert( sqlite3_mutex_held(pBt->mutex) );
744   assert( pExcept==0 || pExcept->pBt==pBt );
745   for(p=pBt->pCursor; p; p=p->pNext){
746     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
747   }
748   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
749   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
750   return SQLITE_OK;
751 }
752 
753 /* This helper routine to saveAllCursors does the actual work of saving
754 ** the cursors if and when a cursor is found that actually requires saving.
755 ** The common case is that no cursors need to be saved, so this routine is
756 ** broken out from its caller to avoid unnecessary stack pointer movement.
757 */
758 static int SQLITE_NOINLINE saveCursorsOnList(
759   BtCursor *p,         /* The first cursor that needs saving */
760   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
761   BtCursor *pExcept    /* Do not save this cursor */
762 ){
763   do{
764     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
765       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
766         int rc = saveCursorPosition(p);
767         if( SQLITE_OK!=rc ){
768           return rc;
769         }
770       }else{
771         testcase( p->iPage>=0 );
772         btreeReleaseAllCursorPages(p);
773       }
774     }
775     p = p->pNext;
776   }while( p );
777   return SQLITE_OK;
778 }
779 
780 /*
781 ** Clear the current cursor position.
782 */
783 void sqlite3BtreeClearCursor(BtCursor *pCur){
784   assert( cursorHoldsMutex(pCur) );
785   sqlite3_free(pCur->pKey);
786   pCur->pKey = 0;
787   pCur->eState = CURSOR_INVALID;
788 }
789 
790 /*
791 ** In this version of BtreeMoveto, pKey is a packed index record
792 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
793 ** record and then call BtreeMovetoUnpacked() to do the work.
794 */
795 static int btreeMoveto(
796   BtCursor *pCur,     /* Cursor open on the btree to be searched */
797   const void *pKey,   /* Packed key if the btree is an index */
798   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
799   int bias,           /* Bias search to the high end */
800   int *pRes           /* Write search results here */
801 ){
802   int rc;                    /* Status code */
803   UnpackedRecord *pIdxKey;   /* Unpacked index key */
804 
805   if( pKey ){
806     assert( nKey==(i64)(int)nKey );
807     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
808     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
809     sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
810     if( pIdxKey->nField==0 ){
811       rc = SQLITE_CORRUPT_BKPT;
812       goto moveto_done;
813     }
814   }else{
815     pIdxKey = 0;
816   }
817   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
818 moveto_done:
819   if( pIdxKey ){
820     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
821   }
822   return rc;
823 }
824 
825 /*
826 ** Restore the cursor to the position it was in (or as close to as possible)
827 ** when saveCursorPosition() was called. Note that this call deletes the
828 ** saved position info stored by saveCursorPosition(), so there can be
829 ** at most one effective restoreCursorPosition() call after each
830 ** saveCursorPosition().
831 */
832 static int btreeRestoreCursorPosition(BtCursor *pCur){
833   int rc;
834   int skipNext;
835   assert( cursorOwnsBtShared(pCur) );
836   assert( pCur->eState>=CURSOR_REQUIRESEEK );
837   if( pCur->eState==CURSOR_FAULT ){
838     return pCur->skipNext;
839   }
840   pCur->eState = CURSOR_INVALID;
841   rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
842   if( rc==SQLITE_OK ){
843     sqlite3_free(pCur->pKey);
844     pCur->pKey = 0;
845     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
846     pCur->skipNext |= skipNext;
847     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
848       pCur->eState = CURSOR_SKIPNEXT;
849     }
850   }
851   return rc;
852 }
853 
854 #define restoreCursorPosition(p) \
855   (p->eState>=CURSOR_REQUIRESEEK ? \
856          btreeRestoreCursorPosition(p) : \
857          SQLITE_OK)
858 
859 /*
860 ** Determine whether or not a cursor has moved from the position where
861 ** it was last placed, or has been invalidated for any other reason.
862 ** Cursors can move when the row they are pointing at is deleted out
863 ** from under them, for example.  Cursor might also move if a btree
864 ** is rebalanced.
865 **
866 ** Calling this routine with a NULL cursor pointer returns false.
867 **
868 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
869 ** back to where it ought to be if this routine returns true.
870 */
871 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
872   assert( EIGHT_BYTE_ALIGNMENT(pCur)
873        || pCur==sqlite3BtreeFakeValidCursor() );
874   assert( offsetof(BtCursor, eState)==0 );
875   assert( sizeof(pCur->eState)==1 );
876   return CURSOR_VALID != *(u8*)pCur;
877 }
878 
879 /*
880 ** Return a pointer to a fake BtCursor object that will always answer
881 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
882 ** cursor returned must not be used with any other Btree interface.
883 */
884 BtCursor *sqlite3BtreeFakeValidCursor(void){
885   static u8 fakeCursor = CURSOR_VALID;
886   assert( offsetof(BtCursor, eState)==0 );
887   return (BtCursor*)&fakeCursor;
888 }
889 
890 /*
891 ** This routine restores a cursor back to its original position after it
892 ** has been moved by some outside activity (such as a btree rebalance or
893 ** a row having been deleted out from under the cursor).
894 **
895 ** On success, the *pDifferentRow parameter is false if the cursor is left
896 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
897 ** was pointing to has been deleted, forcing the cursor to point to some
898 ** nearby row.
899 **
900 ** This routine should only be called for a cursor that just returned
901 ** TRUE from sqlite3BtreeCursorHasMoved().
902 */
903 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
904   int rc;
905 
906   assert( pCur!=0 );
907   assert( pCur->eState!=CURSOR_VALID );
908   rc = restoreCursorPosition(pCur);
909   if( rc ){
910     *pDifferentRow = 1;
911     return rc;
912   }
913   if( pCur->eState!=CURSOR_VALID ){
914     *pDifferentRow = 1;
915   }else{
916     assert( pCur->skipNext==0 );
917     *pDifferentRow = 0;
918   }
919   return SQLITE_OK;
920 }
921 
922 #ifdef SQLITE_ENABLE_CURSOR_HINTS
923 /*
924 ** Provide hints to the cursor.  The particular hint given (and the type
925 ** and number of the varargs parameters) is determined by the eHintType
926 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
927 */
928 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
929   /* Used only by system that substitute their own storage engine */
930 }
931 #endif
932 
933 /*
934 ** Provide flag hints to the cursor.
935 */
936 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
937   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
938   pCur->hints = x;
939 }
940 
941 
942 #ifndef SQLITE_OMIT_AUTOVACUUM
943 /*
944 ** Given a page number of a regular database page, return the page
945 ** number for the pointer-map page that contains the entry for the
946 ** input page number.
947 **
948 ** Return 0 (not a valid page) for pgno==1 since there is
949 ** no pointer map associated with page 1.  The integrity_check logic
950 ** requires that ptrmapPageno(*,1)!=1.
951 */
952 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
953   int nPagesPerMapPage;
954   Pgno iPtrMap, ret;
955   assert( sqlite3_mutex_held(pBt->mutex) );
956   if( pgno<2 ) return 0;
957   nPagesPerMapPage = (pBt->usableSize/5)+1;
958   iPtrMap = (pgno-2)/nPagesPerMapPage;
959   ret = (iPtrMap*nPagesPerMapPage) + 2;
960   if( ret==PENDING_BYTE_PAGE(pBt) ){
961     ret++;
962   }
963   return ret;
964 }
965 
966 /*
967 ** Write an entry into the pointer map.
968 **
969 ** This routine updates the pointer map entry for page number 'key'
970 ** so that it maps to type 'eType' and parent page number 'pgno'.
971 **
972 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
973 ** a no-op.  If an error occurs, the appropriate error code is written
974 ** into *pRC.
975 */
976 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
977   DbPage *pDbPage;  /* The pointer map page */
978   u8 *pPtrmap;      /* The pointer map data */
979   Pgno iPtrmap;     /* The pointer map page number */
980   int offset;       /* Offset in pointer map page */
981   int rc;           /* Return code from subfunctions */
982 
983   if( *pRC ) return;
984 
985   assert( sqlite3_mutex_held(pBt->mutex) );
986   /* The master-journal page number must never be used as a pointer map page */
987   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
988 
989   assert( pBt->autoVacuum );
990   if( key==0 ){
991     *pRC = SQLITE_CORRUPT_BKPT;
992     return;
993   }
994   iPtrmap = PTRMAP_PAGENO(pBt, key);
995   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
996   if( rc!=SQLITE_OK ){
997     *pRC = rc;
998     return;
999   }
1000   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1001     /* The first byte of the extra data is the MemPage.isInit byte.
1002     ** If that byte is set, it means this page is also being used
1003     ** as a btree page. */
1004     *pRC = SQLITE_CORRUPT_BKPT;
1005     goto ptrmap_exit;
1006   }
1007   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1008   if( offset<0 ){
1009     *pRC = SQLITE_CORRUPT_BKPT;
1010     goto ptrmap_exit;
1011   }
1012   assert( offset <= (int)pBt->usableSize-5 );
1013   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1014 
1015   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1016     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1017     *pRC= rc = sqlite3PagerWrite(pDbPage);
1018     if( rc==SQLITE_OK ){
1019       pPtrmap[offset] = eType;
1020       put4byte(&pPtrmap[offset+1], parent);
1021     }
1022   }
1023 
1024 ptrmap_exit:
1025   sqlite3PagerUnref(pDbPage);
1026 }
1027 
1028 /*
1029 ** Read an entry from the pointer map.
1030 **
1031 ** This routine retrieves the pointer map entry for page 'key', writing
1032 ** the type and parent page number to *pEType and *pPgno respectively.
1033 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1034 */
1035 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1036   DbPage *pDbPage;   /* The pointer map page */
1037   int iPtrmap;       /* Pointer map page index */
1038   u8 *pPtrmap;       /* Pointer map page data */
1039   int offset;        /* Offset of entry in pointer map */
1040   int rc;
1041 
1042   assert( sqlite3_mutex_held(pBt->mutex) );
1043 
1044   iPtrmap = PTRMAP_PAGENO(pBt, key);
1045   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1046   if( rc!=0 ){
1047     return rc;
1048   }
1049   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1050 
1051   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1052   if( offset<0 ){
1053     sqlite3PagerUnref(pDbPage);
1054     return SQLITE_CORRUPT_BKPT;
1055   }
1056   assert( offset <= (int)pBt->usableSize-5 );
1057   assert( pEType!=0 );
1058   *pEType = pPtrmap[offset];
1059   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1060 
1061   sqlite3PagerUnref(pDbPage);
1062   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1063   return SQLITE_OK;
1064 }
1065 
1066 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1067   #define ptrmapPut(w,x,y,z,rc)
1068   #define ptrmapGet(w,x,y,z) SQLITE_OK
1069   #define ptrmapPutOvflPtr(x, y, rc)
1070 #endif
1071 
1072 /*
1073 ** Given a btree page and a cell index (0 means the first cell on
1074 ** the page, 1 means the second cell, and so forth) return a pointer
1075 ** to the cell content.
1076 **
1077 ** findCellPastPtr() does the same except it skips past the initial
1078 ** 4-byte child pointer found on interior pages, if there is one.
1079 **
1080 ** This routine works only for pages that do not contain overflow cells.
1081 */
1082 #define findCell(P,I) \
1083   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1084 #define findCellPastPtr(P,I) \
1085   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1086 
1087 
1088 /*
1089 ** This is common tail processing for btreeParseCellPtr() and
1090 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1091 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1092 ** structure.
1093 */
1094 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1095   MemPage *pPage,         /* Page containing the cell */
1096   u8 *pCell,              /* Pointer to the cell text. */
1097   CellInfo *pInfo         /* Fill in this structure */
1098 ){
1099   /* If the payload will not fit completely on the local page, we have
1100   ** to decide how much to store locally and how much to spill onto
1101   ** overflow pages.  The strategy is to minimize the amount of unused
1102   ** space on overflow pages while keeping the amount of local storage
1103   ** in between minLocal and maxLocal.
1104   **
1105   ** Warning:  changing the way overflow payload is distributed in any
1106   ** way will result in an incompatible file format.
1107   */
1108   int minLocal;  /* Minimum amount of payload held locally */
1109   int maxLocal;  /* Maximum amount of payload held locally */
1110   int surplus;   /* Overflow payload available for local storage */
1111 
1112   minLocal = pPage->minLocal;
1113   maxLocal = pPage->maxLocal;
1114   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1115   testcase( surplus==maxLocal );
1116   testcase( surplus==maxLocal+1 );
1117   if( surplus <= maxLocal ){
1118     pInfo->nLocal = (u16)surplus;
1119   }else{
1120     pInfo->nLocal = (u16)minLocal;
1121   }
1122   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1123 }
1124 
1125 /*
1126 ** The following routines are implementations of the MemPage.xParseCell()
1127 ** method.
1128 **
1129 ** Parse a cell content block and fill in the CellInfo structure.
1130 **
1131 ** btreeParseCellPtr()        =>   table btree leaf nodes
1132 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1133 ** btreeParseCellPtrIndex()   =>   index btree nodes
1134 **
1135 ** There is also a wrapper function btreeParseCell() that works for
1136 ** all MemPage types and that references the cell by index rather than
1137 ** by pointer.
1138 */
1139 static void btreeParseCellPtrNoPayload(
1140   MemPage *pPage,         /* Page containing the cell */
1141   u8 *pCell,              /* Pointer to the cell text. */
1142   CellInfo *pInfo         /* Fill in this structure */
1143 ){
1144   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1145   assert( pPage->leaf==0 );
1146   assert( pPage->childPtrSize==4 );
1147 #ifndef SQLITE_DEBUG
1148   UNUSED_PARAMETER(pPage);
1149 #endif
1150   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1151   pInfo->nPayload = 0;
1152   pInfo->nLocal = 0;
1153   pInfo->pPayload = 0;
1154   return;
1155 }
1156 static void btreeParseCellPtr(
1157   MemPage *pPage,         /* Page containing the cell */
1158   u8 *pCell,              /* Pointer to the cell text. */
1159   CellInfo *pInfo         /* Fill in this structure */
1160 ){
1161   u8 *pIter;              /* For scanning through pCell */
1162   u32 nPayload;           /* Number of bytes of cell payload */
1163   u64 iKey;               /* Extracted Key value */
1164 
1165   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1166   assert( pPage->leaf==0 || pPage->leaf==1 );
1167   assert( pPage->intKeyLeaf );
1168   assert( pPage->childPtrSize==0 );
1169   pIter = pCell;
1170 
1171   /* The next block of code is equivalent to:
1172   **
1173   **     pIter += getVarint32(pIter, nPayload);
1174   **
1175   ** The code is inlined to avoid a function call.
1176   */
1177   nPayload = *pIter;
1178   if( nPayload>=0x80 ){
1179     u8 *pEnd = &pIter[8];
1180     nPayload &= 0x7f;
1181     do{
1182       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1183     }while( (*pIter)>=0x80 && pIter<pEnd );
1184   }
1185   pIter++;
1186 
1187   /* The next block of code is equivalent to:
1188   **
1189   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1190   **
1191   ** The code is inlined to avoid a function call.
1192   */
1193   iKey = *pIter;
1194   if( iKey>=0x80 ){
1195     u8 *pEnd = &pIter[7];
1196     iKey &= 0x7f;
1197     while(1){
1198       iKey = (iKey<<7) | (*++pIter & 0x7f);
1199       if( (*pIter)<0x80 ) break;
1200       if( pIter>=pEnd ){
1201         iKey = (iKey<<8) | *++pIter;
1202         break;
1203       }
1204     }
1205   }
1206   pIter++;
1207 
1208   pInfo->nKey = *(i64*)&iKey;
1209   pInfo->nPayload = nPayload;
1210   pInfo->pPayload = pIter;
1211   testcase( nPayload==pPage->maxLocal );
1212   testcase( nPayload==pPage->maxLocal+1 );
1213   if( nPayload<=pPage->maxLocal ){
1214     /* This is the (easy) common case where the entire payload fits
1215     ** on the local page.  No overflow is required.
1216     */
1217     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1218     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1219     pInfo->nLocal = (u16)nPayload;
1220   }else{
1221     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1222   }
1223 }
1224 static void btreeParseCellPtrIndex(
1225   MemPage *pPage,         /* Page containing the cell */
1226   u8 *pCell,              /* Pointer to the cell text. */
1227   CellInfo *pInfo         /* Fill in this structure */
1228 ){
1229   u8 *pIter;              /* For scanning through pCell */
1230   u32 nPayload;           /* Number of bytes of cell payload */
1231 
1232   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1233   assert( pPage->leaf==0 || pPage->leaf==1 );
1234   assert( pPage->intKeyLeaf==0 );
1235   pIter = pCell + pPage->childPtrSize;
1236   nPayload = *pIter;
1237   if( nPayload>=0x80 ){
1238     u8 *pEnd = &pIter[8];
1239     nPayload &= 0x7f;
1240     do{
1241       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1242     }while( *(pIter)>=0x80 && pIter<pEnd );
1243   }
1244   pIter++;
1245   pInfo->nKey = nPayload;
1246   pInfo->nPayload = nPayload;
1247   pInfo->pPayload = pIter;
1248   testcase( nPayload==pPage->maxLocal );
1249   testcase( nPayload==pPage->maxLocal+1 );
1250   if( nPayload<=pPage->maxLocal ){
1251     /* This is the (easy) common case where the entire payload fits
1252     ** on the local page.  No overflow is required.
1253     */
1254     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1255     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1256     pInfo->nLocal = (u16)nPayload;
1257   }else{
1258     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1259   }
1260 }
1261 static void btreeParseCell(
1262   MemPage *pPage,         /* Page containing the cell */
1263   int iCell,              /* The cell index.  First cell is 0 */
1264   CellInfo *pInfo         /* Fill in this structure */
1265 ){
1266   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1267 }
1268 
1269 /*
1270 ** The following routines are implementations of the MemPage.xCellSize
1271 ** method.
1272 **
1273 ** Compute the total number of bytes that a Cell needs in the cell
1274 ** data area of the btree-page.  The return number includes the cell
1275 ** data header and the local payload, but not any overflow page or
1276 ** the space used by the cell pointer.
1277 **
1278 ** cellSizePtrNoPayload()    =>   table internal nodes
1279 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1280 */
1281 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1282   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1283   u8 *pEnd;                                /* End mark for a varint */
1284   u32 nSize;                               /* Size value to return */
1285 
1286 #ifdef SQLITE_DEBUG
1287   /* The value returned by this function should always be the same as
1288   ** the (CellInfo.nSize) value found by doing a full parse of the
1289   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1290   ** this function verifies that this invariant is not violated. */
1291   CellInfo debuginfo;
1292   pPage->xParseCell(pPage, pCell, &debuginfo);
1293 #endif
1294 
1295   nSize = *pIter;
1296   if( nSize>=0x80 ){
1297     pEnd = &pIter[8];
1298     nSize &= 0x7f;
1299     do{
1300       nSize = (nSize<<7) | (*++pIter & 0x7f);
1301     }while( *(pIter)>=0x80 && pIter<pEnd );
1302   }
1303   pIter++;
1304   if( pPage->intKey ){
1305     /* pIter now points at the 64-bit integer key value, a variable length
1306     ** integer. The following block moves pIter to point at the first byte
1307     ** past the end of the key value. */
1308     pEnd = &pIter[9];
1309     while( (*pIter++)&0x80 && pIter<pEnd );
1310   }
1311   testcase( nSize==pPage->maxLocal );
1312   testcase( nSize==pPage->maxLocal+1 );
1313   if( nSize<=pPage->maxLocal ){
1314     nSize += (u32)(pIter - pCell);
1315     if( nSize<4 ) nSize = 4;
1316   }else{
1317     int minLocal = pPage->minLocal;
1318     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1319     testcase( nSize==pPage->maxLocal );
1320     testcase( nSize==pPage->maxLocal+1 );
1321     if( nSize>pPage->maxLocal ){
1322       nSize = minLocal;
1323     }
1324     nSize += 4 + (u16)(pIter - pCell);
1325   }
1326   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1327   return (u16)nSize;
1328 }
1329 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1330   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1331   u8 *pEnd;              /* End mark for a varint */
1332 
1333 #ifdef SQLITE_DEBUG
1334   /* The value returned by this function should always be the same as
1335   ** the (CellInfo.nSize) value found by doing a full parse of the
1336   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1337   ** this function verifies that this invariant is not violated. */
1338   CellInfo debuginfo;
1339   pPage->xParseCell(pPage, pCell, &debuginfo);
1340 #else
1341   UNUSED_PARAMETER(pPage);
1342 #endif
1343 
1344   assert( pPage->childPtrSize==4 );
1345   pEnd = pIter + 9;
1346   while( (*pIter++)&0x80 && pIter<pEnd );
1347   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1348   return (u16)(pIter - pCell);
1349 }
1350 
1351 
1352 #ifdef SQLITE_DEBUG
1353 /* This variation on cellSizePtr() is used inside of assert() statements
1354 ** only. */
1355 static u16 cellSize(MemPage *pPage, int iCell){
1356   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1357 }
1358 #endif
1359 
1360 #ifndef SQLITE_OMIT_AUTOVACUUM
1361 /*
1362 ** If the cell pCell, part of page pPage contains a pointer
1363 ** to an overflow page, insert an entry into the pointer-map
1364 ** for the overflow page.
1365 */
1366 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1367   CellInfo info;
1368   if( *pRC ) return;
1369   assert( pCell!=0 );
1370   pPage->xParseCell(pPage, pCell, &info);
1371   if( info.nLocal<info.nPayload ){
1372     Pgno ovfl;
1373     if( SQLITE_WITHIN(pPage->aDataEnd, pCell, pCell+info.nLocal) ){
1374       *pRC = SQLITE_CORRUPT_BKPT;
1375       return;
1376     }
1377     ovfl = get4byte(&pCell[info.nSize-4]);
1378     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1379   }
1380 }
1381 #endif
1382 
1383 
1384 /*
1385 ** Defragment the page given. This routine reorganizes cells within the
1386 ** page so that there are no free-blocks on the free-block list.
1387 **
1388 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1389 ** present in the page after this routine returns.
1390 **
1391 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1392 ** b-tree page so that there are no freeblocks or fragment bytes, all
1393 ** unused bytes are contained in the unallocated space region, and all
1394 ** cells are packed tightly at the end of the page.
1395 */
1396 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1397   int i;                     /* Loop counter */
1398   int pc;                    /* Address of the i-th cell */
1399   int hdr;                   /* Offset to the page header */
1400   int size;                  /* Size of a cell */
1401   int usableSize;            /* Number of usable bytes on a page */
1402   int cellOffset;            /* Offset to the cell pointer array */
1403   int cbrk;                  /* Offset to the cell content area */
1404   int nCell;                 /* Number of cells on the page */
1405   unsigned char *data;       /* The page data */
1406   unsigned char *temp;       /* Temp area for cell content */
1407   unsigned char *src;        /* Source of content */
1408   int iCellFirst;            /* First allowable cell index */
1409   int iCellLast;             /* Last possible cell index */
1410 
1411   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1412   assert( pPage->pBt!=0 );
1413   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1414   assert( pPage->nOverflow==0 );
1415   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1416   temp = 0;
1417   src = data = pPage->aData;
1418   hdr = pPage->hdrOffset;
1419   cellOffset = pPage->cellOffset;
1420   nCell = pPage->nCell;
1421   assert( nCell==get2byte(&data[hdr+3]) );
1422   iCellFirst = cellOffset + 2*nCell;
1423   usableSize = pPage->pBt->usableSize;
1424 
1425   /* This block handles pages with two or fewer free blocks and nMaxFrag
1426   ** or fewer fragmented bytes. In this case it is faster to move the
1427   ** two (or one) blocks of cells using memmove() and add the required
1428   ** offsets to each pointer in the cell-pointer array than it is to
1429   ** reconstruct the entire page.  */
1430   if( (int)data[hdr+7]<=nMaxFrag ){
1431     int iFree = get2byte(&data[hdr+1]);
1432 
1433     /* If the initial freeblock offset were out of bounds, that would
1434     ** have been detected by btreeInitPage() when it was computing the
1435     ** number of free bytes on the page. */
1436     assert( iFree<=usableSize-4 );
1437     if( iFree ){
1438       int iFree2 = get2byte(&data[iFree]);
1439       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1440       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1441         u8 *pEnd = &data[cellOffset + nCell*2];
1442         u8 *pAddr;
1443         int sz2 = 0;
1444         int sz = get2byte(&data[iFree+2]);
1445         int top = get2byte(&data[hdr+5]);
1446         if( top>=iFree ){
1447           return SQLITE_CORRUPT_PAGE(pPage);
1448         }
1449         if( iFree2 ){
1450           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1451           sz2 = get2byte(&data[iFree2+2]);
1452           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1453           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1454           sz += sz2;
1455         }
1456         cbrk = top+sz;
1457         assert( cbrk+(iFree-top) <= usableSize );
1458         memmove(&data[cbrk], &data[top], iFree-top);
1459         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1460           pc = get2byte(pAddr);
1461           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1462           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1463         }
1464         goto defragment_out;
1465       }
1466     }
1467   }
1468 
1469   cbrk = usableSize;
1470   iCellLast = usableSize - 4;
1471   for(i=0; i<nCell; i++){
1472     u8 *pAddr;     /* The i-th cell pointer */
1473     pAddr = &data[cellOffset + i*2];
1474     pc = get2byte(pAddr);
1475     testcase( pc==iCellFirst );
1476     testcase( pc==iCellLast );
1477     /* These conditions have already been verified in btreeInitPage()
1478     ** if PRAGMA cell_size_check=ON.
1479     */
1480     if( pc<iCellFirst || pc>iCellLast ){
1481       return SQLITE_CORRUPT_PAGE(pPage);
1482     }
1483     assert( pc>=iCellFirst && pc<=iCellLast );
1484     size = pPage->xCellSize(pPage, &src[pc]);
1485     cbrk -= size;
1486     if( cbrk<iCellFirst || pc+size>usableSize ){
1487       return SQLITE_CORRUPT_PAGE(pPage);
1488     }
1489     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1490     testcase( cbrk+size==usableSize );
1491     testcase( pc+size==usableSize );
1492     put2byte(pAddr, cbrk);
1493     if( temp==0 ){
1494       int x;
1495       if( cbrk==pc ) continue;
1496       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1497       x = get2byte(&data[hdr+5]);
1498       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1499       src = temp;
1500     }
1501     memcpy(&data[cbrk], &src[pc], size);
1502   }
1503   data[hdr+7] = 0;
1504 
1505  defragment_out:
1506   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1507     return SQLITE_CORRUPT_PAGE(pPage);
1508   }
1509   assert( cbrk>=iCellFirst );
1510   put2byte(&data[hdr+5], cbrk);
1511   data[hdr+1] = 0;
1512   data[hdr+2] = 0;
1513   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1514   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1515   return SQLITE_OK;
1516 }
1517 
1518 /*
1519 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1520 ** size. If one can be found, return a pointer to the space and remove it
1521 ** from the free-list.
1522 **
1523 ** If no suitable space can be found on the free-list, return NULL.
1524 **
1525 ** This function may detect corruption within pPg.  If corruption is
1526 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1527 **
1528 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1529 ** will be ignored if adding the extra space to the fragmentation count
1530 ** causes the fragmentation count to exceed 60.
1531 */
1532 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1533   const int hdr = pPg->hdrOffset;
1534   u8 * const aData = pPg->aData;
1535   int iAddr = hdr + 1;
1536   int pc = get2byte(&aData[iAddr]);
1537   int x;
1538   int usableSize = pPg->pBt->usableSize;
1539   int size;            /* Size of the free slot */
1540 
1541   assert( pc>0 );
1542   while( pc<=usableSize-4 ){
1543     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1544     ** freeblock form a big-endian integer which is the size of the freeblock
1545     ** in bytes, including the 4-byte header. */
1546     size = get2byte(&aData[pc+2]);
1547     if( (x = size - nByte)>=0 ){
1548       testcase( x==4 );
1549       testcase( x==3 );
1550       if( size+pc > usableSize ){
1551         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1552         return 0;
1553       }else if( x<4 ){
1554         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1555         ** number of bytes in fragments may not exceed 60. */
1556         if( aData[hdr+7]>57 ) return 0;
1557 
1558         /* Remove the slot from the free-list. Update the number of
1559         ** fragmented bytes within the page. */
1560         memcpy(&aData[iAddr], &aData[pc], 2);
1561         aData[hdr+7] += (u8)x;
1562       }else{
1563         /* The slot remains on the free-list. Reduce its size to account
1564          ** for the portion used by the new allocation. */
1565         put2byte(&aData[pc+2], x);
1566       }
1567       return &aData[pc + x];
1568     }
1569     iAddr = pc;
1570     pc = get2byte(&aData[pc]);
1571     if( pc<iAddr+size ) break;
1572   }
1573   if( pc ){
1574     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1575   }
1576 
1577   return 0;
1578 }
1579 
1580 /*
1581 ** Allocate nByte bytes of space from within the B-Tree page passed
1582 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1583 ** of the first byte of allocated space. Return either SQLITE_OK or
1584 ** an error code (usually SQLITE_CORRUPT).
1585 **
1586 ** The caller guarantees that there is sufficient space to make the
1587 ** allocation.  This routine might need to defragment in order to bring
1588 ** all the space together, however.  This routine will avoid using
1589 ** the first two bytes past the cell pointer area since presumably this
1590 ** allocation is being made in order to insert a new cell, so we will
1591 ** also end up needing a new cell pointer.
1592 */
1593 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1594   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1595   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1596   int top;                             /* First byte of cell content area */
1597   int rc = SQLITE_OK;                  /* Integer return code */
1598   int gap;        /* First byte of gap between cell pointers and cell content */
1599 
1600   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1601   assert( pPage->pBt );
1602   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1603   assert( nByte>=0 );  /* Minimum cell size is 4 */
1604   assert( pPage->nFree>=nByte );
1605   assert( pPage->nOverflow==0 );
1606   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1607 
1608   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1609   gap = pPage->cellOffset + 2*pPage->nCell;
1610   assert( gap<=65536 );
1611   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1612   ** and the reserved space is zero (the usual value for reserved space)
1613   ** then the cell content offset of an empty page wants to be 65536.
1614   ** However, that integer is too large to be stored in a 2-byte unsigned
1615   ** integer, so a value of 0 is used in its place. */
1616   top = get2byte(&data[hdr+5]);
1617   assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1618   if( gap>top ){
1619     if( top==0 && pPage->pBt->usableSize==65536 ){
1620       top = 65536;
1621     }else{
1622       return SQLITE_CORRUPT_PAGE(pPage);
1623     }
1624   }
1625 
1626   /* If there is enough space between gap and top for one more cell pointer
1627   ** array entry offset, and if the freelist is not empty, then search the
1628   ** freelist looking for a free slot big enough to satisfy the request.
1629   */
1630   testcase( gap+2==top );
1631   testcase( gap+1==top );
1632   testcase( gap==top );
1633   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1634     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1635     if( pSpace ){
1636       assert( pSpace>=data && (pSpace - data)<65536 );
1637       *pIdx = (int)(pSpace - data);
1638       return SQLITE_OK;
1639     }else if( rc ){
1640       return rc;
1641     }
1642   }
1643 
1644   /* The request could not be fulfilled using a freelist slot.  Check
1645   ** to see if defragmentation is necessary.
1646   */
1647   testcase( gap+2+nByte==top );
1648   if( gap+2+nByte>top ){
1649     assert( pPage->nCell>0 || CORRUPT_DB );
1650     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1651     if( rc ) return rc;
1652     top = get2byteNotZero(&data[hdr+5]);
1653     assert( gap+2+nByte<=top );
1654   }
1655 
1656 
1657   /* Allocate memory from the gap in between the cell pointer array
1658   ** and the cell content area.  The btreeInitPage() call has already
1659   ** validated the freelist.  Given that the freelist is valid, there
1660   ** is no way that the allocation can extend off the end of the page.
1661   ** The assert() below verifies the previous sentence.
1662   */
1663   top -= nByte;
1664   put2byte(&data[hdr+5], top);
1665   assert( top+nByte <= (int)pPage->pBt->usableSize );
1666   *pIdx = top;
1667   return SQLITE_OK;
1668 }
1669 
1670 /*
1671 ** Return a section of the pPage->aData to the freelist.
1672 ** The first byte of the new free block is pPage->aData[iStart]
1673 ** and the size of the block is iSize bytes.
1674 **
1675 ** Adjacent freeblocks are coalesced.
1676 **
1677 ** Note that even though the freeblock list was checked by btreeInitPage(),
1678 ** that routine will not detect overlap between cells or freeblocks.  Nor
1679 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1680 ** at the end of the page.  So do additional corruption checks inside this
1681 ** routine and return SQLITE_CORRUPT if any problems are found.
1682 */
1683 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1684   u16 iPtr;                             /* Address of ptr to next freeblock */
1685   u16 iFreeBlk;                         /* Address of the next freeblock */
1686   u8 hdr;                               /* Page header size.  0 or 100 */
1687   u8 nFrag = 0;                         /* Reduction in fragmentation */
1688   u16 iOrigSize = iSize;                /* Original value of iSize */
1689   u16 x;                                /* Offset to cell content area */
1690   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1691   unsigned char *data = pPage->aData;   /* Page content */
1692 
1693   assert( pPage->pBt!=0 );
1694   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1695   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1696   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1697   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1698   assert( iSize>=4 );   /* Minimum cell size is 4 */
1699   assert( iStart<=pPage->pBt->usableSize-4 );
1700 
1701   /* The list of freeblocks must be in ascending order.  Find the
1702   ** spot on the list where iStart should be inserted.
1703   */
1704   hdr = pPage->hdrOffset;
1705   iPtr = hdr + 1;
1706   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1707     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1708   }else{
1709     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1710       if( iFreeBlk<iPtr+4 ){
1711         if( iFreeBlk==0 ) break;
1712         return SQLITE_CORRUPT_PAGE(pPage);
1713       }
1714       iPtr = iFreeBlk;
1715     }
1716     if( iFreeBlk>pPage->pBt->usableSize-4 ){
1717       return SQLITE_CORRUPT_PAGE(pPage);
1718     }
1719     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1720 
1721     /* At this point:
1722     **    iFreeBlk:   First freeblock after iStart, or zero if none
1723     **    iPtr:       The address of a pointer to iFreeBlk
1724     **
1725     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1726     */
1727     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1728       nFrag = iFreeBlk - iEnd;
1729       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1730       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1731       if( iEnd > pPage->pBt->usableSize ){
1732         return SQLITE_CORRUPT_PAGE(pPage);
1733       }
1734       iSize = iEnd - iStart;
1735       iFreeBlk = get2byte(&data[iFreeBlk]);
1736     }
1737 
1738     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1739     ** pointer in the page header) then check to see if iStart should be
1740     ** coalesced onto the end of iPtr.
1741     */
1742     if( iPtr>hdr+1 ){
1743       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1744       if( iPtrEnd+3>=iStart ){
1745         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1746         nFrag += iStart - iPtrEnd;
1747         iSize = iEnd - iPtr;
1748         iStart = iPtr;
1749       }
1750     }
1751     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1752     data[hdr+7] -= nFrag;
1753   }
1754   x = get2byte(&data[hdr+5]);
1755   if( iStart<=x ){
1756     /* The new freeblock is at the beginning of the cell content area,
1757     ** so just extend the cell content area rather than create another
1758     ** freelist entry */
1759     if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1760     put2byte(&data[hdr+1], iFreeBlk);
1761     put2byte(&data[hdr+5], iEnd);
1762   }else{
1763     /* Insert the new freeblock into the freelist */
1764     put2byte(&data[iPtr], iStart);
1765   }
1766   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1767     /* Overwrite deleted information with zeros when the secure_delete
1768     ** option is enabled */
1769     memset(&data[iStart], 0, iSize);
1770   }
1771   put2byte(&data[iStart], iFreeBlk);
1772   put2byte(&data[iStart+2], iSize);
1773   pPage->nFree += iOrigSize;
1774   return SQLITE_OK;
1775 }
1776 
1777 /*
1778 ** Decode the flags byte (the first byte of the header) for a page
1779 ** and initialize fields of the MemPage structure accordingly.
1780 **
1781 ** Only the following combinations are supported.  Anything different
1782 ** indicates a corrupt database files:
1783 **
1784 **         PTF_ZERODATA
1785 **         PTF_ZERODATA | PTF_LEAF
1786 **         PTF_LEAFDATA | PTF_INTKEY
1787 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1788 */
1789 static int decodeFlags(MemPage *pPage, int flagByte){
1790   BtShared *pBt;     /* A copy of pPage->pBt */
1791 
1792   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1793   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1794   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1795   flagByte &= ~PTF_LEAF;
1796   pPage->childPtrSize = 4-4*pPage->leaf;
1797   pPage->xCellSize = cellSizePtr;
1798   pBt = pPage->pBt;
1799   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1800     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1801     ** interior table b-tree page. */
1802     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1803     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1804     ** leaf table b-tree page. */
1805     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1806     pPage->intKey = 1;
1807     if( pPage->leaf ){
1808       pPage->intKeyLeaf = 1;
1809       pPage->xParseCell = btreeParseCellPtr;
1810     }else{
1811       pPage->intKeyLeaf = 0;
1812       pPage->xCellSize = cellSizePtrNoPayload;
1813       pPage->xParseCell = btreeParseCellPtrNoPayload;
1814     }
1815     pPage->maxLocal = pBt->maxLeaf;
1816     pPage->minLocal = pBt->minLeaf;
1817   }else if( flagByte==PTF_ZERODATA ){
1818     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1819     ** interior index b-tree page. */
1820     assert( (PTF_ZERODATA)==2 );
1821     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1822     ** leaf index b-tree page. */
1823     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1824     pPage->intKey = 0;
1825     pPage->intKeyLeaf = 0;
1826     pPage->xParseCell = btreeParseCellPtrIndex;
1827     pPage->maxLocal = pBt->maxLocal;
1828     pPage->minLocal = pBt->minLocal;
1829   }else{
1830     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1831     ** an error. */
1832     return SQLITE_CORRUPT_PAGE(pPage);
1833   }
1834   pPage->max1bytePayload = pBt->max1bytePayload;
1835   return SQLITE_OK;
1836 }
1837 
1838 /*
1839 ** Initialize the auxiliary information for a disk block.
1840 **
1841 ** Return SQLITE_OK on success.  If we see that the page does
1842 ** not contain a well-formed database page, then return
1843 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1844 ** guarantee that the page is well-formed.  It only shows that
1845 ** we failed to detect any corruption.
1846 */
1847 static int btreeInitPage(MemPage *pPage){
1848   int pc;            /* Address of a freeblock within pPage->aData[] */
1849   u8 hdr;            /* Offset to beginning of page header */
1850   u8 *data;          /* Equal to pPage->aData */
1851   BtShared *pBt;        /* The main btree structure */
1852   int usableSize;    /* Amount of usable space on each page */
1853   u16 cellOffset;    /* Offset from start of page to first cell pointer */
1854   int nFree;         /* Number of unused bytes on the page */
1855   int top;           /* First byte of the cell content area */
1856   int iCellFirst;    /* First allowable cell or freeblock offset */
1857   int iCellLast;     /* Last possible cell or freeblock offset */
1858 
1859   assert( pPage->pBt!=0 );
1860   assert( pPage->pBt->db!=0 );
1861   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1862   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1863   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1864   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1865   assert( pPage->isInit==0 );
1866 
1867   pBt = pPage->pBt;
1868   hdr = pPage->hdrOffset;
1869   data = pPage->aData;
1870   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1871   ** the b-tree page type. */
1872   if( decodeFlags(pPage, data[hdr]) ){
1873     return SQLITE_CORRUPT_PAGE(pPage);
1874   }
1875   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1876   pPage->maskPage = (u16)(pBt->pageSize - 1);
1877   pPage->nOverflow = 0;
1878   usableSize = pBt->usableSize;
1879   pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1880   pPage->aDataEnd = &data[usableSize];
1881   pPage->aCellIdx = &data[cellOffset];
1882   pPage->aDataOfst = &data[pPage->childPtrSize];
1883   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1884   ** the start of the cell content area. A zero value for this integer is
1885   ** interpreted as 65536. */
1886   top = get2byteNotZero(&data[hdr+5]);
1887   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1888   ** number of cells on the page. */
1889   pPage->nCell = get2byte(&data[hdr+3]);
1890   if( pPage->nCell>MX_CELL(pBt) ){
1891     /* To many cells for a single page.  The page must be corrupt */
1892     return SQLITE_CORRUPT_PAGE(pPage);
1893   }
1894   testcase( pPage->nCell==MX_CELL(pBt) );
1895   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1896   ** possible for a root page of a table that contains no rows) then the
1897   ** offset to the cell content area will equal the page size minus the
1898   ** bytes of reserved space. */
1899   assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1900 
1901   /* A malformed database page might cause us to read past the end
1902   ** of page when parsing a cell.
