1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifdef SQLITE_DEBUG 116 /* 117 ** Return and reset the seek counter for a Btree object. 118 */ 119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ 120 u64 n = pBt->nSeek; 121 pBt->nSeek = 0; 122 return n; 123 } 124 #endif 125 126 /* 127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 129 ** 130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 133 ** with the page number and filename associated with the (MemPage*). 134 */ 135 #ifdef SQLITE_DEBUG 136 int corruptPageError(int lineno, MemPage *p){ 137 char *zMsg; 138 sqlite3BeginBenignMalloc(); 139 zMsg = sqlite3_mprintf("database corruption page %d of %s", 140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 141 ); 142 sqlite3EndBenignMalloc(); 143 if( zMsg ){ 144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 145 } 146 sqlite3_free(zMsg); 147 return SQLITE_CORRUPT_BKPT; 148 } 149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 150 #else 151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 152 #endif 153 154 #ifndef SQLITE_OMIT_SHARED_CACHE 155 156 #ifdef SQLITE_DEBUG 157 /* 158 **** This function is only used as part of an assert() statement. *** 159 ** 160 ** Check to see if pBtree holds the required locks to read or write to the 161 ** table with root page iRoot. Return 1 if it does and 0 if not. 162 ** 163 ** For example, when writing to a table with root-page iRoot via 164 ** Btree connection pBtree: 165 ** 166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 167 ** 168 ** When writing to an index that resides in a sharable database, the 169 ** caller should have first obtained a lock specifying the root page of 170 ** the corresponding table. This makes things a bit more complicated, 171 ** as this module treats each table as a separate structure. To determine 172 ** the table corresponding to the index being written, this 173 ** function has to search through the database schema. 174 ** 175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 176 ** hold a write-lock on the schema table (root page 1). This is also 177 ** acceptable. 178 */ 179 static int hasSharedCacheTableLock( 180 Btree *pBtree, /* Handle that must hold lock */ 181 Pgno iRoot, /* Root page of b-tree */ 182 int isIndex, /* True if iRoot is the root of an index b-tree */ 183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 184 ){ 185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 186 Pgno iTab = 0; 187 BtLock *pLock; 188 189 /* If this database is not shareable, or if the client is reading 190 ** and has the read-uncommitted flag set, then no lock is required. 191 ** Return true immediately. 192 */ 193 if( (pBtree->sharable==0) 194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 195 ){ 196 return 1; 197 } 198 199 /* If the client is reading or writing an index and the schema is 200 ** not loaded, then it is too difficult to actually check to see if 201 ** the correct locks are held. So do not bother - just return true. 202 ** This case does not come up very often anyhow. 203 */ 204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 205 return 1; 206 } 207 208 /* Figure out the root-page that the lock should be held on. For table 209 ** b-trees, this is just the root page of the b-tree being read or 210 ** written. For index b-trees, it is the root page of the associated 211 ** table. */ 212 if( isIndex ){ 213 HashElem *p; 214 int bSeen = 0; 215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 216 Index *pIdx = (Index *)sqliteHashData(p); 217 if( pIdx->tnum==iRoot ){ 218 if( bSeen ){ 219 /* Two or more indexes share the same root page. There must 220 ** be imposter tables. So just return true. The assert is not 221 ** useful in that case. */ 222 return 1; 223 } 224 iTab = pIdx->pTable->tnum; 225 bSeen = 1; 226 } 227 } 228 }else{ 229 iTab = iRoot; 230 } 231 232 /* Search for the required lock. Either a write-lock on root-page iTab, a 233 ** write-lock on the schema table, or (if the client is reading) a 234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 236 if( pLock->pBtree==pBtree 237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 238 && pLock->eLock>=eLockType 239 ){ 240 return 1; 241 } 242 } 243 244 /* Failed to find the required lock. */ 245 return 0; 246 } 247 #endif /* SQLITE_DEBUG */ 248 249 #ifdef SQLITE_DEBUG 250 /* 251 **** This function may be used as part of assert() statements only. **** 252 ** 253 ** Return true if it would be illegal for pBtree to write into the 254 ** table or index rooted at iRoot because other shared connections are 255 ** simultaneously reading that same table or index. 256 ** 257 ** It is illegal for pBtree to write if some other Btree object that 258 ** shares the same BtShared object is currently reading or writing 259 ** the iRoot table. Except, if the other Btree object has the 260 ** read-uncommitted flag set, then it is OK for the other object to 261 ** have a read cursor. 262 ** 263 ** For example, before writing to any part of the table or index 264 ** rooted at page iRoot, one should call: 265 ** 266 ** assert( !hasReadConflicts(pBtree, iRoot) ); 267 */ 268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 269 BtCursor *p; 270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 271 if( p->pgnoRoot==iRoot 272 && p->pBtree!=pBtree 273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 274 ){ 275 return 1; 276 } 277 } 278 return 0; 279 } 280 #endif /* #ifdef SQLITE_DEBUG */ 281 282 /* 283 ** Query to see if Btree handle p may obtain a lock of type eLock 284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 285 ** SQLITE_OK if the lock may be obtained (by calling 286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 287 */ 288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 289 BtShared *pBt = p->pBt; 290 BtLock *pIter; 291 292 assert( sqlite3BtreeHoldsMutex(p) ); 293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 294 assert( p->db!=0 ); 295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 296 297 /* If requesting a write-lock, then the Btree must have an open write 298 ** transaction on this file. And, obviously, for this to be so there 299 ** must be an open write transaction on the file itself. 300 */ 301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 303 304 /* This routine is a no-op if the shared-cache is not enabled */ 305 if( !p->sharable ){ 306 return SQLITE_OK; 307 } 308 309 /* If some other connection is holding an exclusive lock, the 310 ** requested lock may not be obtained. 311 */ 312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 314 return SQLITE_LOCKED_SHAREDCACHE; 315 } 316 317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 318 /* The condition (pIter->eLock!=eLock) in the following if(...) 319 ** statement is a simplification of: 320 ** 321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 322 ** 323 ** since we know that if eLock==WRITE_LOCK, then no other connection 324 ** may hold a WRITE_LOCK on any table in this file (since there can 325 ** only be a single writer). 326 */ 327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 331 if( eLock==WRITE_LOCK ){ 332 assert( p==pBt->pWriter ); 333 pBt->btsFlags |= BTS_PENDING; 334 } 335 return SQLITE_LOCKED_SHAREDCACHE; 336 } 337 } 338 return SQLITE_OK; 339 } 340 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 341 342 #ifndef SQLITE_OMIT_SHARED_CACHE 343 /* 344 ** Add a lock on the table with root-page iTable to the shared-btree used 345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 346 ** WRITE_LOCK. 347 ** 348 ** This function assumes the following: 349 ** 350 ** (a) The specified Btree object p is connected to a sharable 351 ** database (one with the BtShared.sharable flag set), and 352 ** 353 ** (b) No other Btree objects hold a lock that conflicts 354 ** with the requested lock (i.e. querySharedCacheTableLock() has 355 ** already been called and returned SQLITE_OK). 356 ** 357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 358 ** is returned if a malloc attempt fails. 359 */ 360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 361 BtShared *pBt = p->pBt; 362 BtLock *pLock = 0; 363 BtLock *pIter; 364 365 assert( sqlite3BtreeHoldsMutex(p) ); 366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 367 assert( p->db!=0 ); 368 369 /* A connection with the read-uncommitted flag set will never try to 370 ** obtain a read-lock using this function. The only read-lock obtained 371 ** by a connection in read-uncommitted mode is on the sqlite_schema 372 ** table, and that lock is obtained in BtreeBeginTrans(). */ 373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 374 375 /* This function should only be called on a sharable b-tree after it 376 ** has been determined that no other b-tree holds a conflicting lock. */ 377 assert( p->sharable ); 378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 379 380 /* First search the list for an existing lock on this table. */ 381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 382 if( pIter->iTable==iTable && pIter->pBtree==p ){ 383 pLock = pIter; 384 break; 385 } 386 } 387 388 /* If the above search did not find a BtLock struct associating Btree p 389 ** with table iTable, allocate one and link it into the list. 390 */ 391 if( !pLock ){ 392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 393 if( !pLock ){ 394 return SQLITE_NOMEM_BKPT; 395 } 396 pLock->iTable = iTable; 397 pLock->pBtree = p; 398 pLock->pNext = pBt->pLock; 399 pBt->pLock = pLock; 400 } 401 402 /* Set the BtLock.eLock variable to the maximum of the current lock 403 ** and the requested lock. This means if a write-lock was already held 404 ** and a read-lock requested, we don't incorrectly downgrade the lock. 405 */ 406 assert( WRITE_LOCK>READ_LOCK ); 407 if( eLock>pLock->eLock ){ 408 pLock->eLock = eLock; 409 } 410 411 return SQLITE_OK; 412 } 413 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 414 415 #ifndef SQLITE_OMIT_SHARED_CACHE 416 /* 417 ** Release all the table locks (locks obtained via calls to 418 ** the setSharedCacheTableLock() procedure) held by Btree object p. 419 ** 420 ** This function assumes that Btree p has an open read or write 421 ** transaction. If it does not, then the BTS_PENDING flag 422 ** may be incorrectly cleared. 423 */ 424 static void clearAllSharedCacheTableLocks(Btree *p){ 425 BtShared *pBt = p->pBt; 426 BtLock **ppIter = &pBt->pLock; 427 428 assert( sqlite3BtreeHoldsMutex(p) ); 429 assert( p->sharable || 0==*ppIter ); 430 assert( p->inTrans>0 ); 431 432 while( *ppIter ){ 433 BtLock *pLock = *ppIter; 434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 435 assert( pLock->pBtree->inTrans>=pLock->eLock ); 436 if( pLock->pBtree==p ){ 437 *ppIter = pLock->pNext; 438 assert( pLock->iTable!=1 || pLock==&p->lock ); 439 if( pLock->iTable!=1 ){ 440 sqlite3_free(pLock); 441 } 442 }else{ 443 ppIter = &pLock->pNext; 444 } 445 } 446 447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 448 if( pBt->pWriter==p ){ 449 pBt->pWriter = 0; 450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 451 }else if( pBt->nTransaction==2 ){ 452 /* This function is called when Btree p is concluding its 453 ** transaction. If there currently exists a writer, and p is not 454 ** that writer, then the number of locks held by connections other 455 ** than the writer must be about to drop to zero. In this case 456 ** set the BTS_PENDING flag to 0. 457 ** 458 ** If there is not currently a writer, then BTS_PENDING must 459 ** be zero already. So this next line is harmless in that case. 460 */ 461 pBt->btsFlags &= ~BTS_PENDING; 462 } 463 } 464 465 /* 466 ** This function changes all write-locks held by Btree p into read-locks. 467 */ 468 static void downgradeAllSharedCacheTableLocks(Btree *p){ 469 BtShared *pBt = p->pBt; 470 if( pBt->pWriter==p ){ 471 BtLock *pLock; 472 pBt->pWriter = 0; 473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 476 pLock->eLock = READ_LOCK; 477 } 478 } 479 } 480 481 #endif /* SQLITE_OMIT_SHARED_CACHE */ 482 483 static void releasePage(MemPage *pPage); /* Forward reference */ 484 static void releasePageOne(MemPage *pPage); /* Forward reference */ 485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 486 487 /* 488 ***** This routine is used inside of assert() only **** 489 ** 490 ** Verify that the cursor holds the mutex on its BtShared 491 */ 492 #ifdef SQLITE_DEBUG 493 static int cursorHoldsMutex(BtCursor *p){ 494 return sqlite3_mutex_held(p->pBt->mutex); 495 } 496 497 /* Verify that the cursor and the BtShared agree about what is the current 498 ** database connetion. This is important in shared-cache mode. If the database 499 ** connection pointers get out-of-sync, it is possible for routines like 500 ** btreeInitPage() to reference an stale connection pointer that references a 501 ** a connection that has already closed. This routine is used inside assert() 502 ** statements only and for the purpose of double-checking that the btree code 503 ** does keep the database connection pointers up-to-date. 504 */ 505 static int cursorOwnsBtShared(BtCursor *p){ 506 assert( cursorHoldsMutex(p) ); 507 return (p->pBtree->db==p->pBt->db); 508 } 509 #endif 510 511 /* 512 ** Invalidate the overflow cache of the cursor passed as the first argument. 513 ** on the shared btree structure pBt. 514 */ 515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 516 517 /* 518 ** Invalidate the overflow page-list cache for all cursors opened 519 ** on the shared btree structure pBt. 520 */ 521 static void invalidateAllOverflowCache(BtShared *pBt){ 522 BtCursor *p; 523 assert( sqlite3_mutex_held(pBt->mutex) ); 524 for(p=pBt->pCursor; p; p=p->pNext){ 525 invalidateOverflowCache(p); 526 } 527 } 528 529 #ifndef SQLITE_OMIT_INCRBLOB 530 /* 531 ** This function is called before modifying the contents of a table 532 ** to invalidate any incrblob cursors that are open on the 533 ** row or one of the rows being modified. 534 ** 535 ** If argument isClearTable is true, then the entire contents of the 536 ** table is about to be deleted. In this case invalidate all incrblob 537 ** cursors open on any row within the table with root-page pgnoRoot. 538 ** 539 ** Otherwise, if argument isClearTable is false, then the row with 540 ** rowid iRow is being replaced or deleted. In this case invalidate 541 ** only those incrblob cursors open on that specific row. 542 */ 543 static void invalidateIncrblobCursors( 544 Btree *pBtree, /* The database file to check */ 545 Pgno pgnoRoot, /* The table that might be changing */ 546 i64 iRow, /* The rowid that might be changing */ 547 int isClearTable /* True if all rows are being deleted */ 548 ){ 549 BtCursor *p; 550 assert( pBtree->hasIncrblobCur ); 551 assert( sqlite3BtreeHoldsMutex(pBtree) ); 552 pBtree->hasIncrblobCur = 0; 553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 554 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 555 pBtree->hasIncrblobCur = 1; 556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 557 p->eState = CURSOR_INVALID; 558 } 559 } 560 } 561 } 562 563 #else 564 /* Stub function when INCRBLOB is omitted */ 565 #define invalidateIncrblobCursors(w,x,y,z) 566 #endif /* SQLITE_OMIT_INCRBLOB */ 567 568 /* 569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 570 ** when a page that previously contained data becomes a free-list leaf 571 ** page. 572 ** 573 ** The BtShared.pHasContent bitvec exists to work around an obscure 574 ** bug caused by the interaction of two useful IO optimizations surrounding 575 ** free-list leaf pages: 576 ** 577 ** 1) When all data is deleted from a page and the page becomes 578 ** a free-list leaf page, the page is not written to the database 579 ** (as free-list leaf pages contain no meaningful data). Sometimes 580 ** such a page is not even journalled (as it will not be modified, 581 ** why bother journalling it?). 582 ** 583 ** 2) When a free-list leaf page is reused, its content is not read 584 ** from the database or written to the journal file (why should it 585 ** be, if it is not at all meaningful?). 586 ** 587 ** By themselves, these optimizations work fine and provide a handy 588 ** performance boost to bulk delete or insert operations. However, if 589 ** a page is moved to the free-list and then reused within the same 590 ** transaction, a problem comes up. If the page is not journalled when 591 ** it is moved to the free-list and it is also not journalled when it 592 ** is extracted from the free-list and reused, then the original data 593 ** may be lost. In the event of a rollback, it may not be possible 594 ** to restore the database to its original configuration. 595 ** 596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 597 ** moved to become a free-list leaf page, the corresponding bit is 598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 599 ** optimization 2 above is omitted if the corresponding bit is already 600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 601 ** at the end of every transaction. 602 */ 603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 604 int rc = SQLITE_OK; 605 if( !pBt->pHasContent ){ 606 assert( pgno<=pBt->nPage ); 607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 608 if( !pBt->pHasContent ){ 609 rc = SQLITE_NOMEM_BKPT; 610 } 611 } 612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 614 } 615 return rc; 616 } 617 618 /* 619 ** Query the BtShared.pHasContent vector. 620 ** 621 ** This function is called when a free-list leaf page is removed from the 622 ** free-list for reuse. It returns false if it is safe to retrieve the 623 ** page from the pager layer with the 'no-content' flag set. True otherwise. 624 */ 625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 626 Bitvec *p = pBt->pHasContent; 627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); 628 } 629 630 /* 631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 632 ** invoked at the conclusion of each write-transaction. 633 */ 634 static void btreeClearHasContent(BtShared *pBt){ 635 sqlite3BitvecDestroy(pBt->pHasContent); 636 pBt->pHasContent = 0; 637 } 638 639 /* 640 ** Release all of the apPage[] pages for a cursor. 641 */ 642 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 643 int i; 644 if( pCur->iPage>=0 ){ 645 for(i=0; i<pCur->iPage; i++){ 646 releasePageNotNull(pCur->apPage[i]); 647 } 648 releasePageNotNull(pCur->pPage); 649 pCur->iPage = -1; 650 } 651 } 652 653 /* 654 ** The cursor passed as the only argument must point to a valid entry 655 ** when this function is called (i.e. have eState==CURSOR_VALID). This 656 ** function saves the current cursor key in variables pCur->nKey and 657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 658 ** code otherwise. 659 ** 660 ** If the cursor is open on an intkey table, then the integer key 661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 663 ** set to point to a malloced buffer pCur->nKey bytes in size containing 664 ** the key. 665 */ 666 static int saveCursorKey(BtCursor *pCur){ 667 int rc = SQLITE_OK; 668 assert( CURSOR_VALID==pCur->eState ); 669 assert( 0==pCur->pKey ); 670 assert( cursorHoldsMutex(pCur) ); 671 672 if( pCur->curIntKey ){ 673 /* Only the rowid is required for a table btree */ 674 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 675 }else{ 676 /* For an index btree, save the complete key content. It is possible 677 ** that the current key is corrupt. In that case, it is possible that 678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 679 ** up to the size of 1 varint plus 1 8-byte value when the cursor 680 ** position is restored. Hence the 17 bytes of padding allocated 681 ** below. */ 682 void *pKey; 683 pCur->nKey = sqlite3BtreePayloadSize(pCur); 684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 685 if( pKey ){ 686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 687 if( rc==SQLITE_OK ){ 688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 689 pCur->pKey = pKey; 690 }else{ 691 sqlite3_free(pKey); 692 } 693 }else{ 694 rc = SQLITE_NOMEM_BKPT; 695 } 696 } 697 assert( !pCur->curIntKey || !pCur->pKey ); 698 return rc; 699 } 700 701 /* 702 ** Save the current cursor position in the variables BtCursor.nKey 703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 704 ** 705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 706 ** prior to calling this routine. 707 */ 708 static int saveCursorPosition(BtCursor *pCur){ 709 int rc; 710 711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 712 assert( 0==pCur->pKey ); 713 assert( cursorHoldsMutex(pCur) ); 714 715 if( pCur->curFlags & BTCF_Pinned ){ 716 return SQLITE_CONSTRAINT_PINNED; 717 } 718 if( pCur->eState==CURSOR_SKIPNEXT ){ 719 pCur->eState = CURSOR_VALID; 720 }else{ 721 pCur->skipNext = 0; 722 } 723 724 rc = saveCursorKey(pCur); 725 if( rc==SQLITE_OK ){ 726 btreeReleaseAllCursorPages(pCur); 727 pCur->eState = CURSOR_REQUIRESEEK; 728 } 729 730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 731 return rc; 732 } 733 734 /* Forward reference */ 735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 736 737 /* 738 ** Save the positions of all cursors (except pExcept) that are open on 739 ** the table with root-page iRoot. "Saving the cursor position" means that 740 ** the location in the btree is remembered in such a way that it can be 741 ** moved back to the same spot after the btree has been modified. This 742 ** routine is called just before cursor pExcept is used to modify the 743 ** table, for example in BtreeDelete() or BtreeInsert(). 744 ** 745 ** If there are two or more cursors on the same btree, then all such 746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 747 ** routine enforces that rule. This routine only needs to be called in 748 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 749 ** 750 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 752 ** pointless call to this routine. 753 ** 754 ** Implementation note: This routine merely checks to see if any cursors 755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 756 ** event that cursors are in need to being saved. 757 */ 758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 759 BtCursor *p; 760 assert( sqlite3_mutex_held(pBt->mutex) ); 761 assert( pExcept==0 || pExcept->pBt==pBt ); 762 for(p=pBt->pCursor; p; p=p->pNext){ 763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 764 } 765 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 767 return SQLITE_OK; 768 } 769 770 /* This helper routine to saveAllCursors does the actual work of saving 771 ** the cursors if and when a cursor is found that actually requires saving. 772 ** The common case is that no cursors need to be saved, so this routine is 773 ** broken out from its caller to avoid unnecessary stack pointer movement. 774 */ 775 static int SQLITE_NOINLINE saveCursorsOnList( 776 BtCursor *p, /* The first cursor that needs saving */ 777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 778 BtCursor *pExcept /* Do not save this cursor */ 779 ){ 780 do{ 781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 783 int rc = saveCursorPosition(p); 784 if( SQLITE_OK!=rc ){ 785 return rc; 786 } 787 }else{ 788 testcase( p->iPage>=0 ); 789 btreeReleaseAllCursorPages(p); 790 } 791 } 792 p = p->pNext; 793 }while( p ); 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Clear the current cursor position. 799 */ 800 void sqlite3BtreeClearCursor(BtCursor *pCur){ 801 assert( cursorHoldsMutex(pCur) ); 802 sqlite3_free(pCur->pKey); 803 pCur->pKey = 0; 804 pCur->eState = CURSOR_INVALID; 805 } 806 807 /* 808 ** In this version of BtreeMoveto, pKey is a packed index record 809 ** such as is generated by the OP_MakeRecord opcode. Unpack the 810 ** record and then call sqlite3BtreeIndexMoveto() to do the work. 811 */ 812 static int btreeMoveto( 813 BtCursor *pCur, /* Cursor open on the btree to be searched */ 814 const void *pKey, /* Packed key if the btree is an index */ 815 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 816 int bias, /* Bias search to the high end */ 817 int *pRes /* Write search results here */ 818 ){ 819 int rc; /* Status code */ 820 UnpackedRecord *pIdxKey; /* Unpacked index key */ 821 822 if( pKey ){ 823 KeyInfo *pKeyInfo = pCur->pKeyInfo; 824 assert( nKey==(i64)(int)nKey ); 825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 829 rc = SQLITE_CORRUPT_BKPT; 830 }else{ 831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); 832 } 833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 834 }else{ 835 pIdxKey = 0; 836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); 837 } 838 return rc; 839 } 840 841 /* 842 ** Restore the cursor to the position it was in (or as close to as possible) 843 ** when saveCursorPosition() was called. Note that this call deletes the 844 ** saved position info stored by saveCursorPosition(), so there can be 845 ** at most one effective restoreCursorPosition() call after each 846 ** saveCursorPosition(). 847 */ 848 static int btreeRestoreCursorPosition(BtCursor *pCur){ 849 int rc; 850 int skipNext = 0; 851 assert( cursorOwnsBtShared(pCur) ); 852 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 853 if( pCur->eState==CURSOR_FAULT ){ 854 return pCur->skipNext; 855 } 856 pCur->eState = CURSOR_INVALID; 857 if( sqlite3FaultSim(410) ){ 858 rc = SQLITE_IOERR; 859 }else{ 860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 861 } 862 if( rc==SQLITE_OK ){ 863 sqlite3_free(pCur->pKey); 864 pCur->pKey = 0; 865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 866 if( skipNext ) pCur->skipNext = skipNext; 867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 868 pCur->eState = CURSOR_SKIPNEXT; 869 } 870 } 871 return rc; 872 } 873 874 #define restoreCursorPosition(p) \ 875 (p->eState>=CURSOR_REQUIRESEEK ? \ 876 btreeRestoreCursorPosition(p) : \ 877 SQLITE_OK) 878 879 /* 880 ** Determine whether or not a cursor has moved from the position where 881 ** it was last placed, or has been invalidated for any other reason. 882 ** Cursors can move when the row they are pointing at is deleted out 883 ** from under them, for example. Cursor might also move if a btree 884 ** is rebalanced. 885 ** 886 ** Calling this routine with a NULL cursor pointer returns false. 887 ** 888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 889 ** back to where it ought to be if this routine returns true. 890 */ 891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 892 assert( EIGHT_BYTE_ALIGNMENT(pCur) 893 || pCur==sqlite3BtreeFakeValidCursor() ); 894 assert( offsetof(BtCursor, eState)==0 ); 895 assert( sizeof(pCur->eState)==1 ); 896 return CURSOR_VALID != *(u8*)pCur; 897 } 898 899 /* 900 ** Return a pointer to a fake BtCursor object that will always answer 901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 902 ** cursor returned must not be used with any other Btree interface. 903 */ 904 BtCursor *sqlite3BtreeFakeValidCursor(void){ 905 static u8 fakeCursor = CURSOR_VALID; 906 assert( offsetof(BtCursor, eState)==0 ); 907 return (BtCursor*)&fakeCursor; 908 } 909 910 /* 911 ** This routine restores a cursor back to its original position after it 912 ** has been moved by some outside activity (such as a btree rebalance or 913 ** a row having been deleted out from under the cursor). 914 ** 915 ** On success, the *pDifferentRow parameter is false if the cursor is left 916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 917 ** was pointing to has been deleted, forcing the cursor to point to some 918 ** nearby row. 919 ** 920 ** This routine should only be called for a cursor that just returned 921 ** TRUE from sqlite3BtreeCursorHasMoved(). 922 */ 923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 924 int rc; 925 926 assert( pCur!=0 ); 927 assert( pCur->eState!=CURSOR_VALID ); 928 rc = restoreCursorPosition(pCur); 929 if( rc ){ 930 *pDifferentRow = 1; 931 return rc; 932 } 933 if( pCur->eState!=CURSOR_VALID ){ 934 *pDifferentRow = 1; 935 }else{ 936 *pDifferentRow = 0; 937 } 938 return SQLITE_OK; 939 } 940 941 #ifdef SQLITE_ENABLE_CURSOR_HINTS 942 /* 943 ** Provide hints to the cursor. The particular hint given (and the type 944 ** and number of the varargs parameters) is determined by the eHintType 945 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 946 */ 947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 948 /* Used only by system that substitute their own storage engine */ 949 } 950 #endif 951 952 /* 953 ** Provide flag hints to the cursor. 954 */ 955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 957 pCur->hints = x; 958 } 959 960 961 #ifndef SQLITE_OMIT_AUTOVACUUM 962 /* 963 ** Given a page number of a regular database page, return the page 964 ** number for the pointer-map page that contains the entry for the 965 ** input page number. 966 ** 967 ** Return 0 (not a valid page) for pgno==1 since there is 968 ** no pointer map associated with page 1. The integrity_check logic 969 ** requires that ptrmapPageno(*,1)!=1. 970 */ 971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 972 int nPagesPerMapPage; 973 Pgno iPtrMap, ret; 974 assert( sqlite3_mutex_held(pBt->mutex) ); 975 if( pgno<2 ) return 0; 976 nPagesPerMapPage = (pBt->usableSize/5)+1; 977 iPtrMap = (pgno-2)/nPagesPerMapPage; 978 ret = (iPtrMap*nPagesPerMapPage) + 2; 979 if( ret==PENDING_BYTE_PAGE(pBt) ){ 980 ret++; 981 } 982 return ret; 983 } 984 985 /* 986 ** Write an entry into the pointer map. 987 ** 988 ** This routine updates the pointer map entry for page number 'key' 989 ** so that it maps to type 'eType' and parent page number 'pgno'. 990 ** 991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 992 ** a no-op. If an error occurs, the appropriate error code is written 993 ** into *pRC. 994 */ 995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 996 DbPage *pDbPage; /* The pointer map page */ 997 u8 *pPtrmap; /* The pointer map data */ 998 Pgno iPtrmap; /* The pointer map page number */ 999 int offset; /* Offset in pointer map page */ 1000 int rc; /* Return code from subfunctions */ 1001 1002 if( *pRC ) return; 1003 1004 assert( sqlite3_mutex_held(pBt->mutex) ); 1005 /* The super-journal page number must never be used as a pointer map page */ 1006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 1007 1008 assert( pBt->autoVacuum ); 1009 if( key==0 ){ 1010 *pRC = SQLITE_CORRUPT_BKPT; 1011 return; 1012 } 1013 iPtrmap = PTRMAP_PAGENO(pBt, key); 1014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1015 if( rc!=SQLITE_OK ){ 1016 *pRC = rc; 1017 return; 1018 } 1019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1020 /* The first byte of the extra data is the MemPage.isInit byte. 1021 ** If that byte is set, it means this page is also being used 1022 ** as a btree page. */ 1023 *pRC = SQLITE_CORRUPT_BKPT; 1024 goto ptrmap_exit; 1025 } 1026 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1027 if( offset<0 ){ 1028 *pRC = SQLITE_CORRUPT_BKPT; 1029 goto ptrmap_exit; 1030 } 1031 assert( offset <= (int)pBt->usableSize-5 ); 1032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1033 1034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1036 *pRC= rc = sqlite3PagerWrite(pDbPage); 1037 if( rc==SQLITE_OK ){ 1038 pPtrmap[offset] = eType; 1039 put4byte(&pPtrmap[offset+1], parent); 1040 } 1041 } 1042 1043 ptrmap_exit: 1044 sqlite3PagerUnref(pDbPage); 1045 } 1046 1047 /* 1048 ** Read an entry from the pointer map. 1049 ** 1050 ** This routine retrieves the pointer map entry for page 'key', writing 1051 ** the type and parent page number to *pEType and *pPgno respectively. 1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1053 */ 1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1055 DbPage *pDbPage; /* The pointer map page */ 1056 int iPtrmap; /* Pointer map page index */ 1057 u8 *pPtrmap; /* Pointer map page data */ 1058 int offset; /* Offset of entry in pointer map */ 1059 int rc; 1060 1061 assert( sqlite3_mutex_held(pBt->mutex) ); 1062 1063 iPtrmap = PTRMAP_PAGENO(pBt, key); 1064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1065 if( rc!=0 ){ 1066 return rc; 1067 } 1068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1069 1070 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1071 if( offset<0 ){ 1072 sqlite3PagerUnref(pDbPage); 1073 return SQLITE_CORRUPT_BKPT; 1074 } 1075 assert( offset <= (int)pBt->usableSize-5 ); 1076 assert( pEType!=0 ); 1077 *pEType = pPtrmap[offset]; 1078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1079 1080 sqlite3PagerUnref(pDbPage); 1081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1082 return SQLITE_OK; 1083 } 1084 1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1086 #define ptrmapPut(w,x,y,z,rc) 1087 #define ptrmapGet(w,x,y,z) SQLITE_OK 1088 #define ptrmapPutOvflPtr(x, y, z, rc) 1089 #endif 1090 1091 /* 1092 ** Given a btree page and a cell index (0 means the first cell on 1093 ** the page, 1 means the second cell, and so forth) return a pointer 1094 ** to the cell content. 1095 ** 1096 ** findCellPastPtr() does the same except it skips past the initial 1097 ** 4-byte child pointer found on interior pages, if there is one. 1098 ** 1099 ** This routine works only for pages that do not contain overflow cells. 1100 */ 1101 #define findCell(P,I) \ 1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1103 #define findCellPastPtr(P,I) \ 1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1105 1106 1107 /* 1108 ** This is common tail processing for btreeParseCellPtr() and 1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1111 ** structure. 1112 */ 1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1114 MemPage *pPage, /* Page containing the cell */ 1115 u8 *pCell, /* Pointer to the cell text. */ 1116 CellInfo *pInfo /* Fill in this structure */ 1117 ){ 1118 /* If the payload will not fit completely on the local page, we have 1119 ** to decide how much to store locally and how much to spill onto 1120 ** overflow pages. The strategy is to minimize the amount of unused 1121 ** space on overflow pages while keeping the amount of local storage 1122 ** in between minLocal and maxLocal. 1123 ** 1124 ** Warning: changing the way overflow payload is distributed in any 1125 ** way will result in an incompatible file format. 1126 */ 1127 int minLocal; /* Minimum amount of payload held locally */ 1128 int maxLocal; /* Maximum amount of payload held locally */ 1129 int surplus; /* Overflow payload available for local storage */ 1130 1131 minLocal = pPage->minLocal; 1132 maxLocal = pPage->maxLocal; 1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1134 testcase( surplus==maxLocal ); 1135 testcase( surplus==maxLocal+1 ); 1136 if( surplus <= maxLocal ){ 1137 pInfo->nLocal = (u16)surplus; 1138 }else{ 1139 pInfo->nLocal = (u16)minLocal; 1140 } 1141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1142 } 1143 1144 /* 1145 ** Given a record with nPayload bytes of payload stored within btree 1146 ** page pPage, return the number of bytes of payload stored locally. 1147 */ 1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ 1149 int maxLocal; /* Maximum amount of payload held locally */ 1150 maxLocal = pPage->maxLocal; 1151 if( nPayload<=maxLocal ){ 1152 return nPayload; 1153 }else{ 1154 int minLocal; /* Minimum amount of payload held locally */ 1155 int surplus; /* Overflow payload available for local storage */ 1156 minLocal = pPage->minLocal; 1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); 1158 return ( surplus <= maxLocal ) ? surplus : minLocal; 1159 } 1160 } 1161 1162 /* 1163 ** The following routines are implementations of the MemPage.xParseCell() 1164 ** method. 1165 ** 1166 ** Parse a cell content block and fill in the CellInfo structure. 1167 ** 1168 ** btreeParseCellPtr() => table btree leaf nodes 1169 ** btreeParseCellNoPayload() => table btree internal nodes 1170 ** btreeParseCellPtrIndex() => index btree nodes 1171 ** 1172 ** There is also a wrapper function btreeParseCell() that works for 1173 ** all MemPage types and that references the cell by index rather than 1174 ** by pointer. 1175 */ 1176 static void btreeParseCellPtrNoPayload( 1177 MemPage *pPage, /* Page containing the cell */ 1178 u8 *pCell, /* Pointer to the cell text. */ 1179 CellInfo *pInfo /* Fill in this structure */ 1180 ){ 1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1182 assert( pPage->leaf==0 ); 1183 assert( pPage->childPtrSize==4 ); 1184 #ifndef SQLITE_DEBUG 1185 UNUSED_PARAMETER(pPage); 1186 #endif 1187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1188 pInfo->nPayload = 0; 1189 pInfo->nLocal = 0; 1190 pInfo->pPayload = 0; 1191 return; 1192 } 1193 static void btreeParseCellPtr( 1194 MemPage *pPage, /* Page containing the cell */ 1195 u8 *pCell, /* Pointer to the cell text. */ 1196 CellInfo *pInfo /* Fill in this structure */ 1197 ){ 1198 u8 *pIter; /* For scanning through pCell */ 1199 u32 nPayload; /* Number of bytes of cell payload */ 1200 u64 iKey; /* Extracted Key value */ 1201 1202 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1203 assert( pPage->leaf==0 || pPage->leaf==1 ); 1204 assert( pPage->intKeyLeaf ); 1205 assert( pPage->childPtrSize==0 ); 1206 pIter = pCell; 1207 1208 /* The next block of code is equivalent to: 1209 ** 1210 ** pIter += getVarint32(pIter, nPayload); 1211 ** 1212 ** The code is inlined to avoid a function call. 1213 */ 1214 nPayload = *pIter; 1215 if( nPayload>=0x80 ){ 1216 u8 *pEnd = &pIter[8]; 1217 nPayload &= 0x7f; 1218 do{ 1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1220 }while( (*pIter)>=0x80 && pIter<pEnd ); 1221 } 1222 pIter++; 1223 1224 /* The next block of code is equivalent to: 1225 ** 1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1227 ** 1228 ** The code is inlined and the loop is unrolled for performance. 1229 ** This routine is a high-runner. 1230 */ 1231 iKey = *pIter; 1232 if( iKey>=0x80 ){ 1233 u8 x; 1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f); 1235 if( x>=0x80 ){ 1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f); 1237 if( x>=0x80 ){ 1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1239 if( x>=0x80 ){ 1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1241 if( x>=0x80 ){ 1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1243 if( x>=0x80 ){ 1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1245 if( x>=0x80 ){ 1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1247 if( x>=0x80 ){ 1248 iKey = (iKey<<8) | (*++pIter); 1249 } 1250 } 1251 } 1252 } 1253 } 1254 } 1255 } 1256 } 1257 pIter++; 1258 1259 pInfo->nKey = *(i64*)&iKey; 1260 pInfo->nPayload = nPayload; 1261 pInfo->pPayload = pIter; 1262 testcase( nPayload==pPage->maxLocal ); 1263 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1264 if( nPayload<=pPage->maxLocal ){ 1265 /* This is the (easy) common case where the entire payload fits 1266 ** on the local page. No overflow is required. 1267 */ 1268 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1269 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1270 pInfo->nLocal = (u16)nPayload; 1271 }else{ 1272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1273 } 1274 } 1275 static void btreeParseCellPtrIndex( 1276 MemPage *pPage, /* Page containing the cell */ 1277 u8 *pCell, /* Pointer to the cell text. */ 1278 CellInfo *pInfo /* Fill in this structure */ 1279 ){ 1280 u8 *pIter; /* For scanning through pCell */ 1281 u32 nPayload; /* Number of bytes of cell payload */ 1282 1283 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1284 assert( pPage->leaf==0 || pPage->leaf==1 ); 1285 assert( pPage->intKeyLeaf==0 ); 1286 pIter = pCell + pPage->childPtrSize; 1287 nPayload = *pIter; 1288 if( nPayload>=0x80 ){ 1289 u8 *pEnd = &pIter[8]; 1290 nPayload &= 0x7f; 1291 do{ 1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1293 }while( *(pIter)>=0x80 && pIter<pEnd ); 1294 } 1295 pIter++; 1296 pInfo->nKey = nPayload; 1297 pInfo->nPayload = nPayload; 1298 pInfo->pPayload = pIter; 1299 testcase( nPayload==pPage->maxLocal ); 1300 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1301 if( nPayload<=pPage->maxLocal ){ 1302 /* This is the (easy) common case where the entire payload fits 1303 ** on the local page. No overflow is required. 1304 */ 1305 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1306 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1307 pInfo->nLocal = (u16)nPayload; 1308 }else{ 1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1310 } 1311 } 1312 static void btreeParseCell( 1313 MemPage *pPage, /* Page containing the cell */ 1314 int iCell, /* The cell index. First cell is 0 */ 1315 CellInfo *pInfo /* Fill in this structure */ 1316 ){ 1317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1318 } 1319 1320 /* 1321 ** The following routines are implementations of the MemPage.xCellSize 1322 ** method. 1323 ** 1324 ** Compute the total number of bytes that a Cell needs in the cell 1325 ** data area of the btree-page. The return number includes the cell 1326 ** data header and the local payload, but not any overflow page or 1327 ** the space used by the cell pointer. 1328 ** 1329 ** cellSizePtrNoPayload() => table internal nodes 1330 ** cellSizePtrTableLeaf() => table leaf nodes 1331 ** cellSizePtr() => all index nodes & table leaf nodes 1332 */ 1333 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1334 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1335 u8 *pEnd; /* End mark for a varint */ 1336 u32 nSize; /* Size value to return */ 1337 1338 #ifdef SQLITE_DEBUG 1339 /* The value returned by this function should always be the same as 1340 ** the (CellInfo.nSize) value found by doing a full parse of the 1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1342 ** this function verifies that this invariant is not violated. */ 1343 CellInfo debuginfo; 1344 pPage->xParseCell(pPage, pCell, &debuginfo); 1345 #endif 1346 1347 nSize = *pIter; 1348 if( nSize>=0x80 ){ 1349 pEnd = &pIter[8]; 1350 nSize &= 0x7f; 1351 do{ 1352 nSize = (nSize<<7) | (*++pIter & 0x7f); 1353 }while( *(pIter)>=0x80 && pIter<pEnd ); 1354 } 1355 pIter++; 1356 testcase( nSize==pPage->maxLocal ); 1357 testcase( nSize==(u32)pPage->maxLocal+1 ); 1358 if( nSize<=pPage->maxLocal ){ 1359 nSize += (u32)(pIter - pCell); 1360 if( nSize<4 ) nSize = 4; 1361 }else{ 1362 int minLocal = pPage->minLocal; 1363 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1364 testcase( nSize==pPage->maxLocal ); 1365 testcase( nSize==(u32)pPage->maxLocal+1 ); 1366 if( nSize>pPage->maxLocal ){ 1367 nSize = minLocal; 1368 } 1369 nSize += 4 + (u16)(pIter - pCell); 1370 } 1371 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1372 return (u16)nSize; 1373 } 1374 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1375 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1376 u8 *pEnd; /* End mark for a varint */ 1377 1378 #ifdef SQLITE_DEBUG 1379 /* The value returned by this function should always be the same as 1380 ** the (CellInfo.nSize) value found by doing a full parse of the 1381 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1382 ** this function verifies that this invariant is not violated. */ 1383 CellInfo debuginfo; 1384 pPage->xParseCell(pPage, pCell, &debuginfo); 1385 #else 1386 UNUSED_PARAMETER(pPage); 1387 #endif 1388 1389 assert( pPage->childPtrSize==4 ); 1390 pEnd = pIter + 9; 1391 while( (*pIter++)&0x80 && pIter<pEnd ); 1392 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1393 return (u16)(pIter - pCell); 1394 } 1395 static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){ 1396 u8 *pIter = pCell; /* For looping over bytes of pCell */ 1397 u8 *pEnd; /* End mark for a varint */ 1398 u32 nSize; /* Size value to return */ 1399 1400 #ifdef SQLITE_DEBUG 1401 /* The value returned by this function should always be the same as 1402 ** the (CellInfo.nSize) value found by doing a full parse of the 1403 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1404 ** this function verifies that this invariant is not violated. */ 1405 CellInfo debuginfo; 1406 pPage->xParseCell(pPage, pCell, &debuginfo); 1407 #endif 1408 1409 nSize = *pIter; 1410 if( nSize>=0x80 ){ 1411 pEnd = &pIter[8]; 1412 nSize &= 0x7f; 1413 do{ 1414 nSize = (nSize<<7) | (*++pIter & 0x7f); 1415 }while( *(pIter)>=0x80 && pIter<pEnd ); 1416 } 1417 pIter++; 1418 /* pIter now points at the 64-bit integer key value, a variable length 1419 ** integer. The following block moves pIter to point at the first byte 1420 ** past the end of the key value. */ 1421 if( (*pIter++)&0x80 1422 && (*pIter++)&0x80 1423 && (*pIter++)&0x80 1424 && (*pIter++)&0x80 1425 && (*pIter++)&0x80 1426 && (*pIter++)&0x80 1427 && (*pIter++)&0x80 1428 && (*pIter++)&0x80 ){ pIter++; } 1429 testcase( nSize==pPage->maxLocal ); 1430 testcase( nSize==(u32)pPage->maxLocal+1 ); 1431 if( nSize<=pPage->maxLocal ){ 1432 nSize += (u32)(pIter - pCell); 1433 if( nSize<4 ) nSize = 4; 1434 }else{ 1435 int minLocal = pPage->minLocal; 1436 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1437 testcase( nSize==pPage->maxLocal ); 1438 testcase( nSize==(u32)pPage->maxLocal+1 ); 1439 if( nSize>pPage->maxLocal ){ 1440 nSize = minLocal; 1441 } 1442 nSize += 4 + (u16)(pIter - pCell); 1443 } 1444 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1445 return (u16)nSize; 1446 } 1447 1448 1449 #ifdef SQLITE_DEBUG 1450 /* This variation on cellSizePtr() is used inside of assert() statements 1451 ** only. */ 1452 static u16 cellSize(MemPage *pPage, int iCell){ 1453 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1454 } 1455 #endif 1456 1457 #ifndef SQLITE_OMIT_AUTOVACUUM 1458 /* 1459 ** The cell pCell is currently part of page pSrc but will ultimately be part 1460 ** of pPage. (pSrc and pPage are often the same.) If pCell contains a 1461 ** pointer to an overflow page, insert an entry into the pointer-map for 1462 ** the overflow page that will be valid after pCell has been moved to pPage. 1463 */ 1464 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1465 CellInfo info; 1466 if( *pRC ) return; 1467 assert( pCell!=0 ); 1468 pPage->xParseCell(pPage, pCell, &info); 1469 if( info.nLocal<info.nPayload ){ 1470 Pgno ovfl; 1471 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1472 testcase( pSrc!=pPage ); 1473 *pRC = SQLITE_CORRUPT_BKPT; 1474 return; 1475 } 1476 ovfl = get4byte(&pCell[info.nSize-4]); 1477 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1478 } 1479 } 1480 #endif 1481 1482 1483 /* 1484 ** Defragment the page given. This routine reorganizes cells within the 1485 ** page so that there are no free-blocks on the free-block list. 1486 ** 1487 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1488 ** present in the page after this routine returns. 1489 ** 1490 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1491 ** b-tree page so that there are no freeblocks or fragment bytes, all 1492 ** unused bytes are contained in the unallocated space region, and all 1493 ** cells are packed tightly at the end of the page. 1494 */ 1495 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1496 int i; /* Loop counter */ 1497 int pc; /* Address of the i-th cell */ 1498 int hdr; /* Offset to the page header */ 1499 int size; /* Size of a cell */ 1500 int usableSize; /* Number of usable bytes on a page */ 1501 int cellOffset; /* Offset to the cell pointer array */ 1502 int cbrk; /* Offset to the cell content area */ 1503 int nCell; /* Number of cells on the page */ 1504 unsigned char *data; /* The page data */ 1505 unsigned char *temp; /* Temp area for cell content */ 1506 unsigned char *src; /* Source of content */ 1507 int iCellFirst; /* First allowable cell index */ 1508 int iCellLast; /* Last possible cell index */ 1509 int iCellStart; /* First cell offset in input */ 1510 1511 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1512 assert( pPage->pBt!=0 ); 1513 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1514 assert( pPage->nOverflow==0 ); 1515 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1516 data = pPage->aData; 1517 hdr = pPage->hdrOffset; 1518 cellOffset = pPage->cellOffset; 1519 nCell = pPage->nCell; 1520 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1521 iCellFirst = cellOffset + 2*nCell; 1522 usableSize = pPage->pBt->usableSize; 1523 1524 /* This block handles pages with two or fewer free blocks and nMaxFrag 1525 ** or fewer fragmented bytes. In this case it is faster to move the 1526 ** two (or one) blocks of cells using memmove() and add the required 1527 ** offsets to each pointer in the cell-pointer array than it is to 1528 ** reconstruct the entire page. */ 1529 if( (int)data[hdr+7]<=nMaxFrag ){ 1530 int iFree = get2byte(&data[hdr+1]); 1531 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1532 if( iFree ){ 1533 int iFree2 = get2byte(&data[iFree]); 1534 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1535 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1536 u8 *pEnd = &data[cellOffset + nCell*2]; 1537 u8 *pAddr; 1538 int sz2 = 0; 1539 int sz = get2byte(&data[iFree+2]); 1540 int top = get2byte(&data[hdr+5]); 1541 if( top>=iFree ){ 1542 return SQLITE_CORRUPT_PAGE(pPage); 1543 } 1544 if( iFree2 ){ 1545 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1546 sz2 = get2byte(&data[iFree2+2]); 1547 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1548 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1549 sz += sz2; 1550 }else if( iFree+sz>usableSize ){ 1551 return SQLITE_CORRUPT_PAGE(pPage); 1552 } 1553 1554 cbrk = top+sz; 1555 assert( cbrk+(iFree-top) <= usableSize ); 1556 memmove(&data[cbrk], &data[top], iFree-top); 1557 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1558 pc = get2byte(pAddr); 1559 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1560 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1561 } 1562 goto defragment_out; 1563 } 1564 } 1565 } 1566 1567 cbrk = usableSize; 1568 iCellLast = usableSize - 4; 1569 iCellStart = get2byte(&data[hdr+5]); 1570 if( nCell>0 ){ 1571 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1572 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); 1573 src = temp; 1574 for(i=0; i<nCell; i++){ 1575 u8 *pAddr; /* The i-th cell pointer */ 1576 pAddr = &data[cellOffset + i*2]; 1577 pc = get2byte(pAddr); 1578 testcase( pc==iCellFirst ); 1579 testcase( pc==iCellLast ); 1580 /* These conditions have already been verified in btreeInitPage() 1581 ** if PRAGMA cell_size_check=ON. 1582 */ 1583 if( pc<iCellStart || pc>iCellLast ){ 1584 return SQLITE_CORRUPT_PAGE(pPage); 1585 } 1586 assert( pc>=iCellStart && pc<=iCellLast ); 1587 size = pPage->xCellSize(pPage, &src[pc]); 1588 cbrk -= size; 1589 if( cbrk<iCellStart || pc+size>usableSize ){ 1590 return SQLITE_CORRUPT_PAGE(pPage); 1591 } 1592 assert( cbrk+size<=usableSize && cbrk>=iCellStart ); 1593 testcase( cbrk+size==usableSize ); 1594 testcase( pc+size==usableSize ); 1595 put2byte(pAddr, cbrk); 1596 memcpy(&data[cbrk], &src[pc], size); 1597 } 1598 } 1599 data[hdr+7] = 0; 1600 1601 defragment_out: 1602 assert( pPage->nFree>=0 ); 1603 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1604 return SQLITE_CORRUPT_PAGE(pPage); 1605 } 1606 assert( cbrk>=iCellFirst ); 1607 put2byte(&data[hdr+5], cbrk); 1608 data[hdr+1] = 0; 1609 data[hdr+2] = 0; 1610 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1611 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1612 return SQLITE_OK; 1613 } 1614 1615 /* 1616 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1617 ** size. If one can be found, return a pointer to the space and remove it 1618 ** from the free-list. 1619 ** 1620 ** If no suitable space can be found on the free-list, return NULL. 1621 ** 1622 ** This function may detect corruption within pPg. If corruption is 1623 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1624 ** 1625 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1626 ** will be ignored if adding the extra space to the fragmentation count 1627 ** causes the fragmentation count to exceed 60. 1628 */ 1629 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1630 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1631 u8 * const aData = pPg->aData; /* Page data */ 1632 int iAddr = hdr + 1; /* Address of ptr to pc */ 1633 u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */ 1634 int pc = get2byte(pTmp); /* Address of a free slot */ 1635 int x; /* Excess size of the slot */ 1636 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1637 int size; /* Size of the free slot */ 1638 1639 assert( pc>0 ); 1640 while( pc<=maxPC ){ 1641 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1642 ** freeblock form a big-endian integer which is the size of the freeblock 1643 ** in bytes, including the 4-byte header. */ 1644 pTmp = &aData[pc+2]; 1645 size = get2byte(pTmp); 1646 if( (x = size - nByte)>=0 ){ 1647 testcase( x==4 ); 1648 testcase( x==3 ); 1649 if( x<4 ){ 1650 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1651 ** number of bytes in fragments may not exceed 60. */ 1652 if( aData[hdr+7]>57 ) return 0; 1653 1654 /* Remove the slot from the free-list. Update the number of 1655 ** fragmented bytes within the page. */ 1656 memcpy(&aData[iAddr], &aData[pc], 2); 1657 aData[hdr+7] += (u8)x; 1658 testcase( pc+x>maxPC ); 1659 return &aData[pc]; 1660 }else if( x+pc > maxPC ){ 1661 /* This slot extends off the end of the usable part of the page */ 1662 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1663 return 0; 1664 }else{ 1665 /* The slot remains on the free-list. Reduce its size to account 1666 ** for the portion used by the new allocation. */ 1667 put2byte(&aData[pc+2], x); 1668 } 1669 return &aData[pc + x]; 1670 } 1671 iAddr = pc; 1672 pTmp = &aData[pc]; 1673 pc = get2byte(pTmp); 1674 if( pc<=iAddr ){ 1675 if( pc ){ 1676 /* The next slot in the chain comes before the current slot */ 1677 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1678 } 1679 return 0; 1680 } 1681 } 1682 if( pc>maxPC+nByte-4 ){ 1683 /* The free slot chain extends off the end of the page */ 1684 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1685 } 1686 return 0; 1687 } 1688 1689 /* 1690 ** Allocate nByte bytes of space from within the B-Tree page passed 1691 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1692 ** of the first byte of allocated space. Return either SQLITE_OK or 1693 ** an error code (usually SQLITE_CORRUPT). 1694 ** 1695 ** The caller guarantees that there is sufficient space to make the 1696 ** allocation. This routine might need to defragment in order to bring 1697 ** all the space together, however. This routine will avoid using 1698 ** the first two bytes past the cell pointer area since presumably this 1699 ** allocation is being made in order to insert a new cell, so we will 1700 ** also end up needing a new cell pointer. 1701 */ 1702 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1703 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1704 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1705 int top; /* First byte of cell content area */ 1706 int rc = SQLITE_OK; /* Integer return code */ 1707 u8 *pTmp; /* Temp ptr into data[] */ 1708 int gap; /* First byte of gap between cell pointers and cell content */ 1709 1710 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1711 assert( pPage->pBt ); 1712 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1713 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1714 assert( pPage->nFree>=nByte ); 1715 assert( pPage->nOverflow==0 ); 1716 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1717 1718 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1719 gap = pPage->cellOffset + 2*pPage->nCell; 1720 assert( gap<=65536 ); 1721 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1722 ** and the reserved space is zero (the usual value for reserved space) 1723 ** then the cell content offset of an empty page wants to be 65536. 1724 ** However, that integer is too large to be stored in a 2-byte unsigned 1725 ** integer, so a value of 0 is used in its place. */ 1726 pTmp = &data[hdr+5]; 1727 top = get2byte(pTmp); 1728 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1729 if( gap>top ){ 1730 if( top==0 && pPage->pBt->usableSize==65536 ){ 1731 top = 65536; 1732 }else{ 1733 return SQLITE_CORRUPT_PAGE(pPage); 1734 } 1735 } 1736 1737 /* If there is enough space between gap and top for one more cell pointer, 1738 ** and if the freelist is not empty, then search the 1739 ** freelist looking for a slot big enough to satisfy the request. 1740 */ 1741 testcase( gap+2==top ); 1742 testcase( gap+1==top ); 1743 testcase( gap==top ); 1744 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1745 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1746 if( pSpace ){ 1747 int g2; 1748 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1749 *pIdx = g2 = (int)(pSpace-data); 1750 if( g2<=gap ){ 1751 return SQLITE_CORRUPT_PAGE(pPage); 1752 }else{ 1753 return SQLITE_OK; 1754 } 1755 }else if( rc ){ 1756 return rc; 1757 } 1758 } 1759 1760 /* The request could not be fulfilled using a freelist slot. Check 1761 ** to see if defragmentation is necessary. 1762 */ 1763 testcase( gap+2+nByte==top ); 1764 if( gap+2+nByte>top ){ 1765 assert( pPage->nCell>0 || CORRUPT_DB ); 1766 assert( pPage->nFree>=0 ); 1767 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1768 if( rc ) return rc; 1769 top = get2byteNotZero(&data[hdr+5]); 1770 assert( gap+2+nByte<=top ); 1771 } 1772 1773 1774 /* Allocate memory from the gap in between the cell pointer array 1775 ** and the cell content area. The btreeComputeFreeSpace() call has already 1776 ** validated the freelist. Given that the freelist is valid, there 1777 ** is no way that the allocation can extend off the end of the page. 1778 ** The assert() below verifies the previous sentence. 1779 */ 1780 top -= nByte; 1781 put2byte(&data[hdr+5], top); 1782 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1783 *pIdx = top; 1784 return SQLITE_OK; 1785 } 1786 1787 /* 1788 ** Return a section of the pPage->aData to the freelist. 1789 ** The first byte of the new free block is pPage->aData[iStart] 1790 ** and the size of the block is iSize bytes. 1791 ** 1792 ** Adjacent freeblocks are coalesced. 1793 ** 1794 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1795 ** that routine will not detect overlap between cells or freeblocks. Nor 1796 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1797 ** at the end of the page. So do additional corruption checks inside this 1798 ** routine and return SQLITE_CORRUPT if any problems are found. 1799 */ 1800 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1801 u16 iPtr; /* Address of ptr to next freeblock */ 1802 u16 iFreeBlk; /* Address of the next freeblock */ 1803 u8 hdr; /* Page header size. 0 or 100 */ 1804 u8 nFrag = 0; /* Reduction in fragmentation */ 1805 u16 iOrigSize = iSize; /* Original value of iSize */ 1806 u16 x; /* Offset to cell content area */ 1807 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1808 unsigned char *data = pPage->aData; /* Page content */ 1809 u8 *pTmp; /* Temporary ptr into data[] */ 1810 1811 assert( pPage->pBt!=0 ); 1812 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1813 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1814 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1815 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1816 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1817 assert( iStart<=pPage->pBt->usableSize-4 ); 1818 1819 /* The list of freeblocks must be in ascending order. Find the 1820 ** spot on the list where iStart should be inserted. 1821 */ 1822 hdr = pPage->hdrOffset; 1823 iPtr = hdr + 1; 1824 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1825 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1826 }else{ 1827 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1828 if( iFreeBlk<=iPtr ){ 1829 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ 1830 return SQLITE_CORRUPT_PAGE(pPage); 1831 } 1832 iPtr = iFreeBlk; 1833 } 1834 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ 1835 return SQLITE_CORRUPT_PAGE(pPage); 1836 } 1837 assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB ); 1838 1839 /* At this point: 1840 ** iFreeBlk: First freeblock after iStart, or zero if none 1841 ** iPtr: The address of a pointer to iFreeBlk 1842 ** 1843 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1844 */ 1845 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1846 nFrag = iFreeBlk - iEnd; 1847 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1848 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1849 if( iEnd > pPage->pBt->usableSize ){ 1850 return SQLITE_CORRUPT_PAGE(pPage); 1851 } 1852 iSize = iEnd - iStart; 1853 iFreeBlk = get2byte(&data[iFreeBlk]); 1854 } 1855 1856 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1857 ** pointer in the page header) then check to see if iStart should be 1858 ** coalesced onto the end of iPtr. 1859 */ 1860 if( iPtr>hdr+1 ){ 1861 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1862 if( iPtrEnd+3>=iStart ){ 1863 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1864 nFrag += iStart - iPtrEnd; 1865 iSize = iEnd - iPtr; 1866 iStart = iPtr; 1867 } 1868 } 1869 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1870 data[hdr+7] -= nFrag; 1871 } 1872 pTmp = &data[hdr+5]; 1873 x = get2byte(pTmp); 1874 if( iStart<=x ){ 1875 /* The new freeblock is at the beginning of the cell content area, 1876 ** so just extend the cell content area rather than create another 1877 ** freelist entry */ 1878 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); 1879 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1880 put2byte(&data[hdr+1], iFreeBlk); 1881 put2byte(&data[hdr+5], iEnd); 1882 }else{ 1883 /* Insert the new freeblock into the freelist */ 1884 put2byte(&data[iPtr], iStart); 1885 } 1886 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1887 /* Overwrite deleted information with zeros when the secure_delete 1888 ** option is enabled */ 1889 memset(&data[iStart], 0, iSize); 1890 } 1891 put2byte(&data[iStart], iFreeBlk); 1892 put2byte(&data[iStart+2], iSize); 1893 pPage->nFree += iOrigSize; 1894 return SQLITE_OK; 1895 } 1896 1897 /* 1898 ** Decode the flags byte (the first byte of the header) for a page 1899 ** and initialize fields of the MemPage structure accordingly. 1900 ** 1901 ** Only the following combinations are supported. Anything different 1902 ** indicates a corrupt database files: 1903 ** 1904 ** PTF_ZERODATA 1905 ** PTF_ZERODATA | PTF_LEAF 1906 ** PTF_LEAFDATA | PTF_INTKEY 1907 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1908 */ 1909 static int decodeFlags(MemPage *pPage, int flagByte){ 1910 BtShared *pBt; /* A copy of pPage->pBt */ 1911 1912 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1913 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1914 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1915 flagByte &= ~PTF_LEAF; 1916 pPage->childPtrSize = 4-4*pPage->leaf; 1917 pBt = pPage->pBt; 1918 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1919 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1920 ** interior table b-tree page. */ 1921 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1922 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1923 ** leaf table b-tree page. */ 1924 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1925 pPage->intKey = 1; 1926 if( pPage->leaf ){ 1927 pPage->intKeyLeaf = 1; 1928 pPage->xCellSize = cellSizePtrTableLeaf; 1929 pPage->xParseCell = btreeParseCellPtr; 1930 }else{ 1931 pPage->intKeyLeaf = 0; 1932 pPage->xCellSize = cellSizePtrNoPayload; 1933 pPage->xParseCell = btreeParseCellPtrNoPayload; 1934 } 1935 pPage->maxLocal = pBt->maxLeaf; 1936 pPage->minLocal = pBt->minLeaf; 1937 }else if( flagByte==PTF_ZERODATA ){ 1938 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1939 ** interior index b-tree page. */ 1940 assert( (PTF_ZERODATA)==2 ); 1941 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1942 ** leaf index b-tree page. */ 1943 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1944 pPage->intKey = 0; 1945 pPage->intKeyLeaf = 0; 1946 pPage->xCellSize = cellSizePtr; 1947 pPage->xParseCell = btreeParseCellPtrIndex; 1948 pPage->maxLocal = pBt->maxLocal; 1949 pPage->minLocal = pBt->minLocal; 1950 }else{ 1951 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1952 ** an error. */ 1953 pPage->intKey = 0; 1954 pPage->intKeyLeaf = 0; 1955 pPage->xCellSize = cellSizePtr; 1956 pPage->xParseCell = btreeParseCellPtrIndex; 1957 return SQLITE_CORRUPT_PAGE(pPage); 1958 } 1959 pPage->max1bytePayload = pBt->max1bytePayload; 1960 return SQLITE_OK; 1961 } 1962 1963 /* 1964 ** Compute the amount of freespace on the page. In other words, fill 1965 ** in the pPage->nFree field. 1966 */ 1967 static int btreeComputeFreeSpace(MemPage *pPage){ 1968 int pc; /* Address of a freeblock within pPage->aData[] */ 1969 u8 hdr; /* Offset to beginning of page header */ 1970 u8 *data; /* Equal to pPage->aData */ 1971 int usableSize; /* Amount of usable space on each page */ 1972 int nFree; /* Number of unused bytes on the page */ 1973 int top; /* First byte of the cell content area */ 1974 int iCellFirst; /* First allowable cell or freeblock offset */ 1975 int iCellLast; /* Last possible cell or freeblock offset */ 1976 1977 assert( pPage->pBt!=0 ); 1978 assert( pPage->pBt->db!=0 ); 1979 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1980 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1981 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1982 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1983 assert( pPage->isInit==1 ); 1984 assert( pPage->nFree<0 ); 1985 1986 usableSize = pPage->pBt->usableSize; 1987 hdr = pPage->hdrOffset; 1988 data = pPage->aData; 1989 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1990 ** the start of the cell content area. A zero value for this integer is 1991 ** interpreted as 65536. */ 1992 top = get2byteNotZero(&data[hdr+5]); 1993 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1994 iCellLast = usableSize - 4; 1995 1996 /* Compute the total free space on the page 1997 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1998 ** start of the first freeblock on the page, or is zero if there are no 1999 ** freeblocks. */ 2000 pc = get2byte(&data[hdr+1]); 2001 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 2002 if( pc>0 ){ 2003 u32 next, size; 2004 if( pc<top ){ 2005 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 2006 ** always be at least one cell before the first freeblock. 2007 */ 2008 return SQLITE_CORRUPT_PAGE(pPage); 2009 } 2010 while( 1 ){ 2011 if( pc>iCellLast ){ 2012 /* Freeblock off the end of the page */ 2013 return SQLITE_CORRUPT_PAGE(pPage); 2014 } 2015 next = get2byte(&data[pc]); 2016 size = get2byte(&data[pc+2]); 2017 nFree = nFree + size; 2018 if( next<=pc+size+3 ) break; 2019 pc = next; 2020 } 2021 if( next>0 ){ 2022 /* Freeblock not in ascending order */ 2023 return SQLITE_CORRUPT_PAGE(pPage); 2024 } 2025 if( pc+size>(unsigned int)usableSize ){ 2026 /* Last freeblock extends past page end */ 2027 return SQLITE_CORRUPT_PAGE(pPage); 2028 } 2029 } 2030 2031 /* At this point, nFree contains the sum of the offset to the start 2032 ** of the cell-content area plus the number of free bytes within 2033 ** the cell-content area. If this is greater than the usable-size 2034 ** of the page, then the page must be corrupted. This check also 2035 ** serves to verify that the offset to the start of the cell-content 2036 ** area, according to the page header, lies within the page. 2037 */ 2038 if( nFree>usableSize || nFree<iCellFirst ){ 2039 return SQLITE_CORRUPT_PAGE(pPage); 2040 } 2041 pPage->nFree = (u16)(nFree - iCellFirst); 2042 return SQLITE_OK; 2043 } 2044 2045 /* 2046 ** Do additional sanity check after btreeInitPage() if 2047 ** PRAGMA cell_size_check=ON 2048 */ 2049 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 2050 int iCellFirst; /* First allowable cell or freeblock offset */ 2051 int iCellLast; /* Last possible cell or freeblock offset */ 2052 int i; /* Index into the cell pointer array */ 2053 int sz; /* Size of a cell */ 2054 int pc; /* Address of a freeblock within pPage->aData[] */ 2055 u8 *data; /* Equal to pPage->aData */ 2056 int usableSize; /* Maximum usable space on the page */ 2057 int cellOffset; /* Start of cell content area */ 2058 2059 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 2060 usableSize = pPage->pBt->usableSize; 2061 iCellLast = usableSize - 4; 2062 data = pPage->aData; 2063 cellOffset = pPage->cellOffset; 2064 if( !pPage->leaf ) iCellLast--; 2065 for(i=0; i<pPage->nCell; i++){ 2066 pc = get2byteAligned(&data[cellOffset+i*2]); 2067 testcase( pc==iCellFirst ); 2068 testcase( pc==iCellLast ); 2069 if( pc<iCellFirst || pc>iCellLast ){ 2070 return SQLITE_CORRUPT_PAGE(pPage); 2071 } 2072 sz = pPage->xCellSize(pPage, &data[pc]); 2073 testcase( pc+sz==usableSize ); 2074 if( pc+sz>usableSize ){ 2075 return SQLITE_CORRUPT_PAGE(pPage); 2076 } 2077 } 2078 return SQLITE_OK; 2079 } 2080 2081 /* 2082 ** Initialize the auxiliary information for a disk block. 2083 ** 2084 ** Return SQLITE_OK on success. If we see that the page does 2085 ** not contain a well-formed database page, then return 2086 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 2087 ** guarantee that the page is well-formed. It only shows that 2088 ** we failed to detect any corruption. 2089 */ 2090 static int btreeInitPage(MemPage *pPage){ 2091 u8 *data; /* Equal to pPage->aData */ 2092 BtShared *pBt; /* The main btree structure */ 2093 2094 assert( pPage->pBt!=0 ); 2095 assert( pPage->pBt->db!=0 ); 2096 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2097 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 2098 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 2099 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 2100 assert( pPage->isInit==0 ); 2101 2102 pBt = pPage->pBt; 2103 data = pPage->aData + pPage->hdrOffset; 2104 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 2105 ** the b-tree page type. */ 2106 if( decodeFlags(pPage, data[0]) ){ 2107 return SQLITE_CORRUPT_PAGE(pPage); 2108 } 2109 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2110 pPage->maskPage = (u16)(pBt->pageSize - 1); 2111 pPage->nOverflow = 0; 2112 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2113 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2114 pPage->aDataEnd = pPage->aData + pBt->pageSize; 2115 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2116 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2117 ** number of cells on the page. */ 2118 pPage->nCell = get2byte(&data[3]); 2119 if( pPage->nCell>MX_CELL(pBt) ){ 2120 /* To many cells for a single page. The page must be corrupt */ 2121 return SQLITE_CORRUPT_PAGE(pPage); 2122 } 2123 testcase( pPage->nCell==MX_CELL(pBt) ); 2124 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2125 ** possible for a root page of a table that contains no rows) then the 2126 ** offset to the cell content area will equal the page size minus the 2127 ** bytes of reserved space. */ 2128 assert( pPage->nCell>0 2129 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2130 || CORRUPT_DB ); 2131 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2132 pPage->isInit = 1; 2133 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2134 return btreeCellSizeCheck(pPage); 2135 } 2136 return SQLITE_OK; 2137 } 2138 2139 /* 2140 ** Set up a raw page so that it looks like a database page holding 2141 ** no entries. 2142 */ 2143 static void zeroPage(MemPage *pPage, int flags){ 2144 unsigned char *data = pPage->aData; 2145 BtShared *pBt = pPage->pBt; 2146 u8 hdr = pPage->hdrOffset; 2147 u16 first; 2148 2149 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB ); 2150 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2151 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2152 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2153 assert( sqlite3_mutex_held(pBt->mutex) ); 2154 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2155 memset(&data[hdr], 0, pBt->usableSize - hdr); 2156 } 2157 data[hdr] = (char)flags; 2158 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2159 memset(&data[hdr+1], 0, 4); 2160 data[hdr+7] = 0; 2161 put2byte(&data[hdr+5], pBt->usableSize); 2162 pPage->nFree = (u16)(pBt->usableSize - first); 2163 decodeFlags(pPage, flags); 2164 pPage->cellOffset = first; 2165 pPage->aDataEnd = &data[pBt->pageSize]; 2166 pPage->aCellIdx = &data[first]; 2167 pPage->aDataOfst = &data[pPage->childPtrSize]; 2168 pPage->nOverflow = 0; 2169 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2170 pPage->maskPage = (u16)(pBt->pageSize - 1); 2171 pPage->nCell = 0; 2172 pPage->isInit = 1; 2173 } 2174 2175 2176 /* 2177 ** Convert a DbPage obtained from the pager into a MemPage used by 2178 ** the btree layer. 2179 */ 2180 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2181 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2182 if( pgno!=pPage->pgno ){ 2183 pPage->aData = sqlite3PagerGetData(pDbPage); 2184 pPage->pDbPage = pDbPage; 2185 pPage->pBt = pBt; 2186 pPage->pgno = pgno; 2187 pPage->hdrOffset = pgno==1 ? 100 : 0; 2188 } 2189 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2190 return pPage; 2191 } 2192 2193 /* 2194 ** Get a page from the pager. Initialize the MemPage.pBt and 2195 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2196 ** 2197 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2198 ** about the content of the page at this time. So do not go to the disk 2199 ** to fetch the content. Just fill in the content with zeros for now. 2200 ** If in the future we call sqlite3PagerWrite() on this page, that 2201 ** means we have started to be concerned about content and the disk 2202 ** read should occur at that point. 2203 */ 2204 static int btreeGetPage( 2205 BtShared *pBt, /* The btree */ 2206 Pgno pgno, /* Number of the page to fetch */ 2207 MemPage **ppPage, /* Return the page in this parameter */ 2208 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2209 ){ 2210 int rc; 2211 DbPage *pDbPage; 2212 2213 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2214 assert( sqlite3_mutex_held(pBt->mutex) ); 2215 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2216 if( rc ) return rc; 2217 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2218 return SQLITE_OK; 2219 } 2220 2221 /* 2222 ** Retrieve a page from the pager cache. If the requested page is not 2223 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2224 ** MemPage.aData elements if needed. 2225 */ 2226 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2227 DbPage *pDbPage; 2228 assert( sqlite3_mutex_held(pBt->mutex) ); 2229 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2230 if( pDbPage ){ 2231 return btreePageFromDbPage(pDbPage, pgno, pBt); 2232 } 2233 return 0; 2234 } 2235 2236 /* 2237 ** Return the size of the database file in pages. If there is any kind of 2238 ** error, return ((unsigned int)-1). 2239 */ 2240 static Pgno btreePagecount(BtShared *pBt){ 2241 return pBt->nPage; 2242 } 2243 Pgno sqlite3BtreeLastPage(Btree *p){ 2244 assert( sqlite3BtreeHoldsMutex(p) ); 2245 return btreePagecount(p->pBt); 2246 } 2247 2248 /* 2249 ** Get a page from the pager and initialize it. 2250 ** 2251 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2252 ** call. Do additional sanity checking on the page in this case. 2253 ** And if the fetch fails, this routine must decrement pCur->iPage. 2254 ** 2255 ** The page is fetched as read-write unless pCur is not NULL and is 2256 ** a read-only cursor. 2257 ** 2258 ** If an error occurs, then *ppPage is undefined. It 2259 ** may remain unchanged, or it may be set to an invalid value. 2260 */ 2261 static int getAndInitPage( 2262 BtShared *pBt, /* The database file */ 2263 Pgno pgno, /* Number of the page to get */ 2264 MemPage **ppPage, /* Write the page pointer here */ 2265 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2266 int bReadOnly /* True for a read-only page */ 2267 ){ 2268 int rc; 2269 DbPage *pDbPage; 2270 assert( sqlite3_mutex_held(pBt->mutex) ); 2271 assert( pCur==0 || ppPage==&pCur->pPage ); 2272 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2273 assert( pCur==0 || pCur->iPage>0 ); 2274 2275 if( pgno>btreePagecount(pBt) ){ 2276 rc = SQLITE_CORRUPT_BKPT; 2277 goto getAndInitPage_error1; 2278 } 2279 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2280 if( rc ){ 2281 goto getAndInitPage_error1; 2282 } 2283 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2284 if( (*ppPage)->isInit==0 ){ 2285 btreePageFromDbPage(pDbPage, pgno, pBt); 2286 rc = btreeInitPage(*ppPage); 2287 if( rc!=SQLITE_OK ){ 2288 goto getAndInitPage_error2; 2289 } 2290 } 2291 assert( (*ppPage)->pgno==pgno || CORRUPT_DB ); 2292 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2293 2294 /* If obtaining a child page for a cursor, we must verify that the page is 2295 ** compatible with the root page. */ 2296 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2297 rc = SQLITE_CORRUPT_PGNO(pgno); 2298 goto getAndInitPage_error2; 2299 } 2300 return SQLITE_OK; 2301 2302 getAndInitPage_error2: 2303 releasePage(*ppPage); 2304 getAndInitPage_error1: 2305 if( pCur ){ 2306 pCur->iPage--; 2307 pCur->pPage = pCur->apPage[pCur->iPage]; 2308 } 2309 testcase( pgno==0 ); 2310 assert( pgno!=0 || rc!=SQLITE_OK ); 2311 return rc; 2312 } 2313 2314 /* 2315 ** Release a MemPage. This should be called once for each prior 2316 ** call to btreeGetPage. 2317 ** 2318 ** Page1 is a special case and must be released using releasePageOne(). 2319 */ 2320 static void releasePageNotNull(MemPage *pPage){ 2321 assert( pPage->aData ); 2322 assert( pPage->pBt ); 2323 assert( pPage->pDbPage!=0 ); 2324 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2325 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2326 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2327 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2328 } 2329 static void releasePage(MemPage *pPage){ 2330 if( pPage ) releasePageNotNull(pPage); 2331 } 2332 static void releasePageOne(MemPage *pPage){ 2333 assert( pPage!=0 ); 2334 assert( pPage->aData ); 2335 assert( pPage->pBt ); 2336 assert( pPage->pDbPage!=0 ); 2337 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2338 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2339 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2340 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2341 } 2342 2343 /* 2344 ** Get an unused page. 2345 ** 2346 ** This works just like btreeGetPage() with the addition: 2347 ** 2348 ** * If the page is already in use for some other purpose, immediately 2349 ** release it and return an SQLITE_CURRUPT error. 2350 ** * Make sure the isInit flag is clear 2351 */ 2352 static int btreeGetUnusedPage( 2353 BtShared *pBt, /* The btree */ 2354 Pgno pgno, /* Number of the page to fetch */ 2355 MemPage **ppPage, /* Return the page in this parameter */ 2356 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2357 ){ 2358 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2359 if( rc==SQLITE_OK ){ 2360 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2361 releasePage(*ppPage); 2362 *ppPage = 0; 2363 return SQLITE_CORRUPT_BKPT; 2364 } 2365 (*ppPage)->isInit = 0; 2366 }else{ 2367 *ppPage = 0; 2368 } 2369 return rc; 2370 } 2371 2372 2373 /* 2374 ** During a rollback, when the pager reloads information into the cache 2375 ** so that the cache is restored to its original state at the start of 2376 ** the transaction, for each page restored this routine is called. 2377 ** 2378 ** This routine needs to reset the extra data section at the end of the 2379 ** page to agree with the restored data. 2380 */ 2381 static void pageReinit(DbPage *pData){ 2382 MemPage *pPage; 2383 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2384 assert( sqlite3PagerPageRefcount(pData)>0 ); 2385 if( pPage->isInit ){ 2386 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2387 pPage->isInit = 0; 2388 if( sqlite3PagerPageRefcount(pData)>1 ){ 2389 /* pPage might not be a btree page; it might be an overflow page 2390 ** or ptrmap page or a free page. In those cases, the following 2391 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2392 ** But no harm is done by this. And it is very important that 2393 ** btreeInitPage() be called on every btree page so we make 2394 ** the call for every page that comes in for re-initing. */ 2395 btreeInitPage(pPage); 2396 } 2397 } 2398 } 2399 2400 /* 2401 ** Invoke the busy handler for a btree. 2402 */ 2403 static int btreeInvokeBusyHandler(void *pArg){ 2404 BtShared *pBt = (BtShared*)pArg; 2405 assert( pBt->db ); 2406 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2407 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 2408 } 2409 2410 /* 2411 ** Open a database file. 2412 ** 2413 ** zFilename is the name of the database file. If zFilename is NULL 2414 ** then an ephemeral database is created. The ephemeral database might 2415 ** be exclusively in memory, or it might use a disk-based memory cache. 2416 ** Either way, the ephemeral database will be automatically deleted 2417 ** when sqlite3BtreeClose() is called. 2418 ** 2419 ** If zFilename is ":memory:" then an in-memory database is created 2420 ** that is automatically destroyed when it is closed. 2421 ** 2422 ** The "flags" parameter is a bitmask that might contain bits like 2423 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2424 ** 2425 ** If the database is already opened in the same database connection 2426 ** and we are in shared cache mode, then the open will fail with an 2427 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2428 ** objects in the same database connection since doing so will lead 2429 ** to problems with locking. 2430 */ 2431 int sqlite3BtreeOpen( 2432 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2433 const char *zFilename, /* Name of the file containing the BTree database */ 2434 sqlite3 *db, /* Associated database handle */ 2435 Btree **ppBtree, /* Pointer to new Btree object written here */ 2436 int flags, /* Options */ 2437 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2438 ){ 2439 BtShared *pBt = 0; /* Shared part of btree structure */ 2440 Btree *p; /* Handle to return */ 2441 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2442 int rc = SQLITE_OK; /* Result code from this function */ 2443 u8 nReserve; /* Byte of unused space on each page */ 2444 unsigned char zDbHeader[100]; /* Database header content */ 2445 2446 /* True if opening an ephemeral, temporary database */ 2447 const int isTempDb = zFilename==0 || zFilename[0]==0; 2448 2449 /* Set the variable isMemdb to true for an in-memory database, or 2450 ** false for a file-based database. 2451 */ 2452 #ifdef SQLITE_OMIT_MEMORYDB 2453 const int isMemdb = 0; 2454 #else 2455 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2456 || (isTempDb && sqlite3TempInMemory(db)) 2457 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2458 #endif 2459 2460 assert( db!=0 ); 2461 assert( pVfs!=0 ); 2462 assert( sqlite3_mutex_held(db->mutex) ); 2463 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2464 2465 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2466 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2467 2468 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2469 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2470 2471 if( isMemdb ){ 2472 flags |= BTREE_MEMORY; 2473 } 2474 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2475 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2476 } 2477 p = sqlite3MallocZero(sizeof(Btree)); 2478 if( !p ){ 2479 return SQLITE_NOMEM_BKPT; 2480 } 2481 p->inTrans = TRANS_NONE; 2482 p->db = db; 2483 #ifndef SQLITE_OMIT_SHARED_CACHE 2484 p->lock.pBtree = p; 2485 p->lock.iTable = 1; 2486 #endif 2487 2488 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2489 /* 2490 ** If this Btree is a candidate for shared cache, try to find an 2491 ** existing BtShared object that we can share with 2492 */ 2493 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2494 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2495 int nFilename = sqlite3Strlen30(zFilename)+1; 2496 int nFullPathname = pVfs->mxPathname+1; 2497 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2498 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2499 2500 p->sharable = 1; 2501 if( !zFullPathname ){ 2502 sqlite3_free(p); 2503 return SQLITE_NOMEM_BKPT; 2504 } 2505 if( isMemdb ){ 2506 memcpy(zFullPathname, zFilename, nFilename); 2507 }else{ 2508 rc = sqlite3OsFullPathname(pVfs, zFilename, 2509 nFullPathname, zFullPathname); 2510 if( rc ){ 2511 if( rc==SQLITE_OK_SYMLINK ){ 2512 rc = SQLITE_OK; 2513 }else{ 2514 sqlite3_free(zFullPathname); 2515 sqlite3_free(p); 2516 return rc; 2517 } 2518 } 2519 } 2520 #if SQLITE_THREADSAFE 2521 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2522 sqlite3_mutex_enter(mutexOpen); 2523 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 2524 sqlite3_mutex_enter(mutexShared); 2525 #endif 2526 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2527 assert( pBt->nRef>0 ); 2528 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2529 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2530 int iDb; 2531 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2532 Btree *pExisting = db->aDb[iDb].pBt; 2533 if( pExisting && pExisting->pBt==pBt ){ 2534 sqlite3_mutex_leave(mutexShared); 2535 sqlite3_mutex_leave(mutexOpen); 2536 sqlite3_free(zFullPathname); 2537 sqlite3_free(p); 2538 return SQLITE_CONSTRAINT; 2539 } 2540 } 2541 p->pBt = pBt; 2542 pBt->nRef++; 2543 break; 2544 } 2545 } 2546 sqlite3_mutex_leave(mutexShared); 2547 sqlite3_free(zFullPathname); 2548 } 2549 #ifdef SQLITE_DEBUG 2550 else{ 2551 /* In debug mode, we mark all persistent databases as sharable 2552 ** even when they are not. This exercises the locking code and 2553 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2554 ** statements to find locking problems. 2555 */ 2556 p->sharable = 1; 2557 } 2558 #endif 2559 } 2560 #endif 2561 if( pBt==0 ){ 2562 /* 2563 ** The following asserts make sure that structures used by the btree are 2564 ** the right size. This is to guard against size changes that result 2565 ** when compiling on a different architecture. 2566 */ 2567 assert( sizeof(i64)==8 ); 2568 assert( sizeof(u64)==8 ); 2569 assert( sizeof(u32)==4 ); 2570 assert( sizeof(u16)==2 ); 2571 assert( sizeof(Pgno)==4 ); 2572 2573 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2574 if( pBt==0 ){ 2575 rc = SQLITE_NOMEM_BKPT; 2576 goto btree_open_out; 2577 } 2578 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2579 sizeof(MemPage), flags, vfsFlags, pageReinit); 2580 if( rc==SQLITE_OK ){ 2581 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2582 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2583 } 2584 if( rc!=SQLITE_OK ){ 2585 goto btree_open_out; 2586 } 2587 pBt->openFlags = (u8)flags; 2588 pBt->db = db; 2589 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2590 p->pBt = pBt; 2591 2592 pBt->pCursor = 0; 2593 pBt->pPage1 = 0; 2594 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2595 #if defined(SQLITE_SECURE_DELETE) 2596 pBt->btsFlags |= BTS_SECURE_DELETE; 2597 #elif defined(SQLITE_FAST_SECURE_DELETE) 2598 pBt->btsFlags |= BTS_OVERWRITE; 2599 #endif 2600 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2601 ** determined by the 2-byte integer located at an offset of 16 bytes from 2602 ** the beginning of the database file. */ 2603 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2604 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2605 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2606 pBt->pageSize = 0; 2607 #ifndef SQLITE_OMIT_AUTOVACUUM 2608 /* If the magic name ":memory:" will create an in-memory database, then 2609 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2610 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2611 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2612 ** regular file-name. In this case the auto-vacuum applies as per normal. 2613 */ 2614 if( zFilename && !isMemdb ){ 2615 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2616 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2617 } 2618 #endif 2619 nReserve = 0; 2620 }else{ 2621 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2622 ** determined by the one-byte unsigned integer found at an offset of 20 2623 ** into the database file header. */ 2624 nReserve = zDbHeader[20]; 2625 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2626 #ifndef SQLITE_OMIT_AUTOVACUUM 2627 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2628 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2629 #endif 2630 } 2631 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2632 if( rc ) goto btree_open_out; 2633 pBt->usableSize = pBt->pageSize - nReserve; 2634 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2635 2636 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2637 /* Add the new BtShared object to the linked list sharable BtShareds. 2638 */ 2639 pBt->nRef = 1; 2640 if( p->sharable ){ 2641 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2642 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) 2643 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2644 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2645 if( pBt->mutex==0 ){ 2646 rc = SQLITE_NOMEM_BKPT; 2647 goto btree_open_out; 2648 } 2649 } 2650 sqlite3_mutex_enter(mutexShared); 2651 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2652 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2653 sqlite3_mutex_leave(mutexShared); 2654 } 2655 #endif 2656 } 2657 2658 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2659 /* If the new Btree uses a sharable pBtShared, then link the new 2660 ** Btree into the list of all sharable Btrees for the same connection. 2661 ** The list is kept in ascending order by pBt address. 2662 */ 2663 if( p->sharable ){ 2664 int i; 2665 Btree *pSib; 2666 for(i=0; i<db->nDb; i++){ 2667 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2668 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2669 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2670 p->pNext = pSib; 2671 p->pPrev = 0; 2672 pSib->pPrev = p; 2673 }else{ 2674 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2675 pSib = pSib->pNext; 2676 } 2677 p->pNext = pSib->pNext; 2678 p->pPrev = pSib; 2679 if( p->pNext ){ 2680 p->pNext->pPrev = p; 2681 } 2682 pSib->pNext = p; 2683 } 2684 break; 2685 } 2686 } 2687 } 2688 #endif 2689 *ppBtree = p; 2690 2691 btree_open_out: 2692 if( rc!=SQLITE_OK ){ 2693 if( pBt && pBt->pPager ){ 2694 sqlite3PagerClose(pBt->pPager, 0); 2695 } 2696 sqlite3_free(pBt); 2697 sqlite3_free(p); 2698 *ppBtree = 0; 2699 }else{ 2700 sqlite3_file *pFile; 2701 2702 /* If the B-Tree was successfully opened, set the pager-cache size to the 2703 ** default value. Except, when opening on an existing shared pager-cache, 2704 ** do not change the pager-cache size. 2705 */ 2706 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2707 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); 2708 } 2709 2710 pFile = sqlite3PagerFile(pBt->pPager); 2711 if( pFile->pMethods ){ 2712 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2713 } 2714 } 2715 if( mutexOpen ){ 2716 assert( sqlite3_mutex_held(mutexOpen) ); 2717 sqlite3_mutex_leave(mutexOpen); 2718 } 2719 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2720 return rc; 2721 } 2722 2723 /* 2724 ** Decrement the BtShared.nRef counter. When it reaches zero, 2725 ** remove the BtShared structure from the sharing list. Return 2726 ** true if the BtShared.nRef counter reaches zero and return 2727 ** false if it is still positive. 2728 */ 2729 static int removeFromSharingList(BtShared *pBt){ 2730 #ifndef SQLITE_OMIT_SHARED_CACHE 2731 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) 2732 BtShared *pList; 2733 int removed = 0; 2734 2735 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2736 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 2737 sqlite3_mutex_enter(pMainMtx); 2738 pBt->nRef--; 2739 if( pBt->nRef<=0 ){ 2740 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2741 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2742 }else{ 2743 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2744 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2745 pList=pList->pNext; 2746 } 2747 if( ALWAYS(pList) ){ 2748 pList->pNext = pBt->pNext; 2749 } 2750 } 2751 if( SQLITE_THREADSAFE ){ 2752 sqlite3_mutex_free(pBt->mutex); 2753 } 2754 removed = 1; 2755 } 2756 sqlite3_mutex_leave(pMainMtx); 2757 return removed; 2758 #else 2759 return 1; 2760 #endif 2761 } 2762 2763 /* 2764 ** Make sure pBt->pTmpSpace points to an allocation of 2765 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2766 ** pointer. 2767 */ 2768 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ 2769 assert( pBt!=0 ); 2770 assert( pBt->pTmpSpace==0 ); 2771 /* This routine is called only by btreeCursor() when allocating the 2772 ** first write cursor for the BtShared object */ 2773 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); 2774 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2775 if( pBt->pTmpSpace==0 ){ 2776 BtCursor *pCur = pBt->pCursor; 2777 pBt->pCursor = pCur->pNext; /* Unlink the cursor */ 2778 memset(pCur, 0, sizeof(*pCur)); 2779 return SQLITE_NOMEM_BKPT; 2780 } 2781 2782 /* One of the uses of pBt->pTmpSpace is to format cells before 2783 ** inserting them into a leaf page (function fillInCell()). If 2784 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2785 ** by the various routines that manipulate binary cells. Which 2786 ** can mean that fillInCell() only initializes the first 2 or 3 2787 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2788 ** it into a database page. This is not actually a problem, but it 2789 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2790 ** data is passed to system call write(). So to avoid this error, 2791 ** zero the first 4 bytes of temp space here. 2792 ** 2793 ** Also: Provide four bytes of initialized space before the 2794 ** beginning of pTmpSpace as an area available to prepend the 2795 ** left-child pointer to the beginning of a cell. 2796 */ 2797 memset(pBt->pTmpSpace, 0, 8); 2798 pBt->pTmpSpace += 4; 2799 return SQLITE_OK; 2800 } 2801 2802 /* 2803 ** Free the pBt->pTmpSpace allocation 2804 */ 2805 static void freeTempSpace(BtShared *pBt){ 2806 if( pBt->pTmpSpace ){ 2807 pBt->pTmpSpace -= 4; 2808 sqlite3PageFree(pBt->pTmpSpace); 2809 pBt->pTmpSpace = 0; 2810 } 2811 } 2812 2813 /* 2814 ** Close an open database and invalidate all cursors. 2815 */ 2816 int sqlite3BtreeClose(Btree *p){ 2817 BtShared *pBt = p->pBt; 2818 2819 /* Close all cursors opened via this handle. */ 2820 assert( sqlite3_mutex_held(p->db->mutex) ); 2821 sqlite3BtreeEnter(p); 2822 2823 /* Verify that no other cursors have this Btree open */ 2824 #ifdef SQLITE_DEBUG 2825 { 2826 BtCursor *pCur = pBt->pCursor; 2827 while( pCur ){ 2828 BtCursor *pTmp = pCur; 2829 pCur = pCur->pNext; 2830 assert( pTmp->pBtree!=p ); 2831 2832 } 2833 } 2834 #endif 2835 2836 /* Rollback any active transaction and free the handle structure. 2837 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2838 ** this handle. 2839 */ 2840 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2841 sqlite3BtreeLeave(p); 2842 2843 /* If there are still other outstanding references to the shared-btree 2844 ** structure, return now. The remainder of this procedure cleans 2845 ** up the shared-btree. 2846 */ 2847 assert( p->wantToLock==0 && p->locked==0 ); 2848 if( !p->sharable || removeFromSharingList(pBt) ){ 2849 /* The pBt is no longer on the sharing list, so we can access 2850 ** it without having to hold the mutex. 2851 ** 2852 ** Clean out and delete the BtShared object. 2853 */ 2854 assert( !pBt->pCursor ); 2855 sqlite3PagerClose(pBt->pPager, p->db); 2856 if( pBt->xFreeSchema && pBt->pSchema ){ 2857 pBt->xFreeSchema(pBt->pSchema); 2858 } 2859 sqlite3DbFree(0, pBt->pSchema); 2860 freeTempSpace(pBt); 2861 sqlite3_free(pBt); 2862 } 2863 2864 #ifndef SQLITE_OMIT_SHARED_CACHE 2865 assert( p->wantToLock==0 ); 2866 assert( p->locked==0 ); 2867 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2868 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2869 #endif 2870 2871 sqlite3_free(p); 2872 return SQLITE_OK; 2873 } 2874 2875 /* 2876 ** Change the "soft" limit on the number of pages in the cache. 2877 ** Unused and unmodified pages will be recycled when the number of 2878 ** pages in the cache exceeds this soft limit. But the size of the 2879 ** cache is allowed to grow larger than this limit if it contains 2880 ** dirty pages or pages still in active use. 2881 */ 2882 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2883 BtShared *pBt = p->pBt; 2884 assert( sqlite3_mutex_held(p->db->mutex) ); 2885 sqlite3BtreeEnter(p); 2886 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2887 sqlite3BtreeLeave(p); 2888 return SQLITE_OK; 2889 } 2890 2891 /* 2892 ** Change the "spill" limit on the number of pages in the cache. 2893 ** If the number of pages exceeds this limit during a write transaction, 2894 ** the pager might attempt to "spill" pages to the journal early in 2895 ** order to free up memory. 2896 ** 2897 ** The value returned is the current spill size. If zero is passed 2898 ** as an argument, no changes are made to the spill size setting, so 2899 ** using mxPage of 0 is a way to query the current spill size. 2900 */ 2901 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2902 BtShared *pBt = p->pBt; 2903 int res; 2904 assert( sqlite3_mutex_held(p->db->mutex) ); 2905 sqlite3BtreeEnter(p); 2906 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2907 sqlite3BtreeLeave(p); 2908 return res; 2909 } 2910 2911 #if SQLITE_MAX_MMAP_SIZE>0 2912 /* 2913 ** Change the limit on the amount of the database file that may be 2914 ** memory mapped. 