1903   **
1904   ** The following block of code checks early to see if a cell extends
1905   ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1906   ** returned if it does.
1907   */
1908   iCellFirst = cellOffset + 2*pPage->nCell;
1909   iCellLast = usableSize - 4;
1910   if( pBt->db->flags & SQLITE_CellSizeCk ){
1911     int i;            /* Index into the cell pointer array */
1912     int sz;           /* Size of a cell */
1913 
1914     if( !pPage->leaf ) iCellLast--;
1915     for(i=0; i<pPage->nCell; i++){
1916       pc = get2byteAligned(&data[cellOffset+i*2]);
1917       testcase( pc==iCellFirst );
1918       testcase( pc==iCellLast );
1919       if( pc<iCellFirst || pc>iCellLast ){
1920         return SQLITE_CORRUPT_PAGE(pPage);
1921       }
1922       sz = pPage->xCellSize(pPage, &data[pc]);
1923       testcase( pc+sz==usableSize );
1924       if( pc+sz>usableSize ){
1925         return SQLITE_CORRUPT_PAGE(pPage);
1926       }
1927     }
1928     if( !pPage->leaf ) iCellLast++;
1929   }
1930 
1931   /* Compute the total free space on the page
1932   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1933   ** start of the first freeblock on the page, or is zero if there are no
1934   ** freeblocks. */
1935   pc = get2byte(&data[hdr+1]);
1936   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1937   if( pc>0 ){
1938     u32 next, size;
1939     if( pc<iCellFirst ){
1940       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1941       ** always be at least one cell before the first freeblock.
1942       */
1943       return SQLITE_CORRUPT_PAGE(pPage);
1944     }
1945     while( 1 ){
1946       if( pc>iCellLast ){
1947         /* Freeblock off the end of the page */
1948         return SQLITE_CORRUPT_PAGE(pPage);
1949       }
1950       next = get2byte(&data[pc]);
1951       size = get2byte(&data[pc+2]);
1952       nFree = nFree + size;
1953       if( next<=pc+size+3 ) break;
1954       pc = next;
1955     }
1956     if( next>0 ){
1957       /* Freeblock not in ascending order */
1958       return SQLITE_CORRUPT_PAGE(pPage);
1959     }
1960     if( pc+size>(unsigned int)usableSize ){
1961       /* Last freeblock extends past page end */
1962       return SQLITE_CORRUPT_PAGE(pPage);
1963     }
1964   }
1965 
1966   /* At this point, nFree contains the sum of the offset to the start
1967   ** of the cell-content area plus the number of free bytes within
1968   ** the cell-content area. If this is greater than the usable-size
1969   ** of the page, then the page must be corrupted. This check also
1970   ** serves to verify that the offset to the start of the cell-content
1971   ** area, according to the page header, lies within the page.
1972   */
1973   if( nFree>usableSize ){
1974     return SQLITE_CORRUPT_PAGE(pPage);
1975   }
1976   pPage->nFree = (u16)(nFree - iCellFirst);
1977   pPage->isInit = 1;
1978   return SQLITE_OK;
1979 }
1980 
1981 /*
1982 ** Set up a raw page so that it looks like a database page holding
1983 ** no entries.
1984 */
1985 static void zeroPage(MemPage *pPage, int flags){
1986   unsigned char *data = pPage->aData;
1987   BtShared *pBt = pPage->pBt;
1988   u8 hdr = pPage->hdrOffset;
1989   u16 first;
1990 
1991   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1992   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1993   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1994   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1995   assert( sqlite3_mutex_held(pBt->mutex) );
1996   if( pBt->btsFlags & BTS_FAST_SECURE ){
1997     memset(&data[hdr], 0, pBt->usableSize - hdr);
1998   }
1999   data[hdr] = (char)flags;
2000   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2001   memset(&data[hdr+1], 0, 4);
2002   data[hdr+7] = 0;
2003   put2byte(&data[hdr+5], pBt->usableSize);
2004   pPage->nFree = (u16)(pBt->usableSize - first);
2005   decodeFlags(pPage, flags);
2006   pPage->cellOffset = first;
2007   pPage->aDataEnd = &data[pBt->usableSize];
2008   pPage->aCellIdx = &data[first];
2009   pPage->aDataOfst = &data[pPage->childPtrSize];
2010   pPage->nOverflow = 0;
2011   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2012   pPage->maskPage = (u16)(pBt->pageSize - 1);
2013   pPage->nCell = 0;
2014   pPage->isInit = 1;
2015 }
2016 
2017 
2018 /*
2019 ** Convert a DbPage obtained from the pager into a MemPage used by
2020 ** the btree layer.
2021 */
2022 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2023   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2024   if( pgno!=pPage->pgno ){
2025     pPage->aData = sqlite3PagerGetData(pDbPage);
2026     pPage->pDbPage = pDbPage;
2027     pPage->pBt = pBt;
2028     pPage->pgno = pgno;
2029     pPage->hdrOffset = pgno==1 ? 100 : 0;
2030   }
2031   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2032   return pPage;
2033 }
2034 
2035 /*
2036 ** Get a page from the pager.  Initialize the MemPage.pBt and
2037 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2038 **
2039 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2040 ** about the content of the page at this time.  So do not go to the disk
2041 ** to fetch the content.  Just fill in the content with zeros for now.
2042 ** If in the future we call sqlite3PagerWrite() on this page, that
2043 ** means we have started to be concerned about content and the disk
2044 ** read should occur at that point.
2045 */
2046 static int btreeGetPage(
2047   BtShared *pBt,       /* The btree */
2048   Pgno pgno,           /* Number of the page to fetch */
2049   MemPage **ppPage,    /* Return the page in this parameter */
2050   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2051 ){
2052   int rc;
2053   DbPage *pDbPage;
2054 
2055   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2056   assert( sqlite3_mutex_held(pBt->mutex) );
2057   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2058   if( rc ) return rc;
2059   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2060   return SQLITE_OK;
2061 }
2062 
2063 /*
2064 ** Retrieve a page from the pager cache. If the requested page is not
2065 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2066 ** MemPage.aData elements if needed.
2067 */
2068 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2069   DbPage *pDbPage;
2070   assert( sqlite3_mutex_held(pBt->mutex) );
2071   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2072   if( pDbPage ){
2073     return btreePageFromDbPage(pDbPage, pgno, pBt);
2074   }
2075   return 0;
2076 }
2077 
2078 /*
2079 ** Return the size of the database file in pages. If there is any kind of
2080 ** error, return ((unsigned int)-1).
2081 */
2082 static Pgno btreePagecount(BtShared *pBt){
2083   return pBt->nPage;
2084 }
2085 u32 sqlite3BtreeLastPage(Btree *p){
2086   assert( sqlite3BtreeHoldsMutex(p) );
2087   assert( ((p->pBt->nPage)&0x80000000)==0 );
2088   return btreePagecount(p->pBt);
2089 }
2090 
2091 /*
2092 ** Get a page from the pager and initialize it.
2093 **
2094 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2095 ** call.  Do additional sanity checking on the page in this case.
2096 ** And if the fetch fails, this routine must decrement pCur->iPage.
2097 **
2098 ** The page is fetched as read-write unless pCur is not NULL and is
2099 ** a read-only cursor.
2100 **
2101 ** If an error occurs, then *ppPage is undefined. It
2102 ** may remain unchanged, or it may be set to an invalid value.
2103 */
2104 static int getAndInitPage(
2105   BtShared *pBt,                  /* The database file */
2106   Pgno pgno,                      /* Number of the page to get */
2107   MemPage **ppPage,               /* Write the page pointer here */
2108   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2109   int bReadOnly                   /* True for a read-only page */
2110 ){
2111   int rc;
2112   DbPage *pDbPage;
2113   assert( sqlite3_mutex_held(pBt->mutex) );
2114   assert( pCur==0 || ppPage==&pCur->pPage );
2115   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2116   assert( pCur==0 || pCur->iPage>0 );
2117 
2118   if( pgno>btreePagecount(pBt) ){
2119     rc = SQLITE_CORRUPT_BKPT;
2120     goto getAndInitPage_error;
2121   }
2122   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2123   if( rc ){
2124     goto getAndInitPage_error;
2125   }
2126   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2127   if( (*ppPage)->isInit==0 ){
2128     btreePageFromDbPage(pDbPage, pgno, pBt);
2129     rc = btreeInitPage(*ppPage);
2130     if( rc!=SQLITE_OK ){
2131       releasePage(*ppPage);
2132       goto getAndInitPage_error;
2133     }
2134   }
2135   assert( (*ppPage)->pgno==pgno );
2136   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2137 
2138   /* If obtaining a child page for a cursor, we must verify that the page is
2139   ** compatible with the root page. */
2140   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2141     rc = SQLITE_CORRUPT_PGNO(pgno);
2142     releasePage(*ppPage);
2143     goto getAndInitPage_error;
2144   }
2145   return SQLITE_OK;
2146 
2147 getAndInitPage_error:
2148   if( pCur ){
2149     pCur->iPage--;
2150     pCur->pPage = pCur->apPage[pCur->iPage];
2151   }
2152   testcase( pgno==0 );
2153   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2154   return rc;
2155 }
2156 
2157 /*
2158 ** Release a MemPage.  This should be called once for each prior
2159 ** call to btreeGetPage.
2160 **
2161 ** Page1 is a special case and must be released using releasePageOne().
2162 */
2163 static void releasePageNotNull(MemPage *pPage){
2164   assert( pPage->aData );
2165   assert( pPage->pBt );
2166   assert( pPage->pDbPage!=0 );
2167   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2168   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2169   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2170   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2171 }
2172 static void releasePage(MemPage *pPage){
2173   if( pPage ) releasePageNotNull(pPage);
2174 }
2175 static void releasePageOne(MemPage *pPage){
2176   assert( pPage!=0 );
2177   assert( pPage->aData );
2178   assert( pPage->pBt );
2179   assert( pPage->pDbPage!=0 );
2180   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2181   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2182   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2183   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2184 }
2185 
2186 /*
2187 ** Get an unused page.
2188 **
2189 ** This works just like btreeGetPage() with the addition:
2190 **
2191 **   *  If the page is already in use for some other purpose, immediately
2192 **      release it and return an SQLITE_CURRUPT error.
2193 **   *  Make sure the isInit flag is clear
2194 */
2195 static int btreeGetUnusedPage(
2196   BtShared *pBt,       /* The btree */
2197   Pgno pgno,           /* Number of the page to fetch */
2198   MemPage **ppPage,    /* Return the page in this parameter */
2199   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2200 ){
2201   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2202   if( rc==SQLITE_OK ){
2203     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2204       releasePage(*ppPage);
2205       *ppPage = 0;
2206       return SQLITE_CORRUPT_BKPT;
2207     }
2208     (*ppPage)->isInit = 0;
2209   }else{
2210     *ppPage = 0;
2211   }
2212   return rc;
2213 }
2214 
2215 
2216 /*
2217 ** During a rollback, when the pager reloads information into the cache
2218 ** so that the cache is restored to its original state at the start of
2219 ** the transaction, for each page restored this routine is called.
2220 **
2221 ** This routine needs to reset the extra data section at the end of the
2222 ** page to agree with the restored data.
2223 */
2224 static void pageReinit(DbPage *pData){
2225   MemPage *pPage;
2226   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2227   assert( sqlite3PagerPageRefcount(pData)>0 );
2228   if( pPage->isInit ){
2229     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2230     pPage->isInit = 0;
2231     if( sqlite3PagerPageRefcount(pData)>1 ){
2232       /* pPage might not be a btree page;  it might be an overflow page
2233       ** or ptrmap page or a free page.  In those cases, the following
2234       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2235       ** But no harm is done by this.  And it is very important that
2236       ** btreeInitPage() be called on every btree page so we make
2237       ** the call for every page that comes in for re-initing. */
2238       btreeInitPage(pPage);
2239     }
2240   }
2241 }
2242 
2243 /*
2244 ** Invoke the busy handler for a btree.
2245 */
2246 static int btreeInvokeBusyHandler(void *pArg){
2247   BtShared *pBt = (BtShared*)pArg;
2248   assert( pBt->db );
2249   assert( sqlite3_mutex_held(pBt->db->mutex) );
2250   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2251                                   sqlite3PagerFile(pBt->pPager));
2252 }
2253 
2254 /*
2255 ** Open a database file.
2256 **
2257 ** zFilename is the name of the database file.  If zFilename is NULL
2258 ** then an ephemeral database is created.  The ephemeral database might
2259 ** be exclusively in memory, or it might use a disk-based memory cache.
2260 ** Either way, the ephemeral database will be automatically deleted
2261 ** when sqlite3BtreeClose() is called.
2262 **
2263 ** If zFilename is ":memory:" then an in-memory database is created
2264 ** that is automatically destroyed when it is closed.
2265 **
2266 ** The "flags" parameter is a bitmask that might contain bits like
2267 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2268 **
2269 ** If the database is already opened in the same database connection
2270 ** and we are in shared cache mode, then the open will fail with an
2271 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2272 ** objects in the same database connection since doing so will lead
2273 ** to problems with locking.
2274 */
2275 int sqlite3BtreeOpen(
2276   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2277   const char *zFilename,  /* Name of the file containing the BTree database */
2278   sqlite3 *db,            /* Associated database handle */
2279   Btree **ppBtree,        /* Pointer to new Btree object written here */
2280   int flags,              /* Options */
2281   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2282 ){
2283   BtShared *pBt = 0;             /* Shared part of btree structure */
2284   Btree *p;                      /* Handle to return */
2285   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2286   int rc = SQLITE_OK;            /* Result code from this function */
2287   u8 nReserve;                   /* Byte of unused space on each page */
2288   unsigned char zDbHeader[100];  /* Database header content */
2289 
2290   /* True if opening an ephemeral, temporary database */
2291   const int isTempDb = zFilename==0 || zFilename[0]==0;
2292 
2293   /* Set the variable isMemdb to true for an in-memory database, or
2294   ** false for a file-based database.
2295   */
2296 #ifdef SQLITE_OMIT_MEMORYDB
2297   const int isMemdb = 0;
2298 #else
2299   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2300                        || (isTempDb && sqlite3TempInMemory(db))
2301                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2302 #endif
2303 
2304   assert( db!=0 );
2305   assert( pVfs!=0 );
2306   assert( sqlite3_mutex_held(db->mutex) );
2307   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2308 
2309   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2310   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2311 
2312   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2313   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2314 
2315   if( isMemdb ){
2316     flags |= BTREE_MEMORY;
2317   }
2318   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2319     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2320   }
2321   p = sqlite3MallocZero(sizeof(Btree));
2322   if( !p ){
2323     return SQLITE_NOMEM_BKPT;
2324   }
2325   p->inTrans = TRANS_NONE;
2326   p->db = db;
2327 #ifndef SQLITE_OMIT_SHARED_CACHE
2328   p->lock.pBtree = p;
2329   p->lock.iTable = 1;
2330 #endif
2331 
2332 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2333   /*
2334   ** If this Btree is a candidate for shared cache, try to find an
2335   ** existing BtShared object that we can share with
2336   */
2337   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2338     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2339       int nFilename = sqlite3Strlen30(zFilename)+1;
2340       int nFullPathname = pVfs->mxPathname+1;
2341       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2342       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2343 
2344       p->sharable = 1;
2345       if( !zFullPathname ){
2346         sqlite3_free(p);
2347         return SQLITE_NOMEM_BKPT;
2348       }
2349       if( isMemdb ){
2350         memcpy(zFullPathname, zFilename, nFilename);
2351       }else{
2352         rc = sqlite3OsFullPathname(pVfs, zFilename,
2353                                    nFullPathname, zFullPathname);
2354         if( rc ){
2355           sqlite3_free(zFullPathname);
2356           sqlite3_free(p);
2357           return rc;
2358         }
2359       }
2360 #if SQLITE_THREADSAFE
2361       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2362       sqlite3_mutex_enter(mutexOpen);
2363       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2364       sqlite3_mutex_enter(mutexShared);
2365 #endif
2366       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2367         assert( pBt->nRef>0 );
2368         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2369                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2370           int iDb;
2371           for(iDb=db->nDb-1; iDb>=0; iDb--){
2372             Btree *pExisting = db->aDb[iDb].pBt;
2373             if( pExisting && pExisting->pBt==pBt ){
2374               sqlite3_mutex_leave(mutexShared);
2375               sqlite3_mutex_leave(mutexOpen);
2376               sqlite3_free(zFullPathname);
2377               sqlite3_free(p);
2378               return SQLITE_CONSTRAINT;
2379             }
2380           }
2381           p->pBt = pBt;
2382           pBt->nRef++;
2383           break;
2384         }
2385       }
2386       sqlite3_mutex_leave(mutexShared);
2387       sqlite3_free(zFullPathname);
2388     }
2389 #ifdef SQLITE_DEBUG
2390     else{
2391       /* In debug mode, we mark all persistent databases as sharable
2392       ** even when they are not.  This exercises the locking code and
2393       ** gives more opportunity for asserts(sqlite3_mutex_held())
2394       ** statements to find locking problems.
2395       */
2396       p->sharable = 1;
2397     }
2398 #endif
2399   }
2400 #endif
2401   if( pBt==0 ){
2402     /*
2403     ** The following asserts make sure that structures used by the btree are
2404     ** the right size.  This is to guard against size changes that result
2405     ** when compiling on a different architecture.
2406     */
2407     assert( sizeof(i64)==8 );
2408     assert( sizeof(u64)==8 );
2409     assert( sizeof(u32)==4 );
2410     assert( sizeof(u16)==2 );
2411     assert( sizeof(Pgno)==4 );
2412 
2413     pBt = sqlite3MallocZero( sizeof(*pBt) );
2414     if( pBt==0 ){
2415       rc = SQLITE_NOMEM_BKPT;
2416       goto btree_open_out;
2417     }
2418     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2419                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2420     if( rc==SQLITE_OK ){
2421       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2422       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2423     }
2424     if( rc!=SQLITE_OK ){
2425       goto btree_open_out;
2426     }
2427     pBt->openFlags = (u8)flags;
2428     pBt->db = db;
2429     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2430     p->pBt = pBt;
2431 
2432     pBt->pCursor = 0;
2433     pBt->pPage1 = 0;
2434     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2435 #if defined(SQLITE_SECURE_DELETE)
2436     pBt->btsFlags |= BTS_SECURE_DELETE;
2437 #elif defined(SQLITE_FAST_SECURE_DELETE)
2438     pBt->btsFlags |= BTS_OVERWRITE;
2439 #endif
2440     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2441     ** determined by the 2-byte integer located at an offset of 16 bytes from
2442     ** the beginning of the database file. */
2443     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2444     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2445          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2446       pBt->pageSize = 0;
2447 #ifndef SQLITE_OMIT_AUTOVACUUM
2448       /* If the magic name ":memory:" will create an in-memory database, then
2449       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2450       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2451       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2452       ** regular file-name. In this case the auto-vacuum applies as per normal.
2453       */
2454       if( zFilename && !isMemdb ){
2455         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2456         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2457       }
2458 #endif
2459       nReserve = 0;
2460     }else{
2461       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2462       ** determined by the one-byte unsigned integer found at an offset of 20
2463       ** into the database file header. */
2464       nReserve = zDbHeader[20];
2465       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2466 #ifndef SQLITE_OMIT_AUTOVACUUM
2467       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2468       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2469 #endif
2470     }
2471     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2472     if( rc ) goto btree_open_out;
2473     pBt->usableSize = pBt->pageSize - nReserve;
2474     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2475 
2476 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2477     /* Add the new BtShared object to the linked list sharable BtShareds.
2478     */
2479     pBt->nRef = 1;
2480     if( p->sharable ){
2481       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2482       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2483       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2484         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2485         if( pBt->mutex==0 ){
2486           rc = SQLITE_NOMEM_BKPT;
2487           goto btree_open_out;
2488         }
2489       }
2490       sqlite3_mutex_enter(mutexShared);
2491       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2492       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2493       sqlite3_mutex_leave(mutexShared);
2494     }
2495 #endif
2496   }
2497 
2498 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2499   /* If the new Btree uses a sharable pBtShared, then link the new
2500   ** Btree into the list of all sharable Btrees for the same connection.
2501   ** The list is kept in ascending order by pBt address.
2502   */
2503   if( p->sharable ){
2504     int i;
2505     Btree *pSib;
2506     for(i=0; i<db->nDb; i++){
2507       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2508         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2509         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2510           p->pNext = pSib;
2511           p->pPrev = 0;
2512           pSib->pPrev = p;
2513         }else{
2514           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2515             pSib = pSib->pNext;
2516           }
2517           p->pNext = pSib->pNext;
2518           p->pPrev = pSib;
2519           if( p->pNext ){
2520             p->pNext->pPrev = p;
2521           }
2522           pSib->pNext = p;
2523         }
2524         break;
2525       }
2526     }
2527   }
2528 #endif
2529   *ppBtree = p;
2530 
2531 btree_open_out:
2532   if( rc!=SQLITE_OK ){
2533     if( pBt && pBt->pPager ){
2534       sqlite3PagerClose(pBt->pPager, 0);
2535     }
2536     sqlite3_free(pBt);
2537     sqlite3_free(p);
2538     *ppBtree = 0;
2539   }else{
2540     sqlite3_file *pFile;
2541 
2542     /* If the B-Tree was successfully opened, set the pager-cache size to the
2543     ** default value. Except, when opening on an existing shared pager-cache,
2544     ** do not change the pager-cache size.
2545     */
2546     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2547       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2548     }
2549 
2550     pFile = sqlite3PagerFile(pBt->pPager);
2551     if( pFile->pMethods ){
2552       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2553     }
2554   }
2555   if( mutexOpen ){
2556     assert( sqlite3_mutex_held(mutexOpen) );
2557     sqlite3_mutex_leave(mutexOpen);
2558   }
2559   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2560   return rc;
2561 }
2562 
2563 /*
2564 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2565 ** remove the BtShared structure from the sharing list.  Return
2566 ** true if the BtShared.nRef counter reaches zero and return
2567 ** false if it is still positive.
2568 */
2569 static int removeFromSharingList(BtShared *pBt){
2570 #ifndef SQLITE_OMIT_SHARED_CACHE
2571   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2572   BtShared *pList;
2573   int removed = 0;
2574 
2575   assert( sqlite3_mutex_notheld(pBt->mutex) );
2576   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2577   sqlite3_mutex_enter(pMaster);
2578   pBt->nRef--;
2579   if( pBt->nRef<=0 ){
2580     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2581       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2582     }else{
2583       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2584       while( ALWAYS(pList) && pList->pNext!=pBt ){
2585         pList=pList->pNext;
2586       }
2587       if( ALWAYS(pList) ){
2588         pList->pNext = pBt->pNext;
2589       }
2590     }
2591     if( SQLITE_THREADSAFE ){
2592       sqlite3_mutex_free(pBt->mutex);
2593     }
2594     removed = 1;
2595   }
2596   sqlite3_mutex_leave(pMaster);
2597   return removed;
2598 #else
2599   return 1;
2600 #endif
2601 }
2602 
2603 /*
2604 ** Make sure pBt->pTmpSpace points to an allocation of
2605 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2606 ** pointer.
2607 */
2608 static void allocateTempSpace(BtShared *pBt){
2609   if( !pBt->pTmpSpace ){
2610     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2611 
2612     /* One of the uses of pBt->pTmpSpace is to format cells before
2613     ** inserting them into a leaf page (function fillInCell()). If
2614     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2615     ** by the various routines that manipulate binary cells. Which
2616     ** can mean that fillInCell() only initializes the first 2 or 3
2617     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2618     ** it into a database page. This is not actually a problem, but it
2619     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2620     ** data is passed to system call write(). So to avoid this error,
2621     ** zero the first 4 bytes of temp space here.
2622     **
2623     ** Also:  Provide four bytes of initialized space before the
2624     ** beginning of pTmpSpace as an area available to prepend the
2625     ** left-child pointer to the beginning of a cell.
2626     */
2627     if( pBt->pTmpSpace ){
2628       memset(pBt->pTmpSpace, 0, 8);
2629       pBt->pTmpSpace += 4;
2630     }
2631   }
2632 }
2633 
2634 /*
2635 ** Free the pBt->pTmpSpace allocation
2636 */
2637 static void freeTempSpace(BtShared *pBt){
2638   if( pBt->pTmpSpace ){
2639     pBt->pTmpSpace -= 4;
2640     sqlite3PageFree(pBt->pTmpSpace);
2641     pBt->pTmpSpace = 0;
2642   }
2643 }
2644 
2645 /*
2646 ** Close an open database and invalidate all cursors.
2647 */
2648 int sqlite3BtreeClose(Btree *p){
2649   BtShared *pBt = p->pBt;
2650   BtCursor *pCur;
2651 
2652   /* Close all cursors opened via this handle.  */
2653   assert( sqlite3_mutex_held(p->db->mutex) );
2654   sqlite3BtreeEnter(p);
2655   pCur = pBt->pCursor;
2656   while( pCur ){
2657     BtCursor *pTmp = pCur;
2658     pCur = pCur->pNext;
2659     if( pTmp->pBtree==p ){
2660       sqlite3BtreeCloseCursor(pTmp);
2661     }
2662   }
2663 
2664   /* Rollback any active transaction and free the handle structure.
2665   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2666   ** this handle.
2667   */
2668   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2669   sqlite3BtreeLeave(p);
2670 
2671   /* If there are still other outstanding references to the shared-btree
2672   ** structure, return now. The remainder of this procedure cleans
2673   ** up the shared-btree.
2674   */
2675   assert( p->wantToLock==0 && p->locked==0 );
2676   if( !p->sharable || removeFromSharingList(pBt) ){
2677     /* The pBt is no longer on the sharing list, so we can access
2678     ** it without having to hold the mutex.
2679     **
2680     ** Clean out and delete the BtShared object.
2681     */
2682     assert( !pBt->pCursor );
2683     sqlite3PagerClose(pBt->pPager, p->db);
2684     if( pBt->xFreeSchema && pBt->pSchema ){
2685       pBt->xFreeSchema(pBt->pSchema);
2686     }
2687     sqlite3DbFree(0, pBt->pSchema);
2688     freeTempSpace(pBt);
2689     sqlite3_free(pBt);
2690   }
2691 
2692 #ifndef SQLITE_OMIT_SHARED_CACHE
2693   assert( p->wantToLock==0 );
2694   assert( p->locked==0 );
2695   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2696   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2697 #endif
2698 
2699   sqlite3_free(p);
2700   return SQLITE_OK;
2701 }
2702 
2703 /*
2704 ** Change the "soft" limit on the number of pages in the cache.
2705 ** Unused and unmodified pages will be recycled when the number of
2706 ** pages in the cache exceeds this soft limit.  But the size of the
2707 ** cache is allowed to grow larger than this limit if it contains
2708 ** dirty pages or pages still in active use.
2709 */
2710 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2711   BtShared *pBt = p->pBt;
2712   assert( sqlite3_mutex_held(p->db->mutex) );
2713   sqlite3BtreeEnter(p);
2714   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2715   sqlite3BtreeLeave(p);
2716   return SQLITE_OK;
2717 }
2718 
2719 /*
2720 ** Change the "spill" limit on the number of pages in the cache.
2721 ** If the number of pages exceeds this limit during a write transaction,
2722 ** the pager might attempt to "spill" pages to the journal early in
2723 ** order to free up memory.
2724 **
2725 ** The value returned is the current spill size.  If zero is passed
2726 ** as an argument, no changes are made to the spill size setting, so
2727 ** using mxPage of 0 is a way to query the current spill size.
2728 */
2729 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2730   BtShared *pBt = p->pBt;
2731   int res;
2732   assert( sqlite3_mutex_held(p->db->mutex) );
2733   sqlite3BtreeEnter(p);
2734   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2735   sqlite3BtreeLeave(p);
2736   return res;
2737 }
2738 
2739 #if SQLITE_MAX_MMAP_SIZE>0
2740 /*
2741 ** Change the limit on the amount of the database file that may be
2742 ** memory mapped.
2743 */
2744 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2745   BtShared *pBt = p->pBt;
2746   assert( sqlite3_mutex_held(p->db->mutex) );
2747   sqlite3BtreeEnter(p);
2748   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2749   sqlite3BtreeLeave(p);
2750   return SQLITE_OK;
2751 }
2752 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2753 
2754 /*
2755 ** Change the way data is synced to disk in order to increase or decrease
2756 ** how well the database resists damage due to OS crashes and power
2757 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2758 ** there is a high probability of damage)  Level 2 is the default.  There
2759 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2760 ** probability of damage to near zero but with a write performance reduction.
2761 */
2762 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2763 int sqlite3BtreeSetPagerFlags(
2764   Btree *p,              /* The btree to set the safety level on */
2765   unsigned pgFlags       /* Various PAGER_* flags */
2766 ){
2767   BtShared *pBt = p->pBt;
2768   assert( sqlite3_mutex_held(p->db->mutex) );
2769   sqlite3BtreeEnter(p);
2770   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2771   sqlite3BtreeLeave(p);
2772   return SQLITE_OK;
2773 }
2774 #endif
2775 
2776 /*
2777 ** Change the default pages size and the number of reserved bytes per page.
2778 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2779 ** without changing anything.
2780 **
2781 ** The page size must be a power of 2 between 512 and 65536.  If the page
2782 ** size supplied does not meet this constraint then the page size is not
2783 ** changed.
2784 **
2785 ** Page sizes are constrained to be a power of two so that the region
2786 ** of the database file used for locking (beginning at PENDING_BYTE,
2787 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2788 ** at the beginning of a page.
2789 **
2790 ** If parameter nReserve is less than zero, then the number of reserved
2791 ** bytes per page is left unchanged.
2792 **
2793 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2794 ** and autovacuum mode can no longer be changed.
2795 */
2796 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2797   int rc = SQLITE_OK;
2798   BtShared *pBt = p->pBt;
2799   assert( nReserve>=-1 && nReserve<=255 );
2800   sqlite3BtreeEnter(p);
2801 #if SQLITE_HAS_CODEC
2802   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2803 #endif
2804   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2805     sqlite3BtreeLeave(p);
2806     return SQLITE_READONLY;
2807   }
2808   if( nReserve<0 ){
2809     nReserve = pBt->pageSize - pBt->usableSize;
2810   }
2811   assert( nReserve>=0 && nReserve<=255 );
2812   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2813         ((pageSize-1)&pageSize)==0 ){
2814     assert( (pageSize & 7)==0 );
2815     assert( !pBt->pCursor );
2816     pBt->pageSize = (u32)pageSize;
2817     freeTempSpace(pBt);
2818   }
2819   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2820   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2821   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2822   sqlite3BtreeLeave(p);
2823   return rc;
2824 }
2825 
2826 /*
2827 ** Return the currently defined page size
2828 */
2829 int sqlite3BtreeGetPageSize(Btree *p){
2830   return p->pBt->pageSize;
2831 }
2832 
2833 /*
2834 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2835 ** may only be called if it is guaranteed that the b-tree mutex is already
2836 ** held.
2837 **
2838 ** This is useful in one special case in the backup API code where it is
2839 ** known that the shared b-tree mutex is held, but the mutex on the
2840 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2841 ** were to be called, it might collide with some other operation on the
2842 ** database handle that owns *p, causing undefined behavior.
2843 */
2844 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2845   int n;
2846   assert( sqlite3_mutex_held(p->pBt->mutex) );
2847   n = p->pBt->pageSize - p->pBt->usableSize;
2848   return n;
2849 }
2850 
2851 /*
2852 ** Return the number of bytes of space at the end of every page that
2853 ** are intentually left unused.  This is the "reserved" space that is
2854 ** sometimes used by extensions.
2855 **
2856 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2857 ** greater of the current reserved space and the maximum requested
2858 ** reserve space.
2859 */
2860 int sqlite3BtreeGetOptimalReserve(Btree *p){
2861   int n;
2862   sqlite3BtreeEnter(p);
2863   n = sqlite3BtreeGetReserveNoMutex(p);
2864 #ifdef SQLITE_HAS_CODEC
2865   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2866 #endif
2867   sqlite3BtreeLeave(p);
2868   return n;
2869 }
2870 
2871 
2872 /*
2873 ** Set the maximum page count for a database if mxPage is positive.
2874 ** No changes are made if mxPage is 0 or negative.
2875 ** Regardless of the value of mxPage, return the maximum page count.
2876 */
2877 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2878   int n;
2879   sqlite3BtreeEnter(p);
2880   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2881   sqlite3BtreeLeave(p);
2882   return n;
2883 }
2884 
2885 /*
2886 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2887 **
2888 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2889 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2890 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2891 **    newFlag==(-1)    No changes
2892 **
2893 ** This routine acts as a query if newFlag is less than zero
2894 **
2895 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2896 ** freelist leaf pages are not written back to the database.  Thus in-page
2897 ** deleted content is cleared, but freelist deleted content is not.
2898 **
2899 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2900 ** that freelist leaf pages are written back into the database, increasing
2901 ** the amount of disk I/O.
2902 */
2903 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2904   int b;
2905   if( p==0 ) return 0;
2906   sqlite3BtreeEnter(p);
2907   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2908   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2909   if( newFlag>=0 ){
2910     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2911     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2912   }
2913   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
2914   sqlite3BtreeLeave(p);
2915   return b;
2916 }
2917 
2918 /*
2919 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2920 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2921 ** is disabled. The default value for the auto-vacuum property is
2922 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2923 */
2924 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2925 #ifdef SQLITE_OMIT_AUTOVACUUM
2926   return SQLITE_READONLY;
2927 #else
2928   BtShared *pBt = p->pBt;
2929   int rc = SQLITE_OK;
2930   u8 av = (u8)autoVacuum;
2931 
2932   sqlite3BtreeEnter(p);
2933   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2934     rc = SQLITE_READONLY;
2935   }else{
2936     pBt->autoVacuum = av ?1:0;
2937     pBt->incrVacuum = av==2 ?1:0;
2938   }
2939   sqlite3BtreeLeave(p);
2940   return rc;
2941 #endif
2942 }
2943 
2944 /*
2945 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2946 ** enabled 1 is returned. Otherwise 0.
2947 */
2948 int sqlite3BtreeGetAutoVacuum(Btree *p){
2949 #ifdef SQLITE_OMIT_AUTOVACUUM
2950   return BTREE_AUTOVACUUM_NONE;
2951 #else
2952   int rc;
2953   sqlite3BtreeEnter(p);
2954   rc = (
2955     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2956     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2957     BTREE_AUTOVACUUM_INCR
2958   );
2959   sqlite3BtreeLeave(p);
2960   return rc;
2961 #endif
2962 }
2963 
2964 /*
2965 ** If the user has not set the safety-level for this database connection
2966 ** using "PRAGMA synchronous", and if the safety-level is not already
2967 ** set to the value passed to this function as the second parameter,
2968 ** set it so.
2969 */
2970 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
2971     && !defined(SQLITE_OMIT_WAL)
2972 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2973   sqlite3 *db;
2974   Db *pDb;
2975   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2976     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2977     if( pDb->bSyncSet==0
2978      && pDb->safety_level!=safety_level
2979      && pDb!=&db->aDb[1]
2980     ){
2981       pDb->safety_level = safety_level;
2982       sqlite3PagerSetFlags(pBt->pPager,
2983           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2984     }
2985   }
2986 }
2987 #else
2988 # define setDefaultSyncFlag(pBt,safety_level)
2989 #endif
2990 
2991 /* Forward declaration */
2992 static int newDatabase(BtShared*);
2993 
2994 
2995 /*
2996 ** Get a reference to pPage1 of the database file.  This will
2997 ** also acquire a readlock on that file.
2998 **
2999 ** SQLITE_OK is returned on success.  If the file is not a
3000 ** well-formed database file, then SQLITE_CORRUPT is returned.
3001 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3002 ** is returned if we run out of memory.
3003 */
3004 static int lockBtree(BtShared *pBt){
3005   int rc;              /* Result code from subfunctions */
3006   MemPage *pPage1;     /* Page 1 of the database file */
3007   int nPage;           /* Number of pages in the database */
3008   int nPageFile = 0;   /* Number of pages in the database file */
3009   int nPageHeader;     /* Number of pages in the database according to hdr */
3010 
3011   assert( sqlite3_mutex_held(pBt->mutex) );
3012   assert( pBt->pPage1==0 );
3013   rc = sqlite3PagerSharedLock(pBt->pPager);
3014   if( rc!=SQLITE_OK ) return rc;
3015   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3016   if( rc!=SQLITE_OK ) return rc;
3017 
3018   /* Do some checking to help insure the file we opened really is
3019   ** a valid database file.
3020   */
3021   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3022   sqlite3PagerPagecount(pBt->pPager, &nPageFile);
3023   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3024     nPage = nPageFile;
3025   }
3026   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3027     nPage = 0;
3028   }
3029   if( nPage>0 ){
3030     u32 pageSize;
3031     u32 usableSize;
3032     u8 *page1 = pPage1->aData;
3033     rc = SQLITE_NOTADB;
3034     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3035     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3036     ** 61 74 20 33 00. */
3037     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3038       goto page1_init_failed;
3039     }
3040 
3041 #ifdef SQLITE_OMIT_WAL
3042     if( page1[18]>1 ){
3043       pBt->btsFlags |= BTS_READ_ONLY;
3044     }
3045     if( page1[19]>1 ){
3046       goto page1_init_failed;
3047     }
3048 #else
3049     if( page1[18]>2 ){
3050       pBt->btsFlags |= BTS_READ_ONLY;
3051     }
3052     if( page1[19]>2 ){
3053       goto page1_init_failed;
3054     }
3055 
3056     /* If the write version is set to 2, this database should be accessed
3057     ** in WAL mode. If the log is not already open, open it now. Then
3058     ** return SQLITE_OK and return without populating BtShared.pPage1.
3059     ** The caller detects this and calls this function again. This is
3060     ** required as the version of page 1 currently in the page1 buffer
3061     ** may not be the latest version - there may be a newer one in the log
3062     ** file.
3063     */
3064     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3065       int isOpen = 0;
3066       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3067       if( rc!=SQLITE_OK ){
3068         goto page1_init_failed;
3069       }else{
3070         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3071         if( isOpen==0 ){
3072           releasePageOne(pPage1);
3073           return SQLITE_OK;
3074         }
3075       }
3076       rc = SQLITE_NOTADB;
3077     }else{
3078       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3079     }
3080 #endif
3081 
3082     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3083     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3084     **
3085     ** The original design allowed these amounts to vary, but as of
3086     ** version 3.6.0, we require them to be fixed.
3087     */
3088     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3089       goto page1_init_failed;
3090     }
3091     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3092     ** determined by the 2-byte integer located at an offset of 16 bytes from
3093     ** the beginning of the database file. */
3094     pageSize = (page1[16]<<8) | (page1[17]<<16);
3095     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3096     ** between 512 and 65536 inclusive. */
3097     if( ((pageSize-1)&pageSize)!=0
3098      || pageSize>SQLITE_MAX_PAGE_SIZE
3099      || pageSize<=256
3100     ){
3101       goto page1_init_failed;
3102     }
3103     assert( (pageSize & 7)==0 );
3104     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3105     ** integer at offset 20 is the number of bytes of space at the end of
3106     ** each page to reserve for extensions.
3107     **
3108     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3109     ** determined by the one-byte unsigned integer found at an offset of 20
3110     ** into the database file header. */
3111     usableSize = pageSize - page1[20];
3112     if( (u32)pageSize!=pBt->pageSize ){
3113       /* After reading the first page of the database assuming a page size
3114       ** of BtShared.pageSize, we have discovered that the page-size is
3115       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3116       ** zero and return SQLITE_OK. The caller will call this function
3117       ** again with the correct page-size.