2915 */ 2916 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2917 BtShared *pBt = p->pBt; 2918 assert( sqlite3_mutex_held(p->db->mutex) ); 2919 sqlite3BtreeEnter(p); 2920 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2921 sqlite3BtreeLeave(p); 2922 return SQLITE_OK; 2923 } 2924 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2925 2926 /* 2927 ** Change the way data is synced to disk in order to increase or decrease 2928 ** how well the database resists damage due to OS crashes and power 2929 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2930 ** there is a high probability of damage) Level 2 is the default. There 2931 ** is a very low but non-zero probability of damage. Level 3 reduces the 2932 ** probability of damage to near zero but with a write performance reduction. 2933 */ 2934 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2935 int sqlite3BtreeSetPagerFlags( 2936 Btree *p, /* The btree to set the safety level on */ 2937 unsigned pgFlags /* Various PAGER_* flags */ 2938 ){ 2939 BtShared *pBt = p->pBt; 2940 assert( sqlite3_mutex_held(p->db->mutex) ); 2941 sqlite3BtreeEnter(p); 2942 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2943 sqlite3BtreeLeave(p); 2944 return SQLITE_OK; 2945 } 2946 #endif 2947 2948 /* 2949 ** Change the default pages size and the number of reserved bytes per page. 2950 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2951 ** without changing anything. 2952 ** 2953 ** The page size must be a power of 2 between 512 and 65536. If the page 2954 ** size supplied does not meet this constraint then the page size is not 2955 ** changed. 2956 ** 2957 ** Page sizes are constrained to be a power of two so that the region 2958 ** of the database file used for locking (beginning at PENDING_BYTE, 2959 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2960 ** at the beginning of a page. 2961 ** 2962 ** If parameter nReserve is less than zero, then the number of reserved 2963 ** bytes per page is left unchanged. 2964 ** 2965 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2966 ** and autovacuum mode can no longer be changed. 2967 */ 2968 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2969 int rc = SQLITE_OK; 2970 int x; 2971 BtShared *pBt = p->pBt; 2972 assert( nReserve>=0 && nReserve<=255 ); 2973 sqlite3BtreeEnter(p); 2974 pBt->nReserveWanted = nReserve; 2975 x = pBt->pageSize - pBt->usableSize; 2976 if( nReserve<x ) nReserve = x; 2977 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2978 sqlite3BtreeLeave(p); 2979 return SQLITE_READONLY; 2980 } 2981 assert( nReserve>=0 && nReserve<=255 ); 2982 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2983 ((pageSize-1)&pageSize)==0 ){ 2984 assert( (pageSize & 7)==0 ); 2985 assert( !pBt->pCursor ); 2986 if( nReserve>32 && pageSize==512 ) pageSize = 1024; 2987 pBt->pageSize = (u32)pageSize; 2988 freeTempSpace(pBt); 2989 } 2990 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2991 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2992 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2993 sqlite3BtreeLeave(p); 2994 return rc; 2995 } 2996 2997 /* 2998 ** Return the currently defined page size 2999 */ 3000 int sqlite3BtreeGetPageSize(Btree *p){ 3001 return p->pBt->pageSize; 3002 } 3003 3004 /* 3005 ** This function is similar to sqlite3BtreeGetReserve(), except that it 3006 ** may only be called if it is guaranteed that the b-tree mutex is already 3007 ** held. 3008 ** 3009 ** This is useful in one special case in the backup API code where it is 3010 ** known that the shared b-tree mutex is held, but the mutex on the 3011 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 3012 ** were to be called, it might collide with some other operation on the 3013 ** database handle that owns *p, causing undefined behavior. 3014 */ 3015 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 3016 int n; 3017 assert( sqlite3_mutex_held(p->pBt->mutex) ); 3018 n = p->pBt->pageSize - p->pBt->usableSize; 3019 return n; 3020 } 3021 3022 /* 3023 ** Return the number of bytes of space at the end of every page that 3024 ** are intentually left unused. This is the "reserved" space that is 3025 ** sometimes used by extensions. 3026 ** 3027 ** The value returned is the larger of the current reserve size and 3028 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. 3029 ** The amount of reserve can only grow - never shrink. 3030 */ 3031 int sqlite3BtreeGetRequestedReserve(Btree *p){ 3032 int n1, n2; 3033 sqlite3BtreeEnter(p); 3034 n1 = (int)p->pBt->nReserveWanted; 3035 n2 = sqlite3BtreeGetReserveNoMutex(p); 3036 sqlite3BtreeLeave(p); 3037 return n1>n2 ? n1 : n2; 3038 } 3039 3040 3041 /* 3042 ** Set the maximum page count for a database if mxPage is positive. 3043 ** No changes are made if mxPage is 0 or negative. 3044 ** Regardless of the value of mxPage, return the maximum page count. 3045 */ 3046 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ 3047 Pgno n; 3048 sqlite3BtreeEnter(p); 3049 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 3050 sqlite3BtreeLeave(p); 3051 return n; 3052 } 3053 3054 /* 3055 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 3056 ** 3057 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 3058 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 3059 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 3060 ** newFlag==(-1) No changes 3061 ** 3062 ** This routine acts as a query if newFlag is less than zero 3063 ** 3064 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 3065 ** freelist leaf pages are not written back to the database. Thus in-page 3066 ** deleted content is cleared, but freelist deleted content is not. 3067 ** 3068 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 3069 ** that freelist leaf pages are written back into the database, increasing 3070 ** the amount of disk I/O. 3071 */ 3072 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 3073 int b; 3074 if( p==0 ) return 0; 3075 sqlite3BtreeEnter(p); 3076 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 3077 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 3078 if( newFlag>=0 ){ 3079 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 3080 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 3081 } 3082 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 3083 sqlite3BtreeLeave(p); 3084 return b; 3085 } 3086 3087 /* 3088 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 3089 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 3090 ** is disabled. The default value for the auto-vacuum property is 3091 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 3092 */ 3093 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 3094 #ifdef SQLITE_OMIT_AUTOVACUUM 3095 return SQLITE_READONLY; 3096 #else 3097 BtShared *pBt = p->pBt; 3098 int rc = SQLITE_OK; 3099 u8 av = (u8)autoVacuum; 3100 3101 sqlite3BtreeEnter(p); 3102 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 3103 rc = SQLITE_READONLY; 3104 }else{ 3105 pBt->autoVacuum = av ?1:0; 3106 pBt->incrVacuum = av==2 ?1:0; 3107 } 3108 sqlite3BtreeLeave(p); 3109 return rc; 3110 #endif 3111 } 3112 3113 /* 3114 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3115 ** enabled 1 is returned. Otherwise 0. 3116 */ 3117 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3118 #ifdef SQLITE_OMIT_AUTOVACUUM 3119 return BTREE_AUTOVACUUM_NONE; 3120 #else 3121 int rc; 3122 sqlite3BtreeEnter(p); 3123 rc = ( 3124 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3125 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3126 BTREE_AUTOVACUUM_INCR 3127 ); 3128 sqlite3BtreeLeave(p); 3129 return rc; 3130 #endif 3131 } 3132 3133 /* 3134 ** If the user has not set the safety-level for this database connection 3135 ** using "PRAGMA synchronous", and if the safety-level is not already 3136 ** set to the value passed to this function as the second parameter, 3137 ** set it so. 3138 */ 3139 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3140 && !defined(SQLITE_OMIT_WAL) 3141 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3142 sqlite3 *db; 3143 Db *pDb; 3144 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3145 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3146 if( pDb->bSyncSet==0 3147 && pDb->safety_level!=safety_level 3148 && pDb!=&db->aDb[1] 3149 ){ 3150 pDb->safety_level = safety_level; 3151 sqlite3PagerSetFlags(pBt->pPager, 3152 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3153 } 3154 } 3155 } 3156 #else 3157 # define setDefaultSyncFlag(pBt,safety_level) 3158 #endif 3159 3160 /* Forward declaration */ 3161 static int newDatabase(BtShared*); 3162 3163 3164 /* 3165 ** Get a reference to pPage1 of the database file. This will 3166 ** also acquire a readlock on that file. 3167 ** 3168 ** SQLITE_OK is returned on success. If the file is not a 3169 ** well-formed database file, then SQLITE_CORRUPT is returned. 3170 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3171 ** is returned if we run out of memory. 3172 */ 3173 static int lockBtree(BtShared *pBt){ 3174 int rc; /* Result code from subfunctions */ 3175 MemPage *pPage1; /* Page 1 of the database file */ 3176 u32 nPage; /* Number of pages in the database */ 3177 u32 nPageFile = 0; /* Number of pages in the database file */ 3178 3179 assert( sqlite3_mutex_held(pBt->mutex) ); 3180 assert( pBt->pPage1==0 ); 3181 rc = sqlite3PagerSharedLock(pBt->pPager); 3182 if( rc!=SQLITE_OK ) return rc; 3183 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3184 if( rc!=SQLITE_OK ) return rc; 3185 3186 /* Do some checking to help insure the file we opened really is 3187 ** a valid database file. 3188 */ 3189 nPage = get4byte(28+(u8*)pPage1->aData); 3190 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3191 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3192 nPage = nPageFile; 3193 } 3194 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3195 nPage = 0; 3196 } 3197 if( nPage>0 ){ 3198 u32 pageSize; 3199 u32 usableSize; 3200 u8 *page1 = pPage1->aData; 3201 rc = SQLITE_NOTADB; 3202 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3203 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3204 ** 61 74 20 33 00. */ 3205 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3206 goto page1_init_failed; 3207 } 3208 3209 #ifdef SQLITE_OMIT_WAL 3210 if( page1[18]>1 ){ 3211 pBt->btsFlags |= BTS_READ_ONLY; 3212 } 3213 if( page1[19]>1 ){ 3214 goto page1_init_failed; 3215 } 3216 #else 3217 if( page1[18]>2 ){ 3218 pBt->btsFlags |= BTS_READ_ONLY; 3219 } 3220 if( page1[19]>2 ){ 3221 goto page1_init_failed; 3222 } 3223 3224 /* If the read version is set to 2, this database should be accessed 3225 ** in WAL mode. If the log is not already open, open it now. Then 3226 ** return SQLITE_OK and return without populating BtShared.pPage1. 3227 ** The caller detects this and calls this function again. This is 3228 ** required as the version of page 1 currently in the page1 buffer 3229 ** may not be the latest version - there may be a newer one in the log 3230 ** file. 3231 */ 3232 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3233 int isOpen = 0; 3234 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3235 if( rc!=SQLITE_OK ){ 3236 goto page1_init_failed; 3237 }else{ 3238 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3239 if( isOpen==0 ){ 3240 releasePageOne(pPage1); 3241 return SQLITE_OK; 3242 } 3243 } 3244 rc = SQLITE_NOTADB; 3245 }else{ 3246 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3247 } 3248 #endif 3249 3250 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3251 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3252 ** 3253 ** The original design allowed these amounts to vary, but as of 3254 ** version 3.6.0, we require them to be fixed. 3255 */ 3256 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3257 goto page1_init_failed; 3258 } 3259 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3260 ** determined by the 2-byte integer located at an offset of 16 bytes from 3261 ** the beginning of the database file. */ 3262 pageSize = (page1[16]<<8) | (page1[17]<<16); 3263 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3264 ** between 512 and 65536 inclusive. */ 3265 if( ((pageSize-1)&pageSize)!=0 3266 || pageSize>SQLITE_MAX_PAGE_SIZE 3267 || pageSize<=256 3268 ){ 3269 goto page1_init_failed; 3270 } 3271 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3272 assert( (pageSize & 7)==0 ); 3273 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3274 ** integer at offset 20 is the number of bytes of space at the end of 3275 ** each page to reserve for extensions. 3276 ** 3277 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3278 ** determined by the one-byte unsigned integer found at an offset of 20 3279 ** into the database file header. */ 3280 usableSize = pageSize - page1[20]; 3281 if( (u32)pageSize!=pBt->pageSize ){ 3282 /* After reading the first page of the database assuming a page size 3283 ** of BtShared.pageSize, we have discovered that the page-size is 3284 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3285 ** zero and return SQLITE_OK. The caller will call this function 3286 ** again with the correct page-size. 3287 */ 3288 releasePageOne(pPage1); 3289 pBt->usableSize = usableSize; 3290 pBt->pageSize = pageSize; 3291 freeTempSpace(pBt); 3292 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3293 pageSize-usableSize); 3294 return rc; 3295 } 3296 if( nPage>nPageFile ){ 3297 if( sqlite3WritableSchema(pBt->db)==0 ){ 3298 rc = SQLITE_CORRUPT_BKPT; 3299 goto page1_init_failed; 3300 }else{ 3301 nPage = nPageFile; 3302 } 3303 } 3304 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3305 ** be less than 480. In other words, if the page size is 512, then the 3306 ** reserved space size cannot exceed 32. */ 3307 if( usableSize<480 ){ 3308 goto page1_init_failed; 3309 } 3310 pBt->pageSize = pageSize; 3311 pBt->usableSize = usableSize; 3312 #ifndef SQLITE_OMIT_AUTOVACUUM 3313 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3314 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3315 #endif 3316 } 3317 3318 /* maxLocal is the maximum amount of payload to store locally for 3319 ** a cell. Make sure it is small enough so that at least minFanout 3320 ** cells can will fit on one page. We assume a 10-byte page header. 3321 ** Besides the payload, the cell must store: 3322 ** 2-byte pointer to the cell 3323 ** 4-byte child pointer 3324 ** 9-byte nKey value 3325 ** 4-byte nData value 3326 ** 4-byte overflow page pointer 3327 ** So a cell consists of a 2-byte pointer, a header which is as much as 3328 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3329 ** page pointer. 3330 */ 3331 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3332 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3333 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3334 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3335 if( pBt->maxLocal>127 ){ 3336 pBt->max1bytePayload = 127; 3337 }else{ 3338 pBt->max1bytePayload = (u8)pBt->maxLocal; 3339 } 3340 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3341 pBt->pPage1 = pPage1; 3342 pBt->nPage = nPage; 3343 return SQLITE_OK; 3344 3345 page1_init_failed: 3346 releasePageOne(pPage1); 3347 pBt->pPage1 = 0; 3348 return rc; 3349 } 3350 3351 #ifndef NDEBUG 3352 /* 3353 ** Return the number of cursors open on pBt. This is for use 3354 ** in assert() expressions, so it is only compiled if NDEBUG is not 3355 ** defined. 3356 ** 3357 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3358 ** false then all cursors are counted. 3359 ** 3360 ** For the purposes of this routine, a cursor is any cursor that 3361 ** is capable of reading or writing to the database. Cursors that 3362 ** have been tripped into the CURSOR_FAULT state are not counted. 3363 */ 3364 static int countValidCursors(BtShared *pBt, int wrOnly){ 3365 BtCursor *pCur; 3366 int r = 0; 3367 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3368 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3369 && pCur->eState!=CURSOR_FAULT ) r++; 3370 } 3371 return r; 3372 } 3373 #endif 3374 3375 /* 3376 ** If there are no outstanding cursors and we are not in the middle 3377 ** of a transaction but there is a read lock on the database, then 3378 ** this routine unrefs the first page of the database file which 3379 ** has the effect of releasing the read lock. 3380 ** 3381 ** If there is a transaction in progress, this routine is a no-op. 3382 */ 3383 static void unlockBtreeIfUnused(BtShared *pBt){ 3384 assert( sqlite3_mutex_held(pBt->mutex) ); 3385 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3386 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3387 MemPage *pPage1 = pBt->pPage1; 3388 assert( pPage1->aData ); 3389 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3390 pBt->pPage1 = 0; 3391 releasePageOne(pPage1); 3392 } 3393 } 3394 3395 /* 3396 ** If pBt points to an empty file then convert that empty file 3397 ** into a new empty database by initializing the first page of 3398 ** the database. 3399 */ 3400 static int newDatabase(BtShared *pBt){ 3401 MemPage *pP1; 3402 unsigned char *data; 3403 int rc; 3404 3405 assert( sqlite3_mutex_held(pBt->mutex) ); 3406 if( pBt->nPage>0 ){ 3407 return SQLITE_OK; 3408 } 3409 pP1 = pBt->pPage1; 3410 assert( pP1!=0 ); 3411 data = pP1->aData; 3412 rc = sqlite3PagerWrite(pP1->pDbPage); 3413 if( rc ) return rc; 3414 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3415 assert( sizeof(zMagicHeader)==16 ); 3416 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3417 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3418 data[18] = 1; 3419 data[19] = 1; 3420 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3421 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3422 data[21] = 64; 3423 data[22] = 32; 3424 data[23] = 32; 3425 memset(&data[24], 0, 100-24); 3426 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3427 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3428 #ifndef SQLITE_OMIT_AUTOVACUUM 3429 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3430 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3431 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3432 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3433 #endif 3434 pBt->nPage = 1; 3435 data[31] = 1; 3436 return SQLITE_OK; 3437 } 3438 3439 /* 3440 ** Initialize the first page of the database file (creating a database 3441 ** consisting of a single page and no schema objects). Return SQLITE_OK 3442 ** if successful, or an SQLite error code otherwise. 3443 */ 3444 int sqlite3BtreeNewDb(Btree *p){ 3445 int rc; 3446 sqlite3BtreeEnter(p); 3447 p->pBt->nPage = 0; 3448 rc = newDatabase(p->pBt); 3449 sqlite3BtreeLeave(p); 3450 return rc; 3451 } 3452 3453 /* 3454 ** Attempt to start a new transaction. A write-transaction 3455 ** is started if the second argument is nonzero, otherwise a read- 3456 ** transaction. If the second argument is 2 or more and exclusive 3457 ** transaction is started, meaning that no other process is allowed 3458 ** to access the database. A preexisting transaction may not be 3459 ** upgraded to exclusive by calling this routine a second time - the 3460 ** exclusivity flag only works for a new transaction. 3461 ** 3462 ** A write-transaction must be started before attempting any 3463 ** changes to the database. None of the following routines 3464 ** will work unless a transaction is started first: 3465 ** 3466 ** sqlite3BtreeCreateTable() 3467 ** sqlite3BtreeCreateIndex() 3468 ** sqlite3BtreeClearTable() 3469 ** sqlite3BtreeDropTable() 3470 ** sqlite3BtreeInsert() 3471 ** sqlite3BtreeDelete() 3472 ** sqlite3BtreeUpdateMeta() 3473 ** 3474 ** If an initial attempt to acquire the lock fails because of lock contention 3475 ** and the database was previously unlocked, then invoke the busy handler 3476 ** if there is one. But if there was previously a read-lock, do not 3477 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3478 ** returned when there is already a read-lock in order to avoid a deadlock. 3479 ** 3480 ** Suppose there are two processes A and B. A has a read lock and B has 3481 ** a reserved lock. B tries to promote to exclusive but is blocked because 3482 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3483 ** One or the other of the two processes must give way or there can be 3484 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3485 ** when A already has a read lock, we encourage A to give up and let B 3486 ** proceed. 3487 */ 3488 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3489 BtShared *pBt = p->pBt; 3490 Pager *pPager = pBt->pPager; 3491 int rc = SQLITE_OK; 3492 3493 sqlite3BtreeEnter(p); 3494 btreeIntegrity(p); 3495 3496 /* If the btree is already in a write-transaction, or it 3497 ** is already in a read-transaction and a read-transaction 3498 ** is requested, this is a no-op. 3499 */ 3500 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3501 goto trans_begun; 3502 } 3503 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3504 3505 if( (p->db->flags & SQLITE_ResetDatabase) 3506 && sqlite3PagerIsreadonly(pPager)==0 3507 ){ 3508 pBt->btsFlags &= ~BTS_READ_ONLY; 3509 } 3510 3511 /* Write transactions are not possible on a read-only database */ 3512 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3513 rc = SQLITE_READONLY; 3514 goto trans_begun; 3515 } 3516 3517 #ifndef SQLITE_OMIT_SHARED_CACHE 3518 { 3519 sqlite3 *pBlock = 0; 3520 /* If another database handle has already opened a write transaction 3521 ** on this shared-btree structure and a second write transaction is 3522 ** requested, return SQLITE_LOCKED. 3523 */ 3524 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3525 || (pBt->btsFlags & BTS_PENDING)!=0 3526 ){ 3527 pBlock = pBt->pWriter->db; 3528 }else if( wrflag>1 ){ 3529 BtLock *pIter; 3530 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3531 if( pIter->pBtree!=p ){ 3532 pBlock = pIter->pBtree->db; 3533 break; 3534 } 3535 } 3536 } 3537 if( pBlock ){ 3538 sqlite3ConnectionBlocked(p->db, pBlock); 3539 rc = SQLITE_LOCKED_SHAREDCACHE; 3540 goto trans_begun; 3541 } 3542 } 3543 #endif 3544 3545 /* Any read-only or read-write transaction implies a read-lock on 3546 ** page 1. So if some other shared-cache client already has a write-lock 3547 ** on page 1, the transaction cannot be opened. */ 3548 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 3549 if( SQLITE_OK!=rc ) goto trans_begun; 3550 3551 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3552 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3553 do { 3554 sqlite3PagerWalDb(pPager, p->db); 3555 3556 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3557 /* If transitioning from no transaction directly to a write transaction, 3558 ** block for the WRITER lock first if possible. */ 3559 if( pBt->pPage1==0 && wrflag ){ 3560 assert( pBt->inTransaction==TRANS_NONE ); 3561 rc = sqlite3PagerWalWriteLock(pPager, 1); 3562 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; 3563 } 3564 #endif 3565 3566 /* Call lockBtree() until either pBt->pPage1 is populated or 3567 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3568 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3569 ** reading page 1 it discovers that the page-size of the database 3570 ** file is not pBt->pageSize. In this case lockBtree() will update 3571 ** pBt->pageSize to the page-size of the file on disk. 3572 */ 3573 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3574 3575 if( rc==SQLITE_OK && wrflag ){ 3576 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3577 rc = SQLITE_READONLY; 3578 }else{ 3579 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); 3580 if( rc==SQLITE_OK ){ 3581 rc = newDatabase(pBt); 3582 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3583 /* if there was no transaction opened when this function was 3584 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3585 ** code to SQLITE_BUSY. */ 3586 rc = SQLITE_BUSY; 3587 } 3588 } 3589 } 3590 3591 if( rc!=SQLITE_OK ){ 3592 (void)sqlite3PagerWalWriteLock(pPager, 0); 3593 unlockBtreeIfUnused(pBt); 3594 } 3595 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3596 btreeInvokeBusyHandler(pBt) ); 3597 sqlite3PagerWalDb(pPager, 0); 3598 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3599 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3600 #endif 3601 3602 if( rc==SQLITE_OK ){ 3603 if( p->inTrans==TRANS_NONE ){ 3604 pBt->nTransaction++; 3605 #ifndef SQLITE_OMIT_SHARED_CACHE 3606 if( p->sharable ){ 3607 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3608 p->lock.eLock = READ_LOCK; 3609 p->lock.pNext = pBt->pLock; 3610 pBt->pLock = &p->lock; 3611 } 3612 #endif 3613 } 3614 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3615 if( p->inTrans>pBt->inTransaction ){ 3616 pBt->inTransaction = p->inTrans; 3617 } 3618 if( wrflag ){ 3619 MemPage *pPage1 = pBt->pPage1; 3620 #ifndef SQLITE_OMIT_SHARED_CACHE 3621 assert( !pBt->pWriter ); 3622 pBt->pWriter = p; 3623 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3624 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3625 #endif 3626 3627 /* If the db-size header field is incorrect (as it may be if an old 3628 ** client has been writing the database file), update it now. Doing 3629 ** this sooner rather than later means the database size can safely 3630 ** re-read the database size from page 1 if a savepoint or transaction 3631 ** rollback occurs within the transaction. 3632 */ 3633 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3634 rc = sqlite3PagerWrite(pPage1->pDbPage); 3635 if( rc==SQLITE_OK ){ 3636 put4byte(&pPage1->aData[28], pBt->nPage); 3637 } 3638 } 3639 } 3640 } 3641 3642 trans_begun: 3643 if( rc==SQLITE_OK ){ 3644 if( pSchemaVersion ){ 3645 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3646 } 3647 if( wrflag ){ 3648 /* This call makes sure that the pager has the correct number of 3649 ** open savepoints. If the second parameter is greater than 0 and 3650 ** the sub-journal is not already open, then it will be opened here. 3651 */ 3652 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); 3653 } 3654 } 3655 3656 btreeIntegrity(p); 3657 sqlite3BtreeLeave(p); 3658 return rc; 3659 } 3660 3661 #ifndef SQLITE_OMIT_AUTOVACUUM 3662 3663 /* 3664 ** Set the pointer-map entries for all children of page pPage. Also, if 3665 ** pPage contains cells that point to overflow pages, set the pointer 3666 ** map entries for the overflow pages as well. 3667 */ 3668 static int setChildPtrmaps(MemPage *pPage){ 3669 int i; /* Counter variable */ 3670 int nCell; /* Number of cells in page pPage */ 3671 int rc; /* Return code */ 3672 BtShared *pBt = pPage->pBt; 3673 Pgno pgno = pPage->pgno; 3674 3675 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3676 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3677 if( rc!=SQLITE_OK ) return rc; 3678 nCell = pPage->nCell; 3679 3680 for(i=0; i<nCell; i++){ 3681 u8 *pCell = findCell(pPage, i); 3682 3683 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3684 3685 if( !pPage->leaf ){ 3686 Pgno childPgno = get4byte(pCell); 3687 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3688 } 3689 } 3690 3691 if( !pPage->leaf ){ 3692 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3693 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3694 } 3695 3696 return rc; 3697 } 3698 3699 /* 3700 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3701 ** that it points to iTo. Parameter eType describes the type of pointer to 3702 ** be modified, as follows: 3703 ** 3704 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3705 ** page of pPage. 3706 ** 3707 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3708 ** page pointed to by one of the cells on pPage. 3709 ** 3710 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3711 ** overflow page in the list. 3712 */ 3713 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3714 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3715 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3716 if( eType==PTRMAP_OVERFLOW2 ){ 3717 /* The pointer is always the first 4 bytes of the page in this case. */ 3718 if( get4byte(pPage->aData)!=iFrom ){ 3719 return SQLITE_CORRUPT_PAGE(pPage); 3720 } 3721 put4byte(pPage->aData, iTo); 3722 }else{ 3723 int i; 3724 int nCell; 3725 int rc; 3726 3727 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3728 if( rc ) return rc; 3729 nCell = pPage->nCell; 3730 3731 for(i=0; i<nCell; i++){ 3732 u8 *pCell = findCell(pPage, i); 3733 if( eType==PTRMAP_OVERFLOW1 ){ 3734 CellInfo info; 3735 pPage->xParseCell(pPage, pCell, &info); 3736 if( info.nLocal<info.nPayload ){ 3737 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3738 return SQLITE_CORRUPT_PAGE(pPage); 3739 } 3740 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3741 put4byte(pCell+info.nSize-4, iTo); 3742 break; 3743 } 3744 } 3745 }else{ 3746 if( get4byte(pCell)==iFrom ){ 3747 put4byte(pCell, iTo); 3748 break; 3749 } 3750 } 3751 } 3752 3753 if( i==nCell ){ 3754 if( eType!=PTRMAP_BTREE || 3755 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3756 return SQLITE_CORRUPT_PAGE(pPage); 3757 } 3758 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3759 } 3760 } 3761 return SQLITE_OK; 3762 } 3763 3764 3765 /* 3766 ** Move the open database page pDbPage to location iFreePage in the 3767 ** database. The pDbPage reference remains valid. 3768 ** 3769 ** The isCommit flag indicates that there is no need to remember that 3770 ** the journal needs to be sync()ed before database page pDbPage->pgno 3771 ** can be written to. The caller has already promised not to write to that 3772 ** page. 3773 */ 3774 static int relocatePage( 3775 BtShared *pBt, /* Btree */ 3776 MemPage *pDbPage, /* Open page to move */ 3777 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3778 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3779 Pgno iFreePage, /* The location to move pDbPage to */ 3780 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3781 ){ 3782 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3783 Pgno iDbPage = pDbPage->pgno; 3784 Pager *pPager = pBt->pPager; 3785 int rc; 3786 3787 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3788 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3789 assert( sqlite3_mutex_held(pBt->mutex) ); 3790 assert( pDbPage->pBt==pBt ); 3791 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3792 3793 /* Move page iDbPage from its current location to page number iFreePage */ 3794 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3795 iDbPage, iFreePage, iPtrPage, eType)); 3796 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3797 if( rc!=SQLITE_OK ){ 3798 return rc; 3799 } 3800 pDbPage->pgno = iFreePage; 3801 3802 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3803 ** that point to overflow pages. The pointer map entries for all these 3804 ** pages need to be changed. 3805 ** 3806 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3807 ** pointer to a subsequent overflow page. If this is the case, then 3808 ** the pointer map needs to be updated for the subsequent overflow page. 3809 */ 3810 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3811 rc = setChildPtrmaps(pDbPage); 3812 if( rc!=SQLITE_OK ){ 3813 return rc; 3814 } 3815 }else{ 3816 Pgno nextOvfl = get4byte(pDbPage->aData); 3817 if( nextOvfl!=0 ){ 3818 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3819 if( rc!=SQLITE_OK ){ 3820 return rc; 3821 } 3822 } 3823 } 3824 3825 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3826 ** that it points at iFreePage. Also fix the pointer map entry for 3827 ** iPtrPage. 3828 */ 3829 if( eType!=PTRMAP_ROOTPAGE ){ 3830 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3831 if( rc!=SQLITE_OK ){ 3832 return rc; 3833 } 3834 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3835 if( rc!=SQLITE_OK ){ 3836 releasePage(pPtrPage); 3837 return rc; 3838 } 3839 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3840 releasePage(pPtrPage); 3841 if( rc==SQLITE_OK ){ 3842 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3843 } 3844 } 3845 return rc; 3846 } 3847 3848 /* Forward declaration required by incrVacuumStep(). */ 3849 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3850 3851 /* 3852 ** Perform a single step of an incremental-vacuum. If successful, return 3853 ** SQLITE_OK. If there is no work to do (and therefore no point in 3854 ** calling this function again), return SQLITE_DONE. Or, if an error 3855 ** occurs, return some other error code. 3856 ** 3857 ** More specifically, this function attempts to re-organize the database so 3858 ** that the last page of the file currently in use is no longer in use. 3859 ** 3860 ** Parameter nFin is the number of pages that this database would contain 3861 ** were this function called until it returns SQLITE_DONE. 3862 ** 3863 ** If the bCommit parameter is non-zero, this function assumes that the 3864 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3865 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3866 ** operation, or false for an incremental vacuum. 3867 */ 3868 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3869 Pgno nFreeList; /* Number of pages still on the free-list */ 3870 int rc; 3871 3872 assert( sqlite3_mutex_held(pBt->mutex) ); 3873 assert( iLastPg>nFin ); 3874 3875 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3876 u8 eType; 3877 Pgno iPtrPage; 3878 3879 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3880 if( nFreeList==0 ){ 3881 return SQLITE_DONE; 3882 } 3883 3884 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3885 if( rc!=SQLITE_OK ){ 3886 return rc; 3887 } 3888 if( eType==PTRMAP_ROOTPAGE ){ 3889 return SQLITE_CORRUPT_BKPT; 3890 } 3891 3892 if( eType==PTRMAP_FREEPAGE ){ 3893 if( bCommit==0 ){ 3894 /* Remove the page from the files free-list. This is not required 3895 ** if bCommit is non-zero. In that case, the free-list will be 3896 ** truncated to zero after this function returns, so it doesn't 3897 ** matter if it still contains some garbage entries. 3898 */ 3899 Pgno iFreePg; 3900 MemPage *pFreePg; 3901 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3902 if( rc!=SQLITE_OK ){ 3903 return rc; 3904 } 3905 assert( iFreePg==iLastPg ); 3906 releasePage(pFreePg); 3907 } 3908 } else { 3909 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3910 MemPage *pLastPg; 3911 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3912 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3913 3914 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3915 if( rc!=SQLITE_OK ){ 3916 return rc; 3917 } 3918 3919 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3920 ** is swapped with the first free page pulled off the free list. 3921 ** 3922 ** On the other hand, if bCommit is greater than zero, then keep 3923 ** looping until a free-page located within the first nFin pages 3924 ** of the file is found. 3925 */ 3926 if( bCommit==0 ){ 3927 eMode = BTALLOC_LE; 3928 iNear = nFin; 3929 } 3930 do { 3931 MemPage *pFreePg; 3932 Pgno dbSize = btreePagecount(pBt); 3933 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3934 if( rc!=SQLITE_OK ){ 3935 releasePage(pLastPg); 3936 return rc; 3937 } 3938 releasePage(pFreePg); 3939 if( iFreePg>dbSize ){ 3940 releasePage(pLastPg); 3941 return SQLITE_CORRUPT_BKPT; 3942 } 3943 }while( bCommit && iFreePg>nFin ); 3944 assert( iFreePg<iLastPg ); 3945 3946 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3947 releasePage(pLastPg); 3948 if( rc!=SQLITE_OK ){ 3949 return rc; 3950 } 3951 } 3952 } 3953 3954 if( bCommit==0 ){ 3955 do { 3956 iLastPg--; 3957 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3958 pBt->bDoTruncate = 1; 3959 pBt->nPage = iLastPg; 3960 } 3961 return SQLITE_OK; 3962 } 3963 3964 /* 3965 ** The database opened by the first argument is an auto-vacuum database 3966 ** nOrig pages in size containing nFree free pages. Return the expected 3967 ** size of the database in pages following an auto-vacuum operation. 3968 */ 3969 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3970 int nEntry; /* Number of entries on one ptrmap page */ 3971 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3972 Pgno nFin; /* Return value */ 3973 3974 nEntry = pBt->usableSize/5; 3975 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3976 nFin = nOrig - nFree - nPtrmap; 3977 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3978 nFin--; 3979 } 3980 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3981 nFin--; 3982 } 3983 3984 return nFin; 3985 } 3986 3987 /* 3988 ** A write-transaction must be opened before calling this function. 3989 ** It performs a single unit of work towards an incremental vacuum. 3990 ** 3991 ** If the incremental vacuum is finished after this function has run, 3992 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3993 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3994 */ 3995 int sqlite3BtreeIncrVacuum(Btree *p){ 3996 int rc; 3997 BtShared *pBt = p->pBt; 3998 3999 sqlite3BtreeEnter(p); 4000 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 4001 if( !pBt->autoVacuum ){ 4002 rc = SQLITE_DONE; 4003 }else{ 4004 Pgno nOrig = btreePagecount(pBt); 4005 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 4006 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 4007 4008 if( nOrig<nFin || nFree>=nOrig ){ 4009 rc = SQLITE_CORRUPT_BKPT; 4010 }else if( nFree>0 ){ 4011 rc = saveAllCursors(pBt, 0, 0); 4012 if( rc==SQLITE_OK ){ 4013 invalidateAllOverflowCache(pBt); 4014 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 4015 } 4016 if( rc==SQLITE_OK ){ 4017 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4018 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 4019 } 4020 }else{ 4021 rc = SQLITE_DONE; 4022 } 4023 } 4024 sqlite3BtreeLeave(p); 4025 return rc; 4026 } 4027 4028 /* 4029 ** This routine is called prior to sqlite3PagerCommit when a transaction 4030 ** is committed for an auto-vacuum database. 4031 */ 4032 static int autoVacuumCommit(Btree *p){ 4033 int rc = SQLITE_OK; 4034 Pager *pPager; 4035 BtShared *pBt; 4036 sqlite3 *db; 4037 VVA_ONLY( int nRef ); 4038 4039 assert( p!=0 ); 4040 pBt = p->pBt; 4041 pPager = pBt->pPager; 4042 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) 4043 4044 assert( sqlite3_mutex_held(pBt->mutex) ); 4045 invalidateAllOverflowCache(pBt); 4046 assert(pBt->autoVacuum); 4047 if( !pBt->incrVacuum ){ 4048 Pgno nFin; /* Number of pages in database after autovacuuming */ 4049 Pgno nFree; /* Number of pages on the freelist initially */ 4050 Pgno nVac; /* Number of pages to vacuum */ 4051 Pgno iFree; /* The next page to be freed */ 4052 Pgno nOrig; /* Database size before freeing */ 4053 4054 nOrig = btreePagecount(pBt); 4055 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 4056 /* It is not possible to create a database for which the final page 4057 ** is either a pointer-map page or the pending-byte page. If one 4058 ** is encountered, this indicates corruption. 4059 */ 4060 return SQLITE_CORRUPT_BKPT; 4061 } 4062 4063 nFree = get4byte(&pBt->pPage1->aData[36]); 4064 db = p->db; 4065 if( db->xAutovacPages ){ 4066 int iDb; 4067 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ 4068 if( db->aDb[iDb].pBt==p ) break; 4069 } 4070 nVac = db->xAutovacPages( 4071 db->pAutovacPagesArg, 4072 db->aDb[iDb].zDbSName, 4073 nOrig, 4074 nFree, 4075 pBt->pageSize 4076 ); 4077 if( nVac>nFree ){ 4078 nVac = nFree; 4079 } 4080 if( nVac==0 ){ 4081 return SQLITE_OK; 4082 } 4083 }else{ 4084 nVac = nFree; 4085 } 4086 nFin = finalDbSize(pBt, nOrig, nVac); 4087 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 4088 if( nFin<nOrig ){ 4089 rc = saveAllCursors(pBt, 0, 0); 4090 } 4091 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 4092 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); 4093 } 4094 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 4095 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4096 if( nVac==nFree ){ 4097 put4byte(&pBt->pPage1->aData[32], 0); 4098 put4byte(&pBt->pPage1->aData[36], 0); 4099 } 4100 put4byte(&pBt->pPage1->aData[28], nFin); 4101 pBt->bDoTruncate = 1; 4102 pBt->nPage = nFin; 4103 } 4104 if( rc!=SQLITE_OK ){ 4105 sqlite3PagerRollback(pPager); 4106 } 4107 } 4108 4109 assert( nRef>=sqlite3PagerRefcount(pPager) ); 4110 return rc; 4111 } 4112 4113 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 4114 # define setChildPtrmaps(x) SQLITE_OK 4115 #endif 4116 4117 /* 4118 ** This routine does the first phase of a two-phase commit. This routine 4119 ** causes a rollback journal to be created (if it does not already exist) 4120 ** and populated with enough information so that if a power loss occurs 4121 ** the database can be restored to its original state by playing back 4122 ** the journal. Then the contents of the journal are flushed out to 4123 ** the disk. After the journal is safely on oxide, the changes to the 4124 ** database are written into the database file and flushed to oxide. 4125 ** At the end of this call, the rollback journal still exists on the 4126 ** disk and we are still holding all locks, so the transaction has not 4127 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 4128 ** commit process. 4129 ** 4130 ** This call is a no-op if no write-transaction is currently active on pBt. 4131 ** 4132 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to 4133 ** the name of a super-journal file that should be written into the 4134 ** individual journal file, or is NULL, indicating no super-journal file 4135 ** (single database transaction). 4136 ** 4137 ** When this is called, the super-journal should already have been 4138 ** created, populated with this journal pointer and synced to disk. 4139 ** 4140 ** Once this is routine has returned, the only thing required to commit 4141 ** the write-transaction for this database file is to delete the journal. 4142 */ 4143 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ 4144 int rc = SQLITE_OK; 4145 if( p->inTrans==TRANS_WRITE ){ 4146 BtShared *pBt = p->pBt; 4147 sqlite3BtreeEnter(p); 4148 #ifndef SQLITE_OMIT_AUTOVACUUM 4149 if( pBt->autoVacuum ){ 4150 rc = autoVacuumCommit(p); 4151 if( rc!=SQLITE_OK ){ 4152 sqlite3BtreeLeave(p); 4153 return rc; 4154 } 4155 } 4156 if( pBt->bDoTruncate ){ 4157 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 4158 } 4159 #endif 4160 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); 4161 sqlite3BtreeLeave(p); 4162 } 4163 return rc; 4164 } 4165 4166 /* 4167 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4168 ** at the conclusion of a transaction. 4169 */ 4170 static void btreeEndTransaction(Btree *p){ 4171 BtShared *pBt = p->pBt; 4172 sqlite3 *db = p->db; 4173 assert( sqlite3BtreeHoldsMutex(p) ); 4174 4175 #ifndef SQLITE_OMIT_AUTOVACUUM 4176 pBt->bDoTruncate = 0; 4177 #endif 4178 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4179 /* If there are other active statements that belong to this database 4180 ** handle, downgrade to a read-only transaction. The other statements 4181 ** may still be reading from the database. */ 4182 downgradeAllSharedCacheTableLocks(p); 4183 p->inTrans = TRANS_READ; 4184 }else{ 4185 /* If the handle had any kind of transaction open, decrement the 4186 ** transaction count of the shared btree. If the transaction count 4187 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4188 ** call below will unlock the pager. */ 4189 if( p->inTrans!=TRANS_NONE ){ 4190 clearAllSharedCacheTableLocks(p); 4191 pBt->nTransaction--; 4192 if( 0==pBt->nTransaction ){ 4193 pBt->inTransaction = TRANS_NONE; 4194 } 4195 } 4196 4197 /* Set the current transaction state to TRANS_NONE and unlock the 4198 ** pager if this call closed the only read or write transaction. */ 4199 p->inTrans = TRANS_NONE; 4200 unlockBtreeIfUnused(pBt); 4201 } 4202 4203 btreeIntegrity(p); 4204 } 4205 4206 /* 4207 ** Commit the transaction currently in progress. 4208 ** 4209 ** This routine implements the second phase of a 2-phase commit. The 4210 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4211 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4212 ** routine did all the work of writing information out to disk and flushing the 4213 ** contents so that they are written onto the disk platter. All this 4214 ** routine has to do is delete or truncate or zero the header in the 4215 ** the rollback journal (which causes the transaction to commit) and 4216 ** drop locks. 4217 ** 4218 ** Normally, if an error occurs while the pager layer is attempting to 4219 ** finalize the underlying journal file, this function returns an error and 4220 ** the upper layer will attempt a rollback. However, if the second argument 4221 ** is non-zero then this b-tree transaction is part of a multi-file 4222 ** transaction. In this case, the transaction has already been committed 4223 ** (by deleting a super-journal file) and the caller will ignore this 4224 ** functions return code. So, even if an error occurs in the pager layer, 4225 ** reset the b-tree objects internal state to indicate that the write 4226 ** transaction has been closed. This is quite safe, as the pager will have 4227 ** transitioned to the error state. 4228 ** 4229 ** This will release the write lock on the database file. If there 4230 ** are no active cursors, it also releases the read lock. 4231 */ 4232 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4233 4234 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4235 sqlite3BtreeEnter(p); 4236 btreeIntegrity(p); 4237 4238 /* If the handle has a write-transaction open, commit the shared-btrees 4239 ** transaction and set the shared state to TRANS_READ. 4240 */ 4241 if( p->inTrans==TRANS_WRITE ){ 4242 int rc; 4243 BtShared *pBt = p->pBt; 4244 assert( pBt->inTransaction==TRANS_WRITE ); 4245 assert( pBt->nTransaction>0 ); 4246 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4247 if( rc!=SQLITE_OK && bCleanup==0 ){ 4248 sqlite3BtreeLeave(p); 4249 return rc; 4250 } 4251 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4252 pBt->inTransaction = TRANS_READ; 4253 btreeClearHasContent(pBt); 4254 } 4255 4256 btreeEndTransaction(p); 4257 sqlite3BtreeLeave(p); 4258 return SQLITE_OK; 4259 } 4260 4261 /* 4262 ** Do both phases of a commit. 4263 */ 4264 int sqlite3BtreeCommit(Btree *p){ 4265 int rc; 4266 sqlite3BtreeEnter(p); 4267 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4268 if( rc==SQLITE_OK ){ 4269 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4270 } 4271 sqlite3BtreeLeave(p); 4272 return rc; 4273 } 4274 4275 /* 4276 ** This routine sets the state to CURSOR_FAULT and the error 4277 ** code to errCode for every cursor on any BtShared that pBtree 4278 ** references. Or if the writeOnly flag is set to 1, then only 4279 ** trip write cursors and leave read cursors unchanged. 4280 ** 4281 ** Every cursor is a candidate to be tripped, including cursors 4282 ** that belong to other database connections that happen to be 4283 ** sharing the cache with pBtree. 4284 ** 4285 ** This routine gets called when a rollback occurs. If the writeOnly 4286 ** flag is true, then only write-cursors need be tripped - read-only 4287 ** cursors save their current positions so that they may continue 4288 ** following the rollback. Or, if writeOnly is false, all cursors are 4289 ** tripped. In general, writeOnly is false if the transaction being 4290 ** rolled back modified the database schema. In this case b-tree root 4291 ** pages may be moved or deleted from the database altogether, making 4292 ** it unsafe for read cursors to continue. 4293 ** 4294 ** If the writeOnly flag is true and an error is encountered while 4295 ** saving the current position of a read-only cursor, all cursors, 4296 ** including all read-cursors are tripped. 4297 ** 4298 ** SQLITE_OK is returned if successful, or if an error occurs while 4299 ** saving a cursor position, an SQLite error code. 4300 */ 4301 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4302 BtCursor *p; 4303 int rc = SQLITE_OK; 4304 4305 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4306 if( pBtree ){ 4307 sqlite3BtreeEnter(pBtree); 4308 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4309 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4310 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4311 rc = saveCursorPosition(p); 4312 if( rc!=SQLITE_OK ){ 4313 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4314 break; 4315 } 4316 } 4317 }else{ 4318 sqlite3BtreeClearCursor(p); 4319 p->eState = CURSOR_FAULT; 4320 p->skipNext = errCode; 4321 } 4322 btreeReleaseAllCursorPages(p); 4323 } 4324 sqlite3BtreeLeave(pBtree); 4325 } 4326 return rc; 4327 } 4328 4329 /* 4330 ** Set the pBt->nPage field correctly, according to the current 4331 ** state of the database. Assume pBt->pPage1 is valid. 4332 */ 4333 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4334 int nPage = get4byte(&pPage1->aData[28]); 4335 testcase( nPage==0 ); 4336 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4337 testcase( pBt->nPage!=(u32)nPage ); 4338 pBt->nPage = nPage; 4339 } 4340 4341 /* 4342 ** Rollback the transaction in progress. 4343 ** 4344 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4345 ** Only write cursors are tripped if writeOnly is true but all cursors are 4346 ** tripped if writeOnly is false. Any attempt to use 4347 ** a tripped cursor will result in an error. 4348 ** 4349 ** This will release the write lock on the database file. If there 4350 ** are no active cursors, it also releases the read lock. 4351 */ 4352 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4353 int rc; 4354 BtShared *pBt = p->pBt; 4355 MemPage *pPage1; 4356 4357 assert( writeOnly==1 || writeOnly==0 ); 4358 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4359 sqlite3BtreeEnter(p); 4360 if( tripCode==SQLITE_OK ){ 4361 rc = tripCode = saveAllCursors(pBt, 0, 0); 4362 if( rc ) writeOnly = 0; 4363 }else{ 4364 rc = SQLITE_OK; 4365 } 4366 if( tripCode ){ 4367 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4368 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4369 if( rc2!=SQLITE_OK ) rc = rc2; 4370 } 4371 btreeIntegrity(p); 4372 4373 if( p->inTrans==TRANS_WRITE ){ 4374 int rc2; 4375 4376 assert( TRANS_WRITE==pBt->inTransaction ); 4377 rc2 = sqlite3PagerRollback(pBt->pPager); 4378 if( rc2!=SQLITE_OK ){ 4379 rc = rc2; 4380 } 4381 4382 /* The rollback may have destroyed the pPage1->aData value. So 4383 ** call btreeGetPage() on page 1 again to make 4384 ** sure pPage1->aData is set correctly. */ 4385 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4386 btreeSetNPage(pBt, pPage1); 4387 releasePageOne(pPage1); 4388 } 4389 assert( countValidCursors(pBt, 1)==0 ); 4390 pBt->inTransaction = TRANS_READ; 4391 btreeClearHasContent(pBt); 4392 } 4393 4394 btreeEndTransaction(p); 4395 sqlite3BtreeLeave(p); 4396 return rc; 4397 } 4398 4399 /* 4400 ** Start a statement subtransaction. The subtransaction can be rolled 4401 ** back independently of the main transaction. You must start a transaction 4402 ** before starting a subtransaction. The subtransaction is ended automatically 4403 ** if the main transaction commits or rolls back. 4404 ** 4405 ** Statement subtransactions are used around individual SQL statements 4406 ** that are contained within a BEGIN...COMMIT block. If a constraint 4407 ** error occurs within the statement, the effect of that one statement 4408 ** can be rolled back without having to rollback the entire transaction. 4409 ** 4410 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4411 ** value passed as the second parameter is the total number of savepoints, 4412 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4413 ** are no active savepoints and no other statement-transactions open, 4414 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4415 ** using the sqlite3BtreeSavepoint() function. 4416 */ 4417 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4418 int rc; 4419 BtShared *pBt = p->pBt; 4420 sqlite3BtreeEnter(p); 4421 assert( p->inTrans==TRANS_WRITE ); 4422 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4423 assert( iStatement>0 ); 4424 assert( iStatement>p->db->nSavepoint ); 4425 assert( pBt->inTransaction==TRANS_WRITE ); 4426 /* At the pager level, a statement transaction is a savepoint with 4427 ** an index greater than all savepoints created explicitly using 4428 ** SQL statements. It is illegal to open, release or rollback any 4429 ** such savepoints while the statement transaction savepoint is active. 4430 */ 4431 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4432 sqlite3BtreeLeave(p); 4433 return rc; 4434 } 4435 4436 /* 4437 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4438 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4439 ** savepoint identified by parameter iSavepoint, depending on the value 4440 ** of op. 4441 ** 4442 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4443 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4444 ** contents of the entire transaction are rolled back. This is different 4445 ** from a normal transaction rollback, as no locks are released and the 4446 ** transaction remains open. 4447 */ 4448 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4449 int rc = SQLITE_OK; 4450 if( p && p->inTrans==TRANS_WRITE ){ 4451 BtShared *pBt = p->pBt; 4452 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4453 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4454 sqlite3BtreeEnter(p); 4455 if( op==SAVEPOINT_ROLLBACK ){ 4456 rc = saveAllCursors(pBt, 0, 0); 4457 } 4458 if( rc==SQLITE_OK ){ 4459 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4460 } 4461 if( rc==SQLITE_OK ){ 4462 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4463 pBt->nPage = 0; 4464 } 4465 rc = newDatabase(pBt); 4466 btreeSetNPage(pBt, pBt->pPage1); 4467 4468 /* pBt->nPage might be zero if the database was corrupt when 4469 ** the transaction was started. Otherwise, it must be at least 1. */ 4470 assert( CORRUPT_DB || pBt->nPage>0 ); 4471 } 4472 sqlite3BtreeLeave(p); 4473 } 4474 return rc; 4475 } 4476 4477 /* 4478 ** Create a new cursor for the BTree whose root is on the page 4479 ** iTable. If a read-only cursor is requested, it is assumed that 4480 ** the caller already has at least a read-only transaction open 4481 ** on the database already. If a write-cursor is requested, then 4482 ** the caller is assumed to have an open write transaction. 4483 ** 4484 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4485 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4486 ** can be used for reading or for writing if other conditions for writing 4487 ** are also met. These are the conditions that must be met in order 4488 ** for writing to be allowed: 4489 ** 4490 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4491 ** 4492 ** 2: Other database connections that share the same pager cache 4493 ** but which are not in the READ_UNCOMMITTED state may not have 4494 ** cursors open with wrFlag==0 on the same table. Otherwise 4495 ** the changes made by this write cursor would be visible to 4496 ** the read cursors in the other database connection. 4497 ** 4498 ** 3: The database must be writable (not on read-only media) 4499 ** 4500 ** 4: There must be an active transaction. 4501 ** 4502 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4503 ** is set. If FORDELETE is set, that is a hint to the implementation that 4504 ** this cursor will only be used to seek to and delete entries of an index 4505 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4506 ** this implementation. But in a hypothetical alternative storage engine 4507 ** in which index entries are automatically deleted when corresponding table 4508 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4509 ** operations on this cursor can be no-ops and all READ operations can 4510 ** return a null row (2-bytes: 0x01 0x00). 4511 ** 4512 ** No checking is done to make sure that page iTable really is the 4513 ** root page of a b-tree. If it is not, then the cursor acquired 4514 ** will not work correctly. 4515 ** 4516 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4517 ** on pCur to initialize the memory space prior to invoking this routine. 4518 */ 4519 static int btreeCursor( 4520 Btree *p, /* The btree */ 4521 Pgno iTable, /* Root page of table to open */ 4522 int wrFlag, /* 1 to write. 0 read-only */ 4523 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4524 BtCursor *pCur /* Space for new cursor */ 4525 ){ 4526 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4527 BtCursor *pX; /* Looping over other all cursors */ 4528 4529 assert( sqlite3BtreeHoldsMutex(p) ); 4530 assert( wrFlag==0 4531 || wrFlag==BTREE_WRCSR 4532 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4533 ); 4534 4535 /* The following assert statements verify that if this is a sharable 4536 ** b-tree database, the connection is holding the required table locks, 4537 ** and that no other connection has any open cursor that conflicts with 4538 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4539 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4540 || iTable<1 ); 4541 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4542 4543 /* Assert that the caller has opened the required transaction. */ 4544 assert( p->inTrans>TRANS_NONE ); 4545 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4546 assert( pBt->pPage1 && pBt->pPage1->aData ); 4547 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4548 4549 if( iTable<=1 ){ 4550 if( iTable<1 ){ 4551 return SQLITE_CORRUPT_BKPT; 4552 }else if( btreePagecount(pBt)==0 ){ 4553 assert( wrFlag==0 ); 4554 iTable = 0; 4555 } 4556 } 4557 4558 /* Now that no other errors can occur, finish filling in the BtCursor 4559 ** variables and link the cursor into the BtShared list. */ 4560 pCur->pgnoRoot = iTable; 4561 pCur->iPage = -1; 4562 pCur->pKeyInfo = pKeyInfo; 4563 pCur->pBtree = p; 4564 pCur->pBt = pBt; 4565 pCur->curFlags = 0; 4566 /* If there are two or more cursors on the same btree, then all such 4567 ** cursors *must* have the BTCF_Multiple flag set. */ 4568 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4569 if( pX->pgnoRoot==iTable ){ 4570 pX->curFlags |= BTCF_Multiple; 4571 pCur->curFlags = BTCF_Multiple; 4572 } 4573 } 4574 pCur->eState = CURSOR_INVALID; 4575 pCur->pNext = pBt->pCursor; 4576 pBt->pCursor = pCur; 4577 if( wrFlag ){ 4578 pCur->curFlags |= BTCF_WriteFlag; 4579 pCur->curPagerFlags = 0; 4580 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); 4581 }else{ 4582 pCur->curPagerFlags = PAGER_GET_READONLY; 4583 } 4584 return SQLITE_OK; 4585 } 4586 static int btreeCursorWithLock( 4587 Btree *p, /* The btree */ 4588 Pgno iTable, /* Root page of table to open */ 4589 int wrFlag, /* 1 to write. 0 read-only */ 4590 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4591 BtCursor *pCur /* Space for new cursor */ 4592 ){ 4593 int rc; 4594 sqlite3BtreeEnter(p); 4595 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4596 sqlite3BtreeLeave(p); 4597 return rc; 4598 } 4599 int sqlite3BtreeCursor( 4600 Btree *p, /* The btree */ 4601 Pgno iTable, /* Root page of table to open */ 4602 int wrFlag, /* 1 to write. 0 read-only */ 4603 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4604 BtCursor *pCur /* Write new cursor here */ 4605 ){ 4606 if( p->sharable ){ 4607 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4608 }else{ 4609 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4610 } 4611 } 4612 4613 /* 4614 ** Return the size of a BtCursor object in bytes. 4615 ** 4616 ** This interfaces is needed so that users of cursors can preallocate 4617 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4618 ** to users so they cannot do the sizeof() themselves - they must call 4619 ** this routine. 4620 */ 4621 int sqlite3BtreeCursorSize(void){ 4622 return ROUND8(sizeof(BtCursor)); 4623 } 4624 4625 /* 4626 ** Initialize memory that will be converted into a BtCursor object. 4627 ** 4628 ** The simple approach here would be to memset() the entire object 4629 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4630 ** do not need to be zeroed and they are large, so we can save a lot 4631 ** of run-time by skipping the initialization of those elements. 4632 */ 4633 void sqlite3BtreeCursorZero(BtCursor *p){ 4634 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4635 } 4636 4637 /* 4638 ** Close a cursor. The read lock on the database file is released 4639 ** when the last cursor is closed. 4640 */ 4641 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4642 Btree *pBtree = pCur->pBtree; 4643 if( pBtree ){ 4644 BtShared *pBt = pCur->pBt; 4645 sqlite3BtreeEnter(pBtree); 4646 assert( pBt->pCursor!=0 ); 4647 if( pBt->pCursor==pCur ){ 4648 pBt->pCursor = pCur->pNext; 4649 }else{ 4650 BtCursor *pPrev = pBt->pCursor; 4651 do{ 4652 if( pPrev->pNext==pCur ){ 4653 pPrev->pNext = pCur->pNext; 4654 break; 4655 } 4656 pPrev = pPrev->pNext; 4657 }while( ALWAYS(pPrev) ); 4658 } 4659 btreeReleaseAllCursorPages(pCur); 4660 unlockBtreeIfUnused(pBt); 4661 sqlite3_free(pCur->aOverflow); 4662 sqlite3_free(pCur->pKey); 4663 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ 4664 /* Since the BtShared is not sharable, there is no need to 4665 ** worry about the missing sqlite3BtreeLeave() call here. */ 4666 assert( pBtree->sharable==0 ); 4667 sqlite3BtreeClose(pBtree); 4668 }else{ 4669 sqlite3BtreeLeave(pBtree); 4670 } 4671 pCur->pBtree = 0; 4672 } 4673 return SQLITE_OK; 4674 } 4675 4676 /* 4677 ** Make sure the BtCursor* given in the argument has a valid 4678 ** BtCursor.info structure. If it is not already valid, call 4679 ** btreeParseCell() to fill it in. 4680 ** 4681 ** BtCursor.info is a cache of the information in the current cell. 4682 ** Using this cache reduces the number of calls to btreeParseCell(). 4683 */ 4684 #ifndef NDEBUG 4685 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4686 if( a->nKey!=b->nKey ) return 0; 4687 if( a->pPayload!=b->pPayload ) return 0; 4688 if( a->nPayload!=b->nPayload ) return 0; 4689 if( a->nLocal!=b->nLocal ) return 0; 4690 if( a->nSize!=b->nSize ) return 0; 4691 return 1; 4692 } 4693 static void assertCellInfo(BtCursor *pCur){ 4694 CellInfo info; 4695 memset(&info, 0, sizeof(info)); 4696 btreeParseCell(pCur->pPage, pCur->ix, &info); 4697 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4698 } 4699 #else 4700 #define assertCellInfo(x) 4701 #endif 4702 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4703 if( pCur->info.nSize==0 ){ 4704 pCur->curFlags |= BTCF_ValidNKey; 4705 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4706 }else{ 4707 assertCellInfo(pCur); 4708 } 4709 } 4710 4711 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4712 /* 4713 ** Return true if the given BtCursor is valid. A valid cursor is one 4714 ** that is currently pointing to a row in a (non-empty) table. 4715 ** This is a verification routine is used only within assert() statements. 4716 */ 4717 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4718 return pCur && pCur->eState==CURSOR_VALID; 4719 } 4720 #endif /* NDEBUG */ 4721 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4722 assert( pCur!=0 ); 4723 return pCur->eState==CURSOR_VALID; 4724 } 4725 4726 /* 4727 ** Return the value of the integer key or "rowid" for a table btree. 4728 ** This routine is only valid for a cursor that is pointing into a 4729 ** ordinary table btree. If the cursor points to an index btree or 4730 ** is invalid, the result of this routine is undefined. 4731 */ 4732 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4733 assert( cursorHoldsMutex(pCur) ); 4734 assert( pCur->eState==CURSOR_VALID ); 4735 assert( pCur->curIntKey ); 4736 getCellInfo(pCur); 4737 return pCur->info.nKey; 4738 } 4739 4740 /* 4741 ** Pin or unpin a cursor. 4742 */ 4743 void sqlite3BtreeCursorPin(BtCursor *pCur){ 4744 assert( (pCur->curFlags & BTCF_Pinned)==0 ); 4745 pCur->curFlags |= BTCF_Pinned; 4746 } 4747 void sqlite3BtreeCursorUnpin(BtCursor *pCur){ 4748 assert( (pCur->curFlags & BTCF_Pinned)!=0 ); 4749 pCur->curFlags &= ~BTCF_Pinned; 4750 } 4751 4752 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4753 /* 4754 ** Return the offset into the database file for the start of the 4755 ** payload to which the cursor is pointing. 4756 */ 4757 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4758 assert( cursorHoldsMutex(pCur) ); 4759 assert( pCur->eState==CURSOR_VALID ); 4760 getCellInfo(pCur); 4761 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4762 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4763 } 4764 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4765 4766 /* 4767 ** Return the number of bytes of payload for the entry that pCur is 4768 ** currently pointing to. For table btrees, this will be the amount 4769 ** of data. For index btrees, this will be the size of the key. 4770 ** 4771 ** The caller must guarantee that the cursor is pointing to a non-NULL 4772 ** valid entry. In other words, the calling procedure must guarantee 4773 ** that the cursor has Cursor.eState==CURSOR_VALID. 4774 */ 4775 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4776 assert( cursorHoldsMutex(pCur) ); 4777 assert( pCur->eState==CURSOR_VALID ); 4778 getCellInfo(pCur); 4779 return pCur->info.nPayload; 4780 } 4781 4782 /* 4783 ** Return an upper bound on the size of any record for the table 4784 ** that the cursor is pointing into. 4785 ** 4786 ** This is an optimization. Everything will still work if this 4787 ** routine always returns 2147483647 (which is the largest record 4788 ** that SQLite can handle) or more. But returning a smaller value might 4789 ** prevent large memory allocations when trying to interpret a 4790 ** corrupt datrabase. 4791 ** 4792 ** The current implementation merely returns the size of the underlying 4793 ** database file. 4794 */ 4795 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4796 assert( cursorHoldsMutex(pCur) ); 4797 assert( pCur->eState==CURSOR_VALID ); 4798 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4799 } 4800 4801 /* 4802 ** Given the page number of an overflow page in the database (parameter 4803 ** ovfl), this function finds the page number of the next page in the 4804 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4805 ** pointer-map data instead of reading the content of page ovfl to do so. 4806 ** 4807 ** If an error occurs an SQLite error code is returned. Otherwise: 4808 ** 4809 ** The page number of the next overflow page in the linked list is 4810 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4811 ** list, *pPgnoNext is set to zero. 4812 ** 4813 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4814 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4815 ** reference. It is the responsibility of the caller to call releasePage() 4816 ** on *ppPage to free the reference. In no reference was obtained (because 4817 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4818 ** *ppPage is set to zero. 4819 */ 4820 static int getOverflowPage( 4821 BtShared *pBt, /* The database file */ 4822 Pgno ovfl, /* Current overflow page number */ 4823 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4824 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4825 ){ 4826 Pgno next = 0; 4827 MemPage *pPage = 0; 4828 int rc = SQLITE_OK; 4829 4830 assert( sqlite3_mutex_held(pBt->mutex) ); 4831 assert(pPgnoNext); 4832 4833 #ifndef SQLITE_OMIT_AUTOVACUUM 4834 /* Try to find the next page in the overflow list using the 4835 ** autovacuum pointer-map pages. Guess that the next page in 4836 ** the overflow list is page number (ovfl+1). If that guess turns 4837 ** out to be wrong, fall back to loading the data of page 4838 ** number ovfl to determine the next page number. 4839 */ 4840 if( pBt->autoVacuum ){ 4841 Pgno pgno; 4842 Pgno iGuess = ovfl+1; 4843 u8 eType; 4844 4845 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4846 iGuess++; 4847 } 4848 4849 if( iGuess<=btreePagecount(pBt) ){ 4850 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4851 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4852 next = iGuess; 4853 rc = SQLITE_DONE; 4854 } 4855 } 4856 } 4857 #endif 4858 4859 assert( next==0 || rc==SQLITE_DONE ); 4860 if( rc==SQLITE_OK ){ 4861 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4862 assert( rc==SQLITE_OK || pPage==0 ); 4863 if( rc==SQLITE_OK ){ 4864 next = get4byte(pPage->aData); 4865 } 4866 } 4867 4868 *pPgnoNext = next; 4869 if( ppPage ){ 4870 *ppPage = pPage; 4871 }else{ 4872 releasePage(pPage); 4873 } 4874 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4875 } 4876 4877 /* 4878 ** Copy data from a buffer to a page, or from a page to a buffer. 4879 ** 4880 ** pPayload is a pointer to data stored on database page pDbPage. 4881 ** If argument eOp is false, then nByte bytes of data are copied 4882 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4883 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4884 ** of data are copied from the buffer pBuf to pPayload. 4885 ** 4886 ** SQLITE_OK is returned on success, otherwise an error code. 4887 */ 4888 static int copyPayload( 4889 void *pPayload, /* Pointer to page data */ 4890 void *pBuf, /* Pointer to buffer */ 4891 int nByte, /* Number of bytes to copy */ 4892 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4893 DbPage *pDbPage /* Page containing pPayload */ 4894 ){ 4895 if( eOp ){ 4896 /* Copy data from buffer to page (a write operation) */ 4897 int rc = sqlite3PagerWrite(pDbPage); 4898 if( rc!=SQLITE_OK ){ 4899 return rc; 4900 } 4901 memcpy(pPayload, pBuf, nByte); 4902 }else{ 4903 /* Copy data from page to buffer (a read operation) */ 4904 memcpy(pBuf, pPayload, nByte); 4905 } 4906 return SQLITE_OK; 4907 } 4908 4909 /* 4910 ** This function is used to read or overwrite payload information 4911 ** for the entry that the pCur cursor is pointing to. The eOp 4912 ** argument is interpreted as follows: 4913 ** 4914 ** 0: The operation is a read. Populate the overflow cache. 4915 ** 1: The operation is a write. Populate the overflow cache. 4916 ** 4917 ** A total of "amt" bytes are read or written beginning at "offset". 4918 ** Data is read to or from the buffer pBuf. 4919 ** 4920 ** The content being read or written might appear on the main page 4921 ** or be scattered out on multiple overflow pages. 4922 ** 4923 ** If the current cursor entry uses one or more overflow pages 4924 ** this function may allocate space for and lazily populate 4925 ** the overflow page-list cache array (BtCursor.aOverflow). 4926 ** Subsequent calls use this cache to make seeking to the supplied offset 4927 ** more efficient. 4928 ** 4929 ** Once an overflow page-list cache has been allocated, it must be 4930 ** invalidated if some other cursor writes to the same table, or if 4931 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4932 ** mode, the following events may invalidate an overflow page-list cache. 4933 ** 4934 ** * An incremental vacuum, 4935 ** * A commit in auto_vacuum="full" mode, 4936 ** * Creating a table (may require moving an overflow page). 4937 */ 4938 static int accessPayload( 4939 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4940 u32 offset, /* Begin reading this far into payload */ 4941 u32 amt, /* Read this many bytes */ 4942 unsigned char *pBuf, /* Write the bytes into this buffer */ 4943 int eOp /* zero to read. non-zero to write. */ 4944 ){ 4945 unsigned char *aPayload; 4946 int rc = SQLITE_OK; 4947 int iIdx = 0; 4948 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4949 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4950 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4951 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4952 #endif 4953 4954 assert( pPage ); 4955 assert( eOp==0 || eOp==1 ); 4956 assert( pCur->eState==CURSOR_VALID ); 4957 if( pCur->ix>=pPage->nCell ){ 4958 return SQLITE_CORRUPT_PAGE(pPage); 4959 } 4960 assert( cursorHoldsMutex(pCur) ); 4961 4962 getCellInfo(pCur); 4963 aPayload = pCur->info.pPayload; 4964 assert( offset+amt <= pCur->info.nPayload ); 4965 4966 assert( aPayload > pPage->aData ); 4967 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4968 /* Trying to read or write past the end of the data is an error. The 4969 ** conditional above is really: 4970 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4971 ** but is recast into its current form to avoid integer overflow problems 4972 */ 4973 return SQLITE_CORRUPT_PAGE(pPage); 4974 } 4975 4976 /* Check if data must be read/written to/from the btree page itself. */ 4977 if( offset<pCur->info.nLocal ){ 4978 int a = amt; 4979 if( a+offset>pCur->info.nLocal ){ 4980 a = pCur->info.nLocal - offset; 4981 } 4982 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4983 offset = 0; 4984 pBuf += a; 4985 amt -= a; 4986 }else{ 4987 offset -= pCur->info.nLocal; 4988 } 4989 4990 4991 if( rc==SQLITE_OK && amt>0 ){ 4992 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4993 Pgno nextPage; 4994 4995 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4996 4997 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4998 ** 4999 ** The aOverflow[] array is sized at one entry for each overflow page 5000 ** in the overflow chain. The page number of the first overflow page is 5001 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 5002 ** means "not yet known" (the cache is lazily populated). 5003 */ 5004 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 5005 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 5006 if( pCur->aOverflow==0 5007 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 5008 ){ 5009 Pgno *aNew = (Pgno*)sqlite3Realloc( 5010 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 5011 ); 5012 if( aNew==0 ){ 5013 return SQLITE_NOMEM_BKPT; 5014 }else{ 5015 pCur->aOverflow = aNew; 5016 } 5017 } 5018 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 5019 pCur->curFlags |= BTCF_ValidOvfl; 5020 }else{ 5021 /* If the overflow page-list cache has been allocated and the 5022 ** entry for the first required overflow page is valid, skip 5023 ** directly to it. 5024 */ 5025 if( pCur->aOverflow[offset/ovflSize] ){ 5026 iIdx = (offset/ovflSize); 5027 nextPage = pCur->aOverflow[iIdx]; 5028 offset = (offset%ovflSize); 5029 } 5030 } 5031 5032 assert( rc==SQLITE_OK && amt>0 ); 5033 while( nextPage ){ 5034 /* If required, populate the overflow page-list cache. */ 5035 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; 5036 assert( pCur->aOverflow[iIdx]==0 5037 || pCur->aOverflow[iIdx]==nextPage 5038 || CORRUPT_DB ); 5039 pCur->aOverflow[iIdx] = nextPage; 5040 5041 if( offset>=ovflSize ){ 5042 /* The only reason to read this page is to obtain the page 5043 ** number for the next page in the overflow chain. The page 5044 ** data is not required. So first try to lookup the overflow 5045 ** page-list cache, if any, then fall back to the getOverflowPage() 5046 ** function. 5047 */ 5048 assert( pCur->curFlags & BTCF_ValidOvfl ); 5049 assert( pCur->pBtree->db==pBt->db ); 5050 if( pCur->aOverflow[iIdx+1] ){ 5051 nextPage = pCur->aOverflow[iIdx+1]; 5052 }else{ 5053 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 5054 } 5055 offset -= ovflSize; 5056 }else{ 5057 /* Need to read this page properly. It contains some of the 5058 ** range of data that is being read (eOp==0) or written (eOp!=0). 5059 */ 5060 int a = amt; 5061 if( a + offset > ovflSize ){ 5062 a = ovflSize - offset; 5063 } 5064 5065 #ifdef SQLITE_DIRECT_OVERFLOW_READ 5066 /* If all the following are true: 5067 ** 5068 ** 1) this is a read operation, and 5069 ** 2) data is required from the start of this overflow page, and 5070 ** 3) there are no dirty pages in the page-cache 5071 ** 4) the database is file-backed, and 5072 ** 5) the page is not in the WAL file 5073 ** 6) at least 4 bytes have already been read into the output buffer 5074 ** 5075 ** then data can be read directly from the database file into the 5076 ** output buffer, bypassing the page-cache altogether. This speeds 5077 ** up loading large records that span many overflow pages. 5078 */ 5079 if( eOp==0 /* (1) */ 5080 && offset==0 /* (2) */ 5081 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 5082 && &pBuf[-4]>=pBufStart /* (6) */ 5083 ){ 5084 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 5085 u8 aSave[4]; 5086 u8 *aWrite = &pBuf[-4]; 5087 assert( aWrite>=pBufStart ); /* due to (6) */ 5088 memcpy(aSave, aWrite, 4); 5089 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 5090 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 5091 nextPage = get4byte(aWrite); 5092 memcpy(aWrite, aSave, 4); 5093 }else 5094 #endif 5095 5096 { 5097 DbPage *pDbPage; 5098 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 5099 (eOp==0 ? PAGER_GET_READONLY : 0) 5100 ); 5101 if( rc==SQLITE_OK ){ 5102 aPayload = sqlite3PagerGetData(pDbPage); 5103 nextPage = get4byte(aPayload); 5104 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 5105 sqlite3PagerUnref(pDbPage); 5106 offset = 0; 5107 } 5108 } 5109 amt -= a; 5110 if( amt==0 ) return rc; 5111 pBuf += a; 5112 } 5113 if( rc ) break; 5114 iIdx++; 5115 } 5116 } 5117 5118 if( rc==SQLITE_OK && amt>0 ){ 5119 /* Overflow chain ends prematurely */ 5120 return SQLITE_CORRUPT_PAGE(pPage); 5121 } 5122 return rc; 5123 } 5124 5125 /* 5126 ** Read part of the payload for the row at which that cursor pCur is currently 5127 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 5128 ** begins at "offset". 5129 ** 5130 ** pCur can be pointing to either a table or an index b-tree. 5131 ** If pointing to a table btree, then the content section is read. If 5132 ** pCur is pointing to an index b-tree then the key section is read. 5133 ** 5134 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 5135 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 5136 ** cursor might be invalid or might need to be restored before being read. 5137 ** 5138 ** Return SQLITE_OK on success or an error code if anything goes 5139 ** wrong. An error is returned if "offset+amt" is larger than 5140 ** the available payload. 5141 */ 5142 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5143 assert( cursorHoldsMutex(pCur) ); 5144 assert( pCur->eState==CURSOR_VALID ); 5145 assert( pCur->iPage>=0 && pCur->pPage ); 5146 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 5147 } 5148 5149 /* 5150 ** This variant of sqlite3BtreePayload() works even if the cursor has not 5151 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 5152 ** interface. 5153 */ 5154 #ifndef SQLITE_OMIT_INCRBLOB 5155 static SQLITE_NOINLINE int accessPayloadChecked( 5156 BtCursor *pCur, 5157 u32 offset, 5158 u32 amt, 5159 void *pBuf 5160 ){ 5161 int rc; 5162 if ( pCur->eState==CURSOR_INVALID ){ 5163 return SQLITE_ABORT; 5164 } 5165 assert( cursorOwnsBtShared(pCur) ); 5166 rc = btreeRestoreCursorPosition(pCur); 5167 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 5168 } 5169 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5170 if( pCur->eState==CURSOR_VALID ){ 5171 assert( cursorOwnsBtShared(pCur) ); 5172 return accessPayload(pCur, offset, amt, pBuf, 0); 5173 }else{ 5174 return accessPayloadChecked(pCur, offset, amt, pBuf); 5175 } 5176 } 5177 #endif /* SQLITE_OMIT_INCRBLOB */ 5178 5179 /* 5180 ** Return a pointer to payload information from the entry that the 5181 ** pCur cursor is pointing to. The pointer is to the beginning of 5182 ** the key if index btrees (pPage->intKey==0) and is the data for 5183 ** table btrees (pPage->intKey==1). The number of bytes of available 5184 ** key/data is written into *pAmt. If *pAmt==0, then the value 5185 ** returned will not be a valid pointer. 5186 ** 5187 ** This routine is an optimization. It is common for the entire key 5188 ** and data to fit on the local page and for there to be no overflow 5189 ** pages. When that is so, this routine can be used to access the 5190 ** key and data without making a copy. If the key and/or data spills 5191 ** onto overflow pages, then accessPayload() must be used to reassemble 5192 ** the key/data and copy it into a preallocated buffer. 5193 ** 5194 ** The pointer returned by this routine looks directly into the cached 5195 ** page of the database. The data might change or move the next time 5196 ** any btree routine is called. 5197 */ 5198 static const void *fetchPayload( 5199 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5200 u32 *pAmt /* Write the number of available bytes here */ 5201 ){ 5202 int amt; 5203 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5204 assert( pCur->eState==CURSOR_VALID ); 5205 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5206 assert( cursorOwnsBtShared(pCur) ); 5207 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5208 assert( pCur->info.nSize>0 ); 5209 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5210 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5211 amt = pCur->info.nLocal; 5212 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5213 /* There is too little space on the page for the expected amount 5214 ** of local content. Database must be corrupt. */ 5215 assert( CORRUPT_DB ); 5216 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5217 } 5218 *pAmt = (u32)amt; 5219 return (void*)pCur->info.pPayload; 5220 } 5221 5222 5223 /* 5224 ** For the entry that cursor pCur is point to, return as 5225 ** many bytes of the key or data as are available on the local 5226 ** b-tree page. Write the number of available bytes into *pAmt. 5227 ** 5228 ** The pointer returned is ephemeral. The key/data may move 5229 ** or be destroyed on the next call to any Btree routine, 5230 ** including calls from other threads against the same cache. 5231 ** Hence, a mutex on the BtShared should be held prior to calling 5232 ** this routine. 5233 ** 5234 ** These routines is used to get quick access to key and data 5235 ** in the common case where no overflow pages are used. 5236 */ 5237 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5238 return fetchPayload(pCur, pAmt); 5239 } 5240 5241 5242 /* 5243 ** Move the cursor down to a new child page. The newPgno argument is the 5244 ** page number of the child page to move to. 5245 ** 5246 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5247 ** the new child page does not match the flags field of the parent (i.e. 5248 ** if an intkey page appears to be the parent of a non-intkey page, or 5249 ** vice-versa). 5250 */ 5251 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5252 assert( cursorOwnsBtShared(pCur) ); 5253 assert( pCur->eState==CURSOR_VALID ); 5254 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5255 assert( pCur->iPage>=0 ); 5256 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5257 return SQLITE_CORRUPT_BKPT; 5258 } 5259 pCur->info.nSize = 0; 5260 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5261 pCur->aiIdx[pCur->iPage] = pCur->ix; 5262 pCur->apPage[pCur->iPage] = pCur->pPage; 5263 pCur->ix = 0; 5264 pCur->iPage++; 5265 return getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur, 5266 pCur->curPagerFlags); 5267 } 5268 5269 #ifdef SQLITE_DEBUG 5270 /* 5271 ** Page pParent is an internal (non-leaf) tree page. This function 5272 ** asserts that page number iChild is the left-child if the iIdx'th 5273 ** cell in page pParent. Or, if iIdx is equal to the total number of 5274 ** cells in pParent, that page number iChild is the right-child of 5275 ** the page. 5276 */ 5277 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5278 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5279 ** in a corrupt database */ 5280 assert( iIdx<=pParent->nCell ); 5281 if( iIdx==pParent->nCell ){ 5282 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5283 }else{ 5284 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5285 } 5286 } 5287 #else 5288 # define assertParentIndex(x,y,z) 5289 #endif 5290 5291 /* 5292 ** Move the cursor up to the parent page. 5293 ** 5294 ** pCur->idx is set to the cell index that contains the pointer 5295 ** to the page we are coming from. If we are coming from the 5296 ** right-most child page then pCur->idx is set to one more than 5297 ** the largest cell index. 5298 */ 5299 static void moveToParent(BtCursor *pCur){ 5300 MemPage *pLeaf; 5301 assert( cursorOwnsBtShared(pCur) ); 5302 assert( pCur->eState==CURSOR_VALID ); 5303 assert( pCur->iPage>0 ); 5304 assert( pCur->pPage ); 5305 assertParentIndex( 5306 pCur->apPage[pCur->iPage-1], 5307 pCur->aiIdx[pCur->iPage-1], 5308 pCur->pPage->pgno 5309 ); 5310 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5311 pCur->info.nSize = 0; 5312 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5313 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5314 pLeaf = pCur->pPage; 5315 pCur->pPage = pCur->apPage[--pCur->iPage]; 5316 releasePageNotNull(pLeaf); 5317 } 5318 5319 /* 5320 ** Move the cursor to point to the root page of its b-tree structure. 5321 ** 5322 ** If the table has a virtual root page, then the cursor is moved to point 5323 ** to the virtual root page instead of the actual root page. A table has a 5324 ** virtual root page when the actual root page contains no cells and a 5325 ** single child page. This can only happen with the table rooted at page 1. 5326 ** 5327 ** If the b-tree structure is empty, the cursor state is set to 5328 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5329 ** the cursor is set to point to the first cell located on the root 5330 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5331 ** 5332 ** If this function returns successfully, it may be assumed that the 5333 ** page-header flags indicate that the [virtual] root-page is the expected 5334 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5335 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5336 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5337 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5338 ** b-tree). 5339 */ 5340 static int moveToRoot(BtCursor *pCur){ 5341 MemPage *pRoot; 5342 int rc = SQLITE_OK; 5343 5344 assert( cursorOwnsBtShared(pCur) ); 5345 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5346 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5347 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5348 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5349 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5350 5351 if( pCur->iPage>=0 ){ 5352 if( pCur->iPage ){ 5353 releasePageNotNull(pCur->pPage); 5354 while( --pCur->iPage ){ 5355 releasePageNotNull(pCur->apPage[pCur->iPage]); 5356 } 5357 pRoot = pCur->pPage = pCur->apPage[0]; 5358 goto skip_init; 5359 } 5360 }else if( pCur->pgnoRoot==0 ){ 5361 pCur->eState = CURSOR_INVALID; 5362 return SQLITE_EMPTY; 5363 }else{ 5364 assert( pCur->iPage==(-1) ); 5365 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5366 if( pCur->eState==CURSOR_FAULT ){ 5367 assert( pCur->skipNext!=SQLITE_OK ); 5368 return pCur->skipNext; 5369 } 5370 sqlite3BtreeClearCursor(pCur); 5371 } 5372 rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage, 5373 0, pCur->curPagerFlags); 5374 if( rc!=SQLITE_OK ){ 5375 pCur->eState = CURSOR_INVALID; 5376 return rc; 5377 } 5378 pCur->iPage = 0; 5379 pCur->curIntKey = pCur->pPage->intKey; 5380 } 5381 pRoot = pCur->pPage; 5382 assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB ); 5383 5384 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5385 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5386 ** NULL, the caller expects a table b-tree. If this is not the case, 5387 ** return an SQLITE_CORRUPT error. 5388 ** 5389 ** Earlier versions of SQLite assumed that this test could not fail 5390 ** if the root page was already loaded when this function was called (i.e. 5391 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5392 ** in such a way that page pRoot is linked into a second b-tree table 5393 ** (or the freelist). */ 5394 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5395 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5396 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5397 } 5398 5399 skip_init: 5400 pCur->ix = 0; 5401 pCur->info.nSize = 0; 5402 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5403 5404 if( pRoot->nCell>0 ){ 5405 pCur->eState = CURSOR_VALID; 5406 }else if( !pRoot->leaf ){ 5407 Pgno subpage; 5408 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5409 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5410 pCur->eState = CURSOR_VALID; 5411 rc = moveToChild(pCur, subpage); 5412 }else{ 5413 pCur->eState = CURSOR_INVALID; 5414 rc = SQLITE_EMPTY; 5415 } 5416 return rc; 5417 } 5418 5419 /* 5420 ** Move the cursor down to the left-most leaf entry beneath the 5421 ** entry to which it is currently pointing. 5422 ** 5423 ** The left-most leaf is the one with the smallest key - the first 5424 ** in ascending order. 5425 */ 5426 static int moveToLeftmost(BtCursor *pCur){ 5427 Pgno pgno; 5428 int rc = SQLITE_OK; 5429 MemPage *pPage; 5430 5431 assert( cursorOwnsBtShared(pCur) ); 5432 assert( pCur->eState==CURSOR_VALID ); 5433 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5434 assert( pCur->ix<pPage->nCell ); 5435 pgno = get4byte(findCell(pPage, pCur->ix)); 5436 rc = moveToChild(pCur, pgno); 5437 } 5438 return rc; 5439 } 5440 5441 /* 5442 ** Move the cursor down to the right-most leaf entry beneath the 5443 ** page to which it is currently pointing. Notice the difference 5444 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5445 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5446 ** finds the right-most entry beneath the *page*. 5447 ** 5448 ** The right-most entry is the one with the largest key - the last 5449 ** key in ascending order. 5450 */ 5451 static int moveToRightmost(BtCursor *pCur){ 5452 Pgno pgno; 5453 int rc = SQLITE_OK; 5454 MemPage *pPage = 0; 5455 5456 assert( cursorOwnsBtShared(pCur) ); 5457 assert( pCur->eState==CURSOR_VALID ); 5458 while( !(pPage = pCur->pPage)->leaf ){ 5459 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5460 pCur->ix = pPage->nCell; 5461 rc = moveToChild(pCur, pgno); 5462 if( rc ) return rc; 5463 } 5464 pCur->ix = pPage->nCell-1; 5465 assert( pCur->info.nSize==0 ); 5466 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5467 return SQLITE_OK; 5468 } 5469 5470 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5471 ** on success. Set *pRes to 0 if the cursor actually points to something 5472 ** or set *pRes to 1 if the table is empty. 5473 */ 5474 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5475 int rc; 5476 5477 assert( cursorOwnsBtShared(pCur) ); 5478 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5479 rc = moveToRoot(pCur); 5480 if( rc==SQLITE_OK ){ 5481 assert( pCur->pPage->nCell>0 ); 5482 *pRes = 0; 5483 rc = moveToLeftmost(pCur); 5484 }else if( rc==SQLITE_EMPTY ){ 5485 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5486 *pRes = 1; 5487 rc = SQLITE_OK; 5488 } 5489 return rc; 5490 } 5491 5492 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5493 ** on success. Set *pRes to 0 if the cursor actually points to something 5494 ** or set *pRes to 1 if the table is empty. 5495 */ 5496 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5497 int rc; 5498 5499 assert( cursorOwnsBtShared(pCur) ); 5500 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5501 5502 /* If the cursor already points to the last entry, this is a no-op. */ 5503 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5504 #ifdef SQLITE_DEBUG 5505 /* This block serves to assert() that the cursor really does point 5506 ** to the last entry in the b-tree. */ 5507 int ii; 5508 for(ii=0; ii<pCur->iPage; ii++){ 5509 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5510 } 5511 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); 5512 testcase( pCur->ix!=pCur->pPage->nCell-1 ); 5513 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ 5514 assert( pCur->pPage->leaf ); 5515 #endif 5516 *pRes = 0; 5517 return SQLITE_OK; 5518 } 5519 5520 rc = moveToRoot(pCur); 5521 if( rc==SQLITE_OK ){ 5522 assert( pCur->eState==CURSOR_VALID ); 5523 *pRes = 0; 5524 rc = moveToRightmost(pCur); 5525 if( rc==SQLITE_OK ){ 5526 pCur->curFlags |= BTCF_AtLast; 5527 }else{ 5528 pCur->curFlags &= ~BTCF_AtLast; 5529 } 5530 }else if( rc==SQLITE_EMPTY ){ 5531 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5532 *pRes = 1; 5533 rc = SQLITE_OK; 5534 } 5535 return rc; 5536 } 5537 5538 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) 5539 ** table near the key intKey. Return a success code. 5540 ** 5541 ** If an exact match is not found, then the cursor is always 5542 ** left pointing at a leaf page which would hold the entry if it 5543 ** were present. The cursor might point to an entry that comes 5544 ** before or after the key. 5545 ** 5546 ** An integer is written into *pRes which is the result of 5547 ** comparing the key with the entry to which the cursor is 5548 ** pointing. The meaning of the integer written into 5549 ** *pRes is as follows: 5550 ** 5551 ** *pRes<0 The cursor is left pointing at an entry that 5552 ** is smaller than intKey or if the table is empty 5553 ** and the cursor is therefore left point to nothing. 5554 ** 5555 ** *pRes==0 The cursor is left pointing at an entry that 5556 ** exactly matches intKey. 5557 ** 5558 ** *pRes>0 The cursor is left pointing at an entry that 5559 ** is larger than intKey. 5560 */ 5561 int sqlite3BtreeTableMoveto( 5562 BtCursor *pCur, /* The cursor to be moved */ 5563 i64 intKey, /* The table key */ 5564 int biasRight, /* If true, bias the search to the high end */ 5565 int *pRes /* Write search results here */ 5566 ){ 5567 int rc; 5568 5569 assert( cursorOwnsBtShared(pCur) ); 5570 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5571 assert( pRes ); 5572 assert( pCur->pKeyInfo==0 ); 5573 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); 5574 5575 /* If the cursor is already positioned at the point we are trying 5576 ** to move to, then just return without doing any work */ 5577 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ 5578 if( pCur->info.nKey==intKey ){ 5579 *pRes = 0; 5580 return SQLITE_OK; 5581 } 5582 if( pCur->info.nKey<intKey ){ 5583 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5584 *pRes = -1; 5585 return SQLITE_OK; 5586 } 5587 /* If the requested key is one more than the previous key, then 5588 ** try to get there using sqlite3BtreeNext() rather than a full 5589 ** binary search. This is an optimization only. The correct answer 5590 ** is still obtained without this case, only a little more slowely */ 5591 if( pCur->info.nKey+1==intKey ){ 5592 *pRes = 0; 5593 rc = sqlite3BtreeNext(pCur, 0); 5594 if( rc==SQLITE_OK ){ 5595 getCellInfo(pCur); 5596 if( pCur->info.nKey==intKey ){ 5597 return SQLITE_OK; 5598 } 5599 }else if( rc!=SQLITE_DONE ){ 5600 return rc; 5601 } 5602 } 5603 } 5604 } 5605 5606 #ifdef SQLITE_DEBUG 5607 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5608 #endif 5609 5610 rc = moveToRoot(pCur); 5611 if( rc ){ 5612 if( rc==SQLITE_EMPTY ){ 5613 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5614 *pRes = -1; 5615 return SQLITE_OK; 5616 } 5617 return rc; 5618 } 5619 assert( pCur->pPage ); 5620 assert( pCur->pPage->isInit ); 5621 assert( pCur->eState==CURSOR_VALID ); 5622 assert( pCur->pPage->nCell > 0 ); 5623 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5624 assert( pCur->curIntKey ); 5625 5626 for(;;){ 5627 int lwr, upr, idx, c; 5628 Pgno chldPg; 5629 MemPage *pPage = pCur->pPage; 5630 u8 *pCell; /* Pointer to current cell in pPage */ 5631 5632 /* pPage->nCell must be greater than zero. If this is the root-page 5633 ** the cursor would have been INVALID above and this for(;;) loop 5634 ** not run. If this is not the root-page, then the moveToChild() routine 5635 ** would have already detected db corruption. Similarly, pPage must 5636 ** be the right kind (index or table) of b-tree page. Otherwise 5637 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5638 assert( pPage->nCell>0 ); 5639 assert( pPage->intKey ); 5640 lwr = 0; 5641 upr = pPage->nCell-1; 5642 assert( biasRight==0 || biasRight==1 ); 5643 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5644 for(;;){ 5645 i64 nCellKey; 5646 pCell = findCellPastPtr(pPage, idx); 5647 if( pPage->intKeyLeaf ){ 5648 while( 0x80 <= *(pCell++) ){ 5649 if( pCell>=pPage->aDataEnd ){ 5650 return SQLITE_CORRUPT_PAGE(pPage); 5651 } 5652 } 5653 } 5654 getVarint(pCell, (u64*)&nCellKey); 5655 if( nCellKey<intKey ){ 5656 lwr = idx+1; 5657 if( lwr>upr ){ c = -1; break; } 5658 }else if( nCellKey>intKey ){ 5659 upr = idx-1; 5660 if( lwr>upr ){ c = +1; break; } 5661 }else{ 5662 assert( nCellKey==intKey ); 5663 pCur->ix = (u16)idx; 5664 if( !pPage->leaf ){ 5665 lwr = idx; 5666 goto moveto_table_next_layer; 5667 }else{ 5668 pCur->curFlags |= BTCF_ValidNKey; 5669 pCur->info.nKey = nCellKey; 5670 pCur->info.nSize = 0; 5671 *pRes = 0; 5672 return SQLITE_OK; 5673 } 5674 } 5675 assert( lwr+upr>=0 ); 5676 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5677 } 5678 assert( lwr==upr+1 || !pPage->leaf ); 5679 assert( pPage->isInit ); 5680 if( pPage->leaf ){ 5681 assert( pCur->ix<pCur->pPage->nCell ); 5682 pCur->ix = (u16)idx; 5683 *pRes = c; 5684 rc = SQLITE_OK; 5685 goto moveto_table_finish; 5686 } 5687 moveto_table_next_layer: 5688 if( lwr>=pPage->nCell ){ 5689 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5690 }else{ 5691 chldPg = get4byte(findCell(pPage, lwr)); 5692 } 5693 pCur->ix = (u16)lwr; 5694 rc = moveToChild(pCur, chldPg); 5695 if( rc ) break; 5696 } 5697 moveto_table_finish: 5698 pCur->info.nSize = 0; 5699 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5700 return rc; 5701 } 5702 5703 /* 5704 ** Compare the "idx"-th cell on the page the cursor pCur is currently 5705 ** pointing to to pIdxKey using xRecordCompare. Return negative or 5706 ** zero if the cell is less than or equal pIdxKey. Return positive 5707 ** if unknown. 