3118       */
3119       releasePageOne(pPage1);
3120       pBt->usableSize = usableSize;
3121       pBt->pageSize = pageSize;
3122       freeTempSpace(pBt);
3123       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3124                                    pageSize-usableSize);
3125       return rc;
3126     }
3127     if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
3128       rc = SQLITE_CORRUPT_BKPT;
3129       goto page1_init_failed;
3130     }
3131     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3132     ** be less than 480. In other words, if the page size is 512, then the
3133     ** reserved space size cannot exceed 32. */
3134     if( usableSize<480 ){
3135       goto page1_init_failed;
3136     }
3137     pBt->pageSize = pageSize;
3138     pBt->usableSize = usableSize;
3139 #ifndef SQLITE_OMIT_AUTOVACUUM
3140     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3141     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3142 #endif
3143   }
3144 
3145   /* maxLocal is the maximum amount of payload to store locally for
3146   ** a cell.  Make sure it is small enough so that at least minFanout
3147   ** cells can will fit on one page.  We assume a 10-byte page header.
3148   ** Besides the payload, the cell must store:
3149   **     2-byte pointer to the cell
3150   **     4-byte child pointer
3151   **     9-byte nKey value
3152   **     4-byte nData value
3153   **     4-byte overflow page pointer
3154   ** So a cell consists of a 2-byte pointer, a header which is as much as
3155   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3156   ** page pointer.
3157   */
3158   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3159   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3160   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3161   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3162   if( pBt->maxLocal>127 ){
3163     pBt->max1bytePayload = 127;
3164   }else{
3165     pBt->max1bytePayload = (u8)pBt->maxLocal;
3166   }
3167   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3168   pBt->pPage1 = pPage1;
3169   pBt->nPage = nPage;
3170   return SQLITE_OK;
3171 
3172 page1_init_failed:
3173   releasePageOne(pPage1);
3174   pBt->pPage1 = 0;
3175   return rc;
3176 }
3177 
3178 #ifndef NDEBUG
3179 /*
3180 ** Return the number of cursors open on pBt. This is for use
3181 ** in assert() expressions, so it is only compiled if NDEBUG is not
3182 ** defined.
3183 **
3184 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3185 ** false then all cursors are counted.
3186 **
3187 ** For the purposes of this routine, a cursor is any cursor that
3188 ** is capable of reading or writing to the database.  Cursors that
3189 ** have been tripped into the CURSOR_FAULT state are not counted.
3190 */
3191 static int countValidCursors(BtShared *pBt, int wrOnly){
3192   BtCursor *pCur;
3193   int r = 0;
3194   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3195     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3196      && pCur->eState!=CURSOR_FAULT ) r++;
3197   }
3198   return r;
3199 }
3200 #endif
3201 
3202 /*
3203 ** If there are no outstanding cursors and we are not in the middle
3204 ** of a transaction but there is a read lock on the database, then
3205 ** this routine unrefs the first page of the database file which
3206 ** has the effect of releasing the read lock.
3207 **
3208 ** If there is a transaction in progress, this routine is a no-op.
3209 */
3210 static void unlockBtreeIfUnused(BtShared *pBt){
3211   assert( sqlite3_mutex_held(pBt->mutex) );
3212   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3213   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3214     MemPage *pPage1 = pBt->pPage1;
3215     assert( pPage1->aData );
3216     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3217     pBt->pPage1 = 0;
3218     releasePageOne(pPage1);
3219   }
3220 }
3221 
3222 /*
3223 ** If pBt points to an empty file then convert that empty file
3224 ** into a new empty database by initializing the first page of
3225 ** the database.
3226 */
3227 static int newDatabase(BtShared *pBt){
3228   MemPage *pP1;
3229   unsigned char *data;
3230   int rc;
3231 
3232   assert( sqlite3_mutex_held(pBt->mutex) );
3233   if( pBt->nPage>0 ){
3234     return SQLITE_OK;
3235   }
3236   pP1 = pBt->pPage1;
3237   assert( pP1!=0 );
3238   data = pP1->aData;
3239   rc = sqlite3PagerWrite(pP1->pDbPage);
3240   if( rc ) return rc;
3241   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3242   assert( sizeof(zMagicHeader)==16 );
3243   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3244   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3245   data[18] = 1;
3246   data[19] = 1;
3247   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3248   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3249   data[21] = 64;
3250   data[22] = 32;
3251   data[23] = 32;
3252   memset(&data[24], 0, 100-24);
3253   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3254   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3255 #ifndef SQLITE_OMIT_AUTOVACUUM
3256   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3257   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3258   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3259   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3260 #endif
3261   pBt->nPage = 1;
3262   data[31] = 1;
3263   return SQLITE_OK;
3264 }
3265 
3266 /*
3267 ** Initialize the first page of the database file (creating a database
3268 ** consisting of a single page and no schema objects). Return SQLITE_OK
3269 ** if successful, or an SQLite error code otherwise.
3270 */
3271 int sqlite3BtreeNewDb(Btree *p){
3272   int rc;
3273   sqlite3BtreeEnter(p);
3274   p->pBt->nPage = 0;
3275   rc = newDatabase(p->pBt);
3276   sqlite3BtreeLeave(p);
3277   return rc;
3278 }
3279 
3280 /*
3281 ** Attempt to start a new transaction. A write-transaction
3282 ** is started if the second argument is nonzero, otherwise a read-
3283 ** transaction.  If the second argument is 2 or more and exclusive
3284 ** transaction is started, meaning that no other process is allowed
3285 ** to access the database.  A preexisting transaction may not be
3286 ** upgraded to exclusive by calling this routine a second time - the
3287 ** exclusivity flag only works for a new transaction.
3288 **
3289 ** A write-transaction must be started before attempting any
3290 ** changes to the database.  None of the following routines
3291 ** will work unless a transaction is started first:
3292 **
3293 **      sqlite3BtreeCreateTable()
3294 **      sqlite3BtreeCreateIndex()
3295 **      sqlite3BtreeClearTable()
3296 **      sqlite3BtreeDropTable()
3297 **      sqlite3BtreeInsert()
3298 **      sqlite3BtreeDelete()
3299 **      sqlite3BtreeUpdateMeta()
3300 **
3301 ** If an initial attempt to acquire the lock fails because of lock contention
3302 ** and the database was previously unlocked, then invoke the busy handler
3303 ** if there is one.  But if there was previously a read-lock, do not
3304 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3305 ** returned when there is already a read-lock in order to avoid a deadlock.
3306 **
3307 ** Suppose there are two processes A and B.  A has a read lock and B has
3308 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3309 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3310 ** One or the other of the two processes must give way or there can be
3311 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3312 ** when A already has a read lock, we encourage A to give up and let B
3313 ** proceed.
3314 */
3315 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3316   BtShared *pBt = p->pBt;
3317   int rc = SQLITE_OK;
3318 
3319   sqlite3BtreeEnter(p);
3320   btreeIntegrity(p);
3321 
3322   /* If the btree is already in a write-transaction, or it
3323   ** is already in a read-transaction and a read-transaction
3324   ** is requested, this is a no-op.
3325   */
3326   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3327     goto trans_begun;
3328   }
3329   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3330 
3331   if( (p->db->flags & SQLITE_ResetDatabase)
3332    && sqlite3PagerIsreadonly(pBt->pPager)==0
3333   ){
3334     pBt->btsFlags &= ~BTS_READ_ONLY;
3335   }
3336 
3337   /* Write transactions are not possible on a read-only database */
3338   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3339     rc = SQLITE_READONLY;
3340     goto trans_begun;
3341   }
3342 
3343 #ifndef SQLITE_OMIT_SHARED_CACHE
3344   {
3345     sqlite3 *pBlock = 0;
3346     /* If another database handle has already opened a write transaction
3347     ** on this shared-btree structure and a second write transaction is
3348     ** requested, return SQLITE_LOCKED.
3349     */
3350     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3351      || (pBt->btsFlags & BTS_PENDING)!=0
3352     ){
3353       pBlock = pBt->pWriter->db;
3354     }else if( wrflag>1 ){
3355       BtLock *pIter;
3356       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3357         if( pIter->pBtree!=p ){
3358           pBlock = pIter->pBtree->db;
3359           break;
3360         }
3361       }
3362     }
3363     if( pBlock ){
3364       sqlite3ConnectionBlocked(p->db, pBlock);
3365       rc = SQLITE_LOCKED_SHAREDCACHE;
3366       goto trans_begun;
3367     }
3368   }
3369 #endif
3370 
3371   /* Any read-only or read-write transaction implies a read-lock on
3372   ** page 1. So if some other shared-cache client already has a write-lock
3373   ** on page 1, the transaction cannot be opened. */
3374   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3375   if( SQLITE_OK!=rc ) goto trans_begun;
3376 
3377   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3378   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3379   do {
3380     /* Call lockBtree() until either pBt->pPage1 is populated or
3381     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3382     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3383     ** reading page 1 it discovers that the page-size of the database
3384     ** file is not pBt->pageSize. In this case lockBtree() will update
3385     ** pBt->pageSize to the page-size of the file on disk.
3386     */
3387     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3388 
3389     if( rc==SQLITE_OK && wrflag ){
3390       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3391         rc = SQLITE_READONLY;
3392       }else{
3393         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3394         if( rc==SQLITE_OK ){
3395           rc = newDatabase(pBt);
3396         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3397           /* if there was no transaction opened when this function was
3398           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3399           ** code to SQLITE_BUSY. */
3400           rc = SQLITE_BUSY;
3401         }
3402       }
3403     }
3404 
3405     if( rc!=SQLITE_OK ){
3406       unlockBtreeIfUnused(pBt);
3407     }
3408   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3409           btreeInvokeBusyHandler(pBt) );
3410   sqlite3PagerResetLockTimeout(pBt->pPager);
3411 
3412   if( rc==SQLITE_OK ){
3413     if( p->inTrans==TRANS_NONE ){
3414       pBt->nTransaction++;
3415 #ifndef SQLITE_OMIT_SHARED_CACHE
3416       if( p->sharable ){
3417         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3418         p->lock.eLock = READ_LOCK;
3419         p->lock.pNext = pBt->pLock;
3420         pBt->pLock = &p->lock;
3421       }
3422 #endif
3423     }
3424     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3425     if( p->inTrans>pBt->inTransaction ){
3426       pBt->inTransaction = p->inTrans;
3427     }
3428     if( wrflag ){
3429       MemPage *pPage1 = pBt->pPage1;
3430 #ifndef SQLITE_OMIT_SHARED_CACHE
3431       assert( !pBt->pWriter );
3432       pBt->pWriter = p;
3433       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3434       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3435 #endif
3436 
3437       /* If the db-size header field is incorrect (as it may be if an old
3438       ** client has been writing the database file), update it now. Doing
3439       ** this sooner rather than later means the database size can safely
3440       ** re-read the database size from page 1 if a savepoint or transaction
3441       ** rollback occurs within the transaction.
3442       */
3443       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3444         rc = sqlite3PagerWrite(pPage1->pDbPage);
3445         if( rc==SQLITE_OK ){
3446           put4byte(&pPage1->aData[28], pBt->nPage);
3447         }
3448       }
3449     }
3450   }
3451 
3452 trans_begun:
3453   if( rc==SQLITE_OK ){
3454     if( pSchemaVersion ){
3455       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3456     }
3457     if( wrflag ){
3458       /* This call makes sure that the pager has the correct number of
3459       ** open savepoints. If the second parameter is greater than 0 and
3460       ** the sub-journal is not already open, then it will be opened here.
3461       */
3462       rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3463     }
3464   }
3465 
3466   btreeIntegrity(p);
3467   sqlite3BtreeLeave(p);
3468   return rc;
3469 }
3470 
3471 #ifndef SQLITE_OMIT_AUTOVACUUM
3472 
3473 /*
3474 ** Set the pointer-map entries for all children of page pPage. Also, if
3475 ** pPage contains cells that point to overflow pages, set the pointer
3476 ** map entries for the overflow pages as well.
3477 */
3478 static int setChildPtrmaps(MemPage *pPage){
3479   int i;                             /* Counter variable */
3480   int nCell;                         /* Number of cells in page pPage */
3481   int rc;                            /* Return code */
3482   BtShared *pBt = pPage->pBt;
3483   Pgno pgno = pPage->pgno;
3484 
3485   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3486   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3487   if( rc!=SQLITE_OK ) return rc;
3488   nCell = pPage->nCell;
3489 
3490   for(i=0; i<nCell; i++){
3491     u8 *pCell = findCell(pPage, i);
3492 
3493     ptrmapPutOvflPtr(pPage, pCell, &rc);
3494 
3495     if( !pPage->leaf ){
3496       Pgno childPgno = get4byte(pCell);
3497       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3498     }
3499   }
3500 
3501   if( !pPage->leaf ){
3502     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3503     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3504   }
3505 
3506   return rc;
3507 }
3508 
3509 /*
3510 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3511 ** that it points to iTo. Parameter eType describes the type of pointer to
3512 ** be modified, as  follows:
3513 **
3514 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3515 **                   page of pPage.
3516 **
3517 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3518 **                   page pointed to by one of the cells on pPage.
3519 **
3520 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3521 **                   overflow page in the list.
3522 */
3523 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3524   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3525   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3526   if( eType==PTRMAP_OVERFLOW2 ){
3527     /* The pointer is always the first 4 bytes of the page in this case.  */
3528     if( get4byte(pPage->aData)!=iFrom ){
3529       return SQLITE_CORRUPT_PAGE(pPage);
3530     }
3531     put4byte(pPage->aData, iTo);
3532   }else{
3533     int i;
3534     int nCell;
3535     int rc;
3536 
3537     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3538     if( rc ) return rc;
3539     nCell = pPage->nCell;
3540 
3541     for(i=0; i<nCell; i++){
3542       u8 *pCell = findCell(pPage, i);
3543       if( eType==PTRMAP_OVERFLOW1 ){
3544         CellInfo info;
3545         pPage->xParseCell(pPage, pCell, &info);
3546         if( info.nLocal<info.nPayload ){
3547           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3548             return SQLITE_CORRUPT_PAGE(pPage);
3549           }
3550           if( iFrom==get4byte(pCell+info.nSize-4) ){
3551             put4byte(pCell+info.nSize-4, iTo);
3552             break;
3553           }
3554         }
3555       }else{
3556         if( get4byte(pCell)==iFrom ){
3557           put4byte(pCell, iTo);
3558           break;
3559         }
3560       }
3561     }
3562 
3563     if( i==nCell ){
3564       if( eType!=PTRMAP_BTREE ||
3565           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3566         return SQLITE_CORRUPT_PAGE(pPage);
3567       }
3568       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3569     }
3570   }
3571   return SQLITE_OK;
3572 }
3573 
3574 
3575 /*
3576 ** Move the open database page pDbPage to location iFreePage in the
3577 ** database. The pDbPage reference remains valid.
3578 **
3579 ** The isCommit flag indicates that there is no need to remember that
3580 ** the journal needs to be sync()ed before database page pDbPage->pgno
3581 ** can be written to. The caller has already promised not to write to that
3582 ** page.
3583 */
3584 static int relocatePage(
3585   BtShared *pBt,           /* Btree */
3586   MemPage *pDbPage,        /* Open page to move */
3587   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3588   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3589   Pgno iFreePage,          /* The location to move pDbPage to */
3590   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3591 ){
3592   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3593   Pgno iDbPage = pDbPage->pgno;
3594   Pager *pPager = pBt->pPager;
3595   int rc;
3596 
3597   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3598       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3599   assert( sqlite3_mutex_held(pBt->mutex) );
3600   assert( pDbPage->pBt==pBt );
3601   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3602 
3603   /* Move page iDbPage from its current location to page number iFreePage */
3604   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3605       iDbPage, iFreePage, iPtrPage, eType));
3606   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3607   if( rc!=SQLITE_OK ){
3608     return rc;
3609   }
3610   pDbPage->pgno = iFreePage;
3611 
3612   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3613   ** that point to overflow pages. The pointer map entries for all these
3614   ** pages need to be changed.
3615   **
3616   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3617   ** pointer to a subsequent overflow page. If this is the case, then
3618   ** the pointer map needs to be updated for the subsequent overflow page.
3619   */
3620   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3621     rc = setChildPtrmaps(pDbPage);
3622     if( rc!=SQLITE_OK ){
3623       return rc;
3624     }
3625   }else{
3626     Pgno nextOvfl = get4byte(pDbPage->aData);
3627     if( nextOvfl!=0 ){
3628       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3629       if( rc!=SQLITE_OK ){
3630         return rc;
3631       }
3632     }
3633   }
3634 
3635   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3636   ** that it points at iFreePage. Also fix the pointer map entry for
3637   ** iPtrPage.
3638   */
3639   if( eType!=PTRMAP_ROOTPAGE ){
3640     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3641     if( rc!=SQLITE_OK ){
3642       return rc;
3643     }
3644     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3645     if( rc!=SQLITE_OK ){
3646       releasePage(pPtrPage);
3647       return rc;
3648     }
3649     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3650     releasePage(pPtrPage);
3651     if( rc==SQLITE_OK ){
3652       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3653     }
3654   }
3655   return rc;
3656 }
3657 
3658 /* Forward declaration required by incrVacuumStep(). */
3659 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3660 
3661 /*
3662 ** Perform a single step of an incremental-vacuum. If successful, return
3663 ** SQLITE_OK. If there is no work to do (and therefore no point in
3664 ** calling this function again), return SQLITE_DONE. Or, if an error
3665 ** occurs, return some other error code.
3666 **
3667 ** More specifically, this function attempts to re-organize the database so
3668 ** that the last page of the file currently in use is no longer in use.
3669 **
3670 ** Parameter nFin is the number of pages that this database would contain
3671 ** were this function called until it returns SQLITE_DONE.
3672 **
3673 ** If the bCommit parameter is non-zero, this function assumes that the
3674 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3675 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3676 ** operation, or false for an incremental vacuum.
3677 */
3678 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3679   Pgno nFreeList;           /* Number of pages still on the free-list */
3680   int rc;
3681 
3682   assert( sqlite3_mutex_held(pBt->mutex) );
3683   assert( iLastPg>nFin );
3684 
3685   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3686     u8 eType;
3687     Pgno iPtrPage;
3688 
3689     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3690     if( nFreeList==0 ){
3691       return SQLITE_DONE;
3692     }
3693 
3694     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3695     if( rc!=SQLITE_OK ){
3696       return rc;
3697     }
3698     if( eType==PTRMAP_ROOTPAGE ){
3699       return SQLITE_CORRUPT_BKPT;
3700     }
3701 
3702     if( eType==PTRMAP_FREEPAGE ){
3703       if( bCommit==0 ){
3704         /* Remove the page from the files free-list. This is not required
3705         ** if bCommit is non-zero. In that case, the free-list will be
3706         ** truncated to zero after this function returns, so it doesn't
3707         ** matter if it still contains some garbage entries.
3708         */
3709         Pgno iFreePg;
3710         MemPage *pFreePg;
3711         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3712         if( rc!=SQLITE_OK ){
3713           return rc;
3714         }
3715         assert( iFreePg==iLastPg );
3716         releasePage(pFreePg);
3717       }
3718     } else {
3719       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3720       MemPage *pLastPg;
3721       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3722       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3723 
3724       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3725       if( rc!=SQLITE_OK ){
3726         return rc;
3727       }
3728 
3729       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3730       ** is swapped with the first free page pulled off the free list.
3731       **
3732       ** On the other hand, if bCommit is greater than zero, then keep
3733       ** looping until a free-page located within the first nFin pages
3734       ** of the file is found.
3735       */
3736       if( bCommit==0 ){
3737         eMode = BTALLOC_LE;
3738         iNear = nFin;
3739       }
3740       do {
3741         MemPage *pFreePg;
3742         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3743         if( rc!=SQLITE_OK ){
3744           releasePage(pLastPg);
3745           return rc;
3746         }
3747         releasePage(pFreePg);
3748       }while( bCommit && iFreePg>nFin );
3749       assert( iFreePg<iLastPg );
3750 
3751       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3752       releasePage(pLastPg);
3753       if( rc!=SQLITE_OK ){
3754         return rc;
3755       }
3756     }
3757   }
3758 
3759   if( bCommit==0 ){
3760     do {
3761       iLastPg--;
3762     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3763     pBt->bDoTruncate = 1;
3764     pBt->nPage = iLastPg;
3765   }
3766   return SQLITE_OK;
3767 }
3768 
3769 /*
3770 ** The database opened by the first argument is an auto-vacuum database
3771 ** nOrig pages in size containing nFree free pages. Return the expected
3772 ** size of the database in pages following an auto-vacuum operation.
3773 */
3774 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3775   int nEntry;                     /* Number of entries on one ptrmap page */
3776   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3777   Pgno nFin;                      /* Return value */
3778 
3779   nEntry = pBt->usableSize/5;
3780   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3781   nFin = nOrig - nFree - nPtrmap;
3782   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3783     nFin--;
3784   }
3785   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3786     nFin--;
3787   }
3788 
3789   return nFin;
3790 }
3791 
3792 /*
3793 ** A write-transaction must be opened before calling this function.
3794 ** It performs a single unit of work towards an incremental vacuum.
3795 **
3796 ** If the incremental vacuum is finished after this function has run,
3797 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3798 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3799 */
3800 int sqlite3BtreeIncrVacuum(Btree *p){
3801   int rc;
3802   BtShared *pBt = p->pBt;
3803 
3804   sqlite3BtreeEnter(p);
3805   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3806   if( !pBt->autoVacuum ){
3807     rc = SQLITE_DONE;
3808   }else{
3809     Pgno nOrig = btreePagecount(pBt);
3810     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3811     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3812 
3813     if( nOrig<nFin ){
3814       rc = SQLITE_CORRUPT_BKPT;
3815     }else if( nFree>0 ){
3816       rc = saveAllCursors(pBt, 0, 0);
3817       if( rc==SQLITE_OK ){
3818         invalidateAllOverflowCache(pBt);
3819         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3820       }
3821       if( rc==SQLITE_OK ){
3822         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3823         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3824       }
3825     }else{
3826       rc = SQLITE_DONE;
3827     }
3828   }
3829   sqlite3BtreeLeave(p);
3830   return rc;
3831 }
3832 
3833 /*
3834 ** This routine is called prior to sqlite3PagerCommit when a transaction
3835 ** is committed for an auto-vacuum database.
3836 **
3837 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3838 ** the database file should be truncated to during the commit process.
3839 ** i.e. the database has been reorganized so that only the first *pnTrunc
3840 ** pages are in use.
3841 */
3842 static int autoVacuumCommit(BtShared *pBt){
3843   int rc = SQLITE_OK;
3844   Pager *pPager = pBt->pPager;
3845   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3846 
3847   assert( sqlite3_mutex_held(pBt->mutex) );
3848   invalidateAllOverflowCache(pBt);
3849   assert(pBt->autoVacuum);
3850   if( !pBt->incrVacuum ){
3851     Pgno nFin;         /* Number of pages in database after autovacuuming */
3852     Pgno nFree;        /* Number of pages on the freelist initially */
3853     Pgno iFree;        /* The next page to be freed */
3854     Pgno nOrig;        /* Database size before freeing */
3855 
3856     nOrig = btreePagecount(pBt);
3857     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3858       /* It is not possible to create a database for which the final page
3859       ** is either a pointer-map page or the pending-byte page. If one
3860       ** is encountered, this indicates corruption.
3861       */
3862       return SQLITE_CORRUPT_BKPT;
3863     }
3864 
3865     nFree = get4byte(&pBt->pPage1->aData[36]);
3866     nFin = finalDbSize(pBt, nOrig, nFree);
3867     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3868     if( nFin<nOrig ){
3869       rc = saveAllCursors(pBt, 0, 0);
3870     }
3871     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3872       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3873     }
3874     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3875       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3876       put4byte(&pBt->pPage1->aData[32], 0);
3877       put4byte(&pBt->pPage1->aData[36], 0);
3878       put4byte(&pBt->pPage1->aData[28], nFin);
3879       pBt->bDoTruncate = 1;
3880       pBt->nPage = nFin;
3881     }
3882     if( rc!=SQLITE_OK ){
3883       sqlite3PagerRollback(pPager);
3884     }
3885   }
3886 
3887   assert( nRef>=sqlite3PagerRefcount(pPager) );
3888   return rc;
3889 }
3890 
3891 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3892 # define setChildPtrmaps(x) SQLITE_OK
3893 #endif
3894 
3895 /*
3896 ** This routine does the first phase of a two-phase commit.  This routine
3897 ** causes a rollback journal to be created (if it does not already exist)
3898 ** and populated with enough information so that if a power loss occurs
3899 ** the database can be restored to its original state by playing back
3900 ** the journal.  Then the contents of the journal are flushed out to
3901 ** the disk.  After the journal is safely on oxide, the changes to the
3902 ** database are written into the database file and flushed to oxide.
3903 ** At the end of this call, the rollback journal still exists on the
3904 ** disk and we are still holding all locks, so the transaction has not
3905 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3906 ** commit process.
3907 **
3908 ** This call is a no-op if no write-transaction is currently active on pBt.
3909 **
3910 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3911 ** the name of a master journal file that should be written into the
3912 ** individual journal file, or is NULL, indicating no master journal file
3913 ** (single database transaction).
3914 **
3915 ** When this is called, the master journal should already have been
3916 ** created, populated with this journal pointer and synced to disk.
3917 **
3918 ** Once this is routine has returned, the only thing required to commit
3919 ** the write-transaction for this database file is to delete the journal.
3920 */
3921 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3922   int rc = SQLITE_OK;
3923   if( p->inTrans==TRANS_WRITE ){
3924     BtShared *pBt = p->pBt;
3925     sqlite3BtreeEnter(p);
3926 #ifndef SQLITE_OMIT_AUTOVACUUM
3927     if( pBt->autoVacuum ){
3928       rc = autoVacuumCommit(pBt);
3929       if( rc!=SQLITE_OK ){
3930         sqlite3BtreeLeave(p);
3931         return rc;
3932       }
3933     }
3934     if( pBt->bDoTruncate ){
3935       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3936     }
3937 #endif
3938     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3939     sqlite3BtreeLeave(p);
3940   }
3941   return rc;
3942 }
3943 
3944 /*
3945 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3946 ** at the conclusion of a transaction.
3947 */
3948 static void btreeEndTransaction(Btree *p){
3949   BtShared *pBt = p->pBt;
3950   sqlite3 *db = p->db;
3951   assert( sqlite3BtreeHoldsMutex(p) );
3952 
3953 #ifndef SQLITE_OMIT_AUTOVACUUM
3954   pBt->bDoTruncate = 0;
3955 #endif
3956   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3957     /* If there are other active statements that belong to this database
3958     ** handle, downgrade to a read-only transaction. The other statements
3959     ** may still be reading from the database.  */
3960     downgradeAllSharedCacheTableLocks(p);
3961     p->inTrans = TRANS_READ;
3962   }else{
3963     /* If the handle had any kind of transaction open, decrement the
3964     ** transaction count of the shared btree. If the transaction count
3965     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3966     ** call below will unlock the pager.  */
3967     if( p->inTrans!=TRANS_NONE ){
3968       clearAllSharedCacheTableLocks(p);
3969       pBt->nTransaction--;
3970       if( 0==pBt->nTransaction ){
3971         pBt->inTransaction = TRANS_NONE;
3972       }
3973     }
3974 
3975     /* Set the current transaction state to TRANS_NONE and unlock the
3976     ** pager if this call closed the only read or write transaction.  */
3977     p->inTrans = TRANS_NONE;
3978     unlockBtreeIfUnused(pBt);
3979   }
3980 
3981   btreeIntegrity(p);
3982 }
3983 
3984 /*
3985 ** Commit the transaction currently in progress.
3986 **
3987 ** This routine implements the second phase of a 2-phase commit.  The
3988 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3989 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
3990 ** routine did all the work of writing information out to disk and flushing the
3991 ** contents so that they are written onto the disk platter.  All this
3992 ** routine has to do is delete or truncate or zero the header in the
3993 ** the rollback journal (which causes the transaction to commit) and
3994 ** drop locks.
3995 **
3996 ** Normally, if an error occurs while the pager layer is attempting to
3997 ** finalize the underlying journal file, this function returns an error and
3998 ** the upper layer will attempt a rollback. However, if the second argument
3999 ** is non-zero then this b-tree transaction is part of a multi-file
4000 ** transaction. In this case, the transaction has already been committed
4001 ** (by deleting a master journal file) and the caller will ignore this
4002 ** functions return code. So, even if an error occurs in the pager layer,
4003 ** reset the b-tree objects internal state to indicate that the write
4004 ** transaction has been closed. This is quite safe, as the pager will have
4005 ** transitioned to the error state.
4006 **
4007 ** This will release the write lock on the database file.  If there
4008 ** are no active cursors, it also releases the read lock.
4009 */
4010 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4011 
4012   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4013   sqlite3BtreeEnter(p);
4014   btreeIntegrity(p);
4015 
4016   /* If the handle has a write-transaction open, commit the shared-btrees
4017   ** transaction and set the shared state to TRANS_READ.
4018   */
4019   if( p->inTrans==TRANS_WRITE ){
4020     int rc;
4021     BtShared *pBt = p->pBt;
4022     assert( pBt->inTransaction==TRANS_WRITE );
4023     assert( pBt->nTransaction>0 );
4024     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4025     if( rc!=SQLITE_OK && bCleanup==0 ){
4026       sqlite3BtreeLeave(p);
4027       return rc;
4028     }
4029     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4030     pBt->inTransaction = TRANS_READ;
4031     btreeClearHasContent(pBt);
4032   }
4033 
4034   btreeEndTransaction(p);
4035   sqlite3BtreeLeave(p);
4036   return SQLITE_OK;
4037 }
4038 
4039 /*
4040 ** Do both phases of a commit.
4041 */
4042 int sqlite3BtreeCommit(Btree *p){
4043   int rc;
4044   sqlite3BtreeEnter(p);
4045   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4046   if( rc==SQLITE_OK ){
4047     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4048   }
4049   sqlite3BtreeLeave(p);
4050   return rc;
4051 }
4052 
4053 /*
4054 ** This routine sets the state to CURSOR_FAULT and the error
4055 ** code to errCode for every cursor on any BtShared that pBtree
4056 ** references.  Or if the writeOnly flag is set to 1, then only
4057 ** trip write cursors and leave read cursors unchanged.
4058 **
4059 ** Every cursor is a candidate to be tripped, including cursors
4060 ** that belong to other database connections that happen to be
4061 ** sharing the cache with pBtree.
4062 **
4063 ** This routine gets called when a rollback occurs. If the writeOnly
4064 ** flag is true, then only write-cursors need be tripped - read-only
4065 ** cursors save their current positions so that they may continue
4066 ** following the rollback. Or, if writeOnly is false, all cursors are
4067 ** tripped. In general, writeOnly is false if the transaction being
4068 ** rolled back modified the database schema. In this case b-tree root
4069 ** pages may be moved or deleted from the database altogether, making
4070 ** it unsafe for read cursors to continue.
4071 **
4072 ** If the writeOnly flag is true and an error is encountered while
4073 ** saving the current position of a read-only cursor, all cursors,
4074 ** including all read-cursors are tripped.
4075 **
4076 ** SQLITE_OK is returned if successful, or if an error occurs while
4077 ** saving a cursor position, an SQLite error code.
4078 */
4079 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4080   BtCursor *p;
4081   int rc = SQLITE_OK;
4082 
4083   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4084   if( pBtree ){
4085     sqlite3BtreeEnter(pBtree);
4086     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4087       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4088         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4089           rc = saveCursorPosition(p);
4090           if( rc!=SQLITE_OK ){
4091             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4092             break;
4093           }
4094         }
4095       }else{
4096         sqlite3BtreeClearCursor(p);
4097         p->eState = CURSOR_FAULT;
4098         p->skipNext = errCode;
4099       }
4100       btreeReleaseAllCursorPages(p);
4101     }
4102     sqlite3BtreeLeave(pBtree);
4103   }
4104   return rc;
4105 }
4106 
4107 /*
4108 ** Rollback the transaction in progress.
4109 **
4110 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4111 ** Only write cursors are tripped if writeOnly is true but all cursors are
4112 ** tripped if writeOnly is false.  Any attempt to use
4113 ** a tripped cursor will result in an error.
4114 **
4115 ** This will release the write lock on the database file.  If there
4116 ** are no active cursors, it also releases the read lock.
4117 */
4118 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4119   int rc;
4120   BtShared *pBt = p->pBt;
4121   MemPage *pPage1;
4122 
4123   assert( writeOnly==1 || writeOnly==0 );
4124   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4125   sqlite3BtreeEnter(p);
4126   if( tripCode==SQLITE_OK ){
4127     rc = tripCode = saveAllCursors(pBt, 0, 0);
4128     if( rc ) writeOnly = 0;
4129   }else{
4130     rc = SQLITE_OK;
4131   }
4132   if( tripCode ){
4133     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4134     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4135     if( rc2!=SQLITE_OK ) rc = rc2;
4136   }
4137   btreeIntegrity(p);
4138 
4139   if( p->inTrans==TRANS_WRITE ){
4140     int rc2;
4141 
4142     assert( TRANS_WRITE==pBt->inTransaction );
4143     rc2 = sqlite3PagerRollback(pBt->pPager);
4144     if( rc2!=SQLITE_OK ){
4145       rc = rc2;
4146     }
4147 
4148     /* The rollback may have destroyed the pPage1->aData value.  So
4149     ** call btreeGetPage() on page 1 again to make
4150     ** sure pPage1->aData is set correctly. */
4151     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4152       int nPage = get4byte(28+(u8*)pPage1->aData);
4153       testcase( nPage==0 );
4154       if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4155       testcase( pBt->nPage!=nPage );
4156       pBt->nPage = nPage;
4157       releasePageOne(pPage1);
4158     }
4159     assert( countValidCursors(pBt, 1)==0 );
4160     pBt->inTransaction = TRANS_READ;
4161     btreeClearHasContent(pBt);
4162   }
4163 
4164   btreeEndTransaction(p);
4165   sqlite3BtreeLeave(p);
4166   return rc;
4167 }
4168 
4169 /*
4170 ** Start a statement subtransaction. The subtransaction can be rolled
4171 ** back independently of the main transaction. You must start a transaction
4172 ** before starting a subtransaction. The subtransaction is ended automatically
4173 ** if the main transaction commits or rolls back.
4174 **
4175 ** Statement subtransactions are used around individual SQL statements
4176 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4177 ** error occurs within the statement, the effect of that one statement
4178 ** can be rolled back without having to rollback the entire transaction.
4179 **
4180 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4181 ** value passed as the second parameter is the total number of savepoints,
4182 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4183 ** are no active savepoints and no other statement-transactions open,
4184 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4185 ** using the sqlite3BtreeSavepoint() function.
4186 */
4187 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4188   int rc;
4189   BtShared *pBt = p->pBt;
4190   sqlite3BtreeEnter(p);
4191   assert( p->inTrans==TRANS_WRITE );
4192   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4193   assert( iStatement>0 );
4194   assert( iStatement>p->db->nSavepoint );
4195   assert( pBt->inTransaction==TRANS_WRITE );
4196   /* At the pager level, a statement transaction is a savepoint with
4197   ** an index greater than all savepoints created explicitly using
4198   ** SQL statements. It is illegal to open, release or rollback any
4199   ** such savepoints while the statement transaction savepoint is active.
4200   */
4201   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4202   sqlite3BtreeLeave(p);
4203   return rc;
4204 }
4205 
4206 /*
4207 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4208 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4209 ** savepoint identified by parameter iSavepoint, depending on the value
4210 ** of op.
4211 **
4212 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4213 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4214 ** contents of the entire transaction are rolled back. This is different
4215 ** from a normal transaction rollback, as no locks are released and the
4216 ** transaction remains open.
4217 */
4218 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4219   int rc = SQLITE_OK;
4220   if( p && p->inTrans==TRANS_WRITE ){
4221     BtShared *pBt = p->pBt;
4222     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4223     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4224     sqlite3BtreeEnter(p);
4225     if( op==SAVEPOINT_ROLLBACK ){
4226       rc = saveAllCursors(pBt, 0, 0);
4227     }
4228     if( rc==SQLITE_OK ){
4229       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4230     }
4231     if( rc==SQLITE_OK ){
4232       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4233         pBt->nPage = 0;
4234       }
4235       rc = newDatabase(pBt);
4236       pBt->nPage = get4byte(28 + pBt->pPage1->aData);
4237 
4238       /* The database size was written into the offset 28 of the header
4239       ** when the transaction started, so we know that the value at offset
4240       ** 28 is nonzero. */
4241       assert( pBt->nPage>0 );
4242     }
4243     sqlite3BtreeLeave(p);
4244   }
4245   return rc;
4246 }
4247 
4248 /*
4249 ** Create a new cursor for the BTree whose root is on the page
4250 ** iTable. If a read-only cursor is requested, it is assumed that
4251 ** the caller already has at least a read-only transaction open
4252 ** on the database already. If a write-cursor is requested, then
4253 ** the caller is assumed to have an open write transaction.
4254 **
4255 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4256 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4257 ** can be used for reading or for writing if other conditions for writing
4258 ** are also met.  These are the conditions that must be met in order
4259 ** for writing to be allowed:
4260 **
4261 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4262 **
4263 ** 2:  Other database connections that share the same pager cache
4264 **     but which are not in the READ_UNCOMMITTED state may not have
4265 **     cursors open with wrFlag==0 on the same table.  Otherwise
4266 **     the changes made by this write cursor would be visible to
4267 **     the read cursors in the other database connection.
4268 **
4269 ** 3:  The database must be writable (not on read-only media)
4270 **
4271 ** 4:  There must be an active transaction.
4272 **
4273 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4274 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4275 ** this cursor will only be used to seek to and delete entries of an index
4276 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4277 ** this implementation.  But in a hypothetical alternative storage engine
4278 ** in which index entries are automatically deleted when corresponding table
4279 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4280 ** operations on this cursor can be no-ops and all READ operations can
4281 ** return a null row (2-bytes: 0x01 0x00).
4282 **
4283 ** No checking is done to make sure that page iTable really is the
4284 ** root page of a b-tree.  If it is not, then the cursor acquired
4285 ** will not work correctly.
4286 **
4287 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4288 ** on pCur to initialize the memory space prior to invoking this routine.
4289 */
4290 static int btreeCursor(
4291   Btree *p,                              /* The btree */
4292   int iTable,                            /* Root page of table to open */
4293   int wrFlag,                            /* 1 to write. 0 read-only */
4294   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4295   BtCursor *pCur                         /* Space for new cursor */
4296 ){
4297   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4298   BtCursor *pX;                          /* Looping over other all cursors */
4299 
4300   assert( sqlite3BtreeHoldsMutex(p) );
4301   assert( wrFlag==0
4302        || wrFlag==BTREE_WRCSR
4303        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4304   );
4305 
4306   /* The following assert statements verify that if this is a sharable
4307   ** b-tree database, the connection is holding the required table locks,
4308   ** and that no other connection has any open cursor that conflicts with
4309   ** this lock.  */
4310   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4311   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4312 
4313   /* Assert that the caller has opened the required transaction. */
4314   assert( p->inTrans>TRANS_NONE );
4315   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4316   assert( pBt->pPage1 && pBt->pPage1->aData );
4317   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4318 
4319   if( wrFlag ){
4320     allocateTempSpace(pBt);
4321     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4322   }
4323   if( iTable==1 && btreePagecount(pBt)==0 ){
4324     assert( wrFlag==0 );
4325     iTable = 0;
4326   }
4327 
4328   /* Now that no other errors can occur, finish filling in the BtCursor
4329   ** variables and link the cursor into the BtShared list.  */
4330   pCur->pgnoRoot = (Pgno)iTable;
4331   pCur->iPage = -1;
4332   pCur->pKeyInfo = pKeyInfo;
4333   pCur->pBtree = p;
4334   pCur->pBt = pBt;
4335   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4336   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4337   /* If there are two or more cursors on the same btree, then all such
4338   ** cursors *must* have the BTCF_Multiple flag set. */
4339   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4340     if( pX->pgnoRoot==(Pgno)iTable ){
4341       pX->curFlags |= BTCF_Multiple;
4342       pCur->curFlags |= BTCF_Multiple;
4343     }
4344   }
4345   pCur->pNext = pBt->pCursor;
4346   pBt->pCursor = pCur;
4347   pCur->eState = CURSOR_INVALID;
4348   return SQLITE_OK;
4349 }
4350 int sqlite3BtreeCursor(
4351   Btree *p,                                   /* The btree */
4352   int iTable,                                 /* Root page of table to open */
4353   int wrFlag,                                 /* 1 to write. 0 read-only */
4354   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4355   BtCursor *pCur                              /* Write new cursor here */
4356 ){
4357   int rc;
4358   if( iTable<1 ){
4359     rc = SQLITE_CORRUPT_BKPT;
4360   }else{
4361     sqlite3BtreeEnter(p);
4362     rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4363     sqlite3BtreeLeave(p);
4364   }
4365   return rc;
4366 }
4367 
4368 /*
4369 ** Return the size of a BtCursor object in bytes.