5708 ** 5709 ** Return value negative: Cell at pCur[idx] less than pIdxKey 5710 ** 5711 ** Return value is zero: Cell at pCur[idx] equals pIdxKey 5712 ** 5713 ** Return value positive: Nothing is known about the relationship 5714 ** of the cell at pCur[idx] and pIdxKey. 5715 ** 5716 ** This routine is part of an optimization. It is always safe to return 5717 ** a positive value as that will cause the optimization to be skipped. 5718 */ 5719 static int indexCellCompare( 5720 BtCursor *pCur, 5721 int idx, 5722 UnpackedRecord *pIdxKey, 5723 RecordCompare xRecordCompare 5724 ){ 5725 MemPage *pPage = pCur->pPage; 5726 int c; 5727 int nCell; /* Size of the pCell cell in bytes */ 5728 u8 *pCell = findCellPastPtr(pPage, idx); 5729 5730 nCell = pCell[0]; 5731 if( nCell<=pPage->max1bytePayload ){ 5732 /* This branch runs if the record-size field of the cell is a 5733 ** single byte varint and the record fits entirely on the main 5734 ** b-tree page. */ 5735 testcase( pCell+nCell+1==pPage->aDataEnd ); 5736 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5737 }else if( !(pCell[1] & 0x80) 5738 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5739 ){ 5740 /* The record-size field is a 2 byte varint and the record 5741 ** fits entirely on the main b-tree page. */ 5742 testcase( pCell+nCell+2==pPage->aDataEnd ); 5743 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5744 }else{ 5745 /* If the record extends into overflow pages, do not attempt 5746 ** the optimization. */ 5747 c = 99; 5748 } 5749 return c; 5750 } 5751 5752 /* 5753 ** Return true (non-zero) if pCur is current pointing to the last 5754 ** page of a table. 5755 */ 5756 static int cursorOnLastPage(BtCursor *pCur){ 5757 int i; 5758 assert( pCur->eState==CURSOR_VALID ); 5759 for(i=0; i<pCur->iPage; i++){ 5760 MemPage *pPage = pCur->apPage[i]; 5761 if( pCur->aiIdx[i]<pPage->nCell ) return 0; 5762 } 5763 return 1; 5764 } 5765 5766 /* Move the cursor so that it points to an entry in an index table 5767 ** near the key pIdxKey. Return a success code. 5768 ** 5769 ** If an exact match is not found, then the cursor is always 5770 ** left pointing at a leaf page which would hold the entry if it 5771 ** were present. The cursor might point to an entry that comes 5772 ** before or after the key. 5773 ** 5774 ** An integer is written into *pRes which is the result of 5775 ** comparing the key with the entry to which the cursor is 5776 ** pointing. The meaning of the integer written into 5777 ** *pRes is as follows: 5778 ** 5779 ** *pRes<0 The cursor is left pointing at an entry that 5780 ** is smaller than pIdxKey or if the table is empty 5781 ** and the cursor is therefore left point to nothing. 5782 ** 5783 ** *pRes==0 The cursor is left pointing at an entry that 5784 ** exactly matches pIdxKey. 5785 ** 5786 ** *pRes>0 The cursor is left pointing at an entry that 5787 ** is larger than pIdxKey. 5788 ** 5789 ** The pIdxKey->eqSeen field is set to 1 if there 5790 ** exists an entry in the table that exactly matches pIdxKey. 5791 */ 5792 int sqlite3BtreeIndexMoveto( 5793 BtCursor *pCur, /* The cursor to be moved */ 5794 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5795 int *pRes /* Write search results here */ 5796 ){ 5797 int rc; 5798 RecordCompare xRecordCompare; 5799 5800 assert( cursorOwnsBtShared(pCur) ); 5801 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5802 assert( pRes ); 5803 assert( pCur->pKeyInfo!=0 ); 5804 5805 #ifdef SQLITE_DEBUG 5806 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5807 #endif 5808 5809 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5810 pIdxKey->errCode = 0; 5811 assert( pIdxKey->default_rc==1 5812 || pIdxKey->default_rc==0 5813 || pIdxKey->default_rc==-1 5814 ); 5815 5816 5817 /* Check to see if we can skip a lot of work. Two cases: 5818 ** 5819 ** (1) If the cursor is already pointing to the very last cell 5820 ** in the table and the pIdxKey search key is greater than or 5821 ** equal to that last cell, then no movement is required. 5822 ** 5823 ** (2) If the cursor is on the last page of the table and the first 5824 ** cell on that last page is less than or equal to the pIdxKey 5825 ** search key, then we can start the search on the current page 5826 ** without needing to go back to root. 5827 */ 5828 if( pCur->eState==CURSOR_VALID 5829 && pCur->pPage->leaf 5830 && cursorOnLastPage(pCur) 5831 ){ 5832 int c; 5833 if( pCur->ix==pCur->pPage->nCell-1 5834 && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0 5835 && pIdxKey->errCode==SQLITE_OK 5836 ){ 5837 *pRes = c; 5838 return SQLITE_OK; /* Cursor already pointing at the correct spot */ 5839 } 5840 if( pCur->iPage>0 5841 && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0 5842 && pIdxKey->errCode==SQLITE_OK 5843 ){ 5844 pCur->curFlags &= ~BTCF_ValidOvfl; 5845 if( !pCur->pPage->isInit ){ 5846 return SQLITE_CORRUPT_BKPT; 5847 } 5848 goto bypass_moveto_root; /* Start search on the current page */ 5849 } 5850 pIdxKey->errCode = SQLITE_OK; 5851 } 5852 5853 rc = moveToRoot(pCur); 5854 if( rc ){ 5855 if( rc==SQLITE_EMPTY ){ 5856 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5857 *pRes = -1; 5858 return SQLITE_OK; 5859 } 5860 return rc; 5861 } 5862 5863 bypass_moveto_root: 5864 assert( pCur->pPage ); 5865 assert( pCur->pPage->isInit ); 5866 assert( pCur->eState==CURSOR_VALID ); 5867 assert( pCur->pPage->nCell > 0 ); 5868 assert( pCur->curIntKey==0 ); 5869 assert( pIdxKey!=0 ); 5870 for(;;){ 5871 int lwr, upr, idx, c; 5872 Pgno chldPg; 5873 MemPage *pPage = pCur->pPage; 5874 u8 *pCell; /* Pointer to current cell in pPage */ 5875 5876 /* pPage->nCell must be greater than zero. If this is the root-page 5877 ** the cursor would have been INVALID above and this for(;;) loop 5878 ** not run. If this is not the root-page, then the moveToChild() routine 5879 ** would have already detected db corruption. Similarly, pPage must 5880 ** be the right kind (index or table) of b-tree page. Otherwise 5881 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5882 assert( pPage->nCell>0 ); 5883 assert( pPage->intKey==0 ); 5884 lwr = 0; 5885 upr = pPage->nCell-1; 5886 idx = upr>>1; /* idx = (lwr+upr)/2; */ 5887 for(;;){ 5888 int nCell; /* Size of the pCell cell in bytes */ 5889 pCell = findCellPastPtr(pPage, idx); 5890 5891 /* The maximum supported page-size is 65536 bytes. This means that 5892 ** the maximum number of record bytes stored on an index B-Tree 5893 ** page is less than 16384 bytes and may be stored as a 2-byte 5894 ** varint. This information is used to attempt to avoid parsing 5895 ** the entire cell by checking for the cases where the record is 5896 ** stored entirely within the b-tree page by inspecting the first 5897 ** 2 bytes of the cell. 5898 */ 5899 nCell = pCell[0]; 5900 if( nCell<=pPage->max1bytePayload ){ 5901 /* This branch runs if the record-size field of the cell is a 5902 ** single byte varint and the record fits entirely on the main 5903 ** b-tree page. */ 5904 testcase( pCell+nCell+1==pPage->aDataEnd ); 5905 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5906 }else if( !(pCell[1] & 0x80) 5907 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5908 ){ 5909 /* The record-size field is a 2 byte varint and the record 5910 ** fits entirely on the main b-tree page. */ 5911 testcase( pCell+nCell+2==pPage->aDataEnd ); 5912 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5913 }else{ 5914 /* The record flows over onto one or more overflow pages. In 5915 ** this case the whole cell needs to be parsed, a buffer allocated 5916 ** and accessPayload() used to retrieve the record into the 5917 ** buffer before VdbeRecordCompare() can be called. 5918 ** 5919 ** If the record is corrupt, the xRecordCompare routine may read 5920 ** up to two varints past the end of the buffer. An extra 18 5921 ** bytes of padding is allocated at the end of the buffer in 5922 ** case this happens. */ 5923 void *pCellKey; 5924 u8 * const pCellBody = pCell - pPage->childPtrSize; 5925 const int nOverrun = 18; /* Size of the overrun padding */ 5926 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5927 nCell = (int)pCur->info.nKey; 5928 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5929 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5930 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5931 testcase( nCell==2 ); /* Minimum legal index key size */ 5932 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5933 rc = SQLITE_CORRUPT_PAGE(pPage); 5934 goto moveto_index_finish; 5935 } 5936 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5937 if( pCellKey==0 ){ 5938 rc = SQLITE_NOMEM_BKPT; 5939 goto moveto_index_finish; 5940 } 5941 pCur->ix = (u16)idx; 5942 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5943 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5944 pCur->curFlags &= ~BTCF_ValidOvfl; 5945 if( rc ){ 5946 sqlite3_free(pCellKey); 5947 goto moveto_index_finish; 5948 } 5949 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5950 sqlite3_free(pCellKey); 5951 } 5952 assert( 5953 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5954 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5955 ); 5956 if( c<0 ){ 5957 lwr = idx+1; 5958 }else if( c>0 ){ 5959 upr = idx-1; 5960 }else{ 5961 assert( c==0 ); 5962 *pRes = 0; 5963 rc = SQLITE_OK; 5964 pCur->ix = (u16)idx; 5965 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5966 goto moveto_index_finish; 5967 } 5968 if( lwr>upr ) break; 5969 assert( lwr+upr>=0 ); 5970 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5971 } 5972 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5973 assert( pPage->isInit ); 5974 if( pPage->leaf ){ 5975 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5976 pCur->ix = (u16)idx; 5977 *pRes = c; 5978 rc = SQLITE_OK; 5979 goto moveto_index_finish; 5980 } 5981 if( lwr>=pPage->nCell ){ 5982 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5983 }else{ 5984 chldPg = get4byte(findCell(pPage, lwr)); 5985 } 5986 pCur->ix = (u16)lwr; 5987 rc = moveToChild(pCur, chldPg); 5988 if( rc ) break; 5989 } 5990 moveto_index_finish: 5991 pCur->info.nSize = 0; 5992 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5993 return rc; 5994 } 5995 5996 5997 /* 5998 ** Return TRUE if the cursor is not pointing at an entry of the table. 5999 ** 6000 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 6001 ** past the last entry in the table or sqlite3BtreePrev() moves past 6002 ** the first entry. TRUE is also returned if the table is empty. 6003 */ 6004 int sqlite3BtreeEof(BtCursor *pCur){ 6005 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 6006 ** have been deleted? This API will need to change to return an error code 6007 ** as well as the boolean result value. 6008 */ 6009 return (CURSOR_VALID!=pCur->eState); 6010 } 6011 6012 /* 6013 ** Return an estimate for the number of rows in the table that pCur is 6014 ** pointing to. Return a negative number if no estimate is currently 6015 ** available. 6016 */ 6017 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 6018 i64 n; 6019 u8 i; 6020 6021 assert( cursorOwnsBtShared(pCur) ); 6022 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 6023 6024 /* Currently this interface is only called by the OP_IfSmaller 6025 ** opcode, and it that case the cursor will always be valid and 6026 ** will always point to a leaf node. */ 6027 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 6028 if( NEVER(pCur->pPage->leaf==0) ) return -1; 6029 6030 n = pCur->pPage->nCell; 6031 for(i=0; i<pCur->iPage; i++){ 6032 n *= pCur->apPage[i]->nCell; 6033 } 6034 return n; 6035 } 6036 6037 /* 6038 ** Advance the cursor to the next entry in the database. 6039 ** Return value: 6040 ** 6041 ** SQLITE_OK success 6042 ** SQLITE_DONE cursor is already pointing at the last element 6043 ** otherwise some kind of error occurred 6044 ** 6045 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 6046 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 6047 ** to the next cell on the current page. The (slower) btreeNext() helper 6048 ** routine is called when it is necessary to move to a different page or 6049 ** to restore the cursor. 6050 ** 6051 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 6052 ** cursor corresponds to an SQL index and this routine could have been 6053 ** skipped if the SQL index had been a unique index. The F argument 6054 ** is a hint to the implement. SQLite btree implementation does not use 6055 ** this hint, but COMDB2 does. 6056 */ 6057 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 6058 int rc; 6059 int idx; 6060 MemPage *pPage; 6061 6062 assert( cursorOwnsBtShared(pCur) ); 6063 if( pCur->eState!=CURSOR_VALID ){ 6064 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 6065 rc = restoreCursorPosition(pCur); 6066 if( rc!=SQLITE_OK ){ 6067 return rc; 6068 } 6069 if( CURSOR_INVALID==pCur->eState ){ 6070 return SQLITE_DONE; 6071 } 6072 if( pCur->eState==CURSOR_SKIPNEXT ){ 6073 pCur->eState = CURSOR_VALID; 6074 if( pCur->skipNext>0 ) return SQLITE_OK; 6075 } 6076 } 6077 6078 pPage = pCur->pPage; 6079 idx = ++pCur->ix; 6080 if( !pPage->isInit || sqlite3FaultSim(412) ){ 6081 /* The only known way for this to happen is for there to be a 6082 ** recursive SQL function that does a DELETE operation as part of a 6083 ** SELECT which deletes content out from under an active cursor 6084 ** in a corrupt database file where the table being DELETE-ed from 6085 ** has pages in common with the table being queried. See TH3 6086 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 6087 ** example. */ 6088 return SQLITE_CORRUPT_BKPT; 6089 } 6090 6091 if( idx>=pPage->nCell ){ 6092 if( !pPage->leaf ){ 6093 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 6094 if( rc ) return rc; 6095 return moveToLeftmost(pCur); 6096 } 6097 do{ 6098 if( pCur->iPage==0 ){ 6099 pCur->eState = CURSOR_INVALID; 6100 return SQLITE_DONE; 6101 } 6102 moveToParent(pCur); 6103 pPage = pCur->pPage; 6104 }while( pCur->ix>=pPage->nCell ); 6105 if( pPage->intKey ){ 6106 return sqlite3BtreeNext(pCur, 0); 6107 }else{ 6108 return SQLITE_OK; 6109 } 6110 } 6111 if( pPage->leaf ){ 6112 return SQLITE_OK; 6113 }else{ 6114 return moveToLeftmost(pCur); 6115 } 6116 } 6117 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 6118 MemPage *pPage; 6119 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6120 assert( cursorOwnsBtShared(pCur) ); 6121 assert( flags==0 || flags==1 ); 6122 pCur->info.nSize = 0; 6123 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 6124 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 6125 pPage = pCur->pPage; 6126 if( (++pCur->ix)>=pPage->nCell ){ 6127 pCur->ix--; 6128 return btreeNext(pCur); 6129 } 6130 if( pPage->leaf ){ 6131 return SQLITE_OK; 6132 }else{ 6133 return moveToLeftmost(pCur); 6134 } 6135 } 6136 6137 /* 6138 ** Step the cursor to the back to the previous entry in the database. 6139 ** Return values: 6140 ** 6141 ** SQLITE_OK success 6142 ** SQLITE_DONE the cursor is already on the first element of the table 6143 ** otherwise some kind of error occurred 6144 ** 6145 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 6146 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 6147 ** to the previous cell on the current page. The (slower) btreePrevious() 6148 ** helper routine is called when it is necessary to move to a different page 6149 ** or to restore the cursor. 6150 ** 6151 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 6152 ** the cursor corresponds to an SQL index and this routine could have been 6153 ** skipped if the SQL index had been a unique index. The F argument is a 6154 ** hint to the implement. The native SQLite btree implementation does not 6155 ** use this hint, but COMDB2 does. 6156 */ 6157 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 6158 int rc; 6159 MemPage *pPage; 6160 6161 assert( cursorOwnsBtShared(pCur) ); 6162 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 6163 assert( pCur->info.nSize==0 ); 6164 if( pCur->eState!=CURSOR_VALID ){ 6165 rc = restoreCursorPosition(pCur); 6166 if( rc!=SQLITE_OK ){ 6167 return rc; 6168 } 6169 if( CURSOR_INVALID==pCur->eState ){ 6170 return SQLITE_DONE; 6171 } 6172 if( CURSOR_SKIPNEXT==pCur->eState ){ 6173 pCur->eState = CURSOR_VALID; 6174 if( pCur->skipNext<0 ) return SQLITE_OK; 6175 } 6176 } 6177 6178 pPage = pCur->pPage; 6179 assert( pPage->isInit ); 6180 if( !pPage->leaf ){ 6181 int idx = pCur->ix; 6182 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 6183 if( rc ) return rc; 6184 rc = moveToRightmost(pCur); 6185 }else{ 6186 while( pCur->ix==0 ){ 6187 if( pCur->iPage==0 ){ 6188 pCur->eState = CURSOR_INVALID; 6189 return SQLITE_DONE; 6190 } 6191 moveToParent(pCur); 6192 } 6193 assert( pCur->info.nSize==0 ); 6194 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 6195 6196 pCur->ix--; 6197 pPage = pCur->pPage; 6198 if( pPage->intKey && !pPage->leaf ){ 6199 rc = sqlite3BtreePrevious(pCur, 0); 6200 }else{ 6201 rc = SQLITE_OK; 6202 } 6203 } 6204 return rc; 6205 } 6206 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 6207 assert( cursorOwnsBtShared(pCur) ); 6208 assert( flags==0 || flags==1 ); 6209 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6210 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 6211 pCur->info.nSize = 0; 6212 if( pCur->eState!=CURSOR_VALID 6213 || pCur->ix==0 6214 || pCur->pPage->leaf==0 6215 ){ 6216 return btreePrevious(pCur); 6217 } 6218 pCur->ix--; 6219 return SQLITE_OK; 6220 } 6221 6222 /* 6223 ** Allocate a new page from the database file. 6224 ** 6225 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 6226 ** has already been called on the new page.) The new page has also 6227 ** been referenced and the calling routine is responsible for calling 6228 ** sqlite3PagerUnref() on the new page when it is done. 6229 ** 6230 ** SQLITE_OK is returned on success. Any other return value indicates 6231 ** an error. *ppPage is set to NULL in the event of an error. 6232 ** 6233 ** If the "nearby" parameter is not 0, then an effort is made to 6234 ** locate a page close to the page number "nearby". This can be used in an 6235 ** attempt to keep related pages close to each other in the database file, 6236 ** which in turn can make database access faster. 6237 ** 6238 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 6239 ** anywhere on the free-list, then it is guaranteed to be returned. If 6240 ** eMode is BTALLOC_LT then the page returned will be less than or equal 6241 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 6242 ** are no restrictions on which page is returned. 6243 */ 6244 static int allocateBtreePage( 6245 BtShared *pBt, /* The btree */ 6246 MemPage **ppPage, /* Store pointer to the allocated page here */ 6247 Pgno *pPgno, /* Store the page number here */ 6248 Pgno nearby, /* Search for a page near this one */ 6249 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 6250 ){ 6251 MemPage *pPage1; 6252 int rc; 6253 u32 n; /* Number of pages on the freelist */ 6254 u32 k; /* Number of leaves on the trunk of the freelist */ 6255 MemPage *pTrunk = 0; 6256 MemPage *pPrevTrunk = 0; 6257 Pgno mxPage; /* Total size of the database file */ 6258 6259 assert( sqlite3_mutex_held(pBt->mutex) ); 6260 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 6261 pPage1 = pBt->pPage1; 6262 mxPage = btreePagecount(pBt); 6263 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 6264 ** stores stores the total number of pages on the freelist. */ 6265 n = get4byte(&pPage1->aData[36]); 6266 testcase( n==mxPage-1 ); 6267 if( n>=mxPage ){ 6268 return SQLITE_CORRUPT_BKPT; 6269 } 6270 if( n>0 ){ 6271 /* There are pages on the freelist. Reuse one of those pages. */ 6272 Pgno iTrunk; 6273 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 6274 u32 nSearch = 0; /* Count of the number of search attempts */ 6275 6276 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 6277 ** shows that the page 'nearby' is somewhere on the free-list, then 6278 ** the entire-list will be searched for that page. 6279 */ 6280 #ifndef SQLITE_OMIT_AUTOVACUUM 6281 if( eMode==BTALLOC_EXACT ){ 6282 if( nearby<=mxPage ){ 6283 u8 eType; 6284 assert( nearby>0 ); 6285 assert( pBt->autoVacuum ); 6286 rc = ptrmapGet(pBt, nearby, &eType, 0); 6287 if( rc ) return rc; 6288 if( eType==PTRMAP_FREEPAGE ){ 6289 searchList = 1; 6290 } 6291 } 6292 }else if( eMode==BTALLOC_LE ){ 6293 searchList = 1; 6294 } 6295 #endif 6296 6297 /* Decrement the free-list count by 1. Set iTrunk to the index of the 6298 ** first free-list trunk page. iPrevTrunk is initially 1. 6299 */ 6300 rc = sqlite3PagerWrite(pPage1->pDbPage); 6301 if( rc ) return rc; 6302 put4byte(&pPage1->aData[36], n-1); 6303 6304 /* The code within this loop is run only once if the 'searchList' variable 6305 ** is not true. Otherwise, it runs once for each trunk-page on the 6306 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 6307 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 6308 */ 6309 do { 6310 pPrevTrunk = pTrunk; 6311 if( pPrevTrunk ){ 6312 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 6313 ** is the page number of the next freelist trunk page in the list or 6314 ** zero if this is the last freelist trunk page. */ 6315 iTrunk = get4byte(&pPrevTrunk->aData[0]); 6316 }else{ 6317 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 6318 ** stores the page number of the first page of the freelist, or zero if 6319 ** the freelist is empty. */ 6320 iTrunk = get4byte(&pPage1->aData[32]); 6321 } 6322 testcase( iTrunk==mxPage ); 6323 if( iTrunk>mxPage || nSearch++ > n ){ 6324 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 6325 }else{ 6326 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 6327 } 6328 if( rc ){ 6329 pTrunk = 0; 6330 goto end_allocate_page; 6331 } 6332 assert( pTrunk!=0 ); 6333 assert( pTrunk->aData!=0 ); 6334 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 6335 ** is the number of leaf page pointers to follow. */ 6336 k = get4byte(&pTrunk->aData[4]); 6337 if( k==0 && !searchList ){ 6338 /* The trunk has no leaves and the list is not being searched. 6339 ** So extract the trunk page itself and use it as the newly 6340 ** allocated page */ 6341 assert( pPrevTrunk==0 ); 6342 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6343 if( rc ){ 6344 goto end_allocate_page; 6345 } 6346 *pPgno = iTrunk; 6347 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6348 *ppPage = pTrunk; 6349 pTrunk = 0; 6350 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6351 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 6352 /* Value of k is out of range. Database corruption */ 6353 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6354 goto end_allocate_page; 6355 #ifndef SQLITE_OMIT_AUTOVACUUM 6356 }else if( searchList 6357 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 6358 ){ 6359 /* The list is being searched and this trunk page is the page 6360 ** to allocate, regardless of whether it has leaves. 6361 */ 6362 *pPgno = iTrunk; 6363 *ppPage = pTrunk; 6364 searchList = 0; 6365 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6366 if( rc ){ 6367 goto end_allocate_page; 6368 } 6369 if( k==0 ){ 6370 if( !pPrevTrunk ){ 6371 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6372 }else{ 6373 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6374 if( rc!=SQLITE_OK ){ 6375 goto end_allocate_page; 6376 } 6377 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6378 } 6379 }else{ 6380 /* The trunk page is required by the caller but it contains 6381 ** pointers to free-list leaves. The first leaf becomes a trunk 6382 ** page in this case. 6383 */ 6384 MemPage *pNewTrunk; 6385 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6386 if( iNewTrunk>mxPage ){ 6387 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6388 goto end_allocate_page; 6389 } 6390 testcase( iNewTrunk==mxPage ); 6391 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6392 if( rc!=SQLITE_OK ){ 6393 goto end_allocate_page; 6394 } 6395 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6396 if( rc!=SQLITE_OK ){ 6397 releasePage(pNewTrunk); 6398 goto end_allocate_page; 6399 } 6400 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6401 put4byte(&pNewTrunk->aData[4], k-1); 6402 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6403 releasePage(pNewTrunk); 6404 if( !pPrevTrunk ){ 6405 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6406 put4byte(&pPage1->aData[32], iNewTrunk); 6407 }else{ 6408 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6409 if( rc ){ 6410 goto end_allocate_page; 6411 } 6412 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6413 } 6414 } 6415 pTrunk = 0; 6416 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6417 #endif 6418 }else if( k>0 ){ 6419 /* Extract a leaf from the trunk */ 6420 u32 closest; 6421 Pgno iPage; 6422 unsigned char *aData = pTrunk->aData; 6423 if( nearby>0 ){ 6424 u32 i; 6425 closest = 0; 6426 if( eMode==BTALLOC_LE ){ 6427 for(i=0; i<k; i++){ 6428 iPage = get4byte(&aData[8+i*4]); 6429 if( iPage<=nearby ){ 6430 closest = i; 6431 break; 6432 } 6433 } 6434 }else{ 6435 int dist; 6436 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6437 for(i=1; i<k; i++){ 6438 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6439 if( d2<dist ){ 6440 closest = i; 6441 dist = d2; 6442 } 6443 } 6444 } 6445 }else{ 6446 closest = 0; 6447 } 6448 6449 iPage = get4byte(&aData[8+closest*4]); 6450 testcase( iPage==mxPage ); 6451 if( iPage>mxPage || iPage<2 ){ 6452 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6453 goto end_allocate_page; 6454 } 6455 testcase( iPage==mxPage ); 6456 if( !searchList 6457 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6458 ){ 6459 int noContent; 6460 *pPgno = iPage; 6461 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6462 ": %d more free pages\n", 6463 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6464 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6465 if( rc ) goto end_allocate_page; 6466 if( closest<k-1 ){ 6467 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6468 } 6469 put4byte(&aData[4], k-1); 6470 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6471 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6472 if( rc==SQLITE_OK ){ 6473 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6474 if( rc!=SQLITE_OK ){ 6475 releasePage(*ppPage); 6476 *ppPage = 0; 6477 } 6478 } 6479 searchList = 0; 6480 } 6481 } 6482 releasePage(pPrevTrunk); 6483 pPrevTrunk = 0; 6484 }while( searchList ); 6485 }else{ 6486 /* There are no pages on the freelist, so append a new page to the 6487 ** database image. 6488 ** 6489 ** Normally, new pages allocated by this block can be requested from the 6490 ** pager layer with the 'no-content' flag set. This prevents the pager 6491 ** from trying to read the pages content from disk. However, if the 6492 ** current transaction has already run one or more incremental-vacuum 6493 ** steps, then the page we are about to allocate may contain content 6494 ** that is required in the event of a rollback. In this case, do 6495 ** not set the no-content flag. This causes the pager to load and journal 6496 ** the current page content before overwriting it. 6497 ** 6498 ** Note that the pager will not actually attempt to load or journal 6499 ** content for any page that really does lie past the end of the database 6500 ** file on disk. So the effects of disabling the no-content optimization 6501 ** here are confined to those pages that lie between the end of the 6502 ** database image and the end of the database file. 6503 */ 6504 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6505 6506 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6507 if( rc ) return rc; 6508 pBt->nPage++; 6509 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6510 6511 #ifndef SQLITE_OMIT_AUTOVACUUM 6512 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6513 /* If *pPgno refers to a pointer-map page, allocate two new pages 6514 ** at the end of the file instead of one. The first allocated page 6515 ** becomes a new pointer-map page, the second is used by the caller. 6516 */ 6517 MemPage *pPg = 0; 6518 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6519 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6520 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6521 if( rc==SQLITE_OK ){ 6522 rc = sqlite3PagerWrite(pPg->pDbPage); 6523 releasePage(pPg); 6524 } 6525 if( rc ) return rc; 6526 pBt->nPage++; 6527 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6528 } 6529 #endif 6530 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6531 *pPgno = pBt->nPage; 6532 6533 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6534 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6535 if( rc ) return rc; 6536 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6537 if( rc!=SQLITE_OK ){ 6538 releasePage(*ppPage); 6539 *ppPage = 0; 6540 } 6541 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6542 } 6543 6544 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6545 6546 end_allocate_page: 6547 releasePage(pTrunk); 6548 releasePage(pPrevTrunk); 6549 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6550 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6551 return rc; 6552 } 6553 6554 /* 6555 ** This function is used to add page iPage to the database file free-list. 6556 ** It is assumed that the page is not already a part of the free-list. 6557 ** 6558 ** The value passed as the second argument to this function is optional. 6559 ** If the caller happens to have a pointer to the MemPage object 6560 ** corresponding to page iPage handy, it may pass it as the second value. 6561 ** Otherwise, it may pass NULL. 6562 ** 6563 ** If a pointer to a MemPage object is passed as the second argument, 6564 ** its reference count is not altered by this function. 6565 */ 6566 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6567 MemPage *pTrunk = 0; /* Free-list trunk page */ 6568 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6569 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6570 MemPage *pPage; /* Page being freed. May be NULL. */ 6571 int rc; /* Return Code */ 6572 u32 nFree; /* Initial number of pages on free-list */ 6573 6574 assert( sqlite3_mutex_held(pBt->mutex) ); 6575 assert( CORRUPT_DB || iPage>1 ); 6576 assert( !pMemPage || pMemPage->pgno==iPage ); 6577 6578 if( iPage<2 || iPage>pBt->nPage ){ 6579 return SQLITE_CORRUPT_BKPT; 6580 } 6581 if( pMemPage ){ 6582 pPage = pMemPage; 6583 sqlite3PagerRef(pPage->pDbPage); 6584 }else{ 6585 pPage = btreePageLookup(pBt, iPage); 6586 } 6587 6588 /* Increment the free page count on pPage1 */ 6589 rc = sqlite3PagerWrite(pPage1->pDbPage); 6590 if( rc ) goto freepage_out; 6591 nFree = get4byte(&pPage1->aData[36]); 6592 put4byte(&pPage1->aData[36], nFree+1); 6593 6594 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6595 /* If the secure_delete option is enabled, then 6596 ** always fully overwrite deleted information with zeros. 6597 */ 6598 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6599 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6600 ){ 6601 goto freepage_out; 6602 } 6603 memset(pPage->aData, 0, pPage->pBt->pageSize); 6604 } 6605 6606 /* If the database supports auto-vacuum, write an entry in the pointer-map 6607 ** to indicate that the page is free. 6608 */ 6609 if( ISAUTOVACUUM ){ 6610 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6611 if( rc ) goto freepage_out; 6612 } 6613 6614 /* Now manipulate the actual database free-list structure. There are two 6615 ** possibilities. If the free-list is currently empty, or if the first 6616 ** trunk page in the free-list is full, then this page will become a 6617 ** new free-list trunk page. Otherwise, it will become a leaf of the 6618 ** first trunk page in the current free-list. This block tests if it 6619 ** is possible to add the page as a new free-list leaf. 6620 */ 6621 if( nFree!=0 ){ 6622 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6623 6624 iTrunk = get4byte(&pPage1->aData[32]); 6625 if( iTrunk>btreePagecount(pBt) ){ 6626 rc = SQLITE_CORRUPT_BKPT; 6627 goto freepage_out; 6628 } 6629 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6630 if( rc!=SQLITE_OK ){ 6631 goto freepage_out; 6632 } 6633 6634 nLeaf = get4byte(&pTrunk->aData[4]); 6635 assert( pBt->usableSize>32 ); 6636 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6637 rc = SQLITE_CORRUPT_BKPT; 6638 goto freepage_out; 6639 } 6640 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6641 /* In this case there is room on the trunk page to insert the page 6642 ** being freed as a new leaf. 6643 ** 6644 ** Note that the trunk page is not really full until it contains 6645 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6646 ** coded. But due to a coding error in versions of SQLite prior to 6647 ** 3.6.0, databases with freelist trunk pages holding more than 6648 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6649 ** to maintain backwards compatibility with older versions of SQLite, 6650 ** we will continue to restrict the number of entries to usableSize/4 - 8 6651 ** for now. At some point in the future (once everyone has upgraded 6652 ** to 3.6.0 or later) we should consider fixing the conditional above 6653 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6654 ** 6655 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6656 ** avoid using the last six entries in the freelist trunk page array in 6657 ** order that database files created by newer versions of SQLite can be 6658 ** read by older versions of SQLite. 6659 */ 6660 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6661 if( rc==SQLITE_OK ){ 6662 put4byte(&pTrunk->aData[4], nLeaf+1); 6663 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6664 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6665 sqlite3PagerDontWrite(pPage->pDbPage); 6666 } 6667 rc = btreeSetHasContent(pBt, iPage); 6668 } 6669 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6670 goto freepage_out; 6671 } 6672 } 6673 6674 /* If control flows to this point, then it was not possible to add the 6675 ** the page being freed as a leaf page of the first trunk in the free-list. 6676 ** Possibly because the free-list is empty, or possibly because the 6677 ** first trunk in the free-list is full. Either way, the page being freed 6678 ** will become the new first trunk page in the free-list. 6679 */ 6680 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6681 goto freepage_out; 6682 } 6683 rc = sqlite3PagerWrite(pPage->pDbPage); 6684 if( rc!=SQLITE_OK ){ 6685 goto freepage_out; 6686 } 6687 put4byte(pPage->aData, iTrunk); 6688 put4byte(&pPage->aData[4], 0); 6689 put4byte(&pPage1->aData[32], iPage); 6690 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6691 6692 freepage_out: 6693 if( pPage ){ 6694 pPage->isInit = 0; 6695 } 6696 releasePage(pPage); 6697 releasePage(pTrunk); 6698 return rc; 6699 } 6700 static void freePage(MemPage *pPage, int *pRC){ 6701 if( (*pRC)==SQLITE_OK ){ 6702 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6703 } 6704 } 6705 6706 /* 6707 ** Free the overflow pages associated with the given Cell. 6708 */ 6709 static SQLITE_NOINLINE int clearCellOverflow( 6710 MemPage *pPage, /* The page that contains the Cell */ 6711 unsigned char *pCell, /* First byte of the Cell */ 6712 CellInfo *pInfo /* Size information about the cell */ 6713 ){ 6714 BtShared *pBt; 6715 Pgno ovflPgno; 6716 int rc; 6717 int nOvfl; 6718 u32 ovflPageSize; 6719 6720 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6721 assert( pInfo->nLocal!=pInfo->nPayload ); 6722 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6723 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6724 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6725 /* Cell extends past end of page */ 6726 return SQLITE_CORRUPT_PAGE(pPage); 6727 } 6728 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6729 pBt = pPage->pBt; 6730 assert( pBt->usableSize > 4 ); 6731 ovflPageSize = pBt->usableSize - 4; 6732 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6733 assert( nOvfl>0 || 6734 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6735 ); 6736 while( nOvfl-- ){ 6737 Pgno iNext = 0; 6738 MemPage *pOvfl = 0; 6739 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6740 /* 0 is not a legal page number and page 1 cannot be an 6741 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6742 ** file the database must be corrupt. */ 6743 return SQLITE_CORRUPT_BKPT; 6744 } 6745 if( nOvfl ){ 6746 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6747 if( rc ) return rc; 6748 } 6749 6750 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6751 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6752 ){ 6753 /* There is no reason any cursor should have an outstanding reference 6754 ** to an overflow page belonging to a cell that is being deleted/updated. 6755 ** So if there exists more than one reference to this page, then it 6756 ** must not really be an overflow page and the database must be corrupt. 6757 ** It is helpful to detect this before calling freePage2(), as 6758 ** freePage2() may zero the page contents if secure-delete mode is 6759 ** enabled. If this 'overflow' page happens to be a page that the 6760 ** caller is iterating through or using in some other way, this 6761 ** can be problematic. 6762 */ 6763 rc = SQLITE_CORRUPT_BKPT; 6764 }else{ 6765 rc = freePage2(pBt, pOvfl, ovflPgno); 6766 } 6767 6768 if( pOvfl ){ 6769 sqlite3PagerUnref(pOvfl->pDbPage); 6770 } 6771 if( rc ) return rc; 6772 ovflPgno = iNext; 6773 } 6774 return SQLITE_OK; 6775 } 6776 6777 /* Call xParseCell to compute the size of a cell. If the cell contains 6778 ** overflow, then invoke cellClearOverflow to clear out that overflow. 6779 ** STore the result code (SQLITE_OK or some error code) in rc. 6780 ** 6781 ** Implemented as macro to force inlining for performance. 6782 */ 6783 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ 6784 pPage->xParseCell(pPage, pCell, &sInfo); \ 6785 if( sInfo.nLocal!=sInfo.nPayload ){ \ 6786 rc = clearCellOverflow(pPage, pCell, &sInfo); \ 6787 }else{ \ 6788 rc = SQLITE_OK; \ 6789 } 6790 6791 6792 /* 6793 ** Create the byte sequence used to represent a cell on page pPage 6794 ** and write that byte sequence into pCell[]. Overflow pages are 6795 ** allocated and filled in as necessary. The calling procedure 6796 ** is responsible for making sure sufficient space has been allocated 6797 ** for pCell[]. 6798 ** 6799 ** Note that pCell does not necessary need to point to the pPage->aData 6800 ** area. pCell might point to some temporary storage. The cell will 6801 ** be constructed in this temporary area then copied into pPage->aData 6802 ** later. 6803 */ 6804 static int fillInCell( 6805 MemPage *pPage, /* The page that contains the cell */ 6806 unsigned char *pCell, /* Complete text of the cell */ 6807 const BtreePayload *pX, /* Payload with which to construct the cell */ 6808 int *pnSize /* Write cell size here */ 6809 ){ 6810 int nPayload; 6811 const u8 *pSrc; 6812 int nSrc, n, rc, mn; 6813 int spaceLeft; 6814 MemPage *pToRelease; 6815 unsigned char *pPrior; 6816 unsigned char *pPayload; 6817 BtShared *pBt; 6818 Pgno pgnoOvfl; 6819 int nHeader; 6820 6821 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6822 6823 /* pPage is not necessarily writeable since pCell might be auxiliary 6824 ** buffer space that is separate from the pPage buffer area */ 6825 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6826 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6827 6828 /* Fill in the header. */ 6829 nHeader = pPage->childPtrSize; 6830 if( pPage->intKey ){ 6831 nPayload = pX->nData + pX->nZero; 6832 pSrc = pX->pData; 6833 nSrc = pX->nData; 6834 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6835 nHeader += putVarint32(&pCell[nHeader], nPayload); 6836 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6837 }else{ 6838 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6839 nSrc = nPayload = (int)pX->nKey; 6840 pSrc = pX->pKey; 6841 nHeader += putVarint32(&pCell[nHeader], nPayload); 6842 } 6843 6844 /* Fill in the payload */ 6845 pPayload = &pCell[nHeader]; 6846 if( nPayload<=pPage->maxLocal ){ 6847 /* This is the common case where everything fits on the btree page 6848 ** and no overflow pages are required. */ 6849 n = nHeader + nPayload; 6850 testcase( n==3 ); 6851 testcase( n==4 ); 6852 if( n<4 ) n = 4; 6853 *pnSize = n; 6854 assert( nSrc<=nPayload ); 6855 testcase( nSrc<nPayload ); 6856 memcpy(pPayload, pSrc, nSrc); 6857 memset(pPayload+nSrc, 0, nPayload-nSrc); 6858 return SQLITE_OK; 6859 } 6860 6861 /* If we reach this point, it means that some of the content will need 6862 ** to spill onto overflow pages. 6863 */ 6864 mn = pPage->minLocal; 6865 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6866 testcase( n==pPage->maxLocal ); 6867 testcase( n==pPage->maxLocal+1 ); 6868 if( n > pPage->maxLocal ) n = mn; 6869 spaceLeft = n; 6870 *pnSize = n + nHeader + 4; 6871 pPrior = &pCell[nHeader+n]; 6872 pToRelease = 0; 6873 pgnoOvfl = 0; 6874 pBt = pPage->pBt; 6875 6876 /* At this point variables should be set as follows: 6877 ** 6878 ** nPayload Total payload size in bytes 6879 ** pPayload Begin writing payload here 6880 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6881 ** that means content must spill into overflow pages. 6882 ** *pnSize Size of the local cell (not counting overflow pages) 6883 ** pPrior Where to write the pgno of the first overflow page 6884 ** 6885 ** Use a call to btreeParseCellPtr() to verify that the values above 6886 ** were computed correctly. 6887 */ 6888 #ifdef SQLITE_DEBUG 6889 { 6890 CellInfo info; 6891 pPage->xParseCell(pPage, pCell, &info); 6892 assert( nHeader==(int)(info.pPayload - pCell) ); 6893 assert( info.nKey==pX->nKey ); 6894 assert( *pnSize == info.nSize ); 6895 assert( spaceLeft == info.nLocal ); 6896 } 6897 #endif 6898 6899 /* Write the payload into the local Cell and any extra into overflow pages */ 6900 while( 1 ){ 6901 n = nPayload; 6902 if( n>spaceLeft ) n = spaceLeft; 6903 6904 /* If pToRelease is not zero than pPayload points into the data area 6905 ** of pToRelease. Make sure pToRelease is still writeable. */ 6906 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6907 6908 /* If pPayload is part of the data area of pPage, then make sure pPage 6909 ** is still writeable */ 6910 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6911 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6912 6913 if( nSrc>=n ){ 6914 memcpy(pPayload, pSrc, n); 6915 }else if( nSrc>0 ){ 6916 n = nSrc; 6917 memcpy(pPayload, pSrc, n); 6918 }else{ 6919 memset(pPayload, 0, n); 6920 } 6921 nPayload -= n; 6922 if( nPayload<=0 ) break; 6923 pPayload += n; 6924 pSrc += n; 6925 nSrc -= n; 6926 spaceLeft -= n; 6927 if( spaceLeft==0 ){ 6928 MemPage *pOvfl = 0; 6929 #ifndef SQLITE_OMIT_AUTOVACUUM 6930 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6931 if( pBt->autoVacuum ){ 6932 do{ 6933 pgnoOvfl++; 6934 } while( 6935 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6936 ); 6937 } 6938 #endif 6939 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6940 #ifndef SQLITE_OMIT_AUTOVACUUM 6941 /* If the database supports auto-vacuum, and the second or subsequent 6942 ** overflow page is being allocated, add an entry to the pointer-map 6943 ** for that page now. 6944 ** 6945 ** If this is the first overflow page, then write a partial entry 6946 ** to the pointer-map. If we write nothing to this pointer-map slot, 6947 ** then the optimistic overflow chain processing in clearCell() 6948 ** may misinterpret the uninitialized values and delete the 6949 ** wrong pages from the database. 6950 */ 6951 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6952 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6953 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6954 if( rc ){ 6955 releasePage(pOvfl); 6956 } 6957 } 6958 #endif 6959 if( rc ){ 6960 releasePage(pToRelease); 6961 return rc; 6962 } 6963 6964 /* If pToRelease is not zero than pPrior points into the data area 6965 ** of pToRelease. Make sure pToRelease is still writeable. */ 6966 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6967 6968 /* If pPrior is part of the data area of pPage, then make sure pPage 6969 ** is still writeable */ 6970 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6971 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6972 6973 put4byte(pPrior, pgnoOvfl); 6974 releasePage(pToRelease); 6975 pToRelease = pOvfl; 6976 pPrior = pOvfl->aData; 6977 put4byte(pPrior, 0); 6978 pPayload = &pOvfl->aData[4]; 6979 spaceLeft = pBt->usableSize - 4; 6980 } 6981 } 6982 releasePage(pToRelease); 6983 return SQLITE_OK; 6984 } 6985 6986 /* 6987 ** Remove the i-th cell from pPage. This routine effects pPage only. 6988 ** The cell content is not freed or deallocated. It is assumed that 6989 ** the cell content has been copied someplace else. This routine just 6990 ** removes the reference to the cell from pPage. 6991 ** 6992 ** "sz" must be the number of bytes in the cell. 6993 */ 6994 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6995 u32 pc; /* Offset to cell content of cell being deleted */ 6996 u8 *data; /* pPage->aData */ 6997 u8 *ptr; /* Used to move bytes around within data[] */ 6998 int rc; /* The return code */ 6999 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 7000 7001 if( *pRC ) return; 7002 assert( idx>=0 ); 7003 assert( idx<pPage->nCell ); 7004 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 7005 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 7006 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7007 assert( pPage->nFree>=0 ); 7008 data = pPage->aData; 7009 ptr = &pPage->aCellIdx[2*idx]; 7010 assert( pPage->pBt->usableSize > (u32)(ptr-data) ); 7011 pc = get2byte(ptr); 7012 hdr = pPage->hdrOffset; 7013 testcase( pc==(u32)get2byte(&data[hdr+5]) ); 7014 testcase( pc+sz==pPage->pBt->usableSize ); 7015 if( pc+sz > pPage->pBt->usableSize ){ 7016 *pRC = SQLITE_CORRUPT_BKPT; 7017 return; 7018 } 7019 rc = freeSpace(pPage, pc, sz); 7020 if( rc ){ 7021 *pRC = rc; 7022 return; 7023 } 7024 pPage->nCell--; 7025 if( pPage->nCell==0 ){ 7026 memset(&data[hdr+1], 0, 4); 7027 data[hdr+7] = 0; 7028 put2byte(&data[hdr+5], pPage->pBt->usableSize); 7029 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 7030 - pPage->childPtrSize - 8; 7031 }else{ 7032 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 7033 put2byte(&data[hdr+3], pPage->nCell); 7034 pPage->nFree += 2; 7035 } 7036 } 7037 7038 /* 7039 ** Insert a new cell on pPage at cell index "i". pCell points to the 7040 ** content of the cell. 7041 ** 7042 ** If the cell content will fit on the page, then put it there. If it 7043 ** will not fit, then make a copy of the cell content into pTemp if 7044 ** pTemp is not null. Regardless of pTemp, allocate a new entry 7045 ** in pPage->apOvfl[] and make it point to the cell content (either 7046 ** in pTemp or the original pCell) and also record its index. 7047 ** Allocating a new entry in pPage->aCell[] implies that 7048 ** pPage->nOverflow is incremented. 7049 ** 7050 ** *pRC must be SQLITE_OK when this routine is called. 7051 */ 7052 static void insertCell( 7053 MemPage *pPage, /* Page into which we are copying */ 7054 int i, /* New cell becomes the i-th cell of the page */ 7055 u8 *pCell, /* Content of the new cell */ 7056 int sz, /* Bytes of content in pCell */ 7057 u8 *pTemp, /* Temp storage space for pCell, if needed */ 7058 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 7059 int *pRC /* Read and write return code from here */ 7060 ){ 7061 int idx = 0; /* Where to write new cell content in data[] */ 7062 int j; /* Loop counter */ 7063 u8 *data; /* The content of the whole page */ 7064 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 7065 7066 assert( *pRC==SQLITE_OK ); 7067 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 7068 assert( MX_CELL(pPage->pBt)<=10921 ); 7069 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 7070 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 7071 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 7072 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7073 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 7074 assert( pPage->nFree>=0 ); 7075 if( pPage->nOverflow || sz+2>pPage->nFree ){ 7076 if( pTemp ){ 7077 memcpy(pTemp, pCell, sz); 7078 pCell = pTemp; 7079 } 7080 if( iChild ){ 7081 put4byte(pCell, iChild); 7082 } 7083 j = pPage->nOverflow++; 7084 /* Comparison against ArraySize-1 since we hold back one extra slot 7085 ** as a contingency. In other words, never need more than 3 overflow 7086 ** slots but 4 are allocated, just to be safe. */ 7087 assert( j < ArraySize(pPage->apOvfl)-1 ); 7088 pPage->apOvfl[j] = pCell; 7089 pPage->aiOvfl[j] = (u16)i; 7090 7091 /* When multiple overflows occur, they are always sequential and in 7092 ** sorted order. This invariants arise because multiple overflows can 7093 ** only occur when inserting divider cells into the parent page during 7094 ** balancing, and the dividers are adjacent and sorted. 