4370 **
4371 ** This interfaces is needed so that users of cursors can preallocate
4372 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4373 ** to users so they cannot do the sizeof() themselves - they must call
4374 ** this routine.
4375 */
4376 int sqlite3BtreeCursorSize(void){
4377   return ROUND8(sizeof(BtCursor));
4378 }
4379 
4380 /*
4381 ** Initialize memory that will be converted into a BtCursor object.
4382 **
4383 ** The simple approach here would be to memset() the entire object
4384 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4385 ** do not need to be zeroed and they are large, so we can save a lot
4386 ** of run-time by skipping the initialization of those elements.
4387 */
4388 void sqlite3BtreeCursorZero(BtCursor *p){
4389   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4390 }
4391 
4392 /*
4393 ** Close a cursor.  The read lock on the database file is released
4394 ** when the last cursor is closed.
4395 */
4396 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4397   Btree *pBtree = pCur->pBtree;
4398   if( pBtree ){
4399     BtShared *pBt = pCur->pBt;
4400     sqlite3BtreeEnter(pBtree);
4401     assert( pBt->pCursor!=0 );
4402     if( pBt->pCursor==pCur ){
4403       pBt->pCursor = pCur->pNext;
4404     }else{
4405       BtCursor *pPrev = pBt->pCursor;
4406       do{
4407         if( pPrev->pNext==pCur ){
4408           pPrev->pNext = pCur->pNext;
4409           break;
4410         }
4411         pPrev = pPrev->pNext;
4412       }while( ALWAYS(pPrev) );
4413     }
4414     btreeReleaseAllCursorPages(pCur);
4415     unlockBtreeIfUnused(pBt);
4416     sqlite3_free(pCur->aOverflow);
4417     sqlite3_free(pCur->pKey);
4418     sqlite3BtreeLeave(pBtree);
4419   }
4420   return SQLITE_OK;
4421 }
4422 
4423 /*
4424 ** Make sure the BtCursor* given in the argument has a valid
4425 ** BtCursor.info structure.  If it is not already valid, call
4426 ** btreeParseCell() to fill it in.
4427 **
4428 ** BtCursor.info is a cache of the information in the current cell.
4429 ** Using this cache reduces the number of calls to btreeParseCell().
4430 */
4431 #ifndef NDEBUG
4432   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4433     if( a->nKey!=b->nKey ) return 0;
4434     if( a->pPayload!=b->pPayload ) return 0;
4435     if( a->nPayload!=b->nPayload ) return 0;
4436     if( a->nLocal!=b->nLocal ) return 0;
4437     if( a->nSize!=b->nSize ) return 0;
4438     return 1;
4439   }
4440   static void assertCellInfo(BtCursor *pCur){
4441     CellInfo info;
4442     memset(&info, 0, sizeof(info));
4443     btreeParseCell(pCur->pPage, pCur->ix, &info);
4444     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4445   }
4446 #else
4447   #define assertCellInfo(x)
4448 #endif
4449 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4450   if( pCur->info.nSize==0 ){
4451     pCur->curFlags |= BTCF_ValidNKey;
4452     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4453   }else{
4454     assertCellInfo(pCur);
4455   }
4456 }
4457 
4458 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4459 /*
4460 ** Return true if the given BtCursor is valid.  A valid cursor is one
4461 ** that is currently pointing to a row in a (non-empty) table.
4462 ** This is a verification routine is used only within assert() statements.
4463 */
4464 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4465   return pCur && pCur->eState==CURSOR_VALID;
4466 }
4467 #endif /* NDEBUG */
4468 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4469   assert( pCur!=0 );
4470   return pCur->eState==CURSOR_VALID;
4471 }
4472 
4473 /*
4474 ** Return the value of the integer key or "rowid" for a table btree.
4475 ** This routine is only valid for a cursor that is pointing into a
4476 ** ordinary table btree.  If the cursor points to an index btree or
4477 ** is invalid, the result of this routine is undefined.
4478 */
4479 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4480   assert( cursorHoldsMutex(pCur) );
4481   assert( pCur->eState==CURSOR_VALID );
4482   assert( pCur->curIntKey );
4483   getCellInfo(pCur);
4484   return pCur->info.nKey;
4485 }
4486 
4487 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4488 /*
4489 ** Return the offset into the database file for the start of the
4490 ** payload to which the cursor is pointing.
4491 */
4492 i64 sqlite3BtreeOffset(BtCursor *pCur){
4493   assert( cursorHoldsMutex(pCur) );
4494   assert( pCur->eState==CURSOR_VALID );
4495   getCellInfo(pCur);
4496   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4497          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4498 }
4499 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4500 
4501 /*
4502 ** Return the number of bytes of payload for the entry that pCur is
4503 ** currently pointing to.  For table btrees, this will be the amount
4504 ** of data.  For index btrees, this will be the size of the key.
4505 **
4506 ** The caller must guarantee that the cursor is pointing to a non-NULL
4507 ** valid entry.  In other words, the calling procedure must guarantee
4508 ** that the cursor has Cursor.eState==CURSOR_VALID.
4509 */
4510 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4511   assert( cursorHoldsMutex(pCur) );
4512   assert( pCur->eState==CURSOR_VALID );
4513   getCellInfo(pCur);
4514   return pCur->info.nPayload;
4515 }
4516 
4517 /*
4518 ** Given the page number of an overflow page in the database (parameter
4519 ** ovfl), this function finds the page number of the next page in the
4520 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4521 ** pointer-map data instead of reading the content of page ovfl to do so.
4522 **
4523 ** If an error occurs an SQLite error code is returned. Otherwise:
4524 **
4525 ** The page number of the next overflow page in the linked list is
4526 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4527 ** list, *pPgnoNext is set to zero.
4528 **
4529 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4530 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4531 ** reference. It is the responsibility of the caller to call releasePage()
4532 ** on *ppPage to free the reference. In no reference was obtained (because
4533 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4534 ** *ppPage is set to zero.
4535 */
4536 static int getOverflowPage(
4537   BtShared *pBt,               /* The database file */
4538   Pgno ovfl,                   /* Current overflow page number */
4539   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4540   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4541 ){
4542   Pgno next = 0;
4543   MemPage *pPage = 0;
4544   int rc = SQLITE_OK;
4545 
4546   assert( sqlite3_mutex_held(pBt->mutex) );
4547   assert(pPgnoNext);
4548 
4549 #ifndef SQLITE_OMIT_AUTOVACUUM
4550   /* Try to find the next page in the overflow list using the
4551   ** autovacuum pointer-map pages. Guess that the next page in
4552   ** the overflow list is page number (ovfl+1). If that guess turns
4553   ** out to be wrong, fall back to loading the data of page
4554   ** number ovfl to determine the next page number.
4555   */
4556   if( pBt->autoVacuum ){
4557     Pgno pgno;
4558     Pgno iGuess = ovfl+1;
4559     u8 eType;
4560 
4561     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4562       iGuess++;
4563     }
4564 
4565     if( iGuess<=btreePagecount(pBt) ){
4566       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4567       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4568         next = iGuess;
4569         rc = SQLITE_DONE;
4570       }
4571     }
4572   }
4573 #endif
4574 
4575   assert( next==0 || rc==SQLITE_DONE );
4576   if( rc==SQLITE_OK ){
4577     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4578     assert( rc==SQLITE_OK || pPage==0 );
4579     if( rc==SQLITE_OK ){
4580       next = get4byte(pPage->aData);
4581     }
4582   }
4583 
4584   *pPgnoNext = next;
4585   if( ppPage ){
4586     *ppPage = pPage;
4587   }else{
4588     releasePage(pPage);
4589   }
4590   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4591 }
4592 
4593 /*
4594 ** Copy data from a buffer to a page, or from a page to a buffer.
4595 **
4596 ** pPayload is a pointer to data stored on database page pDbPage.
4597 ** If argument eOp is false, then nByte bytes of data are copied
4598 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4599 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4600 ** of data are copied from the buffer pBuf to pPayload.
4601 **
4602 ** SQLITE_OK is returned on success, otherwise an error code.
4603 */
4604 static int copyPayload(
4605   void *pPayload,           /* Pointer to page data */
4606   void *pBuf,               /* Pointer to buffer */
4607   int nByte,                /* Number of bytes to copy */
4608   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4609   DbPage *pDbPage           /* Page containing pPayload */
4610 ){
4611   if( eOp ){
4612     /* Copy data from buffer to page (a write operation) */
4613     int rc = sqlite3PagerWrite(pDbPage);
4614     if( rc!=SQLITE_OK ){
4615       return rc;
4616     }
4617     memcpy(pPayload, pBuf, nByte);
4618   }else{
4619     /* Copy data from page to buffer (a read operation) */
4620     memcpy(pBuf, pPayload, nByte);
4621   }
4622   return SQLITE_OK;
4623 }
4624 
4625 /*
4626 ** This function is used to read or overwrite payload information
4627 ** for the entry that the pCur cursor is pointing to. The eOp
4628 ** argument is interpreted as follows:
4629 **
4630 **   0: The operation is a read. Populate the overflow cache.
4631 **   1: The operation is a write. Populate the overflow cache.
4632 **
4633 ** A total of "amt" bytes are read or written beginning at "offset".
4634 ** Data is read to or from the buffer pBuf.
4635 **
4636 ** The content being read or written might appear on the main page
4637 ** or be scattered out on multiple overflow pages.
4638 **
4639 ** If the current cursor entry uses one or more overflow pages
4640 ** this function may allocate space for and lazily populate
4641 ** the overflow page-list cache array (BtCursor.aOverflow).
4642 ** Subsequent calls use this cache to make seeking to the supplied offset
4643 ** more efficient.
4644 **
4645 ** Once an overflow page-list cache has been allocated, it must be
4646 ** invalidated if some other cursor writes to the same table, or if
4647 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4648 ** mode, the following events may invalidate an overflow page-list cache.
4649 **
4650 **   * An incremental vacuum,
4651 **   * A commit in auto_vacuum="full" mode,
4652 **   * Creating a table (may require moving an overflow page).
4653 */
4654 static int accessPayload(
4655   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4656   u32 offset,          /* Begin reading this far into payload */
4657   u32 amt,             /* Read this many bytes */
4658   unsigned char *pBuf, /* Write the bytes into this buffer */
4659   int eOp              /* zero to read. non-zero to write. */
4660 ){
4661   unsigned char *aPayload;
4662   int rc = SQLITE_OK;
4663   int iIdx = 0;
4664   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4665   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4666 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4667   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4668 #endif
4669 
4670   assert( pPage );
4671   assert( eOp==0 || eOp==1 );
4672   assert( pCur->eState==CURSOR_VALID );
4673   assert( pCur->ix<pPage->nCell );
4674   assert( cursorHoldsMutex(pCur) );
4675 
4676   getCellInfo(pCur);
4677   aPayload = pCur->info.pPayload;
4678   assert( offset+amt <= pCur->info.nPayload );
4679 
4680   assert( aPayload > pPage->aData );
4681   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4682     /* Trying to read or write past the end of the data is an error.  The
4683     ** conditional above is really:
4684     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4685     ** but is recast into its current form to avoid integer overflow problems
4686     */
4687     return SQLITE_CORRUPT_PAGE(pPage);
4688   }
4689 
4690   /* Check if data must be read/written to/from the btree page itself. */
4691   if( offset<pCur->info.nLocal ){
4692     int a = amt;
4693     if( a+offset>pCur->info.nLocal ){
4694       a = pCur->info.nLocal - offset;
4695     }
4696     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4697     offset = 0;
4698     pBuf += a;
4699     amt -= a;
4700   }else{
4701     offset -= pCur->info.nLocal;
4702   }
4703 
4704 
4705   if( rc==SQLITE_OK && amt>0 ){
4706     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4707     Pgno nextPage;
4708 
4709     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4710 
4711     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4712     **
4713     ** The aOverflow[] array is sized at one entry for each overflow page
4714     ** in the overflow chain. The page number of the first overflow page is
4715     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4716     ** means "not yet known" (the cache is lazily populated).
4717     */
4718     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4719       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4720       if( pCur->aOverflow==0
4721        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4722       ){
4723         Pgno *aNew = (Pgno*)sqlite3Realloc(
4724             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4725         );
4726         if( aNew==0 ){
4727           return SQLITE_NOMEM_BKPT;
4728         }else{
4729           pCur->aOverflow = aNew;
4730         }
4731       }
4732       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4733       pCur->curFlags |= BTCF_ValidOvfl;
4734     }else{
4735       /* If the overflow page-list cache has been allocated and the
4736       ** entry for the first required overflow page is valid, skip
4737       ** directly to it.
4738       */
4739       if( pCur->aOverflow[offset/ovflSize] ){
4740         iIdx = (offset/ovflSize);
4741         nextPage = pCur->aOverflow[iIdx];
4742         offset = (offset%ovflSize);
4743       }
4744     }
4745 
4746     assert( rc==SQLITE_OK && amt>0 );
4747     while( nextPage ){
4748       /* If required, populate the overflow page-list cache. */
4749       assert( pCur->aOverflow[iIdx]==0
4750               || pCur->aOverflow[iIdx]==nextPage
4751               || CORRUPT_DB );
4752       pCur->aOverflow[iIdx] = nextPage;
4753 
4754       if( offset>=ovflSize ){
4755         /* The only reason to read this page is to obtain the page
4756         ** number for the next page in the overflow chain. The page
4757         ** data is not required. So first try to lookup the overflow
4758         ** page-list cache, if any, then fall back to the getOverflowPage()
4759         ** function.
4760         */
4761         assert( pCur->curFlags & BTCF_ValidOvfl );
4762         assert( pCur->pBtree->db==pBt->db );
4763         if( pCur->aOverflow[iIdx+1] ){
4764           nextPage = pCur->aOverflow[iIdx+1];
4765         }else{
4766           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4767         }
4768         offset -= ovflSize;
4769       }else{
4770         /* Need to read this page properly. It contains some of the
4771         ** range of data that is being read (eOp==0) or written (eOp!=0).
4772         */
4773         int a = amt;
4774         if( a + offset > ovflSize ){
4775           a = ovflSize - offset;
4776         }
4777 
4778 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4779         /* If all the following are true:
4780         **
4781         **   1) this is a read operation, and
4782         **   2) data is required from the start of this overflow page, and
4783         **   3) there are no dirty pages in the page-cache
4784         **   4) the database is file-backed, and
4785         **   5) the page is not in the WAL file
4786         **   6) at least 4 bytes have already been read into the output buffer
4787         **
4788         ** then data can be read directly from the database file into the
4789         ** output buffer, bypassing the page-cache altogether. This speeds
4790         ** up loading large records that span many overflow pages.
4791         */
4792         if( eOp==0                                             /* (1) */
4793          && offset==0                                          /* (2) */
4794          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
4795          && &pBuf[-4]>=pBufStart                               /* (6) */
4796         ){
4797           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
4798           u8 aSave[4];
4799           u8 *aWrite = &pBuf[-4];
4800           assert( aWrite>=pBufStart );                         /* due to (6) */
4801           memcpy(aSave, aWrite, 4);
4802           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4803           nextPage = get4byte(aWrite);
4804           memcpy(aWrite, aSave, 4);
4805         }else
4806 #endif
4807 
4808         {
4809           DbPage *pDbPage;
4810           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4811               (eOp==0 ? PAGER_GET_READONLY : 0)
4812           );
4813           if( rc==SQLITE_OK ){
4814             aPayload = sqlite3PagerGetData(pDbPage);
4815             nextPage = get4byte(aPayload);
4816             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4817             sqlite3PagerUnref(pDbPage);
4818             offset = 0;
4819           }
4820         }
4821         amt -= a;
4822         if( amt==0 ) return rc;
4823         pBuf += a;
4824       }
4825       if( rc ) break;
4826       iIdx++;
4827     }
4828   }
4829 
4830   if( rc==SQLITE_OK && amt>0 ){
4831     /* Overflow chain ends prematurely */
4832     return SQLITE_CORRUPT_PAGE(pPage);
4833   }
4834   return rc;
4835 }
4836 
4837 /*
4838 ** Read part of the payload for the row at which that cursor pCur is currently
4839 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
4840 ** begins at "offset".
4841 **
4842 ** pCur can be pointing to either a table or an index b-tree.
4843 ** If pointing to a table btree, then the content section is read.  If
4844 ** pCur is pointing to an index b-tree then the key section is read.
4845 **
4846 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4847 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
4848 ** cursor might be invalid or might need to be restored before being read.
4849 **
4850 ** Return SQLITE_OK on success or an error code if anything goes
4851 ** wrong.  An error is returned if "offset+amt" is larger than
4852 ** the available payload.
4853 */
4854 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4855   assert( cursorHoldsMutex(pCur) );
4856   assert( pCur->eState==CURSOR_VALID );
4857   assert( pCur->iPage>=0 && pCur->pPage );
4858   assert( pCur->ix<pCur->pPage->nCell );
4859   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4860 }
4861 
4862 /*
4863 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4864 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
4865 ** interface.
4866 */
4867 #ifndef SQLITE_OMIT_INCRBLOB
4868 static SQLITE_NOINLINE int accessPayloadChecked(
4869   BtCursor *pCur,
4870   u32 offset,
4871   u32 amt,
4872   void *pBuf
4873 ){
4874   int rc;
4875   if ( pCur->eState==CURSOR_INVALID ){
4876     return SQLITE_ABORT;
4877   }
4878   assert( cursorOwnsBtShared(pCur) );
4879   rc = btreeRestoreCursorPosition(pCur);
4880   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4881 }
4882 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4883   if( pCur->eState==CURSOR_VALID ){
4884     assert( cursorOwnsBtShared(pCur) );
4885     return accessPayload(pCur, offset, amt, pBuf, 0);
4886   }else{
4887     return accessPayloadChecked(pCur, offset, amt, pBuf);
4888   }
4889 }
4890 #endif /* SQLITE_OMIT_INCRBLOB */
4891 
4892 /*
4893 ** Return a pointer to payload information from the entry that the
4894 ** pCur cursor is pointing to.  The pointer is to the beginning of
4895 ** the key if index btrees (pPage->intKey==0) and is the data for
4896 ** table btrees (pPage->intKey==1). The number of bytes of available
4897 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4898 ** returned will not be a valid pointer.
4899 **
4900 ** This routine is an optimization.  It is common for the entire key
4901 ** and data to fit on the local page and for there to be no overflow
4902 ** pages.  When that is so, this routine can be used to access the
4903 ** key and data without making a copy.  If the key and/or data spills
4904 ** onto overflow pages, then accessPayload() must be used to reassemble
4905 ** the key/data and copy it into a preallocated buffer.
4906 **
4907 ** The pointer returned by this routine looks directly into the cached
4908 ** page of the database.  The data might change or move the next time
4909 ** any btree routine is called.
4910 */
4911 static const void *fetchPayload(
4912   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4913   u32 *pAmt            /* Write the number of available bytes here */
4914 ){
4915   int amt;
4916   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
4917   assert( pCur->eState==CURSOR_VALID );
4918   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4919   assert( cursorOwnsBtShared(pCur) );
4920   assert( pCur->ix<pCur->pPage->nCell );
4921   assert( pCur->info.nSize>0 );
4922   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4923   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
4924   amt = pCur->info.nLocal;
4925   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4926     /* There is too little space on the page for the expected amount
4927     ** of local content. Database must be corrupt. */
4928     assert( CORRUPT_DB );
4929     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4930   }
4931   *pAmt = (u32)amt;
4932   return (void*)pCur->info.pPayload;
4933 }
4934 
4935 
4936 /*
4937 ** For the entry that cursor pCur is point to, return as
4938 ** many bytes of the key or data as are available on the local
4939 ** b-tree page.  Write the number of available bytes into *pAmt.
4940 **
4941 ** The pointer returned is ephemeral.  The key/data may move
4942 ** or be destroyed on the next call to any Btree routine,
4943 ** including calls from other threads against the same cache.
4944 ** Hence, a mutex on the BtShared should be held prior to calling
4945 ** this routine.
4946 **
4947 ** These routines is used to get quick access to key and data
4948 ** in the common case where no overflow pages are used.
4949 */
4950 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
4951   return fetchPayload(pCur, pAmt);
4952 }
4953 
4954 
4955 /*
4956 ** Move the cursor down to a new child page.  The newPgno argument is the
4957 ** page number of the child page to move to.
4958 **
4959 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4960 ** the new child page does not match the flags field of the parent (i.e.
4961 ** if an intkey page appears to be the parent of a non-intkey page, or
4962 ** vice-versa).
4963 */
4964 static int moveToChild(BtCursor *pCur, u32 newPgno){
4965   BtShared *pBt = pCur->pBt;
4966 
4967   assert( cursorOwnsBtShared(pCur) );
4968   assert( pCur->eState==CURSOR_VALID );
4969   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4970   assert( pCur->iPage>=0 );
4971   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4972     return SQLITE_CORRUPT_BKPT;
4973   }
4974   pCur->info.nSize = 0;
4975   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4976   pCur->aiIdx[pCur->iPage] = pCur->ix;
4977   pCur->apPage[pCur->iPage] = pCur->pPage;
4978   pCur->ix = 0;
4979   pCur->iPage++;
4980   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
4981 }
4982 
4983 #ifdef SQLITE_DEBUG
4984 /*
4985 ** Page pParent is an internal (non-leaf) tree page. This function
4986 ** asserts that page number iChild is the left-child if the iIdx'th
4987 ** cell in page pParent. Or, if iIdx is equal to the total number of
4988 ** cells in pParent, that page number iChild is the right-child of
4989 ** the page.
4990 */
4991 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4992   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
4993                             ** in a corrupt database */
4994   assert( iIdx<=pParent->nCell );
4995   if( iIdx==pParent->nCell ){
4996     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4997   }else{
4998     assert( get4byte(findCell(pParent, iIdx))==iChild );
4999   }
5000 }
5001 #else
5002 #  define assertParentIndex(x,y,z)
5003 #endif
5004 
5005 /*
5006 ** Move the cursor up to the parent page.
5007 **
5008 ** pCur->idx is set to the cell index that contains the pointer
5009 ** to the page we are coming from.  If we are coming from the
5010 ** right-most child page then pCur->idx is set to one more than
5011 ** the largest cell index.
5012 */
5013 static void moveToParent(BtCursor *pCur){
5014   MemPage *pLeaf;
5015   assert( cursorOwnsBtShared(pCur) );
5016   assert( pCur->eState==CURSOR_VALID );
5017   assert( pCur->iPage>0 );
5018   assert( pCur->pPage );
5019   assertParentIndex(
5020     pCur->apPage[pCur->iPage-1],
5021     pCur->aiIdx[pCur->iPage-1],
5022     pCur->pPage->pgno
5023   );
5024   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5025   pCur->info.nSize = 0;
5026   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5027   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5028   pLeaf = pCur->pPage;
5029   pCur->pPage = pCur->apPage[--pCur->iPage];
5030   releasePageNotNull(pLeaf);
5031 }
5032 
5033 /*
5034 ** Move the cursor to point to the root page of its b-tree structure.
5035 **
5036 ** If the table has a virtual root page, then the cursor is moved to point
5037 ** to the virtual root page instead of the actual root page. A table has a
5038 ** virtual root page when the actual root page contains no cells and a
5039 ** single child page. This can only happen with the table rooted at page 1.
5040 **
5041 ** If the b-tree structure is empty, the cursor state is set to
5042 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5043 ** the cursor is set to point to the first cell located on the root
5044 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5045 **
5046 ** If this function returns successfully, it may be assumed that the
5047 ** page-header flags indicate that the [virtual] root-page is the expected
5048 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5049 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5050 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5051 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5052 ** b-tree).
5053 */
5054 static int moveToRoot(BtCursor *pCur){
5055   MemPage *pRoot;
5056   int rc = SQLITE_OK;
5057 
5058   assert( cursorOwnsBtShared(pCur) );
5059   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5060   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5061   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5062   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5063   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5064 
5065   if( pCur->iPage>=0 ){
5066     if( pCur->iPage ){
5067       releasePageNotNull(pCur->pPage);
5068       while( --pCur->iPage ){
5069         releasePageNotNull(pCur->apPage[pCur->iPage]);
5070       }
5071       pCur->pPage = pCur->apPage[0];
5072       goto skip_init;
5073     }
5074   }else if( pCur->pgnoRoot==0 ){
5075     pCur->eState = CURSOR_INVALID;
5076     return SQLITE_EMPTY;
5077   }else{
5078     assert( pCur->iPage==(-1) );
5079     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5080       if( pCur->eState==CURSOR_FAULT ){
5081         assert( pCur->skipNext!=SQLITE_OK );
5082         return pCur->skipNext;
5083       }
5084       sqlite3BtreeClearCursor(pCur);
5085     }
5086     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5087                         0, pCur->curPagerFlags);
5088     if( rc!=SQLITE_OK ){
5089       pCur->eState = CURSOR_INVALID;
5090       return rc;
5091     }
5092     pCur->iPage = 0;
5093     pCur->curIntKey = pCur->pPage->intKey;
5094   }
5095   pRoot = pCur->pPage;
5096   assert( pRoot->pgno==pCur->pgnoRoot );
5097 
5098   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5099   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5100   ** NULL, the caller expects a table b-tree. If this is not the case,
5101   ** return an SQLITE_CORRUPT error.
5102   **
5103   ** Earlier versions of SQLite assumed that this test could not fail
5104   ** if the root page was already loaded when this function was called (i.e.
5105   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5106   ** in such a way that page pRoot is linked into a second b-tree table
5107   ** (or the freelist).  */
5108   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5109   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5110     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5111   }
5112 
5113 skip_init:
5114   pCur->ix = 0;
5115   pCur->info.nSize = 0;
5116   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5117 
5118   pRoot = pCur->pPage;
5119   if( pRoot->nCell>0 ){
5120     pCur->eState = CURSOR_VALID;
5121   }else if( !pRoot->leaf ){
5122     Pgno subpage;
5123     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5124     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5125     pCur->eState = CURSOR_VALID;
5126     rc = moveToChild(pCur, subpage);
5127   }else{
5128     pCur->eState = CURSOR_INVALID;
5129     rc = SQLITE_EMPTY;
5130   }
5131   return rc;
5132 }
5133 
5134 /*
5135 ** Move the cursor down to the left-most leaf entry beneath the
5136 ** entry to which it is currently pointing.
5137 **
5138 ** The left-most leaf is the one with the smallest key - the first
5139 ** in ascending order.
5140 */
5141 static int moveToLeftmost(BtCursor *pCur){
5142   Pgno pgno;
5143   int rc = SQLITE_OK;
5144   MemPage *pPage;
5145 
5146   assert( cursorOwnsBtShared(pCur) );
5147   assert( pCur->eState==CURSOR_VALID );
5148   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5149     assert( pCur->ix<pPage->nCell );
5150     pgno = get4byte(findCell(pPage, pCur->ix));
5151     rc = moveToChild(pCur, pgno);
5152   }
5153   return rc;
5154 }
5155 
5156 /*
5157 ** Move the cursor down to the right-most leaf entry beneath the
5158 ** page to which it is currently pointing.  Notice the difference
5159 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5160 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5161 ** finds the right-most entry beneath the *page*.
5162 **
5163 ** The right-most entry is the one with the largest key - the last
5164 ** key in ascending order.
5165 */
5166 static int moveToRightmost(BtCursor *pCur){
5167   Pgno pgno;
5168   int rc = SQLITE_OK;
5169   MemPage *pPage = 0;
5170 
5171   assert( cursorOwnsBtShared(pCur) );
5172   assert( pCur->eState==CURSOR_VALID );
5173   while( !(pPage = pCur->pPage)->leaf ){
5174     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5175     pCur->ix = pPage->nCell;
5176     rc = moveToChild(pCur, pgno);
5177     if( rc ) return rc;
5178   }
5179   pCur->ix = pPage->nCell-1;
5180   assert( pCur->info.nSize==0 );
5181   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5182   return SQLITE_OK;
5183 }
5184 
5185 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5186 ** on success.  Set *pRes to 0 if the cursor actually points to something
5187 ** or set *pRes to 1 if the table is empty.
5188 */
5189 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5190   int rc;
5191 
5192   assert( cursorOwnsBtShared(pCur) );
5193   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5194   rc = moveToRoot(pCur);
5195   if( rc==SQLITE_OK ){
5196     assert( pCur->pPage->nCell>0 );
5197     *pRes = 0;
5198     rc = moveToLeftmost(pCur);
5199   }else if( rc==SQLITE_EMPTY ){
5200     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5201     *pRes = 1;
5202     rc = SQLITE_OK;
5203   }
5204   return rc;
5205 }
5206 
5207 /*
5208 ** This function is a no-op if cursor pCur does not point to a valid row.
5209 ** Otherwise, if pCur is valid, configure it so that the next call to
5210 ** sqlite3BtreeNext() is a no-op.
5211 */
5212 #ifndef SQLITE_OMIT_WINDOWFUNC
5213 void sqlite3BtreeSkipNext(BtCursor *pCur){
5214   /* We believe that the cursor must always be in the valid state when
5215   ** this routine is called, but the proof is difficult, so we add an
5216   ** ALWaYS() test just in case we are wrong. */
5217   if( ALWAYS(pCur->eState==CURSOR_VALID) ){
5218     pCur->eState = CURSOR_SKIPNEXT;
5219     pCur->skipNext = 1;
5220   }
5221 }
5222 #endif /* SQLITE_OMIT_WINDOWFUNC */
5223 
5224 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5225 ** on success.  Set *pRes to 0 if the cursor actually points to something
5226 ** or set *pRes to 1 if the table is empty.
5227 */
5228 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5229   int rc;
5230 
5231   assert( cursorOwnsBtShared(pCur) );
5232   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5233 
5234   /* If the cursor already points to the last entry, this is a no-op. */
5235   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5236 #ifdef SQLITE_DEBUG
5237     /* This block serves to assert() that the cursor really does point
5238     ** to the last entry in the b-tree. */
5239     int ii;
5240     for(ii=0; ii<pCur->iPage; ii++){
5241       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5242     }
5243     assert( pCur->ix==pCur->pPage->nCell-1 );
5244     assert( pCur->pPage->leaf );
5245 #endif
5246     return SQLITE_OK;
5247   }
5248 
5249   rc = moveToRoot(pCur);
5250   if( rc==SQLITE_OK ){
5251     assert( pCur->eState==CURSOR_VALID );
5252     *pRes = 0;
5253     rc = moveToRightmost(pCur);
5254     if( rc==SQLITE_OK ){
5255       pCur->curFlags |= BTCF_AtLast;
5256     }else{
5257       pCur->curFlags &= ~BTCF_AtLast;
5258     }
5259   }else if( rc==SQLITE_EMPTY ){
5260     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5261     *pRes = 1;
5262     rc = SQLITE_OK;
5263   }
5264   return rc;
5265 }
5266 
5267 /* Move the cursor so that it points to an entry near the key
5268 ** specified by pIdxKey or intKey.   Return a success code.
5269 **
5270 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5271 ** must be NULL.  For index tables, pIdxKey is used and intKey
5272 ** is ignored.
5273 **
5274 ** If an exact match is not found, then the cursor is always
5275 ** left pointing at a leaf page which would hold the entry if it
5276 ** were present.  The cursor might point to an entry that comes
5277 ** before or after the key.
5278 **
5279 ** An integer is written into *pRes which is the result of
5280 ** comparing the key with the entry to which the cursor is
5281 ** pointing.  The meaning of the integer written into
5282 ** *pRes is as follows:
5283 **
5284 **     *pRes<0      The cursor is left pointing at an entry that
5285 **                  is smaller than intKey/pIdxKey or if the table is empty
5286 **                  and the cursor is therefore left point to nothing.
5287 **
5288 **     *pRes==0     The cursor is left pointing at an entry that
5289 **                  exactly matches intKey/pIdxKey.
5290 **
5291 **     *pRes>0      The cursor is left pointing at an entry that
5292 **                  is larger than intKey/pIdxKey.
5293 **
5294 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5295 ** exists an entry in the table that exactly matches pIdxKey.
5296 */
5297 int sqlite3BtreeMovetoUnpacked(
5298   BtCursor *pCur,          /* The cursor to be moved */
5299   UnpackedRecord *pIdxKey, /* Unpacked index key */
5300   i64 intKey,              /* The table key */
5301   int biasRight,           /* If true, bias the search to the high end */
5302   int *pRes                /* Write search results here */
5303 ){
5304   int rc;
5305   RecordCompare xRecordCompare;
5306 
5307   assert( cursorOwnsBtShared(pCur) );
5308   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5309   assert( pRes );
5310   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5311   assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5312 
5313   /* If the cursor is already positioned at the point we are trying
5314   ** to move to, then just return without doing any work */
5315   if( pIdxKey==0
5316    && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5317   ){
5318     if( pCur->info.nKey==intKey ){
5319       *pRes = 0;
5320       return SQLITE_OK;
5321     }
5322     if( pCur->info.nKey<intKey ){
5323       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5324         *pRes = -1;
5325         return SQLITE_OK;
5326       }
5327       /* If the requested key is one more than the previous key, then
5328       ** try to get there using sqlite3BtreeNext() rather than a full
5329       ** binary search.  This is an optimization only.  The correct answer
5330       ** is still obtained without this case, only a little more slowely */
5331       if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5332         *pRes = 0;
5333         rc = sqlite3BtreeNext(pCur, 0);
5334         if( rc==SQLITE_OK ){
5335           getCellInfo(pCur);
5336           if( pCur->info.nKey==intKey ){
5337             return SQLITE_OK;
5338           }
5339         }else if( rc==SQLITE_DONE ){
5340           rc = SQLITE_OK;
5341         }else{
5342           return rc;
5343         }
5344       }
5345     }
5346   }
5347 
5348   if( pIdxKey ){
5349     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5350     pIdxKey->errCode = 0;
5351     assert( pIdxKey->default_rc==1
5352          || pIdxKey->default_rc==0
5353          || pIdxKey->default_rc==-1
5354     );
5355   }else{
5356     xRecordCompare = 0; /* All keys are integers */
5357   }
5358 
5359   rc = moveToRoot(pCur);
5360   if( rc ){
5361     if( rc==SQLITE_EMPTY ){
5362       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5363       *pRes = -1;
5364       return SQLITE_OK;
5365     }
5366     return rc;
5367   }
5368   assert( pCur->pPage );
5369   assert( pCur->pPage->isInit );
5370   assert( pCur->eState==CURSOR_VALID );
5371   assert( pCur->pPage->nCell > 0 );
5372   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5373   assert( pCur->curIntKey || pIdxKey );
5374   for(;;){
5375     int lwr, upr, idx, c;
5376     Pgno chldPg;
5377     MemPage *pPage = pCur->pPage;
5378     u8 *pCell;                          /* Pointer to current cell in pPage */
5379 
5380     /* pPage->nCell must be greater than zero. If this is the root-page
5381     ** the cursor would have been INVALID above and this for(;;) loop
5382     ** not run. If this is not the root-page, then the moveToChild() routine
5383     ** would have already detected db corruption. Similarly, pPage must
5384     ** be the right kind (index or table) of b-tree page. Otherwise
5385     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5386     assert( pPage->nCell>0 );
5387     assert( pPage->intKey==(pIdxKey==0) );
5388     lwr = 0;
5389     upr = pPage->nCell-1;
5390     assert( biasRight==0 || biasRight==1 );
5391     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5392     pCur->ix = (u16)idx;
5393     if( xRecordCompare==0 ){
5394       for(;;){
5395         i64 nCellKey;
5396         pCell = findCellPastPtr(pPage, idx);
5397         if( pPage->intKeyLeaf ){
5398           while( 0x80 <= *(pCell++) ){
5399             if( pCell>=pPage->aDataEnd ){
5400               return SQLITE_CORRUPT_PAGE(pPage);
5401             }
5402           }
5403         }
5404         getVarint(pCell, (u64*)&nCellKey);
5405         if( nCellKey<intKey ){
5406           lwr = idx+1;
5407           if( lwr>upr ){ c = -1; break; }
5408         }else if( nCellKey>intKey ){
5409           upr = idx-1;
5410           if( lwr>upr ){ c = +1; break; }
5411         }else{
5412           assert( nCellKey==intKey );
5413           pCur->ix = (u16)idx;
5414           if( !pPage->leaf ){
5415             lwr = idx;
5416             goto moveto_next_layer;
5417           }else{
5418             pCur->curFlags |= BTCF_ValidNKey;
5419             pCur->info.nKey = nCellKey;
5420             pCur->info.nSize = 0;
5421             *pRes = 0;
5422             return SQLITE_OK;
5423           }
5424         }
5425         assert( lwr+upr>=0 );
5426         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5427       }
5428     }else{
5429       for(;;){
5430         int nCell;  /* Size of the pCell cell in bytes */
5431         pCell = findCellPastPtr(pPage, idx);
5432 
5433         /* The maximum supported page-size is 65536 bytes. This means that
5434         ** the maximum number of record bytes stored on an index B-Tree
5435         ** page is less than 16384 bytes and may be stored as a 2-byte
5436         ** varint. This information is used to attempt to avoid parsing
5437         ** the entire cell by checking for the cases where the record is
5438         ** stored entirely within the b-tree page by inspecting the first
5439         ** 2 bytes of the cell.
5440         */
5441         nCell = pCell[0];
5442         if( nCell<=pPage->max1bytePayload ){
5443           /* This branch runs if the record-size field of the cell is a
5444           ** single byte varint and the record fits entirely on the main
5445           ** b-tree page.  */
5446           testcase( pCell+nCell+1==pPage->aDataEnd );
5447           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5448         }else if( !(pCell[1] & 0x80)
5449           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5450         ){
5451           /* The record-size field is a 2 byte varint and the record
5452           ** fits entirely on the main b-tree page.  */
5453           testcase( pCell+nCell+2==pPage->aDataEnd );
5454           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5455         }else{
5456           /* The record flows over onto one or more overflow pages. In
5457           ** this case the whole cell needs to be parsed, a buffer allocated
5458           ** and accessPayload() used to retrieve the record into the
5459           ** buffer before VdbeRecordCompare() can be called.
5460           **
5461           ** If the record is corrupt, the xRecordCompare routine may read
5462           ** up to two varints past the end of the buffer. An extra 18
5463           ** bytes of padding is allocated at the end of the buffer in
5464           ** case this happens.  */
5465           void *pCellKey;
5466           u8 * const pCellBody = pCell - pPage->childPtrSize;
5467           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5468           nCell = (int)pCur->info.nKey;
5469           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5470           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5471           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5472           testcase( nCell==2 );  /* Minimum legal index key size */
5473           if( nCell<2 ){
5474             rc = SQLITE_CORRUPT_PAGE(pPage);
5475             goto moveto_finish;
5476           }
5477           pCellKey = sqlite3Malloc( nCell+18 );
5478           if( pCellKey==0 ){
5479             rc = SQLITE_NOMEM_BKPT;
5480             goto moveto_finish;
5481           }
5482           pCur->ix = (u16)idx;
5483           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5484           pCur->curFlags &= ~BTCF_ValidOvfl;
5485           if( rc ){
5486             sqlite3_free(pCellKey);
5487             goto moveto_finish;
5488           }
5489           c = xRecordCompare(nCell, pCellKey, pIdxKey);
5490           sqlite3_free(pCellKey);
5491         }
5492         assert(
5493             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5494          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5495         );
5496         if( c<0 ){
5497           lwr = idx+1;
5498         }else if( c>0 ){
5499           upr = idx-1;
5500         }else{
5501           assert( c==0 );
5502           *pRes = 0;
5503           rc = SQLITE_OK;
5504           pCur->ix = (u16)idx;
5505           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5506           goto moveto_finish;
5507         }
5508         if( lwr>upr ) break;
5509         assert( lwr+upr>=0 );
5510         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5511       }
5512     }
5513     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5514     assert( pPage->isInit );
5515     if( pPage->leaf ){
5516       assert( pCur->ix<pCur->pPage->nCell );
5517       pCur->ix = (u16)idx;
5518       *pRes = c;
5519       rc = SQLITE_OK;
5520       goto moveto_finish;
5521     }
5522 moveto_next_layer:
5523     if( lwr>=pPage->nCell ){
5524       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5525     }else{
5526       chldPg = get4byte(findCell(pPage, lwr));
5527     }
5528     pCur->ix = (u16)lwr;
5529     rc = moveToChild(pCur, chldPg);
5530     if( rc ) break;
5531   }
5532 moveto_finish:
5533   pCur->info.nSize = 0;
5534   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5535   return rc;
5536 }
5537 
5538 
5539 /*
5540 ** Return TRUE if the cursor is not pointing at an entry of the table.
5541 **
5542 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5543 ** past the last entry in the table or sqlite3BtreePrev() moves past
5544 ** the first entry.  TRUE is also returned if the table is empty.
5545 */
5546 int sqlite3BtreeEof(BtCursor *pCur){
5547   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5548   ** have been deleted? This API will need to change to return an error code
5549   ** as well as the boolean result value.
5550   */
5551   return (CURSOR_VALID!=pCur->eState);
5552 }
5553 
5554 /*
5555 ** Return an estimate for the number of rows in the table that pCur is
5556 ** pointing to.  Return a negative number if no estimate is currently
5557 ** available.
5558 */
5559 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5560   i64 n;
5561   u8 i;
5562 
5563   assert( cursorOwnsBtShared(pCur) );
5564   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5565 
5566   /* Currently this interface is only called by the OP_IfSmaller
5567   ** opcode, and it that case the cursor will always be valid and
5568   ** will always point to a leaf node. */
5569   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5570   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5571 
5572   n = pCur->pPage->nCell;
5573   for(i=0; i<pCur->iPage; i++){
5574     n *= pCur->apPage[i]->nCell;
5575   }
5576   return n;
5577 }
5578 
5579 /*
5580 ** Advance the cursor to the next entry in the database.
5581 ** Return value:
5582 **
5583 **    SQLITE_OK        success
5584 **    SQLITE_DONE      cursor is already pointing at the last element
5585 **    otherwise        some kind of error occurred
5586 **
5587 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5588 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5589 ** to the next cell on the current page.  The (slower) btreeNext() helper
5590 ** routine is called when it is necessary to move to a different page or
5591 ** to restore the cursor.
5592 **
5593 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5594 ** cursor corresponds to an SQL index and this routine could have been
5595 ** skipped if the SQL index had been a unique index.  The F argument
5596 ** is a hint to the implement.  SQLite btree implementation does not use
5597 ** this hint, but COMDB2 does.
5598 */
5599 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5600   int rc;
5601   int idx;
5602   MemPage *pPage;
5603 
5604   assert( cursorOwnsBtShared(pCur) );
5605   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5606   if( pCur->eState!=CURSOR_VALID ){
5607     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5608     rc = restoreCursorPosition(pCur);
5609     if( rc!=SQLITE_OK ){
5610       return rc;
5611     }
5612     if( CURSOR_INVALID==pCur->eState ){
5613       return SQLITE_DONE;
5614     }
5615     if( pCur->skipNext ){
5616       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5617       pCur->eState = CURSOR_VALID;
5618       if( pCur->skipNext>0 ){
5619         pCur->skipNext = 0;
5620         return SQLITE_OK;
5621       }
5622       pCur->skipNext = 0;
5623     }
5624   }
5625 
5626   pPage = pCur->pPage;
5627   idx = ++pCur->ix;
5628   if( !pPage->isInit ){
5629     /* The only known way for this to happen is for there to be a
5630     ** recursive SQL function that does a DELETE operation as part of a
5631     ** SELECT which deletes content out from under an active cursor
5632     ** in a corrupt database file where the table being DELETE-ed from
5633     ** has pages in common with the table being queried.  See TH3
5634     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5635     ** example. */
5636     return SQLITE_CORRUPT_BKPT;
5637   }
5638 
5639   /* If the database file is corrupt, it is possible for the value of idx
5640   ** to be invalid here. This can only occur if a second cursor modifies
5641   ** the page while cursor pCur is holding a reference to it. Which can
5642   ** only happen if the database is corrupt in such a way as to link the
5643   ** page into more than one b-tree structure. */
5644   testcase( idx>pPage->nCell );
5645 
5646   if( idx>=pPage->nCell ){
5647     if( !pPage->leaf ){
5648       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5649       if( rc ) return rc;
5650       return moveToLeftmost(pCur);
5651     }
5652     do{
5653       if( pCur->iPage==0 ){
5654         pCur->eState = CURSOR_INVALID;
5655         return SQLITE_DONE;
5656       }
5657       moveToParent(pCur);
5658       pPage = pCur->pPage;
5659     }while( pCur->ix>=pPage->nCell );
5660     if( pPage->intKey ){
5661       return sqlite3BtreeNext(pCur, 0);
5662     }else{
5663       return SQLITE_OK;
5664     }
5665   }
5666   if( pPage->leaf ){
5667     return SQLITE_OK;
5668   }else{
5669     return moveToLeftmost(pCur);
5670   }
5671 }
5672 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5673   MemPage *pPage;
5674   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5675   assert( cursorOwnsBtShared(pCur) );
5676   assert( flags==0 || flags==1 );
5677   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5678   pCur->info.nSize = 0;
5679   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5680   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5681   pPage = pCur->pPage;
5682   if( (++pCur->ix)>=pPage->nCell ){
5683     pCur->ix--;
5684     return btreeNext(pCur);
5685   }
5686   if( pPage->leaf ){
5687     return SQLITE_OK;
5688   }else{
5689     return moveToLeftmost(pCur);
5690   }
5691 }
5692 
5693 /*
5694 ** Step the cursor to the back to the previous entry in the database.
5695 ** Return values:
5696 **
5697 **     SQLITE_OK     success
5698 **     SQLITE_DONE   the cursor is already on the first element of the table
5699 **     otherwise     some kind of error occurred
5700 **
5701 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5702 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5703 ** to the previous cell on the current page.  The (slower) btreePrevious()
5704 ** helper routine is called when it is necessary to move to a different page
5705 ** or to restore the cursor.
5706 **
5707 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5708 ** the cursor corresponds to an SQL index and this routine could have been
5709 ** skipped if the SQL index had been a unique index.  The F argument is a
5710 ** hint to the implement.  The native SQLite btree implementation does not
5711 ** use this hint, but COMDB2 does.
5712 */
5713 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5714   int rc;
5715   MemPage *pPage;
5716 
5717   assert( cursorOwnsBtShared(pCur) );
5718   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5719   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5720   assert( pCur->info.nSize==0 );
5721   if( pCur->eState!=CURSOR_VALID ){
5722     rc = restoreCursorPosition(pCur);
5723     if( rc!=SQLITE_OK ){
5724       return rc;
5725     }
5726     if( CURSOR_INVALID==pCur->eState ){
5727       return SQLITE_DONE;
5728     }
5729     if( pCur->skipNext ){
5730       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5731       pCur->eState = CURSOR_VALID;
5732       if( pCur->skipNext<0 ){
5733         pCur->skipNext = 0;
5734         return SQLITE_OK;
5735       }
5736       pCur->skipNext = 0;
5737     }
5738   }
5739 
5740   pPage = pCur->pPage;
5741   assert( pPage->isInit );
5742   if( !pPage->leaf ){
5743     int idx = pCur->ix;
5744     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5745     if( rc ) return rc;
5746     rc = moveToRightmost(pCur);
5747   }else{
5748     while( pCur->ix==0 ){
5749       if( pCur->iPage==0 ){
5750         pCur->eState = CURSOR_INVALID;
5751         return SQLITE_DONE;
5752       }
5753       moveToParent(pCur);
5754     }
5755     assert( pCur->info.nSize==0 );
5756     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5757 
5758     pCur->ix--;
5759     pPage = pCur->pPage;
5760     if( pPage->intKey && !pPage->leaf ){
5761       rc = sqlite3BtreePrevious(pCur, 0);
5762     }else{
5763       rc = SQLITE_OK;
5764     }
5765   }
5766   return rc;
5767 }
5768 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5769   assert( cursorOwnsBtShared(pCur) );
5770   assert( flags==0 || flags==1 );
5771   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5772   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5773   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5774   pCur->info.nSize = 0;
5775   if( pCur->eState!=CURSOR_VALID
5776    || pCur->ix==0
5777    || pCur->pPage->leaf==0
5778   ){
5779     return btreePrevious(pCur);
5780   }
5781   pCur->ix--;
5782   return SQLITE_OK;
5783 }
5784 
5785 /*
5786 ** Allocate a new page from the database file.
5787 **
5788 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5789 ** has already been called on the new page.)  The new page has also
5790 ** been referenced and the calling routine is responsible for calling
5791 ** sqlite3PagerUnref() on the new page when it is done.
5792 **
5793 ** SQLITE_OK is returned on success.  Any other return value indicates
5794 ** an error.  *ppPage is set to NULL in the event of an error.
5795 **
5796 ** If the "nearby" parameter is not 0, then an effort is made to
5797 ** locate a page close to the page number "nearby".  This can be used in an
5798 ** attempt to keep related pages close to each other in the database file,
5799 ** which in turn can make database access faster.
5800 **
5801 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5802 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5803 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5804 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5805 ** are no restrictions on which page is returned.
5806 */
5807 static int allocateBtreePage(
5808   BtShared *pBt,         /* The btree */
5809   MemPage **ppPage,      /* Store pointer to the allocated page here */
5810   Pgno *pPgno,           /* Store the page number here */
5811   Pgno nearby,           /* Search for a page near this one */
5812   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5813 ){
5814   MemPage *pPage1;
5815   int rc;
5816   u32 n;     /* Number of pages on the freelist */
5817   u32 k;     /* Number of leaves on the trunk of the freelist */
5818   MemPage *pTrunk = 0;
5819   MemPage *pPrevTrunk = 0;
5820   Pgno mxPage;     /* Total size of the database file */
5821 
5822   assert( sqlite3_mutex_held(pBt->mutex) );
5823   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5824   pPage1 = pBt->pPage1;
5825   mxPage = btreePagecount(pBt);
5826   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5827   ** stores stores the total number of pages on the freelist. */
5828   n = get4byte(&pPage1->aData[36]);
5829   testcase( n==mxPage-1 );
5830   if( n>=mxPage ){
5831     return SQLITE_CORRUPT_BKPT;
5832   }
5833   if( n>0 ){
5834     /* There are pages on the freelist.  Reuse one of those pages. */
5835     Pgno iTrunk;
5836     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5837     u32 nSearch = 0;   /* Count of the number of search attempts */
5838 
5839     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5840     ** shows that the page 'nearby' is somewhere on the free-list, then
5841     ** the entire-list will be searched for that page.
5842     */
5843 #ifndef SQLITE_OMIT_AUTOVACUUM
5844     if( eMode==BTALLOC_EXACT ){
5845       if( nearby<=mxPage ){
5846         u8 eType;
5847         assert( nearby>0 );
5848         assert( pBt->autoVacuum );
5849         rc = ptrmapGet(pBt, nearby, &eType, 0);
5850         if( rc ) return rc;
5851         if( eType==PTRMAP_FREEPAGE ){
5852           searchList = 1;
5853         }
5854       }
5855     }else if( eMode==BTALLOC_LE ){
5856       searchList = 1;
5857     }
5858 #endif
5859 
5860     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5861     ** first free-list trunk page. iPrevTrunk is initially 1.
5862     */
5863     rc = sqlite3PagerWrite(pPage1->pDbPage);
5864     if( rc ) return rc;
5865     put4byte(&pPage1->aData[36], n-1);
5866 
5867     /* The code within this loop is run only once if the 'searchList' variable
5868     ** is not true. Otherwise, it runs once for each trunk-page on the
5869     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5870     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5871     */
5872     do {
5873       pPrevTrunk = pTrunk;
5874       if( pPrevTrunk ){
5875         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5876         ** is the page number of the next freelist trunk page in the list or
5877         ** zero if this is the last freelist trunk page. */
5878         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5879       }else{
5880         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5881         ** stores the page number of the first page of the freelist, or zero if
5882         ** the freelist is empty. */
5883         iTrunk = get4byte(&pPage1->aData[32]);
5884       }
5885       testcase( iTrunk==mxPage );
5886       if( iTrunk>mxPage || nSearch++ > n ){
5887         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
5888       }else{
5889         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5890       }
5891       if( rc ){
5892         pTrunk = 0;
5893         goto end_allocate_page;
5894       }
5895       assert( pTrunk!=0 );
5896       assert( pTrunk->aData!=0 );
5897       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5898       ** is the number of leaf page pointers to follow. */
5899       k = get4byte(&pTrunk->aData[4]);
5900       if( k==0 && !searchList ){
5901         /* The trunk has no leaves and the list is not being searched.
5902         ** So extract the trunk page itself and use it as the newly
5903         ** allocated page */
5904         assert( pPrevTrunk==0 );
5905         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5906         if( rc ){
5907           goto end_allocate_page;
5908         }
5909         *pPgno = iTrunk;
5910         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5911         *ppPage = pTrunk;
5912         pTrunk = 0;
5913         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5914       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5915         /* Value of k is out of range.  Database corruption */
5916         rc = SQLITE_CORRUPT_PGNO(iTrunk);
5917         goto end_allocate_page;
5918 #ifndef SQLITE_OMIT_AUTOVACUUM
5919       }else if( searchList
5920             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5921       ){
5922         /* The list is being searched and this trunk page is the page
5923         ** to allocate, regardless of whether it has leaves.
5924         */
5925         *pPgno = iTrunk;
5926         *ppPage = pTrunk;
5927         searchList = 0;
5928         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5929         if( rc ){
5930           goto end_allocate_page;
5931         }
5932         if( k==0 ){
5933           if( !pPrevTrunk ){
5934             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5935           }else{
5936             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5937             if( rc!=SQLITE_OK ){
5938               goto end_allocate_page;
5939             }
5940             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5941           }
5942         }else{
5943           /* The trunk page is required by the caller but it contains
5944           ** pointers to free-list leaves. The first leaf becomes a trunk
5945           ** page in this case.
5946           */
5947           MemPage *pNewTrunk;
5948           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5949           if( iNewTrunk>mxPage ){
5950             rc = SQLITE_CORRUPT_PGNO(iTrunk);
5951             goto end_allocate_page;
5952           }
5953           testcase( iNewTrunk==mxPage );
5954           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
5955           if( rc!=SQLITE_OK ){
5956             goto end_allocate_page;
5957           }
5958           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5959           if( rc!=SQLITE_OK ){
5960             releasePage(pNewTrunk);
5961             goto end_allocate_page;
5962           }
5963           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5964           put4byte(&pNewTrunk->aData[4], k-1);
5965           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5966           releasePage(pNewTrunk);
5967           if( !pPrevTrunk ){
5968             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5969             put4byte(&pPage1->aData[32], iNewTrunk);
5970           }else{
5971             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5972             if( rc ){
5973               goto end_allocate_page;
5974             }
5975             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5976           }
5977         }
5978         pTrunk = 0;
5979         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5980 #endif
5981       }else if( k>0 ){
5982         /* Extract a leaf from the trunk */
5983         u32 closest;
5984         Pgno iPage;
5985         unsigned char *aData = pTrunk->aData;
5986         if( nearby>0 ){
5987           u32 i;
5988           closest = 0;
5989           if( eMode==BTALLOC_LE ){
5990             for(i=0; i<k; i++){
5991               iPage = get4byte(&aData[8+i*4]);
5992               if( iPage<=nearby ){
5993                 closest = i;
5994                 break;
5995               }
5996             }
5997           }else{
5998             int dist;
5999             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6000             for(i=1; i<k; i++){
6001               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6002               if( d2<dist ){
6003                 closest = i;
6004                 dist = d2;
6005               }
6006             }
6007           }
6008         }else{
6009           closest = 0;
6010         }
6011 
6012         iPage = get4byte(&aData[8+closest*4]);
6013         testcase( iPage==mxPage );
6014         if( iPage>mxPage ){
6015           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6016           goto end_allocate_page;
6017         }
6018         testcase( iPage==mxPage );
6019         if( !searchList
6020          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6021         ){
6022           int noContent;
6023           *pPgno = iPage;
6024           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6025                  ": %d more free pages\n",
6026                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6027           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6028           if( rc ) goto end_allocate_page;
6029           if( closest<k-1 ){
6030             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6031           }
6032           put4byte(&aData[4], k-1);
6033           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6034           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6035           if( rc==SQLITE_OK ){
6036             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6037             if( rc!=SQLITE_OK ){
6038               releasePage(*ppPage);
6039               *ppPage = 0;
6040             }
6041           }
6042           searchList = 0;
6043         }
6044       }
6045       releasePage(pPrevTrunk);
6046       pPrevTrunk = 0;
6047     }while( searchList );
6048   }else{
6049     /* There are no pages on the freelist, so append a new page to the
6050     ** database image.
6051     **
6052     ** Normally, new pages allocated by this block can be requested from the
6053     ** pager layer with the 'no-content' flag set. This prevents the pager
6054     ** from trying to read the pages content from disk. However, if the
6055     ** current transaction has already run one or more incremental-vacuum
6056     ** steps, then the page we are about to allocate may contain content
6057     ** that is required in the event of a rollback. In this case, do
6058     ** not set the no-content flag. This causes the pager to load and journal
6059     ** the current page content before overwriting it.
6060     **
6061     ** Note that the pager will not actually attempt to load or journal
6062     ** content for any page that really does lie past the end of the database
6063     ** file on disk. So the effects of disabling the no-content optimization
6064     ** here are confined to those pages that lie between the end of the
6065     ** database image and the end of the database file.
6066     */
6067     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6068 
6069     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6070     if( rc ) return rc;
6071     pBt->nPage++;
6072     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6073 
6074 #ifndef SQLITE_OMIT_AUTOVACUUM
6075     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6076       /* If *pPgno refers to a pointer-map page, allocate two new pages
6077       ** at the end of the file instead of one. The first allocated page
6078       ** becomes a new pointer-map page, the second is used by the caller.
6079       */
6080       MemPage *pPg = 0;
6081       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6082       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6083       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6084       if( rc==SQLITE_OK ){
6085         rc = sqlite3PagerWrite(pPg->pDbPage);
6086         releasePage(pPg);
6087       }
6088       if( rc ) return rc;
6089       pBt->nPage++;
6090       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6091     }
6092 #endif
6093     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6094     *pPgno = pBt->nPage;
6095 
6096     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6097     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6098     if( rc ) return rc;
6099     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6100     if( rc!=SQLITE_OK ){
6101       releasePage(*ppPage);
6102       *ppPage = 0;
6103     }
6104     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6105   }
6106 
6107   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6108 
6109 end_allocate_page:
6110   releasePage(pTrunk);
6111   releasePage(pPrevTrunk);
6112   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6113   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6114   return rc;
6115 }
6116 
6117 /*
6118 ** This function is used to add page iPage to the database file free-list.
6119 ** It is assumed that the page is not already a part of the free-list.
6120 **
6121 ** The value passed as the second argument to this function is optional.
6122 ** If the caller happens to have a pointer to the MemPage object
6123 ** corresponding to page iPage handy, it may pass it as the second value.
6124 ** Otherwise, it may pass NULL.
6125 **
6126 ** If a pointer to a MemPage object is passed as the second argument,
6127 ** its reference count is not altered by this function.
6128 */
6129 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6130   MemPage *pTrunk = 0;                /* Free-list trunk page */
6131   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6132   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6133   MemPage *pPage;                     /* Page being freed. May be NULL. */
6134   int rc;                             /* Return Code */
6135   int nFree;                          /* Initial number of pages on free-list */
6136 
6137   assert( sqlite3_mutex_held(pBt->mutex) );
6138   assert( CORRUPT_DB || iPage>1 );
6139   assert( !pMemPage || pMemPage->pgno==iPage );
6140 
6141   if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
6142   if( pMemPage ){
6143     pPage = pMemPage;
6144     sqlite3PagerRef(pPage->pDbPage);
6145   }else{
6146     pPage = btreePageLookup(pBt, iPage);
6147   }
6148 
6149   /* Increment the free page count on pPage1 */
6150   rc = sqlite3PagerWrite(pPage1->pDbPage);
6151   if( rc ) goto freepage_out;
6152   nFree = get4byte(&pPage1->aData[36]);
6153   put4byte(&pPage1->aData[36], nFree+1);
6154 
6155   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6156     /* If the secure_delete option is enabled, then
6157     ** always fully overwrite deleted information with zeros.
6158     */
6159     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6160      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6161     ){
6162       goto freepage_out;
6163     }
6164     memset(pPage->aData, 0, pPage->pBt->pageSize);
6165   }
6166 
6167   /* If the database supports auto-vacuum, write an entry in the pointer-map
6168   ** to indicate that the page is free.
6169   */
6170   if( ISAUTOVACUUM ){
6171     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6172     if( rc ) goto freepage_out;
6173   }
6174 
6175   /* Now manipulate the actual database free-list structure. There are two
6176   ** possibilities. If the free-list is currently empty, or if the first
6177   ** trunk page in the free-list is full, then this page will become a
6178   ** new free-list trunk page. Otherwise, it will become a leaf of the
6179   ** first trunk page in the current free-list. This block tests if it
6180   ** is possible to add the page as a new free-list leaf.
6181   */
6182   if( nFree!=0 ){
6183     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6184 
6185     iTrunk = get4byte(&pPage1->aData[32]);
6186     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6187     if( rc!=SQLITE_OK ){
6188       goto freepage_out;
6189     }
6190 
6191     nLeaf = get4byte(&pTrunk->aData[4]);
6192     assert( pBt->usableSize>32 );
6193     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6194       rc = SQLITE_CORRUPT_BKPT;
6195       goto freepage_out;
6196     }
6197     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6198       /* In this case there is room on the trunk page to insert the page
6199       ** being freed as a new leaf.
6200       **
6201       ** Note that the trunk page is not really full until it contains
6202       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6203       ** coded.  But due to a coding error in versions of SQLite prior to
6204       ** 3.6.0, databases with freelist trunk pages holding more than
6205       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6206       ** to maintain backwards compatibility with older versions of SQLite,
6207       ** we will continue to restrict the number of entries to usableSize/4 - 8
6208       ** for now.  At some point in the future (once everyone has upgraded
6209       ** to 3.6.0 or later) we should consider fixing the conditional above
6210       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6211       **
6212       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6213       ** avoid using the last six entries in the freelist trunk page array in
6214       ** order that database files created by newer versions of SQLite can be
6215       ** read by older versions of SQLite.
6216       */
6217       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6218       if( rc==SQLITE_OK ){
6219         put4byte(&pTrunk->aData[4], nLeaf+1);
6220         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6221         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6222           sqlite3PagerDontWrite(pPage->pDbPage);
6223         }
6224         rc = btreeSetHasContent(pBt, iPage);
6225       }
6226       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6227       goto freepage_out;
6228     }
6229   }
6230 
6231   /* If control flows to this point, then it was not possible to add the
6232   ** the page being freed as a leaf page of the first trunk in the free-list.
6233   ** Possibly because the free-list is empty, or possibly because the
6234   ** first trunk in the free-list is full. Either way, the page being freed
6235   ** will become the new first trunk page in the free-list.
6236   */
6237   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6238     goto freepage_out;
6239   }
6240   rc = sqlite3PagerWrite(pPage->pDbPage);
6241   if( rc!=SQLITE_OK ){
6242     goto freepage_out;
6243   }
6244   put4byte(pPage->aData, iTrunk);
6245   put4byte(&pPage->aData[4], 0);
6246   put4byte(&pPage1->aData[32], iPage);
6247   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6248 
6249 freepage_out:
6250   if( pPage ){
6251     pPage->isInit = 0;
6252   }
6253   releasePage(pPage);
6254   releasePage(pTrunk);
6255   return rc;
6256 }
6257 static void freePage(MemPage *pPage, int *pRC){
6258   if( (*pRC)==SQLITE_OK ){
6259     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6260   }
6261 }
6262 
6263 /*
6264 ** Free any overflow pages associated with the given Cell.  Store
6265 ** size information about the cell in pInfo.
6266 */
6267 static int clearCell(
6268   MemPage *pPage,          /* The page that contains the Cell */
6269   unsigned char *pCell,    /* First byte of the Cell */
6270   CellInfo *pInfo          /* Size information about the cell */
6271 ){
6272   BtShared *pBt;
6273   Pgno ovflPgno;
6274   int rc;
6275   int nOvfl;
6276   u32 ovflPageSize;
6277 
6278   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6279   pPage->xParseCell(pPage, pCell, pInfo);
6280   if( pInfo->nLocal==pInfo->nPayload ){
6281     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
6282   }
6283   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6284   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6285   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6286     /* Cell extends past end of page */
6287     return SQLITE_CORRUPT_PAGE(pPage);
6288   }
6289   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6290   pBt = pPage->pBt;
6291   assert( pBt->usableSize > 4 );
6292   ovflPageSize = pBt->usableSize - 4;
6293   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6294   assert( nOvfl>0 ||
6295     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6296   );
6297   while( nOvfl-- ){
6298     Pgno iNext = 0;
6299     MemPage *pOvfl = 0;
6300     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6301       /* 0 is not a legal page number and page 1 cannot be an
6302       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6303       ** file the database must be corrupt. */
6304       return SQLITE_CORRUPT_BKPT;
6305     }
6306     if( nOvfl ){
6307       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6308       if( rc ) return rc;
6309     }
6310 
6311     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6312      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6313     ){
6314       /* There is no reason any cursor should have an outstanding reference
6315       ** to an overflow page belonging to a cell that is being deleted/updated.
6316       ** So if there exists more than one reference to this page, then it
6317       ** must not really be an overflow page and the database must be corrupt.
6318       ** It is helpful to detect this before calling freePage2(), as
6319       ** freePage2() may zero the page contents if secure-delete mode is
6320       ** enabled. If this 'overflow' page happens to be a page that the
6321       ** caller is iterating through or using in some other way, this
6322       ** can be problematic.
6323       */
6324       rc = SQLITE_CORRUPT_BKPT;
6325     }else{
6326       rc = freePage2(pBt, pOvfl, ovflPgno);
6327     }
6328 
6329     if( pOvfl ){
6330       sqlite3PagerUnref(pOvfl->pDbPage);
6331     }
6332     if( rc ) return rc;
6333     ovflPgno = iNext;
6334   }
6335   return SQLITE_OK;
6336 }
6337 
6338 /*
6339 ** Create the byte sequence used to represent a cell on page pPage
6340 ** and write that byte sequence into pCell[].  Overflow pages are
6341 ** allocated and filled in as necessary.  The calling procedure
6342 ** is responsible for making sure sufficient space has been allocated
6343 ** for pCell[].
6344 **
6345 ** Note that pCell does not necessary need to point to the pPage->aData
6346 ** area.  pCell might point to some temporary storage.  The cell will
6347 ** be constructed in this temporary area then copied into pPage->aData
6348 ** later.
6349 */
6350 static int fillInCell(
6351   MemPage *pPage,                /* The page that contains the cell */
6352   unsigned char *pCell,          /* Complete text of the cell */
6353   const BtreePayload *pX,        /* Payload with which to construct the cell */
6354   int *pnSize                    /* Write cell size here */
6355 ){
6356   int nPayload;
6357   const u8 *pSrc;
6358   int nSrc, n, rc, mn;
6359   int spaceLeft;
6360   MemPage *pToRelease;
6361   unsigned char *pPrior;
6362   unsigned char *pPayload;
6363   BtShared *pBt;
6364   Pgno pgnoOvfl;
6365   int nHeader;
6366 
6367   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6368 
6369   /* pPage is not necessarily writeable since pCell might be auxiliary
6370   ** buffer space that is separate from the pPage buffer area */
6371   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6372             || sqlite3PagerIswriteable(pPage->pDbPage) );
6373 
6374   /* Fill in the header. */
6375   nHeader = pPage->childPtrSize;
6376   if( pPage->intKey ){
6377     nPayload = pX->nData + pX->nZero;
6378     pSrc = pX->pData;
6379     nSrc = pX->nData;
6380     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6381     nHeader += putVarint32(&pCell[nHeader], nPayload);
6382     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6383   }else{
6384     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6385     nSrc = nPayload = (int)pX->nKey;
6386     pSrc = pX->pKey;
6387     nHeader += putVarint32(&pCell[nHeader], nPayload);
6388   }
6389 
6390   /* Fill in the payload */
6391   pPayload = &pCell[nHeader];
6392   if( nPayload<=pPage->maxLocal ){
6393     /* This is the common case where everything fits on the btree page
6394     ** and no overflow pages are required. */
6395     n = nHeader + nPayload;
6396     testcase( n==3 );
6397     testcase( n==4 );
6398     if( n<4 ) n = 4;
6399     *pnSize = n;
6400     assert( nSrc<=nPayload );
6401     testcase( nSrc<nPayload );
6402     memcpy(pPayload, pSrc, nSrc);
6403     memset(pPayload+nSrc, 0, nPayload-nSrc);
6404     return SQLITE_OK;
6405   }
6406 
6407   /* If we reach this point, it means that some of the content will need
6408   ** to spill onto overflow pages.
6409   */
6410   mn = pPage->minLocal;
6411   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6412   testcase( n==pPage->maxLocal );
6413   testcase( n==pPage->maxLocal+1 );
6414   if( n > pPage->maxLocal ) n = mn;
6415   spaceLeft = n;
6416   *pnSize = n + nHeader + 4;
6417   pPrior = &pCell[nHeader+n];
6418   pToRelease = 0;
6419   pgnoOvfl = 0;
6420   pBt = pPage->pBt;
6421 
6422   /* At this point variables should be set as follows:
6423   **
6424   **   nPayload           Total payload size in bytes
6425   **   pPayload           Begin writing payload here
6426   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6427   **                      that means content must spill into overflow pages.
6428   **   *pnSize            Size of the local cell (not counting overflow pages)
6429   **   pPrior             Where to write the pgno of the first overflow page
6430   **
6431   ** Use a call to btreeParseCellPtr() to verify that the values above
6432   ** were computed correctly.
6433   */
6434 #ifdef SQLITE_DEBUG
6435   {
6436     CellInfo info;
6437     pPage->xParseCell(pPage, pCell, &info);
6438     assert( nHeader==(int)(info.pPayload - pCell) );
6439     assert( info.nKey==pX->nKey );
6440     assert( *pnSize == info.nSize );
6441     assert( spaceLeft == info.nLocal );
6442   }
6443 #endif
6444 
6445   /* Write the payload into the local Cell and any extra into overflow pages */
6446   while( 1 ){
6447     n = nPayload;
6448     if( n>spaceLeft ) n = spaceLeft;
6449 
6450     /* If pToRelease is not zero than pPayload points into the data area
6451     ** of pToRelease.  Make sure pToRelease is still writeable. */
6452     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6453 
6454     /* If pPayload is part of the data area of pPage, then make sure pPage
6455     ** is still writeable */
6456     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6457             || sqlite3PagerIswriteable(pPage->pDbPage) );
6458 
6459     if( nSrc>=n ){
6460       memcpy(pPayload, pSrc, n);
6461     }else if( nSrc>0 ){
6462       n = nSrc;
6463       memcpy(pPayload, pSrc, n);
6464     }else{
6465       memset(pPayload, 0, n);
6466     }
6467     nPayload -= n;
6468     if( nPayload<=0 ) break;
6469     pPayload += n;
6470     pSrc += n;
6471     nSrc -= n;
6472     spaceLeft -= n;
6473     if( spaceLeft==0 ){
6474       MemPage *pOvfl = 0;
6475 #ifndef SQLITE_OMIT_AUTOVACUUM
6476       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6477       if( pBt->autoVacuum ){
6478         do{
6479           pgnoOvfl++;
6480         } while(
6481           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6482         );
6483       }
6484 #endif
6485       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6486 #ifndef SQLITE_OMIT_AUTOVACUUM
6487       /* If the database supports auto-vacuum, and the second or subsequent
6488       ** overflow page is being allocated, add an entry to the pointer-map
6489       ** for that page now.
6490       **
6491       ** If this is the first overflow page, then write a partial entry
6492       ** to the pointer-map. If we write nothing to this pointer-map slot,
6493       ** then the optimistic overflow chain processing in clearCell()
6494       ** may misinterpret the uninitialized values and delete the
6495       ** wrong pages from the database.
6496       */
6497       if( pBt->autoVacuum && rc==SQLITE_OK ){
6498         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6499         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6500         if( rc ){
6501           releasePage(pOvfl);
6502         }
6503       }
6504 #endif
6505       if( rc ){
6506         releasePage(pToRelease);
6507         return rc;
6508       }
6509 
6510       /* If pToRelease is not zero than pPrior points into the data area
6511       ** of pToRelease.  Make sure pToRelease is still writeable. */
6512       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6513 
6514       /* If pPrior is part of the data area of pPage, then make sure pPage
6515       ** is still writeable */
6516       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6517             || sqlite3PagerIswriteable(pPage->pDbPage) );
6518 
6519       put4byte(pPrior, pgnoOvfl);
6520       releasePage(pToRelease);
6521       pToRelease = pOvfl;
6522       pPrior = pOvfl->aData;
6523       put4byte(pPrior, 0);
6524       pPayload = &pOvfl->aData[4];
6525       spaceLeft = pBt->usableSize - 4;
6526     }
6527   }
6528   releasePage(pToRelease);
6529   return SQLITE_OK;
6530 }
6531 
6532 /*
6533 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6534 ** The cell content is not freed or deallocated.  It is assumed that
6535 ** the cell content has been copied someplace else.  This routine just
6536 ** removes the reference to the cell from pPage.
6537 **
6538 ** "sz" must be the number of bytes in the cell.
6539 */
6540 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6541   u32 pc;         /* Offset to cell content of cell being deleted */
6542   u8 *data;       /* pPage->aData */
6543   u8 *ptr;        /* Used to move bytes around within data[] */
6544   int rc;         /* The return code */
6545   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6546 
6547   if( *pRC ) return;
6548   assert( idx>=0 && idx<pPage->nCell );
6549   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6550   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6551   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6552   data = pPage->aData;
6553   ptr = &pPage->aCellIdx[2*idx];
6554   pc = get2byte(ptr);
6555   hdr = pPage->hdrOffset;
6556   testcase( pc==get2byte(&data[hdr+5]) );
6557   testcase( pc+sz==pPage->pBt->usableSize );
6558   if( pc+sz > pPage->pBt->usableSize ){
6559     *pRC = SQLITE_CORRUPT_BKPT;
6560     return;
6561   }
6562   rc = freeSpace(pPage, pc, sz);
6563   if( rc ){
6564     *pRC = rc;
6565     return;
6566   }
6567   pPage->nCell--;
6568   if( pPage->nCell==0 ){
6569     memset(&data[hdr+1], 0, 4);
6570     data[hdr+7] = 0;
6571     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6572     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6573                        - pPage->childPtrSize - 8;
6574   }else{
6575     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6576     put2byte(&data[hdr+3], pPage->nCell);
6577     pPage->nFree += 2;
6578   }
6579 }
6580 
6581 /*
6582 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6583 ** content of the cell.
6584 **
6585 ** If the cell content will fit on the page, then put it there.  If it
6586 ** will not fit, then make a copy of the cell content into pTemp if
6587 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6588 ** in pPage->apOvfl[] and make it point to the cell content (either
6589 ** in pTemp or the original pCell) and also record its index.
6590 ** Allocating a new entry in pPage->aCell[] implies that
6591 ** pPage->nOverflow is incremented.
6592 **
6593 ** *pRC must be SQLITE_OK when this routine is called.
6594 */
6595 static void insertCell(
6596   MemPage *pPage,   /* Page into which we are copying */
6597   int i,            /* New cell becomes the i-th cell of the page */
6598   u8 *pCell,        /* Content of the new cell */
6599   int sz,           /* Bytes of content in pCell */
6600   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6601   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6602   int *pRC          /* Read and write return code from here */
6603 ){
6604   int idx = 0;      /* Where to write new cell content in data[] */
6605   int j;            /* Loop counter */
6606   u8 *data;         /* The content of the whole page */
6607   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6608 
6609   assert( *pRC==SQLITE_OK );
6610   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6611   assert( MX_CELL(pPage->pBt)<=10921 );
6612   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6613   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6614   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6615   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6616   /* The cell should normally be sized correctly.  However, when moving a
6617   ** malformed cell from a leaf page to an interior page, if the cell size
6618   ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6619   ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
6620   ** the term after the || in the following assert(). */
6621   assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
6622   if( pPage->nOverflow || sz+2>pPage->nFree ){
6623     if( pTemp ){
6624       memcpy(pTemp, pCell, sz);
6625       pCell = pTemp;
6626     }
6627     if( iChild ){
6628       put4byte(pCell, iChild);
6629     }
6630     j = pPage->nOverflow++;
6631     /* Comparison against ArraySize-1 since we hold back one extra slot
6632     ** as a contingency.  In other words, never need more than 3 overflow
6633     ** slots but 4 are allocated, just to be safe. */
6634     assert( j < ArraySize(pPage->apOvfl)-1 );
6635     pPage->apOvfl[j] = pCell;
6636     pPage->aiOvfl[j] = (u16)i;
6637 
6638     /* When multiple overflows occur, they are always sequential and in
6639     ** sorted order.  This invariants arise because multiple overflows can
6640     ** only occur when inserting divider cells into the parent page during
6641     ** balancing, and the dividers are adjacent and sorted.
6642     */
6643     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6644     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6645   }else{
6646     int rc = sqlite3PagerWrite(pPage->pDbPage);
6647     if( rc!=SQLITE_OK ){
6648       *pRC = rc;
6649       return;
6650     }
6651     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6652     data = pPage->aData;
6653     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6654     rc = allocateSpace(pPage, sz, &idx);
6655     if( rc ){ *pRC = rc; return; }
6656     /* The allocateSpace() routine guarantees the following properties
6657     ** if it returns successfully */
6658     assert( idx >= 0 );
6659     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6660     assert( idx+sz <= (int)pPage->pBt->usableSize );
6661     pPage->nFree -= (u16)(2 + sz);
6662     memcpy(&data[idx], pCell, sz);
6663     if( iChild ){
6664       put4byte(&data[idx], iChild);
6665     }
6666     pIns = pPage->aCellIdx + i*2;
6667     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6668     put2byte(pIns, idx);
6669     pPage->nCell++;
6670     /* increment the cell count */
6671     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6672     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
6673 #ifndef SQLITE_OMIT_AUTOVACUUM
6674     if( pPage->pBt->autoVacuum ){
6675       /* The cell may contain a pointer to an overflow page. If so, write
6676       ** the entry for the overflow page into the pointer map.
6677       */
6678       ptrmapPutOvflPtr(pPage, pCell, pRC);
6679     }
6680 #endif
6681   }
6682 }
6683 
6684 /*
6685 ** A CellArray object contains a cache of pointers and sizes for a
6686 ** consecutive sequence of cells that might be held on multiple pages.
6687 */
6688 typedef struct CellArray CellArray;
6689 struct CellArray {
6690   int nCell;              /* Number of cells in apCell[] */
6691   MemPage *pRef;          /* Reference page */
6692   u8 **apCell;            /* All cells begin balanced */
6693   u16 *szCell;            /* Local size of all cells in apCell[] */
6694 };
6695 
6696 /*
6697 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6698 ** computed.
6699 */
6700 static void populateCellCache(CellArray *p, int idx, int N){
6701   assert( idx>=0 && idx+N<=p->nCell );
6702   while( N>0 ){
6703     assert( p->apCell[idx]!=0 );
6704     if( p->szCell[idx]==0 ){
6705       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6706     }else{
6707       assert( CORRUPT_DB ||
6708               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6709     }
6710     idx++;
6711     N--;
6712   }
6713 }
6714 
6715 /*
6716 ** Return the size of the Nth element of the cell array
6717 */
6718 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6719   assert( N>=0 && N<p->nCell );
6720   assert( p->szCell[N]==0 );
6721   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6722   return p->szCell[N];
6723 }
6724 static u16 cachedCellSize(CellArray *p, int N){
6725   assert( N>=0 && N<p->nCell );
6726   if( p->szCell[N] ) return p->szCell[N];
6727   return computeCellSize(p, N);
6728 }
6729 
6730 /*
6731 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6732 ** szCell[] array contains the size in bytes of each cell. This function
6733 ** replaces the current contents of page pPg with the contents of the cell
6734 ** array.
6735 **
6736 ** Some of the cells in apCell[] may currently be stored in pPg. This
6737 ** function works around problems caused by this by making a copy of any
6738 ** such cells before overwriting the page data.