7095 */ 7096 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 7097 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 7098 }else{ 7099 int rc = sqlite3PagerWrite(pPage->pDbPage); 7100 if( rc!=SQLITE_OK ){ 7101 *pRC = rc; 7102 return; 7103 } 7104 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 7105 data = pPage->aData; 7106 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 7107 rc = allocateSpace(pPage, sz, &idx); 7108 if( rc ){ *pRC = rc; return; } 7109 /* The allocateSpace() routine guarantees the following properties 7110 ** if it returns successfully */ 7111 assert( idx >= 0 ); 7112 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 7113 assert( idx+sz <= (int)pPage->pBt->usableSize ); 7114 pPage->nFree -= (u16)(2 + sz); 7115 if( iChild ){ 7116 /* In a corrupt database where an entry in the cell index section of 7117 ** a btree page has a value of 3 or less, the pCell value might point 7118 ** as many as 4 bytes in front of the start of the aData buffer for 7119 ** the source page. Make sure this does not cause problems by not 7120 ** reading the first 4 bytes */ 7121 memcpy(&data[idx+4], pCell+4, sz-4); 7122 put4byte(&data[idx], iChild); 7123 }else{ 7124 memcpy(&data[idx], pCell, sz); 7125 } 7126 pIns = pPage->aCellIdx + i*2; 7127 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 7128 put2byte(pIns, idx); 7129 pPage->nCell++; 7130 /* increment the cell count */ 7131 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 7132 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 7133 #ifndef SQLITE_OMIT_AUTOVACUUM 7134 if( pPage->pBt->autoVacuum ){ 7135 /* The cell may contain a pointer to an overflow page. If so, write 7136 ** the entry for the overflow page into the pointer map. 7137 */ 7138 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 7139 } 7140 #endif 7141 } 7142 } 7143 7144 /* 7145 ** The following parameters determine how many adjacent pages get involved 7146 ** in a balancing operation. NN is the number of neighbors on either side 7147 ** of the page that participate in the balancing operation. NB is the 7148 ** total number of pages that participate, including the target page and 7149 ** NN neighbors on either side. 7150 ** 7151 ** The minimum value of NN is 1 (of course). Increasing NN above 1 7152 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 7153 ** in exchange for a larger degradation in INSERT and UPDATE performance. 7154 ** The value of NN appears to give the best results overall. 7155 ** 7156 ** (Later:) The description above makes it seem as if these values are 7157 ** tunable - as if you could change them and recompile and it would all work. 7158 ** But that is unlikely. NB has been 3 since the inception of SQLite and 7159 ** we have never tested any other value. 7160 */ 7161 #define NN 1 /* Number of neighbors on either side of pPage */ 7162 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 7163 7164 /* 7165 ** A CellArray object contains a cache of pointers and sizes for a 7166 ** consecutive sequence of cells that might be held on multiple pages. 7167 ** 7168 ** The cells in this array are the divider cell or cells from the pParent 7169 ** page plus up to three child pages. There are a total of nCell cells. 7170 ** 7171 ** pRef is a pointer to one of the pages that contributes cells. This is 7172 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 7173 ** which should be common to all pages that contribute cells to this array. 7174 ** 7175 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 7176 ** cell and the size of each cell. Some of the apCell[] pointers might refer 7177 ** to overflow cells. In other words, some apCel[] pointers might not point 7178 ** to content area of the pages. 7179 ** 7180 ** A szCell[] of zero means the size of that cell has not yet been computed. 7181 ** 7182 ** The cells come from as many as four different pages: 7183 ** 7184 ** ----------- 7185 ** | Parent | 7186 ** ----------- 7187 ** / | \ 7188 ** / | \ 7189 ** --------- --------- --------- 7190 ** |Child-1| |Child-2| |Child-3| 7191 ** --------- --------- --------- 7192 ** 7193 ** The order of cells is in the array is for an index btree is: 7194 ** 7195 ** 1. All cells from Child-1 in order 7196 ** 2. The first divider cell from Parent 7197 ** 3. All cells from Child-2 in order 7198 ** 4. The second divider cell from Parent 7199 ** 5. All cells from Child-3 in order 7200 ** 7201 ** For a table-btree (with rowids) the items 2 and 4 are empty because 7202 ** content exists only in leaves and there are no divider cells. 7203 ** 7204 ** For an index btree, the apEnd[] array holds pointer to the end of page 7205 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 7206 ** respectively. The ixNx[] array holds the number of cells contained in 7207 ** each of these 5 stages, and all stages to the left. Hence: 7208 ** 7209 ** ixNx[0] = Number of cells in Child-1. 7210 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 7211 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 7212 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 7213 ** ixNx[4] = Total number of cells. 7214 ** 7215 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 7216 ** are used and they point to the leaf pages only, and the ixNx value are: 7217 ** 7218 ** ixNx[0] = Number of cells in Child-1. 7219 ** ixNx[1] = Number of cells in Child-1 and Child-2. 7220 ** ixNx[2] = Total number of cells. 7221 ** 7222 ** Sometimes when deleting, a child page can have zero cells. In those 7223 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 7224 ** entries, shift down. The end result is that each ixNx[] entry should 7225 ** be larger than the previous 7226 */ 7227 typedef struct CellArray CellArray; 7228 struct CellArray { 7229 int nCell; /* Number of cells in apCell[] */ 7230 MemPage *pRef; /* Reference page */ 7231 u8 **apCell; /* All cells begin balanced */ 7232 u16 *szCell; /* Local size of all cells in apCell[] */ 7233 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 7234 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 7235 }; 7236 7237 /* 7238 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 7239 ** computed. 7240 */ 7241 static void populateCellCache(CellArray *p, int idx, int N){ 7242 assert( idx>=0 && idx+N<=p->nCell ); 7243 while( N>0 ){ 7244 assert( p->apCell[idx]!=0 ); 7245 if( p->szCell[idx]==0 ){ 7246 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 7247 }else{ 7248 assert( CORRUPT_DB || 7249 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 7250 } 7251 idx++; 7252 N--; 7253 } 7254 } 7255 7256 /* 7257 ** Return the size of the Nth element of the cell array 7258 */ 7259 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 7260 assert( N>=0 && N<p->nCell ); 7261 assert( p->szCell[N]==0 ); 7262 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 7263 return p->szCell[N]; 7264 } 7265 static u16 cachedCellSize(CellArray *p, int N){ 7266 assert( N>=0 && N<p->nCell ); 7267 if( p->szCell[N] ) return p->szCell[N]; 7268 return computeCellSize(p, N); 7269 } 7270 7271 /* 7272 ** Array apCell[] contains pointers to nCell b-tree page cells. The 7273 ** szCell[] array contains the size in bytes of each cell. This function 7274 ** replaces the current contents of page pPg with the contents of the cell 7275 ** array. 7276 ** 7277 ** Some of the cells in apCell[] may currently be stored in pPg. This 7278 ** function works around problems caused by this by making a copy of any 7279 ** such cells before overwriting the page data. 7280 ** 7281 ** The MemPage.nFree field is invalidated by this function. It is the 7282 ** responsibility of the caller to set it correctly. 7283 */ 7284 static int rebuildPage( 7285 CellArray *pCArray, /* Content to be added to page pPg */ 7286 int iFirst, /* First cell in pCArray to use */ 7287 int nCell, /* Final number of cells on page */ 7288 MemPage *pPg /* The page to be reconstructed */ 7289 ){ 7290 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 7291 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 7292 const int usableSize = pPg->pBt->usableSize; 7293 u8 * const pEnd = &aData[usableSize]; 7294 int i = iFirst; /* Which cell to copy from pCArray*/ 7295 u32 j; /* Start of cell content area */ 7296 int iEnd = i+nCell; /* Loop terminator */ 7297 u8 *pCellptr = pPg->aCellIdx; 7298 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7299 u8 *pData; 7300 int k; /* Current slot in pCArray->apEnd[] */ 7301 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 7302 7303 assert( i<iEnd ); 7304 j = get2byte(&aData[hdr+5]); 7305 if( j>(u32)usableSize ){ j = 0; } 7306 memcpy(&pTmp[j], &aData[j], usableSize - j); 7307 7308 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7309 pSrcEnd = pCArray->apEnd[k]; 7310 7311 pData = pEnd; 7312 while( 1/*exit by break*/ ){ 7313 u8 *pCell = pCArray->apCell[i]; 7314 u16 sz = pCArray->szCell[i]; 7315 assert( sz>0 ); 7316 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ 7317 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 7318 pCell = &pTmp[pCell - aData]; 7319 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 7320 && (uptr)(pCell)<(uptr)pSrcEnd 7321 ){ 7322 return SQLITE_CORRUPT_BKPT; 7323 } 7324 7325 pData -= sz; 7326 put2byte(pCellptr, (pData - aData)); 7327 pCellptr += 2; 7328 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 7329 memmove(pData, pCell, sz); 7330 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 7331 i++; 7332 if( i>=iEnd ) break; 7333 if( pCArray->ixNx[k]<=i ){ 7334 k++; 7335 pSrcEnd = pCArray->apEnd[k]; 7336 } 7337 } 7338 7339 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 7340 pPg->nCell = nCell; 7341 pPg->nOverflow = 0; 7342 7343 put2byte(&aData[hdr+1], 0); 7344 put2byte(&aData[hdr+3], pPg->nCell); 7345 put2byte(&aData[hdr+5], pData - aData); 7346 aData[hdr+7] = 0x00; 7347 return SQLITE_OK; 7348 } 7349 7350 /* 7351 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 7352 ** This function attempts to add the cells stored in the array to page pPg. 7353 ** If it cannot (because the page needs to be defragmented before the cells 7354 ** will fit), non-zero is returned. Otherwise, if the cells are added 7355 ** successfully, zero is returned. 7356 ** 7357 ** Argument pCellptr points to the first entry in the cell-pointer array 7358 ** (part of page pPg) to populate. After cell apCell[0] is written to the 7359 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 7360 ** cell in the array. It is the responsibility of the caller to ensure 7361 ** that it is safe to overwrite this part of the cell-pointer array. 7362 ** 7363 ** When this function is called, *ppData points to the start of the 7364 ** content area on page pPg. If the size of the content area is extended, 7365 ** *ppData is updated to point to the new start of the content area 7366 ** before returning. 7367 ** 7368 ** Finally, argument pBegin points to the byte immediately following the 7369 ** end of the space required by this page for the cell-pointer area (for 7370 ** all cells - not just those inserted by the current call). If the content 7371 ** area must be extended to before this point in order to accomodate all 7372 ** cells in apCell[], then the cells do not fit and non-zero is returned. 7373 */ 7374 static int pageInsertArray( 7375 MemPage *pPg, /* Page to add cells to */ 7376 u8 *pBegin, /* End of cell-pointer array */ 7377 u8 **ppData, /* IN/OUT: Page content-area pointer */ 7378 u8 *pCellptr, /* Pointer to cell-pointer area */ 7379 int iFirst, /* Index of first cell to add */ 7380 int nCell, /* Number of cells to add to pPg */ 7381 CellArray *pCArray /* Array of cells */ 7382 ){ 7383 int i = iFirst; /* Loop counter - cell index to insert */ 7384 u8 *aData = pPg->aData; /* Complete page */ 7385 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7386 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7387 int k; /* Current slot in pCArray->apEnd[] */ 7388 u8 *pEnd; /* Maximum extent of cell data */ 7389 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7390 if( iEnd<=iFirst ) return 0; 7391 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7392 pEnd = pCArray->apEnd[k]; 7393 while( 1 /*Exit by break*/ ){ 7394 int sz, rc; 7395 u8 *pSlot; 7396 assert( pCArray->szCell[i]!=0 ); 7397 sz = pCArray->szCell[i]; 7398 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7399 if( (pData - pBegin)<sz ) return 1; 7400 pData -= sz; 7401 pSlot = pData; 7402 } 7403 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7404 ** database. But they might for a corrupt database. Hence use memmove() 7405 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7406 assert( (pSlot+sz)<=pCArray->apCell[i] 7407 || pSlot>=(pCArray->apCell[i]+sz) 7408 || CORRUPT_DB ); 7409 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7410 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7411 ){ 7412 assert( CORRUPT_DB ); 7413 (void)SQLITE_CORRUPT_BKPT; 7414 return 1; 7415 } 7416 memmove(pSlot, pCArray->apCell[i], sz); 7417 put2byte(pCellptr, (pSlot - aData)); 7418 pCellptr += 2; 7419 i++; 7420 if( i>=iEnd ) break; 7421 if( pCArray->ixNx[k]<=i ){ 7422 k++; 7423 pEnd = pCArray->apEnd[k]; 7424 } 7425 } 7426 *ppData = pData; 7427 return 0; 7428 } 7429 7430 /* 7431 ** The pCArray object contains pointers to b-tree cells and their sizes. 7432 ** 7433 ** This function adds the space associated with each cell in the array 7434 ** that is currently stored within the body of pPg to the pPg free-list. 7435 ** The cell-pointers and other fields of the page are not updated. 7436 ** 7437 ** This function returns the total number of cells added to the free-list. 7438 */ 7439 static int pageFreeArray( 7440 MemPage *pPg, /* Page to edit */ 7441 int iFirst, /* First cell to delete */ 7442 int nCell, /* Cells to delete */ 7443 CellArray *pCArray /* Array of cells */ 7444 ){ 7445 u8 * const aData = pPg->aData; 7446 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7447 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7448 int nRet = 0; 7449 int i; 7450 int iEnd = iFirst + nCell; 7451 u8 *pFree = 0; 7452 int szFree = 0; 7453 7454 for(i=iFirst; i<iEnd; i++){ 7455 u8 *pCell = pCArray->apCell[i]; 7456 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7457 int sz; 7458 /* No need to use cachedCellSize() here. The sizes of all cells that 7459 ** are to be freed have already been computing while deciding which 7460 ** cells need freeing */ 7461 sz = pCArray->szCell[i]; assert( sz>0 ); 7462 if( pFree!=(pCell + sz) ){ 7463 if( pFree ){ 7464 assert( pFree>aData && (pFree - aData)<65536 ); 7465 freeSpace(pPg, (u16)(pFree - aData), szFree); 7466 } 7467 pFree = pCell; 7468 szFree = sz; 7469 if( pFree+sz>pEnd ){ 7470 return 0; 7471 } 7472 }else{ 7473 pFree = pCell; 7474 szFree += sz; 7475 } 7476 nRet++; 7477 } 7478 } 7479 if( pFree ){ 7480 assert( pFree>aData && (pFree - aData)<65536 ); 7481 freeSpace(pPg, (u16)(pFree - aData), szFree); 7482 } 7483 return nRet; 7484 } 7485 7486 /* 7487 ** pCArray contains pointers to and sizes of all cells in the page being 7488 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7489 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7490 ** starting at apCell[iNew]. 7491 ** 7492 ** This routine makes the necessary adjustments to pPg so that it contains 7493 ** the correct cells after being balanced. 7494 ** 7495 ** The pPg->nFree field is invalid when this function returns. It is the 7496 ** responsibility of the caller to set it correctly. 7497 */ 7498 static int editPage( 7499 MemPage *pPg, /* Edit this page */ 7500 int iOld, /* Index of first cell currently on page */ 7501 int iNew, /* Index of new first cell on page */ 7502 int nNew, /* Final number of cells on page */ 7503 CellArray *pCArray /* Array of cells and sizes */ 7504 ){ 7505 u8 * const aData = pPg->aData; 7506 const int hdr = pPg->hdrOffset; 7507 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7508 int nCell = pPg->nCell; /* Cells stored on pPg */ 7509 u8 *pData; 7510 u8 *pCellptr; 7511 int i; 7512 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7513 int iNewEnd = iNew + nNew; 7514 7515 #ifdef SQLITE_DEBUG 7516 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7517 memcpy(pTmp, aData, pPg->pBt->usableSize); 7518 #endif 7519 7520 /* Remove cells from the start and end of the page */ 7521 assert( nCell>=0 ); 7522 if( iOld<iNew ){ 7523 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7524 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; 7525 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7526 nCell -= nShift; 7527 } 7528 if( iNewEnd < iOldEnd ){ 7529 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7530 assert( nCell>=nTail ); 7531 nCell -= nTail; 7532 } 7533 7534 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7535 if( pData<pBegin ) goto editpage_fail; 7536 if( pData>pPg->aDataEnd ) goto editpage_fail; 7537 7538 /* Add cells to the start of the page */ 7539 if( iNew<iOld ){ 7540 int nAdd = MIN(nNew,iOld-iNew); 7541 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7542 assert( nAdd>=0 ); 7543 pCellptr = pPg->aCellIdx; 7544 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7545 if( pageInsertArray( 7546 pPg, pBegin, &pData, pCellptr, 7547 iNew, nAdd, pCArray 7548 ) ) goto editpage_fail; 7549 nCell += nAdd; 7550 } 7551 7552 /* Add any overflow cells */ 7553 for(i=0; i<pPg->nOverflow; i++){ 7554 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7555 if( iCell>=0 && iCell<nNew ){ 7556 pCellptr = &pPg->aCellIdx[iCell * 2]; 7557 if( nCell>iCell ){ 7558 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7559 } 7560 nCell++; 7561 cachedCellSize(pCArray, iCell+iNew); 7562 if( pageInsertArray( 7563 pPg, pBegin, &pData, pCellptr, 7564 iCell+iNew, 1, pCArray 7565 ) ) goto editpage_fail; 7566 } 7567 } 7568 7569 /* Append cells to the end of the page */ 7570 assert( nCell>=0 ); 7571 pCellptr = &pPg->aCellIdx[nCell*2]; 7572 if( pageInsertArray( 7573 pPg, pBegin, &pData, pCellptr, 7574 iNew+nCell, nNew-nCell, pCArray 7575 ) ) goto editpage_fail; 7576 7577 pPg->nCell = nNew; 7578 pPg->nOverflow = 0; 7579 7580 put2byte(&aData[hdr+3], pPg->nCell); 7581 put2byte(&aData[hdr+5], pData - aData); 7582 7583 #ifdef SQLITE_DEBUG 7584 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7585 u8 *pCell = pCArray->apCell[i+iNew]; 7586 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7587 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7588 pCell = &pTmp[pCell - aData]; 7589 } 7590 assert( 0==memcmp(pCell, &aData[iOff], 7591 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7592 } 7593 #endif 7594 7595 return SQLITE_OK; 7596 editpage_fail: 7597 /* Unable to edit this page. Rebuild it from scratch instead. */ 7598 populateCellCache(pCArray, iNew, nNew); 7599 return rebuildPage(pCArray, iNew, nNew, pPg); 7600 } 7601 7602 7603 #ifndef SQLITE_OMIT_QUICKBALANCE 7604 /* 7605 ** This version of balance() handles the common special case where 7606 ** a new entry is being inserted on the extreme right-end of the 7607 ** tree, in other words, when the new entry will become the largest 7608 ** entry in the tree. 7609 ** 7610 ** Instead of trying to balance the 3 right-most leaf pages, just add 7611 ** a new page to the right-hand side and put the one new entry in 7612 ** that page. This leaves the right side of the tree somewhat 7613 ** unbalanced. But odds are that we will be inserting new entries 7614 ** at the end soon afterwards so the nearly empty page will quickly 7615 ** fill up. On average. 7616 ** 7617 ** pPage is the leaf page which is the right-most page in the tree. 7618 ** pParent is its parent. pPage must have a single overflow entry 7619 ** which is also the right-most entry on the page. 7620 ** 7621 ** The pSpace buffer is used to store a temporary copy of the divider 7622 ** cell that will be inserted into pParent. Such a cell consists of a 4 7623 ** byte page number followed by a variable length integer. In other 7624 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7625 ** least 13 bytes in size. 7626 */ 7627 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7628 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7629 MemPage *pNew; /* Newly allocated page */ 7630 int rc; /* Return Code */ 7631 Pgno pgnoNew; /* Page number of pNew */ 7632 7633 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7634 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7635 assert( pPage->nOverflow==1 ); 7636 7637 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7638 assert( pPage->nFree>=0 ); 7639 assert( pParent->nFree>=0 ); 7640 7641 /* Allocate a new page. This page will become the right-sibling of 7642 ** pPage. Make the parent page writable, so that the new divider cell 7643 ** may be inserted. If both these operations are successful, proceed. 7644 */ 7645 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7646 7647 if( rc==SQLITE_OK ){ 7648 7649 u8 *pOut = &pSpace[4]; 7650 u8 *pCell = pPage->apOvfl[0]; 7651 u16 szCell = pPage->xCellSize(pPage, pCell); 7652 u8 *pStop; 7653 CellArray b; 7654 7655 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7656 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7657 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7658 b.nCell = 1; 7659 b.pRef = pPage; 7660 b.apCell = &pCell; 7661 b.szCell = &szCell; 7662 b.apEnd[0] = pPage->aDataEnd; 7663 b.ixNx[0] = 2; 7664 rc = rebuildPage(&b, 0, 1, pNew); 7665 if( NEVER(rc) ){ 7666 releasePage(pNew); 7667 return rc; 7668 } 7669 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7670 7671 /* If this is an auto-vacuum database, update the pointer map 7672 ** with entries for the new page, and any pointer from the 7673 ** cell on the page to an overflow page. If either of these 7674 ** operations fails, the return code is set, but the contents 7675 ** of the parent page are still manipulated by thh code below. 7676 ** That is Ok, at this point the parent page is guaranteed to 7677 ** be marked as dirty. Returning an error code will cause a 7678 ** rollback, undoing any changes made to the parent page. 7679 */ 7680 if( ISAUTOVACUUM ){ 7681 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7682 if( szCell>pNew->minLocal ){ 7683 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7684 } 7685 } 7686 7687 /* Create a divider cell to insert into pParent. The divider cell 7688 ** consists of a 4-byte page number (the page number of pPage) and 7689 ** a variable length key value (which must be the same value as the 7690 ** largest key on pPage). 7691 ** 7692 ** To find the largest key value on pPage, first find the right-most 7693 ** cell on pPage. The first two fields of this cell are the 7694 ** record-length (a variable length integer at most 32-bits in size) 7695 ** and the key value (a variable length integer, may have any value). 7696 ** The first of the while(...) loops below skips over the record-length 7697 ** field. The second while(...) loop copies the key value from the 7698 ** cell on pPage into the pSpace buffer. 7699 */ 7700 pCell = findCell(pPage, pPage->nCell-1); 7701 pStop = &pCell[9]; 7702 while( (*(pCell++)&0x80) && pCell<pStop ); 7703 pStop = &pCell[9]; 7704 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7705 7706 /* Insert the new divider cell into pParent. */ 7707 if( rc==SQLITE_OK ){ 7708 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7709 0, pPage->pgno, &rc); 7710 } 7711 7712 /* Set the right-child pointer of pParent to point to the new page. */ 7713 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7714 7715 /* Release the reference to the new page. */ 7716 releasePage(pNew); 7717 } 7718 7719 return rc; 7720 } 7721 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7722 7723 #if 0 7724 /* 7725 ** This function does not contribute anything to the operation of SQLite. 7726 ** it is sometimes activated temporarily while debugging code responsible 7727 ** for setting pointer-map entries. 7728 */ 7729 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7730 int i, j; 7731 for(i=0; i<nPage; i++){ 7732 Pgno n; 7733 u8 e; 7734 MemPage *pPage = apPage[i]; 7735 BtShared *pBt = pPage->pBt; 7736 assert( pPage->isInit ); 7737 7738 for(j=0; j<pPage->nCell; j++){ 7739 CellInfo info; 7740 u8 *z; 7741 7742 z = findCell(pPage, j); 7743 pPage->xParseCell(pPage, z, &info); 7744 if( info.nLocal<info.nPayload ){ 7745 Pgno ovfl = get4byte(&z[info.nSize-4]); 7746 ptrmapGet(pBt, ovfl, &e, &n); 7747 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7748 } 7749 if( !pPage->leaf ){ 7750 Pgno child = get4byte(z); 7751 ptrmapGet(pBt, child, &e, &n); 7752 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7753 } 7754 } 7755 if( !pPage->leaf ){ 7756 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7757 ptrmapGet(pBt, child, &e, &n); 7758 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7759 } 7760 } 7761 return 1; 7762 } 7763 #endif 7764 7765 /* 7766 ** This function is used to copy the contents of the b-tree node stored 7767 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7768 ** the pointer-map entries for each child page are updated so that the 7769 ** parent page stored in the pointer map is page pTo. If pFrom contained 7770 ** any cells with overflow page pointers, then the corresponding pointer 7771 ** map entries are also updated so that the parent page is page pTo. 7772 ** 7773 ** If pFrom is currently carrying any overflow cells (entries in the 7774 ** MemPage.apOvfl[] array), they are not copied to pTo. 7775 ** 7776 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7777 ** 7778 ** The performance of this function is not critical. It is only used by 7779 ** the balance_shallower() and balance_deeper() procedures, neither of 7780 ** which are called often under normal circumstances. 7781 */ 7782 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7783 if( (*pRC)==SQLITE_OK ){ 7784 BtShared * const pBt = pFrom->pBt; 7785 u8 * const aFrom = pFrom->aData; 7786 u8 * const aTo = pTo->aData; 7787 int const iFromHdr = pFrom->hdrOffset; 7788 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7789 int rc; 7790 int iData; 7791 7792 7793 assert( pFrom->isInit ); 7794 assert( pFrom->nFree>=iToHdr ); 7795 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7796 7797 /* Copy the b-tree node content from page pFrom to page pTo. */ 7798 iData = get2byte(&aFrom[iFromHdr+5]); 7799 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7800 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7801 7802 /* Reinitialize page pTo so that the contents of the MemPage structure 7803 ** match the new data. The initialization of pTo can actually fail under 7804 ** fairly obscure circumstances, even though it is a copy of initialized 7805 ** page pFrom. 7806 */ 7807 pTo->isInit = 0; 7808 rc = btreeInitPage(pTo); 7809 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7810 if( rc!=SQLITE_OK ){ 7811 *pRC = rc; 7812 return; 7813 } 7814 7815 /* If this is an auto-vacuum database, update the pointer-map entries 7816 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7817 */ 7818 if( ISAUTOVACUUM ){ 7819 *pRC = setChildPtrmaps(pTo); 7820 } 7821 } 7822 } 7823 7824 /* 7825 ** This routine redistributes cells on the iParentIdx'th child of pParent 7826 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7827 ** same amount of free space. Usually a single sibling on either side of the 7828 ** page are used in the balancing, though both siblings might come from one 7829 ** side if the page is the first or last child of its parent. If the page 7830 ** has fewer than 2 siblings (something which can only happen if the page 7831 ** is a root page or a child of a root page) then all available siblings 7832 ** participate in the balancing. 7833 ** 7834 ** The number of siblings of the page might be increased or decreased by 7835 ** one or two in an effort to keep pages nearly full but not over full. 7836 ** 7837 ** Note that when this routine is called, some of the cells on the page 7838 ** might not actually be stored in MemPage.aData[]. This can happen 7839 ** if the page is overfull. This routine ensures that all cells allocated 7840 ** to the page and its siblings fit into MemPage.aData[] before returning. 7841 ** 7842 ** In the course of balancing the page and its siblings, cells may be 7843 ** inserted into or removed from the parent page (pParent). Doing so 7844 ** may cause the parent page to become overfull or underfull. If this 7845 ** happens, it is the responsibility of the caller to invoke the correct 7846 ** balancing routine to fix this problem (see the balance() routine). 7847 ** 7848 ** If this routine fails for any reason, it might leave the database 7849 ** in a corrupted state. So if this routine fails, the database should 7850 ** be rolled back. 7851 ** 7852 ** The third argument to this function, aOvflSpace, is a pointer to a 7853 ** buffer big enough to hold one page. If while inserting cells into the parent 7854 ** page (pParent) the parent page becomes overfull, this buffer is 7855 ** used to store the parent's overflow cells. Because this function inserts 7856 ** a maximum of four divider cells into the parent page, and the maximum 7857 ** size of a cell stored within an internal node is always less than 1/4 7858 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7859 ** enough for all overflow cells. 7860 ** 7861 ** If aOvflSpace is set to a null pointer, this function returns 7862 ** SQLITE_NOMEM. 7863 */ 7864 static int balance_nonroot( 7865 MemPage *pParent, /* Parent page of siblings being balanced */ 7866 int iParentIdx, /* Index of "the page" in pParent */ 7867 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7868 int isRoot, /* True if pParent is a root-page */ 7869 int bBulk /* True if this call is part of a bulk load */ 7870 ){ 7871 BtShared *pBt; /* The whole database */ 7872 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7873 int nNew = 0; /* Number of pages in apNew[] */ 7874 int nOld; /* Number of pages in apOld[] */ 7875 int i, j, k; /* Loop counters */ 7876 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7877 int rc = SQLITE_OK; /* The return code */ 7878 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7879 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7880 int usableSpace; /* Bytes in pPage beyond the header */ 7881 int pageFlags; /* Value of pPage->aData[0] */ 7882 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7883 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7884 int szScratch; /* Size of scratch memory requested */ 7885 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7886 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7887 u8 *pRight; /* Location in parent of right-sibling pointer */ 7888 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7889 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7890 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7891 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7892 u8 *aSpace1; /* Space for copies of dividers cells */ 7893 Pgno pgno; /* Temp var to store a page number in */ 7894 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7895 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7896 CellArray b; /* Parsed information on cells being balanced */ 7897 7898 memset(abDone, 0, sizeof(abDone)); 7899 memset(&b, 0, sizeof(b)); 7900 pBt = pParent->pBt; 7901 assert( sqlite3_mutex_held(pBt->mutex) ); 7902 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7903 7904 /* At this point pParent may have at most one overflow cell. And if 7905 ** this overflow cell is present, it must be the cell with 7906 ** index iParentIdx. This scenario comes about when this function 7907 ** is called (indirectly) from sqlite3BtreeDelete(). 7908 */ 7909 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7910 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7911 7912 if( !aOvflSpace ){ 7913 return SQLITE_NOMEM_BKPT; 7914 } 7915 assert( pParent->nFree>=0 ); 7916 7917 /* Find the sibling pages to balance. Also locate the cells in pParent 7918 ** that divide the siblings. An attempt is made to find NN siblings on 7919 ** either side of pPage. More siblings are taken from one side, however, 7920 ** if there are fewer than NN siblings on the other side. If pParent 7921 ** has NB or fewer children then all children of pParent are taken. 7922 ** 7923 ** This loop also drops the divider cells from the parent page. This 7924 ** way, the remainder of the function does not have to deal with any 7925 ** overflow cells in the parent page, since if any existed they will 7926 ** have already been removed. 7927 */ 7928 i = pParent->nOverflow + pParent->nCell; 7929 if( i<2 ){ 7930 nxDiv = 0; 7931 }else{ 7932 assert( bBulk==0 || bBulk==1 ); 7933 if( iParentIdx==0 ){ 7934 nxDiv = 0; 7935 }else if( iParentIdx==i ){ 7936 nxDiv = i-2+bBulk; 7937 }else{ 7938 nxDiv = iParentIdx-1; 7939 } 7940 i = 2-bBulk; 7941 } 7942 nOld = i+1; 7943 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7944 pRight = &pParent->aData[pParent->hdrOffset+8]; 7945 }else{ 7946 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7947 } 7948 pgno = get4byte(pRight); 7949 while( 1 ){ 7950 if( rc==SQLITE_OK ){ 7951 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7952 } 7953 if( rc ){ 7954 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7955 goto balance_cleanup; 7956 } 7957 if( apOld[i]->nFree<0 ){ 7958 rc = btreeComputeFreeSpace(apOld[i]); 7959 if( rc ){ 7960 memset(apOld, 0, (i)*sizeof(MemPage*)); 7961 goto balance_cleanup; 7962 } 7963 } 7964 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); 7965 if( (i--)==0 ) break; 7966 7967 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7968 apDiv[i] = pParent->apOvfl[0]; 7969 pgno = get4byte(apDiv[i]); 7970 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7971 pParent->nOverflow = 0; 7972 }else{ 7973 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7974 pgno = get4byte(apDiv[i]); 7975 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7976 7977 /* Drop the cell from the parent page. apDiv[i] still points to 7978 ** the cell within the parent, even though it has been dropped. 7979 ** This is safe because dropping a cell only overwrites the first 7980 ** four bytes of it, and this function does not need the first 7981 ** four bytes of the divider cell. So the pointer is safe to use 7982 ** later on. 7983 ** 7984 ** But not if we are in secure-delete mode. In secure-delete mode, 7985 ** the dropCell() routine will overwrite the entire cell with zeroes. 7986 ** In this case, temporarily copy the cell into the aOvflSpace[] 7987 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7988 ** is allocated. */ 7989 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7990 int iOff; 7991 7992 /* If the following if() condition is not true, the db is corrupted. 7993 ** The call to dropCell() below will detect this. */ 7994 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7995 if( (iOff+szNew[i])<=(int)pBt->usableSize ){ 7996 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7997 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7998 } 7999 } 8000 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 8001 } 8002 } 8003 8004 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 8005 ** alignment */ 8006 nMaxCells = (nMaxCells + 3)&~3; 8007 8008 /* 8009 ** Allocate space for memory structures 8010 */ 8011 szScratch = 8012 nMaxCells*sizeof(u8*) /* b.apCell */ 8013 + nMaxCells*sizeof(u16) /* b.szCell */ 8014 + pBt->pageSize; /* aSpace1 */ 8015 8016 assert( szScratch<=7*(int)pBt->pageSize ); 8017 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 8018 if( b.apCell==0 ){ 8019 rc = SQLITE_NOMEM_BKPT; 8020 goto balance_cleanup; 8021 } 8022 b.szCell = (u16*)&b.apCell[nMaxCells]; 8023 aSpace1 = (u8*)&b.szCell[nMaxCells]; 8024 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 8025 8026 /* 8027 ** Load pointers to all cells on sibling pages and the divider cells 8028 ** into the local b.apCell[] array. Make copies of the divider cells 8029 ** into space obtained from aSpace1[]. The divider cells have already 8030 ** been removed from pParent. 8031 ** 8032 ** If the siblings are on leaf pages, then the child pointers of the 8033 ** divider cells are stripped from the cells before they are copied 8034 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 8035 ** child pointers. If siblings are not leaves, then all cell in 8036 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 8037 ** are alike. 8038 ** 8039 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 8040 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 8041 */ 8042 b.pRef = apOld[0]; 8043 leafCorrection = b.pRef->leaf*4; 8044 leafData = b.pRef->intKeyLeaf; 8045 for(i=0; i<nOld; i++){ 8046 MemPage *pOld = apOld[i]; 8047 int limit = pOld->nCell; 8048 u8 *aData = pOld->aData; 8049 u16 maskPage = pOld->maskPage; 8050 u8 *piCell = aData + pOld->cellOffset; 8051 u8 *piEnd; 8052 VVA_ONLY( int nCellAtStart = b.nCell; ) 8053 8054 /* Verify that all sibling pages are of the same "type" (table-leaf, 8055 ** table-interior, index-leaf, or index-interior). 8056 */ 8057 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 8058 rc = SQLITE_CORRUPT_BKPT; 8059 goto balance_cleanup; 8060 } 8061 8062 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 8063 ** contains overflow cells, include them in the b.apCell[] array 8064 ** in the correct spot. 8065 ** 8066 ** Note that when there are multiple overflow cells, it is always the 8067 ** case that they are sequential and adjacent. This invariant arises 8068 ** because multiple overflows can only occurs when inserting divider 8069 ** cells into a parent on a prior balance, and divider cells are always 8070 ** adjacent and are inserted in order. There is an assert() tagged 8071 ** with "NOTE 1" in the overflow cell insertion loop to prove this 8072 ** invariant. 8073 ** 8074 ** This must be done in advance. Once the balance starts, the cell 8075 ** offset section of the btree page will be overwritten and we will no 8076 ** long be able to find the cells if a pointer to each cell is not saved 8077 ** first. 8078 */ 8079 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 8080 if( pOld->nOverflow>0 ){ 8081 if( NEVER(limit<pOld->aiOvfl[0]) ){ 8082 rc = SQLITE_CORRUPT_BKPT; 8083 goto balance_cleanup; 8084 } 8085 limit = pOld->aiOvfl[0]; 8086 for(j=0; j<limit; j++){ 8087 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 8088 piCell += 2; 8089 b.nCell++; 8090 } 8091 for(k=0; k<pOld->nOverflow; k++){ 8092 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 8093 b.apCell[b.nCell] = pOld->apOvfl[k]; 8094 b.nCell++; 8095 } 8096 } 8097 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 8098 while( piCell<piEnd ){ 8099 assert( b.nCell<nMaxCells ); 8100 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 8101 piCell += 2; 8102 b.nCell++; 8103 } 8104 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 8105 8106 cntOld[i] = b.nCell; 8107 if( i<nOld-1 && !leafData){ 8108 u16 sz = (u16)szNew[i]; 8109 u8 *pTemp; 8110 assert( b.nCell<nMaxCells ); 8111 b.szCell[b.nCell] = sz; 8112 pTemp = &aSpace1[iSpace1]; 8113 iSpace1 += sz; 8114 assert( sz<=pBt->maxLocal+23 ); 8115 assert( iSpace1 <= (int)pBt->pageSize ); 8116 memcpy(pTemp, apDiv[i], sz); 8117 b.apCell[b.nCell] = pTemp+leafCorrection; 8118 assert( leafCorrection==0 || leafCorrection==4 ); 8119 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 8120 if( !pOld->leaf ){ 8121 assert( leafCorrection==0 ); 8122 assert( pOld->hdrOffset==0 || CORRUPT_DB ); 8123 /* The right pointer of the child page pOld becomes the left 8124 ** pointer of the divider cell */ 8125 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 8126 }else{ 8127 assert( leafCorrection==4 ); 8128 while( b.szCell[b.nCell]<4 ){ 8129 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 8130 ** does exist, pad it with 0x00 bytes. */ 8131 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 8132 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 8133 aSpace1[iSpace1++] = 0x00; 8134 b.szCell[b.nCell]++; 8135 } 8136 } 8137 b.nCell++; 8138 } 8139 } 8140 8141 /* 8142 ** Figure out the number of pages needed to hold all b.nCell cells. 8143 ** Store this number in "k". Also compute szNew[] which is the total 8144 ** size of all cells on the i-th page and cntNew[] which is the index 8145 ** in b.apCell[] of the cell that divides page i from page i+1. 8146 ** cntNew[k] should equal b.nCell. 8147 ** 8148 ** Values computed by this block: 8149 ** 8150 ** k: The total number of sibling pages 8151 ** szNew[i]: Spaced used on the i-th sibling page. 8152 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 8153 ** the right of the i-th sibling page. 8154 ** usableSpace: Number of bytes of space available on each sibling. 8155 ** 8156 */ 8157 usableSpace = pBt->usableSize - 12 + leafCorrection; 8158 for(i=k=0; i<nOld; i++, k++){ 8159 MemPage *p = apOld[i]; 8160 b.apEnd[k] = p->aDataEnd; 8161 b.ixNx[k] = cntOld[i]; 8162 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 8163 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 8164 } 8165 if( !leafData ){ 8166 k++; 8167 b.apEnd[k] = pParent->aDataEnd; 8168 b.ixNx[k] = cntOld[i]+1; 8169 } 8170 assert( p->nFree>=0 ); 8171 szNew[i] = usableSpace - p->nFree; 8172 for(j=0; j<p->nOverflow; j++){ 8173 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 8174 } 8175 cntNew[i] = cntOld[i]; 8176 } 8177 k = nOld; 8178 for(i=0; i<k; i++){ 8179 int sz; 8180 while( szNew[i]>usableSpace ){ 8181 if( i+1>=k ){ 8182 k = i+2; 8183 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 8184 szNew[k-1] = 0; 8185 cntNew[k-1] = b.nCell; 8186 } 8187 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 8188 szNew[i] -= sz; 8189 if( !leafData ){ 8190 if( cntNew[i]<b.nCell ){ 8191 sz = 2 + cachedCellSize(&b, cntNew[i]); 8192 }else{ 8193 sz = 0; 8194 } 8195 } 8196 szNew[i+1] += sz; 8197 cntNew[i]--; 8198 } 8199 while( cntNew[i]<b.nCell ){ 8200 sz = 2 + cachedCellSize(&b, cntNew[i]); 8201 if( szNew[i]+sz>usableSpace ) break; 8202 szNew[i] += sz; 8203 cntNew[i]++; 8204 if( !leafData ){ 8205 if( cntNew[i]<b.nCell ){ 8206 sz = 2 + cachedCellSize(&b, cntNew[i]); 8207 }else{ 8208 sz = 0; 8209 } 8210 } 8211 szNew[i+1] -= sz; 8212 } 8213 if( cntNew[i]>=b.nCell ){ 8214 k = i+1; 8215 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 8216 rc = SQLITE_CORRUPT_BKPT; 8217 goto balance_cleanup; 8218 } 8219 } 8220 8221 /* 8222 ** The packing computed by the previous block is biased toward the siblings 8223 ** on the left side (siblings with smaller keys). The left siblings are 8224 ** always nearly full, while the right-most sibling might be nearly empty. 8225 ** The next block of code attempts to adjust the packing of siblings to 8226 ** get a better balance. 8227 ** 8228 ** This adjustment is more than an optimization. The packing above might 8229 ** be so out of balance as to be illegal. For example, the right-most 8230 ** sibling might be completely empty. This adjustment is not optional. 8231 */ 8232 for(i=k-1; i>0; i--){ 8233 int szRight = szNew[i]; /* Size of sibling on the right */ 8234 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 8235 int r; /* Index of right-most cell in left sibling */ 8236 int d; /* Index of first cell to the left of right sibling */ 8237 8238 r = cntNew[i-1] - 1; 8239 d = r + 1 - leafData; 8240 (void)cachedCellSize(&b, d); 8241 do{ 8242 assert( d<nMaxCells ); 8243 assert( r<nMaxCells ); 8244 (void)cachedCellSize(&b, r); 8245 if( szRight!=0 8246 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 8247 break; 8248 } 8249 szRight += b.szCell[d] + 2; 8250 szLeft -= b.szCell[r] + 2; 8251 cntNew[i-1] = r; 8252 r--; 8253 d--; 8254 }while( r>=0 ); 8255 szNew[i] = szRight; 8256 szNew[i-1] = szLeft; 8257 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 8258 rc = SQLITE_CORRUPT_BKPT; 8259 goto balance_cleanup; 8260 } 8261 } 8262 8263 /* Sanity check: For a non-corrupt database file one of the follwing 8264 ** must be true: 8265 ** (1) We found one or more cells (cntNew[0])>0), or 8266 ** (2) pPage is a virtual root page. A virtual root page is when 8267 ** the real root page is page 1 and we are the only child of 8268 ** that page. 8269 */ 8270 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 8271 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 8272 apOld[0]->pgno, apOld[0]->nCell, 8273 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 8274 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 8275 )); 8276 8277 /* 8278 ** Allocate k new pages. Reuse old pages where possible. 8279 */ 8280 pageFlags = apOld[0]->aData[0]; 8281 for(i=0; i<k; i++){ 8282 MemPage *pNew; 8283 if( i<nOld ){ 8284 pNew = apNew[i] = apOld[i]; 8285 apOld[i] = 0; 8286 rc = sqlite3PagerWrite(pNew->pDbPage); 8287 nNew++; 8288 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) 8289 && rc==SQLITE_OK 8290 ){ 8291 rc = SQLITE_CORRUPT_BKPT; 8292 } 8293 if( rc ) goto balance_cleanup; 8294 }else{ 8295 assert( i>0 ); 8296 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 8297 if( rc ) goto balance_cleanup; 8298 zeroPage(pNew, pageFlags); 8299 apNew[i] = pNew; 8300 nNew++; 8301 cntOld[i] = b.nCell; 8302 8303 /* Set the pointer-map entry for the new sibling page. */ 8304 if( ISAUTOVACUUM ){ 8305 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 8306 if( rc!=SQLITE_OK ){ 8307 goto balance_cleanup; 8308 } 8309 } 8310 } 8311 } 8312 8313 /* 8314 ** Reassign page numbers so that the new pages are in ascending order. 8315 ** This helps to keep entries in the disk file in order so that a scan 8316 ** of the table is closer to a linear scan through the file. That in turn 8317 ** helps the operating system to deliver pages from the disk more rapidly. 8318 ** 8319 ** An O(N*N) sort algorithm is used, but since N is never more than NB+2 8320 ** (5), that is not a performance concern. 8321 ** 8322 ** When NB==3, this one optimization makes the database about 25% faster 8323 ** for large insertions and deletions. 8324 */ 8325 for(i=0; i<nNew; i++){ 8326 aPgno[i] = apNew[i]->pgno; 8327 assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE ); 8328 assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY ); 8329 } 8330 for(i=0; i<nNew-1; i++){ 8331 int iB = i; 8332 for(j=i+1; j<nNew; j++){ 8333 if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j; 8334 } 8335 8336 /* If apNew[i] has a page number that is bigger than any of the 8337 ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent 8338 ** entry that has the smallest page number (which we know to be 8339 ** entry apNew[iB]). 8340 */ 8341 if( iB!=i ){ 8342 Pgno pgnoA = apNew[i]->pgno; 8343 Pgno pgnoB = apNew[iB]->pgno; 8344 Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1; 8345 u16 fgA = apNew[i]->pDbPage->flags; 8346 u16 fgB = apNew[iB]->pDbPage->flags; 8347 sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB); 8348 sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA); 8349 sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB); 8350 apNew[i]->pgno = pgnoB; 8351 apNew[iB]->pgno = pgnoA; 8352 } 8353 } 8354 8355 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 8356 "%d(%d nc=%d) %d(%d nc=%d)\n", 8357 apNew[0]->pgno, szNew[0], cntNew[0], 8358 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 8359 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 8360 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 8361 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 8362 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 8363 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 8364 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 8365 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 8366 )); 8367 8368 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8369 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 8370 assert( apNew[nNew-1]!