6739 **
6740 ** The MemPage.nFree field is invalidated by this function. It is the
6741 ** responsibility of the caller to set it correctly.
6742 */
6743 static int rebuildPage(
6744   MemPage *pPg,                   /* Edit this page */
6745   int nCell,                      /* Final number of cells on page */
6746   u8 **apCell,                    /* Array of cells */
6747   u16 *szCell                     /* Array of cell sizes */
6748 ){
6749   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6750   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6751   const int usableSize = pPg->pBt->usableSize;
6752   u8 * const pEnd = &aData[usableSize];
6753   int i;
6754   u8 *pCellptr = pPg->aCellIdx;
6755   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6756   u8 *pData;
6757 
6758   i = get2byte(&aData[hdr+5]);
6759   memcpy(&pTmp[i], &aData[i], usableSize - i);
6760 
6761   pData = pEnd;
6762   for(i=0; i<nCell; i++){
6763     u8 *pCell = apCell[i];
6764     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6765       if( ((uptr)(pCell+szCell[i]))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
6766       pCell = &pTmp[pCell - aData];
6767     }
6768     pData -= szCell[i];
6769     put2byte(pCellptr, (pData - aData));
6770     pCellptr += 2;
6771     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6772     memcpy(pData, pCell, szCell[i]);
6773     assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6774     testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
6775   }
6776 
6777   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6778   pPg->nCell = nCell;
6779   pPg->nOverflow = 0;
6780 
6781   put2byte(&aData[hdr+1], 0);
6782   put2byte(&aData[hdr+3], pPg->nCell);
6783   put2byte(&aData[hdr+5], pData - aData);
6784   aData[hdr+7] = 0x00;
6785   return SQLITE_OK;
6786 }
6787 
6788 /*
6789 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6790 ** contains the size in bytes of each such cell. This function attempts to
6791 ** add the cells stored in the array to page pPg. If it cannot (because
6792 ** the page needs to be defragmented before the cells will fit), non-zero
6793 ** is returned. Otherwise, if the cells are added successfully, zero is
6794 ** returned.
6795 **
6796 ** Argument pCellptr points to the first entry in the cell-pointer array
6797 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6798 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6799 ** cell in the array. It is the responsibility of the caller to ensure
6800 ** that it is safe to overwrite this part of the cell-pointer array.
6801 **
6802 ** When this function is called, *ppData points to the start of the
6803 ** content area on page pPg. If the size of the content area is extended,
6804 ** *ppData is updated to point to the new start of the content area
6805 ** before returning.
6806 **
6807 ** Finally, argument pBegin points to the byte immediately following the
6808 ** end of the space required by this page for the cell-pointer area (for
6809 ** all cells - not just those inserted by the current call). If the content
6810 ** area must be extended to before this point in order to accomodate all
6811 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6812 */
6813 static int pageInsertArray(
6814   MemPage *pPg,                   /* Page to add cells to */
6815   u8 *pBegin,                     /* End of cell-pointer array */
6816   u8 **ppData,                    /* IN/OUT: Page content -area pointer */
6817   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6818   int iFirst,                     /* Index of first cell to add */
6819   int nCell,                      /* Number of cells to add to pPg */
6820   CellArray *pCArray              /* Array of cells */
6821 ){
6822   int i;
6823   u8 *aData = pPg->aData;
6824   u8 *pData = *ppData;
6825   int iEnd = iFirst + nCell;
6826   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
6827   for(i=iFirst; i<iEnd; i++){
6828     int sz, rc;
6829     u8 *pSlot;
6830     sz = cachedCellSize(pCArray, i);
6831     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6832       if( (pData - pBegin)<sz ) return 1;
6833       pData -= sz;
6834       pSlot = pData;
6835     }
6836     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6837     ** database.  But they might for a corrupt database.  Hence use memmove()
6838     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6839     assert( (pSlot+sz)<=pCArray->apCell[i]
6840          || pSlot>=(pCArray->apCell[i]+sz)
6841          || CORRUPT_DB );
6842     memmove(pSlot, pCArray->apCell[i], sz);
6843     put2byte(pCellptr, (pSlot - aData));
6844     pCellptr += 2;
6845   }
6846   *ppData = pData;
6847   return 0;
6848 }
6849 
6850 /*
6851 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6852 ** contains the size in bytes of each such cell. This function adds the
6853 ** space associated with each cell in the array that is currently stored
6854 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6855 ** fields of the page are not updated.
6856 **
6857 ** This function returns the total number of cells added to the free-list.
6858 */
6859 static int pageFreeArray(
6860   MemPage *pPg,                   /* Page to edit */
6861   int iFirst,                     /* First cell to delete */
6862   int nCell,                      /* Cells to delete */
6863   CellArray *pCArray              /* Array of cells */
6864 ){
6865   u8 * const aData = pPg->aData;
6866   u8 * const pEnd = &aData[pPg->pBt->usableSize];
6867   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
6868   int nRet = 0;
6869   int i;
6870   int iEnd = iFirst + nCell;
6871   u8 *pFree = 0;
6872   int szFree = 0;
6873 
6874   for(i=iFirst; i<iEnd; i++){
6875     u8 *pCell = pCArray->apCell[i];
6876     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
6877       int sz;
6878       /* No need to use cachedCellSize() here.  The sizes of all cells that
6879       ** are to be freed have already been computing while deciding which
6880       ** cells need freeing */
6881       sz = pCArray->szCell[i];  assert( sz>0 );
6882       if( pFree!=(pCell + sz) ){
6883         if( pFree ){
6884           assert( pFree>aData && (pFree - aData)<65536 );
6885           freeSpace(pPg, (u16)(pFree - aData), szFree);
6886         }
6887         pFree = pCell;
6888         szFree = sz;
6889         if( pFree+sz>pEnd ) return 0;
6890       }else{
6891         pFree = pCell;
6892         szFree += sz;
6893       }
6894       nRet++;
6895     }
6896   }
6897   if( pFree ){
6898     assert( pFree>aData && (pFree - aData)<65536 );
6899     freeSpace(pPg, (u16)(pFree - aData), szFree);
6900   }
6901   return nRet;
6902 }
6903 
6904 /*
6905 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6906 ** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
6907 ** with apCell[iOld].  After balancing, this page should hold nNew cells
6908 ** starting at apCell[iNew].
6909 **
6910 ** This routine makes the necessary adjustments to pPg so that it contains
6911 ** the correct cells after being balanced.
6912 **
6913 ** The pPg->nFree field is invalid when this function returns. It is the
6914 ** responsibility of the caller to set it correctly.
6915 */
6916 static int editPage(
6917   MemPage *pPg,                   /* Edit this page */
6918   int iOld,                       /* Index of first cell currently on page */
6919   int iNew,                       /* Index of new first cell on page */
6920   int nNew,                       /* Final number of cells on page */
6921   CellArray *pCArray              /* Array of cells and sizes */
6922 ){
6923   u8 * const aData = pPg->aData;
6924   const int hdr = pPg->hdrOffset;
6925   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6926   int nCell = pPg->nCell;       /* Cells stored on pPg */
6927   u8 *pData;
6928   u8 *pCellptr;
6929   int i;
6930   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6931   int iNewEnd = iNew + nNew;
6932 
6933 #ifdef SQLITE_DEBUG
6934   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6935   memcpy(pTmp, aData, pPg->pBt->usableSize);
6936 #endif
6937 
6938   /* Remove cells from the start and end of the page */
6939   if( iOld<iNew ){
6940     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
6941     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6942     nCell -= nShift;
6943   }
6944   if( iNewEnd < iOldEnd ){
6945     nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
6946   }
6947 
6948   pData = &aData[get2byteNotZero(&aData[hdr+5])];
6949   if( pData<pBegin ) goto editpage_fail;
6950 
6951   /* Add cells to the start of the page */
6952   if( iNew<iOld ){
6953     int nAdd = MIN(nNew,iOld-iNew);
6954     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
6955     pCellptr = pPg->aCellIdx;
6956     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6957     if( pageInsertArray(
6958           pPg, pBegin, &pData, pCellptr,
6959           iNew, nAdd, pCArray
6960     ) ) goto editpage_fail;
6961     nCell += nAdd;
6962   }
6963 
6964   /* Add any overflow cells */
6965   for(i=0; i<pPg->nOverflow; i++){
6966     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6967     if( iCell>=0 && iCell<nNew ){
6968       pCellptr = &pPg->aCellIdx[iCell * 2];
6969       memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6970       nCell++;
6971       if( pageInsertArray(
6972             pPg, pBegin, &pData, pCellptr,
6973             iCell+iNew, 1, pCArray
6974       ) ) goto editpage_fail;
6975     }
6976   }
6977 
6978   /* Append cells to the end of the page */
6979   pCellptr = &pPg->aCellIdx[nCell*2];
6980   if( pageInsertArray(
6981         pPg, pBegin, &pData, pCellptr,
6982         iNew+nCell, nNew-nCell, pCArray
6983   ) ) goto editpage_fail;
6984 
6985   pPg->nCell = nNew;
6986   pPg->nOverflow = 0;
6987 
6988   put2byte(&aData[hdr+3], pPg->nCell);
6989   put2byte(&aData[hdr+5], pData - aData);
6990 
6991 #ifdef SQLITE_DEBUG
6992   for(i=0; i<nNew && !CORRUPT_DB; i++){
6993     u8 *pCell = pCArray->apCell[i+iNew];
6994     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
6995     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
6996       pCell = &pTmp[pCell - aData];
6997     }
6998     assert( 0==memcmp(pCell, &aData[iOff],
6999             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7000   }
7001 #endif
7002 
7003   return SQLITE_OK;
7004  editpage_fail:
7005   /* Unable to edit this page. Rebuild it from scratch instead. */
7006   populateCellCache(pCArray, iNew, nNew);
7007   return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
7008 }
7009 
7010 /*
7011 ** The following parameters determine how many adjacent pages get involved
7012 ** in a balancing operation.  NN is the number of neighbors on either side
7013 ** of the page that participate in the balancing operation.  NB is the
7014 ** total number of pages that participate, including the target page and
7015 ** NN neighbors on either side.
7016 **
7017 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
7018 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7019 ** in exchange for a larger degradation in INSERT and UPDATE performance.
7020 ** The value of NN appears to give the best results overall.
7021 */
7022 #define NN 1             /* Number of neighbors on either side of pPage */
7023 #define NB (NN*2+1)      /* Total pages involved in the balance */
7024 
7025 
7026 #ifndef SQLITE_OMIT_QUICKBALANCE
7027 /*
7028 ** This version of balance() handles the common special case where
7029 ** a new entry is being inserted on the extreme right-end of the
7030 ** tree, in other words, when the new entry will become the largest
7031 ** entry in the tree.
7032 **
7033 ** Instead of trying to balance the 3 right-most leaf pages, just add
7034 ** a new page to the right-hand side and put the one new entry in
7035 ** that page.  This leaves the right side of the tree somewhat
7036 ** unbalanced.  But odds are that we will be inserting new entries
7037 ** at the end soon afterwards so the nearly empty page will quickly
7038 ** fill up.  On average.
7039 **
7040 ** pPage is the leaf page which is the right-most page in the tree.
7041 ** pParent is its parent.  pPage must have a single overflow entry
7042 ** which is also the right-most entry on the page.
7043 **
7044 ** The pSpace buffer is used to store a temporary copy of the divider
7045 ** cell that will be inserted into pParent. Such a cell consists of a 4
7046 ** byte page number followed by a variable length integer. In other
7047 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7048 ** least 13 bytes in size.
7049 */
7050 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7051   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7052   MemPage *pNew;                       /* Newly allocated page */
7053   int rc;                              /* Return Code */
7054   Pgno pgnoNew;                        /* Page number of pNew */
7055 
7056   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7057   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7058   assert( pPage->nOverflow==1 );
7059 
7060   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7061 
7062   /* Allocate a new page. This page will become the right-sibling of
7063   ** pPage. Make the parent page writable, so that the new divider cell
7064   ** may be inserted. If both these operations are successful, proceed.
7065   */
7066   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7067 
7068   if( rc==SQLITE_OK ){
7069 
7070     u8 *pOut = &pSpace[4];
7071     u8 *pCell = pPage->apOvfl[0];
7072     u16 szCell = pPage->xCellSize(pPage, pCell);
7073     u8 *pStop;
7074 
7075     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7076     assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7077     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7078     rc = rebuildPage(pNew, 1, &pCell, &szCell);
7079     if( NEVER(rc) ) return rc;
7080     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7081 
7082     /* If this is an auto-vacuum database, update the pointer map
7083     ** with entries for the new page, and any pointer from the
7084     ** cell on the page to an overflow page. If either of these
7085     ** operations fails, the return code is set, but the contents
7086     ** of the parent page are still manipulated by thh code below.
7087     ** That is Ok, at this point the parent page is guaranteed to
7088     ** be marked as dirty. Returning an error code will cause a
7089     ** rollback, undoing any changes made to the parent page.
7090     */
7091     if( ISAUTOVACUUM ){
7092       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7093       if( szCell>pNew->minLocal ){
7094         ptrmapPutOvflPtr(pNew, pCell, &rc);
7095       }
7096     }
7097 
7098     /* Create a divider cell to insert into pParent. The divider cell
7099     ** consists of a 4-byte page number (the page number of pPage) and
7100     ** a variable length key value (which must be the same value as the
7101     ** largest key on pPage).
7102     **
7103     ** To find the largest key value on pPage, first find the right-most
7104     ** cell on pPage. The first two fields of this cell are the
7105     ** record-length (a variable length integer at most 32-bits in size)
7106     ** and the key value (a variable length integer, may have any value).
7107     ** The first of the while(...) loops below skips over the record-length
7108     ** field. The second while(...) loop copies the key value from the
7109     ** cell on pPage into the pSpace buffer.
7110     */
7111     pCell = findCell(pPage, pPage->nCell-1);
7112     pStop = &pCell[9];
7113     while( (*(pCell++)&0x80) && pCell<pStop );
7114     pStop = &pCell[9];
7115     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7116 
7117     /* Insert the new divider cell into pParent. */
7118     if( rc==SQLITE_OK ){
7119       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7120                    0, pPage->pgno, &rc);
7121     }
7122 
7123     /* Set the right-child pointer of pParent to point to the new page. */
7124     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7125 
7126     /* Release the reference to the new page. */
7127     releasePage(pNew);
7128   }
7129 
7130   return rc;
7131 }
7132 #endif /* SQLITE_OMIT_QUICKBALANCE */
7133 
7134 #if 0
7135 /*
7136 ** This function does not contribute anything to the operation of SQLite.
7137 ** it is sometimes activated temporarily while debugging code responsible
7138 ** for setting pointer-map entries.
7139 */
7140 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7141   int i, j;
7142   for(i=0; i<nPage; i++){
7143     Pgno n;
7144     u8 e;
7145     MemPage *pPage = apPage[i];
7146     BtShared *pBt = pPage->pBt;
7147     assert( pPage->isInit );
7148 
7149     for(j=0; j<pPage->nCell; j++){
7150       CellInfo info;
7151       u8 *z;
7152 
7153       z = findCell(pPage, j);
7154       pPage->xParseCell(pPage, z, &info);
7155       if( info.nLocal<info.nPayload ){
7156         Pgno ovfl = get4byte(&z[info.nSize-4]);
7157         ptrmapGet(pBt, ovfl, &e, &n);
7158         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7159       }
7160       if( !pPage->leaf ){
7161         Pgno child = get4byte(z);
7162         ptrmapGet(pBt, child, &e, &n);
7163         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7164       }
7165     }
7166     if( !pPage->leaf ){
7167       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7168       ptrmapGet(pBt, child, &e, &n);
7169       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7170     }
7171   }
7172   return 1;
7173 }
7174 #endif
7175 
7176 /*
7177 ** This function is used to copy the contents of the b-tree node stored
7178 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7179 ** the pointer-map entries for each child page are updated so that the
7180 ** parent page stored in the pointer map is page pTo. If pFrom contained
7181 ** any cells with overflow page pointers, then the corresponding pointer
7182 ** map entries are also updated so that the parent page is page pTo.
7183 **
7184 ** If pFrom is currently carrying any overflow cells (entries in the
7185 ** MemPage.apOvfl[] array), they are not copied to pTo.
7186 **
7187 ** Before returning, page pTo is reinitialized using btreeInitPage().
7188 **
7189 ** The performance of this function is not critical. It is only used by
7190 ** the balance_shallower() and balance_deeper() procedures, neither of
7191 ** which are called often under normal circumstances.
7192 */
7193 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7194   if( (*pRC)==SQLITE_OK ){
7195     BtShared * const pBt = pFrom->pBt;
7196     u8 * const aFrom = pFrom->aData;
7197     u8 * const aTo = pTo->aData;
7198     int const iFromHdr = pFrom->hdrOffset;
7199     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7200     int rc;
7201     int iData;
7202 
7203 
7204     assert( pFrom->isInit );
7205     assert( pFrom->nFree>=iToHdr );
7206     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7207 
7208     /* Copy the b-tree node content from page pFrom to page pTo. */
7209     iData = get2byte(&aFrom[iFromHdr+5]);
7210     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7211     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7212 
7213     /* Reinitialize page pTo so that the contents of the MemPage structure
7214     ** match the new data. The initialization of pTo can actually fail under
7215     ** fairly obscure circumstances, even though it is a copy of initialized
7216     ** page pFrom.
7217     */
7218     pTo->isInit = 0;
7219     rc = btreeInitPage(pTo);
7220     if( rc!=SQLITE_OK ){
7221       *pRC = rc;
7222       return;
7223     }
7224 
7225     /* If this is an auto-vacuum database, update the pointer-map entries
7226     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7227     */
7228     if( ISAUTOVACUUM ){
7229       *pRC = setChildPtrmaps(pTo);
7230     }
7231   }
7232 }
7233 
7234 /*
7235 ** This routine redistributes cells on the iParentIdx'th child of pParent
7236 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7237 ** same amount of free space. Usually a single sibling on either side of the
7238 ** page are used in the balancing, though both siblings might come from one
7239 ** side if the page is the first or last child of its parent. If the page
7240 ** has fewer than 2 siblings (something which can only happen if the page
7241 ** is a root page or a child of a root page) then all available siblings
7242 ** participate in the balancing.
7243 **
7244 ** The number of siblings of the page might be increased or decreased by
7245 ** one or two in an effort to keep pages nearly full but not over full.
7246 **
7247 ** Note that when this routine is called, some of the cells on the page
7248 ** might not actually be stored in MemPage.aData[]. This can happen
7249 ** if the page is overfull. This routine ensures that all cells allocated
7250 ** to the page and its siblings fit into MemPage.aData[] before returning.
7251 **
7252 ** In the course of balancing the page and its siblings, cells may be
7253 ** inserted into or removed from the parent page (pParent). Doing so
7254 ** may cause the parent page to become overfull or underfull. If this
7255 ** happens, it is the responsibility of the caller to invoke the correct
7256 ** balancing routine to fix this problem (see the balance() routine).
7257 **
7258 ** If this routine fails for any reason, it might leave the database
7259 ** in a corrupted state. So if this routine fails, the database should
7260 ** be rolled back.
7261 **
7262 ** The third argument to this function, aOvflSpace, is a pointer to a
7263 ** buffer big enough to hold one page. If while inserting cells into the parent
7264 ** page (pParent) the parent page becomes overfull, this buffer is
7265 ** used to store the parent's overflow cells. Because this function inserts
7266 ** a maximum of four divider cells into the parent page, and the maximum
7267 ** size of a cell stored within an internal node is always less than 1/4
7268 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7269 ** enough for all overflow cells.
7270 **
7271 ** If aOvflSpace is set to a null pointer, this function returns
7272 ** SQLITE_NOMEM.
7273 */
7274 static int balance_nonroot(
7275   MemPage *pParent,               /* Parent page of siblings being balanced */
7276   int iParentIdx,                 /* Index of "the page" in pParent */
7277   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7278   int isRoot,                     /* True if pParent is a root-page */
7279   int bBulk                       /* True if this call is part of a bulk load */
7280 ){
7281   BtShared *pBt;               /* The whole database */
7282   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7283   int nNew = 0;                /* Number of pages in apNew[] */
7284   int nOld;                    /* Number of pages in apOld[] */
7285   int i, j, k;                 /* Loop counters */
7286   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7287   int rc = SQLITE_OK;          /* The return code */
7288   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7289   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7290   int usableSpace;             /* Bytes in pPage beyond the header */
7291   int pageFlags;               /* Value of pPage->aData[0] */
7292   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7293   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7294   int szScratch;               /* Size of scratch memory requested */
7295   MemPage *apOld[NB];          /* pPage and up to two siblings */
7296   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7297   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7298   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7299   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7300   int cntOld[NB+2];            /* Old index in b.apCell[] */
7301   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7302   u8 *aSpace1;                 /* Space for copies of dividers cells */
7303   Pgno pgno;                   /* Temp var to store a page number in */
7304   u8 abDone[NB+2];             /* True after i'th new page is populated */
7305   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7306   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7307   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7308   CellArray b;                  /* Parsed information on cells being balanced */
7309 
7310   memset(abDone, 0, sizeof(abDone));
7311   b.nCell = 0;
7312   b.apCell = 0;
7313   pBt = pParent->pBt;
7314   assert( sqlite3_mutex_held(pBt->mutex) );
7315   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7316 
7317 #if 0
7318   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
7319 #endif
7320 
7321   /* At this point pParent may have at most one overflow cell. And if
7322   ** this overflow cell is present, it must be the cell with
7323   ** index iParentIdx. This scenario comes about when this function
7324   ** is called (indirectly) from sqlite3BtreeDelete().
7325   */
7326   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7327   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7328 
7329   if( !aOvflSpace ){
7330     return SQLITE_NOMEM_BKPT;
7331   }
7332 
7333   /* Find the sibling pages to balance. Also locate the cells in pParent
7334   ** that divide the siblings. An attempt is made to find NN siblings on
7335   ** either side of pPage. More siblings are taken from one side, however,
7336   ** if there are fewer than NN siblings on the other side. If pParent
7337   ** has NB or fewer children then all children of pParent are taken.
7338   **
7339   ** This loop also drops the divider cells from the parent page. This
7340   ** way, the remainder of the function does not have to deal with any
7341   ** overflow cells in the parent page, since if any existed they will
7342   ** have already been removed.
7343   */
7344   i = pParent->nOverflow + pParent->nCell;
7345   if( i<2 ){
7346     nxDiv = 0;
7347   }else{
7348     assert( bBulk==0 || bBulk==1 );
7349     if( iParentIdx==0 ){
7350       nxDiv = 0;
7351     }else if( iParentIdx==i ){
7352       nxDiv = i-2+bBulk;
7353     }else{
7354       nxDiv = iParentIdx-1;
7355     }
7356     i = 2-bBulk;
7357   }
7358   nOld = i+1;
7359   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7360     pRight = &pParent->aData[pParent->hdrOffset+8];
7361   }else{
7362     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7363   }
7364   pgno = get4byte(pRight);
7365   while( 1 ){
7366     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7367     if( rc ){
7368       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7369       goto balance_cleanup;
7370     }
7371     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
7372     if( (i--)==0 ) break;
7373 
7374     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7375       apDiv[i] = pParent->apOvfl[0];
7376       pgno = get4byte(apDiv[i]);
7377       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7378       pParent->nOverflow = 0;
7379     }else{
7380       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7381       pgno = get4byte(apDiv[i]);
7382       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7383 
7384       /* Drop the cell from the parent page. apDiv[i] still points to
7385       ** the cell within the parent, even though it has been dropped.
7386       ** This is safe because dropping a cell only overwrites the first
7387       ** four bytes of it, and this function does not need the first
7388       ** four bytes of the divider cell. So the pointer is safe to use
7389       ** later on.
7390       **
7391       ** But not if we are in secure-delete mode. In secure-delete mode,
7392       ** the dropCell() routine will overwrite the entire cell with zeroes.
7393       ** In this case, temporarily copy the cell into the aOvflSpace[]
7394       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7395       ** is allocated.  */
7396       if( pBt->btsFlags & BTS_FAST_SECURE ){
7397         int iOff;
7398 
7399         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7400         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7401           rc = SQLITE_CORRUPT_BKPT;
7402           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7403           goto balance_cleanup;
7404         }else{
7405           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7406           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7407         }
7408       }
7409       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7410     }
7411   }
7412 
7413   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7414   ** alignment */
7415   nMaxCells = (nMaxCells + 3)&~3;
7416 
7417   /*
7418   ** Allocate space for memory structures
7419   */
7420   szScratch =
7421        nMaxCells*sizeof(u8*)                       /* b.apCell */
7422      + nMaxCells*sizeof(u16)                       /* b.szCell */
7423      + pBt->pageSize;                              /* aSpace1 */
7424 
7425   assert( szScratch<=6*(int)pBt->pageSize );
7426   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7427   if( b.apCell==0 ){
7428     rc = SQLITE_NOMEM_BKPT;
7429     goto balance_cleanup;
7430   }
7431   b.szCell = (u16*)&b.apCell[nMaxCells];
7432   aSpace1 = (u8*)&b.szCell[nMaxCells];
7433   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7434 
7435   /*
7436   ** Load pointers to all cells on sibling pages and the divider cells
7437   ** into the local b.apCell[] array.  Make copies of the divider cells
7438   ** into space obtained from aSpace1[]. The divider cells have already
7439   ** been removed from pParent.
7440   **
7441   ** If the siblings are on leaf pages, then the child pointers of the
7442   ** divider cells are stripped from the cells before they are copied
7443   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7444   ** child pointers.  If siblings are not leaves, then all cell in
7445   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7446   ** are alike.
7447   **
7448   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7449   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7450   */
7451   b.pRef = apOld[0];
7452   leafCorrection = b.pRef->leaf*4;
7453   leafData = b.pRef->intKeyLeaf;
7454   for(i=0; i<nOld; i++){
7455     MemPage *pOld = apOld[i];
7456     int limit = pOld->nCell;
7457     u8 *aData = pOld->aData;
7458     u16 maskPage = pOld->maskPage;
7459     u8 *piCell = aData + pOld->cellOffset;
7460     u8 *piEnd;
7461 
7462     /* Verify that all sibling pages are of the same "type" (table-leaf,
7463     ** table-interior, index-leaf, or index-interior).
7464     */
7465     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7466       rc = SQLITE_CORRUPT_BKPT;
7467       goto balance_cleanup;
7468     }
7469 
7470     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7471     ** contains overflow cells, include them in the b.apCell[] array
7472     ** in the correct spot.
7473     **
7474     ** Note that when there are multiple overflow cells, it is always the
7475     ** case that they are sequential and adjacent.  This invariant arises
7476     ** because multiple overflows can only occurs when inserting divider
7477     ** cells into a parent on a prior balance, and divider cells are always
7478     ** adjacent and are inserted in order.  There is an assert() tagged
7479     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7480     ** invariant.
7481     **
7482     ** This must be done in advance.  Once the balance starts, the cell
7483     ** offset section of the btree page will be overwritten and we will no
7484     ** long be able to find the cells if a pointer to each cell is not saved
7485     ** first.
7486     */
7487     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7488     if( pOld->nOverflow>0 ){
7489       limit = pOld->aiOvfl[0];
7490       for(j=0; j<limit; j++){
7491         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7492         piCell += 2;
7493         b.nCell++;
7494       }
7495       for(k=0; k<pOld->nOverflow; k++){
7496         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7497         b.apCell[b.nCell] = pOld->apOvfl[k];
7498         b.nCell++;
7499       }
7500     }
7501     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7502     while( piCell<piEnd ){
7503       assert( b.nCell<nMaxCells );
7504       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7505       piCell += 2;
7506       b.nCell++;
7507     }
7508 
7509     cntOld[i] = b.nCell;
7510     if( i<nOld-1 && !leafData){
7511       u16 sz = (u16)szNew[i];
7512       u8 *pTemp;
7513       assert( b.nCell<nMaxCells );
7514       b.szCell[b.nCell] = sz;
7515       pTemp = &aSpace1[iSpace1];
7516       iSpace1 += sz;
7517       assert( sz<=pBt->maxLocal+23 );
7518       assert( iSpace1 <= (int)pBt->pageSize );
7519       memcpy(pTemp, apDiv[i], sz);
7520       b.apCell[b.nCell] = pTemp+leafCorrection;
7521       assert( leafCorrection==0 || leafCorrection==4 );
7522       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7523       if( !pOld->leaf ){
7524         assert( leafCorrection==0 );
7525         assert( pOld->hdrOffset==0 );
7526         /* The right pointer of the child page pOld becomes the left
7527         ** pointer of the divider cell */
7528         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7529       }else{
7530         assert( leafCorrection==4 );
7531         while( b.szCell[b.nCell]<4 ){
7532           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7533           ** does exist, pad it with 0x00 bytes. */
7534           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7535           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7536           aSpace1[iSpace1++] = 0x00;
7537           b.szCell[b.nCell]++;
7538         }
7539       }
7540       b.nCell++;
7541     }
7542   }
7543 
7544   /*
7545   ** Figure out the number of pages needed to hold all b.nCell cells.
7546   ** Store this number in "k".  Also compute szNew[] which is the total
7547   ** size of all cells on the i-th page and cntNew[] which is the index
7548   ** in b.apCell[] of the cell that divides page i from page i+1.
7549   ** cntNew[k] should equal b.nCell.
7550   **
7551   ** Values computed by this block:
7552   **
7553   **           k: The total number of sibling pages
7554   **    szNew[i]: Spaced used on the i-th sibling page.
7555   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7556   **              the right of the i-th sibling page.
7557   ** usableSpace: Number of bytes of space available on each sibling.
7558   **
7559   */
7560   usableSpace = pBt->usableSize - 12 + leafCorrection;
7561   for(i=0; i<nOld; i++){
7562     MemPage *p = apOld[i];
7563     szNew[i] = usableSpace - p->nFree;
7564     for(j=0; j<p->nOverflow; j++){
7565       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7566     }
7567     cntNew[i] = cntOld[i];
7568   }
7569   k = nOld;
7570   for(i=0; i<k; i++){
7571     int sz;
7572     while( szNew[i]>usableSpace ){
7573       if( i+1>=k ){
7574         k = i+2;
7575         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7576         szNew[k-1] = 0;
7577         cntNew[k-1] = b.nCell;
7578       }
7579       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7580       szNew[i] -= sz;
7581       if( !leafData ){
7582         if( cntNew[i]<b.nCell ){
7583           sz = 2 + cachedCellSize(&b, cntNew[i]);
7584         }else{
7585           sz = 0;
7586         }
7587       }
7588       szNew[i+1] += sz;
7589       cntNew[i]--;
7590     }
7591     while( cntNew[i]<b.nCell ){
7592       sz = 2 + cachedCellSize(&b, cntNew[i]);
7593       if( szNew[i]+sz>usableSpace ) break;
7594       szNew[i] += sz;
7595       cntNew[i]++;
7596       if( !leafData ){
7597         if( cntNew[i]<b.nCell ){
7598           sz = 2 + cachedCellSize(&b, cntNew[i]);
7599         }else{
7600           sz = 0;
7601         }
7602       }
7603       szNew[i+1] -= sz;
7604     }
7605     if( cntNew[i]>=b.nCell ){
7606       k = i+1;
7607     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7608       rc = SQLITE_CORRUPT_BKPT;
7609       goto balance_cleanup;
7610     }
7611   }
7612 
7613   /*
7614   ** The packing computed by the previous block is biased toward the siblings
7615   ** on the left side (siblings with smaller keys). The left siblings are
7616   ** always nearly full, while the right-most sibling might be nearly empty.
7617   ** The next block of code attempts to adjust the packing of siblings to
7618   ** get a better balance.
7619   **
7620   ** This adjustment is more than an optimization.  The packing above might
7621   ** be so out of balance as to be illegal.  For example, the right-most
7622   ** sibling might be completely empty.  This adjustment is not optional.
7623   */
7624   for(i=k-1; i>0; i--){
7625     int szRight = szNew[i];  /* Size of sibling on the right */
7626     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7627     int r;              /* Index of right-most cell in left sibling */
7628     int d;              /* Index of first cell to the left of right sibling */
7629 
7630     r = cntNew[i-1] - 1;
7631     d = r + 1 - leafData;
7632     (void)cachedCellSize(&b, d);
7633     do{
7634       assert( d<nMaxCells );
7635       assert( r<nMaxCells );
7636       (void)cachedCellSize(&b, r);
7637       if( szRight!=0
7638        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7639         break;
7640       }
7641       szRight += b.szCell[d] + 2;
7642       szLeft -= b.szCell[r] + 2;
7643       cntNew[i-1] = r;
7644       r--;
7645       d--;
7646     }while( r>=0 );
7647     szNew[i] = szRight;
7648     szNew[i-1] = szLeft;
7649     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7650       rc = SQLITE_CORRUPT_BKPT;
7651       goto balance_cleanup;
7652     }
7653   }
7654 
7655   /* Sanity check:  For a non-corrupt database file one of the follwing
7656   ** must be true:
7657   **    (1) We found one or more cells (cntNew[0])>0), or
7658   **    (2) pPage is a virtual root page.  A virtual root page is when
7659   **        the real root page is page 1 and we are the only child of
7660   **        that page.
7661   */
7662   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7663   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7664     apOld[0]->pgno, apOld[0]->nCell,
7665     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7666     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7667   ));
7668 
7669   /*
7670   ** Allocate k new pages.  Reuse old pages where possible.
7671   */
7672   pageFlags = apOld[0]->aData[0];
7673   for(i=0; i<k; i++){
7674     MemPage *pNew;
7675     if( i<nOld ){
7676       pNew = apNew[i] = apOld[i];
7677       apOld[i] = 0;
7678       rc = sqlite3PagerWrite(pNew->pDbPage);
7679       nNew++;
7680       if( rc ) goto balance_cleanup;
7681     }else{
7682       assert( i>0 );
7683       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7684       if( rc ) goto balance_cleanup;
7685       zeroPage(pNew, pageFlags);
7686       apNew[i] = pNew;
7687       nNew++;
7688       cntOld[i] = b.nCell;
7689 
7690       /* Set the pointer-map entry for the new sibling page. */
7691       if( ISAUTOVACUUM ){
7692         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7693         if( rc!=SQLITE_OK ){
7694           goto balance_cleanup;
7695         }
7696       }
7697     }
7698   }
7699 
7700   /*
7701   ** Reassign page numbers so that the new pages are in ascending order.
7702   ** This helps to keep entries in the disk file in order so that a scan
7703   ** of the table is closer to a linear scan through the file. That in turn
7704   ** helps the operating system to deliver pages from the disk more rapidly.
7705   **
7706   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7707   ** than (NB+2) (a small constant), that should not be a problem.
7708   **
7709   ** When NB==3, this one optimization makes the database about 25% faster
7710   ** for large insertions and deletions.
7711   */
7712   for(i=0; i<nNew; i++){
7713     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7714     aPgFlags[i] = apNew[i]->pDbPage->flags;
7715     for(j=0; j<i; j++){
7716       if( aPgno[j]==aPgno[i] ){
7717         /* This branch is taken if the set of sibling pages somehow contains
7718         ** duplicate entries. This can happen if the database is corrupt.
7719         ** It would be simpler to detect this as part of the loop below, but
7720         ** we do the detection here in order to avoid populating the pager
7721         ** cache with two separate objects associated with the same
7722         ** page number.  */
7723         assert( CORRUPT_DB );
7724         rc = SQLITE_CORRUPT_BKPT;
7725         goto balance_cleanup;
7726       }
7727     }
7728   }
7729   for(i=0; i<nNew; i++){
7730     int iBest = 0;                /* aPgno[] index of page number to use */
7731     for(j=1; j<nNew; j++){
7732       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7733     }
7734     pgno = aPgOrder[iBest];
7735     aPgOrder[iBest] = 0xffffffff;
7736     if( iBest!=i ){
7737       if( iBest>i ){
7738         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7739       }
7740       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7741       apNew[i]->pgno = pgno;
7742     }
7743   }
7744 
7745   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7746          "%d(%d nc=%d) %d(%d nc=%d)\n",
7747     apNew[0]->pgno, szNew[0], cntNew[0],
7748     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7749     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7750     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7751     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7752     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7753     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7754     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7755     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7756   ));
7757 
7758   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7759   put4byte(pRight, apNew[nNew-1]->pgno);
7760 
7761   /* If the sibling pages are not leaves, ensure that the right-child pointer
7762   ** of the right-most new sibling page is set to the value that was
7763   ** originally in the same field of the right-most old sibling page. */
7764   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7765     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7766     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7767   }
7768 
7769   /* Make any required updates to pointer map entries associated with
7770   ** cells stored on sibling pages following the balance operation. Pointer
7771   ** map entries associated with divider cells are set by the insertCell()
7772   ** routine. The associated pointer map entries are:
7773   **
7774   **   a) if the cell contains a reference to an overflow chain, the
7775   **      entry associated with the first page in the overflow chain, and
7776   **
7777   **   b) if the sibling pages are not leaves, the child page associated
7778   **      with the cell.
7779   **
7780   ** If the sibling pages are not leaves, then the pointer map entry
7781   ** associated with the right-child of each sibling may also need to be
7782   ** updated. This happens below, after the sibling pages have been
7783   ** populated, not here.
7784   */
7785   if( ISAUTOVACUUM ){
7786     MemPage *pNew = apNew[0];
7787     u8 *aOld = pNew->aData;
7788     int cntOldNext = pNew->nCell + pNew->nOverflow;
7789     int usableSize = pBt->usableSize;
7790     int iNew = 0;
7791     int iOld = 0;
7792 
7793     for(i=0; i<b.nCell; i++){
7794       u8 *pCell = b.apCell[i];
7795       if( i==cntOldNext ){
7796         MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7797         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7798         aOld = pOld->aData;
7799       }
7800       if( i==cntNew[iNew] ){
7801         pNew = apNew[++iNew];
7802         if( !leafData ) continue;
7803       }
7804 
7805       /* Cell pCell is destined for new sibling page pNew. Originally, it
7806       ** was either part of sibling page iOld (possibly an overflow cell),
7807       ** or else the divider cell to the left of sibling page iOld. So,
7808       ** if sibling page iOld had the same page number as pNew, and if
7809       ** pCell really was a part of sibling page iOld (not a divider or
7810       ** overflow cell), we can skip updating the pointer map entries.  */
7811       if( iOld>=nNew
7812        || pNew->pgno!=aPgno[iOld]
7813        || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
7814       ){
7815         if( !leafCorrection ){
7816           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7817         }
7818         if( cachedCellSize(&b,i)>pNew->minLocal ){
7819           ptrmapPutOvflPtr(pNew, pCell, &rc);
7820         }
7821         if( rc ) goto balance_cleanup;
7822       }
7823     }
7824   }
7825 
7826   /* Insert new divider cells into pParent. */
7827   for(i=0; i<nNew-1; i++){
7828     u8 *pCell;
7829     u8 *pTemp;
7830     int sz;
7831     MemPage *pNew = apNew[i];
7832     j = cntNew[i];
7833 
7834     assert( j<nMaxCells );
7835     assert( b.apCell[j]!=0 );
7836     pCell = b.apCell[j];
7837     sz = b.szCell[j] + leafCorrection;
7838     pTemp = &aOvflSpace[iOvflSpace];
7839     if( !pNew->leaf ){
7840       memcpy(&pNew->aData[8], pCell, 4);
7841     }else if( leafData ){
7842       /* If the tree is a leaf-data tree, and the siblings are leaves,
7843       ** then there is no divider cell in b.apCell[]. Instead, the divider
7844       ** cell consists of the integer key for the right-most cell of
7845       ** the sibling-page assembled above only.
7846       */
7847       CellInfo info;
7848       j--;
7849       pNew->xParseCell(pNew, b.apCell[j], &info);
7850       pCell = pTemp;
7851       sz = 4 + putVarint(&pCell[4], info.nKey);
7852       pTemp = 0;
7853     }else{
7854       pCell -= 4;
7855       /* Obscure case for non-leaf-data trees: If the cell at pCell was
7856       ** previously stored on a leaf node, and its reported size was 4
7857       ** bytes, then it may actually be smaller than this
7858       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7859       ** any cell). But it is important to pass the correct size to
7860       ** insertCell(), so reparse the cell now.
7861       **
7862       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7863       ** and WITHOUT ROWID tables with exactly one column which is the
7864       ** primary key.