=0 ); 8371 put4byte(pRight, apNew[nNew-1]->pgno); 8372 8373 /* If the sibling pages are not leaves, ensure that the right-child pointer 8374 ** of the right-most new sibling page is set to the value that was 8375 ** originally in the same field of the right-most old sibling page. */ 8376 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 8377 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 8378 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 8379 } 8380 8381 /* Make any required updates to pointer map entries associated with 8382 ** cells stored on sibling pages following the balance operation. Pointer 8383 ** map entries associated with divider cells are set by the insertCell() 8384 ** routine. The associated pointer map entries are: 8385 ** 8386 ** a) if the cell contains a reference to an overflow chain, the 8387 ** entry associated with the first page in the overflow chain, and 8388 ** 8389 ** b) if the sibling pages are not leaves, the child page associated 8390 ** with the cell. 8391 ** 8392 ** If the sibling pages are not leaves, then the pointer map entry 8393 ** associated with the right-child of each sibling may also need to be 8394 ** updated. This happens below, after the sibling pages have been 8395 ** populated, not here. 8396 */ 8397 if( ISAUTOVACUUM ){ 8398 MemPage *pOld; 8399 MemPage *pNew = pOld = apNew[0]; 8400 int cntOldNext = pNew->nCell + pNew->nOverflow; 8401 int iNew = 0; 8402 int iOld = 0; 8403 8404 for(i=0; i<b.nCell; i++){ 8405 u8 *pCell = b.apCell[i]; 8406 while( i==cntOldNext ){ 8407 iOld++; 8408 assert( iOld<nNew || iOld<nOld ); 8409 assert( iOld>=0 && iOld<NB ); 8410 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8411 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8412 } 8413 if( i==cntNew[iNew] ){ 8414 pNew = apNew[++iNew]; 8415 if( !leafData ) continue; 8416 } 8417 8418 /* Cell pCell is destined for new sibling page pNew. Originally, it 8419 ** was either part of sibling page iOld (possibly an overflow cell), 8420 ** or else the divider cell to the left of sibling page iOld. So, 8421 ** if sibling page iOld had the same page number as pNew, and if 8422 ** pCell really was a part of sibling page iOld (not a divider or 8423 ** overflow cell), we can skip updating the pointer map entries. */ 8424 if( iOld>=nNew 8425 || pNew->pgno!=aPgno[iOld] 8426 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8427 ){ 8428 if( !leafCorrection ){ 8429 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8430 } 8431 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8432 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8433 } 8434 if( rc ) goto balance_cleanup; 8435 } 8436 } 8437 } 8438 8439 /* Insert new divider cells into pParent. */ 8440 for(i=0; i<nNew-1; i++){ 8441 u8 *pCell; 8442 u8 *pTemp; 8443 int sz; 8444 u8 *pSrcEnd; 8445 MemPage *pNew = apNew[i]; 8446 j = cntNew[i]; 8447 8448 assert( j<nMaxCells ); 8449 assert( b.apCell[j]!=0 ); 8450 pCell = b.apCell[j]; 8451 sz = b.szCell[j] + leafCorrection; 8452 pTemp = &aOvflSpace[iOvflSpace]; 8453 if( !pNew->leaf ){ 8454 memcpy(&pNew->aData[8], pCell, 4); 8455 }else if( leafData ){ 8456 /* If the tree is a leaf-data tree, and the siblings are leaves, 8457 ** then there is no divider cell in b.apCell[]. Instead, the divider 8458 ** cell consists of the integer key for the right-most cell of 8459 ** the sibling-page assembled above only. 8460 */ 8461 CellInfo info; 8462 j--; 8463 pNew->xParseCell(pNew, b.apCell[j], &info); 8464 pCell = pTemp; 8465 sz = 4 + putVarint(&pCell[4], info.nKey); 8466 pTemp = 0; 8467 }else{ 8468 pCell -= 4; 8469 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8470 ** previously stored on a leaf node, and its reported size was 4 8471 ** bytes, then it may actually be smaller than this 8472 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8473 ** any cell). But it is important to pass the correct size to 8474 ** insertCell(), so reparse the cell now. 8475 ** 8476 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8477 ** and WITHOUT ROWID tables with exactly one column which is the 8478 ** primary key. 8479 */ 8480 if( b.szCell[j]==4 ){ 8481 assert(leafCorrection==4); 8482 sz = pParent->xCellSize(pParent, pCell); 8483 } 8484 } 8485 iOvflSpace += sz; 8486 assert( sz<=pBt->maxLocal+23 ); 8487 assert( iOvflSpace <= (int)pBt->pageSize ); 8488 for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){} 8489 pSrcEnd = b.apEnd[k]; 8490 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ 8491 rc = SQLITE_CORRUPT_BKPT; 8492 goto balance_cleanup; 8493 } 8494 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8495 if( rc!=SQLITE_OK ) goto balance_cleanup; 8496 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8497 } 8498 8499 /* Now update the actual sibling pages. The order in which they are updated 8500 ** is important, as this code needs to avoid disrupting any page from which 8501 ** cells may still to be read. In practice, this means: 8502 ** 8503 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8504 ** then it is not safe to update page apNew[iPg] until after 8505 ** the left-hand sibling apNew[iPg-1] has been updated. 8506 ** 8507 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8508 ** then it is not safe to update page apNew[iPg] until after 8509 ** the right-hand sibling apNew[iPg+1] has been updated. 8510 ** 8511 ** If neither of the above apply, the page is safe to update. 8512 ** 8513 ** The iPg value in the following loop starts at nNew-1 goes down 8514 ** to 0, then back up to nNew-1 again, thus making two passes over 8515 ** the pages. On the initial downward pass, only condition (1) above 8516 ** needs to be tested because (2) will always be true from the previous 8517 ** step. On the upward pass, both conditions are always true, so the 8518 ** upwards pass simply processes pages that were missed on the downward 8519 ** pass. 8520 */ 8521 for(i=1-nNew; i<nNew; i++){ 8522 int iPg = i<0 ? -i : i; 8523 assert( iPg>=0 && iPg<nNew ); 8524 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8525 if( i>=0 /* On the upwards pass, or... */ 8526 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8527 ){ 8528 int iNew; 8529 int iOld; 8530 int nNewCell; 8531 8532 /* Verify condition (1): If cells are moving left, update iPg 8533 ** only after iPg-1 has already been updated. */ 8534 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8535 8536 /* Verify condition (2): If cells are moving right, update iPg 8537 ** only after iPg+1 has already been updated. */ 8538 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8539 8540 if( iPg==0 ){ 8541 iNew = iOld = 0; 8542 nNewCell = cntNew[0]; 8543 }else{ 8544 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8545 iNew = cntNew[iPg-1] + !leafData; 8546 nNewCell = cntNew[iPg] - iNew; 8547 } 8548 8549 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8550 if( rc ) goto balance_cleanup; 8551 abDone[iPg]++; 8552 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8553 assert( apNew[iPg]->nOverflow==0 ); 8554 assert( apNew[iPg]->nCell==nNewCell ); 8555 } 8556 } 8557 8558 /* All pages have been processed exactly once */ 8559 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8560 8561 assert( nOld>0 ); 8562 assert( nNew>0 ); 8563 8564 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8565 /* The root page of the b-tree now contains no cells. The only sibling 8566 ** page is the right-child of the parent. Copy the contents of the 8567 ** child page into the parent, decreasing the overall height of the 8568 ** b-tree structure by one. This is described as the "balance-shallower" 8569 ** sub-algorithm in some documentation. 8570 ** 8571 ** If this is an auto-vacuum database, the call to copyNodeContent() 8572 ** sets all pointer-map entries corresponding to database image pages 8573 ** for which the pointer is stored within the content being copied. 8574 ** 8575 ** It is critical that the child page be defragmented before being 8576 ** copied into the parent, because if the parent is page 1 then it will 8577 ** by smaller than the child due to the database header, and so all the 8578 ** free space needs to be up front. 8579 */ 8580 assert( nNew==1 || CORRUPT_DB ); 8581 rc = defragmentPage(apNew[0], -1); 8582 testcase( rc!=SQLITE_OK ); 8583 assert( apNew[0]->nFree == 8584 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8585 - apNew[0]->nCell*2) 8586 || rc!=SQLITE_OK 8587 ); 8588 copyNodeContent(apNew[0], pParent, &rc); 8589 freePage(apNew[0], &rc); 8590 }else if( ISAUTOVACUUM && !leafCorrection ){ 8591 /* Fix the pointer map entries associated with the right-child of each 8592 ** sibling page. All other pointer map entries have already been taken 8593 ** care of. */ 8594 for(i=0; i<nNew; i++){ 8595 u32 key = get4byte(&apNew[i]->aData[8]); 8596 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8597 } 8598 } 8599 8600 assert( pParent->isInit ); 8601 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8602 nOld, nNew, b.nCell)); 8603 8604 /* Free any old pages that were not reused as new pages. 8605 */ 8606 for(i=nNew; i<nOld; i++){ 8607 freePage(apOld[i], &rc); 8608 } 8609 8610 #if 0 8611 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8612 /* The ptrmapCheckPages() contains assert() statements that verify that 8613 ** all pointer map pages are set correctly. This is helpful while 8614 ** debugging. This is usually disabled because a corrupt database may 8615 ** cause an assert() statement to fail. */ 8616 ptrmapCheckPages(apNew, nNew); 8617 ptrmapCheckPages(&pParent, 1); 8618 } 8619 #endif 8620 8621 /* 8622 ** Cleanup before returning. 8623 */ 8624 balance_cleanup: 8625 sqlite3StackFree(0, b.apCell); 8626 for(i=0; i<nOld; i++){ 8627 releasePage(apOld[i]); 8628 } 8629 for(i=0; i<nNew; i++){ 8630 releasePage(apNew[i]); 8631 } 8632 8633 return rc; 8634 } 8635 8636 8637 /* 8638 ** This function is called when the root page of a b-tree structure is 8639 ** overfull (has one or more overflow pages). 8640 ** 8641 ** A new child page is allocated and the contents of the current root 8642 ** page, including overflow cells, are copied into the child. The root 8643 ** page is then overwritten to make it an empty page with the right-child 8644 ** pointer pointing to the new page. 8645 ** 8646 ** Before returning, all pointer-map entries corresponding to pages 8647 ** that the new child-page now contains pointers to are updated. The 8648 ** entry corresponding to the new right-child pointer of the root 8649 ** page is also updated. 8650 ** 8651 ** If successful, *ppChild is set to contain a reference to the child 8652 ** page and SQLITE_OK is returned. In this case the caller is required 8653 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8654 ** an error code is returned and *ppChild is set to 0. 8655 */ 8656 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8657 int rc; /* Return value from subprocedures */ 8658 MemPage *pChild = 0; /* Pointer to a new child page */ 8659 Pgno pgnoChild = 0; /* Page number of the new child page */ 8660 BtShared *pBt = pRoot->pBt; /* The BTree */ 8661 8662 assert( pRoot->nOverflow>0 ); 8663 assert( sqlite3_mutex_held(pBt->mutex) ); 8664 8665 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8666 ** page that will become the new right-child of pPage. Copy the contents 8667 ** of the node stored on pRoot into the new child page. 8668 */ 8669 rc = sqlite3PagerWrite(pRoot->pDbPage); 8670 if( rc==SQLITE_OK ){ 8671 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8672 copyNodeContent(pRoot, pChild, &rc); 8673 if( ISAUTOVACUUM ){ 8674 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8675 } 8676 } 8677 if( rc ){ 8678 *ppChild = 0; 8679 releasePage(pChild); 8680 return rc; 8681 } 8682 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8683 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8684 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8685 8686 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8687 8688 /* Copy the overflow cells from pRoot to pChild */ 8689 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8690 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8691 memcpy(pChild->apOvfl, pRoot->apOvfl, 8692 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8693 pChild->nOverflow = pRoot->nOverflow; 8694 8695 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8696 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8697 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8698 8699 *ppChild = pChild; 8700 return SQLITE_OK; 8701 } 8702 8703 /* 8704 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid 8705 ** on the same B-tree as pCur. 8706 ** 8707 ** This can occur if a database is corrupt with two or more SQL tables 8708 ** pointing to the same b-tree. If an insert occurs on one SQL table 8709 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL 8710 ** table linked to the same b-tree. If the secondary insert causes a 8711 ** rebalance, that can change content out from under the cursor on the 8712 ** first SQL table, violating invariants on the first insert. 8713 */ 8714 static int anotherValidCursor(BtCursor *pCur){ 8715 BtCursor *pOther; 8716 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ 8717 if( pOther!=pCur 8718 && pOther->eState==CURSOR_VALID 8719 && pOther->pPage==pCur->pPage 8720 ){ 8721 return SQLITE_CORRUPT_BKPT; 8722 } 8723 } 8724 return SQLITE_OK; 8725 } 8726 8727 /* 8728 ** The page that pCur currently points to has just been modified in 8729 ** some way. This function figures out if this modification means the 8730 ** tree needs to be balanced, and if so calls the appropriate balancing 8731 ** routine. Balancing routines are: 8732 ** 8733 ** balance_quick() 8734 ** balance_deeper() 8735 ** balance_nonroot() 8736 */ 8737 static int balance(BtCursor *pCur){ 8738 int rc = SQLITE_OK; 8739 u8 aBalanceQuickSpace[13]; 8740 u8 *pFree = 0; 8741 8742 VVA_ONLY( int balance_quick_called = 0 ); 8743 VVA_ONLY( int balance_deeper_called = 0 ); 8744 8745 do { 8746 int iPage; 8747 MemPage *pPage = pCur->pPage; 8748 8749 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8750 if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ 8751 /* No rebalance required as long as: 8752 ** (1) There are no overflow cells 8753 ** (2) The amount of free space on the page is less than 2/3rds of 8754 ** the total usable space on the page. */ 8755 break; 8756 }else if( (iPage = pCur->iPage)==0 ){ 8757 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ 8758 /* The root page of the b-tree is overfull. In this case call the 8759 ** balance_deeper() function to create a new child for the root-page 8760 ** and copy the current contents of the root-page to it. The 8761 ** next iteration of the do-loop will balance the child page. 8762 */ 8763 assert( balance_deeper_called==0 ); 8764 VVA_ONLY( balance_deeper_called++ ); 8765 rc = balance_deeper(pPage, &pCur->apPage[1]); 8766 if( rc==SQLITE_OK ){ 8767 pCur->iPage = 1; 8768 pCur->ix = 0; 8769 pCur->aiIdx[0] = 0; 8770 pCur->apPage[0] = pPage; 8771 pCur->pPage = pCur->apPage[1]; 8772 assert( pCur->pPage->nOverflow ); 8773 } 8774 }else{ 8775 break; 8776 } 8777 }else{ 8778 MemPage * const pParent = pCur->apPage[iPage-1]; 8779 int const iIdx = pCur->aiIdx[iPage-1]; 8780 8781 rc = sqlite3PagerWrite(pParent->pDbPage); 8782 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8783 rc = btreeComputeFreeSpace(pParent); 8784 } 8785 if( rc==SQLITE_OK ){ 8786 #ifndef SQLITE_OMIT_QUICKBALANCE 8787 if( pPage->intKeyLeaf 8788 && pPage->nOverflow==1 8789 && pPage->aiOvfl[0]==pPage->nCell 8790 && pParent->pgno!=1 8791 && pParent->nCell==iIdx 8792 ){ 8793 /* Call balance_quick() to create a new sibling of pPage on which 8794 ** to store the overflow cell. balance_quick() inserts a new cell 8795 ** into pParent, which may cause pParent overflow. If this 8796 ** happens, the next iteration of the do-loop will balance pParent 8797 ** use either balance_nonroot() or balance_deeper(). Until this 8798 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8799 ** buffer. 8800 ** 8801 ** The purpose of the following assert() is to check that only a 8802 ** single call to balance_quick() is made for each call to this 8803 ** function. If this were not verified, a subtle bug involving reuse 8804 ** of the aBalanceQuickSpace[] might sneak in. 8805 */ 8806 assert( balance_quick_called==0 ); 8807 VVA_ONLY( balance_quick_called++ ); 8808 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8809 }else 8810 #endif 8811 { 8812 /* In this case, call balance_nonroot() to redistribute cells 8813 ** between pPage and up to 2 of its sibling pages. This involves 8814 ** modifying the contents of pParent, which may cause pParent to 8815 ** become overfull or underfull. The next iteration of the do-loop 8816 ** will balance the parent page to correct this. 8817 ** 8818 ** If the parent page becomes overfull, the overflow cell or cells 8819 ** are stored in the pSpace buffer allocated immediately below. 8820 ** A subsequent iteration of the do-loop will deal with this by 8821 ** calling balance_nonroot() (balance_deeper() may be called first, 8822 ** but it doesn't deal with overflow cells - just moves them to a 8823 ** different page). Once this subsequent call to balance_nonroot() 8824 ** has completed, it is safe to release the pSpace buffer used by 8825 ** the previous call, as the overflow cell data will have been 8826 ** copied either into the body of a database page or into the new 8827 ** pSpace buffer passed to the latter call to balance_nonroot(). 8828 */ 8829 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8830 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8831 pCur->hints&BTREE_BULKLOAD); 8832 if( pFree ){ 8833 /* If pFree is not NULL, it points to the pSpace buffer used 8834 ** by a previous call to balance_nonroot(). Its contents are 8835 ** now stored either on real database pages or within the 8836 ** new pSpace buffer, so it may be safely freed here. */ 8837 sqlite3PageFree(pFree); 8838 } 8839 8840 /* The pSpace buffer will be freed after the next call to 8841 ** balance_nonroot(), or just before this function returns, whichever 8842 ** comes first. */ 8843 pFree = pSpace; 8844 } 8845 } 8846 8847 pPage->nOverflow = 0; 8848 8849 /* The next iteration of the do-loop balances the parent page. */ 8850 releasePage(pPage); 8851 pCur->iPage--; 8852 assert( pCur->iPage>=0 ); 8853 pCur->pPage = pCur->apPage[pCur->iPage]; 8854 } 8855 }while( rc==SQLITE_OK ); 8856 8857 if( pFree ){ 8858 sqlite3PageFree(pFree); 8859 } 8860 return rc; 8861 } 8862 8863 /* Overwrite content from pX into pDest. Only do the write if the 8864 ** content is different from what is already there. 8865 */ 8866 static int btreeOverwriteContent( 8867 MemPage *pPage, /* MemPage on which writing will occur */ 8868 u8 *pDest, /* Pointer to the place to start writing */ 8869 const BtreePayload *pX, /* Source of data to write */ 8870 int iOffset, /* Offset of first byte to write */ 8871 int iAmt /* Number of bytes to be written */ 8872 ){ 8873 int nData = pX->nData - iOffset; 8874 if( nData<=0 ){ 8875 /* Overwritting with zeros */ 8876 int i; 8877 for(i=0; i<iAmt && pDest[i]==0; i++){} 8878 if( i<iAmt ){ 8879 int rc = sqlite3PagerWrite(pPage->pDbPage); 8880 if( rc ) return rc; 8881 memset(pDest + i, 0, iAmt - i); 8882 } 8883 }else{ 8884 if( nData<iAmt ){ 8885 /* Mixed read data and zeros at the end. Make a recursive call 8886 ** to write the zeros then fall through to write the real data */ 8887 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8888 iAmt-nData); 8889 if( rc ) return rc; 8890 iAmt = nData; 8891 } 8892 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8893 int rc = sqlite3PagerWrite(pPage->pDbPage); 8894 if( rc ) return rc; 8895 /* In a corrupt database, it is possible for the source and destination 8896 ** buffers to overlap. This is harmless since the database is already 8897 ** corrupt but it does cause valgrind and ASAN warnings. So use 8898 ** memmove(). */ 8899 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8900 } 8901 } 8902 return SQLITE_OK; 8903 } 8904 8905 /* 8906 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8907 ** contained in pX. 8908 */ 8909 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8910 int iOffset; /* Next byte of pX->pData to write */ 8911 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8912 int rc; /* Return code */ 8913 MemPage *pPage = pCur->pPage; /* Page being written */ 8914 BtShared *pBt; /* Btree */ 8915 Pgno ovflPgno; /* Next overflow page to write */ 8916 u32 ovflPageSize; /* Size to write on overflow page */ 8917 8918 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8919 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8920 ){ 8921 return SQLITE_CORRUPT_BKPT; 8922 } 8923 /* Overwrite the local portion first */ 8924 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8925 0, pCur->info.nLocal); 8926 if( rc ) return rc; 8927 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8928 8929 /* Now overwrite the overflow pages */ 8930 iOffset = pCur->info.nLocal; 8931 assert( nTotal>=0 ); 8932 assert( iOffset>=0 ); 8933 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8934 pBt = pPage->pBt; 8935 ovflPageSize = pBt->usableSize - 4; 8936 do{ 8937 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8938 if( rc ) return rc; 8939 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ 8940 rc = SQLITE_CORRUPT_BKPT; 8941 }else{ 8942 if( iOffset+ovflPageSize<(u32)nTotal ){ 8943 ovflPgno = get4byte(pPage->aData); 8944 }else{ 8945 ovflPageSize = nTotal - iOffset; 8946 } 8947 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8948 iOffset, ovflPageSize); 8949 } 8950 sqlite3PagerUnref(pPage->pDbPage); 8951 if( rc ) return rc; 8952 iOffset += ovflPageSize; 8953 }while( iOffset<nTotal ); 8954 return SQLITE_OK; 8955 } 8956 8957 8958 /* 8959 ** Insert a new record into the BTree. The content of the new record 8960 ** is described by the pX object. The pCur cursor is used only to 8961 ** define what table the record should be inserted into, and is left 8962 ** pointing at a random location. 8963 ** 8964 ** For a table btree (used for rowid tables), only the pX.nKey value of 8965 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8966 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8967 ** hold the content of the row. 8968 ** 8969 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8970 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8971 ** pX.pData,nData,nZero fields must be zero. 8972 ** 8973 ** If the seekResult parameter is non-zero, then a successful call to 8974 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already 8975 ** been performed. In other words, if seekResult!=0 then the cursor 8976 ** is currently pointing to a cell that will be adjacent to the cell 8977 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8978 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8979 ** that is larger than (pKey,nKey). 8980 ** 8981 ** If seekResult==0, that means pCur is pointing at some unknown location. 8982 ** In that case, this routine must seek the cursor to the correct insertion 8983 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8984 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8985 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8986 ** to decode the key. 8987 */ 8988 int sqlite3BtreeInsert( 8989 BtCursor *pCur, /* Insert data into the table of this cursor */ 8990 const BtreePayload *pX, /* Content of the row to be inserted */ 8991 int flags, /* True if this is likely an append */ 8992 int seekResult /* Result of prior IndexMoveto() call */ 8993 ){ 8994 int rc; 8995 int loc = seekResult; /* -1: before desired location +1: after */ 8996 int szNew = 0; 8997 int idx; 8998 MemPage *pPage; 8999 Btree *p = pCur->pBtree; 9000 BtShared *pBt = p->pBt; 9001 unsigned char *oldCell; 9002 unsigned char *newCell = 0; 9003 9004 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); 9005 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); 9006 9007 /* Save the positions of any other cursors open on this table. 9008 ** 9009 ** In some cases, the call to btreeMoveto() below is a no-op. For 9010 ** example, when inserting data into a table with auto-generated integer 9011 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 9012 ** integer key to use. It then calls this function to actually insert the 9013 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 9014 ** that the cursor is already where it needs to be and returns without 9015 ** doing any work. To avoid thwarting these optimizations, it is important 9016 ** not to clear the cursor here. 9017 */ 9018 if( pCur->curFlags & BTCF_Multiple ){ 9019 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9020 if( rc ) return rc; 9021 if( loc && pCur->iPage<0 ){ 9022 /* This can only happen if the schema is corrupt such that there is more 9023 ** than one table or index with the same root page as used by the cursor. 9024 ** Which can only happen if the SQLITE_NoSchemaError flag was set when 9025 ** the schema was loaded. This cannot be asserted though, as a user might 9026 ** set the flag, load the schema, and then unset the flag. */ 9027 return SQLITE_CORRUPT_BKPT; 9028 } 9029 } 9030 9031 /* Ensure that the cursor is not in the CURSOR_FAULT state and that it 9032 ** points to a valid cell. 9033 */ 9034 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 9035 testcase( pCur->eState==CURSOR_REQUIRESEEK ); 9036 testcase( pCur->eState==CURSOR_FAULT ); 9037 rc = moveToRoot(pCur); 9038 if( rc && rc!=SQLITE_EMPTY ) return rc; 9039 } 9040 9041 assert( cursorOwnsBtShared(pCur) ); 9042 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 9043 && pBt->inTransaction==TRANS_WRITE 9044 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9045 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9046 9047 /* Assert that the caller has been consistent. If this cursor was opened 9048 ** expecting an index b-tree, then the caller should be inserting blob 9049 ** keys with no associated data. If the cursor was opened expecting an 9050 ** intkey table, the caller should be inserting integer keys with a 9051 ** blob of associated data. */ 9052 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); 9053 9054 if( pCur->pKeyInfo==0 ){ 9055 assert( pX->pKey==0 ); 9056 /* If this is an insert into a table b-tree, invalidate any incrblob 9057 ** cursors open on the row being replaced */ 9058 if( p->hasIncrblobCur ){ 9059 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 9060 } 9061 9062 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 9063 ** to a row with the same key as the new entry being inserted. 9064 */ 9065 #ifdef SQLITE_DEBUG 9066 if( flags & BTREE_SAVEPOSITION ){ 9067 assert( pCur->curFlags & BTCF_ValidNKey ); 9068 assert( pX->nKey==pCur->info.nKey ); 9069 assert( loc==0 ); 9070 } 9071 #endif 9072 9073 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 9074 ** that the cursor is not pointing to a row to be overwritten. 9075 ** So do a complete check. 9076 */ 9077 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 9078 /* The cursor is pointing to the entry that is to be 9079 ** overwritten */ 9080 assert( pX->nData>=0 && pX->nZero>=0 ); 9081 if( pCur->info.nSize!=0 9082 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 9083 ){ 9084 /* New entry is the same size as the old. Do an overwrite */ 9085 return btreeOverwriteCell(pCur, pX); 9086 } 9087 assert( loc==0 ); 9088 }else if( loc==0 ){ 9089 /* The cursor is *not* pointing to the cell to be overwritten, nor 9090 ** to an adjacent cell. Move the cursor so that it is pointing either 9091 ** to the cell to be overwritten or an adjacent cell. 9092 */ 9093 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, 9094 (flags & BTREE_APPEND)!=0, &loc); 9095 if( rc ) return rc; 9096 } 9097 }else{ 9098 /* This is an index or a WITHOUT ROWID table */ 9099 9100 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 9101 ** to a row with the same key as the new entry being inserted. 9102 */ 9103 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 9104 9105 /* If the cursor is not already pointing either to the cell to be 9106 ** overwritten, or if a new cell is being inserted, if the cursor is 9107 ** not pointing to an immediately adjacent cell, then move the cursor 9108 ** so that it does. 9109 */ 9110 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 9111 if( pX->nMem ){ 9112 UnpackedRecord r; 9113 r.pKeyInfo = pCur->pKeyInfo; 9114 r.aMem = pX->aMem; 9115 r.nField = pX->nMem; 9116 r.default_rc = 0; 9117 r.eqSeen = 0; 9118 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); 9119 }else{ 9120 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, 9121 (flags & BTREE_APPEND)!=0, &loc); 9122 } 9123 if( rc ) return rc; 9124 } 9125 9126 /* If the cursor is currently pointing to an entry to be overwritten 9127 ** and the new content is the same as as the old, then use the 9128 ** overwrite optimization. 9129 */ 9130 if( loc==0 ){ 9131 getCellInfo(pCur); 9132 if( pCur->info.nKey==pX->nKey ){ 9133 BtreePayload x2; 9134 x2.pData = pX->pKey; 9135 x2.nData = pX->nKey; 9136 x2.nZero = 0; 9137 return btreeOverwriteCell(pCur, &x2); 9138 } 9139 } 9140 } 9141 assert( pCur->eState==CURSOR_VALID 9142 || (pCur->eState==CURSOR_INVALID && loc) ); 9143 9144 pPage = pCur->pPage; 9145 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); 9146 assert( pPage->leaf || !pPage->intKey ); 9147 if( pPage->nFree<0 ){ 9148 if( NEVER(pCur->eState>CURSOR_INVALID) ){ 9149 /* ^^^^^--- due to the moveToRoot() call above */ 9150 rc = SQLITE_CORRUPT_BKPT; 9151 }else{ 9152 rc = btreeComputeFreeSpace(pPage); 9153 } 9154 if( rc ) return rc; 9155 } 9156 9157 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 9158 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 9159 loc==0 ? "overwrite" : "new entry")); 9160 assert( pPage->isInit || CORRUPT_DB ); 9161 newCell = pBt->pTmpSpace; 9162 assert( newCell!=0 ); 9163 if( flags & BTREE_PREFORMAT ){ 9164 rc = SQLITE_OK; 9165 szNew = pBt->nPreformatSize; 9166 if( szNew<4 ) szNew = 4; 9167 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ 9168 CellInfo info; 9169 pPage->xParseCell(pPage, newCell, &info); 9170 if( info.nPayload!=info.nLocal ){ 9171 Pgno ovfl = get4byte(&newCell[szNew-4]); 9172 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); 9173 } 9174 } 9175 }else{ 9176 rc = fillInCell(pPage, newCell, pX, &szNew); 9177 } 9178 if( rc ) goto end_insert; 9179 assert( szNew==pPage->xCellSize(pPage, newCell) ); 9180 assert( szNew <= MX_CELL_SIZE(pBt) ); 9181 idx = pCur->ix; 9182 if( loc==0 ){ 9183 CellInfo info; 9184 assert( idx>=0 ); 9185 if( idx>=pPage->nCell ){ 9186 return SQLITE_CORRUPT_BKPT; 9187 } 9188 rc = sqlite3PagerWrite(pPage->pDbPage); 9189 if( rc ){ 9190 goto end_insert; 9191 } 9192 oldCell = findCell(pPage, idx); 9193 if( !pPage->leaf ){ 9194 memcpy(newCell, oldCell, 4); 9195 } 9196 BTREE_CLEAR_CELL(rc, pPage, oldCell, info); 9197 testcase( pCur->curFlags & BTCF_ValidOvfl ); 9198 invalidateOverflowCache(pCur); 9199 if( info.nSize==szNew && info.nLocal==info.nPayload 9200 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 9201 ){ 9202 /* Overwrite the old cell with the new if they are the same size. 9203 ** We could also try to do this if the old cell is smaller, then add 9204 ** the leftover space to the free list. But experiments show that 9205 ** doing that is no faster then skipping this optimization and just 9206 ** calling dropCell() and insertCell(). 9207 ** 9208 ** This optimization cannot be used on an autovacuum database if the 9209 ** new entry uses overflow pages, as the insertCell() call below is 9210 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 9211 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 9212 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 9213 return SQLITE_CORRUPT_BKPT; 9214 } 9215 if( oldCell+szNew > pPage->aDataEnd ){ 9216 return SQLITE_CORRUPT_BKPT; 9217 } 9218 memcpy(oldCell, newCell, szNew); 9219 return SQLITE_OK; 9220 } 9221 dropCell(pPage, idx, info.nSize, &rc); 9222 if( rc ) goto end_insert; 9223 }else if( loc<0 && pPage->nCell>0 ){ 9224 assert( pPage->leaf ); 9225 idx = ++pCur->ix; 9226 pCur->curFlags &= ~BTCF_ValidNKey; 9227 }else{ 9228 assert( pPage->leaf ); 9229 } 9230 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 9231 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 9232 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 9233 9234 /* If no error has occurred and pPage has an overflow cell, call balance() 9235 ** to redistribute the cells within the tree. Since balance() may move 9236 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 9237 ** variables. 9238 ** 9239 ** Previous versions of SQLite called moveToRoot() to move the cursor 9240 ** back to the root page as balance() used to invalidate the contents 9241 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 9242 ** set the cursor state to "invalid". This makes common insert operations 9243 ** slightly faster. 9244 ** 9245 ** There is a subtle but important optimization here too. When inserting 9246 ** multiple records into an intkey b-tree using a single cursor (as can 9247 ** happen while processing an "INSERT INTO ... SELECT" statement), it 9248 ** is advantageous to leave the cursor pointing to the last entry in 9249 ** the b-tree if possible. If the cursor is left pointing to the last 9250 ** entry in the table, and the next row inserted has an integer key 9251 ** larger than the largest existing key, it is possible to insert the 9252 ** row without seeking the cursor. This can be a big performance boost. 9253 */ 9254 pCur->info.nSize = 0; 9255 if( pPage->nOverflow ){ 9256 assert( rc==SQLITE_OK ); 9257 pCur->curFlags &= ~(BTCF_ValidNKey); 9258 rc = balance(pCur); 9259 9260 /* Must make sure nOverflow is reset to zero even if the balance() 9261 ** fails. Internal data structure corruption will result otherwise. 9262 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 9263 ** from trying to save the current position of the cursor. */ 9264 pCur->pPage->nOverflow = 0; 9265 pCur->eState = CURSOR_INVALID; 9266 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 9267 btreeReleaseAllCursorPages(pCur); 9268 if( pCur->pKeyInfo ){ 9269 assert( pCur->pKey==0 ); 9270 pCur->pKey = sqlite3Malloc( pX->nKey ); 9271 if( pCur->pKey==0 ){ 9272 rc = SQLITE_NOMEM; 9273 }else{ 9274 memcpy(pCur->pKey, pX->pKey, pX->nKey); 9275 } 9276 } 9277 pCur->eState = CURSOR_REQUIRESEEK; 9278 pCur->nKey = pX->nKey; 9279 } 9280 } 9281 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 9282 9283 end_insert: 9284 return rc; 9285 } 9286 9287 /* 9288 ** This function is used as part of copying the current row from cursor 9289 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then 9290 ** parameter iKey is used as the rowid value when the record is copied 9291 ** into pDest. Otherwise, the record is copied verbatim. 9292 ** 9293 ** This function does not actually write the new value to cursor pDest. 9294 ** Instead, it creates and populates any required overflow pages and 9295 ** writes the data for the new cell into the BtShared.pTmpSpace buffer 9296 ** for the destination database. The size of the cell, in bytes, is left 9297 ** in BtShared.nPreformatSize. The caller completes the insertion by 9298 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. 9299 ** 9300 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 9301 */ 9302 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ 9303 int rc = SQLITE_OK; 9304 BtShared *pBt = pDest->pBt; 9305 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ 9306 const u8 *aIn; /* Pointer to next input buffer */ 9307 u32 nIn; /* Size of input buffer aIn[] */ 9308 u32 nRem; /* Bytes of data still to copy */ 9309 9310 getCellInfo(pSrc); 9311 if( pSrc->info.nPayload<0x80 ){ 9312 *(aOut++) = pSrc->info.nPayload; 9313 }else{ 9314 aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload); 9315 } 9316 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); 9317 nIn = pSrc->info.nLocal; 9318 aIn = pSrc->info.pPayload; 9319 if( aIn+nIn>pSrc->pPage->aDataEnd ){ 9320 return SQLITE_CORRUPT_BKPT; 9321 } 9322 nRem = pSrc->info.nPayload; 9323 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ 9324 memcpy(aOut, aIn, nIn); 9325 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); 9326 }else{ 9327 Pager *pSrcPager = pSrc->pBt->pPager; 9328 u8 *pPgnoOut = 0; 9329 Pgno ovflIn = 0; 9330 DbPage *pPageIn = 0; 9331 MemPage *pPageOut = 0; 9332 u32 nOut; /* Size of output buffer aOut[] */ 9333 9334 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); 9335 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); 9336 if( nOut<pSrc->info.nPayload ){ 9337 pPgnoOut = &aOut[nOut]; 9338 pBt->nPreformatSize += 4; 9339 } 9340 9341 if( nRem>nIn ){ 9342 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ 9343 return SQLITE_CORRUPT_BKPT; 9344 } 9345 ovflIn = get4byte(&pSrc->info.pPayload[nIn]); 9346 } 9347 9348 do { 9349 nRem -= nOut; 9350 do{ 9351 assert( nOut>0 ); 9352 if( nIn>0 ){ 9353 int nCopy = MIN(nOut, nIn); 9354 memcpy(aOut, aIn, nCopy); 9355 nOut -= nCopy; 9356 nIn -= nCopy; 9357 aOut += nCopy; 9358 aIn += nCopy; 9359 } 9360 if( nOut>0 ){ 9361 sqlite3PagerUnref(pPageIn); 9362 pPageIn = 0; 9363 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); 9364 if( rc==SQLITE_OK ){ 9365 aIn = (const u8*)sqlite3PagerGetData(pPageIn); 9366 ovflIn = get4byte(aIn); 9367 aIn += 4; 9368 nIn = pSrc->pBt->usableSize - 4; 9369 } 9370 } 9371 }while( rc==SQLITE_OK && nOut>0 ); 9372 9373 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ 9374 Pgno pgnoNew; 9375 MemPage *pNew = 0; 9376 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 9377 put4byte(pPgnoOut, pgnoNew); 9378 if( ISAUTOVACUUM && pPageOut ){ 9379 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); 9380 } 9381 releasePage(pPageOut); 9382 pPageOut = pNew; 9383 if( pPageOut ){ 9384 pPgnoOut = pPageOut->aData; 9385 put4byte(pPgnoOut, 0); 9386 aOut = &pPgnoOut[4]; 9387 nOut = MIN(pBt->usableSize - 4, nRem); 9388 } 9389 } 9390 }while( nRem>0 && rc==SQLITE_OK ); 9391 9392 releasePage(pPageOut); 9393 sqlite3PagerUnref(pPageIn); 9394 } 9395 9396 return rc; 9397 } 9398 9399 /* 9400 ** Delete the entry that the cursor is pointing to. 9401 ** 9402 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 9403 ** the cursor is left pointing at an arbitrary location after the delete. 9404 ** But if that bit is set, then the cursor is left in a state such that 9405 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 9406 ** as it would have been on if the call to BtreeDelete() had been omitted. 9407 ** 9408 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 9409 ** associated with a single table entry and its indexes. Only one of those 9410 ** deletes is considered the "primary" delete. The primary delete occurs 9411 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 9412 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 9413 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 9414 ** but which might be used by alternative storage engines. 9415 */ 9416 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 9417 Btree *p = pCur->pBtree; 9418 BtShared *pBt = p->pBt; 9419 int rc; /* Return code */ 9420 MemPage *pPage; /* Page to delete cell from */ 9421 unsigned char *pCell; /* Pointer to cell to delete */ 9422 int iCellIdx; /* Index of cell to delete */ 9423 int iCellDepth; /* Depth of node containing pCell */ 9424 CellInfo info; /* Size of the cell being deleted */ 9425 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ 9426 9427 assert( cursorOwnsBtShared(pCur) ); 9428 assert( pBt->inTransaction==TRANS_WRITE ); 9429 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9430 assert( pCur->curFlags & BTCF_WriteFlag ); 9431 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9432 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 9433 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 9434 if( pCur->eState!=CURSOR_VALID ){ 9435 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 9436 rc = btreeRestoreCursorPosition(pCur); 9437 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9438 if( rc || pCur->eState!=CURSOR_VALID ) return rc; 9439 }else{ 9440 return SQLITE_CORRUPT_BKPT; 9441 } 9442 } 9443 assert( pCur->eState==CURSOR_VALID ); 9444 9445 iCellDepth = pCur->iPage; 9446 iCellIdx = pCur->ix; 9447 pPage = pCur->pPage; 9448 if( pPage->nCell<=iCellIdx ){ 9449 return SQLITE_CORRUPT_BKPT; 9450 } 9451 pCell = findCell(pPage, iCellIdx); 9452 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ 9453 return SQLITE_CORRUPT_BKPT; 9454 } 9455 9456 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must 9457 ** be preserved following this delete operation. If the current delete 9458 ** will cause a b-tree rebalance, then this is done by saving the cursor 9459 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 9460 ** returning. 9461 ** 9462 ** If the current delete will not cause a rebalance, then the cursor 9463 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 9464 ** before or after the deleted entry. 9465 ** 9466 ** The bPreserve value records which path is required: 9467 ** 9468 ** bPreserve==0 Not necessary to save the cursor position 9469 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position 9470 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. 9471 */ 9472 bPreserve = (flags & BTREE_SAVEPOSITION)!=0; 9473 if( bPreserve ){ 9474 if( !pPage->leaf 9475 || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) > 9476 (int)(pBt->usableSize*2/3) 9477 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 9478 ){ 9479 /* A b-tree rebalance will be required after deleting this entry. 9480 ** Save the cursor key. */ 9481 rc = saveCursorKey(pCur); 9482 if( rc ) return rc; 9483 }else{ 9484 bPreserve = 2; 9485 } 9486 } 9487 9488 /* If the page containing the entry to delete is not a leaf page, move 9489 ** the cursor to the largest entry in the tree that is smaller than 9490 ** the entry being deleted. This cell will replace the cell being deleted 9491 ** from the internal node. The 'previous' entry is used for this instead 9492 ** of the 'next' entry, as the previous entry is always a part of the 9493 ** sub-tree headed by the child page of the cell being deleted. This makes 9494 ** balancing the tree following the delete operation easier. */ 9495 if( !pPage->leaf ){ 9496 rc = sqlite3BtreePrevious(pCur, 0); 9497 assert( rc!=SQLITE_DONE ); 9498 if( rc ) return rc; 9499 } 9500 9501 /* Save the positions of any other cursors open on this table before 9502 ** making any modifications. */ 9503 if( pCur->curFlags & BTCF_Multiple ){ 9504 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9505 if( rc ) return rc; 9506 } 9507 9508 /* If this is a delete operation to remove a row from a table b-tree, 9509 ** invalidate any incrblob cursors open on the row being deleted. */ 9510 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ 9511 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 9512 } 9513 9514 /* Make the page containing the entry to be deleted writable. Then free any 9515 ** overflow pages associated with the entry and finally remove the cell 9516 ** itself from within the page. */ 9517 rc = sqlite3PagerWrite(pPage->pDbPage); 9518 if( rc ) return rc; 9519 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9520 dropCell(pPage, iCellIdx, info.nSize, &rc); 9521 if( rc ) return rc; 9522 9523 /* If the cell deleted was not located on a leaf page, then the cursor 9524 ** is currently pointing to the largest entry in the sub-tree headed 9525 ** by the child-page of the cell that was just deleted from an internal 9526 ** node. The cell from the leaf node needs to be moved to the internal 9527 ** node to replace the deleted cell. */ 9528 if( !pPage->leaf ){ 9529 MemPage *pLeaf = pCur->pPage; 9530 int nCell; 9531 Pgno n; 9532 unsigned char *pTmp; 9533 9534 if( pLeaf->nFree<0 ){ 9535 rc = btreeComputeFreeSpace(pLeaf); 9536 if( rc ) return rc; 9537 } 9538 if( iCellDepth<pCur->iPage-1 ){ 9539 n = pCur->apPage[iCellDepth+1]->pgno; 9540 }else{ 9541 n = pCur->pPage->pgno; 9542 } 9543 pCell = findCell(pLeaf, pLeaf->nCell-1); 9544 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 9545 nCell = pLeaf->xCellSize(pLeaf, pCell); 9546 assert( MX_CELL_SIZE(pBt) >= nCell ); 9547 pTmp = pBt->pTmpSpace; 9548 assert( pTmp!=0 ); 9549 rc = sqlite3PagerWrite(pLeaf->pDbPage); 9550 if( rc==SQLITE_OK ){ 9551 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 9552 } 9553 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 9554 if( rc ) return rc; 9555 } 9556 9557 /* Balance the tree. If the entry deleted was located on a leaf page, 9558 ** then the cursor still points to that page. In this case the first 9559 ** call to balance() repairs the tree, and the if(...) condition is 9560 ** never true. 9561 ** 9562 ** Otherwise, if the entry deleted was on an internal node page, then 9563 ** pCur is pointing to the leaf page from which a cell was removed to 9564 ** replace the cell deleted from the internal node. This is slightly 9565 ** tricky as the leaf node may be underfull, and the internal node may 9566 ** be either under or overfull. In this case run the balancing algorithm 9567 ** on the leaf node first. If the balance proceeds far enough up the 9568 ** tree that we can be sure that any problem in the internal node has 9569 ** been corrected, so be it. Otherwise, after balancing the leaf node, 9570 ** walk the cursor up the tree to the internal node and balance it as 9571 ** well. */ 9572 assert( pCur->pPage->nOverflow==0 ); 9573 assert( pCur->pPage->nFree>=0 ); 9574 if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ 9575 /* Optimization: If the free space is less than 2/3rds of the page, 9576 ** then balance() will always be a no-op. No need to invoke it. */ 9577 rc = SQLITE_OK; 9578 }else{ 9579 rc = balance(pCur); 9580 } 9581 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 9582 releasePageNotNull(pCur->pPage); 9583 pCur->iPage--; 9584 while( pCur->iPage>iCellDepth ){ 9585 releasePage(pCur->apPage[pCur->iPage--]); 9586 } 9587 pCur->pPage = pCur->apPage[pCur->iPage]; 9588 rc = balance(pCur); 9589 } 9590 9591 if( rc==SQLITE_OK ){ 9592 if( bPreserve>1 ){ 9593 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9594 assert( pPage==pCur->pPage || CORRUPT_DB ); 9595 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9596 pCur->eState = CURSOR_SKIPNEXT; 9597 if( iCellIdx>=pPage->nCell ){ 9598 pCur->skipNext = -1; 9599 pCur->ix = pPage->nCell-1; 9600 }else{ 9601 pCur->skipNext = 1; 9602 } 9603 }else{ 9604 rc = moveToRoot(pCur); 9605 if( bPreserve ){ 9606 btreeReleaseAllCursorPages(pCur); 9607 pCur->eState = CURSOR_REQUIRESEEK; 9608 } 9609 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9610 } 9611 } 9612 return rc; 9613 } 9614 9615 /* 9616 ** Create a new BTree table. Write into *piTable the page 9617 ** number for the root page of the new table. 9618 ** 9619 ** The type of type is determined by the flags parameter. Only the 9620 ** following values of flags are currently in use. Other values for 9621 ** flags might not work: 9622 ** 9623 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9624 ** BTREE_ZERODATA Used for SQL indices 9625 */ 9626 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ 9627 BtShared *pBt = p->pBt; 9628 MemPage *pRoot; 9629 Pgno pgnoRoot; 9630 int rc; 9631 int ptfFlags; /* Page-type flage for the root page of new table */ 9632 9633 assert( sqlite3BtreeHoldsMutex(p) ); 9634 assert( pBt->inTransaction==TRANS_WRITE ); 9635 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9636 9637 #ifdef SQLITE_OMIT_AUTOVACUUM 9638 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9639 if( rc ){ 9640 return rc; 9641 } 9642 #else 9643 if( pBt->autoVacuum ){ 9644 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9645 MemPage *pPageMove; /* The page to move to. */ 9646 9647 /* Creating a new table may probably require moving an existing database 9648 ** to make room for the new tables root page. In case this page turns 9649 ** out to be an overflow page, delete all overflow page-map caches 9650 ** held by open cursors. 9651 */ 9652 invalidateAllOverflowCache(pBt); 9653 9654 /* Read the value of meta[3] from the database to determine where the 9655 ** root page of the new table should go. meta[3] is the largest root-page 9656 ** created so far, so the new root-page is (meta[3]+1). 9657 */ 9658 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9659 if( pgnoRoot>btreePagecount(pBt) ){ 9660 return SQLITE_CORRUPT_BKPT; 9661 } 9662 pgnoRoot++; 9663 9664 /* The new root-page may not be allocated on a pointer-map page, or the 9665 ** PENDING_BYTE page. 9666 */ 9667 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9668 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9669 pgnoRoot++; 9670 } 9671 assert( pgnoRoot>=3 ); 9672 9673 /* Allocate a page. The page that currently resides at pgnoRoot will 9674 ** be moved to the allocated page (unless the allocated page happens 9675 ** to reside at pgnoRoot). 9676 */ 9677 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9678 if( rc!=SQLITE_OK ){ 9679 return rc; 9680 } 9681 9682 if( pgnoMove!