7865       */
7866       if( b.szCell[j]==4 ){
7867         assert(leafCorrection==4);
7868         sz = pParent->xCellSize(pParent, pCell);
7869       }
7870     }
7871     iOvflSpace += sz;
7872     assert( sz<=pBt->maxLocal+23 );
7873     assert( iOvflSpace <= (int)pBt->pageSize );
7874     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7875     if( rc!=SQLITE_OK ) goto balance_cleanup;
7876     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7877   }
7878 
7879   /* Now update the actual sibling pages. The order in which they are updated
7880   ** is important, as this code needs to avoid disrupting any page from which
7881   ** cells may still to be read. In practice, this means:
7882   **
7883   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7884   **      then it is not safe to update page apNew[iPg] until after
7885   **      the left-hand sibling apNew[iPg-1] has been updated.
7886   **
7887   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7888   **      then it is not safe to update page apNew[iPg] until after
7889   **      the right-hand sibling apNew[iPg+1] has been updated.
7890   **
7891   ** If neither of the above apply, the page is safe to update.
7892   **
7893   ** The iPg value in the following loop starts at nNew-1 goes down
7894   ** to 0, then back up to nNew-1 again, thus making two passes over
7895   ** the pages.  On the initial downward pass, only condition (1) above
7896   ** needs to be tested because (2) will always be true from the previous
7897   ** step.  On the upward pass, both conditions are always true, so the
7898   ** upwards pass simply processes pages that were missed on the downward
7899   ** pass.
7900   */
7901   for(i=1-nNew; i<nNew; i++){
7902     int iPg = i<0 ? -i : i;
7903     assert( iPg>=0 && iPg<nNew );
7904     if( abDone[iPg] ) continue;         /* Skip pages already processed */
7905     if( i>=0                            /* On the upwards pass, or... */
7906      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
7907     ){
7908       int iNew;
7909       int iOld;
7910       int nNewCell;
7911 
7912       /* Verify condition (1):  If cells are moving left, update iPg
7913       ** only after iPg-1 has already been updated. */
7914       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7915 
7916       /* Verify condition (2):  If cells are moving right, update iPg
7917       ** only after iPg+1 has already been updated. */
7918       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7919 
7920       if( iPg==0 ){
7921         iNew = iOld = 0;
7922         nNewCell = cntNew[0];
7923       }else{
7924         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
7925         iNew = cntNew[iPg-1] + !leafData;
7926         nNewCell = cntNew[iPg] - iNew;
7927       }
7928 
7929       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
7930       if( rc ) goto balance_cleanup;
7931       abDone[iPg]++;
7932       apNew[iPg]->nFree = usableSpace-szNew[iPg];
7933       assert( apNew[iPg]->nOverflow==0 );
7934       assert( apNew[iPg]->nCell==nNewCell );
7935     }
7936   }
7937 
7938   /* All pages have been processed exactly once */
7939   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7940 
7941   assert( nOld>0 );
7942   assert( nNew>0 );
7943 
7944   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7945     /* The root page of the b-tree now contains no cells. The only sibling
7946     ** page is the right-child of the parent. Copy the contents of the
7947     ** child page into the parent, decreasing the overall height of the
7948     ** b-tree structure by one. This is described as the "balance-shallower"
7949     ** sub-algorithm in some documentation.
7950     **
7951     ** If this is an auto-vacuum database, the call to copyNodeContent()
7952     ** sets all pointer-map entries corresponding to database image pages
7953     ** for which the pointer is stored within the content being copied.
7954     **
7955     ** It is critical that the child page be defragmented before being
7956     ** copied into the parent, because if the parent is page 1 then it will
7957     ** by smaller than the child due to the database header, and so all the
7958     ** free space needs to be up front.
7959     */
7960     assert( nNew==1 || CORRUPT_DB );
7961     rc = defragmentPage(apNew[0], -1);
7962     testcase( rc!=SQLITE_OK );
7963     assert( apNew[0]->nFree ==
7964         (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7965       || rc!=SQLITE_OK
7966     );
7967     copyNodeContent(apNew[0], pParent, &rc);
7968     freePage(apNew[0], &rc);
7969   }else if( ISAUTOVACUUM && !leafCorrection ){
7970     /* Fix the pointer map entries associated with the right-child of each
7971     ** sibling page. All other pointer map entries have already been taken
7972     ** care of.  */
7973     for(i=0; i<nNew; i++){
7974       u32 key = get4byte(&apNew[i]->aData[8]);
7975       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
7976     }
7977   }
7978 
7979   assert( pParent->isInit );
7980   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7981           nOld, nNew, b.nCell));
7982 
7983   /* Free any old pages that were not reused as new pages.
7984   */
7985   for(i=nNew; i<nOld; i++){
7986     freePage(apOld[i], &rc);
7987   }
7988 
7989 #if 0
7990   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
7991     /* The ptrmapCheckPages() contains assert() statements that verify that
7992     ** all pointer map pages are set correctly. This is helpful while
7993     ** debugging. This is usually disabled because a corrupt database may
7994     ** cause an assert() statement to fail.  */
7995     ptrmapCheckPages(apNew, nNew);
7996     ptrmapCheckPages(&pParent, 1);
7997   }
7998 #endif
7999 
8000   /*
8001   ** Cleanup before returning.
8002   */
8003 balance_cleanup:
8004   sqlite3StackFree(0, b.apCell);
8005   for(i=0; i<nOld; i++){
8006     releasePage(apOld[i]);
8007   }
8008   for(i=0; i<nNew; i++){
8009     releasePage(apNew[i]);
8010   }
8011 
8012   return rc;
8013 }
8014 
8015 
8016 /*
8017 ** This function is called when the root page of a b-tree structure is
8018 ** overfull (has one or more overflow pages).
8019 **
8020 ** A new child page is allocated and the contents of the current root
8021 ** page, including overflow cells, are copied into the child. The root
8022 ** page is then overwritten to make it an empty page with the right-child
8023 ** pointer pointing to the new page.
8024 **
8025 ** Before returning, all pointer-map entries corresponding to pages
8026 ** that the new child-page now contains pointers to are updated. The
8027 ** entry corresponding to the new right-child pointer of the root
8028 ** page is also updated.
8029 **
8030 ** If successful, *ppChild is set to contain a reference to the child
8031 ** page and SQLITE_OK is returned. In this case the caller is required
8032 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8033 ** an error code is returned and *ppChild is set to 0.
8034 */
8035 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8036   int rc;                        /* Return value from subprocedures */
8037   MemPage *pChild = 0;           /* Pointer to a new child page */
8038   Pgno pgnoChild = 0;            /* Page number of the new child page */
8039   BtShared *pBt = pRoot->pBt;    /* The BTree */
8040 
8041   assert( pRoot->nOverflow>0 );
8042   assert( sqlite3_mutex_held(pBt->mutex) );
8043 
8044   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8045   ** page that will become the new right-child of pPage. Copy the contents
8046   ** of the node stored on pRoot into the new child page.
8047   */
8048   rc = sqlite3PagerWrite(pRoot->pDbPage);
8049   if( rc==SQLITE_OK ){
8050     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8051     copyNodeContent(pRoot, pChild, &rc);
8052     if( ISAUTOVACUUM ){
8053       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8054     }
8055   }
8056   if( rc ){
8057     *ppChild = 0;
8058     releasePage(pChild);
8059     return rc;
8060   }
8061   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8062   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8063   assert( pChild->nCell==pRoot->nCell );
8064 
8065   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8066 
8067   /* Copy the overflow cells from pRoot to pChild */
8068   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8069          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8070   memcpy(pChild->apOvfl, pRoot->apOvfl,
8071          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8072   pChild->nOverflow = pRoot->nOverflow;
8073 
8074   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8075   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8076   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8077 
8078   *ppChild = pChild;
8079   return SQLITE_OK;
8080 }
8081 
8082 /*
8083 ** The page that pCur currently points to has just been modified in
8084 ** some way. This function figures out if this modification means the
8085 ** tree needs to be balanced, and if so calls the appropriate balancing
8086 ** routine. Balancing routines are:
8087 **
8088 **   balance_quick()
8089 **   balance_deeper()
8090 **   balance_nonroot()
8091 */
8092 static int balance(BtCursor *pCur){
8093   int rc = SQLITE_OK;
8094   const int nMin = pCur->pBt->usableSize * 2 / 3;
8095   u8 aBalanceQuickSpace[13];
8096   u8 *pFree = 0;
8097 
8098   VVA_ONLY( int balance_quick_called = 0 );
8099   VVA_ONLY( int balance_deeper_called = 0 );
8100 
8101   do {
8102     int iPage = pCur->iPage;
8103     MemPage *pPage = pCur->pPage;
8104 
8105     if( iPage==0 ){
8106       if( pPage->nOverflow ){
8107         /* The root page of the b-tree is overfull. In this case call the
8108         ** balance_deeper() function to create a new child for the root-page
8109         ** and copy the current contents of the root-page to it. The
8110         ** next iteration of the do-loop will balance the child page.
8111         */
8112         assert( balance_deeper_called==0 );
8113         VVA_ONLY( balance_deeper_called++ );
8114         rc = balance_deeper(pPage, &pCur->apPage[1]);
8115         if( rc==SQLITE_OK ){
8116           pCur->iPage = 1;
8117           pCur->ix = 0;
8118           pCur->aiIdx[0] = 0;
8119           pCur->apPage[0] = pPage;
8120           pCur->pPage = pCur->apPage[1];
8121           assert( pCur->pPage->nOverflow );
8122         }
8123       }else{
8124         break;
8125       }
8126     }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8127       break;
8128     }else{
8129       MemPage * const pParent = pCur->apPage[iPage-1];
8130       int const iIdx = pCur->aiIdx[iPage-1];
8131 
8132       rc = sqlite3PagerWrite(pParent->pDbPage);
8133       if( rc==SQLITE_OK ){
8134 #ifndef SQLITE_OMIT_QUICKBALANCE
8135         if( pPage->intKeyLeaf
8136          && pPage->nOverflow==1
8137          && pPage->aiOvfl[0]==pPage->nCell
8138          && pParent->pgno!=1
8139          && pParent->nCell==iIdx
8140         ){
8141           /* Call balance_quick() to create a new sibling of pPage on which
8142           ** to store the overflow cell. balance_quick() inserts a new cell
8143           ** into pParent, which may cause pParent overflow. If this
8144           ** happens, the next iteration of the do-loop will balance pParent
8145           ** use either balance_nonroot() or balance_deeper(). Until this
8146           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8147           ** buffer.
8148           **
8149           ** The purpose of the following assert() is to check that only a
8150           ** single call to balance_quick() is made for each call to this
8151           ** function. If this were not verified, a subtle bug involving reuse
8152           ** of the aBalanceQuickSpace[] might sneak in.
8153           */
8154           assert( balance_quick_called==0 );
8155           VVA_ONLY( balance_quick_called++ );
8156           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8157         }else
8158 #endif
8159         {
8160           /* In this case, call balance_nonroot() to redistribute cells
8161           ** between pPage and up to 2 of its sibling pages. This involves
8162           ** modifying the contents of pParent, which may cause pParent to
8163           ** become overfull or underfull. The next iteration of the do-loop
8164           ** will balance the parent page to correct this.
8165           **
8166           ** If the parent page becomes overfull, the overflow cell or cells
8167           ** are stored in the pSpace buffer allocated immediately below.
8168           ** A subsequent iteration of the do-loop will deal with this by
8169           ** calling balance_nonroot() (balance_deeper() may be called first,
8170           ** but it doesn't deal with overflow cells - just moves them to a
8171           ** different page). Once this subsequent call to balance_nonroot()
8172           ** has completed, it is safe to release the pSpace buffer used by
8173           ** the previous call, as the overflow cell data will have been
8174           ** copied either into the body of a database page or into the new
8175           ** pSpace buffer passed to the latter call to balance_nonroot().
8176           */
8177           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8178           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8179                                pCur->hints&BTREE_BULKLOAD);
8180           if( pFree ){
8181             /* If pFree is not NULL, it points to the pSpace buffer used
8182             ** by a previous call to balance_nonroot(). Its contents are
8183             ** now stored either on real database pages or within the
8184             ** new pSpace buffer, so it may be safely freed here. */
8185             sqlite3PageFree(pFree);
8186           }
8187 
8188           /* The pSpace buffer will be freed after the next call to
8189           ** balance_nonroot(), or just before this function returns, whichever
8190           ** comes first. */
8191           pFree = pSpace;
8192         }
8193       }
8194 
8195       pPage->nOverflow = 0;
8196 
8197       /* The next iteration of the do-loop balances the parent page. */
8198       releasePage(pPage);
8199       pCur->iPage--;
8200       assert( pCur->iPage>=0 );
8201       pCur->pPage = pCur->apPage[pCur->iPage];
8202     }
8203   }while( rc==SQLITE_OK );
8204 
8205   if( pFree ){
8206     sqlite3PageFree(pFree);
8207   }
8208   return rc;
8209 }
8210 
8211 /* Overwrite content from pX into pDest.  Only do the write if the
8212 ** content is different from what is already there.
8213 */
8214 static int btreeOverwriteContent(
8215   MemPage *pPage,           /* MemPage on which writing will occur */
8216   u8 *pDest,                /* Pointer to the place to start writing */
8217   const BtreePayload *pX,   /* Source of data to write */
8218   int iOffset,              /* Offset of first byte to write */
8219   int iAmt                  /* Number of bytes to be written */
8220 ){
8221   int nData = pX->nData - iOffset;
8222   if( nData<=0 ){
8223     /* Overwritting with zeros */
8224     int i;
8225     for(i=0; i<iAmt && pDest[i]==0; i++){}
8226     if( i<iAmt ){
8227       int rc = sqlite3PagerWrite(pPage->pDbPage);
8228       if( rc ) return rc;
8229       memset(pDest + i, 0, iAmt - i);
8230     }
8231   }else{
8232     if( nData<iAmt ){
8233       /* Mixed read data and zeros at the end.  Make a recursive call
8234       ** to write the zeros then fall through to write the real data */
8235       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8236                                  iAmt-nData);
8237       if( rc ) return rc;
8238       iAmt = nData;
8239     }
8240     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8241       int rc = sqlite3PagerWrite(pPage->pDbPage);
8242       if( rc ) return rc;
8243       memcpy(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8244     }
8245   }
8246   return SQLITE_OK;
8247 }
8248 
8249 /*
8250 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8251 ** contained in pX.
8252 */
8253 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8254   int iOffset;                        /* Next byte of pX->pData to write */
8255   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8256   int rc;                             /* Return code */
8257   MemPage *pPage = pCur->pPage;       /* Page being written */
8258   BtShared *pBt;                      /* Btree */
8259   Pgno ovflPgno;                      /* Next overflow page to write */
8260   u32 ovflPageSize;                   /* Size to write on overflow page */
8261 
8262   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){
8263     return SQLITE_CORRUPT_BKPT;
8264   }
8265   /* Overwrite the local portion first */
8266   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8267                              0, pCur->info.nLocal);
8268   if( rc ) return rc;
8269   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8270 
8271   /* Now overwrite the overflow pages */
8272   iOffset = pCur->info.nLocal;
8273   assert( nTotal>=0 );
8274   assert( iOffset>=0 );
8275   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8276   pBt = pPage->pBt;
8277   ovflPageSize = pBt->usableSize - 4;
8278   do{
8279     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8280     if( rc ) return rc;
8281     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
8282       rc = SQLITE_CORRUPT_BKPT;
8283     }else{
8284       if( iOffset+ovflPageSize<(u32)nTotal ){
8285         ovflPgno = get4byte(pPage->aData);
8286       }else{
8287         ovflPageSize = nTotal - iOffset;
8288       }
8289       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8290                                  iOffset, ovflPageSize);
8291     }
8292     sqlite3PagerUnref(pPage->pDbPage);
8293     if( rc ) return rc;
8294     iOffset += ovflPageSize;
8295   }while( iOffset<nTotal );
8296   return SQLITE_OK;
8297 }
8298 
8299 
8300 /*
8301 ** Insert a new record into the BTree.  The content of the new record
8302 ** is described by the pX object.  The pCur cursor is used only to
8303 ** define what table the record should be inserted into, and is left
8304 ** pointing at a random location.
8305 **
8306 ** For a table btree (used for rowid tables), only the pX.nKey value of
8307 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8308 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8309 ** hold the content of the row.
8310 **
8311 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8312 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8313 ** pX.pData,nData,nZero fields must be zero.
8314 **
8315 ** If the seekResult parameter is non-zero, then a successful call to
8316 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8317 ** been performed.  In other words, if seekResult!=0 then the cursor
8318 ** is currently pointing to a cell that will be adjacent to the cell
8319 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8320 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8321 ** that is larger than (pKey,nKey).
8322 **
8323 ** If seekResult==0, that means pCur is pointing at some unknown location.
8324 ** In that case, this routine must seek the cursor to the correct insertion
8325 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8326 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8327 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8328 ** to decode the key.
8329 */
8330 int sqlite3BtreeInsert(
8331   BtCursor *pCur,                /* Insert data into the table of this cursor */
8332   const BtreePayload *pX,        /* Content of the row to be inserted */
8333   int flags,                     /* True if this is likely an append */
8334   int seekResult                 /* Result of prior MovetoUnpacked() call */
8335 ){
8336   int rc;
8337   int loc = seekResult;          /* -1: before desired location  +1: after */
8338   int szNew = 0;
8339   int idx;
8340   MemPage *pPage;
8341   Btree *p = pCur->pBtree;
8342   BtShared *pBt = p->pBt;
8343   unsigned char *oldCell;
8344   unsigned char *newCell = 0;
8345 
8346   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8347 
8348   if( pCur->eState==CURSOR_FAULT ){
8349     assert( pCur->skipNext!=SQLITE_OK );
8350     return pCur->skipNext;
8351   }
8352 
8353   assert( cursorOwnsBtShared(pCur) );
8354   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8355               && pBt->inTransaction==TRANS_WRITE
8356               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8357   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8358 
8359   /* Assert that the caller has been consistent. If this cursor was opened
8360   ** expecting an index b-tree, then the caller should be inserting blob
8361   ** keys with no associated data. If the cursor was opened expecting an
8362   ** intkey table, the caller should be inserting integer keys with a
8363   ** blob of associated data.  */
8364   assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8365 
8366   /* Save the positions of any other cursors open on this table.
8367   **
8368   ** In some cases, the call to btreeMoveto() below is a no-op. For
8369   ** example, when inserting data into a table with auto-generated integer
8370   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8371   ** integer key to use. It then calls this function to actually insert the
8372   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8373   ** that the cursor is already where it needs to be and returns without
8374   ** doing any work. To avoid thwarting these optimizations, it is important
8375   ** not to clear the cursor here.
8376   */
8377   if( pCur->curFlags & BTCF_Multiple ){
8378     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8379     if( rc ) return rc;
8380   }
8381 
8382   if( pCur->pKeyInfo==0 ){
8383     assert( pX->pKey==0 );
8384     /* If this is an insert into a table b-tree, invalidate any incrblob
8385     ** cursors open on the row being replaced */
8386     invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8387 
8388     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8389     ** to a row with the same key as the new entry being inserted.
8390     */
8391 #ifdef SQLITE_DEBUG
8392     if( flags & BTREE_SAVEPOSITION ){
8393       assert( pCur->curFlags & BTCF_ValidNKey );
8394       assert( pX->nKey==pCur->info.nKey );
8395       assert( pCur->info.nSize!=0 );
8396       assert( loc==0 );
8397     }
8398 #endif
8399 
8400     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8401     ** that the cursor is not pointing to a row to be overwritten.
8402     ** So do a complete check.
8403     */
8404     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8405       /* The cursor is pointing to the entry that is to be
8406       ** overwritten */
8407       assert( pX->nData>=0 && pX->nZero>=0 );
8408       if( pCur->info.nSize!=0
8409        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8410       ){
8411         /* New entry is the same size as the old.  Do an overwrite */
8412         return btreeOverwriteCell(pCur, pX);
8413       }
8414       assert( loc==0 );
8415     }else if( loc==0 ){
8416       /* The cursor is *not* pointing to the cell to be overwritten, nor
8417       ** to an adjacent cell.  Move the cursor so that it is pointing either
8418       ** to the cell to be overwritten or an adjacent cell.
8419       */
8420       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8421       if( rc ) return rc;
8422     }
8423   }else{
8424     /* This is an index or a WITHOUT ROWID table */
8425 
8426     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8427     ** to a row with the same key as the new entry being inserted.
8428     */
8429     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8430 
8431     /* If the cursor is not already pointing either to the cell to be
8432     ** overwritten, or if a new cell is being inserted, if the cursor is
8433     ** not pointing to an immediately adjacent cell, then move the cursor
8434     ** so that it does.
8435     */
8436     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8437       if( pX->nMem ){
8438         UnpackedRecord r;
8439         r.pKeyInfo = pCur->pKeyInfo;
8440         r.aMem = pX->aMem;
8441         r.nField = pX->nMem;
8442         r.default_rc = 0;
8443         r.errCode = 0;
8444         r.r1 = 0;
8445         r.r2 = 0;
8446         r.eqSeen = 0;
8447         rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8448       }else{
8449         rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8450       }
8451       if( rc ) return rc;
8452     }
8453 
8454     /* If the cursor is currently pointing to an entry to be overwritten
8455     ** and the new content is the same as as the old, then use the
8456     ** overwrite optimization.
8457     */
8458     if( loc==0 ){
8459       getCellInfo(pCur);
8460       if( pCur->info.nKey==pX->nKey ){
8461         BtreePayload x2;
8462         x2.pData = pX->pKey;
8463         x2.nData = pX->nKey;
8464         x2.nZero = 0;
8465         return btreeOverwriteCell(pCur, &x2);
8466       }
8467     }
8468 
8469   }
8470   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8471 
8472   pPage = pCur->pPage;
8473   assert( pPage->intKey || pX->nKey>=0 );
8474   assert( pPage->leaf || !pPage->intKey );
8475 
8476   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8477           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8478           loc==0 ? "overwrite" : "new entry"));
8479   assert( pPage->isInit );
8480   newCell = pBt->pTmpSpace;
8481   assert( newCell!=0 );
8482   rc = fillInCell(pPage, newCell, pX, &szNew);
8483   if( rc ) goto end_insert;
8484   assert( szNew==pPage->xCellSize(pPage, newCell) );
8485   assert( szNew <= MX_CELL_SIZE(pBt) );
8486   idx = pCur->ix;
8487   if( loc==0 ){
8488     CellInfo info;
8489     assert( idx<pPage->nCell );
8490     rc = sqlite3PagerWrite(pPage->pDbPage);
8491     if( rc ){
8492       goto end_insert;
8493     }
8494     oldCell = findCell(pPage, idx);
8495     if( !pPage->leaf ){
8496       memcpy(newCell, oldCell, 4);
8497     }
8498     rc = clearCell(pPage, oldCell, &info);
8499     if( info.nSize==szNew && info.nLocal==info.nPayload
8500      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8501     ){
8502       /* Overwrite the old cell with the new if they are the same size.
8503       ** We could also try to do this if the old cell is smaller, then add
8504       ** the leftover space to the free list.  But experiments show that
8505       ** doing that is no faster then skipping this optimization and just
8506       ** calling dropCell() and insertCell().
8507       **
8508       ** This optimization cannot be used on an autovacuum database if the
8509       ** new entry uses overflow pages, as the insertCell() call below is
8510       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
8511       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8512       if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
8513       memcpy(oldCell, newCell, szNew);
8514       return SQLITE_OK;
8515     }
8516     dropCell(pPage, idx, info.nSize, &rc);
8517     if( rc ) goto end_insert;
8518   }else if( loc<0 && pPage->nCell>0 ){
8519     assert( pPage->leaf );
8520     idx = ++pCur->ix;
8521     pCur->curFlags &= ~BTCF_ValidNKey;
8522   }else{
8523     assert( pPage->leaf );
8524   }
8525   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8526   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8527   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8528 
8529   /* If no error has occurred and pPage has an overflow cell, call balance()
8530   ** to redistribute the cells within the tree. Since balance() may move
8531   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8532   ** variables.
8533   **
8534   ** Previous versions of SQLite called moveToRoot() to move the cursor
8535   ** back to the root page as balance() used to invalidate the contents
8536   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8537   ** set the cursor state to "invalid". This makes common insert operations
8538   ** slightly faster.
8539   **
8540   ** There is a subtle but important optimization here too. When inserting
8541   ** multiple records into an intkey b-tree using a single cursor (as can
8542   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8543   ** is advantageous to leave the cursor pointing to the last entry in
8544   ** the b-tree if possible. If the cursor is left pointing to the last
8545   ** entry in the table, and the next row inserted has an integer key
8546   ** larger than the largest existing key, it is possible to insert the
8547   ** row without seeking the cursor. This can be a big performance boost.
8548   */
8549   pCur->info.nSize = 0;
8550   if( pPage->nOverflow ){
8551     assert( rc==SQLITE_OK );
8552     pCur->curFlags &= ~(BTCF_ValidNKey);
8553     rc = balance(pCur);
8554 
8555     /* Must make sure nOverflow is reset to zero even if the balance()
8556     ** fails. Internal data structure corruption will result otherwise.
8557     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8558     ** from trying to save the current position of the cursor.  */
8559     pCur->pPage->nOverflow = 0;
8560     pCur->eState = CURSOR_INVALID;
8561     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8562       btreeReleaseAllCursorPages(pCur);
8563       if( pCur->pKeyInfo ){
8564         assert( pCur->pKey==0 );
8565         pCur->pKey = sqlite3Malloc( pX->nKey );
8566         if( pCur->pKey==0 ){
8567           rc = SQLITE_NOMEM;
8568         }else{
8569           memcpy(pCur->pKey, pX->pKey, pX->nKey);
8570         }
8571       }
8572       pCur->eState = CURSOR_REQUIRESEEK;
8573       pCur->nKey = pX->nKey;
8574     }
8575   }
8576   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8577 
8578 end_insert:
8579   return rc;
8580 }
8581 
8582 /*
8583 ** Delete the entry that the cursor is pointing to.
8584 **
8585 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8586 ** the cursor is left pointing at an arbitrary location after the delete.
8587 ** But if that bit is set, then the cursor is left in a state such that
8588 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8589 ** as it would have been on if the call to BtreeDelete() had been omitted.
8590 **
8591 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8592 ** associated with a single table entry and its indexes.  Only one of those
8593 ** deletes is considered the "primary" delete.  The primary delete occurs
8594 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
8595 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8596 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8597 ** but which might be used by alternative storage engines.
8598 */
8599 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8600   Btree *p = pCur->pBtree;
8601   BtShared *pBt = p->pBt;
8602   int rc;                              /* Return code */
8603   MemPage *pPage;                      /* Page to delete cell from */
8604   unsigned char *pCell;                /* Pointer to cell to delete */
8605   int iCellIdx;                        /* Index of cell to delete */
8606   int iCellDepth;                      /* Depth of node containing pCell */
8607   CellInfo info;                       /* Size of the cell being deleted */
8608   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8609   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
8610 
8611   assert( cursorOwnsBtShared(pCur) );
8612   assert( pBt->inTransaction==TRANS_WRITE );
8613   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8614   assert( pCur->curFlags & BTCF_WriteFlag );
8615   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8616   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8617   assert( pCur->ix<pCur->pPage->nCell );
8618   assert( pCur->eState==CURSOR_VALID );
8619   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8620 
8621   iCellDepth = pCur->iPage;
8622   iCellIdx = pCur->ix;
8623   pPage = pCur->pPage;
8624   pCell = findCell(pPage, iCellIdx);
8625 
8626   /* If the bPreserve flag is set to true, then the cursor position must
8627   ** be preserved following this delete operation. If the current delete
8628   ** will cause a b-tree rebalance, then this is done by saving the cursor
8629   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8630   ** returning.
8631   **
8632   ** Or, if the current delete will not cause a rebalance, then the cursor
8633   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8634   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8635   if( bPreserve ){
8636     if( !pPage->leaf
8637      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8638      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
8639     ){
8640       /* A b-tree rebalance will be required after deleting this entry.
8641       ** Save the cursor key.  */
8642       rc = saveCursorKey(pCur);
8643       if( rc ) return rc;
8644     }else{
8645       bSkipnext = 1;
8646     }
8647   }
8648 
8649   /* If the page containing the entry to delete is not a leaf page, move
8650   ** the cursor to the largest entry in the tree that is smaller than
8651   ** the entry being deleted. This cell will replace the cell being deleted
8652   ** from the internal node. The 'previous' entry is used for this instead
8653   ** of the 'next' entry, as the previous entry is always a part of the
8654   ** sub-tree headed by the child page of the cell being deleted. This makes
8655   ** balancing the tree following the delete operation easier.  */
8656   if( !pPage->leaf ){
8657     rc = sqlite3BtreePrevious(pCur, 0);
8658     assert( rc!=SQLITE_DONE );
8659     if( rc ) return rc;
8660   }
8661 
8662   /* Save the positions of any other cursors open on this table before
8663   ** making any modifications.  */
8664   if( pCur->curFlags & BTCF_Multiple ){
8665     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8666     if( rc ) return rc;
8667   }
8668 
8669   /* If this is a delete operation to remove a row from a table b-tree,
8670   ** invalidate any incrblob cursors open on the row being deleted.  */
8671   if( pCur->pKeyInfo==0 ){
8672     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
8673   }
8674 
8675   /* Make the page containing the entry to be deleted writable. Then free any
8676   ** overflow pages associated with the entry and finally remove the cell
8677   ** itself from within the page.  */
8678   rc = sqlite3PagerWrite(pPage->pDbPage);
8679   if( rc ) return rc;
8680   rc = clearCell(pPage, pCell, &info);
8681   dropCell(pPage, iCellIdx, info.nSize, &rc);
8682   if( rc ) return rc;
8683 
8684   /* If the cell deleted was not located on a leaf page, then the cursor
8685   ** is currently pointing to the largest entry in the sub-tree headed
8686   ** by the child-page of the cell that was just deleted from an internal
8687   ** node. The cell from the leaf node needs to be moved to the internal
8688   ** node to replace the deleted cell.  */
8689   if( !pPage->leaf ){
8690     MemPage *pLeaf = pCur->pPage;
8691     int nCell;
8692     Pgno n;
8693     unsigned char *pTmp;
8694 
8695     if( iCellDepth<pCur->iPage-1 ){
8696       n = pCur->apPage[iCellDepth+1]->pgno;
8697     }else{
8698       n = pCur->pPage->pgno;
8699     }
8700     pCell = findCell(pLeaf, pLeaf->nCell-1);
8701     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8702     nCell = pLeaf->xCellSize(pLeaf, pCell);
8703     assert( MX_CELL_SIZE(pBt) >= nCell );
8704     pTmp = pBt->pTmpSpace;
8705     assert( pTmp!=0 );
8706     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8707     if( rc==SQLITE_OK ){
8708       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8709     }
8710     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8711     if( rc ) return rc;
8712   }
8713 
8714   /* Balance the tree. If the entry deleted was located on a leaf page,
8715   ** then the cursor still points to that page. In this case the first
8716   ** call to balance() repairs the tree, and the if(...) condition is
8717   ** never true.
8718   **
8719   ** Otherwise, if the entry deleted was on an internal node page, then
8720   ** pCur is pointing to the leaf page from which a cell was removed to
8721   ** replace the cell deleted from the internal node. This is slightly
8722   ** tricky as the leaf node may be underfull, and the internal node may
8723   ** be either under or overfull. In this case run the balancing algorithm
8724   ** on the leaf node first. If the balance proceeds far enough up the
8725   ** tree that we can be sure that any problem in the internal node has
8726   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8727   ** walk the cursor up the tree to the internal node and balance it as
8728   ** well.  */
8729   rc = balance(pCur);
8730   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8731     releasePageNotNull(pCur->pPage);
8732     pCur->iPage--;
8733     while( pCur->iPage>iCellDepth ){
8734       releasePage(pCur->apPage[pCur->iPage--]);
8735     }
8736     pCur->pPage = pCur->apPage[pCur->iPage];
8737     rc = balance(pCur);
8738   }
8739 
8740   if( rc==SQLITE_OK ){
8741     if( bSkipnext ){
8742       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8743       assert( pPage==pCur->pPage || CORRUPT_DB );
8744       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8745       pCur->eState = CURSOR_SKIPNEXT;
8746       if( iCellIdx>=pPage->nCell ){
8747         pCur->skipNext = -1;
8748         pCur->ix = pPage->nCell-1;
8749       }else{
8750         pCur->skipNext = 1;
8751       }
8752     }else{
8753       rc = moveToRoot(pCur);
8754       if( bPreserve ){
8755         btreeReleaseAllCursorPages(pCur);
8756         pCur->eState = CURSOR_REQUIRESEEK;
8757       }
8758       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
8759     }
8760   }
8761   return rc;
8762 }
8763 
8764 /*
8765 ** Create a new BTree table.  Write into *piTable the page
8766 ** number for the root page of the new table.
8767 **
8768 ** The type of type is determined by the flags parameter.  Only the
8769 ** following values of flags are currently in use.  Other values for
8770 ** flags might not work:
8771 **
8772 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
8773 **     BTREE_ZERODATA                  Used for SQL indices
8774 */
8775 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
8776   BtShared *pBt = p->pBt;
8777   MemPage *pRoot;
8778   Pgno pgnoRoot;
8779   int rc;
8780   int ptfFlags;          /* Page-type flage for the root page of new table */
8781 
8782   assert( sqlite3BtreeHoldsMutex(p) );
8783   assert( pBt->inTransaction==TRANS_WRITE );
8784   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8785 
8786 #ifdef SQLITE_OMIT_AUTOVACUUM
8787   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8788   if( rc ){
8789     return rc;
8790   }
8791 #else
8792   if( pBt->autoVacuum ){
8793     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
8794     MemPage *pPageMove; /* The page to move to. */
8795 
8796     /* Creating a new table may probably require moving an existing database
8797     ** to make room for the new tables root page. In case this page turns
8798     ** out to be an overflow page, delete all overflow page-map caches
8799     ** held by open cursors.
8800     */
8801     invalidateAllOverflowCache(pBt);
8802 
8803     /* Read the value of meta[3] from the database to determine where the
8804     ** root page of the new table should go. meta[3] is the largest root-page
8805     ** created so far, so the new root-page is (meta[3]+1).
8806     */
8807     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
8808     pgnoRoot++;
8809 
8810     /* The new root-page may not be allocated on a pointer-map page, or the
8811     ** PENDING_BYTE page.
8812     */
8813     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
8814         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
8815       pgnoRoot++;
8816     }
8817     assert( pgnoRoot>=3 || CORRUPT_DB );
8818     testcase( pgnoRoot<3 );
8819 
8820     /* Allocate a page. The page that currently resides at pgnoRoot will
8821     ** be moved to the allocated page (unless the allocated page happens
8822     ** to reside at pgnoRoot).
8823     */
8824     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
8825     if( rc!=SQLITE_OK ){
8826       return rc;
8827     }
8828 
8829     if( pgnoMove!=pgnoRoot ){
8830       /* pgnoRoot is the page that will be used for the root-page of
8831       ** the new table (assuming an error did not occur). But we were
8832       ** allocated pgnoMove. If required (i.e. if it was not allocated
8833       ** by extending the file), the current page at position pgnoMove
8834       ** is already journaled.
8835       */
8836       u8 eType = 0;
8837       Pgno iPtrPage = 0;
8838 
8839       /* Save the positions of any open cursors. This is required in
8840       ** case they are holding a reference to an xFetch reference
8841       ** corresponding to page pgnoRoot.  */
8842       rc = saveAllCursors(pBt, 0, 0);
8843       releasePage(pPageMove);
8844       if( rc!=SQLITE_OK ){
8845         return rc;
8846       }
8847 
8848       /* Move the page currently at pgnoRoot to pgnoMove. */
8849       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8850       if( rc!=SQLITE_OK ){
8851         return rc;
8852       }
8853       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
8854       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8855         rc = SQLITE_CORRUPT_BKPT;
8856       }
8857       if( rc!=SQLITE_OK ){
8858         releasePage(pRoot);
8859         return rc;
8860       }
8861       assert( eType!=PTRMAP_ROOTPAGE );
8862       assert( eType!=PTRMAP_FREEPAGE );
8863       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
8864       releasePage(pRoot);
8865 
8866       /* Obtain the page at pgnoRoot */
8867       if( rc!=SQLITE_OK ){
8868         return rc;
8869       }
8870       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8871       if( rc!=SQLITE_OK ){
8872         return rc;
8873       }
8874       rc = sqlite3PagerWrite(pRoot->pDbPage);
8875       if( rc!=SQLITE_OK ){
8876         releasePage(pRoot);
8877         return rc;
8878       }
8879     }else{
8880       pRoot = pPageMove;
8881     }
8882 
8883     /* Update the pointer-map and meta-data with the new root-page number. */
8884     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
8885     if( rc ){
8886       releasePage(pRoot);
8887       return rc;
8888     }
8889 
8890     /* When the new root page was allocated, page 1 was made writable in
8891     ** order either to increase the database filesize, or to decrement the
8892     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8893     */
8894     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
8895     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
8896     if( NEVER(rc) ){
8897       releasePage(pRoot);
8898       return rc;
8899     }
8900 
8901   }else{
8902     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8903     if( rc ) return rc;
8904   }
8905 #endif
8906   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8907   if( createTabFlags & BTREE_INTKEY ){
8908     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8909   }else{
8910     ptfFlags = PTF_ZERODATA | PTF_LEAF;
8911   }
8912   zeroPage(pRoot, ptfFlags);
8913   sqlite3PagerUnref(pRoot->pDbPage);
8914   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
8915   *piTable = (int)pgnoRoot;
8916   return SQLITE_OK;
8917 }
8918 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8919   int rc;
8920   sqlite3BtreeEnter(p);
8921   rc = btreeCreateTable(p, piTable, flags);
8922   sqlite3BtreeLeave(p);
8923   return rc;
8924 }
8925 
8926 /*
8927 ** Erase the given database page and all its children.  Return
8928 ** the page to the freelist.
8929 */
8930 static int clearDatabasePage(
8931   BtShared *pBt,           /* The BTree that contains the table */
8932   Pgno pgno,               /* Page number to clear */
8933   int freePageFlag,        /* Deallocate page if true */
8934   int *pnChange            /* Add number of Cells freed to this counter */
8935 ){
8936   MemPage *pPage;
8937   int rc;
8938   unsigned char *pCell;
8939   int i;
8940   int hdr;
8941   CellInfo info;
8942 
8943   assert( sqlite3_mutex_held(pBt->mutex) );
8944   if( pgno>btreePagecount(pBt) ){
8945     return SQLITE_CORRUPT_BKPT;
8946   }
8947   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
8948   if( rc ) return rc;
8949   if( pPage->bBusy ){
8950     rc = SQLITE_CORRUPT_BKPT;
8951     goto cleardatabasepage_out;
8952   }
8953   pPage->bBusy = 1;
8954   hdr = pPage->hdrOffset;
8955   for(i=0; i<pPage->nCell; i++){
8956     pCell = findCell(pPage, i);
8957     if( !pPage->leaf ){
8958       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
8959       if( rc ) goto cleardatabasepage_out;
8960     }
8961     rc = clearCell(pPage, pCell, &info);
8962     if( rc ) goto cleardatabasepage_out;
8963   }
8964   if( !pPage->leaf ){
8965     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
8966     if( rc ) goto cleardatabasepage_out;
8967   }else if( pnChange ){
8968     assert( pPage->intKey || CORRUPT_DB );
8969     testcase( !pPage->intKey );
8970     *pnChange += pPage->nCell;
8971   }
8972   if( freePageFlag ){
8973     freePage(pPage, &rc);
8974   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
8975     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
8976   }
8977 
8978 cleardatabasepage_out:
8979   pPage->bBusy = 0;
8980   releasePage(pPage);
8981   return rc;
8982 }
8983 
8984 /*
8985 ** Delete all information from a single table in the database.  iTable is
8986 ** the page number of the root of the table.  After this routine returns,
8987 ** the root page is empty, but still exists.
8988 **
8989 ** This routine will fail with SQLITE_LOCKED if there are any open
8990 ** read cursors on the table.  Open write cursors are moved to the
8991 ** root of the table.
8992 **
8993 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8994 ** integer value pointed to by pnChange is incremented by the number of
8995 ** entries in the table.