=pgnoRoot ){ 9683 /* pgnoRoot is the page that will be used for the root-page of 9684 ** the new table (assuming an error did not occur). But we were 9685 ** allocated pgnoMove. If required (i.e. if it was not allocated 9686 ** by extending the file), the current page at position pgnoMove 9687 ** is already journaled. 9688 */ 9689 u8 eType = 0; 9690 Pgno iPtrPage = 0; 9691 9692 /* Save the positions of any open cursors. This is required in 9693 ** case they are holding a reference to an xFetch reference 9694 ** corresponding to page pgnoRoot. */ 9695 rc = saveAllCursors(pBt, 0, 0); 9696 releasePage(pPageMove); 9697 if( rc!=SQLITE_OK ){ 9698 return rc; 9699 } 9700 9701 /* Move the page currently at pgnoRoot to pgnoMove. */ 9702 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9703 if( rc!=SQLITE_OK ){ 9704 return rc; 9705 } 9706 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9707 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9708 rc = SQLITE_CORRUPT_BKPT; 9709 } 9710 if( rc!=SQLITE_OK ){ 9711 releasePage(pRoot); 9712 return rc; 9713 } 9714 assert( eType!=PTRMAP_ROOTPAGE ); 9715 assert( eType!=PTRMAP_FREEPAGE ); 9716 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9717 releasePage(pRoot); 9718 9719 /* Obtain the page at pgnoRoot */ 9720 if( rc!=SQLITE_OK ){ 9721 return rc; 9722 } 9723 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9724 if( rc!=SQLITE_OK ){ 9725 return rc; 9726 } 9727 rc = sqlite3PagerWrite(pRoot->pDbPage); 9728 if( rc!=SQLITE_OK ){ 9729 releasePage(pRoot); 9730 return rc; 9731 } 9732 }else{ 9733 pRoot = pPageMove; 9734 } 9735 9736 /* Update the pointer-map and meta-data with the new root-page number. */ 9737 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9738 if( rc ){ 9739 releasePage(pRoot); 9740 return rc; 9741 } 9742 9743 /* When the new root page was allocated, page 1 was made writable in 9744 ** order either to increase the database filesize, or to decrement the 9745 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9746 */ 9747 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9748 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9749 if( NEVER(rc) ){ 9750 releasePage(pRoot); 9751 return rc; 9752 } 9753 9754 }else{ 9755 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9756 if( rc ) return rc; 9757 } 9758 #endif 9759 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9760 if( createTabFlags & BTREE_INTKEY ){ 9761 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9762 }else{ 9763 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9764 } 9765 zeroPage(pRoot, ptfFlags); 9766 sqlite3PagerUnref(pRoot->pDbPage); 9767 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9768 *piTable = pgnoRoot; 9769 return SQLITE_OK; 9770 } 9771 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ 9772 int rc; 9773 sqlite3BtreeEnter(p); 9774 rc = btreeCreateTable(p, piTable, flags); 9775 sqlite3BtreeLeave(p); 9776 return rc; 9777 } 9778 9779 /* 9780 ** Erase the given database page and all its children. Return 9781 ** the page to the freelist. 9782 */ 9783 static int clearDatabasePage( 9784 BtShared *pBt, /* The BTree that contains the table */ 9785 Pgno pgno, /* Page number to clear */ 9786 int freePageFlag, /* Deallocate page if true */ 9787 i64 *pnChange /* Add number of Cells freed to this counter */ 9788 ){ 9789 MemPage *pPage; 9790 int rc; 9791 unsigned char *pCell; 9792 int i; 9793 int hdr; 9794 CellInfo info; 9795 9796 assert( sqlite3_mutex_held(pBt->mutex) ); 9797 if( pgno>btreePagecount(pBt) ){ 9798 return SQLITE_CORRUPT_BKPT; 9799 } 9800 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9801 if( rc ) return rc; 9802 if( (pBt->openFlags & BTREE_SINGLE)==0 9803 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) 9804 ){ 9805 rc = SQLITE_CORRUPT_BKPT; 9806 goto cleardatabasepage_out; 9807 } 9808 hdr = pPage->hdrOffset; 9809 for(i=0; i<pPage->nCell; i++){ 9810 pCell = findCell(pPage, i); 9811 if( !pPage->leaf ){ 9812 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9813 if( rc ) goto cleardatabasepage_out; 9814 } 9815 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9816 if( rc ) goto cleardatabasepage_out; 9817 } 9818 if( !pPage->leaf ){ 9819 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9820 if( rc ) goto cleardatabasepage_out; 9821 if( pPage->intKey ) pnChange = 0; 9822 } 9823 if( pnChange ){ 9824 testcase( !pPage->intKey ); 9825 *pnChange += pPage->nCell; 9826 } 9827 if( freePageFlag ){ 9828 freePage(pPage, &rc); 9829 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9830 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9831 } 9832 9833 cleardatabasepage_out: 9834 releasePage(pPage); 9835 return rc; 9836 } 9837 9838 /* 9839 ** Delete all information from a single table in the database. iTable is 9840 ** the page number of the root of the table. After this routine returns, 9841 ** the root page is empty, but still exists. 9842 ** 9843 ** This routine will fail with SQLITE_LOCKED if there are any open 9844 ** read cursors on the table. Open write cursors are moved to the 9845 ** root of the table. 9846 ** 9847 ** If pnChange is not NULL, then the integer value pointed to by pnChange 9848 ** is incremented by the number of entries in the table. 9849 */ 9850 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ 9851 int rc; 9852 BtShared *pBt = p->pBt; 9853 sqlite3BtreeEnter(p); 9854 assert( p->inTrans==TRANS_WRITE ); 9855 9856 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9857 9858 if( SQLITE_OK==rc ){ 9859 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9860 ** is the root of a table b-tree - if it is not, the following call is 9861 ** a no-op). */ 9862 if( p->hasIncrblobCur ){ 9863 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9864 } 9865 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9866 } 9867 sqlite3BtreeLeave(p); 9868 return rc; 9869 } 9870 9871 /* 9872 ** Delete all information from the single table that pCur is open on. 9873 ** 9874 ** This routine only work for pCur on an ephemeral table. 9875 */ 9876 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9877 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9878 } 9879 9880 /* 9881 ** Erase all information in a table and add the root of the table to 9882 ** the freelist. Except, the root of the principle table (the one on 9883 ** page 1) is never added to the freelist. 9884 ** 9885 ** This routine will fail with SQLITE_LOCKED if there are any open 9886 ** cursors on the table. 9887 ** 9888 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9889 ** root page in the database file, then the last root page 9890 ** in the database file is moved into the slot formerly occupied by 9891 ** iTable and that last slot formerly occupied by the last root page 9892 ** is added to the freelist instead of iTable. In this say, all 9893 ** root pages are kept at the beginning of the database file, which 9894 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9895 ** page number that used to be the last root page in the file before 9896 ** the move. If no page gets moved, *piMoved is set to 0. 9897 ** The last root page is recorded in meta[3] and the value of 9898 ** meta[3] is updated by this procedure. 9899 */ 9900 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9901 int rc; 9902 MemPage *pPage = 0; 9903 BtShared *pBt = p->pBt; 9904 9905 assert( sqlite3BtreeHoldsMutex(p) ); 9906 assert( p->inTrans==TRANS_WRITE ); 9907 assert( iTable>=2 ); 9908 if( iTable>btreePagecount(pBt) ){ 9909 return SQLITE_CORRUPT_BKPT; 9910 } 9911 9912 rc = sqlite3BtreeClearTable(p, iTable, 0); 9913 if( rc ) return rc; 9914 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9915 if( NEVER(rc) ){ 9916 releasePage(pPage); 9917 return rc; 9918 } 9919 9920 *piMoved = 0; 9921 9922 #ifdef SQLITE_OMIT_AUTOVACUUM 9923 freePage(pPage, &rc); 9924 releasePage(pPage); 9925 #else 9926 if( pBt->autoVacuum ){ 9927 Pgno maxRootPgno; 9928 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9929 9930 if( iTable==maxRootPgno ){ 9931 /* If the table being dropped is the table with the largest root-page 9932 ** number in the database, put the root page on the free list. 9933 */ 9934 freePage(pPage, &rc); 9935 releasePage(pPage); 9936 if( rc!=SQLITE_OK ){ 9937 return rc; 9938 } 9939 }else{ 9940 /* The table being dropped does not have the largest root-page 9941 ** number in the database. So move the page that does into the 9942 ** gap left by the deleted root-page. 9943 */ 9944 MemPage *pMove; 9945 releasePage(pPage); 9946 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9947 if( rc!=SQLITE_OK ){ 9948 return rc; 9949 } 9950 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9951 releasePage(pMove); 9952 if( rc!=SQLITE_OK ){ 9953 return rc; 9954 } 9955 pMove = 0; 9956 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9957 freePage(pMove, &rc); 9958 releasePage(pMove); 9959 if( rc!=SQLITE_OK ){ 9960 return rc; 9961 } 9962 *piMoved = maxRootPgno; 9963 } 9964 9965 /* Set the new 'max-root-page' value in the database header. This 9966 ** is the old value less one, less one more if that happens to 9967 ** be a root-page number, less one again if that is the 9968 ** PENDING_BYTE_PAGE. 9969 */ 9970 maxRootPgno--; 9971 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9972 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9973 maxRootPgno--; 9974 } 9975 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9976 9977 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9978 }else{ 9979 freePage(pPage, &rc); 9980 releasePage(pPage); 9981 } 9982 #endif 9983 return rc; 9984 } 9985 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9986 int rc; 9987 sqlite3BtreeEnter(p); 9988 rc = btreeDropTable(p, iTable, piMoved); 9989 sqlite3BtreeLeave(p); 9990 return rc; 9991 } 9992 9993 9994 /* 9995 ** This function may only be called if the b-tree connection already 9996 ** has a read or write transaction open on the database. 9997 ** 9998 ** Read the meta-information out of a database file. Meta[0] 9999 ** is the number of free pages currently in the database. Meta[1] 10000 ** through meta[15] are available for use by higher layers. Meta[0] 10001 ** is read-only, the others are read/write. 10002 ** 10003 ** The schema layer numbers meta values differently. At the schema 10004 ** layer (and the SetCookie and ReadCookie opcodes) the number of 10005 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 10006 ** 10007 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 10008 ** of reading the value out of the header, it instead loads the "DataVersion" 10009 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 10010 ** database file. It is a number computed by the pager. But its access 10011 ** pattern is the same as header meta values, and so it is convenient to 10012 ** read it from this routine. 10013 */ 10014 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 10015 BtShared *pBt = p->pBt; 10016 10017 sqlite3BtreeEnter(p); 10018 assert( p->inTrans>TRANS_NONE ); 10019 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); 10020 assert( pBt->pPage1 ); 10021 assert( idx>=0 && idx<=15 ); 10022 10023 if( idx==BTREE_DATA_VERSION ){ 10024 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; 10025 }else{ 10026 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 10027 } 10028 10029 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 10030 ** database, mark the database as read-only. */ 10031 #ifdef SQLITE_OMIT_AUTOVACUUM 10032 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 10033 pBt->btsFlags |= BTS_READ_ONLY; 10034 } 10035 #endif 10036 10037 sqlite3BtreeLeave(p); 10038 } 10039 10040 /* 10041 ** Write meta-information back into the database. Meta[0] is 10042 ** read-only and may not be written. 10043 */ 10044 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 10045 BtShared *pBt = p->pBt; 10046 unsigned char *pP1; 10047 int rc; 10048 assert( idx>=1 && idx<=15 ); 10049 sqlite3BtreeEnter(p); 10050 assert( p->inTrans==TRANS_WRITE ); 10051 assert( pBt->pPage1!=0 ); 10052 pP1 = pBt->pPage1->aData; 10053 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10054 if( rc==SQLITE_OK ){ 10055 put4byte(&pP1[36 + idx*4], iMeta); 10056 #ifndef SQLITE_OMIT_AUTOVACUUM 10057 if( idx==BTREE_INCR_VACUUM ){ 10058 assert( pBt->autoVacuum || iMeta==0 ); 10059 assert( iMeta==0 || iMeta==1 ); 10060 pBt->incrVacuum = (u8)iMeta; 10061 } 10062 #endif 10063 } 10064 sqlite3BtreeLeave(p); 10065 return rc; 10066 } 10067 10068 /* 10069 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 10070 ** number of entries in the b-tree and write the result to *pnEntry. 10071 ** 10072 ** SQLITE_OK is returned if the operation is successfully executed. 10073 ** Otherwise, if an error is encountered (i.e. an IO error or database 10074 ** corruption) an SQLite error code is returned. 10075 */ 10076 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 10077 i64 nEntry = 0; /* Value to return in *pnEntry */ 10078 int rc; /* Return code */ 10079 10080 rc = moveToRoot(pCur); 10081 if( rc==SQLITE_EMPTY ){ 10082 *pnEntry = 0; 10083 return SQLITE_OK; 10084 } 10085 10086 /* Unless an error occurs, the following loop runs one iteration for each 10087 ** page in the B-Tree structure (not including overflow pages). 10088 */ 10089 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ 10090 int iIdx; /* Index of child node in parent */ 10091 MemPage *pPage; /* Current page of the b-tree */ 10092 10093 /* If this is a leaf page or the tree is not an int-key tree, then 10094 ** this page contains countable entries. Increment the entry counter 10095 ** accordingly. 10096 */ 10097 pPage = pCur->pPage; 10098 if( pPage->leaf || !pPage->intKey ){ 10099 nEntry += pPage->nCell; 10100 } 10101 10102 /* pPage is a leaf node. This loop navigates the cursor so that it 10103 ** points to the first interior cell that it points to the parent of 10104 ** the next page in the tree that has not yet been visited. The 10105 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 10106 ** of the page, or to the number of cells in the page if the next page 10107 ** to visit is the right-child of its parent. 10108 ** 10109 ** If all pages in the tree have been visited, return SQLITE_OK to the 10110 ** caller. 10111 */ 10112 if( pPage->leaf ){ 10113 do { 10114 if( pCur->iPage==0 ){ 10115 /* All pages of the b-tree have been visited. Return successfully. */ 10116 *pnEntry = nEntry; 10117 return moveToRoot(pCur); 10118 } 10119 moveToParent(pCur); 10120 }while ( pCur->ix>=pCur->pPage->nCell ); 10121 10122 pCur->ix++; 10123 pPage = pCur->pPage; 10124 } 10125 10126 /* Descend to the child node of the cell that the cursor currently 10127 ** points at. This is the right-child if (iIdx==pPage->nCell). 10128 */ 10129 iIdx = pCur->ix; 10130 if( iIdx==pPage->nCell ){ 10131 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 10132 }else{ 10133 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 10134 } 10135 } 10136 10137 /* An error has occurred. Return an error code. */ 10138 return rc; 10139 } 10140 10141 /* 10142 ** Return the pager associated with a BTree. This routine is used for 10143 ** testing and debugging only. 10144 */ 10145 Pager *sqlite3BtreePager(Btree *p){ 10146 return p->pBt->pPager; 10147 } 10148 10149 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10150 /* 10151 ** Append a message to the error message string. 10152 */ 10153 static void checkAppendMsg( 10154 IntegrityCk *pCheck, 10155 const char *zFormat, 10156 ... 10157 ){ 10158 va_list ap; 10159 if( !pCheck->mxErr ) return; 10160 pCheck->mxErr--; 10161 pCheck->nErr++; 10162 va_start(ap, zFormat); 10163 if( pCheck->errMsg.nChar ){ 10164 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 10165 } 10166 if( pCheck->zPfx ){ 10167 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 10168 } 10169 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 10170 va_end(ap); 10171 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 10172 pCheck->bOomFault = 1; 10173 } 10174 } 10175 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10176 10177 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10178 10179 /* 10180 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 10181 ** corresponds to page iPg is already set. 10182 */ 10183 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10184 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10185 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 10186 } 10187 10188 /* 10189 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 10190 */ 10191 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10192 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10193 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 10194 } 10195 10196 10197 /* 10198 ** Add 1 to the reference count for page iPage. If this is the second 10199 ** reference to the page, add an error message to pCheck->zErrMsg. 10200 ** Return 1 if there are 2 or more references to the page and 0 if 10201 ** if this is the first reference to the page. 10202 ** 10203 ** Also check that the page number is in bounds. 10204 */ 10205 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 10206 if( iPage>pCheck->nPage || iPage==0 ){ 10207 checkAppendMsg(pCheck, "invalid page number %d", iPage); 10208 return 1; 10209 } 10210 if( getPageReferenced(pCheck, iPage) ){ 10211 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 10212 return 1; 10213 } 10214 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; 10215 setPageReferenced(pCheck, iPage); 10216 return 0; 10217 } 10218 10219 #ifndef SQLITE_OMIT_AUTOVACUUM 10220 /* 10221 ** Check that the entry in the pointer-map for page iChild maps to 10222 ** page iParent, pointer type ptrType. If not, append an error message 10223 ** to pCheck. 10224 */ 10225 static void checkPtrmap( 10226 IntegrityCk *pCheck, /* Integrity check context */ 10227 Pgno iChild, /* Child page number */ 10228 u8 eType, /* Expected pointer map type */ 10229 Pgno iParent /* Expected pointer map parent page number */ 10230 ){ 10231 int rc; 10232 u8 ePtrmapType; 10233 Pgno iPtrmapParent; 10234 10235 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 10236 if( rc!=SQLITE_OK ){ 10237 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; 10238 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 10239 return; 10240 } 10241 10242 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 10243 checkAppendMsg(pCheck, 10244 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 10245 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 10246 } 10247 } 10248 #endif 10249 10250 /* 10251 ** Check the integrity of the freelist or of an overflow page list. 10252 ** Verify that the number of pages on the list is N. 10253 */ 10254 static void checkList( 10255 IntegrityCk *pCheck, /* Integrity checking context */ 10256 int isFreeList, /* True for a freelist. False for overflow page list */ 10257 Pgno iPage, /* Page number for first page in the list */ 10258 u32 N /* Expected number of pages in the list */ 10259 ){ 10260 int i; 10261 u32 expected = N; 10262 int nErrAtStart = pCheck->nErr; 10263 while( iPage!=0 && pCheck->mxErr ){ 10264 DbPage *pOvflPage; 10265 unsigned char *pOvflData; 10266 if( checkRef(pCheck, iPage) ) break; 10267 N--; 10268 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 10269 checkAppendMsg(pCheck, "failed to get page %d", iPage); 10270 break; 10271 } 10272 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 10273 if( isFreeList ){ 10274 u32 n = (u32)get4byte(&pOvflData[4]); 10275 #ifndef SQLITE_OMIT_AUTOVACUUM 10276 if( pCheck->pBt->autoVacuum ){ 10277 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 10278 } 10279 #endif 10280 if( n>pCheck->pBt->usableSize/4-2 ){ 10281 checkAppendMsg(pCheck, 10282 "freelist leaf count too big on page %d", iPage); 10283 N--; 10284 }else{ 10285 for(i=0; i<(int)n; i++){ 10286 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 10287 #ifndef SQLITE_OMIT_AUTOVACUUM 10288 if( pCheck->pBt->autoVacuum ){ 10289 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 10290 } 10291 #endif 10292 checkRef(pCheck, iFreePage); 10293 } 10294 N -= n; 10295 } 10296 } 10297 #ifndef SQLITE_OMIT_AUTOVACUUM 10298 else{ 10299 /* If this database supports auto-vacuum and iPage is not the last 10300 ** page in this overflow list, check that the pointer-map entry for 10301 ** the following page matches iPage. 10302 */ 10303 if( pCheck->pBt->autoVacuum && N>0 ){ 10304 i = get4byte(pOvflData); 10305 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 10306 } 10307 } 10308 #endif 10309 iPage = get4byte(pOvflData); 10310 sqlite3PagerUnref(pOvflPage); 10311 } 10312 if( N && nErrAtStart==pCheck->nErr ){ 10313 checkAppendMsg(pCheck, 10314 "%s is %d but should be %d", 10315 isFreeList ? "size" : "overflow list length", 10316 expected-N, expected); 10317 } 10318 } 10319 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10320 10321 /* 10322 ** An implementation of a min-heap. 10323 ** 10324 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 10325 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 10326 ** and aHeap[N*2+1]. 10327 ** 10328 ** The heap property is this: Every node is less than or equal to both 10329 ** of its daughter nodes. A consequence of the heap property is that the 10330 ** root node aHeap[1] is always the minimum value currently in the heap. 10331 ** 10332 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 10333 ** the heap, preserving the heap property. The btreeHeapPull() routine 10334 ** removes the root element from the heap (the minimum value in the heap) 10335 ** and then moves other nodes around as necessary to preserve the heap 10336 ** property. 10337 ** 10338 ** This heap is used for cell overlap and coverage testing. Each u32 10339 ** entry represents the span of a cell or freeblock on a btree page. 10340 ** The upper 16 bits are the index of the first byte of a range and the 10341 ** lower 16 bits are the index of the last byte of that range. 10342 */ 10343 static void btreeHeapInsert(u32 *aHeap, u32 x){ 10344 u32 j, i = ++aHeap[0]; 10345 aHeap[i] = x; 10346 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 10347 x = aHeap[j]; 10348 aHeap[j] = aHeap[i]; 10349 aHeap[i] = x; 10350 i = j; 10351 } 10352 } 10353 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 10354 u32 j, i, x; 10355 if( (x = aHeap[0])==0 ) return 0; 10356 *pOut = aHeap[1]; 10357 aHeap[1] = aHeap[x]; 10358 aHeap[x] = 0xffffffff; 10359 aHeap[0]--; 10360 i = 1; 10361 while( (j = i*2)<=aHeap[0] ){ 10362 if( aHeap[j]>aHeap[j+1] ) j++; 10363 if( aHeap[i]<aHeap[j] ) break; 10364 x = aHeap[i]; 10365 aHeap[i] = aHeap[j]; 10366 aHeap[j] = x; 10367 i = j; 10368 } 10369 return 1; 10370 } 10371 10372 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10373 /* 10374 ** Do various sanity checks on a single page of a tree. Return 10375 ** the tree depth. Root pages return 0. Parents of root pages 10376 ** return 1, and so forth. 10377 ** 10378 ** These checks are done: 10379 ** 10380 ** 1. Make sure that cells and freeblocks do not overlap 10381 ** but combine to completely cover the page. 10382 ** 2. Make sure integer cell keys are in order. 10383 ** 3. Check the integrity of overflow pages. 10384 ** 4. Recursively call checkTreePage on all children. 10385 ** 5. Verify that the depth of all children is the same. 10386 */ 10387 static int checkTreePage( 10388 IntegrityCk *pCheck, /* Context for the sanity check */ 10389 Pgno iPage, /* Page number of the page to check */ 10390 i64 *piMinKey, /* Write minimum integer primary key here */ 10391 i64 maxKey /* Error if integer primary key greater than this */ 10392 ){ 10393 MemPage *pPage = 0; /* The page being analyzed */ 10394 int i; /* Loop counter */ 10395 int rc; /* Result code from subroutine call */ 10396 int depth = -1, d2; /* Depth of a subtree */ 10397 int pgno; /* Page number */ 10398 int nFrag; /* Number of fragmented bytes on the page */ 10399 int hdr; /* Offset to the page header */ 10400 int cellStart; /* Offset to the start of the cell pointer array */ 10401 int nCell; /* Number of cells */ 10402 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 10403 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 10404 ** False if IPK must be strictly less than maxKey */ 10405 u8 *data; /* Page content */ 10406 u8 *pCell; /* Cell content */ 10407 u8 *pCellIdx; /* Next element of the cell pointer array */ 10408 BtShared *pBt; /* The BtShared object that owns pPage */ 10409 u32 pc; /* Address of a cell */ 10410 u32 usableSize; /* Usable size of the page */ 10411 u32 contentOffset; /* Offset to the start of the cell content area */ 10412 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 10413 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 10414 const char *saved_zPfx = pCheck->zPfx; 10415 int saved_v1 = pCheck->v1; 10416 int saved_v2 = pCheck->v2; 10417 u8 savedIsInit = 0; 10418 10419 /* Check that the page exists 10420 */ 10421 pBt = pCheck->pBt; 10422 usableSize = pBt->usableSize; 10423 if( iPage==0 ) return 0; 10424 if( checkRef(pCheck, iPage) ) return 0; 10425 pCheck->zPfx = "Page %u: "; 10426 pCheck->v1 = iPage; 10427 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ 10428 checkAppendMsg(pCheck, 10429 "unable to get the page. error code=%d", rc); 10430 goto end_of_check; 10431 } 10432 10433 /* Clear MemPage.isInit to make sure the corruption detection code in 10434 ** btreeInitPage() is executed. */ 10435 savedIsInit = pPage->isInit; 10436 pPage->isInit = 0; 10437 if( (rc = btreeInitPage(pPage))!=0 ){ 10438 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 10439 checkAppendMsg(pCheck, 10440 "btreeInitPage() returns error code %d", rc); 10441 goto end_of_check; 10442 } 10443 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 10444 assert( rc==SQLITE_CORRUPT ); 10445 checkAppendMsg(pCheck, "free space corruption", rc); 10446 goto end_of_check; 10447 } 10448 data = pPage->aData; 10449 hdr = pPage->hdrOffset; 10450 10451 /* Set up for cell analysis */ 10452 pCheck->zPfx = "On tree page %u cell %d: "; 10453 contentOffset = get2byteNotZero(&data[hdr+5]); 10454 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 10455 10456 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 10457 ** number of cells on the page. */ 10458 nCell = get2byte(&data[hdr+3]); 10459 assert( pPage->nCell==nCell ); 10460 10461 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 10462 ** immediately follows the b-tree page header. */ 10463 cellStart = hdr + 12 - 4*pPage->leaf; 10464 assert( pPage->aCellIdx==&data[cellStart] ); 10465 pCellIdx = &data[cellStart + 2*(nCell-1)]; 10466 10467 if( !pPage->leaf ){ 10468 /* Analyze the right-child page of internal pages */ 10469 pgno = get4byte(&data[hdr+8]); 10470 #ifndef SQLITE_OMIT_AUTOVACUUM 10471 if( pBt->autoVacuum ){ 10472 pCheck->zPfx = "On page %u at right child: "; 10473 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10474 } 10475 #endif 10476 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10477 keyCanBeEqual = 0; 10478 }else{ 10479 /* For leaf pages, the coverage check will occur in the same loop 10480 ** as the other cell checks, so initialize the heap. */ 10481 heap = pCheck->heap; 10482 heap[0] = 0; 10483 } 10484 10485 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 10486 ** integer offsets to the cell contents. */ 10487 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 10488 CellInfo info; 10489 10490 /* Check cell size */ 10491 pCheck->v2 = i; 10492 assert( pCellIdx==&data[cellStart + i*2] ); 10493 pc = get2byteAligned(pCellIdx); 10494 pCellIdx -= 2; 10495 if( pc<contentOffset || pc>usableSize-4 ){ 10496 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 10497 pc, contentOffset, usableSize-4); 10498 doCoverageCheck = 0; 10499 continue; 10500 } 10501 pCell = &data[pc]; 10502 pPage->xParseCell(pPage, pCell, &info); 10503 if( pc+info.nSize>usableSize ){ 10504 checkAppendMsg(pCheck, "Extends off end of page"); 10505 doCoverageCheck = 0; 10506 continue; 10507 } 10508 10509 /* Check for integer primary key out of range */ 10510 if( pPage->intKey ){ 10511 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 10512 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 10513 } 10514 maxKey = info.nKey; 10515 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 10516 } 10517 10518 /* Check the content overflow list */ 10519 if( info.nPayload>info.nLocal ){ 10520 u32 nPage; /* Number of pages on the overflow chain */ 10521 Pgno pgnoOvfl; /* First page of the overflow chain */ 10522 assert( pc + info.nSize - 4 <= usableSize ); 10523 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 10524 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 10525 #ifndef SQLITE_OMIT_AUTOVACUUM 10526 if( pBt->autoVacuum ){ 10527 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 10528 } 10529 #endif 10530 checkList(pCheck, 0, pgnoOvfl, nPage); 10531 } 10532 10533 if( !pPage->leaf ){ 10534 /* Check sanity of left child page for internal pages */ 10535 pgno = get4byte(pCell); 10536 #ifndef SQLITE_OMIT_AUTOVACUUM 10537 if( pBt->autoVacuum ){ 10538 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10539 } 10540 #endif 10541 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10542 keyCanBeEqual = 0; 10543 if( d2!=depth ){ 10544 checkAppendMsg(pCheck, "Child page depth differs"); 10545 depth = d2; 10546 } 10547 }else{ 10548 /* Populate the coverage-checking heap for leaf pages */ 10549 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 10550 } 10551 } 10552 *piMinKey = maxKey; 10553 10554 /* Check for complete coverage of the page 10555 */ 10556 pCheck->zPfx = 0; 10557 if( doCoverageCheck && pCheck->mxErr>0 ){ 10558 /* For leaf pages, the min-heap has already been initialized and the 10559 ** cells have already been inserted. But for internal pages, that has 10560 ** not yet been done, so do it now */ 10561 if( !pPage->leaf ){ 10562 heap = pCheck->heap; 10563 heap[0] = 0; 10564 for(i=nCell-1; i>=0; i--){ 10565 u32 size; 10566 pc = get2byteAligned(&data[cellStart+i*2]); 10567 size = pPage->xCellSize(pPage, &data[pc]); 10568 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 10569 } 10570 } 10571 /* Add the freeblocks to the min-heap 10572 ** 10573 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 10574 ** is the offset of the first freeblock, or zero if there are no 10575 ** freeblocks on the page. 10576 */ 10577 i = get2byte(&data[hdr+1]); 10578 while( i>0 ){ 10579 int size, j; 10580 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10581 size = get2byte(&data[i+2]); 10582 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 10583 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 10584 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 10585 ** big-endian integer which is the offset in the b-tree page of the next 10586 ** freeblock in the chain, or zero if the freeblock is the last on the 10587 ** chain. */ 10588 j = get2byte(&data[i]); 10589 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 10590 ** increasing offset. */ 10591 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 10592 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10593 i = j; 10594 } 10595 /* Analyze the min-heap looking for overlap between cells and/or 10596 ** freeblocks, and counting the number of untracked bytes in nFrag. 10597 ** 10598 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10599 ** There is an implied first entry the covers the page header, the cell 10600 ** pointer index, and the gap between the cell pointer index and the start 10601 ** of cell content. 10602 ** 10603 ** The loop below pulls entries from the min-heap in order and compares 10604 ** the start_address against the previous end_address. If there is an 10605 ** overlap, that means bytes are used multiple times. If there is a gap, 10606 ** that gap is added to the fragmentation count. 10607 */ 10608 nFrag = 0; 10609 prev = contentOffset - 1; /* Implied first min-heap entry */ 10610 while( btreeHeapPull(heap,&x) ){ 10611 if( (prev&0xffff)>=(x>>16) ){ 10612 checkAppendMsg(pCheck, 10613 "Multiple uses for byte %u of page %u", x>>16, iPage); 10614 break; 10615 }else{ 10616 nFrag += (x>>16) - (prev&0xffff) - 1; 10617 prev = x; 10618 } 10619 } 10620 nFrag += usableSize - (prev&0xffff) - 1; 10621 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10622 ** is stored in the fifth field of the b-tree page header. 10623 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10624 ** number of fragmented free bytes within the cell content area. 10625 */ 10626 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10627 checkAppendMsg(pCheck, 10628 "Fragmentation of %d bytes reported as %d on page %u", 10629 nFrag, data[hdr+7], iPage); 10630 } 10631 } 10632 10633 end_of_check: 10634 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10635 releasePage(pPage); 10636 pCheck->zPfx = saved_zPfx; 10637 pCheck->v1 = saved_v1; 10638 pCheck->v2 = saved_v2; 10639 return depth+1; 10640 } 10641 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10642 10643 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10644 /* 10645 ** This routine does a complete check of the given BTree file. aRoot[] is 10646 ** an array of pages numbers were each page number is the root page of 10647 ** a table. nRoot is the number of entries in aRoot. 10648 ** 10649 ** A read-only or read-write transaction must be opened before calling 10650 ** this function. 10651 ** 10652 ** Write the number of error seen in *pnErr. Except for some memory 10653 ** allocation errors, an error message held in memory obtained from 10654 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10655 ** returned. If a memory allocation error occurs, NULL is returned. 10656 ** 10657 ** If the first entry in aRoot[] is 0, that indicates that the list of 10658 ** root pages is incomplete. This is a "partial integrity-check". This 10659 ** happens when performing an integrity check on a single table. The 10660 ** zero is skipped, of course. But in addition, the freelist checks 10661 ** and the checks to make sure every page is referenced are also skipped, 10662 ** since obviously it is not possible to know which pages are covered by 10663 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 10664 ** checks are still performed. 10665 */ 10666 char *sqlite3BtreeIntegrityCheck( 10667 sqlite3 *db, /* Database connection that is running the check */ 10668 Btree *p, /* The btree to be checked */ 10669 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 10670 int nRoot, /* Number of entries in aRoot[] */ 10671 int mxErr, /* Stop reporting errors after this many */ 10672 int *pnErr /* Write number of errors seen to this variable */ 10673 ){ 10674 Pgno i; 10675 IntegrityCk sCheck; 10676 BtShared *pBt = p->pBt; 10677 u64 savedDbFlags = pBt->db->flags; 10678 char zErr[100]; 10679 int bPartial = 0; /* True if not checking all btrees */ 10680 int bCkFreelist = 1; /* True to scan the freelist */ 10681 VVA_ONLY( int nRef ); 10682 assert( nRoot>0 ); 10683 10684 /* aRoot[0]==0 means this is a partial check */ 10685 if( aRoot[0]==0 ){ 10686 assert( nRoot>1 ); 10687 bPartial = 1; 10688 if( aRoot[1]!=1 ) bCkFreelist = 0; 10689 } 10690 10691 sqlite3BtreeEnter(p); 10692 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10693 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10694 assert( nRef>=0 ); 10695 sCheck.db = db; 10696 sCheck.pBt = pBt; 10697 sCheck.pPager = pBt->pPager; 10698 sCheck.nPage = btreePagecount(sCheck.pBt); 10699 sCheck.mxErr = mxErr; 10700 sCheck.nErr = 0; 10701 sCheck.bOomFault = 0; 10702 sCheck.zPfx = 0; 10703 sCheck.v1 = 0; 10704 sCheck.v2 = 0; 10705 sCheck.aPgRef = 0; 10706 sCheck.heap = 0; 10707 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10708 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10709 if( sCheck.nPage==0 ){ 10710 goto integrity_ck_cleanup; 10711 } 10712 10713 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10714 if( !sCheck.aPgRef ){ 10715 sCheck.bOomFault = 1; 10716 goto integrity_ck_cleanup; 10717 } 10718 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10719 if( sCheck.heap==0 ){ 10720 sCheck.bOomFault = 1; 10721 goto integrity_ck_cleanup; 10722 } 10723 10724 i = PENDING_BYTE_PAGE(pBt); 10725 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10726 10727 /* Check the integrity of the freelist 10728 */ 10729 if( bCkFreelist ){ 10730 sCheck.zPfx = "Main freelist: "; 10731 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10732 get4byte(&pBt->pPage1->aData[36])); 10733 sCheck.zPfx = 0; 10734 } 10735 10736 /* Check all the tables. 10737 */ 10738 #ifndef SQLITE_OMIT_AUTOVACUUM 10739 if( !bPartial ){ 10740 if( pBt->autoVacuum ){ 10741 Pgno mx = 0; 10742 Pgno mxInHdr; 10743 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10744 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10745 if( mx!=mxInHdr ){ 10746 checkAppendMsg(&sCheck, 10747 "max rootpage (%d) disagrees with header (%d)", 10748 mx, mxInHdr 10749 ); 10750 } 10751 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10752 checkAppendMsg(&sCheck, 10753 "incremental_vacuum enabled with a max rootpage of zero" 10754 ); 10755 } 10756 } 10757 #endif 10758 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10759 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10760 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10761 i64 notUsed; 10762 if( aRoot[i]==0 ) continue; 10763 #ifndef SQLITE_OMIT_AUTOVACUUM 10764 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 10765 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10766 } 10767 #endif 10768 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10769 } 10770 pBt->db->flags = savedDbFlags; 10771 10772 /* Make sure every page in the file is referenced 10773 */ 10774 if( !bPartial ){ 10775 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10776 #ifdef SQLITE_OMIT_AUTOVACUUM 10777 if( getPageReferenced(&sCheck, i)==0 ){ 10778 checkAppendMsg(&sCheck, "Page %d is never used", i); 10779 } 10780 #else 10781 /* If the database supports auto-vacuum, make sure no tables contain 10782 ** references to pointer-map pages. 10783 */ 10784 if( getPageReferenced(&sCheck, i)==0 && 10785 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10786 checkAppendMsg(&sCheck, "Page %d is never used", i); 10787 } 10788 if( getPageReferenced(&sCheck, i)!=0 && 10789 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10790 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10791 } 10792 #endif 10793 } 10794 } 10795 10796 /* Clean up and report errors. 10797 */ 10798 integrity_ck_cleanup: 10799 sqlite3PageFree(sCheck.heap); 10800 sqlite3_free(sCheck.aPgRef); 10801 if( sCheck.bOomFault ){ 10802 sqlite3_str_reset(&sCheck.errMsg); 10803 sCheck.nErr++; 10804 } 10805 *pnErr = sCheck.nErr; 10806 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10807 /* Make sure this analysis did not leave any unref() pages. */ 10808 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10809 sqlite3BtreeLeave(p); 10810 return sqlite3StrAccumFinish(&sCheck.errMsg); 10811 } 10812 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10813 10814 /* 10815 ** Return the full pathname of the underlying database file. Return 10816 ** an empty string if the database is in-memory or a TEMP database. 10817 ** 10818 ** The pager filename is invariant as long as the pager is 10819 ** open so it is safe to access without the BtShared mutex. 10820 */ 10821 const char *sqlite3BtreeGetFilename(Btree *p){ 10822 assert( p->pBt->pPager!=0 ); 10823 return sqlite3PagerFilename(p->pBt->pPager, 1); 10824 } 10825 10826 /* 10827 ** Return the pathname of the journal file for this database. The return 10828 ** value of this routine is the same regardless of whether the journal file 10829 ** has been created or not. 10830 ** 10831 ** The pager journal filename is invariant as long as the pager is 10832 ** open so it is safe to access without the BtShared mutex. 10833 */ 10834 const char *sqlite3BtreeGetJournalname(Btree *p){ 10835 assert( p->pBt->pPager!=0 ); 10836 return sqlite3PagerJournalname(p->pBt->pPager); 10837 } 10838 10839 /* 10840 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE 10841 ** to describe the current transaction state of Btree p. 10842 */ 10843 int sqlite3BtreeTxnState(Btree *p){ 10844 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10845 return p ? p->inTrans : 0; 10846 } 10847 10848 #ifndef SQLITE_OMIT_WAL 10849 /* 10850 ** Run a checkpoint on the Btree passed as the first argument. 10851 ** 10852 ** Return SQLITE_LOCKED if this or any other connection has an open 10853 ** transaction on the shared-cache the argument Btree is connected to. 10854 ** 10855 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10856 */ 10857 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10858 int rc = SQLITE_OK; 10859 if( p ){ 10860 BtShared *pBt = p->pBt; 10861 sqlite3BtreeEnter(p); 10862 if( pBt->inTransaction!=TRANS_NONE ){ 10863 rc = SQLITE_LOCKED; 10864 }else{ 10865 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10866 } 10867 sqlite3BtreeLeave(p); 10868 } 10869 return rc; 10870 } 10871 #endif 10872 10873 /* 10874 ** Return true if there is currently a backup running on Btree p. 10875 */ 10876 int sqlite3BtreeIsInBackup(Btree *p){ 10877 assert( p ); 10878 assert( sqlite3_mutex_held(p->db->mutex) ); 10879 return p->nBackup!=0; 10880 } 10881 10882 /* 10883 ** This function returns a pointer to a blob of memory associated with 10884 ** a single shared-btree. The memory is used by client code for its own 10885 ** purposes (for example, to store a high-level schema associated with 10886 ** the shared-btree). The btree layer manages reference counting issues. 10887 ** 10888 ** The first time this is called on a shared-btree, nBytes bytes of memory 10889 ** are allocated, zeroed, and returned to the caller. For each subsequent 10890 ** call the nBytes parameter is ignored and a pointer to the same blob 10891 ** of memory returned. 10892 ** 10893 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10894 ** allocated, a null pointer is returned. If the blob has already been 10895 ** allocated, it is returned as normal. 10896 ** 10897 ** Just before the shared-btree is closed, the function passed as the 10898 ** xFree argument when the memory allocation was made is invoked on the 10899 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10900 ** on the memory, the btree layer does that. 10901 */ 10902 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10903 BtShared *pBt = p->pBt; 10904 sqlite3BtreeEnter(p); 10905 if( !pBt->pSchema && nBytes ){ 10906 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10907 pBt->xFreeSchema = xFree; 10908 } 10909 sqlite3BtreeLeave(p); 10910 return pBt->pSchema; 10911 } 10912 10913 /* 10914 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10915 ** btree as the argument handle holds an exclusive lock on the 10916 ** sqlite_schema table. Otherwise SQLITE_OK. 10917 */ 10918 int sqlite3BtreeSchemaLocked(Btree *p){ 10919 int rc; 10920 assert( sqlite3_mutex_held(p->db->mutex) ); 10921 sqlite3BtreeEnter(p); 10922 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 10923 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10924 sqlite3BtreeLeave(p); 10925 return rc; 10926 } 10927 10928 10929 #ifndef SQLITE_OMIT_SHARED_CACHE 10930 /* 10931 ** Obtain a lock on the table whose root page is iTab. The 10932 ** lock is a write lock if isWritelock is true or a read lock 10933 ** if it is false. 10934 */ 10935 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10936 int rc = SQLITE_OK; 10937 assert( p->inTrans!=TRANS_NONE ); 10938 if( p->sharable ){ 10939 u8 lockType = READ_LOCK + isWriteLock; 10940 assert( READ_LOCK+1==WRITE_LOCK ); 10941 assert( isWriteLock==0 || isWriteLock==1 ); 10942 10943 sqlite3BtreeEnter(p); 10944 rc = querySharedCacheTableLock(p, iTab, lockType); 10945 if( rc==SQLITE_OK ){ 10946 rc = setSharedCacheTableLock(p, iTab, lockType); 10947 } 10948 sqlite3BtreeLeave(p); 10949 } 10950 return rc; 10951 } 10952 #endif 10953 10954 #ifndef SQLITE_OMIT_INCRBLOB 10955 /* 10956 ** Argument pCsr must be a cursor opened for writing on an 10957 ** INTKEY table currently pointing at a valid table entry. 10958 ** This function modifies the data stored as part of that entry. 10959 ** 10960 ** Only the data content may only be modified, it is not possible to 10961 ** change the length of the data stored. If this function is called with 10962 ** parameters that attempt to write past the end of the existing data, 10963 ** no modifications are made and SQLITE_CORRUPT is returned. 10964 */ 10965 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10966 int rc; 10967 assert( cursorOwnsBtShared(pCsr) ); 10968 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10969 assert( pCsr->curFlags & BTCF_Incrblob ); 10970 10971 rc = restoreCursorPosition(pCsr); 10972 if( rc!=SQLITE_OK ){ 10973 return rc; 10974 } 10975 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10976 if( pCsr->eState!=CURSOR_VALID ){ 10977 return SQLITE_ABORT; 10978 } 10979 10980 /* Save the positions of all other cursors open on this table. This is 10981 ** required in case any of them are holding references to an xFetch 10982 ** version of the b-tree page modified by the accessPayload call below. 10983 ** 10984 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10985 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10986 ** saveAllCursors can only return SQLITE_OK. 10987 */ 10988 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10989 assert( rc==SQLITE_OK ); 10990 10991 /* Check some assumptions: 10992 ** (a) the cursor is open for writing, 10993 ** (b) there is a read/write transaction open, 10994 ** (c) the connection holds a write-lock on the table (if required), 10995 ** (d) there are no conflicting read-locks, and 10996 ** (e) the cursor points at a valid row of an intKey table. 10997 */ 10998 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10999 return SQLITE_READONLY; 11000 } 11001 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 11002 && pCsr->pBt->inTransaction==TRANS_WRITE ); 11003 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 11004 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 11005 assert( pCsr->pPage->intKey ); 11006 11007 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 11008 } 11009 11010 /* 11011 ** Mark this cursor as an incremental blob cursor. 11012 */ 11013 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 11014 pCur->curFlags |= BTCF_Incrblob; 11015 pCur->pBtree->hasIncrblobCur = 1; 11016 } 11017 #endif 11018 11019 /* 11020 ** Set both the "read version" (single byte at byte offset 18) and 11021 ** "write version" (single byte at byte offset 19) fields in the database 11022 ** header to iVersion. 11023 */ 11024 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 11025 BtShared *pBt = pBtree->pBt; 11026 int rc; /* Return code */ 11027 11028 assert( iVersion==1 || iVersion==2 ); 11029 11030 /* If setting the version fields to 1, do not automatically open the 11031 ** WAL connection, even if the version fields are currently set to 2. 11032 */ 11033 pBt->btsFlags &= ~BTS_NO_WAL; 11034 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 11035 11036 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 11037 if( rc==SQLITE_OK ){ 11038 u8 *aData = pBt->pPage1->aData; 11039 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 11040 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 11041 if( rc==SQLITE_OK ){ 11042 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 11043 if( rc==SQLITE_OK ){ 11044 aData[18] = (u8)iVersion; 11045 aData[19] = (u8)iVersion; 11046 } 11047 } 11048 } 11049 } 11050 11051 pBt->btsFlags &= ~BTS_NO_WAL; 11052 return rc; 11053 } 11054 11055 /* 11056 ** Return true if the cursor has a hint specified. This routine is 11057 ** only used from within assert() statements 11058 */ 11059 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 11060 return (pCsr->hints & mask)!=0; 11061 } 11062 11063 /* 11064 ** Return true if the given Btree is read-only. 11065 */ 11066 int sqlite3BtreeIsReadonly(Btree *p){ 11067 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 11068 } 11069 11070 /* 11071 ** Return the size of the header added to each page by this module. 11072 */ 11073 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 11074 11075 #if !defined(SQLITE_OMIT_SHARED_CACHE) 11076 /* 11077 ** Return true if the Btree passed as the only argument is sharable. 11078 */ 11079 int sqlite3BtreeSharable(Btree *p){ 11080 return p->sharable; 11081 } 11082 11083 /* 11084 ** Return the number of connections to the BtShared object accessed by 11085 ** the Btree handle passed as the only argument. For private caches 11086 ** this is always 1. For shared caches it may be 1 or greater. 11087 */ 11088 int sqlite3BtreeConnectionCount(Btree *p){ 11089 testcase( p->sharable ); 11090 return p->pBt->nRef; 11091 } 11092 #endif 11093