8996 */
8997 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
8998   int rc;
8999   BtShared *pBt = p->pBt;
9000   sqlite3BtreeEnter(p);
9001   assert( p->inTrans==TRANS_WRITE );
9002 
9003   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9004 
9005   if( SQLITE_OK==rc ){
9006     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9007     ** is the root of a table b-tree - if it is not, the following call is
9008     ** a no-op).  */
9009     invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9010     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9011   }
9012   sqlite3BtreeLeave(p);
9013   return rc;
9014 }
9015 
9016 /*
9017 ** Delete all information from the single table that pCur is open on.
9018 **
9019 ** This routine only work for pCur on an ephemeral table.
9020 */
9021 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9022   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9023 }
9024 
9025 /*
9026 ** Erase all information in a table and add the root of the table to
9027 ** the freelist.  Except, the root of the principle table (the one on
9028 ** page 1) is never added to the freelist.
9029 **
9030 ** This routine will fail with SQLITE_LOCKED if there are any open
9031 ** cursors on the table.
9032 **
9033 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9034 ** root page in the database file, then the last root page
9035 ** in the database file is moved into the slot formerly occupied by
9036 ** iTable and that last slot formerly occupied by the last root page
9037 ** is added to the freelist instead of iTable.  In this say, all
9038 ** root pages are kept at the beginning of the database file, which
9039 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9040 ** page number that used to be the last root page in the file before
9041 ** the move.  If no page gets moved, *piMoved is set to 0.
9042 ** The last root page is recorded in meta[3] and the value of
9043 ** meta[3] is updated by this procedure.
9044 */
9045 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9046   int rc;
9047   MemPage *pPage = 0;
9048   BtShared *pBt = p->pBt;
9049 
9050   assert( sqlite3BtreeHoldsMutex(p) );
9051   assert( p->inTrans==TRANS_WRITE );
9052   assert( iTable>=2 );
9053 
9054   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9055   if( rc ) return rc;
9056   rc = sqlite3BtreeClearTable(p, iTable, 0);
9057   if( rc ){
9058     releasePage(pPage);
9059     return rc;
9060   }
9061 
9062   *piMoved = 0;
9063 
9064 #ifdef SQLITE_OMIT_AUTOVACUUM
9065   freePage(pPage, &rc);
9066   releasePage(pPage);
9067 #else
9068   if( pBt->autoVacuum ){
9069     Pgno maxRootPgno;
9070     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9071 
9072     if( iTable==maxRootPgno ){
9073       /* If the table being dropped is the table with the largest root-page
9074       ** number in the database, put the root page on the free list.
9075       */
9076       freePage(pPage, &rc);
9077       releasePage(pPage);
9078       if( rc!=SQLITE_OK ){
9079         return rc;
9080       }
9081     }else{
9082       /* The table being dropped does not have the largest root-page
9083       ** number in the database. So move the page that does into the
9084       ** gap left by the deleted root-page.
9085       */
9086       MemPage *pMove;
9087       releasePage(pPage);
9088       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9089       if( rc!=SQLITE_OK ){
9090         return rc;
9091       }
9092       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9093       releasePage(pMove);
9094       if( rc!=SQLITE_OK ){
9095         return rc;
9096       }
9097       pMove = 0;
9098       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9099       freePage(pMove, &rc);
9100       releasePage(pMove);
9101       if( rc!=SQLITE_OK ){
9102         return rc;
9103       }
9104       *piMoved = maxRootPgno;
9105     }
9106 
9107     /* Set the new 'max-root-page' value in the database header. This
9108     ** is the old value less one, less one more if that happens to
9109     ** be a root-page number, less one again if that is the
9110     ** PENDING_BYTE_PAGE.
9111     */
9112     maxRootPgno--;
9113     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9114            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9115       maxRootPgno--;
9116     }
9117     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9118 
9119     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9120   }else{
9121     freePage(pPage, &rc);
9122     releasePage(pPage);
9123   }
9124 #endif
9125   return rc;
9126 }
9127 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9128   int rc;
9129   sqlite3BtreeEnter(p);
9130   rc = btreeDropTable(p, iTable, piMoved);
9131   sqlite3BtreeLeave(p);
9132   return rc;
9133 }
9134 
9135 
9136 /*
9137 ** This function may only be called if the b-tree connection already
9138 ** has a read or write transaction open on the database.
9139 **
9140 ** Read the meta-information out of a database file.  Meta[0]
9141 ** is the number of free pages currently in the database.  Meta[1]
9142 ** through meta[15] are available for use by higher layers.  Meta[0]
9143 ** is read-only, the others are read/write.
9144 **
9145 ** The schema layer numbers meta values differently.  At the schema
9146 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9147 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
9148 **
9149 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
9150 ** of reading the value out of the header, it instead loads the "DataVersion"
9151 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
9152 ** database file.  It is a number computed by the pager.  But its access
9153 ** pattern is the same as header meta values, and so it is convenient to
9154 ** read it from this routine.
9155 */
9156 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9157   BtShared *pBt = p->pBt;
9158 
9159   sqlite3BtreeEnter(p);
9160   assert( p->inTrans>TRANS_NONE );
9161   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
9162   assert( pBt->pPage1 );
9163   assert( idx>=0 && idx<=15 );
9164 
9165   if( idx==BTREE_DATA_VERSION ){
9166     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
9167   }else{
9168     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9169   }
9170 
9171   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9172   ** database, mark the database as read-only.  */
9173 #ifdef SQLITE_OMIT_AUTOVACUUM
9174   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9175     pBt->btsFlags |= BTS_READ_ONLY;
9176   }
9177 #endif
9178 
9179   sqlite3BtreeLeave(p);
9180 }
9181 
9182 /*
9183 ** Write meta-information back into the database.  Meta[0] is
9184 ** read-only and may not be written.
9185 */
9186 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9187   BtShared *pBt = p->pBt;
9188   unsigned char *pP1;
9189   int rc;
9190   assert( idx>=1 && idx<=15 );
9191   sqlite3BtreeEnter(p);
9192   assert( p->inTrans==TRANS_WRITE );
9193   assert( pBt->pPage1!=0 );
9194   pP1 = pBt->pPage1->aData;
9195   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9196   if( rc==SQLITE_OK ){
9197     put4byte(&pP1[36 + idx*4], iMeta);
9198 #ifndef SQLITE_OMIT_AUTOVACUUM
9199     if( idx==BTREE_INCR_VACUUM ){
9200       assert( pBt->autoVacuum || iMeta==0 );
9201       assert( iMeta==0 || iMeta==1 );
9202       pBt->incrVacuum = (u8)iMeta;
9203     }
9204 #endif
9205   }
9206   sqlite3BtreeLeave(p);
9207   return rc;
9208 }
9209 
9210 #ifndef SQLITE_OMIT_BTREECOUNT
9211 /*
9212 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9213 ** number of entries in the b-tree and write the result to *pnEntry.
9214 **
9215 ** SQLITE_OK is returned if the operation is successfully executed.
9216 ** Otherwise, if an error is encountered (i.e. an IO error or database
9217 ** corruption) an SQLite error code is returned.
9218 */
9219 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9220   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9221   int rc;                              /* Return code */
9222 
9223   rc = moveToRoot(pCur);
9224   if( rc==SQLITE_EMPTY ){
9225     *pnEntry = 0;
9226     return SQLITE_OK;
9227   }
9228 
9229   /* Unless an error occurs, the following loop runs one iteration for each
9230   ** page in the B-Tree structure (not including overflow pages).
9231   */
9232   while( rc==SQLITE_OK ){
9233     int iIdx;                          /* Index of child node in parent */
9234     MemPage *pPage;                    /* Current page of the b-tree */
9235 
9236     /* If this is a leaf page or the tree is not an int-key tree, then
9237     ** this page contains countable entries. Increment the entry counter
9238     ** accordingly.
9239     */
9240     pPage = pCur->pPage;
9241     if( pPage->leaf || !pPage->intKey ){
9242       nEntry += pPage->nCell;
9243     }
9244 
9245     /* pPage is a leaf node. This loop navigates the cursor so that it
9246     ** points to the first interior cell that it points to the parent of
9247     ** the next page in the tree that has not yet been visited. The
9248     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9249     ** of the page, or to the number of cells in the page if the next page
9250     ** to visit is the right-child of its parent.
9251     **
9252     ** If all pages in the tree have been visited, return SQLITE_OK to the
9253     ** caller.
9254     */
9255     if( pPage->leaf ){
9256       do {
9257         if( pCur->iPage==0 ){
9258           /* All pages of the b-tree have been visited. Return successfully. */
9259           *pnEntry = nEntry;
9260           return moveToRoot(pCur);
9261         }
9262         moveToParent(pCur);
9263       }while ( pCur->ix>=pCur->pPage->nCell );
9264 
9265       pCur->ix++;
9266       pPage = pCur->pPage;
9267     }
9268 
9269     /* Descend to the child node of the cell that the cursor currently
9270     ** points at. This is the right-child if (iIdx==pPage->nCell).
9271     */
9272     iIdx = pCur->ix;
9273     if( iIdx==pPage->nCell ){
9274       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9275     }else{
9276       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9277     }
9278   }
9279 
9280   /* An error has occurred. Return an error code. */
9281   return rc;
9282 }
9283 #endif
9284 
9285 /*
9286 ** Return the pager associated with a BTree.  This routine is used for
9287 ** testing and debugging only.
9288 */
9289 Pager *sqlite3BtreePager(Btree *p){
9290   return p->pBt->pPager;
9291 }
9292 
9293 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9294 /*
9295 ** Append a message to the error message string.
9296 */
9297 static void checkAppendMsg(
9298   IntegrityCk *pCheck,
9299   const char *zFormat,
9300   ...
9301 ){
9302   va_list ap;
9303   if( !pCheck->mxErr ) return;
9304   pCheck->mxErr--;
9305   pCheck->nErr++;
9306   va_start(ap, zFormat);
9307   if( pCheck->errMsg.nChar ){
9308     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9309   }
9310   if( pCheck->zPfx ){
9311     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9312   }
9313   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9314   va_end(ap);
9315   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9316     pCheck->mallocFailed = 1;
9317   }
9318 }
9319 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9320 
9321 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9322 
9323 /*
9324 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9325 ** corresponds to page iPg is already set.
9326 */
9327 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9328   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9329   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9330 }
9331 
9332 /*
9333 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9334 */
9335 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9336   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9337   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9338 }
9339 
9340 
9341 /*
9342 ** Add 1 to the reference count for page iPage.  If this is the second
9343 ** reference to the page, add an error message to pCheck->zErrMsg.
9344 ** Return 1 if there are 2 or more references to the page and 0 if
9345 ** if this is the first reference to the page.
9346 **
9347 ** Also check that the page number is in bounds.
9348 */
9349 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9350   if( iPage>pCheck->nPage || iPage==0 ){
9351     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9352     return 1;
9353   }
9354   if( getPageReferenced(pCheck, iPage) ){
9355     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9356     return 1;
9357   }
9358   setPageReferenced(pCheck, iPage);
9359   return 0;
9360 }
9361 
9362 #ifndef SQLITE_OMIT_AUTOVACUUM
9363 /*
9364 ** Check that the entry in the pointer-map for page iChild maps to
9365 ** page iParent, pointer type ptrType. If not, append an error message
9366 ** to pCheck.
9367 */
9368 static void checkPtrmap(
9369   IntegrityCk *pCheck,   /* Integrity check context */
9370   Pgno iChild,           /* Child page number */
9371   u8 eType,              /* Expected pointer map type */
9372   Pgno iParent           /* Expected pointer map parent page number */
9373 ){
9374   int rc;
9375   u8 ePtrmapType;
9376   Pgno iPtrmapParent;
9377 
9378   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9379   if( rc!=SQLITE_OK ){
9380     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9381     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9382     return;
9383   }
9384 
9385   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9386     checkAppendMsg(pCheck,
9387       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9388       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9389   }
9390 }
9391 #endif
9392 
9393 /*
9394 ** Check the integrity of the freelist or of an overflow page list.
9395 ** Verify that the number of pages on the list is N.
9396 */
9397 static void checkList(
9398   IntegrityCk *pCheck,  /* Integrity checking context */
9399   int isFreeList,       /* True for a freelist.  False for overflow page list */
9400   int iPage,            /* Page number for first page in the list */
9401   int N                 /* Expected number of pages in the list */
9402 ){
9403   int i;
9404   int expected = N;
9405   int nErrAtStart = pCheck->nErr;
9406   while( iPage!=0 && pCheck->mxErr ){
9407     DbPage *pOvflPage;
9408     unsigned char *pOvflData;
9409     if( checkRef(pCheck, iPage) ) break;
9410     N--;
9411     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9412       checkAppendMsg(pCheck, "failed to get page %d", iPage);
9413       break;
9414     }
9415     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9416     if( isFreeList ){
9417       u32 n = (u32)get4byte(&pOvflData[4]);
9418 #ifndef SQLITE_OMIT_AUTOVACUUM
9419       if( pCheck->pBt->autoVacuum ){
9420         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9421       }
9422 #endif
9423       if( n>pCheck->pBt->usableSize/4-2 ){
9424         checkAppendMsg(pCheck,
9425            "freelist leaf count too big on page %d", iPage);
9426         N--;
9427       }else{
9428         for(i=0; i<(int)n; i++){
9429           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9430 #ifndef SQLITE_OMIT_AUTOVACUUM
9431           if( pCheck->pBt->autoVacuum ){
9432             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9433           }
9434 #endif
9435           checkRef(pCheck, iFreePage);
9436         }
9437         N -= n;
9438       }
9439     }
9440 #ifndef SQLITE_OMIT_AUTOVACUUM
9441     else{
9442       /* If this database supports auto-vacuum and iPage is not the last
9443       ** page in this overflow list, check that the pointer-map entry for
9444       ** the following page matches iPage.
9445       */
9446       if( pCheck->pBt->autoVacuum && N>0 ){
9447         i = get4byte(pOvflData);
9448         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9449       }
9450     }
9451 #endif
9452     iPage = get4byte(pOvflData);
9453     sqlite3PagerUnref(pOvflPage);
9454   }
9455   if( N && nErrAtStart==pCheck->nErr ){
9456     checkAppendMsg(pCheck,
9457       "%s is %d but should be %d",
9458       isFreeList ? "size" : "overflow list length",
9459       expected-N, expected);
9460   }
9461 }
9462 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9463 
9464 /*
9465 ** An implementation of a min-heap.
9466 **
9467 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
9468 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
9469 ** and aHeap[N*2+1].
9470 **
9471 ** The heap property is this:  Every node is less than or equal to both
9472 ** of its daughter nodes.  A consequence of the heap property is that the
9473 ** root node aHeap[1] is always the minimum value currently in the heap.
9474 **
9475 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9476 ** the heap, preserving the heap property.  The btreeHeapPull() routine
9477 ** removes the root element from the heap (the minimum value in the heap)
9478 ** and then moves other nodes around as necessary to preserve the heap
9479 ** property.
9480 **
9481 ** This heap is used for cell overlap and coverage testing.  Each u32
9482 ** entry represents the span of a cell or freeblock on a btree page.
9483 ** The upper 16 bits are the index of the first byte of a range and the
9484 ** lower 16 bits are the index of the last byte of that range.
9485 */
9486 static void btreeHeapInsert(u32 *aHeap, u32 x){
9487   u32 j, i = ++aHeap[0];
9488   aHeap[i] = x;
9489   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9490     x = aHeap[j];
9491     aHeap[j] = aHeap[i];
9492     aHeap[i] = x;
9493     i = j;
9494   }
9495 }
9496 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9497   u32 j, i, x;
9498   if( (x = aHeap[0])==0 ) return 0;
9499   *pOut = aHeap[1];
9500   aHeap[1] = aHeap[x];
9501   aHeap[x] = 0xffffffff;
9502   aHeap[0]--;
9503   i = 1;
9504   while( (j = i*2)<=aHeap[0] ){
9505     if( aHeap[j]>aHeap[j+1] ) j++;
9506     if( aHeap[i]<aHeap[j] ) break;
9507     x = aHeap[i];
9508     aHeap[i] = aHeap[j];
9509     aHeap[j] = x;
9510     i = j;
9511   }
9512   return 1;
9513 }
9514 
9515 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9516 /*
9517 ** Do various sanity checks on a single page of a tree.  Return
9518 ** the tree depth.  Root pages return 0.  Parents of root pages
9519 ** return 1, and so forth.
9520 **
9521 ** These checks are done:
9522 **
9523 **      1.  Make sure that cells and freeblocks do not overlap
9524 **          but combine to completely cover the page.
9525 **      2.  Make sure integer cell keys are in order.
9526 **      3.  Check the integrity of overflow pages.
9527 **      4.  Recursively call checkTreePage on all children.
9528 **      5.  Verify that the depth of all children is the same.
9529 */
9530 static int checkTreePage(
9531   IntegrityCk *pCheck,  /* Context for the sanity check */
9532   int iPage,            /* Page number of the page to check */
9533   i64 *piMinKey,        /* Write minimum integer primary key here */
9534   i64 maxKey            /* Error if integer primary key greater than this */
9535 ){
9536   MemPage *pPage = 0;      /* The page being analyzed */
9537   int i;                   /* Loop counter */
9538   int rc;                  /* Result code from subroutine call */
9539   int depth = -1, d2;      /* Depth of a subtree */
9540   int pgno;                /* Page number */
9541   int nFrag;               /* Number of fragmented bytes on the page */
9542   int hdr;                 /* Offset to the page header */
9543   int cellStart;           /* Offset to the start of the cell pointer array */
9544   int nCell;               /* Number of cells */
9545   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9546   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9547                            ** False if IPK must be strictly less than maxKey */
9548   u8 *data;                /* Page content */
9549   u8 *pCell;               /* Cell content */
9550   u8 *pCellIdx;            /* Next element of the cell pointer array */
9551   BtShared *pBt;           /* The BtShared object that owns pPage */
9552   u32 pc;                  /* Address of a cell */
9553   u32 usableSize;          /* Usable size of the page */
9554   u32 contentOffset;       /* Offset to the start of the cell content area */
9555   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9556   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9557   const char *saved_zPfx = pCheck->zPfx;
9558   int saved_v1 = pCheck->v1;
9559   int saved_v2 = pCheck->v2;
9560   u8 savedIsInit = 0;
9561 
9562   /* Check that the page exists
9563   */
9564   pBt = pCheck->pBt;
9565   usableSize = pBt->usableSize;
9566   if( iPage==0 ) return 0;
9567   if( checkRef(pCheck, iPage) ) return 0;
9568   pCheck->zPfx = "Page %d: ";
9569   pCheck->v1 = iPage;
9570   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9571     checkAppendMsg(pCheck,
9572        "unable to get the page. error code=%d", rc);
9573     goto end_of_check;
9574   }
9575 
9576   /* Clear MemPage.isInit to make sure the corruption detection code in
9577   ** btreeInitPage() is executed.  */
9578   savedIsInit = pPage->isInit;
9579   pPage->isInit = 0;
9580   if( (rc = btreeInitPage(pPage))!=0 ){
9581     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9582     checkAppendMsg(pCheck,
9583                    "btreeInitPage() returns error code %d", rc);
9584     goto end_of_check;
9585   }
9586   data = pPage->aData;
9587   hdr = pPage->hdrOffset;
9588 
9589   /* Set up for cell analysis */
9590   pCheck->zPfx = "On tree page %d cell %d: ";
9591   contentOffset = get2byteNotZero(&data[hdr+5]);
9592   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9593 
9594   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9595   ** number of cells on the page. */
9596   nCell = get2byte(&data[hdr+3]);
9597   assert( pPage->nCell==nCell );
9598 
9599   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9600   ** immediately follows the b-tree page header. */
9601   cellStart = hdr + 12 - 4*pPage->leaf;
9602   assert( pPage->aCellIdx==&data[cellStart] );
9603   pCellIdx = &data[cellStart + 2*(nCell-1)];
9604 
9605   if( !pPage->leaf ){
9606     /* Analyze the right-child page of internal pages */
9607     pgno = get4byte(&data[hdr+8]);
9608 #ifndef SQLITE_OMIT_AUTOVACUUM
9609     if( pBt->autoVacuum ){
9610       pCheck->zPfx = "On page %d at right child: ";
9611       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9612     }
9613 #endif
9614     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9615     keyCanBeEqual = 0;
9616   }else{
9617     /* For leaf pages, the coverage check will occur in the same loop
9618     ** as the other cell checks, so initialize the heap.  */
9619     heap = pCheck->heap;
9620     heap[0] = 0;
9621   }
9622 
9623   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9624   ** integer offsets to the cell contents. */
9625   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9626     CellInfo info;
9627 
9628     /* Check cell size */
9629     pCheck->v2 = i;
9630     assert( pCellIdx==&data[cellStart + i*2] );
9631     pc = get2byteAligned(pCellIdx);
9632     pCellIdx -= 2;
9633     if( pc<contentOffset || pc>usableSize-4 ){
9634       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9635                              pc, contentOffset, usableSize-4);
9636       doCoverageCheck = 0;
9637       continue;
9638     }
9639     pCell = &data[pc];
9640     pPage->xParseCell(pPage, pCell, &info);
9641     if( pc+info.nSize>usableSize ){
9642       checkAppendMsg(pCheck, "Extends off end of page");
9643       doCoverageCheck = 0;
9644       continue;
9645     }
9646 
9647     /* Check for integer primary key out of range */
9648     if( pPage->intKey ){
9649       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9650         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9651       }
9652       maxKey = info.nKey;
9653       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
9654     }
9655 
9656     /* Check the content overflow list */
9657     if( info.nPayload>info.nLocal ){
9658       int nPage;       /* Number of pages on the overflow chain */
9659       Pgno pgnoOvfl;   /* First page of the overflow chain */
9660       assert( pc + info.nSize - 4 <= usableSize );
9661       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9662       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9663 #ifndef SQLITE_OMIT_AUTOVACUUM
9664       if( pBt->autoVacuum ){
9665         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9666       }
9667 #endif
9668       checkList(pCheck, 0, pgnoOvfl, nPage);
9669     }
9670 
9671     if( !pPage->leaf ){
9672       /* Check sanity of left child page for internal pages */
9673       pgno = get4byte(pCell);
9674 #ifndef SQLITE_OMIT_AUTOVACUUM
9675       if( pBt->autoVacuum ){
9676         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9677       }
9678 #endif
9679       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9680       keyCanBeEqual = 0;
9681       if( d2!=depth ){
9682         checkAppendMsg(pCheck, "Child page depth differs");
9683         depth = d2;
9684       }
9685     }else{
9686       /* Populate the coverage-checking heap for leaf pages */
9687       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9688     }
9689   }
9690   *piMinKey = maxKey;
9691 
9692   /* Check for complete coverage of the page
9693   */
9694   pCheck->zPfx = 0;
9695   if( doCoverageCheck && pCheck->mxErr>0 ){
9696     /* For leaf pages, the min-heap has already been initialized and the
9697     ** cells have already been inserted.  But for internal pages, that has
9698     ** not yet been done, so do it now */
9699     if( !pPage->leaf ){
9700       heap = pCheck->heap;
9701       heap[0] = 0;
9702       for(i=nCell-1; i>=0; i--){
9703         u32 size;
9704         pc = get2byteAligned(&data[cellStart+i*2]);
9705         size = pPage->xCellSize(pPage, &data[pc]);
9706         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9707       }
9708     }
9709     /* Add the freeblocks to the min-heap
9710     **
9711     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9712     ** is the offset of the first freeblock, or zero if there are no
9713     ** freeblocks on the page.
9714     */
9715     i = get2byte(&data[hdr+1]);
9716     while( i>0 ){
9717       int size, j;
9718       assert( (u32)i<=usableSize-4 );     /* Enforced by btreeInitPage() */
9719       size = get2byte(&data[i+2]);
9720       assert( (u32)(i+size)<=usableSize );  /* Enforced by btreeInitPage() */
9721       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9722       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9723       ** big-endian integer which is the offset in the b-tree page of the next
9724       ** freeblock in the chain, or zero if the freeblock is the last on the
9725       ** chain. */
9726       j = get2byte(&data[i]);
9727       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9728       ** increasing offset. */
9729       assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
9730       assert( (u32)j<=usableSize-4 );   /* Enforced by btreeInitPage() */
9731       i = j;
9732     }
9733     /* Analyze the min-heap looking for overlap between cells and/or
9734     ** freeblocks, and counting the number of untracked bytes in nFrag.
9735     **
9736     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
9737     ** There is an implied first entry the covers the page header, the cell
9738     ** pointer index, and the gap between the cell pointer index and the start
9739     ** of cell content.
9740     **
9741     ** The loop below pulls entries from the min-heap in order and compares
9742     ** the start_address against the previous end_address.  If there is an
9743     ** overlap, that means bytes are used multiple times.  If there is a gap,
9744     ** that gap is added to the fragmentation count.
9745     */
9746     nFrag = 0;
9747     prev = contentOffset - 1;   /* Implied first min-heap entry */
9748     while( btreeHeapPull(heap,&x) ){
9749       if( (prev&0xffff)>=(x>>16) ){
9750         checkAppendMsg(pCheck,
9751           "Multiple uses for byte %u of page %d", x>>16, iPage);
9752         break;
9753       }else{
9754         nFrag += (x>>16) - (prev&0xffff) - 1;
9755         prev = x;
9756       }
9757     }
9758     nFrag += usableSize - (prev&0xffff) - 1;
9759     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9760     ** is stored in the fifth field of the b-tree page header.
9761     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9762     ** number of fragmented free bytes within the cell content area.
9763     */
9764     if( heap[0]==0 && nFrag!=data[hdr+7] ){
9765       checkAppendMsg(pCheck,
9766           "Fragmentation of %d bytes reported as %d on page %d",
9767           nFrag, data[hdr+7], iPage);
9768     }
9769   }
9770 
9771 end_of_check:
9772   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
9773   releasePage(pPage);
9774   pCheck->zPfx = saved_zPfx;
9775   pCheck->v1 = saved_v1;
9776   pCheck->v2 = saved_v2;
9777   return depth+1;
9778 }
9779 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9780 
9781 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9782 /*
9783 ** This routine does a complete check of the given BTree file.  aRoot[] is
9784 ** an array of pages numbers were each page number is the root page of
9785 ** a table.  nRoot is the number of entries in aRoot.
9786 **
9787 ** A read-only or read-write transaction must be opened before calling
9788 ** this function.
9789 **
9790 ** Write the number of error seen in *pnErr.  Except for some memory
9791 ** allocation errors,  an error message held in memory obtained from
9792 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
9793 ** returned.  If a memory allocation error occurs, NULL is returned.
9794 */
9795 char *sqlite3BtreeIntegrityCheck(
9796   Btree *p,     /* The btree to be checked */
9797   int *aRoot,   /* An array of root pages numbers for individual trees */
9798   int nRoot,    /* Number of entries in aRoot[] */
9799   int mxErr,    /* Stop reporting errors after this many */
9800   int *pnErr    /* Write number of errors seen to this variable */
9801 ){
9802   Pgno i;
9803   IntegrityCk sCheck;
9804   BtShared *pBt = p->pBt;
9805   int savedDbFlags = pBt->db->flags;
9806   char zErr[100];
9807   VVA_ONLY( int nRef );
9808 
9809   sqlite3BtreeEnter(p);
9810   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
9811   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9812   assert( nRef>=0 );
9813   sCheck.pBt = pBt;
9814   sCheck.pPager = pBt->pPager;
9815   sCheck.nPage = btreePagecount(sCheck.pBt);
9816   sCheck.mxErr = mxErr;
9817   sCheck.nErr = 0;
9818   sCheck.mallocFailed = 0;
9819   sCheck.zPfx = 0;
9820   sCheck.v1 = 0;
9821   sCheck.v2 = 0;
9822   sCheck.aPgRef = 0;
9823   sCheck.heap = 0;
9824   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
9825   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
9826   if( sCheck.nPage==0 ){
9827     goto integrity_ck_cleanup;
9828   }
9829 
9830   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9831   if( !sCheck.aPgRef ){
9832     sCheck.mallocFailed = 1;
9833     goto integrity_ck_cleanup;
9834   }
9835   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9836   if( sCheck.heap==0 ){
9837     sCheck.mallocFailed = 1;
9838     goto integrity_ck_cleanup;
9839   }
9840 
9841   i = PENDING_BYTE_PAGE(pBt);
9842   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
9843 
9844   /* Check the integrity of the freelist
9845   */
9846   sCheck.zPfx = "Main freelist: ";
9847   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
9848             get4byte(&pBt->pPage1->aData[36]));
9849   sCheck.zPfx = 0;
9850 
9851   /* Check all the tables.
9852   */
9853 #ifndef SQLITE_OMIT_AUTOVACUUM
9854   if( pBt->autoVacuum ){
9855     int mx = 0;
9856     int mxInHdr;
9857     for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
9858     mxInHdr = get4byte(&pBt->pPage1->aData[52]);
9859     if( mx!=mxInHdr ){
9860       checkAppendMsg(&sCheck,
9861         "max rootpage (%d) disagrees with header (%d)",
9862         mx, mxInHdr
9863       );
9864     }
9865   }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
9866     checkAppendMsg(&sCheck,
9867       "incremental_vacuum enabled with a max rootpage of zero"
9868     );
9869   }
9870 #endif
9871   testcase( pBt->db->flags & SQLITE_CellSizeCk );
9872   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
9873   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
9874     i64 notUsed;
9875     if( aRoot[i]==0 ) continue;
9876 #ifndef SQLITE_OMIT_AUTOVACUUM
9877     if( pBt->autoVacuum && aRoot[i]>1 ){
9878       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
9879     }
9880 #endif
9881     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
9882   }
9883   pBt->db->flags = savedDbFlags;
9884 
9885   /* Make sure every page in the file is referenced
9886   */
9887   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
9888 #ifdef SQLITE_OMIT_AUTOVACUUM
9889     if( getPageReferenced(&sCheck, i)==0 ){
9890       checkAppendMsg(&sCheck, "Page %d is never used", i);
9891     }
9892 #else
9893     /* If the database supports auto-vacuum, make sure no tables contain
9894     ** references to pointer-map pages.
9895     */
9896     if( getPageReferenced(&sCheck, i)==0 &&
9897        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
9898       checkAppendMsg(&sCheck, "Page %d is never used", i);
9899     }
9900     if( getPageReferenced(&sCheck, i)!=0 &&
9901        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
9902       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
9903     }
9904 #endif
9905   }
9906 
9907   /* Clean  up and report errors.
9908   */
9909 integrity_ck_cleanup:
9910   sqlite3PageFree(sCheck.heap);
9911   sqlite3_free(sCheck.aPgRef);
9912   if( sCheck.mallocFailed ){
9913     sqlite3_str_reset(&sCheck.errMsg);
9914     sCheck.nErr++;
9915   }
9916   *pnErr = sCheck.nErr;
9917   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
9918   /* Make sure this analysis did not leave any unref() pages. */
9919   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9920   sqlite3BtreeLeave(p);
9921   return sqlite3StrAccumFinish(&sCheck.errMsg);
9922 }
9923 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9924 
9925 /*
9926 ** Return the full pathname of the underlying database file.  Return
9927 ** an empty string if the database is in-memory or a TEMP database.
9928 **
9929 ** The pager filename is invariant as long as the pager is
9930 ** open so it is safe to access without the BtShared mutex.
9931 */
9932 const char *sqlite3BtreeGetFilename(Btree *p){
9933   assert( p->pBt->pPager!=0 );
9934   return sqlite3PagerFilename(p->pBt->pPager, 1);
9935 }
9936 
9937 /*
9938 ** Return the pathname of the journal file for this database. The return
9939 ** value of this routine is the same regardless of whether the journal file
9940 ** has been created or not.
9941 **
9942 ** The pager journal filename is invariant as long as the pager is
9943 ** open so it is safe to access without the BtShared mutex.
9944 */
9945 const char *sqlite3BtreeGetJournalname(Btree *p){
9946   assert( p->pBt->pPager!=0 );
9947   return sqlite3PagerJournalname(p->pBt->pPager);
9948 }
9949 
9950 /*
9951 ** Return non-zero if a transaction is active.
9952 */
9953 int sqlite3BtreeIsInTrans(Btree *p){
9954   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
9955   return (p && (p->inTrans==TRANS_WRITE));
9956 }
9957 
9958 #ifndef SQLITE_OMIT_WAL
9959 /*
9960 ** Run a checkpoint on the Btree passed as the first argument.
9961 **
9962 ** Return SQLITE_LOCKED if this or any other connection has an open
9963 ** transaction on the shared-cache the argument Btree is connected to.
9964 **
9965 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9966 */
9967 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
9968   int rc = SQLITE_OK;
9969   if( p ){
9970     BtShared *pBt = p->pBt;
9971     sqlite3BtreeEnter(p);
9972     if( pBt->inTransaction!=TRANS_NONE ){
9973       rc = SQLITE_LOCKED;
9974     }else{
9975       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
9976     }
9977     sqlite3BtreeLeave(p);
9978   }
9979   return rc;
9980 }
9981 #endif
9982 
9983 /*
9984 ** Return non-zero if a read (or write) transaction is active.
9985 */
9986 int sqlite3BtreeIsInReadTrans(Btree *p){
9987   assert( p );
9988   assert( sqlite3_mutex_held(p->db->mutex) );
9989   return p->inTrans!=TRANS_NONE;
9990 }
9991 
9992 int sqlite3BtreeIsInBackup(Btree *p){
9993   assert( p );
9994   assert( sqlite3_mutex_held(p->db->mutex) );
9995   return p->nBackup!=0;
9996 }
9997 
9998 /*
9999 ** This function returns a pointer to a blob of memory associated with
10000 ** a single shared-btree. The memory is used by client code for its own
10001 ** purposes (for example, to store a high-level schema associated with
10002 ** the shared-btree). The btree layer manages reference counting issues.
10003 **
10004 ** The first time this is called on a shared-btree, nBytes bytes of memory
10005 ** are allocated, zeroed, and returned to the caller. For each subsequent
10006 ** call the nBytes parameter is ignored and a pointer to the same blob
10007 ** of memory returned.
10008 **
10009 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10010 ** allocated, a null pointer is returned. If the blob has already been
10011 ** allocated, it is returned as normal.
10012 **
10013 ** Just before the shared-btree is closed, the function passed as the
10014 ** xFree argument when the memory allocation was made is invoked on the
10015 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10016 ** on the memory, the btree layer does that.
10017 */
10018 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10019   BtShared *pBt = p->pBt;
10020   sqlite3BtreeEnter(p);
10021   if( !pBt->pSchema && nBytes ){
10022     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10023     pBt->xFreeSchema = xFree;
10024   }
10025   sqlite3BtreeLeave(p);
10026   return pBt->pSchema;
10027 }
10028 
10029 /*
10030 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10031 ** btree as the argument handle holds an exclusive lock on the
10032 ** sqlite_master table. Otherwise SQLITE_OK.
10033 */
10034 int sqlite3BtreeSchemaLocked(Btree *p){
10035   int rc;
10036   assert( sqlite3_mutex_held(p->db->mutex) );
10037   sqlite3BtreeEnter(p);
10038   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10039   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10040   sqlite3BtreeLeave(p);
10041   return rc;
10042 }
10043 
10044 
10045 #ifndef SQLITE_OMIT_SHARED_CACHE
10046 /*
10047 ** Obtain a lock on the table whose root page is iTab.  The
10048 ** lock is a write lock if isWritelock is true or a read lock
10049 ** if it is false.
10050 */
10051 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10052   int rc = SQLITE_OK;
10053   assert( p->inTrans!=TRANS_NONE );
10054   if( p->sharable ){
10055     u8 lockType = READ_LOCK + isWriteLock;
10056     assert( READ_LOCK+1==WRITE_LOCK );
10057     assert( isWriteLock==0 || isWriteLock==1 );
10058 
10059     sqlite3BtreeEnter(p);
10060     rc = querySharedCacheTableLock(p, iTab, lockType);
10061     if( rc==SQLITE_OK ){
10062       rc = setSharedCacheTableLock(p, iTab, lockType);
10063     }
10064     sqlite3BtreeLeave(p);
10065   }
10066   return rc;
10067 }
10068 #endif
10069 
10070 #ifndef SQLITE_OMIT_INCRBLOB
10071 /*
10072 ** Argument pCsr must be a cursor opened for writing on an
10073 ** INTKEY table currently pointing at a valid table entry.
10074 ** This function modifies the data stored as part of that entry.
10075 **
10076 ** Only the data content may only be modified, it is not possible to
10077 ** change the length of the data stored. If this function is called with
10078 ** parameters that attempt to write past the end of the existing data,
10079 ** no modifications are made and SQLITE_CORRUPT is returned.
10080 */
10081 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10082   int rc;
10083   assert( cursorOwnsBtShared(pCsr) );
10084   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10085   assert( pCsr->curFlags & BTCF_Incrblob );
10086 
10087   rc = restoreCursorPosition(pCsr);
10088   if( rc!=SQLITE_OK ){
10089     return rc;
10090   }
10091   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10092   if( pCsr->eState!=CURSOR_VALID ){
10093     return SQLITE_ABORT;
10094   }
10095 
10096   /* Save the positions of all other cursors open on this table. This is
10097   ** required in case any of them are holding references to an xFetch
10098   ** version of the b-tree page modified by the accessPayload call below.
10099   **
10100   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10101   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10102   ** saveAllCursors can only return SQLITE_OK.
10103   */
10104   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10105   assert( rc==SQLITE_OK );
10106 
10107   /* Check some assumptions:
10108   **   (a) the cursor is open for writing,
10109   **   (b) there is a read/write transaction open,
10110   **   (c) the connection holds a write-lock on the table (if required),
10111   **   (d) there are no conflicting read-locks, and
10112   **   (e) the cursor points at a valid row of an intKey table.
10113   */
10114   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10115     return SQLITE_READONLY;
10116   }
10117   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10118               && pCsr->pBt->inTransaction==TRANS_WRITE );
10119   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10120   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10121   assert( pCsr->pPage->intKey );
10122 
10123   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10124 }
10125 
10126 /*
10127 ** Mark this cursor as an incremental blob cursor.
10128 */
10129 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10130   pCur->curFlags |= BTCF_Incrblob;
10131   pCur->pBtree->hasIncrblobCur = 1;
10132 }
10133 #endif
10134 
10135 /*
10136 ** Set both the "read version" (single byte at byte offset 18) and
10137 ** "write version" (single byte at byte offset 19) fields in the database
10138 ** header to iVersion.
10139 */
10140 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10141   BtShared *pBt = pBtree->pBt;
10142   int rc;                         /* Return code */
10143 
10144   assert( iVersion==1 || iVersion==2 );
10145 
10146   /* If setting the version fields to 1, do not automatically open the
10147   ** WAL connection, even if the version fields are currently set to 2.
10148   */
10149   pBt->btsFlags &= ~BTS_NO_WAL;
10150   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10151 
10152   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10153   if( rc==SQLITE_OK ){
10154     u8 *aData = pBt->pPage1->aData;
10155     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10156       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10157       if( rc==SQLITE_OK ){
10158         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10159         if( rc==SQLITE_OK ){
10160           aData[18] = (u8)iVersion;
10161           aData[19] = (u8)iVersion;
10162         }
10163       }
10164     }
10165   }
10166 
10167   pBt->btsFlags &= ~BTS_NO_WAL;
10168   return rc;
10169 }
10170 
10171 /*
10172 ** Return true if the cursor has a hint specified.  This routine is
10173 ** only used from within assert() statements
10174 */
10175 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10176   return (pCsr->hints & mask)!=0;
10177 }
10178 
10179 /*
10180 ** Return true if the given Btree is read-only.
10181 */
10182 int sqlite3BtreeIsReadonly(Btree *p){
10183   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10184 }
10185 
10186 /*
10187 ** Return the size of the header added to each page by this module.
10188 */
10189 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10190 
10191 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10192 /*
10193 ** Return true if the Btree passed as the only argument is sharable.
10194 */
10195 int sqlite3BtreeSharable(Btree *p){
10196   return p->sharable;
10197 }
10198 
10199 /*
10200 ** Return the number of connections to the BtShared object accessed by
10201 ** the Btree handle passed as the only argument. For private caches
10202 ** this is always 1. For shared caches it may be 1 or greater.
10203 */
10204 int sqlite3BtreeConnectionCount(Btree *p){
10205   testcase( p->sharable );
10206   return p->pBt->nRef;
10207 }
10208 #endif
10209